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Preface 

The UN COP27 2022 conference in Egypt on climate change offers opportunities 
for leaders of the world to take action and make meaningful and urgent commit-
ments and strategies to reduce greenhouse gas emissions to control global tempera-
tures. The climate change impact is already threatening human existence across the 
universe. Climate change is one of the humanity’s major challenges in the current 
century. It will continue to be a major problem in the next century not only due to its 
long-term effects on sustainable development, its pervasive nature, complexity, and 
consequences such as environmental hazards such as drought, desertification, and 
healthcare and agricultural problems. Climate change is used to describe the alter-
ation in the climate over time caused by human activities and some naturally stirring 
events such as earthquakes and explosions. As a result, global warming is caused by 
the variabilities in climate variables which are occasioned mostly by human activi-
ties. Several current research studies have predicted that if immediate action is not 
made to address the impacts of the changes in the climate, the implications could 
lead to a lack of food and water in the next decades, as well as the effect on the health 
of people. 

As a result, the current situation necessitates a quick response from all parties 
involved in devising, adopting, and implementing the essential steps and adapta-
tion for reducing these potential hazards through data science and emerging and 
innovative technology. 

Finding sustainable solutions to this issue will significantly affect the global, 
regional, national, and local community levels. The urgency in finding technological 
solutions to this global problem will require effective actions from governments, the 
industrial level, the private sector, and civil society. 

There is an increasing recognition that data science and emerging and innova-
tive technologies will play a major role in the national and global strategies to 
combat climate change challenges. Therefore, these technologies can potentially 
present solutions to complex development challenges brought by climate change. 
Data science and emerging digital and innovative technologies such as artificial intel-
ligence, the Internet of things, digital twins, blockchain, drones, cloud computing, 
and sensor networks have drawn significant attention in the last years to tackle climate
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change challenges and reduce greenhouse gases and their impact. The impact and 
deploying these technologies on human life have witnessed a great interest in some 
areas related to climate change adaptation and mitigation, such as renewable ener-
gies, ocean dynamics, environmental quality control, biodiversity, agriculture, water 
sustainability, and energy sustainability. In addition, emerging digital technologies 
can deliver more efficient, rapid, and reliable decision-making solutions before, 
during, and after the occurrence of hazards as a consequence of climate change. 
These technologies can provide a chance to deliver sustained solutions to many 
societal challenges relating to climate change. Therefore, data science and emerging 
and innovative digital technologies can improve resilience to global warming-related, 
natural hazards, reduce emissions, and enhance humans’ ability to take the necessary 
steps to realize net zero. 

The contents of this book are divided into four parts. 
Part “Artificial Intelligence in Climate Change Applications” is devoted to the 

applications of artificial intelligence for floods crises prediction based on machine 
learning techniques, the impact of climate change on air flight emissions for green 
aviation, the prediction of water quality index using machine learning techniques, 
the impact of artificial intelligence on waste management for climate change, and 
finally, a machine learning-based model for predicting temperature under the effects 
of climate change. 

Part “Emerging Technologies in Industry and Energy Sector” concerns are 
emerging technologies’ role in the climate change industry and energy sector. It 
includes the prediction of emissions of cars based on artificial intelligence tech-
niques, a decision support framework for photovoltaic renewable energy predic-
tion, a clean energy management system based on the Internet of things and sensor 
networks, digital twins for the energy management sector, using a case study based 
on Internet of things to design ozone prediction model for mitigating the effect of 
climate change, and finally suing emerging technologies for sustainable zero energy 
in buildings using multistage optimization in Egypt. 

Part “Emerging Climate Change Technology in Agriculture Sector” is devoted to 
presenting the applications of emerging technologies in the agriculture industry. It 
concludes the crop prediction with climate factors and soil properties based on an 
intelligent recommendation mode, an intelligent recommendation model for strategic 
crops in Egypt using deep learning, a data-driven decision support system for an 
innovative water system for climate change problems, and finally, the role of artificial 
intelligence in water management systems for irrigation in agriculture. 

Part “Emerging Climate Change Technologies in Healthcare Sector” presents the 
application of emerging technologies in the healthcare sector to tackle climate change 
problems. It includes the influence of climate change on the re-emergence of malaria 
using artificial intelligence. 

The authors of this book wish to acknowledge the encouragement of the organizing 
committee of COP27, who motivated them to prepare this book. The success of 
publishing this book is first of all a result of the quality and the motivation of its
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authors and researchers. So, we would like to thank all participants of COP27 and 
researchers and authors of chapters of this book for their contributions. We are also 
very grateful to the reviewers, whose very consistent reviewing of manuscripts was 
of great help in improving the quality of many chapters of this book. We also owe our 
gratitude to the publisher of this book for their willingness to deal with the chapters 
of this book. 

Cairo, Egypt Prof. Aboul Ella Hassanien 
Prof. Ashraf Darwish



Contents 

Artificial Intelligence in Climate Change Applications 

Artificial Intelligence for Predicting Floods: A Climatic Change 
Phenomenon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 
Mohamed Torky, Ibrahim Gad, Ashraf Darwish, 
and Aboul Ella Hassanien 

Prediction of Climate Change Impact Based on Air Flight CO2 

Emissions Using Machine Learning: Towards Green Air Flights . . . . . . . 27 
Heba Askr, Aboul Ella Hssanien, and Ashraf Darwish 

The Impact of Artificial Intelligence on Waste Management 
for Climate Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 
Heba Alshater, Yasmine S. Moemen, and Ibrahim El-Tantawy El-Sayed 

A Machine Learning-Based Model for Predicting Temperature 
Under the Effects of Climate Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 
Mahmoud Y. Shams, Zahraa Tarek, Ahmed M. Elshewey, Maha Hany, 
Ashraf Darwish, and Aboul Ella Hassanien 

Emerging Technologies in Industry and Energy Sector 

Prediction of CO2 Emission in Cars Using Machine Learning 
Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 
Gehad Ismail Sayed and Aboul Ella Hassanien 

Climate Change: The Challenge of Tunisia and Previsions 
for Renewable Energy Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 
Wahiba Ben Abdessalem, Ilyes Jayari, and Sami Karaa 

Clean Energy Management Based on Internet of Things 
and Sensor Networks for Climate Change Problems . . . . . . . . . . . . . . . . . . 117 
Yasmine S. Moemen, Heba Alshater, and Ibrahim El-Tantawy El-Sayed

ix



x Contents

Digital Twin Technology for Energy Management Systems 
to Tackle Climate Change Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 
Eman Ahmed, M. A. Farag, Ashraf Darwish, and Aboul Ella Hassanien 

The Role of Internet of Things in Mitigating the Effect of Climate 
Change: Case Study: An Ozone Prediction Model . . . . . . . . . . . . . . . . . . . . 157 
Lobna M. Abou El-Magd, Aboul Ella Hassnien, and Ashraf Darwish 

Emerging Climate Change Technology in Agriculture Sector 

Optimized Multi-Kernel Predictive Model for the Crop Prediction 
with Climate Factors and Soil Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 
Sara Abdelghafar, Ashraf Darwish, and Aboul Ella Hassanien 

An Intelligent Crop Recommendation Model for the Three 
Strategic Crops in Egypt Based on Climate Change Data . . . . . . . . . . . . . . 189 
Sally Elghamrawy, Athanasios V. Vasilakos, Ashraf Darwish, 
and Aboul Ella Hassanien 

Cost Effective Decision Support System for Smart Water 
Management System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 
Amany Magdy Mohamed, Ashraf Darwish, and Aboul Ella Hassanien 

The Role of Artificial Intelligence in Water Management 
in Agriculture for Climate Change Impacts . . . . . . . . . . . . . . . . . . . . . . . . . . 221 
Wessam El-ssawy, Ashraf Darwish, and Aboul Ella Hassanien 

Emerging Climate Change Technologies in Healthcare Sector 

The Influence of Climate Change on the Re-emergence of Malaria 
Using Artificial Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 
Yasmine S Moemen, Heba Alshater, and Ibrahim El-Tantawy El-Sayed 

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253



Artificial Intelligence in Climate Change 
Applications



Artificial Intelligence for Predicting 
Floods: A Climatic Change Phenomenon 

Mohamed Torky, Ibrahim Gad, Ashraf Darwish, and Aboul Ella Hassanien 

1 Introduction 

Climate change is fast becoming one of the biggest and most significant challenges 
at this time. Many countries in the world are now witnessing radical changes in the 
features of their climate features. For instance, rainfall styles are shifting, tempera-
tures are increasing, wildfires are starting to occur more frequently, snow and glaciers 
are melting, the global mean sea level is rising, and floods are becoming more and 
more dangerous to human life [1]. Climate changes we face confirm that the recent 
strategies of the world to manipulate them are not up to the challenge we face. For 
example, these policies will lead to a global temperature rise of + 3 °C. This puts 
our planet at real risk from more severe climate change effects before the end of the 
century [2]. Climate change is the large-scale, long-term shift in weather patterns, in 
particular, due to global warming phenomena. For instance, to make Earth’s temper-
ature below the + 2 °C target, CO2 emissions must be decreased and be close to zero 
by 2070, with total gas emissions turning negative thereafter [2].
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On the other hand, flooding is another climatic phenomenon that is possible to 
occur due to the change in water cycles on our planet. So, the important question 
is: How does climate change affect floods? Since climate changes occur due to the 
burning of oil, coal, and gas, this leads to that the weather will change to become 
warmer, and wetter. You can simulate this scenario by putting some water in a pan 
and heating it. Increasing temperatures make the water boils, and the steam raises 
and makes it more moisture, this leads to the constitution of dense clouds that cause 
heavy rainfalls and occur flooding. There are five climatic causes of flooding: heavy 
rains, storms, overflowing rivers, lack of vegetation, and melting snow and ice [3]. 
A more moisture atmosphere can lead to more intense downpours in short times; 
this can raise the risk of sudden and un-expecting flooding. Moreover, increasing 
the atmosphere temperature means there is more heat for climate systems that cause 
heavy rainfalls. Floods shaped the greatest proportion of economic destruction from 
the unstable climate in Australia over the last 10 years, followed by droughts, and 
tropical. If these levels of carbon emissions continue without drastic solutions, the 
Australian economy will lose $40 billion per year by 2060 due to floods [4]. Floods 
not only have a serious impact on the global economy, and people’s life and, but also 
on our beloved animals, valuable livestock, and wildlife [5]. Hurricane strength is 
also forecasted to rise as the weather continues to warm. Intense storms can lead to 
a greater risk of coastal flooding from storm attacks, a danger that will be further 
growth by sea level rise. Hurricanes occurrences have also serious impacts on moving 
floods to drink water systems and wastewater services, which can damage treatment 
procedures or water distribution systems and all infrastructure lines [6]. 

Flood events are also related to changing rain patterns on snow. In some cases, 
the downpour-on-snow events occur while the soil is still partially congealed. The 
frozen soil, which is already saturated, cannot absorb additional water. Therefore, 
the more rainfall the more snowmelt runoff. This leads to creating many flood rivers 
with a huge amount of flowing water. This scenario of downpour, frozen soils, and 
snowmelt was the major reason for Midwest flooding in March 2019 that caused 
over US$12 billion in damage. In addition, In June 2022, a huge flooding event hit 
the western mountains series in the Western U.S, where snowmelt combined storms 
and rainfall dumped up to five inches of rain over three days in Yellowstone National 
Park and surrounding places, rapidly melting snowpack. Huge amounts of flowing 
water shaped a dystrophic flood that damaged utilities, and roads, and forced more 
than 10,000 people to evacuate [7]. 

Warmer air and wildfires are other reasons for global warming and heavy rains, 
which generate complex changes in our environmental ecosystems and increase the 
potential of flood events in various geographic areas on our planet. 

Green technology (or environmental technology/green tech.) may be a radical 
solution to many climate change challenges [8]. Green tech. refers to using science 
and technology to mitigate the negative environmental impact of human activity and 
protect the world’s natural resources. Although this technology is relatively young, 
it has fast become a great interest among scientists, engineers, and politicians due 
to increasing awareness about the impacts of climate change and the exhaustion of 
environmental resources. The green tech involves four solutions to mitigate climate
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change and minimize the global warming that increases the potential of flood events 
[9]: 

1. Low-carbon emission: It is estimated that our classical homes and building 
account for 38% of global warming gas emissions around the world [10]. On 
the other hand, low-carbon houses are designed to require minimal cooling and 
heating and produce very little waste and pollution. This certainly minimizes the 
global warming that causes heavy rains and floods. 

2. Global warming reversing: This process is based on the idea of the possibility of 
storing and capturing carbon by pulling it from the atmosphere and using it to 
make synthetic fuel. This solution will help in minimizing atmosphere tempera-
ture and global warming. Therefore, the chances of precipitation causing floods 
are diminishing. Although global warming reversing is still a more expensive 
task, some studies expect that the costs of direct air carbon storage could come 
down by a multiple of six, making it a much more achievable process [11]. 

3. Renewable energy storage: storing clean energy such as solar energy for a long 
time will minimize the dependence on fossil fuels. Burning fossil fuels launch 
large amounts of CO2, a greenhouse gas, into the air. Greenhouse gases trap 
heat in our atmosphere, causing global warming which is a major motivation for 
rainfall and occurring flooding. 

4. Green Hydrogen Production: Battery-powered electric vehicles are a common 
type of electric car, but there’s another type of electrical vehicle, which is called a 
fuel cell electric vehicle. These vehicles don’t run on batteries, they run on green 
hydrogen. The main advantage of fuel cell electric vehicles (i.e. Hydrogen-based) 
is that they don’t produce any harmful emissions, and work more efficiently than 
burning-powered vehicles, and. experts forecast that by 2050, green hydrogen 
will eventually run over 420 million vehicles and more than 20% of passenger 
ships [12]. Hydrogen fuel is still expensive, but hydrogen-powered vehicles are 
already used in many countries all over the world and could become crucial for 
cutting transport emissions and global warming from fossil fuels-based vehicles. 

Artificial Intelligence (AI) is an important technology that can assist in using green 
technology for mitigating many climates change challenges. Experts and research 
community and experts have already started focusing on climate informatics with 
AI models. AI models have a greater potential to predict, assess, classify, recognize, 
and mitigate climate change hazards with the efficient use of sensing devices, big 
environmental data patterns, and learning algorithms [13–15]. AI has many diverse 
applications in climate change areas. For example, AI-based prediction models and 
decision support systems (DSS) for weather prediction, AI-based machine vision 
applications in climate informatics, AI-based assessment models to promote eco-
friendly energy production and consumption, AI-based prediction models for earth 
hazard management, AI-based assessment models for reducing the impacts of global 
warming, Deep learning models for earth informatics and sustainable earth surveil-
lance, AI-based assessment models to minimize carbon footprints for a sustainable 
environment [16].
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Flood prediction is another application of artificial intelligence in climate change 
area [17]. In flood prediction, predicting flood hazard variables using physical 
methods can involve a chain of hydraulic and hydrologic models that describe the 
physical features of floods. Although such models provide flood understanding, they 
often require high computational and data details. Therefore, Machine-learning tech-
niques can be used as an alternative solution to flood prediction issues. They have 
the potential to enhance accuracy as well as decrease calculating time and model 
development cost. This chapter is designed to discuss how AI can be utilized for 
developing machine/deep learning models to predict flood events. Moreover, the 
chapter introduces a proposed AI model to add a novel solution to this issue. 

The remaining sections of this chapter can be organized as follows. Section 2 
presents background about artificial intelligence and flood prediction issue. Section 3 
discusses the proposed AI model for predicting flood events. Section 4 presents the 
experimental results. Section 5 concludes this work. 

2 Artificial Intelligence Approaches and Flood Prediction 

The recent classical approaches used for flood prediction do not provide accurate 
forecasting results because of the shortage of sufficient data. Usually, the inaccurate 
prediction results of those physical approaches lead to catastrophic results as the 
people cannot timely make the optimal evacuation decisions and put their lives in 
big danger. One of these traditional approaches is Hydrology [18]. Hydrology is 
a physical forecasting method that studies the linear relationship between rainfall 
falling-depth in each time and the resulting water runoff. The sum of this incremental 
function is then used to estimate the flood flow hydrograph. Another physical method 
to forecast floods is based on Hydraulic principles [19]. In this way, flood prediction is 
estimated by studying the relationship between the rainfall pressure on water surfaces 
and the generated equal forces that push water in all directions. 

Figure 1 illustrates how meteorological and hydrological systems are working 
together for forecasting floods. Note that, all figure’s links and rectangles may be 
required or used. However, the fuzzy data of hydro-meteorological variables such as 
downpour, water level, flow, and rainfall also result in fuzzy and inaccurate prediction 
results.

Artificial Intelligence models can do marvels when utilized to anticipate future 
events such as floods. AI models can mimic non-linear behaviors of a given 
phenomenon and produce more precise- forecasting results. AI algorithms can predict 
flood events before they occur, thanks to huge volumes of high-quality datasets. AI-
based flood prediction models have some strengths over classical hydrological and 
hydraulic modeling: (1) Ai-models can provide prediction results and warnings in 
milliseconds. (2) They work on real observed data and did not consider any hypo-
thetical observations or data structures. (3) They are self-learning methods that can
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Fig. 1 Meteorological and hydrological flood prediction systems

improve prediction results with time and data. Googles experts believe that AI-
flood prediction models can assist in producing flood warnings in a very short time 
compared to the physical methods and hence can avoid 30 to 50% damage [20]. 

2.1 How Does AI-Models Work to Forecast Floods 

Data is the major requirement for applying AI models. Therefore, in flood predic-
tion issues, sensor devices and satellites are excellent tools for gathering various 
climatic data patterns from various positions. Based on the collected data, AI algo-
rithms can analyze vectors of data features (e.g. Temperature, rainfall, pressure, wind 
speed, direction, see and oceans’ status, etc.) of this massive information and provide 
anticipation results about the time and place of flood events. 

The methodology of AI-models starts with training (or learning) the used AI-
model with the collected dataset (e.g. Climatic data, past rainfall data, temperature, 
pressure, wind, etc.). Using precise real-world data gathered from governmental and 
meteorological agencies, the AI-models provide the required flood prediction results. 
Figure 2 illustrates the AI methodology for flood prediction. The meteorological 
dataset is input to an AI system as training data, which is used to learn a given AI 
model how to predict flood events based on an extracted vector of data features. 
After the learning process is terminated, an AI model is then tested with different 
data patterns (i.e. testing data) to verify its accuracy in predicting flood events. The
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Fig. 2 AI methodology for predicting flood events 

learning process in AI is the most significant step with an AI prediction model. The 
more data volumes the more the learning accuracy of a given AI model. 

There are three common learning processes in AI: (1) supervised learning is 
machine learning that requires labeled datasets to train AI algorithms to classify data 
or predict outputs. (2) unsupervised learning is another kind of machine learning 
in which an AI model is provided with unlabeled and unstructured data. The main 
objective of this approach is to find structure/patterns in the input data; therefore 
this learning scheme is called self-learning as an AI algorithm can detect the hidden 
patterns in unlabeled datasets. (3) Reinforcement learning is another learning method-
ology that reacts to a dynamic environment in which it must achieve a certain goal 
without any labeled data that can help it to achieve this goal. Therefore, learning a 
model is based on transactions with a specific domain. 

A novel AI-models that can be used for predicting flood events can be developed 
based on one of the previous learning methods or a hybrid of two of them. Regarding 
AI prediction models, by specifying only 2–3 features of a data pattern in the historical 
datasets (e.g. past flood events), the AI prediction model can forecast not only the 
time and position of flooding but also the seriousness of their occurrence. 

Predicting flooding is hypothesized to achieve two goals, predicting flood water 
level, and predicting flood areas. Therefore, AI can employ two models for achieving 
these goals respectively, the hydrological Model, which is used to help scientists to 
predict water levels in rivers, and the invasion model, which determines locations 
most likely to be damaged by floods. This technique can assist in avoiding damage 
and mortalities. Moreover, gathered data patterns from social media such as Face-
book, Twitter, and other smartphone apps can also help in tracking flooding. Social 
media-based data holds various data patterns, images, and videos that can help in 
determining flood locations by AI. Such schemes can monitor, and predict the damage 
caused by floods [21].
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2.2 Machine and Deep Learning for Flood Forecasting 

Artificial intelligence could help in developing warning and forecasting systems for 
forecasting flood events and resulting damage based on machine and deep learning 
algorithms [22]. Using machine-learning algorithms, floods can be predicted based 
on structured data, which is used to learn a machine-learning algorithm how to 
recognize key data features used to predict flood events. Machine learning algorithms 
can be categorized into three kinds of algorithms, supervised, unsupervised, and semi-
supervised algorithms as clarified previously. Deep learning is a subset of machine 
learning that can perform more complex problems than machine learning based on 
artificial neural networks (ANN) designs. Therefore, Deep learning algorithms can 
predict floods based on big and unstructured data volumes in ways machine learning 
algorithms cannot easily do. Besides performing flood predictions, machine and deep 
learning algorithms can also monitor and map out/plot flood events while making 
decision support systems. 

Designing machine and deep learning models for flood prediction specifically 
requires historical data of past flood events and real-time data of rainfall and other 
meteorological information. The sources of required real-time data involve multi-
sensory devices such as radars and satellites, which can monitor the climate in a wide 
variety of locations. The best machine and deep learning models that can produce 
optimal results for flood prediction involve the following techniques: 

(1) Artificial Neural Networks (ANNs): The neuron-layers design of ANNs makes 
them very dynamic, adaptable, and effective in learning to model complex flood 
predictions. These models can assist in flood forecasting floods with high fault 
tolerance and accurate approximation results. ANN algorithms can be fed with 
distributed rainfall data from various rain sensors fixed in multiple mountainous 
regions, then utilize this data to forecast the river water level in valleys between 
mountain regions. The flow of this river and its water level in these valley 
regions a few minutes before the flood occurs depict the river’s behavior subject 
to sensor disruption [23]. This real-time flood prediction of an ANN model 
can be extremely helpful for timely warning and calamity prevention since it 
can give precise flood prediction within a few seconds. Therefore, ANNs are 
counted as one of the most dependable AI techniques for designing black-box 
models of complex and nonlinear relationships between rain flow and flood. As 
well as river flow and drainage prediction. Figure 3 depicts how ANNs design 
can be used for flood prediction. The learning process is powered with weights 
adjusted on neuron links until achieving the best accuracy of flood prediction 
results. The advance in using ANN models results in the development of deep 
neural network models able to enhance flood prediction results driven by radar 
observations and Image recognition based on integrating self-learning functions 
with neural network models. The highly reliable and precise flood prediction has 
been achieved by integrating hydrology and river engineering data to develop 
advanced deep learning models able to predict flood events accurately [24].
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Fig. 3 Flood prediction using ANN model 

(2) Neuro-Fuzzy Algorithms: These types of algorithms are defined as mathemat-
ical models that employ neural networks and fuzzy logic rules in developing 
novel machine learning flood prediction models. In this approach, flood knowl-
edge can be processed using Neuro-Fuzzy Inference System (ANFIS) [25]. The 
learning process of this approach is based on an approximation-mathematical 
function in developing a nonlinear model for predicting hydrological events 
like floods. ANFIS is a popular and efficient flood forecasting approach due to 
its fast programming, accurate learning, and powerful abilities for standardiza-
tion. The ANFIS methodology involves five layers of calculations, input layer, 
fuzzification layer, inferences layer, defuzzification layer, and output layer as 
depicted in Fig. 4. The Input metrological variables are to be fuzzified in layer 2. 
The inference process and fuzzy rules are executed in layer 3. Variables defuzzi-
fication of each corresponding rule is carried out in layer 4, and finally, in layer 
5, the final flood prediction results are output. 

(3) Statistical Learning 
Statistical learning models are popular data-driven techniques, which have 

become increasingly used for event regression analysis. These types of models

Fig. 4 Flood prediction using ANFIS approach
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gave the ability mimic nonlinear hydrological functions. Support Vector Regres-
sion (SVR) [26] and Support vector machine (SVM) [27] models are powerful 
supervised learning models, and their methodology is based on statistical 
learning theory and the operational risk reduction rule. This makes these models 
effective techniques to predict flash flood events at different lead times and 
can serve as an alternative solution to ANNs. The statistical learning–based 
models can be utilized in various flood prediction cases such as precipita-
tion, extreme rainfall, rainfall-runoff, stream flow, reservoir inflow, soil and 
weather moisture, and flood quantities and time series. Therefore, SVR and SVM 
both give promising results, better performance, and remarkably standardized 
methodologies as compared to ANN.

2.3 AI Systems for Flood Forecasting 

Some large companies specializing in information technology and artificial intelli-
gence have begun to develop complete systems and applications that can be greatly 
relied upon in predicting flood events, warning, and evaluating the risks resulting 
from the expected occurrence of the flood. These applications can also serve as 
guidance and recommendation systems for citizens and decision-makers to take the 
necessary measures to avoid the destruction caused by flood occurrences. In this 
subsection, we briefly highlight two projects developed as mature systems used in 
predicting flood events. One of these systems is developed by Google, and the other 
one is developed by Piccard.AI organization. 

A. Google’s AI-powered Flood Prediction System 
Google, the giant of technology has launched an AI-based system in 2017 for 
predicting river flood events in south Asia [28]. China, India, and Bangladesh 
are among the regions that are greatly hit by floods and natural disasters with 
huge damage to infrastructure and loss of lives. Therefore, Google’s AI experts 
developed reliable and scalable flood prediction models depending on machine 
learning technology. The main idea of Gogol’s flood prediction system is based 
on identifying a river’s probability to make flooding based on satellite images 
and river trajectory. Moreover, Google’s system is scalable to involve a set of 
hydrological variables such as water level, and precipitation to enhance predic-
tion accuracy and extend the lead-time of flood prediction. The pilot version of 
this system proved that it was able to predict river floods with an accuracy of 
75%. Another important advantage of Google’s flood prediction system is it can 
deliver precise real-time flood information and warns the citizens through Google 
search engine and Google Maps to take defensive precautions. After applying 
several pilot versions of this system in various regions, Google announced that 
its flood prediction system issued more than 100 million warning notifications, 
saving the lives of 360 million citizens in the areas most likely to be attacked by 
floods. Moreover, the system can launch flood alerts before flood emergence with 
a lead-time of 72 hours. Although the pilot versions of Google’s flood system
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proved satisfied with prediction results, it is limited to only river flooding. There-
fore, Gogol’s AI experts are recently working to update this system to be able 
to treat not only river floods but also “flash floods”, and not only used in the 
regions covered by Internet area but also in poor regions that are not covered 
with internet services. 

B. Piccard’s AI-based Flash Flood Warning and Prediction System 
Piccard’s AI is a software association, which develops AI software systems for 
prediction, optimization, and automation problems. It has developed a flash flood 
prediction system able to help residents to avoid any socioeconomic damages. 
The main idea of this system is based on forecasting rainfall by using IoT sensors, 
and then, creating alerts before even the downpour occurs. The Piccard’s AI 
system consists of four subsystems: (1) Water level surveillance devices fixed 
at various hotspot locations. (2) Set of machine learning techniques that can 
learn from climate data to forecast floods at those hotspot locations before flood 
occurrence within 1–4 hours. (3) A cloud-based mobile/desktop dashboard for 
analyzing and presenting flood behavior and its risks. (4) Email/SMS warning 
system of predicted floods to alert citizens in all the surrounding areas by the 
predicted flood [29]. The main advantage of this system is its ability to ideally 
analyze flood behaviors that cannot be addressed with drainage upgrades. By 
alerting citizens who are at risk, proactively locking roads and, authorities can 
minimize their damage and reduce the potential risks of flooding. 

3 Proposed Machine Learning-Based Flood Prediction 
Model 

In this section, a flood prediction model is proposed, which is based on utilizing 
machine learning and optimization algorithms. The proposed model consists of three 
phases: (1) flood data Pre-processing phase, and (2) feature selection based on the 
Pigeon swarm optimization (PSO) algorithm [30]. (3) Flood prediction based on 
machine learning phase. Figure 5 illustrates the three phases of the proposed model.

3.1 The Pre-processing Phase 

One of the most known stages while developing machine-learning algorithms for data 
classification is cleaning the used data from any duplication, incompleteness, redun-
dancy, etc. Without cleaning the train data, the classification models will produce 
accurate and biased results. One of the most popular automated methods that can 
do the data cleaning phase is SMOTE, which stands for “Synthetic Minority Over-
sampling Technique”. This technique can automatically generate newly cleaned data 
using the old data. Table 1 shows a sample of the used flood dataset collected from
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Fig. 5 Proposed machine learning-based flood prediction model

Kerala, India that describes the past floods from 1900 to 2020 [31]. The dataset 
consists of 120 samples of floods and 14 features. Table 2 shows counts of data 
labels before and after applying oversampling using SMOTE approach. Figures 1 
and 2 shows the scatter plot that visualizes dataset classes before and after applying 
the SMOTE approach (Figs. 6 and 7).

3.2 Feature Selection Based on the PIO Phase 

Pigeon-Inspired Optimization (PIO) is a novel swarm intelligence algorithm inspired 
by the homing behavior of pigeons [30]. The optimization methodology of the PIO 
algorithm can be utilized for finding the best solution to a given problem. In flood 
prediction problems, PIO can be used for finding the optimal reduct of features of the 
dataset that contribute to obtaining the most precise prediction results. This goal can 
be achieved by a fitness function to measure the validity of solutions and select the best 
features of an optimal solution. The used fitness function depends on the total number 
of features (TF), the performance of the classification model (accuracy), the reduct 
length, and three weight constants that contribute to the significance of prediction 
accuray, w1, subscript and w2, and w3, where, w1 + w2 + w3 = 1. Equation (1) 
defines the PIO-fitness function, while Eq. (2) defines the reduct weight that depends 
on the importance of the feature within the reduct. In our problem, we hypothesized
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Table 2 The count of data 
labels before and after 
applying SMOTE technique 

Class label Before SMOTE After SMOTE 
(Oversampling) 

Flood crisis 60 60 

No-flood crisis 58 60 

Fig. 6 The distribution of dataset classes before applying the SMOTE approach 

Fig. 7 The distribution of dataset classes after applying the SMOTE approach

that w1 = 0.70, w2 = 0.22, and w3 = 0.08. 

Fitness function = w1 ∗ accuracy + w2 ∗ F1 + w3 ∗
(
1 − 

SF 

TF

)
(1)
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Reduct weight =
Σ
i 

importance(fii) ∗ 
TF − SF 

TF 
, such that importance(fii) 

> threshold (2) 

3.3 Flood Prediction Based on Machine Learning Phase 

In this phase, two learning models have been applied, called Gradient Boosting 
(GB) [32], and Random Forest (RF) [33], but with two different scenarios. In the 
first scenario, the GB algorithm is combined with the PIO algorithm for predicting 
floods, while, in the second scenario, the process of flood prediction is completely 
solved by the RF algorithm without using the PIO algorithm. The two scenarios have 
been applied and compared to identify the features of the flood crisis and predict its 
occurrence. The learning process is performed before and after applying SMOTE 
technique in the trained dataset to validate the efficiency of the proposed model. The 
performance is validated using the known performance metrics such as precision, 
recall, accuracy, and F1-score as in Eqs. (3, 4, 5, and 6) respectively. 

Precision = TP 

TP + FP 
(3) 

Recall = TP 

TP + FN 
(4) 

Accuracy = TP + TN 
TP + TN + FP + FN 

(5) 

F1 - Score = 
2(Precision*Recall) 

Precision + Recall 
(6) 

where, TP, TN, FN, and FP are truly positive, true Negative, False Negative, and 
False Positive numbers respectively. 

4 Experimental Results 

In this section, the effectiveness of the proposed flood prediction model is evaluated 
using a Kerala, India dataset. The proposed model has been developed in Python and 
the scikit-learn software packages. The testing method is carried out on a Google 
Colab cloud equipped with a CPU running at 2.6 GHz and 32 GB of RAM. Two 
scenarios of experiments have been carried out, and the obtained results can be 
detailed as follows.
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4.1 Flood Prediction Results Using PIO and GB Algorithms 

In this scenario, a set of preparation steps are carried out for the dataset before starting 
the experiment and used as an input to the selected machine learning algorithms. 

The preparation steps are carried out for the dataset before it can be utilized as 
an input for machine learning algorithms. The dataset consists of a set of attributes 
that describe the nature of the data. A lot of combinations are evaluated to select the 
most significant attributes based on their impacts on classification performance. The 
suggested PIO reduct technique is tested on the flood dataset, containing the monthly 
and yearly. Additionally, the Gradient Boosting Classifier (GBC) is used to evaluate 
the performance of this technique. The suggested PIO is evaluated using accuracy 
and F1-score, appropriate for this classification challenge. 

Table 3 provides a summary of the data. The dataset has various features and 
instances ranging from 1 to 14 and 1 to 120. The total number of states is 1, with 
dimension data (120, 13). Therefore, 80% of the rows were selected for the training 
set, and 20% were used for testing purposes. 

Many attributes in this dataset describe the flood problem. To develop a robust 
classification model, all characteristics are not necessary. A subset of these features 
can be selected to improve the accuracy and the F1-score values. The updated dataset 
is utilized for training the selected ML models once the optimal reduct has been 
identified using the PIO feature selection technique. 

Figure 8 shows the confusion matrix and stability score for the reduction, and 
it is clear that {FEB, JUN, SEP, OCT, NOV, and ANNUAL RAINFALL} can be 
considered as a common features that improved the classification performance. The 
reduction that consists of these features has a high stability value of 0.96, which 
means that it is the most significant variable that can accurately describe the flood 
crisis. Also, the confusion matrix is considered an effective measure since the reduct 
that contains these features has a correct NO value of 4 (100%) and a correct YES 
value of 8 (100%) as shown in Fig. 9.

Similarly, Fig. 10 is another example to show the results of different reducts. From 
the figure, it is clear that {JAN, JUN, JUL, AUG, and DEC} can be considered as 
common features that improved the classification performance. The reduction that 
consists of these features has a high stability value of 0.971, and the accuracy value 
for training data is 100%. Where the reduct that consists of these features has an 
accuracy value of 100% for testing data. Also, a confusion matrix is included as an

Table 3 The description of 
the dataset 

Value 

Country Kerala, India 

Period 1900–2020 

Samples 120 

Attributes 14 

Classes 2 (Flood/No-flood) 
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Fig. 8 The performance metrics for the reduct {(FEB, JUN, SEP, OCT, NOV, and ANNUAL 
RAINFALL)} 

Fig. 9 The confusion matrix 
of the proposed model for 
the reduct {(FEB, JUN, SEP, 
OCT, NOV, and ANNUAL 
RAINFALL)}

effective measure. The reduction that contains these features has a correct NO value 
of 4 (100%) and a correct YES value of 8 (100%).

Due to class imbalance in test data and accuracy, F1 metrics are used to train 
and test predictions using scikit-learn’s library. Table 4 presents the feature selection 
results of the suggested PIO method on the flood dataset. For 10 iterations, the
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Fig. 10 The reduct Stability 0.971 for the reduct {(JAN, JUN, JUL, AUG, and DEC)}

proposed algorithm has chosen 2 to 13 features out of the available 14 features. 
The obtained weight is also provided, the lower the F1, the worst performance. For 
example, the proposed method has selected 7 features with a weight of 0.4305 at the 
second iteration. From Table 4, it is found that the PIO method is performing well.

Figure 11 provides the frequencies of each reduce the length of 10 iterations for 
the proposed method. The PIO method chose the highest reduct size with 12 features 
and the least number of features necessary, which was three out of the total of 14 
features. According to this figure, the reduct size 7 is the most common one; it appears 
29 times. Similarly, the reduct sizes 11, 3, and 12 are produced a subset of features 
with the frequencies of 4, 3, and 1, respectively.

Table 5 shows the fitness value, accuracy, and F1-score of the proposed model for 
each iteration. The fitness function, the global solution Xgb and the local solution 
Xpg for each iteration are presented in Table (5). Moreover, in the whole iteration, 
it is noticed that the PIO produced better results with the maximum accuracy of 
100% and F1 and fitness function values of 100% and 100%, respectively. From 
the available 14 features, PIO selected an average of 3 features. The results show 
that the PIO method achieves an acceptable level of performance throughout all the 
iterations.
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Table 4 The performance of the proposed model and the weight for each iteration 

Iteration Train Test Reduct Weight Reduct 
sizeAccuracy 

(%) 
F1-Score 
(%) 

Accuracy 
(%) 

F1-Score 
(%) 

0 100 100 100 100 [‘YEAR’, 
‘FEB’, 
‘MAR’, 
‘MAY’, 
‘JUN’, ‘JUL’, 
‘AUG’, 
‘OCT’, 
‘NOV’, 
‘ANNUAL 
RAINFALL’] 

0.280852 10 

2 100 100 100 100 [‘YEAR’, 
‘FEB’, ‘APR’, 
‘JUN’, ‘JUL’, 
‘AUG’, 
‘NOV’, 
‘DEC’] 

0.325611 8 

2 100 100 100 100 [‘YEAR’, 
‘FEB’, ‘APR’, 
‘JUN’, ‘JUL’, 
‘AUG’, 
‘NOV’] 

0.4305 7 

2 100 100 100 100 [‘YEAR’, 
‘JAN’, ‘FEB’, 
‘MAY’, 
‘OCT’, 
‘NOV’, 
‘ANNUAL 
RAINFALL’] 

0.493 7 

3 100 100 100 100 [‘YEAR’, 
‘FEB’, 
‘MAR’, 
‘APR’, ‘JUN’, 
‘JUL’, ‘AUG’, 
‘SEP’, 
‘NOV’, 
‘DEC’] 

0.236236 10 

6 100 100 100 100 [‘JAN’, 
‘FEB’, 
‘MAY’, 
‘AUG’, ‘SEP’, 
‘OCT’, 
‘NOV’, 
‘ANNUAL 
RAINFALL’] 

0.422565 8

(continued)
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Table 4 (continued)

Iteration Train Test Reduct Weight Reduct
sizeAccuracy

(%)
F1-Score
(%)

Accuracy
(%)

F1-Score
(%)

7 100 100 100 100 [‘YEAR’, 
‘FEB’, ‘JUL’, 
‘AUG’, 
‘NOV’, 
‘DEC’, 
‘ANNUAL 
RAINFALL’] 

0.493 7

Fig. 11 The frequencies of 
each reduct

Table 5 The performance of the proposed model for each iteration 

Xgb Xpg 

Fitness value Accuracy F1-score Reduct Accuracy F1-score Reduct 

0.982857 1.000 1.000 [5, 6, 11] 1.000 1.000 [0, 1, 2, 4, 7, 10]  

0.982857 1.000 1.000 [5, 6, 11] 1.000 1.000 [0, 2, 8, 11]  

0.982857 1.000 1.000 [5, 6, 11] 1.000 1.000 [0, 3, 4, 6, 8, 9]  

0.982857 1.000 1.000 [5, 6, 11] 1.000 1.000 [4, 7, 8, 9, 10, 12] 

0.982857 1.000 1.000 [5, 6, 11] 1.000 1.000 [1, 6, 8, 12]  

0.982857 1.000 1.000 [5, 6, 11] 1.000 1.000 [0, 3, 10, 12] 

0.988571 1.000 1.000 [9, 11] 1.000 1.000 [9, 11] 

0.988571 1.000 1.000 [9, 11] 1.000 1.000 [7, 8, 13] 

0.988571 1.000 1.000 [9, 11] 1.000 1.000 [1, 4, 9,13] 

0.988571 1.000 1.000 [9, 11] 1.000 1.000 [4, 6, 10]
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Table 6 The performance results for the random forest model on the flood dataset 

Model Train Test 

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score 

Random 
Forest 

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

4.2 Flood Prediction Results Validation Using Random 
Forest (RF) Algorithm 

The Random Forest model has been applied and tested on the obtained features that 
optimized by the PIO algorithm. Table 6 summarizes training and testing results of 
RF algorithm. In the reduction step, the PIO method based on the Gradient Boosting 
model selected an average of 7 features. Then, after the feature selection step, the 
Random Forest model attained better performance in both of training and testing 
steps in terms of accuracy. Table 6 shows that the Random Forest method achieves in 
training step accuracy of 100%, F1 of 100%, significantly equal to the testing step. 

Figure 12 shows the confusion matrix for the RF model. The reduct that contain 
{“YEAR”, “JAN”, “FEB”, “APR”, “JUN”, “NOV”, “ANNUAL RAINFALL”} 
features has a correct “NO” value of 4 and correct “YES” value of 8. Receiver 
Operating Characteristic (ROC) curves are important assistants in evaluating the 
classification models. The ROC curve is a plot of False Positive Rate (FPR) on the 
x-axis and True Positive Rate (TPR) on the y-axis. The best value of the area under 
the ROC curve of the test data is 1. Figure 13 shows the ROC curve for the RF model. 
It is clear that the ROC curve passes through the upper left corner (100% FPR and 
100% TPR). 

Fig. 12 Confusion matrix of 
RF model based on the 
optimized features using PIO 
algorithm
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Fig. 13 ROC curve for RF 
model 

Table 7 shows the performance of Gradient Boosting (GB), and RF models on 
the dataset after performing feature selection step by PIO algorithm. In this dataset, 
the PIO method and the Gradient Boosting model chose an average of 7 features and 
attained the best accuracy of 100%. This results has been confirmed when the Random 
Forest algorithm has been applied on the optimized features set. The practical results 
showed that RF achieved an accuracy of 100%, significantly equal to the GB method. 
This confirms the efficiency of PIO in selecting the best features contribute flood 
prediction. 

Figures 14 and 15 shows equal confusion matrices for the RF, and Gradient 
Boosting models. This confirms stability and efficiency of PIO for performing 
features selection. The obtained reduct of best features achieved optimal classification 
results whatever the used classifier, RF or Gradient Boosting.

Table 7 Comparative performance results for the different machine learning models on the 
collected dataset 

Classifier PIO SMOTE 

Accuracy 
(%) 

Reduct Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

F1-score 
(%) 

Gradient 
boosting 

100 [“YEAR, 
“JAN”, “FEB”, 
“APR”, “JUN”, 
“NOV”, 
“ANNUAL 
RAINFALL”] 

100 100 100 100 

Random 
forest 

100 [“YEAR, 
“JAN”, “FEB”, 
“APR”, “JUN”, 
“NOV”, 
“ANNUAL 
RAINFALL”] 

100 100 100 100 
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Fig. 14 Confusion matrix 
for RF model 

Fig. 15 Confusion matrix 
for gradient boosting model 

5 Conclusion 

This chapter has discussed the issue of flood prediction, one of the most important 
challenges in climate change. This study has identified the majority of using artifi-
cial intelligence techniques for forecasting the onset of flooding based on machine 
learning, deep learning, and neuro-fuzzy algorithms compared to the traditional 
methodology that depends on hydrology and hydraulic. The results of this inves-
tigation indicate that predicting floods based on AI approaches can develop novel 
smart systems that can save the lives of millions of citizens in the areas most likely to 
be attacked by floods. Moreover, these systems can launch flood alerts before flood 
emergence with a lead-time of 72 h. Those strengths facilitate evacuating residents
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and enable decision makers to make suitable decisions by which damage, losses in 
lives, money, and infrastructure will reduce to the minimum level. The second major 
finding was introducing a novel machine learning model that utilized the Pigeons 
Swarm Inspired Optimization (PIO) algorithm for selecting the optimal reduct of 
floods features that contribute to predicting the onset of floods precisely. Taken 
together, these findings confirm the role of artificial intelligence in developing addi-
tional machine and deep learning models for predicting natural disasters and climate 
changes. 
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Prediction of Climate Change Impact 
Based on Air Flight CO2 Emissions Using 
Machine Learning: Towards Green Air 
Flights 

Heba Askr, Aboul Ella Hssanien, and Ashraf Darwish 

1 Introduction 

As stated by United Nations’ Food and Agriculture Organization (FAO) report from 
2022, A major issue facing the entire world is climate change which calls for broad 
and sector-wide action. Such action must be performed while fully considering inter-
national objectives and agreements, like the Sustainable Development Goals for 2030 
[1]. 

Based on sustainable development goal number ‘Thirteen which is called ‘climate 
action’, all nations on all continents are being impacted by climate change. It is 
harming people’s lives and upsetting national economies. The weather is changing, 
the ocean is rising, the severity of meteorological occurrences is rising, and action 
must be taken quickly to save lives to address the climate pandemic [2]. 

The main reason for climate change is the total greenhouse gas emissions (GHGs). 
Power imbalances in the atmosphere are brought on by excessive GHG emissions 
such that the Earth’s system receives more energy than it emits, causing global 
warming. The behavior of the rapidly rising atmosphere is very different, showing 
important changes in weather patterns that ultimately has an impact on our global
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environment. These effects will become worse at average global temperature of 
1.5 °C and more so at 2.0 °C as stated in the Paris Agreement (United Nations Frame-
work Convention on Climate Change (UNFCCC), 2015). If climate change is not 
adequately or completely mitigated, by 2100, it’s anticipated that the average global 
temperature would rise to 3 °C, or even higher with considerably more disastrous 
consequences [3]. 

The environment is vital for both individuals and businesses since businesses 
can exploit the environment as a resource. Environmental harm is therefore quite 
important for businesses as well. There has been a sharp increase in global demand 
for air travel and it is expected in 2035 there will likely be 7.2 billion aviation travelers 
worldwide according to the International Air Transport Association (IATA) [4]. On 
the other hand, air flights have a big climate change impact as per 1000 passenger-
kilometers traveled, a flight generates on average 18 times as much CO2 as a journey 
by train [5]. 

ML is a subfield of Artificial Intelligence (AI) that makes it possible for computers 
to directly learn from examples, data, and experience. ML systems may carry out 
complex processes by learning from data rather than adhering to pre-programmed 
rules by enabling computers to accomplish certain jobs intelligently [6]. ML has the 
potential to be a potent tool for lowering GHG emissions and assisting society in 
climatic adaptation because ML has the potential to result in significant efficiency 
gains, enhance public services, aid in assembling facts for decision-making, and 
direct strategies for future growth. 

The green economy is defined by Zhironkin, and Cehlár in [7] as the most recent 
method of getting and using resources. It embodies many of the accomplishments 
of Industry 4.0 and is a result of the Fourth Industrial Revolution. The changes in 
the economy are brought on by the rise of new waste recycling industries, energy 
generation with no emissions, emission reduction of GHGs, environmentally friendly 
urbanism, and likewise post-mining. However, the only way to truly transition to a 
green economy is to ensure that every industry develops sustainably, and that green 
technology are used in every aspect of production and consumption. In fundamental 
industries, green manufacturing should be fostered (mining, energy, engineering, 
chemistry, transport), as well as in high-tech sectors that open new avenues for 
environmentally conscious modernizing. 

Towards a green air flight, green economy, and accordingly a green environment, 
this paper developed an ML model to predict the climate change impact resulting 
from the air flight CO2 emissions on the environment. 

This chapter is organized in the following manner. Section 2 gives a preliminary for 
the Decision Tree and Random Forest classifiers. Section 3 presents the methodology 
of the proposed model. Section 4 discusses the obtained results and the performance 
evaluation. Section 5 gives the conclusion of the paper.
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2 Preliminary 

A decision Tree (DT) is a resource for predictive modelling with a wide range of appli-
cations. They can be created using an algorithmic method that can divide the dataset 
in many ways according to various conditions. DTs are considered the strongest 
supervised algorithms. Both classification and regression can be accomplished using 
them. A tree’s two primary components are decision nodes, in which the data is 
divided, and leaves, where we obtained a result [8]. The main idea of the traditional 
DT algorithm is presented in Fig. 1. A DT is a decision support technique that forms 
a tree-like structure. It consists of three components: a root node, decision nodes, 
and leaf nodes. The nodes in the decision tree present features which are employed 
to predict the result. A DT algorithm divides a training dataset into branches based 
on the decision node, which is further divided into other branches. This pattern keeps 
going until a leaf node is attained (the output or the target) and the leaf node cannot 
be divided further. 

Random Forest (RF) is a supervised learning algorithm. This is employed in 
both regression and classification. But it is primarily employed for classification 
issues. As we are aware, trees make up a forest, and a stronger forest results from 
having more trees. Likewise, the RF algorithm generates DTs from data samples, 
and subsequently obtains each own prediction and then votes to determine which 
option is the best. It is a collective approach, in the case of large-scale issues, is 
superior to a single DT where there are a great number of features. This is because 
it lessens the excessive fitting using the outcome’s average [9]. As shown in Fig. 2, 
A traditional RF algorithm consists of many DTs, and it determines the result based 
on the predictions of these DTs. In every RF tree, a randomly chosen collection of 
features is used at the split of the node.

Fig. 1 The main idea of the  
traditional DT algorithm Root node 

Decision 
node 

leaf node leaf node 

Decision 
node 

Decision 
node 

leaf node leaf node 

leaf node 
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Fig. 2 The main idea of the traditional RF algorithm 

3 Methodology 

ML is a system’s capacity to automatically gather, combine, and then create knowl-
edge from massive amounts of data, and then independently advance the information 
gained, without having been explicitly coded. ML algorithms can comprehend the 
produced data being studied, take a model of the pattern, and store it, forecast the 
future values that the built-in model will produce, and aggressively look for any 
abnormal phenomenon behavior so that it is possible to take preventative corrective 
action in advance [10]. Therefore, in this paper, we used two ML classifiers based 
on a threshold of 100 tonnes for CO2 emissions to predict if there are CO2 impacts 
or influences of the investigated air flights on the environment. The proposed model 
is described in the next subsections.
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3.1 Proposed Model 

In this chapter, a binary classification ML model was developed to predict the air 
flight climate change impact for 186 countries. RF and DT algorithms are individ-
ually trained, validated, and tested. The proposed model is presented in Fig. 3. The  
proposed model is composed of several DTs (which comprise a random forest). Each 
DT consists of 3 decision levels based on whether the CO2 emissions are greater than 
a predefined threshold value (100 tones of CO2) or not, whether the flight type is 
a passenger or not, and whether the country is in one of the top ten countries that 
provide a huge quantity of CO2 emissions or not. The proposed model has been run 
two times, the first one using the DT algorithm and the other one using the RF (DT1, 
DT2, …, DTn) algorithm.

3.2 Dataset Characteristics and Pre-processing 

We collect more than 145,000 data records regarding the CO2 emissions derived from 
air flights all over the world through the Organization for Economic Cooperation 
and Development (OECD) [11]. It is a global organization that strives to create 
better laws for better lives. Its objective is to create laws that promote everyone’s 
prosperity, equality, opportunity, and well-being. It contains more than 60 years of 
knowledge and understanding that will help better prepare the world of the future 
through creating worldwide standards based on solid data and resolving a variety 
of social, economic, and environmental problems. In addition, it offers a distinctive 
platform and resource centre for data and analysis, shared experiences, exchange of 
best practices, providing suggestions for governmental policies, as well as defining 
international standards. From its huge databases, we extract the air flight dataset 
which we used in this paper. This dataset contains data about the CO2 emissions in 
tonnes for 186 countries all over the world, associated with flight type (passenger or 
freight) and flight frequency (annually, monthly, quarterly), travel time (from 2014 
to 2022), and sources of CO2 emissions. The description of the data variables used 
in this paper is shown in Table 1.

A crucial stage in ML is data pre-processing because the value of the data and 
the knowledge that may be gained from it have a direct impact on how well our 
model learns; Consequently, we must pre-process our data before incorporating it 
into our model. As we aimed to predict if the features of each air flight will lead to an 
impact on climate change, we add a new feature called” climate_change_impact”. 
First, during the data cleaning, there were no empty values relating to the air flight 
dataset through the 145,502 records and thus did not need imputation. 

Second, there are five categorical (nominal) variables which are ‘Country’, ‘Flight 
Type’, ‘Frequency’, ‘Time’ and ‘Source of CO2 Emissions’, and two numerical 
variables which is ‘CO2 Emissions’ and ‘climate_change_impact’. Therefore, the
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Fig. 3 The proposed model

nominal variables were numerically transformed and coded. Finally, following data 
transformation and cleansing, Scaling was done to the variables.
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Table 1 Data variables description 

Variable Description 

Country The string variable represents the name of the country 

Flight type The string variable represents the type of the flight (passenger or 
freight) 

Frequency The string variable represents the flight travel frequency (annually, 
monthly, or quarterly) 

Time The string variable represents the flight year, a quarter of a year, or a 
monthly slot 

CO2 emissions The Numeric (float) variable represents the tonnes of CO2 emissions 
resulting from the investigated data record 

Source of emissions The string variable represents the source of CO2 emissions

3.3 Feature Selection 

To create prediction models, feature selection is significant since features have a 
direct impact on how well models perform [12]. Correlation plays a very important 
role in finding the dependency among the features of the dataset. The heatmap in 
Fig. 4 is drawn to visualize the correlation among the variables (features) where 
darker shades represent a positive correlation. In our dataset, the most important 
features which affect the “climate_change_impact” are “CO2_Emmisions”,” Flight 
type”, and” Country”. 

Fig. 4 The heatmap of the investigated dataset
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4 Results and Performance Evaluation 

Because the accuracy is the most popular performance indicator for classification 
methods, the performance of each algorithm is evaluated by the accuracy of five 
folds. The implementation of this chapter is carried out with a binary classification 
ML model over a time series (2014–2022) dataset to provide the predicted target (have 
an impact on climate change or not). After excluding the less important features from 
our dataset by using the heatmap visualization in the previous section, it is also found 
by the random forest feature importance that the most important feature that affects 
the target (‘climate_change_impact’) is the CO2_Emissions as shown in Fig. 5. 

RF and DT models are trained individually on the dataset. Results are produced by 
using both models individually in our testing set resulting in a 0.99 output accuracy 
by both models as shown in Fig. 6. 

Fig. 5 RF feature importance 

Fig. 6 The accuracy after 5 folds
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Fig. 7 Climate change impact indicator 

As you can see from Fig. 7, among the 186 countries all over the world, the 
number of the countries that will affect the climate change through the periods 2014 
to 2022 because of using air flights has registered a big value as compared to the other 
countries that have not dangerous climate change impact where” count” represents 
the number of the countries. 

To make the graph more obvious for the readers, we took a snapshot of the top 
20 registered CO2 emissions as shown in Fig. 8. It is observed that the largest value 
of CO2 emissions is registered in 2019 and the smallest value is in 2017. It is also 
observed that the CO2 emissions in the first quarter of 2022 exceeded the same quarter 
in 2019, 2020, and 2021 and this is a very important indicator that the CO2 emissions 
by the end of 2022 may exceed the value registered in 2019. This prediction put a 
spotlight on the countries which are responsible for these emissions and the disaster 
of climate change throughout the world. 

Figure 9 presents the top 10 countries from 2014 to 2022 which provide the 
largest values of CO2 Emissions based on their air flights and which have the most 
impact on the climate change indicator. It is observed that the largest CO2 emissions 
were provided by the United States, China, United Arab Emirates, United Kingdom, 
Germany, Japan, France, Korea, Russia, and Canada.

Fig. 8 Top 20 CO2 emissions by time-period 
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Fig. 9 Top 10 CO2 emissions by country 

5 Conclusion 

The use of aircraft is what emits GHGs and carbon dioxide (CO2) and is one of the 
key factors that contribute to global climate change. In this paper, we developed a 
ML model to predict if there is a dangerous impact of air flights’ CO2 emissions on 
climate change for the investigated 186 countries all over the world from the years 
2014 to 2022. The paper aims to spot the light on the countries which deeply affect 
climate change through their air flights’ CO2 emissions. This is done based on a 
recent and up-to-date website containing 145,502 records to help the approach of 
transforming to green air flights and green economy in the world and adaptation to 
the predicted future climate change pandemic. There is a need to calculate the air 
flight emissions to save the environment from the expected damaged climate change 
using developed tools such as Zurich Airport’s Aircraft Local Emissions Calculator 
for Airports (ALECA) which is a tool for independently calculating emissions for 
every source of emissions connected to aviation at an airport and the ACI Aircraft 
Ground Energy System which is a Simulator (AGES-Simulator) which assesses the 
advantages on both the environment and the economy of substituting the use of the 
Auxiliary Power Unit (APU) by AGES by calculating the decrease in fuel use. 
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The Impact of Artificial Intelligence 
on Waste Management for Climate 
Change 

Heba Alshater , Yasmine S. Moemen, and Ibrahim El-Tantawy El-Sayed 

1 Introduction 

Expanded trash generation results from rapid urbanization, population growth, and 
global financial development. “To the World Bank (2018)” [1, 2], In developing 
countries, the amount of garbage generated yearly is predicted to rise significantly 
due to population increase and urbanization. According to a study, about a third of 
manufactured rigid trash was dangerously handled and organized in illegal rubbish 
dumps or unmonitored landfills. Furthermore, these squatter hones pose several envi-
ronmental and health risks, like contaminating the groundwater, arriving at disinte-
gration, increasing the cancer rate, decreasing childhood survival rates and causing 
birth anomalies [3]. That’s why environmental deterioration necessitates the scien-
tific community’s focus on developing and evaluating new methods for managing it 
[4]. Toxic and harmful to the environment, solid matter generated from many sources
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such as private and mechanical are usually referred to as “strong waste,” and the envi-
ronment in various categories takes after it, such as domestic, mechanical, commer-
cial and dangerous, and biomedical [5]. People who care about the environment and 
researchers are putting together new studies to determine the negative effects of urban 
trash on the biological system. They’ve implemented effective waste management 
frameworks in various parts of the world to use wastes as assets via fabric recuper-
ation in a feasible way [6–8]. The increased use of electronic devices over the last 
few decades has led to a growth in electronic waste due to the increasing inventive 
boom. Industrialization and increased health care and therapy services have led to 
the generation of hazardous and biological wastes [9–11]. Strong economic growth, 
particularly in China, has also spurred the evolution of cities where an increase in 
the need for energy and transportation has led to a major discussion about. Carbon 
dioxide (CO2), methane (CH4) and nitrous oxide (N2O) are all greenhouse gases that 
contribute to the troposphere’s radiative forcing and influence global climate change, 
as well as invading on essential functions of land–water intelligence and conduits. 
Strong synergies between environmental and climate-related measures that would 
be achieved [12, 13]. Climate change is expected to significantly impact agriculture 
in the Mediterranean basin, which currently contributes to greenhouse gas emissions 
(GHG). 

SOC development is widely regarded as a means to mitigate and adapt to climate 
change by increasing soil organic carbon (SOC). Research then used rural action 
data and present climate circumstances to build a demonstration model at the terri-
torial scale that displayed GHG outflows from EOM preparation or storage before 
soil application while also linking a widely used dynamic SOC turnover model [14]. 
Ecosystems, including cropland, grassland and woodland under different soil types 
and climate circumstances, have been tested using this model, which is based on 
criteria such as soil type, temperature, moisture content and plant cover. Research also 
shows that the present focus on deep learning unspecialized hardware has resulted 
in lower prices for “hardware for utilization cases that are not immediately commer-
cially feasible,” making it more expensive for varied research. Furthermore, research 
[15, 16]. As AI-enabled frameworks present new avenues for advancement in efforts 
to combat climate catastrophe, it is both feasible and appealing. Artificial intelligence 
(AI) may include, for example, assessing the influence of natural arrangement inter-
ventions, such as carbon taxation and carbon exchanging frameworks, on climate 
change impacts of mechanical generating, construction and cargo transportation. 
However, adequate management can only improve maintainable and impartial AI-
based replies. This means that AI researchers must develop criteria and standards 
for reporting the environmental impact of AI research initiatives. For the climate 
catastrophe to be addressed, we must look beyond AI-based solutions and consider 
various approaches that place emphasize values associated with people, society and 
nature, as well as technology itself. However, the dual nature of AI creates moral 
questions about reducing AI’s emissions of nursery gas and using AI for relief and 
adjustment. In addition to these climate-related ethical concerns, AI raises a slew 
of additional ethical concerns, including as questions of protection and the potential
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Fig. 1 Publications related to AI and energy management in the last five years according to the 
web of science database 

danger of human tendencies [17]. Figure 1 depicts the most recent five years of AI 
and energy management papers according to the Web of Science database. 

This section is organized as follows. Section 2 presents the application of AI in 
water management systems. Section 3 describes the role of Artificial Intelligence 
in estimating greenhouse gases. Section 4 presents the problems and challenges. 
Section 5 concludes this paper. 

2 Waste Management and Artificial Intelligence 
Application 

From the time the garbage is generated to its collection, transportation, and proper 
transfer to the time it is disposed of, waste management is one of the most pressing 
concerns faced by both developed and developing countries. Using it in collecting 
bins, transport vehicles and disposal methods is a viable option. use is also possible. 
Garbage management is also a major concern, as the increase in strong waste output is 
directly linked to the rise in sales and population growth, which includes an increasing 
number of customers. Lack of oversight of strong waste poses natural hazards and 
health risks, including contamination of groundwater and surface water, arrival weak-
ening and other effects. The amount and quality of information available to environ-
mental administrators are critical to effectively managing these concerns [18–20]. 
Studies show that poor waste management is primarily caused by a lack of effective 
planning and operational oversight [21, 22]. In recent years, real efforts have been 
made to overhaul the waste management business to make it more maintainable and 
productive using advanced technologies and innovative frameworks. Because of the 
numerous interconnected forms and the changeable statistical and financial elements
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that influence the overall frameworks, waste administration forms have complex 
operations and nonlinear characteristics. A difficult task in solid waste management 
(SWM) is to carry out acceptable operations without affecting the well-being of the 
environment or other natural resources. Consequently, researchers concentrate on AI 
methodologies well-suited for use in the SWM sector [23]. Artificial intelligence is 
concerned with creating computer systems and programs capable of emulating human 
abilities such as problem-solving, learning, conceptualization, perception, reasoning 
and awareness of one’s immediate environment. Artificial neural networks (ANNs), 
expert systems (ESs), genetic algorithms (GAs), and fuzzy logic (FLs) are just a few 
of the many models that have been developed to address these issues [24]. It is also 
important to note that each artificial intelligence model or branch of it can be used for a 
specific task, such as artificial neural network (ANN) models that are used to classify, 
predict, or analyze data in urban geography. Contrariwise FL can safeguard human 
cognitive and thinking talents in addition to having a database and genetic algorithm) 
GA (receives the concept of common decision to obtain perfect results by selecting 
data best suited to deal with unexpected circumstances) [25]. Artificial intelligence-
based risk management systems were also used to anticipate pollutant and particulate 
matter concentrations and to forecast atmospheric levels of carbon monoxide, ozone 
and nitrogen dioxide [26–28]. Water and wastewater treatment plant processes, waste 
generation patterns and garbage truck routes of garbage trucks, s were also exam-
ined [29, 30]. Since waste qualities can be accurately predicted, municipal solid 
waste may be collected and treated and disposed of methodically [4]. Various arti-
ficial intelligence (AI) methods were demonstrated by Yetilmezsoy et al. [24] to  
predict crash formation in terms of weight, content and rate. AI models used to fore-
cast MSW generation rates in economic and socio-demographic variables have also 
been examined in other studies [31, 32]. Artificial intelligence-based optimization 
strategies in Solid Waste Management (SWM) have been debated by Melaré et al. 
[33] to predict waste generation, manage waste collection systems, monitor waste 
containers and select disposal sites [23]. Setting up a wide space for garbage collec-
tion and a designated place for dumping illegally discarded material is part of the 
waste management’s efforts to minimize environmental human impact. ANNs were 
able to represent a wide range of SWM processes thanks to their robustness, fault 
tolerance and suitability for drawing complicated relationships between elements in 
multivariate frameworks. To make matters even better, the fewer parameters required 
by ANN frameworks’ calibration handle means that these computations are much 
easier to perform. In addition, because of its low generalization cost and simple 
solution analysis, support vector machines (SVMs) have become widely connected 
within the SWM field [34]. There are many variables to consider while using SVMs, 
including the type of kernel and the tuning parameters. As a result, LR data analysis 
is used to model SWM, which depends on numerous characteristics. The results from 
LR are simple to interpret and need minimal processing resources. Another method 
for squandering classification and forecasting is decision tree analysis, which can 
also be utilized to identify waste behavior patterns and unlawful dump locations. 
Many SWM and AI models rely on genetic algorithms (GAs) or hybrid models to 
overcome the major constraints of current AI research. Many researchers are focusing
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on developing methods and processes to identify waste materials using automatic 
sorting order that reduces the need for manual garbage separation before applying AI 
approaches to make it easier to administrate, handle, transport and store solid waste. 
It is also clear that garbage transportation has a greater carbon footprint than the 
carbon footprint. However, artificial intelligence (AI) can help reduce carbon emis-
sions by suggesting the most effective strategies [4]. SWM plans must include proper 
trash collection routes, which account for 70–85% of the overall cost of solid waste 
management. Patients and members of the general public should be kept from waste, 
and it must be ventilated and pest-free. The intelligent dumpster, equipped with AI 
programmers and IoT sensors, is a further step in garbage management. Because of 
this, rubbish may be measured by sensors on these dumpsters, transmitting this data 
to the main disposal system via intermediate computers for further processing and 
analysis. After receiving the alert, the garbage trucks and vans can then collect the 
waste from the overflowing bins. A modified Dijkstra algorithm in GIS was used 
to find the optimal approach options and the results were eventually implemented 
into GA by researchers in conjunction with GA and GIS. In addition, experts have 
shown that when garbage is collected through permitted channels, the contamination 
of hazardous substances from a variety of components is reduced. Stationary waste 
collections at municipal trash collection facilities, EEE merchants, mobile waste 
collections at curbside recycling stations and mobile terminals in high-traffic areas 
are all options for collecting waste. In addition, waste sorting robots have been put 
to use in landfills and the manual processes of waste sorting are being phased out 
in favor of intelligent automation. Researchers used nonlinear autoregressive neural 
networks and GIS route optimization to investigate the impact of garbage content 
and weight on optimal vehicle routes and emissions [4]. 

Mining operations, including exploration, extraction and transportation, need 
substantial vitality and greenhouse gas emissions. The type of vitality source used in 
any mining operation is largely determined by the mining technique and equipment 
used. Many of these energy and gas outflows can be decreased through enhanced 
monitoring. The mining sector is interested in conducting some studies on the 
fuel efficiency of portable machines in surface mining activities such as excava-
tors, diggers and loaders because diesel is utilized as a source of power by these 
machines [35]. Traditional analytical approaches are commonly used to increase 
energy efficiency and unminimize emissions. However, typically fall short. 

Further simple, rapid, low-cost solutions are needed to minimize gas emissions 
from surface mining. Machine learning and artificial intelligence are the best methods 
for accomplishing this (AI). Fuel consumption estimates for mine trucks are based 
on theoretical procedures and models produced by the truck manufacturer to achieve 
haul mining trucks, as is well known in this field of study. To better understand the 
relationship between haul truck payload, speed and total resistance (TR), the AI has 
focused on developing a model to estimate and reduce fuel consumption. This model 
was developed and tested in a surface coal mine in central Queensland, Australia, and 
the results were encouraging. For open-pit and open-cut mines, the improved model 
can estimate truck energy consumption using an artificial neural network (ANN) and 
Genetic Algorithm (GA) [36–42]. Many criteria can be utilized to determine a haul
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truck’s fuel usage, including fleet management, mining planning, modern technology 
and the haul road [41, 43]. 

Employing global warming potential and represented in CO2 equivalent (CO2-
e) or as a percentage of CO2-e, diesel engine emissions can be computed [44–46]. 
The use of artificial neural systems (ANNs) is a widespread practice to simulate 
the impact of various variables on one crucial figure via a fitness function used 
to estimate fuel consumption by mining trucks, which considers some parameters 
that influence the consumption of fuel. Many engineering areas, such as materials, 
biological, and mechanical engineering, have used ANNs in their work [47–53]. A 
major advantage of ANNs is that they can simulate a wide range of nonlinear and 
linear relationships between variables by using the information given to the network 
to remember it as well as the representation of models employed by the brain to learn 
[53]. The advanced ANN algorithm can be used to estimate truck fuel consumption as 
a function of P, S, and TR according to these steps: normalizing the input parameters 
between −1 and + 1, calculating the E and F parameters for each node, and finally 
calculating the E and F parameters for each node. These mathematical techniques 
imitate some of the well-known distinctive of the standard nerve arrangement and 
draw on analogies of adaptive accepted learning. 

Before optimizing haul truck fuel consumption, the best approach to discover 
the measurable answer to problems and to shed light on specialist topics is first to 
estimate the fuel consumption of trucks. Then, the study area and the aim function 
must be evaluated. It’s a mathematical function that links each answer point to an 
actual value in the answer region in the research area, which considers all possibilities. 
Additionally, demonstrating optimization methods based on Manufactured Insights 
rather than heuristic search has reduced the stiffness issue. Engineers use heuristic 
principles to solve all technical difficulties since they are based on the experience 
and perception of the framework in which the research takes place. 

This class of models is known as Natural Optimization Methods, and it is widely 
accepted that they are among the best models with random characteristic behavior. 
As computer power increased in the 1980s, applying these models to capacity 
and process optimization became possible, which was previously impossible with 
conventional models. A few unique heuristic models were produced in the 1990s 
by the finished algorithms, such as reconstructed tempering, swarm calculations, 
subterranean insect colony optimization, and genetic calculation. It is also worth 
noting that the genetic algorithms (GAs), was proposed as an abstract of biological 
development, relying on principles from natural evolution, are a very modern opti-
mization model and don’t use any information derivate. Because of this, they stand 
a good chance of escaping the immediate danger and rely on the direct correlation 
between technological advances and natural wonders [54]. If enough gases formed, 
the population will focus on an optimal answer to the specified problem, and the 
operations are based on selection, reproduction and mutation. They have been used 
in various design, logical and financial difficulties because of their ability to opti-
mize numerous functions. Numerous mathematical criteria for optimization issues, 
the handling of some goal functions and limits, the periodicity of progress admin-
istrators and the adaptability to hybridize with domain-dependent heuristics are the



The Impact of Artificial Intelligence onWasteManagement for Climate… 45

most advantageous aspects of this approach. In this approach, a significant number 
of tests and tests will be required to ensure an optimal collection of values for these 
components. The value of each property must match the reality of mine destinations 
and truck operation confinements to provide feasible arrangements before it can be 
used. All individuals must be examined through generations if they are in the same 
division. 

Programming in Python was then used to finish the advanced models of ANN 
and GA. This was done by writing computer code that builds fitness functions based 
on the completed models. Mine truck fuel consumption is a function of payload, 
truck speed and total resistance in the first stage of the algorithm, which uses these 
input parameters. Aside from that, the new function is sent into the computer code’s 
genetic algorithm phase as an input, and then the model will help to specify the code’s 
specifics and will provide the best parameters. The solid waste generated during a 
project’s construction, reconstruction, decoration and demolition phases significantly 
impacts the environment and socio-economic effectiveness of the entire project. As 
a result, numerous investigations have determined how this advanced development 
innovation can be applied to minimize the waste generated [55]. Demonstration 
of the potential for prefabrication to reduce construction waste at the project level 
through an active demonstration of the choice of prefabrication process during the 
plan organization. Models such as this one (SD) were first developed by Forreste 
[56] and have since been improved by various researchers through the use of model 
analysis, development, validation and evaluation [57]. Last but not least, Ding et al. 
[58] used the SD approach to evaluate the inherent advantages of CW decrease at 
both the planning and development stages. In this way, the SD technique is suited 
for motivating the complexity of the CW management system, including different 
stakeholders and components. 

3 The Application of Artificial Intelligence to Estimate 
Greenhouse Gas (GHG) 

Reducing greenhouse gas (GHG) emissions and air pollution has recently come to 
light as a potential advantage. Reduced emissions from Chinese megacities have 
piqued global interest because of China’s position as the world’s largest CO2 emitter 
and a substantial contributor to the global air pollution budget [12]. Twenty-eight 
percent of SO2 and around 10% of black carbon emissions from combustion make up 
the bulk of the air pollution budget [59, 60]. To meet China’s objective of reducing 
carbon intensity by 40–45% by 2020, local governments are aggressively researching 
solutions and embracing strict energy-saving measures [61]. In developing munic-
ipal air quality programs incorporating climate change policy, scientific advice has 
been taken into account in various ways. Several studies focused on the co-benefits 
of specific policies, such as cleaner production projects in the coke industry in
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Taiyuan City [62, 63] on regional features, but they failed to address major emis-
sion sources like transportation sectors. A complete technology-based technique to 
analyze the advantages of any policy has been developed in this manner. And the 
policy scenarios developed by employing the technique do so by studying the policy-
level emission-reduction options. Compared to the current GAINS model, which 
relied on sector-level analysis to identify the benefits, this approach is significantly 
more effective. The appraisal of coordinates shows that picks have been successfully 
employed in analyzing co-benefits and related to driving the major transaction on 
pollution control understandings in Europe [64, 65]. Sulfur Protocol, Gothenburg 
multi-pollutant protocol, and new adjustments to national emission ceilings were 
also discussed in this meeting. 

When it comes to large-scale (territorial or national) applications of the GAINS 
model, the city-scale outflow computation and arrangement evaluation require a few 
further breakthroughs to move forward with the characterization of adjacent situ-
ations. AIM/Local Model [66] and the GAINS-City model have a more complete 
illustration of source classification and inclusive pollutants, so they are a more real-
istic description of measures to guide policy decisions in Asia, for example, the linear 
programming MARKAL energy system optimization model for Shanghai [67]. GHG 
emissions and aquatic values have also been controlled using different models based 
on the Bayesian Belief Network idea for making decisions [68]. The mitigation 
potential can be affected by climate change, and other techniques have been used 
to assess and anticipate GHG emissions from rural frameworks beneath differenti-
ating environments [69]. These techniques are also utilized in predicting how various 
farming practices affect GHG emissions by resolving interactions between farming 
practices and primary drivers (climate, soil typhoon). As a starting point [70], the 
suggested default outflow components, or Tier I, are exceptionally common and 
can lead to significant errors under certain conditions. Other countries have used 
advanced Tier II emission factors for agricultural systems based on country-specific 
measurements and thus provide more precise emission estimates. The Tier II outflow 
components may not apply to climate change estimates because they were designed 
under specific climatic conditions. As a result, models were created by scientists. In 
addition to DNDC and Daycent [71], models like Denitrification and Decomposition 
[72] and Decent [71], have been used to predict GHG emissions over space and time 
for a wide range of soil, farm management, and climatic conditions in various coun-
tries around the world [73–75]. For important climatic regions worldwide, Smith and 
Bertaglia [73] developed outflow variables for changes in agricultural management 
and estimated a worldwide moderation potential by 2030 of around 6000 Tg CO2 eq. 
y-1. It also incorporates crop growth processes with soil biogeochemical processes on 
a daily time step. It mimics essential processes related to N and C cycles in plant–sol 
systems, including mineralization, ammonia volatilization, nitrification, denitrifica-
tion, nitrogen uptake and leaching. This model has been a useful tool for evaluating 
the impact of management strategies on nitrogen and carbon fate in agroecosys-
tems. Version 9.3 of the DNDC includes improvements [74] to the models’ ability 
to simulate C and N fluxes in cold climate zones. The significant upgrade to this 
model also allows the prediction of the same soil–water properties irrespective of
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residue layer. So, the input datasets needed to build a national DNDC input database 
at the eco-district level for the entire country of Canada came from many sources 
and were in various formats and levels of geographic precision. In the absence of 
recycling, upstream greenhouse gas emissions occur mostly owing to the acquisition 
and handling of virgin crude materials for item manufacturing, necessitating greater 
use of fossil fuel than recycled materials. Solid waste can be reused as soon as it 
is generated to reduce greenhouse gas emissions (GHG) and conserve energy. In 
most circumstances, this is preferable to burning with or without recuperation of 
vitality to reduce GHG emissions. As a result, the resource conservation advantages 
of replacing virgin assets with reused resources tend to outweigh the energy genera-
tion offsets of waste-to-energy advancements. Reusing, on the other hand, conserves 
landfill capacity and extends the useful life of already-existing facilities [76]. Waste 
management programs in Brazil programs developed a program to reduce emissions 
of gases generated in areas of solid waste disposal, which are used in financial, social 
and natural preprograms proto mote economic advancement based on the criteria set 
by Brazil’s Intermenstrual Commission on Worldwide Waste Management (Inter-
menstrual Commission) Changes in the climate. Recyclable material collection and 
distribution, as well as public awareness-raising efforts, are offered by a recycling 
cooperative with an average of 36 positions (Fundação) [77]. Estimate the syner-
gies and trade-offs of CH4 with NOx and CO, as well as technical implementation 
methods, from 1990 to 2030 using various sequences of transient atmospheric chem-
istry transport model computations [78]. Methane emissions are regulated to the 
utmost extent possible, and pollutants are kept at their CLE levels at the beginning 
of the scenario, according to this model. Ozone reductions will improve air quality 
and reduce the amount of radiation sent into the atmosphere. As a result, any efforts 
to reduce greenhouse gas emissions are nullified. 

Most agricultural development operations put human health in jeopardy, espe-
cially when it comes to the overuse of fertilizerssers and unhygienic working condi-
tions. Environmental degradation due to human activities such as excessive urban-
ization, agricultural methods, industrialization and population growth can be found 
around the world. In addition, water shortages have made it increasingly difficult 
to regulate pollutants and enhance water quality. The Government and experts have 
spent a lot of time studying water pollution. In light of the major pollution and global 
water scarcity, river water quality must be urgently protected [79]. 

Due to the expanding industrial activity, population growth, the depletion of 
consumable water and other human-caused and climate-related factors, it was deter-
mined that more than 1.1 billion people are unable to access safe drinking water [80]. 
Because of this, removing these pollutants from the wastewater is critical to protect 
both the natural environment and the future of humans. To meet the high standards 
for water quality, it’s a challenging challenge for natural scientists to figure out how 
to remove these harmful contaminants and develop poisons from water frameworks. 
Normal settings, influent stun, and wastewater treatment technology all contribute to 
the vulnerability and variability of the wastewater treatment framework and wastew-
ater treatment is a crucial stage in pollutant reduction and the improvement of water 
environment quality [81]. As a result of agricultural practices that involve the overuse
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of nitrate-containing fertilizers and animal waste, nitrate is one of the most common 
contaminants discovered in groundwater around the world [82]. Anaerobic diges-
tion of municipal primary and waste-activated sludge produces ammonia that is then 
converted into the groundwater-contaminating biosolids that are formed as a result of 
this process [83, 84]. The biological processes that act as a barrier between pollution 
sources and natural aquatic ecosystems can be used to remove pollutants like heavy 
metals from wastewater [85, 86]. 

Many technical sectors, including wastewater treatment, water quality improve-
ment, river water quality modeling and water resource management, use AI because 
of its capacity to tackle actual problems [87]. ANNs, which imitate biological 
neurons, are used in single and combination strategies in using artificial intelli-
gence (AI) in wastewater treatment research. In wastewater treatment trials, artificial 
neural networks (ANNs) are used to remove water supply pollutants [88]. Each 
neuron receives input signals from the preceding neuron and analyses them before 
passing out the output, which acts as input to another set of neurons [89]. To forecast 
the nitrogen concentration of the treated wastewater, an ANN model with a predic-
tion accuracy of 90% was employed [90]. Moreover, they could accurately forecast 
the decomposition of photoinduced polycyclic aromatic hydrocarbons in seawater 
[91, 92]. ANNs from the RBF and MLP families and the FNN and WNN families 
can also be used to build models and simulate the wastewater treatment process. 
Artificial neural networks (ANNs), feedback loops (FLs), genetic algorithms (GAs) 
and support vector machines (SVMs) are just a few examples of common AI tech-
niques. The MT model can be used to solve a continuous class. In most cases, the 
experimental data set was divided into three or two parts: training, validation and 
testing. The training data set is one of three inputs when a model is being developed 
and tested in a prediction step. The other two are for validating the model and for 
testing its predictions. Many models are used to evaluate, forecast, and optimize 
COD removal in WWTP biochemical and physical processes. According to Moral 
and colleagues, the effluent COD of the Iskenderun Wastewater Treatment Plant was 
predicted using an artificial neural network model with an R2 of 0.632. [93]. Wan 
et al. [94] developed ANFIS, with a minimum MAPE of 1.0% and an R2 value of 
0.982, as well as a GA ANN and non-dominant sorting GA-II for multi-objective 
optimization of the digestion process, to predict COD removal at a full-scale paper 
mill wastewater treatment plant using anoxic versus oxic processes. It was discov-
ered that the GA-ANN model outperformed the standard ANN model in numerous 
metrics, including MSE, root means square normalization error (RRMS, average 
absolute percentage error, and correlation coefficient (r) [95]. Simulating nanocom-
posite absorbents to remove phosphate from water yielded an R2 value of 0.99 when 
an ANN and GA model were combined [96]. Methylene blue and malachite green 
removal from water using MLP-ANN and RBF-ANN approaches can be replicated 
and optimized utilizing the MLP-ANN model’s better predictions than other methods 
[97, 98] which is based on an MLP-ANN and RBF-ANN, the total efficacy of phos-
phate (TP) removal is 86%, 79.9%, and 93%, respectively, with COD in place of 
SBR [99]. The results showed that the MLP-ANN model had a higher R2 and lower 
RMSE than the RBF-ANN model. MLR and ANN-GA models were used to study
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the adsorption of triamide on carbon nanotubes. It was shown that the ANN model 
predicted adsorption efficiency more accurately than the MLR model. In the pres-
ence of thiosemicarbazone advanced chitosan, RSM was found to be less accurate 
at predicting Pb2+ removal than MLP-ANN [100]. MLP-ANN and ANN, as well 
as ANN and ANN, were able to express the overall hydraulic resistance in a cross-
flow microfiltration and membrane bioreactor for wastewater treatment [101, 102]. 
Nadiri et al. discovered that the SCFL model had a higher R2 value of 0.960 and 
a lower MAPE of 4% than individual FL when forecasting the BOD effluent from 
the Tabriz Wastewater Treatment Plant [103]. Nonlinear models such as FFNN, 
ANFIS, and SVM were then utilized to estimate the efficacy of lowering BODeff 
from wastewater treatment procedures using the conventional MLR. The combined 
ARIMA and ORELM models were used to forecast BOD5, COD, TDS, and TSS, 
and the effluent BOD model had an R2 of 0.99 to fulfill the improved performance 
requirements [104]. A multiobjective PSO algorithm, developed and implemented 
[105] was used to find the optimal nitrate set value in wastewater treatment, as was a 
revised adaptive kernel function model, which could describe the dynamic processes 
of water quality and energy consumption in wastewater treatment facilities [105]. 
Once an improved Q-learning algorithm was created, it was used to design a unique 
optimization approach for a biological phosphorus removal system that employed 
an optimal strategy for controlling both anaerobic and aerobic processes [106]. The 
DO levels in the effluent were managed using a DM strategy to maximize the ASP. 
If energy savings were prioritized over the air quality, the airflow might be lowered 
by 15%. [107]. Energy usage in an applied model afterward constructed through 
dynamic modeling (DM) was reduced due to the reduced oxygen production from 
the aeration process [108]. Thus, the MNLR and HMMs achieved an accuracy of 
84% in estimating the total amount of inorganic nitrogen in the wastewater treat-
ment process. According to the study by Suchetana et al. Algal [109]. remediation 
efficiency of As3+ and As5+ from wastewater utilizing the RBF-ANN model and its 
application in the emulsion liquid membrane was found to have R2 values of 0.9998 
[110, 111]. With the help of artificial neural networks (ANNs), the pumping system’s 
performance could be maintained while a 10% reduction in energy usage was accom-
plished [112]. Adopting a model-free RL [113] in wastewater treatment plants saves 
operating costs while maintaining acceptable water quality. The model-based oper-
ational costs have decreased by 6% compared to Benchmark Simulation. It has been 
created to predict As3+ adsorption on cerium hydrochloride by reducing the costs of 
adsorbents. It’s been a great success [110] a hybrid NF control framework, consisting 
of ANN, GA, and FL, was developed to further improve the accuracy of the control 
framework and attain real-time control targets for dealing with wastewater treatment 
process instabilities. Could make better short-term and long-term predictions using a 
hybrid model of ANFIS and GFO than we could with ANFIS alone [114]. A Kohonen 
self-organizing feature map neural network was utilized to construct a model that 
projected the performance of the wastewater treatment facility due to unanticipated 
organic overload [115]. In addition, an ES was designed to check the current state of a 
pilot wastewater treatment plant, analyze its operating patterns, provide trustworthy 
data, good encouragement for administrators and determine the acidification status of
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anaerobic wastewater treatment plants with FL [116, 117]. Adaptive software sensors 
for wastewater treatment facilities were proposed using FL and neural network theory, 
and their NF model’s simulation effect was superior to that of BP-ANNs [118, 
119]. One of Gensym Corp’s real-time ESs, G2, was stratified using an AI-based 
automatic control system. The results revealed that hybrid AI technology extended 
another approach for running complex wastewater treatment processing equipment 
efficiently while reducing energy consumption during [120]. As a result of the study’s 
use of multiobjective optimization, the researchers could better manage the wastew-
ater treatment process than they could have done using conventional methods [121]. 
New neural network structures were designed to improve SVI forecast accuracy in 
organic wastewater treatment by applying information-oriented computations and an 
improved LM computation. Using the Mard-RCP with Granger causal, a new fault 
detection framework was developed and deployed in Benchmark Simulation Model 1 
and a full-scale WWTP to accurately identify sensor defects, sludge thickening, and 
influent shocks [122]. An enhanced PFA setup based on variable frequency muta-
tions for activated sludge wastewater treatment might correctly identify and diagnose 
process faults [123]. AI was also used to control membrane fouling in water and 
wastewater treatment. The decline in flow was artificially simulated in cross-flow 
microfiltration via an FFNN model that provided an exact prognosis and maximized 
information and administrator involvement. This information was connected to assist 
administrators in making strides in administrating and controlling wastewater treat-
ment plants, per the FFNN model [124]. Aside from the high costs and environmental 
risks of traditional water treatment methods, researchers decided to employ the Water 
Purification Monitoring methodology to minimize these drawbacks. For a drinking 
water purification procedure, they used a microcontroller-based monitoring system. 
While doing this procedure, it was necessary to make use of this monitoring device. 
It also has an LCD indicating circuit from which data is collected and sent to the 
person in charge of maintenance and repair. The detecting device can analyze data to 
evaluate whether the water filtration elements are in good working order. It can also 
send a message or play a sound to customers if the water filtering elements are in a 
harmful state. In case the purification system’s water pump needs to be turned off, it 
has a power-switching device that can do so. As a result, the filtering components’ 
ability to remove pollutants can be evaluated after some period of operation. The 
monitoring device will sound an alarm and instantly shut down the power supply or 
reduce the pump’s speed to stop the water replenishment if the filtration elements 
are closed. Additionally, if the filter pieces aren’t updated after a certain [125, 126]. 

There are numerous techniques and systems of monitoring, each with its own set of 
rules and regulations. Water quality monitoring can be divided into manual and real-
time online sensor node locations. Many existing methods and methodologies appear 
to be inadequate to achieve the goal. Water bodies have been restored and cleared 
of the accumulation of nutrients and organic compounds that can lead to quality 
degradation by various conventional approaches that have demonstrated remarkable 
results. The manual method predominates in developing countries. In addition, the 
real-time sensor node approach is not widely used in industrialized countries. It is 
necessary to collect and compare data on the various characteristics to determine the



The Impact of Artificial Intelligence onWasteManagement for Climate… 51

extent to which the resource has been exploited or polluted. It’s important to note 
that each parameter has its mean Samples of water that can be taken from various 
locations and depths by utilizing ntainers manually inserted into the water. Various 
tests are carried out on the samples once they have been sent to the laboratory. It is 
possible to monitor water quality without relying on existing monitoring methods 
like manual water sampling and sensor node approach using WSN by utilizing recent 
breakthroughs in sectors like data analysis, unmanned surface vessels (USVs), and 
the Internet of Things (IoT) [127]. As a result, an engineering method for tracking 
and monitoring several water quality factors (pH, dissolved oxygen, temperature, 
conductivity, etc.). In addition, USVs have the benefit of allowing researchers to 
examine water quality in locations otherwise inaccessible to humans, such as those 
located at great distances. 

Another advantage of a USV-based technique is that it minimizes the risk of 
missing an area of a river. This is achieved through a standard embedded system 
of hardware and software operating together [128]. A wireless sensor network built 
on water purification station serves as the system’s primary control and monitoring 
center [129]. They can use this gadget to check the water’s quality and then commu-
nicate that information to maintenance staff members with the proper credentials to 
access the web. The purification unit must be maintained by defining two nodes of 
sensing elements: a transmitter and a re-transmitter, no matter how much a shift in 
pH or TDS is detected. This message is sent to maintenance personnel to indicate 
that one or both measured values are outside acceptable ranges. The purifying system 
needs to be serviced, as indicated by this notice. Once the Wi-Fi module has been 
connected to the internet, the collected data will be sent to a global database for 
analysis. Once this database has determined, it will show this information at the IP 
address previously set on the internet [129]. 

4 Challenges in Waste Management and Artificial 
Intelligence 

A discussion of the primary obstacles and prospects of using AI in Latin American 
municipal garbage management is provided herein. Latin American countries can 
benefit from studying Machine Learning themes such as information ascription and 
database integration despite the obstacles to the quality of the information. Further-
more, it has been discovered that the area has enormous potential to benefit from 
internet-based instruments, as the prevalence of web access is enormous and shows 
a steady increase in the future. If you’re keen to know how AI-based instruments are 
used in less-favored countries, you’ll have to wait till the technological and human 
resources are more readily available, and the rest of the world may be as well [130]. 
There are, unfortunately, very few details available about garbage contamination, 
and even if there were, it would be difficult or expensive, even with the traditional 
garbage inspection process. There are numerous opportunities and advantages to
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implementing trash management, including lowering costs, increasing supply chain 
and fabric stream efficiency, reducing waste, or even eliminating it. Squander admin-
istration innovation, stage and data collecting are key barriers to overcome in the 
early stages of the development of squander management innovation [131]. Other 
issues include generation and separation, collection, transfer, transportation, treat-
ment, disposal and recycling. It educates urban waste management, researchers and 
policymakers on health and environmental issues. It was noted that a wide range of 
stake holders from local governments to homeowners to special cleaning companies 
were involved. Insufficient awareness efforts, a lack of neighborhood committee help 
and a bad response to accusations are among the issues cited for generation and sepa-
ration [132]. Despite this, the study found that there was a lack of infrastructure (C1), 
insufficient funding (C2), cybersecurity issues and a lack of trust in AI [133]. As a 
result, AI and IoT advancements can transform the difficulties and provide viable 
answers to the issues faced by society and administrative authorities. 

5 Conclusion 

The solid waste generated by human activities contributes to climate change while 
also being harmed. Commercial, mechanical, agricultural, biomedical, electronic, 
and toxic wastes are all generated. During various life cycle phases, each of these 
wastes emits greenhouse gases (GHGs). Carbon dioxide and methane are released 
into the atmosphere during the collection and cremation of wastes (vitality usage 
transportation and furnaces). The interconnectedness of climate change and disasters 
that the management of solid waste is adversely affected due to the shifting levels 
of disturbance brought on by climate change in one or more of its manifestations. 
Reducing garbage sent to landfills is a primary goal of the National Action Plan 
for Climate Change’s resource recovery and recycling initiatives. As well as water 
purification methods to maximize the use of resources and desalination management. 
However, there are several disadvantages to these approaches, not the least of which 
is the high cost of time, effort and money. To this end, a large number of scientists 
are working to eliminate environmentally friendly wastes using artificial intelligence 
(AI) technology that can forecast emissions reductions in areas where solid waste 
and air pollutants are generated, as well as recovery of clean water, energy and a 
variety of other resources from the waste stream. Artificial intelligence (AI) has the 
potential to be a formidable tool in the fight against climate change. Consequently, 
AI frameworks and their ability to autonomously and remotely control devices have 
captured public interest. There is a great deal of potential for AI to be used for the 
good of humanity and the environment. Climate change, biodiversity conservation, 
ocean health, water management and contamination are some of the environmental 
issues that AI can help us address with new and innovative solutions.
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1 Introduction 

The geology, biology, and ecosystems of world have undergone significant, perhaps 
irreversible changes as a result of climate change [1]. Numerous environmental 
dangers to human health have resulted from these developments, including the world-
wide spread of infectious illnesses, strain on food production systems, loss of biodi-
versity, and ozone layer depletion [2]. Low-lying island nations in the Pacific will 
be most affected by rising sea levels and erosion, which will damage houses and
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infrastructure and force people to evacuate. Rising ocean temperatures are linked to 
a rise and spread of illnesses in marine animals, and ingesting marine creatures puts 
people at risk of contracting these diseases directly [3, 4]. 

The process of monitoring climate change can be carried out through datasets 
that are collected to study its impact on the climate in general and provide recom-
mendations for climate treatment. Artificial Intelligence (AI) can be a powerful tool 
in addressing some of humanity’s greatest challenges. AI-driven systems help us to 
reduce the wasted energy amount in the home simply shutting off lighting and heating 
systems before we leave the home. Worldwide, these systems help combat drought 
by monitoring areas affected by desertification. Researchers are also looking about 
how data centers and AI computer systems themselves will affect the environment, 
such as finding a way to build systems and infrastructure that are more energy effi-
cient. AI is just one tool in the complex process of analyzing the causes of climate 
change, but Its capacity to analyze massive volumes of data and find patterns enables 
us to comprehend the environment well. Machine learning enables AI systems to 
come up with solutions specific to those systems, rather than pre-programming them 
with a set of answers [5, 6]. 

Climate change is now a continuous event rather than something that will happen 
in the future. The reality of climate change has now been proved., and the changes 
create a greatest challenge for humanity today. So, climate change is the most burning 
issue now-a-days. It is evident that the global mean temperature has grown by 0.30– 
0.60 °C over last century. Due to a changing and disaster-prone climate, the global 
sea level has risen by 10–20 cm throughout the same time [7]. Egypt’s climatic 
characteristics and weather pattern are undergoing some fundamental and signif-
icant changes. Temperatures are increasing, droughts and wildfires are becoming 
more common, rainfall patterns are changing, snow and glaciers are melting, and 
the globe sea level is increasing as a result of climate change. The emissions caused 
by human activity should be cut down on or completely stopped if we want to slow 
down climate change. Long-term changes in weather and temperature patterns are 
referred to as climate change. These changes might be caused by natural processes, 
such oscillations in the solar cycle. Since the 1800s, human activities—primarily the 
combustion of fossil fuels like oil, coal, and gas—have been the primary cause of 
climate change [8]. 

Forecasting is defined as the procedure of producing predictions based on early 
and current data. It is useful because it enables the creation of data-driven plans and 
the capacity to make educated judgments. Furthermore, it investigates how existing 
underlying currents imply prospective shifts in direction for enterprises, civilizations, 
or the entire planet. Prediction aims to provide future certainty. As a result, the 
primary goal of forecasting is to identify the whole range of possibilities rather than 
a small number of weak certainties. [9]. 

Air temperature prediction is the process of anticipating future temperature 
changes using a specific prediction model based on temperature time series data 
and other parameters. Temperature forecasting is used in weather forecasting, which 
can help to offer effective solutions to combat global warming. The ability to antici-
pate temperature variations is crucial for disaster warning, agricultural productivity,
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managing water resources, protecting the environment, and sustainable development. 
Recent years have seen an increase in the popularity of temperature forecasting on a 
worldwide scale [10]. 

The correlation between global warming and the increase in air temperature has 
lately caught experts’ attention. The lives of people are eventually significantly 
impacted by climate change, which includes sea level rise, an increase in extreme 
occurrences, and global warming [11]. The atmosphere’s state variable, air temper-
ature, has an impact on both land surface and atmospheric processes. In order to 
safeguard people’s lives and property, anticipating air temperature is a crucial compo-
nent of weather prediction [12]. When the air temperature is outside of the accept-
able range, people may experience possible health issues. Animals and plants may 
be harmed by abrupt temperature fluctuations. Due to the considerable impact that 
air temperature has on a number of industries, including agriculture, industry, and 
energy, an accurate prediction of air temperature is crucial. The precision of energy 
usage is improved by accurate air temperature forecasts [13]. Another important 
component in forecasting other meteorological variables is air temperature, including 
streamflow, solar radiation, and evapotranspiration. Finding a suitable method for air 
temperature forecasting is so essential and may help to lessen the effects of global 
warming and climate change. Furthermore, a strategy for human activities, economic 
growth, and energy policy, must take into account the precise forecast of air temper-
ature [14–16]. The main contribution of this chapter is the studying the effect of 
climate change on the temperature by forecasting the global temperature using ML. 
We utilized standard dataset of climate change and perform preprocessing normal-
ization for the selected features. Furthermore, we visualized the findings using both 
box and scatter plots. The evaluation results are performed using ML approaches; 
LR, RF KNN, DT, SVM, and CBR regressors. 

The rest of the chapter is organized as follows. Section 2 briefly highlighted the 
current related work for predicting the global temperature. Section 3 presents the 
materials and method presented in this chapter. The proposed Cat Boost Regressor 
is presented in Sect. 4. The results and discussion are presented in Sect. 5. finally, 
the conclusion and perspectives are discussed in Sect. 6. 

2 Related Work 

Most research has focused on daily forecasting [17, 18], monthly [19] and annual 
mean temperatures [20, 21]. Hourly temperature forecasting has only received a 
small amount of research [22]. Traditional statistical methods including linear regres-
sion, cluster analysis, autoregressive integrated moving average (ARIMA), and grey 
prediction have been used to forecast air temperature up to this point. These models 
use statistical assessments of past data to determine the likelihood that a certain 
weather phenomenon will occur in the future. The mechanisms and variables driving 
variations in air temperature, on the other hand, are extremely intricate and nonlinear. 
Long time series of hourly or daily temperature cannot be successfully predicted using



64 M. Y. Shams et al.

statistical methods because dynamic temperature changes are difficult to capture [9]. 
With the use of machine learning techniques like a support vector machine (SVM), 
the changing trend of air temperature has been anticipated [23], an artificial neural 
network (ANN) [24] and LSTM [25]. 

As an example, shallow learning approach, an SVM can estimate the maximum 
temperature for the following day across a time range of 2–10 days. An ANN, other 
shallow-learning technique, can accurately forecast changes in the daily average 
temperature trend [26]. A DBN and SAE, both deep learning techniques, are better 
at predicting temperature than a shallow neural network. A CNN (another deep 
learning approach) generates meteorological characteristics from convolution layers 
and sends them to a pooling layer, which selects and filters relevant information 
to limit the amount of input and prevent the CNN’s gradient from disappearing 
[27]. As an extra deep learning approach, an RNN can anticipate time series of air 
temperature using neural units linked in a chain. A different deep-learning algorithm, 
LSTM, can anticipate short-term temperature correctly and effectively by gathering 
external input from hidden layers [28, 29]. 

To increase the accuracy of air temperature predictions, several deep-learning 
techniques have been included into models [30]. Convolutional recurrent neural 
network (CRNN) was created by combining a CNN with an RNN to identify the 
spatial and temporal correlations of the daily change in air temperature [31, 32]. 

Tran et al. [33] used standard LSTM, RNN, and multilayer ANN models. The 
highest air temperature in South Korea was predicted using hybrid models. The 
maximum air temperature for the next one to fifteen days was predicted using data 
from the previous seven days’ worth of air temperature readings. The results demon-
strated that the LSTM model outperformed the other models in terms of long-term 
air temperature predictions. 

Tran and Lee make another attempt [34] utilized multilayer ANN models to fore-
cast South Korea’s maximum air temperature for one day. It was found that the ANN 
model generated the smallest error rate. For predicting air temperature, other research 
utilized deeper learning structures that were more complicated. As an example, Zhang 
et al. [31] used a convolutional recurrent neural network to predict the daily average 
air temperature for the next four days (CRNN). To train the CRNN, they used daily 
air temperature data collected across China between 1952 and 2018. Based on the 
historical air temperature data, the findings showed that their model could accurately 
forecast air temperature [26]. Cifuentes et al. [35] presented a deep learning approach 
to predict climate change temperature effect and they achieved minimum root mean 
square error 0.0017. As shown in Table 1, we summarize research that used neural 
network models to predict air temperature for a few minutes to many months in the 
future. Lin et al. [18] presents a temperature prediction based on multi-dimensional 
Empirical Decomposition Mode (EDM) ensemble and Radial Basis Function (RBF) 
with a minimum error rate in forecasting 7-day maximum temperature.
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Table 1 The description of the current efforts to predict temperatures in presence of climate change 

References Input Type of model Output 

Tran et al. [33] Past daily maximum 
temperature (from 7 
to 36) 

Traditional ANN, 
RNN, LSTM 

Daily maximum 
temperature for 
1–15 days in advance 

Tran and Lee [34] Six previous daily 
maximum 
temperature 

Traditional ANN One day ahead 
maximum temperature 

Zhang et al. [31] Four past 
temperature data 
map series 

Convolutional recurrent 
neural network (CRNN) 

Four future temperature 
data map series 

Cifuentes et al. [35] Maximum, 
minimum, and 
average temperature, 
precipitation 

Deep learning Mean square error = 
0.0017 

Lin et al. [18] Temperature, wind 
speed, humidity, and 
water depth are all 
factors to consider 

Radial basis function 
neural network with 
multidimensional 
complementary 
ensemble empirical 
mode decomposition 
(MCEEMD) (RBFNN) 

Forecast the daily 
maximum temperatures 
for the next seven days 

3 Materials and Methods 

The most significant environmental issue of the current era on a worldwide scale 
is climate change, which is brought on by global warming and is a consequence of 
rising greenhouse gas concentrations. Environmental issues brought on by climate 
change include shifting precipitation patterns, melting polar glaciers, and increasing 
sea levels [36]. Using a collection of climate change dataset, regression models were 
effective in predicting temperature in this chapter. This section provides a detailed 
discussion for the proposed model stages. The proposed model consists of data 
preprocessing for data normalization using Z normalization. After preparing and 
splitting the dataset, the regression models are applied to predict the temperature 
accurately. Different evaluation operators are used to evaluate the performance of 
the proposed prediction system. Results demonstrated that Cat boost regressor model 
achieved the best results with values of 0.003, 0.0036, 0.054, and 92.4% for MSE, 
MAE, RMSE, R2, respectively. All steps of the proposed model are illustrated in 
Fig. 1.

Initially valid global dataset collected from the Climatic Research Unit at the 
University of East Anglia. Data was collected in a CSV file the data is normalized 
using Z normalization. Dataset is splitting to 70% for training, and 30% for testing. 
Multiple regression analyses were used interchangeably to predict temperature of 
the collected dataset related to climate change. The regression models e.g., Linear 
regression, Random regressor, K-nearest regressor, Decision tree regressor, Support
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Fig. 1 The proposed temperature prediction model

vector regressor, have been trained with comparison to Cat boost regressor model 
for temperature prediction. Now, we’ll discuss the regression models used in this 
chapter briefly. 

3.1 Linear Regression 

A well-known statistical technique, called linear regression, combines its input 
factors to predict the outcome variable in a straightforward and understandable 
manner [37]. One of linear regression’s drawbacks is that it examines often a rela-
tionship between the mean of the output and input variables. Similar to how the 
mean does not adequately describe a single factor, linear regression does not provide 
a clear view of the relationships between variables [38]. Regression equation with 
numerous variables often look like as in Eq. (1): 

Y = β + β0x1 + β1x2 + β2x3 + ε. (1) 

where x1, x2, x3 are the independent variables and Y is the predictor or target variable. 
β0, β1, β2 are the coefficients and ε is the error term. Figure 2 presents the linear 
regression in machine learning [39].
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Fig. 2 Linear regression in 
machine learning 

3.2 Decision Tree Regressor 

One of the best regression techniques for handling high dimensional data is decision 
trees (DT). The decision trees are categories of non-parametric supervised learning 
techniques. The decision tree model learns “decision rules” derived from the proper-
ties of the current data to forecast the target variables. A piecewise constant approx-
imation is similar to a decision tree regressor [40]. The decision tree divides recur-
sively the feature space such that the samples with comparable target labels or values 
are grouped together. 

Let Qm with Nm samples represents the data at a node. Thus, the data is divided 
into Qleft 

m (θ) and Qright 
m (θ) subsets for each split θ = (j,tm) where j is a feature and 

tm is a threshold [41], as shown in Eq. (2): 

Qleft 
m (θ) =

{
(x, y)|xj ≤ tm

}

Qright 
m (θ) = Qm/Qleft 

m (θ) (2) 

The variable in Eq. (3) that minimizes the impurity (θ ∗) is:  

θ ∗ = argminθG (Qm, θ). (3) 

After the split’s quality has been assessed, the parameters that reduce impurity 
denoted by θ ∗. 

There is recursively loop for subsets Qleft 
m (θ) and Qright 

m (θ), until the maximum 
permitted depth is achieved with Nm < minsamples, Nm = 1. 

3.3 Random Forest Regressor 

The utilization of an ensemble of trees is the most effective technique to improve 
DT’s prediction accuracy. A collection of regression trees that were built at random is
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known as Random Forest. Random Forest Regressor (RFR) is more appropriate for 
real-time applications in a variety of domains, such as species distribution modeling, 
language modeling, bioinformatics, and ecosystem modeling [42]. Different decision 
trees are trained using subsets of the dataset, and the final results are determined using 
the concept of majority voting (averaging). Therefore, among its competitors, ANN 
and XGBoost, random forest was shown to be the optimal technique through the 
approaches of bootstrap aggregation and replacement [43]. 

In RFR, a forest is formed from a collection of N trees {R1(X), R2(X), …, RN(X)}, 
where X is a p-dimensional input vector with values x1, x2, …, xp. The ensemble 
generates N outputs for each tree Ŷn = R1(X), …, ŶN = RN(X), where Ŷn is the nth 
tree output and n = 1, …, N. The average of each tree’s unique forecasts makes up the 
final result. The bootstrap sample is used to build the tree. After training is complete, 
fully formed trees are utilized to forecast results for samples that have not been seen 
or are unidentified. The learning error provided by the Mean Square Error (MSE) is 
used to measure the predictive performance of Random Forests. Equation (4) shows  
that Ŷ(Xi) is the anticipated output, Yi is the observed output correlating to a certain 
input sample and n is the total number of out-of-bag samples [42]. 

MSE ≈ MSEOOB = n−1 
n∑

i=1

(
Ŷ(Xi) − Yi

)2 
. (4) 

3.4 K-Nearest Neighbor Regressor 

The term “ML algorithms” refers to a type of algorithms that carry out computations 
implicitly through training rather than explicitly via programming. Most machine 
learning algorithms work by translating input characteristics to an output value (s). 
KNN are a class of ML algorithms that are reliable, easy to use, and cost little to 
run. The output value of a test point is specifically determined by KNN regressors as 
the interpolated value of the test point’s closest neighbors. The number of neighbors 
to interpolate across, k, is used specified and the closest neighbors are determined 
by the k training points in the input feature space with the least Euclidean distance. 
Therefore, a weighted average of data points with comparable input properties may 
be used by KNN regressors to predict an output value [44]. Figure 3 illustrates the 
k-nearest neighbors regression [45].

3.5 Support Vector Regressor 

SVR is a technique that may be used in regression situations when the support vector 
machine idea is being used. Due to its ability to address the overfitting issue, this
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Fig. 3 k-nearest neighbors’ 
regression

technique performs well in time series prediction and regression [46]. Equation (5) 
is used to represent the function in the linear case. 

f (x) = (w, x) + b with w ∈ x, b ∈ R (5) 

whereas w denotes the slope, x presents the feature space, and b indicates the inter-
cept. Equations (6) and (7) can be used in order to minimize the Euclidean value and 
make the function as flat as feasible. 

minimum 
1 

2

||||w2
|||| (6) 

depend on

⎧
yi − (w, xi) − b ≤ ∊

(w, xi) + b − yi ≤ ∊
(7) 

In contrast to SVM, which attempts to acquire a hyperplane by maximizing 
margins and has a limit of 1 by following yi(w.xi − b) ≥ 1, , SVR strives for regres-
sion to achieve the value with the least error or minimal margin (2ε), such that the 
point is assumed to be inside the support hyperplane. 

4 Cat Boost Regressor 

Decision trees are used as the primary predictors in the majority of gradient boosting 
implementations. Decision trees are useful for numerical characteristics, but in 
reality, many datasets include categorical elements that are essential for prediction. 
A cutting-edge gradient boosting technique is the Cat Boost Regressor (CAT). It 
relates to more effective gradient boosting tree algorithmic framework implemen-
tation. A symmetrical decision tree algorithmic rule with categorical parameters, 
minimal variables, and superior accuracy is the foundation of this framework [47]. 
The CatBoost method, like Gradient Boosting and XGBoost, builds several binary
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decision trees every time it attempts to lower the error. The procedures for creating 
a tree in CatBoost are outlined in Algorithm 1 [48]. 

Algorithm 1: Constructing a tree in Cat Boost 
input : {(  , )} , M, L,α, {σ } , 
Mod ← Calc_Grad(L, M, y); 
d← random(1, n); 
if Mod = Plain then 

R ← (gradr(P) for P = 1..n); 
if Mod = Ordered then 

R ← (gradr,σr(P)−1(P) for P = 1..n); 
V ← vacuous tree; 
foreach step from top to down do 

foreach candidate split c do 
Sc ← add split c to S; 
if Mod = Plain then 

∆(p) ← avgerage(gradr(i) for i : leafr(i) = leafr(p)) for p = 1..n; 
if Mod = Ordered then 

∆(p) ← avgerage(gradr,σr(p)−1(i) for i : leafr(i) = leafr(p), σr(i) < σr(p)) for p = 1..n; 
loss(sc) ← cos(∆, R) 

V ← arg minTc (loss(Sc)) 
if Mod = Plain then 

(p) ← (p) − α avgerage( (i) for i : (i) = (p)) for = 1..s, p = 1..n; 
if Mod = Ordered then, (p) ← , (p) − α avgerage( , (i) for i : (i) = (p),  σ ́ (i) ≤ r) 

for = 1..s, p= 1..n, r ≥  σ (p) − 1; 
return V, M 

When compared to several machine learning models, the benefits of gradient 
boosting algorithms include their superior prediction accuracy. These methods offer 
a great deal of versatility, allowing for the optimization of the function fit utilizing a 
variety of hyperparameter tuning choices or other loss functions. They don’t need to 
preprocess the data since they can operate directly with the input. The main disad-
vantage of gradient boosting techniques is their high computational cost. Overfitting 
may result from these systems’ elimination of mistakes, and the parameters have a 
significant impact on how they behave [49]. 

The algorithm’s accuracy and its generalizability are enhanced by CAT. Numerous 
areas, including media popularity prediction, weather forecasting, biomass, and evap-
otranspiration, have effectively utilized this algorithm [50]. It is for this reason that 
the model is applied here to predict the temperature in this chapter.
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5 Evaluation Results and Discussion 

5.1 Dataset Description 

The dataset is available at https://www.kaggle.com/datasets/econdata/climate-
change. The dataset consists of 308 instances and 11 features. The features names 
are Year, Month, Temp, CO2, N2O, CH4, CFC.11, CFC.12, Aerosols, TSI, MEI. 
The climate data from May 1983 to December 2008. The statistical analysis and 
determination of the applied features are shown in Table 2. The statistical includes 
count, mean, standard deviation (std.), minimum (min), maximum, 25, 50, and 75% 
of the features. Figure 4 demonstrates the boxplot of the applied features of the 
predicted temperatures. While the scatter plot that describe the relationship between 
the temperature and the year is shown in Fig. 5. 

Figure 6 shows the relation between the temperature and the aerosols. Further-
more, Fig. 7, discussed the relation between the temperature and the months for

Table 2 Statistical calculation for the features 

Year Month MEI CO2 CH4 N2O CFC-11 CFC-12 TSI Aerosols Temp. 

Count 308 308 308 308 308 308 308 308 308 308 308 

Mean 1995 6.5 0.27 363 1749 312 251 497 1366 0.01 0.25 

Std. 7.4 3.4 0.93 12 46 5.2 20 57 0.39 0.02 0.17 

Min 1983 1 − 
1.6 

340 1629 303 191 350 1365 0.001 − 
0.28 

25% 1989 4 − 
0.39 

353 1722 308 246 472 1365 0.002 0.12 

50% 1996 7 0.23 361 1764 311 258 528 1365 0.005 0.24 

75% 2002 10 0.83 373 1786 316 267 540 1366 0.012 0.40 

Max 2008 12 3 388 1814 322 271 543 1367 0.14 0.73 

Fig. 4 Box plot for the 
applied temperature feature

https://www.kaggle.com/datasets/econdata/climate-change
https://www.kaggle.com/datasets/econdata/climate-change
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Fig. 5 Scatter plot between the temperature and years

one year. Figures 8, 9, 10, 11, 12, 13 and 14 describes the scatter plots relationship 
between the temperature and MEI, CO2, CH4, N2O, CFC-11, CFC-12 and the TSI, 
respectively. The heatmap matrix that describes the relation and correlation between 
all the applied features (variables) of the dataset is shown in Fig. 15. 

Fig. 6 Scatter plot between the temperature and aerosols
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Fig. 7 Scatter plot between the temperature and month 

Fig. 8 Scatter plot between the temperature and MEI

5.2 Evaluation Results 

The execution of the proposed regression ML (LR, RF KNN, DT, SVM, and 
CBR) models was assessed using the evaluation metrics, namely, Mean Square 
Error (MSE), Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and 
determination coefficient (R2). MSE is computed using Eq. (8): 

MSE = 
1 

N 

N∑

i=1

(
yactuali − ypredictedi

)2 
(8)
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Fig. 9 Scatter plot between the temperature and CO2 

Fig. 10 Scatter plot between the temperature and CH4

where N is the number of enrolled features and the yactuali is the actual values of the 
instance i. The predicted values of the instaces i is denoted by ypredictedi . The RMSE, 
and the MAE are computed using Eqs. (9) and (10), respectively [51]. 

RMSE =
⌜||| 1 

N 

N∑

i=1

(
yactuali − ypredictedi

)2 
(9) 

MAE = 
1 

N 

N∑

i=1

||yactuali − ypredictedi
|| (10)
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Fig. 11 Scatter plot between the temperature and N2O 

Fig. 12 Scatter plot between the temperature and CFC-11

The determination R2 is computed using Eq. (11) as follows:  

R2 = 1 −
∑N 

i=1

(
yactuali − ypredictedi

)2

∑N 
i=1

(
yactuali − y

)2 (11) 

where y is the mean value. Table 3 demonstrates the results obtained based on the 
mentioned evaluation metrices for the ML (LR, RF KNN, DT, SVM, and CBR) 
regressor models. Figure 16 shows the error rates (MSE, MAE and RMSE) for the 
proposed models. We noticed that the minimum error rates achieved when using
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Fig. 13 Scatter plot between the temperature and CFC-12 

Fig. 14 Scatter plot between the temperature and TSI

Cat boot regressor. The results of determination coefficient (R2) of the proposed ML 
models are shown in Fig. 17 indicated the superiority of the Cat boost regressor 
results (highlighted in bold) compared with other tradition ML regressor.
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Fig. 15 The heatmap matrix for the features

Table 3 The results of the proposed ML models based on MSE, MAE, RMSE and R2 

Models MSE MAE RMSE R2 (%) 

Linear regression 0.009 0.0092 0.094 85.3 

Random regressor 0.007 0.0075 0.787 88.9 

K-nearest regressor 0.005 0.0058 0.070 90.6 

Decision tree regressor 0.007 0.0071 0.787 88.4 

Support vector regressor 0.004 0.0043 0.063 91.1 

Cat boost regressor 0.003 0.0036 0.054 92.4

6 Conclusion and Perspectives 

Climate change has a great effect on the surrounding environment. Currently the 
universe vulnerable great effect results from climate change. Especially the temper-
ature which consider one of the important factors of climate change. This chapter 
present a prediction model based on ML regressors such as LR, RF KNN, DT, SVM, 
and CBR. Furthermore, we analysis the data using statistical analysis as well ae under-
standing the correlation between variables and the scatter plot relationship between 
the temperature and the other remaining features. These features are preprocessed 
and normalized using z-score normalization. Afterwards, it divided into 70% training
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Fig. 16 The error values MSE, MAE and RMSE of the proposed ML models 
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Fig. 17 The R2 results compared with the proposed ML regressors

and the reminder 30% for testing. We used the prediction MSE, MAE, RMSE, and 
R2 metrices. The results prove the ability of the proposed CBR model to predict the 
temperature with minimum error rates and high R2 value compared with other ML 
models. In the future, we plan to utilize another climate change factor and recom-
mend how can we tackle the change occurs. Moreover, we intended to study the 
effect of temperature on the agriculture fields especially the quality control of crops 
in the presence of climate change.
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Abstract Greenhouse gases such as carbon dioxide emissions or shortly CO2 are 
considered one of the essential causes of climate change. Recently, it has been consid-
ered one of the most significant environmental problems in the world. Therefore, this 
study proposes a carbon dioxide emission prediction model. Support vector machine 
and regression tree machine learning algorithms are adopted and compared. The 
proposed model is tested on a dataset collected from the Canada website through-
out 2014 to 2020. The experimental results showed that the support vector machine 
learning algorithm is the most suitable algorithm for the adopted dataset. It obtained 
an overall 3.6026% RMSE, 12.978% MSE, 2.57% MAE, 100% R-Squared, almost 
320 s in training time. 

Keywords Carbon dioxide · Regression tree · Support vector machine · Prediction 

1 Introduction 

Carbon dioxide is one of the major components of Green House Gas (GHG) Emis-
sions. It responsible for 81% from the total emissions [ 1]. It can be naturally pro-
duced from respiration or decomposition. Moreover, it can be produced from cement 
production, automotive exhausts, and the burning of fossil fuels. Methane, carbon 
dioxide, nitrous oxide, water vapors, and ozone are the main greenhouse gases that 
exist in the earth’s atmosphere. However, all of these gases play a critical role to 
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keep life on the earth, and the concentration increase of any of those has a severe 
effect on climate change [ 2]. Greenhouse gases such as carbon dioxide emissions or 
shortly CO2 are considered one of the essential causes of climate change. They can 
trap the temperature in the atmosphere. This can result in global temperatures rising. 
Thus it played a major role in global warming. Despite the natural sources of carbon 
dioxide such as volcanic eruptions, before the development of industry, humans are 
responsible for increasing carbon dioxide from 280 parts per million to 370 parts per 
million today [ 3]. Thus, a lot of labor and time is needed to prepare many prototypes 
and evaluate each one of them. Starting from the period 2000 to 2018, global green-
house gas emissions of developed countries have decreased by 6.5%. Meanwhile, 
from 2000 to 2013, the emissions of developing countries increased to 43.2. This 
high increase is due to an increase in improved economic output evaluated in terms 
of GDP and industrialization [ 4]. 

1.1 Motivation 

Car pollution is one of carbon dioxide sources. It can significantly affect water quality, 
air quality, and soil. It is one of the exhaust gas that has a dangerous effect on people 
suffering from heart disease and infants. This is due to its ability to interfere with 
the blood when delivering oxygen. Sulphur dioxide, formaldehyde, and benzene are 
other car pollutants that harm human health [ 5]. Thus, in the last few years, many 
researchers focus their studies to reduce pollutants and greenhouse gas emissions 
from vehicles. 

Over the years, machine learning algorithms have proven their efficiency in the 
design, modeling, and prediction of the emissions of carbon dioxide. They showed 
their ability to find the approximate or optimal solution in many filed such as in agri-
culture [ 6], in medical [ 7], and in drug discovery [ 8]. Nowadays, many researchers 
used machine learning algorithms to increase the prediction accuracy of CO2 emis-
sions. Regression models are types of machine learning algorithms used for estimat-
ing the emission of CO2 from cars. Authors in [ 5], used dynamic programming to 
predict the tank-to-wheel CO2 emissions. They also proposed an automatic search 
tool to tune the hyper-parameters of the neural network. The experimental results 
showed that their proposed model obtained regression errors below 1%. In [ 9], the 
Gaussian Process Regression and the traditional parametric modeling algorithms are 
adopted and compared to predict CO2 emissions. The simulation results revealed 
the efficiency and reliability of the proposed algorithms. In [ 10], the support vec-
tor machine (SVM) is used to predict the emission of carbon (CO2) obtained from 
the Alcohol industry. The authors showed that the proposed model based on SVM 
obtained an overall 0.004 Root Mean Square Error (RMSE). Additionally, the results 
showed that the proposed model can be used for further monitoring expenditure of 
CO2 emission. Authors in [ 1] proposed a hybrid approach based on using Long 
Short-Term Memory Network and Convolution Neural Network. they applied their 
proposed hybrid approach to predict the levels of CO2 in India in 2020.
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1.2 Main Contribution 

This study proposes a carbon dioxide emission prediction model. The proposed 
prediction model consists of four main phases. The main objective of the first phase 
is to handle the missing values in the adopted dataset. Then the output from the 
previous phase is used to feed the prediction phase. Then, hold-out is used in the 
cross-validation phase to evaluate the reliability of the proposed prediction model. 
Finally, several measurements are used to evaluate the overall performance of the 
proposed prediction model with different machine learning algorithms. The main 
contribution of this study can be summarized as follows: 

1. A carbon dioxide emission prediction model is proposed to predict the emission 
of CO2 from a car. 

2. Two well-known and commonly used machine learning algorithms known as 
support vector machine and regression tree are used and evaluated. 

3. Several measurements are used to evaluate the proposed model. These measure-
ments are R-squared, the mean squared error (MSE), the root mean squared error 
(RMSE), mean absolute error (MAE), and training time in seconds. 

The rest of the work is organized as follows; Sect. 2 gives a detailed description 
of the proposed carbon dioxide emission prediction model. Section 3 provides the 
experimental results and discussions with a description of the used carbon dioxide 
dataset. Finally, conclusions and future research direction are presented in Sect. (4) .  

2 The Proposed Carbon Dioxide Emission 
Prediction Model 

The proposed carbon dioxide emission prediction model consists of four main phases; 
handling the missing values phase, the prediction phase, the cross-validation phase, 
and finally the evaluation phase. Overall the proposed carbon dioxide emission pre-
diction model is shown in Fig. 1. In the first phase, all the missing values are replaced 
with the median value of that feature. Equation (1)shows the mathematical formula 
of the median method, where Y t i is the missing value for a given i-th  iteration and 
d-th  dimension and Cr is the median value of a class. 

M 
i 
d = mediani :Mi 

d∈Cr 
Mi 

d (1) 

In the prediction phase, two well-known and most used machine learning algo-
rithms are used to predict the emission of carbon dioxide in a vehicle. These algo-
rithms are regression trees with different types and the support vector machine. 
Support vector machine or shortly (SVM) is developed on statistical learning theory, 
where a group of mathematical functions namely known as kernels. Many studies 
showed its efficiency in classification, analysis, pattern recognition, and regression
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Fig. 1 The proposed carbon dioxide emission prediction model 

tasks [ 10– 12]. Also, the studies showed the capability of the SVM algorithm com-
pared with the other algorithms. This is due to its ability to generalize. Thus, in this 
study, SVM with different kernel functions known as linear, Gaussian, cubic, and 
quadratic is adopted. Additionally, the regression tree with different splitting criteria 
is considered and evaluated in the proposed model. The regression tree is one of a 
multivariate, data-driven, nonparametric, and nonlinear machine learning algorithm. 
It is used to map the relationship between output data and input data algorithmi-
cally. The regression tree used this relationship and accumulate this learning into its 
constraints [ 13]. 

To evaluate the reliability and robustness of the proposed model, one of the cross-
validation methods known as hold-out is used in the cross-validation phase. The data 
set in the holdout cross-validation method is divided into two sets namely; the testing 
set and the training set. A machine algorithm uses the training set only to build the 
training model. Then the testing set is used to predict the output values. In this work, 
the dataset is divided into 70% for training purposes and 30% for testing purposes. 
Finally, in the evaluation phase, several measurements are used. These measurements 
are R-squared, the mean squared error, the root mean squared error, mean absolute 
error, and training time in seconds. 

3 Simulation Results and Discussions 

In this section, different machine learning algorithms are evaluated and compared. 
All the conducted experiments are conducted on the same PC with specs. The detailed 
configuration settings are listed below: 

• CPU: Intel Core i7 
• OS: Windows 10 
• RAM: 16 GB 
• Language: Matlab R2020.
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3.1 Performance Evaluation Measurements 

Several measurements are used to evaluate how well a machine learning algorithm 
can predict the value of the response variable, which in our case is CO2 emissions. 
These measurements are R-squared, the mean squared error (MSE), the root mean 
squared error (RMSE), mean absolute error (MAE), and training time in seconds. The 
mathematical formula of MSE is defined in Eq. (2), RMSE is defined in Eq. (3), and 
MAE is defined in Eq. (4), where yi is the observed variable of the i-th observation, 
ȳi is the predicted value of the i-th observation, N is the sample size. When the value 
of MSE, RMSE, and MAE is zeros, this means that the specified machine learning 
algorithm is the best algorithm that can accurately predict the observation value. 

MSE  =
∑ ( ¯(yi − yi )2 

N

)
(2) 

RM  SE  =
/

¯∑ (
(yi − yi )2 

N

)
(3) 

MAE  =
/

¯∑ ( |(yi − yi )| 
N

)
(4) 

R-squared is calculated by dividing the variance of the actual value of the response 
variable obtained by a regression machine learning algorithm rather than the MSE 
which captures the residual error. The mathematical definition is introduced in Eq. 
(5), where ŷi is the mean value of the observed variable. 

R2 = 1 − ¯∑
(yi − yi )2∑
( ŷi − yi )2 

(5) 

3.2 Dataset Description 

The adopted dataset has 7385 samples with total features equal to 11 [ 14]. This 
dataset is taken from the Canadian Government’s official website [ 15]. It contains 
the fuel consumption and other describing features of a vehicle from 2014 to 2020. 
The description of these features is presented in Table 1. Figure 2 shows a sample of 
the used dataset.
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Table 1 CO2 emission dataset description 

Feature Description 

Model The data contain six car models; four-wheel drive (4WD/4X4), 
all-wheel drive (AWD), flexible-fuel vehicle (FFV), short wheelbase 
(SWB), long wheelbase (LWB), and extended wheelbase (EWB) 

Fuel type The fuel type of a car can be regular gasoline (x) or premium gasoline 
(z) or diesel (D) or ethanol (E) or natural gas (N) 

Transmission The transmission of a car can be automatic (A) or automated manual 
(AM) or automatic with select shift (AS) or continuously variable (AV) 
or manual (M) 

Fuel consumption Highway and city fuel consumption ratings are shown in litres per 100 
km (L/100 km)—the combined rating (45% hwy, 55% city) is shown in 
L/100 km and in miles per imperial gallon (mpg) 

Fig. 2 Sample of the used dataset 

3.3 Experimental Results 

Figure 3 compares boosted ensemble tree (AdaBoost), and the bagged ensemble tree 
(Random Forest) with three regression trees with different values of the maximum 
number of divisions; (fine, medium, and coarse). It should be mentioned that the 
flexibility of a tree algorithm mainly depends on the maximum number of divisions. 
Additionally, the maximum number of divisions is used to control the depth of a 
tree. The maximum number of divisions in the fine regression tree is 100, while in 
the medium regression tree is 20, and in the coarse regression tree is 4. All of the 
used tree algorithms have the same splitting condition, where cross-entropy is used 
metric. As can be observed in Fig. 3, the fine regression tree obtained the lowest 
RMSE, MSE, and MAE, while the bagged ensemble tree namely Random Forest
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and medium regression tree are in the second place. Boosted ensemble tree namely 
AdaBoost obtained the worst results. 

Figure 4 compares the R-Squared value of different regression trees. R-squared 
values range from zero to one. The one value of R-squared indicates the strong 
relationship between movements of a dependent variable based on an independent 
variable’s movements. As it can be seen, the fine regression tree obtained the high-
est R-squared, which indicates that almost 100% of the variance of the dependent 
variable being studied is explained by the variance of the independent variable (CO2 

emissions). Moreover, it can be observed that boosted ensembles tree obtained the 
minimum R-squared. These results are consistent with the obtained results Fig. 3. 

For further evaluation of the performance of the most popular regression trees, 
the computational time is used. Figure 5 compared the training time obtained from 
AdaBoost, random forest, and different settings of the regression tree. As can 
be observed, the regression tree with the medium maximum number of divisions 
obtained the minimum time. The fine regression tree is in third place after the coarse 
regression tree. The bagged ensemble obtained the maximum training time. From 
the previous experiments, it can be noted that the fine regression tree is the opti-
mal regression tree for the CO2 emissions dataset. As it can accurately predict CO2 

emissions for a vehicle in a reasonable time. 

RMSE MSE MAE 

Boosted Ensembles Tree 12.226 149.49 10.782 

Bagged Ensembles Tree 6.6046 43.621 3.0874 

Fine RegressionTree 4.015 16.12 2.3609 

Medium Regression Tree 6.3137 39.863 3.1352 

Coarse Regression Tree 8.3092 69.042 4.0633 
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Fig. 3 Boosted ensembles tree versus bagged ensembles tree versus fine regression tree versus 
medium regression tree versus coarse regression tree in terms of RMSE, MSE, and MAE
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Fig. 4 Boosted ensembles tree versus bagged ensembles tree versus fine regression tree versus 
medium regression tree versus coarse regression tree in terms of R-squared 
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Fig. 5 Boosted ensembles tree versus bagged ensembles tree versus fine regression tree versus 
medium regression tree versus coarse regression tree in terms of training time in seconds
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RMSE MSE MAE 

SVM-Gaussian 10.62 112.77 5.1096 

SVM-Linear 21.992 483.65 8.8569 

SVM-Quadratic 4.245 18.02 2.8264 

SVM-Cubic 3.6026 12.978 2.57 
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Fig. 6 SVM With Gaussian kernel versus SVM with linear kernel versus SVM with quadratic 
kernel versus SVM with cubic kernel in terms of RMSE, MSE, and MAE 

In the next experiments, one of the most popular machine learning algorithms 
called support vector machine is adopted. Figure 6 compares RMSE, MSE, and MAE 
obtained from the support vector machine (SVM) regression algorithm with different 
kernel functions; linear, Gaussian, Quadratic, and Cubic. As it can be observed, SVM 
with cubic kernel function is the optimal kernel function that can significantly predict 
the value of CO2 emission. SVM with quadratic kernel function is in the second 
place, while SVM with linear kernel function is the worst one. This is due to the 
adopted dataset being complex that can’t be easily separated using a simple linear 
function. 

Figure 7 compares the R-squared value of SVM with Gaussian kernel, SVM 
with Linear Kernel, SVM with Quadratic Kernel, and SVM with Cubic Kernel. As 
it can be seen, SVM with Cubic Kernel achieved the highest R-squared, while SVM 
with Linear Kernel obtained the lowest R-Squared. This result is consistent with the 
obtained result from the previous experiment.
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Fig. 7 SVM with Gaussian kernel versus SVM with linear kernel versus SVM with quadratic 
kernel versus SVM with cubic kernel in terms of R-squared 

Figure 8 compares the training time in seconds for the support vector machine with 
four kernel functions, cubic, Gaussian, linear, and quadratic. As it can be observed, 
SVM with Gaussian kernel function obtained the less training time compared with 
the other kernel functions, while the SVM with cubic kernel function registered the 
highest training time. 

Figure 9 shows predicted CO2 emissions from SVM with cubic kernel function 
with the actual CO2 emissions. As it can be observed, the predicted values of CO2 

emission are almost identical to the actual values of CO2 emissions. From all the 
obtained results, it can be concluded that SVM with cubic kernel function is the 
most suitable machine learning algorithm for predicting the values of CO2 emissions 
obtained from different models of cars. It obtained overall 3.6026% RMSE, 12.978% 
MSE, 2.57% MAE, 100% R-Squared, almost 320 s in training time, while, the fine 
regression tree obtained overall 4.015% RMSE, 16.12% MSE, 2.3609% MAE, 100% 
R-Squared, almost 3.5 s in training time.
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Fig. 8 SVM with Gaussian kernel versus SVM with linear kernel versus SVM with quadratic 
kernel versus SVM with cubic kernel in terms of training time in seconds 

Fig. 9 Predicted versus actual plot using SVM with cubic kernel
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4 Conclusions 

The normal range of the temperature is considered one of the significant reasons for 
the sustenance of life on the earth. carbon dioxide is one of the atmospheric gases that 
are responsible for 81% of the total emissions. Additionally, carbon dioxide shortly 
CO2 has played a critical role in global warming. This work introduces a carbon 
dioxide emission prediction model to predict CO2 emission. The proposed model is 
applied to CO2 emissions from cars in Canada from 2014 to 2020. The experimental 
results revealed that the proposed model can effectively be used as a decision making 
for monitoring the emission of CO2 from the cars. 
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Climate Change: The Challenge 
of Tunisia and Previsions for Renewable 
Energy Production 

Wahiba Ben Abdessalem , Ilyes Jayari, and Sami Karaa 

1 Introduction 

Climate change relates to global warming, sea level rise, changes in storms and 
monsoons, drought, and melting permafrost [1, 2]. Climate damage will lead to 
increased inequality because raised impacts can be expected, especially in warmer 
regions, which are often linked to poorer countries, including the Middle East and 
North Africa (MENA) [3]. 

Based on an analysis carried out by the International Renewable Energy Agency 
(IRENA), which is an intergovernmental organization supporting countries in their 
transition to sustainable energy [4], energy-related carbon dioxide (CO2) emissions 
would need to be reduced by about 70% by 2050, compared to current levels. The 
extensive use of electricity from renewable energies could help reduce CO2 by 60%, 
or even 75%, if renewable energies are used for heating and transport. 

According to the report, the global demand for electrical energy continues to 
increase. Renewable energies, such as solar and wind, could meet 86% of electricity 
demand [4]. 

Aware of these threats, Tunisia has adopted a proactive policy to combat climate 
change. Tunisia submitted its Intended Nationally Determined Contribution (INDC)
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to the Conference of Parties of the United Nations Framework Convention on Climate 
Change (UNFCCC) on September 16, 2015. [5] 

Tunisia proposes to reduce its greenhouse gas emissions in all sectors (energy, 
industrial processes, agriculture, forest, and other land uses, and waste) to reduce its 
carbon intensity by 46% in 2030 compared to the base year 2010. The production 
of electrical energy represents the largest sector of CO2 emissions. Consequently, 
Tunisia has focused primarily on this sector, which alone could contribute 75% of 
emission reductions. 

The energy mix represents the solution. Several studies on the energy mix for 
electricity production in Tunisia have been carried out. The study by Lechtenböhmer 
et al. in 2012 focused on modeling and analyzing several scenarios from 2009 to 
2030. This study has shown that none of the scenarios studied successfully reduces the 
demand for non-renewable energy and related greenhouse gas emissions. Renewable 
energies are the only scenario that can mitigate them [6]. 

This chapter is divided into seven sections. The following Sect. 2 represents the 
study area. Section 3 explains the energy situation in Tunisia. Section 4 explains the 
Tunisian commitments to climate change in the energy sector. Section 5 summarizes 
the results of the study carried out to establish the inventory of solar photovoltaic 
(PV) projects currently connected to the Low Voltage (LV), Medium Voltage (MV), 
and High Voltage (HV) network in self-production mode as well as the evaluation 
of the potential for PV self-production and forecasts of evolution by 2030. Section 6 
proposes a decision support framework for PV energy prediction. A conclusion and 
discussions are presented at the end of the chapter. 

2 Study Area 

Tunisia is located in the North of Africa ( refer to Fig. 1). It is a bath by the Mediter-
ranean Sea to the north and east, bordered by Libya to the South and most south, and 
Algeria to the southwest and west.

Tunisia is divided into two large geographical areas:

• A northwestern zone with chaotic reliefs delimiting a series of high plains
• A southeastern zone with a low and hilly appearance extending to the coast. 

The relatively high latitude of Tunisia and its stretch geographically from north 
to the South give it the succession of climatic zones ranging from sub-humid to the 
north, semi-arid to arid in Tunisia’s central, to desert for all the South finally. 

With a climate marked by aridity, Tunisia is considered among the Mediterranean 
countries most exposed to climate change, with the risk of a sharp increase in temper-
ature. This increase would vary by the region, with the best case between 1 and 1.8 °C 
by 2050 and between 2 °C and 3 °C at the end of the century. In the pessimistic case, 
the increase could reach 4.1 to 5.2 °C at the end of the century. Projections show a 
decline in precipitation (−10 to 30% in 2050), a rise in the level of the sea (30–50 cm 
in 2050), and other phenomena of climatic extremes (floods and droughts) [7].
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Fig. 1 Geographic location 
of Tunisia

These climatic risks would have adverse effects on the social, economic, and 
ecological, which would manifest themselves in the scarcity of water resources, the 
weakening of ecosystems land, and sea, the decline in agricultural activities and 
tourism, and the strengthening of the capitalization of economic activities. 

The new Constitution of Tunisia considered the development sustainability and 
the rights of future generations among the fundamental rights of Tunisians. 

The joint responsibility of the State and society in the preservation of water 
resources, the fight against climate change, and the right to a healthy environment 
for all citizens has been enshrined as a priority in article 45 of the constitution. 

Tunisia supports the United Nations Development Program (UNDP) [8], a United 
Nations agency for international development, working in 170 countries to eradicate 
poverty, decrease inequalities, and assist countries in developing policies, leader-
ship skills, and partnership capacities. UNDP support to Tunisia focuses on three 
key areas: democratic governance and consolidation of reforms; inclusive growth 
and sustainable human development, the environment; and the fight against climate 
change. 

3 The Energy Situation in Tunisia 

The energy sector plays a key role in the success of all policies, as do the economic 
and social sectors. It is also of great strategic importance, especially in light of the 
climate changes taking place in the world. Tunisia is facing strategic, environmental, 
societal, and economic challenges. 

During 2010–2021, the resources available in primary energy in Tunisia stand at 
approximately 5.1 million tonnes of oil equivalent (toe). The energy mix is currently 
dependent on 53% natural gas and 47% petroleum materials, while the contribution 
of renewable energies does not exceed 0.4% [9].
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Fig. 2 Electricity production in Tunisia [6] 

The electricity production fleet is divided into 27 units, using: Gas Turbines (GT), 
Steam Turbines (ST), Combined Cycles (CC), and Renewable Energies (RE) between 
2010 and 2020. Installed capacities are currently distributed as exposed in Fig. 2. 

4 Energy and Climate Change 

Tunisia has adopted a proactive policy to fight against climate change both in terms 
of mitigation and adaptation. The international negotiations on climate change orga-
nized within the United Nations Framework Convention on Climate Change [10] 
led to a historic agreement in December 2015 in Paris called the “Paris Agreement” 
[11]. This agreement invited all the countries party to the UNFCCC to adopt public 
policies to contain the increase in temperatures below 2 °C or even 1.5 °C by 2100. 
To achieve this objective, all the parties are called upon to establish, communicate 
and update their Nationally Determined Contributions (NDCs) every five years. The 
NDC represents the political instrument that officially translates the commitments of 
each country to contribute to the international effort to fight against climate change. 

Tunisia submitted its first NDC in September 2015, the objective of which is to 
reduce the carbon intensity of all sectors of the economy by 40% by 2030 compared to 
its level in 2010. Energy is placed at the heart of the priority sectors in the mitigation 
field, with a substantial contribution of 75% to the overall mitigation objective of the 
Tunisian NDC. Energy efficiency and renewable energies are the two main levers for 
achieving the objective assigned to the energy sector. 

The mitigation effort will come more particularly from the energy sector, which 
accounts for 75% of emission reductions. It is expected that the energy sector will 
reduce its carbon intensity in 2030 by 46% compared to 2010 (Fig. 3) [7, 12], as part 
of the energy transition policy recommended by the State. Despite the efforts made
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Fig. 3 Decrease of carbon intensity [7] 

by Tunisia for three decades in terms of energy control and to meet these challenges, 
the Tunisian authorities have decided since 2013 to engage in an unprecedented 
strengthening of the energy control policy. Energy with its two components of energy 
efficiency and renewable energies. This transition targets, by 2030, a reduction in 
primary energy demand of 30% compared to the trend scenario and a penetration 
rate of renewable energies in electricity production of 30%. 

However, energy challenges persist; demand remains dominated by hydrocar-
bons (natural gas and petroleum products) which cover 99% of primary energy 
consumption, while renewable energies (excluding biomass) do not exceed 1% of 
this consumption. Because of this increased dependence on conventional energies, 
coupled with the drop in national hydrocarbon production, the equilibrium of the 
energy balance was broken from the beginning of 2000. In the future and based 
on current conventional resources, the energy forecast shows significant challenges 
regarding the security of the country’s energy supply. Indeed, if energy demand 
evolves according to a trend scenario, the energy balance deficit would reach around 
13.3 Mtoe in 2030. In the case of an energy efficiency scenario, this deficit would be 
7.9 Mtoe.
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5 Renewable Energies in Tunisia 

5.1 Current Situation 

Tunisia’s non-renewable resources are modest compared to international standards 
and benchmarks; the country. On the other hand, it has strong wind potential and solar 
resources, which are among the highest in the world. In addition, several resource 
assessments have already been carried out in Tunisia, which places the country in 
a good position to accelerate the deployment of renewable energy technologies and 
translates, concretely, into a real lead over many other countries in the MENA region. 

The wind resource has been assessed by the National Agency for Energy Manage-
ment (Agence Nationale pour la Maitrise de l’Energie: ANME) [13] through the 
development of a wind atlas for the whole of Tunisia as part of cooperation with 
Spain [14]. Indeed, the Wind Atlas indicates that the wind conditions are suitable 
and show a very interesting potential in several regions of Tunisia, particularly in the 
South. 

Tunisia also benefits from a significant rate of sunshine exceeding 3000 h per year. 
Tunisia is a small country, barely 750 km long (from north to South). However, the 
sunshine varies significantly depending on the region. The direct irradiation index 
varies from 1800 kWh/m2.year in the far north to 2600 kWh/m2.year in the far South. 

As part of the solar market strengthening project in Tunisia, the German inter-
national development cooperation agency GIZ (Deutsche Gesellschaft für Interna-
tionale Zusammenarbeit) [15] carried out a study in the context of a cooperation 
project for Strengthening the Solar Market in Tunisia [16]. The Project provides 
technical support and advice and an exchange of international experiences to develop 
a relevant, incentive, and operational regulatory framework. 

The Tunisian government is successfully implementing the Tunisian Solar Plan 
(TSP) [17], developing large-scale renewable energies and respecting the country’s 
agreed contributions to climate protection. Figure 4 shows the global objectives of 
the Tunisian solar plan [17].

To implement these ambitious objectives, a new law on the production of elec-
tricity from renewable energies was promulgated in 2015 (n°2015-12 of May 11, 
2015) thus determining the different production regimes and authorizing the private 
sector to play a greater role in achieving the objectives set by the State, through the 
following production schemes: 

– Concession regime for projects whose power exceeds 10 MW for solar energy, 
30 MW for wind energy, 15 MW for biomass, and 5 MW for other forms. 

– System of authorizations for projects whose power does not exceed the above-
indicated thresholds. 

– Self-production regime for any type of customer. 

Self-production is a major axis of the national energy transition policy contributing 
to the energy mix’s diversification. It is dedicated to playing an important role in 
achieving objectives in terms of electricity production from renewable energies.



Climate Change: The Challenge of Tunisia and Previsions … 105

Fig. 4 Objectives of the Tunisian solar plan [17]

5.2 Self-Production of Photovoltaic Solar Energy 

The self-production of electricity remains possible for any local authority and a public 
or private establishment, connected to the national electricity grid at Medium or High 
Voltage (MV-HV). It concerns establishments active in the industrial, agricultural, or 
tertiary sectors. It is possible to submit a request to the Ministry of Energy, Mines, and 
Energy Transition [Ministère de l’Energie des Mines et des Energies Renouvelables 
[18] to install the necessary equipment for the MV/HT self-production of electricity 
which will be sanctioned by an agreement [19]. 

The self-production program allows the deployment of two types of projects: 

– On-site projects, without transmission of electricity on the national network of 
the Tunisian Electricity and Gas Company (Société Tunisienne de l’Electricité et 
du Gaz (:STEG) [20]. 

– Projects on a remote site, with the transport of electricity on the STEG network. 

The electrical energy transferred by the self-producer to STEG as surplus produc-
tion from the renewable installation is shifted and then invoiced monthly. The 
contractual relations between the self-producer and STEG are defined in a contract. 

Among all renewable technologies, solar photovoltaic technologies have domi-
nated the renewable energy industry worldwide for many years. Photovoltaic solar 
installations could multiply by six over the next ten years and reach an annual increase 
of 9% until 2050. By 2050, the self-production of PV origin will represent 40% of 
the total capacity projected [21]. 

The International Energy Agency (IEA) [22] deployed a technology roadmap for 
PV energy. The roadmap assumes that the costs of electricity from PV in different
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parts of the world will converge as markets develop, with an average cost reduction 
of 45% by 2030 and 65% by 2050 [23]. 

With the metering system based on Net-Metering [24], the Tunisian regulatory 
framework allows subscribers to the Low Voltage network to cover all of their annual 
electricity needs through self-production projects from renewable energies. For this 
voltage level, these energies are represented only by photovoltaic technology. 

5.2.1 Potential of PV Self-Production in Low Voltage 

According to STEG, at the end of 2019, there were 4,049,047 subscribers with a PV 
installation, spread over the following sectors:

• Residential, which represents 86.3%.
• The tertiary represents 10.7%.
• Agriculture with 2%.
• The industrial with only 1%. 

Currently, the PV market is facing significant growth in demand. This is because 
STEG has difficulty developing enough capacity to cover national demand. The 
advantage of developing the LV market is that private households have the opportu-
nity to contribute financially to a long-term energy transition. All the power installed 
on the PV market in LV would be financed exclusively by private investment. 

The study conducted in this context aims to make estimates and show the potential 
for the years to come. Regarding the development potential of the residential sector, 
the study focused on the availability of surface, the technical potential of total power 
to be installed, and the available funding programs: 

A—Availability of surface 

This involves estimating the surface of the roofs available for the installations, based 
on studies by GIZ [25] and the National Institute of Statistics on the characteristics 
of housing [26]. It is estimated that 40% of the total roof surface is available for 
photovoltaic systems and about 60% of the remaining surface for the use of satel-
lite dishes, and other uses by the inhabitants. Given these estimates, the estimated 
available surface for the residential sector does not present any problem with the 
availability of roof surfaces. 

B—Technical potential of total power to be installed 

At the end of 2018, approximately 62,000 residential subscribers opted for a self-
production installation from renewable energies. Based on data from STEG’s 2018 
annual report [27]. Taking into account the total consumption of this segment at the 
end of 2019, and with an annual growth of 3%, this potential will increase to around 
4000 MWp by the year 2030.
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C—Available funding programs 

ANME has implemented, since 2018, the social photovoltaic program “Social PV” 
for households with low electricity consumption (less than 1800 kWh per year), fully 
financed by the Energy Transition Fund (FTE) up to 15MDT. The program promotes 
the generalization of the installation of photovoltaic solar panels in households. 

Also, an Economic PROSOL Program has been set up for 2019–2023. This 
program is part of the project “Promotion of renewable energy and energy efficiency 
in the building sector in Tunisia”, funded by the NAMA Facility [28]. With an esti-
mated budget of e5.3 million, this fund was granted as a donation. This NAMA 
Facility program aims to encourage households whose electricity consumption is 
less than 1800 KWh per year. 

Regarding the development potential of the non-residential sector, it should be 
noted that non-residential subscribers generally have higher than average monthly 
electricity bills. 

Aiming to involve public establishments in the energy transition and in achieving 
the objectives of the Tunisian Solar Plan in terms of renewable energies, ANME and 
the Ministry of Industry and Small and Medium-Sized Enterprises jointly developed 
the 2017 program to equip public buildings with photovoltaic installations under the 
self-production scheme in collaboration with the German Development Bank KfW 
for seven years. This Public program, called PROSOL Public Program, which is 
scheduled to be implemented in early 2021, will only focus on promoting the use 
of photovoltaics for producing electricity in the public sector, given the significant 
potential it offers. It provides for installing a hundred photovoltaic systems with an 
approximate capacity of 30 Megawatts by 2024. 

5.2.2 Potential of PV Self-Production in Medium and High Voltage 

This market is divided into three types of activity: tertiary, industry, and farming. For 
this voltage category, Tunisian regulations have limited the excess electricity from 
renewable energy self-production facilities that could be transferred to STEG. Decree 
No. 2016-1123 requires that the surpluses sold to STEG do not exceed 30% of the 
annual production of the self-production facility. Thus, the quantities of electricity 
exceeding this limit will be transferred free of charge to STEG. The total number 
of MV/HV customers is 19,701 [27]. The distribution of electricity consumption by 
sector, based on the STEG annual report for 2018 is presented in the following table 
(Table 1).
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Table 1 Distribution of 
electricity consumption by 
branch [27] 

Sector Consumption 
(GWh) 

% Company 

Industry Extractive industry 308 3.78 

Food industry 687 8.42 

Textile industry 457 5.60 

Paper industry 110 1.35 

Chemical industry 493 6.04 

Construction 
materials industry 

1472 18.04 

Metallurgical 
industry 

284 3.48 

Miscellaneous 
industry 

1159 14.21 

Others Agriculture 606 7.43 

Pumping 766 9.39 

Transportation 305 3.74 

Tourism 540 6.62 

Service & others 971 11.90 

Total 8158 100 

6 Decision Support Framework for Photovoltaic Energy 
Prediction 

According to an analysis of the inventory of photovoltaic solar projects under the self-
production regime, we have noted a weak adhesion of individuals, institutions, and 
Tunisian companies connected to the Medium Voltage and High Voltage electricity 
networks. This is due to various regulatory, institutional, technical, and economic 
constraints. 

It is in this context that we propose a framework taking into account the inven-
tory of PV solar photovoltaic projects connected to the medium voltage network 
authorized under the self-production regime to monitor and provide the necessary 
information to decision-makers for the forecasts and decision-making regarding 
a greater development of achievements under this regime. This framework is a 
decision-making system based on a data warehouse. To do this, we started with 
data collection to be able to build the data warehouse.
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6.1 Data Collection 

In this study, the data is collected from energy consumption databases, and other 
data is collected in Excel sheets. Also, a self-producer (or self-consumer) survey is 
performed. 

The survey was carried out among all owners of PV projects connected to the 
authorized MV network and their installers. The objective is to draw up an inventory 
of the progress of the projects of Medium Voltage (MV) self-consumption to: 

– Determine the installed power distribution by region and sector of activity. 
– Identify the progress of PV installations (rate of realization of MV projects 

published in the Journal Officiel de la République Tunisienne (Journal Officiel de 
la République Tunisienne: JORT), total power installed and connected to the MV 
network). 

– Assess the difficulties encountered in implementing MV projects. 
– Identify the rate of satisfaction of the beneficiaries. 

As part of this study, the questionnaire developed for the telephone and on-site 
survey meets the following requirements: 

– The questionnaire must be adapted to the type of activity; 
– The form of the questions must make it possible to collect the desired information; 
– The terms used in the questionnaire must be easily understandable and unam-

biguous. 

The developed questionnaire addresses the descriptive and indicative elements of 
the status of the MV projects defined in the database, including in particular: 

– Customer characteristics (tariff regime before/after installation). 
– Installed power. 
– Description of the installation (Types, power, number, and origin of modules and 

inverters as well as the installation method). 
– The investment cost, the amount of the subsidy and its payment. 
– The method of financing and facilities, the share of self-financing as well as 

profitability indicators. 
– Performance of the facilities (ratios of self-consumption / coverage of 

needs/surplus). 

Also, the questionnaire details the following aspects: 

– The deadlines for implementing MV projects (administrative procedures and on-
site construction). 

– The management of surplus sales and invoicing by the beneficiary of systems (The 
monitoring and control carried out by the beneficiary and the invoicing method 
of STEG). 

– The equipment guarantees and their receptions, the operation and maintenance 
of the PV system, and communication with the installing company (Contract, 
others).
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– Energy efficiency measures are envisaged by the beneficiary. 
– Comparison between the electricity bill before and after the implementation of 

the PV installation. 
– Customer satisfaction about the savings made and the difficulties/advantages of 

the assembly process and implementation of an MT project in general. 
– A brief visual inspection of the installation and, if necessary, some pictures. 
– Self-producer recommendations. 

Thus, the telephone survey affected 118 projects out of the 156 authorized. 
Following the results of the telephone survey, a representative sample of 12 self-
consumers and 18 projects representing more than 10% of all authorized projects 
was chosen to conduct face-to-face interviews with the beneficiaries of these projects. 

Finally, the data collected from the various sources relate in particular to: 

– Company name or name of the self-consumer, as well as their contact details. 
– Contact person. 
– Site coordinates. 
– Governorate and Delegation. 
– Sector and sub-sector of activity. 
– STEG reference, type of tariff, and district concerned by the reception and 

connection of the PV installation. 
– Installing company, as well as its contact details. 
– System size (Unit power in kilowatt peak (kWp)). 
– Percentage of consumption coverage. 
– JORT number, and the date of allocation of the authorization. 
– Installation date. 
– Date of approval of the detailed study, the signature of the STEG contract, date 

of commissioning. 
– Information concerning the funding. 
– The producible of the last 3 years, etc. 

6.2 The Proposed Data Warehouse 

We propose an approach based on Data Warehouse (DW) technology to address the 
issues related to PV energy provisions. The latter will support the analysis of PV elec-
tricity data to deliver reports and useful information for decision-makers. Therefore, 
the DW-based approach is introduced to manage and analyze PV energy consumption 
and production data, delivering valued information for decision-making. 

A data warehouse is a copy of transactional data specifically structured for 
querying and analysis [29]. A DW is a decision support database that is main-
tained separately from the organization’s operational databases. A data warehouse 
is a Subject-oriented, integrated, time-varying, non-volatile, collection of data used 
primarily in organizational decision-making [30].
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A data warehouse is constructed by integrating data from multiple heteroge-
neous sources that support analytical reporting, structured and/or ad hoc queries 
and decision making [31]. 

DW includes 4 main components: data sources, ETL, data warehouse, and data 
Access and Analysis [32]: 

– Data Sources, gathering the input data as raw material for the data warehouse, 
including operational databases, and data files (excel, CSV…). 

– ETL (Extract, Transform, Load) process, is needed to extract data from data 
sources, transform the data for integration needs, and load the transformed 
data into the DW. Several ETL tools exist, such as TALEND, PENTAHO, 
CLOVERETL, etc. Selecting the right ETL tool is a crucial task for any DW. 
Each tool has its advantages and disadvantages [33]. 

– Data warehouse, which can be composed of data marts to store the loaded data 
in an organized way. Before choosing the final tool to implement the DW (SQL 
Server, Informix, Hyperion, …), ensure that the tool is capable of meeting the 
growth and overall requirements of the organization in the present and the future 
[34]. 

– Data Access and Analysis, this component is used by decision-makers to access 
the DW for analysis target. It helps to derive insights from data to be able to 
make strategic decisions. Several Business Intelligence tools, such as Oracle BI, 
Microsoft Power BI, SAS Business Intelligence, etc., make it possible to achieve 
these objectives [35]. 

Three models are used to design a Data warehouse: the star, snowflake, and galaxy 
model. The star and snowflake models are the most used in companies. The difference 
between star and snowflake models is that the star model does not use normalization, 
whereas the snowflake model uses normalization to eliminate data redundancy. The 
two main components of these models are dimensions and facts. 

– The dimensions are the axes we want to carry out the analysis. There may be 
dimension hierarchies to split dimension tables when they are too large. A dimen-
sion is a table with a primary key and a list of attributes. A dimension table must 
be linked to a fact table. 

– The fact tables are those on which the analysis will focus. These tables contain 
operational information and relate to the life of a company. The fact table helps the 
user analyze the business dimensions, which helps in making decisions to improve 
their business. The fact table contains a primary key which is a concatenation of 
primary keys of all dimension tables, and numerical variables called measures 
which can be aggregated (SUM, AVG, COUNT…) using the attributes of the 
dimension tables. 

In this study, the data warehouse incorporates data from the data found in energy 
consumption databases, the questionnaire, and the data saved in Excel sheets. Table 
2 convenes these data.

The conceptual model of the proposed data warehouse according to the snowflake 
model is described in Fig. 5.
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Table 2 Dimension and fact tables 

Tables Attributes 

Dimensions Self-producer IdSP (primary key), name, address, energy 
consumption 

Region IdR (primary key), name 

Governorate IdG (primary key), name, IdR (foreign key) 

Delegation IdDel (primary key), name, IdG (foreign key) 

Installation company IdIS (primary key), name 

STEG reference IdSR (primary key), district name 

Tariff type IdTT (primary key), tariff type 

Installation site IdIS (primary key), name 

Main activity sector IdMA (primary key), name 

Secondary activity sector IdSA (primary key), name, IdMA (foreign key) 

Date IdD (primary key), day, month, year 

Financing type IdFT (primary key), financing type 

Fact Production PV IdSP, IdG, IdDel, IdIS, IdSR, IdTT, IdIS, IdMA, IdSA, 
IdD, IdFT (foreing keys) 

Satisfaction rate 

Advancement rate 

Number of installations 

Installed power 

Energy produced 

Energy injected into the steg network

Once implemented, the DW allows managers to: 

– Display the number of installations by date of commissioning. 
– Have the coverage percentage (PV consumption/production). 
– Select data relating to such period, production, sef-producer sector, etc. 
– Sort group, or distribute this data according to the criteria of their choice. 
– Perform calculations (totals, averages, differences, comparisons from one period 

to another, etc.). 
– Present the results in a synthetic or detailed way, with a graph according to their 

needs or the expectations of the decision-makers. 

7 Conclusions and Recommendations 

Tunisia’s energy situation is marked by limited energy resources, a decline in energy 
production, and a strong increase in demand. To follow the path of sustainable devel-
opment in Tunisia, it is imperative to develop renewable energies and massively 
accelerate of energy efficiency projects.
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Fig. 5 Proposed Data Warehouse

For sustainable development and to mitigate the impact of global climate change, 
Tunisia is committed to reducing greenhouse gases. The effort has focused on intro-
ducing renewable energies to partly replace conventional energy production, the 
main emitter of CO2. In this work, a study is carried out to establish the inventory 
of renewable energy projects, particularly the solar photovoltaic currently connected 
in self-production mode. An evaluation of the potential for PV self-production and 
forecasts of evolution by 2030 is also performed. 

For the achievement of the objectives established by the government and 
to accelerate the implementation of renewable energy installations such as PV 
self-production projects, we recommend a new strategy based on four main elements: 

– Respect regulatory deadlines. 
– Change the regulations to simplify the procedure as much as possible. 
– Allow some flexibility (like reprogramming counters). 
– Change the counting mode: from the instantaneous to the hourly post with a 

monthly balance sheet (change at the level of the contract).
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Clean Energy Management Based 
on Internet of Things and Sensor 
Networks for Climate Change Problems 

Yasmine S. Moemen , Heba Alshater , and Ibrahim El-Tantawy El-Sayed 

1 Introduction 

Since the beginning of the industrial revolution [1], it has been abundantly clear 
that human activities have hastened the progression of climate change. Since the 
beginning of industrialization, there has been a roughly fifty percent rise in anthro-
pogenic carbon dioxide in the atmosphere. The primary contributor has been the use 
of fossil fuels for the generation of energy, the operation of transportation networks, 
and the processing of industrial goods [2]. The residential building industry and the 
commercial construction industry are major consumers of energy. In 2018, the built 
environment was responsible for around 40% of the world’s total energy consump-
tion and 40% of the planet’s greenhouse gas emissions. The annual emissions from 
the building sector reached a new high in 2018, having climbed by 2% from the 
previous year. This took place even though overall energy usage was increasing by 
1%. Guidelines 14 and 15, the International Performance Measurement and Verifi-
cation Protocol (IPMVP), the Federal Energy Management Program (FEMP), and
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the Uniform Methods Project of the Department of Energy (DOE) (UMP) [3]. They 
establish guidelines for determining how much energy is used, how much energy is 
demanded and how much water is used [4]. However, the programs do not target any 
metrics relevant to reducing the effects of climate change. It could be a game-changer 
if the building sector were to transform energy savings into pollution reductions. It 
is possible to do so by locating a generally accepted method to which all relevant 
parties agree and which can provide trustworthy auditable reporting and verification 
in 2017 and 7% higher than in 2010 [5]. These concerning figures are attributable, 
to a significant degree, to the expansion of both the floor space of worldwide build-
ings and the human population. Although there is the continued implementation of 
energy-efficiency methods in buildings, these strategies are insufficient to keep up 
with the demand for energy [6]. As a result, energy-efficiency methods for build-
ings and management strategies for those buildings are vital to the process of miti-
gating the effects of climate change. The building industry launched several auditing 
schemes to keep track of how much energy was being used. The American Society 
of Heating, Refrigeration, and Air-conditioning Engineers is one example of such 
an organization (ASHRAE). 

The carbon credit market [7] relies heavily on the measuring, reporting and verifi-
cation (MRV) system. An important application area for MRV technology is building 
energy performance (BEP) monitoring. The existing BEP MRV, on the other hand, 
cannot provide a reliable solution to the issues. The use of Blockchain technology can 
enhance this system’s reliability. Blockchain is a distributed database that is instantly 
accessible to all participants in a network. Data recorded in a blockchain system are 
unchangeable, shareable, and traceable after they have been recorded. The BEP MRV 
system benefits from Blockchain’s transparency, traceability, and affordability. As 
a result, the Emissions Trading System (ETS) design characteristics and MRV for 
carbon emissions [8] are great possibilities. 

Human actions, particularly in the last half-century, are largely to blame for the 
rapid shifts in global climate [9, 10]. As long as heat-trapping gas emissions in the 
atmosphere and Earth’s climate sensitivity remain high, the climate change expected 
to continue [11]. A rise of 1.3–1.9 F in average temperature has been recorded in the 
United States from 1895 to 2020 [12–14], with the greatest increase occurring after 
1970. An 8-inch rise in global sea levels has been seen in this century since 1880, 
with a projected increase of up to 4 feet by the end of this century. Climate change 
has decreased the amount of ice covering the sea, land, and lakes. In recent years, 
the summer month on record has been broken on a regular making it impossible to 
effectively estimate climate change. As a result, the length of the growth seas growing 
risen and will continue to increase due to the interdependence of the growing season 
on the frost-free time [15–24]. There has also been an increase in the average amount 
of precipitation, as well as an increase in the intensity of the most extreme downpours 
and precipitation. The frequency of cold waves has decreased, but their strength has 
increased [25–31], as have other variations in extreme weather occurrence patterns. 
Carbon dioxide emissions from the atmosphere are being absorbed by oceans, and 
this is causing ocean acidification (a fall in ocean changes pH values) [32].
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IoT is being hailed as a powerful weapon against climate change [33]. It can 
detect the amount of CO2 and other greenhouse gases in the atmosphere and use that 
information to help uncover the underlying causes of climate change [34]. Real-time 
monitoring of greenhouse gas emissions from fossil fuel combustion is possible. So, 
monitoring carbon sequestration processes and rates can help to offset emissions by 
increasing the amount of carbon stored in forests. Climate IoT can be used to develop 
new atmospheric “things” and technology that can be used to permanently reduce 
CO2 levels in the atmosphere. 

Climate IoT can also be used to anticipate and prepare for climate change. Uncer-
tainty in climate change can be reduced by using advanced sensors, communication 
networks, and models. Forecasts of climate change and ecosystem response can be 
made using IoT-enabled decision-making tools incorporating sensors’ data. Increased 
greenhouse gas emissions may be empirically studied thanks to IoT technologies 
[35]. Additionally, it can simulate how an ecosystem will respond to various climates 
(both current and future). Environmental and atmospheric management procedures 
can now be better adapted, and new management approaches can be devised as a 
result of this new information being gleaned. Climate IoT can address short-term 
and long-term goals and application needs by exploiting current scientific and tech-
nical breakthroughs. This architecture supports improved knowledge and insight into 
global ecosystems. As we learn more about the Earth’s system on a broader scale, 
we’ll be better able to estimate water resources, forecast weather patterns, and assess 
the health of ecosystems. As a result of these reasons, we need to design applications 
that are useful to our community. 

This chapter is organized as follows. Section 1 represents the ng introduction. In 
contrast, Sect. 2 contains greenhouse monitoring, Sect. 3 includes challenges related 
to energy use, Sect. 4: The IoT for sustainable energy, is also divided into a subsection, 
and Sect. 5 sensors for the transmission system, Sect. 6: Meters with Internet-enabled 
functions, Sect. 7: sensing of the solar and wind fields and conclusion. 

2 Greenhouse Monitoring 

Plants that need carefully controlled temperatures and humidity levels are typically 
grown in a greenhouse since it is an enclosed structure with walls and a roof composed 
primarily of transparent material, such as glass. These buildings can be as small as 
sheds or as large as factories, and their sizes range. A cold frame is like a tiny 
greenhouse in appearance. The temperature inside a greenhouse exposed to sunlight 
will become noticeably warmer than the temperature of the surrounding environment, 
which will shield the contents of the greenhouse from the cold. There are a lot 
of commercial glass greenhouses and hot houses out there, and many are high-
tech production facilities for growing flowers and vegetables. The glass greenhouses 
are outfitted with various machineries, such as screening installations, heating and 
cooling systems, and lighting, which a computer may manage to provide the ideal 
environment for developing plants. After that, various methods are utilized to assess
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the optimality degrees and comfort ratio of the micro-climate within the greenhouse 
(i.e., air temperature, relative humidity, and vapor pressure deficit) before cultivating a 
particular crop. This is done to lower the production risk. The conversion of chemical 
energy into electrical energy is the primary function of an electrical device known 
as a battery. Batteries can be broken down into various subcategories determined by 
their intended function; these subcategories are then utilized in various electronic 
and electrical products. Electrical batteries include a variety of substances, including 
mercury and lead compounds, among others; lead is one of the most toxic elements 
found in nature, and batteries do not contribute to environmental health [36]. 

Several researchers developed a new kind of battery called the bio battery. This 
battery draws its power from various organic compounds, including carbohydrates, 
amino acids, and enzymes. The sugar-digesting enzymes and the mediator make 
up the anode, and the oxygen-reducing enzymes and the mediator make up the 
cathode. These batteries have the potential to function with as many types as possible 
of energy sources within the greenhouse monitoring system. In addition to these 
dangers, there is also the possibility that the battery could explode or that there will 
be a leak of chemicals. Bio-battery have been developed as a solution to this issue. 
This battery lessens the effect these chemicals have on the environment and thus 
confers a significant benefit to humans. 

Since the 1990s, many monitoring systems for greenhouses and the environment 
have been developed. However, these monitoring systems have been left behind due 
to a lack of knowledge and cost and implementation constraints. The use of this tech-
nology has the potential to assist in the expansion of agriculture within a managed 
procedures like increasing crops yield, rationing water use and other resources, it is 
required for plants to have the necessary environmental conditions, such as respira-
tion. Plants’ ability to absorb water might be hindered when soil temperatures are 
low. The amount of sunshine a plant receives can influence its rate of development. 
Low relative humidity causes an increase in transpiration, leading to a water shortage 
in plants. By automating the data collection process regarding the soil conditions and 
the numerous environmental parameters that influence plant growth, it is possible to 
collect information with fewer requirements for human labor. Automatically control-
ling all the factors that affect plant growth is also difficult because it is expensive, and 
some physical factors are interrelated. For instance, temperature and humidity are 
related so that when temperature increases, humidity decreases; therefore, control-
ling both together is difficult because they are interrelated. It is possible to utilize a 
wireless sensor network to gather the data from one place to the next in a greenhouse, 
which is necessary since the temperature and humidity levels inside the greenhouse 
need to be constantly monitored [36]. 

The sensor will measure the data coming from the greenhouse and then transfer 
the data it has acquired to the receiver. The construction of greenhouse monitoring 
systems is getting further along as each day passes. When utilizing this system, the 
monitoring process is simplified, and additional savings are realized in the areas of 
installation cost and ongoing maintenance cost.
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3 Challenges Related to Energy Use 

One of the fastest-growing fields of study is energy management, which is a rewarding 
career choice. The economic and environmental benefits of proactive energy system 
assessment and management can be realized. An energy manager’s job is to evaluate 
how much energy is being used and then make modifications to make the system 
more efficient. Regarding planning for efficiency, it’s common for energy manage-
ment to focus on machinery, equipment, buildings, and other physical structures and 
processes[37]. 

Energy managers are responsible for evaluating and enhancing the efficiency 
of a company’s present plans and processes to reduce environmental impact while 
simultaneously increasing profits. These include hydropower, solar battery storage 
and energy conversion, electrical networks, and petroleum processing and utilization. 

Energy management is becoming increasingly vital as the world’s natural 
resources are depleted. Making use of valuable resources more effectively requires 
the adoption of efficient systems. Emissions are a problem throughout the entire 
energy supply chain, including extraction, conversion, transportation, and distribu-
tion. Increasing a system’s energy efficiency makes sense because it lowers costs and 
maximizes the inherent value of the resources being used. 

Technology that considers environmental impact first and seeks to lessen it is a 
rapidly expanding industry. Changemakers are required in this industry to produce 
better energy management systems and invent new ways of processing, extracting, 
transporting, and so on. 

We must think beyond the box for both your career advancement and that of our 
planet. We aim to show that climate protection and energy efficiency can also be 
commercially beneficial, and we hope to increase awareness in other companies. 
On top of that, we have close ties to the political sector and can give our expertise 
and experience to the legislators.“ Our current climate change dilemma can only be 
solved if we improve our energy management systems [37]. 

There are new emerging difficulties that future energy systems should handle 
by making use of the modern breakthroughs in energy technology [38, 39]. This 
is because these advances are developing simultaneously as the modern advanced 
energy technologies. The following discussion will focus on the past, present, and 
potential future difficulties that the community faces regarding energy. These diffi-
culties affect the power-producing system’s capacity and cause interruptions in the 
energy distribution system. 

The current energy system relies substantially on water to function. However, due 
to the inconsistent supply of water (both in the short term and over longer periods), 
innovative energy production methods are required. There are no safety precautions 
in place for the high-voltage transmission lines. These likewise operate excessively 
and are not being used for their intended purpose. In addition, transmission loss is 
a significant problem that can result in power interruptions and blackouts. Because 
there is greater water availability in coastal areas, many energy plants are situated 
there.
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Nevertheless, coastal infrastructure and energy facilities and infrastructure are 
being impacted by rising sea levels and high tides, heavy downpours, and flooding 
caused by storm surges [40–44]. Loss of productivity in urban and industrial loca-
tions, where the power outage lasted for an extended period, is related to a decline 
in the number of businesses and the overall economy. High energy demands and a 
commensurate increase in electricity usage are caused by the intense heat waves and 
temperatures prevailing this summer. It is anticipated that the energy demand will 
rise as a result of peak loads [45]. 

Increasing greenhouse gas emissions is one of the challenges of increased energy 
usage [46]. Carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) are 
some of the gases that are released as a result of these emissions [47]. After the 
transportation sector, responsible for the vast majority of emissions, these are the 
second highest. The energy consumed by information technology, mobile devices, 
and computers is expected to rise [48]. The production of electric vehicles (EV) 
is leading to an increase in the demand for energy, which is necessary to meet the 
requirements of EVs [49]. A mismatch between the demand and capacities of energy 
systems and the complicated energy needs of businesses and communities is another 
difficulty tied to energy infrastructure [38]. 

4 The Internet of Things for Sustainable Energy 

It is abundantly clear from the discussion of energy and sustainability that universal 
access to energy cannot be achieved without the implementation of appropriate tech-
nological measures. The application of technology can make it possible to design 
resilient solutions for reliable, low-cost energy access, which can improve the perfor-
mance and operation of the energy systems that are now in place. Because of this, the 
requirement for the community to have access to low-cost energy can be satisfied by 
utilizing the sensing and communication technologies of the next generation [50]. 
To satisfy this fundamental requirement of human existence, IoT must be developed 
into a system that can effectively deliver economic and efficient services. 

Regarding sustainable energy systems, the IoT is envisioned as a way to connect 
all of the electrical grid’s energy objects, service supply chains, and human capital 
using cutting-edge technology to meet the century’s future needs and access chal-
lenges to clean energy sources. This paradigm is essential to connect a wide range of 
energy technologies and new solutions on a global scale. IoT for sustainable energy 
has the potential to make the current energy infrastructure more sustainable and 
resilient. Energy infrastructure and technologies that are safe, inventive, and effi-
cient are among the capabilities that it possesses. By easing the implementation of 
large-scale renewable and clean energy solutions, IoT offers a variety of ways to 
provide low-cost energy sources to people worldwide [50]. 

Sustainability IoT is all about smart grids, a 21st-century technological marvel. 
Combining IoT autonomy with efficient grid management can increase production 
and consumption in the long term. Solar and wind power efficiency can be improved
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via real-time monitoring of renewable energy supplies and environmental moni-
toring. To increase supply, these can be connected to the grid. To reduce the use 
of fossil fuels, distributed and low-loss smart microgrids will be implemented, and 
included in sustainability are. 

1. Generation wind, solar, natural gas, water, renewables, and coal. 
2. Phasor measurement unit, transmission, and phasor measurement. Data collec-

tion and monitoring under supervision (SCADA). 
3. Control of voltage, distribution, and smart and microgrid systems. 
4. Work order and invoice management are also included in this category. 
5. Providers of goods and services to the general public include the management 

of loads, bulks, and outages. 

4.1 Coal-Plant Sensors 

To meet the ever-growing demand for ecologically friendly, reliable, and adaptive 
power generation. Coal power plant control systems have experienced continual 
improvement. It has become necessary to use online monitoring technologies and 
more advanced algorithms to optimize the combustion process to manage multivari-
able systems. Coal and airflow sensors, along with imaging and spectral analysis 
of the flame, can help improve stoichiometric management. It is also possible to 
map the furnace’s hot zones using in-situ laser absorption spectroscopy. One of the 
current plant control strategies that modern plant control systems can use is artificial 
intelligence, which mimics the behaviours of expert operators and uses complicated 
empirical models created from operational data to identify the optimum control 
response. These advanced plant control systems can use a wide range of computa-
tional methods. New sensor technologies are being developed to improve control 
further and ensure that these sensors can withstand the harsh conditions of advanced 
coal plants and gasifiers. 

Since optical fibre sensors may produce highly sensitive, distributed, and low 
noise measurements even when subjected to high temperatures, an increase in the 
use of optical technology is of particular importance. Microelectronic fabrication 
techniques and newly discovered high-temperature materials are currently being 
used to build miniature devices that provide a reliable and cost-effective solution 
for in-situ gas and parameter monitoring. The development process incorporates the 
use of several techniques and materials. Wireless communication and self-powering 
systems can make it easier to install distributed sensor networks and monitor inacces-
sible places with the help of these newly created sensors. In the future, self-organizing 
networks may play an increasingly essential role in future control systems [51]. 

Coal-fired power stations are essential to IoT-based systems for long-term sustain-
ability as a source of fluctuating power. Monitoring in these facilities enhances 
combustion efficiency and permits self-optimization through sensors. It is possible
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to improve the performance of coal-fired power plants by employing modern stoi-
chiometric control systems. various materials, including coal, flame, carbon, oxygen 
and flow sensors have been used in furnaces [52]. 

4.2 Oxygen Sensing 

The amount of oxygen remaining after burning is a critical variable in combustion 
management, and oxygen sensing is essential for combustion monitoring in fossil-
fuel-fired power plants [53]. Combustion air intake and distribution adjust this oxygen 
signal to an oxygen set point. On the other hand, changes in the rate of firing or other 
disturbances may need a change. Lowering the oxygen set point while avoiding 
incomplete combustion can improve combustion efficiency and reduce NOx emis-
sions. The residual oxygen controls the process of burning. The rate of fire and the 
amount of air being drawn into the chamber can be altered—incomplete combustion 
and oxygen set-point optimization [54]. 

The voltage generated by platinum electrodes covered in catalytic platinum in the 
electrolyte is directly proportional to the gradient in oxygen concentration across the 
cell [51]. Ionic conduction can only take place at temperatures above 300 °C. Hence 
a special electric heater is needed to keep the zirconia between 700 and 750 °C. 

Oxygen sensors can be found in various forms, but the most common is an elec-
trochemical zirconia-based sensor. Zinc oxide is used as a solid electrolyte between 
the sample gas and the air as a reference for this device’s oxidation detection [55]. 

Using probes, it is possible to install Zirconia sensors directly into the flue gas. 
Ceramic or stainless-steel casings protect these sensors from high temperatures and 
fly ash diffused through a filter. The use of temperature-resistant ceramic shielding 
can withstand temperatures as high as 1400 °C, making them suitable for the furnace’s 
higher temperatures [51]. Due to the lack of a heater, these sensors from Rose-
mount can operate at extremely high temperatures. A hermetically sealed metallic 
reference is used as a substitute for air to ensure that measurements are free of 
drift. Zirconia sensors have many benefits, including that their inverse logarithmic 
response increases accuracy as oxygen concentration decreases. As a result, zirconia 
sensors are ideal for use in environments with low amounts of oxygen following 
burning [51]. Only one or a few sensors are used in most coal boilers. Tempera-
tures of 300–400 °C are common between the economizer and the air preheater, 
where these sensors are frequently installed. Because of its proximity to the furnace 
and distance from the probe, this location necessitates materials that can tolerate 
high temperatures to regulate combustion. This can make it difficult to distinguish 
between the flue gases produced by distinct burners due to air incursion in convective 
passes. When attempting to optimize the furnace’s oxygen set point, it’s typical to 
run across problems like an inaccurate picture of the furnace’s actual oxygen levels 
due to improper monitoring. In addition to paramagnetic analyzers, which make use 
of oxygen being pulled to a magnetic field, extractive oxygen analyzers can also 
use zirconia sensors [51]. Oxygen movement can be detected in several ways, such
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as with flow sensors or by the torque exerted on a revolving pair of nitrogen-filled 
glass spheres after exposure to an intense magnetic field [51]. Servomex and Yoko-
gawa developed these methods. Unlike zirconia sensors, this measurement method is 
unaffected by combustible gases, which are known to artificially reduce the signal by 
interacting with oxygen. One of the advantages of this form of measurement is that it 
provides a more accurate picture of the situation. An additional layer of complexity 
and slower response times are incurred by installing a gas sampling system. 

Air preheater and economizer were employed in zirconia-based electrochemical 
sensors. These sensors use platinum electrodes capable of separating and absorbing 
oxygen into electrons and ions [56]. 

Paramagnetic sensors can measure oxygen because of the strong magnetic field. 
It uses two nitrogen-filled glasses to cause suspension rotation, which photocells 
sense. It’s less sensitive to combustion gases [57]. 

4.3 Carbon Monoxide Sensors 

The carbon monoxide (CO) concentration in the flue gases can serve as an extremely 
helpful control variable within the furnace. It should ideally be maintained at a 
level lower than 200 parts per million (ppm). CO is the most sensitive and accurate 
indicator of incomplete combustion [58, 59]. Suppose an unwanted rise in CO levels, 
sometimes known as a CO “breakthrough,” is detected. In that case, the excess 
oxygen set point can be lowered to a more appropriate level, and the extra air can 
be adjusted accordingly. Alternatively, a CO sensor that is more sensitive could be 
used as a control variable for the furnace itself, particularly in regards to optimizing 
the oxygen set point. 

In most cases, CO detection in coal furnaces relies on either infrared absorption 
or electronic sensors that rely on catalytic combustion as their primary method of 
operation. This latter group uses a conductive element covered with a catalyst that 
encourages combustion, such as platinum. The conductive element is heated, which 
raises its resistance, as CO and other combustibles are oxidized on the catalyst. In 
coal boilers, the other combustibles are often negligible compared to the CO [60]. The 
most prevalent use of this technique is found in catalytic bead sensors, which involve 
coating a conductive filament with a bead of catalyst. These sensors can be found 
in GE, ABB, and Emerson/Rosemount devices. These devices are too sensitive to 
be used in situ and require sample extraction; nonetheless, they are capable of being 
“close linked,” in which sample conditioning consists merely of the filtration of 
particulate matter [61, 62]. Although the Rosemount sensor promises to be resistant 
to sulfur, the sensitivity of catalytic bead sensors in applications involving coal plants 
to catalyst poisoning by SO2 is one of the sensors’ weaknesses. Servomex produces 
a thick film thermistor, which is an alternate application of the idea of catalytic 
combustion. This type of thermistor consists of thin conductive tracks formed on a 
ceramic substrate and coated with a layer of CO-sensitive catalyst. This design is also
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applicable in a close-coupled arrangement, and it boasts a high degree of precision 
as well as resistance to the poisoning of catalysts [63]. 

The IR analysis of the flue gas CO content can either be extractive, in which case 
the flue gas is removed from the furnace and placed in a sample cell for analysis, or 
it can be in situ, in which case an IR source and detector are placed on either side 
of the flue gas duct. The entire flue gas volume acts as a sample cell. In-situ devices 
Rosemount and SICK [64, 65] make use a technique called gas filter correlation. 
During this technique, a portion of the detected beam is passed through a vessel filled 
with pure CO. This saturates the CO absorption signal and establishes a baseline for 
the interference caused by the absorption of other species [64, 65]. Even though they 
offer a usable average over a full portion of the furnace, line-of-sight measurements 
are susceptible to high amounts of particles and temperatures much higher than 
600 °C. There is no feasible method of calibrating the measurement, and thermal 
expansion and vibration are potential factors that could throw off the alignment of 
the source and receiver, necessitating signal filtering. A dual-pass arrangement, in 
which a furnace probe is utilized to reflect the beam to a combined source and detector 
unit, is one method that can be utilized to alleviate alignment concerns. The use of 
tuneable diode lasers as the source is a relatively recent development in line-of-sight 
infrared technology. This allows for greater accuracy and monitoring in areas with 
high temperatures. 

4.4 Flame Detection 

The safety of pulverized coal combustion depends on flame sensing in coal-fired 
power plants. These sensors measure the flames’ infrared, visible, and ultraviolet light 
frequencies. These flame stoichiometry and temperature data increase combustion 
[66]. 

Optical flame detectors have been placed on each burner to ensure that pulverized 
coal is properly burned safely. The amplitude and frequency (also called flicker) 
of selected visible, infrared, or ultraviolet frequencies generated by the flame are 
commonly measured by these instruments. This information can be used to improve 
the combustion process by analysing it further [67–69]. 

For example, ABB’s Advisor series of flame scanners provides additional infor-
mation on the quality of the flame in addition to the conventional requirement of just 
monitoring its presence. Burners that aren’t working properly can be identified with 
Flame Doctor®, a portable diagnostic device that uses signals from existing flame 
scanners to identify them. It is possible to detect different abnormalities in flame 
quality and optimize the air–fuel ratio based on these deviations using software that 
recognizes patterns and mathematics developed from the chaos theory [70]. 

In addition, video cameras can capture photographs of the flame in real time. With 
the right processing software, even a higher quantity of information regarding the 
quality and consistency of the flame can be derived from these images.



Clean Energy Management Based on Internet of Things and Sensor … 127

4.5 Sensing Coal Flow 

Conventionally, the gravimetric federate of coal to the pulveriser mills is used as the 
sole metric for monitoring coal flow. This federates directly controlled by the boiler 
fire rate and the amount of load that the plant is required to produce. 

It is only possible to check the distribution of coal across burners on an ad hoc 
basis using sample probe readings, which are not always accurate and are not carried 
out concurrently on different pipelines [71]. Even though the actual coal flow rate is 
nearly always lower, it is normal practice to draw coal from the coal pipe at the same 
rate as the airflow. 

Online flow sensors on coal pipelines have expanded in use due to the need for 
better control of individual burner stoichiometry. There are currently a variety of 
technologies that can be used for this purpose. Coal charge is detected electrostat-
ically by electrodes and correlated with the same data at a downstream sensor to 
derive the time-of-flight between two points and, as a result, a computation of coal 
velocity by using ABB and Greenbank’s PFMaster system [51, 72]. 

It is used to balance the distribution of coal over a group of burners, together with 
information produced from the overall charge detected. The PFMaster can detect 
pulsed flow behavior due to its quick response time. Because the electrodes are 
designed to be flush with the pipe, erosion will not occur because of this feature. The 
PF-Flo uses electrostatic cross-correlation and the Me control coal, manufactured 
by Air Monitor Corp. and Protection, to determine coal velocity. To get an accurate 
mass flow measurement, they use a microwave resonance approach that considers 
coal density in the pipe [73]. Burner pipes at the Stigsnaes Power Plant in Denmark 
were fitted with Me control Coal sensors, which resulted in a 30% reduction in 
oxygen set point, 44% reduction in NOx, and an efficiency improvement of 1.3%. 

Others, like EUtech’s EUcoalflow and MIC’s Coal Flow Analyzer, use microwave 
signals with an increased frequency to measure the amount of coal flowing through 
the system. Two or three non-intrusive microwave transceivers installed around the 
circumference of a pipe can be used to transform the time-dependent intensity of 
microwaves reflected by moving coal particles into an absolute mass flow rate. In 
this way, the flow rate may be determined. With these sensors, EUtech’s whole air– 
fuel ratio optimization technique is expected to yield efficiency benefits of 0.3–1%, 
as well as reductions in emissions and lagged performance, according to the company 
[51]. 

Since they are non-intrusive and less affected by ambient factors, including 
temperature, humidity, and other charge sources, optical image-based techniques 
have recently challenged older methods. Due to the increasing accessibility of digital 
imaging equipment, this is already a reality [74]. Coal particles are lit by high-
intensity LEDs using CCD digital video cameras in these devices. They can deter-
mine the particle concentration and the particle velocity by analysing the blurriness 
of the photographs. Deposits can build over time, making it difficult to see through 
the coal pipe’s transparent window.
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4.6 Sensing Airflow 

When it comes to controlling the combustion process, one of the most important 
parameters to adjust is the combustion air flow rate into the furnace. Additionally, 
the flow of primary air into the pulverizer mills needs to be maintained within a 
specific range that keeps the coal in suspension while minimizing erosion and the 
production of NOx. Venturi flow meters, which measure the decrease in fluid pressure 
that occurs as air travels through a confined piece of pipe, or Pitot tubes, which 
measure the pressure that air builds up when it is allowed to come to a complete 
stop, are generally used to monitor both of these air movements (“Air Monitor Corp, 
Flow Measuring and Control Stations” 2015). Air Monitor Corporation’s IBAM 
system, which uses pitot tubes in each burner’s combustion chamber, is proof that 
this technology can be used on even the smallest of burners. Fechheimer Pitot tubes, 
or flow straightening devices, may be necessary to account for the non-axial flow 
components of turbulent air. Short or curved duct portions are common places to 
find these parts (Air Monitor Corp, Rosemount). Both Pitot tubes and Venturis must 
have self-purging mechanisms in dirty air to function efficiently. If the principal air 
flow is being evaluated, these changes are especially critical because the ductwork 
is often short and the flow is contaminated by fly ash from regenerative heaters. The 
velocity of entrained particulates can also be used as a proxy for the airflow, and 
the charge signals created by these particles can be used to get the velocity of the 
entrained particulates in the same manner as for coal flow [75]. 

Volume flow meters include devices such as Pitot tubes and Venturis. This flow 
meter necessitates additional temperature and pressure measurements to accurately 
establish the density of the air and, therefore, the total mass flow. As a result, temper-
ature inhomogeneities, such as those caused by the attemperator of primary air, might 
introduce errors. An alternative to mass flow meters is thermal mass flow meters. To 
measure the mass flow, these meters use the convective cooling effect of flowing air 
on a hot object [76, 77]. 

Additionally, compared to pitot tubes, these are more accurate at low flows. 
Venturis, on the other hand, cause the duct to experience energy-intensive pressure 
drops; this design avoids this problem. Fouling was a common concern with early 
thermal anemometers, but newer designs, such as Kurz Instruments’ thermal mass 
insertion meters that operate at far higher temperatures than the air around them, 
eliminate this issue. 

Optical flow meters, a new type of coal flow meter, are non-invasive and less 
sensitive to external factors, making them ideal for monitoring coal flow (“Optical 
Scientific, Optical Flow Sensors.“ 2015). Optical scintillation happens when light is 
diffracted due to localized fluctuations in air temperature and density and they can 
take advantage of this. 

It is also possible to estimate burner airflow by combining existing flow measure-
ments with a physical system airflow model. This is one method for determining 
burner airflow. A “soft sensor” utilized by EUtech to monitor air flow at all points 
in the hydraulic network of the plant and adapt to changing inputs, such as damper
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position, employs this strategy. Everything can be done using EUtech’s ‘EUsoft air’ 
A robust PLC generates data from the soft sensors in real-time and sends it directly 
to the DCS [78]. 

4.7 Ash Carbon Sensing 

Carbon ash concentration indicates combustion efficiency [79] Less than 20% is kept. 
Microwaves are used to assess carbon concentration. Depending on the dielectric 
constant, carbon’s high permittivity absorbs EM radiation. Resonant cavity sensors 
detect frequency fluctuations. 

4.8 Temperature-Sensing Gases 

In most cases, the results of gas sensing [80] performed in a particular area do not 
accurately represent the gas concentration. For this reason, arrays of gas sensors, both 
linear and planar, are utilized to obtain a comprehensive picture. Another innovation 
for sensing the quantities of flue gases with a very high level of accuracy is the tunable 
diode laser absorption spectroscopy. Monitoring the temperature of the furnace’s exit 
gas is also very significant for controlling the furnace. The sensing of temperature 
can be accomplished by utilizing several strategies that are covered in the section on 
nuclear reactors. In addition, nitrogen oxide monitoring is carried out in the plant to 
detect the presence of nitrogen oxides. 

5 Sensors for the Transmission System 

Sensing grid transmission systems is critical for various reasons [81]. The sensing 
technologies are either fully developed or in the process of being developed. The 
following applications are discussed. 

5.1 Methods for Sensing at Substations 

(1) Monitoring Potential Discharge at Substations: To prevent catastrophic fail-
ures, it is essential to monitor any potential discharge that may occur at substa-
tions [82]. Antenna arrays are being utilized to assess, locate, and identify 
components that are contributing to discharge at present. In addition to that, the 
approaches of 3D acoustic emissions are currently being utilized for discharge
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sensing in transformers. In addition to this, 3D acoustics can be used to detect 
bubbling sources as well as gas sources. 

(2) Video Imaging: In this method, IR tomographic cameras are utilized to make 
thermal video images of substation components. This approach is known as 
“Video Imaging.” 

(3) Metal Insulated Semiconducting (MIS) Gas in Oil Sensor: this detects the 
presence of gas in the oil. In this method, a hydrogen sensor that is not very 
expensive is used to monitor the concentrations of H2 and C2H2 in the headspace 
and oil of transformers. The MIS gas sensor is built on a chip during manufac-
turing [83]. This sense is also utilized to determine whether or not cable oil 
contains hydrogen and possible acetylene. 

(4) Sensing-based on fiber optic technology. Two varieties of sense are based on 
fibre optics: acoustic and gas. Fibre optics cable is used to check for discharge 
in the stress zones of the transformers in sound. The presence of a gas at the 
end of the fibre optics is analysed in the second method [84] which is utilized 
to detect early stages of degradation and failure in high-risk locations. 

(5) Frequency Domain Analysis: The device’s functionality is based on the 
frequency domain analysis of the transformers as its underlying concept. In the 
FDR method, the configuration modifications of the transformers are identified 
by analysing the fluctuations in frequency response data. These measurements 
are obtained in a shady manner by using spontaneous transients [85]. 

(6) Sensing Gas in System Load Tap Changer (LTC): This sensing approach 
can measure the LTC gas ratios without requiring individual gas measurements 
[86]. It can do so because it can monitor the LTC gas ratios. 

(7) Radio Frequency: RF-based sensing technologies are utilized to detect leakages 
of the current levels to provide information regarding insulation washing and 
flash-over for a wide variety of insulation types [87]. In addition, they can 
perform wireless or remote identification of high-risk components (for example, 
acoustics-based internal discharge, current, jaw temperature of disconnect, and 
density of sulfur hexafluoride). For the goal of this endeavour, both the timing 
and magnitudes of fault currents traveling through the shield wires are utilized. 

5.2 Sensing of Overhead Lines 

The following is a discussion of the various techniques for sensing overhead lines. 

1. The current sensing and temperature sensing methodologies are applied in over-
head transmission to sense the temperature of connectors, the current magnitudes, 
and the compression of conductors such as dead ends and splices. As a result, 
a histogram is constructed to evaluate the loss and locate components subject 
to significant stress. These sensors can harvest energy from the considerable 
magnetic field in the vicinity of the line [88]. 

2. In an environment analogous to a substation, RF methods are utilized to assess 
the leakage of currents connected with overhead insulators. When pinpointing
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the precise site of faults, it is necessary to measure not only the amount of current 
but also the amount of time it has been flowing through the shield wire. Regarding 
the illumination current distributions, the same measurements are taken [89]. 

3. The surge sensor is employed to measure and log surges and the overall charge 
sensed [90]. 

4. The transmission structure’s sensing is accomplished by utilizing the sensing of 
the environment data and the image processing for decision support systems. As 
a result, various situations, such as an unknown outage and actions by birds of 
prey, can be identified in real-time [91]. 

6 Meters with Internet-Enabled Functions 

In the IoT for renewable energy, smart meters can also be considered a form of sensor. 
The advanced metering infrastructure is built on top of smart meters, which are the 
primary constituents of this infrastructure (AMI). 

These utilize a variety of communication channels to establish a connection 
between clients and service providers [92]. Monitoring power flow in both direc-
tions uses smart meters in another capacity. Consequently, using smart meters makes 
it possible to implement dynamic invoicing, load monitoring, and remote capabilities. 

7 Sensing of the Solar and Wind Fields 

Real-time sensing of these environmental factors is necessary for the effective oper-
ation of the energy generating process [93], as it is required for the reliable integra-
tion of solar [94, 95] and wind energy [96–98] resources in the IoT for sustainable 
energy. Solar irradiation and wind speed are both measured during these environ-
mental sensing procedures. Sensing weather-related factors of this type in sustain-
able energy systems has the enormous potential to deliver a greater variety of energy 
sources to power systems. 

8 Conclusion 

Climate change is closely related to energy management. A lot of challenges were 
related to energy use. Still, The IoT offered solutions for sustainable energy, like 
the generation of wind, solar, and renewables which were performed through IoT 
sensing like coal-plant sensors, oxygen sensing, Co sensing, and multiple sensors 
or detectors. Meters with Internet-enabled functions are considered sensors. Aside 
from wind speed and its energy generation, it can be used as a monitor for solar
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irradiation. In sustainable energy systems, weather-related parameters of this type 
can deliver a wider range of energy sources to power systems. 
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Digital Twin Technology for Energy 
Management Systems to Tackle Climate 
Change Challenges 

Eman Ahmed, M. A. Farag, Ashraf Darwish, and Aboul Ella Hassanien 

1 Introduction 

A digital replica of Earth can help researchers and scientists develop scientific solu-
tions for the planet’s future and model solutions to problems caused by climate 
change. Along with artificial intelligence, digital twinning (DT) can conduct auto-
mated monitoring of climate risks and threats, ecosystem services or threats to biodi-
versity, where DT can understand the challenges and choices to achieve various 
sustainable development goals and multilateral environmental agreements. However, 
there are many challenges to monitor the health of planets in real-time, including the 
cost of building an interoperable digital twin of the Earth and its component subsys-
tems that can allow the monitoring, control, and modeling of complex environmental 
and climatic relationships. 

Industrial digitalization via energy DT is regarded as a tool to efficiently opti-
mize and manage site operations to reduce certain consumption of energy, help with 
energy-efficient design and evolution of their production sites and processes, and 
establish a green energy roadmap to switch to renewable fuels and better connect 
sites with locally generated renewable energy.
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The idea of using digital twins in climate is that a physical system, process, or 
object can be recreated/replicated in the digital world such as carbon plants and then 
exposed to a range of conditions, scenarios, and risks. The impact of these exchanges 
in the digital world can be analyzed to understand the different results that can be 
achieved. Therefore, techniques for solutions can be developed to reduce carbon 
emissions. For example, the European Union plans to design a “digital twin of the 
planet” that simulates the atmosphere, oceans, ice, and land with high accuracy and 
provides forecasts for floods, droughts, fires, etc. In addition to capturing human 
behavior, enabling decision makers and governments to see the impact of climate 
events and climate change on society and measure the impact of various climate 
policies. Figure 1 depicts the publications based on the Web of Science Database 
from 2012 to 2022 with the citations over these years. 

The interconnection of the physical world of climate with DT and metaverse 
technologies is a good investment opportunity as the world works from anywhere 
to reduce the impact of climate change [1]. Another example of the importance of 
using emerging technologies, including drones, to take pictures of cities to build a 
digital twin, as it helps decision makers or city officials to analyze the data of the 
captured images of trees or traffic in terms of the degree of health of trees or the degree 
of complexity of traffic and how they took quick decisions to provide solutions to 
these problems. As the volume of data is large and the degree of complexity of city 
infrastructure data, the role of digital twinning and artificial intelligence comes in 
dealing with this huge data, and building and designing software, that reduce their

Fig. 1 Times cited and publications over time from web of science database using keywords digital 
twins and energy: total publications are 1039 from 2012 to 2022 
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carbon emissions. The application of digital twin technology to something related to 
the climate such as cement factories, petrochemical factories, cars, airplanes, etc. is 
a process of providing decision-makers with actionable insights that enable them to 
make improvements on things related to the climate, thus reducing carbon emissions 
as the digital twin of things related to it are created. 

With the advent of Industry 4.0 and the rapid rise of digitalization, various tech-
nologies are advancing at different rates. Many benefits and obstacles arise with the 
significant improvements in DT and their accompanying technologies. 

The structure of this chapter is set as follows. In Sect. 2 a discussion of the history 
and origin of DT is set forth, while Sect. 3 highlights the main application of DT in 
the energy sector. Section 4 presents a new framework for DT in the climate change 
scenario. Section 5 proposes a new type to DT which is called collaborative DT. 
Furthermore, the main problems, challenges, and potential solutions are outlined in 
Sect. 6. Finally, this chapter is concluded in Sect. 7. 

2 Basics and Background 

2.1 Digital Twins Overview 

In recent years, DT has been used for industrial purposes. Moreover, it has also 
been utilized in some other applications like smart cities, aerospace, and healthcare. 
Michael Grieves proposed a prototype for a “Product Lifecycle Management (PLM) 
center” in 2002 [2], which included all of the DT technology’s core features. As per 
Grieves, DT can be looked at as a virtual model of what was established. To gain 
a better understanding of what was created against what was designed, compare a 
DT to its engineering design which will fill the design-to-execution gap [3]. At first, 
it was primarily employed in the aerospace and astronautics fields. With the novel 
advances in the infrastructure technologies of the Internet of Things, there exist now 
a possibility to produce cheaper sensors that can collect data in real-time. Experts 
in electronics, sensing data collection, and the Internet of Things are involved in 
the data management processes when DT is implemented for the preservation and 
administration of historical assets. 

The DT is dependent on three primary components: data and information linkages, 
a physical product that is in a real-world environment that is properly monitored, and 
a virtual product existing in a virtual space. In the first step, sensors can be used 
to preserve historical sites. Sensors perform monitoring in real-time and produce 
the huge volume of data. Following the transfer and storage of the data, it is then 
examined and linked to the virtual product, bringing to light information about how 
the physical space performs, how virtual space can be simulative, and how real-world 
decision-making can be done. 

All the different definitions of DT lead us to differentiate between 3 similar terms:
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1. The digital model is the first term, referred to as a digital version of a pre-existing 
or future physical object. Here, there is not any automatic data exchange between 
the digital model and the physical object. 

2. The second term is digital shadow, which is defined as an object’s digital repre-
sentation with only one direction of data flow: a change in the digital object is 
inferred by a change in the physical item’s state. 

3. Finally, the digital twin is the last term. The point of contrast here is the full 
integration of the flow of data between the digital object and the existing physical 
object in the two directions 

Three primary components should be included in the digital twin: the physical 
object, its virtual model, and the data and information connections able to achieve a 
link between the virtual and physical objects. 

2.2 Digital Twins Origin, Concept, and Scenario 

NASA first used the DT term [4]. The Apollo program proposed the DT idea, which 
contained the potential for building a real spacecraft to realistically replicate the 
original spacecraft’s model. In this case, the physical vehicle that is on a space mission 
is synonymous with the one that stays on the ground station [5].  The work in [6] is  
among the first in the literature which applied DT in a study. Nonetheless, the phrase 
“digital equal to a physical product” was coined by Michael Grieves in 2003, widely 
regarded as the first time the expression DT was used [7]. DTs are (substitute) virtual 
models for real-world items based on virtual models and communication capabilities 
of services and things. [9]. Broth et al. in [8], the researchers defined it as a connected 
and synchronized digital replica of a real asset that describes this object’s behavior. 
In several disciplines, the definition of the DT has been used as a virtual model 
to reflect the behavior of a real thing. Data that connect the digital model and the 
physical object, as well as the real-time bidirectional interaction between virtual 
representation and physical items, are deemed as the DT’s essential elements. 

A high number of researchers and academics have highlighted that DT is inde-
pendent of specific domains. Thus, DT is ubiquitous in international industries. DT 
can be utilized in various ways since it is not a particular technology. Consequently, 
DT requires a definition that is more precise and industry-specific. 

Model-based simulation technologies, a variety of sensors, the Internet of Things, 
and modeling tools are all used in DT applications. RFID tags, gauges, cameras, scan-
ners, readers, and other data-related devices are examples of such devices. Massive 
amounts of unstructured, semi-structured, and structured data are routinely produced 
by them. Edge computing is utilized for pre-processing of the data obtained since 
it is expensive and complex to transmit these data to the DT in the cloud server. 
5G/6G technology removes the data-leakage threat and makes sure the data is trans-
mitted in real-time. DT models are divided into two types: data models and physical
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models. Physical models necessitate an understanding of physical properties. Mean-
while, semantic data models must be educated using Artificial Intelligence techniques 
using specific output and input data. When using model-based simulation technolo-
gies simulation becomes a DT feature that cannot be avoided. The DT simulation 
lets the physical model conduct real-time interaction with the virtual model. 

2.3 Digital Twin’s Characteristics 

A DT technology controls the process of physical space. The traditional job of DT is 
to monitor scattered devices in real-time across an IoT network. Data representation 
for machine-readable application programming interfaces Another critical role of 
DT is the implementation of a logic function for event detection. 

Terms such as “digital shadow,” “digital model,” and “digital twin” may be 
employed while working with DT technology. Each of these terms has a distinct 
meaning that is not found elsewhere. Among them are the following: 

(a) Digital shadow is a digital replica of an object with data flowing from a physical 
object to the virtual representation in one direction. 

(b) A digital model is a digital representation or replica of a real-world or planned 
thing. The physical thing and the model are unable to communicate with one 
another. This category will cover items such as product designs, building plans, 
and so on. 

(c) A digital twin exists when data flows between an existing physical thing and a 
digital object. Any change to the physical object impacts the digital object and 
vice versa. 

2.4 Internet of Things 

To collect data from a physical twin, in reality, a system for manipulating sensor 
nodes is required. 

The use of IoT in a variety of technical and scientific fields, such as transportation, 
smart environments, manufacturing, healthcare, and other fields. 

Because these applications create enormous volumes of data, a data analysis 
system is required for system fault detection maintenance and prediction. A wide 
number of application domains are also available through the IoT, including those for 
the automotive, traffic management, medical assistance, mobile healthcare, geriatric 
support, intelligent energy management, home automation, and industrial automa-
tion industries. IoT technology continues to enable a wide range of applications, 
including decision support systems, analytics, and real-time monitoring. IoT and 
other distributed generation technologies are linked to digital twins.
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2.5 Sensor Networks 

Applications for wireless sensor networks (WSN) can be found in several sectors, 
including industry and healthcare. WSN is used in a range of industrial and healthcare 
applications, such as gas detection and indoor/outdoor environmental monitoring. 
Environmental parameters such as temperature and humidity have been managed 
and monitored using WSN. The presence of low-cost micro-scale sensing devices 
has increased the possibilities for the creation of WSNs, which can now incorpo-
rate new and complicated environmental parameters such as airflow, light intensity, 
temperature, and contaminants. 

WSN is widely used in the energy sector. A WSN monitoring system deployment 
offers a variety of benefits, including architecture scalability, the integration of several 
heterogeneous sensors on a single compact node, and the distribution of a large 
number of wireless and reasonably priced measurement points. Therefore, WSN 
must be incorporated into DT applications to significantly improve the process of 
preserving the energy sector. 

3 Digital Twins in Energy Management Applications 

The DT can be split into various layers in energy applications, based on the integration 
level. The main application of DT in the energy sector is described in Fig. 2. 

(1) Low carbon emissions 

After the assessment of cities by many indicators and criteria, it may be concluded 
that in a low-carbon city there is an overall lower carbon emissions level compared 
to the threshold when weighing the carbon emissions of each criterion. In low-
carbon cities, there is a higher level of control of carbon dioxide emissions. Four 
categories contribute to emissions: urban transportation, structures, environments,

a.1. Low carbon 
emissions 

2. Electrified 
transportation 3. Smart grid 4. Wind energy 

5. Indoor 
lighting 

6. Fossil fuel 
power plants 

7. Nuclear 
power plants 

8. Energy 
generators 

9. Cyber 
Physical 
Systems 

10. Energy 
savings in 

manufacturing 

Fig. 2 Digital twins in energy management applications 
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and infrastructure. Low carbon cities were created as a response to the increasing 
need to reduce carbon emissions and lessen the effects of climate change in urban 
areas [10, 11]. In this context, DT is frequently used to simulate complex systems, 
which correlates to the capabilities of DT in high-precision modeling. This cover also 
a variety of different applications like smart charging management, urban energy 
planning, and improving energy efficiency. While preserving or increasing the level 
of well-known economic activity, the low-carbon city works to minimize energy use. 

The benefits of DT and pertinent technology advancements used in low-carbon 
cities are outlined below: 

1. Making sure low carbon production is reduced as much as possible. 
2. Warning about behaviors of high emission. 
3. Decreasing the economy-generated carbon emissions. 
4. Testing the energy strategies online. 
5. Monitoring unusual consumption of energy. 

(2) Electrified transportation 

Electric traction motors are typically used in electric cars to provide propulsion. In an 
effective energy storage system, ultra-capacitors, and Li-ion batteries, for example, 
can be charged by solar energy, which powers these motors. As well as, in hybrid 
automobiles, the use of electric motors and batteries enables internal combustion 
engines to function more efficiently and emit fewer greenhouse pollutants. 

In light transportation, battery-electric vehicles already possess a significantly 
larger decolonization potential than short-distance vehicles powered by gasoline 
and biofuels. This permits the use of DT in a variety of applications, hastening the 
development of electric transportation. 

Even more extensive and varied are the uses of DT in electro-powered transport, 
yet only a small number of these can be connected to the smart grid. 

The benefits of DT and associated technology advancements used in electrified 
transportation are listed below: 

1. Compatibility with path planning algorithms 
2. Better portability of environment modeling 
3. Decreased pressure on cloud computing 
4. Real-time optimization of traffic energy usage as a part of a higher level: data 

collecting and global optimization. 

(3) Smart grid 

The term “smart grid” refers to a grid that makes use of computer technology 
to enhance connectivity, automation, and communication among energy networks. 
Smart grids already leverage technologies like big data processing, cloud computing, 
and reinforcement learning. Smart grids must also incorporate common nonrenew-
able and renewable energy sources to decrease environmental risks and improve 
sustainability [12–14].
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Different parts of the smart grid can make use of DT. Its ability to track and 
reflect the full life cycle is the reason behind this. DT may be able to use some of the 
applications below to better improve and build upon its strengths. Building a model 
of the architecture of a smart grid, aggregating data in a smart grid, designing smart 
meters, and analyzing smart meter data are a few examples. 

To sum up, the most pertinent literature shows that the framework of Industry 
4.0 has significantly contributed to enhancing advanced simulation technologies and 
techniques, like DT. In addition, power distribution networks are incorporating DTs 
as well, making it simpler to regulate and manage the energy supply network. 

(4) Digital twins in the wind energy sector 

In the wind energy sector, the development of DT as a cutting-edge technology has 
made it possible to design, control, and forecast the performance of wind turbines. 
The expert decisions are examined over what to leave out and include in the design 
of DT in understanding twinning as a collection of dynamic design processes that 
have implications for how wind energy is handled and developed. The twinning is 
considered a process of governance by design, where twinning decisions may steer 
wind power advancements and many industry participants’ decisions and actions 
[15]. 

(5) Digital Twins for indoor lighting 

Enhancing the energy conversion efficiency of lighting systems has become a critical 
study field of green building energy conservation within the standards for assuring 
lighting quality and illuminance scale. Sensor control and LED lights are currently the 
most commonly utilized energy-saving technologies for lighting systems, replacing 
manual switch control and fluorescent lights. These strategies can significantly reduce 
lighting system energy usage, but they result in a significant rise in initial installa-
tion costs. The incapacity of modern lighting systems to implement integrated and 
intelligent management presents huge hurdles for the whole life cycle of operation, 
and maintenance (O&M) and energy consumption forecast. 

To solve the inadequacies of current lighting systems, more focus has been placed 
on integrating indoor intelligent lighting systems. To perform more complicated 
intelligent control and improve the ability of lighting systems to communicate with 
their surroundings, several researchers have started to link sensors and the Internet 
of Things (IoT). Since its introduction, DT has gained prominence and is now seen 
as a crucial enabler of the shift to Industry 4.0. A DT can represent an actual built 
environment in a virtual setting and replicate the interconnected processes that occur 
throughout the environment’s whole life cycle in real-time. 

Currently, several energy-saving studies focusing on light sources and control 
systems have been carried out with great outcomes. For instance, utilizing new LED 
lights and sensor control both reduced lighting energy use by 10–25% and by more 
than 50%, respectively [16].
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(6) Digital twin for fossil fuel power plants 

The great opportunities that DT applications for power plants provide are currently 
being pursued by the energy sector. Digitalization and connected plant technologies 
that leverage DTs for rapid power system transition and to minimize the impact of 
the plant cycle can improve the operational flexibility of power plants. However, 
numerous critical DT components require additional research and development. One 
of these components is the sensor network architecture, which may be adjusted 
utilizing a two-tier approach: component data and plant for performance optimiza-
tion, condition monitoring, and problem diagnostics. Virtual reality (VR) tech-
nologies and integrated dynamic simulation (IDS), enhanced process control, and 
methods for flexible power plant management are the other essential components of 
DT that require further development. 

(7) Digital twin for nuclear power plants 

The DT uses a network of interconnected multi-scale, multi-physics models to 
replicate real-world conditions such as inspections and in-service monitoring, post-
shutdown inspections, and in-situ waste storage monitoring. The planned DT’s imple-
mentation, shortcomings, and benefits are identified and explored, with an emphasis 
on future developments in supercomputing, building algorithms for handling massive 
amounts of data, and the significance of acquiring data through measurement inno-
vation, uncertainty, and analysis. Applications of DT are seen in [17] for nuclear 
power reactors. 

(8) DT for renewable energy generators 

The DT has the potential to play a significant role in the optimal design and depend-
able operation of large renewable energy systems. The authors of [18] emphasized 
the importance and limitations of DT models for large renewable energy sources. 
They presented a multi-domain live simulation platform for wind and hydropower 
plants, as well as a thorough modeling technique. 

(9) DT for energy cyber-physical systems 

The approach to modeling energy cyber-physical systems (ECPS), which was first 
introduced by [19], has been adopted by the energy sector. The authors in [20] 
presented DT and intelligent DT architectures for cyber-physical production systems. 
The implementation and assessment were conducted using an agent-based approach 
for DT simulations along with a heterogeneous data gathering and integration mech-
anism. For a use case involving metal forging, they presented intelligent DTs that 
are partially realized. Future studies should address why this realization for energy 
cyber-physical systems was not implemented. 

(10) DT for energy savings in manufacturing 

A recent evaluation of DTs for industrial energy savings applications by [21] explored 
at the possibilities for a more precise and effective DT-based infrastructure. The
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researchers suggested standardizing and modularizing industrial data infrastruc-
ture to adopt advanced energy-saving solutions. They also offered implementation 
guidelines. 

4 A Proposed Framework of Digital Twins in Climate 
Change Adaptation 

Climate change occurs due to natural processes affected by the changes in the envi-
ronment and human intervention as shown in Fig. 3. Climate change is inevitable. 
Accordingly, we have to cope with it by finding solutions that achieve human needs 
and adapt to the variations. 

DT can play the main role in climate change adaptation. Destination Earth is 
a European Union initiative to create a digital model of Earth that will be used 
to monitor the effects of natural and human activity on our planet, it focuses on 
combining digital twins to create a complete replica of the systems of Earth over the 
next decade [22]. Digital twins role in the greenhouse is discussed in [23]. 

Human needs arise from different socio-economic sectors such as health, food 
and agriculture, hydrology and water needs, economics and transport. Dt can be

Fig. 3 Climate change process 
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Fig. 4 The proposed framework for using digital twins in a climate change scenario 

used to monitor and analyze the current situation and predict any future disasters, 
then, find a solution that compromises climate change and human needs. This is done 
by applying AI techniques to DT. First, the proposed solution is tested on the digital 
twins for assessment, this is done on all the solutions suggested by the problem-
solving module. Then, a decision is made by choosing a solution and applying it in 
the real world. Figure 4 presents the proposed framework. 

The inputs are the environment and the human actions, the output is the resulting 
climate change. The system’s physical objects are converted into digital twins using 
modeling and simulation, and IoT sensors and actuators that provide real-time 
feedback on the statuses. 

Four main operations can be accomplished using digital twins:

• Management: It is responsible for monitoring the statuses of the DT and 
controlling them.

• Processing: It uses AI techniques to analyze the earth’s health regularly and predict 
any possible future disasters.

• Problem-solving: It takes into account the human needs in addition to the analyzed 
current situation and gets a possible solution that achieves the human needs with 
minimal impact on the environment. The solution is then reflected on the digital 
twins for assessment.
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• Decision making: the optimal proposed solution is chosen and an update is done 
on the physical objects in the real world. 

5 Collaborative Digital Twins 

In this section, we are introducing collaborative DT terminology to refer to the 
integration of DT from different organizations to work together to achieve different 
objectives that benefit society. A network is used in which organizations register their 
DT to be incorporated in solutions. The network structure can be centralized having 
a controller that is in charge of monitoring and allocating DT for a certain task or 
it can be a distributed network. Figure 5 shows how the collaborative DT is formed 
and Fig. 7 explains the general framework of operation. The collaborative DT uses 
its member DT to achieve a required objective. Having real-time monitoring of the 
statuses of the DT, it can allocate an optimal set to effectively reach a solution. 

There are N organizations denoted by O1, O2, …,  ON . Each organization has a set 
of DT that mimic its physical assets statuses using input sensor feedback. The DT 
has features corresponding to the specifications of the physical object. These DTs are 
registered on a network so that they can collaborate. Figure 6 presents the proposed 
framework of the collaborative DT general framework block diagram.

Fig. 5 Collaborative digital twins 
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Fig. 6 Collaborative digital 
twins general framework 
block diagram

Given an objective, the network checks the statuses of the monitored DT on the 
network. Then, it assigns the optimal set of the DT to achieve this objective. The 
collaborative DT is responsible for: 

1. having a record of all the network DT. 
2. monitoring the status of each of the DT in the network. 
3. checking the availability of any DT in the network at any time. 
4. predicting maintenance requirements for the DT. 
5. predicting any possible future failure in the DT to alleviate them. 
6. allocating of DT to different tasks. 
7. optimizing the usage of DT. 

5.1 The Need for Collaborative Digital Twins 

DT technology opens great insights of collaborations between different organizations 
to achieve greater objectives that benefit the society and the environment rather than a 
single organization. Objectives may include reduction of carbon dioxide emission and 
energy minimization. Such objectives that serve the environment can’t be obtained 
without sharing of resources and optimizing their usage. Collaborative DT enables 
the optimal usage and management of DT from several organizations to reach a 
certain purpose.
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Fig. 7 Block diagram of 
using the collaborative 
digital twins in the 
healthcare use case

5.2 Use Case of Collaborative Digital Twins in Healthcare 

In the healthcare sector, collaborative DT help in minimizing the risk of losing 
lives and getting to the patient in an emergency as soon as possible. Assuming that 
different hospitals join a collaborative DT network with their ambulance’s DT. Given 
the status of a patient in an emergency, an input sensor sends a signal to the network 
of collaborative DT with the patient’s health condition and his location. The network 
checks the availability of ambulances in the near hospitals, their locations, and their 
statuses. It then decides which ambulance to send according to the shortest and fastest 
route between the patient location and the ambulance location. Figure 7 illustrates the 
whole procedure. This setting minimizes time and the risk of losing the patient. This 
is in addition to minimizing energy consumption and carbon dioxide emitted by cars. 
It is to be noted that collaborative DT requires the collaboration of different hospitals 
to share their data about the digital twins of their ambulances. It could be applied
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using a single hospital, but this won’t be as effective as having several hospitals. This 
can be noted in case that either the hospital location or the ambulances’ locations are 
far from the patient, or the number of its ambulances is limited and none is available 
at the time of emergency. Increasing the number of organizations in the network 
means increasing the shared DT resources, which in turn enables us to get better 
optimization. 

6 Challenges and Potential Solutions 

6.1 Problems and Challenges 

Recently, the capacity of DT technology to merge physical and virtual space has 
attracted a lot of interest and it has potential for a wide range of uses. However, 
there are currently some issues with DT technology [24]. The issues that must be 
addressed are summarized below: 

1. It is difficult for different DT models to communicate with one another. Data’s 
inconsistent semantic syntax causes redundant or missing knowledge resources, 
as well as impediments to basic knowledge base interoperability between levels. 
It is difficult for several DT models to work together. Although there is a clear 
connection between knowledge and other concepts, it is difficult to explain 
because each data source’s structure varies. To build a knowledge graph and add 
value, it is becoming more and more crucial to choose valuable knowledge. Data 
processing from a single system is the primary emphasis of conventional goods 
and solutions. However, when there is a vast and complicated quantity of data 
that has to be processed, it must be solved by applying semantic engineering 
techniques to construct knowledge graphs. Structured data is processed using 
traditional solutions. Unstructured data still needs to be formatted for specific 
contexts before processing, and knowledge graphs are the only tools that can 
achieve this. 

2. Developing DT models repeatedly for many domains and application situations is 
laborious and time-consuming. Problems with model and data interchange will 
arise when DT models are moved to other platforms. DT-related data sharing 
mechanisms and service systems are still being developed, and sharing data and 
models across different topics poses security issues and potential conflicts of 
interest, making it challenging to adhere to the necessary DT standards for data 
generation and sharing. 

3. The standard DT paradigm is incapable of converting external input data into 
conceptual, logical data. The model cannot directly operate on the majority of 
the data collected. To obtain specific relevant model parameters or operational 
data, the data must be interpreted. Effective real-time computer capabilities are 
required for this process. Furthermore, during iterative optimization, the DT
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model is ineffectual in logical judgment and self-determination. This makes 
designing and finishing the DT model more complex. 

4. DT activities necessitate the processing of huge volumes of heterogeneous data, 
which is a more severe test of communication and storage capability. Fault 
diagnosis and preventative maintenance of complex goods, for example, need 
a massive data storage and intensive data analysis from numerous data sources, 
offering a bigger challenge to data storage capacity and processing capabilities. 
These sorts of digital twin application scenarios prioritize enormous data storage 
and processing above rapid data processing. 

5. Because there are no standards for DT design, development, management, and 
operation, DT is difficult to copy, learn, and imitate. Various types of data transfer 
and interaction between different systems and devices are necessary during the 
process of developing and integrating DT models. As a result, developing data 
standards and communication interface protocols, as well as unifying data seman-
tics and codes, is crucial for constructing a comprehensive multidimensional DT 
platform. The lack of homogeneity in existing communication interface proto-
cols and data standards for many systems and devices is a significant barrier to 
DT development. 

6. The DT model often consists of a mechanism or decision model that does not 
provide feedback or updates for FLC management. Existing DT models cannot 
accurately anticipate product life and manage dynamic operational processes 
after manufacture. Additionally, given the DT model’s major objective, moni-
toring the product’s health and extending its life should be the key focus. Although 
there are significant gaps in the production and reuse stages, existing DT models 
are typically applied to the product’s functioning period. Using FLC data to 
update and optimize the model state and parameters can result in an adaptive DT 
model. 

6.2 The Potential Solutions 

6.2.1 Knowledge Graph Analysis 

The set of rules used in the creation of an expert system is called a knowledge base, 
which also includes the information and facts related to the rules. A knowledge 
graph is a collection of many graphs illustrating the connection between the knowl-
edge structure and the development process. It describes knowledge resources and 
their carriers using visualization technology, and it draws, constructs, mines, and 
displays knowledge as well as the connections between it. Many different degrees of 
expertise are required to establish a digital twin model, and those databases are not 
yet ideal. Redundant or missing knowledge is produced by the current difficulties in 
the interoperability of various models and the absence of common data semantics.. 
One possible option could be to build a good knowledge graph and harmonies data 
semantics.
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6.2.2 DT Models Migration 

The reuse of distinct models from various domains or scenarios inside the same 
domain is referred to as model migration. Model migration can minimize modeling 
complexity, accelerate model construction, and broaden model application in a 
variety of operating environments. After the modeling work is finished, model migra-
tion in many situations is considered for DT models with high accuracy. Consider 
linking DT models in multiple domains using completed models versus fresh models, 
which is illuminating for model construction. 

6.2.3 AI Technologies 

DT is a complete solution that connects with numerous AI technologies, including 
cyber-physical systems (CPS), IoT, and machine learning. Real-time computing is 
an issue for DT that must be taken into consideration and AI greatly aids in this 
area. It may effectively lower the difficulty of model creation and increase efficiency 
when used with machine learning. The dynamic control and real-time sensing of 
engineering systems, which are crucial in DT, are therefore made possible by CPS 
and IoT. 

6.2.4 Data Processing 

For DT, the capacity to store and process more data is essential. Accuracy, data 
storage, transmission stability, and consistency are subsequent components of data 
processing. Furthermore, at various phases of model usage, numerous sources of 
heterogeneous data must be merged and fused to generate a single data carrier. 
A cloud platform is widely utilized to handle complicated data storage prob-
lems. Enhancements and breakthroughs in communication technologies will help 
to increase the stability, security, and dependability of data transfer. Data standards 
and communication protocols can handle the integration and fusion of disparate data 
sets. Additionally, as data is the foundation of manufacturing service collaboration 
in DT, both the added value of the model and the value of the data must be assessed. 
This problem is thought to be addressable by enhancing the value chain of DT models 
and developing an industrial chain in DT. 

6.2.5 Standardization 

A standardized framework that takes into account the interplay of platforms, soft-
ware, interfaces, and technical rule coordination is necessary for the DT. The DT’s 
general standardization effort is also in its early stages, and standard research content
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must be supplemented. Standardization content that may be addressed involves stan-
dards for fundamental aspects, concepts, technological implementation, testing, and 
assessment, as well as standards for collaboration across different systems. 

6.2.6 Digital First 

At this point, we might think of DT as a digital parallel stage in which the virtual 
digital, and physical worlds are mapped and viewed concurrently. Digital-first refers 
to the process of generating digital virtual before real manufacturing to actively 
think, deduce, and discuss. There is a possibility to conduct digital first when adding 
a significant quantity of external or historical data based on DT and exploiting the 
high processing capability of computer equipment. Following that, several repetitions 
of low-cost studies could save significant capital expenses and time. This could be 
an innovative technique to solve complex challenges in the future. generation. 

7 Concluding Remarks 

The future trend of energy technology will be the deep integration of networking, 
digitization, and intelligence with energy applications, as science and technology 
improve and explore. The maturation of digital technologies such as Big Data, the 
Internet of Things, and cloud computing has resulted in the development and appli-
cation of a prospective technology Digital Twin. Many concepts and outcomes from 
Digital Twin research are already being used in a variety of sectors. 

The current chapter describes DT technology and its applications in the energy 
area, as well as essential technologies. First, the development history and research 
background of DT are explained, followed by a discussion of the important and 
widespread uses of DT in the energy industry, particularly in power-related systems. 
For the first time, several levels of integration are recommended for DT. The smart 
energy application sector is divided into four categories: smart grid, electrified 
transportation, low carbon city, and advanced energy storage system. Each level 
is discussed through literary examples. 

With this discussion and review, the future issues that DT will face, as well as the 
path of technology development, are addressed. 
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The Role of Internet of Things 
in Mitigating the Effect of Climate 
Change: Case Study: An Ozone 
Prediction Model 

Lobna M. Abou El-Magd, Aboul Ella Hassnien, and Ashraf Darwish 

1 Introduction 

The term climate change refers to the alterations in the statistical distribution of 
the weather over extended periods, which can commonly range from decades to 
millions of years. These deviations can happen in the weather on average or only in 
how weather occurrences are distributed around an average. They might be localized 
to a certain place or happen everywhere in the world [1]. 

Both climate change and air pollution are significantly exacerbated by green-
house gas emissions produced during the extraction and combustion of fossil fuels 
and account for a significant portion of both of these factors [2]. Using fossil fuels 
for energy, deforestation, and degradation of forests to release greenhouse gases into 
the atmosphere are two of the most significant human-caused contributors to climate 
change. Human activities have been connected to a rise in GHGs in the atmosphere, 
including Carbon dioxide (CO2), methane (CH4), nitrous oxides (N2O), and fluori-
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Numerous factors, including ocean salinity, oceanic CO2 emissions, land 
dynamics, cloud characteristics, air temperature, and lighting, impact the climate 
of the entire planet. Therefore, keeping an eye on these variables is necessary if one 
wants to comprehend the changes occurring in the natural surroundings. 

Climate change has many different effects on people’s lives and health. It threatens 
the things most important for good health, like clean air, safe water to drink, nutri-
tious food, and a safe place to live, and it could undo decades of progress in global 
health. Climate change is estimated to cause around 250,000 more fatalities annu-
ally between 2030 and 2050 due to hunger, malaria, diarrhea, and heat stress alone. 
Direct health-related expenses are anticipated to reach $2–4 billion annually by 2030. 
Areas with poor health infrastructure, primarily in poorer countries, will be the least 
equipped to prepare and respond without aid [4]. 

There were 315 natural disasters worldwide in 2018, and most of them had a 
climatic component. A total of 68.5 million people were impacted, and there were 
$131.7 billion in economic damages, of which storms, floods, wildfires, and droughts 
were responsible for 93% [5]. 

Climate change also has effects directly on human survival. For example: 

a. Climate change is currently regarded as a major danger to the quality and quantity 
of the world food supply. The expected effects of climate change pose a growing 
danger to food security, particularly access to protein-rich foods [6]. 

b. In aquaculture, rising temperatures, shifting precipitation patterns, and increased 
frequency of extreme events are currently obvious on water resources, while 
others are emerging. Due to aquaculture’s relevance to global food security, 
nutrition, and livelihoods [6]. 

c. Most systematic reviews indicate that climate change is associated with poor 
human health. And that there are three common diseases (1) infectious diseases 
(2) mortality, and (3) respiratory, cardiovascular, or neurological consequences 
that may occur due to climate change [7]. 

Traditional mitigation strategies that use decarbonization technologies and 
methods to lower carbon dioxide emissions, such as renewable energy, fuel substi-
tutions, efficiency improvements, nuclear power, and carbon storage and utilization, 
are one strategy used to combat climate change [8]. There are activities for reducing 
greenhouse gas emissions to mitigate climate change, such as; designing buildings 
to make them more energy efficient, embracing renewable energy sources like solar, 
wind, and small hydro, helping cities create sustainable transport like BRT, electric 
vehicles, and biofuels, and supporting sustainable land and forest. 

Smart cities facilitate three crucial pillars for the nation and the community: intel-
ligence, safety, and sustainability. The level of emphasis placed on each of the pillars 
varies in every country based on its requirements and priorities. Africa has a tremen-
dous possibility to grow towards the notion of smart cities. The smart city is one of the 
primary focuses of their ambitions in Africa. Multiple scales and degrees of national 
and commercial initiatives for smart cities exist in Africa. The new administrative
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capital of Egypt serves as a model for implementing the smart city model, among 
the numerous other smart city efforts now ongoing in the country. We observe many 
smart city efforts in South Africa, Nigeria, Rwanda, and Egypt [9]. 

The Internet of Things has unique prospects for solving numerous environmental 
challenges, such as clean water, landfill trash, deforestation, and air pollution. It 
will ultimately aid in reducing the environmental impacts of human activities [10]. 
Therefore, this study aims to discuss the role of the Internet of Things technology 
in reducing the negative consequences of climate change. We build an intelligent 
model based on IoT technology for predicting the Ozone. 

The rest of the paper is organized as follows. Section 2 focuses on Prelimi-
naries. Section 3 presents the Dataset description. The proposed IoT-based ML for 
building an Ozone prediction model presents in Sect. 4. The results and discussion 
are presented in Sect. 5. Finally, the conclusion presents in Sect. 6. 

2 Preliminaries 

2.1 Internet of Things 

Every connected device is regarded as a thing in the context of the IoT. Things typi-
cally include physical actuators, sensors, and a microprocessor-equipped embedded 
system. Machine-to-Machine (M2M) communication is required since objects must 
interact. Wireless technologies including Wi-Fi, Bluetooth, and ZigBee can be used 
for short-range communication, as well as mobile networks like WiMAX, LoRa, 
Sigfox, CAT M1, NB-IoT, GSM, GPRS, 3G, 4G, LTE, and 5G for long-range 
communication [11]. IoT can assist in making many processes more quantifiable 
and measurable by collecting and analyzing massive amounts of data [12]. 

IoT has the potential to improve the quality of life in a variety of sectors, including 
healthcare, smart cities, the construction industry, agriculture, water management, 
and the energy sector [13]. It is widely utilized in environmental monitoring, health-
care systems and services, energy-efficient building management, and drone-based 
service delivery [14, 15]. 

IoT has unique prospects for solving numerous environmental challenges, such 
as clean water, landfill trash, deforestation, and air pollution, and will ultimately 
aid in reducing the environmental impacts of human activities. Renewable sources 
like solar and wind, which don’t emit CO2, must be used to generate electricity in 
the future. With IoT, consumer items can be made faster, more powerful, and more 
efficient while using less energy [16].
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2.2 The Role of the Internet of Things on Climate Change 

The introduction discussed the causes, consequences, and mitigation strategies for 
climate change. This section explains how to use IoT to mitigate climate change’s 
effects. According to a paper that Ericsson just released, the Internet of Things will 
be responsible for a decrease in greenhouse gas emissions of 63.5 gigatons by the 
year 2030 [17]. This is partly due to chances for industry collaboration that wasn’t 
possible before the IoT. 

The use of information and communication technologies (ICTs) is extremely 
helpful in the process of monitoring climate variables. The World Meteorological 
Organization (WMO) and the International Telecommunication Union (ITU) empha-
size the potential of information and communications technologies for the monitoring 
of climate change [18]. Information on climate change is mostly obtained via ICTs 
such as satellite-mounted sensing instruments, ocean-based sensors, and weather 
RADARs. 

We can summarize the role of the IoT for climate mitigation in three main 
Categories; monitoring prediction and climate change reduction as follows: 

A. Monitoring 

According to recent research, employing the Internet of things can help in monitoring 
global climate change [18]. The Internet of Things paradigm is ideal for creating data, 
making it the ideal solution for gathering climate data. IoT devices can provide more 
robust data from a wider variety of sources than are now available from existing 
temperature, humidity, and precipitation sensors worldwide. Ocean temperature and 
level can now be monitored with greater precision thanks to these gadgets, and 
this information will be invaluable in the fight against climate change. Scientists 
worldwide will be able to update their models based on the precision of IoT devices, 
which can detect even the tiniest changes. 

Several studies demonstrate that the utilization of Internet of Things technolo-
gies, such as Internet of Underwater Things (IoT), Internet of Underground Things 
(IoUGT), and Internet of Space Things (IIoT, can be of considerable assistance 
in the research of these crucial climate-altering variables [18]. The researchers in 
[18] suggested a framework named X-IoT. The X-IoT framework comprises intel-
ligent sensors located in oceans, underground, and outer space. For instance, ocean 
sensors measure various factors, including salinity, acidity, and temperature. Simi-
larly, buried sensors can provide information regarding subterranean soil changes, 
seismic activity, and gas sensing. Similarly, satellites outfitted with sensors provide 
information such as ocean altitude, cloud characteristics, amount of solar radia-
tion, spatial–temporal knowledge of lands, and ocean CO2 emission. They believe 
combining all of this sensing information could represent a revolutionary step forward 
in climate monitoring. 

B. Prediction 

The main role of IoT is to collect data. With the help of machine learning techniques, 
IoT can be used to predicting disasters and fight climate change in many fields [19].
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i. Agriculture: The use of sensors to collect and transmit data in agriculture will 
result in improved precision agriculture techniques that minimize the usage of 
pesticides, fertilizers, and water [20]. IoT devices will improve the accuracy of 
weather forecasts, allowing farmers to use their resources more efficiently and 
reduce waste [20, 21]. 

ii. Utilities: Utilities can employ IoT to create a responsive energy network that 
uses predictive analytics to match energy generation with demand and stores 
or wastes any extra energy. Additionally, smart meters may collect information 
about a building’s energy consumption and relay that data back to utilities to 
help load balancing and reduce waste [22]. This minimizes the number of fossil 
fuels needed to generate energy and reduces the utilities’ carbon footprint. 

C. Climate change reduction 

New technologies and applications assist decrease climate change in various 
domains, including: 

i. Energy storage and building automation: IoT-enabled devices can be configured, 
monitored, and controlled by an intelligent energy storage system to work and 
consume energy only when necessary. These devices can include lightbulbs, 
thermostats, and other home applications, as well as heating and cooling systems 
to decrease expenses and waste, and smart buildings can also automatically 
modify temperature settings in response to weather changes, dim or turn off 
lights when no one is in the room, and notify building engineers instantly when 
a maintenance issue arises [22]. 

Using a sensor grid, power consumption could be studied based on previous 
data to predict day-to-day consumption. This storage layer accumulates the 
collected data that uses IoT, a machine-learning predictive model that analyses 
the data, and a service layer that interfaces between the generated model and the 
building management system. Retrofits improve energy savings in commercial 
and residential buildings [23]. 

ii. Traffic: With the help of IoT apps, drivers may find parking spaces more quickly 
and avoid busy roads, thereby reducing the amount of time they spend on the road 
and the quantity of carbon dioxide they emit. In addition, a recent Los Angeles 
project used IoT technology to coordinate traffic lights to improve traffic flow 
and reduce greenhouse gas emissions, saving over 35 million gallons of fuel 
yearly [24, 25]. 

iii. Waste management: When trash cans are full, IoT-connected trash cans are 
activated in alter collectors so that garbage collection can be made more efficient 
and thus minimize carbon emissions [26]. 

iv. Green IoT technology: The majority of current IoT solutions rely on cloud 
computing. Thousands of IoT devices and equipment need to be connected in 
most IoT applications, making it difficult to coordinate. Furthermore, the IoT’s 
centralized and server-client structure means that all connected devices can be 
hacked and exploited, resulting in security risks for the system and privacy 
concerns for users. In [27], the researchers believe Blockchain could be the
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answer to this problem. Blockchain’s consensus framework requires IoT nodes 
to confirm they share a goal. Verified transactions are likewise saved in a block 
connected to the preceding one so information cannot be removed. Everyone 
can access the transaction history of every node. Any blockchain member imme-
diately knows of any block modifications. Blockchain’s distributed ledger can 
synchronize hundreds of IoT devices. Blockchain consensus techniques provide 
a secure distributed database. Blockchain can enable decentralized, private-by-
design IoT [27]. Despite the use of block technology, it achieves better perfor-
mance and security, but the number of devices is still large. The growth of the 
Internet of Things devices will lead to a massive increase in the amount of elec-
trical waste products [28]. Fortunately, the green Internet of Things was born out 
of these demands (G-IoT). G-IoT is characterized by its energy-efficient charac-
teristics at every stage of its life cycle. Many IoT technologies can benefit from 
the G-IoT cycle. RFID tags, for example, use radio frequency identification 
technology. The size of RFID tags has been reduced to reduce the difficult-
to-recycle material in each tag. Additionally, green M2M communications are 
another example of how algorithms and distributed computing technologies can 
reduce power consumption and improve communication protocols. Sensors in 
wireless sensor networks can sleep and activate only when necessary. Modula-
tion optimization and cooperative communication techniques can also reduce 
the node’s power consumption. Cluster topologies and multi-path routing are 
examples of energy-efficient routing systems [27]. 

3 Dataset Description 

IoT pollution monitoring sensor network collects several environmental factors and 
performs real-time local ozone inference directly on the IoT nodes in the dataset 
provided by the AIRU POLLUTION MONITORING NETWORK of the University 
of UTAH [29]. Table 1 shows a dataset sample, which contains about 522,000 read-
ings for IoT nodes. These nodes are sensors for reading the air pollution, humidity, 
temperature, etc. it also contains the time of reading and the value of Ozone. Table 
2 shows the statistics of the dataset.

4 The Proposed Internet of Things Model-Based Machine 
Learning Techniques for Ozone Prediction 

As seen in Fig. 1, the proposed model consists of several steps; reading dataset, data 
preparation and preprocessing training and testing phases, and the evaluation step.
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Fig. 1 The structure of the proposed ozone prediction model 

4.1 Data Preparing and Preprocessing 

a. Data Preparation 

Table 2 shows that there are 522,000 records in total, but there are different numbers 
of records for PM1, PM2-5, PM10, MicsRED, MicsNOX, MicsHeater, temperature, 
humidity, and Ozone. This is a sign that there are errors and missing data. Therefore, 
we use data cleaning to eliminate irrelevant data, correct structural issues, and handle 
missing data. Table 3 presents the statistics of the dataset after cleaning the data.

b. Data preprocessing 

In this stage, a multivariate approach called principal component analysis (PCA) 
examines a data table in which several interrelated quantitative dependent variables 
characterize observations. To illustrate the pattern of similarity between the observa-
tions and the variables as points in spot maps, it extracts significant information from 
the statistical data. It represents it as a set of new orthogonal variables called principal 
components. PCA is mathematically dependent on the singular value decomposition 
(SVD) of rectangular matrices and the eigen-decomposition of positive semi-definite 
matrices. The eigenvalues and eigenvectors decide it. Square matrices have vectors
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and numbers called eigenvectors and eigenvalues. Together, they offer the eigen-
decomposition of a matrix, which examines its structure, including any cross-product, 
correlation, or covariance matrices [30]. The goals of PCA are to extract the most 
significant information from the data table; compress the data set by maintaining 
only this relevant information; Simplify data set description; analyze observations 
and variables, and reduce the number of dimensions without losing data [30]. So, 
we’ll use the PCA to extract the most important information and reduce the data’s 
dimensionality. 

After the data reduction, the dataset was split into two parts for training and testing 
with ratios of 70% and 30%, respectively. 

4.2 Training and Testing Phase 

The training and testing processes are done using an ML model called a Decision tree. 
The decision tree solves typical classification problems correctly. Unlike other nodes, 
the decision tree classifier’s roots contain no incoming edges. “Internal” or “test” 
nodes have outward edges. Leaves are surviving nodes. Each decision tree internal 
node splits the instance space using discrete input values. Most tests evaluate one 
attribute. The attribute’s value divides the instance space. Numeric qualities require 
a decision. Each leaf is assigned using the essential goal value. The leaf may include 
a probability vector showing the goal value’s likelihood. Instances are categorized 
by the tests undertaken from the tree’s root to its leaf [31]. 

K-fold cross-validation detects overfitting and evaluates model consistency. 5-
fold cross-validation is used. Validation partitions data into K equal sets. Each of 
the K remaining sets is tested once. The proposed prediction model was evaluated 
to judge the trained model. 

4.3 The Evaluation Measures 

To evaluate the experimental results, three well-known measures metrics are used, 
named Mean Squared Error (MSE), the root mean squared error (RMSE), and R-
Square (R2). 

MSE is one of the most commonly used measures for regression problems. It’s 
just a calculation of the square difference between the goal and the predicted values 
of the regression model as in Eq. 1. It penalizes such a slight mistake when it squares 
the discrepancies, overestimating how poor the model is [32]. 

MSE =
(
1 

N

) N∑
i=1

(
ŷi − yi

)2 
(1)
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RMSE =
||||(

1 

N

) N∑
i=1

(
ŷi − yi

)2 
(2) 

where N is the number of test samples, yi is the ith test sample, and ŷi is the prediction 
value of yi . 

RMSE is sensitive to aberrant points because it uses the average error. It is used 
to calculate the difference between the observed and true values as in Eq. 2. If a  
point’s regression value is not plausible, its error is relatively substantial, significantly 
impacting the RMSE number. The smaller the RMSE, the more accurate the forecast 
findings will be in general [32]. 

The fundamental goal of R2 is to determine how well forecasted and measured 
data correlate. A dataset contains n values labelled y1, y2, … n, (often designated 
as yi or as a vector y = [y1, y2, … n]T), each of which corresponds to a predicted 
value f1, …, fn. To calculate the overall amount of squares and the sum of squares 
remaining Use Eqs. (3) and (4) as follows: Sum total of squares: 

St = 
n∑

i=1

(
yi − ŷi

)2 
(3) 

Residual sum of squares is sometimes known as the sum of residual squares: 

Sre = 
n∑

i=1 

(yi − fi)2 (4) 

The most common expression of the coefficient of determination is given in 
Eq. (5). 

R2 = 1 − St 
Sre 

(5) 

The low values of MSE and RMSE indicate the best result. In contrast, the high 
value of R2 indicated a high accuracy [32]. 

5 Experiments, Results, and Discussion 

This section examines the efficacy of the proposed model. The experiments were 
done on a PC with a Core i7 processor and the MATLAB 2020a software package. 

An analysis of the proposed model for making predictions was evaluated to get 
the definitive verdict of the trained model. The evaluation procedure for the model 
is carried out both before and after the application of PCA.
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Fig. 2 The training of ozone prediction model without feature reduction 

5.1 Experiment I 

The decision tree without feature reduction. 
The Decision tree is run in the first experiment without feature reduction. The 

Decision tree with minimum leaf size = 4. Figure 2 shows the training performance 
of the model. The testing results are 0.89526, 1.00, and 0.71447 for RMSE, R2, and 
MSE, respectively. 

5.2 Experiment II 

Decision tree (with minimum leaf size = 4). 
The second experiment uses Decision tree (with minimum leaf size = 4) that 

used PCA for feature reduction. Figure 3 shows the training performance of the 
model. The testing results are 0.02139, 1.0, and 0.00045754 for RMSE, R2 and MSE 
respectively.

Using PCA for feature reduction improves the prediction model’s performance, as 
the MSE becomes 0.00045754 after 0.71447, and the RMSE value becomes 0.02139 
after 0.89526, while R2 remains 1.0 without change. 

6 Conclusion 

Climate change is caused by human mismanagement of natural resources, which 
causes global warming and has a direct and indirect detrimental impact on sustainable 
development and the surrounding environment. Climate change and global warming 
can only be prevented if people adjust their lifestyles and use cutting-edge technology
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Fig. 3 The training of the ozone prediction model with PCA for feature reduction

like the Internet of Things. Climate change can be combated by predicting specific 
natural phenomena after collecting appropriate data. The ozone ratio was stud by 
using an IoT database to track pollution, temperature, and humidity during a certain 
time perandl as the impact these elements had on ozone levels. In the end, a machine 
learning-based model was constructed to forecast ozone levels based on data collected 
by IoT sensors in the surrounding air. The feature’s dimensionality was reduced using 
PCA in the suggested model. The model’s performance is assessed using RMSE, 
MSE, and R2. Using PCA to reduce the features improves the prediction model’s 
performance, as the MSE and RMSE drop to 0.00045754 and 0.02139, respectively, 
after 0.71447 and 0.89526, but R2 remains unchanged at 1.0. 
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Model for the Crop Prediction 
with Climate Factors and Soil Properties 

Sara Abdelghafar, Ashraf Darwish, and Aboul Ella Hassanien 

1 Introduction 

The production of crops is essential for the food supply that is expected to be signifi-
cantly impacted by climate change. For example, decreasing agricultural output may 
be a result of expected temperature rises, modifications to precipitation patterns, 
modifications to extreme weather events, and decreases in water availability. For 
example, depending on the crop’s ideal temperature for growth and reproduction, an 
increase in temperature will have different effects on different crops. The types of 
crops that are traditionally cultivated there may benefit from warming in some areas, 
or farmers may be able to switch to crops that are now grown in warmer regions. 
Conversely, production will decrease if the higher temperature exceeds the crop’s 
optimal temperature [1, 2]. 

Therefore climate change and food security concerns have pushed the agricultural 
industry to seek out more innovative ways to increase crop yield productivity. As 
these difficulties have brought attention to the agricultural landscape’s vulnerability, 
as well as worries about satisfying global food demand sustainably in the face of 
adversity. The objective is to improve efficiency, which means producing more with 
fewer resources, which is more important now than ever. The agriculture industry will 
be transformed by artificial intelligence and machine learning techniques. Farmers
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will have access to the tools and resources they require to maximize the value of each 
acre. 

This study proposes the crop yield prediction model based on the climate change 
signs, which may be helpful for decisions on the crops that will be grown in agri-
cultural areas based on climatic changes. This might be helpful, for instance, in 
encouraging the production of new crops in some regions while discouraging the 
cultivation of others. Predictive models that link crop yields to climate change are 
crucial for estimating impacts on agriculture as well as the influence of climate 
change on associated economic and environmental outcomes, which in turn helps 
inform mitigation and adaptation strategies [3–5]. 

Support Vector Machine (SVM) is a supervised machine learning technique 
invented by Boser in 1992 [6], and it can be applied for both classification and 
regression analysis for high-dimensional datasets with excellent results [7]. SVM is 
a discriminative classifier algorithm that attempts to find the best separating hyper-
plane between classes to solve the classification problem [8]. Earlier research used a 
random selection of SVM Kernel function and hyper-parameter values, which is time-
consuming and diminishes the probability of discovering the best option [9]. As a 
result, the kernel function and hyperparameters that are chosen have a major impact on 
the sparsity and generalization performance of SVM. Numerous studies have proven 
the improved SVM for complicated classification and prediction issues like [10–13]. 
In this work, the proposed optimized predictive model uses Bayesian Optimization 
(BO) to find the best SVM kernel function and hyper-parameters. The obtained 
results show that the proposed model BO-SVM performs well in kernel selection 
and calculating the SVM’s optimal hyperparameter values. As a result, BO-SVM 
predicts agricultural yields with high accuracy using climate change factors. 

Following are the key contributions of this study: (1) To effectively tackle climate 
change and ensure future food security, a decision support tool is proposed to assist 
farmers and decision-makers in estimating crop yields production based on the 
climate patterns in their locations; (2) we proposed an optimized crop yield predic-
tion model (BO-SVM) based on the Bayesian optimization utilized for auto kernel 
selection and optimal parameter estimation of SVM; and (3) Compared to the related 
work, to the best of our knowledge, this study is the first work to propose a predictive 
model based on the optimization process for the prediction of crop yield concerned 
to climate factors and soil properties. 

The rest of the paper is organized as follows: Sect. 2 presents some related work in 
the crop yield predictions based on machine learning techniques. Section 3 introduces 
the proposed optimized crop yield prediction model. Section 4 defines the experi-
mental dataset and the evaluation metrics and then discusses the obtained experi-
mental results. Finally, Sect. 5 concludes this work and presents some suggestions 
for future work.
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2 Related Work 

Earlier, farmers used to choose their crops based on their practical experience. Crop 
yields are already significantly impacted negatively by climate change. As a result, 
farmers are unable to choose the best crops due to shifting soil, geographic, and 
climatic circumstances. Hence, manually estimating the optimum crop to choose for 
a specific region was more often than not ineffective. As a result, machine learning-
based crop production prediction continues to draw a lot of interest from researchers 
all around the world [14]. 

Lontsi et al. [15] proposed three frameworks based on three different machine 
learning techniques; k-Nearest Neighbor, multivariate logistic regression, and deci-
sion tree. The three approaches were applied to predict the annual crop yield in 
some West African nations. The used dataset was collected from different sources, 
including the food and agriculture organization (FAO) for the UN on the weather, 
agriculture, pesticides, and chemicals, and the World Bank group’s climate change 
knowledge portal (CCKP). Abbas et al. [16]. Proposes prediction study of potato 
tuber yield, with the use of four machine learning algorithms— k-nearest neighbor, 
linear regression, support vector regression (SVR), and elastic net, they forecast 
potato tuber production from data on soil and crop parameters obtained from proxi-
mate sensing. Six fields in Atlantic Canada, including three in Prince Edward Island 
(PE) and three in New Brunswick (NB), were sampled for soil electrical conductivity, 
soil moisture content, soil slope, normalized-difference vegetative index (NDVI), and 
soil chemistry throughout two growing seasons, one in 2017 and the other in 2018. 
Their findings demonstrate that SVR outperforms all the rest of the models. 

Paudel et al. [17] coupled machine learning with agronomic concepts of crop 
modeling to provide a machine learning baseline for large-scale crop production 
prediction. The MARS Crop Yield Forecasting System (MCYFS) database was 
used to construct its features utilizing crop simulation outputs as well as weather, 
remote sensing, and soil data. Gradient boosting, SVR, and k-nearest neighbors were 
employed in their proposal to predict the regional yields of the potato, sugar beet, 
sunflower, soft wheat, spring barley, and other crops in the France, Germany, and the 
Netherlands. 

Another crop modeling study was proposed by Shahhosseini et al. [18], they 
suggested investigating to demonstrate how to crop modeling and machine learning 
can be combined to improve estimates of crop production in the US Corn Belt. Their 
main objectives are to determine whether crop modeling and machine learning can 
be combined to produce better predictions. They also want to discover which crop 
modelling parameters can be integrated with machine learning to predict corn produc-
tion and which hybrid model combinations offer the most accurate predictions. They 
discovered that using weather information alone is insufficient and that adding simu-
lation crop model characteristics as input parameters to machine learning techniques 
can improve yield prediction. They indicated that for better yield projections, their 
suggested machine learning models require additional hydrological inputs.
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Another work on the US Corn yield prediction was conducted by Sun et al. [19], 
they introduced a crop yield prediction model based on a multilevel deep learning 
model coupling convolutional neural network (CNN) and recurrent neural network 
(RNN). Their primary objectives were to assess the effectiveness of the suggested 
approach for predicting Corn Belt yields in the US Corn Belt and to assess the impact 
of various data sets on the prediction task. Both time-series remote sensing data and 
data on soil properties were used as inputs. They conducted their experiments in the 
US Corn Belt states to forecast county-level corn yield from 2013 to 2016. Another 
work is proposed based on RNN in [20], a hybrid deep learning approach based on an 
RNN model with long short-term memory (LSTM) was proposed to estimate wheat 
crop yield in the northern area of India using a 43-year benchmark dataset. 

3 The Proposed Optimized Crop Prediction Model 

SVM was originally introduced to solve the classification problem of linearly sepa-
rable data by separating the hyperplane of the distinct classes [21]. Assume we have 
a training set is open is

{(
x1, y1

)
,
(
x2, y2

)
, . . . ,

(
xN , yN

)}
, where xi represents ith 

sample of the training sample X, and y1, y2, . . . ,  yN represent the class labels for 
x1, x2, . . . ,  xN . . The primary idea of SVM is to determine the values of the weight 
vector (w) and the threshold (b) of the decision boundary line that is represented by 
wT x + b = 0, to make the hyperplane to be as far away from the closest samples 
and to generate the two planes, H1 and H2, as follows: 

H1 → wT xi + b = +1 f or  yi = +1 
H2 → wT xi + b = −1 f or  yi = −1 

(1) 

These two equations can be combined as follows: 

yi
(
wT xi + b

) − 1 ≥ 0∀i = 1, 2, . . . ,  N (2) 

where wT xi + b ≥ 1 is the plane for the class ω+ and wT xi + b ≤ 1 represents 
the plane for class ω−, since the hyperplane divides the space into two spaces one 
is positive and the other is negative, where the classes ω+ and ω− are found. The 
distance from the hyperplane to H1 and H2 is given by d1 and d2, respectively, 
and the margin can be determined using d1 + d2 = 2

‖w‖ because the hyperplane is 
equidistance between the two planes. The goal of the SVM classifier is to maximize 
the margin width according to Eq. 2 [22]: 

min 1 2‖w‖2 
s.t.yi

(
wT xi + b

) − 1 ≥ 0∀i = 1, 2, . . . ,  N 
(3)
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If the data is nonlinearly separable, SVM employs kernel functions to transfer it 
to a higher dimensional space where it can be linearly separated using a nonlinear 
function φ. The following is how a kernel function is defined [23]: 

K
(
xi , x j

) = φ(xi )
T φ

(
x j

)
(4) 

As a result, SVM’s objective function will be as follows: 

min 1 2‖w‖2 + C 
N∑

i=1 
εi 

s.t.yi
(
wT φ(xi ) + b

) − 1 + εi ≥ 0∀i = 1, 2, . . . ,  N 
(5) 

where εi is a slack variable added to the objective function to relax the linearity 
constraints, and each εi represents the distance between the ith training sample and 
the corresponding margin hyperplane; when 0 ≤ εi ≤ 1, the sample is correctly 
classified because it is between the margin and the correct side of the hyperplane; 
when εi > 1, the sample is misclassified. [24]. 

Bayesian optimization is a class of machine-learning-based sequential optimiza-
tion methods of uncertain objective functions, and can be represented as follows 
[25], 

x∗ = argmax 
x∈X 

f (x) where X ⊆ RD (6) 

where the objective is to find the parameters x∗ that maximizes the function f (x) 
over some domain X consisting of finite lower and upper bounds on every variable. 

BO is a sequential search methodology that combines both exploration and 
exploitation and is typically much more effective than grid search or random search. 
The search framework is composed of two main parts: a Bayesian statistical model 
that models the objective function and an acquisition function that determines where 
to sample next. The Bayesian posterior probability distribution provided by the statis-
tical model, which is typically a Gaussian process, describes possible values for f (x) 
at a candidate point x. Then posterior distribution is updated each time f is observed 
at a new location, the acquisition function calculates the value that would result from 
evaluating the objective function at a new point x. The acquisition function is always 
balancing two important aspects: investigating regions with significant epistemic 
uncertainty about the function and leveraging regions with high predictive mean 
[26, 27]. 

Suppose that the hyper parameter optimization function f (x) follows the Gaus-
sian process, then is p( f (x)|x, H) a normal distribution. Based on the results of 
existing N group experiments, H = {xn, yn}N n=1, BO is modeled as a Gaussian 
process, and the posterior distribution p( f (x)|x, H) of f (x) is calculated [28]. 

After getting the posterior distribution of the objective function, an acquisition 
function a(x, H) is created to compromise between sampling at places where the
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model predicts a high objective and sampling at regions where the prediction uncer-
tainty is high. The objective of choosing the next sampling point is to maximize the 
acquisition function. Suppose y∗ = min yn, 1 ≤ n ≤ N is the optimal value in the 
currently existing sample, the desired improvement function is as follows [29], 

a(x, H) = 
∞∫

−∞ 

max
(
y∗ − y, 0

)
P(y|x, H )dy (7) 

In the proposed model, BO constructs a probability model of the objective function 
and employs it to choose the optimum kernel and its hyperparameters for evaluating 
the prediction goal function. The objective function is modeled using a Gaussian 
process as a probabilistic measure, and BO gives robust optimization solutions. The 
optimum kernel function is selected during the optimization phase from a variety of 
kernel functions, including Linear, Gaussian, Quadratic, and Cubic. 

The penalty parameter (C) and the parameters of the selected kernel (σ) are  
the main SVM hyperparameters that significantly affect classification accuracy. C 
controls how many outliers are considered when calculating Support Vectors (SVs), 
and as a result, changing values of C control classification accuracy by striking a 
balance between margin maximization and error minimization. While the kernel 
parameters, used as tuning parameters to improve classification accuracy, have an 
impact on the feature space transformation map. As a result, BO’s main objectives in 
the suggested model are to select the kernel function and then figure out the optimal 
values for C and σ to acquire the lowest testing classification error. 

The SVM kernel and hyper parameters were initially initialized in the proposed 
model with random selections to begin the training process for developing the trained 
classifier model that will be evaluated using the evaluation phase. Until the termina-
tion criteria are met, which is indicated by the determination of the optimal fitness 
value or the maximum number of iterations, BO searches for the global optimum solu-
tion over the iterations. By minimizing the classification error, accuracy is employed 
as the fitness function to calculate the optimal fitness value. As presented below in 
Algorithm 1 and Fig. 1.

Algorithm 1: optimized predictive model BO-SVM 

Input: D = (xi , yi ), i = 1, . . . ,  N : Training dataset with xi is input yi is target class label, 
f (x) = TP 

T P+FP  : objective Function, a(x, H): acquisition function, Max I  ter : Maximum  

number of iterations, and Max Fi t : Best fitness value 

Output: Yp: predicted class label and f (x).

(continued)
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(continued)

Algorithm 1: optimized predictive model BO-SVM

H ← θ ; 
Initialize SVM with random kernel and initialized parameters c and σ; 
Train SVM on the training dataset based on random kernel and initialized parameters; 
Obtain the predicted target class label Yp; 
Calculate f(x); 
Random initialization of Gaussian process, calculate p( f (x)|x, H ); 
Initialize t ← 0; 
while t < MaxIter and fitness value < MaxFit Do 

‘ 
x ← arg maxx a(x, H); 

Evaluate 
‘ 
y = f

(
‘ 
x
)
; 

H ← H ∪
(

‘ 
x, 

‘ 
y
)
; 

Remodeling Gaussian process according to H, calculate p( f (x)|x, H ); 
Update SVM kernel and parameters c and σ; 
Test SVM based on updated kernel parameters; 

Obtain Yp; 
Calculate f(x); 
t ← t + 1; 

end; 
Return Yp and f (x) 

4 Results, Discussion, and Analysis 

This section presents the procedures for implementing the proposed model, the 
dataset used to evaluate the performance of the proposed optimized model BO-
SVM and analyzes the results obtained. The proposed model was implemented using 
MATLAB version 2022a with statics and the machine learning toolbox. As a prepro-
cessing step, the experiment was conducted after standardization. The dataset was 
split into 70%, 15%, and 15% for training, validation, and testing respectively. The 
one-vs-one is selected as a multi-classification method. The maximum number of 
iterations in the optimization phase is 30. 

4.1 Dataset Description 

The proposed model’s efficacy is proved using the Crop Recommendation Dataset 
that is published by Kaggle [30]. The dataset size is 2200 records and has a certain 
number of attributes for some of the selected climate factors and soil properties; the
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Fig. 1 The proposed optimized crop prediction model BO-SVM flowchart
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ratio of Nitrogen content in soil (N), the ratio of Phosphorous content in soil (P), the 
ratio of Potassium content in soil (K), Temperature (the typical soil temperature for 
bioactivity ranges from 50 to 75F), Ph (A scale that is used to determine if something 
is acidic or basic (Acid Nature- Ph < 7; Neutral- Ph = 7; Base Nature-P > 7)), relative 
Humidity, and Rainfall in mm. 

The class label field contains 22 crop types; Apple, Banana, Black gram, Chickpea, 
Coconut, Coffee, Cotton, Grapes, Jute, Kidney beans, Lentil, Maize, Mango, Moth-
beans, Mungbeans, Muskmelon, Orange, Papaya, Pigeonpeas, Pomegranate, Rice, 
and Watermelon. Samples of the dataset are shown in Table 1.

4.2 Experimental Results and Analysis 

The crop type is the response of the proposed predictive model based on the seven 
attributes of the climate factors and soil properties. The evaluation measures are 
reported in the form of the confusion matrix which is typically used for demon-
strating the performance of a classification model on validation and test sets, in 
which the correct predictions are determined by mapping predicted outputs to actual 
outputs, where True Positive (TP) represents all values are correctly predicted and 
False Negative (FN) represents all values are incorrectly classified. The classification 
accuracy is measured by the proportion of the number of true predictions out of all 
predictions made [31, 32]. The obtained results in the form of the confusion matrix 
are presented in Fig. 2 and 3. The confusion matrix reveals that the proposed model 
BO-SVM achieved high classification accuracy, as presented in Table 2.

Also, the outputs of the optimization phase are reported by plotting the minimum 
observed and estimated function values versus the number of function evaluations, 
as shown in Fig. 4.

5 Conclusion and Future Work 

Climate has a significant influence on crop yields. Therefore, accurate assessments 
of how climate change may affect crop yields are critical for ensuring global food 
security. In this study, a crop yield prediction model based on signs of climate change 
is proposed. This model could be useful for selecting the crops that will be produced 
in agricultural areas in response to climate change. This could be useful, for example, 
in promoting the growth of new crops in particular places while inhibiting the culti-
vation of others. Also, predictive models that link crop yields to climate change 
are essential for estimating the impacts of climate change on related economic and 
environmental outcomes. The optimized predictive model is proposed based on the 
optimization framework for the multi-kernel SVM using Bayesian Optimization to 
obtain the optimal auto kernel and hyper-parameters selection. The obtained results 
demonstrate that the proposed model BO-SVM is capable of selecting the SVM’s



184 S. Abdelghafar et al.

Table 1 Samples of the dataset 

N P K Temperature PH Humidity Rainfall Label 

35 134 204 9.95 5.84 82.55 66.01 Grapes 

49 69 82 18.32 7.26 15.36 81.79 Chickpea 

22 60 24 18.78 5.63 20.25 104.26 Kidneybeans 

90 42 43 20.88 6.50 82.00 202.94 Rice 

27 63 19 20.93 5.56 21.19 133.19 Kidneybeans 

85 58 41 21.77 7.04 80.32 226.66 Rice 

71 54 16 22.61 5.75 63.69 87.76 Maize 

24 128 196 22.75 5.52 90.69 110.43 Apple 

60 55 44 23.00 7.84 82.32 263.96 Rice 

136 36 20 23.10 6.93 84.86 71.30 Cotton 

15 11 38 23.13 6.63 92.68 109.39 Pomegranate 

7 144 197 23.85 6.13 94.35 114.05 Apple 

13 5 8 23.85 7.47 90.11 103.92 Orange 

33 77 15 23.90 7.80 66.32 40.75 Lentil 

22 17 5 24.12 6.95 90.72 102.84 Orange 

133 47 24 24.40 7.23 79.20 90.80 Cotton 

16 8 9 24.60 7.60 91.28 111.29 Orange 

109 21 55 24.90 6.77 89.74 57.45 Watermelon 

63 41 45 25.30 7.12 86.89 196.62 Jute 

89 47 38 25.52 6.00 72.25 151.89 Jute 

37 5 34 25.79 5.78 93.84 152.42 Coconut 

61 44 17 26.10 6.93 71.57 102.27 Maize 

91 21 26 26.33 7.26 57.36 191.65 Coffee 

107 21 26 26.45 7.24 55.32 144.69 Coffee 

60 37 39 26.59 6.03 82.94 161.25 Jute 

25 62 21 26.73 7.04 68.14 67.15 Blackgram 

102 14 52 26.79 6.51 89.65 57.74 Watermelon 

19 26 29 26.93 5.67 98.80 166.57 Coconut 

82 75 55 27.35 6.28 78.49 92.16 Banana 

115 17 55 27.58 6.78 94.12 28.08 Muskmelon 

3 49 18 27.91 3.69 64.71 32.68 Mothbeans 

25 48 21 28.44 6.27 83.49 52.55 Mungbean 

56 79 15 29.48 7.45 63.20 71.89 Blackgram 

117 81 53 29.51 5.51 78.21 98.13 Banana

(continued)
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Table 1 (continued)

N P K Temperature PH Humidity Rainfall Label

2 40 27 29.74 5.95 47.55 90.10 Mango 

38 61 21 30.27 4.70 67.39 127.78 Pigeonpeas 

39 24 31 33.56 4.76 53.73 98.68 Mango 

43 64 47 38.59 6.83 91.58 102.27 Papaya 

42 59 55 40.10 6.98 94.35 149.12 Papaya

Fig. 2 The confusion matrix of the validation phase 

Fig. 3 The confusion matrix of the test phase 

Table 2 The overall 
classification accuracy of the 
validation and test sets 

Validation Test 

TP = 1833 FP = 23 TP = 341 FP = 3 
Accuracy (%) 98.8 99.1
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Fig. 4 Minimum objective versus the number of iterations

optimal kernel and hyper-parameter values. Accordingly, BO-SVM provides reliable 
predicted results for predicting crop type based on climate change and soil feature 
attributes. In future work, more climate and soil attributes will be added such as; 
meteorological variations data, wind data, pollution data …etc. that can probably 
maximize the value of the expected outcomes from the prediction model. Also, we 
are interested to apply the prediction model to Egypt and African agriculture cases. 
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An Intelligent Crop Recommendation 
Model for the Three Strategic Crops 
in Egypt Based on Climate Change Data 

Sally Elghamrawy, Athanasios V. Vasilakos, Ashraf Darwish, 
and Aboul Ella Hassanien 

1 Introduction 

As the world’s population exponentially grows, the significance of intelligent agri-
culture increases. The population growth has doubled to more than 7.2 billion people, 
reports the UN Food and Agriculture Organization [1]. Food security is confronted 
with extraordinary difficulties by many factors such as climate change, crop diseases, 
etc. 

The demand for global food is predicted to double by 2050 [2]. To meet growing 
food demand in the presence of global warming need of great side of the climate 
change factors influencing food production. It is essential to inspect crop yield 
response to climate inconsistency. Typically, farmers would be adjustable to the 
continuing changes in climate conditions than risky actions, which requires a deep 
understanding of the impacts of climate excesses on agricultural production. Based 
on World Meteorological Organization reports [3, 4], the impacts of climate change
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increased from 2015 to 2021. Machine learning has been used by different researchers 
in different sectors [5–9] in our life for presenting intelligent models that can predict 
and recommend the best decisions to help decision-makers. 

Maize, wheat, and rice are one of the most significant grownup cereals in Egypt, 
and there is a large gap between their production and consumption [10]. Currently, 
several researchers comprehend some artificial intelligence techniques to predict 
crop yield production based on the current and near-future climate change data. 

1.1 Motivation 

Climate change is the major factor impacting the agricultural production. The poten-
tial variations of climate change attributes such as temperature, humidity, precipi-
tation intensity, and CO2 concentrations directly impact the crop yield production. 
Artificial Intelligence (AI) models have a superior prospective to predict, classify 
and recognize climate change threats. 

Development has been made in the field of deep learning in the latest years for 
mitigating different climate change challenges that affect the crop yield production. 

The agriculture production will be enhanced by artificial intelligence and machine 
learning techniques. The main goal is to increase and enhance the crop production in 
spite of the climate change effects. Many researchers attempt to predict\recommend 
the best crop to be planted in a specific climate change scenario by detecting the 
most climate change’s feature that affect the crop production. 

1.2 Main Contributions 

Thus, the main contributions of this work is as follows:

• An Automated Crop Recommendation Model (ACRM) is proposed to recom-
mend the most suitable crop to be planted based on Climate change data using 
Convolutional Neural Network (CNN) as a deep learning technique

• Utilizing the deep learning technique in the model bounces the capability to 
analyze a large number of features and examine diverse data types for the training 
phase.

• The model targets three strategic crops growing in Egypt (Maize, Wheat, and rice), 
which will help the decision makers choose a suitable choice based on analyzed 
data.

• An optimized Conventional Neural Network is implemented in the crop recom-
mendation model for predicting the most influential factors that affect crop yield 
production using the Grey Wolf Optimization algorithm (GWO). Unlike other 
pre-trained models, this model is trained from scratch using different layers.
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The paper is organized as follows: Sect. 2 shows the background and literature 
review. The Climate Change Scenarios used are defined in Sect. 3. Section 4 describes 
the proposed Automated Crop Recommendation Model (ACRM) and the proposed 
optimized Conventional Neural Network using GWO. The performance of ACRM 
is estimated in Sect. 5. Section 6 argues the results and concludes the paper. 

2 Background and Literature Review 

Climate change greatly impacts crop yield production by direct, indirect, and socioe-
conomic effects, as shown in Fig. 1. Several studies [11–16] presented a prediction 
and recommendation model for crop yield production to identify the climate change 
impacts and determine the most significant features affecting crop yield production. 

Different machine learning applications were presented in anomaly detection and 
pattern recognition. Gaitán [11] put a spot on the recent environmental applications 
that directly impact agricultural yield production, particularly for the weather and 
climate conditions. Droesch [12] proposed a new approach, namely semiparametric 
neural networks (SNN), that utilize different parameters of a deep neural network to 
crop yield modeling, which can be used in high dimensional datasets. Mehnatkesh 
et al. [13] proposed an optimized artificial neural network model to recognize the most 
significant topographic features and soil characteristics that impacted the unevenness 
in nominated wheat yield in Iran [13]. 

In [14], the authors presented a recommendation system that predicts the best 
yield for the farmer and recommends pest control techniques. The authors compared 
the SVM classification, Logistic Regression, and Decision Tree algorithm, and their 
results indicated that SVM classification gives better accuracy than other algorithms. 
Ransom et al. [15] presented and evaluated different machine learning algorithms for
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Fig. 1 Related work on climate change effect on agriculture
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employing climate change data for refining corn production. The authors evaluated 
the stepwise, elastic net regression, ridge regression, principal component regression 
(PCR), least absolute shrinkage and selection operator (Lasso), partial least squares 
regression (PLSR), decision tree, and random forest algorithms in their research. 
Vasu et al. [16] presented a nutrient management system for farms. The proposed 
system’s main goals are to evaluate the grade of soil pH and the organic carbon, 
recognize the insufficiency regions for exact nutrients, and detect the significant 
features of soil fertility.

Plant Productivity is one of the direct effects of climate change. With the unex-
pected deviations in environmental circumstances, the severe effects on plant produc-
tivity are developing in boundless strengths due to climate change’s direct and indirect 
effects. In addition, soil fertility, air pollution, water accessibility, and physiological 
changes affect agriculture productivity [17]. It is predicted that, in the near future, the 
productivity of the main crops is appraised to be decreased in many nations due to 
global warming and other environmental impacts [18, 19]. The Abscisic Acid (ABA) 
[20], is the main hormone involved in regulating the responses to numerous abiotic 
stresses and also triggers many physiological approaches in plants as water shortage 
and products many reactive genes [21, 22]. 

The indirect effect of climate change includes fertilizers, which are critical to 
moderate the impact of global warming. It offers significant energy to plants to 
sustain the soil’s fertility and increase yield [23]. Drought, high temperatures, and 
sea level are vital factors of the indirect effect of climate change, impacting crop 
yields [24]. The mutual influence of heat and drought strains on crop yield has been 
examined and evaluated on different crops, and the results showed that it had more 
harmful effects than different stress [25, 26]. 

3 Climate Change Scenarios 

A climate scenario is a reasonable representation of future climate, using some 
assumptions of the amount of radiation and climatological information that can 
be used as input to climate change models. Distributing knowledge on human-
induced climate change [27, 28] is the role of the Intergovernmental Panel on Climate 
Change—IPCC. It is a United Nations platform that specifies the number of acute 
effects on several sectors associated with climate change. IPCC approved some 
climate change scenarios as the Representative Concentration Pathway (RCP) and 
the Special Report on Emissions Scenarios, which have been used in the experiments 
implemented in this research.
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Table 1 Different representative concentration pathway parameters 

RCP Radiative forcing values 
( W/m2) 

Average future temperature 
increase (°C) 

Average future sea level 
rise (m) 

RCP2.6 2.6 1.0 0.4 

RCP4.5 4.5 1.8 0.47 

RCP6 6 2.2 0.48 

RCP8.5 8.5 3.7 0.63 

Fig. 2 Different RCP and 
future prediction 

3.1 The Representative Concentration Pathway 

Four pathways were utilized to describe different climate futures based on the Green-
house Gases (GHG) volume emitted in the years to come [29]. The Representative 
Concentration Pathways (RCPs) imprison these future developments. The RCPs are 
RCP2.6, RCP4.5, RCP6, and RCP8.5 [30, 31] categorized based on a series of radia-
tive forcing values in the year 2100 (2.6, 4.5, 6, and 8.5 W/m2, respectively), as 
shown in Table 1 and Fig. 2. RCP forecasts how concentrations of greenhouse gases 
in the air will vary in the future due to harmful human activities. 

3.2 The Special Report on Emissions Scenarios 

The IPCC devolved a report, namely the Special Report on Emissions Scenarios 
(SRES), which deals with the expectation of radiation trajectories and climate 
impacts. Unlike the RCPs that repair the radiations trajectory and subsequent 
radiative imposing relatively than the socioeconomic environments.
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The GHG radiation scenarios defined before have been utilized to predict likely 
upcoming climate change. The SRES scenarios were used in the IPCC Third Assess-
ment Report (TAR), published in 2001, and the IPCC Fourth Assessment Report 
(AR4), published in 2007. 

4 The Proposed Automated Crop Recommendation Model 
Using Deep Learning 

The proposed Automated Crop Recommendation Model (ACRM) is based on 
Climate change data, using an optimized Convolutional Neural Network (CNN) as a 
deep learning technique. The main objective of the proposed model is to recommend 
the most suitable crop to be planted in a specific time based on the climate change data. 
The model analyzes factors such as Co2 concentrations, climate change scenarios, 
crop projected yield, temperature, etc. Our model allows the decision makers to have 
an overview of the suitability of crop growing in the long and short future. ACRM 
consists of six main modules: pre-processing, mapping, deep learning, Grey Wolf 
optimization, recommendation, and evaluation (Fig. 3). 

The crop data and the climate change data are combined in one dataset using 
the mapping module that checks the compatibility of the dataset and stores the data 
in a proposer format. In the pre-processing module, the missing data in the dataset 
will be handled by statically replacing it. Any redundancy accrued in the dataset 
will be removed. The deep learning module presents a proposed optimized CNN 
model to extract the dataset’s significant factors. It consists of 18 layers: convolution

Fig. 3 The proposed automated crop recommendation model using deep learning
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Table 2 The details of the proposed CNN architecture model 

Name Type Size 

CONV1 Convolution 3 *3 pixels—16 different filters—128 bias 

ELU1 Exponential linear units 74 × 74 
POOL1 Max pooling 3 × 3 max pooling layer 

CONV2 Convolution 3 × 3 pixels—32 different filters-—256 bias 
5 × 5 convolutional kernels 

ELU2 Exponential linear units 9 × 9 
P0012 Max pooling 3 × 3 max pooling layer 

CONV3 Convolution 3 pixels—32 different filters—256 bias 

ELU3 Exponential linear units 3 × 3 
P00L3 Max pooling 3 × 3 max pooling layer 

CONV4 Convolution 3 × 3 pixels—32 different filters–—512 bias 

ELU4 Exponential linear units 1 × 1 
POOL4 Max pooling 3 × 3 max pooling layer 

FULCON1 Fully connected 64 neurons 

DROPOUT1 Dropout with a probability of 0.1 

FULCON2 Fully connected 48 neurons 

DROPOUT2 Dropout With a probability of 0. 1 

FULCON3 Fully connected 3 neurons: 3 crop recommendation 

SOFIMA1 Softmax 1 × 1 

layers, max-pooling layers, Exponential Linear Units (ELU) layers, fully connected 
layers, dropout layers, and output layer, Softmax. The details of the proposed CNN 
architecture model are shown in Table 2.

4.1 The Optimized Conventional Neural Network Using 
the Grey Wolf Optimization Algorithm (GWO) 

The Grey Wolf Optimization (GWO) algorithm is used to optimize the CNN model. 
The model’s weights are updated and optimized using GWO. At the beginning of 
the implementation, the CNN’s hyperparameters are initialized: the initial learning 
rate (α), the initial parameter vector (w0) and the maximum iterations (Maxit) using 
Adam suggested parameters’ initializations. 

The proposed recommendation module’s main task is to recommend the crop to 
be planted by measuring how probable a specific crop is to be planted in a given 
condition and climate change scenario. The model compares the probability of crops 
like maize, rice, and wheat and ranks them according to the best choice. The Softmax 
activation function is used in the output layer. The recommendation degree can be
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classified into [1. Highly Recommended (HR), 2. Moderate Recommended (MR), 
3. Not Recommended (NR)]. 

In addition, an optimized Conventional Neural Network is implemented in the 
crop recommendation model for predicting the most influential factors that affect 
crop yield production, using the Grey Wolf Optimization algorithm (GWO), as shown 
in Fig. 4. 

The CNN model is trained to recommend the relevant climate change factors that 
impact crop production, and the results obtained from the model are evaluated using 
the evaluation module. 

Fig. 4 The Grey Wolf Optimization algorithm (GWO) used for the optimized CNN
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5 The Experimental Results 

Several experiments are used to evaluate the proposed ACRM. The optimized CNN 
implemented in the ACRM module is used along with different models over the 
same dataset for a comparative study to test the performance of ACRM. The results 
obtained are investigated for the three strategic crops in Egypt (maize, wheat, and 
rice) over the test data. The recommendation degree obtained is classified into: 

1. Highly Recommended (HR) 
2. Moderate Recommended(MR) 
3. Not Recommended(NR) 

5.1 The Dataset Used in the Experiments 

The experiments are implemented on the dataset [32] for Egypt data that lies at 36º8’ 
north latitude and 30º 8’ east longitude. The data set consists of climate change 
data such as different Time, adaptation, CO2, soil, and climate scenarios, along with 
maize, wheat, and rice crop data, as shown in Table 3.

5.2 Performance Evaluation Measures 

Several experiments were used to validate the effectiveness of the proposed ACRM 
model’s performance on an Intel Core i5-8250 1.80 GHz processor with 8 GB 
memory. Python 3.7 and TensorFlow 1.3 are used to run the model. Table 4 shows 
the confusion matrix used to evaluate the performance.

Overall Accuracy = ACC = TP + TN 
TP + FP + TN + FN 

5.3 Experiment 1: The Projected Impacts on the Three 
Strategic Crops Using Different Climate Scenarios 

This experiment measures the projected impacts on the three strategic crops (Wheat, 
Maize, and Rice) in Egypt using different climate scenarios RCP2.6, RCP4.5, 
RCP6.0, RCP8.5, and SRES, as shown in Figs. 5, 6, 7, 8 and 9, respectively. The exper-
iment predicts the mean impacts in three future time slices 2020–2039, 2040–2069, 
and 2070–2100 (Fig. 10).
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Table 3 The parameters in the dataset used 

Parameter Description 

Crop Three strategic Crops (Maize, Rice, Wheat) 

Current Average Temperature (dC) area 
weighted °C 

Current average annual temperature (2001–2010) 
from the 0.5°-grid data. For gridded crop 
simulations, growing areas in each grid/crop were 
weighted to derive area-weighted averages 

Current Annual Precipitation (mm) area 
weighted Mm 

Current annual precipitation (2001–2010) from the 
0.5°-grid data. For gridded crop simulations, 
growing areas in each grid/crop were weighted to 
derive area-weighted averages 

Future Mid-point Mid-year of the projected period 

Baseline Mid-point Mid-year of the baseline period 

Time slice (2020–2039), 
(2040–2069), 
(2070–2100) 

Climate scenario Climate scenarios, such as “RCP2.6”, “RCP4.5”, 
“RCP6.0”, “RCP8.5” and SRES 

Annual precipitation change (mm) Annual precipitation changes from the 
Baseline-Mid-point year to the Future-Mid-point 
year 

Projected yield(t/ha) Projected yield from each study 

Climate impacts % Relative yield change by climate change 

Climate impacts per °C 
% °C−1 

Relative yield change per degree 

Climate impacts per decade % 10 yr−1 Relative yield change per decade 

CO2 ppm Mean CO2 concentration used for simulation 

Fertilizer Two categories “Yes” or “No” 

Irrigation Two categories “Yes” or “No” 

Cultivar Two categories “Yes” or “No” 

Soil organic matter management Two categories “Yes” or “No” 

Planting time Two categories “Yes” or “No” 

Tillage Two categories “Yes” or “No” 

Adaptation Two categories “Yes” or “No” 

Adaptation type Nine adaptation measures (No, Fertiliser, 
Irrigation, Cultivar, Soil Organic matter, Planting 
time, Tillage, Others, Combined)

Table 4 Confusion matrix Predicted as positive Predicted as negative 

Positive True Positives (TP) False Negatives (FN) 

Negative False Positive (FP) True Negatives (TN)
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Fig. 5 Means of the projected impacts on three strategic crops on RCP2.6 climate scenario
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Fig. 6 Means of the projected impacts on three strategic crops on RCP4.5 climate scenario
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Fig. 7 Means of the projected impacts on three strategic crops on RCP6.0 climate scenario
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Fig. 8 Means of the projected impacts on three strategic crops on RCP8.5 climate scenario
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Fig. 9 Means of the projected impacts on three strategic crops on SRES climate scenario

-60.0 -50.0 -40.0 -30.0 -20.0 -10.0 0.0 10.0 

2020-2039 
2040-2069 
2070-2100 
2020-2039 
2040-2069 
2070-2100 
2020-2039 
2040-2069 
2070-2100 
2020-2039 
2040-2069 
2070-2100 
2020-2039 
2040-2069 
2070-2100 

RC
P2

.6
 

RC
P4

.5
 

RC
P6

.0
 

RC
P8

.5
SR

ES
 

Maize Rice Wheat 

Fig. 10 Means of the projected impacts on three strategic crops in different climate scenarios
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The results obtained from this experiment show that the wheat crop is the most 
affected crop by the climate change data compared to maize and rice, in the different 
climate scenarios in the near and far future. 

5.4 Experiment 2: The Accuracy Values for the Proposed 
ACRM Compared to Different Models 

The performance of the proposed ACRM is compared to the performance of MLR 
[33], J48 [34], Random Tree, REPTree [34], and ANN [35] models in terms of the 
accuracy of recommending the suitable crop, as shown in Table 5 and Fig. 11. 

From the accuracy results, it can be concluded that ACRM performs better than 
other models in the three targeted crops. 

Table 5 The accuracy values 
for the proposed ACRM 
compared to different models 

Model Wheat (%) Maize (%) Rice (%) 

The proposed ACRM 98.2 98.7 98.1 

ANN 96.8 97.5 95.71 

MR 95.4 89.8 88 

J48 96.1 91.8 89.9 

Random tree 91.2 85.9 83.8 

REPTree 89.7 83.9 82.5 
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80.00% 

85.00% 

90.00% 

95.00% 

100.00% 

The 
proposed 
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ANN MLR J48 Random 
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Fig. 11 The Accuracy values for the proposed ACRM
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Fig. 12 The most significant climate change factors affected the crop recommendation decision 

5.5 Experiment 3: The Most Significant Climate Change 
Factors that Affected Crop Recommendation 

This experiment is used to identify the most significant Climate Change factors that 
affected the Crop Recommendation decision. The proposed ACRM detected the top 
most frequent features in the dataset, which are CO2, Climate impacts, Adaptation 
type, Average Temperature, Climate scenario, Projected yield(t/ha), Climate impacts 
per decade, and Climate impacts per °C, as shown in Fig. 12. 

6 Conclusion and Discussion 

An Automated Crop Recommendation Model (ACRM) is proposed to recommend 
the most suitable crop to be planted based on Climate change data using Convo-
lutional Neural Network (CNN) as a deep learning technique. Utilizing the deep 
learning technique in the model bounces the capability to analyze a large number 
of features and examine diverse data types for the training phase. The model targets 
three strategic crops growing in Egypt (Maize, Wheat, and rice), which will help 
the decision makers choose a suitable choice based on analyzed data. An optimized 
Conventional Neural Network is implemented in the crop recommendation model 
for predicting the most influential factors that affect crop yield production using the 
Grey Wolf Optimization algorithm (GWO). 

Unlike other pre-trained models, this model is trained from scratch using different 
layers. The proposed model helps the decision makers to choose the right crop during
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the cropping season based on the climate change data and its impacts on the crops. 
From the results obtained, it is discovered that the Wheat crop is the crop that will 
be affected by the climate change data in the near and far future. 

The results from ACRM experiments show the superiority of ACRM over other 
recommendation models using the three targeted crops, as the accuracy obtained from 
ACRM was 98.2, 98.7, and 98.1% for Wheat, Maize, and rice crops, respectively. 
In addition, the ACRM model The proposed ACRM detected the top most frequent 
features in the climate change data that affect crop yield production: the CO2, Climate 
impacts, Adaptation type, Average Temperature, and the Climate scenario. 
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Cost Effective Decision Support System 
for Smart Water Management System 

Amany Magdy Mohamed, Ashraf Darwish, and Aboul Ella Hassanien 

1 Introduction 

Cities are heavily vulnerable to climate change; they are affected by frequent extremes 
in heat and cold, storms and cyclones, and rising sea levels. However, they make 
up a significant portion of the global greenhouse gas (GHG) emissions—roughly 
72%—and are a key cause of climate change. The cities in the developing world will 
experience great change because of urban population growth. They need to deal with 
that change effectively, considering the limitations of the resources and institutional 
capabilities, which create tough challenges. Due to these difficulties, urban areas 
have evolved into complex social ecologies where ensuring sustainability and a high 
standard of living are crucial [1]. Cities are consequently compelled to look for the 
best solutions for many important issues, including sustainable development, public 
services, energy, education, the environment, and safety. 

Cities can be described as a system of systems. They involve many systems, 
including transport, health and biodiversity, food, energy, water and sewerage, and 
cultural, social, and economic systems. Consequently, solving city problems is very 
complex as they are interconnected, and solving one problem in a specific system 
can have unintended consequences in another system. Thus, instead of solving these 
problems individually, they should be solved using an integrated approach [2–4]. 

To handle the complexity of urban living and implement solutions for diverse city 
problems, the Smart City idea seeks to address the issues caused by the rapid rate of 
population expansion in urban areas. Yet, there is no standardized definition of “smart
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cities.” However, this term is used to solve cities’ sustainability challenges based 
on data and smart technologies and combine them with innovation and creativity 
to develop innovative solutions to citizens’ needs and urban challenges. This term 
is related to the present and the future; many cities are in the process of making 
themselves smart, while others are being built to be smart from the start [5, 6]. 

Climate change significantly impacts water resources; it affects the quality and 
availability of global freshwater supplies and increases the likelihood of droughts 
and flooding due to temperature and weather fluctuations [7]. Water resources can 
be any resources that are useful or potentially useful to humans. 3% of the water 
on the Earth is fresh water, and 97% is salt water. The demand for high-quality 
water will increase because of the world’s population growth and climate change. 
Consequently, new water management strategies must be applied to optimize water 
consumption and reduce the environmental effects of water use on the environment 
[8]. 

Making decisions about how to use water resources is the process of water manage-
ment. Earth’s water supply is finite; hence it must be managed sustainably to be 
protected. Water security should be ensured by future water resource planning and 
management based on resilience, adaptation, and capacity building. Planning, devel-
oping, allocating, and administering the best possible use of water resources—both 
in terms of quantity and quality—to maximize the resulting economic and social 
welfare in a fair way and without compromising the sustainability of critical ecosys-
tems. The building of such an integrated water management system is made simple 
by the idea of smart cities [9]. 

Smart governance, smart living, smart environments, smart mobility, smart 
economies, and smart people are the six essential components of a smart city system. 
Smart water is a crucial part of the smart environment. The idea of smart cities inspires 
the idea of it. A smart city’s endowment of smart infrastructure makes it easier for 
smart water to exist because it is used for many of the resident’s needs, including 
water [9]. 

Before the development of smart cities, smart water management was not widely 
used. This chapter proposes an integrated, flexible, and cost-effective DSS for solving 
the smart water management system’s decision problems. It is a highly responsive, 
intelligent digital system that combines with humans to identify water-related prob-
lems and even automatically uses artificial intelligence to solve them in real-time 
without human intervention. Based on this definition, two types of DSS can be 
used to solve water-related issues, the model-driven DSS for the decision problems 
modeled by humans and the data-driven DSS for the decision problems that can be 
modeled automatically without human interventions. 

The rest of this chapter is organized as follows: Sect. 2 provides urbanization 
trends, while Sect. 3 deals with the main concept of smart cities. Section 4 discusses 
the proposed DSS. Finally, the conclusion is given in Sect. 5.
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2 Urbanization Trends 

Urbanization is a complicated socio-economic process that modifies the built environ-
ment, turning once rural settlements into urban ones and redistributing a population’s 
geographic distribution from rural to urban areas. It affects the prevailing occupa-
tions, way of life, culture, and behavior, changing urban and rural areas’ social and 
demographic structures. Increases in the number, size, and population of urban settle-
ments and in the proportion of urban to rural citizens are one of the main effects of 
urbanization. The world’s population is predicted to rise from 7.63 billion in 2018 to 
9.77 billion in 2050, with urban areas seeing the majority of this growth. The urban 
population is projected to rise from 4.2 billion to 6.7 billion [10]. 

The six geographical categories of Africa, Asia, Europe, Latin America and the 
Caribbean, Northern America, and Oceania are used by the United Nations [10] to  
classify countries and regions. The vastly differing experiences among the geographic 
regions that make up those categories are the cause of the distinct patterns of urban-
ization that have been seen in the more developed regions and the less developed 
regions. Less developed regions will have a substantially higher percentage of the 
population living in urban areas than highly developed ones. There are notable differ-
ences in the urbanization trends between less developed and more developed regions. 
Currently, fewer than half of the population in less developed regions lives in rural 
areas, whereas the vast majority of people in more developed regions live in urban 
areas. However, the less developed regions’ proportion of the global urban popula-
tion has been increasing due to their urban population developing far more quickly 
than that of the more developed regions, as in Fig. 1.

According to Fig. 2, the urban population in Asia, Europe, Latin America, the 
Caribbean, and North America will decline in 2050 compared to 2018, whereas it will 
rise in Africa. However, as depicted in Fig. 3, Asia will have the highest urbanization 
rates. More than half of the expected rise in the world’s population up to 2050 will 
be centered in Africa, particularly Egypt, one of the nine African countries with a 
level of urbanization of more than 25%. Alexandria is Egypt’s second-largest city by 
urban population after Cairo, which corresponds to the Governorate of Al-Qahirah 
and has a population of more than 10 million [10].

3 Smart Cities Concept 

Increased demand for natural resources like water and energy, increased pollution, 
and effects on biodiversity are all results of rapid urbanization and urban population 
growth. Cities presently account for between 67 and 76% of global energy consump-
tion and between 71 and 76% of CO2 emissions [10]. There is a large population 
density, poor sanitary conditions, and high water contamination levels. Cities produce 
1.7–1.9 billion tons of waste, or 46% of the world’s waste. Smart urban planning and
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Fig. 1 Distribution of urban population

Fig. 2 Urban population in the six geographic regions
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Fig. 3 The proportion of urban residents in each of the six geographic areas

understanding urban population trends can help minimize the adverse urbanization 
impacts and environmental degradation [10]. 

Consequently, the concept of smart cities becomes necessary and a natural strategy 
to mitigate these challenges. Despite of the cost of building a smart city, it can 
reduce carbon emissions, energy consumption, transportation requirements, water 
consumption, and city waste. 

Cities are encouraged to become “smart cities” to solve the challenges of rapid 
urbanization, increased pressure on city services, and climate change. Smart cities do 
not have a standard definition and it is defined with different perspective and views 
ranging from purely technological to focusing on achieving sustainability [11]. 

Enhancing city functions requires more than ICT access for large-scale data collec-
tion and analytics, and focusing only on these criteria can paint an incomplete picture 
of smart cities. Some definitions focus on technology only and neglect sustainability 
or social capital, which increases the impact of the climate change mitigation and 
adaptation efforts [12, 13]. Some definitions emphasize collecting large-scale data 
and harnessing big data analytics to improve urban performance and city functions 
[14, 15]. 

Consequently, the social and economic aspects need to be described in the 
smart cities context. In [16], six key characteristics of smart cities are outlined: 
smart people, smart living, smart governance, smart economy, smart environment, 
and smart mobility. These characteristics encompass social/human capital, commu-
nity participation, quality of life, and the city’s competitiveness within a global or
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regional market. Sustainable resource use, environmental protection, and the need 
for ICT infrastructure and sustainable, available, and accessible transportation are 
also highlighted. 

Efforts to mitigate and adapt to climate change will be more directly correlated 
with the developing trend of smart, sustainable cities. Several definitions emphasize 
community involvement, ICT integration, and social capital to promote economic 
growth and enhance the quality of life [17–19]. In [20], the definition focused on 
the integration between the tangible (i.e., infrastructure systems) and intangible (i.e., 
social and human capital) assets of the city. This integration involves building adap-
tive capacity, protecting people, and preparing the physical infrastructure for extreme 
weather, which will be critical for climate change mitigation and adaptation. 

None of those above definitions mention climate change mitigation and adapta-
tion, but in [21], smart cities are directly connected with sustainable development. 
Based on the six identified characteristics, the smart city is built on a smart combina-
tion. Each character has a set of attributes that can be formed to tackle city challenges. 
The characteristics and their attributes are shown in Fig. 4. 

Fig. 4 Smart city characteristics and their attributes
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4 The Proposed DSS for the Smart Water Management 
System 

Smart water management was not widely employed before the creation of smart 
cities. The smart water management system is an integrated system that merges the 
decision-making problems related to managing different categories such as water 
resources, natural drainage, wastewater, water supply, flood and inundation, and 
aging water infrastructure. It is described as a highly responsive, intelligent digital 
system that collaborates with people to identify water-related issues. It even auto-
matically employs artificial intelligence to remedy those issues in real-time without 
human involvement. Based on this definition, two types of DSS can be used to solve 
water-related issues, the model-driven DSS for the decision problems modeled by 
humans and the data-driven DSS for the decision problems that can be modeled 
automatically without human interventions. 

This chapter proposes an integrated, flexible, and cost-effective DSS for solving 
the smart water management system’s decision problems. The proposed DSS is 
cloud-based DSS that consists of a group of DSS. Each DSS contains the decision 
problems related to one smart water management system category. For example, 
based on the mentioned categories, the proposed DSS consists of six different DSS. 

4.1 Decision Support System 

With the growing uncertainty and complexity in many decision situations, the deci-
sion maker (DM) forced a great challenge to make the right decision at the right 
time and with minimum cost. DSS is a computer-based system built to help DM 
to make better and more effective decisions, especially for ill-structured or weakly-
structured problems. The capabilities of DSS can be increased by using technological 
innovation. 

Power D. J. defines a DSS as an interactive computer-based system or subsystem 
designed to assist decision-makers in using communications technologies, data, 
documents, knowledge, and/or models to identify and resolve issues, carry out tasks 
related to the decision-making process, and make decisions. Any computer system 
that improves the capacity of an individual or group to make decisions is referred 
to as a “DSS.” Generally speaking, DSS is a subset of computerized information 
systems that assist with decision-making activities [22]. 

Cloud computing is a model for delivering computing resources as services 
with automation, flexibility in payment, a high degree of elasticity, and, as a 
result, lower cost [23]. The National Institute of Standards and Technology (NIST) 
defines cloud computing formally as a model for enabling universal, convenient, on-
demand network access to a shared pool of reconfigurable computing resources (e.g., 
networks, servers, storage, applications, and services) that can be quickly provisioned 
and released with little management work or service provider interaction. This cloud
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model consists of three service models (Software as a Service (SaaS), Platform as a 
Service (PaaS), and Infrastructure as a Service (IaaS), and five key characteristics (on-
demand self-service, broad network access, resource pooling, rapid elasticity, and 
measured service), and four deployment models (private cloud, community cloud, 
public cloud, hybrid cloud) [24, 25]. 

To gain the full utilization of cloud computing capabilities and advantages, 
the system/application needs to build as a cloud-native system/application; its 
functionality is implemented as the composition of services running on the cloud. 

DSS has three main components: (1) user interface, (2) models and analytical 
tools, and (3) database. The model (simulation, statistical, logic, and optimization, …) 
is the main component that differentiates DSS from other management information 
systems (MIS). The functionality of DSS is provided in the model component. The 
decision problem is represented by a suitable model and the solutions of this model 
are called decision alternatives. Based on the type of the DSS, the model can be 
defined a priori of the decision-making process or during it [26, 27]. 

In this chapter, two types of DSS are discussed; the data-driven DSS and the 
model-driven DSS. In data-driven DSS, the model need not be constructed a priori, 
rather it is defined and constructed through the analysis of a large amount of data. 
While, in model-driven DSS, the model is assumed to be existed before decision 
making activities. It is not usually data intensive. To obtain decision alternatives, 
data and user input are used to calculate model parameters. 

4.2 Cloud-Native Systems 

To determine the usage of the term “cloud-native” in research, the term was explored 
from Google trends from 2006—the birth of the cloud—to 2021. According to Fig. 5, 
in the beginning, the term was used quite frequently, then over the following years, 
its usage of it decreased. However, since 2015, the term is more and more frequently 
used again [29]. Kratzke and Qunit—after 10 years of cloud computing – provided a 
systematic mapping study to analyze research papers covering “cloud-native” topics, 
research questions, and engineering methodologies. Based on this study, they defined 
cloud-native applications (CNA) as a distributed, elastic, and horizontally scalable 
system built of (micro)services that isolate a state in a minimum of stateful compo-
nents. The application and every standalone deployment unit were created using 
cloud-focused design patterns and run on an elastic, self-service platform. [29].

With microservice architecture, each service has its database. The services are 
communicated via an application programming interface (API) to ensure service 
separation and avert the risk of tight coupling. As a result, each service can scale, 
change, and deploy independently without requiring too much sharing with other 
services. Besides, it can be isolated quickly, and the rest of the system continues 
working. 

The microservice architecture for an application is created through two steps: (1) 
define the service and (2) decide how the service collaborates. In this chapter, we
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Fig. 5 Google trends (01.01.2006 until 01.11.2021) of the term “cloud-native”

focus on defining the services. There are different strategies to define services, but 
in this chapter, we concentrate on two of them; the business capability strategy and 
the single responsibility principle (SRP) strategy [30, 31]. 

In business capability strategy, the services are identified based on the business 
capability concept. This concept is embraced from business architecture modeling to 
capture what business can do. Organizing and identifying services around business 
capabilities make the architecture stable because they are stable despite changing 
the way of doing them. At the same time, the SRP strategy is based on the cohesion 
concept. Robert C. Martin defines this concept as “Gather together those things 
that change for the same reason, and separate those things that change for different 
reasons.” [32]. The services identified according to this strategy are cohesive and 
small services with a single responsibility and hence a single reason to change. 

4.3 The Proposed DSS for Smart Water Management System 

A smart water system consists of water supply, water resources, wastewater, natural 
drainage, and aging water infrastructure. Each component has its decision-making 
problems. Although each component merges the decision problems related to one 
purpose, each problem has its characteristics that lead to a different model to represent 
it and, as a result, a different solution approach to obtain the decision alternatives. 
The smart water system should be an integrated system to fully optimize the whole 
system because solving the component’s problems separately may negatively affect 
the other components.
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For example, the wastewater components contain different decision models that 
generally aim to optimize wastewater usage to increase clean water and decrease 
the impact of wastewater on the environment. This aim is achieved through different 
activities such as treating, disposing, and reusing wastewater. However, wastewater 
has different types, like domestic wastewater and industrial wastewater. Each type has 
characteristics and features that lead to a different model to identify its contaminants. 

The proposed DSS is flexible and cost-effective as the concept of a cloud-native 
system drives it. With microservice architecture, the proposed DSS is developed 
as a suite of independently deployable services modeled around the interconnected 
decision problems and communicate with lightweight mechanisms. The services are 
defined based on the mentioned strategies in the “Cloud-native systems” section. 

Each DSS represents a service, in addition to the main service that is responsible 
for managing, coordinating, and connecting among the services. Each service has its 
data that make it an independently deployable service. As shown in Fig. 6, the  main  
service is called a “smart water management system” that is responsible to manage, 
coordinating and connect the other service such as “smart wastewater DSS”, “smart 
water resources DSS” and “smart aging water infrastructure DSS”. 

The proposed DSS is flexible in dealing with different decision problems and 
solutions. Besides, the flexibility of using different technologies inside each service 
and adopting new technology more quickly. The proposed DSS is resilient; with

Fig. 6 The holistic view of DSS for smart water management 
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microservice architecture, the problem can be isolated if one component fails, and 
other components will continue to work normally. The proposed DSS is indepen-
dently scalable; each service can be deployed on hardware that’s best suited to its 
resource requirements. Besides ease of deployment, if a change is done to a single 
service, we can deploy it independently of the rest of the system. 

Each service in Fig. 6 except the main service, can be split into a group of services. 
Each service is defined as a model of the specific decision problem. As shown in 
Fig. 7, the “smart wastewater management DSS” is expanded to contain all the poten-
tial related decision problems. For example, the “treatment and disposal of domestic 
wastewater” and “recycling and reuse of domestic wastewater”. Each problem is 
defined as an autonomous service because of the difference like each problem which 
leads to the different decision model. In Fig. 8. The “smart water resources manage-
ment DSS” is expanded to its related decision problems. For example, the problem 
of finding the optimal design of flexible water distribution and the problem of fore-
casting water demand. In Fig. 9, the “smart aging water infrastructure” is expanded to 
its related decision problems. For example, the problem of monitoring aging infras-
tructure and the problem of detecting and locating leakages in the water supply 
network. 

Fig. 7 The expanded view of DSS for smart wastewater
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Fig. 8 The expanded view of DSS for smart water resources 

Fig. 9 The expanded view of DSS for smart aging water infrastructure
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5 Conclusion 

The smart water management system is one of the essential components of the smart 
environment that optimize water consumption and reduce the environmental effects 
of water use on the environment. This chapter proposed an integrated, flexible, and 
cost-effective DSS for solving the decision problems of the smart water manage-
ment system. The proposed DSS is cost-effective as the concept of a cloud-native 
system drives it. Besides, it is flexible in dealing with different decision problems 
and solutions. 
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The Role of Artificial Intelligence 
in Water Management in Agriculture 
for Climate Change Impacts 

Wessam El-ssawy, Ashraf Darwish, and Aboul Ella Hassanien 

1 Impact of Artificial Intelligence on Environmental Issues 

1.1 Global Warming and Artificial Intelligence 

AI is now considered a significant study topic to handle the majority of the present 
environmental sustainability concerns due to the global environmental issues of the 
twenty-first century [11]. The flood of information has been substantially magni-
fied by the processing of digital data from humans to machines. There has been a 
considerable advancement in information and communication technology (ICT) that 
will benefit farmers and stakeholders alike in management applications of digital 
farming. Promoting fresh technology solutions into remote areas [44]. AI ideas and 
programming paradigms are used by multi-objective intelligent systems to provide 
solutions to harmonic optimization issues [45]. Since the development of multi-target 
particle swarm optimization two decades ago, this category of mathematical models 
has gained popularity [8]. 

AI algorithms can alter data and extract useful information from it, which can 
help people make wise decisions. By introducing new concepts and techniques like 
machine learning (ML), natural language processing (NLP), machine vision (MV),
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artificial neural networks (ANN), etc., problem-solving and automation are made 
very simple. According to Jha et al. [21], ML and ANN are the most often used 
methodologies in research on automated agriculture. ML algorithms allow for the 
use of both labeled (supervised learning) and unlabeled (unsupervised learning) data. 
Follow connected processes using supervised learning. Modern automated farming 
systems mainly rely on ANN, which performs well in challenging categorization 
tasks. Biological neurons served as an inspiration for the layer-based construction 
of the ANN. They study the non-linear complicated relations using geometry. Deep 
learning-based computer vision technology. It has made enormous progress and 
performance demonstrated exemplary in image segmentation, discovery, classifica-
tion, and retrieval-related tasks, thus the interest in reviving the scientific community 
in ANNs [7, 20]. These ANNs are commonly used in agricultural automation and 
are typically built based on Convolutional Neural networks (CNN) [7, 20]. 

ML is widely used in research to evaluate the quality of water by predicting models 
based on optical water properties. These models are very helpful in reducing time 
losses and simplifying irrigation system control so that manual irrigation systems 
can be replaced by automatic irrigation systems. So, the maintenance will be done 
when it is most appropriate. One of the most crucial benefits of using a regression 
model is the ability to use a straightforward laser device to measure one optical or 
physical parameter and then predict the regression of other parameters, saving time 
and money spent on expensive laser devices to measure the three optical properties 
(reflection, transmission, and absorption). The models used include support vector 
machine (SVR), multiple linear regression (MLR), random forest (RF), and XGBoost 
(XGB) [9]. Contrarily, certain phenomena like climate change, a lack of water, and 
overuse of fertilizers necessitate a more effective use of resources in the agricultural 
sector. Under shifting hydro-climatic conditions, agro-ecosystems must be reoriented 
to achieve rising socio-economic goals while putting less strain on environmental 
resources [39]. 

Numerous risks are posed by the effects of climate change, and changes in the 
amount and quality of water resources and agriculture yield are among them [13]. 
Several pieces of data that show how much humans are affecting the Earth’s climate 
make climate change more certain than ever. Along with a rise in sea level, a rapid 
decline in Arctic Sea ice, and other climate-related changes, the atmosphere, and 
oceans have warmed. The impacts of climate change on people and the environment 
are becoming more obvious. Wildfires, heat waves, and unprecedented floods have 
caused billions of dollars in damage. In reaction to shifting patterns of temperature 
and precipitation, habitats quickly change [37]. 

Climate change is a progressive alteration of the climate system brought on by 
both natural and man-made factors. Climate refers to a long-term shift in the state 
of the atmosphere of a certain place or region. Climate change is the result of intri-
cate interactions between the atmosphere, hydrosphere, biosphere, cryosphere, and 
lithosphere, which are all components of the climate system [33]. 

All climate models indicate that the regions where agriculture is produced will 
see more extreme weather, including more heavy rains, storms, and droughts. Such 
severe weather conditions will influence when and where illnesses spread, creating
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serious dangers and possibly leading to crop failure. Because ecological, social, 
and economic systems in emerging nations are already under pressure from factors 
including fast population growth, the expansion of industry, and economic inequality, 
climate change poses an extra burden [28]. 

Natural and man-made causes make up the majority of the causes of climate 
change. Changes in solar activity, volcanic eruption, sea water temperature, ice sheet 
distribution, westerly waves, and atmospheric waves are a few examples of natural 
causes. On the other side, the artificial causes include activities like the emission of 
carbon dioxide from industrial and agricultural production, deforestation, acid rain, 
and the use of Freon to destroy the ozone layer, as well as global warming caused 
by an increase in greenhouse gas production. Science, Technology, and Education: 
PACEST [33]. The term “greenhouse effect” refers to phenomena in which atmo-
spheric elements like carbon dioxide and water vapor shield solar energy that is 
reaching the Earth from the radiation outside the atmosphere, raising the planet’s 
average temperature. The amount of carbon dioxide in the atmosphere could cause 
the temperature to increase [14]. 

1.2 Impacts of Climate Change on Production 

The biggest factor influencing agricultural productivity is climate change. Crop 
growth is anticipated to be directly impacted by potential changes in temperature, 
precipitation intensity, and CO2. With perfect adaptation and sufficient irrigation 
amounts, the overall impact of climate change on the world’s food supply is seen 
as low to moderate [18]. The cumulative effect of carbon dioxide fertilization can 
increase agricultural output worldwide. Climate changes that affect water supplies 
will also have an impact on agriculture [12]. 

Positive effects of global warming include an increase in production due to the 
fertilizing effect caused by an increase in carbon dioxide levels in the atmosphere, 
an expansion of the areas available for the production of tropical and/or subtropical 
crops, an increase in two-crop cultivation due to an extension of the planting season, 
and a decrease in crop damage. Due to the low temperatures, winterization lowers 
the cost of heating for the growing of crops in protected facilities [25]. 

The harmful effects of global warming, such as decreased crop quality and quantity 
due to a shorter growth period after high-temperature levels; Low sugar content, bad 
coloring, low fruit storage stability; increasing weeds, pests, and insects in yields; 
reduced fertility of the earth due to the accelerated decomposition of organic matter; 
and increased soil erosion due to increased precipitation [25]. In Fig. 1 Positive and 
negative effects of global warming on the agricultural sector [24].
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Fig. 1 Potential effects of global warming on the agricultural environment 

1.3 Effect of Climate Change on Water Management 

Climate change will also have an impact on the water cycle [48]. The possibility of 
salty interference in rivers and groundwater, which can affect the water’s character 
and its potential for use in the home, industrial, and agricultural applications, will also 
increase as the sea level rises. Numerous effects of climate change on agriculture [13]. 
There is now great concern about declining soil fertility, increasing salinity, changing 
the groundwater table, deteriorating irrigation water quality, and resistance to many 
pesticides in northwest India [32]. Additional twisting effects may be increased by 
shifting rates of runoff and groundwater recharge, perturbing water supplies, and 
changes in capital or technological requirements such as irrigation methods and 
surface water storage [1]. The typical topographic features of its high mountains 
cause signs of climate change, such as flash floods, to occur more frequently now 
and with less time to pass between critical water levels and rainstorms. Precipitation 
levels are rising, and the upcoming rainy season will bring more frequent rains [41]. 

Water scarcity is high on the development agenda. In particular, a global map 
depicting water-scarce regions, with statistics on people in water-scarce basins, and 
suggestions for addressing water scarcity, provided geographic context and focus on 
dialogues and development agendas [19]. 

The current lack of adequate fresh water supplies poses difficulties for the sustain-
ability of field projects, particularly with the use of groundwater for irrigation 
consumed in large quantities as these nations are characterized by extremely high 
rates of evaporation and transpiration and soils with low water holding capacity [3]. 

However, more food production will likely mean that agriculture will require more 
water from rain and irrigation. Moreover, there are increasing demands from cities, 
for energy, and on top of that, there are uncertainties caused by climate change. Water 
is likely to become a major constraint to the food production systems of many of 
the world’s breadbaskets. The main question is whether there will be enough water
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to grow the required food [19]. Meanwhile, millions of the rural poor can benefit 
from better water services to support their livelihoods and enhance food security. 
Sub-Saharan Africa has not mobilized water anywhere near the amount needed to 
improve agricultural productivity. Water does not play the role it should in poverty 
reduction and economic growth [19]. 

Egypt consumes 128% of its available water, with 27% of that amount coming 
from imported food and other things. According to the Ministry of Water Resources 
and Irrigation, Egypt would need 20% more water by 2020 to meet demand and 
population growth [15]. The gap between food production and consumption in the 
Near East and North Africa region is constantly widening as a result of the annual 
increases in population growth rates, which also cause a large increase in urbaniza-
tion and slow growth in local food production. There is a pressing need to boost 
agricultural production in Egypt using the available resources, which necessitates 
thorough research and adequate answers to the problems that sustainable agriculture 
in Egypt faces [15]. 

The need for water, however, must rise by 20% (15 billion m3/year) by 2020. 
Water quantity and quality are mutually exclusive. Since the water quality for each 
use of water must fall within a certain range. As a result, the current rate of quality 
degradation will undoubtedly worsen the problem of water shortages or raise the 
expense (i.e., the need for treatment) of using water at levels anticipated in the 1970s 
through 2020 [29]. Except for sugar, wheat, and oils, Egypt is self-sufficient in 
practically all agricultural products. Egypt is now one of the biggest food importers 
in the world, notwithstanding these outliers. The country’s foreign exchange reserves 
are under a tremendous amount of stress as a result of the country’s constantly rising 
agriculture import bill. Early in the 1970s, imports were more than twice as high, 
but since the mid-1970s, the balance has become negative and the gap has steadily 
grown [29]. 

2 Automation and Traditional Farming for Water 
Management 

Agriculture automation is a big rising and problematic issue for any nation. The 
world’s population has grown at a very quick rate, and as a result, there are more 
people and a greater demand for food [21]. Farmers must employ toxic pesticides 
on a large scale to degrade the soil since their traditional methods are insufficient to 
meet the demands that are growing. The area eventually remains fertile and arid as 
a result of this’s numerous implications on agricultural practices [21]. In protected 
agriculture, traditional methods are thought to be highly productive, but their relative 
water use may be high due to runoff and incursion, hence, the efficiency of water 
use may be low. A good farmer may get the same productivity in the soil as in 
soilless farming but using soilless save 50–100% of water as a result of losing water 
from excessive soil irrigation and evaporation from the soil surface. If we consider
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the production per unit of water applied, yields may be increased significantly by 
soilless systems over soil-based systems. To decrease water loss during cultivation, 
a soilless system has been developed from an open system to a closed system [35]. 

a. Closed Systems of Culture to Save Water 

Water scarcity made it necessary to develop ecologically friendly strategies to 
increase water productivity and crop yields [30]. Reduced water and nutrient losses 
to the environment and increased water usage efficiency are the immediate benefits 
of closed systems over open systems. Additionally, because closed systems use a 
minimal amount of substrate. 

b. Open Systems of Culture 

Open systems where surpluses of nutrients and water (approximately 25%), like in 
typical soil farming, are supplied but can become waste (Fig. 1). Many technologies 
are similar and have been developed by employing a range of inert media such as sand, 
vermiculite, perlite, and pumice. This technology’s attraction can be described as 
being the same strategy of using soil as a growing medium. The substrate’s inertness 
and substantial water-holding capacity are its two most significant qualities. To avoid 
plant stress, the substrate must maintain an adequate quantity of nutrients and water 
[30]. 

Therefore, ways and techniques which can contribute to improving the efficiency 
of water use and productivity deserve close study such as the soilless culture technique 
[3]. 

3 Artificial Intelligence and Soilless Culture for Facing 
Climate Change 

Soilless culture is a cutting-edge method of growing plants that feed nutrient solutions 
onto an inert organic or inorganic substrate. It is most likely the most intensive farming 
approach for commercial greenhouse vegetables, where every resource is utilized to 
its fullest potential to enhance crop yield. For the production of high-value vegetable 
crops, several researchers have explored greenhouse soilless culture as an alternative 
to conventional field cultivation. By adjusting weather, the amount and make-up of 
the fertilizer solution, as well as the growth media, this protected growing system 
can control the growing environment. As a result, when compared to traditional soil 
cultivation, the quality of horticultural crops developed by soilless culture is much 
higher . 

Gaining a sufficient output that satisfies consumer demands and quality inter-
ests will be the driving force behind the future of the agricultural industry. In envi-
ronmental controlled agriculture, the soilless culture system is frequently used to 
improve growing in open spaces and to prevent problems with the soil’s water 
and nutritional status. The closed-loop approach now prevails in soilless culture,
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which previously used an open-loop method. Closed systems are proven to produce 
better results when it comes to maintaining crop quality and maximizing water use 
efficiency [35]. 

With the help of this artificial growing medium, plants can develop more quickly 
with the help of water, nutrients, and mechanical support. Hydroponics has been used 
commercially on occasion to grow both food and ornamental plants all around the 
world over the years. It is now a widely accepted methodology for plant biological 
research across several disciplines. Over time, the pure solutions culture has seen 
many changes all over the world. In a soilless culture method, sand and gravel are 
primarily utilized to support plants and help them store water and nutrients. Due to 
their distinct properties of moisture retention, aeration, leaching or action of capillary, 
and reusability, other substrates were subsequently developed. Comparing soilless 
culture media to an open field, soilless culture media is more manageable and may 
provide a better development environment for the plant (in terms of one or more 
characteristics of plant growth). 

In soilless crops, plant roots can be grown either directly in nutrient solutions 
without any solid stage or in porous media (substrates) and irrigated often with 
nutrient solutions. It has recently been the standard cultural practice to fertilize plants 
with nutrient solutions to increase crop nutrition (fertilization or liquid fertilization). 
Therefore, the only characteristics of soilless crops that set them apart from crops 
produced in soil are their very constrained volume and uniformity of the rooting 
medium [40]. 

3.1 Necessity of Hydroponics 

Because farming may be done in parched deserts and harsh environments, hydro-
ponics can be advantageous (Turner). Due to the controlled atmosphere, growth in 
such situations can be accomplished via greenhouses or indoor culture. With 9.6 
billion people on Earth by 2050, there will be less land available for food produc-
tion [16]. To help feed the world’s growing population, we will need to create new 
agricultural technology. Cities are growing and urbanizing the land quickly, which 
will help to support the research of and use of hydroponics methods since they don’t 
require soil [16]. Around the world, hydroponic agricultural output has considerably 
expanded in recent years. Additionally, more effective use of fertilizers and water 
will be permitted, and pests and climatic conditions will be better controlled. Addi-
tionally, the production of crops using hydroponics is improving crop quality and 
yield, which boosts competition and economic incomes [26]. The nutrient solution 
is one of the most crucial predictors of crop output and quality among the parame-
ters influencing hydroponic production systems. Soilless culture is always one that 
uses hydroponics, but not all soilless farming does. Less than 1/10 to 1/5 as much 
water as soil-based farming is used in hydroponics. Plants can be raised either in a 
natural nutrient solution or on sterile surfaces devoid of microorganisms [26]. The 
following are some reasons why soilless farming is significant: absence of soil-borne
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pathogens, a secure substitute for disinfecting the soil; Providing equal amounts of 
nourishing sandy water to plants reduces waste and brings the environment closer 
to ideal growing conditions; There is a chance that soilless farming will enhance 
production. 

The ability to grow greenhouse crops with high productivity and good quality 
even on saline or wet soils or on soils that aren’t suited for farming due to their weak 
structure (representing the majority of the world’s arable land); A potential increase 
in crop yield of more than 10 times; a rise in the early yield of crops cultivated during 
the cold season as a result of daytime temperatures being high in the zone of roots; by 
environmental regulations (such as controlling or eliminating the leakage of nutrients 
from greenhouses into the environment and minimizing the usage of fertilizers). 
Therefore, building indoor soilless culture systems in greenhouses is required by 
law in several nations, particularly in places with controlled environments or those 
with restricted water supplies [30]. 

3.2 Benefits of Hydroponics Systems 

Currently, hydroponics is a good installed type of agriculture. It has been rapid, 
and the results applied in many countries have proven to be practical and to have 
very specific benefits over traditional farming ways. The main advantage of growing 
plants without soil is, firstly, a much higher crop yield, and secondly, the ability to use 
hydroponics in locations where conventional farming or gardening are impractical. 
Additionally, there are additional benefits that are detailed below [34]:

• Compared to crops produced in open fields, less space is needed to produce the 
same amount of food, and the growth period must be shortened. Because there is 
no mechanical interference with the roots and all nutrients are readily available 
to the plant, plant growth is accelerated.

• Labor and maintenance will be reduced because the intercultural process is almost 
absent or very less, and fertilizing and watering are automated.

• Conservation of water is the biggest benefit. Hydroponics saves incredible quan-
tities of water because it is using less than 1/20 of the quantity a typical farm uses 
to produce the same amount of production. Water logging isn’t happening.

• Saving money by recycling nutrient solutions. In the case of hydroponics in the 
closed system, the nutrients are recycled thus preventing the loss of nutrients and 
avoiding soil pollution. Large volumes of water can be recycled after aeration and 
disposal of hypoxic conditions.

• Decreasing problems of Pest and disease became easily controlled.
• Crops that are grown in hydroponics avoid soil-borne pests.
• We can control the system and the root environment of plants like root zone 

temperature, humidity, darkness, etc.
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• Higher productivity can be achieved because the number of plants per area is 
more than compared to traditional farming and the products can be achieved over 
a long period of crops.

• Excellent production quality, saving money, and increasing incomes.
• A Virginia hydroponic farmer has developed a head of lettuce enriched with 

calcium and Increasing incomes. Some plants can be enhanced through the season 
which can bring maximum income to the farmers.

• Besides being a commercially useful technology, hydroponics is also a standard 
technology used in biological research and teaching [34]. 

3.3 Problems of Hydroponics 

Although there are several advantages of hydroponics over traditional farming, there 
are also some problems:

• Higher setup cost,
• Farmers need the skill and proficiency to achieve higher production in commercial 

applications,
• Since every plant in a hydroponic system shares the same micronutrients, diseases 

and pests can easily affect every plant,
• Plants have a faster reaction for changing in the environment, however, if this 

change is for the worse, then plants will react to it quickly; Shows signs of 
deficiency or trouble,

• Higher temperature and low oxygen may reduce productivity and can lead to crop 
losses [34]. 

3.4 Classification of Soilless Culture Systems 

The type of soilless culture (synthetic, nutrient solution, organic medium, or a mix) 
and hydroponics, in which the roots are partially or submerged in a nutrient solution, 
are the two categories into which soilless cultures are typically classified. For several 
reasons—differences in the supply of nutrients throughout the system of delivery, 
variation in plant growth and consequent differences in nutrient uptake rate, (often 
scarce) irrigation water quality—The number of nutrients and water supplied must 
be greater than what the crop needs. All plants are properly fed by an abundance of 
nutrients and water, and leaching prevents excessive salt concentration and unneces-
sary minerals (like sodium) at the root level. Soilless systems are also classified in 
terms of leachate management (filtered solution) as either open-loop or closed-loop 
systems [40].
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3.4.1 Water Culture or Hydroponic Systems 

The Greek terms hydro and panic, which together indicate “working in water,” are the 
root of the English phrase hydroponics. Instead of using dirt, hydroponics uses the 
nutrient solution to produce plants. The words “hydroponics,” “hydroponics,” “food 
cultivation,” “soilless culture,” “soilless cultivation,” “pond farming,” and “chemical 
cultivation” are all used to refer to this method of growing plants. A person who 
uses hydroponics is referred to as a hydroponic scientist. With or without the use of a 
support medium (such as sand, gravel, wormwood, Rockwool, perlite, moss, coconut, 
or sawdust) to provide mechanical support, hydroponics is a method for growing 
plants in nutrient solutions (fertilizers that contain water). There is no additional 
supporting medium for plant roots in hydroponic systems. Systems with a substrate 
have a robust support medium. Because runoff originates from treated soil and little 
water is lost through evaporation, it does not affect our environment. In areas affected 
by drought, it will be quite helpful. The very porous nature of this aqueous medium is 
intended to provide ideal water and air retention. Healthy breathing strengthens the 
roots of plants. The plants in this hydroponic system will receive top-notch, balanced 
nutrients [27]. 

Deep water culture or hydroponic systems include a bucket filled with nutrient 
solution, covered with a net and cloth and a thin layer of sand (1 cm) placed for 
supporting plants. Float hydroponics plants have been grown on foam floating in 
solution nutrient tanks. NFT is a Nutrient Film Technique, where a very thin nutrient 
solution layer is flowing in watertight channels [40]. 

Nutrient Film Technique (NFT) 

In general, channels have a rectangular or triangular section and are lined with a 
variety of plastic materials, including polyethylene, polyvinyl chloride (PVC), and 
polypropylene. To maintain a thin fluid flow, the channel’s base may be flat and not 
curved. The inlet flow rates vary between (1 and 3 L) per minute depending on the 
yield and channel size (2–9 L m−2 h−1). For crops like lettuce, low water flow rates are 
preferred; for fruiting vegetables, greater rates are preferred. Additionally, a contrast 
can be seen between the flow rates needed for a young crop (e.g., 2–4 L m−2 h−1) and 
the finished crop (e.g. 5–9 L m−2 h−1). When flow rates fall outside of this range, they 
are usually often indicative of either nutrition or oxygen deficiency, or of fast flow 
rates that cause the water to become too deep and reduce root oxygenation; Nutrient 
deficits are the result of too much-delayed production, especially for plants that 
are downstream and exposed to water from other plants that have already absorbed 
minerals, particularly nitrogen and potassium. The length of the pipe affects how 
quickly minerals are depleted along it. As a general rule, pipes shouldn’t be longer 
than 12–16 m. Super Nutrient Film Technology (SNFT), a modified technology, 
has been enhanced to prevent these issues. The nutrient solution is disseminated by a 
fogger installed along the channel, ensuring optimal availability of both nutrients and 
oxygen close to the roots [40]. A constant stream of the mineral solution is pumped
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into growth channels (often tubes) in Nutrient Film Technique (NFT) systems, passes 
through the roots of the plants, and then is discharged back into the tank. Typically, 
the plant’s roots are hung in the nutrient solution and it is supported by a thin net 
or sturdy basket. NFT systems are prone to power outages, pump failures, and roots 
dry out quickly when the solution of nutrient flow is stopped [17]. The NFT system 
is designed to maintain adequate aeration of the roots by growing the plants in a thin 
layer of nutrient solution and can suffer from deficient O2 concentrations due to the 
consumption of roots and microorganisms. NFT recycling has become the standard 
approach being studied for potato production [6]. 

A. Nutrient Solution in NFT 

The nutrition film method (NFT) uses a very thin stream of water that contains all 
the nutrients and minerals needed for plant growth. It recycles the water from the 
irrigation tank while passing through the bare roots of the plants and into watertight 
channels. The “nutrient layer” is the term used to describe the very thin recirculating 
stream depths that are more than just a water coating. This ensures that, despite the 
presence of moisture in the air, the thick root will remain at the bottom of the canal 
and that there will be an adequate supply of oxygen for the plant roots. An NFT 
system must have a suitable channel length, slope, and flow rate to be effectively 
designed. The NFT system’s key advantage over other types of hydroponics is that 
the plant roots are exposed to an adequate quantity of water, oxygen, and nutrients. 
These advantages lead to the maximum yield and highest-quality harvest in a little 
period after planting. NFT has one drawback—it can’t keep water in the channel— 
but overall, it’s one of the most successful approaches. All conventional NFT systems 
share the same design characteristics. Slopes between 1:30 and 1:40 are suggested 
along the channels. This will permit some surface irregularity, even though there may 
be slopes, puddles, and waterlogging. Each groove’s flow rate should be 1 L/min. 
When we are planting, the rate may be as low as 0.5 L/min, but 2 L/min seems to 
be the maximum. Rates of flow that are higher than these extremes are frequently 
linked to dietary issues. If the channel length is greater than 10–15 m, plant growth 
rates won’t be as rapid [34]. 

A continuous 24-h recirculation state is maintained for the delivery of the nutrient 
solution (watering and drought periods to enhance oxygen of the root system). The 
continuous circulation of the nutritional solution throughout the day is another alter-
native between these two methods (from morning to afternoon) and automated closed 
at night. However, if the solution of nutrient recycling is sporadic, the tank capacity 
should be huge enough to allow all of the solutions of nutrients included in the system 
when the irrigation cycle operating is shut down. Before transplanting, the channels 
may be covered with a 0.15–0.25 mm black on white polyethylene film, the film 
will be placed where the white side faces out (to reflect light and avoid intensive 
heat for roots and solution of nutrient) and the black side will be inside (for avoiding 
transmission of light and consequential on it from the evolution of algae). Plants 
must be modified for use in NFT systems and are placed in pots, small plastic cups, 
or Rockwool cubes. Once a substantial root system has developed, the cups are then 
inserted into the pipes [40].
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B. Advantages of Nutrient Film Technique 

The key advantages of this growing method over a static culture system are its ease 
of operation and the ability to regulate temperature and nutrient concentrations in a 
big storage tank that is feeding thousands of potential plants [34]. The advantages of 
NFT over other systems are the lack of substrate and the small number of solution 
minerals needed, which leads to significant water and fertilizer savings and lower 
environmental costs and substrate disposal consequences. On the other hand, because 
there isn’t much water, the nutrient solution is subject to temperature changes along 
the pipe and throughout the growing seasons. Additionally, NFT has some protec-
tion against disruptions in the supply of nutrients and water. The NFT system can 
technically be used to plant most types of crops, but it works best with those that 
have a short growing season (30–50 days), like lettuce, because the plants will be 
ready for harvesting before the root mass fills out the canal [40]. 

Aeroponics 

Hydroponic methods include aeroponics. The Latin roots of “aero” (for air) and 
“panic” are where the name “aeroponic” originates (work). Plant culture in the air 
is referred to as aeroponic. This kind of situation is natural [27]. The roots in this 
system will intermittently be fogged with fine water and nutrient solution droplets in 
the form of a nutrient solution fog while suspended in the air in a closed box. This 
approach does not call for a substrate. Plants are transplanted with suspended roots 
in a growth environment that regularly mists the roots with micronutrients. Excel-
lent ventilation is one of the key advantages of the aeroponic approach. Although 
aeroponic farming methods are thought to be extremely effective in breeding, they 
have not yet been implemented on a commercial basis. Additionally, plant research 
in laboratories frequently employs aeroponics. NASA pays particular attention to 
aeroponic techniques since they are easier to apply in a zero-gravity environment 
where there is fog than they are with liquids [34]. 

Vertical Farming Systems (VFS) 

The basic idea of vertical farming is to grow more food on a less amount of ground. 
Cultivation can be done for the same reasons that we can stack homes and offices on 
scarce and expensive land, like in Hong Kong or Manhattan. Supporters of the vertical 
farm assert that it would develop small, self-sufficient ecosystems that will serve a 
variety of purposes, from food production to waste management. By enabling effec-
tive and ecological food production, vertical farming will boost the economy, reduce 
pollution, create new jobs, rebuild ecosystems, and provide access to wholesome 
food. Crops will be less susceptible to the whims of the weather, pest infestation, 
nutrient cycle, crop rotation, pollutant runoff, pesticides, and dust in a controlled 
environment. As a result, indoor farming can result in better food growing in an ideal
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setting. Indoor farming may potentially offer higher production and more substantial 
returns due to its year-round operation and independence from weather conditions. 
Additionally, indoor farming offers a low-impact solution that can drastically save 
travel expenses and greenhouse gas emissions by shortening trip distances between 
farms and the neighborhood market. Additionally, vertical farming can boost regional 
economies by giving metropolitan areas much-needed “green collar” jobs [4]. To 
increase crop output per area unit of cultivated land, Vertical Farming Systems 
(VFS) have been proposed as a novel engineering technology. VFS expands crop 
production to vertical spaces, improving the use of land for crop production. The 
construction of tall food-producing structures involves the large-scale installation of 
vertical farming, which entails stacking growing rooms, such as greenhouses, and 
chambers that provide a regulated climate, on top of one another. Vertical farming 
systems (VFS), which operate on a smaller scale, can use the same reasoning [46]. 

Strawberries are grown without soil to meet the year-round increase in demand. 
The creation of innovative production techniques and support structures that can 
compete with conventional farming in terms of costs and profits will be essential for 
the advancement of soilless growing. The strawberry plants’ growth and production 
are influenced by the kind of containers used and how they are arranged inside the 
playhouse. To produce strawberries using the greenhouse volume, a vertical produc-
tion system must be set up (Verti-Gro system). However, the lower parts’ subpar envi-
ronmental conditions hurt plant growth and yield. Commercial aquaculture systems 
are used to raise high-value crops in nations including the USA, Japan, Australia, and 
Italy. The technology reduces the amount of global warming and promotes energy 
efficiency [32]. 

To increase crop productivity while using less land, these systems of growth extend 
crop productivity into the vertical dimension. Examples of VFS include the use of 
vertical columns, vertically suspended growth bags, conveyor-led stacked growing 
systems, A-frame designs, and the plant-plant method. Although crop productivity 
has been determined through these researches, there have been some direct compar-
isons with horizontal systems that use similar cropping densities, and there is 
little information on whether vertical column systems are a practical alternative to 
horizontal crop production systems [46]. 

Furthermore, earlier yield comparisons between VFS and conventional hori-
zontal systems have confused the trend of crops with other parameters. For instance, 
compared to traditional soil cultivation, VFS has been shown to enhance output by 
129–200% and profit by 3.6–5.5 US dollars/m2. However, VFS employs a soilless 
growing medium, therefore invalidating the comparison. Similar to how strawberries 
produced in column VFS reported much higher yields than those grown in standard 
growth bags and multi-level VFS, but no details were supplied due to the root zone 
size of the growing systems [46].
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3.4.2 Substrate Culture 

Agriculture based on the substrate is a good replacement for the soil-based tech-
nology used in the nation. Utilizing various organic and inorganic substrates enables 
plants to better absorb nutrients and to grow and develop to the point where water 
and oxygen retention is improved. However, many substrates include a variety of 
chemicals that may have an indirect or direct impact on plant development [2]. Thus, 
selecting the optimum substrate from a variety of materials is crucial for maximizing 
plant productivity. The creation of substrates for soilless farming is a result of the 
difficulty and expense of controlling pests and diseases brought on by soil, soil 
salinity, a lack of fertile soil, a lack of water, a lack of space, etc. [2]. The properties 
of various growing media materials demonstrate direct and indirect effects on plant 
growth and productivity. When choosing substrates, several technical and financial 
variables are taken into consideration. Sand or gravel was initially utilized, but subse-
quently, ingredients like peat, vermiculite, and perlite became more popular. Plant 
protection issues with soil-borne infections and environmental rules against pesticide 
and nitrate contamination of groundwater are the driving forces behind replacing soil 
as a growing medium [2]. 

3.5 Coupling Between Artificial Intelligence and Soilless 
Culture 

The Internet of Things can be used to automatically operate hydroponic systems, 
and ML, a subset of AI, is extremely helpful in this field of agriculture. However, 
less research has been done on the use of ML in hydroponic systems to automate 
plant development [5]. Several methods for assessing crop productivity that deviates 
from standard methods have recently been developed, including simulation models of 
process-oriented crops, statistical models for analyzing crop yields, and explanatory 
factors [27, 22]. Due to their easier computation and interpretation of higher power, 
traditional statistic-based methods or functions of specific responses that link yield 
and independent variables provide an alternate technique to yield prediction [36]. 
However, due to their limited ability to generalize to other regions and their focus 
on applying to local conditions, traditional empirical regressing models have certain 
drawbacks [10, 36]. Although ML is a “black box” with complex operations, it 
can manage complex interactions between independent and dependent variables [6, 
23]. In recent years, ML approaches have been used in various areas of agricultural 
research, including crop classification, growth monitoring, and production prediction 
in some nations [38, 43, 47]. 

Because establishing a hydroponic system has a large upfront cost, it is crucial to 
use ML models to predict crop productivity before installing the system. The best 
model scenarios will assist us to define the ideal system. As a result, this may be 
accomplished by applying ML models to estimate the yield and weight of plants
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under available conditions for input scenarios consisting of combinations of input 
variables [31]. 

3.6 Interaction Between Water Management and Soilless 
Culture 

Irrigation control ensures that the plant’s identical nutrient solution supply requires 
items at all times, but to control plant growth (e.g., productive or vegetative) other 
treatments are needed. Especially in long-season crops like tomato, which is a perma-
nently harvested crop, there must be a physiological balance between vegetative 
growth and generative growth. Plant treatments are necessary until the delicate flow-
ering 15. For cucumbers, new varieties have been bred that can independently regulate 
the formation of fruits. There is a ‘source equilibrium’ for the representations of each 
plant between the leaves as the source and troughs, such as the plant apex, flower, 
fruit, and finally roots [42]. Modern greenhouse production systems can be described 
as either soilless or sol-based, the latter of which is usually found in arrangement 
processes. By creating and putting into place technologies that provide growers more 
control over the crucial root zone than is achievable in the soil, growers are on a trend 
to improve root conditions for the crop. The public views hydroponic systems as 
hydroponic systems without solid media and hydroponic systems as soilless produc-
tion systems. The root zone, the aerial organs of plants, the irrigation system that 
supplies the root zone with a nutrient solution, and the drainage system that handles 
runoff are all parts of a hydroponics production system. In hydroponics, irrigation 
systems replace the various elements that are held in the root zone and then massively 
inflow these materials through the channel [42]. 

4 Conclusion 

All over the world face climate change and its impacts on all countries such as 
decreasing of oxygen and water resources and water quality and quantity in agricul-
ture. On the other hand, agriculture consumes the most quantities of water resources 
of any country. Furthermore, population growth needs more quantities of food and 
water. Therefore, it was necessary to work on developing new techniques of agri-
culture to save water and produce crops. Hydroponics is one of the new techniques 
to save water, increase productivity, and promote oxygen production, which is the 
growing of plants without soil. To get more benefits from hydroponics and save 
more water, hydroponics will be coupled with AI. There are many forms of coupling 
between hydroponics and AI such as ML, deep learning, machine vision, and the 
internet of things. Many types of research on ML and deep learning were conducted
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to predict conditions, productivity, water quality, and water use. Furthermore, the 
internet of things can be used in hydroponics to control greenhouse systems. 
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The Influence of Climate Change 
on the Re-emergence of Malaria Using 
Artificial Intelligence 

Yasmine S Moemen, Heba Alshater , and Ibrahim El-Tantawy El-Sayed 

1 Introduction 

Natural internal processes, external forcing, and persistent anthropogenic changes 
in atmospheric composition and land use can all be implicated in climate change. 
The term “climate change” refers to a long-term, statistically significant shift in the 
climate’s mean or variability, which can be traced to various natural causes [1]. 

Because of the tangled web of causality connecting malaria and global warming, 
there are still numerous doubts about the mechanisms at play. Climate change will 
increase the risk of malaria transmission in areas where the disease has previously 
been prevalent, where the disease has been successfully controlled, and in new areas 
where the disease has not previously been prevalent. Malaria-carrying mosquitoes 
may be increasing at higher elevations due to rising temperatures, rainfall, and 
humidity levels. This will lead to an upsurge in the spread of malaria in previously 
unrecognized areas [2]. Warmer temperatures will accelerate the parasite’s life cycle 
in mosquitoes at lower elevations, where malaria is already a concern. This will lead 
to an increase in disease spread and a consequent rise in disease burden [3, 4]. 

Certain diseases spread by mosquitoes are associated with increased risk during 
the El Nio cycle. Malaria, dengue fever, and Rift Valley fever are all examples of these
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diseases. The El Nio cycle is influenced by climate change. The hatching conditions 
for mosquitoes can be enhanced even in dry areas by prolonged periods of heavy 
rainfall. Drought and increasing humidity can turn rivers into a maze of stagnant 
ponds, which is where mosquitoes prefer to lay their eggs [5]. By washing away 
mosquito breeding grounds, heavy rains can reduce the prevalence of malaria in 
several parts of the world. Due to El Nio-related droughts, the number of malaria 
cases reported in Colombia and Venezuela rose by more than one-third. Before the 
usage of DDT, a synthetic agricultural pesticide used in limiting the life cycle of 
malaria, there was a rise in the danger of malaria in Sri Lanka due to the failure of 
monsoons. The failure of monsoons elevated the risk of malaria by a factor of three. 
As a direct result of the region’s abnormally heavy rainfall, malaria epidemics have 
recently hit several Southern African countries [5]. In 1996, western and northwestern 
India saw a rise in rainfall, which increased the number of malaria cases. There was 
less rainfall and a drop in the number of malaria cases in the same region in 1998 [6]. 
It is possible that the El Nio cycle’s change in melanogenic capacity can contribute 
to epidemics of malaria in the long term. 

Malaria transmission may become more difficult to track due to climate change. 
Variables such as population and demographic dynamics, resistance to drugs or 
insecticides, and human activities like deforestation, irrigation, and swamp draining 
all have a role in malaria transmission. In addition, climate change could have other 
consequences, such as increased susceptibility to malaria. For example, societal 
decline and economic loss could be exacerbated by health-related consequences. 
An individual’s inability to seek early diagnosis and treatment and participation in 
disease control measures like insecticide spraying might contribute to a greater spread 
of disease. Models have shown how much more cost-effective it would be to avert 
climate change by reducing carbon dioxide emissions than to use other methods of 
reducing malaria transmission. Environmentally friendly DDT sprays, mosquito nets, 
and subsidies for modern combination treatments might save an estimated 78,000 
lives a year if carbon emissions are reduced by one life saved each year [7]. 

Two of the most essential parts of the World Health Organization’s plan to battle 
malaria since it was first established in 1992 are surveillance and preparation (WHO). 
Another focus has been on the eradication of risk factors for disease, such as early 
diagnosis and speedy and effective treatment, as well as the development of the ability 
to prevent and control epidemics [8]. Artemisinin-based treatments for malaria, 
insecticide-treated bed nets for malaria prevention, and dipsticks for malaria detection 
were all launched in the 1990s. These advancements, along with new initiatives like 
the WHO’s Roll Back Malaria campaign, the Global Fund to Fight AIDS, Tubercu-
losis, and Malaria creation, and the inclusion of malarial indicators in the Millennium 
Development Goals, have led to a renewed interest in malaria prevention and treat-
ment. All of these steps ensured that prevention, early detection, and treatment of 
instances, as well as capability development, were given top consideration. 

The Global Malaria Action Plan includes several objectives, one of which is 
eradicating malaria from particular countries [9]. A handful of countries have made 
significant progress in eliminating malaria over the past few years. At least eight to 
ten countries in the elimination stage are expected to be free of locally transmitted
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illnesses by 2015. According to current predictions, countries in the pre-elimination 
stage will be eliminated by 2015. There have been no locally acquired cases in 
Armenia, Egypt, or Turkmenistan for more than three years and now they are in 
the phase of preventing the return of malaria in these countries. The Global Malaria 
Action Plan’s objectives are in line with this. This transition from pre-elimination to 
nationwide elimination occurred in Azerbaijan, Georgia, Kyrgyzstan Tajikistan, and 
Turkey by the end of 2009, all of which are located in Europe’s European Region at 
WHO.com [10]. 

This chapter is organized as follows. Section 1 presents Introduction; Sect. 2 high-
lights related work; Sect. 3 provides the basics and background for malaria disease; 
Sect. 4 describes the role of machine learning in medical applications and SubSect 4.1 
display the importance of machine learning for detecting malaria disease; SubSect 
4.2 presents problems and challenges for malaria detection using machine learning. 
Section 5 concludes this chapter. 

2 Related Work 

Several climates- and weather-sensitive diseases, such as malaria, are transmitted by 
mosquito bites. Mosquito populations can explode and spread diseases when excep-
tional circumstances exist, such as severe rain. Malaria is most prevalent in sub-
Saharan Africa, including Burkina Faso, Mali, Niger Republic, Nigeria, Cameroon, 
and the Democratic Republic of Congo (DRC) [11]. Precipitation, humidity, radi-
ation, temperature, and atmospheric pressure are all climate variables that can be 
affected by climate variability [12]. Much work hasn’t been done on predicting 
malaria incidence based on climate using machine learning (ML). None of the studies 
have looked at these particular nations in Sub-Saharan Africa. Another research 
describes a decision support system based on ML that uses climate variability to 
divide malaria incidence into high and low target groups [13]. 

Malaria dynamics and distribution in central highland regions remain contested 
due to rising global temperatures. A 27-year study in the Chinese island province 
of Hainan looked at the spatiotemporal heterogeneity of malaria and its relationship 
to climate change [14]. Five statistical and dynamical malaria impact models were 
compared using bias-corrected temperature and rainfall simulations from CMIP5 
climate models for three future periods (the 2030s, 2050s, and 2080s) [15]. 

Several studies point to the possibility that climate change could lead to an increase 
in the number of cases of malaria in areas with lower average temperatures and 
marginal transmission rates. The effect of rising temperatures in warmer locations, 
where conditions currently enable endemic transmission, has gotten less attention 
than it should have. We investigate how increases in temperature from optimal condi-
tions (27–30 °C and 33 °C) interact with realistic diurnal temperature ranges (DTR: 
0 °C, 3 °C, and 4.5 °C) to affect the ability of key vector species from Africa and 
Asia (Anopheles gambiae and A. stephensi) to transmit the human malaria parasite, 
Plasmodium falciparum [16].
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In a recent study, The VECTRI model was evaluated (VECtor borne disease 
community model of ICTP, TRIeste) in Senegal, which attempts to understand better 
the link between malaria transmission and climate conditions at a national level. 
Vector and parasite life cycles are simulated using a grid-distributed dynamical model 
coupled to a basic compartmental model. An illustration of illness progression in a 
human host based on the SEIR model was introduced in [17]. 

In another work, malaria cases from 2004 to 2016 were obtained from the Chinese 
Center for Disease Control and Prevention as climate parameters were obtained 
from the China Meteorological Data Service Center. Monthly malaria cases for four 
Plasmodium species (P. falciparum, P. malariae, P. vivax, and other Plasmodium) and 
monthly climate data were collected for 31 provinces. The researchers only looked at 
the big picture. They didn’t use any private information in that research [18], where 
the re-emergence of malaria cases was predicted using the long short-term memory 
sequence-to-sequence (LSTMSeq2Seq). 

3 Basics and Background for Malaria Disease 

More than one billion people across Africa, Asia, and Latin America are infected 
with malaria, the world’s most deadly tropical mosquito-borne parasitic illness. Every 
year, the disease takes the lives of approximately 1 million people [19]. Every United 
Nations member state has agreed to a set of goals known as the Millennium Devel-
opment Goals (MDGs). It will be much easier to achieve these objectives if malaria 
damage is minimized [19]. The mosquito’s lifespan, the mosquito’s development of 
malaria parasites in the mosquito, and the subsequent transmission of malaria are all 
affected by changes in climate, such as those in temperature, rainfall patterns, and 
humidity. Due to the fact that mosquitoes serve as the principal vector for the spread 
of the illness [20]. The earth’s average temperature has risen throughout the last 
century, and since the middle of the 1950s, the rate of warming has increased notice-
ably. Climate change has been linked to a rise in malaria, among other things [21]. 
This rise in mosquito-borne disease transmission is predicted to positively impact the 
spread of the disease and its geographic dispersion [22]. Among the possible effects 
of climate change is a rise in malaria. Malaria has been controlled or eradicated in 
formerly endemic areas in some studies. Still, other researchers have found no link 
between climatic change and the disease’s spread [23–25] or re-emergence in previ-
ously endemic areas in other studies [26, 27]. Other studies report that there is no 
association between malaria and climate change [28]. Malaria was once widespread 
throughout Europe, notably in Scandinavian countries. As a result of better social and 
economic conditions, better irrigation and drainage, new farming practices, behav-
ioral shifts, and better health care, the illness was eradicated from Europe in 1975. 
This was accomplished despite the Earth’s rising average temperature [29, 30].
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4 Machine Learning for Medical Applications 

Medical professionals can profit from using ML algorithms in decision-making by 
identifying effective therapies and optimum measures. A support vector machine 
(SVM) has been used in prior studies [31] to forecast the occurrence of malaria 
based on climate data, such as in an early warning system (SVM). Malaria inci-
dence can be predicted using climatic data, and from the free weather and geography 
Application Programming Interface (API), you can get information about tempera-
ture, relative humidity, wind speed, sun radiation and rain [32]. In a study done in 
China, ML algorithms were used that use a mix of many algorithms to finish tasks and 
predict performance better than any single algorithm could. With the stacking method 
of generalisation error reduction they combined predictions from different primary 
learning algorithms, such as temperature, humidity and vapor pressure, as well as 
daily rainfall and moisture levels to predict whether malaria would be positive or 
negative based on meteorological variables such as wind speed and length of sunshine 
[33]. As well as a daily report on clinical data, Thakur et al. [34] employed the vegeta-
tive index, rainfall, and relative humidity to create an artificial neural network model 
for anticipating the occurrence of malaria in India. Following research, scientists 
could make an educated guess as to how many malaria cases there will be in the 
following years. In some parts of the world, ML algorithms can predict when an 
outbreak of malaria will occur, according to their research. In the face of climate 
unpredictability, no single model can be relied upon as the gold standard for malaria 
forecasting because each method has its unique modeling norm that is dependent on 
the behavior of the research area. Figure 1 summarises comparative analyses of the 
available methods.

In Fig. 1, Multiple ML methods are used to examine the influence of climate 
change on malaria transmission. For, SARIMA [35, 36], the model successfully 
predicted the seasonal trend in malaria using periodic or seasonal time-series data, 
even though it is only appropriate for stationary or seasonal processes. ARIMA 
[37], using moving averages, accurately predicted the number of malaria cases in 
Afghanistan. It can also detect and quantify underlying patterns’ influence in time-
series data. Predicted time series data can be easily forecasted using the ARIMA 
model. Non-seasonal data cannot be accurately predicted using this method; Bino-
mial Model [38], In the negative binomial model, climate factors and the rate of 
malaria transmission were accurately connected. There was no consideration of the 
relationship between climate variables and transmission rates in any other part of 
Nigeria or Africa. Data trends can be difficult to discern because this study relies on 
a statistical approach; VECTOR [39], predicts irregularities in the transmission of 
malaria in Uganda using statistical methods. The model uses a statistical model to 
anticipate the exact numbers of malaria transmission in Uganda, which may not be 
perfect for future predictions; SLIM [40], captures uncertainty in data and allows 
malaria to be disrupted by the use of this method. The statistical model used in this 
study solely looked at the relationship between the malaria vector and a climatic
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Fig. 1 Different ML models used to evaluate malaria transmission with climate change

variable; SINTEX-F2 [41], An interpretable and flexible model was used to charac-
terise the non-linear, delayed association between weather and malaria cases. This 
study only looked at precipitation and temperature as two climate variables. As a 
result of these uncertainties, the SINTEX-F2 model’s effects on malaria cases could 
be misclassified; SVM [31], An investigation into the links between several meteo-
rological variables was carried out using the PLS-PM approach. Malaria outbreaks 
may be successfully predicted with the use of ML techniques. The SVM model 
provided the most accurate predictions. The SVM model performs better in high-
dimensional spaces when there is a clear margin of separation between the target 
classes; Ensemble Learning [32], Their findings imply that ensemble models outper-
form standard time-series models in terms of performance; ANN [33], the most 
accurate stacking framework for malaria prediction may be challenging to design 
due to the lack of consideration of all feasible models. A ML technique was utilised 
to uncover complex nonlinear relationships between meteorological variables such 
as temperature, rainfall, relative humidity, and vegetative index for the forecast of
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Khammam district in India. First and foremost, projecting the precise levels of 
malaria could lead to erroneous predictions in light of illness prevalence. 

VECTRI model driven by reanalysis data was used to simulate Senegal’s ento-
mological inoculation rate (EIR) (ERA-5). Climate Prediction Center (CPC) data 
from Africa Rainfall Climatology 2.0 (ARC2) satellites and Climate Hazards 
InfraRed Precipitation with Station data are all used to supplement the daily ERA5-
Land reanalysis rainfall. These other meteorological products include the CPC 
Global Unified Gauge-Based Analysis of Daily Precipitation (CPC) (CHIRPS). 
PNL/Programme national de lutte contre le paludisme au Sénégal) information on 
the frequency of malaria in the country [17]. 

Another ML model used data from 2004 to 2016 to predict the re-emergence of 
malaria cases using a long-short term memory sequence-to-sequence deep neural 
network model. The XGBoost, gated recurrent unit, LSTM, and LSTMSeq2Seq 
models were trained and tested using monthly malaria cases and supporting meteo-
rological data from 31 Chinese provinces. It was then determined how accurate the 
models’ predictions were, using root mean squared error (RMSE) and mean absolute 
error (MAE) [18]. 

This long-term cohort study studied the relationship between temperature and 
malaria transmission in Hainan, China, utilizing a decades-long dataset of malaria 
incidence records from China’s Hainan. The climate data was compiled using data 
from the WorldClim dataset and local meteorological stations in Hainan. Researchers 
used a temperature-dependent R0 model and a negative binomial generalized linear 
model [14] to better understand the relationship between climatic conditions and 
malaria prevalence in tropical locations. 

Both global and regional analyses were conducted on climate suitability, the 
additional population at risk, and additional person months at risk. Projections for 
malaria use five global climate models, each with four emission scenarios (Repre-
sentative Concentration Pathways, RCPs) and one single population forecast. The 
modeling uncertainty of climate change-related estimates of malaria-risk populations 
was also addressed. According to our research, global climate appropriateness and 
the population at risk are expanding despite the many uncertainties [15]. 

4.1 The Importance of Machine Learning for Detecting 
Malaria Disease 

In a recent study [17], The climatic data analysis results were compared. Rainfall in 
Senegal’s latitudinal gradient may be seen in the country’s seasonal malaria transmis-
sion disparity, which is strongly linked to the country’s rainfall. With a one-month 
delay between rainfall and the peak of malaria in Senegal, September and October 
are peak months for mosquitoes. Based on observations and computer calculations, 
malaria cases are expected to drop over time. According to these studies, malaria 
outbreaks are more prevalent in Senegal’s southern region. Thanks to the data offered
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in such studies, it will be easier to tailor national malaria prevention, response, and 
care activities to the specific requirements of Senegalese communities [17]. 

In the latest research [18], the comparison between proposed models, the 
suggested LSTMSeq2Seq model reduced the mean RMSE of the predictions for 
P. falciparum, P. vivax, P. malariae, and other plasmodia by 19.05–33.93%, 18.4– 
33.59%, 17.6–26.67%, and 13.28–21.34%. The average prediction accuracy for the 
LSTMSeq2Seq model was 87.3% [18]. 

According to previous work [13], Using real-world data, a new intelligent system 
can classify shifts in malaria prevalence according to climate variance. Climate 
changes appear to impact malaria incidence in the six countries evaluated in Sub-
Saharan Africa. Thus, the climate attribute that has the greatest effect on malaria 
varies from country to country. Climate variables such as rainfall and solar radi-
ation were found to have a significant impact on malaria transmission in all six 
study locations. Feature engineering, k-means, and hyperparameter optimization 
were all employed to improve the MIC model’s precision. Using the findings of 
previous studies [13, 18], It’s possible to properly plan for future malaria epidemics 
if decision-makers have more information. Each country’s government will be better 
able to identify the environmental factors that lead to high malaria transmission rates 
as a result of this method, which would reduce the prevalence of malaria in that 
country by addressing those causes. This approach. Budgetary considerations can 
be eased by the spread of insecticide-treated nets and malaria medicines as part of 
efforts to eliminate the disease [13]. Secondly, to improve the models’ capacity to 
predict, a larger dataset is needed, especially for cases of malaria that have been veri-
fied and such a dataset should have a resolution equivalent to or finer than the climate 
observations used in the training. Data on verified malaria incidence, possibly in the 
form of time series data that might seasonally stratify crucial seasons for real-time 
prediction, is an important aspect of the future effort. 

According to new research, an annual peak in Hainan has been found to occur 
earlier in the central highlands and later at lower elevations this year. Model results 
show that temperatures of about 15 °C have been linked to long-term changes in 
incidence peak time. There is a 95% confidence interval for the decrease in malaria 
incidence if the temperature rises 1 °C from the northern plains to the central highland 
regions during the rainy season by 56–92%. Forty-six percent (95% CI 37–55%) to 
119% of the population shifts from low- to high-altitude areas during the dry season 
(95% CI 98–142%) [14]. So, such a study [14] recommended that rising temperatures 
can have opposite effects on the dynamics of malaria in low- and high-lying areas. 
Future modeling, disease burden estimations, and malaria control in central highland 
regions under climate change should consider this. 

The model’s projections predict a net increase in the number of yearly person-
months at risk when comparing Representative Concentration Pathways (RCP) 2.6 
to RCP8.5 throughout the period 2050–2080 [15]. Over the epidemic edges of the 
malaria distribution, the result measures were particularly sensitive to whether the 
malaria impact model was used [15]. The evaluation of the malaria output models 
for the two observed climate baseline datasets and the GCM modeled baselines with 
other published malaria endemicity maps based on [42] to try and validate the various
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malaria models. For preintervention malaria endemicity estimations, Lysenko used 
historical records, papers, and maps to compile malariometric indexes for the four 
most common Plasmodium species (malariae, vivax and falcipárum) [43]. It has been 
determined that P. falciparum endemicity (MAP) values can be used for comparison. 
With the help of survey data, environmental and socioeconomic factors are combined 
to provide a “best guess” of the global prevalence of the disease, which is then used 
to map it. From the original papers, these datasets have been digitized. This can 
be compared to the outputs of the malaria model, which describe the epidemic and 
stable transmission zones based on LTS. 

In another study, with optimal conditions, the temperature range of both mosquito 
species saw a reduction in their total vectorial ability due to the impacts of increased 
temperature and DTR on the prevalence and intensity of parasites as well as the 
death rate of mosquitoes. Increases in temperature of 3 °C from 27 °C reduced 
the vectorial capacity by 51–89%, depending on the species and DTR. Increases in 
DTR alone had the potential to cut transmission in half. At a temperature of 33 °C, 
the transmission potential of the insect Anopheles stephensi was further reduced, 
whereas it was inhibited in Anopheles gambiae [16]. These findings suggest that 
even slight temperature variations could play a significant part in the dynamics of 
malaria transmission, yet very few empirical or modelling investigations take this 
into account. In addition, they predict that current and future warming may, rather 
than raise risk, lower transmission potential in existing high transmission situations 
[16]. 

4.2 Problems and Challenges for Malaria Detection Using 
Machine Learning 

Till Now, there isn’t a vaccine available for malaria, so malaria transmission continues 
even lags one to two months behind seasonal rainfall. Senegal’s rainy season is July– 
August–September, although the malaria season is September–October–November. 
Temperature also affects malaria. 

To simulate climate-influenced malaria transmission, the VECTRI model has to 
be tested. An entire month between the EIR peak (September) and rainfall can be 
simulated by using the yearly cycle (August). EIR and malaria cases corresponded 
in both years of high and low malaria transmission. The VECTOR can predict some 
of the seasonal fluctuations in malaria. Like the observation data, the EIR indicates 
Senegal’s south-north direction to be unevenly distributed. In the north, centre, and 
south, this was evident. 

In fall season (September, October, and November), the simulation predicted a 
high rate of malaria transmission. Despite irregularities, the VECTRI model accu-
rately depicted the geographic and temporal distribution of malaria in Senegal. To 
better understand how climate changes affect the spread and transmission of malaria,
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researchers can use this model. The VECTRI [17] has the potential to improve vector-
borne disease early warning systems. In the next step, the VECTRI model was utilised 
to see how well CORDEX-driven simulations could reproduce historical malaria 
characteristics over Senegal and quantify projected changes under RCP.45 and 
RCP8.5. The WHO came up with the idea for it. According to the authors, researchers 
in West Africa and Senegal hope to examine regional climate model downscaling 
and the multi-model ensemble in conjunction with VECTRI to better understand the 
timing and degree of regional malaria change. A bias-corrected CMIP5 dataset would 
be used to simulate malaria parameters for several RCP scenarios and other periods 
in the VECTRI model Decision-makers in countries affected by climate change, such 
as Senegal, will certainly benefit from these findings when developing public health 
efforts. Stakeholders can use these findings to develop vector-control methods [17]. 
Malaria re-emergence was accurately predicted using the LSTMSeq2Seq model, 
which considered climatic conditions. As a result, the LSTMSeq2Seq model [18] 
can be used to accurately forecast the onset of malaria. 

Due to a lack of daily malaria incidence records, a previous study [13] only 
considered annual data to predict seasonal climatic parameters. Second, to improve 
the models’ predictive power, a larger dataset is needed, particularly for cases of 
malaria that have been verified, with observations having a similar or finer resolution 
to climate observations for training. There is a need for a good dataset for verified 
malaria incidence that can be used to seasonally stratify critical malaria seasons to 
improve real-time prediction in the future. 

5 Conclusion 

Malaria epidemic planning will benefit from this research in the future. A key benefit 
of this approach is that it will help the governments of each selected country better 
understand the climatic parameters that contribute to high malaria transmission and 
better regulate environmental factors that could hurt climate conditions. An increase 
in funding for programs like sensitization, the provision of insecticide-treated nets, 
or malaria treatments can be achieved. 
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