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Abstract. Automated Machine Learning (AutoML) is an area of
research that focuses on developing methods to generate machine learn-
ing models automatically. The idea of being able to build machine learn-
ing models with very little human intervention represents a great oppor-
tunity for the practice of applied machine learning. However, there is very
little information on how to design an AutoML system in practice. Most
of the research focuses on the problems facing optimization algorithms
and leaves out the details of how that would be done in practice. In this
paper, we propose a frame of reference for building general AutoML sys-
tems. Through a narrative review of the main approaches in the area,
our main idea is to distill the fundamental concepts in order to support
them in a single design. Finally, we discuss some open problems related
to the application of AutoML for future research.

Keywords: Machine learning · Automated machine learning ·
AutoML · Applied machine learning · Applied AutoML

1 Introduction

In last decade, machine learning has been applied in various fields and used to
solve many challenging business problems. This has led to a growing demand for
data scientists with solid knowledge and experience to harness massive amounts
of data and create business-impacting machine learning solutions [4]. How-
ever apply machine learning to business problems is labor-intensive and human
experts are scarce and heavily demanded in organizations.

Automated machine learning (AutoML) has become an area of growing inter-
est for machine learning researchers and practitioners. AutoML groups together
many techniques and methods that can be used to automate the tasks that con-
stitute the process of applying machine learning. This has led the researchers
to propose many literature reviews that try to summarize the area from differ-
ent perspectives and propose many reusable components to solve the different
AutoML challenges.

In this work we take advantage of these perspectives to propose a general
recipe that brings them closer to the practice of applied machine learning. Based
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on findings in several AutoML reviews, we describe a design based on learn-
ing loops that attempts to provide the flexibility to incorporate main AutoML
methods. Furthermore, we propose a new way to approach the goal of AutoML
systems from a multi-objective perspective that takes into account time and
computational resources.

2 Methodology

The paper aims to gather information on AutoML, especially when it comes
from literature reviews. This is because the main objective is to identify the
most important parts for the comprehensive application of AutoML systems in
practice. To carry out the literature review, the narrative and scoping literature
review approaches have been adopted [6,28], and a research search strategy
has been developed [5,30]. Figure 1 shows the process flow for the systematic
literature review.

Fig. 1. Process flow for AutoML literature review.

The articles on AutoML were identified from the Scopus database to find the
most relevant published articles or in press articles. We search within the title,
abstract and key words for various terms such as “automated machine learning”,
“automl”, “automated data science” and “autods”. The search is then narrowed
to documents that also contain either in the title or the abstract or in the
keywords, the terms “review”, “survey”, “state-of-the-art” or “sota”. With this
we seek to keep all the articles that summarize various methods in the area. In
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order to focus on recent literature, the search is limited to articles published
in the last decade. The search was carried out on May 11, 2022 and retrieved
321 documents. After manual screening, e.g. removing duplicate or irrelevant
articles, 19 articles remained, which form the core of this review.

3 Results Analysis

In this section the results are presented. We focus on answering two main ques-
tions. The first question is: What we are trying to automatize? With this question
we are trying to identify and analyze the tasks we are trying to automate. The
second question is: How do we want to automate it? With this question we are
looking for describing the main methods through which it is sought to achieve
the automation.

3.1 What We Are Trying to Automatize?

Most of the articles describe AutoML as a process in which tasks that would
normally be performed by a data scientist are automated. Table 1 describes an
overall process and maps each part of the process to the articles. It is evident that
the majority of articles are concentrated around Model Selection and Hyperpa-
rameter Optimization. Moreover, the least explored areas are Task Formulation
and Prediction Engineering.

Table 1. Machine learning process phases identified in the reviewed articles.

Phases Reviews

Task Formulation [7,31]

Prediction Engineering [7,31]

Data Preparation [4,7,10,15,21,22,26,27,40]

Feature Engineering [2,4,7,10,15,21,22,24–27,31,32,36,40]

Model Selection [2,4,7,9,10,15,21,22,24–27,31–34,36,37,40]

Hyperparameter Opt. [2,4,7,9,10,15,21,22,24–27,31–34,36,37,40]

Model Estimation [2,9,10,15,21,32,36,40]

Results Summarizing [4,7,31]

Task Formulation. This is the process through which a machine learning
task is formulated that could help solve a business problem. Only two works of
those reviewed incorporate this phase within the scope of AutoML. Santu et al.
[31], highlights in this phase the interaction between domain experts and data
scientists, while De Bie et al. [7] relates it more to an EDA (Exploratory Data
Analysis) process. Generally, the output of this task are available data sources,
verified hypotheses and the main business metric to impact.
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Prediction Engineering. This is the phase in which the business problem is
framed as a machine learning problem. This includes deciding between different
frameworks, for example, a ranking problem can be solved as a scoring problem
(point-wise), a binary classification problem (pair-wise) or a position assignment
problem (list-wise). According to Santu et al. [31] This phase also involves con-
structing and assigning labels to data points according to the goal prediction
task. The output of this phase is generally the framing of the problem repre-
sented by the data points and targets, and a refinement of the business metric
into a proxy metric to be optimized.

Data Preparation. Many jobs incorporate data preparation as part of the
tasks that can be automated. The data preparation process consists of per-
forming operations on the defined dataset to make it ready for the next pro-
cess. Within this process we define two types of data preparation, those that
increase the number of data points (e.g. data collection, data augmentation)
[4,7,10,15,22,27] and those that do not (e.g. data cleaning, data inputation,
data standardization) [4,7,15,21,22,26,27,40]. The output of this phase is typi-
cally a curated dataset ready to be used for feature engineering.

Feature Engineering. Feature Engineering task aims to maximize the extrac-
tion of features from raw data for use by algorithms and models [15]. In this con-
text, raw data could be structured data, such as tabular and relational datasets
[4], or unstructured data, such as text and images. Feature Engineering consists
mainly of two sub-task: feature selection and feature transformation (e.g. fea-
ture extraction, feature construction). Feature Engineering is one of the most
explored task due to its impact on the performance of the model [40] since data
and features determine the upper bound of ML, and that models and algorithms
can only approximate this limit.

Model Exploration and Hyper-Parameter Tuning. This task is one of
the most explored in the literature as it was one of the places where researchers
started looking for automation [13]. With the advancement in computing power,
a growing wave of machine learning methods and techniques became available
to data scientists. Being able to explore different models with different hyper-
parameters automatically is something that usually saves machine learning prac-
titioners a lot of time. This problem is generally approached from two sub-
problems: The definition of a search space of possible models to be explored and
the search method to be used to traverse that space.

Model Estimation. Evaluating models is an expensive process, since it usually
requires a series of training and test stages, usually in a cross-validation scenario
using all the data. Because of this, researchers have focused over the years on
creating methods to estimate the performance of models in less expensive ways
[15]. This is usually done in roughly two ways. Either reducing the amount of data
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needed to evaluate the model (e.g. multi-fidelity approaches [11]) or modeling
the performance of the models in a way that allows us to predict it without the
need to evaluate it (e.g. surrogate models [8], relative landmarks [14]).

Results Summarizing/Recommendation. The last part of the procedures
is to summarize all the findings and recommend the most useful/promising solu-
tion to the stakeholders. There is very little information about this task in the
literature. Santu et al. [31] consider that the recommendations are made at the
model, function or computational overhead level. This part is still mostly done
manually without any systematic structure. However, some AutoML tools auto-
matically select the best solution from the target metric, while others allow the
data scientist to select an option from a ranking of available options.

3.2 How Do We Want to Automate It?

The general way researchers have found to automate the process is to think of it
as a search problem. Every possible decision within the machine learning appli-
cation process becomes a configuration variable. Thus, the problem is reduced
to finding the best configuration among all possible configurations. The main
methods to carry out this search according to the review of the literature are
described below.

Random Search and Grid Search. Random Search and Grid Search are the
most widely used strategies for automatically explore the search space for hyper-
parameter optimization [3]. Random search consists of exploring the search space
randomly. Usually this search is restricted to a fixed number of attempts. Grid
Search, consists of exploring the search space as if it were a grid. For this it is
necessary to discretize the values of the continuous numerical variables in order
to fit them into the grid. Both methods are widely used but do not have any
kind of optimization when it comes to exploring the space efficiently.

SMBO/SMAC. Sequential Model-Based Optimization (SMBO) involves tun-
ing a model of the predictive performance at the same time as configurations
are explored [19]. It then uses it to make decisions about which configurations
are most promising to evaluate. The classical implementation of this model is
using Bayesian optimization and a surrogate model based on Gaussian processes.
In Sequential Model-based Algorithm Configuration (SMAC) [16] Hutter et al.
generalize this model in an attempt to overcome some of its limitations. They
do this mainly by using random forests as surrogate models.

Reinforcement Learning. Reinforcement Learning has been widely used as a
search method [15]. It mainly consists of a controller model, usually a recurrent
neural network (RNN) [2,39]. The controller executes an action at each step to
sample a new configuration from the search space and receives an observation of
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the state together with a reward from the environment to update the controller’s
sampling strategy. Here environment refers to the application of the configura-
tion to the training procedure to train and evaluate the solution generated by
the controller, after which the corresponding predictive performance (such as
accuracy) are returned.

Evolution Based Methods. Evolution-based optimization methods follow a
process inspired by biological concepts related to evolution [26]. Generally the
most used is the one based on genetic programming. In this method, it first
creates a random population of possible configurations from the search space.
Then each individual (configuration) of the population is evaluated to know its
fitness function (predictive performance). Based on this aptitude, the best builds
have a higher chance of passing through to the next generation and interbreeding
with others. Generally this process is repeated until the performance is not
improved or until a certain number of generations is reached.

Bandit-Based Methods. Bandit-based methods consist of dividing the search
space and evaluating many options in parallel to then decide how to proceed [9].
The two most popular strategies are Successive Halving [17] and HyperBand [23].
On the one hand, Successive Halving consists of first evaluating all configurations
with a small data set. Configurations are then ranked based on their performance
and the worst half is eliminated. Finally, the data is doubled and the process is
repeated until only one configuration remains. On the other hand, HyperBand
uses the same technique, but instead of eliminating less promising configurations,
it assigns them a lower chance of being selected in the next iteration.

Adaptive Methods. Adaptive methods are those that aim to adapt the con-
figuration during training. This type of method is commonly used in neural
architecture search (NAS) to learn the best network architecture while learn-
ing its parameters [15]. For example, self-tuning networks (STN) and popula-
tion based training (PBT) fall into this category. Furthermore, in deep learning,
another widely used method is to adapt the learning rate during the training of
a network [38].

Meta-Learning. Meta-learning is learned from prior experience in a system-
atic, data-driven way [35]. It is a process which can be found in many reviews
about AutoML and that aims to improve the process itself from learning obtained
after the application in many tasks. It generally consists of two problems. The
first is how to represent and collect the prior knowledge, usually through meta-
features. The second problem is how to learn from this data to extract and
transfer knowledge that guides the process of finding an optimal solution for
new tasks. Meta-learning techniques can generally be roughly categorized into
three broad groups [9]: learning based on the properties of the task, learning
from evaluations of previous models, and learning from already trained models.



A General Recipe for Automated Machine Learning in Practice 249

4 A General Recipe for AutoML

There are several AutoML methods in literature that could be used to search
the best machine learning solution to an specific problem. Most of this methods
rely on a feedback loop to explore efficiently the search space. In particular, we
identify the necessity of three main loops in which the search of the best machine
learning solution can be decomposed (Fig. 2). Each of these learning loops are
described below.

Fig. 2. Context diagram of the main feedback loops in AutoML.

Another important component of AutoML systems is the objective function.
The objective function is the function that the system aims to maximize or
minimize. We will describe these components in more detail in the following
sections.

4.1 Scheduling Loop

AutoML systems rely on the possibility of evaluating a possible good configu-
ration, analyzing the results and being able to decide which is the next best
configuration to evaluate. This is the basis for most AutoML methods. We will
call the component that is responsible for making the decision the Scheduler.
Algorithm 1 shows the pseudo-code for the general operation of the Scheduler.
The Scheduler is not only responsible for deciding which are the best configura-
tions to explore but also for defining an evaluation plan to efficiently explore the
search space. This evaluation plan is composed of two abstractions, the steps and
the stages. A step can be defined as the evaluation of one configuration. A stage
can be defined as a set of independent steps that are likely to be parallelized.
For example, Random Search and Grid Search only contain steps. SMBO and
SMAC only contain 1-step Stages. Reinforcement learning techniques are also
commonly 1-Step Stages. Bandit-based and Evolution-based methods, require
the evaluation of a set of stages made up of independent steps. In real-world sce-
narios, the Scheduler may also have to decide on which computational resources
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to perform the evaluation and for how long (for those methods that may not
converge) [12].

Algorithm 1. AutoML Learning Algorithm
Input: Tasks, Configurations, History, Resources
for task in Tasks do

Create an Evaluation Plan consisting of a set of stages,
with each stage being made up of independent steps.
with each independent step assigned to a resource

for stage in Evaluation Plan do
for step in stage do

Evaluate the step
Add step results to the stage results

end for
Update the Evaluation Plan with stage results

end for
Summarize results
Add results to History

end for

4.2 Meta Loop

Another important capability of an AutoML system is to be able to learn from
its own experience and thus become more and more efficient in exploration. We
describe this learning ability as the Meta-Loop. The Meta-Loop allows us to
learn transversely about the problems we are solving. This loop is potentially
exploited by meta-learning techniques that learn from other tasks. Something
important to enable this learning is to define how the information will be stored,
what will be the way in which the tasks will be described (meta-features) and
how this information will be consumed by the Scheduler. Many authors have
studied how to represent tasks for use in a machine learning process. On the
one hand, some works have made an effort to identify the best characteristics
that describe a data set [29]. On the other hand, others have chosen to create
distributed representations [1,18].

4.3 Training Loop

Finally, it is possible see a third loop, the training loop. This loop occurs in
training time, and it is the basis for adaptive methods that change configurations
in a single trial, like adaptive learning rate [38]. In adaptive learning rate, the
value is selected in a dynamic way using information in training time. This
attempts to alleviate the task of choosing the best learning rate before training.
In practice, the learning information may not return to the Scheduler until the
training is complete. This is due to the overhead that can be caused if the
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Scheduler and the training are running on different processes or even machines.
Because of this, it is very important to consider that the Scheduler will only see,
for example, that adaptive learning rate was activated (as a binary configuration)
and then see the results of this after training.

4.4 Objective Function

The AutoML problem is generally defined as a combined algorithm selection
and hyperparameter search (CASH) problem [20]. In CASH the objective is
to find a pipeline (M) and a set of hyperparameters (λ) that minimizes the
generalization error (GE) of a particular task (D). Feurer et al. extend this
definition to generalize it to many tasks and thus include the idea of meta-
learning in the optimization problem [12]. It also proposes incorporating time
and computational resources as constraints on how much we are willing to invest
(T ) as shown in Eq. 1.

Mλ∗ ∈ argmin
λ∈Λ

̂GE(Mλ,D) s.t. (
∑

tλi) < T (1)

where Mλ∗ denotes the best pipeline configuration, and tλi denotes the time and
computational resources used to evaluate the i-th configuration λi of a particular
pipeline.

This definition is very useful at the experimental level. However, in practice,
two solutions can achieve the same or similar predictive performance and con-
sume far fewer resources. That solution would probably be the best. In that case,
seeing the budget as a constraint is not useful. Based on the works reviewed,
we believe that it is most convenient to model the problem as a multi-objective
optimization problem, in which the aim is to minimize the generalization error
together with the time and computational resources used.

Mλ∗ ∈ argmin
λ∈Λ

(̂GE(Mλ,D) ∧ (
∑

tλi)) s.t. (
∑

tλi) < T (2)

Equation 2 tries to synthesize the purpose of the three learning cycles pre-
sented in the previous sections. In essence, what we pursue in the general learn-
ing process is to be more and more efficient in the search for the best machine
learning solutions.

5 Discussion

AutoML is an area that has gained importance in recent years and has led to the
appearance of numerous literature reviews. In particular, we took into account
only those whose sources are indexed by Scopus, leaving out gray literature that
could be important. We believe that this helped us to better define the scope of
this work and to define a clear methodology. In addition, we indirectly consider
the references of the analyzed works where some references to gray literature
were found.
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The loops described in this work are important to visualize where learning
occurs. On one hand, we believe that the boundaries between these loops are per-
meable in terms of hyper-parameters. For example, one hyper-parameter could
be initialized as a range from knowledge in the meta loop and then refined in
the other loops. On the other hand, this boundaries are clearly defined in terms
of the execution of the loops. For example, each iteration of a higher level loop
might depend on the set of iterations of lower level loops to complete.

Another interesting point to discuss is that when we consider the entire
data science process for the application of machine learning, Task Formulation
and Prediction Engineering are two of the most difficult data science task to
automate. The main difficulty lies in the fact that these tasks involve a lot of
back and forth, where data scientists, domain experts and other stakeholders
have to consider multiple possibilities and check whether the required data and
business conditions are suitable each time before to make a decision. However,
we believe that this general view of AutoML could support some parts of these
tasks as long as the decisions made can be coded as configurations.

In addition, this article proposes to address CASH problems from a multi-
objective perspective. This brings with it the new challenge of having to define
the trade-off between maximizing predictive performance or minimizing time
and resource consumption. This may be difficult to determine in practice and
further research is required to define suitable criteria.

6 Conclusions

In this paper, we propose a general recipe for AutoML systems in practice gener-
ated from the findings of a systematic literature review. In particular, we describe
the main tasks in the process of apply machine learning and the main methods
used to automate it. After the review, we describe a general design for AutoML
systems from the perspective of feedback loops necessary for learning. Addition-
ally, we propose a multi-objective function as the general purpose for AutoML
systems in practice that takes into account time and computational resources.
Despite the recentness of the AutoML area, we hope this work would be helpful
for research scholars and practitioners of machine learning, to understand and
integrate the latest research efforts related to AutoML into your own systems.
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