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Preface

On behalf of the Program Committee, it is our pleasure to present the proceedings
of the 25th Information Security Conference (ISC 2022). ISC is an annual international
conference covering research in theory and applications of information security. Both
academic research with high relevance to real-world problems and developments in
industrial and technical frontiers fall within the scope of the conference.

The 25th edition of ISC was organized by the Petra Christian University, Surabaya,
Indonesia, and was held as a hybrid conference in Bali, Indonesia during December
18–22, 2022. Rolly Intan (Petra Christian University, Indonesia) and Fuchun Guo
(University of Wollongong, Australia) served as the general chairs. The Program
Committee comprised 23 members from top institutions around the world. Out of 72
submissions, the Program Committee eventually selected 21 papers for presentation at
the conference and publication in the proceedings, resulting in an acceptance rate of
29%. The review process was double blind and it was organized and managed through
the EasyChair online reviewing system, with all papers receiving at least three reviews.
The final program was quite balanced in terms of topics, containing both
theoretical/cryptography papers and more practical/systems security papers.

A successful conference is the result of the joint effort of many people. We would
like to express our appreciation to the Program Committee members and external
reviewers for the time spent reviewing papers and participating in the online discussion.
We deeply thank our invited speakers for their willingness to participate in the con-
ference. Further, we express our appreciation to Yudi Zhang (University of Wollon-
gong, Australia) and Jianfeng Wang (Xidian University), who served as the publication
chairs. Finally, we thank Springer for publishing these proceedings as part of their
LNCS series, and the ISC Steering Committee for their continuous support and
assistance.

ISC 2022 would not have been possible without the authors who submitted their
work and presented their contributions, as well as the attendees who joined the con-
ference sessions. We would like to thank them all, and we look forward to their future
contributions to ISC.

October 2022 Willy Susilo
Xiaofeng Chen



Organization

Program Chairs

Willy Susilo University of Wollongong, Australia
Xiaofeng Chen Xidian University, China

General Chairs

Rolly Intan Petra Christian University, Indonesia
Fuchun Guo University of Wollongong, Australia

Publication Chairs

Yudi Zhang University of Wollongong, Australia
Jianfeng Wang Xidian University, China

Steering Committee

Zhiqiang Lin The Ohio State University, USA
Javier Lopez University of Malaga, Spain
Masahiro Mambo Kanazawa University, Japan
Eiji Okamoto University of Tsukuba, Japan
Michalis Polychronakis Stony Brook University, USA
Jianying Zhou Singapore University of Technology and Design,

Singapore

Program Committee

Mauro Conti University of Padua, Italy
Josep Domingo-Ferrer Universitat Rovira i Virgili, Spain
Chunpeng Ge Nanjing University of Aeronautics and Astronautics,

China
Jinguang Han Southeast University, China
Debiao He Wuhan University, China
Xinyi Huang Fujian Normal University, China
Peng Jiang Beijing Institute of Technology, China
Angelos Keromytis Georgia Institute of Technology, Georgia
Hiroaki Kikuchi Meiji University, Japan
Hyoungshick Kim Sungkyunkwan University, South Korea
Miroslaw Kutylowski Wroclaw University of Technology, Poland
Jianchang Lai Southeast University, China
Xueqiao Liu University of Wollongong, Australia



Mark Manulis Universität der Bundeswehr München, Germany
Khoa Nguyen University of Wollongong, Australia
Josef Pieprzyk CSIRO/Data61, Australia
Partha Sarathi Roy University of Wollongong, Australia
Atsushi Takayasu The University of Tokyo, Japan
Qianhong Wu Beihang University, China
Ge Wu Southeast University, China
Toshihiro Yamauchi Okayama University, Japan
Xun Yi RMIT University, Australia
Zuoxia Yu The Hong Kong Polytechnic University, Hong Kong
Xingliang Yuan Monash University, Australia
Fangguo Zhang Sun Yat-sen University, China
Mingwu Zhang Hubei University of Technology, China
Jianying Zhou Singapore University of Technology and Design,

Singapore

External Reviewers

Haoyang An
Nhat Quang Cao
Priyanka Dutta
Subir Halder
Mengdie Huang
Gulshan Kumar
Quanrun Li
Chengjun Lin
Khalid Mahmood
Ke Ren
Masaya Sato
Siwei Sun
Yangguang Tian
Yulin Wu
S. J. Yang
Yunru Zhang
Zhen Zhao
Xiaotong Zhou
Zijian Bao
Cong Peng
Shota Fujii
Kai He
Xiaoying Jia
Hiroki Kuzuno
Yannan Li
Chao Lin
Wenze Mao

Rongwei Yu
Gang Shen
Teik Guan Tan
Harsha Vasudev
Shengmin Xu
Terry Yang
Peiheng Zhang
Jun Zhao
Rahman Ziaur
Alessandro Brighente
Sabyasachi Dutta
Amrita Ghosal
Hua Shen
Andrei Kelarev
Yumei Li
Zengpeng Li
Junwei Luo
Russell Paulet
Rahul Saha
Yongcheng Song
Min Tang
Yuzhu Wang
Lei Xu
Zheng Yang
Xiaoyu Zhang
Yifeng Zheng

viii Organization



Keynote and Invited Talks



Efficiently Deployable and Efficiently
Searchable Encryption (EDESE) –

Applications, Attacks, and Countermeasures

Robert H. Deng

School of Information Systems, Singapore Management University, Singapore
robertdeng@smu.edu.sg

Abstract. The volume of data stored in the public cloud is growing exponen-
tially. With this growth, the risk of data breaches and the challenges of data
protection grow just as rapidly. As more organizations opt for using encryption
to protect their data in the cloud and in web services, the ability to efficiently
search over encrypted data becomes increasingly important.
Though numerous searchable encryption (SE) schemes have appeared in the

literature, Efficiently Deployable & Efficiently Searchable Encryption (EDESE)
is the most popular SE scheme being deployed in practical applications at the
expense of information leakages that were considered acceptable. In this talk, we
first look at single user EDESE and multiuser EDESE schemes and their
real-world deployments. We then review some of the recent attacks to EDESE
that can accurately recover the underlying keywords of query tokens based on
partially known documents and the L2 leakage. Finally, we discuss possible
means to counter such attacks.
Bio: Robert Deng is AXA Chair Professor of Cybersecurity, Director of the

Secure Mobile Centre, and Deputy Dean for Faculty & Research, School of
Computing and Information Systems, Singapore Management University
(SMU). His research interests are in the areas of data security and privacy,
network security, and applied cryptography. He received the Outstanding
University Researcher Award from National University of Singapore, Lee Kuan
Yew Fellowship for Research Excellence from SMU, and Asia-Pacific Infor-
mation Security Leadership Achievements Community Service Star from
International Information Systems Security Certification Consortium. He
serves/served on the editorial boards of ACM Transactions on Privacy and
Security, IEEE Security & Privacy, IEEE Transactions on Dependable and
Secure Computing, IEEE Transactions on Information Forensics and Security,
Journal of Computer Science and Technology, and Steering Committee Chair
of the ACM Asia Conference on Computer and Communications Security. He is
a Fellow of IEEE and Fellow of Academy of Engineering Singapore.
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Software Vulnerability Detection by Fuzzing
and Deep Learning

Yang Xiang

Swinburne University of Technology, Australia
yxiang@swin.edu.au

Abstract. In this keynote talk, we introduce the current research and trend in the
software vulnerability detection research. Then we present a series of novel
approaches to deal with the vulnerability issues, such as the fuzzing, deep
learning, and the combined approach to improve the effectiveness of the
detection.

Keywords: Cybersecurity • Cyber-attacks • Software • Vulnerability • Deep
learning � Fuzzing

Introduction

Cybersecurity has become one of the top priorities in the research and development
agenda globally today. New and innovative cybersecurity technologies that can
effectively address this pressing danger are critically needed. Data-driven and system
approaches to solve cybersecurity problems have been increasingly adopted by the
cybesecurity research community. They have two areas of focus: detection and pre-
diction of cyber threats. Recently, there have been significant efforts to detect software
vulnerabilities. New methods and tools, consequently, must follow up to adapt to this
emerging security paradigm.

Software lifecycles include development, deployment and usage, and maintenance
phases. Current practice involves avoiding vulnerabilities during the development
phase and removing vulnerabilities via patching during the deployment and usage
phase. In fact, due to rampant security breaches in software, detecting vulnerabilities in
different stages of software lifecycles has never become an easy job. Existing methods
face significant technical challenges caused by code representation, computational
resource constraints, and algorithm bottlenecks.

Summary of the Talk

In this talk, we introduce the current research and trend in the software vulnerability
detection research. Then we will present a series of novel approaches to deal with the
vulnerability issues, such as the fuzzing, deep learning, and the combined approach to
improve the effectiveness of the detection. The focus of the fuzzing approach is on

https://orcid.org/0000-0001-5252-0831


automatic black-box fuzzing especially for firmware; and the focus of the deep learning
approach is to reduce the training samples and improve the detection rate.

Existing techniques take much time to detect and verify vulnerabilities, which is too
slow for massive code detection in the development phase. While a bug is an unin-
tended code state, a vulnerability is a bug that attackers can exploit. The code states are
usually vast, and the bug locations are unknown, making it difficult to detect bugs
efficiently and effectively. In the maintenance stage, developers must reproduce, test,
and fix bugs, which may require specific inputs and complex execution states to trigger
them. Both deep learning and fuzzing methods have pros and cons in detecting, ver-
ifying vulnerabilities, and performance. Current techniques face key challenges that
urgently require practical solutions:

Fast detection of massive codes – From the software developer’s perspective, one
can use pre-trained model to fast detect the vulnerabilities automatically from time to
time during the development process by scanning codes. From the user’s perspective,
static analysis can fast scan the executable codes. Among the static analysis techniques,
machine learning, especially deep learning has been used for software vulnerability
detection. Deep learning-based static analysis techniques have been widely accepted
given that it can automatically extract high feature representations and interpret com-
plex non-linear structure. Thorough detection – One often wants to check every piece
of code when it is unknown that whether a potential bug exists. The power schedule
determines the number of mutations assigned to each seed, and a seed is an input that
makes process in code coverage. While these improvements have considerably
decreased the time required to visit different parts of a target application, it is important
to understand that code coverage alone is a necessary but not sufficient condition to
discover bugs.

Solutions and future research directions will be discussed following above.

Software Vulnerability Detection by Fuzzing and Deep Learning xiii



Cybersecurity Policies and Challenges
in Indonesia

Rolly Intan and Adriel A. Intan

Petra Christian University, Surabaya, Indonesia
rintan@petra.ac.id

Abstract. In this era of digital, almost all aspects of life are connected to the
internet. This causes the role of cybersecurity to ensure the convenience and
security of transacting and doing business through cyberspace to be very
important. This talk describes the situation and condition of cybersecurity in
Indonesia from 2018 to 2021. The number of cyberattacks every year has
increased exponentially since 2018. Fluctuations in the number and types of
cyberattacks are highly dependent on situations and conditions that are influ-
enced by political and economic interests. The motivation for cyberattacks can
be triggered by protests, expressions of disappointment, or just for fun, so they
are not always related to cybercrimes driven by political or economic interests.
This talk also discusses the challenges and opportunities faced by Indonesia in
maintaining and improving cyber security in the IoT era in relation to Industry
4.0 and Society 5.0. Quad helix collaboration among government, educational
institutions, industry, and communities is needed to build strong cyber
resilience.

Keywords: Cybersecurity • Cyberattacks • Cybercrime

Introduction

As the 10th largest economy in terms of purchasing power parity, the world’s fourth
most populous country, and the country with the most islands in the world, Indonesia
has become the largest spender on Information Technology (IT) in Southeast Asia. To
implement cybersecurity effectively and efficiently by utilizing, developing, and con-
solidating all elements related to cybersecurity, the president of Indonesia established
National Cyber and Crypto Agency (Indonesian: Badan Siber dan Sandi Negara,
abbreviated as BSSN) on 19 May 2017 under Presidential Decree No. 53/2017 and
133/2017 as the constituting documents. According to Global Cybersecurity Index
(GCI) 2020 published by International Telecommunication Union, Indonesia ranks
24th globally and 6th in Asia Pacific region with a score of 94.88. This rank of
Indonesia jumped from 41st globally and 9th in the Asia Pacific region in 2018.
However, based on the information given by BSSN, the number of cyberattacks
increased significantly from 2018 to 2021 as shown in Table 1. The huge number of
cyberattacks in 2021 caused a potential economic loss of approximately IDR 14.2
trillion (USD 1 billion). Besides, it is also predicted that 22% of companies have



experienced cyberattack incidents at that time. The significant increase in cyberattacks
is strongly correlated to the covid-19 pandemic. During the covid-19 pandemic, work
from home via cyberspace was widely adopted in private and public offices causing the
number of cyberattacks to dramatically increase globally. Dan Lohrmann mentioned
“the year the covid-19 crisis brought a cyber pandemic”. Therefore, there is no causal
relationship between the Global Cybersecurity Index of Indonesia and the number of
cyberattacks, especially during the covid-19 pandemic.

Considering that the damages of cyberattacks cannot be avoided, it is necessary to
plan and design how to build and strengthen cyber resilience for recovery.

First, this talk observes the current situation and condition of cybersecurity in
Indonesia, including cyberattacks, cybercrime, and cyber policies in the past three years
starting from 2018. Next, the challenges and opportunities of cybersecurity in
Indonesia are discussed in the relation to social welfare and disruptive innovation and
technology in the era of Society 5.0 and Industry 4.0. Finally, we summarize the
observation and discussion and give some suggestions.

Table 1. A user set in the PHR sharing system

Year The number of cyberattacks

2018 232,447,974
2019 290,381,283
2020 495,337,202
2021 1,637,973,022
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Blockchain Security: Primitives and Protocols

Yannan Li

Institute of Cybersecurity and Cryptology, School of Computing and Information
Technology, University of Wollongong, Wollongong, NSW 2522, Australia

yannan@uow.edu.au

Abstract. It is widely accepted that blockchain is a disruptive technology that
reshapes the way of doing business in finance due to its decentralization,
transparency and immutability. Blockchain can serve as the backbone technique
in various applications with its salient features. However, these
blockchain-based systems may still suffer from security concerns. In this talk,
we will discuss blockchain security, in terms of its underlying primitives and
built-on protocols. To be more specific, we will talk about the privacy and
regulation in blockchain-based cryptocurrencies, the security concerns in
blockchain-based e-voting and the non-equivocation in blockchain systems. In
each scenario, we will discuss the remaining problems of the existing works and
present possible solutions.

Introduction

Blockchain is a distributed database that records all the transactions in the system.
Blockchain can be used to achieve fully decentralized systems with its consensus,
incentive, transparency and immutability. Gartner, a leading research and advisory
company, forecasts that the business value generated by blockchain will reach $176
billion by 2025 and $3.1 trillion by 2030, respectively [2]. Blockchain has a spectrum
of applications ranging from healthcare, manufacture, transportation to IoT. However,
there are still many things to do to improve blockchain security. In this talk, we will
introduce several cryptographic primitives and protocols to enhance blockchain secu-
rity and achieve blockchain-based secure protocols. protocols. This talk is structured
into three important scenarios in blockchain and the corresponding security issues and
potential solutions

Cryptocurrencies are among the successful applications of blockchain, with
growing attention and significant influence. The global crypto market capitalization is
$2.05 trillion US dollars (Sep 2022). Compared to the traditional trading model in real
life, which leak personal information, Bitcoin uses pseudonyms, which is a random
account rather than real-world identities, to conduct transactions in the system so as to

Y. Li—This work is also supported by the Australian Research Council Discovery Early Career
Researcher (ARC DECRA DE230100001).
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protect users’ privacy. However, it is proved that the security level provided only by
pseudonyms is far from satisfactory. These pseudonyms can be linked to real-world
identities if enough transactions are collected and analyzed [3]. Therefore, anonymous
cryptocurrencies were proposed to intensively protect transaction privacy and user
anonymity based on various of cryptographic tools, such as Zerocoin [4], Zerocash [5]
and Monero [6]. Anonymous cryptocurrencies gain attention due to enhanced privacy
guarantee, however, this makes blockchain susceptible to abuse, security concerns, and
even cybercrimes. Besides, the governments are politically conservative about block-
chain. For example, the decentralized payment company Ripple (https://ripple.com/)
was sustained a $700,000 fine by the U.S. Financial Crimes Enforcement Network
(FINCEN) because of inadequate regulation on their transactions networks [7]. In Feb
2020, the Australian government released National Blockchain Roadmap, with a
special emphasis on blockchain security and regulation [8]. How to deal with the
conflict user privacy and proper regulation on malicious users is a tricky problem. In
the first part of this talk, we introduce a protocol to balance the anonymity and reg-
ulation in privacy-preserving cryptocurrencies Monero [9, 10]. Specifically, we provide
two mechanisms to trace the one-time key and long-term key of a malicious user, while
still maintaining the privacy of honest users.

Election is one of the most important measures to achieve democracy. However,
traditional voting with a central election authority suffers from privacy issues when
ballots are tallied. With the salient nature of blockchain, it can effectively remove the
central party who controls the system with privacy concerns. Thus we proposed a
blockchain-based self-tallying e-voting system [11, 12] with no central authority to
tally the votes. The voting results can be calculated and released publicly after all the
legitimate votes cast their ballots on blockchain. However, the involvement of
blockchain will bring new drawbacks in these self-tallying voting systems, that are the
fairness issues - the abortive issues and adaptive issues [13, 14]. In the second part
of the talk, we will demonstrate the possible solutions to address the security and
privacy concerns in blockchain-based e-voting systems, and achieve a secure
self-tallying e-voting system with various implementation results [15].

Equivocation is to convey conflicting statements in a protocol, which is a quite
common problem and happens often in distributed systems, such as double-spending in
cryptocurrencies and issuing two certificates for one identity [16]. Therefore,
non-equivocation is one of the fundamental requirements in distributed systems.
Existing literature to solve the equivocation problems is based on trusted hardware or
strong assumptions, which is not satisfactory in real life. The public logs provide a
breakthrough in addressing the equivocation issues in distributed systems. However, all
the existing solutions are to deal with double-spending or double authentication [17,
18]. The solutions to tackle more general type of equivocation are still missing in the
literature. The third part of this talk is to provide a contractual solution to handle
generalized equivocation, which also supports user-defined policies [19]. We will
introduce a new cryptographic primitive, the policy-authentication-preventing signa-
tures, to support our design and then introduce the integration with blockchain systems.

Blockchain Security: Primitives and Protocols xvii
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Covert Communication: Past, Present
and Future

Peng Jiang

School of Cyberspace Science and Technology, Beijing Institute of Technology,
Beijing, China

pengjiang@bit.edu.cn

Abstract. Covert communication is defined as the exchange of information/data
via a covert channel. It enables the covert information transmission against
communication signal detection, such that no attackers can launch illegal
behaviors without detecting the signal. Covert communication has been
mandatory for the message transmission in many applications such as under-
water acoustic and military communications.
In this talk, I will first review the traditional covert communication including

the basic model and mechanisms. A core task in the covert communication is to
design and deploy the covert channel which is usually built upon the network
protocol. Such network-based covert channels have limitations on concealment,
reliability and anti-traceability. Next, I will introduce present solutions for covert
communication using blockchain, i.e., blockchain-based covert communication,
which hides covert information into transactions and breaks through the above
limitations. I will depict its system architecture and potential application sce-
narios, such as digital evidence preservation. Blockchain’s inherent features, like
low throughput, flooding propagation, openness and transparency, incur new
challenges and impede the construction of blockchain-based covert channels.
For the covert channel building, I will present three key technologies: infor-
mation embedding, transaction filtering, and transaction obfuscation. To better
evaluate blockchain-based covert channel, I will present metrics of concealment,
bandwidth, transmission delay, robustness and transmission cost. Finally, I will
point out the possible privacy issues with perspectives of blockchain users and
communicating parties, and provide the potential countermeasures. I will also
show technical challenges on the blockchain-based covert communication and
offer corresponding research directions in aspects of communication modes,
channel building techniques, efficiency, evaluation methods etc.
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Abstract. When users store encrypted data in a cloud environment, it is impor-
tant for users to ask cloud to carry out some computation on the remote data
remotely. ORAM is a good potential approach to carry out this kind of remote
operation. In order to use ORAM for this purpose, we still need to have garbled
programs to run on ORAM. Goldwasser et al. and Lu-Ostrovsky initiated the
study of garbled RAM machines in their 2013 Crypto papers. Goldwasser et al’s
scheme is based on fully homomorphic encryption schemes and attribute based
encryption schemes for general RAM machines. Lu and Ostrovsky’s scheme is
based on one-time garbled circuits and for each input, one has to design as many
one-time garbled circuits as ORAM CPU running steps. That is, for each execu-
tion of the program, the data owner needs to upload a new program to the cloud
to run on ORAM. Using recent results on indistinguishability obfuscation, this
paper designs alternative reusable garbled ORAM programs. The reusable gar-
bled ORAM CPU constructed in this paper is of constant size while the size of
the garbled ORAMCPUs by Lu and Ostrovsky depends on the number of ORAM
CPU running steps.

1 Introduction

Cloud computing techniques become more and more popular and users begin to store
their private encrypted data in cloud services. In order to take full advantage of the
cloud computing paradigm, it is important to design efficient techniques to carry out
computation over encrypted data in the cloud without downloading the data to a local
machine. Though computation over encrypted data helps to protect the privacy of the
data, it does not hide the access pattern to data. A natural solution is to use oblivi-
ous RAM techniques by Goldreich and Ostrovsky [8] to carry out computation over
encrypted data, which provably hides all access patterns.

In order to use ORAM schemes, a trusted CPU is required. Since users may not trust
the CPU powers at cloud environments, it has been recommended for the user to run
the trusted CPU at client site and to treat the cloud as a large random access memory
storage service. The disadvantage of this approach is the heavy communication over-
head between the client and the cloud. For example, the most efficient ORAM scheme
requires at least O(log2 n) memory accesses for each individual memory access, where
the cloud database contains n unit blocks of data.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
W. Susilo et al. (Eds.): ISC 2022, LNCS 13640, pp. 3–19, 2022.
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Lu and Ostrovsky [17] and Goldwasser et al. [9] initiated an alternative approach
to let the cloud run a garbled version of the ORAM CPU. In this approach, the client
machine only needs to submit the garbled ORAM CPU to the cloud and the cloud only
needs to return the encrypted outputs to the client. Thus the communication overhead
could be significantly reduced in case the cloud database size is large. One disadvantage
for Lu and Ostrovsky’s approach [17] is that their garbled RAMCPU is not succinct and
can be used only for one time. For example, if the ORAMCPU runs t-steps for one input
x, then the garbled ORAM CPU for the input x is at the size of O(t). Lu and Ostrovsky
[17] lists it as a tempting open problem to use Goldwasser et al’s [10] reusable garbled
circuits to design reusable garbled RAMs. It should be noted that Goldwasser et al. [9]
designed reusable garbled RAM machines using fully homomorphic encryption (FHE)
and Attribute Based Encryption schemes for RAM machines.

In recent years, several indistinguishability obfuscation schemes have been designed
(see, e.g., Jain-Lin-Sahai [13]). By converting the ORAM CPU to an NC1 circuit and
then using obfuscation schemes, this paper designs practical reusable garbled ORAMs
for cloud computation over encrypted data. Our scheme is succinct since the garbled
ORAM CPU program is of constant size. Furthermore, for commonly used cloud appli-
cation programs, they are encrypted and stored in the database server together with
user data. Thus for each execution of the program over the encrypted database (e.g.,
a database search query), the user only needs to submit an encrypted keyword to the
server, where the encrypted keyword is approximately the same size as the keyword.
In a summary, the contributions of this paper are two-folds. First, this paper presents
an alternative garbled ORAM program design which is different from Lu-Ostrovsky
[17] and Goldwasser et al. [9]. Secondly, the garbled ORAM programs in this paper are
reusable while the scheme in [17] is not reusable.

We close this section by introducing some notations. We use κ to denote the security
parameter. A function f is said to be negligible in an input parameter κ if there exists
κ0 such that for all κ > κ0, f(κ) < κ−n for all n > 0. For convenience, we write
f(κ) = negl(κ). Two ensembles, X = {Xκ}κ∈N and Y = {Yκ}κ∈N , are said to be
computationally indistinguishable if for all probabilistic polynomial-time algorithm D,
we have |Pr[D(Xκ, 1κ) = 1] − Pr[D(Yκ, 1κ) = 1]| = negl(κ).

The structure of this paper is as follows. Section 2 provides a background discussion
and reviews necessary techniques required for the construction of garbled ORAMs in
this paper. Our main construction of reusable garbled ORAMs is presented in Sect. 3.

2 Cloud Data Storage and Oblivious RAMs

Cloud storage systems may be interpreted as databases stored at the cloud servers, There
have been extensive research on public and private databases in the literature. In the
public database setting, the database is published and individual users need to retrieve
some entries from the database without letting the database server know which entry it
has retrieved. A straightforward solution is to let users to download the whole database
though it is not practical. To address this challenge, Chor, Goldreich, Kushilevitz, and
Sudan [4] introduced the private information retrieval (PIR) concept in an information
theoretic setting. PIR protocol makes it possible for users to obtain information from a
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database without downloading the whole database. At the same time, PIR protocol will
not reveal to the database server which entry the user has retrieved. In an extended PIR
protocol [4], one could have many copies of the identical database without allowing
them to communicate with each other. Chor and Gilboa [3], Ostrovsky and Shoup [19],
and others considered the computational PIR, in which the database is restricted to
perform polynomial time computations. A single database based PIR was constructed
by Kushilevitz and Ostrovsky [16] assuming that certain public-key encryption scheme
exists. Since then, several single database PIR schemes with better bounds have been
proposed and studied. For a brief survey, it is referred to Ostrovsky and Skeith [20].
Though PIR techniques find important applications in many domains, it is not sufficient
to address the challenges in the privacy preserving cloud data distribution systems that
we are facing.

In the private database setting, users upload private databases to a remote database
server while keeping the database private from the remote database administrators. At a
later time, users should be able to search and retrieve entries with certain keyword from
the remote database. Based on the physically shielded Central Processing Unit (CPU)
technique [15], Goldreich and Ostrovsky [8] proposed a theoretical treatment of soft-
ware protection by formulating the problem in the setting of learning a program struc-
ture by observing its execution. Using this new formulation, they reduced this problem
to on-line simulation of any programs on oblivious RAMs (random access machines).
A machine is oblivious if its accesses to memory locations are independent of the input
values with the same running time. We may apply these schemes in the cloud comput-
ing environments (e.g., search over encrypted texts) as follows: the physically shielded
CPU is interpreted as the user at the client side and the memory locations are inter-
preted as the cloud storage. Though the scheme in [7,8,18] is asymptotically efficient
and nearly optimal, it is inefficient in practice with large hidden constants in the big-O
notation and a heavy communication overhead between the client and the server.

In the RAM (random access machine) model, the CPU performs basic arithmetic,
logical, control and input/output operations specified by the instructions. The CPU can
be considered as a stateful processor where the state Σ is determined by the content in
the registers. The registers store program counters, query counters, session information,
cryptographic keys, and other information. Among these registers, there is an accumu-
lator where intermediate arithmetic and logic results are stored. Throughout this paper,
we will assume that CPU could perform the following operations:

1. Perform arithmetic instructions +,−,×, �x/y�. For each arithmetic operation
f(x, y), there are two inputs x and y. The value of x should be already in the accu-
mulator and y should be a value in the memory cell to be fetched.

2. Generate a random number and put it in the accumulator.
3. Read data from a memory cell to the accumulator and write the value in the accu-

mulator to a memory cell. Note that this kind of operations will include the user data
inputs and outputs if we use some fixed memory cells for user inputs and some other
fixed memory cells for user outputs.

4. Control transfer instructions: “GOTO X”, “IF X = 0 THEN GOTO Y ”, and “IF
X > 0 THEN GOTO Y ”.

5. HALT: terminates the execution of the program.
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During the execution of the RAM CPU, each read/write operation to memory cells
could be viewed as a query (op, v, x) where op equals to READ orWRITE, v is the data
identifier and x is the value. Without loss of generality, we always assume that (op, v, x)
is contained in a register that is called an interface register. In the RAMmachine model,
the actual programs are stored in the memory cells. Thus RAM CPU can be considered
as a universal machine that reads programs from the memory cell and executes the
instructions step by step. Based on this interpretation, we will not distinguish data and
programs throughout this paper.

In order to protect the memory cell access patterns of the RAM CPU, the client
holds a secret key for a semantically secure probabilistic encryption scheme. The data
and programs uploaded to RAM memory cells are encrypted using the secret key. The
clients stores n blocks of data (vi, xi) where vi is the data identifier or location-index
and xi is the data payload. By default, the data block (vi, xi) is stored at physical
location i in the memory cell. As we have discussed in the previous paragraphs, the
RAMCPU interacts with data stored in the memory cells by issuing commands “READ
(vi, xi)” and “WRITE (vi, xi)”. By default, the RAM machine does not hide the fact
that the CPU has accessed the data stored at the physical position i (by default, it
is (vi, xi)) even if the data payload (vi, xi) itself is encrypted and remains perfectly
secure. In order to hide the actual data blocks that the client accessed, the oblivious
RAM (ORAM) machine is introduced where the data block (vi, xi) is no longer stored
at the physical position i. Instead, a random permutation is used to store (vi, xi) at a
random location. In order to hide the event that one data block is accessed for multiple
times, further mechanisms (e.g., a cache) are used. Several commonly used construc-
tions of oblivious RAMs are presented in next sections. The security for ORAMs is
expressed in the following definition which is based on [8,11,21].

Definition 1. Assume that the client store a sequence of data blocks X = {(v1, x1),
· · · , (vn, xn)} at the server. Each data block (vi, xi) is located at a physical location
π(i). The client (or the ORAM CPU) issues a sequence of operations (op1, a1, y1), · · · ,
(opm, am, ym) to the server where each (opi, ai, yi) represents a read or write com-
mand. For example, a command (READ, ai, yi) asks the server to read the content at
the physical location ai to the variable yi. The sequence of operations (op1, a1, y1), · · · ,
(opm, am, ym) is called an access pattern A(X) on client data blocks X . An oblivious
RAM machine is secure if for any two data blocks X and Y of equal length, the access
patterns A(X) and A(X) are computationally indistinguishable for any one but the
client who holds the secret key.

The first oblivious RAM simulation was designed by Goldreich [7] using the
“square root” construction. For a RAM machine with n memory cells denoted by an
array R[1..n], an oblivious RAM with a memory array OR[1..n + 2

√
n] was designed

in [7]. The portion OR[n +
√

n + 1..n + 2
√

n] of size
√

n is used by the ORAM as the
cache space (or a shelter). For the first n +

√
n cells, choose a random permutation

π : {1, · · · , n +
√

n} → {1, · · · , n +
√

n}

and letOR[π(i)] = R[i] = (vi, xi), where we assume thatR[i] contains a dummy value
for n < i ≤ n +

√
n. Each time when the ORAM accesses a data block (vi, xi) from
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OR[π(i)] = R[i], it stores this value (vi, xi) in the cache OR[n +
√

n + 1..n + 2
√

n].
For each new query of a data block (vj , xj), ORAM checks all values in OR[n+

√
n+

1..n + 2
√

n] to see whether (vj , xj) has been cached there already. If the data block is
found, ORAM only needs to make a dummy access to another cell OR[π(n+ l)] where
l is the counter. That is, this is the l-th dummy memory cell access. If the data block
is not found, ORAM loads the data block (vj , xj) from OR[π(j)] directly. After

√
n

memory cell accesses, ORAM needs to re-shuffle data blocks in the memory cells using
an oblivious sorting process.

3 Reusable Garbled ORAMs

Lu and Ostrovsky [17] showed how to design one-time non-reusable garbled ORAMs
by constructing t pairs of garbled circuits (Oi

ORAM ,Oi
CPU ) for i = 1, · · · , t, where t

is the maximum runtime of the ORAM, Oi
ORAM simulates the ith-step memory read-

/write command, and Oi
CPU simulates the ith-step shielded CPU operation. Gentry et

al. [6] showed that in order to prove the security for the garbled RAM scheme in [17],
an additional circularity assumption is required. Gentry et al. [6] then proposed two
new constructions to avoid this additional assumption. In this section, we present our
construction of practical reusable garbled ORAMs which is based on secure Indistin-
guishability obfuscation schemes.

3.1 Constrained Peseudo Random Functions

In order to avoid the circularity assumption, Gentry et al. [6] used a concept of revocable
PRFs: Let G : {0, 1}s → {0, 1}2s be a pseudorandom generator and we can write
G0(x) to denote the left half of the output G(x) and G1(x) to denote the right half of
the output G(x). That is,G(x) = G0(x)||G1(x). For any key k ∈ {0, 1}s and input x ∈
{0, 1}n, the pseudorandom function is defined as Fk(x) = Gx[n−1](· · · (Gx[0](k)) · · · ).

A constrained (or revocable) pseudorandom function is defined in such a way that
given the description of a constrained pseudorandom function, one cannot compute
the output of the pseudorandom function for some excluded inputs. This can be easily
achieved using GGM-pseudorandom functions. For example, if we want to exclude the
input 0n, instead of giving out the key k, we can give the following description of the
pseudorandom function

Fk : {G1(k), G0(G1(k)), · · · , G1(G0(G0(· · · (G0(k)) · · · )))}
.

Goldwasser et al. [9] designed reusable garbled RAMs using fully homomorphic
encryption (FHE) schemes and attribute based encryption (ABE) schemes for RAMs.
As we have mentioned in previous sections, these schemes are neither efficient nor
secure against active adversaries.

3.2 Garbled Circuits (GC)

We first briefly review the formal definition of garbled circuits and related concepts.



8 Y. Wang and Q. M. Malluhi

Definition 2. A functional encryption scheme FE for a class of functions {Fn}n∈N

is a tuple of probabilistic polynomial time algorithms (FE.Setup, FE.KeyGen, FE.Enc,
FE.Dec) with the following properties

– (fmpk, fmsk) = FE.Setup(1κ) outputs a master public key fmpk and a master
secret key fmsk on the security parameter κ.

– fskf = FE.KeyGen(fmsk, f) outputs a secret key for a function f .
– c = FE.Enc(fmpk, x) outputs a ciphertext for x.
– y = FE.Dec(fskf , c) outputs the value y which should equal f(x).

The functional encryption scheme is correct if y �= f(x) with a negligible probability.

The security of functional encryption scheme requires that an adversary learns noth-
ing about the input x other than the output f(x).

Definition 3 (FE security). Let FE be a functional encryption scheme for a family of
functions F = {Fn}n∈N . For a pair of probabilistic polynomial time algorithms A =
(A0, A1) and a probabilistic polynomial time simulator S, define two experiments:

ExprealFE,A(1κ) :

(fmpk, fmsk) ← FE.Setup(1κ)
(f, stateA) ← A1(fmpk)
fskf ← FE.KeyGen(fmsk, f)
(x, state′

A) ← A2(stateA, fskf )
c ← FE.Enc(fmk, x)
output(state′

A, c)

ExpidealFE,A,S(1κ) :

(fmpk, fmsk) ← FE.Setup(1κ)
(f, stateA) ← A1(fmpk)
fskf ← FE.KeyGen(fmsk, f)
(x, state′

A) ← A2(stateA, fskf )
c̄ ← S(fmpk, fskf , f, f(x), 1|x|)
output(state′

A, c̄)

The scheme is said to be (single-key) secure in the full simulation security model if
there exists a probabilistic polynomial time simulator S such that for all pairs of proba-
bilistic polynomial time adversaries (A0, A1), the outcomes of the two experiments are
computationally indistinguishable.

Definition 4. Let C = {Cn}n∈N be a family of circuits such that Cn is a set of boolean
circuits that take n-bit inputs. A garbling scheme for C is a tuple of probabilistic poly-
nomial time algorithms GC = (GC.Garble, GC.Enc, GC.Eval) with

– (Γ, sk) = GC.Garble(1κ, C) outputs a garbled circuit Γ and a secret key sk.
– cx = GC.Enc(sk, x) outputs an encoding cx for an input x ∈ {0, 1}n.
– y = GC.Eval(Γ, cx) outputs y = C(x).

The garbling scheme GC is correct if the probability that GC.Eval(Γ, cx) �= C(x) is neg-
ligible. The garbling scheme GC is efficient if the size of Γ is bounded by a polynomial
and the run-time of c = GC.Enc(sk, x) is also bounded by a polynomial.

The security of garbling schemes is defined in terms of input and circuit privacy in
the literature. The following definition captures the intuition that the adversary learns
zero information about the circuit and input given one evaluation of the garbled circuit.



Privacy Preserving Computation 9

Definition 5 (Privacy for one-time garbling schemes). A garbling scheme GC for a
family of circuits C is said to be input and circuit private if there exists a probabilis-
tic polynomial time simulator SimGarble such that for all probabilistic polynomial time
adversaries A and D and all large κ, we have

∣
∣
∣Pr[D(α, x,C,Υ, c) = 1|REAL] − Pr[D(α, x,C, Υ̃, c̃) = 1|SIM]

∣
∣
∣ = negl(κ)

where REAL and SIM are the following events

REAL : (x,C, α) = A(1κ); (Υ, sk) = GS.Garble(1κ, C); c = GS.Enc(sk, x)
SIM : (x,C, α) = A(1κ); (Υ̃, c̃) = SimGarble(1κ, C(x), 1|C|, 1|x|).

The reusable garbling schemes for circuits have the same syntax as one-time gar-
bling schemes. In order to differentiate them, we use RGC to denote reusable circuit gar-
bling schemes. The following privacy definition for reusable garbled circuits is adapted
from Goldwasser et al. [10].

Definition 6 (Private reusable garbling circuits). Let RGC be a reusable garbling
scheme for a family of circuits C = {Cn}n∈N and C ∈ Cn be a circuit with n-bits
input. For a pair of probabilistic polynomial time algorithms A = (A0, A1) and a
probabilistic polynomial time simulator S = (S0, S1), define two experiments:

ExprealRGC,A(1κ) :

(C, stateA) ← A0(1κ)
(sk,Υ) ← RGC.Garble(1κ, C)
α ← A

RGC.Enc(sk,·)
1 (M,Υ, stateA)

ExpidealRGC,A,S(1κ) :

(C, stateA) ← A0(1κ)
(Υ̃, stateS) ← S0(1κ, C)
α ← A

O(·,C)[[stateS ]]
1 (M, Υ̃, stateA)

In the above experiments, O(·, C)[[stateS ]] is an oracle that on input x from A1, runs
S1 with inputs 1|x|, C(x), and the latest state of S; it returns the output of S1 (storing
the new simulator state for the next invocation). The garbling scheme RGC is said to
be private with reusability if there exists a probabilistic polynomial time simulator S
such that for all pairs of probabilistic polynomial time adversaries A = (A0, A1), the
following two distributions are computationally indistinguishable:

{

ExprealRGC,A(1κ)
}

κ∈N
=c

{

ExpidealRGC,A,S(1κ)
}

κ∈N
(1)

3.3 Indistinguishability Obfuscation and Reusable Garbled Circuits

Jain, Lin, and Sahai [13] proved the following results.

Theorem 1 (Jain, Lin, and Sahai [13]). Let τ be arbitrary constants greater than 0,
and δ, ε in (0, 1). Assume sub-exponential security of the following assumptions, where
κ is the security parameter, p is a κ-bit prime, and the parameters l, k, n below are
large enough polynomials in κ:

– the LWE assumption over Zp with subexponential modulus-to-noise ratio 2kε

, where
k is the dimension of the LWE secret,
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– the LPN assumption over Zp with polynomially many LPN samples and error rate
1/lδ , where l is the dimension of the LPN secret,

– the existence of a Boolean PRG in NC0 with stretch n1+τ ,
– the SXDH assumption on asymmetric bilinear groups of a order p.

Then, (subexponentially secure) indistinguishability obfuscation for all polynomial-size
circuits exists.

The functional encryption scheme for circuits C ∈ NC1 is defined as follows.
Choose two standard public-key encryption key pairs (puk1, prk1) and (puk2, prk2)
in the key generation process of the Functional Encryption scheme. The encryption of
an input x consists of two ciphertexts of x under the two public keys puk1 and puk2
together with a statistically simulation sound non-interactive zero knowledge (NIZK)
proof that both ciphertexts encrypt the same message. The secret key skC for the circuit
C is an indistinguishability obfuscation of a program that first checks the NIZK proof
and, if the proof is valid, it uses one of the two secret keys prk1 and prk2 to decrypt x
and then computes and outputs C(x).

A reusable garbled circuit C for a circuit C ∈ NC1 can be constructed using
the approach presented in Goldwasser et al. [10]. The owner of circuit C chooses
a secret key sk for an ideal cipher to encrypt the circuit C as E.Encsk(C). Let
UE(sk, x) ∈ NC1 be a universal circuit that first uses sk to decrypt E.Encsk(C) to
the circuit C and then runs C on x. Let skUE

be the secret key of the functional encryp-
tion scheme for UE . The reusable garbled circuit for C is C = skUE

and the secret key
is (sk, puk1, puk2). The input to C consists of the two cipher texts of (sk, x) under the
two public keys puk1, puk2 and a NIZK proof that these two cipher texts encrypt the
same plain text. In the above arguments, we used the fact that there exists a universal
circuit of depth O(d) for all circuits of depth d. By combining the results in Theorem 1,
De Caro et al. [5], and Goldwasser et al. [10], we have the following result: Assuming
the assumptions of Theorem 1, there exists a reusable garbling scheme RGC for circuits
in NC1 that is secure according to the Definition 6 in the random oracle model.

There exists a functional encryption scheme FE for circuits in NC1 that is secure
according to a standard security definition of functional encryption in the simulation-
based security model (see, e.g., Katz et al. [14], Bethencourt et al. [2], Gorbunov et al.
[12], and Goldwasser et al. [10]).

3.4 Construction of Reusable Garbled ORAMs

The syntax for reusable garbled ORAMs is the same as that for one-time and reusable
garble circuits in Definition 4. The security for ORAMs is defined in Definition 1. The
security definition for reusable garbled ORAMs is the same as that for reusable gar-
ble circuits in Definition 6. Throughout this paper, we will use RGO = (RGO.Garble,
RGO.Enc, RGO.Eval) to denote a reusable garbled ORAM scheme. It is noted that a
RAM CPU runs five kinds of operations. For convenience, RAM operations could be
further grouped into two categories:
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1. interface operation (op, v, x)
2. execute one instruction step to update the CPU state Σ and to produce the next

interface operation (op, v, x). CPU state update includes register content update,
program pointer update, query counter update, session information update, cryp-
tographic key update, and other information update. The instruction step could be
one of the following operations: arithmetic instruction, random sequence generation,
control transfer, and halt.

Beame, Cook, and Hoover [1] showed that division could be implemented using a depth
O(log) circuit. Thus the operation of one CPU step could be simulated by a circuit in
NC1.

In the ORAM model, each interface operation (op, v, x) is translated to a sequence
of memory cell accesses to hide the actual data-identifier string v. Since we are trying
to convert the shielded CPU to a garbled circuit, the evaluator of the garbled CPU can
observe how many operations the CPU executes before the next interface command is
created. In order to hide this kind of pattern, we assume that the CPU is modified in
such a way that each CPU operation is followed by an interface operation. This could
be achieved by inserting dummy memory cell accesses or by inserting NOP operations
to the CPU instruction sequences.

Let E = (E.KeyGen, E.Enc, E.Dec) be a semantically secure symmetric key cipher
and PKE = (PKE.KeyGen, PKE.Enc, PKE.Dec) be a semantically secure public key
encryption scheme. Throughout the garbling process of an ORAM, we use a secret
key sk = E.KeyGen(1κ) and two public key pairs

(prk1, puk1) = PKE.KeyGen(1κ)

and
(prk2, puk2) = PKE.KeyGen(1κ).

The entire memory cells are encrypted inputs to Garg et al’s reusable garbled circuits
(see Sect. 3.3 for details). That is, each cell value (v, x) is encrypted as a tuple (e1, e2, π)
where ei = PKE.Enc(puki, sk||v||x) for i = 1, 2 and π is a NIZK proof that both e1
and e2 encrypt the same message.

An ORAM CPU is modeled as three separate reusable circuits. The graphical
description of these circuits and their communication channels are shown in Fig. 1.

Fig. 1. Garbled ORAM CPU
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The first circuit is the reusable CPU circuit CCPU ∈ NC1 that takes the current
CPU state (Σ, v, x) as inputs, checks the consistency of session information contained
in the input, runs one CPU step, updates the CPU state Σ and session information, and
produces the next encrypted interface command (op, v, x) for the second circuit CORAM

to execute. The details of CCPU are described in Fig. 2.

Inputs: CPU state (Σ, v, x, sctrlr) and session control data (session, sctrls).
Output: Encoded (Σ, v, x), session, and interface command com
1. if sctrlr and sctrls are inconsistent then exit.

2. simulate ORAM CPU execution for one step with internal state Σ and input

(v, x), compute the new state Σ and the next interface command (op, v, x).
3. update session, sctrlr, and sctrls.
4. encode sk||(Σ, v, x)||sctrlr to obtain (Σ, v, x) = (eΣ

1 , eΣ
2 , πΣ) as an input to

a Garg’s reusable garbled circuit using public keys puk1, puk2.
5. encode sk||session||sctrls to obtain session as an input to a Garg’s

reusable garbled circuit using public keys puk1, puk2.
6. encode sk||(op, v, x, ctr, flag, strlc) to obtain com as an input to a Garg’s

reusable garbled circuit using public keys puk1, puk2.
7. output (Σ, v, x), session, and com.

Fig. 2. CCPU updates its state and outputs an encoded (op, v, x, ctr, flag)

The interface command (op, v, x) produced by circuit CCPU is in the default for-
mat (op, v, x, ctr, flag) where ctr = 0 and flag = no. The second circuit CORAM

translates the command (op, v, x, ctr, flag) to a sequence of memory cell access com-
mands to implement the command (op, v, x) obliviously. In order to run (op, v, x) obliv-
iously, the circuit CORAM needs to keep a record on whether the actual data-identifier
string v has been found. This information is kept in the flag field. The counter ctr
is used to record the number of memory cells this circuit has accessed for this specific
command (op, v, x). In other words, for each (op, v, x) command, the circuit CORAM is
executed t times repeatedly to hide the actual data block it accessed, where t is a con-
stant that is independently of the value (op, v, x).

Specifically, the reusable circuit CORAM is a pair of circuits CORAM1 and CORAM2. CORAM1

takes the interface command (op, v, x, ctr, flag) as the input and produces an inter-
face command (op′, i, z) where op′ and i are plain texts and z = (v, x) is encoded. If
op′ = READ, the evaluator reads the memory cell at physical location i and loads the
encoded content to z. If op′ = WRITE, the evaluator writes the encoded value z to the
memory cell at physical location i. After the evaluator finishes processing the actual
memory cell access, the resulting updated interface command (op′, i, z) is given to the
circuit CORAM2. CORAM2 decrypts z to a pair (v′, x′). If v = v′, the actual data block has
been found. CORAM2 sets flag = yes and checks whether op = READ. If op = READ,
CORAM2 needs to copy the value x′ to the field x of (op, v, x, ctr, flag). If v �= v′, the
actual data block has not been found yet and CORAM2 keeps flag = no. After CORAM2

finishes its job, circuit CORAM1 takes turn again. CORAM1 examines the interface command
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(op, v, x, ctr, flag) to obtain the values of flag and ctr. Using these values, CORAM1

creates the next memory access instruction according to the oblivious memory access
schedule and outputs the corresponding interface command (op′, i, z). For each execu-
tion of CORAM1, the counter ctr is increased by one. After ctr reaches t, CORAM1 copies
the value x from (op, v, x, ctr, flag) to the field-x of (Σ, v, x) which is the input to
CCPU. The evaluator knows the value of t. Thus it lets the circuit CCPU take turn after
CORAM1 finishes t steps. The details of circuit CORAM are described in Fig. 3.

CORAM1:

Inputs: (Σ, v, x, sctrlr), (op, v, x, ctr, flag, sctrlc), (session, sctrls)
Output:Memory access command (op, i, z)
1. if sctrlc, sctrlr, and sctrls are consistent, use session to update sctrlc,

sctrlr, and sctrls and go to next step 2. Otherwise, exit

2. if ctr < t, go to step 5.
3. if ctr = t and op = READ, extract (v, x) from (op, v, x, ctr, flag, sctrlc)

and put it in (Σ, v, x).
4. output the encoded sk||(Σ, v, x, sctrlr) in the format of input to an Garg’s

reusable garbled circuit using public keys puk1, puk2 and exit.
5. use ctr, flag, and oblivious memory access schedule to output the next mem-

ory access command (op , i, z), where op and i are in plain text and z = (v, x).
CORAM2:

Inputs: (op , i, z), (op, v, x, ctr, flag, sctrlc), (session, sctrls)
Output: encoded sk||(op, v, x, ctr, flag, sctrlc, z) using puk1, puk2
1. if sctrlc and sctrls are inconsistent then exit.
2. use session to update sctrlc and sctrls.
3. decode z to sk||(v , x ) using the key prk1.

4. if v = v , then the required data block has been found. Set flag =
yes. Furthermore, if op = READ, insert the value of x to the x-field of

(op, v, x, ctr, flag, sctrlc).
5. output encoded sk||(op, v, x, ctr, flag, sctrlc) in the format of input to an

Garg’s reusable garbled circuit using public keys puk1, puk2.

Fig. 3. CORAM uses ctr and flag to determine which memory cell to access

The third circuit CSHUFFLE implements the re-shuffling process for ORAM mem-
ory cells. CSHUFFLE consists of a pair (CSHUFFLE1, CSHUFFLE2) of circuits that implement
the randomized data-oblivious Shellsort algorithm for re-shuffling the memory cells.
CSHUFFLE is constructed using an oblivious sorting algorithm. Specifically, CSHUFFLE1

takes an input with fields (op, v1, T1, v2, T2, ctr, flag) and compare-exchanges the
values (v1, T1) and (v2, T2). After the compare-exchange operation, CSHUFFLE1 outputs
a next memory cell access command (op, i, z) with plain-text op and i for the evaluator
to access the ith memory cell. The updated (op, i, z) is given to CSHUFFLE2 that decodes
z and inserts it to the corresponding field of (op, v1, T1, v2, T2, ctr, flag) if necessary.
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The algorithm for CSHUFFLE is similar to the algorithm for the circuit CORAM described in
Fig. 3. The details are omitted here.

Without loss of generality, we may assume that there exist NC1 encryption and
decryption circuits for the symmetric key cipher E and the public key cipher PKE. Then
it is straightforward to show that circuits CCPU, CORAM1, CORAM2, CSHUFFLE1, and CSHUFFLE2

belong to NC1 also. By Garg et al’s results that we discussed in Sect. 3.3, there exist
efficient polynomial size reusable garbled circuits C̄CPU, C̄ORAM1, C̄ORAM2, C̄SHUFFLE1, and
C̄SHUFFLE2. Using these constructions, we are ready to give the formal construction of
our reusable garbled ORAM machines.

In above paragraphs, we described the construction of a garbled ORAM CPU. In a
practical deployment of ORAM programs, the program is generally encoded and stored
in the memory cells. In other words, the garbled ORAM CPU could be considered as
a garbled universal machine. It reads encoded ORAM programs in memory cells and
executes them on inputs. Part of the input is provided by the client and the other part
of the input is located in memory cells already. For example, part of memory cells
may be considered as an encoded database which is part of the input to the ORAM
program. The other part of the input could be an encoded database search query that
is submitted by the client. Let P = {Pn}n∈N be a family of ORAM programs such
that Pn is a set of programs that take n-bit inputs. The reusable garbling scheme RGO =
(RGO.Garble, RGO.Enc, RGO.Eval) for P is instantiated as follows.

– (Γ, (sk, puk1, puk2)) = RGO.Garble(1κ, P ):
• sk = E.KeyGen(1κ)
• (prki, puki) = PKE.KeyGen(1κ) for i = 1, 2
• encode P appropriately and include it as part of the memory cells
• encode each memory cell content (v, x) to (e1, e2, π) which is in the format of

input to Garg et al’s reusable garbled circuits using sk, puk1, and puk2.
• use Garg et al’s approach to construct reusable garbled circuits for each of the

NC1 circuits CCPU, CORAM1, CORAM2, CSHUFFLE1, CSHUFFLE2 with keys prk1, sk,
puk1, and puk2.

• Let Γ =
(

C̄CPU, C̄ORAM1, C̄ORAM2, C̄SHUFFLE1, C̄SHUFFLE2

)

.
– c = RGO.Enc((sk, puk1, puk2), x).

• Encode sk||x to c = (e1, e2, π) which is in the format of input to Garg et al’s
reusable garbled circuits using the two keys puk1, and puk2.

– y = RGO.Eval(Γ, c):
• Run the garbled ORAM CPU

(

C̄CPU, C̄ORAM1, C̄ORAM2, C̄SHUFFLE1, C̄SHUFFLE2

)

on the memory cells and on c to compute the output y = P (x).

3.5 Proof of Security

We first make a few observations on the garbled ORAM construction in Sect. 3.4. The
first observation is that for a given encoded input c = RGO.Enc(x), the running time
of y = RGO.Eval(Γ, c) is disclosed according to Definition 1. Thus the running time
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is provided to the simulator in advance. In case that the running time of the execution
should be protected also, the ORAM CPU should be revised in such a way that it takes
the same time for all inputs of the same length. This could be achieved by adding NOP
operations to the ORAM CPU if the calculation ends early than the expected time.

The second observation is that the output y = RGO.Eval(Γ, c) is an encoded value
(e1, e2, π) which is in the format of input to Garg et al’s reusable garbled circuits using
the keys sk, puk1, and puk2. This is acceptable in practice since generally the garbled
ORAM program is executed in the cloud and the cloud does not need to know the actual
output. After the computation is finished, the cloud returns the encoded y to the client
who can recover the plain text output using either of the secret keys prk1 or prk2.

The third observation is that in our scheme, the garbled ORAM will only run on
encoded input provided by the client. The secret key sk of the ideal cipher E and the
public keys puk1, puk2 of the public key scheme PKE are needed to encode the input
for the garbled ORAM CPUs. Without correctly encoded inputs with matching session
identification, neither garbled CPU circuit CCPU nor garbled ORAM circuitCORAM would
continue the computation since the session control message validation process would
only pass with a negligible probability. Similarly, the adversary could not mix/swap
computation states for two inputs since each input contains an input specific session
control message. The session control messages in inputs for two sessions (even if the
input values are identical) are identical only with a negligible probability.

The fourth observation is that the adversary may play fault-insertion attacks in the
memory cells. This kind of attacks have not been discovered or modeled in the tra-
ditional simulation-based security model for ORAMs in Definitions 1 and 6. In this
section, we prove that our ORAM garbling scheme is secure according to Definition 6.

Theorem 2 Assuming the existence of a semantically secure symmetric key cipher E, a
semantically secure public key cipher PKE, and a private reusable garbling scheme for
circuits in NC1, there is a private reusable ORAM garbling scheme RGO as defined in
Definition 6 in the random oracle model.

Proof. First we observe that the existence of semantically secure ciphers E and PKE
implies the existence of cryptographically secure one-way functions. Thus the assump-
tion in Theorem 2 implies the existence of a secure ORAM according to Definitions
1. The correctness of the construction in Sect. 3.4 is straightforward. In order to show
that the construction is input and circuit private as defined in Definition 6, we show
that there exists a simulator S = (S0, S1) simulating the garbled execution given the
program output y and the ORAM CPU running time t, so that the equation (1) holds.

Let Sa be the ORAMmemory access pattern simulator and SPKE be the simulator for
the cipher PKE. Let SCPU, SORAM, and SSHUFFLE be the simulators for Garg et al’s reusable
garble circuits (as described in Sect. 3.3) CCPU, CORAM, and CSHUFFLE respectively.

Assume that an ORAMmachine P is selected with the security parameter κ. For the
given ORAM CPU running time t and output y = P (x), let Sa(y, t) outputs a sequence
of memory access pattern η1, · · · , ηt where ηi (i ≤ t) is the simulated oblivious mem-
ory cell access sequence for the ith memory cell access of the original RAM machine.
In other words, each ηi = {vi,1, · · · , vi,ti

} is a sequence of memory cells that the simu-
lated ORAM machine accesses to implement the ith memory cell access of the original
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RAM machine. Sa(y, t) also outputs a sequence of memory access pattern ξ1, · · · , ξt′

where ξi (i ≤ t′) is the simulated oblivious memory cell access sequence for the ith
re-shuffling process.

Starting from the last memory cell sequence set ηt, for each ηi = {vi,1, · · · , vi,ti
},

repeat simulators SPKE and SORAM for ti times to generate a simulated viewi
ORAM.

Similarly, starting from the last memory cell sequence set ξt′ , for each ξi =
{ui,1, · · · , ui,si

}, repeat simulators SPKE and SSHUFFLE for si times to generate a sim-
ulated viewi

SHUFFLE. Lastly, using the views {viewi
ORAM, view

j
SHUFFLE : i ≤ tandj ≤ t′},

repeat simulators SPKE and SCPU for t + t′ times to generate a simulated viewCPU.
Without loss of generality, we may assume that the adversaries output their entire
views in the above simulation so that any required view could be calculated from
these views in a probabilistic polynomial time. In other words, the simulator’s view
{

ExpidealRGO,A,S(1κ)
}

κ∈N
in (1) could be calculated in probabilistic polynomial time from

S’s entire view

{viewi
ORAM, view

j
SHUFFLE, viewCPU : i ≤ t and j ≤ t′}κ∈N . (2)

In order to show that (1) holds, we consider three experiments.

Experiment 1: The ideal game ExpidealRGO,A,S(1κ) of Definition 6 with the simulator S
and the ORAM machine P .

Experiment 2: The same as Experiment 1 except that the ORAM program P is
replaced with the reusable garbled ORAM P : CCPU, CORAM, CSHUFFLE, and corresponding
keys.

Experiment 3: The same as Experiment 2 except that the simulated cipher SPKE is
replaced with the actual cipher PKE using keys sk, puk1, puk2, prk1.

Since the view of Experiment 1 equals to
{

ExpidealRGO,A,S(1κ)
}

κ∈N
and the view of

Experiment 3 equals to
{

ExprealRGO,A(1κ)
}

κ∈N
, it is sufficient for us to show that the view

of Experiment 1 is computationally indistinguishable from the view of Experiment 2
and the view of Experiment 2 is computationally indistinguishable from the view of
Experiment 3.

Claim. Assume that CCPU, CORAM, and CSHUFFLE are private reusable garbled circuits for
circuits CCPU, CORAM, and CSHUFFLE. Furthermore, assume that the ORAM access pattern
is securely simulated by the simulator Sa. Then the outputs of Experiment 1 and Exper-
iment 2 are computationally indistinguishable.

Proof Outline. Assume that outputs of Experiment 1 and Experiment 2 could be dis-
tinguished by a probabilistic polynomial time algorithm D. Then a standard hybrid
approach could be used to construct a probabilistic polynomial time algorithm D′ to
distinguish the view in (2) from the view for the ideal experiments with the ORAM
program P . In other words, if Sa securely simulate the ORAMmemory cell access pat-
tern, then the view in (2) could be distinguished from the ideal experiments with circuits
CCPU, CORAM, and CSHUFFLE. This contradicts the fact that CCPU, CORAM, and CSHUFFLE are
private reusable garbled circuits (see Sect. 3.3). Q.E.D.
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Claim. Assume that the cipher PKE be semantically secure. Then the outputs of Exper-
iment 2 and Experiment 3 are computationally indistinguishable.

Proof Outline. Assume that there exist probabilistic polynomial time adversaries A =
(A1, A2) and a probabilistic polynomial time distinguisher D such that D can distin-
guish the outputs of Experiment 2 and Experiment 3 with a non-negligible probability.
Using the standard hybrid argument, one can construct a probabilistic polynomial time
distinguisher D′ to distinguish at least one cipher text in Experiment 3 from the corre-
sponding simulated cipher text in Experiment 2 with a non-negligible probability. This
contradicts the assumption that PKE is semantically secure. Q.E.D.

Claim 1 and Claim 2 imply that the Eq. (1) holds. This completes the proof of
Theorem 2. Q.E.D.

Definition 7 (Private reusable garbling ORAMs). Let RGO be a reusable garbling
scheme for ORAM machines. In addition to the attacks that are allowed in Definitions 1
and 6, the adversary is allowed to interfere with the garbled ORAM execution by play-
ing or replaying the garbled ORAM on modified environments (e.g., inserting faults in
the memory cells during the execution). The garbling scheme RGO is said to be private
with reusability if there exists a probabilistic polynomial time simulator S such that for
all pairs of probabilistic polynomial time adversaries A = (A0, A1) as defined above,
the two distributions in (1) are computationally indistinguishable.

Theorem 3. Assume the existence of a semantically secure symmetric key cipher E, a
semantically secure public key cipher PKE, a secure digital signature scheme Dsig, and
a private reusable garbling scheme for circuits in NC1. Then there is a private reusable
ORAM garbling scheme RGO1 as defined in Definition 7 in the random oracle model.

Proof. Let Dsig = (Dsig.KeyGen, Dsig.Sign, Dsig.Vefy) be a secure digital signa-
ture scheme and (SIGsk, SIGpk) = Dsig.KeyGen(1κ). Let P = {Pn}n∈N be a family
of square-root ORAM programs such that Pn is a set of functions that take n-bit inputs.
The reusable garbling scheme RGO1 = (RGO1.Garble, RGO1.Enc, RGO1.Eval) for P is
instantiated as in Sect. 3.4 with the following revisions:

– (Γ, (sk, puk1, puk2, SIGsk, SIGpk)) = RGO1.Garble(1κ, P ): This process is
obtained from RGO.Garble in Sect. 3.4 by the following revisions:

• add a component in circuit CORAM to digitally sign the shelter (cache) at the end
of the execution of each CCPU interface command (op, v, x)

• add a component in circuit CORAM to check the validity of the digital signature at
the beginning of the execution of each CCPU interface command (op, v, x).

• add an component to circuit CSHUFFLE so that a unique sequence number seq
is added to all memory cells. At the same time, the physical location i of the
memory cell OR[i] is added to the content of OR[i]. In other words, the ith
memory cell contains the value OR[i] = (v, x, seq, i).

• add a component to circuit CORAM to check that the accessed non-shelter memory
cells contain the current sequence number and check that the actual physical
address of the memory cell is the same as that contained in the content OR[i] =
(v, x, seq, i).
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– c = RGO1.Enc((sk, puk1, puk2), x). This is obtained from RGO.Enc by adding a
process to digitally sign the entire shelter cells and adding the current sequence
number to all non-shelter memory cells if this has not been done yet.

– y = RGO1.Eval(Γ, c): same as RGO.Eval(Γ, c).

The remaining part of the proof is similar to the proof of Theorem 2. Q.E.D.

4 Conclusion

In this paper, we designed reusable garbling schemes for ORAMs using alternative
techniques. The garbled ORAM design could find a variety of applications in secure
cloud computing environments.
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Abstract. Private set intersection cardinality (PSI-CA) is a variant of
private set intersection (PSI) that allows two parties, the sender and the
receiver, to compute the cardinality of the intersection without leaking
anything more to the other party. It’s one of the best-studied applica-
tions of secure computation, and many PSI-CA protocols in balanced or
unbalanced scenarios have been proposed. Generally, unbalanced scenario
means that the private set size of the receiver is significantly smaller than
that of the sender. This paper mainly focuses on a new scenario in which
the receiver’s set size (client) is much larger than that of the sender (server)
called the reverse unbalanced scenario. We study PSI-CA protocols that
are secure against semi-honest adversaries, using the Hash-Prefix filter
to effectively reduce the computation and communication overhead. We
greatly optimize the previous unbalanced PSI-CA protocol and construct
a reverse unbalanced PSI-CA protocol. In addition, we introduce private
information retrieval (PIR) to resist the privacy leakage of the Hash-Prefix
filter. By implementing all protocols on the same platform, we compare the
protocols’ performance theoretically and experimentally. Combined with
the Cuckoo filter, elliptic curve and multi-threading, the computational
and communication efficiency of our protocol is 26.87× and 8.48× higher
than the existing unbalanced PSI-CA protocols. By setting sets with sig-
nificant differences in size, we also prove the feasibility of our protocol in
anonymous identity authentication.

Keywords: Private set intersection cardinality · Reverse unbalanced
scenario · Hash-prefix filter · Private information retrieval · Cuckoo
filter

1 Introduction

PSI was first proposed by Freedman et al. [16], which allows two or more parties
to find the intersection of their private sets without disclosing other information.
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PSI has been used in a wide range of privacy-sensitive scenarios, such as location
sharing [29], contact discovery [21,22], measuring the ads conversion rate [32]
fully-sequenced genome test [4], as well as collaborative botnet detection [28].

As for scenarios, PSI can be divided into 4 categories: PSI on small sets,
PSI on large sets, PSI on unbalanced sets, and private computation on the
intersection. PSI-CA belongs to the last one and computes cardinality on the
intersection [1,8–11,13,16–20,24,26,35]. It can be mainly used in measuring the
conversion rate of ads, for the merchants may need to know how many people
have seen ads while buying the corresponding goods. Meanwhile, both parties
dislike leaking any personal information.

PSI-CA can also be divided into balanced [1,8–11,16–20,26,35] and unbal-
anced [13,24] protocols according to the set size relationship. However, in prac-
tice, merchants and advertisers often differ a lot on their set size, i.e., the number
of ads readers may be much larger than that of buyers. In this scenario, it’s pos-
sible to combine offline computation and data structures like Bloom filter (BF)
to ensure that the online computation and communication complexity is linear
to the smaller set size [22]. Recently, there have been many PSI protocols in the
unbalanced scenario [21,22]. As for PSI-CA, Lv et al. [24] proposed an efficient
PSI-CA in the unbalanced scenario. As for other PSI-CA related works that are
mainly designed for balanced scenario [1,8–11,16–20,26,35], they are much less
efficient than unbalanced PSI-CA protocol in the unbalanced scenario.

This work focuses on a new variant of the unbalanced scenario: the reverse
unbalanced scenario that client (receiver) owns a large set and the server (sender)
owns a small set. And the client should directly get the output, while the server
gets nothing. The rationality of this scenario is that merchant does not necessar-
ily only find large-scale advertising companies to advertise. Instead, he can also
find some small scale companies to widen their sales channels, such as small game
companies in the start-up stage and private websites to put advertisements. In
this case, the merchant could own a larger set and play the role of the receiver.

As another example, the reverse unbalanced PSI-CA protocol can also apply
in the anonymous authentication scenario: Bob wants to authenticate his identity
to Alice’s system anonymously. Bob needs to prove his identity B is among the
set of Alice’s valid users, denoted A. Alice should be able to judge that Bob is a
legitimate user without learning B. For this, we can directly calculate the PSI-CA
between Bob’s private data and Alice’s user data set. Then the authentication
passes when |A∩B| = 1 and fails when |A∩B| = 0. Obviously, Alice should first
get the output to authenticate Bob in this scenario. Inspired by this scenario,
we can further extend it to multifactor authentication or verification of status
(e.g., you are VIP if you have |A ∩ B| > 10 tokens registered in A).

Indeed, suppose we directly apply unbalanced PSI-CA in the reverse unbal-
anced scenario. To ensure efficiency, we may let the small set owner send the out-
put to the large set owner. However, this deviates from the original target that only
the receiver (the large set owner) can get the result. Moreover, if we allow both
parties to get the output, we cannot guarantee the result given by the small set
owner is correct and real. However, in the semi-honest model, the adversary must
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follow the protocol, and the correctness can be satisfied, so maybe a malicious
protocol is worthy of further research. But generally, malicious protocol requires
introducing techniques such as zero knowledge proof that brings more overhead
and communication rounds to support verifiability of the result.

Therefore, this paper tries to solve the above problems without such a strong
security guarantee. We trade off the security and efficiency and construct an
efficient semi-honest reverse unbalanced PSI-CA protocol to ensure only the
large set owner gets the output in the reverse unbalanced scenario.

We describe a new “reverse unbalanced” scenario: “the client owns the larger
set, the server owns the smaller set”. The innovations and contributions of this
paper are listed below.
1. We construct a pre-filtered PSI-CA with leakage resistance protocol in the

reverse unbalanced scenario with low computation and communication.
2. Our protocol introduces the Cuckoo filter to resist malicious tampering behav-

ior and the Hash-Prefix filter to reduce the large set size significantly.
3. We found the Hash-Prefix filter has a privacy leakage problem: “party with

the large set can query the elements don’t belong to the small set” and solve
the privacy leakage problem via the idea of PIR. The protocol’s security is
proved in the semi-honest model under the DDH assumption.

4. We give implementation while introducing multi-threading and ECC to
improve efficiency. Compared with the existing most efficient unbalanced PSI-
CA protocol, we reduce communication by a factor of 8.48× and computation
by a factor of 26.87×.

In addition, the proposed protocol has a significant advantage in efficiency
as the gap in set size between the two parties becomes greater.

2 Related Work

The idea of PSI-CA was first proposed by Agrawal et al. [1] based on the DDH
assumption and commutative encryption (CE) in the semi-honest model. Cur-
rently, PSI-CA can be divided into 4 types: PSI-CA based on oblivious polyno-
mial evaluation(OPE) [15,16], PSI-CA based on BF [3,9–11,13], PSI-CA based
on CE [1,8,19,20,24,26] and PSI-CA based on other techniques [11,19,26,27,35].

A. OPE-based PSI-CA. As for PSI-CA based on OPE, Freedman et al. [16]
first constructed PSI-CA protocol based on OPE and additive homomorphic
encryption. Then Hohenberger et al. [17] extended the protocol of [16] to a two-
party PSI-CA protocol that can ensure semi-honest and malicious security with-
out bilinear group, random oracle, or non-interactive zero knowledge proof, and
the efficiency is same as [16]. Later, Camenisch et al. [5] constructed a fair two-
party PSI-CA protocol for certified sets based on OPE. In 2016, Freedman et
al. [15] optimized the protocol [16], which can ensure the security of semi-honest
adversaries under the standard model and malicious adversaries under the random
oracle model. Combined with cuckoo hashing, the computation cost was optimized
to achieve linear complexity. However, for the main computation cost can’t be pre-
computed offline, the scalability in the unbalanced scenarios is poor.
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B. BF-based PSI-CA. PSI-CA based on the Bloom filter was first proposed
by Many et al. [25]. This scheme supports multiple participants and combines
addition and multiplication in MPC with BF. Participants can estimate PSI-CA
through the quantitative properties of BF, but the scheme is not secure because
it divulges the private input of other participants. Ashok et al. [3] constructed a
more efficient PSI-CA protocol for obtaining approximate output based on the
quantitative properties of BF, but lacks simulation-based security proof. Egert
et al. [13] pointed out the security problems of [3] and based on the idea of [3],
combined with BF and ElGamal encryption, realized a secure PSI-CA against
semi-honest adversaries. The advantage of this scheme is that the computational
cost is concentrated on one side and can be extended in unbalanced scenarios, but
this scheme sacrifices the accuracy of the output. In 2015, Debnath et al. [9] com-
bined BF with Goldwasser-Micali (GM) encryption to construct a semi-honest
PSI-CA protocol with linear complexity, the client’s set size can be protected,
part of the computation overhead can be transferred offline. However, the actual
communication overhead in the online stage is linear to the large set, which can’t
be applied well in unbalanced scenarios. Later, Debnath et al. [10] constructed
a malicious secure fair two-party PSI-CA protocol in the standard model based
on the DDH assumption, but it’s necessary to introduce a semi-honest arbitra-
tor. Davidson et al. [7] combined BF and partially homomorphic encryption to
realize PSI-CA protocol secure against semi-honest adversaries, but the online
communication overhead is linear to the large set.

As for the implementation, the impact of the BF’s length on the efficiency is
not trivial, and some efficient schemes usually need to sacrifice the accuracy of
outputs. Therefore, although they have somewhat scalability in the unbalanced
scenarios, it has no significant advantages over CE-based schemes.

C. CE-based PSI-CA. Since the introduction of CE-based PSI-CA [1], on the
one hand, some works research on the variants of PSI-CA, such as multi-party
PSI-CA [39] and PSI-CA with the authenticated set. On the other hand, De
Cristofaro et al. [8] proposed a new structure based on the CE, which benefits
the scheme of Lv et al. [24]. Google [19] presented a variant scheme of PSI-CA
based on the Pohlig-Hellman commutative encryption and Paillier homomorphic
encryption to get the total money spent by the customers in the intersection.
This scheme can compute the cardinality and the sum of the weights attached
to the elements in the intersection. Later, Google also considered different con-
structions based on the DDH assumption, random Oblivious Transfer (ROT),
and encrypted BF [19]. Recently, Miao et al. [26] proposed the first PSI-CA
protocol secure against malicious adversaries.

In terms of the PSI-CA diversity scenario adaptation, Lv et al. [24] considered
PSI-CA protocol in the unbalanced scenario for the first time, introduced BF
based on the previous scheme [20] to optimize the communication, and made its
communication complexity linear to the smaller set.

D. Other Paradigms. Other construction methods, such as the efficient two-
party PSI-CA scheme based on Flajolet-Martin sketches proposed by Dong et al.
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[11], achieves logarithmic computation and communication complexity but sacri-
fices the accuracy of the output. At the same time, the number of communication
rounds is high and vulnerable to the network environment. Later, Cheng et al.
[27] combined secret sharing and offline pre-computation, gave a semi-honest
PSI-CA with efficient computation and constant communication rounds at the
cost of result accuracy, and the actual communication overhead is larger than
that of the CE based schemes.

Moreover, there have been many delegated PSI-CA protocols in these years
[2,12,37,38], which can be used in the context of contact tracing to protect
against linkage attacks and benefit by preventing the further spread of COVID-19
without violating individuals’ privacy. Most of the protocols rely on the trusted
cloud servers and are suitable for the scenario with a large number of parties in
the network, so they are not within the scope of our scenario.

In this work, we pay attention to whether the previous schemes can be opti-
mized in the (reverse) unbalanced scenarios. As is shown in Table 1, CE-based
PSI-CA is more suitable for extension in the (reverse) unbalanced scenarios.

Table 1. Complexity and unbalanced scalability comparison among prior PSI-CA
protocols based on different techniques. x is the server’s set size, y is the client’s set
size, λ is PKE security parameter, k is the number of hash function used in BF, m is
the length of BF, m = 1.44k · x, d is the output length of hash function.

Based on Reference Total Comp. Total Comm. Accuracy Adaptable

Server Client Server Client

OPE [16] O(xloglogy) O(x + y) O(xλ) O(yλ) ✓ ✗

[15] O(x) O(x + y) O(xλ) O(yλ) ✓ ✗

BF [13] O(2m + 2) O(2m) O(1) O((2m + 1)λ) ✗ ✓

[9] O(kx) O(m + kx) O(kxλ) O(mλ) ✓ ✗

[7] O(kx) O(m + 2x) O(2xλ) O(mλ) ✓ ✗

CE [1] O(x + y) O(x + y) O(λ(x + y)) O(yλ) ✓ ✓

[8] O(x + y) O(2y) O(xd + yλ) O(yλ) ✓ ✓

[24] O(x + y) O(2y) O(yλ + mx) O(yλ) ✓ ✓

3 Preliminaries

3.1 Notations

We denote the parties as server (sender) S and client (receiver) R, and their
respective input sets as X = {x1, x2, ..., xn1} and Y = {y1, y2, ..., yn2} with
|X| = n1 and |Y | = n2, where n2 is much larger than n1. R receives |X ∩ Y | from
the protocol, while S receives nothing. We set the symmetric security parameter
as κ = 128, the asymmetric security parameter as λ = 1024, and elliptic curve
size to 256 for SM2 curve. We set the false positive rate of Bloom filters and
Cuckoo filters to 10−9 ≈ 2−30. We choose SHA-256 as the hash function to
implement random oracle and set the hash prefix length to 16 bits.
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3.2 Cuckoo Filter

A Cuckoo filter [14] is a data structure similar to the Bloom filter for approximate
set membership tests. The Cuckoo filter has practical advantages that:

1. The Cuckoo filter uses less space than the Bloom filter in many scenarios
while having the same false positive probability;

2. The Cuckoo filter has better space locality and higher query efficiency;
3. The Cuckoo filter supports the deletion of elements.

Cuckoo filters have been applied in some unbalanced PSI schemes [21,33].
They combine the idea of cuckoo hashing [30] but store fingerprints of elements,
which makes them have a lower storage overhead.

As for PSI-CA, Lv et al. [24] mentioned that the sender could maliciously
set Bloom filters’ bits from 0 to 1 to make the protocol output larger than the
actual, which will damage the interests of the receiver in the business coopera-
tion. However, Cuckoo filters can completely resist the malicious behavior. Even
if the sender tries to fill the Cuckoo filters maliciously, the successful probability
of malicious behavior is equal to the false positive rate of Cuckoo filters.

Indeed, an adversary can create false negatives by deleting some elements,
but reducing the intersection cardinality is not conducive to him gaining more
benefits in business cooperation or passing the identity authentication. Hence,
the Cuckoo filters still have advantages.

3.3 Commutative Encryption

Similar to the definition of Agrawal et al. [1], we introduce the properties based
on Pohlig-Hellman encryption. We assume the message and ciphertext space is
F , the key space is K, and the commutative encryption f is a polynomial time
computable function f : K × F → F , which is defined on a computable domain
satisfying the following properties. In addition fe(x) ≡ f(e, x) represents message
x is encrypted through the key e, and ∈r represents uniform random selection.

1. Commutativity: for all e, e′ ∈ K, x ∈ F we have

fe(fe′(x)) = fe′(fe(x)) (1)

2. Each fe : F → F is a bijection;
3. f−1

e is computable in polynomial time given e;
4. The distribution of (x, fe(x), y, fe(y)) is indistinguishable from the distribu-

tion of (x, fe(x), y, z), where x, y, z ∈r F , e ∈r K.

Property 1 says that when we use two different key combinations for encryp-
tion, the result is the same regardless of the order. Property 2 says that two
different values will never get the same value after encryption. Property 3 says
that given a encrypted value fe(x) and encryption key e, we can get x in poly-
nomial time. Property 4 says that given a value x and its encryption value fe(x)
(but not the key e), for a new value y, we cannot distinguish fe(y) from random
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value z in polynomial time, which implies the Decisional Diffie-Hellman (DDH)
assumption. This property holds only if x is randomly selected from F . That is,
the adversary cannot control the choice of x. Therefore, in the implementation
of PSI-CA, we need to randomly map element v to the element x = h(v) on
F through hash function h to ensure that the security can be proved through
property 4 [1]. We also need to assume hash function h is a random oracle.

Commutative encryption based on Pohlig-Hellman encryption has been used
in PSI-CA schemes [1,8,24]. It is generally implemented on multiplication group
GP , where P is a big prime satisfying P−1

2 is also prime. We use ECC (SM2
curve) to improve computation and communication efficiency.

3.4 Hash-Prefix Filter

Hash-Prefix filter is an implementation method of k-anonymity. K-anonymity
was first proposed by Samarati et al. [34] in 1998. A release of data is said to
have the k-anonymity property if the information for each person contained in
the release set K cannot be distinguished from at least |K|−1 individuals whose
information also appear in the release. Hash-based k-anonymity works by taking
a cryptographic hash of one dimensional data and truncating the hash such that
there are at least |K| − 1 hash collisions.

Generally, Hash-Prefix filter can be used as follows:

1. The small set owner calculates the hash values of its set, truncates the hash
prefixes to form a prefix set, and sends them to the large set owner;

2. The large set owner calculates the hash prefixes of its elements and queries
in the received prefix set through every element’s prefix;

3. If the query result is null, the element will be filtered out, and after all ele-
ments are queried, a filtered set is generated.

Because the hash-prefix length is short, collisions between different elements
happen frequently. For each prefix, we define the anonymity set of possible col-
lisions in the plaintext space as K, and k-anonymity can be satisfied when |K|
reaches a certain threshold.

Currently, this technique is mainly used to check for breached password
[23,31,36]. The existing compromised credential checking web services, such as
HaveIBeenPwned [36], PasswordPing [31], and Google Password Checkup [36],
they allow clients to detect whether their username-password pairs are at risk
of being compromised. Thomas et al. [36] calculate the SHA-1 or SHA-256 hash
function for the pair of username u and password p to obtain H(u, p), and then
truncate the t bits prefix H(u, p)[0:t] and send it to the server. Server compares
the prefix to its local hash-prefix set H(S)[0:t] = {H(u1, p1)[0:t], ...,H(un, pn)[0:t]}
can significantly reduce overhead, because a smaller available set S′ is obtained
and can be used for the subsequent PSI protocol.

However, introducing the Hash-Prefix filter also greatly reduces the com-
plexity of adversaries cracking user passwords. Li et al. [23] pointed out that
given the username and the username-password hash-prefix, there is a risk of
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adversaries damaging the security of clients’ passwords. Thomas et al. [36] set
the initial threshold to |K| > 50000 and combined it with an Inefficient Oracle
to ensure the remote adversary cannot efficiently perform guessing attempts. So
the choice of |K| actually considers that the adversary can verify the guesses’
correctness via login attempts.

Nevertheless, it is different for PSI-CA protocol. Because the output is only
the cardinality of the intersection, the adversaries without the intersection con-
tent cannot explicitly verify guessing correctness through attempts. Thus the
combination of PSI-CA and Hash-Prefix filter is a natural advantage.

The following Theorem 1 states the security definition of the combination of
Hash-Prefix filter and commutative encryption in a formal way.

Theorem 1. Let two elements x1, x2 ∈ F , x1 �= x2, compute their t bits hash-
prefixes H(x1)[0:t],H(x2)[0:t], where H:{0, 1}∗ → F is a random oracle and
H(x1)[0:t] = H(x2)[0:t], t is the bit-length of the prefix. We assume there is a
common random parameter s ∈r F , a random element r ∈r F and a private key
a ∈r K, satisfies:

D(fa(H(s, x1)))
C≡ D(fa(H(s, x2)))

C≡ D(r) (2)

That is, given the hash-prefixes of the two elements are the same, the distri-
butions of fa(H(s, x1)), fa(H(s, x2)) and r are computationally indistinguishable
in polynomial time to PPT adversary.

Proof. H(x1),H(x2) and r are distinguishable and don’t meet uniform dis-
tribution given the extra information H(x1)[0:t] = H(x2)[0:t], which means
the adversary controls the choice of elements to some extent, so the Prop-
erty 4 of CE (Sect. 3.3) can’t be met. To fix this, we introduce s and com-
pute H(s, x1), H(s, x2), because according to the random oracle assumption,
H(x1)[0:t], H(x2)[0:t] can’t benefit predicting the output of H(s, x1), H(s, x2).
So H(s, x1), H(s, x2) and r are uniform and indistinguishable from each other.
And the distribution of fa(H(s, x1)), fa(H(s, x2)) and r are computationally
indistinguishable in polynomial time to PPT adversary.

The prefix length should be adjusted with the plaintext space size and the
smaller set size n1. Let us discuss how to set these parameters. Let n1 = 210, n2 =
220, assume the plaintext (phone number) space size is 232, and the prefix length
is 16 bits, thus the size of the anonymity set K is |K| = 232/216 = 65536, and
larger than 50000 suggested in [36].

In theory, the prefix set of the large set can easily cover all possible prefixes
(i.e., 0× 0000∼0×FFFF), because n2 is much larger than 216. However, if we
suppose the size of the smaller set n1 > 216 and prefix length is still 16 bits,
the expected collision number of each prefix will be larger than 1, which will
make the Hash-Prefix filter have no effect in theory (i.e., two sides both have
all possible prefixes, so all the elements of the large set owner won’t be filtered
out). Therefore, we should note that when n1 > 2prefix−length, the prefix length
should be increased to at least logn1 +1 bits to guarantee the effect of the filter.
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3.5 The Semi-honest Model

In this model, the adversary controls one of the parties and follows the pro-
tocol specification, and tries to learn additional information from the received
messages. The following definition is according to [15,24].

Let S and R denote the two parties with inputs X,Y respectively, F =
(FS , FR) is a two-party function, and let π be a two-party protocol for computing
F . The view of S in an execution of π on inputs (X,Y ) is

V iewπ,S(X,Y ) = (X, rS ,m1, ...,mt), (3)

where rS is the content of the party S’s internal random tape and mi represents
the ith message it receives. The output of R can be computed from its view and
is denoted Outputπ,R(X,Y ).

In the semi-honest model, π is safe if any information computed by the parties
can only be obtained from its input and output. The security based on simulation
requires that any party’s view in protocol execution can be simulated only given
its input and output. The definition of the semi-honest model is as follows:

Definition 1. F and π are defined as above. Protocol π is said to securely com-
pute F in the presence of semi-honest adversaries if there exists probabilistic
polynomial time algorithm SimS and SimR such that

(SimS(X,FS(k,X, Y )), FR(k,X, Y ))k∈N,X,Y ∈{0,1}∗

C≡ {(V iewπ,S(k,X, Y ), Outputπ,R(k,X, Y ))}k∈N,X,Y ∈{0,1}∗ (4)

(FS(k,X, Y ), SimR(Y, FR(k,X, Y )))k∈N,X,Y ∈{0,1}∗

C≡ {(Outputπ,S(k,X, Y ), V iewπ,R(k,X, Y ))}k∈N,X,Y ∈{0,1}∗ (5)

where k is the security parameter.

4 Our Proposal

We combined the technologies mentioned above to optimize the basic protocol
[1] to be efficient in the reverse unbalanced scenario, and we get the pre-filter
reverse unbalanced protocol with leakage resistance, denoted as πCA protocol.
The πCA protocol is divided into online and offline phases and is shown in Fig. 1.

In this paper, we regard the operation that can be precomputed or reused as
the offline phase. As shown in Fig. 1, Private Information Retrieval belongs to
the offline phase and involves the inputs of both parties. Furthermore, the PIR
stage can be reused in the “one-to-many” (one large set owner, many small set
owners) scenario. Such as the anonymous identity authentication scenario, the
server (receiver) may need to authenticate many users (sender).
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Parameters: λ is asymmetric security parameter, H1:{0, 1}σ+κ → {0, 1}256 and
H2:{0, 1}σ → {0, 1}256 are random oracles, s ∈ {0, 1}κ is public random parameter, ω
is the bit-length of the hash prefix. Y ′ is the filtered set of Y , and its size is |Y ′| = n′.
Input: S inputs set X, |X| = n1, xi ∈ {0, 1}σ(i ∈ [n1], σ = poly(κ)), R inputs set
Y, |Y | = n2, yj ∈ {0, 1}σ(j ∈ [n2]), n2 is much larger than n1.
Output: R outputs |X ∩ Y |; S outputs ⊥.

Offline Phase

Pre-computation

1. S and R generate keys eS ∈r K and eR ∈r K, then calculate function H1 of X and
Y to obtain XH1 = H1(s, X) and YH1 = H1(s, Y ) respectively.

2. Both parties encrypt the hashed set:

XS = feS (XH1) = feS (H1(s, X))

YR = feR(YH1) = feR(H1(s, Y ))

Private Information Retrieval

1. R calculates H2(Y ) and truncates ω bits as prefix to get set H2(Y )[0:ω], and gen-
erates pair set Ypair = (YH2 , YR) = (H2(yj)[0:ω], feR(H1(s, yj))), j ∈ [n2]. Finally
R sends Ypair to S in a shuffled order;

2. S filters the set Ypair according to the first item YH2 comparing with H2(X)[0:ω],
then S can pick all the second items Y ′

R of the filtered set Y ′
pair = (Y ′

H2 , Y ′
R), where

Y ′
R = feR(H1(s, Y ′)) = feR(H1(s, yφ))(φ ∈ [n′], H2(yφ)[0:ω] ∈ H2(X)[0:ω]);

3. S encrypts Y ′
R and get [Y ′

R]S = feS (Y ′
R) = feS (feR(H1(s, Y ′))), then maps all

ciphertexts into the Cuckoo filter CFS .

Online Phase

1. S sends XS to R in a shuffled order;
2. S sends CFS to R;
3. R encrypts XS with eR to get [XS ]R = feR(feS (H1(s, X))), and queries the re-

ceived CFS to get |X ∩ Y |.

Update

1. S prepares update set Z = {z1, ..., zn3}, computes feS (H1(s, Z)) =
{feS (H1(s, z1)), ..., feS (H1(s, z1))} and sends feS (H1(s, Z)) with related informa-
tion {update1, ..., updaten3} to R;

2. R encrypts feS (H1(s, Z)) and get feR(feS (H1(s, Z)));
3. ∀i, 1 ≤ i ≤ n3, R execute insertion or deletion upon feR(feS (H1(s, zi))) ac-

cording to the related information updatei. If updatei == INSERT , R in-
sert feR(feS (H1(s, zi))) into CFS . Else if updatei == DELETE, R delete
feR(feS (H1(s, zi))) from CFS .

Fig. 1. The pre-filter reverse unbalanced PSI-CA protocol πCA
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The πCA protocol is characterized in realizing data compression through the
Cuckoo filter and Hash-Prefix filter. Compared with the existing unbalanced
PSI-CA protocol [24], it has significant advantages in the reverse unbalanced
scenario. In terms of security, it can be seen from Sect. 3.4 that under reasonable
parameters, the Hash-Prefix filter meets the k-anonymity privacy. At the same
time, it can be seen from Theorem 1 that for the filtered set, when calculating
the hashes of elements, it is necessary to introduce the (random and not fixed)
public parameter s and calculate H1(s,X), H1(s, Y ) to ensure that the encrypted
ciphertext is computationally indistinguishable from the randomness based on
the properties of the commutative encryption.

However, during the construction of the protocol, we notice that if we apply
the Hash-Prefix filter in the way suggested in Sect. 3.4, i.e., let the small set
owner S generate prefix set and send it to the large set owner R, R will be
able to query which elements do not belong to X through the received prefixes.
Although this does not directly leak the privacy of X, it still leaks additional
information compared with those PSI-CA protocols without Hash-Prefix filter.

Therefore, to protect the privacy of small set owner S, we introduce the
idea of PIR. As for the simplest implementation of PIR [6]: the large set owner
(server) sends all the encrypted data set to the small set owner (client), then the
client can retrieve its selected item locally, which protects the query privacy of
the client. Thus corresponding to the reverse unbalanced scenario in Fig. 1, we
let the large set owner R send Ypair to S, then S completes the Hash-Prefix filter
operation on the received ciphertext set through the hash prefix, and this is the
optimal PIR scheme in this scenario. The introduction of PIR resists the leakage
of S’s privacy, and R’s privacy is also protected based on the assumption that
the prefix set YH2 of R can cover all possible prefixes (i.e., 0 × 0000∼0×FFFF)
with overwhelming possibility. Thus S cannot query which elements don’t belong
to Y through the hash prefixes. The abstract protocol is shown in Fig. 2.

However, compared with the way that S directly sends the prefix set to R
(without PIR), the introduction of PIR solves the privacy leakage at the expense
of additional communication (i.e., R needs to send the whole encrypted set and
prefix set to S). Nevertheless, in the reverse unbalanced scenario, the protocol
[24] also needs R to send the whole encrypted set to S. So compared with [24],
PIR doesn’t bring much additional communication in the reverse unbalanced
scenario, and the Hash-Prefix filter can still perform its efficiency advantage.

Meanwhile, it should be noted that the pair set Ypair of R doesn’t need to
be regenerated in every setup and can be reused many times, so they have more
advantages in scenarios that need to be performed multiple times. For example,
in the anonymous authentication scenario, all users can download the server’s
pair set in advance. Each time they log in, they only need to execute the online
phase to complete the authentication. In ads conversion rate computation, a
merchant may cooperate with multiple advertisers holding small sets, so there
is also a need for multiple executions in practice.
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Fig. 2. The combination of Hash-Prefix filter and PIR

5 Security Analysis

This section gives the security proof of the πCA protocol based on the DDH and
the RO assumption in Sect. 4 and proves that the πCA protocol is secure in the
semi-honest model under the DDH assumption. Similar to the proof of Agrawal
et al. [1], we give a simulator, which can ensure that each party’s simulated
view and real view are computationally indistinguishable given the input of the
parties and the cardinality of the intersection.

Theorem 2. Let X and Y be the sets from input fields, |X| = n1, |Y | = n2.
They are inputs of S and R respectively, where n1 << n2. The intersection
cardinality computation function F is defined as:

F (X,Y ) = (FS(X,Y ), FR(X,Y )) = (⊥, |X ∩ Y |) (6)

Given the commutative encryption in Sect. 3.3 and the random oracle, πCA pro-
tocol (Sect. 4) can securely compute F in the semi-honest model. At the end of the
protocol, except for their respective inputs, S only knows |Y | and H1(s, Y )[0:ω],
and R only knows |X| and |X ∩ Y |.
Proof. The security proof refers to the standard secure multi-party computation
proof method in [1]. If for any X and Y , the distribution of the S’s view of
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the protocol(the information S gets from R) cannot be distinguished from a
simulation of this view that uses only VS and |VR|, then clearly S cannot learn
anything from the inputs it gets from R except for Y . Note that the simulation
only uses the knowledge S or R is supposed to have at the end of the protocol.

Construct S’s simulator SimS(simulate the information S gets from R): SimS

only needs to use |Y | = n2. At step 1 of Private Information Retrieval, the only
step where S receives anything, the simulator SimS generates n2 uniform ran-
dom values zi ∈r F(i ∈ [n2]), and n2ω bits random values hi to form pairs
(hi, zi), and sends them to S with lexicographical order. According to Theorem
1, in the real view, when prefix H2(yi)[0:ω] is specified, feR

(H1(s, yi)) is indis-
tinguishable from the distribution of uniform values, so the distinguisher cannot
distinguish (H2(yi)[0:ω], zi) and (H2(yi)[0:ω], feR

(H1(s, yi))). Furthermore, for hi

is uniformly generated, and its distribution is indistinguishable from H2(yi)[0:ω],
the distinguisher cannot distinguish (hi, zi) and (H2(yi)[0:ω], feR

(H1(s, yi))). So
the simulated view and real view of S are indistinguishable.

In addition, S obtained the prefix set H1(s, Y )[0:ω], which somewhat leaks
the information of H1(s, Y ) and makes S have a higher probability of learning
which elements in the set Y through H1(s,X). However, even if traversing the
whole plaintext space, S can only get an inaccurate set that is large enough to
meet the k-anonymity privacy mentioned in Sect. 3.4. Furthermore, based on the
characteristics of PSI-CA, the adversary has no chance to verify its guess.

Construct R’s simulator SimR(simulate the information R gets from S):
assume Y ′ is Y ’s filtered set, the information SimR needs to use include
|X|, Y, |X ∩ Y |,H1, eR, s, and it does not know X − Y ′ and X ∩ Y ′, now assume
that:

X = {w1, ..., wt, wt+1, ..., wn1} (7)
Y ′ = {wt+1, ..., wn1 , wn1+1, ..., wα} (8)

where t = |X − Y ′|, n1 = |X|, α = |X ∪ Y ′|. SimR generates α random val-
ues v1, ..., vα ∈r F to replace feS

(H1(s, w)), w ∈ X ∪ Y ′. At step 1 of online
phase, SimR selects n1 values v1, ..., vn1 to form a set VS = {v1, ..., vn1}, replaces
XS and sends to R. According to the properties of commutative encryption
(Sect. 3.3), without knowing eS , the distribution of feS

(H1(s, wj)), j ∈ [n1] and
vj are indistinguishable. At step 2 of online phase, SimR selects set {vt+1, ..., vα}
and computes feR

:

VR = {feR
(vt+1), ..., feR

(vα)} (9)

SimR maps set VR into Cuckoo filter CFS , and sends CFS to R. In the real
view, CFS just stores the fingerprints of feS

(feR
(H1(s, Y ′))). The mapping

location and the stored fingerprints are random mappings and will not leak
information other than the stored content itself. According to the properties
of commutative encryption, the distribution between feS

(feR
(H1(s, Y ′))) and

VR = {feR
(vt+1), ..., feR

(vα)} are indistinguishable. Thus it can be concluded
that the simulated view of R is indistinguishable from the real view.
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In summary, the simulated view and the real view of S and R are indistin-
guishable, so the security of πCA protocol in the semi-honest model is proved.

6 Performance Evaluation

In this section, we compare and analyze the unbalanced PSI-CA protocol [24] and
the πCA protocol in Sect. 4 from complexity and overhead. Our implementation
is available online1.

6.1 Complexity Analysis

It can be seen from Table 2 that in the reverse unbalanced scenario, the com-
putation and communication complexity of the πCA protocol is better than the
unbalanced PSI-CA [24]. Based on the Hash-Prefix filter technology, the more
significant the gap in set size between the two parties, the more efficient πCA is.
Based on the ECC, the communication is reduced by factor 4× compared with
the protocol based on the Pohlig-Hellman encryption.

Table 2. The sender holds set X, and the receiver holds set Y , |Y | � |X|, suppose
πCA use ECC, λ is public key security parameter; ω is the bit length of the hash prefix,
and the value can be referred to Sect. 3.4.

Protocol Computation Communication

Server Client Server Client

Unbalanced PSI-CA [24] O(|X| + |Y |) O(2|Y |) O(λ|Y |) O(λ|Y |)
πCA(ECC) O(|X| + |Y |

2ω/|X| ) O(|X| + |Y |) O(λ
4
|X|) O(λ

4
|Y |)

We need to explain further how the Server’s computation complexity O(|X|+
|Y |

2ω/|X| ) is computed: Firstly, through the receiver’s set size |Y | and ω bits prefix,

we can get the expected number of collisions of each prefix is |Y |
2ω . Secondly,

through the sender’s set size |X|(|X| < 2ω), we can get the expected number of
sender’s prefixes is |X|, so after the Hash-Prefix filter, the sender will retain |X|
groups of elements, i.e., |Y |

2ω · |X| = |Y |
2ω/|X| for subsequent computation.

Therefore, the Hash-Prefix filter also has the feature that given prefix length
and |Y |, the smaller |X| is, the better the filtering effect is. Moreover, As for the
scenario |X| = 1, such as anonymous identity authentication, the effect of the
Hash-Prefix filter can reach the best.

1 https://github.com/liugezi/PSI-CA-Framework.

https://github.com/liugezi/PSI-CA-Framework
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6.2 Environment and Parameters

In the PC setting, the protocols were implemented in Java, with AMD ryzen
7 4800H with Radeon graphics @ 2.90 GHz CPUs, 16 GB of RAM, we use up
to 8 threads. The experimental environment is local network (LAN), and we
analyze the performance in the WAN environment via communication overhead.
The protocols are implemented in Java. We realize the relevant operation of
elliptic curve cryptography based on BouncyCastle library2, Cuckoo filters using
cuckoofilter4j library3, and Bloom filters using Orestes-Bloomfilter library4.

6.3 Overhead Analysis

Firstly, we compare the computation and communication efficiency of πCA proto-
col with the unbalanced PSI-CA protocol [24] in the reverse unbalanced scenario,
and details are shown in Table 3.

Table 3. Overhead comparison of πCA and unbalanced PSI-CA

Protocol |X| |Y | Running time (seconds) Communication (KB)

T = 1 T = 4 T = 8 Sender Receiver Total

Total Online Total Online Total Online

πCA 210 216 23.33 0.25 6.49 0.17 4.02 0.18 78 4,672 4,750

218 92.57 0.90 23.94 0.40 13.81 0.38 102 18,688 18,790

220 353.78 3.29 95.69 1.32 52.02 0.79 198 74,752 74,950

215 216 40.41 6.53 11.27 2.10 7.42 1.70 2,306 4,672 6,978

218 119.56 20.40 32.00 5.56 18.97 3.68 2,680 18,688 21,368

220 451.43 80.04 118.16 21.44 64.68 11.34 4,226 74,752 78,978

[24] 210 216 88.15 59.20 23.33 15.82 12.30 8.48 19,868 19,861 39,729

218 352.93 236.91 92.45 62.85 47.33 33.06 79,402 79,395 158,797

220 1397.77 936.23 373.28 253.22 190.95 133.91 317,764 317,757 635,521

215 216 89.06 59.84 24.18 16.20 13.43 8.39 20,035 19,860 39,895

218 354.22 238.33 95.25 64.65 48.91 33.42 79,570 79,395 158,965

220 1418.82 953.28 382.46 261.42 194.75 135.58 317,904 317,728 635,632

As for the computation overhead, in the reverse unbalanced scenario, the
overall running efficiency of πCA protocol is about 2.2–3.95× of [24] protocol.
Furthermore, if πCA under 8 threads is compared with the [24] protocol without
multi-threading optimization, the efficiency of πCA is improved by factor 21.92–
26.87×. For the characteristics of the Hash-Prefix filter technology, the greater
difference in set size between the two parties, the optimization efficiency of πCA

protocol is higher than that of previous schemes [24]. With the increase in the
number of threads, given |Y | = 220, |X| = 210, the overall efficiency of πCA

protocol is optimized from 353.78 to 52.02 s, which is 6.8× higher than that
without multi-threading technology. For the online phase, the efficiency of πCA is
2 https://www.bouncycastle.org/java.html.
3 https://github.com/MGunlogson/CuckooFilter4J.
4 https://github.com/Baqend/Orestes-Bloomfilter.

https://www.bouncycastle.org/java.html
https://github.com/MGunlogson/CuckooFilter4J
https://github.com/Baqend/Orestes-Bloomfilter
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about 4.9–284.7× higher than that of [24], and the efficiency advantage increases
with the increase of the difference between the two sets. πCA transfers the Pre-
filter and the filtered encryption operation offline to better fit the scenarios that
need to execute the protocol multiple times. Therefore, the online phase overhead
comparison in Table 3 only represents the comparison results under the online
and offline phase division method in this work. But it’s not hard to see that
even if all the running processes of πCA protocol are regarded as online phase,
its efficiency is also obviously better than that of Lv et al. [24].

As for the communication overhead, the overall communication efficiency of
πCA is 5.71–8.48× greater than that of the unbalanced PSI-CA; The sender’s
communication efficiency of πCA is 8.69–1604.87× greater than that of the unbal-
anced PSI-CA; The receiver’s communication efficiency of πCA is 4.25× greater
than that of the unbalanced PSI-CA protocol. The optimization degree of the
sender’s communication efficiency varies greatly because the Hash-Prefix filter’s
effect determines the overhead. When the set size of the two parties differs signif-
icantly, the filter effect will be better. The communication efficiency optimization
of the receiver mainly comes from using ECC to reduce the ciphertext length,
so the optimization range is relatively stable.

Next, we implement [24] and πCA in the unbalanced and reverse unbalanced
scenarios respectively to compare efficiency. We set the same set size and secu-
rity but different receivers to examine if πCA performs better than [24] in their
own scenarios. This means that they can form an efficient semi-honest PSI-CA
framework dealing with different scenarios, and details are shown in Table 4.

Table 4. Overhead comparison of πCA and unbalanced PSI-CA in their own scenarios

Protocol |X| |Y | Running time (seconds) Communication (KB)

T = 1 T = 4 T = 8 Sender Receiver Total

Total Online Total Online Total Online

[24] 216 210 29.89 0.98 7.50 0.32 2.93 0.27 658 311 969

218 117.30 0.97 29.97 0.32 13.69 0.19 1,692 311 2,003

220 467.96 0.94 119.13 0.27 56.98 0.30 5,834 311 6,145

216 215 59.27 30.06 15.75 8.18 9.08 4.33 10,279 9,932 20,211

218 146.11 29.81 37.92 8.27 18.99 4.45 11,309 9,932 21,241

220 496.67 30.07 128.92 8.25 62.36 4.53 15,447 9,932 25,379

πCA 210 216 23.33 0.25 6.49 0.17 4.02 0.18 78 4,672 4,750

218 92.57 0.90 23.94 0.40 13.81 0.38 102 18,688 18,790

220 353.78 3.29 95.69 1.32 52.02 0.79 198 74,752 74,950

215 216 40.41 6.53 11.27 2.10 7.42 1.70 2,306 4,672 6,978

218 119.56 20.40 32.00 5.56 18.97 3.68 2,680 18,688 21,368

220 451.43 80.04 118.16 21.44 64.68 11.34 4,226 74,752 78,978

As for computation, the overall performance of πCA is 1.52 ∼ 46.63× better
than [24] in their own scenarios. In the online phase, πCA is generally more
efficient than [24] after combining multi-threading technology. Therefore, πCA
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can serve as the complement in the reverse unbalanced scenario and form an
efficient semi-honest PSI-CA framework with [24].

As for communication, compare the communication efficiency of πCA and the
unbalanced PSI-CA in their own scenarios, the unbalanced PSI-CA protocol is
more efficient in most cases, which is 0.35–12.20× more efficient than πCA. So
the communication overhead is the bottleneck of πCA.

However, most communication overhead of πCA is completed offline. If we
only consider online communication, the gap between the unbalanced and the
reverse unbalanced scenarios is not large. Therefore, from the perspective of
practicality, πCA and the unbalanced PSI-CA can form an efficient semi-honest
PSI-CA framework dealing with different scenarios.

6.4 Feasibility Analysis of Anonymous Identity Authentication

Anonymous identity authentication is an important application of the reverse
unbalanced PSI-CA. The server (receiver) owning a large set should obtain the
output of user authentication, while the user (sender) holds a small set with
just 1 element. Moreover, in this scenario, a large number of users need to call
the reverse unbalanced PSI-CA protocol, so the overhead in the online phase
is particularly important. We conducted experiments specifically for anonymous
identity authentication. The overhead is shown in Table 5.

Table 5. Anonymous identity authentication overhead analysis table

Protocol |X| |Y | Running time(seconds) Communication(KB)

T = 1 T = 4 T = 8 Sender Receiver

Total Online Total Online Total Online

πCA 1 218 88.65 0.069 23.45 0.076 13.43 0.077 4 18,688

220 361.10 0.073 92.27 0.073 50.61 0.082 4 74,752

222 1456.31 0.092 376.14 0.085 200.61 0.102 4 299,008

As for computation, no matter how the size of the receiver set increases, the
running of the online phase is almost constant and efficient, which is only 69–
92 ms. The abnormal change in the running time of the online phase with the
thread is caused by the normal error of computer performance fluctuation.

Based on the characteristics of the scenario itself, the advantage that “the
more significant the gap in set size between the two parties, the more efficient
πCA is” (Sect. 6.1) plays an important role. For the size of the small set is only
1, the effect of the Hash-Prefix filter can be very significant. In practice, all
users can download the server’s “prefix-ciphertext” pair locally in advance and
complete the filter and pre-computation. The experiment shows that even for the
server with the size of 222, the offline phase can be completed in only 200.614 s,
and the offline phase only needs to be executed once for each user. Later, even if
many users need to access the server simultaneously, they just need to execute
an efficient online phase to complete authentication.
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As for communication, based on the Hash-Prefix filter, the sender’s communi-
cation overhead is significantly optimized. The sender’s communication overhead
does not change significantly with the increase of the receiver’s set size. Although
the receiver’s communication overhead increases with |Y |, almost all overhead
is completed offline. Therefore πCA can also ensure the efficiency in the WAN.

7 Conclusions

We investigate the new “reverse unbalanced” scenario that “the server owns
a small set, the client owns a large set” and constructs an efficient reverse
unbalanced PSI-CA protocol in the semi-honest model under the DDH assump-
tion, which introduces the Cuckoo filter, Hash-Prefix filter, multi-threading, and
ECC. Meanwhile, we solve the privacy leakage problem through PIR, making
the Hash-Prefix filter more secure and available in PSI-CA. Finally, we conduct
experiments to evaluate the efficiency advantage of our protocol in the reverse
unbalanced scenario.

The unbalanced PSI-CA and the reverse unbalanced PSI-CA both have sig-
nificant advantages in their own scenarios and complement each other. Therefore,
they can be further combined to form a scalable PSI-CA framework, which can
give efficient implementation according to the practical requirements.

In future work, we plan to solve our protocol’s bottleneck in communica-
tion (e.g., how to optimize the communication of the whole encrypted set) and
consider how to solve the privacy leakage problem at the least cost.
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Abstract. Additive Manufacturing (AM) is an important up and com-
ing manufacturing technology which creates three-dimensional objects
based on digital design files. While these digital files simplify outsourcing,
it also raises security concerns of technical data theft by malicious actors.
We propose a novel approach for steganographically embedding validity
marks to identify the design owner and outsourced manufacturer in the
widely used STL (STereoLithography) file format. It exploits redundan-
cies in STL file encoding and applies basic cryptography to generate a
mark that is detectable if illegally modified. While deforming watermarks
for 3D-printed objects have been explored, our approach is the first to
watermark STL files without affecting the manufactured geometry – a
prerequisite for safety-critical functional parts.
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1 Introduction

Additive Manufacturing (AM) is a manufacturing technology with which objects
are built up incrementally, by depositing and fusing thin layers of source mate-
rial [8]. Among the key advantages of AM is the production of objects based
solely on their digital representation [6]—the universality of digital design make
flexible, on-demand outsourcing to AM service providers possible, with over 1500
companies offer such services [1]. Unfortunately, the short-term and low-volume
nature [7] of AM outsourcing reduces or eliminates the barriers to malicious
activity by a service provider [16]. Of particular concern is the threat of Techni-
cal Data Theft (TDT).

Initial responses to the threat of TDT in AM [16] considered adapting water-
marking approaches from other domains, such as digital 3D models [12,13],
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but these failed to consider a watermark’s impact on physically 3D printed
objects [11]. A variety of AM-specific 3D mesh watermarking techniques have
been proposed, focusing on integrating watermarks that can be recovered from
the printed objects [15,18].

While physically-encoded watermarking is sometimes acceptable, geometric
deviations are not tolerated for safety-cricital parts. At a minimum, geometrical
modification can violate part certification, but the true danger is degrading the
part’s physical properties. Failure to meet specifications can cause dangerous
and unexpected part failures.

In this paper, we consider an AM outsourcing business model where a design
is provided to several AM service providers, one of whom is malicious. This sce-
nario is a version of the Man-at-the-End (MATE) threat model [2]. The adversary
has full access to the secured asset, in this case a design file, so we must assume
that any technical defenses will eventually be overcome [2].

Under this threat model, a defender would want to integrate into their design
file marks to both authenticate the legitimate owner of the IP and identify a
malicious service provider. The marks should not interfere with the printing
process, and it should be possible to verify their integrity and authenticity. By
doing so, bad actors can be identified and legal claims pursued. Functional parts
introduce a constraint on the solution: the watermarking method should not
affect the manufactured part’s geometry [6]).

We propose a solution for the STL (STereoLithography) file format which
contains sources of entropy, allowing us to encode arbitrary information. As the
modified elements are not specified STL, the resulting watermark should not
interfere with the part’s geometry. Such a solution will work fully if the file
contents are not modified; if they are, it will be possible to detect modifications
by invalidating the embedded signature. Furthermore, the mark cannot simply
be transferred to another design, as it includes the cryptographic hash of the
design file.

2 Background

Steganography is the art of hiding information in plain sight [14]. It has been
studied and used extensively since the 1990s in the context of software and digital
media protection. Watermarks and fingerprints are two distinct steganographic
tools [3]. Watermarks identify an owner. Though they cannot prevent illegal
copying, they establish a legitimate claim of ownership so long as the mark
survives. Fingerprint identifies the recipient of the protected digital object. In
the xontext of software protection, this allows tracing pirated software back
to the original customer. The functional equivalency between the original and
watermarked software is known as semantic preservation.

In non-blind watermark extraction, the mark is identified by comparison
between binaries with and without the mark. In the blind approach, the marked
file is instead compared to a canonical form. The canonical form must be unique,
semantically equivalent, and retrievable from marked or unmarked files; this
requires a thorough understanding of the STL format.
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Structurally, STL files are composed of a series of nested blocks that describe
the model. The outermost block is enclosed by the tags solid and endsolid.
Within are a series of facet blocks, each of which describes a triangular surface,
bounded by the tags facet and endfacet. The order of facets is not regulated,
and can be changed arbitrarily. Each facet is defined by its three vertices and its
orientation: orientation is given by a normal block which contains the normal
vector’s x, y, and z coordinates. The normal vector should follow the right hand
rule, meaning the vertices are listed in counter-clockwise order when viewed
from the normal. The vertices are defined in the innermost block, enclosed by
the tags outer loop and endloop. Each vertex is specified as vertex vx vy vz. The
three v’s are single-precision floating point values representing the x, y, and z
coordinates.

Although the STL file describes the object geometry, it cannot be directly
printed. First, it is “sliced” by a program known as slicer into thin layers. For
each layer, a toolpath is generated that defines actions for the 3D Printer to
execute.

3 Definitions: Watermarking for AM

While the body of steganographic and watermarking literature is substantial, it
focuses on digital applications. Working in the AM domain requires adjustments
to several definitions.

A Steganographic Watermarking system takes an original file and
watermarking information and generates a watermarked file, where the water-
mark is a string with certain properties readable by an agent. A Steganographic
Watermarking method is sound if, when it has not been modified, (a) the water-
mark is verifiable from the file (i.e., there is a polynomial time algorithm that
reads the file and extracts embedded information); and (b) the content is func-
tional (i.e., the result of executing the marked file is the same as the original). A
Crypto-steganographic Watermarking system is tamper-evident if, when the file
carrying the mark is modified, a mark verification procedure will detect the mod-
ification. A watermarking system is robust if, when the file carrying the mark is
tampered with, the functionality of the file is lost (i.e., it violates requirement
(b) in definition 1) and the modification is detectable. A Crypto-steganographic
Watermarking system is strongly robust if: (a) it is tamper-evident; and (b) it is
robust.

4 Steganographic Channels in STL File Format

Our proposal consists of two parts: (i) a steganographic channel for STL files
and (ii) a structure for STL watermarks and fingerprints. The steganographic
channel is an expansion of one first discovered and presented in [17].

Throughout this work, we refer to an STL file in which information is encoded
as a carrier. To distinguish between files in their original state and files with
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Table 1. Encoding Capacity (Bits) of Encoding Primitives

Encoding Primitive Encoding Capacity

Facet Position �log2(FB !)�·�FN/FB�
Vertex Order

Regarding Right Hand Rule �log2(3FN )� or FN

Disregarding Right Hand Rule �log2(6FN )� or 2·FN

Normal Vector FN

Number Representation log2(EN )·12·FN

FN – Number of facets in STL file
FB – Facet number for bit sequence encoding
EN – Distinct exponents for bit sequence encoding

information encoded, we will use the notations STL and STLM . We use M to
refer the mark.

While encoding or decoding, M is treated as a bit stream. It is encoded as
a sequence of transformations applied to the carrier, resulting in a STLM that
incorporates both the original geometry and the mark. It should be possible to
retrieve M from the STLM file by assessing the state of the STL file elements
used for encoding. The steganographic channel should support encoding and
decoding of an arbitrary length M up to the capacity of the carrier. To support
both ASCII and binary STL formats, we restrict ourselves to transformations
of structural elements. We also only consider blind approaches, i.e., M can be
extracted from STLM without any knowledge of STL.

4.1 STL Transformations for Bit Encoding

We consider a well-formed STL to satisfy the following conditions. First, all
facets in the file are unique by their three vertices. Second, all vertices in each
facet are distinct. In malformed STL files, facets violating these conditions can
be skipped, reducing encoding capacity.

Based on our analysis of the STL file format’s structural elements, we iden-
tified several transformations that can be used as bit encoding primitives and
assessed their encoding capacity (summarized in Table 1):

Facet Position: As the order in which facets are described is not defined, their
relative position can be used to encode information. In a STL file with FN facets,
FN ! permutations of these facets are possible. Therefore, facet ordering can be
used to represent values up to �log2(FN !)� bits long.

In the simplest case, two subsequent facets can be used to represent a single
binary value, a bit. For FB facets, their positions can be used to encode up to
�log2(FB !)� bits of information. With this scheme, �log2(FB !)�·�FN/FB� bits of
information can be encoded in a file with FN facets. For a binary representation
this would result in �FN/2� bit encoding capacity.
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For a blind approach, a canonical form should be introduced, e.g., by defining
an order based on the vertices and their coordinates in 3D space. We choose to
do this using a less-than ordering for both facets and vertices.

Using this definition, we can associate the bit value 0 with a sequence in which
the “smaller” facet is defined first, and 1 otherwise. Applying this definition to
the pair of facets, the two facets can be used to define a single bit value.

Vertex Order: As each facet is defined by its three vertices (v1, v2, v3), vertex
ordering can be used to encode information. In a well-formed STL file, the order
of these vertices should follow the right hand rule with respect to the normal
vector (see Sect. 2). Based on whether or not the right hand rule is followed
during the encoding, we distinguish between the following cases:

Regarding the Right Hand Rule: This case restricts the order in which
individual vertices (v1, v2, v3) are listed to their cyclical rotation. Consequently,
this permits encoding of up to three values per facet. The actual encoded value
can be determined based on the relative x − y − z value of the vertex listed first:
whether it is smallest, middle, or largest.

If all three distinct values are used, up to �log2(3FN )� bits of information
can be encoded. This requires that the bit stream is converted to base 3 for
encoding, and back to base 2 upon decoding. Alternatively, a single binary value
can be encoded. This eliminates the need for base conversion, but will reduce
the encoding capacity to FN bits.

Disregarding the Right Hand Rule: If the right hand rule is simply
ignored, six distinct permutations of the vertices are possible. Such a scheme
would allow encoding of up to �log2(6FN )� bits of information. However, this
would require base conversion from 2 to 6 prior to encoding and back to 2 after
decoding. Alternatively, in a base 2 scheme, four of the permutation states could
be used to encode two subsequent bits of information with the remaining two
states reserved for other purposes like signaling. In this case, up to 2·FN binary
bits of information can be encoded.

Normal Vector: In a well-formed STL file, the normal vector can be derived
from the order in which the facet’s vertices are defined. This can be exploited
to encode bits of information. For example, if the normal still follows the “right
hand rule,” it can represent bit value 1, and if violates it (e.g., by inverting the
normal direction) – bit value 0. With this approach, an encoding capacity of FN

bits can be achieved.

Number Representation: All vertex coordinates can be specified with or with-
out an exponent. In the simplest case, the presence or absence of exponentiation
can be used to encode a single bit of information. For the entire STL file, the
encoding capacity of this scheme is 12·FN bits of information. The exponent
itself can represent multiple bits of encoded information. With EN being maxi-
mum supported number for an exponent’s value, the encoding capacity for the
entire STL file will be log2(EN )·12·FN .

Numerical problems with single-precision floating point numbers may arise
with this method.
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Fig. 1. STL watermarking and fingerprinting: generation and verification

4.2 Steganographic Channels in STL File Format

To define a steganographic channel for STL, we first need to define functions
that will write and read individual bits using a specific encoding scheme. Using
these functions, we can then define functions for operations on bytes. In the final
step, we can define functions for encoding and decoding arbitrary numbers of
bytes, as long as the STL file has sufficient encoding capacity.

All functions operate on an object that represents a carrier STL file “opened”
for steganographic operations. At present, the object supports only one encoding
scheme at a time. This object also keeps track of bit position in the STL file. For
read and write operations, this position is translated to a specific STL element,
based on the chosen encoding scheme. Upon completion of a read or write, the
bit position is advanced.

Defining functions for reading and writing arbitrary byte sequences should
take into account that the carrier STL file limits the available bit encoding
capacity; furthermore, the bit capacity is not likely to be a multiple of 8 bits.
To handle failure modes where the capacity is insufficient, we opted to write as
much as possible of the given sequence, and further to “top up” to the end of the
carrier STL file if the encoding capacity is not a multiple of 8.

5 Validity: STL Watermarking and Fingerprinting

In this section we propose a method for watermarking and fingerprinting STL
files. The proposal for embedding and validating marks is depicted in Fig. 1. Both
watermarks and fingerprints are associated with a particular STL file through
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the inclusion of a cryptographic hash sum of the file. Prior to hashing the original
file, it is converted to a canonical form. This conversion ensures that the hash
value is always calculated over the same permutation.

For the watermark, a globally unique identifier for the owner is required; one
possible solution is to use the Serial Number of an X.509 certificate. For the
fingerprint, end user identifying information should be concatenated with terms
of use. While the watermark needs to be globally unique to support ownership
claims, the fingerprint identifier should be unique enough (at a minimum, unique
to the IP owner) to establish traceability.

Additionally, steps need to be undertaken to ensure the integrity and authen-
ticity of the message Msg = h(STL)||WM ||FP . A common approach is to sign
the message Msg [9]. For this, a cryptographic hash sum of the message can be
calculated and then signed with the owner’s private key, corresponding to the
public key in the specified certificate. Both the message, Msg, and its signature,
E(KOwner

Private, h(Msg)), would then be encoded in the STL file, where E is the
signing function (see Fig. 1).

To extract and validate the watermark and fingerprint, the message and
its signature are decoded from STLM in a two step process. The signature is
validated using KOwner

Pub from the owner’s X.509 certificate. The hash value is
then compared with one calculated over the decoded message Msg. If they are
identical, the retrieved message Msg is properly signed by the owner. The second
step verifies that the message Msg corresponds to the carrier STL file. To do
this, a hash sum calculated over STLM in its canonical form, h(CF (STLM )) is
compared with the hash value stored in the message. If the values match, the
watermark and fingerprint fields of M are validated.

To provide a concrete example, if SHA-256 [5] is used, the hash h(STL) will
be 32 bytes long. The X.509 certificate is required to support up to 20 byte long
serial numbers [4] – we use this for the WM field. The FP field need only be
locally unique to the owner of the IP; we assume 4 bytes for UID. For simplicity,
we assume no STL-related rights are specified. All this results in a Msg that is
56 bytes long. This Msg must be signed (see Fig. 1 for the method). We assume
the use of ECDSA with SHA-256 as a hashing algorithm [10]. ECDSA’s output
is two field elements of variable length; for this example we specify a reasonable
250 bits resulting in 500 bits total, just under 63 bytes. Summing all fields and
rounding up, we come to a capacity requirement of less than 120 bytes to be
embedded.

For the test set of models, all but the smallest objects (a simple cube) have
available encoding capacity in excess of 1000 bits. This demonstrates the prac-
ticality of the approach for protection of models with realistic complexity. For
smaller objects MAC will have to replace the signature method.
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6 Defining and Verifying Semantic Preservation for AM

In this section we define what semantic preservation means for AM, then verify
whether our encoding schemes satisfy this requirement. We do this by the tool-
path representation, as well as the Form, Fit, and Function characterization of
a part [6].

Toolpath-Based Semantic Preservation: To manufacture an STL file,
slicers convert it to a sequence of toolpath instructions. We can define Toolpath-
based Semantic Preservation as follows: the information in a carrier STL file is
semantically preserved if the toolpaths generated from the file with and without
an encoded message are functionally identical (see illustration in Fig. 2).

The transition from 3D model to toolpath is dependent on the slicer and
its configuration parameters. While a transformation might be semantically pre-
serving with one slicer, it may not be with others.

Form- and Fit-Based Semantic Preservation: Form and Fit are described
in the digital design file, through the object’s geometry. Therefore, we define that
a specific encoding satisfies Form- and Fit-based Semantic Preservation if and
only if objects 3D printed using STL files with and without an encoded message
are identical in their geometry and dimensions.

Function-Based Semantic Preservation: For functional parts, its func-
tional characteristics (e.g., tensile strength or fatigue life) are critical. In AM,
these are not solely dependent on the Form and Fit but also on the manufac-
turing process parameters. Therefore, we define that a specific encoding satisfies
Function-based Semantic Preservation if and only if objects 3D printed using
STL files with and without an encoded message are identical in their functional
performance. Evaluating this category may require mechanical testing of the
functional characteristics specified in the object’s design.

Strict and Bounded Semantic Preservation: Semantic preservation require-
ments vary for different applications. We propose to distinguish between strict
and bounded semantic preservation. In the toolpath-based definition, semantic
preservation is strict if the toolpaths are absolutely identical. For the two other
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categories, only “bounded” preservation is possible, because of variability in the
manufacturing process and error in measurement. Identified bounds can be com-
pared against the tolerances specified for a part.

6.1 Verifying G-Code Toolpath-Based Semantic Preservation

We have evaluated toolpath-based semantic preservation using G-Code, a legacy
ASCII toolpath format that can be analyzed manually. It is broadly used in
desktop 3D printers. To account for the possibility that the choice of slicer could
impact the results, we selected two commonly used slicers, Slic3r v.1.3.0 and
CuraEngine v.4.4.0.

We begin with the hypothesis that each encoding approach was semantic
preserving. We then sought evidence that the approach does not maintain this
property. To that end, we developed a python script that iterated through a set
of STL files (ten in total with varying size, geometric complexity, and encoding
capacity) and encoded within each a synthetic bit stream1 using each of our
bit encoding primitives (see Sect. 4.1). Next, we sliced the original (STL) and
modified (STLM ) files. Then, we compared the generated G-Code toolpath files
on the basis of their functional identity. If the toolpath files did not match,
we declared the tested encoding primitive as not semantic preserving for the
associated slicer.

The results, given in Table 2, show differences in the semantic preservation
performance of the two slicers. Preservation depends not only on the slicer and
transformation, but also on the 3D mesh geometry described in STL file. Only
two bit encoding primitives, normal vector and number representation, demon-
strated semantic preservation for all test files and only when used in conjunction
with the Cura slicer. The normal vector’s success could be explained if Cura
ignores the normal field entirely and instead re-calculates the corresponding
value. The number representation’s success indicates that this particular for-
mulation of the encoding scheme did not cause any numerical problems with
Cura.

The low results for vertex order encoding while following the right hand
rule and adjacent facet position swapping were surprising. A closer analysis of
these and other cases violating semantic preservation revealed that the number
of differences between the original and marked files varied greatly, ranging from
just a few G-Code commands to significant portions of the generated .gcode
files. After manual evaluation, the majority of observed differences appeared to
be rounding errors on floating point operations, which may bound them.

In conclusion, we found that strict toolpath-based semantic preservation is
both slicer- and encoding primitive-dependent. The resulting deviations appear
to be bounded, leaving open the question of impacts on Form and Fit.

1 As a synthetic bit stream we used the 256 bytes long ASCII table, cyclically rotated
to start with the binary value 10100011b (0xA3 hex).



Crypto-Steganographic Validity for 3D Printing Design Files 49

Table 2. Semantic preservation test results

Encoding Primitive Cura Slic3r

Facet Position
Entire STL file ✗ (60.0%) ✗ (50.0%)
Adjacent facets ✗ (20.0%) ✗ (50.0%)
Vertex Order
Regarding Right Hand Rule ✗ (50.0%) ✗ (40.0%)
Violating Right Hand Rule ✗ (10.0%) ✗ (40.0%)
Disregarding Right Hand Rule ✗ (50.0%) ✗ (40.0%)
Normal Vector � (100%) ✗ (30.0%)
Number Representation � (100%) ✗ (40.0%)

6.2 Verification of Form- And Fit-Based Semantic Preservation

Fig. 3. Experimental test token.
Dimensions: l = 30 mm, w =
20 mm, h1 = 20 mm, h2 = 20 mm,
d = 20 mm

To validate whether encoding schemes
impact Form and Fit, we designed a simple
object for which discrepancies can be eas-
ily detected in both flat and curved geom-
etry (see Fig. 3). We encoded this test object
with the same bit sequence used in the previ-
ous experiment. Samples were printed using
the Formlabs Form 3 SLA 3D Printer and
the PreForm 3.14 Slicer. In addition to the
marked STL files, we also printed the original
STL twice, to establish possible deviations.
We measured the test objects using Mitutoyo
500-196-30 electronic calipers.

We identified three quantifiable error
sources: (i) the tolerance by the defined STL
file (3.00176 µm), (ii) the resolution of the 3D Printer (25 µm in the X and Y
directions and 25 to 100 µm in the Z direction), (iii) the measurement error of
the calipers (10 µm). Any deviations below 38 µm in X and Y and 113 µm in Z
may be attributable to these sources. There is also slight unevenness across the
surfaces of the printed parts. While we compensated for this by taking measure-
ments at the same locations, this could have introduced further variance.

Table 3 summarizes the mean-average measurement results for our object
dimensions. The results show deviations between our 3D-printed objects and
the design for both STL files. Further, while there is deviation between objects
printed using the original design and a marked STL, it never exceeded 80 µm.
This is small enough to be explained by other error sources, as outlined above.
Furthermore, it is significantly smaller than the observed deviations between 3D-
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Table 3. Tests of encoding impact on Form and Fit. The last three rows represent the
maximum deviation between the (i) original STL and unmarked object, (ii) original
STL and marked object, and (iii) unmarked and marked objects.

Encoding Primitive l w h1 h2 d

mm mm mm mm mm

Using Original STL
Print 1 30.13 20.06 19.82 20.10 20.07
Print 2 30.08 20.05 19.75 20.07 20.04
Facet Position
Entire STL file 30.11 20.08 19.78 20.07 20.06
Adjacent facets 30.08 20.11 19.77 20.10 20.06
Vertex Order
Regarding RHR 30.06 20.05 19.75 20.08 20.04
Violating RHR 30.12 20.07 19.80 20.06 20.06
Disregarding RHR 30.09 20.04 19.74 20.09 20.03
Normal Vector 30.12 20.05 19.78 20.12 20.09
Number Representation 30.11 20.04 19.80 20.11 20.07

Maximum Deviation Δl Δw Δh1 Δh2 Δd

Using Original STL 0.13 0.06 0.18 0.10 0.07
Using Encoded STLs 0.12 0.11 0.26 0.12 0.09
From Original Object 0.07 0.06 0.08 0.05 0.05

printed objects and the design. We feel this supports that the proposed encoding
strategies are bounded for Form and Fit.

7 Conclusion

In Sect. 3 we introduced several definitions to characterise a Steganographic
Watermarking System. The requirements on a sound watermarking system,
extraction and non-interference, are fulfilled by the proposed approach and were
demonstrated during experimental evaluation. Tamper evidence is here achieved
by the inclusion of a digital signature. However, the proposed approach is not
robust nor strongly robust. Conforming to our initial requirements, the mark
can be added without violating functionality; the same transformations can be
applied to remove it without losing functionality.

Attacks on watermarking schemes take many forms. Subtractive attacks are
aimed at removing the mark completely. Distortion attacks are aimed at ruining
the embedded data, corrupting rightful owner identification or fingerprinting
schemes. Additive attacks are intended to introduce an attacker’s watermark
into an object, allowing the attacker to claim putative ownership of the object
and accusing the rightful owner of IP violations. As STL files are not protected
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against modifications, each of these attacks is possible. A robust version of our
watermarking method is an open research question, and the answer may involve
either changes in the AM infrastructure (procedural agreement on file hashes,
etc.) or the development of more resilient forms of encoding.

To conclude, we proposed a method for watermarks (to assert owner rights)
and fingerprints (to identify a data thief) to be directly embedded in STL files.
For the four non-deforming categories of STL transformations we identified, we
provided our assessment of their bit encoding capacity. We then used these trans-
formations to establish a steganographic channel in STL, to encode data in a file.
To characterize these encodings we developed AM-specific definitions of seman-
tic preservation and experimentally assessed whether the identified encoding
schemes achieve them. The results show that, while the absolute toolpath-based
semantic preservation could only be achieved for a specific combination of slicer
and encoding primitives, bounded form and fit-based semantic preservation has
been demonstrated in all investigated cases.
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Abstract. Smooth projective hash functions, also designated as hash
proof systems (Eurocrypt ’02) and witness encryption (STOC ’13), are
two powerful cryptographic primitives. The former can produce a hash
value corresponding to an NP language instance in two ways, and the
latter allows encrypting a message using the description of an instance
in an NP language. Mostly, witness encryption is constructed using com-
putationally expensive tools like multilinear maps or obfuscation. In this
work, we build a witness encryption scheme using the smooth projection
hash function (SPHF), which achieves efficient encryption and decryp-
tion. Specifically, we generate a zero-knowledge proof for the witness
w of the NP instance x and use this proof as an instance of SPHF to
encrypt a message. Next, we instantiate SPHF, the key technique of the
WE scheme, supporting the NP-complete circuit SAT problem proved in
the NIZK argument. Furthermore, based on our instantiated SPHF, our
WE produces a fixed-size ciphertext, and a theoretical comparison with
Derler et al. (DCC ’18) instantiated SPHF from Gorth-Sahai proofs (GS-
proofs) shows that our SPHF instantiation is more efficient than theirs.

Keywords: Witness encryption · Circuit SAT · Smooth projective
hashing · NIZK · SNARK

1 Introduction

Witness Encryption. Witness encryption (WE) is a fascinating new concept
proposed by Garg, Gentry, Sahai, and Waters [1], which defines for some NP-
language L with a witness relation R so that L = {x | ∃ w : R(x,w) = 1}. The
encryption algorithm takes as input an instance x along with a message M and
produces a ciphertext C. Using a witness w such that R(x,w) = 1, the decryptor
can recover M from the ciphertext C. Decryption only works if x is actually in
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the language L and a ciphertext C hides M if C has been computed with respect
to some x /∈ L.

The candidate construction of witness encryption for a special NP-complete
problem, i.e., an exact cover problem, is designed from generic multilinear maps
(MMap) [2], which implies WE for any language L ∈ NP via polynomial-time
many-one reductions. Subsequently, Garg et al. [3] indicated that indistinguisha-
bility obfuscation (iO) [4,5] implies witness encryption, and the only candidate
construction of iO is also based on the MMap [2]. Zhandry [6] gave a construc-
ture of reusable WE using witness pseudorandom functions (witness PRFs) and
provided a witness PRFs instantiation from MMap. Most of the existing work
in the literatures is based on multilinear mapping (MMap) or obfuscation tech-
niques, thus far from being practical, while these papers address the problems
of provable security [7–9], different NP problems [10–13], and new applications
of WE, e.g., [1,9,11,12,14].

To achieve a more efficient encryption procedure, Abusalah et al. [15] intro-
duced an interesting variant of WE, i.e., Offline WE (OWE), where the encryption
algorithm uses neither multilinear maps nor obfuscation. They achieved efficient
encryption by outsourcing the resource-heavy computations to a setup phase
that processes necessary tools to produce public parameters for encryption and
decryption. Later, several other works [16–18] built upon [6,15] and proposed
the selectively secure OWE scheme, or semi-adaptive security OWE scheme for
any NP-language. Nonetheless, the setup and decryption stages of the above con-
structs of OWE still require obfuscation and thus cannot be considered practical.
To this end, Derler and Slamanig [19] constructed a practical instantiation of
WE that focuses on all aspects, namely encryption and decryption, for efficiency.
However, their scheme only supports a restricted class of algebraic languages.

Smooth Projective Hash Functions. Cramer and Shoup [20] introduced at
Eurocrypt’02 the concept of smooth projective hash functions, also designated
as hash proof systems. They are families of pairs of functions (Hash, ProjHash)
defined on some NP-language L and a hash value can be computed in two ways,
useful for producing witness encryption schemes. A common strategy [19,21–23]
for constructing WE schemes consists of using an SPHF in the following way:
Given an instance x and a message M , an encryptor generates a hashing key
hk, a projective key hp, a hash value Hh and hides the message M using Hh.
In order to decrypt the ciphertext, the decryptor uses the witness w associated
with the instance x along with the projective key hp to compute the projected
hash value Hp and retrieve M .

Abdalla et al. in [21], it was first proposed to informally outline the con-
struction of witness encryption from SPHF. Subsequently, Derler et al. [19]
gave the first formalized general construction of WE from SPHF. However, their
SPHF only supports limited algebraic languages, not all NP languages. Moreover,
the computational overhead of instantiating SPHF from the GS proof framework
increases with the size of the proof statement. In addition, Faonio et al. [23]
construct extractable witness encryption from the Ext-hash proof system (Ext-
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HPS). While the extractable WE structure constructed is practical, it supports
very basic and restricted languages.

Motivation. Most currently known WE or OWE schemes are constructed from
computationally expensive MMap or obfuscations. As a result, these schemes
are experiencing inefficiency due to the existing noisy MMap and impracticality
of obfuscation. We aim to construct more efficient SPHF and WE for any class
of NP languages. Derler et al. [19] proposed a practical witness encryption for
restricted algebraic languages that requires SPHF and GS-proofs [24]. We note
that they support restricted algebraic languages because SPHF is instantiated
based on GS-proofs, which are efficient NIZK proofs for some specific algebraic
languages such as paired product equations. Therefore, we consider instantiating
our SPHF (and thus WE) using SNARKs for NP-complete problem circuits SAT,
to support all classes of NP languages. Furthermore, in order to improve the
efficiency of generating hash values when instantiating SPHF from SNARK, we
only use part of the public data of zero-knowledge proofs, i.e., a public group
element as an instance of SPHF to generate hash values. The two ways of gener-
ating the hash value only require exponentiation on 3 and 4 groups, respectively.
Therefore, we constructed the WE scheme based on zero-knowledge proof, which
needs to realize message encryption and decryption according to the generated
zero-knowledge proof as an instance of SPHF, which is similar to the idea of [19]
(DCC’18) based on GS-proof. It should be noted that the efficiency of NIZK and
SNARK in generating common reference strings (crs) is low, but in our scheme,
it is placed in the setup stage and only needs to be run once, which is acceptable.

Our Contribution. The main contributions of this paper are as follows:

– We provide a general framework and construction for witness encryption from
SPHF and prove the security of the witness encryption scheme. Different from
the existing WE, in our scheme, the encryptor first verifies the witness w of the
instance x used by NIZK. After the verification is successful, i.e., R(x,w) = 1,
and then the generates a zero-knowledge proof as an instance of SPHF to
construct a general WE.

– We present practical instantiations of our generic approach witness encryption
for circuit SAT. Specifically, we implement the instantiation of SPHF from
zk-SNARK for NP complete problem circuit SAT. Besides being practically
efficient, our constructions only require standard assumptions (i.e., DLP),
which can support most NP languages.

– Our proposed SPHF instantiation (and thus WE) from SNARK is efficient
(without MMap or iO), by theoretical analysis and comparison with other
WE schemes based on SPHF techniques, our scheme is superior to the exist-
ing schemes in terms of encryption and decryption. Furthermore, because
ourscheme is constructed by our instantiation of SPHF, the encryption algo-
rithm produces a fixed ciphertext size (a symmetric ciphertext and 3 group
elements).
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2 Related Work

The approaches in [18,19,25] are similar to how we construct WE. These schemes
have similar goals and functionality but differ regarding the formalization and
available instantiations.

With puncturable witness pseudorandom function (pWPRF) [18], which can
be seen as a variant of (extractable) hash proof systems, Pal et al. aim at build-
ing an optimal size ciphertext OWE(or extractable OWE) from pWPRF and
providing an instantiation of pWPRF from pPRF and an iO(or eO). Conse-
quently, this only implements the efficient encryption phase, not producing a
practical instantiation, where our goal is explicitly to build actual instantiations
of WE that encrypt and decrypt efficiently, especially to make them compatible
with SNARKs.

The approach to constructing efficient encryption and decryption practical
WE from SPHF in [19] is related to our approach, but there are some essential
differences. They instantiate an SPHF which is compatible with GS promises.
SPHF is instantiated on this NP relation by generating a GS promise π for a
message, taking π and the random factor generating the π as an NP relation.
In addition, they extend the instantiation of SPHF to the GS-proof framework
but only support limited algebraic languages. This differs from our WE goal of
building efficient encryption and decryption that supports all NP languages.

Recently, Campanelli et al. [25] proposed that witness encryption over com-
mitments (cWE) is similar to our construction idea. In their cWE, there are two
stages: first parties provide a (honestly generated) commitment cm of their pri-
vate input w. Later, anybody can encrypt to a public input for an NP statement,
which also guarantees the correct opening of the commitment. Similar to [19],
although it also implements witness encryption based on commitment cm, the
specific implementation uses garbled circuits and inadvertent transfer, which is
completely different from our idea and cannot be compared.

3 Preliminaries

In this section, we present the techniques used to construct our general
WE scheme, mainly including the non-interactive zero knowledge arguments
of knowledge, smooth projective hash function, and symmetric key encryption
(SKE). The formal definition is as follows.

3.1 Notations and Conventions

We denote our security parameter as λ ∈ N. Let x ← S denote the process
of sampling x uniformly at random from the finite set S. To make our notation
more succinct, we will follow the notation in [26] and use [x] for gx, where g ∈ G.
A function μ : N → R is called negligible if μ(n) ≤ 1

p(n) holds for every positive
polynomial p(·) and all sufficiently large n ∈ N.
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3.2 Non-Interactive Zero-Knowledge Arguments of Knowledge

A key ingredient of our construction is non-interactive zero-knowledge (NIZK)
arguments of knowledge. The idea of NIZK is to enable a prover to convince
a verifier that a statement is true. In our work, in order to achieve the goal of
zero-knowledge verification that the decryptor has a witness w before encrypting,
and uses this proof as an instance of SPHF to construct WE. We use NIZK to
convince the encryptor that the decryptor has the witness w for instance x, where
R(x,w) = 1. We require a NIZK that satisfies perfect completeness, perfect zero-
knowledge, computational soundness, and computational knowledge soundness.
Perfect completeness means that, on input of an instance x and a witness w,
the prover outputs a proof π that the verifier accepts. Computational soundness
requires that no PPT adversary can produce a proof of a false instance. Perfect
zero-knowledge means that a proof does not leak any information besides the
truth of the instance.

We first recall the definitions of a non-interactive zero-knowledge (NIZK)
arguments of knowledge in [27,28].

Definition 1 (NIZK). An efficient prover of publicly verifiable non-interactive
argument of knowledge for R is defined by the following four PPT algorithms
(Setup, prove, Verify, Sim):

– Setup(1λ): On input a security parameter λ, Setup algorithm outputs a com-
mon reference string σ and a simulation trapdoor τ .

– prove(σ, x, w): On input a common reference string σ and (x,w) ∈ R,
prove algorithm outputs a proof π.

– Verify(σ, x, π): On input a common reference string σ, an instance x and a
proof π, Verify algorithm outputs 1 (accept) or 0 (reject).

– Sim(τ, x): On input a simulation trapdoor and an instance x, Sim algorithm
outputs a proof π.

We require the perfect completeness, perfect zero-knowledge, computational
soundness, and computational knowledge soundness of NIZK to be defined as
follows:

Perfect Completeness. A NIZK scheme is perfect complete, if for all λ ∈ N,
(x,w) ∈ R, it holds that

Pr[(σ, τ) ← Setup(1λ);π ← prove(σ, x, w) : Verify(σ, x, π) = 1] = 1 (1)

Perfect Zero-Knowledge. A NIZK scheme is perfect zero-knowledge, if for all
λ ∈ N, (x,w) ∈ R and all adversaries A, it holds that

Pr[(σ, τ) ← Setup(1λ);π ← prove(σ, x, w) : A(σ, τ, π) = 1]

= Pr[(σ, τ) ← Setup(1λ);π ← Sim(τ, x) : A(σ, τ, π) = 1]
(2)
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Computational Soundness. A NIZK scheme is computationally soundness, if
for all non-uniform polynomial time adversaries A, it holds that

Pr
[

(σ, τ) ← Setup
(
1λ

)
;

x /∈ L; (x, π) ← A (
1λ, σ

) : Verify (σ, x, π) = 1
]

≤ μ (λ) (3)

Computational Knowledge Soundness. A NIZK scheme is computationally
knowledge soundness, if for all non-uniform polynomial time adversaries A there
exists a non-uniform polynomial time extractor XA, it holds that

Pr
[

(σ, τ) ←Setup
(
1λ

)
;

(x,w) /∈ R; ((x, π) ;w)←(A ‖ XA)
(
1λ, σ

) :Verify (σ, x, π) = 1
]
≤ μ(λ) . (4)

3.3 Smooth Projective Hashing Functions

One of the critical components of our construction is smooth projective hashing
functions (SPHF). SPHF, also known as hash proof systems, are families of pairs
of functions (Hash, ProjHash) defined on some NP-language L and a hash value
can be computed in two ways. On an instance x ∈ L, both functions need to yield
the same result, that is, Hash(hk, x) = ProjHash(hp, x, w), where the (hk, hp) is
a pair of associated keys, evaluation the ProjHash value additionally requires a
witness w that x ∈ L.

In our scheme, SPHFobtains the hash value as the key K in two ways, input
instance x and hk in the encryption phase to obtain Hash(hk, x) as the encryp-
tion key K, input an instance x, a witness w and hp in the decryption phase gets
decryption key K. We require SPHF that satisfies the correctness and smooth-
ness. Correctness guarantees that the Hash values obtained by the two methods
are equal if everyone behaves honestly. Smoothness requires that the hash value
looks statistically random for any x /∈ L. Formally SPHF are defined as follows
(cf. [29]).

Definition 2 (SPHF). Let us consider a language L ∈ NP, and some global
parameters for the SPHF, assumed to be in the public parameter pp. The
SPHF system over a language L is defined by the following four PPT algorithms
(HashKG, ProjKG, Hash, ProjHash):

– HashKG(pp): On input the public parameter pp, HashKG algorithm outputs a
hashing key hk.

– ProjKG(pp, hk): On input the public parameter pp and a hashing key hk,
ProjKG algorithm outputs a projective key hp.

– Hash(pp, hk, x): On input the public parameter pp, a hashing key hk, and an
instance x, Hash algorithm outputs a hash value Hh.

– ProjHash(hp, x, w): On input a projective key hp, an instance x, and a witness
w that R(x,w) = 1, ProjHash algorithm outputs a hash value Hp.

We require the correctness, smoothness, and pseudorandomness of SPHF to be
defined as follows:
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Correctness. An SPHF for some languages L ∈ NP is correct, if for all (x,w) ∈
R with w the witness, it holds that∣∣∣∣∣∣Pr

⎡
⎣hk ← HashKG (pp) ;hp ← ProjKG (pp, hk)

Hh ← Hash (pp, hk, x)
Hp ← ProjHash (hp, x, w)

: Hh = Hp

⎤
⎦−1

∣∣∣∣∣∣ � μ(λ) (5)

Smoothness. An SPHF for some languages L ∈ NP is smooth, if for all x /∈ L,
the following two distributions are statistically indistinguishable,

D1={(pp, x, hp,Hh) |hp ←ProjKG (pp, hk) ;Hh ← Hash (hk, x)}
D2={(pp, x, hp,Hh) |hp ←ProjKG (pp, hk) ;Hh ← Π}

where hk ← HashKG(crs), Π denote the range of the hash function. That is,

AdvSmooth
SPHF (λ) =

∑
h∈Π

|PrD1 [Hh = h] − PrD2 [Hh = h]| � μ(λ). (6)

3.4 Symmetric Key Encryption

Our general WE scheme adopts the ciphertext indistinguishability secure SKE to
achieve efficient encryption and decryption,

Definition 3 (C-IND-SKE). A symmetric key encryption (SKE) scheme is
defined by the following three PPT algorithms (Gen, Enc, Dec):

– Gen(1λ) : On input a security parameter 1λ, Gen algorithm outputs a key K.
– Enc(K,M) : On input a key K and a message M ∈M, Enc algorithm outputs

a ciphertext C.
– Dec(K,C) : On input a key K and a ciphertext C, Dec algorithm outputs

M ∈M, or ⊥ if it fails.

We require the correctness and ciphertext indistinguishability (C-IND) of SKE to
be defined as follows:

Correctness. A SKE scheme is correct, if for all λ ∈ N, and M ∈M there exists
a negligible function μ(·), it holds that∣∣Pr[K ← Gen(1λ);C ← Enc(K,M);M ′ ← Dec(K,C) : M = M ′] − 1

∣∣ � μ(λ).
(7)

C-IND Security. A SKE scheme is ciphertext indistinguishability (C-IND)
secure, if for all PPT adversary A and any pair of equal length messages (M0,M1)
there exists a negligible function μ(·), it holds that∣∣Pr[A(1λ,Enc(K,M0)) = 1] − Pr[A(1λ,Enc(K,M1)) = 1]

∣∣ � μ(λ). (8)

4 Witness Encryption over Smooth Projective Hashing

In this section, we first introduce witness encryption over smooth projective
hashing and give the security game. Next, we construct generic witness encryp-
tion using NIZK and SPHF, and analyze the security of our scheme.
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4.1 Definition

WE was initially defined in [1] and refined in [9] with a stronger concept of
adaptive soundness, where the instance x output by the adversary may depend
on the parameters pp. In our scheme, only adaptive soundness makes sense when
WE defines a scheme for language families indexed by pp, i.e., the language is
not fixed before the parameter pp is generated. In addition, in order to achieve
effective encryption when the instance x ∈ L, we add a Gen algorithm, which is
used to generate a zero-knowledge proof for the witness w. Since our Setup and
Gen algorithms are computationally expensive but only run once, which is similar
to OWE, we follow the basis of [15] and add the Gen algorithm to define WE.

Definition 4 (Witness Encryption over Smooth Projective Hashing).
A witness encryption over smooth projective hashing scheme is defined by the
following four PPT algorithms (Setup,Gen,Enc,Dec):

– Setup(1λ): On input a security parameter 1λ, Setup algorithm outputs a public
parameters pp.

– Gen(pp, x′, w′): On input a public parameter pp, an instance x′ ∈ X , a witness
w′ ∈ W, Gen algorithm outputs x = (x′, π).

– Enc(pp, x,M): On input a public parameter pp, an instance x and a message
M ∈ M, Enc algorithm outputs a ciphertext C or ⊥.

– Dec(C,w): On input a ciphertext C and a witness w, Dec algorithm outputs
M ∈ M or ⊥.

We require the correctness and adaptive security of our WE to be defined as
follows:

ExpAdp−b

WE,A (λ) :

1. pp ← Setup (1λ)
2. (x∗, w∗,M0,M1, st) ← A(1λ, pp)
3. x ← Gen(pp, x∗, w∗)
4. b ← {0, 1};Cb ← Enc(pp, x,Mb)
5. b∗ ← A(Cb, st)
6. return 1 if (b∗ = b) (x∗ /∈ L) ∧ (x∗, w∗) /∈ R

Fig. 1. Adaptive-security game of witness encryption

Correctness. A WE scheme is correct, if for all λ ∈ N, M ∈ M, and for any
(x,w) ∈ R it holds that

∣∣∣∣Pr
[

pp ← Setup
(
1λ

)
;π ← Gen (pp, x, w) ;

C ← Enc (pp, x,M) ;M ′ ← Dec (C,w) M = M ′
]

− 1
∣∣∣∣ ≤ μ (λ)
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Adaptive Security. A WE scheme is adaptive security, if for all PPT adversaries
A in ExpAdp−b

WE,A (λ) (Fig. 1 )it holds that
∣∣∣Pr[ExpAdp−0

WE,A (λ) = 1] − Pr[ExpAdp−1
WE,A (λ) = 1]

∣∣∣ � μ(λ)

4.2 Our Construction 1

In Fig. 2, we present our general construction of WE that, besides an
SPHF requires a non-interactive zero-knowledge protocol NIZK and the C-IND
secure symmetric key encryption scheme SKE. Our construction work is as
follows. First, a trusted third party generates public parameters by running
the Setup algorithm. Subsequently, the decryptor uses NIZK to achieve zero-
knowledge proof of witness w. After the encryption passes the verification, it
means that R(x,w) = 1 is established, and then the hash value of SPHF is
used as a random extractor to obtain the encryption key K of SKE. We are now
ready to present our generic construction of WE= (Setup,Gen,Enc,Dec) from any
SPHF and NIZK.

Fig. 2. WE from SPHF and NIZK

Remark 1. In Fig 2, NIZK= (Setup,prove,Verify) be an NIZK scheme for a NP-
language L = {x′ | ∃ w′ : R(x′, w′) = 1}, SKE= (Enc,Dec) be an SKE scheme,
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SPHF= (Setup,HashKG,ProjKG,Hash,ProjHash) be an SPHF scheme for a NP-
language LR = {x = (x′, π) | ∃ w = (w′, r) : π = NIZK.prove(R, x′, w′, r)}.

4.3 Correctness

Theorem 1. If NIZK is perfect completeness and SPHF is correct, and SKE is
correct then our witness encryption scheme is correct.

Proof. If NIZK is computational knowledge soundness, for all (R,w) 	= 1, the
generated proof π verification fails, and output ⊥.

If NIZK is perfect completeness, for all (R,w) = 1, the generated proof π can
be verified. After the verification is passed, the correctness of SPHF guarantees
HHash = HProjHash. It is easy to see that our WE scheme is correct.

4.4 Security Proof

Theorem 2. If NIZK is perfect zero-knowledge, SPHF is smooth, and SKE is
C-IND secure, then our WE scheme is adaptively secure.

Proof. We show that the distinguishing advantage between two experiments
ExpAdp−0

WE,A (λ) and ExpAdp−1
WE,A (λ) (Fig. 1) for any PPT adversary A is negligible

by defining the following a series of hybrid games Hi and proving the indistin-
guishability between them.

Fig. 3. Hybrid games Hi used in the proof of Theorem 2
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Hybrid H0: The first hybrid game H0 is the original adaptive security experi-
ment ExpAdp−0

WE,A (λ) described in Fig. 3.
It can be obtained from the above experiment that the output of experiment

H0(λ) is 1 if and only if ExpAdp−0
WE,A (1λ) outputs 1, that is:

Pr[ExpAdp−0
WE,A (1λ) = 1] = Pr[H0(1λ) = 1]

Hybrid H1: Hybrid game H0 differs from H1 in that the public parameter pp
for the NIZK and the zero-knowledge proof π are simulated rather than hon-
estly generated. The perfect zero-knowledge property of NIZK guarantees that
honestly generated proof π is indistinguishable from simulated ones by PPT
adversaries (Fig. 4).

Lemma 1. H0 and H1 are computationally indistinguishable if NIZK is perfect
zero-knowledge.

Proof. Assume towards contradiction that there exists a polynomial p(·) such
that for infinitely many λ

∣∣Pr[H0(1λ) = 1] − Pr[H1(1λ) = 1]
∣∣ � μ(λ)

We use A to construct a non-uniform PPT adversary B against the per-
fect zero-knowledge security of NIZK (Formula 2) as follows: By construction,
if (pp, π) is generated honestly then B simulates hybrid H0, and if (pp, π) is
simulated then B simulates hybrid H1. Therefore, for infinitely many λ it holds
that

μ(λ) � |Pr[H0(λ) = 1] − Pr[H1(λ) = 1]|
=|Pr[(σ, τ) ← Setup(1λ);π ← prove(σ, x, w) : A(σ, τ, π) = 1]

− Pr[(σ, τ) ← Setup(1λ);π ← Sim(τ, x) : A(σ, τ, π) = 1]|.

We therefore reach a contradiction to the perfect zero-knowledge security of
NIZK, and conclude that

Pr[H0(1λ) = 1] − Pr[H1(1λ) = 1] = μ(λ).

Hybrid H2: In this hybrid K is computed as K ← Π, rather than K ←
SPHF.Hash(hk, x). The two hybrids are statistically indistinguishable by the
smoothness of SPHF (Fig. 5).

Lemma 2. H1 and H2 are statistically indistinguishable if SPHF is smoothness.

Proof. Assume towards contradiction that there exists a polynomial p(·) such
that for infinitely many λ

∣∣Pr[H1(1λ) = 1] − Pr[H2(1λ) = 1]
∣∣ � μ(λ)
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Fig. 4. The NIZK-adversary B simulating hybrid game

We use A to construct a non-uniform PPT adversary B against the smooth-
ness of SPHF (Formula 6) as follows:

By construction, if K ← SPHF.Hash(hp, x) then B simulates hybrid H1, and
if K ← Π then B simulates hybrid H2. Therefore, for infinitely many λ it holds
that

μ(λ) � |Pr[H1(λ) = 1] − Pr[H2(λ) = 1]|

=
∣∣∣∣Pr
D1

[HHash = h] − Pr
D2

[HHash = h]
∣∣∣∣ � AdvSmooth

SPHF (λ).

We therefore reach a contradiction to the smoothness of SPHF, and conclude
that

Pr[H1(1λ) = 1] − Pr[H2(1λ) = 1] = μ(λ).

Hybrid H3: In this hybrid K we are already free to randomly choose the key K
for the SKE scheme. The two hybrids are statistically indistinguishable by the
security of SKE (Fig. 6).

Lemma 3. H2 and H3 are statistically indistinguishable if SKE is security.

Proof. The difference between hybrid H2 and hybrid H3 is the different key
K used to encrypt and generate c = SKE.Enc(K,M0). Observe that both keys
K are randomly selected from the key space of SKE, Therefore there exists a
negligible function μ(λ) = 1/2lSKE such that:

Pr[H2(1λ) = 1] − Pr[H3(1λ) = 1] = μ(λ).

Hybrid H4: The only difference of this hybrid from H3 is that we compute
c1 ← SKE.Enc(K,M1) instead of c0 ← SKE.Enc(K,M0). Therefore, H3 and H4

are computationally indistinguishable by the C-IND security of the SKE scheme.
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Fig. 5. The Smooth-adversary B simulating hybrid game

Lemma 4. H3 and H4 are computationally indistinguishable if SKE is C-IND.

Proof. Assume towards contradiction that there exists a polynomial p(·) such
that for infinitely many λ

|Pr[H3(λ) = 1] − Pr[H4(λ) = 1]| � μ(λ)

We use A to construct a non-uniform PPT adversary B against the C-IND
of SKE (Formula 8) as follows:

By construction, if cb ← SKE.Enc(K,M0) then B simulates hybrid H3, and
if cb ← SKE.Enc(K,M1) then B simulates hybrid H4. Therefore, for infinitely
many λ it holds that

μ(λ) � |Pr[H3(λ) = 1] − Pr[H4(λ) = 1]|
=

∣∣Pr[B(1λ, c0) = 1] − Pr[B(1λ, c1) = 1]
∣∣ .

We therefore reach a contradiction to the C-IND security of SKE, and con-
clude that

Pr[H3(1λ) = 1] − Pr[H4(1λ) = 1] = μ(λ).

Hybrid H5: The only difference of this hybrid from H4 is that we compute K ←
SPHF.Hash(hk, x) instead of K ← Π. Therefore, H4 and H5 are statistically
indistinguishable by the smoothness of the SPHF scheme.

Lemma 5. H3 and H4 are statistically indistinguishable if SKE is C-IND.

Proof. The proofs of Lemma 5 are analogous to those of Lemma 2.

Hybrid H6: The only difference of this hybrid from H5 is that we compute
π ← NIZK.prove(pp, x, w) instead of π ← NIZK.Sim(pp, x). Therefore, H5 and H6

are computationally indistinguishable by the C-IND security of the SKE scheme.
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Fig. 6. The SKE-adversary B simulating hybrid game

Lemma 6. H5 and H6 are computationally indistinguishable if NIZK is perfect
zero-knowledge.

Proof. The proofs of Lemma 6 are analogous to those of Lemma 1.

It can be found that, in the hybrid H6, Pr[ExpAdp−1
WE,A (1λ) = 1] = Pr[H6(1λ) = 1],

combining the results of Lemma 1 to Lemma 6, it holds that

AdvAdp−b
WE,A (1λ) =

∣∣∣Pr[ExpAdp−0
WE,A (1λ) = 1] − Pr[ExpAdp−1

WE,A (1λ) = 1]
∣∣∣

=
∣∣Pr[H0(1λ) = 1] − Pr[H6(1λ) = 1]

∣∣ = μ(λ)

5 Instantiating of SPHFfrom SNARK

SPHF is the key technology of our WE constructed in the previous section, and
in this section we will mainly show how to instantiate SPHF from zk-SNARK
and prove its smoothness under the standard assumption (DLP).

5.1 Tools

Bilinear Map. A bilinear map e : G1 ×G2 → GT has the following properties:

– G1,G2,GT are groups of prime order p;
– e : G1 × G2 → GT is a bilinear pairing, that is, e(Aa, Bb) = e(A,B)ab for all

A ∈ G1, B ∈ G2, a, b ∈ Zp;
– If g1 is a generator for G1 and g2 is a generator for G2 then e(g1, g2) is a

generator for GT .
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Galbraith, Paterson and Smart [30] classified bilinear groups as Type-1 where
G1 = G2 (symmetric bilinear groups), Type-2 where there is an efficiently com-
putable isomorphism ψ : G2 → G1 (asymmetric bilinear groups), and Type-
3 where no such efficiently computable isomorphism exists in either direction
between G1 and G2. In our instantiations, we choose to present our results in
the Type-1 symmetric bilinear groups.

SNARK for QAP. Our goal is to instantiate SPHF that can support all NP-
languages L for encryption, so we use SNARKs for non-interactive zero-knowledge
proof of NP-complete problem circuits SAT. To efficiently instantiate SPHF, we
adopt the SNARK scheme based on the current state-of-the-art circuit SAT prob-
lem proposed by Groth [28] in 2016. Remarkably,the problem of converting from
circuit SATto QAP is not the focus of this paper. Please refer to [28] for the
specific conversion process.

We will now give a pairing-based NIZK argument for quadratic arithmetic
programs. We consider relation generators R that return relations of the form

R = (p,G1,GT , , e, l, {ui(X), vi(X), wi(X)}m
i=0, t(X))

with |p| = λ. The relation defines a field Zp and a language of statements
(a1, · · · , al) ∈ Z

l
p and witnesses (al+1, · · · , am) ∈ Z

m−l
p such that with a0 = 1

m∑
i=0

aiui(X) ·
m∑

i=0

aivi(X) =
m∑

i=0

aiwi(X) + h(X)t(X)

for some degree n − 2 quotient polynomial h(X).

– Setup(1λ) : Pick arbitrary generators g for G. Pickα, β, γ, δ, x ←. Define τ =
(α, β, γ, δ, x) and compute

σ =

⎛
⎜⎝ [α] , [β], [γ] , [δ] ,

[
xi

]n−1

i=0
,
[

xit(x)
δ

]n−1

i=0
,[

βui(x)+αvi(x)+wi(x)
γ

]l

i=0
,
[

βui(x)+αvi(x)+wi(x)
δ

]m

i=l+1

⎞
⎟⎠

– prove(σ, x, w) : Pick r, s ← Zp and compute π = (πA, πB , πC), where

πA =

[
α +

m∑
i=0

aiui (x) + rδ

]
, πB =

[
β +

m∑
i=0

aiv − i (x) + sδ

]
,

πC =

[
(

m∑
i=l+1

ai((βui (x)+αvi (x)+wi (x))+h (x) t (x)))/δ+sπA+rπB−rsδ

]
.

– Verify(σ, x, π) : Parse π = (πA, πB , πC) ∈ G×G×G. Accept the proof if and
only if

e(πA,πB)=e([α],[β])e

([
(

l∑
i=1

ai (βui (x)+αvi (x)+wi (x)))/γ

]
,[γ]

)
e(πC , [δ]) .
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– Sim(τ, x) : Pick r, s ← Zp and compute a simulated proofπ = (πA, πB , πC) as

πA = [r] , πB = [s] , πC = [(rs−αβ−
l∑

i=0

ai(βui(x)+αvi(x)+wi(x)))/δ].

5.2 Our Construction 2: SPHFfor SNARK

To support all NP languages, we construct instantiations of SPHF from SNARKs.
To ensure the efficiency of zero-knowledge verification, we use the current most
effective zk-SNARKs for QAP. Specifically, our idea is to take the proof π gener-
ated by SNARK and the original NP problem instance x′ as the SPHF instance x,
and the generate random factor to prove π and the original witness w′, as the new
witness w. We now present the SPHF for SNARK, which borrows construction
ideas from Cramer-Shoup encryption [31] (Fig. 7) .

Fig. 7. SPHF from SNARK

Remark 2. The public parameter pp involved in the above scheme generated by
Setup algorithm of SNARK.

5.3 Correctness and Security of SPHF

Theorem 3. If the DLP assumption holds, then the instantiating of
SPHF scheme is correct and smooth secure.
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Proof (Correctness). If SNARK is perfect completeness, for all (x,w) ∈ R, the
generated proof π can be verified. Perfect completeness follows by direct verifi-
cation. After the verification is passed, the correctness of SPHF guarantees

Hh = πr1
A

= [(α +
∑m

i=0
aiui(x) + rδ) · r1] = [αr1] · ([r1]

∑m

i=0
aiui(x)) · ([δr1]r)

= hp1 · hp
∑m

i=0 aiui(x)
2 · hpr

3 = Hp.

It is easy to see that our instantiating of SPHF scheme is correct.

Proof (Smoothness). To prove smoothness, we simulated the following two dis-
tributions.
Distribution 0: Let D0 be the distribution sampled according to the smoothness
definition.
Distribution 1: As D0, but we can get an invalid proof πA = [r] = x′ by running
the sim algorithm of SNARK. Therefore, it is not a valid instance in the language
L. The corresponding hash value is then of the form HHash = πr1

A = [r′].
In D1 we have a distribution the hash value is perfectly random. If the

DLP assumption holds, D0 and D1 are computationally indistinguishable, which
completes the proof.

6 Discussion

Cost of Enc and Dec. Subsequently, we would like to briefly demonstrate that
our construction is very efficient (without MMap or iO) and compare it with
similar SPHF instantiation work.

In the encryption phase: we only need 4 bilinear mapping operations to per-
form zero-knowledge verification of the witness w (only run once), and only 4
exponentiation operations of the group G are used in the real encryption phase,
and yields a constant ciphertext size (a symmetric encrypted ciphertext and 3
elements on the group G).

In the decryption phase: we can decrypt quickly with only the exponentiation
of 2 groups G.

Similar of our scheme is the proposed by Derler and Slamanig [19] in 2018
DCC, but their SPHF instantiation is based on the GS proof system [24], only
supports a limited algebraic language, and the instantiation of SPHF requires
operations and pair product equations. The solutions are much smaller than
their computational cost, and based on the SPHF instantiation implemented
by SNARK, it supports NP-complete circuit SAT problems, that is, supports all
NP-languages. The specific calculation cost is shown in Table 1, our instantiation
from SPHF only requires fixed-size operations, while scheme [19] needs to vary
according to the scale of NP languages.
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Table 1. Computing cost comparison of SPHF

HashKG ProjKG Hash ProjHash

[19] 0 (4(n+o)+1)G (3n)G+(3o+1)GT +1e (3(n+o)+o)G+(n+0)e

Our 0 3G 1G 3G

7 Conclusion

In this paper, We have shown a general framework for constructing witness
encryption over smooth projective hashing. In terms of efficiency, we focus on
schemes that produce efficient ciphertexts with efficient encryption and decryp-
tion stages. Specifically, we generate the proof π of the instance x corresponding
to the witness w through SNARK. After the verification is passed, an efficient
SPHF for SNARK is instantiated. In all cases, we have constant size ciphertext,
one symmetric encrypted ciphertext and 3 group elements.
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Abstract. Identity-based encryption with equality test (IBEET) is a
variant of identity-based encryption (IBE), where any users who have
trapdoors can check whether two ciphertexts are encryption of the same
plaintext. Although several lattice-based IBEET schemes have been pro-
posed, they have drawbacks in either security or efficiency. Specifically,
most schemes satisfy only selective security, while adaptively secure
schemes in the standard model suffer from large master public keys that
consist of linear numbers of matrices. In other words, known lattice-based
IBEET schemes perform poorly compared to the state-of-the-art lattice-
based IBE schemes (without equality test). In this paper, we propose
a semi-generic construction of CCA-secure lattice-based IBEET from
a certain class of lattice-based IBE schemes. As a result, we obtain the
first lattice-based IBEET schemes with adaptive security and CCA secu-
rity in the standard model. Furthermore, our semi-generic construction
can use several state-of-the-art lattice-based IBE schemes as underlying
schemes. Then, we have adaptively secure lattice-based IBEET schemes
whose public keys have only poly-log matrices.

Keywords: Identity-based encryption with equality test · Adaptive
security · CCA security · Lattices

1 Introduction

Encryption is a fundamental tool for providing data confidentiality. On the other
hand, it affects several functions such as searching, comparing, partitioning,
and so on. Yang et al. [22] proposed public key encryption with equality test
(PKEET) which allows us to check whether two plaintexts of two ciphertexts
are the same or not. This equality check allows us to provide a keyword search on
encrypted data, data partitioning on an encrypted database, and so on. Although
anyone can run the test algorithm in the Yang’s definition, a trapdoor for running
the test algorithm is introduced in subsequent works, e.g., [12,13]. Identity-based
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encryption with equality test (IBEET) [14] is an extension of PKEET that can
simplify the certificate management of PKEET. As in identity-based encryption
(IBE), an identity id is used as a public key for generating a ciphertext ctid. A
secret key skid of an identity id can generate a trapdoor tdid. By using trapdoors
tdid0 and tdid1 , we can check whether ctid0 and ctid1 are encryptions of the same
plaintexts.

Although several CCA-secure IBEET schemes have been proposed by assum-
ing the hardness of Diffie-Hellman-type assumptions, e.g., [11,14], they are
vulnerable against quantum attacks. To achieve post-quantum security, sev-
eral lattice-based IBEET schemes have been proposed. There are two ways for
constructing lattice-based IBEET schemes. One is instantiating lattice-based
schemes from generic constructions of IBEET and the other is direct construc-
tions by modifying known lattice-based IBE schemes.

At first, we review two known generic constructions of IBEET that can
instantiate lattice-based schemes. Lin et al. [13] proposed a generic construction
of CCA-secure IBEET from CCA-secure IBE in the random oracle model. Lee
et al. [12] proposed a generic construction of CCA-secure IBEET from three-
level CPA-secure hierarchical identity-based encryption (HIBE) and one-time
signatures (OTSs) in the standard model, where OTSs are used for achieving
CCA security via the Canetti-Halevi-Katz (CHK) transformation [6]. Lee et al.’s
construction provides adaptively secure lattice-based schemes in the quantum
random oracle model (QROM) based on adaptively secure lattice-based HIBE
schemes in the QROM [2,7,23]. Lee et al.’s construction also provides selectively
secure lattice-based schemes in the standard model based on selectively secure
HIBE schemes in the standard model [1,7]. However, their construction does not
provide purely adaptively secure lattice-based IBEET schemes in the standard
model since there are no known adaptively secure lattice-based HIBE schemes
in the standard model. Although Singh et al. [16] constructed an adaptively
secure lattice-based HIBE scheme in the standard model based on Agrawal et
al.’s adaptively secure non-hierarchical IBE scheme [1], the scheme achieves only
bounded security in the sense that the size of a modulus q depends on the num-
ber of adversary’s key extraction queries. Thus, the instantiation of the Lee et
al.’s generic construction from the Singh et al.’s HIBE scheme does not sat-
isfy purely adaptive security. Next, we review four known direct constructions
of lattice-based IBEET schemes [8,15,17,20], where all known schemes were
studied in the standard model. Duong et al.’s IBEET scheme [8] and Nguyen
et al.’s IBEET scheme [15] are based on Agrawal et al.’s adaptively secure IBE
scheme [1] achieving adaptive and CPA security. Unfortunately, due to the nature
of Agrawal et al.’s IBE scheme, these IBEET schemes achieve only bounded secu-
rity as the case of Singh et al.’s adaptively secure HIBE scheme [16]. Susilo et
al.’s IBEET scheme [17] that is similar to Lee et al.’s generic construction [12]
is based on Agrawal et al.’s selectively secure IBE scheme [1] achieving selective
and CCA security. Wu et al.’s IBEET scheme [20] is based on Tsabary’s IBE
scheme [18] achieving adaptive and CPA security.

Summarizing the situation, almost all known lattice-based IBEET schemes
in the standard model achieve only selective and CCA security [12,17] or adap-
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tive and CPA security [8,15,20] with the only exception that Lee et al.’s generic
construction [12] instantiated by Singh et al.’s HIBE scheme [16]. Moreover,
almost all adaptively secure schemes achieve only bounded security with the
only exception that Wu et al.’s CPA-secure scheme [20]. Therefore, constructing
purely adaptive and CCA-secure lattice-based IBEET scheme is an interest-
ing open problem. Moreover, known adaptively secure IBEET schemes have a
common bottleneck in terms of efficiency. Although there are adaptively secure
lattice-based IBE schemes such as Yamada’s IBE scheme [21] and Jager-Kurek-
Niehues’s (JKN) IBE scheme [10]1 whose public keys consist of poly-log matrices,
public keys of known adaptively secure lattice-based IBEET schemes [8,15,16,20]
consist of matrices whose numbers are (almost) linear in the length of identities
or the security parameter. Therefore, it is desirable to construct adaptively secure
lattice-based IBEET schemes whose public keys consist of poly-log matrices.

1.1 Our Contribution

In this paper, we construct the first purely adaptive and CCA-secure lattice-
based IBEET schemes in the standard model. One promising way for construct-
ing such a desirable scheme is constructing adaptively secure lattice-based HIBE
schemes based on known adaptively secure IBE schemes. Specifically, as the
Waters pairing-based HIBE scheme [19], we can obtain such a HIBE scheme
by sacrificing reduction loss. However, we take another approach to resolve the
problem without sacrificing reduction loss very much. In particular, we pro-
pose a semi-generic construction of CCA-secure lattice-based IBEET from CPA-
secure lattice-based IBE whose structure is similar to Agrawal-Boneh-Boyen
(ABB)’s IBE scheme [1] which we call ABB-type IBE. The resulting IBEET
schemes achieve adaptive security if the underlying IBE schemes satisfy adap-
tive security. Intuitively, a ciphertext and secret key for the same id of ABB-type
IBE is associated with the same publicly computable matrix. Thanks to the
semi-generic construction, we propose the first purely adaptive and CCA-secure
lattice-based IBEET schemes. Moreover, since ABB-type IBE covers Yamada’s
IBE scheme [21] and JKN IBE scheme [10], we can obtain the first adaptive
lattice-based IBEET schemes whose public keys consist of poly-log matrices. We
note that the sizes of ciphertexts and secret keys are almost the same among all
known lattice-based IBEET schemes.

The idea of our semi-generic construction is similar to Lee et al.’s generic con-
struction [12] from three-level CPA-secure HIBE.2 Recall that Lee et al. proved
that adaptively secure three-level CPA-secure HIBE is sufficient for constructing
adaptively and CCA-secure IBEET. Basically, ciphertexts of all IBEET schemes

1 Although Yamada’s scheme is purely secure under the LWE assumption, JKN scheme
enjoys smaller LWE parameters at the expense of additionally employing near-
collision resistance hash functions.

2 In this paper, we do not follow Lee et al.’s argument [12] in a security proof but
follow Asano et al.’s one [4] which is an attribute-based extension of Lee et al.’s
work with a refined proof.
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consist of two types of ciphertexts, one is responsible only for decryption and
the other is also responsible for equality test. Lee et al. utilized each three hier-
archical levels for id, ciphertext type 0 or 1, and verification keys of OTSs for
the CHK transformation [6], respectively. Then, by using the CPA security of
the underlying HIBE, Lee et al. hide the challenge plaintext for both types
of ciphertexts one by one. Let’s take a closer look at this proof strategy. It
is widely known that the CHK transformation can convert CPA-secure IBE
to CCA-secure public key encryption even when the underlying IBE satisfies
only selective security. In other words, Lee et al.’s generic construction does
not require HIBE with adaptive security for all hierarchical levels to construct
adaptively secure and CCA-secure IBEET. In turn, a special three-level HIBE
scheme that satisfies adaptive security only for the first level and selective secu-
rity for the other levels is sufficient for our purpose. To this end, we construct
such special three-level HIBE schemes from ABB-type IBE such as Yamada’s
scheme [21] and JKN scheme [10]. Briefly speaking, the first level and the other
levels of our HIBE scheme are the same as those of the underlying IBE scheme,
i.e., Yamada’s scheme and the JKN scheme, and Agrawal-Boneh-Boyen’s selec-
tively secure HIBE scheme, respectively. Then, a slight modification of Agrawal
et al.’s proof technique is applicable to the special three-level HIBE. Moreover,
since we employ a semi-generic construction from ABB-type IBE, we do not
need to make complex arguments to achieve adaptive security such as [10,21].

2 Identity-Based Encryption with Equality Test

In this section, we show a syntax of IBEET. The definitions for correctness and
security are summarized in the full version of this paper.

An IBEET scheme Σ consists of the six algorithms (Setup, KeyGen, Enc, Dec,
Trapdoor, Test) as follows:

Setup(1λ) → (mpk,msk): On input the security parameter 1λ, it outputs a master
public key mpk and a master secret key msk. We assume that mpk contains
a description of a plaintext space M and an identity space ID that are
determined only by the security parameter λ.

KeyGen(mpk,msk, id) → skid: On input mpk, msk, and an identity id ∈ ID, it
outputs a secret key skid.

Enc(mpk, id,M) → ctid: On input mpk, id ∈ ID, and a plaintext M ∈ M, it
outputs a ciphertext ctid.

Dec(mpk, skid, ctid) → M or ⊥: On input mpk, skid, and ctid, it outputs the
decryption result M or ⊥.

Trapdoor(mpk, skid) → tdid: On input mpk and skid, it outputs the trapdoor tdid.
Test(mpk, tdid0 , ctid0 , tdid1 , ctid1) → 1 or 0: On input mpk, two trapdoors tdid0 and

tdid1 , and two ciphertexts ctid0 and ctid1 , it outputs 1 or 0.

3 Construction

In this section, we give our semi-generic construction of IBEET from ABB-type
IBE. At first, we define the ABB-type IBE in Sect. 3.1. Then, we show our semi-
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generic construction in Sect. 3.2. Due to the page limitation, we omit proofs of
correctness and security. See the full version of this paper.

Preliminaries on Lattices. For all V ∈ Z
n×m′
q , we let A−1

τ (V) denote the
random variable whose distribution is a Gaussian (DZm,τ )m′

conditioned on
A · A−1

τ (V) = V. A τ -trapdoor for A is a procedure that can sample from the
distribution A−1

τ (V) in time poly(n,m,m′, log q), for any V. We slightly overload
the notation and denote a τ -trapdoor for A by A−1

τ . We have the following:

Lemma 1 ([1–3,5,7,9], Properties of Trapdoors). Lattice trapdoors exhibit
the following properties.

1. Given A−1
τ , one can obtain A−1

τ ′ , for any τ ′ ≥ τ .
2. Given A−1

τ , one can deterministically obtain [A‖B]−1
τ for any B.

3. Given A ∈ Z
n×m
q , R ∈ Z

m×N with N > n�log q�, and a full-rank matrix
H ∈ Z

n×n
q , one can obtain [A‖AR + HG]−1

τ for τ = m · ‖R‖ · ω(
√

log m).
4. Given A−1

τ , one can randomize it and obtain A−1
τ ′ for τ ′ = τ · ω(

√
m).

5. There exists an efficient procedure TrapGen(1n, 1m, q) that outputs (A,A−1
τ0 )

where A ∈ Z
n×m
q for some m = O(n log q) and is 2−n-close to uniform, where

τ0 = ω(
√

n log q log n).
6. For A−1

τ and u ∈ Z
n
q , it follows Pr[

∥
∥A−1

τ (u)
∥
∥ > τ

√
m] = negl(n).

We also use the following full rank difference map.

Definition 1 ([1], Full Rank Difference Map). Let q be a prime and n be a
positive integer. We say that a function FRD : ID → Z

n×n
q is an encoding with

full-rank differences if: for all distinct id, id′ ∈ ID, a matrix FRD(id)−FRD(id′) ∈
Z

n×n
q is full rank, and FRD is computable in polynomial time in n log q.

3.1 ABB-Type Identity-Based Encryption

At first, we briefly recall a multi-bit variant of the Agrawal-Boneh-Boyen selec-
tively secure IBE scheme [1], where the plaintext is an �-bit binary string. The
IBE scheme has a master public key (A,B,U) ∈ (Zn×m

q )2 × Z
n×�
q and master

secret key A−1
τ0 . A ciphertext for id consists of three vectors c0, c1, c2 such that

c�
0 = s�U + e�

0 + M · �q/2� ∈ Z
�
q,

c�
1 = s�A + e�

1 ∈ Z
m
q , c�

2 = s�[B + FRD(id)G] + e�
2 ∈ Z

m
q ,

where s is a uniformly random vector and e0, e1, e2 are short vectors, e.g.,
sampled according to discrete Gaussian vectors. A secret key for id is
[A‖B + FRD(id)G]−1

τ (U) and decryption succeeds by using the relation

c�
0 − [c�

1 ‖c�
2 ] · [A‖B + FRD(id)G]−1

τ (U) = M · �q/2� + noise.

Several improved variants which we call ABB-type IBE have been proposed
to achieve adaptive security. To capture ABB-type IBE, we use the following
auxiliary algorithm:
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– PubEval({Bi}i∈[u], id) → Bid: On input matrices {Bi}i∈[u] and an identity
id ∈ ID, it outputs Bid ∈ Z

n×m
q .

Intuitively, Agrawal et al.’s selectively secure IBE scheme uses a matrix B in a
master public key to compute a matrix Bid = B + FRD(id)G that is associated
with both ciphertext and secret key. To achieve adaptive security, we use u
matrices {Bi}i∈[u] in a master public key and compute a matrix Bid by using
the PubEval algorithm. Although the first (Q-bounded) adaptively secure IBE
scheme of Agrawal et al. [1] uses u = O(λ) matrices, there are a series of works to
reduce u. Yamada’s adaptively secure scheme [21] that is purely secure under the
LWE assumption uses u = O(log3 λ) matrices, while JKN’s scheme [10] utilizes
a near collision resistant hash function and further reduces u to be O(log λ).

Then, we formally define ABB-type IBE as follows.

IBE.Setup(1λ) → (IBE.mpk, IBE.msk): On input the security parameter 1λ,
it chooses parameters n, m, q, τ0, τ1, α, α′, �, runs (A,A−1

τ0 ) ←
TrapGen(1n, 1m, q), and chooses random matrices {Bi}i∈[u] ←$ (Zn×m

q )u

and U ←$ Z
n×�
q . Finally, it outputs IBE.mpk := (A, {Bi}i∈[u],U) and

IBE.msk := A−1
τ0 .

IBE.Enc(IBE.mpk, id,M) → IBE.ctid: Parse IBE.mpk = (A, {Bi}i∈[u],U). It
samples s ←$ Z

n
q , e0 ← DZ�,αq and e1, e2 ← DZm,α′q, runs Bid ←

PubEval({Bi}i∈[u], id), and sets

c�
0 = s�U + e�

0 + M · �q/2� ∈ Z
�
q,

c�
1 = s�A + e�

1 ∈ Z
m
q , c�

2 = s�Bid + e�
2 ∈ Z

m
q .

Finally, it outputs IBE.ctid = (c0, c1, c2).
IBE.KeyGen(IBE.mpk, IBE.msk, id) → IBE.skid: Parse

IBE.mpk = (A, {Bi}i∈[u],U) and IBE.msk = A−1
τ0 . For an identity id ∈ ID, it

runs Bid ← PubEval({Bi}i∈[u], id), obtains trapdoor [A‖Bid]−1
τ1 by using the

trapdoor A−1
τ0 and Items 1 and 4 of Lemma 1, and outputs skid := [A‖Bid]−1

τ1 .
IBE.Dec(IBE.mpk, IBE.skid, IBE.ctid) → M or ⊥: Parse IBE.mpk = (A, {Bi}i∈[u],

U), IBE.skid = [A‖Bid]−1
τ1 , and IBE.ctid = (c0, c1, c2). It samples E ←

[A‖Bid]−1
τ1 (U), computes m� = c�

0 − [c�
1 ‖c�

2 ]E ∈ Z
�
q, and sets i-th bit of

� bit string M as 1 if |mi − �q/2�| < �q/4� and 0 otherwise. Finally, it out-
puts M.

3.2 Constructions of IBEET Schemes from ABB-Type IBE

We use ABB-type IBE to construct a lattice-based IBEET scheme. In addition
to IBE.mpk = (A, {Bi}i∈[u],U), mpk has two random matrices C1,C2 ∈ Z

n×m
q .

Before presenting our scheme, we introduce two auxiliary algorithms.

– Ênc(mpk, (id, b, verk),M) → ctid,b: It runs IBE.Enc(IBE.mpk, id,M) to compute
c0, c1, c2, samples R ←$ {−1, 1}m×2m and computes

c�
3 = s�[C1 + bG‖C2 + FRD(verk)G] + e�

1 R ∈ Z
2m
q ,
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where s, e1 are sampled during IBE.Enc and b ∈ {0, 1}. Finally, it outputs
ctid,b := (c0, c1, c2, c3).

– D̂ec(mpk,Eb, ctid,b) → M′: It computes m� = c�
0 − [c�

1 ‖c�
2 ‖c�

3 ]Eb and recov-
ers M′ from m in the same way as IBE.Dec.

Then, we show our IBEET scheme.

Setup(1λ) → (mpk,msk): It runs (IBE.mpk, IBE.msk) ← IBE.Setup(1λ), sample
C1,C2 ←$ Z

n×m
q , selects a OTS scheme Γ = (Sig.Setup,Sig.Sign,Sig.Vrfy)

and a hash function H, and outputs mpk := (IBE.mpk,C1,C2, Γ,H) and
msk := IBE.msk.

Enc(mpk, id,M) → ctid: Parse mpk = (IBE.mpk,C1,C2, Γ,H). It runs
– (verk, sigk) ← Sig.Setup(1λ),
– ctid,0 ← Ênc(mpk, (id, 0, verk),M),
– ctid,1 ← Ênc(mpk, (id, 1, verk),H(M)),
– σ ← Sig.Sign(sigk, [ctid,0‖ctid,1]).

Output ctid := (verk, ctid,0, ctid,1, σ).
KeyGen(mpk,msk, id) → skid: Parse mpk = (IBE.mpk,C1,C2, Γ,H) and msk =

IBE.msk. It runs IBE.skid = [A‖Bid]−1
τ1 ← IBE.KeyGen(IBE.mpk, IBE.msk, id)

and outputs skid := IBE.skid.
Dec(mpk, skid, ctid) → M or ⊥: Parse mpk = (IBE.mpk,C1,C2, Γ,H), ctid = (verk,

cid,0, cid,1, σ), and skid = [A‖Bid]−1
τ1 . If 0 ← Sig.Vrfy(verk, [cid,0‖cid,1], σ), it

outputs ⊥. Otherwise, it computes Eb ← [A‖Bid‖C1 + bG‖C2 + FRD(verk)
G]−1

τ1 (U) for b ∈ {0, 1} from [A‖Bid]−1
τ1 by using Item 2 of Lemma 1. It

runs M ← D̂ec(mpk,E0, ctid,0) and h ← D̂ec(mpk,E1, ctid,1). It outputs M if
H(M) = h and ⊥ otherwise.

Trapdoor(mpk, skid) → tdid: Parse mpk = (IBE.mpk,C1,C2, Γ,H) and skid =
[A‖Bid]−1

τ1 . It computes tdid := E ← [A‖Bid‖C1 + G]−1
τ1 (U) from [A‖Bid]−1

τ1
by using Item 2 of Lemma 1. It outputs tdid.

Test(mpk, tdid, ctid, tdid′ , ctid′) → 1 or 0: Parse tdid = Eid ∈ Z
3m×�
q , tdid′ = Eid′ ∈

Z
3m×�
q , ctid = (verk, ctid,0, ctid,1, σ), and ctid′ = (verk′, ctid′,0, ctid′,1, σ

′). If 0 ←
Sig.Vrfy(verk, [ctid,0‖ctid,1], σ) ∨ 0 ← Sig.Vrfy(verk′, [ctid′,0‖ctid′,1], σ′), it out-
puts 0. Otherwise, it runs h ← D̂ec(mpk, [E�

id‖O�,m]�, ctid,1) and h′ ← D̂ec
(mpk, [E�

id′‖O�,m]�, ctid′,1), where O�,m is an � × m zero matrix. It outputs 1
if h = h′ and 0 otherwise.
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Abstract. Post-quantum ciphers (PQC) are designed to replace the
current public-key ciphers which are vulnerable against the quantum-
equipped adversaries, e.g., RSA. We study the incorporation of the PQC
algorithms into the QUIC and TCP/TLS networking protocols and ana-
lyze the performances and overheads in authentication and connection
establishment. To distinguish from previous research, we focus on the
newer QUIC networking protocol while comparing it with TCP/TLS.
The QUIC protocol builds on UDP and its superiority over TCP/TLS
is highlighted by the quicker and lower-overhead connection establish-
ments. QUIC is thus gaining wider deployment, including its planned
standardization for HTTP/3. We implement and experiment in local
networking environment which provides greater analyzability and con-
trol. We compare QUIC vs. TCP/TLS when using PQC and measure
the handshake overhead in time duration while varying both the PQC
security strength and the networking conditions. Our results show that
the PQC overhead increases with the PQC cipher security strength (the
key and signature sizes) and as the network condition worsens (greater
occurrences of packet dropping). Comparing between the PQC and the
classical cipher with comparable security strengths, the PQC ciphers
outperform RSA in the handshake time duration; both Dilithium 2 and
Falcon 512 handshakes are quicker than RSA 3072.

Keywords: QUIC · TCP · TLS · Post-quantum cryptography ·
Digital signatures

1 Introduction

Since the initialization and standardization of Hypertext Transfer Protocol
(HTTP), the internet has seen a rising amount of web traffic over the years,
driving the need for scalability and optimization. Over 70% of internet traffic [3]
and 60% of internet connections [17] are secure HTTP (version 1 or 2) using
Transmission Control Protocol with Transportation Layer Security (TCP/TLS)
for transport layer communication. TCP/TLS’s head-of-the-line blocking where
a packet drop in a stream blocks all other streams limits its capabilities. Quick
UDP Internet Connections (QUIC) transport protocol designed by Google [12]
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and recently standardized by Internet Engineering Task Force (IETF) [10] is
gaining popularity for removing head-of-the-line blocking as well as adding a
plethora of new features for scalability and optimization. Google’s implementa-
tions show that QUIC has 8% faster website search responses and 18% reduced
re-buffer rates for YouTube over TCP/TLS [12]. QUIC carries more than 7% of
internet traffic and is replacing TCP/TLS across major applications [12]. Works
are in progress to standardize and replace TCP/TLS with QUIC as the primary
transport for upcoming HTTP Version 3 (HTTP/3) [6]. Once HTTP/3 is stan-
dardized, majority of internet traffic (≈70%) will be transported using QUIC.
QUIC provides confidentiality and integrity within the authentication scheme
for connections to ensure the security of the data packets.

Cryptographic ciphers are widely used in networking protocols. For example,
well-known protocols like TLS [15], SSH [5], IPsec [9], etc., use digital signature
cipher algorithms like Rivest-Shamir-Adleman (RSA) and Elliptic Curve Digi-
tal Signature Algorithm (ECDSA) with X.509 certificates for authentication of
end-devices. Security of the protocols using RSA relies on integer factorization
problem and ECDSA on discrete logarithm problem.

Recent advancements in quantum computing and Shor’s algorithm (capa-
ble of solving integer factorization and discrete logarithm problem in polyno-
mial time assuming quantum computer) cause a need to design and develop
new post-quantum ciphers (PQC). National Institute of Science and Technology
(NIST) launched a PQC standardization project [2], in December 2016, to iden-
tify and standardize cipher algorithms that can withstand the growing quantum
threats. In August 2022, NIST PQC standardization project finished its third
round [4] and selected algorithms for standardization. NIST selected the dig-
ital signature algorithms which are lattice-based (Dilithium and Falcon) and
hash-based (SPHINCS+). In our paper, we focus on the lattice-based schemes
of Dilithium and Falcon as opposed to the hash-based algorithm of SPHINCS+

because SPHINCS+ produces long signatures which can challenge its deploy-
ment to many applications. To defend against the future quantum adversaries
to protect the authenticity, the networking protocols (QUIC, TCP/TLS, SSH,
IPsec) should transition from the classical ciphers to the PQC ciphers.

2 Background of QUIC and NIST PQC

2.1 QUIC Protocol

In contrast to TCP/TLS which has clear distinction between the OSI layers
by design, the QUIC networking protocol has multi-layer connection that com-
bines application and transport layers. QUIC builds on the faster UDP pro-
tocol. To add reliability to UDP, QUIC utilizes data fields for the connection
state/identification in the application layer in the OSI model and a combination
of cryptographic and transport-layer handshakes in the transport layer. QUIC’s
multi-layer connection helps in combining and negotiating both cryptographic
and transport parameters during a handshake. In addition to the above differ-
ences with TCP/TLS, QUIC supports and requires clients in addition to servers
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to use error codes in application protocol negotiation failures. QUIC does not
use TLS end-of-early data messages to signal key changes and it also does not
need TLS middle-box compatibility mode that adds 32 byte legacy session id
value in client and server hello messages.

2.2 NIST PQC Ciphers

We focus on the NIST standardization PQC cipher algorithms due to NIST’s
strong influence in standardizing cipher algorithms which impacts their future
use in digital security, as demonstrated by the DES standardization in the 1970s
and the AES standardization in the 1990s (popularly used globally in our cur-
rent days). NIST PQC standardization project finished its third round, and the
selected lattice-based digital signature algorithms are Dilithium and Falcon.

Dilithium. Crystals Dilithium uses “Fiat-Shamir with Aborts” approach,
SHAKE or AES for its hashing algorithm. Dilithium introduces Dilithium 2,
Dilithium 3 and Dilithium 5 which correspond to NIST post-quantum security
levels 2, 3, and 5, respectively [7].

Falcon. Falcon stands for the acronym, Fast Fourier lattice-based compact sig-
nature scheme over a N-th Degree Truncated Polynomial Ring (NTRU). Falcon’s
security scheme is based on Gentry, Peikert and Vaikuntanathan (GPV), NTRU
lattices, Fast Fourier sampling. Falcon introduces Falcon 512 and Falcon 1024
which correspond to NIST post-quantum security level 1 and 5 respectively [8].

3 Performance Analysis

In this section, First, we provide details of our experimentation and implemen-
tation in Sect. 3.1. Second, in Sect. 3.2, we analyze the TCP/TLS and QUIC
connection establishment overheads induced by the PQC (Dilithium and Fal-
con) under no artificial network drop (D = 0). Later, in Subsect. 3.3, we analyze
the behavior of both TCP/TLS and QUIC connections under different artificial
packet dropping (D �= 0) scenarios.

3.1 Implementation and Experimentation

We compare the NIST selected PQC ciphers described in Sect. 2.2 with the clas-
sical cipher RSA, which cipher is selected based on its popularity and since it
supports digital signatures (it also supports key exchange and encryption for
confidentiality). We implement the ciphers using Open-Quantum-Safe OpenSSL
1.1.1 [18]. We focus on our experiments based on the server and the client
implementations on virtual machines (VM) on a single physical machine in this
paper due to the following two reasons. First, the VM-based implementation
enables a sharper focus on the comparative analyses of QUIC vs. TCP/TLS
and excludes the other noise/random factors, such as the networking latency
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Fig. 1. The handshake duration while varying the PQC algorithms. The plot includes
average values and the 95% confidence intervals.

variations between the local client and the remote server. Second, it enables the
networking control between two machines, including enabling the networking
condition simulation such as varying network drop rates and network delays.

Our virtual machine setup uses Ubuntu 18.04 with each VM containing 8
cores and 16 GB of RAM on an AMD Ryzen 9 3960x 24-core 48-thread pro-
cessor with a base processor frequency of 3.8 GHz, and 64 GB of RAM. For the
network control and simulation, we use the traffic control (tc) queuing disci-
pline (qdisc) network emulator (netem) that selectively controls packets to be
en-queued and modified when sent and received from the client machine. For
networking, we implement the TCP/TLS 1.3 with Open-Quantum-Safe Bor-
ingSSL [18] and QUIC with LiteSpeed QUIC (lsquic) [1]. These protocols require
multiple machines and, more specifically, a client to initiate the handshakes and
a server to respond to TLS/QUIC connection requests. We run our experiments
to establish 1,000 TCP/TLS and QUIC connections authenticated using PQC
algorithms as well as classical RSA 3072. We use Python 3.9.7 for experimental
automation and use tcpdump for packet capturing.

3.2 QUIC and TCP/TLS Performance

Experimental Design. Transitioning to PQC authentication impact the hand-
shake duration between the client and the server. We test the performance of
both TCP/TLS and QUIC connections and analyze their overheads with PQC
authentication.



88 M. Raavi et al.

0 10 20 30 40
Network Drop Rate (%)

0

100

200

300

400

500

H
an

ds
ha

ke
 D

ur
at

io
n 

(m
s)

RSA 3072
Dilithium 2
Dilithium 3
Dilithium 5
Falcon 512
Falcon 1024

(a) TCP/TLS packet dropping

0 10 20 30 40
Network Drop Rate (%)

0

100

200

300

400

500

H
an

ds
ha

ke
 D

ur
at

io
n 

(m
s)

RSA 3072
Dilithium 2
Dilithium 3
Dilithium 5
Falcon 512
Falcon 1024

(b) QUIC packet dropping

Fig. 2. The handshake time duration while varying the packet drop rate D.

Experimental Results. Figure 1 plots the handshake duration for TCP/TLS
and QUIC connections authenticated by classical RSA and NIST selected digital
signatures for standardization. Our results show that, except for Falcon 1024,
transitioning to PQC speeds up the handshake duration and connection estab-
lishment of both TCP/TLS and QUIC protocols. At comparable security of level
1, QUIC authentication with Dilithium 2 and Falcon 512 is 39.48% and 6.07%
faster compared to RSA while it is 42.24% and 11.61% faster for TCP/TLS,
respectively. Using Dilithium for authentication, QUIC is at least 35.40% faster
than TCP/TLS. Using Falcon 1024 increases the handshake duration of QUIC
by 69.46% and TCP/TLS by 76.27% compared to Falcon 512. Using Falcon
512 and Falcon 1024, QUIC is 34.49% and 37.01% faster when compared to
TCP/TLS, respectively. Overall, Dilithium algorithms are most efficient and
cause low handshake duration compared to RSA and Falcon in both QUIC and
TCP/TLS protocols.

3.3 Performance with Packet Dropping (D)

Experimental Design. QUIC is designed to overcome TCP/TLS head of the
line problem as discussed in Sect. 2. Our experiment targets to test the perfor-
mance of QUIC when the network is lossy where not all the packets sent from the
sender don’t reach the receiver. We conduct lossy network experiment varying
the droprate, D ∈ 〈0, 5, 10, 20, 40〉, which is the percentage of packet dropped by
the network in uniform distribution. For example, when D = 10 network drops
10% of the packets during the connection.
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Experimental Results. Figure 2a and Fig. 2b plots the average TCP/TLS
and QUIC handshake times under varying network drop rates. As the drop
rate increases, QUIC connection overheads increases but still are lower than
TCP/TLS overheads with both the RSA and post-quantum algorithms for
authentication. Using classical algorithm RSA, QUIC consistently outperforms
TCP/TLS by 69% with D = 5 (i.e. dropping 5% traffic), 71.2% with D = 10,
65.7% with D = 20, and 31.3% with D = 40.

Using post-quantum authentication with Dilithium 2, QUIC is faster by
73.2% with D = 5, 70.8% with D = 10, 67.4% with D = 20, and 78.5%
with D = 40 than TCP/TLS connections. When using post-quantum authen-
tication with Dilithium 5, QUIC consistently outperforms TCP/TLS by 69.1%
when D = 5 (0.1% improvement from RSA), 75.2% when D = 10, 81.6% when
D = 20, and 16.3% when D = 40 (15% improvement from RSA). When using
post-quantum authentication with Falcon 512, QUIC is 66.9% with D = 5, 75.8%
with D = 10, 67.6% with D = 20, and 73.5% with D = 40 faster than TCP/TLS
connections. QUIC remains the top performer throughout the varying D and is
preferable over TCP/TLS.

4 Related Work

Related to our research are previous research works comparing QUIC vs.
TCP/TLS and incorporating PQC on those protocols. Previous research com-
pared the transport capabilities of QUIC and TCP protocols under different
networking scenarios [16,19]. Yu et al. in [19] conducted an experimental study
to evaluate the performance of QUIC and TCP protocols when competing for
resources to deliver the application data. Their study shows that QUIC performs
better than TCP in lossy networks and has no major advantage in loss-free net-
works. Seufert et al. [16] conducted a study to explore the application-level Qual-
ity of Experience (QoE) benefits of QUIC over TCP. Their works conclude that
there are no QoE benefits from QUIC than TCP with respect to web browsing
or video streaming unless there are bandwidth limitations. Our work studies the
PQC integration on these networking protocols.

Other relevant research investigated the performance of the TCP/TLS using
post-quantum authentication [11,13,14,17]. Kampanakis et al. in [11] investi-
gated the viability of using post-quantum certificates in protocols including TLS
and QUIC. They emulated large certificates by generating the certificates match-
ing the sizes of the RSA keys (8192 and 16384 bits) and merging multiple certifi-
cates for certificate chains, as opposed to actually implementing the classical and
PQC ciphers. They tested the protocol capabilities in handling such huge cer-
tificates chains up to 135 KB. Their emulation results show that TLS and QUIC
can handle huge post-quantum certificates with minor implementation modifica-
tions. Sikeridis et al. [17] studied the throughput performance of TLS 1.3 when
using post-quantum algorithms. Their results show that transitioning to post-
quantum authentication in TLS induces latency overhead compared to classical
algorithms. Our work implements the PQC ciphers in software and includes the
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analyses for both QUIC and TCP/TLS, including the comparisons between the
two protocols. Our work also shows that the PQC ciphers in Dilithium and
Falcon have smaller overheads in time duration than RSA when using security
strength level 1 (Dilithium 2 vs. RSA-3072 and Falcon-512 vs. RSA 3072 in
Sect. 3.2).

Our current work builds on our previous works of individual PQC algorithm
performances [14] and PQC performance when integrated with PKI [13]. How-
ever, this paper focuses on understanding the behavior of QUIC when integrated
with PQC authentication and compares its performance to that of TCP/TLS.

5 Conclusion

This paper analyzes the overheads of post-quantum authentication and connec-
tion establishments in the QUIC networking protocol. We compare the perfor-
mance of QUIC and TCP/TLS in handshake duration times. We implement
the protocols and the algorithms and analyze the behaviors under local envi-
ronment that enables the control in networking, including the packet loss. Our
implementation-based experimental results show that the connection overhead
in handshake and PQC-based authentication increase with the cipher’s security
strength and with the deteriorating networking conditions. Our analyses results
show that the PQC overheads in the handshake duration increases with the PQC
cipher security strength (longer key and signature sizes) and as the network con-
nection worsens (greater occurrences of packet dropping). The PQC ciphers also
outperform RSA in the handshake time duration; both Dilithium 2 and Fal-
con 512 handshake is quicker than RSA-3072 while all of these algorithms are
comparable in its security strength (security level 1).
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Abstract. A surge of interest in fully homomorphic encryption (FHE)
has produced various FHE constructions in recent years. One of the main
goals of these FHE schemes is to improve the efficiency when using the
bootstrapping technique. Particularly, TFHE, a fast FHE scheme over
the torus, decreases the running time of the bootstrapping significantly.
However, it only supports a single-bit bootstrapping, and thus still has
high computation cost. In this paper, we propose a batched FHE from
TFHE, which can simultaneously bootstrap n torus-based LWE (TLWE)
ciphertexts. In more detail, we employ a binary packing tree to pack sev-
eral TLWE ciphertexts into one TLWE ciphertext, and further optimize
the bootstrapping procedure with the homomorphic number theoretic
transform (NTT). As a consequence, the amortized computation cost of
our batched FHE scheme is reduced to O(log N) from O(N) in the orig-
inal TFHE scheme, where N is the dimension of the TLWE assumption.
Moreover, we provide an implementation of the proposed FHE scheme
with specific parameters, so as to demonstrate its practicability.

Keywords: Fully homomorphic encryption · TFHE · Bootstrapping ·
Batching · NTT

1 Introduction

Fully homomorphic encryption (FHE), first constructed by Gentry [20], allows
anyone to perform arbitrary computations over encrypted data without the
secret decryption key. Since Gentry’s breakthrough work, research on FHE is
booming due to its extensive applications [3,5–7,13,15,19,21]. To date, Gen-
try’s bootstrapping technique [20], which supports to calculate arbitrary circuits
by substantially calculating the decryption circuit on encrypted secret key, is
still the only known method to achieve FHE. However, FHE is still far from
practical since the bootstrapping technique is computationally expensive.

Towards improving the usability and efficiency of FHE, Chillotti et al. [13]
proposed a fast fully homomorphic encryption scheme over the torus (TFHE).
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Its security relies on the torus-based learning with errors (TLWE) and its ring
variant. In particular, the elementary operations in the TFHE scheme are all
the binary gates. Therefore, its bootstrapping procedure is greatly simplified to
perform binary circuit tasks, which makes TFHE has better running time and
easier to use compared to other FHE schemes. However, TFHE only supports
a single-bit bootstrapping operation and thus the computation overhead grows
linearly with the number of ciphertexts to be evaluated.

The way to solve the above problem is batching, namely, packing several
messages into one ciphertext, and operate on them in parallel. This enables the
client pack multiple encrypted messages into one ciphertext, and send it to a
remote server to store and bootstrap. In this case, the boostrapping technique
can simultaneously refresh a mass of ciphertexts in one bootstrapping procedure,
although it may be still computation-expensive. Focusing on the standard lattice-
based FHE scheme, there have been several well-studied solutions. For example,
Brakerski et al. [4] packed Regev’s encryption ciphertexts [27] to implement
SIMD-type homomorphic operations. Chen et al. [11] showed a polynomial noise
bootstrapping method with packed ciphertexts. Micciancio and Sorrell [24] intro-
duced a new bootstrapping procedure that simultaneously refreshes N FHEW
ciphertexts [19]. However, these works are all theoretical and far from practi-
cal implementation. Consequently, a natural problem is how to efficiently pack
TFHE ciphertexts and bootstrap them simultaneously.

1.1 Our Contributions

In this paper, motivated by the merits of TFHE, we study the problem of packing
TFHE ciphertexts, and propose a batced FHE scheme to reduce the amortized
computation cost. More precisely, we conduct the following contributions:

– We propose a batched fully homomorphic encryption scheme from TFHE.
Under the optimal conditions, the amortized computation complexity
decreases from O(N) in the original TFHE scheme to O(log N) in the pro-
posed batched FHE. Furthermore, the amortized size of boostrapping keys
decreases from O(N2) to O(N log N).

– In order to obtain our batched FHE scheme, we design a binary packing
tree for TLWE samples, which is an efficient method to pack multiple TLWE
ciphertexts to one ciphertext. We also use the homomorphic number theoretic
transform (NTT) to optimize slow multiplication.

– We implement the batched FHE scheme on TFHE library and LatticeCrypto
library with the concrete parameter sets, and compare it with the original
TFHE. The experimental results are consistent with our expectations, and
indicate its practicability.

1.2 Related Work

Since Gentry’s breakthrough work [20], many constructions have been proposed
to improve the efficiency with different manners. One of the important method
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to improve the efficiency is batching, namely, packing several messages into a
single ciphertext and performing homomorphic computations on these encrypted
messages simultaneously. Smart and Vercautren [28] first showed how to apply
single-instruction-multiple-data (SIMD) operations to a ciphertext based on Chi-
nese reminder theorem (CRT). Besides, two other matrix GSW packing tech-
niques [4,22] exploited the matrix variant of [21] to implement SIMD homomor-
phic operations. However, the noise of these schemes increases quai-polynomial.
Chen and Zhang [11] provided a polynomial noise bootstrapping method for the
BGV-type FHE scheme with packed ciphertexts. Furthermore, they constructed
a multi-key FHE scheme [12] based on ring-LWE assumption, which supports
CRT-based ciphertext packing.

Besides the BGV-type scheme, there are some packing works related to homo-
morphic boolean circuit such as FHEW [19], TFHE [13]. Biasse and Ruiz [2]
provided an extension of FHEW that allows to work with multibit message
spaces. Micciancio and Sorrell [24] introduced a bootstrapping technique that
can simultaneously refresh multiple FHEW ciphertexts. Chillotti et al. [14] pro-
posed two packing methods to optimize the evaluation of random function in
ring-GSW based homomorphic schemes. However, these works do not involve
how to simultaneously perform bootstrapping on multiple TFHE ciphertexts.

Since TFHE was proposed in 2016 [13], researchers have refined and applied
it from various perspectives. For bootstrapping, Okada et al. [25] implemented
a functional bootstrapping on an integerwise variant of TFHE. Chillotti et al.
provided a programmable bootstrapping [17] to handling the privacy-preserving
inference with deep neural networks. Then Chillotti et al. improved the pro-
grammable bootstrapping with larger precision [18]. For application, Chen et al.
[8] introduced an efficient oblivious RAM from TFHE. Morever, a TFHE-based
multi-key FHE has been proposed [9].

1.3 Roadmap

Section 2 presents some TFHE’s background and the related technologies
involved in this paper. Section 3 constructs necessary building blocks of our con-
struction. In Sect. 4, we propose a batched FHE scheme and analyze its com-
putation complexity, noise growth, correctness condition and security. Section 5
gives the experimental results with concrete parameters. In Sect. 6, we conclude
this paper.

2 Preliminaries

Throughout this paper, the index set [N ] = {0, 1, · · · , N − 1} and the set B =
{0, 1}. Vectors are in bold, e.g., a, and matrices are in upper-case bold like A.
Mu,v(S) is a set of matrices u × v with entries in S. The i-th coefficient of the
polynomial a is denoted as a[i]. The i-th entry of the vector a is denoted as a[i].
The map ι : a �→ ∑

i∈[N ] a[i]Xi represents the vector transform to a polynomial.
Sampling x from a distribution D is written as x ← D. If D is uniform, then
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we write as x ← U(D). We denote by R = Z[X]/(XN + 1) the polynomial ring
with N power of 2. Let BN [X] be the subset of R of polynomial with binary
coefficients. Finally, ‖ · ‖1 denotes l1 norm and ‖ · ‖∞ denotes l∞ norm.

2.1 Background on TFHE

The TFHE scheme, proposed by Chillotti et al. [13], is a fast fully homomorphic
encryption scheme. It works over the real torus T = R/Z and the torus poly-
nomial TN [X] = R[X]/(XN + 1) mod 1, where N is a power of 2. Its security
depends on the torus variant of the LWE [27] problem and of the GSW construc-
tion [21], called TLWE and TGSW. Its homomorphic operations are all binary
gates. So the running time is naturally proportional to the number of binary
gates. In this section, we define TLWE and TGSW samples, and describe the
controlled selector gate CMux, which will be adopted in this paper. Note that
ciphertexts in TFHE are viewed as normal samples.

Definition 1 (TLWE [13]). Let N be power of 2, α ≥ 0 be a noise parameter,
and k ≥ 1 be an integer. The vector of k binary polynomials s ∈ BN [X]k be
a TLWE secret key1, whose coefficients are chosen uniformly. A fresh TLWE
ciphertext or sample c ∈ TN [X]k+1 of message m is a pair constructed as (a, b),
where a ← U(TN [X]k), b pursues a continuous Gaussian distribution of noise
parameter α centered around m+s ·a. Furthermore, a trivial TLWE sample has
a = 0 and b = m. A noiseless TLWE sample has α = 0.

In the following, we write down as c = (a, b) ∈ TLWEs(m). The phase of a
sample c is ϕs(c) = b − s · a. The message msg(c) ∈ TN [X] is the expectation
of ϕs(c). The error err(c) is amount to ϕs(c) − msg(c).

For a degree � ≥ 1, a base Bg ≥ 2, and an integer k ≥ 1, the canonical gadget
matrix Gk+1 is denoted as

Gk+1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1/Bg · · · 0
...

. . .
...

1/B�
g · · · 0

...
. . .

...
0 · · · 1/Bg

...
. . .

...
0 · · · 1/B�

g

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ M�(k+1),k+1 (TN [X]) . (1)

For any element µ ∈ TN [X]k+1, it is possible to effectively decompose it
as a small linear combination of lines of Gk+1, namely, v = G−1

k+1(µ), where
‖v‖∞ ≤ Bg/2 and the decomposition error ‖vT · Gk+1 − µT ‖∞ is bounded by
1/2B�

g.

1 Note that if k = 1 and N large, then TLWE problem is RingLWE problem. If k
large and N = 1, then TLWE problem is the LWE problem. We use the former in
this paper.
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Definition 2 (TGSW [13]). Let Gk+1 be the gadget defined in (1) and z ∈
BN [X]k be a TLWE secret key. A TGSW sample C ∈ M(k+1)�,k+1(TN [X]) of
m ∈ R is a matrix constructed as C = Z + m · Gk+1, where each line of the
matrix Z ∈ M(k+1)�,k+1(TN [X]) is a random TLWE ciphertext of 0 under the
secret key z.

In the following, we write down as C ∈ TGSWz (m). The phase ϕz (C) of a
sample C is the list of the �(k + 1) TLWE phases of each row of C. The error
err(C) is the list of the �(k + 1) TLWE errors of each row of C.

TGSW inherits some homomorphic properties, including the internal prod-
uct and addition between two TGSW samples. Moreover, there is an external
product � between a TGSW sample and a TLWE sample under the same secret
key. Details are as follows.

Lemma 1 ([15]). Let Gk+1 be the gadget defined in (1) and s ∈ BN [X]k be
a TLWE secret key, A ∈ TGSWs(mA ), b ∈ TLWEs(mb). Then the external
product A � b = G−1

k+1(b) · A ∈ TLWEs(mA · mb) and

‖err(A�b)‖∞ ≤ �NBg(k + 1)‖err(A)‖∞
2

+
‖mA‖1(kN + 1)

2B�
g

+‖mA‖1‖err(b)‖∞.

If A � b is a valid TLWE sample, then ‖err(A � b)‖∞ ≤ 1/42.

More high level circuits can be generated with the external product, such as
the controlled selector gate (CMux).

Lemma 2 ([15]). Let C ∈ TGSWs({0, 1}) and ct1, ct0 ∈ TLWEs(TN [X]). The
controlled selector gate CMux(C, ct1, ct0) takes input two data ct1, ct0 and one
control C, and returns C�(ct1−ct0)+ct0. Then the message of CMux(C, ct1, ct0)
is msg(C)?msg(ct1) : msg(ct0)3. In the conditions of Lemma 1, we have

‖err(CMux(C, ct1, ct0))‖∞ ≤ max(‖err(ct1)‖∞, ‖err(ct0)‖∞) + ζ(C), (2)

where ζ(C) = �NBg(1 + k)‖err(C)‖∞/2 + (1 + kN)/2B�
g.

2.2 Number Theoretic Transform

The Number theoretic transform (NTT) [26] is a fast convolution technique
that has a structure similar to the discrete Fourier transform (DFT), but with
complex exponential roots of unity replaced by integer roots from a finte ring.

Let h = {h0, · · · , hN−1} be a N -point integer sequence with elements in Zq,
where N is power of 2 and prime modulo q ≡ 1 mod 2N . Let g ∈ Zq be a
primitive N -th root of unity. The direct NTT of h is h̄i =

∑N−1
j=0 hjg

ij mod q

2 To ensure successful decryption, the noise must be small enough in the rounding
procedure. This value is usually 1/4.

3 It means msg(C)(msg(ct1) −msg(ct0)) +msg(ct0). If msg(C) = 1, then the message
of CMux(C , ct1, ct0) is msg(ct1); If msg(C) = 0, then the message is msg(ct0).
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for i ∈ [N ]. Since q is prime, N has an inverse N−1 mod q, then the inverse
transformation INTT of h̄ is denoted as hi = N−1

∑N−1
j=0 h̄jg

−ij mod q for i ∈
[N ]. For two polynomials a, b of degree N , the polynomial multiplication in
Rq = Zq/(XN + 1), namely, c = a · b mod (XN + 1), is equivalent to negative
wrapped convolution [29], which can be efficiently computed by NTT.

Lemma 3 (Negative Wrapped Convolution [29]). Let two vectors a =
(a0, · · · , aN−1) and b = (b0, · · · , bN−1) of length N be the vector representa-
tions of the polynomial a =

∑N1
i=0 aiX

i and b =
∑N1

i=0 biX
i, respectively, where

a, b ∈ Rq. Let g ∈ Zq be a primitive N -th root of unity and η2 = g. Vectors â and
b̂ are defined as (a0, ηa1, · · · , ηN−1aN−1), (b0, ηa1, · · · , ηN−1bN−1). The nega-
tive wrapped convolution of a and b is computed by (1, η−1, η−2, · · · , η−(N−1)) ◦
INTT(NTT(â) ◦ NTT(b̂)), where ◦ means componentwise multiplication. This
operation is equivalent to a · b in Rq.

2.3 Homomorphic Evalutation of Automorphisms

As shown in [10], for a power-of-2 integer N , K = Q/(XN + 1), the Galois
group Gal(K/Q) contains the automorphisms τd : a(X) �→ a(Xd) for d ∈ Z

×
2N ,

the invertible residues modulo 2N . Algorithm 1 describes a notable approach
to homomorphically evaluate the automorphisms. Given a TLWE sample ct ∈
TLWEs(m) and an integer d ∈ Z

×
2N , the message of the output ciphertext in Algo-

rithm 1 is τd(m), which has been proved in [10]. Furthermore, the security of the
Algorithm 1 depends on the security of subroutines KSKeyGen and KeySwitch,
which are common key switching methods in FHE schemes. We describe a key
switching algorithm for TLWE samples and prove its security in Sect. 3.1.

Algorithm 1. EvalAuto(ct ∈ TN [X]2, d ∈ Z
×
2N )

Input: A TLWE ciphertext ct = (a, b) ∈ TLWEs(m), an integer d ∈ Z
×
2N

Output: A TLWE ciphertext ct′ ∈ TLWEτd(s)(τd(m))
1: Run Kd ← KSKeyGen(s, τd(s))
2: Compute the ciphertext ct′ ← KeySwitch((τd(a), τd(b)),Kd)
3: return ct’

Note that when the automorphism τd(·) acts on the monomials for d = 2l +1,
1 ≤ l ≤ log N , then the map m �→ m + τd(m) makes the coefficients m[i] double
if 2log N−l+1|i, and the coefficients m[i] zero if 2log N−l|i ∧ 2log N−l+1

� i. For
example, if N = 8, d = 5, then m =

∑7
i=0 m[i]Xi and τd(m) = m[0]X0 −

m[5]X − m[2]X2 + m[7]X3 + m[4]X4 + m[1]X5 − m[6]X6 − m[3]X7. Therefore,
m+ τd(m) = 2m[0]X0 +(m[1]−m[5])X +(m[3]+m[7])X3 +2m[4]X4 +(m[1]+
m[5])X5 + (m[7] − m[3])X7). We can see that the coefficients m[0] and m[4] are
double, and the coefficients m[2] and m[6] are zero.
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3 Building Blocks

3.1 Key Switching on TLWE Ciphertexts

The key switching algorithm is used to transform a ciphertext with the secret
key z into another ciphertext with the different secret key z′ while the phase
remains almost constant. Based on the external product, we provide a key-
switching algorithm for TLWE ciphertexts.

– KSKeyGen(z ∈ BN [X], z′ ∈ BN [X]): Given TLWE secrets z, z′ ∈ BN [X], it
returns the key-switching key KS = TGSWz′(z) ∈ TN [X]2�×2 from z to z′.

– KeySwitch(ct, KS): Given an TLWE ciphertext ct = (a, b) ∈ TN [X]2 and a
key-switching key KS ∈ TN [X]2�×2, let (0, a), (0, b) ∈ TN [X]2 be two noiseless
trivial TLWE samples of a and b, respectively. Output the ciphertext ct′ =
(0, b) − KS � (0, a).

Correctness. Note that (0, a), (0, b) are the trivial TLWE encryption of a and
b, respectively, namely, (0, a) ∈ TLWEz′(a), (0, b) ∈ TLWEz′(b). The following
equation proves the correctness of the algorithm:

TLWEz′(b) − TGSWz′(z) � TLWEz′(a) = TLWEz′(b − a · z) = TLWEz′(m).

Hence, ct′ is a TLWE ciphertext under new secret key z′ while preserving
the phase of ct. The computation complexity is one external product. Due to
(0, a), (0, b) are noiseless and secret key z is binary polynomial, the additional
noise added by the key switching algorithm is bounded by �NBg‖err(KS)‖∞ +
N(1+N)

2B�
g

according to Lemma 1. Plus the noise ect carried by the original TLWE

ciphertext, the output ciphertext noise is �NBg‖err(KS)‖∞ + N(1+N)
2B�

g
+ ‖ect‖∞.

Security. The key switching key KS from KSKeyGen(z ∈ BN [X], z′ ∈ BN [X]) is a
TGSW sample, which are essential vectors of TLWE samples. The entries of KS
are TLWE samples under the secret z′, which are computationally indistinguish-
able from the uniform distribution over TN [X]2� under the TLWE assumption.

3.2 Binary Packing Tree

Ciphertext packing is a method that packs multiple LWE ciphertexts into a ring-
LWE encryption to improve the effectiveness of HE, since ring-based HE systems
have shown remarkable performance in real-world applications. Micciancio and
Sorrell [24] described a variant of the key-switching technique to realize it, and
Chen et al. [10] achieved better amortized complexity based on iterative mode.

Motivated by Chen et al.’s work [10], we design a binary packing tree for
TLWE ciphertexts. In a binary packing tree, the inputs placed at the leaves are
TLWE ciphertexts ready to be packed. The value of each node is the result of the
packing operation of its two children’s values. In the following, we will explain
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how to pack two TLWE ciphertexts and how to pack multiple TLWE ciphertexts
by binary packing tree.

Paking Two TLWE Samples. Recall that the phase m of N -dimensional
TLWE ciphertext holds the valid message only in the constant term, so the
critical point is how to annihilate useless coefficient of m except m[0] and how
to aggregate other useful values at the appropriate position in the phase. Note
that the map m �→ m + τd(m) can zeroize the coefficient m[i] if 2log N−l‖i4

for d = 2l + 1, namely, zeroize m[N/2l]. And the phase multiplied by XN/2l

moves valid value m[0] from position 0 to position N/2l. Hence, for two TLWE
ciphertexts ct0 and ct1 with phase m0 and m1, respectively, one can zeroize
m0[N/2l], and the other can shift m1[0] to poisiton N/2l. Combined with the
ideas mentioned above, we can pack two TLWE ciphertexts into a single TLWE
ciphertext, where the valid value of the phase of the output TLWE ciphertext
lies in the constant term and the monomial XN/2l

. See Algorithm 2 for details.

Algorithm 2. Pack2TLWEs(ct0, ct1,KS, d)
Input: Two TLWE ciphertexts ctj ∈ TLWEs(

1
4mj [0]) with mj [0] ∈ B for j ∈ {0, 1},

an integer d = 2l + 1, and a key-switching key KS ← KSKeyGen(s, EvalAuto(s, d))

Output: A TLWE ciphertext ct01 ∈ TLWEs̃(
1
2m0[0]X0 + 1

2m1[0]XN/2l

)

1: Set ctadd ← ct0 + XN/2l

ct1
2: ctadd ← KeySwitch(ctadd,KS)

3: ctsub ← EvalAuto(ct0 − XN/2l

ct1, d)
4: return ct01 ← ctadd + ctsub

Correctness. In Algorithm 2, the output ciphertext ct01 = KeySwitch(ct0 +
XN/2l

,KS) + EvalAuto(ct0 − XN/2l

ct1, d), then 〈ct01, (−s̃, 1)〉 ≈ 〈(ct0 +
XN/2l

,KS), (−s, 1)〉 + τd(〈(ct0 − XN/2l

ct1), (−s, 1)〉) by algorithm KeySwitch
and EvalAuto. Note that τd(Xi) = Xi for 2log N−l+1|i and τd(Xi) = −Xi for
2log N−l‖i. Thereby the value at position 0 of m0 + τd(m0) is 1

2m0[0], at position
N/2l is 0. The value at position N/2l of XN/2l

(m1 + τd(m1))) is 1
2m1[0], at

position N/2l−1 is 0. Hence, the phase of ct01 is

m01 ≈ 〈(ct0 + τd(ct0)), (−s, 1)〉 + XN/2l · 〈(ct1 + τd(ct1)), (−s, 1))〉
≈ 2 · 1

4
m0[0]X0 + 0 · 1

4
m0[N/2l]XN/2l

+ XN/2l

(2 · 1
4
m1[0]X0)

=
1
2
m0[0]X0 +

1
2
m1[0]XN/2l

.

(3)

The phase of the output ciphertext is as desired. Note that the EvalAuto algo-
rithm is a signed permutation that incuring no noise growth and homomorphic
4 2t‖i is equivalent to 2t|i ∧ 2t+1

� i.
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operation. Hence, the computation complexity of Algorithm 2 is one external
product and the noise is bounded by �NBg‖err(KS)‖∞ + N(1+N)

2B�
g

+ 2‖ect‖∞
from subroutine KeySwitch.

Paking multiple TLWE samples. On input n TLWE ciphertexts {ctj ∈
TLWEs0(

mj [0]
2n )}j∈[n] under the same secret s0 ∈ BN [X] for n = 2l ≤ N , where

mj [0] ∈ B, Algorithm 3 merges them into a TLWE ciphertext that can store
all n valid values in the coefficients of its phase by binary packing tree of depth
log n. Figure 1 gives a case of n = 8.

Algorithm 3. PackTLWEs({ctj ∈ TLWEs0(
mj [0]
2n )}j∈[n], {KSk}k∈{1,··· ,l})

Input: n TLWE ciphertexts ctj ∈ TLWEs0(
mj [0]
2n

) with mj [0] ∈ B for j ∈ [2l], key-

switching keys KSk ← KSKeyGen(sk−1, sk) where sk ← EvalAuto(sk−1, 2
k + 1) for

k ∈ {1, · · · , l}
Output: A TLWE ciphertext ˜ct ∈ TLWEsl(

1
2mj · Y j) where Y = XN/n

1: if l = 0 then
2: return ˜ct ← ct0
3: else
4: for k = 1 to l do
5: for i = 0 to 2l−k − 1 do
6: ctleft ← cti
7: ctright ← cti+2l−k

8: cti ← Pack2TLWEs(ctleft, ctright,KSk, 2k + 1)
9: end for

10: end for
11: end if

Fig. 1. A binary packing tree of n = 8.
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Correctness. In Algorithm 3, the base l = 0 is trivial since m = m0[0]
2n X0 mod 1.

At level k, there are 2l−k = n/2k TLWE samples running circularly in the
program. Let N = 2t, r = N/n, we inductively show the phase mi of the return
ciphertext cti satisfies

mi ≈ 2k
∑

N/2k|j∈[N ]

mi+j/r[0]
2n

Xj mod 1 for i ∈ [n/2k] (4)

at iteration k. Now we assume that (4) is true for k − 1. From the induction
hypothesis,

mleft = mi ≈ 2k−1 ·
∑

N/2k−1|j∈[N ]

mi+j/r[0]Xj mod 1,

mright = mi+n/2k ≈ 2k−1 ·
∑

N/2k−1|j∈[N ]

mi+n/2k+j/r[0]Xj mod 1.

In k-th iteration, we compute the procedure Pack2TLWEs(ctleft, ctright, KS, 2k +
1). For mright, N/2k−1 = 2t−k+1|j, e.g., 2t−k|(2t−k + j) ∧ 2t−k+1

� (2t−k + j), so
2t−k = N/2k‖(N/2k + j). Hence, for j ∈ [N ], we obtain that

mi = 2k(
∑

N
2k−1 |j

mi+j/r[0]

2n
Xj + 0

∑

N
2k ‖j

mleft[j]

2n
Xj + X

N
2k

∑

N
2k−1 |j

mi+n/2k+j/r[0]

2n
Xj)

= 2k
∑

N/2k−1|j

mi+j/r[0]

2n
Xj + 2k

∑

N/2k‖j

mi+n/2k+j/r[0]

2n
Xj+N/2k

= 2k
∑

N/2k|j

mi+j/r[0]

2n
Xj .

After last interation l, the output ciphertext c̃t’s phase is m̃ =
∑

r|j∈[N ]
mj/r[0]

2 Xj mod1, namely, m̃ = 1
2

∑
j∈[n] mj [0]Y j , where Y = XN/n.

When packing n TLWE ciphertexts, the PackTLWEs algorithm needs to call
2l−1 + 2l−2 + · · · + 20 = n − 1 Pack2TLWEs subroutine, namely, n − 1 external
product. We remark that then asymptotically optimal amortized complexity
O(1) is achieved.

Each Pack2TLWEs subroutine adds extra noise �NBg‖err(KS)‖∞ + N(1+N)
2B�

g
.

The total additional noise is (n−1)(�NBg‖err(KS)‖∞ + N(1+N)
2B�

g
). So the noise of

the final ciphertext is bounded by (n−1)(�NBg‖err(KS)‖∞+ N(1+N)
2B�

g
)+n‖ect‖∞.

Security. The Pack2TLWEs algorithm, consisting of KeySwith and EvalAuto sub-
routines, is a simple application of key switching algorithm. The security of the
key switching algorithm for TLWE ciphertexts has been proved in Sect. 3.1. So
the algorithm PackTLWEs is secure relied on the security of the key switching
algorithm.
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3.3 Homomorphic Ring Decryption

On input a single TLWE ciphertext (a, b) ∈ TLWEs( 12mjY
j) for j ∈ [n] and

encryption of the binary representation of the secret key s ∈ BN [X], the homo-
morphic ring decryption algorithm computes the ring element b−a·s mod (XN +
1) homomorphically, and then extracts the result to n TLWE ciphertexts. In this
section, we first describe a slow multiplication algorithm with homomorphic NTT
to compute a ·s mod XN +1 homomorphically. Following by the description, we
design a homomorphic ring decryption procedure and give a analysis.

Slow Multiplication with Homomorphic NTT. Proposed by Micciancio
and Sorrell [24], slow multiplication algorithm computes a · s homomorphically
using only the operations of addition and subtraction. In this section, we designed
an efficient slow multiplication algorithm with homomorphic NTT to compute
the polynomial product a · s mod XN + 1.

Let prime modulo q ≡ 1 mod 2N with N power-of-two, g ∈ Zq be a primitive
N -th root of unity and η2 = g. As in Sect. 2.2, the polynomial product a ·
s mod (XN + 1) for a, s ∈ Rq may be computed as

a · s mod (XN + 1) = (1, η−1, · · · , η−(N−1)) ◦ INTT(NTT(â) ◦ NTT(ŝ)) ∈ Rq,

where â = (a[0], ηa[1], · · · , ηN−1a[N−1]) and ŝ = (s[0], ηs[1], · · · , ηN−1s[N−1]).
We write as ā = NTT(â) and s̄ = NTT(ŝ), then we need to compute NTT(â) ◦
NTT(ŝ) = (ā[0] · s̄[0], · · · , ā[N − 1] · s̄[N − 1]) homomorphically. To do this, we
use bit decomposition technique [6] that widely adopted in FHE schemes.

Assume that q = 2tN + 1 and ι = �log q�, s̄i,k be the kth bit in s̄[i]’s binary
representation, namely, s̄[i] =

∑ι−1
j=0 s̄i,k2k. We may express multiplication of ā[i]

by s̄[i] by computing ā[i] · s̄[i] =
∑ι−1

j=0 ā[i]2k · s̄i,k. Set the bootstrapping key as
BKi,k = TGSW(s̄i,k) for i ∈ [N ], k ∈ [ι]. Define

∑ι−1
j=0 ā[i]2k ·TGSW(s̄i,k) to be a

circuit computing this multiplication homomorphically using only additions, as
the s̄i,k values are binary. In Algorithm 4, we describe the slow multiplication
algorithm to compute a · s mod XN + 1 homomorphically.

Algorithm 4. SlowMult(ā, {BKi,k}i∈[N ],k∈[ι], v)
Input: ā = NTT(â), bootstrapping keys BKi,k = TGSWz(s̄i,k) for i ∈ [N ] and k ∈ [ι],

a test polynomial v ∈ TtN [X]
Output: TLWE samples of Xρi · v where ρi is the ith coefficient of a · s mod XN + 1
1: for i = 0 to N − 1 do
2: Initialize the noiseless TLWE sample as ACCi = (0, v) ∈ T

2
tN [X]

3: for k = 0 to ι − 1 do
4: ACCi ← CMux(BKi,k, X ā [i]·2k mod q · ACCi, ACCi)
5: end for
6: end for
7: ACCi ← Xϕ−i

INTT(ACC)i for i ∈ [N ]
8: return ACCi
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Homomorphic Ring Decryption. Given a TLWE sample TLWEs( 12mjY
j) =

(a, b) ∈ T
2
N [X] for j ∈ [n], the homomorphic ring decryption algorithm con-

structs n encryptions of mj under a fixed amount of noise, which is summarized
in Algorithm 5. The SampleExtract subroutine used in the algorithm comes
from [15]. It is a method that homomorphically extracts the constant term of
message in polynomial form as a TLWE ciphertext under the same secret key.

Algorithm 5. RingDecrypt(μ1, ct, {BKi,k}i∈[N ],k∈[ι]))

Input: A TLWE ciphertext ct = (a, b) ∈ TLWEs0(
1
2mjY

j) with mj ∈ B for j ∈ [n],
bootstrapping keys BKi,k = TGSW(s̄i,k) for i ∈ [N ] and k ∈ [ι], a constant μ1 ∈ T,

Output: n TLWE ciphertexts ctj = (aj , bj) ∈ TLWEz(μ1 · mj) for all j ∈ [n]
1: μ = 1

2μ1 ∈ T

2: â = (�2tNa[0]�, ψ�2tNa[1]�, · · · , ψN−1�2tNa[N − 1]�)
3: ā = NTT(â)

4: Let test polynomial v := (1 + X + · · · + XtN−1) · X
tN
2 · μ ∈ TtN [X]

5: ACCi ← SlowMult(ā, {BKi,k}i∈[N ],k∈[l], v)
6: b′[j] = �2tNb[j]�
7: for j = 0 to n − 1 do
8: ct′j = X−b′[j] · ACCj

9: ctj = (0, μ) + SampleExtract(ct′j)
10: end for
11: return {ctj}j∈[n]

Correctness. Let a′[i] = �2tNa[i]� ∈ Zq for i ∈ [N ] and a′ · s mod XN + 1 =
c′[0]X0 + · · · + c′[N − 1]XN−1. As shown in SlowMult subroutine, ACCi =
TLWEz(Xc′[i] · v). We get that

ct′j = X−b′[j] · ACCj = TLWEz(Xc′[j]−b′[j] · v) = TLWEz(X−tN ·mj · v).

If mj = 0, then the contant term of the messge of ct′j is −μ. If mj = 1, then is
μ. So the message of the output ciphertext ctj is μ1 · mj as desired.

Note that multiplications by Xi is only the shifts of polynomial coefficients of
the ciphertext, so we ignore this computational complexity. So the RingDecrypt
algorithm needs to N�log(tN +1)� CMux gates, namely, Õ(N) external products.
And the sample output by SampleExtract encodes the constant term with at
most the same noise variance as the original sample. Hence, the noise of the out-
put ciphertext is �log(tN +1)�(�NBg‖err(BK)‖∞ + N+1

2B�
g

) according to Lemma 2.

4 Batched FHE from TFHE

In this section, we translate TFHE [15] into be a batched FHE, which can reduce
the amortized bootstrapping complexity efficiently.
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4.1 The Construction

Here we present our batched FHE scheme from TFHE. The key difference
between our scheme and the original TFHE in [13] is that we can do bootstrap-
ping batching after the homomorphic circuits. The details of our construction
are specified as follows.

– FHE.Setup(1λ): On input the security parameter λ, the algorithm set TLWE
dimension N of the power of two, set the decomposition degree � and the
base Bg ≥ 2 for the gadget matrix G2 defined in (1), set the error gaussian
distribution Dα over T with parameter α, set the prime modulo of NTT
q ≡ 1 mod 2N and ι = �log q�, set a constant μ1 ∈ T. Let g ∈ Zq be a
primitive N -th root of unity and η2 = g. Output the public parameter pp =
(N,Bg, �,Dα, α, q, ι, η, μ1).

– FHE.Gen(pp): Sample a secret key s0 ← U(BN [X]). Let n = 2l ≤ N ,
sample n random polynomials aj ← U(TN [X]) and n error polynomials
ej ← U(DN

α ) for j ∈ [n]. Generate n TLWE samples tlj = (aj , aj · s0 +
ej) ∈ T

2
N [X]. Generate l key switching keys KSr ← KSKeyGen(sr−1, sr)

where sr ← EvalAuto(sr−1, 2r + 1) for r ∈ {1, · · · , l}. Let ŝ =
(sl[0], ηsl[1], · · · , ηN−1sl[N − 1]) and s̄ = NTT(ŝ), where s̄[i] =

∑ι−1
k=0 s̄i,k2k.

Generate bootstrapping keys BKi,k = TGSWz(s̄i,k) for k ∈ [ι] and i ∈ [N ].
Generate another key switching key KS0 ← KSKeyGen(z, s0). So, the algo-
rithm returns n TLWE samples {tlj}j∈[n], key switching keys {KSr}r∈[l+1]

and bootstrapping keys {BKi,k}i∈[N ],k∈[ι].
– FHE.Enc({mj}j∈[n], {tlj}j∈[n]): Given n messages {mj}j∈[n] where mj ∈ Bj ,

output n TLWE ciphertexts ctj = (0, mj

2n ) + tlj .
– FHE.Eval({ctj}j∈[n]): For arbitrary TLWE ciphertexts ct, ct1, ct2 ∈ {ctj}n,

the homomorphically evaluate the basic gates as follows:
• HomNot(ct) = (0, 1

2n )-ct;
• HomAND(ct1, ct2) = (0,− 1

4n )+ct1 + ct2;
• HomOR(ct1, ct2) = (0, 1

4n )+ct1 + ct2;
• HomNAND(ct1, ct2) = (0, 5

4n )-ct1 − ct2;
• HomXOR(ct1, ct2) = ct1 − ct2.

– FHE.Pack({ctj}n, {KSr}r∈{1,··· ,l}): Packing the input ciphertexts by running
c̃t ← PackTLWEs({ctj}n, {KSr}r∈{1,··· ,l}). Return the TLWE ciphertext c̃t.

– FHE.Boot(pp, c̃t, {BKi,k}i∈[N ],k∈[ι],KS0): To get refresh ciphertexts ct′
j for

j ∈ [n], run RingDecrypt(μ1, c̃t, {BKi,k}i∈[N ],k∈[ι]). Return n TLWE cipher-
texts ctj ← KeySwitch(ct′j ,KS0).

– FHE.Dec(s0, {ctj}j∈[n]): To decrypt ciphertexts ctj = (aj , bj), we compute the
phase ϕs0(ctj) = b − as, and round it to the nearest element in {0, μ1}. If it
is close to μ1, then mj = 1. Otherwise, mj = 0.

4.2 Analysis

In the following, we will analyze the computation complexity, noise growth,
correctness conditions and security of our batched FHE scheme.
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Lemma 4. The computation complexity of the batched FHE scheme described
above is no more than Õ(N). Suppose the bootstrapping key carries the same
noise as the key switching key carries, then the noise of the output ciphertext is
Õ(N2).

Proof. The computation complexity of the batched FHE scheme mainly
comes from external products, which appear in FHE.Pack step and FHE.Boot
step. The computation complexity of PackTLWEs subroutine is n − 1 while
RingDecrypt is N�log q�. Finally, we also need n external products to perform
KeySwitch(ct′j ,KS0). Therefore, the computation computation of the batched
FHE is 2n − 1 + N�log(tN + 1)� = Õ(N) in summary.

After RingDecrypt subroutine in FHE.Boot step, the noise is �log(tN +
1)�(�NBg‖err(BK)‖∞ + N+1

2B�
g

) according to Sect. 3.3. The KeySwitch(ct′j ,KS0)

will add extra noise �NBg‖err(KS)‖∞ + N(1+N)
2B�

g
. Therefore, the noise of final

output ciphertext is (�log q�+1)�NBg‖err(BK)‖∞ +(�log q�+N)N+1
2B�

g
= Õ(N2).

Correctness Conditions. To make decryption algorithm works successfully for the
worst case, our batched FHE scheme should satisfy the following requirement:

(�log q� + 1)�NBfg‖err(BK)‖∞ + (�log q� + N)
N + 1
2B�

g

≤ 1
4
. (5)

Therefore, the noise of key switching keys and bootstrapping keys is bounded

by B�
g−2(�log q�+N)(N+1)

4(�log q�+1)�NB�+1
g

.

Security. From the attacker’s point of view, it obtains the the distribution of key
switching keys {KSr}r∈[l+1], bootstrapping keys {BKi,k}i∈[N ],k∈[ι] and TLWE
ciphertexts {ctj}j∈[n]. In the following hybrids, we will prove semantic security
of the batched FHE scheme depending on the semantic security of the TLWE
assumption.

– First, the key switching keys {KSr}r∈[l+1] and the bootstrapping keys
{BKi,k}i∈[N ],k∈[ι] generated by FHE.Gen are changed to random matrices in
M2�×2(TN [X]) according to the TLWE assumption.

– Second, the ciphertexts {ctj}j∈[n] generated by FHE.Enc are changed to n
TLWE samples of 0.

Finally, these distributions are completely independent of the message {mj}j∈[n].

4.3 Comparisons

We compare the proposed batched FHE scheme with three existing FHE
schemes, where Chillotti et al.’ FHE [13] is the original TFHE, Chen et al.’
work [11] with BGV-type packing, and Miccianco et al.’ work [24] with FHEW-
ciphertext packing. The comparisons of the computation complexity, the size of
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Table 1. Computation cost, boostrapping keys size and noise overhead comparisons.
N denotes the dimension of the TLWE assumption. # of ciphers indicates the number
of packed ciphertexts. Parameter 0 < ε < 1/2.

Schemes # of ciphers Computation cost Bootstrapping keys Noise overhead

Total cost Amortized cost Total cost Amortized cost

Chillotti et al. [13] 1 O(N) O(N) O(N2) O(N2) Õ(N)

Chen et al. [11] N Õ(N3) Õ(N2) Õ(N2) Õ(N) Õ(N3)

Miccianco et al. [24] N Õ(31/εN1+2ε) Õ(31/εN2ε) Õ(N2) Õ(N) Õ(N3/ε−2)

This work n Õ(N) Õ(N/n) Õ(N2) Õ(N2/n) Õ(N2)

bootstrapping keys and noise overhead are provided in Table 1. As of now, the
work of Chen et al. [11] and Miccianco et al. [24] remains theoretical.

As shown in Table 1, the total cost of our work is less than [11] and [24], but
more than [13]. When n > log tN (modulo q = tN + 1 for NTT), our scheme
has lower amortized complexity than [13]. In particular, when n = N , we get
the optimal amortized computation complexity O(log N), which is better than
the other three schemes. We have a clear advantage in terms of noise overhead
excluding the work of Chillotti et al. [13]

The size of bootstrapping keys of our work is equal to [11] and [24] , but more
than [13]. Same as amortized computation cost, when n > log tN , our scheme
has lower amortized bootstrapping sizes than [13]. When n = N , we get the
optimal amortized computation complexity Õ(N), which is identical to Chen
et al.’s [11] and Miccianco et al.’s work [24]. Note that the number of packing
ciphertexts of our scheme is more flexible. Miccianco et al.’ FHE [24] can only
pack fixed ϕ(N) ciphertexts where ϕ is Euler’s totient function. Chen et al.’s
FHE [11] can only pack N messages. We can pack the n TLWE ciphertexts as
long as n is power of two and less than N .

Another advantage of our work is that with the increase in the number of
ciphertexts, our ciphertext size remains constant while the ciphertext size of [13]
increases linearly.

5 Performance Evaluation

We performed our batched FHE scheme in C/C++ based on the TFHE library
[16] and the LatticeCrypto library [23] for NTT. All experiments were con-
ducted with a standard desktop computer (Lenovo Intel CoreTM i7-4710MQ
CPU @2.5 GHZ) on Ubuntu. The running time, ciphertexts size and amortized
bootstrapping keys of experiments are presented in Fig. 2. We also compared
with original TFHE [13] under the same conditions. The details of the experi-
ment are as follows.

The modulo of ring LWE-based cryptosystem satisfies the form q = t ·2N +1,
where t ≥ 3 is a very small integer. Typical parameter choices might be N = 1024
and q = 12289 = 12 ·N +1, as used in the NewHope proposal [1], in which case a
2048-th root of unity would be 9098. In our experiments, we choose the security
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parameter λ = 128, then the concrete parameters are shown in Table 2. The
parameter α of error Gaussian distribution satisfies Eq. (5).

Table 2. Parameters of our batched FHE scheme.

λ N q � Bg α

128 1024 12289 3 256 1.85 × 10−8

Figure 2 illustrates the expected behavior of our batched FHE scheme. We
measured running time (s), boostrapping key size (MB) and ciphertext size (KB)
for n ∈ {2, 4, 8, 16, 32, 64, 128, 256, 512, 1024}, respectively. These measurements
are almost kept in a constant range since the dimension N of TLWE sam-
ple remains constant. Therefore, the amortized complexity decreases with the
increase of the number of the packing ciphertexts. We can see that when n > 25,
our total running time is less than TFHE. When n > 22, our amortized boot-
strapping key is smaller than TFHE. When n = N , we can get the optimal
amortized complexity.
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Fig. 2. Experimental results

6 Conclusion

In this paper, we combine the advantages of TFHE and ciphertexts packing, and
propose a batched fully homomorphic encryption scheme. Our work reduces the
amortized computation complexity from O(N) in the original TFHE cryptosys-
tem to O(log N) in the proposed batched FHE. Furthermore, it can reduce the
amortized size of boostrapping keys from O(N2) to Õ(N). To obtain our batched
FHE scheme, we use a binary packing tree for TLWE samples and NTT for slow
multiplication. We also implement our batched FHE scheme. The experimental
results indicate the metrics of the proposed FHE scheme.

Acknowledgements. This work was supported by the National Nature Science Foun-
dation of China under Grant 62172434.
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Abstract. The generic IND-CCA secure key encapsulation mechanism
(KEM) constructions in the quantum random oracle model (QROM)
attract much attention due to the NIST post-quantum competition. Most
of the NIST KEM submissions follow the generic Fujisaki-Okamoto trans-
formation with implicit rejection (FO-IR). We propose a framework for
the construction of quantum random oracles that supports implicit rejec-
tion, and prove that the KEMs satisfying our framework are IND-CCA
secure in the QROM. Specifically, we use the idea of hash combination to
eliminate the requirement for checking the validity of ciphertexts, which
is the key point to achieve IND-CCA security. We show that the existing
FO-IR widely used in the NIST KEM submissions can be explained by
our framework. Additionally, we also propose a novel realization which
exploits the verifiability of the private key.

Keywords: IND-CCA security · Key encapsulation mechanism ·
Quantum random oracle model · Implicit rejection

1 Introduction

The Fujisaki-Okamoto (FO) transformation [9,10] is one of the most important
transformations to construct an indistinguishability against chosen-ciphertext
attacks (IND-CCA) [20] secure public-key encryption (PKE) scheme. First intro-
duced by Fujisaki and Okamoto [9] in 1999 and revisited by Dent [5] and Hofheinz
et al. [12], there are many variants [3,8,12,14,15,17,18,21] that are widely used
in the submissions to the National Institute of Standard and Technology (NIST)
post-quantum competition [19]. The main function of the FO transformation
[9,10] is to convert a PKE scheme with a weaker security property (i.e., one-way
against chosen-plaintext attacks (OW-CPA)) into an IND-CCA secure one in the
random oracle model (ROM) [2]. The core idea of realizing the transformation
is to use “re-encryption” in the decryption algorithm to verify the validity of
ciphertexts, thereby rejecting invalid ciphertexts that may reveal information of
the private key. Specifically, the decryption algorithm outputs a rejection symbol
for an invalid ciphertext, which is called explicit rejection.
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With the development of quantum computation [11,22], we have to consider
the cryptographic constructions that are secure against quantum adversaries.
Particularly, the NIST launched the Post-Quantum Cryptography (PQC) stan-
dardization project, which called for candidates of quantum-resistant public-key
cryptographic primitives [19]. Note that a quantum adversary may execute pub-
lic cryptographic components such as hash functions in superposition on his
own quantum computer. In order to capture this ability of quantum adversaries,
Boneh et al. [4] introduced the quantum random oracle model (QROM), where
hash functions are modeled as public random oracles similarly as in the ROM
[2] but with quantum access. Now, it is generally believed that the security of
post-quantum cryptographic constructions should be established in the QROM.

Unfortunately, proving the IND-CCA security of the PKE scheme obtained
by applying the FO transformation [9,10] in the QROM is quite challenging,
as many classical ROM proof techniques cannot carry over to the quantum
settings [4]. For example, to implement the security reduction, the simulator
needs to simulate the decryption oracle without knowing the private key. Then,
the simulator has to first verify the validity of ciphertexts during the decryption
queries. In the ROM, the adversary’s queries to random oracle (RO) can be
recorded by a list, the simulator can easily check the validity of ciphertexts by
scanning over the RO-query list. However, such an RO-query list does not exist
in the QROM since quantum adversaries can evaluate the random oracle on a
superposition state of exponential many states [4].

Considering the problem of ciphertext validity verification, Hofheinz et al. [12]
revisited the key encapsulation mechanism (KEM) version of the FO transforma-
tion [9,10] and provided an “implicit rejection” variant of the KEM construction,
where a pseudorandom key is returned instead of a rejection symbol ⊥ for an
invalid ciphertext c in the decapsulation algorithm. Particularly, Hofheinz et
al. [12] provided several generic FO-KEM constructions with implicit rejection,
e.g., FO �⊥

m and FO �⊥, where �⊥ means implicit rejection and the pseudorandom
key K := H(s, c), where s is a random seed which is contained in the private
key, thus the adversary cannot verify the validity of ciphertexts by querying
the decapsulation oracle. Thereby, it is possible that the simulator can simulate
the decapsulation oracle in the security reduction without the requirement for
checking the validity of ciphertexts. Subsequently, Jiang et al. [15] extended the
technique in [4] to prove that the KEMs obtained by applying FO �⊥

m and FO �⊥ are
both IND-CCA secure in the QROM. Recently, the NIST announced the final-
ist KEM algorithm and Round-4 submissions, all of which follow the implicit
rejection variants of the FO-KEM to achieve IND-CCA security in the QROM.

Although existing KEMs with implicit rejection [12] can be shown to be
IND-CCA secure in the QROM [3,8,14,15,17,18,21], they need to introduce an
additional secret information (i.e., the s) in the construction compared with FO-
KEM with explicit rejection [5,12]. In terms of the functionality of the KEM,
the additional secret information is unnecessary, and it is more like only serving
for the security proof in the QROM. From a design point of view, it is natural
to ask whether there is a better solution to achieving “implicit rejection”?
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1.1 Our Contributions

In this paper, we answer the question above in the affirmative. At first, we can
utilize the secrecy of the private key to hide the validity of ciphertexts. Then, we
can also achieve implicit rejection and without requirement for the additional
secret information. Furthermore, we abstract out a framework that supports
implicit rejection.

(1) We propose a framework for the construction of quantum random oracles
that supports implicit rejection, and then prove that the KEMs satisfying
our framework are IND-CCA secure in the QROM. The key observation is
that we can use the idea of hash combination to eliminate the requirement
for checking the validity of ciphertexts. Specifically, we combine multiple
internal independent hash functions to construct the key-derivation-function
H (KDF in the KEM, modeled as a random oracle), and then simulate
the decapsulation oracle by only using one of the internal hash functions
whether the ciphertext is valid or not. As a consequence, it is easy to prove
the IND-CCA security of the KEMs. Moreover, we notice that the generic
transfomation FO �⊥ [12] satifies our framework.

(2) We present a novel realization FO �⊥,sk for constructing an IND-CCA secure
KEM scheme in the QROM by exploiting the verifiability of the private key,
where sk (the secret key of the underlying PKE scheme) means a pseudo-
random key K := H(sk, c) is returned for an invalid ciphertext c. Our new
realization no longer requires additional secret information in the construc-
tion, thus it is more concise compared with FO �⊥ [12]. We can apply our new
realization to NIST KEM submissions to simplify the constructions.

1.2 Technical Overview

Before showing our framework in detail, we first review the original FO-KEM
with implicit rejection. To simplify the presentation of FO �⊥, we decompose FO �⊥

into two separate transformations [12], i.e., T and U�⊥1, and FO �⊥ := U�⊥ ◦ T.

– The transformation T converts a randomized PKE (rPKE) into a determin-
istic PKE (dPKE) scheme PKE′ := T[PKE,G] by using a random oracle G.
The encryption of PKE′ is defined by Enc′ (pk,m) := Enc (pk,m;G(m)) and
Dec′(sk, c) invokes m′ := Dec(sk, c) and rejects (outputs ⊥) if m′ = ⊥ or
Enc (pk,m′;G(m′)) �= c.

– The transformation U�⊥ converts PKE′ into a KEM scheme
KEM := U�⊥[PKE′,H] with “implicit rejection”. The encapsulation of KEM
is defined by

Encaps(pk) := (c ← Enc′ (pk,m) ,K := H(m, c)),

1 There are some variants of U�⊥ including U�⊥
m, U⊥ and U⊥

m [12], where ⊥ means
explicit rejection, and m (without m) means K := H(m) (K := H(m, c)).
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where m is picked at random from the message space. The decapsulation of
KEM is defined by

Decaps �⊥(sk, c) :=

{
H(m, c) m �= ⊥
H(s, c) m = ⊥,

where m := Dec′ (sk, c) and s is a random seed as part of the private key.

1.2.1 Our Framework for Implicit Rejection To show our framework
more clearly, we consider a U�⊥-like transformation which converts the dPKE
scheme PKE′ into a KEM scheme KEM := U�⊥,DS[PKE′,H], where “DS”2 means
K := H(DS, c) is returned for an invalid ciphertext c in the decapsulation algo-
rithm. We first propose the framework for constructing a structured H via domain
separation, and then prove that if the simulator can construct such an H without
possessing the private key, then KEM := U�⊥,DS[PKE′,H] is IND-CCA secure in
the QROM. Finally, we analyze the specific properties that DS needs to satisfy,
which also helps us construct IND-CCA secure KEM schemes.

According to the responses of the decapsulation algorithm to valid ciphertexts
and invalid ciphertexts3, we first define two sets that contain all possible queries
to H during the decapsulation queries:

Dvalid := {(m, c)|Dec′ (sk, c) = m} and Dinvalid := {(DS, c)|Dec′ (sk, c) = ⊥}.

Next, we divide the domain of H (i.e., D) into D1 and D2 := D\D1, where D1 :=
Dvalid

⋃
Dinvalid. Let H1 : C → K and H2 : {0, 1}∗ → K be two independent

internal random oracles that cannot be accessed directly by the adversary, we
construct H as follows:

H(A) :=

{
H1 (c) A ∈ D1

H2 (A) A ∈ D2.

Note that every c in (·, c) ∈ Dvalid is valid and every c in (·, c) ∈ Dinvalid is
invalid, and the decryption of PKE′ is deterministic, thus it is not possible for
two distinct A1 ∈ D1 and A2 ∈ D1 to result in a same output H1 (c). Therefore,
such a construction of H is a purely conceptual change and it is still a random
oracle in the adversary’s view.

If the simulator can construct such an H without possessing the private key
and PKE′ is one-way secure, then we can prove that KEM := U�⊥,DS[PKE′,H]
is IND-CCA secure in the QROM. Specifically, we first replace the truly quan-
tum random oracle with our structured H. Then, the simulator can simulate
the decapsulation oracle by only using H1, without the requirement for the pri-
vate key. Thus, the decapsulation oracle completely hides the information of the
2 Here, “DS” is a domain separator, and it should be a bit string of sufficient length,

otherwise it is easy to be guessed by the adversary.
3 For any fixed key pair (pk, sk), we say that a ciphertext c is invalid if Dec′ (sk, c) = ⊥,

and valid otherwise.
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private key. As a consequence, the IND-CCA adversary against KEM cannot dis-
tinguish the real key K∗

0 := H(m∗, c∗) from a uniform random key K∗
1 unless

the adversary queries H on (m∗, c∗). In the QROM, the probability can easily be
bounded by reducing a distinguishing problem to the one-way security of PKE′

via one-way to hiding (OW2H) lemma [1,3,18,24].
Obviously, the key point to construct such an H is that the simulator can

effectively check whether A belongs to D1. If the underlying encryption scheme
is perfectly correct, the simulator can check whether (m, c) belongs to Dvalid by
testing whether c = Enc′ (pk,m). Thus, the only problem is how the simulator
checks that A belongs to Dinvalid. For our purposes, we require that A ∈ Dinvalid

satisfies the following intuitive property:

Property 1. (Public Verifiability.) For any fixed key pair (pk, sk) ← Gen,
given any input A ∈ D, there is a quantum polynomial-time adversary A(pk)
that can effectively check whether A belongs to Dinvalid.

In this case, the simulator can explicitly check whether A belongs to Dinvalid and
construct such an H without possessing the private key. Meanwhile, we notice
that if DS := sk (the secret key of PKE′), i.e., Dinvalid := {(sk, c)|Dec′ (sk, c) =
⊥}, then A ∈ Dinvalid is publicly verifiable (see Sect. 1.3 for details).

However, it is obvious that the property is too strict for the selection of DS.
Actually, an H∗ that is indistinguishable from H in the adversary’s view also
satisfies our requirement. We just need to replace H with H∗ after simulating
the decapsulation oracle with H1, then we can also prove the IND-CCA security.
Therefore, we define another property that the simulator can implicitly check
whether A belongs to Dinvalid:

Property 2. (Hiding.) We say A ∈ Dinvalid is hidden from the adversary’s
view, if for any fixed key pair (pk, sk) ← Gen, for any quantum polynomial-time
adversary A(pk) against KEM, the advantage Adv(A) := Pr[A ∈ Dinvalid : A ←
A(pk)] is negligible.

In general, it is easy to find an invalid ciphertext c, thus we essentially require
that “DS” is hidden from the adversary’s view. In this case, informally, the
probability that the adversary queries H on (DS, ·) is negligible. The simulator
can implicitly consider that each A does not belongs to Dinvalid and construct
an H∗ as follows:

H∗(A) :=

{
H1 (c) A ∈ Dvalid

H2 (A) otherwise.

Note that H∗ is equal to H except on input A ∈ Dinvalid, we can apply OW2H
lemma [1,3] to bound the advantage that the adversary distinguishes H from H∗.

Remark. In our framework, the internal random oracles cannot be accessed by
adversaries, which is different from the indifferentiability framework [26].

1.2.2 Explanation for FO �⊥ by Using Our Framework We notice that
the widely used generic transfomation FO �⊥ := U�⊥◦T [12] satifies our framework.



Implicit Rejection in FO: Framework and a Novel Realization 115

In transfomation U�⊥, we have DS := s, where s is picked at random from the
message space M of PKE′ and is part of the private key. Thus, the simulator
cannot check whether A belongs to Dinvalid because it does not know s. However,
it is easy to see that the transfomation U�⊥ satisfies Property 2 and we have
Adv(A) := Pr[A ∈ Dinvalid : A ← A (pk)] ≤ 1/ |M| . Applying OW2H lemma
[1,3], we can bound the probability that the IND-CCA adversary distinguishes H
from H∗ by 2q/

√
|M| if it performs at most q oracle queries.

1.3 A New Realization for Our Framework

We present a novel realization U�⊥,sk, i.e., DS := sk (the secret key of PKE′), that
satisfies our framework. Moreover, we analyze the cases where pk (the public key
of PKE′) corresponds to only one private key and n private keys:

(1) If pk corresponds to only one private key, then U�⊥,sk satisfies Property 1,
i.e., A ∈ Dinvalid is publicly verifiable. Parse A = (A1, c), the simulator can
use pk to check whether A1 = sk by testing whether Gen.keygen(A1) = pk4.
Furthermore, the simulator can use A1 to check if c is valid if A1 = sk. In
this case, the simulator can effectively construct the H.

(2) If pk corresponds to n private keys, then U�⊥,sk only satisfies Property 2
since all private keys are functionally equivalent. In this case, H∗ is compu-
tationally indistinguishable from H in the adversary’s view since sk is secret.
Furthermore, if n is sufficiently large, i.e., private keys still have sufficiently
high entropy when pk is determined, then sk works like s in the U�⊥.

We can easily prove the IND-CCA security of KEM := U�⊥,sk[PKE′,H] by using
our framework. Surprisingly, the previous proof technique in [3,14,15,17,18,21]
does not apply to U�⊥,sk, and there is a technical hurdle for simulating the decap-
sulation oracle due to the re-use of sk. In the previous proofs, they first replaced
H(s, ·) with an internal random oracle H1(·) during the simulation of the decap-
sulation oracle. In U�⊥,sk, since sk is used to decrypt ciphertexts and hide the
validity of ciphertexts simultaneously, the two roles of sk become intertwined in
the security reduction. Specifically, the simulator needs to simulate the decapsu-
lation oracle without the secret key, then we must replace H(sk, ·) with H1(·) first.
However, in the present game, we need sk to decrypt ciphertexts, which would
leak information on the private key. Thus one cannot claim that the replacement
of H1(·) for H(sk, ·) will not be noticed by an adversary.

1.4 Related Works

In this section, we briefly introduce related works on IND-CCA secure KEM in
the QROM. Hofheinz et al. [12] first followed Targhi and Unruh’s technique
4 Since quantum adversaries may evaluate random oracles on quantum superposition

states, the simulator can only test whether A1 = sk and cannot extract sk, which
means the simulator need to measure the quantum queries.
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[23] and provided two variants of the original FO-KEM transformations, i.e.,
QFO �⊥

m and QFO⊥
m, where Q means adding an additional length-preserving hash

to the ciphertext. Although QFO �⊥
m and QFO⊥

m [12] can be shown to be IND-
CCA secure in the QROM, there are two obvious drawbacks: the ciphertext size
increases significantly and the security bounds are far from tight. The subsequent
works are mainly to remove the additional hash and improve the tightness of
the security reduction.

For the KEM with implicit rejection, Jiang et al. [15] and Saito et al. [21]
extended the technique in [4] to prove the QROM security without suffering any
ciphertext overhead. Subsequent works [3,14,17,18] improved the tightness of the
security reduction by using some generalized versions of the OW2H lemma [24].
Jiang et al. [17] and Bindel et al. [3] applied the semi-classical OW2H lemma [1]
to give a security proof for transformation T without the square-root advantage
loss. Kuchta et al. [18] applied Measure-Rewind-Measure OW2H (MRM OW2H)
lemma to prove the transformation U�⊥ from an OW-CPA secure dPKE, without
the square-root advantage loss for the first time.

For the KEM with explicit rejection, Jiang et al. [16] developed a novel
verification method for the validity of ciphertexts, and replaced the additional
length-preserving hash [12,23] with a traditional hash to reduce the ciphertext
size. Recently, Don et al. [7] developed a new generic “online-extractability”
technique by using Zhandry’s compressed-oracle technique [25]. Moreover, Don
et al. [7] and Hövelmanns et al. [13] applied the new technique to verify the
validity of ciphertexts and proved the IND-CCA security of the original FO-
KEM with explicit rejection (i.e., FO⊥

m) in the QROM, without the requirement
for an additional hash.

1.5 Paper Organization

The rest of this paper is organized as follows. In Sect. 2, some notations and
lemmas are introduced. In Sect. 3, we propose a framework for the construction
of quantum random oracles that supports implicit rejection, and prove that the
KEMs with implicit rejection satisfying our framework are IND-CCA secure in
the QROM. Meanwhile, we explain the generic transfomation FO �⊥ [12] by using
our new framework. In Sect. 4, we present a novel realization FO �⊥,sk that satisfies
our framework. The conclusions are drawn in Sect. 5.

2 Preliminaries

Notations. For a finite set S, let |S| denotes the cardinality of S, let x
$← S

denote the sampling of a uniform random element x, while we denote the sam-
pling according to some distribution D by x ← D. For the Boolean statement
E, [[E]] denotes the bit that is 1 if E is true, and 0 otherwise. We denote deter-
ministic (probabilistic) computation of an algorithm A on input x by y := A(x)
(y ← A(x)). We denote algorithm A with access to an oracle H by AH.
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2.1 Public-Key Encryption

A public-key encryption PKE = (Gen,Enc,Dec) consists of three polynomial-time
algorithms and a finite message space M:

– Gen(1k)→ (pk, sk): a key generation algorithm that on input 1k, where k
is the security parameter, outputs a key pair (pk, sk), where pk defines a
randomness space R = R (pk).

– Enc(pk,m)→ c : an encryption algorithm that on input pk and a message
m ∈ M, outputs a ciphertext c ← Enc (pk,m). If necessary, we make the
used randomness of encryption explicit by writing c := Enc (pk,m; r), where

r
$←R and R is the randomness space.

– Dec(sk, c)→ m/⊥: a decryption algorithm that on input decryption key sk
and ciphertext c, outputs either a message m := Dec(sk, c) or a special symbol
⊥ /∈ M to indicate that c is an invalid ciphertext.

Remark. We follow the definition of key generation algorithm that was proposed
in [6,28]. Let Gen(1k) invoke Gen.keygen(·), whose input is sk ∈ SK and output
is the corresponding pk. The security parameter k defines a secret key space
SK = SK (k). Moreover, Gen.keygen(·) is public and visible to everyone [28].

Definition 1 (Correctness [12]). We call a Public-Key Encryption scheme
PKE δ-correct if

E[max
m∈M

Pr [Dec (sk, c) �= m : c ← Enc (pk,m)]] ≤ δ,

where the expectation is taken over (pk, sk) ← Gen.

Security. We now define two security notions for public-key encryption: One-
Way against Quantum Plaintext Checking Attacks (OW-qPCA) and Indistin-
guishbility against Chosen Plaintext Attacks (IND-CPA).

Definition 2 (OW-qPCA). For any adversary A, we define its OW-qPCA
advantage against PKE as follows:

AdvOW-qPCA
PKE (A) := Pr

[
OW-qPCAA ⇒ 1

]
,

where OW-qPCA game is defined as in the left-hand of Fig. 1, and the adversary
A can query the oracle Pco with quantum state.

Definition 3 (IND-CPA). For any adversary A = (A1,A2), we define its
IND-CPA advantage against PKE as follows:

AdvIND-CPA
PKE (A) := |Pr

[
IND-CPAA ⇒ 1

]
− 1/2|,

where IND-CPA game is defined as in the right-hand of Fig. 1.
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Fig. 1. Games OW-qPCA and IND-CPA for PKE. Note that in game OW-qPCA, we
allow the adversary A to evaluate the oracle Pco on quantum states.

2.2 Key Encapsulation Mechanism

A key encapsulation mechanism KEM = (Gen,Encaps,Decaps) consists of three
polynomial-time algorithms:

– Gen(1k)→ (pk, sk): a key generation algorithm that on input 1k, where k is
the security parameter, outputs a key pair (pk, sk).

– Encaps(pk)→ (K, c): an encapsulation algorithm that on input encapsulation
key pk, outputs a tuple (K, c), where c is called an encapsulation of the key
K which is contained in the key space K.

– Decaps(sk, c)→ K: a decapsulation algorithm that on input decapsulation
key sk and an encapsulation ciphertext c, outputs a key K associated with c
or a pseudorandom key (implicit rejection), which implies that c is an invalid
encapsulation ciphertext.

Remark. Implicit (Explicit) rejection means a pseudorandom key K (a rejection
symbol ⊥ /∈ K, resp.) is returned for an invalid encapsulation ciphertext. In this
paper, we only consider the KEM with implicit rejection.

Security. We now define Indistinguishability against Chosen Ciphertext Attacks
(IND-CCA) security for key encapsulation mechanism.

Fig. 2. Game IND-CCA for KEM.
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Definition 4 (IND-CCA). For any adversary A, we define its IND-CCA
advantage against KEM as follows:

AdvIND-CCA
KEM (A) := |Pr

[
IND-CCAA ⇒ 1

]
− 1/2|,

where IND-CCA game is defined as in Fig. 2.

2.3 Quantum Random Oracle Model

We prove security in the QROM [4] where adversaries are given quantum access
to the random oracles, and classical access to all the other oracles.

Simulating Quantum Random Oracle. Zhandry [27] proved that for at most
q queries, no quantum algorithm AO can distinguish a truly random function
H : X → Y from a 2q-wise independent function f2q, where f2q : X → Y is a
random polynomial of degree 2q over the finite field F|Y|.

Lemmas. We now review several important lemmas in the QROM, includ-
ing original One-Way to Hiding (OW2H) lemma [1,3,24] and Measure-Rewind-
Measure OW2H (MRM OW2H) lemma [18], which we will use in our proof.

Lemma 1 (Original OW2H [1,3,24]). Let S ⊆ X be a random set, let z be
a random bit string. Let G, H: X → Y be random functions satisfying ∀x /∈ S,
G(x) = H(x), the tuple (G, H, S, z) may have arbitrary joint distribution. Let
AH be a q-query quantum oracle algorithm with depth d. Let Ev be an arbitrary
classical event. Define an oracle algorithm BH(z) as follows: Pick i

$← {1, ..., d},
run AH until (just before) the i-th query. Measure all query input registers in the
computational basis, and output the set T of measurement outcomes. Let

Pleft := Pr[Ev : AH (z)], Pright := Pr[Ev : AG (z)],

Pguess := Pr[S ∩ T �= ∅ : T ← BH (z)] = Pr[S ∩ T �= ∅ : T ← BG (z)].

Then |Pleft − Pright| ≤ 2d
√

Pguess .

We say that A is a q-query oracle algorithm [1] if it performs at most q oracle
queries (counting parallel queries as separate queries), and has query depth d if
it invokes the oracle at most d times (counting parallel queries as one query).

Lemma 2 (Double-sided OW2H with Measure-rewind-Measure [18]).
Let S ⊆ X be a random set, let z be a random bit string. Let G, H: X → Y be
random functions satisfying ∀x /∈ S, G(x) = H(x), the tuple (G, H, S, z) may have
arbitrary joint distribution. Furthermore, let AO be a quantum oracle algorithm
with depth d, we can construct an algorithm DG,H such that TDG,H ≤ 3 · TAO and

|Pr
H,z

[1 ← AH (z)] − Pr
G,z

[1 ← AG (z)]| ≤ 4d · Pr
G,H,S,z

[S ∩ T �= ∅ : T ← DG,H (z)].
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3 Our Framework

To simplify the presentation of our framework, we analyze the FO-like KEM with
implicit rejection in a modular way. We first review the transformation T [12],
then propose a framework for constructing quantum random oracles that sup-
ports U�⊥-like transformation. Moreover, we prove that the KEMs with implicit
rejection satisfying our framework are IND-CCA secure in the QROM. Finally,
we show that the generic transformation FO �⊥ [12] satifies our framework.

3.1 Transformation T: From IND-CPA to OW-qPCA

The transformation T [12] converts a rPKE scheme into a dPKE scheme by using
a random oracle. To a rPKE scheme PKE = (Gen,Enc,Dec) with message space
M, randomness space R and a random oracle G : M → R, the dPKE scheme
PKE′ = (Gen,Enc′,Dec′) := T[PKE,G] is defined in Fig. 3.

Fig. 3. OW-qPCA secure dPKE scheme PKE′ := T[PKE,G]

If the underlying rPKE scheme PKE is IND-CPA secure, Jiang et al. [17] and
Bindel et al. [3] proved that PKE′ := T[PKE,G] is OW-qPCA secure and OW-
CPA secure in the QROM, respectively. We use the result from [17], since the
resulting OW-qPCA5 security is our desired security property.

Theorem 1 (IND-CPA PKE
QROM⇒ OW-qPCA PKE′ [17]). If PKE is δ-

correct, for any OW-qPCA adversary B against PKE′ := T[PKE,G], issuing at
most qG quantum queries to the random oracle G and at most qp quantum queries
to the plaintext checking oracle Pco, there exists an IND-CPA adversary A against
PKE such that AdvOW-qPCA

PKE′ (B) ≤ 2(dG + 2) ·AdvIND-CPA
PKE (A) + 4(qG+2)2

|M| + 16qG
√

δ

and the running time of A is about that of B.

3.2 Our Framework for Implicit Rejection

We now state our framework for the construction of quantum random ora-
cles that supports U�⊥-like transformation. To a public-key encryption scheme
PKE′ = (Gen,Enc′,Dec′) with message space M and a random oracle H :

5 We will explain in Sect. 3.2 why we require the intermediate scheme to be OW-qPCA
secure.
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Fig. 4. IND-CCA secure KEM scheme KEM := U�⊥,DS[PKE′,H]

{0, 1}∗ → K, we associate KEM = (Gen,Encaps,Decaps �⊥) := U�⊥,DS[PKE′,H],
see Fig. 4.

Next, we construct a structured H. Specifically, we first define two sets that
contain all possible queries to random oracle H during the decapsulation queries:

Dvalid := {(m, c)|Dec′ (sk, c) = m} and Dinvalid := {(DS, c)|Dec′ (sk, c) = ⊥},

Then, we divide the domain of H (i.e., D) into D1 and D2 := D\D1, where D1 :=
Dvalid

⋃
Dinvalid. Let H1 : C → K and H2 : {0, 1}∗ → K be two independent

internal random oracles, we construct the H as follows:

H(A) :=

{
H1 (c) A ∈ D1

H2 (A) A ∈ D2.

The core idea of our framework is to construct such an H or an H∗ that is
indistinguishable from H in the adversary’s view, without possessing the private
key. Obviously, the key point to construct H is that the simulator can effectively
check whether A belongs to D1. For our purpose, we require that A ∈ Dinvalid

satisfies one of the following properties:

Property 1. (Public Verifiability.) For any fixed key pair (pk, sk) ← Gen,
given any input A ∈ D, there is a quantum polynomial-time adversary A(pk)
that can effectively check whether A belongs to Dinvalid.

Property 2. (Hiding.) We say A ∈ Dinvalid is hidden from the adversary’s
view, if for any fixed key pair (pk, sk) ← Gen, for any quantum polynomial-time
adversary A(pk) against KEM, the advantage Adv(A) := Pr[A ∈ Dinvalid : A ←
A (pk)] is negligible.

If a KEM scheme satisfies Property 1, then the simulator can explicitly check
whether A belongs to D1 and effectively construct such an H without possessing
the private key. If a KEM scheme satisfies Property 2, the simulator can implic-
itly consider that each A does not belongs to Dinvalid. Moreover, the simulator
can construct an H∗ as follows:

H∗(A) :=

{
H1 (c) A ∈ Dvalid

H2 (A) otherwise.
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Note that H∗(A) = H(A) except on input A ∈ Dinvalid, we can apply OW2H
lemma [1,3] to argue the indistinguishability.

Our framework allows the underlying PKE to be non-perfectly correct since
many practical lattice-based encryption schemes have a small probability of
decryption failure. However, if we use “re-encryption” to check whether (m, c)
belongs to Dvalid, it is possible that c = Enc′(pk,m) but Dec′ (sk, c) �= m due to
the decryption errors. In order to handle decryption errors, we assume that PKE′

is OW-qPCA secure. Then, the simulator can easily check whether (m, c) belongs
to Dvalid by querying oracle Pco(m, c). Particularly, we give a equivalent defini-
tion, i.e., Dvalid := {(m, c)|Pco(m, c) = 1} and Dinvalid := {(DS, c)|c is invalid}.

Next, we prove the IND-CCA security of the KEMs with implicit rejec-
tion that satisfy our framework. The following theorem shows that KEM :=
U�⊥,DS[PKE′,H] is IND-CCA secure in the QROM if PKE′ is OW-qPCA secure.

Theorem 2 (OW-qPCA PKE′ QROM⇒ IND-CCA KEM). Let PKE′ be a
dPKE scheme obtained by applying the transformation T to δ-correct rPKE PKE.
If KEM := U�⊥,DS[PKE′,H] satisfies our framework and DS ∈ {0, 1}l, for any IND-
CCA adversary B against KEM := U�⊥,DS[PKE′,H], issuing at most qD classical
queries to the decapsulation oracle Decaps �⊥ and at most qH quantum queries
to the random oracle H with query depth at most dH, there exist an OW-qPCA
adversary A against PKE′ such that

AdvIND-CCA
KEM (B) ≤ 2dH · AdvOW-qPCA

PKE′ (A) + (2dH + 1) · δ (1)

AdvIND-CCA
KEM (B) ≤ 2dH · AdvOW-qPCA

PKE′ (A) + (2dH + 1) · δ + 2dH
√

negl(λ) (2)

AdvIND-CCA
KEM (B) ≤ 2dH · AdvOW-qPCA

PKE′ (A) + (2dH + 1) · δ + 2
√

qHdH/2l, (3)

and the running time of A is � 3TB.

We obtain Eq. (1) if KEM satisfies Property 1. If KEM only satisfies Prop-
erty 2, we obtain Eq. (2) or Eq. (3). Note that bound Eq. (3) is meaningless for
small values l, thus we require that l is sufficiently large in this case. The proof
of Eq. (1) can be divided into two steps: we first replace the quantum random
oracle with our structured H, then we can simulate the oracle Decaps �⊥ such that
it no longer uses sk. Finally, we apply MRM OW2H lemma [18] to argue key
indistinguishability. The proof of Eq. (2, 3) is the same as the proof of Eq. (1)
except that we need to replace H with H∗ after simulating the oracle Decaps �⊥

without requirement for sk.

Proof . We first define some notations. Let Ω1, Ω2 and Ω3 be the sets of all
functions H1 : C → K, H2 : M × C → K and H3 : {0, 1}l × C → K, respectively.
Consider the games G0−G2 in Fig. 5, we will prove security through a sequences
of games.
Game G0: The game G0 is the original IND-CCA game, then we have

|Pr [G0 ⇒ 1] − 1/2| = AdvIND-CCA
KEM (B) .
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Fig. 5. Games G0 − G2 for the proof of Theorem 2

Game G1: This game is identical to game G0, except that we replace the truly
quantum random oracle H with our structured H. Following our framework, we
define Dvalid := {(m, c)|Pco(m, c) = 1} and Dinvalid := {(DS, c)|c is invalid}.

Let H1
$← Ω1, H2

$← Ω2 and H3
$← Ω3 be three independent internal random

functions, let D1 := Dvalid

⋃
Dinvalid, D2 := M × C\Dvalid and D3 := {0, 1}l ×

C\Dinvalid, we construct the structured H as follows:

H(A) :=

⎧⎪⎨
⎪⎩
H1 (c) A ∈ D1

H2 (A) A ∈ D2

H3 (A) A ∈ D3,

Note that every c in (·, c) ∈ Dvalid is valid and every c in (·, c) ∈ Dinvalid is
invalid, and Pco(m0, c) = Pco(m1, c) = 1 for m0 �= m1 is impossible, thus it is
not possible for two distinct A1 ∈ D1 and A2 ∈ D1 to result in a same output
H1 (c). Therefore, this is a purely conceptual change and the distribution of H
in G0 and G1 are identical. Thus we have

Pr[G0 ⇒ 1] = Pr[G1 ⇒ 1].

Game G2: This game is identical to game G1, except that the oracle Decaps �⊥

is modified such that it does not make use of sk any longer: H1 (c) is returned
as long as c �= c∗.

In the decapsulation algorithm, since (m′, c) and (DS, invalid c) are both
members of D1, we can rewrite H(m′, c) = H1(c) and H(DS, c) = H1(c), which is
a purely written change, thus it does not change B’s advantage. We have

Pr[G1 ⇒ 1] = Pr[G2 ⇒ 1].
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Remark: If KEM satisfies Property 1, i.e., A ∈ Dinvalid is publicly verifiable,
then the OW-qPCA adversary A can construct such an H perfectly, and we can
directly apply MRM OW2H lemma [18] to argue key indistinguishability.

Game G3: In game G3, we choose K∗ uniformly at random from K. Addition-
ally, let S := {(m, c∗) : Pco(m, c∗) = 1}, we define a new random oracle H′:

H′(A) :=

{
K∗ if A ∈ S
H(A) otherwise.

Then, we run b′ ← BDecaps �⊥,H′
(pk, c∗,K∗) if b = 0, and b′ ←

BDecaps�⊥,H (pk, c∗,K∗) otherwise.

If S := {(m∗, c∗)}, then the change from game G2 to game G3 is purely
conceptual. However, PKE′ is not perfectly correct since it is derived from δ-
correct PKE. Thus, it is possible that Dec′ (sk, c∗) �= m∗ and S �= {(m∗, c∗)}.
Thus we define a bad event,

BadEv := [Dec′ (sk, c∗) �= m∗| (pk, sk) ← Gen,m∗ $←M, c∗ ← Enc′(pk,m∗)].

Moreover, we have

Pr[BadEv] = Pr[Dec′ (sk, c∗) �= m∗| (pk, sk) ← Gen,m∗ $← M, c∗ ← Enc′(pk,m∗)]

= E
(pk,sk)←Gen

[
E

m∗ $← M
Pr [Dec′ (sk, c∗) �= m∗|c∗ ← Enc′ (pk,m∗)]

]

≤ E
(pk,sk)←Gen

[
max
m∈M

Pr [Dec′ (sk, c) �= m|c ← Enc′ (pk,m)]
]

.

By the definitions of PKE′6 and δ-correct, we have

Pr[BadEv] ≤ E
(pk,sk)←Gen

[
max
m∈M

Pr [Dec (sk, c) �= m|c ← Enc (pk,m)]
]

≤ δ.

If BadEv doesn’t happen, then S := {(m∗, c∗)} and the change from game G2 to
game G3 is purely conceptual. By the difference lemma, we have

|Pr[G2 ⇒ 1] − Pr[G3 ⇒ 1]| ≤ Pr[BadEv].

Next, we will bound B’s advantage in game G3. First, we have∣∣∣∣Pr [G3 ⇒ 1] − 1
2

∣∣∣∣ =
∣∣∣∣12 Pr [1 ← B : b = 1] +

1
2

Pr [0 ← B : b = 0] − 1
2

∣∣∣∣
=

1
2

|Pr [0 ← B : b = 0] − Pr [0 ← B : b = 1]| .

6 By the definitions of Dec′ and condition on c ← Enc′ (pk,m), if Dec′ (sk, c) �= m,
then we must have Dec (sk, c) = m′ �= m or Dec (sk, c) = ⊥, i.e., Dec (sk, c) �= m.
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Then, note that H′ is equal to H except on input (m, c) ∈ S. Let z = (pk, c∗,K∗),
by Lemma 2, there is an algorithm D, with run-time � 3TB and making oracle
calls to H′ and H, such that

|Pr[0 ← B : b = 0] − Pr[0 ← B : b = 1]|
= |Pr[0 ← BH′

(z)] − Pr[0 ← BH (z)]|
≤ 4dH · Pr[S ∩ T �= ∅ : T ← DH′,H (z)].

Finally, we can construct an adversary A(pk, c∗) against the OW-qPCA secu-
rity of PKE′ that simulates H′ and H for D simultaneously. Suppose that BadEv
doesn’t happen, then S has only one tuple (m∗, c∗). In this case, the adversary
A can return the right m∗ as long as S ∩ T �= ∅. Therefore, we have

Pr[S ∩ T �= ∅ : T ← DH′,H (z)] ≤ AdvOW−qPCA
PKE′ (A) + Pr[BadEv].

Combining above formulas, we obtain Eq. (1):

AdvIND-CCA
KEM (B) = |Pr [G0 ⇒ 1] − 1/2|

= |Pr [G1 ⇒ 1] − 1/2|
= |Pr [G2 ⇒ 1] − 1/2|
= |Pr [G2 ⇒ 1] − Pr [G3 ⇒ 1] + Pr [G3 ⇒ 1] − 1/2|
≤ |Pr [G3 ⇒ 1] − 1/2| + Pr [BadEv]

≤ 2dH · Pr[S ∩ T �= ∅ : T ← DH′,H (z)] + Pr [BadEv]

≤ 2dH · (AdvOW-qPCA
PKE′ (A) + Pr[BadEv]) + Pr [BadEv]

≤ 2dH · AdvOW-qPCA
PKE′ (A) + (2dH + 1) · δ .

Remark: Note that in game G3, the OW-qPCA adversary A(pk, c∗) needs to
simulate H for D. Thus, if KEM only satisfies Property 2, then we must insert
game G2.5 after game G2 to replace H with H∗, which can be simulated by A.

Game G2.5: This game is identical to game G2, except that we replace H with
H∗, which is defined by

H∗(A) :=

⎧⎪⎨
⎪⎩
H1 (c) A ∈ Dvalid

H2 (A) A ∈ D2

H3 (A) otherwise.

Note that H is equal to H∗ except on input A ∈ Dinvalid. Applying Lemma 1
with S := Dinvalid and z := (pk, c∗,K∗

b ,Decaps �⊥)7, we have

|Pr[b = b′ : BH (z)] − Pr[b = b′ : BH∗
(z)]| ≤ 2dH

√
Pguess,

7 In Lemma 1, since there is no assumption on the size of z, the additional oracles can
simply be encoded as part of z [1,3].
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where Pguess := Pr[S ∩ T �= ∅ : T ← CH∗
(z)] for a random measurement

outcome T . By Property 2, we have Pguess ≤ negl(λ) for a negligible function
negl(λ). Thus, we have

|Pr[G2 ⇒ 1] − Pr[G2.5 ⇒ 1]| ≤ 2dH
√

negl(λ).

Remark: More specifically, if DS is independent of BH∗
(z)’s view (e.g., DS := s

in U�⊥), then BH∗
(z) has no information about DS, we can directly obtain

Pguess ≤ Pr[∃(DS, ·) ∈ T : T ← CH∗
(z)] ≤ qH/(dH · 2l)

since set T contains qH/dH parallel queries. Thus, we have

|Pr[G2 ⇒ 1] − Pr[G2.5 ⇒ 1]| ≤ 2
√

qHdH/2l.

Game G3′ : The game G3′ is tha same as game G3 except that the new random
oracle H′ is defined by

H′(A) :=

{
K∗ if A ∈ S
H∗(A) otherwise,

and we run b′ ← BDecaps�⊥,H′
(pk, c∗,K∗) if b = 0, and b′ ←

BDecaps�⊥,H∗
(pk, c∗,K∗) otherwise. Similar to the case from game G2 to game

G3, we can obtain

|Pr[G2.5 ⇒ 1] − Pr[G3′ ⇒ 1]| ≤ Pr[BadEv]

and
|Pr [G3′ ⇒ 1] − 1/2| ≤ 2dH · (AdvOW-qPCA

PKE′ (A) + Pr[BadEv]).

Combining above formulas, if KEM only satisfies Property 2, we have

AdvIND-CCA
KEM (B) ≤ 2dH · AdvOW-qPCA

PKE′ (A) + (2dH + 1) · δ + 2dH
√

negl(λ).

Furthermore, if DS is independent of B’s view, we obtain Eq. (3):

AdvIND-CCA
KEM (B) ≤ 2dH · AdvOW-qPCA

PKE′ (A) + (2dH + 1) · δ + 2
√

qHdH/2l.

3.3 Explanation for FO �⊥ by Using Our Framework

We now show that the generic transfomation FO �⊥ := U�⊥ ◦ T [12] satifies our
framework, thus KEM := FO �⊥[PKE,G,H] is IND-CCA secure in the QROM.

Following our framework, in transfomation U�⊥, we have DS := s and

Dvalid := {(m, c)|Pco(m, c) = 1} and Dinvalid := {(s, c)|c is invalid},

where s is picked at random from M and is part of the private key. Thus, the
simulator cannot effectively check whether A belongs to Dinvalid because it does
not know s. However, it is obvious that the transfomation U�⊥ satisfies Property
2 since s is independent of B’s view. By Eq. (3) of Theorem 2, we have

AdvIND-CCA
KEM (B) ≤ 2dH · AdvOW-qPCA

PKE′ (A) + (2dH + 1) · δ + 2
√

qHdH/ |M|.
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4 Our New Realization

In this section, we present a novel realization U�⊥,sk, see Fig. 6. We analyze the
cases where pk corresponds to only one private key and n private keys. In either
case, we can explain U�⊥,sk by using our framework. Combining our realization
U�⊥,sk with transformation T, we can obtain a variant of the FO-KEM, i.e.,
FO �⊥,sk := U�⊥,sk ◦ T, which converts an IND-CPA secure PKE into an IND-CCA
secure KEM in the QROM. Compared with FO �⊥ [12], FO �⊥,sk no longer requires
additional secret informations, thus it is more concise. We can apply our new
realization to NIST Round-4 KEM submissions to simplify the constructions.

Fig. 6. IND-CCA secure KEM scheme KEM := U�⊥,sk[PKE′,H]

• Case 1 (one to one): In this case, U�⊥,sk satisfies Property 1. Following
our framework, we have DS := sk and Dinvalid := {(sk, c)|c is invalid}. For
the adversary’s queries A = (A1, c) to random oracle, the simulator can use
pk to check whether A1 = sk by testing whether Gen.keygen(A1) = pk8. If
A1 = sk, then the simulator can use A1 to check if c is valid. Therefore,
A ∈ Dinvalid is publicly verifiable. By Eq. (1) of Theorem 2, we have

AdvIND-CCA
KEM (B) ≤ 2dH · AdvOW-qPCA

PKE′ (A) + (2dH + 1) · δ.

• Case 2 (one to many): In this case, U�⊥,sk only satisfies Property 2. With-
out loss of generality, let pk corresponds to n private keys, i.e., there are ski ∈
SK such that Gen.keygen(ski) = pk for i ∈ {1, ..., n}, let pseudorandom key
K := H(sk1, c). Following our framework, we have DS := sk1 and Dinvalid :=
{(sk1, c)|c is invalid}. Since all private keys are functionally equivalent, the
simulator will recognize that A ∈ {(ski, c)|i ∈ {2, .., n}, c is invalid} belongs
to Dinvalid. Thus, the simulator cannot construct H perfectly. Meanwhile,
since sk1 is (computationally) hidden from view of any adversary, U�⊥,sk sat-
isfies Property 2.

For Case 2, by Theorem 2, we have Pguess := Pr[S ∩ T �= ∅ : T ← CH∗
(z)].

Note that sk1 is not independent of the adversary’s view, there may be informa-
tion of sk1 in pk. We need to construct another OW-qPCA adversary A(pk, c∗)

8 In addition, the simulator can also test whether A1 = sk by repeated random encryp-
tion and trial decryption.
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that simulates H∗ for C, and obtain Pguess ≤ AdvOW−qPCA
PKE′ (A). By Eq. (2) of

Theorem 2, we can obtain

AdvIND-CCA
KEM (B) ≤ 4dH

√
AdvOW-qPCA

PKE′ (A) + (2dH + 1) · δ.

Moreover, if n is sufficiently large, i.e., private keys still have sufficiently
large entropy when pk is determined. Note that all private keys are functionally
equivalent (information-theoretically), thus sk1 works like s in the U�⊥, we can
directly obtain Pguess ≤ qH/(dH · n). By Eq. (3) of Theorem 2, we have

AdvIND-CCA
KEM (B) ≤ 2dH · AdvOW-qPCA

PKE′ (A) + (2dH + 1) · δ + 2
√

qHdH/n.

5 Conclusions

In this paper, we propose a framework for constructing quantum random oracle
that supports implicit rejection, and prove that the KEMs with implicit rejec-
tion satisfying our framework are IND-CCA secure in the QROM. Moreover, we
present a novel realization U�⊥,sk for our framework. Compared with existing
KEMs with implicit rejection [12], U�⊥,sk is more concise, and it can be applied
to NIST KEM submissions to simplify the constructions.
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12. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-
Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol.
10677, pp. 341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70500-2 12
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Abstract. To enhance the security or the efficiency of the standard
RSA cryptosystem, some variants have been proposed based on elliptic
curves, Gaussian integers or Lucas sequences. A typical type of these
variants which we called Type-A variants have the specified modified
Euler’s totient function ψ(N) = (p2 − 1)(q2 − 1). But in 2018, based
on cubic Pell equation, Murru and Saettone presented a new RSA-like
cryptosystem, and it is another type of RSA variants which we called
Type-B variants, since their scheme has ψ(N) = (p2 + p+1)(q2 + q +1).
For RSA-like cryptosystems, four key-related attacks have been widely
analyzed, i.e., the small private key attack, the multiple private keys
attack, the partial key exposure attack and the small prime difference
attack. These attacks are well-studied on both standard RSA and Type-
A variants. Recently, the small private key attack on Type-B variants has
also been analyzed. In this paper, we make further cryptanalysis of Type-
B variants, that is, we propose the first theoretical results of multiple
private keys attack, partial key exposure attack as well as small prime
difference attack on Type-B variants, and the validity of our attacks
are verified by experiments. Our results show that for all three attacks,
Type-B variants are less secure than standard RSA.

Keywords: Cryptanalysis · RSA variants · Coppersmith’s method ·
Lattice reduction

1 Introduction

1.1 Background

Rivest, Shamir and Adleman [24] proposed the RSA cryptosystem in 1978, which
is one of the oldest public-key cryptosystems and is still widely used nowadays.

In the standard RSA cryptosystem, the public modulus N is a product of two
large primes p, q, namely, N = pq. Then select two integers e, d such that ed ≡ 1
(mod ϕ(N)), where ϕ(N) = (p−1)(q −1) is Euler’s totient function. And (N, e)
is the public key used to encrypt, (p, q, d) is the private key used to decrypt. To
encrypt a message m < N , one computes c := me mod N , while to decrypt the
ciphertext c, one needs to compute cd mod N . It is recommended to choose p

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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and q of the same size such that q < p < 2q, which is called balanced RSA. In
this paper, we only consider the balanced cases of the RSA cryptosystem and
its variants. For convenience, we may represent the public exponent e as well as
the secret exponent d with e = Nα and d = Nβ respectively.

To enhance the security or improve the efficiency, some researchers proposed
variants of the standard RSA cryptosystem by modifying the underlying group,
e.g., Elliptic curves based [18], Gaussian integers based [11] and Lucas sequences
based [7]. In fact, all the variants proposed in [7,11,18] have the same modified
Euler’s totient function ψ(N) = (p2 − 1)(q2 − 1), while the modulus N = pq
remains unchanged as the standard RSA. And we call these typical schemes
with that specified Euler’s totient function Type-A variants in the following
texts.

But recently, Murru and Saettone, two Italian researchers from the Univer-
sity of Turin, proposed a new RSA variant with the modified Euler’s totient
function ψ(N) = (p2 + p + 1)(q2 + q + 1) [21]. This cryptosystem is based on
the cubic Pell equation, and it defines a non-standard product over a particular
group. The authors claimed their scheme is more secure than standard RSA in
some circumstances, as this variant scheme is robust against Hastad’s broadcast
attack [13] and Wiener’s small private key attack [30]. And in this paper, we call
the variants with ψ(N) = (p2 + p + 1)(q2 + q + 1) Type-B variants. Note that
one may create new Type-B cryptosystems based on other algebra structure,
but it will also suffer from the attacks proposed in this paper, as our attacks do
not rely on the structure of the underlying group and are general for Type-B
variants.

The following paragraphs introduce four common key-related attacks on
RSA-like cryptosystems, e.g., the small private key attack, the multiple pri-
vate keys attack, the partial key exposure attack and the small prime difference
attack.

Small Private Key Attack. In 1990, Wiener showed that if the private key
d of an RSA cryptosystem is less than 1

3N0.25, then one can easily recover d
using continued fraction. Specifically, one may find d from the continued fraction
expansion of e

N . Later, Wiener’s bound was improved by Boneh and Durfee [4] to
N0.284, respectively N0.292. They used Coppersmith’s lattice-based method [9]
to find small roots of the modular equation x(y + N+1

2 ) + 1 ≡ 0 (mod e). In
2010, Herrmann and May [14] obtained the same bound d < N0.292, but with a
smaller lattice dimension using the technique of unravelled linearization.

The small private key attack on Type-A variants has also been studied. Bun-
der et al. [6] proposed the first attack based on continued fraction, and the attack
was improved in [6,23] using Coppersmith’s method, which yields the best bound
so far d < N0.585.

Recently, the small private key attack on Type-B variants has been analyzed
in several papers. In [22,26], it was found that Wiener’s method still works.
Furthermore, the use of Coppersmith’s method has also been explored. Nitaj
et al. [22] showed Type-B variants can be broken if d < N0.569, and Zheng et
al. [32] got a higher bound d < N0.585 using an optimized construction.
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Multiple Private Keys Attack. Howgrave-Graham and Seifert [16] first
studied the case when given multiple public keys with the same modulus
(ei ≈ Nα, N) that correspond to some small private keys di ≈ Nβ in 1999.
Later, their attack was improved successively by Sarkar and Maitra [25] and
Aono [1] using Coppersmith’s method. In 2014, Takayasu and Kunihiro [27] pro-

posed the best bound so far, their attack works if β < 1 −
√

2
3l+1 and l is the

number of obtained keys. When l = 1, one can find their attack achieves Boneh
and Durfee’s stronger bound β < 0.292.

The multiple private keys attack on Type-A variants has been studied by
Zheng et al. [31]. Their attack works if β < 2 − 2

√
2

3l+1 , and the bound is
exactly twice of that on standard RSA.

Partial Key Exposure Attack. In 1998, Boneh et al. [5] first introduced the
partial key exposure attack on standard RSA [5], where the attackers are given
some most/least significant bits (MSBs/LSBs) of the private key d. The original
attack only works for small e, but in 2003, Blömer and May [3] showed that there
exists attack for larger e up to N

7
8 . Then, in 2005, Ernst et al. [12] extended the

bound to full size e. Later, the partial key exposure attack for small d has been
improved by Takayasu and Kunihiro [28], which can achieve Boneh and Durfee’s
stronger bound in both MSBs and LSBs leakage scenarios.

Zheng et al. [31] studied the partial key exposure attack on Type-A variants.
And their attack only covers a weaker bound d < N0.569 instead of the best
bound of small private key attack on Type-A variants d < N0.585.

Small Prime Difference Attack. In 2002, de Weger [10] proposed an attack
on standard RSA where the difference of prime factors |p−q| is small. His results
showed that under this specified scenario, the small private key attack based on
Wiener’s method, as well as Boneh and Durfee’s method, can both obtain a
better bound.

Recently, Cherkaoui-Semmouni et al. [8] studied the small prime difference
attack on Type-A variants. And their attack can retrieve the best bound of small
private key attack on Type-A variants d < N0.585 under the common condition
|p − q| ≈ N

1
2 .

As stated above, one can find Type-A variants are less secure than standard
RSA against all four attacks. And Type-B variants are weaker than standard
RSA on small private key attack. Note that the multiple private keys attack,
the partial key exposure attack as well as the small prime difference attack on
Type-B variants have not been studied yet.

1.2 Our Contributions

In this paper, we make a further cryptanalysis of Type-B RSA variants (i.e.,
RSA variants with the Euler’s totient function ψ(N) = (p2 + p+1)(q2 + q +1)),
that is, we propose the theoretical bounds of the multiple private keys attack,
the partial key exposure attack, as well as the small prime difference attack on
Type-B variants for the first time, and we verify the validity of all three attacks
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with experiments. What’s more, for all three attacks, we consider a more general
case for arbitrary α1.

The results of our three attacks, in addition with the bounds of those attacks
as well as the small private key attack on standard RSA and Type-A variants
are given in Table 1.

Table 1. Summary of four attacks on standard RSA, Type-A and Type-B variants

Standard RSA [24] Type-A [7,11,18] Type-B [21]

Euler’s totient function ϕ(N) = (p − 1)(q − 1) ψ(N) = (p2 − 1)(q2 − 1) ψ(N) = (p2 + p + 1)(q2 + q + 1)

Small private key attack β < 1 −
√
2
2 [2,4] β < 2 − √

2 [23,31] β < 2 − √
2 [32]

Multiple private keys attacka β < 1 −
√

2
3l+1 [27] β < 2 − 2

√
2

3l+1 [31] β < 3
2 − 4

3l+1 [Sect. 3]

Partial key exposure attackb β <
γ+2−

√
2−3γ2

2 [28] β < 3γ+7−2
√
3γ+7

3 [31] β < 3γ+7−2
√
3γ+7

3 [Sect. 4]

Small prime difference attackc β < 1 −
√

2δ − 1
2 [10] β < 2 − 2

√
δ [8] β < 2 − √

8δ − 2 [Sect. 5]

∗ e = Nα is the public exponent, d = Nβ is the secret exponent. For comparison, we
take α = 1 for standard RSA, α = 2 for Type-A and Type-B variants, since some
previous works only give the results for fixed α.
a l is the number of keys obtained.
b d̃ = Nγ and d̄ = Nβ−γ are the known leaked part and the unknown part of d
respectively.
c |p − q| = Nδ is the prime difference.

From the table above, we can learn that Type-B variants are weaker against
all four attacks compared with standard RSA, and this property is similar as
Type-A variants. Especially for the small prime difference attack, Type-B vari-
ants are even less secure than Type-A variants. We will give a detailed analysis
and discussion later in the main body.

1.3 Organization

The rest of this paper is organized as follows. In Sect. 2, we give some notations
and describe some important lemmas used in our attacks. From Sect. 3 to Sect. 5,
we propose our multiple private keys attack, partial key exposure attack and
small prime difference attack on Type-B RSA variants respectively. In Sect. 6,
we verify the validity of all three attacks by computer experiments. Finally, we
conclude the paper in Sect. 7.

2 Preliminaries

In this section, we first give some notations, then introduce the lattice reduction
technique and Coppersmith’s method used in our attack.

1 Since e is typically of the same order of magnitude as ψ(N) for small d, we can fix
α = 2 in our case. But Wiener [30] suggests one can add extra ψ(N) to e, which
yields larger α.
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Minkowski Sum. Let A and B be two finite subsets of Zn, their Minkowski sum
is denoted by A�B := {(a1+b1, . . . , an+bn) : (a1, . . . , an) ∈ A, (b1, . . . , bn) ∈ B}.
And it can be similarly extended to three or more sets.

Multivariate Terms Order. In this paper, polynomials and monomials are
ordered in lexicographic order by default. For example, xi1

1 xi2
2 ≺ x

i′
1
1 x

i′
2
2 ⇔ i1 < i′1

or i1 = i′1, i2 < i′2. The maximum monomial of each polynomial f in lexicographic
order is called the head term, and its coefficient is called the head coefficient,
denoted as HC(f).

Euclidean Norm. For a vector b = (b1, . . . , bn) ∈ R
n, its Euclidean

norm is denoted as ‖b‖ :=
√∑n

i=1 b2i . For a polynomial f(x1, . . . , xn) :=∑
ai1,...,in

xi1
1 . . . xin

n , its Euclidean norm is defined as the Euclidean norm of
its coefficients vector: ‖f(x1, . . . , xn)‖ :=

√∑ |ai1,...,in
|2, while its infinity norm

is defined as the maximum term of its coefficients vector: ‖f(x1, . . . , xn)‖∞ :=
max{|ai1,...,in

|}.

Lattice. A lattice L spanned by ω linearly independent row vectors b1, . . . ,bω ∈
R

n is the set of their integer linear combinations, denoted as L(b1, . . . ,bω) :=
{∑ω

i=1 zibi : zi ∈ Z}. The vectors (b1, . . . ,bω) are called a basis of L, and it can
be represented with the basis matrix B ∈ R

ω×n which contains b1, . . . ,bω in
each row. We call n the dimension of L, and ω the rank of L. If ω = n, we call L
is a full-rank lattice. The determinant of L is defined as det(L) :=

√
det(BBT ),

where BT is the transpose of B. We have det(L) = |det(B)| for a full-rank
lattice.

In 1982, Lenstra, Lenstra and Lovász [19] proposed the LLL algorithm to
find non-zero short lattice vectors in polynomial time, which is widely used
in lattice-based cryptanalysis. And according to [20], the output of the LLL
algorithm satisfies the following property.

Lemma 1 (LLL algorithm). Let L be a lattice spanned by a basis
(b1, . . . , bω), the LLL algorithm finds a reduced basis (b̃1, . . . , b̃ω) of L satisfying

‖b̃1‖ ≤ · · · ≤ ‖b̃i‖ ≤ 2
ω(ω−1)

4(ω+1−i) det(L)
1

ω+1−i , for i = 1, 2, . . . , ω

in time polynomial in the dimension n and the size of entries in the basis matrix
of L.

One of the applications of the LLL algorithm in cryptanalysis is Copper-
smith’s method. In [9], Coppersmith proposed rigorous techniques to find small
integer solutions of a univariate modular equation f(x) = 0 (mod N) and a
bivariate integer equation f(x, y) = 0. Both can be heuristically extended to
more multivariate cases with reasonable assumptions.

We focus on the modular equation case here. Howgrave-Graham [15] refor-
mulated this method and showed how to judge whether the roots of a modular
equation are also roots over integers as follows:
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Lemma 2 (Howgrave-Graham). Let h(x1, . . . , xn) ∈ Z[x1, . . . , xn] be a poly-
nomial with at most ω monomials and M be a positive integer. Suppose that

1) h(x′
1, . . . , x

′
n) ≡ 0 (mod M) where |x′

1| < X1, . . . , |x′
n| < Xn, and

2) ‖h(x1X1, . . . , xnXn)‖ < M√
ω
.

Then h(x′
1, . . . , x

′
n) = 0 holds over the integers.

The main idea of Coppersmith’s method is to construct a set of so-called
shift polynomials that have the common small roots modular an integer, then
apply the LLL algorithm to reduce them to several new polynomials over integers
which are easier to solve.

Specifically, we can construct a lattice with the basis containing the coeffi-
cients vectors of each shift polynomials, and the LLL reduction algorithm may
output several short vectors in the lattice corresponding to the norm of poly-
nomials. If they are small enough to satisfy the bound in Lemma 2, then these
equations will hold over integers. Combing with Lemma 1, we obtain

2
ω(ω−1)

4(ω+1−i) det(L)
1

ω+1−i <
M√
ω

.

Since the value of the determinant and M grows significantly faster than the
other terms in our case, it can be transformed to the simplified condition

det(L) < Mω. (1)

Finally, we can use the resultant technique or the Gröbner basis technique to
extract the common roots. Note that both techniques require the polynomials
we get after reduction are algebraic independent. But no existed method can
guarantee the algebraic independence, thus Coppersmith’s method is heuristic
in this case. In this paper, we make the following assumption just as numerous
previous works [1,4,22,27,32].

Assumption 1. The reduced lattice basis yields algebraically independent poly-
nomials.

The following lemma proposed by de Weger [10] gives a range of the sum of
two integers when their difference is known.

Lemma 3. Let N = pq be a product of two integers p, q and δ = p − q is their
difference. Then

0 < p + q − 2N
1
2 <

δ2

4N
1
2
.

3 Multiple Private Keys Attack

In this section, we propose the multiple private keys attack on Type-B RSA
variants.

We consider the situation where the attacker obtained l public key pairs
(e1, N), . . . , (el, N) with a common modulus N , and they correspond to some
small d1, . . . , dl. All the public exponents ek and the secret exponents dk are
assumed to be the same size respectively. The goal is to factor N efficiently.
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Theorem 1. Let N = pq be a modulus of Type-B RSA variants with q < p < 2q.
For integers l ≥ 2, 1 ≤ k ≤ l, let ek = Nα, dk = Nβ be a valid pair of public
and secret exponents such that ekdk ≡ 1 mod (p2 + p + 1)(q2 + q + 1). Then for
1
2 + 1

3l−1 < α < 3
4 + 9l

4 , one can factor N in polynomial time if

β <
3
2

− 2α

3l + 1
.

Proof. We can rewrite the known equations as

ekdk ≡ 1 (mod (p2 + p + 1)(q2 + q + 1))

⇒ ekdk = rk(N2 + (N + 1)(p + q) + p2 + q2 + N + 1) + 1

⇒ ekdk = rk((p + q)2 + a(p + q) + b) + 1,

where a := N + 1, b := N2 − N + 1.
Then we need to solve the following modular equations simultaneously:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f1(x1, y) := x1(y2 + ay + b) + 1 ≡ 0 (mod e1),

f2(x2, y) := x2(y2 + ay + b) + 1 ≡ 0 (mod e2),
...

fl(xl, y) := xl(y2 + ay + b) + 1 ≡ 0 (mod el),

(2)

where the roots (x1, x2, . . . , xl, y) are (r1, r2, . . . , rl, p + q), and their values are
bounded with X1 = X2 = · · · = Xl = Nα+β−2 and Y ≈ N0.5.

To solve this problem, we use the Minkowski sum based lattice construction
technique proposed by Aono [1].

At first, we define the set of shift polynomials Gk(1 ≤ k ≤ l) and its index
set Ik as

j′
k := 2jk + hk,

g
(k)
ik,j′

k
(xk, y) := xik−jk

k fk(xk, y)jkem−jk

k yhk ,

Gk := {g
(k)
ik,j′

k
: 0 ≤ ik ≤ m, 0 ≤ jk ≤ ik, 0 ≤ hk ≤ 1},

Ik := {(0, . . . , 0︸ ︷︷ ︸
k−1

, ik, 0, . . . , 0︸ ︷︷ ︸
l−k

, j′
k) : 0 ≤ ik ≤ m, 0 ≤ jk ≤ ik, 0 ≤ hk ≤ 1},

where ik, jk, hk are non-negative integers and m is a fixed positive integer. It
is clear that g

(k)
ik,j′

k
≡ 0 (mod em

k ). And each index vector stores the maximum
exponents of variables xk, y in the corresponding polynomials.

Then, the Minkowski sum of all index set in our case is defined as

I+ := I1 � · · · � Il = {(i1, . . . , il, j) : 0 ≤ i1, . . . , il ≤ m, 0 ≤ j ≤ 2
∑l

k=1
ik + l}.
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For each (i1, . . . , il, j) ∈ I+, we can define a corresponding polynomial and obtain
a new polynomial set:

gi1,...,il,j :=
∑

∑l
k=1 j′

k=j

cj′
1,...,j′

l
g
(1)
i1,j′

1
. . . g

(l)
il,j′

l
,

G+ := {gi1,...,il,j : (i1, . . . , il, j) ∈ I+}.

According to the definition of the Minkowski sum lattice, cj′
1,...,j′

l
are some

selected integers such that the following equation holds:

HC(gi1,...,il,j) = GCD∑l
k=1 j′

k=j
(HC(g(1)i1,j′

1
. . . g

(l)
il,j′

l
))

= GCD∑l
k=1 j′

k=j
(em−� j′

1
2 �

1 . . . e
m−� j′

l
2 �

l ),
(3)

where HC(f) means the coefficient of the head term of f in lexicographic order.
Each j′

k can move from 0 to min(2ik + 1, j), so we can transform Eq. (3) to

HC(gi1,...,il,j) = e
m−min(i1,� j

2 �)
1 · · · em−min(il,� j

2 �)
l . (4)

Now, consider the lattice basis matrix of each Gk, which is generated by
taking the coefficients vector of g

(k)
ik,j′

k
(Xkxk, Y y) for each g

(k)
i′
k,j′

k
∈ Gk. By ordering

polynomials corresponding to rows and monomials corresponding to columns in
lexicographic order, as shown in [22], the basis matrix will be lower triangular.
Then, according to [1], the Minkowski sum lattice basis matrix of G+ is also
lower triangular. Furthermore, we can learn the diagonal element in this basis
matrix are exactly the result of Eq. (4) multiple with the powers of the bounds
of each variable, so the determinant will be

det(L) =
∏

(i1,...,il,j)∈I+

e
m−min(i1,� j

2 �)
1 · · · em−min(il,� j

2 �)
l Xi1

1 · · · Xil

l Y j .

Notice that each polynomial in the form g
(k)
ik,j′

k
equals to zero modulo em

k ,
thus, for each gi1,...,il,j ∈ G+, we have gi1,...,il,j ≡ 0 (mod (e1 · · · el)m).

Then substitute the above det(L) into Eq. (1), and set ek = Nα, Xk =
Nα+β−2, Y = N0.5, M = (e1 · · · el)m, after some computations (details can be
found in Appendix A), we may obtain the condition

− α(
l2

2
− l

6
) + (α + β − 2)(

l2

2
+

l

6
) + (

l2

4
+

l

12
) < 0, (5)

which yields the bound of β as

β <
3
2

− 2α

3l + 1
. (6)
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On the other hand, we must have β > 0 and α+β > 2, which gives the range
of valid α as

1
2

+
1

3l − 1
< α <

3
4

+
9l

4
. (7)

If the conditions in Eq. (7) and Eq. (6) are satisfied, with Assumption 1, we
may construct l + 1 polynomials over integers from the reduced lattice, then
extract the shared common root (x1, x2, . . . , xl, y) = (r1, r2, . . . , rl, p + q) using
the Gröbner basis method. And the knowledge of p + q yields a factorization of
N . This terminates the proof. �

The validity of our multiple private keys attack has been verified by experi-
ments, and the results are given in Table 2 in Sect. 6.

Comparison with Small Private Key Attack Using Coppersmith’s
Method on Type-B Variants. Set l = 1 in our attack, the bound becomes
β < 3

2 − α
2 , which is weaker than the bound in [22,32], thus our attack is not

a tight extension of the small private key attack. This is mainly because they
use several extra y-shift polynomials and the number is related to a tweakable
parameter τ . By optimizing the value of τ , one can always get the best bound.
In our attack, we just pick the basic shift polynomials, as many previous works
involving the Minkowski sum lattice construction [1,27,31].

Comparison with Multiple Private Keys Attack on Standard RSA and
Type-A Variants. According to Table 1, the bound of small private key attack
on Type-A and Type-B variants are exactly the same. So we may expect they
also have the same bound on multiple private keys attack. However, this is not
the case in our attack. Typically, when d is small, e will be of the same order of
magnitude as ψ(N), which implies α = 2 in our case, the bound of β becomes
β < 3

2 − 4
3l+1 , which is exactly twice the bound of multiple private keys attack

on standard RSA obtained by Aono [1]. Note that Aono’s original attack has
been improved by Takayasu and Kunihiro [27] with an optimized construction.
Using their method, one may obtain the results of multiple private keys attack
on standard RSA and Type-A variants in Table 1. However, we find it is hard
to apply their strategy directly on Type-B variants. The main idea of their
method is to determine whether a polynomial is helpful or not by comparing
its corresponding diagonal value in the lattice basis matrix with the modulus
(e1 . . . el)m, then try to collect as many helpful polynomials as possible and
as few unhelpful polynomials as possible during the lattice construction. They
claimed the lattice basis matrix can still be triangular if l ≥ 3, and for l = 1, 2
one may use the unravelled linearization technique [14] to transform it to be
triangular. As a result, they obtain the same result β < 0.292 as [4] when l = 1.
But if we apply the same method in our attack, i.e., we add some extra y-shift
polynomials into each Gk and modify the range of j in I+ from 2

∑l
k=1 ik + l

to 2(2 − β)
∑l

k=1 ik. When l ≥ 3, the lattice can not be full-rank even use the
unravelled linearization zi = xiy

2 + 1. Furthermore, we find if setting the upper
bound of j as 2�(2−β)� ∑l

k=1 ik, the lattice basis matrix can be triangular again,
but we carried out some experiments for small l,m and the results suggest this
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method gets a lower bound than our original one. Thus, how to improve our
attack is still an open problem.

4 Partial Key Exposure Attack

In this section, we propose the partial key exposure attack on Type-B RSA
variants. Same as [31], we consider the general case where some MSBs and LSBs
of the private key are leaked, so the unknown part is in the middle.

Theorem 2. Let N = pq be a modulus of Type-B RSA variants with q < p < 2q.
Let e = Nα, d = Nβ be a valid pair of public and secret exponents such that
ed ≡ 1 mod (p2 + p + 1)(q2 + q + 1). Given some MSBs dM = NγM and some
LSBs dL = NγL of the secret exponent, and let γ = γM + γL satisfying γ < 15

4 .
Then for 1 − γ < α < 15

4 − γ, one can factor N in polynomial time if

β <
3γ + 7 − 2

√
3γ + 3α + 1

3
.

Proof. Let d̄ denotes the unknown middle part of private key which is bounded
by Nβ−γ , we have

d = MdM + Ld̄ + dL,

where M := 2(β−γM )log2N , L := 2(β−γL)log2N .
Thus, we can rewrite the key equation as

ed = r((p + q)2 + a(p + q) + b) + 1

⇒ e(Ld̄ + d̃) = r((p + q)2 + a(p + q) + b) + 1,

where a := N + 1, b := N2 − N + 1, and d̃ := MdM + dL, which denotes the
leaked value of d.

Now, consider the integer equation

f̄(x, y, z) := 1 − ed̃ − eLx + y(z2 + az + b), (8)

which has a small root (x, y, z) = (d̄, r, p + q) bounded by X = Nβ−γ , Y =
Nα+β−2, Z ≈ N0.5.

To solve Eq. (8) using Coppersmith’s method, we apply Jochemsz and May’s
strategy [17]. First, we need to define a parameter as W := ‖f(Xx, Y y, Zz)‖∞,
and in our case, that’s

W = max{|1 − ed̃|, eLX, Y Z2, aY Z, bY } = bY = Nα+β .

Then, set R := WXm−1Y m−1Z2(m−1)+τm, where m is a fixed positive integer
and 0 ≤ τ ≤ 1 is a parameter to be optimized later. And we can transform Eq. (8)
to the modular equation

f(x, y, z) := (1 − ed̃)−1f(x, y, z) (mod R). (9)
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We define the set of shift polynomials as

gi,j,k(x, y, z) := xiyjzkf(x, y, z)Xm−1−iY m−1−jZ2(m−1)−k+τm,

hi,j,k(x, y, z) := xiyjzkR,

G := {gi,j,k : 0 ≤ i ≤ m − 1, 0 ≤ j ≤ m − 1 − i, 0 ≤ k ≤ 2j + τm},

H := {hi,j,k : 0 ≤ i ≤ m, j = m − i, 0 ≤ k ≤ 2j + τm},

F := G ∪ H,

where i, j, k are non-negative integers. Note that all polynomials in F share the
common root (d̄, r, p + q) modular R.

Consider the basis matrix generated by taking the coefficients vector of
F (Xx, Y y, Zz) for each F ∈ F . By sorting all the monomials (each corresponds
to a column in the matrix) with the order mentioned in [17], we may get an
upper triangular matrix.

Let L be the lattice corresponding to that triangular basis matrix
and ω be its dimension. In our construction, the diagonal entries
of this matrix are Xm−1Y m−1Z2(m−1)+τm for polynomials in G and
WXm−1+iY m−1+jZ2(m−1)+τm+k for polynomials in H. So, we have

det(L) =
∏

(i,j,k):
gi,j,k∈G

Xm−1Y m−1Z2(m−1)+τm
∏

(i,j,k):
hi,j,k∈H

WXm−1+iY m−1+jZ2(m−1)+τm+k.

Next, we can set X = Nβ−γ , Y = Nα+β−2, Z = N0.5,W = Nα+β , M =
WXm−1Y m−1Z2(m−1)+τm, and the condition in Eq. (1) can be simplified to
(details of computation are given in Appendix B)

3τ2 + (6β − 6γ − 6)τ + 4α + 8β − 4γ − 12 < 0. (10)

By setting τ = 1 − β + γ, the left-hand side of Eq. (10) reaches its minimum,
and we get

−3(1 − β + γ)2 + 4α + 8β − 4γ − 12 < 0.

Thus, we get the bound of β as

β <
3γ + 7 − 2

√
3γ + 3α + 1

3
. (11)

On the other hand, we require 0 ≤ τ ≤ 1, which indicates 0 ≤ β ≤ 1 + γ. We
consider the case β < min(3γ+7−2

√
3γ+3α+1
3 , 1 + γ) = 3γ+7−2

√
3γ+3α+1
3 , which

implies α > 1 − γ. Combing with the condition 0 < γ ≤ β and α + β ≥ 2, we
can get the range of valid α as

1 − γ < α <
15
4

− γ. (12)

If the conditions in Eq. (11) and Eq. (12) are satisfied, with Assumption 1,
similar as the previous attack, we can extract the shared common root (x, y, z) =
(d̄, r, p+q). And the knowledge of p+q yields a factorization of N . This terminates
the proof. �
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We verify the validity of our partial key exposure attack with experiments,
and the results can be found in Table 3 of Sect. 6.

Comparison with Small Private Key Attack Using Coppersmith’s
Method on Type-B Variants. Set γ = 0, α = 2 in our attack, the bound
becomes β < 7−2

√
7

3 ≈ 0.569, which is same as the bound obtained by Nitaj et
al. [22]. This implies our construction can only achieve the weaker bound instead
of the stronger bound β < 0.585, so it is an open problem for how to optimize
our attack to cover the stronger bound. As our attack corresponds to the gen-
eral case when both some MSBs and LSBs are leaked, there may be some loss
of precision. One can consider the MSBs and LSBs cases separately with some
different ad-hoc optimized constructions.

Comparison with Partial Key Exposure Attack on Standard RSA and
Type-A Variants. According to Table 1, our attack yields the same bound as
that on Type-A variants. This is mainly because the ψ(N) of both Type-A and
Type-B variants are of the same order of magnitude as N2 and Zheng et al. [31]
as well as we use the general construction proposed by Jochemsz and May [17].
But this result is not twice as the partial key exposure attack bound on standard
RSA. Just as the former analysis, Takayasu and Kunihiro [28] choose some ad-
hoc and well-optimized constructions instead of general constructions, which
makes it possible to fully cover Boneh and Durfee’s bound.

5 Small Prime Difference Attack

In this section, we propose the small prime difference attack on Type-B RSA
variants with a modulus N = pq where the primes difference |p−q| is sufficiently
small.

Note that when |p − q| ≤ N
1
4 , the attack is trivial, since one may find p + q

is equal to 2N
1
2 according to Lemma 3, which yields a factorization. So, we only

consider the case δ > 1
4 .

Theorem 3. Let N = pq be a modulus of Type-B RSA variants with q < p < 2q
and p − q < N δ where 1

4 < δ < 1
2 . Let e = Nα, d = Nβ be a valid pair of public

and secret exponents such that ed ≡ 1 mod (p2 + p + 1)(q2 + q + 1). Then for
4δ − 1 < α < 9δ − 36δ−9

4 , one can factor N in polynomial time if

β < 2 −
√

α(4δ − 1).

Proof. Similar as the multiple private keys attack, the key equation is

ed = r((p + q)2 + a(p + q) + b) + 1,

where a := N +1, b := N2 −N +1. And it corresponds to the modular equation

f̄(x, y) := x(y2 + ay + b) + 1 ≡ 0 (mod e),

which has a root (x, y) = (r, p + q).
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According to Lemma 3, we have p + q = c + Δ where c := 2N
1
2 ,Δ < N2δ

4N
1
2

≈
N2δ− 1

2 . To make the desired root of variable y becomes Δ, we just replace y in
f̄(x, y) with y + c, and obtain the new equation

f(x, y) := x(y2 + Ay + B) + 1 ≡ 0 (mod e),

where A := 2c + a,B := c2 + ac + b. Obviously, f(x, y) has a small root (r,Δ),
which are bounded by X = Nα+β−2 and Y = N2δ− 1

2 .
Notice that f and f̄ only differ at some coefficients, thus, to find the small

roots of f , we may refer to the lattice construction used to find the small roots
of f̄ in [32] by Zheng et al.

Let z := xy2 + 1, then we transform f(x, y) into

f∗(x, y, z) := z + x(Ay + B) ≡ 0 (mod e).

We define the set of shift polynomials as

gi,j,k(x, y, z) := xi−jf∗(x, y, z)jem−jyk,

hj,k(x, y, z) := f∗(x, y, z)jem−jyk,

G := {gi,j,k : 0 ≤ i ≤ m, 0 ≤ j ≤ i, 0 ≤ k ≤ 1},

H := {hj,k : 0 ≤ j ≤ m, 2 ≤ k ≤ τm},

F := G ∪ H,

where i, j, k are non-negative integers, m is a fixed positive integer and 0 ≤ τ ≤ 1
is a parameter to be optimized later.

Now, for each polynomial F ∈ F , we just apply the unravelled linearization
technique, by replacing terms in the form (xy2)t to (z − 1)t for any t ∈ N to
get F ′. Consider the basis matrix generated by taking the coefficients vector of
each F ′(Xx, Y y, Zz), by sorting the rows and columns using the rules described
in [32], we may obtain a triangular matrix.

Let L be the lattice corresponding to that triangular matrix, following a simi-
lar computation in previous attacks, we get its dimension ω and its determinant:

ω =
τ + 2

2
m2 + o(m2),

det(L) = X
1
3m3+o(m3)Y

τ2
6 m3+o(m3)Z

τ+1
3 m3+o(m3)e

τ+4
6 m3+o(m3).

In our construction, each polynomial F ′ satisfies that F ′(r,Δ, rΔ2 + 1) ≡ 0
(mod em). Thus, substitute the above det(L) into Eq. 1, and set e = Nα, X =
Nα+β−2, Y = N2δ− 1

2 , Z = Nα+β+4δ−3, M = em, we will obtain the condition

N (α+β−2)( 1
3m3+o(m3)) · N (2δ− 1

2 )(
τ2
6 m3+o(m3))·

N (α+β+4δ−3)( τ+1
3 m3+o(m3)) · Nα( τ+4

6 m3+o(m3)) < Nα( τ+2
2 m3+o(m3))
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When m is sufficient large, we may omit all terms in o(m3), then take the
exponents part of N , and we can transform the condition to

(4δ − 1)τ2 + (4β + 16δ − 12)τ + 4α + 8β + 16δ − 20 < 0. (13)

By setting τ = −2β−8δ+6
4δ−1 , the left-hand side of Eq. (13) reaches its minimum,

and we obtain
β2 − 4β − 4αδ + α + 4 > 0,

which gives the upper bound of β as

β < 2 −
√

α(4δ − 1). (14)

On the other hand, we require 0 ≤ τ ≤ 1, which implies 7
2 − 6δ ≤ β ≤ 3 − 4δ.

We consider the case β < min(2 − √
α(4δ − 1), 3 − 4δ) = 2 − √

α(4δ − 1), which
always holds if α > 4δ − 1. Combing with α + β > 2, we can get the range of
solvable α as

4δ − 1 < α < 9δ − 9
4
. (15)

If the conditions in Eq. (14) and Eq. (15) are satisfied, with Assumption 1, similar
as the previous attack, we may extract the shared common root (x, y, z) =
(r,Δ, rΔ2 + 1). Then, we get p + q as p + q = c+ Δ, which yields a factorization
of N . This terminates the proof. �

We carried out some experiments to verify the validity of our small prime
difference attack, one may check Table 4 in Sect. 6 for details.

Comparison with Small Private Key Attack Using Coppersmith’s
Method on Type-B Variants. Set δ = 1

2 , α = 2 in our attack, the bound
becomes β < 2 − √

2, which is same as the best bound so far obtained by Zheng
et al. [32]. This is reasonable, as one can find the modular equation we construct
(i.e., equation f in Therorem 3) only differs from that constructed in [32] (i.e.,
equation f̄ in Therorem 3) at two coefficients and the same lattice construc-
tions are used in these two attacks. Thus, for Type-B variants, the small prime
difference attack is a tight extension of the small private key attack.

Comparison with Small Prime Difference Attack on Standard RSA
and Type-A Variants. If we set α = 2, one can verify that our bound is
exactly twice as the bound on standard RSA obtained by de Weger [10]. This is
reasonable, as the small primes difference attack is a specified version of the small
private key attack. But one may find the bound on Type-A and Type-B variants
are different. This is mainly due to the difference between the modular equation
construction. The ψ(N) of Type-A variants can be represented as a function of
p−q directly (i.e., ψ(N) = (p2 −1)(q2 −1) = −(p−q)2 +N2 −2N +1), while for
Type-B we can only represent ψ(N) as a function of p + q. Specifically, Type-B
variants are weaker than Type-A variants on small prime difference attack, since
the upper bound of solvable β in our attack on Type-B is always higher than
the bound obtained by Cherkaoui-Semmouni et al. [8] on Type-A for any valid
1
4 < δ < 1

2 with the same valid α.
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6 Experimental Results

In this section, we verify the validity of the all three attacks proposed in this
paper.

Experiments are carried out using SageMath 9.4 [29] with a single process
on an Ubuntu 20.04.3 LTS workstation with Intel(R) Xeon(R) Gold 5218 CPU
@ 2.30 GHz.

For each test, we first generate two 512-bit primes p, q and compute the 1024-
bit modulus N = pq, then randomly choose secret exponent(s) bounded by Nβ

and computes the corresponding public exponent(s).
In the following tables, ω is the lattice dimension, βthm means the bound

computed from the theorems, βexp indicates the experimental bounds, that’s
if we increase βexp by 0.01, our attacks will fail to factor the modulus N . And
TimeLLL, TimeGB are the time cost of the LLL reduction and the Gröbner basis
computation respectively.

For all three attacks, we can find that there are some differences between the
theoretical bounds and our experimental results. In fact, this is reasonable, since
we assume m can be sufficiently large and employ lots of approximation when
computing the theoretical bound.

Due to the constrained computer resources, the lattice reduction process
becomes the bottleneck of our attacks, for the time cost of the Gröbner basis

Table 2. Experiment results of multiple private keys attack

l m ω βthm βexp TimeLLL TimeGB

2 1 20 0.93 0.54 0.14 s 0.01 s

2 2 63 0.93 0.69 64.69 s 0.09 s

2 3 144 0.93 0.75 18608.71 s 2.77 s

3 1 56 1.10 0.76 3.41 s 0.30 s

3 2 270 1.10 0.82 98643.22 s 38.31 s

4 1 144 1.19 0.86 226.32 s 6.73 s

5 1 352 1.25 0.93 19154.73 s 3919.37 s

Table 3. Experiment results of partial key exposure attack

γ m ω βthm βexp TimeLLL TimeGB

0.05 3 50 0.60 0.43 28.16 s 0.01 s

0.10 3 50 0.63 0.45 27.65 s 0.01 s

0.20 3 60 0.69 0.49 56.14 s 0.01 s

0.40 3 60 0.82 0.59 60.18 s 0.01 s

0.40 4 115 0.82 0.63 1538.38 s 0.02 s

0.40 5 175 0.82 0.66 18763.19 s 0.05 s

0.80 3 60 1.09 0.81 48.91 s 0.02 s
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Table 4. Experiment results of small prime difference attack

δ m ω βthm βexp TimeLLL TimeGB

0.30 3 26 1.37 1.10 1.49 s 0.03 s

0.30 5 57 1.37 1.12 73.04 s 0.12 s

0.30 7 100 1.37 1.14 1385.02 s 0.39 s

0.30 9 155 1.37 1.16 17616.57 s 1.12 s

0.34 5 57 1.15 0.99 67.36 s 0.10 s

0.38 5 57 0.98 0.86 65.34 s 0.10 s

0.42 5 57 0.83 0.73 53.96 s 0.08 s

0.46 5 57 0.70 0.60 120.49 s 0.07 s

computation is substantially less than that of the LLL algorithm. Even if we
slightly increase m, the time cost will increase significantly, making it difficult
to reach the bound βthm in practice.

7 Conclusion

In this paper, we study the multiple private keys attack, the partial key exposure
attack, as well as the small prime difference attack on a new type of RSA variants
with the modified Euler’s totient function ψ(N) = (p2 +p+1)(q2 +q+1) for the
first time. Our results imply this type of variants are less secure than standard
RSA under these attacks. And according to the previous researches, one can
find another typical type of RSA variants with ψ(N) = (p2 − 1)(q2 − 1) are also
weaker than standard RSA against these attacks. Thus, it seems that one should
not pick the groups with larger Euler’s totient function when designing RSA-
like cryptosystems, since this will reduce the security against some key-related
attacks.
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Appendix A: Details of the Computation of Eq. (5)

According to Eq. (1), we have

∏

(i1,...,il,j)∈I+

e
m−min(i1,� j

2 �)
1 · · · em−min(il,� j

2 �)
l Xi1
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Let
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Now, just substitute the above results into the left-hand side of Eq. (16), we
get

−α(
l2

2
− l

6
)ml+2 + (α + β − 2)(

l2

2
+

l

6
)ml+2 + (

l2

4
+

l

12
)ml+2 + o(ml+2) < 0.

When m is sufficient large, we may omit the term o(ml+2), which yields the
new condition in Eq. (5)

Appendix B: Details of the Computation of Eq. (10)

First, we can rewrite the condition in Eq. (1) as

XnX Y nY ZnZ < WnW . (17)
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We can compute the value of ω, nX , nY , nZ , nW as follows:

ω = |G| + |H| =
∑

(i,j,k):
gi,j,k∈G

1 +
∑

(i,j,k):
hi,j,k∈H

1 =
3τ + 2

6
m3 + o(m3)

nX =
∑
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(m − 1) +
∑

(i,j,k):
hi,j,k∈H
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∑
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m3 + o(m3)

nY =
∑

(i,j,k):
gi,j,k∈G
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∑
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∑
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j =
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6
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∑
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(2(m − 1) + τm) +
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∑
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3τ2 + 6τ + 4

6
m3 + o(m3)

nW = ω −
∑

(i,j,k):
hi,j,k∈H

1 =
3τ + 2

6
m3 + o(m3)

Substitute the above results and X = Nβ−δ, Y = Nα+β−2, Z = N0.5,W =
Nα+β into Eq. (17), then take the exponents part, we can obtain

(β − δ)(
3τ + 2

6
m3 + o(m3)) + (α + β − 2)(

3τ + 4
6

m3 + o(m3))

+ 0.5(
3τ2 + 6τ + 4

6
m3 + o(m3)) < (α + β)(

3τ + 2
6

m3 + o(m3)).

When m is sufficient large, we may omit the term o(m3), and get the new
condition in Eq. (10).
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Abstract. In this paper, we show that it is inaccurate to apply the
hypothesis of independent round keys to search for differential character-
istics of a block cipher with a simple key schedule. Therefore, the derived
differential characteristics may be valid. We develop a SAT-based algo-
rithm to verify the validity of differential characteristics. Furthermore,
we take the key schedule into account and thus put forward an algorithm
to directly find the valid differential characteristics. All experiments are
performed on Midori64 and we find some interesting results.

Keywords: Lightweight block cipher · Differential characteristic ·
SAT · Midori64 · Hypothesis of independent round keys

1 Introduction

Midori [2] presented at ASIACRYPT 2015 is a family of lightweight block ciphers
with low energy consumption. The family is composed of two versions Midori64
and Midori128, which encrypt 64-bit and 128-bit plaintexts, respectively. Due to
the small state space of Midori64, we focus on Midori64 in this paper.

The most critical step of differential cryptanalysis is to obtain the differen-
tial characteristics with high probability. In general, automatic search methods
based on MILP and SAT/SMT are utilized to find them under the hypothesis of
independent round keys [1,3,8]. However, for Midori64, its round keys are not
independent because of its simple key schedule. Furthermore, there are no right
pairs that follow the expected propagation of the differential characteristic [4].
That is, the differential characteristic is invalid.

This inspires us to develop an accurate SAT-based method for verifying the
validity of the differential characteristics and encourages us to improve the exist-
ing algorithms for directly finding the valid differential characteristics. Our main
contributions are listed in the following:
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• Using the SAT-based method under the hypothesis of independent round
keys, see Algorithm 1, we obtain the upper bounds on the probability of the
best differential characteristics for full-round Midori64.

• We propose a SAT-based method to verify the validity of a differential charac-
teristic, see Algorithm 2. For Midori64, we apply this method to test whether
the differential characteristics obtained by Algorithm 1 are valid.

• In knowing the upper bounds on the probability of the best differential char-
acteristics, we take the key schedule into account and thus put forward an
algorithm to directly search for valid characteristics of a block cipher, see
Algorithm 3. As a result, we improve some previous results.

The rest of this paper is organized as follows. In Sect. 2, we give a brief
description of Midori64. In Sect. 3, the SAT-based method under the hypothesis
of independent round keys is used for Midori64. In Sect. 4, we present an accu-
rate SAT-based algorithm to verify the validity of differential characteristics. In
Sect. 5, we give the algorithm directly finding the valid differential characteristics
with application to Midori64. In Sect. 6, we conclude this paper.

2 A Brief Description of Midori64

Midori64 has a SPN structure, whose state size is 64 bits, key size is 128 bits
and round number R is 16.

Each round function of Midori64 is composed of the following four operations.
SubCell (SC) is the only nonlinear operation where 16 4-bit S-boxes are applied
to each nibble of the state in parallel. ShuffleCell (SFC) applies a nibble-wise
permutation to the state. MixColumn (MC) performs a linear transformation on
each 4-nibble column of the state. KeyAdd (KA) uses a XOR operation, which
bitwise XORs the i-th 64-bit round key RKi to each bit of the state.

The data encryption process of Midori64 is as follows: Firstly, using KA, a
64-bit whitening key WK is XORed to each bit of the state. Then, the round
function is performed R − 1 times. Finally, SC is executed, and again KA using
WK is carried out.

The key schedule of Midori64 is relatively simple and uses a 128-bit master
key K that is composed of two 64-bit keys K0 and K1: K = K0||K1. The
whitening key WK is computed as WK = K0 ⊕ K1 and the round key is
RKi = Ki mod 2 ⊕ αi, 0 ≤ i ≤ 14, where αi is the round constant. More details
about Midori64 are depicted in design documentation [2].

3 The Method Proposed by Sun et al. with Application
to Midori64

In this section, we apply the SAT-based method proposed by Sun et al. to find
the upper bounds on the probability of the best differential characteristics for
full-round Midori64. We use the SAT solver called Cryptominisat [6] to do our
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work. It accepts CNF (Conjunctive Normal Form) files as the standard input,
which is equivalent to the product-of-sum representation of Boolean functions.

In the following, we give a general framework of the SAT-based method
proposed by Sun et al. [8], see Algorithm 1. However, we emphasize that this
approach is based on the hypothesis of independent round keys. If this hypothesis
of a block cipher is weak, the derived differential characteristics may be invalid.
Thus, the probability of the best differential characteristics is only the upper
bound. It depends on whether the derived characteristics are valid. If valid, the
bound is tight; otherwise, is not tight.

Algorithm 1. The SAT-based search algorithm under the hypothesis of inde-
pendent round keys
Require: the total round R
Ensure: the upper bounds bound on the best probability for a R-round primitive
1: bound ← list([0,0,· · · ]) � store R-round information
2: result ← - 1 � the weight of the best probability
3: for r ← 0 to R − 1 do
4: flag ← false
5: while flag is false do
6: result ← result + 1
7: model1 ← ()
8: model1 ← BuildModel1(r, model1, result,bound)
9: Flag ← the result obtained by solving the model1

10: if Flag is ”SAT” then
11: flag ← true
12: end if
13: end while
14: bound [r] ← result
15: end for
16: return bound
17:
18: function BuildModel1(r, model1, result, bound)
19: for i ← 0 to r - 1 do
20: model1 += the differential propagation rules for the i-th round primitive
21: end for
22: model1 += the model of objective function about the weight result
23: model1 += the model of Matsui’s bounding conditions created with bound
24: return model1
25: end function

In lines 7–9 of Algorithm 1, the process of searching with the SAT solver can
be summarized as follows: Firstly, the search problem is expressed as a set of
CNF clauses, and thus the SAT model is established. Then, the model is solved
by the solver. Finally, if there is a solution, then the solver returns “SAT” and
a solution is extracted; otherwise, returns “UNSAT”.
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For different block ciphers, BUILDMODEL1() is the only different part. To
apply Algorithm1 to Midori64, we need to establish the differential propagation
models for all the operations that include XOR, S-box, SFC, and MC.

For bitwise XOR operation α0 ⊕ α1 ⊕ · · · ⊕ αn−1 = β, we define a (n + 1)-bit
Boolean function f(α0||α1|| · · · ||αn−1||β) as

f(α0||α1|| · · · ||αn−1||β) =
{

1, if α0 ⊕ α1 ⊕ · · · ⊕ αn−1 = β
0, else

.

For 4-bit S-box operation, let x ∈ F 4
2 and y ∈ F 4

2 be the input and output
differences of differential distribution table (DDT) of S-box, respectively. And p
is the probability of a differential propagation in the DDT. We introduce 3 extra
binary variables w0, w1, w2 to encode the weight of probability, as follows:

w = (w0, w1, w2) =

⎧⎨
⎩

(0, 0, 0), if p = 2−0

(0, 1, 1), if p = 2−2

(1, 1, 1), if p = 2−3
.

We define a 11-bit Boolean function f(x||y||w) as

f(x||y||w) =

⎧⎨
⎩

1, if x → y is a possible propagation with − log2 p =
2∑

k=0

wk

0, else
.

For SFC operation, we only need to change the positions of bits, which indi-
cates that the extra CNF clauses are not required.

For MC operation, we can find its primitive representation [7]. Thus, the 4×4
involutive matrix over field F 4

2 can be converted to a 16×16 binary matrix. And
the MC operation is converted to 64 XOR operations.

Use the software Logic Friday [5] to obtain the minimum product-of-sum
representations of all operations and thus generate a set of smaller CNF clauses.

Our goal is the r-round upper bounds of probability. Express the extra vari-
able of the j-th S-box in the i-th round as w

(i,j)
k , where 0 ≤ i ≤ r−1, 0 ≤ j ≤ 15,

and 0 ≤ k ≤ 2. Thus, the objective function is expressed as
r−1∑
i=0

15∑
j=0

2∑
k=0

w
(i,j)
k . It

can be abstracted as the Boolean cardinality constraint
n−1∑
i=0

xi ≤ z, where z is a

non-negative integer. This requires the solver to find such a differential charac-
teristic that the weight of differential probability is less than or equal to z. For
more information about the modeling of this constraint, see [8].

Matsui’s bounding conditions are encoded to the SAT model for accelerat-
ing the search. These conditions take full advantage of the fact that the upper
bounds on the probability of short characteristics are known. Similarly, for more
information about the modeling of those conditions, see [8].

Thus, the involved SAT model has been completed. Using Algorithm1, we
find the upper bounds on the probability of the best differential characteristics
for full-round Midori64, as shown in Table 1. It more accurately evaluates the
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Table 1. The weight of the upper bounds on the probability of the best differential
characteristics for full-round Midori64.

Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

−log2 p 2 8 14 32 46 60 70 76 82 100 114 124 134 144 150

security of Midori64 against single-key differential cryptanalysis, which is roughly
estimated by the low bounds on the number of differential active S-boxes in
the design document of Midori64 [2]. Notice the fact that the block size for
Midori64 is 64 bits. From Table 1, 7-round Midori64 is sufficient to resist single-
key differential cryptanalysis, because 2−70 ≤ 2−64 ≤ 2−60.

4 Verifying the Validity of Differential Characteristics
Based on SAT

In this section, we show that the derived differential characteristics under the
hypothesis of independent round keys may be invalid because round keys of
Midori64 are not independent. As the work in [4], we only focus on whether a
differential characteristic is valid and ignore the value of its non-zero probability.
If the characteristic Q with non-zero probability is invalid, the work based on Q
cannot reflect the security of a block cipher against differential cryptanalysis.

Therefore, we present an accurate SAT-based algorithm to verify the validity
of a differential characteristic, see Algorithm 2. It encrypts separately a pair
of plaintexts with a key for the primitive and thus it can be used to check
whether the XOR value of two plaintexts in each round satisfies the difference
value in each round. If the SAT model has a solution, then a valid key and
the corresponding right pairs following the differential characteristic are output;
otherwise, the differential characteristic will be invalid, which also indicates that
there are no valid keys that follow the propagation of Q.

Next, we give a specific description of BUILDMODEL2() for Midori64. We
need to establish the value propagation models for all operations. Then, accord-
ing to the structure of the block cipher, the model of each operation is connected
to establish the r-round propagation model of a pair of plaintexts. XOR, SFC,
and MC of all operations are linear and can be modeled similarly to the corre-
sponding differential propagations in Sect. 3. Here, we introduce the SAT model
for the value propagations of the non-linear operation S-box.

For 4-bit S-box operation y = S(x), where x ∈ F 4
2 and y ∈ F 4

2 are the input
and the output values of S-box, respectively. We define a 8-bit Boolean function
f(x||y) as

f(x||y) =
{

1, if x → y is a possible propagation with y = S(x)
0, else

.

Similarly, use Logic Friday to generate a set of smaller CNF clauses. So far, the
SAT model of each operation of Midori64 has been completed. Thus, we can use
Algorithm 2 to verify some of the characteristics obtained by Algorithm 1.
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Algorithm 2. The SAT-based algorithm to verify the validity of a differential
characteristic
Require: a r-round differential characteristic Q
Ensure: The validity of Q
1: model2 ← ()
2: model2 ← BuildModel2(r, model2 )
3: Flag ← the result obtained by solving the model2
4: if Flag is ”SAT” then
5: solution ← a valid key and corresponding right pairs following characteristic Q
6: return [”SAT”, solution] � Q is valid
7: else
8: return ”UNSAT” � Q is invalid
9: end if

10:
11: function BuildModel2(r, model2 )
12: for i ← 0 to r - 1 do
13: model2 += the constraint rules of characteristic Q on intermediate states

of a pair of plaintexts in the i-th round
14: model2 += the value propagation rules of the encryption part for a pair of

plaintexts in the i-th round
15: model2 += the value propagation rules of the key schedule part for a pair

of plaintexts in the i-th round
16: model2 += the rules of linking both parts via the round key ki

17: end for
18: return model2
19: end function

We modified Algorithm 1 to output multiple differential characteristics of r-
round Midori64, where 1 ≤ r ≤ 6. Usually, the solver only outputs one solution.
To find multiple solutions, we utilize its incremental property, which allows the
solver to record the current information. After the solver outputs a solution,
an additional CNF clause is added to the SAT model to prohibit this solution.
Then, the solver is asked to give a solution again, and so on, until the solver
returns “UNSAT”. Specifically, for a n-bit variable (x0, x1, · · · , xn−1) with its

specific solution (k0, k1, · · · , kn−1), the CNF clause
n−1∨
i=0

(xi⊕ki) = 1 is appended.

We apply Algorithm 2 to verify the validity of these differential character-
istics. The results show that some of them are valid, which indicates that the
upper bounds of 1 ≤ r ≤ 6 rounds obtained by Algorithm1 are tight. However,
some of them are invalid, which also indicates that the hypothesis of independent
round keys is inaccurate for Midori64.

Such experimental results remind us that we can use this hypothesis to
roughly assess the resistance of a block cipher against differential cryptanal-
ysis. However, when we want to obtain specific differential characteristics for
differential attacks, we should pay attention to the validity of characteristics.



The SAT-Based Automatic Methods 159

5 Our New Algorithm for Finding Valid Differential
Characteristics

The first two sections explain that the derived differential characteristics under
the hypothesis of independent round keys may be invalid. In the following, we
build a SAT model that involves both the differential and value propagations of
a primitive to directly search for valid differential characteristics.

In knowing the upper bounds on the best probability of the r-round primitive,
we take the key schedule into account and thus propose an improved search
method for directly finding a valid characteristic, see Algorithm3.

Algorithm 3. The improved SAT-based search algorithm for directly finding a
valid r-round characteristic
Require: the target round r
Ensure: a valid r-round differential characteristic
1: bound ← list(R) � store the known upper bounds on the probability of R rounds
2: result ← bound [r] � the weight of the best r-round probability
3: MAX WEIGHT ← 10000
4: while result < MAX WEIGHT do
5: model3 ← ()
6: model3 ← BuildModel3(model3, result, bound)
7: Flag ← the result obtained by solving the model3
8: if Flag is ”SAT” then
9: solution ← a valid r-round characteristic

10: return [”SAT”, solution]
11: end if
12: result ← result + 1
13: end while
14:
15: function BuildModel3(model3, result, bound)
16: BuildModel1(r, model3, result, bound) � the differential propagations
17: BuildModel2(r, model3 ) � the value propagations
18: return model3
19: end function

To improve efficiency of the search, we use the upper bounds obtained by
Algorithm 1 to avoid the search in the probability space for which no charac-
teristics exist, as shown in the 1-th row of Algorithm 3. The BUILDMODEL3()
part not only searches for a characteristic but also verifies its validity. Simi-
larly, incremental property of the solver can be used to obtain multiple valid
characteristics.

The greater probability of two 5-round characteristics was 2−52 in [9]. Using
our Algorithm 3, we search for the best valid differential characteristics of
Midori64. We find some 5-round characteristics with probability 2−46, which
increases a factor of 26 than the probability 2−52. Furthermore, we also find
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some 6-round characteristics with probability 2−60, which means that we may
attack Midori64 with one more round than the result of [9].

These multiple valid characteristics may be used to launch better differential
attacks than the existing ones. And for Midori64, the fewer active nibbles of the
input and output differences of a characteristic, the more conducive to a differen-
tial key recovery attack. Note that we did not consider this factor when searching
for characteristics. Thus, we can continue the study of selecting advantageous
ones among these multiple valid characteristics.

6 Conclusion and Future Work

In this paper, we show by experimentation that the derived characteristics for
Midori64 under the hypothesis of independent round keys may be invalid. Fur-
thermore, we propose a new algorithm to directly search for valid characteristics.
Using it, we obtain some better valid characteristics, which may improve the
complexity of existing key recovery attacks of Midori64.

In the future, on the one hand, we can search for advantageous characteristics
to perform better differential key recovery attacks on Midori64. On the other
hand, we need to be careful in presuming that the hypothesis of independent
round keys applies to a block cipher.
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Abstract. Scalar multiplication is the basic operation in elliptic curve
cryptography. The double-base number system (DBNS) is an effective
tool for speeding up scalar multiplication on elliptic curves. This paper
proposes a novel decomposition algorithm for scalar n based on the spe-
cific double bases (τ , τ) instead of the ordinary window τ -NAF. On μ4-
Koblitz curves, we evaluate the cost of our scalar multiplication method
and compare it to related work. We also consider scalar multiplication
using LD coordinates. Experiment results show that μ4-Koblitz curves
perform well.

Keywords: Elliptic curve cryptography · Scalar multiplication ·
Koblitz curves · Double-base number system · Width-ω τ -NAF

1 Introduction

Elliptic curve cryptography (ECC) is an asymmetric cryptographic algorithm
based on the hardness of the elliptic curve discrete logarithm problem. The
most expensive part of the elliptic curve cryptography is computing the scalar
multiplication nP that can be evaluated as a Horner scheme, where n is a non-
negative integer and P is a point on the elliptic curve.

Generally, there are two ways to speed up scalar multiplication algorithms:
either reducing the complexity of curve operations or designing decomposition
algorithms with lower density for scalar n. This work selects the Koblitz curve
Ea [12] for the former case because it has more efficient curve operations. For the
latter case, we design a double-base decomposition algorithm for n that requires
fewer point additions by invoking the width-ω τ -NAF.

Koblitz curves defined over F2m are an essential family of elliptic curves to
optimize the scalar multiplication algorithm. The computational advantage of
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Koblitz curves is that replacing the point doubling with the Frobenius endomor-
phism τ enables faster scalar multiplication. The set of all endomorphism τ on
Ea is the Euclidean domain Z[τ ] = Z+ τZ. To compare the cost of the different
curve operations and scalar multiplication algorithms, let M denote the cost of
a multiplication and S denote the cost of a squaring in F2m .

In 1998, Dimitrov et al. [10] first introduced double bases in elliptic curve
cryptography. Later, many works have improved and applied DBNS [2,9,11,20]
to speed up scalar multiplications. In 2006, Avanzil et al. [3] gave an efficient
DBNS(τ , τ) recoding algorithm for integer n in López-Dahab (LD) coordinates,
where τ is the complex conjugate of τ . The fly in the ointment is that the cost
for evaluating τ is expensive with 4M + 4S. Later, Doche et al. [11] presented
a new way to compute τ(P ) in LD coordinates with 2M + S when a = 1 and
2M + 2S when a = 0.

Various techniques have been proposed using memory and pre-computation
to speed up scalar multiplication. For window τ -NAF with width ω, one needs
to store 2ω−2 − 1 pre-computed points in memory. Blake and Murty et al. [7]
established a framework to make the pre-computation of window τ -NAF more
flexible. In their follow-up work [8], authors studied the fast scalar multiplication
by performing basis-τ expansions for integers. Recently, Yu et al. [21] proposed
μτ -operations and applied them to the pre-computation scheme to speed up
scalar multiplication. In addition, Aranha et al. [1] give a faster implementation
of scalar multiplication on Koblitz curves by using the τ �m/3� and τ �m/4� maps
to create analogs of the 3-and 4-dimensional GLV decompositions.

Our Contributions. This paper investigates the efficiency of scalar multipli-
cation on Koblitz curves over F2m using DBNS(τ , τ) expansion. The main con-
tributions are described as follows.

1. We propose a new double-base decomposition algorithm for an integer n.
Considering the high efficiency of τ -operation and τ -operation on the Koblitz
curve, we present the scalar multiplication using DBNS(τ , τ) expansion.

2. We give the cost of scalar multiplication on different curves. We consider two
coordinate systems denoted by μ4-Koblitz curves [14] and LD coordinates [17].
Meanwhile, we compare the scalar multiplication cost on four Koblitz curves
recommended by NIST [4,5,18] K-233, K-283, K-409, and K-571 with a = 0.
We also analyze the cost on Koblitz curves with a = 1 denoted by: K1-163,
K1-283, K1-359, and K1-701.

The rest of this paper is organized as follows. Section 2 discusses the notation
and basics behind the elliptic curve scalar multiplication. We present the the-
oretical basis and double-base recoding algorithm in Sect. 3. The cost of scalar
multiplications in different cases is analyzed in Sect. 4. Finally, we conclude the
paper in Sect. 5.

2 Preliminary

This section includes the definitions of DBNS and Koblitz curves and some
technical preparation.
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2.1 Double Bases

Following [9], an integer can be represented as AsiBti with (A,B) as a suitable
integer pair, and si, ti are nonnegative integers. This research uses a more gen-
eral definition. Precisely, A,B ∈ Z[τ ] are algebraic integers. The DBNS(A,B)
expansion of an integer n as shown below:

n =
k−1∑

i=0

(−1)eiAsiBti , where ei ∈ {0, 1}.

2.2 Koblitz Curves

In [12], Koblitz introduced a new normal form for elliptic curves called Koblitz
curves, which benefit from fast curve operations. The Koblitz curve Ea defined
over F2m is given as

y2 + xy = x3 + ax2 + 1 (1)

with a ∈ {0, 1}. Ea(F2m) is the rational point group. For cryptographic security,
the order #Ea(F2m) should be a prime or the product of a prime and small
integer. There exists an equation #Ea(F2m) = #Ea(F2) · p due to Ea(F2) is a
subgroup of Ea(F2m), where #Ea(F2) = 2 if a = 1 (resp. #Ea(F2) = 4 if a = 0).
This article only considers p as a prime.

The definition of a Frobenius map τ is τ(x, y) = (x2, y2). Let O denotes the
point at infinity, there exists τ(O) = O. Let μ = (−1)1−a, there is an equation

τ2(P ) + 2P = μτ(P ),

that is true for every point P in Ea(F2m). τ ’s complex conjugate is τ = μ − τ .
The main subgroup of Ea(F2m) is M . For every point P ∈ M , there exists

a δ = τm−1
τ−1 that satisfies δ(P ) = O. The norm function N defined as N(n0 +

n1τ) = n2
0 + μn0n1 + 2n2

1 satisfies N(δ) = p. It implies that ρP = nP if ρ ≡ n
(mod δ).

2.3 The Width-ω τ -NAF

The τ -NAF of an integer n can be expressed as n =
∑k−1

i=0 εiτ
i where εi ∈ {0,±1}

with the non-adjacency property εjεj+1 = 0. The average Hamming weight
among length-k τ -NAF is k/3, and such a representation is unique.

In [12], Koblitz proposed an approach to calculate scalar multiplication nP ,
where n’s representation using τ -NAF. Subsequently, Solinas [19] developed a
high-efficiency window τ -NAF to accelerate scalar multiplication by reducing
the nonzero terms. He gives a general signed version of width-ω τ -NAF coding
on Ea(F2m), which average has m

ω+1 non-zero terms. Blake and Murty et al. [7,8]
have obtained some refinements and extensions to Solinas’ method.



Efficient Scalar Multiplication on Koblitz Curves with Pre-computation 165

2.4 Curve Operations’ Costs on Koblitz Curves

The cost of scalar multiplication varies depending on the coordinate system.
Table 1 summarizes the costs of curve operations in two coordinate systems:
μ4-Koblitz curve [14] and LD coordinates [17].

Table 1. Curve operations’ costs on the Koblitz curves [21]

Coordinates τ(P ) τ -affine operation Addition Mixed addition

μ4-Koblitz curve (a = 0) [13] 4S 3S 7M + 2S 6M + 2S

μ4-Koblitz curve (a = 1) [14,16] 4S 3S 8M + 2S 7M + 2S

LD coordinates [15,17] 3S 2S 13M + 4S 8M + 5S

The μ4-Koblitz curve is defined by

X2
0 + X2

2 = X1X3 + aX0X2, X2
1 + X2

3 = X0X2.

The identity is (1 : 1 : 0 : 1), and the inverse morphism is [−1](X0 : X1 : X2 :
X3) = (X0 : X3 : X2 : X1). Frobenius map τ(X0 : X1 : X2 : X3) = (X2

0 : X2
1 :

X2
2 : X2

3 ). On a μ4-Koblitz curve, the cost of τ -operation is 4S, and the cost of
τ -affine operation is 3S.

In 1998, López and Dahab [17] proposed the LD coordinates system, in which
a τ -operation costs 3S, the cost of one mixed addition is 8M+ 5S, and the cost
of one addition is 13M+ 4S. Table 2 gives the costs of μτ(P ) on the μ4-Koblitz
curve and LD coordinates.

Table 2. μτ(P ) costs on μ4-Koblitz curves and LD coordinates.

μ4-Koblitz curves LD coordinates (a = 0/a = 1)

μτ(P ) 2M + 2S 2M + 2S/2M + S

(μτ)i(P ), i ≥ 2 2M + 2S 2M + 2S/2M + S

3 DBNS Recoding and Scalar Multiplication

3.1 Theoretical Background

All the new results about DBNS(τ , τ) expansion are based on the following
Lemma, which appears in Z[τ ].

Lemma 1. Let τ ∈ Z[τ ] and ω ≥ 3. Then (τ)i �= ±(τ)j(mod 2ω) with 0 ≤ i <
j < 2ω−2.

Proof. Suppose that (τ)i ≡ ±(τ)j(mod 2ω) with 0 ≤ i < j < 2ω−2. According
to Corollary 1 in [3], which gives the order of τ modulo τω is 2ω−2, we get that
i = j. There is a contradiction.
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3.2 Our New Recoding Algorithms

Algorithm 1 provides a newly signed decompositions algorithm using τ and its
complex conjugate τ on Ea. This work proceeds from right to left and is not
greedy.

Algorithm 1. Signed right-to-left DBNS(τ , τ)
Input: An integer ρ ∈ Z[τ ], a parameter ω.
Output: Three arrays s[ ], t[ ], e[ ] and their common length k. The arrays are sequences

of exponents in the decomposition n =
∑k−1

i=0 (−1)e[i] τs[i]τ t[i]

1: N ← ρ, i ← 0, t ← 0
2: t[ ] ← 0, s[ ] ← 0, e[ ] ← 0

3: while |N | ≥ 22ω−3
do

4: while τ | N do
5: N ← N/τ, t ← t + 1

6: Find 0 ≤ j < 2ω−2 and e = 0, 1 with N ≡ (−1)eτ j (mod τω)
7: N ← (N − (−1)eτ j)/τω

8: s[i] ← j, t[i] ← t, e[i] ← e
9: t ← t + ω, i ← i + 1

10: while |N | > 0 do
11: while τ | N do
12: N ← N/τ, t ← t + 1

13: Find 0 ≤ j < 4 and e = 0, 1 with N ≡ (−1)eτ j (mod τ4)
14: N ← (N − (−1)eτ j)/τ4

15: s[i] ← j, t[i] ← t, e[i] ← e
16: t ← t + 4, i ← i + 1

17: return s[ ], t[ ], e[ ], i

According to Lemma 1, we can find j in Step 6. Besides, the termination
of the algorithm is easily obtained. Since in Step 7, N is positive and becomes
strictly smaller. As soon as entering Step 10, the algorithm performs the width-
4 τ -NAF for the remainder. [7] has provided proof for the termination of the
ordinary width-ω τ -NAF. Notice that if |N | ≥ 22

ω−3
, then

|(−1)eτ j | ≤ 2j/2 < 22
ω−3 ≤ |N | (2)

hence in Step 7
∣∣∣∣
N − (−1)eτ j

τω

∣∣∣∣ <
2|N |
|τω| =

|N |
|τω−2| < |N | (3)

since ω ≥ 3. Because of |N |2 ∈ N, eventually |N | < 22
ω−3

. Here N is the norm
of the algebraic integer N . Thus our algorithm is correct. All computations in
Algorithm 1 are done for ρ, the modular reduction of n in the ring Z[τ ].

Then we discuss the Hamming weight of Algorithm 1 on Koblitz curves stan-
dardized by NIST. When ω is given, according to (3), the upper bound on the
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Algorithm 2. Scalar Multiplication using DBNS(τ , τ) expansion
Input: A point P on the curve Ea and the arrays e[ ], s[ ], t[ ] of length k such that

t[i + 1] ≥ t[i] and s[i + 1] > s[i] whenever t[i + 1] = t[i], the pre-computation
points Ph = (μτ)hP with h ∈ {0, 1, · · · , 2ω−2 − 1}.

Output: The point R on Ea such that R =
∑k−1

i=0 (−1)e[i]τs[i]τ t[i]P
1: for all i = 0 to k − 1 do
2: Find h ∈ {0, 1, · · · , 2ω−2 − 1} s.t. s[i] = h
3: if a = 1 or s[i] is even then
4: Qi = Ph

5: else
6: Qi = (−1)Ph

7: i ← k − 1
8: t[−1] ← 0,
9: Q−1 ← O

10: R ← (−1)e[i]Qi

11: while i ≥ 0 do
12: R ← τ t[i]−t[i−1]R + (−1)e[i−1]Qi−1

13: i ← i − 1

14: return R

number of iterations of the main loop is number c that satisfies |ρ| = |τω−2|c =
2

c
2 (ω−2). It follows that

c =
2log2|ρ|
ω − 2

=
m

ω − 2
is the expected Hamming weight. However, N ’s new value in (3) has an absolute
value much closer to |N |/|τω| when N is large. Thus we should use a Hamming
weight m

ω . Furthermore, during Steps 4 to 5, the probability that N is divided by
τ is 1/2, thus we have to take this part into account when evaluating the average
Hamming weight. Consequently, the main body’s average Hamming weight is

m
ω+1 .

Besides, the remainder (Steps 10 to 16) is an integer in Z[τ ] with a norm less
than 22

ω−3
. In this part, the window width ω′ = 4 is fixed. Its Hamming weight

is not greater than 2ω−3

(ω′+1) . Combining the above two parts, we can get the whole
algorithm’ average Hamming weight is

m

ω + 1
+

2ω−3

ω′ + 1
(4)

The following Algorithm 2 computes the scalar multiplication based on the
result of Algorithm 1.

4 Costs of Scalar Multiplications

The S/M ratio has an effect on the cost of scalar multiplication. According
to the cases suggested by Bernstein and Lange [6] and the experiments of our
environments, we consider three cases S/M = 0, S/M = 0.2, and S/M = 0.5.
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4.1 Scalar Multiplications on μ4-Koblitz Curves

We precompute and store a point corresponding to each odd congruence
class (mod τω) for the DBNS(τ , τ) expansion. Table 3 summarizes the pre-
computation cost for several window widths.

Table 3. The pre-computation cost for width from 4 to 7.

μ4-Koblitz curves LD coordinates (a = 0/a = 1)

ω = 4 6M + 6S 6M + 6S/6M + 3S

ω = 5 14M + 14S 14M + 14S/14M + 7S

ω = 6 30M + 30S 30M + 30S/30M + 15S

ω = 7 62M + 62S 62M + 62S/62M + 31S

Theorem 1. Let Preω denotes the cost of pre-computation part for scalar mul-
tiplication using DBNS(τ , τ) expansion with variable window widths ω and fixed
window widths ω′ = 4 on μ4-Koblitz Curves.

1. According to Algorithm2, on μ4-Koblitz curves the total cost of scalar
multiplication in projective coordinates is calculated as follows:

Preω + 4mS + (
m

ω + 1
+

2ω−3

ω′ + 1
) · ((7 + a)M + 2S − 1

2ω−2
M)

2. According to Algorithm2, on μ4-Koblitz curves the total cost of scalar
multiplication in affine coordinates is calculated as follows:

Preω + I + (6 · 2ω−2 − 9)M + 4mS + (
m

ω + 1
+

2ω−3

ω′ + 1
) · ((6 + a)M + 2S)

Proof. 1. The average Hamming weight of the new representation given in
Algorithm 1 is m

ω+1 + 2ω−3

ω′+1 (formula 4). The implementation of scalar mul-
tiplication in our Algorithm2 requires the pre-computation, m τ -operations,
( m

ω+1 + 2ω−3

ω′+1 ) · 2ω−2−1
2ω−2 point additions, and ( m

ω+1 + 2ω−3

ω′+1 ) · 1
2ω−2 mixed additions.

The calculation of τ is included in the pre-computation. In projective coordi-
nates, by adding up the costs of the above four parts with a ∈ {0, 1}, we obtain
the cost of scalar multiplication:

Preω + 4mS + (
m

ω + 1
+

2ω−3

ω′ + 1
) · ((7 + a)M + 2S − 1

2ω−2
M).

2. The point additions of scalar multiplication in affine coordinates entirely
use mixed additions. In this case, computing scalar multiplication requires the
pre-computation, m τ -projective operations, the Montgomery trick, and m

ω+1 +
2ω−3

(ω′+1) mixed additions. The Montgomery trick that translates the points in
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projective coordinates to affine coordinates needs 3(n − 1) multiplication and
one inversion. The total cost of scalar multiplication in affine coordinates is
expected to be:

Preω + I + (6 · 2ω−2 − 9)M + 4mS + (
m

ω + 1
+

2ω−3

ω′ + 1
) · ((6 + a)M + 2S).

Table 4 summarizes the costs of our scalar multiplication method on Koblitz
curves with a = 0. Table 5 summarizes that on Koblitz curves with a = 1. The
most efficient in our new method is the μ4-Koblitz curves. In Appendix A, we
give our scalar multiplication implementation using LD coordinates.

Table 4. The scalar multiplications costs on K-233, K-283, K-409, and K-571 using
μ4-Koblitz curves

K-233(ω) K-283(ω) K-409(ω) K-571(ω)

S = 0M Yu et al. [21] 274.9(6) 324.5(6) 444.3(7) 585.4(7)

Ours 270.6(6) 320.2(6) 439.2(7) 580.3(7)

S = 0.2M Yu et al. [21] 481(6) 573.4(6) 804.3(7) 1083.1(7)

Ours 476.9(6) 569.3(6) 800.4(7) 1079.2(7)

S = 0.5M Yu et al. [21] 790.2(6) 946.9(6) 1341.8(6) 1829.8(7)

Ours 786.3(6) 943.0(6) 1337.9(6) 1825.7(7)

Table 5. The scalar multiplications costs on K1-163, K1-283, K1-359, and K1-701
using μ4-Koblitz curves

K1-163(ω) K1-283(ω) K1-359(ω) K1-701(ω)

S = 0M Yu et al. [21] 231.8(6) 367.9(6) 450.6(7) 791.3(7)

Ours 225.9(6) 362.0(6) 443.5(7) 784.2(7)

S = 0.2M Yu et al. [21] 377.9(6) 616.9(6) 768.1(7) 1399.5(7)

Ours 372.2(6) 611.1(6) 762.2(7) 1393.6(7)

S = 0.5M Yu et al. [21] 594.6(5) 990.3(6) 1239.4(6) 2311.9(7)

Ours 591.6(6) 984.8(6) 1233.8(6) 2307.8(7)

4.2 Comparison with Other Methods

Compared with previous results in the literature, the novelties of our work are
to give a new double-base decomposition algorithm for scalar n and a more
efficient scalar multiplication algorithm. On the whole, our implementations of
scalar multiplication save 24% more time than [3] and 16% more than [11] in
LD coordinates, and 3% more than [21] on μ4-Koblitz curves.

The experimental results are consistent with the theoretical analysis within
the allowable error range. The reason for the slight differences is that some field
additions have been omitted.
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5 Conclusion

This paper presents an up-to-date scalar multiplication algorithm on
Koblitz curves employing DBNS(τ , τ) expansion, where n is represented as∑k−1

i=0 (−1)eiτsiτ ti . Our new method requires fewer point operations and
improves the work of Doche et al. [11] and Yu et al. [21].

We give the cost of scalar multiplication on various Koblitz curves recom-
mended by NIST. Overall, our work improves the efficiency of scalar multiplica-
tion on Koblitz curves.

A Scalar Multiplications Using LD Coordinates

Let PreLDω denote the pre-computation costs. Table 6 gives the scalar multi-
plications costs on several Koblitz curves using LD coordinates. Using a proof
similar to Theorem 1, we also obtain the formulas for the costs of scalar multi-
plication in LD coordinates.

1. Scalar multiplication in LD coordinates. This case requires the pre-
computation, m τ -operations, ( m

ω+1 + 2ω−3

ω′+1 ) · 2ω−2−1
2ω−2 point additions, and

( m
ω+1 + 2ω−3

ω′+1 ) · 1
2ω−2 mixed additions. The costs of scalar multiplication are

expected to be

PreLDω +(2ω−2 −1)M+3mS+(
m

ω + 1
+

2ω−3

ω′ + 1
) · (13M+4S− 1

2ω−2
(5M−S))

2. Scalar multiplication in affine coordinates. It requires the pre-computation,
the Montgomery trick, m τ -operations, and m

ω+1 + 2ω−3

(ω′+1) mixed additions. The
cost of Montgomery trick is I+(5n−3)M+nS. The cost of scalar multiplication
is expected to be

PreLDω +I+(5 ·2ω−2−8)M+(2ω−2−1)S+3mS+(
m

ω + 1
+

2ω−3

ω′ + 1
) ·(8M+5S).

Table 6. The scalar multiplications costs in LD coordinates on K1-163, K-233, K-283,
K1-283, K-409, and K-571

K1-163(ω) K-233(ω) K-283(ω) K1-283(ω) K-409(ω) K-571(ω)

S=0M Doche et al. [11] 326.5(6) 431.5(6) 506.5(6) 506.5(6) 687.8(7) 896.1(7)

Aranha et al. [1] 277.0(5) 373.0(5) 437.0(5) 437.0(5) 606.0(5) 823.1(5)

Yu et al. [21] 276.3(5) 369.7(5) 436.3(5) 436.3(5) 598.4(6) 783.6(6)

Ours 276.1(5) 369.5(5) 436.1(5) 436.1(5) 588.6(6) 773.7(6)

S=0.2M Doche et al. [11] 460.0(6) 621.9(6) 735.2(6) 732.0(6) 1015.2(7) 1343.8(7)

Aranha et al. [1] 404.4(5) 553.4(5) 656.4(5) 656.4(5) 921.0(5) 1261.2(5)

Yu et al. [21] 405.3(5) 553.5(5) 658.5(5) 657.3(5) 913.3(6) 1218.7(6)

Ours 404.5(5) 552.9(5) 657.9(5) 656.5(5) 902.8(6) 1208.3(6)

S=0.5M Doche et al. [11] 660.3(6) 907.4(6) 1078.3(6) 1070.3(6) 1506.1(7) 2015.2(7)

Aranha et al. [1] 594.0(5) 824.0(5) 983.0(5) 983.0(5) 1392.5(5) 1920.0(5)

Yu et al. [21] 598.8(5) 829.3(5) 991.8(5) 988.8(7) 1385.5(6) 1871.5(6)

Ours 597.0(5) 828.0(5) 990.5(5) 987.0(5) 1374.2(6) 1860.2(6)
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Abstract. Adaptor signature is a novel cryptographic primitive which
ties together the signature and the leakage of a secret value. It has become
an important tool for solving the scalability and interoperability prob-
lems in the blockchain. Aumayr et al. (Asiacrypt 2021) recently provide
the formalization of the adaptor signature and present a provably secure
ECDSA-based adaptor signature, which requires zero-knowledge proof
in the pre-signing phase to ensure the signer works correctly. However,
the number of zero-knowledge proofs is linear with the number of partic-
ipants. In this paper, we propose efficient ECDSA-based adaptor signa-
ture schemes and give security proofs based on ECDSA. In our schemes,
the zero-knowledge proofs in the pre-signing phase can be generated in a
batch and offline. Meanwhile, the online pre-signing algorithm is similar
to the ECDSA signing algorithm and can enjoy the same efficiency as
ECDSA. In particular, considering specific verification scenarios, such
as (batched) atomic swaps, our schemes can reduce the number of zero-
knowledge proofs in the pre-signing phase to one, independent of the
number of participants. Last, we conduct an experimental evaluation,
demonstrating that the performance of our ECDSA-based adaptor sig-
nature reduces online pre-signing time by about 60% compared with the
state-of-the-art ECDSA-based adaptor signature.

Keywords: Adaptor signature · ECDSA-based adaptor signature ·
Batched atomic swaps · Blockchain

1 Introduction

Adaptor signatures (AS), also known as scriptless scripts, are introduced by
Poelstra [19] and recently formalized by Aumayr et al. [2]. It can be seen as
an extension over a digital signature with respect to leaking a secret to certain
parties. Namely, the signer uses a signing key to compute a pre-signature of a
message and a statement of a hard relation (e.g., the discrete logarithm), such
that the pre-signature can be adapted into a (full) signature by the witness of the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
W. Susilo et al. (Eds.): ISC 2022, LNCS 13640, pp. 175–193, 2022.
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hard relation. Meanwhile, the witness can be extracted from the pre-signature
and the full signature. AS provides the following intuitive properties: (i) Only
the user knowing the signing key can generate a pre-signature; (ii) Only the user
knowing the witness of the hard relation can convert a pre-signature into a full
signature; (iii) Anyone holding a pre-signature and corresponding full signature
can extract the witness.

BlockBlock Block

Locked c0, c1
σ1

c1

σ0

c0

U0 U1

σ̂0, Y, tx0

σ̂1, tx1

σ1

on-chain

off-chain

(Y, y) ← GenR(1λ)

σ̂0 ← pSignsk0
(tx0, Y )

σ1 ← Adapt(σ̂1, y)

σ̂1 ← pSignsk1
(tx1, Y )

y ← Ext(σ1, σ̂1, Y )

σ0 ← Adapt(σ̂0, y)

Fig. 1. The atomic swap protocol based on adaptor signature

To demonstrate the idea of AS, we introduce its key application atomic swaps
in Fig. 1. An atomic swap [10] can be defined between two users U0 and U1 who
want to exchange two different cryptocurrencies c0 and c1. The crucial point
of the exchange is ensuring fairness, i.e., both parties receive their expected
output or nothing. Two parties U0 and U1 first set the time-lock for c0 with
the timeout t0 and c1 with the timeout t1 on-chain1. Then, U0 chooses a hard
relation (Y, y) ∈ R and pre-signing a transaction tx0 for spending the coins c0
to U1, and then sends the pre-signature σ̂0, tx0, Y to U1. U1 can check the
validity of σ̂0 and pre-signing a transaction tx1 for spending the coins c1 to U0

and then sends the pre-signature σ̂1, tx1 to U0. U0 can check the validity of σ̂1

and adapts σ̂1 into the full signature σ1 by the witness y, and then publishes
σ1 on the blockchain to get the coin c1 within t1. U1 can extract the witness y
from σ1 and σ̂1 and adapts σ̂0 into σ0, then publishes σ0 on the blockchain to
get the coin c0 within t0. As we can see, the pre-signature and the cryptographic
condition need not to be published on-chain, compared with using the Hash
Time-Lock Contracts (HTLCs) [15,20], AS reduces the operations on-chain and
weaken scripting restrictions on the underlying blockchain.

By tying the signing processing to the revelation of a secret value, AS brings
about various advantages as follows: (i) Reducing the operations on-chain; (ii)

1 Both parties use time-lock to lock the exchange coins on-chain, and the timeouts
t1 < t0 to ensure that U1 can have enough time to react.
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Supporting advanced functionality beyond the limitation of the blockchain’s
scripting language; (iii) Improving fungibility of transactions. To be specific,
the pre-signature is generated and verified off-chain and only the full signa-
ture is published on-chain, so AS reduces the additional storage and verification
costs greatly on-chain, meanwhile, it is not limited by the blockchain’s script-
ing language. Based on this advantage, Aumayr et al. [2] give a generalized
channel construction by using AS as a key technique, which is compatible with
any blockchain supporting transaction authorization, time-locks, and constant
number of Boolean ∧ and ∨ operations - requirements fulfilled by many (non-
Turing-complete) blockchains including the Bitcoin. The fungibility property is
said that the pre-signature embedded the cryptographic condition (hard rela-
tions) inside is indistinguishable from a regular signature, and it can be used to
hide payment channel network transactions among any other transactions [16].
Benefiting from above advantages, AS has also been shown highly useful in many
blockchain applications such as payment channels [2–4,7,20], payment routing
in payment channel networks [9,10,16,17], and atomic swaps [8,10,13].

Poelstra [19] first gives a Schnorr-based AS that is limited to cryptocur-
rencies using Schnorr signatures [21]. Moreno-Sanchez and Kate [18] present an
ECDSA-based AS and its two-party version without provable security. Malavolta
et al. [16] present two-party AS based on ECDSA [1], but they do not define AS
as a stand-alone primitive and formalize the security definition for the threshold
primitive and hence the security of their schemes has not been analyzed com-
pletely, such as the lack of the witness extractability. Until Aumayr et al. [2] first
formalize AS as a standalone primitive and prove the security of their ECDSA-
based AS based on the strong unforgeability of positive ECDSA in the Universal
Composability (UC) framework [5]. They exquisitely modify the hard relation
in [18], by adding a zero-knowledge proof such that the witness can be extracted
in the random oracle model [12]. For convenience, we name this modification as
“self-proving structure”. However, their ECDSA-based AS is not entirely satis-
factory. In the pre-signing phase, the signer uses the random value as a witness
to compute a pre-signing public parameter and a corresponding zero-knowledge
proof. Especially, in the case of multiple participants, such as (batched) atomic
swaps or multi-hop payments [10,16], the number of zero-knowledge proofs is
linear with the number of participants. Therefore, we consider the following
question in this work:

Is it possible to design an efficient ECDSA-based AS in which the number of
zero-knowledge proofs in the pre-signing phase is independent of the number of
participants?

1.1 Our Contributions

In this paper, we give an affirmative answer to the above question. First, we
propose an ECDSA-based AS (ECDSA-AS) and prove the security based on
positive ECDSA in UC framework following [2]. Then, we develop more effi-
cient ECDSA-AS schemes in which the zero-knowledge proofs in the pre-signing
phase can be generated in a batch and offline. In particular, considering specific
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verification scenarios2, in which only the participants verify the pre-signatures,
our ECDSA-AS can reduce the number of zero-knowledge proofs in pre-signing
phase to one.

ECDSA-Based Adaptor Signature. ECDSA-AS can be seen as an extension
of ECDSA with a hard relation (IY = (Y = yG, πY ), y), where πY ← PY (Y, y),
PY denotes the proving algorithm3. We briefly introduce our ECDSA-AS as
follows: Let (Q = xG, x) denote ECDSA verification key and signing key. The
signer computes a pre-signing public parameter Z = xY and uses x as the witness
to compute πZ ← PZ((G,Q, Y, Z), x)4, then chooses a random value k ← Zq,
computes r = f(kY ), ŝ = k−1(h(m) + rx) mod q, and outputs the pre-signature
σ̂ = (r, ŝ, Z, πZ). The verification algorithm verifies πZ and r

?= f(ŝ−1 ·h(m)·Y +
ŝ−1 ·r ·Z). The adaptor algorithm takes the witness y and the pre-signature σ̂ as
inputs to compute s = ŝ · y−1 mod q, and outputs ECDSA signature σ = (r, s).
The extraction algorithm can extract the witness by computing y = ŝ/s.

Following [2], we use “self-proving structure” (IY = (Y, πY ), y) to give secu-
rity proofs. Intuitively speaking, since the zero-knowledge proof system holds
straight-line extractability, the simulator can extract the witness y from the
instance (Y, πY ), then it can use ECDSA signing oracle to obtain ECDSA sig-
nature σ = (r, s) and simulates the pre-signing oracle by computing the pre-
signature ŝ = s · y mod q.

Then, we develop two efficient ECDSA-AS schemes called ECDSA-ASsk and
ECDSA-ASwit by computing the pre-signing public parameter and correspond-
ing zero-knowledge proof offline, where ECDSA-ASsk uses signing key x as a
witness to compute (Z = xY, πZ), and ECDSA-ASwit uses the witness y of hard
relation (IY , y) as a witness to compute (Z = yQ, πZ).

Offline/Online Pre-signing. In ECDSA-AS [2,18], the signer computes the
pre-signing public parameter K = kY and proves the hard relation ((G, K̂ =
kG, Y,K), k) satisfies equality of discrete logarithms πK ← PK((G, K̂, Y,K), k),
that is, there exists a witness k that is the random value used in the pre-signing
algorithm, such that K̂ = kG and K = kY .

2 Common verification scenarios require that everyone can verify signatures. However,
the pre-signature of the adaptor signature is not published on the blockchain, so
it is always used in the specific verification scenarios where only the participants
verify the pre-signatures off-chain and others (such as miners) need not verify pre-
signatures.

3 The zero-knowledge proof system requires straight-line extractor, also namely online
extractor [12]. The straight-line extractability property allows for extraction of a
witness y for a statement Y from a proof πY in the random oracle model and is
useful for models where the rewinding proof technique is not allowed, such as UC [2].

4 This zero-knowledge proof system does not require straight-line extractor. Such a
proof can be derived by applying the Fiat-Shamir heuristic [11] to Chaum-Pedersen∑

-protocol [6] for the language comprising valid DDH tuples.
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In our ECDSA-ASsk, the signer computes Z = xY and proves the hard
relation ((G, Q, Y , Z), x) satisfies equality of discrete logarithms πZ ← PZ((G,
Q, Y , Z), x), that is, there exists a witness x that is the signing key, such that
Q = xG and Z = xY . In our ECDSA-ASwit, the signer5 computes Z = yQ and
proves the hard relation ((G, Y , Q, Z), y) satisfies equality of discrete logarithms
πZ ← PZ((G, Y , Q, Z), y), that is, there exists a witness y that is the witness of
hard relation (IY , y), such that Y = yG and Z = yQ. By using y as the witness,
the signer (hard relation chooser) holding y can generate all pre-signing public
parameters Zi = yQi and zero-knowledge proofs πZi

in a batch and offline for
all other participants. Other participants can compute Zi = xiY by using the
signing key xi and the instance Y .

Performance. We show the theoretical and experimental analysis of ECDSA-
AS [2,18] and our ECDSA-ASsk/wit. In the offline phase, all parties in ECDSA-
ASsk/wit generates and checks the hard relation IY = (Y, πY ← PY (Y, y), y). In
the online phase, the signer uses Y and Zi = yQi to run the online pre-signing
algorithm to generate the pre-signature which can be verified by Y and Zi = xiY .
Thus, the online pre-signing algorithm is similar to the original ECDSA signing
algorithm except for modifying parameters by using (Z, Y ) as the verification
key and base point instead of (Q,G). To be specific, ECDSA-ASsk/wit only
computes once point multiplication operation online, while ECDSA-AS in [2,18]
need four times point multiplication operation. The experimental results show
that ECDSA-ASwit reduces online pre-signing time by about 60% compared with
the state-of-the-art ECDSA-AS [2] in a two-party case.

Applications. AS can be divided into off-chain and on-chain two phases. In the
off-chain phase, all participants generate and verify the pre-signatures from each
other, and adapt the pre-signatures into full signatures. In the on-chain phase, all
participants use the time-lock to lock their coins and then publish full signatures
to achieve the exchange within the timeouts. Therefore, the pre-signatures are
not published on the blockchain and are only verified by the participants that
satisfy special verification scenarios. Our ECDSA-ASsk/wit can reduce all zero-
knowledge proof in the pre-signing phase, except one zero-knowledge proof of
the hard relation chooser. Since other participants can compute the pre-signing
public parameters Zi = xiY and the hard relation chooser can compute the
pre-signing public parameters Zi = yQi, there is no need to use zero-knowledge
proofs to ensure the correctness of pre-signing public parameters.

To our knowledge, atomic swaps are mostly for two-party exchange scenarios
to ensure fairness. We consider the special batched case in which one party with
many addresses (accounts) or one party with a lot of transactions that need to
exchange with many users at once, such as the scenario of the Exchange. For
this scenario, we develop batched atomic swaps, in which all parties first set the

5 The signer can be seen as a hard relation chooser who is the protocol initiator and
holds the witness y.
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time-lock for the exchange coins on-chain6 and then one user U0 can exchange
its coins with many users (addresses) Ui, i ∈ [n] in a batch. Compared with
running independently n times atomic swaps between U0 and Ui, i ∈ [n], batched
atomic swaps can reduce the number of hard relations (Y, y) from n to one. In
particular, constructing batched atomic swaps based on ECDSA-ASsk/wit only
transmits one zero-knowledge proof, while using ECDSA-AS [2,18] requires 2n
zero-knowledge proofs, where n denotes the number of parties in batched atomic
swaps.

2 Preliminaries

2.1 Notations

For n ∈ N, [n] denotes the set {1, 2, · · · , n}, 1λ denotes the string of λ ones.
Throughout, we use λ to denote the security parameter. A function is negligible
in λ, written negl(λ), if it vanishes faster than the inverse of any polynomial in
λ. We denote a probabilistic polynomial-time algorithm by PPT. If S is a set
then s ← S denotes the operation of sampling an element s of S at random.

2.2 Hard Relation and Zero-Knowledge Proof

We recall the definition of a hard relation R with statement/witness pairs
(stat = (G, Y = yG), y) [2]. Let LR be the associated language defined as
LR = {(G,Y )|∃ y s.t. ((G,Y ), y) ∈ R}. We say that R is a hard relation if the
following holds: (i) There exists a PPT sampling algorithm GenR(1λ) that on
input 1λ outputs a statement/witness pair ((G,Y ), y) ∈ R; (ii) The relation is
poly-time decidable; (iii) For all PPT A, the probability of A on input (G,Y )
outputting y is negligible.

We recall the definition of a non-interactive zero-knowledge proof of knowl-
edge (NIZKPoK) with straight-line extractors as introduced in [12]. More for-
mally, a pair (P,V) of PPT algorithms is called a NIZKPoK with a straight-
line extractor for a relation R, random oracle H and security parameter λ if
the following holds: (i) Completeness: For any ((G,Y ), y) ∈ R, it holds that
V((G,Y ), π ← P((G,Y ), y)) = 1; (ii) Zero knowledge: There exists a PPT simu-
lator S, which on input (G,Y ) can simulate the proof π for any ((G,Y ), y) ∈ R.
(iii) Straight-line extractability: There exists a PPT straight-line extractor K
with access to the sequence of queries to the random oracle and its answers,
such that given ((G,Y ), π) , the algorithm K can extract the witness y with
((G,Y ), y) ∈ R. For convenience, we omit the parameter G in this paper.

6 All parties use time-lock to lock the exchange coins c0 with the timeouts t0 and ci
with the timeouts ti, and the timeouts ti < t0, i ∈ [n] to ensure that Ui can have
enough time to react.
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2.3 Adaptor Signature Scheme

An adaptor signature scheme [2] w.r.t. a hard relation R = {Y, y} and a signature
scheme

∑
= (Gen,Sign,Vrfy) consists of four algorithms ΠR,

∑ = (pSign, pVrfy,
Adapt, Ext) defined as:

– pSignsk(m,Y ) → σ̂: On input a signing key sk, an instance Y and a message
m ∈ {0, 1}∗, outputs a pre-signature σ̂.

– pVrfyvk(m,Y, σ̂) → 0/1: On input a verification key vk, a pre-signature σ̂, an
instance Y and a message m ∈ {0, 1}∗, outputs a bit b ∈ {0, 1}.

– Adapt(σ̂, y) → σ: On input a pre-signature σ̂ and a witness y, outputs a
signature σ.

– Ext(σ, σ̂, Y ) → y: On input a signature σ, a pre-signature σ̂ and an instance
Y , outputs a witness y such that (Y, y) ∈ R, or ⊥.

Definition 1 (Pre-signature correctness). An adaptor signature scheme ΠR,
∑

satisfies pre-signature correctness if for every λ, every message m ∈ {0, 1}∗ and
every statement/witness pair (Y, y) ∈ R, the following holds:

Pr

⎡

⎢
⎢
⎣

pVrfyvk(m,Y, σ̂) → 1∧
Vrfyvk(m,σ) → 1∧

(Y, y′) ∈ R

Gen(1λ) → (sk, vk)
pSignsk(m,Y ) → σ̂
Adapt(σ̂, y) → σ
Ext(σ, σ̂, Y ) → y′

⎤

⎥
⎥
⎦ = 1

We review the existential unforgeability under chosen message attack for AS
(aEUF-CMA), pre-signature adaptability, and witness extractability [2].

Definition 2 (aEUF-CMA security). An adaptor signature scheme ΠR,
∑ is

aEUF-CMA secure if for every PPT adversary A there exists a negligible func-
tion negl such that:

Pr[aSigForgeA,ΠR,
∑(λ) = 1] ≤ negl(λ),

where the experiment aSigForgeA,ΠR,
∑ is defined as follows:

aSigForgeA,ΠR,
∑(λ) OSignsk

(m)
Q = ∅ σ ← Signsk(m)
(vk, sk) ← Gen(1λ) Q = Q ∪ {m}
m ← AOSignsk (·),OpSignsk (·)(vk) return σ
(Y, y) ← GenR(1λ)
σ̂ ← pSignsk(m,Y ) OpSignsk

(m,Y )
σ ← AOSignsk (·),OpSignsk (·)(σ̂, Y ) σ̂ ← pSignsk(m,Y )
return (m /∈ Q ∧ Vrfyvk(m,σ) Q = Q ∪ {m}

return σ̂
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Definition 3 (Pre-signature adaptability). An adaptor signature scheme ΠR,
∑

satisfies pre-signature adaptability if for any λ, any message m ∈ {0, 1}∗, any
statement/witness pair (Y, y) ∈ R, any key pair (vk, sk) ← Gen(1λ) and any
pre-signature σ̂ with pVrfyvk(m,Y, σ̂) → 1, we have Vrfyvk(m, Adapt(σ̂, y)) → 1.

The aEUF-CMA security together with the pre-signature adaptability
ensures that a pre-signature for Y can be transferred into a valid signature
if and only if the corresponding witness y is known [2].

Definition 4 (Witness extractability). An adaptor signature scheme ΠR,
∑ is

witness extractable if for every PPT adversary A, there exists a negligible func-
tion negl such that:

Pr[aWitExtA,ΠR,
∑(λ) = 1] ≤ negl(λ),

where the experiment aWitExtA,ΠR,
∑ is defined as follows

aWitExtA,ΠR,
∑(λ) OSignsk

(m)
Q = ∅ σ ← Signsk(m)
(vk, sk) ← Gen(1λ) Q = Q ∪ {m}
(m,Y ) ← AOSignsk (·),OpSignsk (·)(vk) return σ
σ̂ ← pSignsk(m,Y )
σ ← AOSignsk (·),OpSignsk (·)(σ̂) OpSignsk

(m,Y )
y′ ← Ext(σ, σ̂, Y ) σ̂ ← pSignsk(m,Y )
return m /∈ Q ∧ (Y, y′) /∈ R Q = Q ∪ {m}
∧Vrfyvk(m,σ) return σ̂

The witness extractability guarantees that a valid signature/pre-signature
pair (σ, σ̂) for message/statement (m,Y ) can be used to extract the correspond-
ing witness y. There is one crucial difference between aWitExt and aSigForge:
The adversary is allowed to choose the challenge instance Y . Hence, he knows
a witness for Y and can generate a valid signature on the forgery message m.
However, this is not sufficient to win the experiment aWitExt. The adversary
wins only if the valid signature does not reveal a witness for Y [2].

2.4 ECDSA

We review the ECDSA scheme [1]
∑

ECDSA = (Gen,Sign,Vrfy) on a message
m ∈ {0, 1}∗ as follows. Let G be an Elliptic curve group of order q with base
point (generator) G and let pp = (G, G, q) be the public parameter.

– Gen(pp) → (Q,x): The key generation algorithm uniformly chooses a secret
signing key x ← Zq, calculates the verification key Q = x · G, and outputs
(sk = x, vk = Q).
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– Signsk(m) → (r, s). The signing algorithm chooses k ← Zq randomly and
computes r = f(kG)7 and s = k−1(h(m) + rx), where h is a hash function
and f is defined as the projection to the x-coordinate.

– Vrfyvk(m,σ) → 0/1. The verification algorithm computes r′ = f(s−1 · (h(m) ·
G + r · Q)). If r = r′ mod q, outputs 1, otherwise, outputs 0.

We use the positive ECDSA [2,14,16] which guarantees that if (r, s) is a valid
signature, then |s| ≤ (q − 1)/2, to prove the security of our ECDSA-AS.

3 ECDSA-Based Adaptor Signature

In this section, we present a construction of ECDSA-AS ΠR,
∑ = (pSign, pVrfy,

Adapt, Ext) w.r.t. a hard relation R and a ECDSA signature
∑

= (Gen, Sign,
Vrfy). Let (Q = xG, x) be the verification key and signing key of ECDSA. We
define hard relations R = {(IY = (Y, πY ← PY (Y, y)), y)| Y = yG ∧ VY (IY ) =
1} and RZ = {(IZ = (G,Q, Y, Z), x)|Q = xG ∧ Z = xY } where PY and VY

denotes the proving and verification algorithm of a NIZKPoK with straight-line
extractability [12], PZ and VZ denotes the proving and verification algorithm of
a NIZK.

– pSign(vk,sk)(m, IY ) → σ̂: On input a key-pair (vk, sk) = (Q,x), a message
m and an instance IY = (Y, πY ), the algorithm computes the pre-signing
public parameter Z = xY , runs πZ ← PZ(IZ = (G,Q, Y, Z), x), and chooses
k ← Zq, computes r = f(kY ), ŝ = k−1(h(m) + rx) mod q and outputs the
pre-signature σ̂ = (r, ŝ, Z, πZ).

– pVrfyvk(m, IY , σ̂) → 0/1: On input the verification key vk = Q, a message
m, an instance IY , and a pre-signature value σ̂, the algorithm outputs 0, if
VZ(IZ) → 0, otherwise, it computes r′ = f(ŝ−1 · (h(m) · Y + r · Z)) mod q,
and if r′ = r, outputs 1, else outputs 0.

– Adapt(y, σ̂) → σ: On input the witness y, and pre-signature σ̂, the algorithm
computes s = ŝ · y−1 mod q and outputs the signature σ = (r, s).

– Ext(σ, σ̂, IY ) → y: On input the signature σ, the pre-signature σ̂ and the
instance IY , it computes y = ŝ/s modq. If (IY ,y) ∈ R, it outputs y, else
outputs ⊥.

Note that in the pre-signing phase, our ECDSA-AS uses the signing key x
as the witness to compute the pre-signing public parameter Z = xY and zero-
knowledge proof πZ , then the later pre-signing operation is similar to original
ECDSA signing algorithm except for modifying some parameters by using (Z, Y )
as the verification key and base point instead of (Q,G).

Theorem 1. Assuming that the positive ECDSA
∑

is SUF-CMA secure, and
R is a hard relation, NIZKPoK and NIZK are secure, above ECDSA-AS ΠR,

∑

is secure in random oracle model.

7 The function f is defined as the projection to x-coordinate.
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Following [2], we use self-proving structure in our ECDSA-AS and prove
that our ECDSA-AS scheme satisfies pre-signature adaptability, pre-signature
correctness, aEUF-CMA security, and witness extractability.

Lemma 1. (Pre-signature adaptability) Above ECDSA-AS ΠR,
∑ satisfies pre-

signature adaptability.

Proof. For any (IY , y) ∈ R, m ∈ {0, 1}∗, G,Q, Y, Z ∈ G and σ̂ = (r, ŝ, Z, πZ).
For pVrfyvk(m, IY , σ̂) → 1. That is, Y = yG,Z = xyG, K̂ = (h(m) · ŝ−1)Y +
r · ŝ−1Z = kY , r′ = f(K̂) = f(kY ) = r. By definition of Adapt, we know that
Adapt(σ̂, y) → σ, where σ = (r, s), s = ŝ · y−1 = (yk)−1(h(m) + rx) mod q.
Hence, we have

K ′ = (h(m) · s−1)G + r · s−1Q = kY.

Therefore, r′ = f(K ′) = r. That is, Vrfyvk(m,σ)→ 1.

Lemma 2. (Pre-signature correctness) Above ECDSA-AS ΠR,
∑ satisfies pre-

signature correctness.

Proof. For any x, y ∈ Zq, Q = xG, Y = yG and m ∈ {0, 1}∗. For pSign(vk,sk)(m,
IY ) → σ̂ = (r, ŝ, Z, πZ), it holds that Y = yG,Z = xY , ŝ = k−1(h(m) +
rx) mod q for some k ← Zq. Set K̂ = (h(m) · ŝ−1)Y + r · ŝ−1Z = kY. Therefore,
r′ = f(K̂) = f(kY ) = r, we have pVrfyvk(m, IY , σ̂) → 1. By Lemma 1, this
implies that Vrfyvk(m,σ) → 1, for Adapt(σ̂, y) → σ = (r, s). By the definition of
Adapt, we know that s = ŝ · y−1 and y′ = Ext(σ, σ̂, IY ) = ŝ/s = ŝ/(ŝ/y) = y.
Hence, (IY , y′) ∈ R.

Lemma 3. (aEUF-CMA security) Assuming that the positive ECDSA signa-
ture scheme

∑
is SUF-CMA secure, R is a hard relation, NIZKPoK and NIZK

are secure, above ECDSA-AS ΠR,
∑ is aEUF-CMA secure.

Proof. We prove the aEUF-CMA security by reduction to the strong unforge-
ability of positive ECDSA signatures. Following [2], our ECDSA-AS uses the
same hard relation (IY = (Y, πY ), y), where NIZKPoKY satisfies straight-line
extractability, so the simulator can extract the witness from IY . Our proof works
by showing that, for any PPT adversary A breaking aEUF-CMA security of the
ECDSA-AS, we construct a PPT simulator S who breaks the SUF-CMA secu-
rity of ECDSA. S has access to the signing oracle OECDSA-Sign of ECDSA and
the random oracle HECDSA. It needs to simulate oracle for A, namely random
oracle (H), signing oracle (OSign) and pre-signing oracle (OpSign).

The simulator S can use its oracle OECDSA-Sign and HECDSA to simulate
OSign and H. The main challenge is simulating OpSign queries. Because S can
extract the witness from IY , it uses its oracle OECDSA-Sign to get a full signature
on m which is queried by A, and transform the full signature into a pre-signature.
What’s more, S can use the zero-knowledge property of NIZKZ to simulate πZ

for a statement (G,Q, Y, Z) without knowing the corresponding witness x.
We prove security by describing a sequence of games G0, · · · , G4, where G0

is the original aSigForge game. Then we show that for all i = 0, · · · , 3, Gi and
Gi+1 are indistinguishable.



Efficient ECDSA-Based Adaptor Signature for Batched Atomic Swaps 185

– Game G0: This game corresponds to the original aSigForge game.
– Game G1: This game works as G0 with the exception that upon the adversary

outputting a forgery σ∗. It checks that if completing the pre-signature σ̂ using
the secret value y results in σ∗. If yes, it aborts.

– Game G2: This game works as G1 excepting that in OpSign, it extracts a
witness y′ by executor K. It aborts if (IY , y′) /∈ R.

– Game G3: This game works as G2 excepting that it extracts a witness y and
calculates Z = yQ, and simulates a zero-knowledge proof πS .

– Game G4: In this game, upon receiving the challenge message m∗ from A, it
creates a full signature by executing the Sign algorithm and transforms the
resulting signature into a pre-signature in the same way as in the previous
game G3 during the OpSign execution.

There exists a simulator that perfectly simulates G4 and uses A to win a
positive ECDSA strongSigForge game.

– Signing oracle queries: Upon A querying OSign on input m, S forwards m to
its oracle OECDSA-sign and forwards its response to A.

– Random oracle queries: Upon A querying H on input x, if H[x] = ⊥, then S
queries HECDSA(x), otherwise the simulator returns H[x].

– Pre-signing oracle queries: Upon A querying OpSign on input (m, IY ), the
simulator extracts y, and forwards m to OECDSA-sign and gets (r, s), then S
computes ŝ = s · y, Z = yQ = xY and simulates a zero-knowledge proof πS ,
and outputs (r, ŝ, Z, πS).

– In the challenge phase: Upon A outputting the challenge message m∗, S
generates (IY , y) ← GenR(1λ), forwards m∗ to OECDSA-sign and gets (r, s).
And then, S generates the pre-signature σ̂∗ in the same way as during OpSign.
Upon A outputting σ∗, the simulator outputs (m∗, σ∗) as its own forgery.

Therefore, the simulator S can simulate the views of A. It remains to show
that the forgery output by A can be used by the simulator to win the positive
ECDSA strongSigForge game.

Claim 1. Let Bad1 be the event that G1 aborts, then Pr[Bad1] ≤ negl1(λ).

Proof. We prove this claim using a reduction to the hardness of the relation
R. The simulator gets a challenge I∗

Y , and it generates a key pair (vk, sk) ←
Gen(1λ) to simulate A’s queries of H, OSign and OpSign. This simulation of the
oracles works as described in G1. Upon receiving challenge message m∗ from
A, S computes a pre-signature σ̂ ← pSign(vk,sk)(m∗, I∗

Y ), returns σ̂ to A who
outputs a forgery σ∗.

Assuming that Bad1 happened (i.e. Adapt(σ̂, y) = σ∗), the simulator can
extract y∗ ← Ext(σ∗, σ̂, I∗

Y ). Since the challenge I∗
Y is an instance of the hard

relation R and hence equally distributed to the public output of GenR. Hence the
probability of S breaking the hardness of the relation is equal to the probability
of the Bad1 event.

Claim 2. G0, G1, G2, G3 and G4 are computationally indistinguishable.
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Proof. Since G1 and G0 are equivalent except if event Bad1 occurs, it holds that
|Pr[G0 = 1] − Pr[G1 = 1]| ≤ negl1(λ).

According to the straight-line extractability of the NIZKPoKY , for a witness
y extracted from a proof πY of the instance IY such that VY (IY , πY ) → 1, it
holds that (IY , y) ∈ R except with negligible probability. It holds that |Pr[G2 =
1] − Pr[G1 = 1]| ≤ negl2(λ).

Due to the zero-knowledge property of the NIZKZ , the simulator can com-
pute a proof πS which is computationally indistinguishable from a proof πZ ←
PZ((G,Q, Y, Z), x). Hence, it holds that |Pr[G3 = 1] − Pr[G2 = 1]| ≤ negl3(λ).

Following above proof, due to the zero-knowledge property of the NIZKZ ,
G4 is indistinguishable from G3 and it holds that |Pr[G4 = 1] − Pr[G3 = 1]| ≤
negl2(λ).

Claim 3. (m∗, σ∗) constitutes a valid forgery in positive ECDSA strongSigForge
game.

Proof. We show that (m∗, σ∗) has not been output by the oracle OECDSA-Sign

before. Note that A has not previously made a query on the challenge message
m∗ to either OSign or OpSign. Hence, OECDSA-Sign is only queried on m∗ during
the challenge phase. As shown in game G1, the adversary outputs a forgery σ∗

which is equal to the signature σ output by OECDSA-Sign during the challenge
phase only with negligible probability. Hence, OECDSA-Sign has never output σ∗

on query m∗ before and consequently (m∗, σ∗) constitutes a valid forgery for
positive ECDSA strongSigForge game.

From the games G0 to G4, we get that |Pr[G0 = 1]−Pr[G4 = 1]| ≤ negl1(λ)+
negl2(λ) + negl3(λ) + negl4(λ) ≤ negl(λ). Since S provides a perfect simulation
of game G4, we obtain:

Pr[aSigForgeA,ΠR,
∑(λ) = 1] = Pr[G0 = 1] ≤ Pr[G4 = 1] + negl(λ)

≤ Pr[sSigForgeA,
∑(λ) = 1] + negl(λ).

Lemma 4. (Witness extractability). Assuming that the positive ECDSA is
SUF-CMA secure, R is a hard relation, NIZKPoK and NIZK are secure, above
ECDSA-AS ΠR,

∑ is witness extractable.

Proof. Our proof is to reduce the witness extractability to the strong unforge-
ability of the positive ECDSA. Following the proof of Lemma 3, the simulator
S can use its oracle OECDSA-Sign and HECDSA to simulate OSign and H of A.

The main challenge in this proof is to simulate the pre-signing oracle OpSign.
The crucial difference between aWitExt and aSigForge is that in the challenge
phase of aSigForge, IY is chosen by challenger, but in the challenge phase of
aWitExt, IY is chosen by A. That is, S can not choose (IY , y). Following [2],
our ECDSA-AS uses the same hard relation (IY = (Y, πY ), y), where NIZKPoKY

satisfies straight-line extractability, so S can extract the witness y from challenge
instance IY = (Y, πY ). And then, S forwards m to OECDSA-sign and gets the
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signature σ = (r, s), then S computes ŝ = s · y, Z = yQ and simulates a zero-
knowledge proof πS , and outputs the pre-signature σ̂ = (r, ŝ, Z, πS).

Therefore, we can construct a simulator S following the proof of Lemma3
excepting that in the challenge phase, S does not generate the hard relation
(IY , y) to get the witness y, but obtains the witness from the instance IY chosen
by A based on the straight-line extractability. S can simulate the views of A.
The simulator can win the positive ECDSA strongSigForge game if A can break
the witness extractability of ECDSA-AS.

4 Fast ECDSA-Based Adaptor Signature Schemes
with Offline/Online Pre-signing

In this section, we show two fast ECDSA-AS schemes called ECDSA-ASsk and
ECDSA-ASwit with offline/online pre-signing, where ECDSA-ASsk uses the sign-
ing key x as the witness to compute Z = xY , and ECDSA-ASwit uses the witness
y of hard relation (IY , y) as the witness to compute Z = yQ.

In our ECDSA-AS, the pre-signing public parameter Z = xY and the zero-
knowledge proof πZ ← PZ(IZ = (G,Q, Y, Z), x) are independent of the message
m and the random value k, so the signer can compute the pre-signing pub-
lic parameter and the zero-knowledge proof offline before getting the message.
ECDSA-ASsk can be designed from our ECDSA-AS directly with offline com-
puting Z = xY and πZ . Refer to the Sect. 3 for specific construction which is
ignored here.

We construct efficient ECDSA-ASwit as follows. Formally, Let (Q = xG, x)
be the verification key and signing key of ECDSA. We define hard relations
R = {(IY = (Y, πY ← PY (Y, y)), y)| Y = yG ∧ VY (IY ) = 1}, RZ = {(IZ =
(G,Y,Q,Z), y)|Y = yG ∧ Z = yQ} and I = (IY , IZ).

– pSign(vk,sk)(m, I) → σ̂: On input a key-pair (vk, sk) = (Q,x), a message m
and an instance I, the algorithm chooses k ← Zq, computes r = f(kY ),
ŝ = k−1(h(m) + rx) mod q and outputs σ̂ = (r, ŝ).

– pVrfyvk(m, I, σ̂) → 0/1: On input the verification key vk = Q, a message
m, an instance I, and a pre-signature value σ̂, the algorithm computes r′ =
f(ŝ−1 · (h(m) · Y + r · Z)), and if r′ = r, outputs 1, else outputs 0.

– Adapt(y, σ̂) → σ: On input the witness y, and pre-signature σ̂, the algorithm
computes s = ŝ · y−1 mod q and outputs the signature σ = (r, s).

– Ext(σ, σ̂, I) → y: On input the signature σ, the pre-signature σ̂ and the
instance I, it computes y = ŝ/s mod q. If (I, y) ∈ R, it outputs y, else outputs
⊥.

Note that ECDSA-ASwit is similar to our ECDSA-AS excepting that the
signer can compute Z = yQ and πZ ← PZ(IZ = (G,Y,Q,Z), y) offline. Before
running the online pre-signing algorithm, the signer should check the validity of
πY and πZ offline to ensure that Y and Z are correct.
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Correctness. Following the proofs of Lemma 1 and Lemma 2, our ECDSA-
ASsk/wit schemes also satisfy pre-signature adaptability and pre-signature cor-
rectness.

Security. Our ECDSA-ASsk/wit schemes embed the hard relation (IY =
(Y, πY ), y) [2]. In the security proof, the simulator can extract the witness
y and simulate the pre-signing oracle. Following the proofs of Lemma 3 and
Lemma 4, our ECDSA-ASsk/wit schemes also satisfy aEUF-CMA security and
witness extractability.

Comparisons with ECDSA-AS [2]. Our ECDSA-ASwit use y as the witness,
so the signer (hard relation chooser) can help all other participants compute the
pre-signing public parameter Zi = yQi and the zero-knowledge proofs πZi

in a
batch and offline. In particular, consider the special verification scenario, such as
(batched) atomic swaps, ECDSA-ASwit only transmits one zero-knowledge proof
πZ0 which is independent of the number of participants, since all participants
can compute the pre-signing public parameter locally.

Our ECDSA-ASsk/wit can be seen as an adaptor signature that specifies the
signer, since the hard relation chooser requires the verification key Qi of other
parties to compute Zi = yQi and πZi

, while ECDSA-AS [2] dose not restrict
the signer’s verification key. However, this does not affect the application of
ECDSA-ASsk/wit in atomic swaps, because the verification keys are public before
the protocol begins. In addition, consider special verification scenarios, ECDSA-
ASsk/wit can remove above restriction because the zero-knowledge proofs of other
parties can be removed.

5 Performance and Experimental Results

5.1 Theoretical Analysis

As is shown in Table 1, we give the theoretical analysis of communication cost and
efficiency of ECDSA-AS [2,18] and our schemes, respectively. The first ECDSA-
AS proposed by Moreno-Sanchez et al. [18] does not provide provable security.
Then Aumayr et al. [2] uses self-proving structure (IY = (Y, πY ), y) to give a
provably secure ECDSA-AS. But this scheme requires that proving K̂ = kG
and K = kY satisfy equality of discrete logarithms with the witness k. For
each message to be signed, the signer needs to choose new random values and
computes new pre-signing public parameters and zero-knowledge proofs.

Our ECDSA-ASsk/wit can use the witness x or y to prove (Z = xY,Q = xG)
or (Z = yQ, Y = yG) satisfy equality of discrete logarithms offline. The online
pre-signing algorithm is similar to ECDSA signing algorithm and can enjoy the
same efficiency as ECDSA. In ECDSA-ASwit, the hard relation chooser can
compute all pre-signing public parameters Zi = yQi and zero-knowledge proofs
for all other participants in a batch and offline. In particular, consider special
verification scenarios, such as (batched) atomic swaps, ECDSA-ASsk/wit can
reduce the number of zero-knowledge proofs to one, since all parties can compute
public pre-signing parameters locally, but ECDSA-AS [2,18] requires the number
of zero-knowledge proofs is linear with the number of participants.
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Table 1. Communication cost and efficiency comparison

Schemes PK SK Online The number of The number of Batched pre-signing Provable

Size Size Pre-signature size zk proofs Pre-signing parameter parameter security

ECDSA-AS [18] |G| |Zq| |G| + 4|Zq| 2n 2n × ?

ECDSA-AS [2] |G| |Zq| |G| + 4|Zq| 2n 2n × √

Our ECDSA-ASsk |G| |Zq| 2|Zq| n n + 1 × √

Our ECDSA-ASwit |G| |Zq| 2|Zq| 1 n + 1
√ √

‡ |G| and |Zq| denotes the size of the element in the group G and Zq, respectively. n denotes the
number of parties in the one-to-n atomic swaps. ? denotes unclear.

5.2 Experimental Analysis

In order to evaluate the practical performance of our schemes, we implement
the ECDSA-AS [2], our ECDSA-AS, and ECDSA-ASwit based on the OpenSSL
library. All experiments are carried out on an Intel Core i5 CPU 2.3 GHz and
8 GB RAM running macOS High Sierra 10.13.3 system.

We run ECDSA-AS [2], our ECDSA-AS and ECDSA-ASwit on the standard
NIST curve NID.X9.62.prime256v1. Since the verification algorithm, the adaptor
algorithm and the extraction algorithm are rough same, we omit the compari-
son. We show the efficiency of the online pre-signing algorithm in Table 2. The
average running times over 1000 executions of the online pre-signing operation in
ECDSA-AS [2], our ECDSA-AS and ECDSA-ASwit are 173.65µs, 189.72µs and
71.64µs. The experimental results show that our ECDSA-ASwit reduces online
pre-signing time by about 60% compared with the state-of-the-art ECDSA-
AS [2].

Table 2. Runtime of the online pre-signing operation comparing our ECDSA-AS and
ECDSA-ASwit to ECDSA-AS [2]

Schemes ECDSA-AS [2] Our ECDSA-AS Our ECDSA-ASwit

Runtime (online) 173.65µs 189.72µs 71.64µs

6 Application

6.1 Verification Scenario

According to the definition of AS [2], the verification of pre-signature does not
limit the verifier, so it can be verified by anyone. However, the pre-signature of
AS is generated and verified off-chain and is not published on the blockchain, so
AS does not require such a strong property and the pre-signature satisfies the
specific verification scenario in which it is only verified by the participants.

As mentioned in Fig. 1, in the atomic swaps, the pre-signatures are only
generated and verified by participants U0 and U1 off-chain. Thus, ECDSA-
ASsk/wit can reduce the number of zero-knowledge proofs. To be specific, the
zero-knowledge proof πZ1 of U1 can be removed, because U0 can use the wit-
ness y to compute Z1 = yQ1. The zero-knowledge proof πZ0 of U0 cannot be
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removed, since U1 does not know the signing key x0 and the witness y of U0,
and requires πZ0 to ensure U0 generates Z0 correctly. In particular, even if U0

runs an atomic swap protocol with many parties Ui, i ∈ [n], it still only needs
one zero-knowledge proof πZ0 . Note that these modifications do not affect cor-
rectness or security, since the simulator can extract the witness y from IY and
simulates the pre-signing public parameter Z1 = yQ1.

6.2 Batched Atomic Swaps

We develop batched atomic swaps from one-to-one atomic swaps: U0 (hard rela-
tion chooser) spends c0i (transaction tx0i) to Ui, i ∈ [n] in a batch and Ui

spends each ci (transaction txi) to U0. It can be applied to one party with
many addresses (accounts) or one party with a lot of transactions that need to
exchange with many users once, such as the scenario of the Exchange. Compared
with running independently n times one-to-one atomic swaps between U0 and
Ui, i ∈ [n], batched atomic swaps reduce the number of hard relations (Y, y)
from n to one.

We introduce batched atomic swaps as follows: All parties U0 and Ui, i ∈ [n]
first set the time-lock for c0i and ci on-chain, where the timeouts ti < t0 such that
Ui can have enough time to react. Then, U0 chooses one hard relation (Y, y) ∈ R
and pre-signing the transactions tx0i for spending the coins c0i to Ui in a batch,
and sends the pre-signature σ̂0i, tx0i, Y to U0i. Then, Ui checks the validity of
σ̂0i and pre-signing a transaction txi for spending the coins ci to U0 and sends
the pre-signature σ̂i, txi to U0. U0 can check the validity of all pre-signatures
σ̂i

8 and adapts σ̂i into the full signature σi by the witness y, and publishes all
σi on the blockchain to get the coin ci in a batch. Ui can extract the witness y
from σi and σ̂i and adapts σ̂0i into σ0i, and publishes σ0i on the blockchain to
get the coin c0i before timeouts t0.

U0((Q0, x0), Qi, tx0i), i ∈ [n] Ui((Qi, xi), Q0, txi), i ∈ [n]

Offline phase

GenR(1λ) → (Y, y), PY (Y, y) → πY , If VY (IY ) → 0,

Zi = yQi, PZ(IZ = (G, Y, Q0, Z0), y) → πZ0

IY ,Z0,πZ0−−−−−−−→ or VZ((G, Y, Q0, Z0), πZ0) → 0, output ⊥
Online phase

σ̂0i ← pSign((Q0, x0), (Y, Z0), tx0i)
σ̂0i,tx0i−−−−−→ If pVrfy(Q0, tx0i, (Y, Z0), σ̂0i) → 0, output ⊥

If ∃ i ∈ [n], pVrfy(Qi, txi, (Y, Zi), σ̂i) → 0,
σ̂i,txi←−−−− else, σ̂i ← pSign((Qi, xi), (Y, Zi), txi)

output ⊥,
else, σi ← Adapt(σ̂i, y).

Publish all σi, i ∈ [n] on blockchain
σi−→ y ← Ext(σi, σ̂i, (IY , IZ))

σ0i ← Adapt(σ̂0i, y).
Publish σ0i on blockchain

Fig. 2. Batched atomic swap based on ECDSA-ASwit

8 U0 must check all pre-signatures, because any full signature is published on
blockchain, the witness y can be extracted, and all coins can be taken.
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BlockBlock Block

Locked c0i, ci, i ∈ [n]
σi

ci

σ0i

c0i

U0 Ui,i ∈ [n]

σ̂0i, IYi
, tx0i

σ̂i, txi

σi

on-chain

off-chain

(IYi
, yi) ← GenR(1λ)

σ̂0i = (K0i, πK0i , r0i, σ̂0i)

σi = (ri, si)

σ̂i = (Ki, πKi , ri, σ̂i)

yi ← Ext(σi, σ̂i, IYi)

σ0i = (r0i, s0i)

BlockBlock Block

Locked c0i, ci, i ∈ [n]
σi

ci

σ0i

c0i

U0 Ui,i ∈ [n]

IY , Z0, πZ0

offline

σ̂0i, tx0i

σ̂i, txi

σi

on-chain

off-chain

(IY , y) ← GenR(1λ)

σ̂0i = (r0i, σ̂0i)

σi = (ri, si)

σ̂i = (ri, σ̂i)

y ← Ext(σi, σ̂i, IY )

σ0i = (r0i, s0i)

Fig. 3. n times independent ECDSA-based atomic swaps (left) and once ECDSA-based
batched atomic swap (right)

Constructions Based on ECDSA-AS. Our ECDSA-ASwit is more efficient
for using in batched atomic swaps than ECDSA-AS [2,18]. We show the batched
atomic swap protocol based on ECDSA-ASwit in Fig. 2, and give the comparison
of n times independent ECDSA-based atomic swaps and once ECDSA-based
batched atomic swap in Fig. 3. To be specific, in the offline phase, U0 com-
putes Z0 = yQ0, πZ0 ← PZ((G,Y,Q0, Z0), y), and n pre-signing public param-
eters Zi = yQi in a batch and offline. Ui checks VZ((G,Y,Q0, Z0), πZ0) → 1
and computes Zi = xiY . In the online phase, U0 runs n times ASwit.pSign
and ASwit.pVrfy and each Ui runs once ASwit.pSign and ASwit.pVrfy, where
ASwit.pSign and ASwit.pVrfy is same as original ECDSA signing and verification
algorithms.

In ECDSA-AS [2,18], each user uses the random value k as the witness to
generate the pre-signing public parameter K = kY and zero-knowledge proof
πK . For a batch of transactions, U0 needs to choose n random values to generate
individual pre-signing public parameter K0i = k0iY and zero-knowledge proof
πK0i ← PK(G, K̂0i = k0iG,Y,K0i) for Ui, and Ui uses different random value
ki to compute pre-signing public parameter Ki = kiY and zero-knowledge proof
πKi

← PK(G, K̂i = kiG,Y,Ki). What’s more, U0 needs to check the validity of
all n proofs πKi

, and Ui also needs to check the validity of πK0i .
As depicted in Table 3, we give a comparison of (batched) atomic swaps

based on ECDSA-AS [2,18] or ECDSA-ASsk/wit. Batched atomic swaps based
on ECDSA-AS [2,18] need to compute 2n pre-signing public parameters and 2n
zero-knowledge proofs. The batched atomic swaps can be seen as specific verifi-
cation scenarios. Since U0 computes all pre-signing public parameters Zi = yQi

and Ui computes each pre-signing public parameter Zi = xiY locally, batched
atomic swaps based on ECDSA-ASwit only requires one zero-knowledge proof
πZ0 . Compared with [2,18], ECDSA-ASwit reduces 2n−1 zero-knowledge proofs.
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Table 3. Comparison of ECDSA-AS [2,18] and our ECDSA-ASsk/wit used in (batched)
atomic swaps

Schemes Users Atomic swaps (i = 1) Batched atomic swaps (i ∈ [n])

Hard Pre-signing Hard Pre-signing

Relation Offline Online Relations Offline Online

ECDSA-AS [18] U0 (Yi, yi) — σ̂0 = (K0, πK0 , r0, ŝ0) (Y, y) — σ̂0i = (K0i, πK0i , r0i, ŝ0i)

Ui — — σ̂i = (Ki, πKi , ri, ŝi) — — σ̂i = (Ki, πKi , ri, ŝi)

ECDSA-AS [2] U0 (IYi , yi) — σ̂0 = (K0, πK0 , r0, ŝ0) (IY , y) — σ̂0i = (K0i, πK0i , r0i, ŝ0i)

Ui — — σ̂i = (Ki, πKi , ri, ŝi) — — σ̂i = (Ki, πKi , ri, ŝi)

Our ECDSA-ASsk U0 (IYi , yi) Z0 = x0Y, πZ0 σ̂0 = (r0, ŝ0) (IY , y) Z0 = x0Y, πZ0 σ̂0i = (r0i, ŝ0i)

Ui — Zi = xiY σ̂i = (ri, ŝi) — Zi = xiY σ̂i = (ri, ŝi)

Our ECDSA-ASwit U0 (IYi , yi) Z0 = yQ0, Zi = yQi, πZ0 σ̂0 = (r0, ŝ0) (IY , y) Z0 = yQ0, Zi = yQi, πZ0 σ̂0i = (r0i, ŝ0i)

Ui — — σ̂i = (ri, ŝi) — — σ̂i = (ri, ŝi)

‡—denotes no such operation, Qi denotes the verification key, Zi and Ki denote the pre-signing
public parameters of our ECDSA-ASsk/wit and ECDSA-AS [2,18], πZi

and πKi
denote the zero-

knowledge proofs of proving Zi and Ki are generated correctly. n denotes the number of parties in
batched atomic swaps. Zi = xiY and Zi = yQi, i ∈ [n] don’t need to be transmitted.

7 Conclusion

In this paper, we propose an ECDSA-based adaptor signature and give the
security proof based on ECDSA. And then, we develop two ECDSA-AS schemes
called ECDSA-ASsk and ECDSA-ASwit with offline/online pre-signing which
are more efficient than the state-of-the-art ECDSA-AS [2]. In particular, consid-
ering specific verification scenarios, ECDSA-ASwit reduces the number of zero-
knowledge proofs in the pre-signing phase to one, independent of the number of
participants. Furthermore, we develop batched atomic swaps which can reduce
the number of hard relations in a batch compared with independently running
one-to-one atomic swaps. Finally, we use our ECDSA-ASwit to construct the
batched atomic swaps, it can reduce the number of zero-knowledge proofs into
one compared with [2,18].
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Abstract. Searchable symmetric encryption (SSE) is a research hotspot
in applied cryptography, with the purpose of protecting outsourced data
while enabling querying of encrypted data. However, the majority of
current research focuses on the scenario in which data is stored on a single
server and disregards the possibility that both the clients and servers are
malicious. While several existing blockchain-based SSE schemes provide
solutions to the issues above, they do not simultaneously achieve security,
fairness, and decentralized storage.

In this paper, we explore how to efficiently solve the above problems in
the blockchain setting. We build up a decentralized fair SSE framework
in a layered fashion. First, we present a practical and efficient method for
accessing data on the blockchain. Based on this, we craft a decentralized
publicly verifiable SSE scheme in which encrypted indexes are stored on
the blockchain and search operations are shifted to be executed off-chain
for lightweight decentralized storage and efficient query performance.
Then, we use smart contracts to confer fairness to SSE by constructing
a game model that makes each party prefer to cooperate. Finally, we
implement and evaluate our framework on Ethereum. The experimental
results demonstrate that our design is effective and practical.

Keywords: Searchable symmetric encryption · Blockchain · Fairness

1 Introduction

Symmetric searchable encryption (SSE), a cryptographic primitive aimed at
enabling the search function of encrypted data while guaranteeing data confi-
dentiality, has received considerable attention. It was initially proposed by Song
et al. [16]. Since Curtmola et al. [7] developed a better definition of the function-
ality and security of SSE, numerous feature-rich schemes have emerged in recent
years, including dynamic SSE [5] and verifiable SSE [3].

However, the majority of SSE schemes store data on a single server, making
the single point of failure one of the obstacles to the deployment of SSE schemes.
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Even though most cloud providers offer redundant backup services, it remains
an unresolved question how to fully utilize these backup servers for search. To
compound the issue, when users find that the data stored on the server has been
altered or deleted, it is difficult to migrate the data to other cloud providers
without ensuring the completeness and accuracy of their data.

Beyond that, most SSE schemes are based on the assumption that data users
are trustworthy and servers are honest but curious. However, the usability and
security of SSE will be significantly weakened if both data users and servers
are malicious. Even though verifiable SSE schemes are reasonable solutions to
the problem that a malicious server returns incorrect results, it is impossible to
prevent a malicious data user from claiming that the server returned incorrect
results to avoid paying the remuneration, even if the server performs the search
honestly.

Blockchain has emerged in the last decade and has brought the possibility
of decentralization and fairness to SSE. Originating from Bitcoin, blockchain
is a cryptographic technology that maintains a reliable and tamper-evident
database through decentralization. In recent years, some works have been uti-
lizing blockchain to ensure fairness for SSE. Li et al. [14,15] first proposed a
blockchain-based searchable symmetric encryption scheme whose construction
is based on a blockchain transaction paradigm. Zhang et al. [22] proposed a fair
SSE scheme called TKSE based on the same transaction paradigm and claimed
to achieve two-party verifiability and better compatibility with blockchain plat-
forms. These schemes assume that the documents and encrypted indexes are
placed on the server, and the blockchain acts as a fair judge, ensuring that all
parties behave honestly. However, the introduction of the transaction paradigm
makes the construction of SSE nonintuitive and poorly scalable. Moreover, these
schemes do not implement decentralized storage because the encrypted indexes
are still stored on a single server.

The advent of smart contracts provides solutions to the aforementioned
issues. Hu et al. [8] proposed the first smart contract-based SSE scheme, in
which the index storage and search operations are performed by the smart con-
tract, ensuring fair transactions for all parties. Following the work of Hu et al. [8],
some efficient schemes (e.g., [6,9,10,13,19]) were proposed to enhance security
and functionality. The introduction of smart contracts brings inherent fairness
and decentralized storage to the schemes but at the expense of a significant
overhead that limits the utility of SSE.

Consequently, some works (e.g., [20,21]) still store encrypted indexes on cloud
servers, while smart contracts are responsible for result verification. Essentially,
these works replace the transaction paradigms of [15,22] with smart contracts
to shield the details of transaction-related operations. However, it remains con-
troversial whether these schemes achieve fairness. Even though these works use
MACs or digital signatures to ensure verifiability of results, if a data owner
uploads faulty tags (or proofs) in the setup phase, the judge may wrongly con-
clude that the server is dishonest even if it returns the correct result. Cai et al. [4]
proposed a fair SSE framework based on smart contracts, in which a voluntary
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“arbitration panel” is responsible for verifying the results by simulating the index
and search process. The dishonest party is determined by voting. This scheme
is effective against the malicious behavior of both users and servers. However,
it is an open problem to ensure the motivation and majority reliability of the
arbiters continuously. Tang et al. [17] shift the responsibility of arbitration to
a smart contract, eliminating the need to rely on volunteers to ensure fairness.
However, the index reconstructions and search simulations of the smart contract
incur a significant validation overhead.

In general, existing SSE schemes do not provide efficiency, fairness, and
decentralized storage concurrently.

Contribution. This paper uses the aforementioned challenges as a springboard
for proposing a decentralized and fair searchable symmetric encryption system
based on blockchain. We choose to store the encrypted index on the blockchain
for decentralized storage and try to alleviate the storage and search burdens.
In this paper, we build up the decentralized fair SSE framework in a hierar-
chical manner and conduct experiments to evaluate its practical performance.
Specifically, our work makes the following contributions.

– We suggest a practical and efficient way to store and read data on blockchain.
We first provide an abstract model of blockchain storage called Append-only
Block Storage (ABS), on which the subsequent designs will depend. Subse-
quently, we present a lookup table data structure ΠLT based on ABS and an
implementation of it, a B′ tree, which is a minor modification of the B+ tree
where nodes are stored via ABS blocks. The B′ trees enable high fanout and
low tree height to alleviate the performance bottleneck caused by reading
ABS blocks.

– Based on ABS and ΠLT, we devise a decentralized publicly verifiable SSE
scheme ΠABS

PVSSE. The proposed scheme integrates the design ideas of [3] and
[5] and uses digital signatures to enable data confidentiality and public
verifiability. In our design, encrypted indexes are organized as ABS-based
lookup tables, and search operations are shifted off the chain, which ensures
lightweight on-chain storage and efficient query performance.

– We develop a decentralized fair SSE framework Πfair based on Ethereum [18],
which empowers ΠABS

PVSSE with fairness. It uses smart contracts to guarantee
fair transactions between data users and service providers. We build a game
paradigm in which all participants tend to behave faithfully, thereby avoiding
deliberate fraud and resource waste.

2 Overview

2.1 System Model

We employ smart contracts to devise the decentralized fair SSE framework Πfair.
The framework consists of three types of entities: (i) data users (DUs), (ii) service
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providers (SPs), and (iii) a smart contract (SC). A data user is an entity that
wants to store its sensitive data on the blockchain and enjoy encrypted search
services. The DU does not store the complete blockchain data locally, so it needs
to outsource the query operation to SPs, which are full nodes. To ensure the
fairness of the outsourced search, the DU submits a query request as a task on
the SC with remuneration and the task deadline. The SP decides whether to
participate in the task based on the task information and pays a deposit if it
does. All the participants compete to find the desired result for remuneration.
When one of them successfully finds the data from the blockchain, it sends the
result and the corresponding proof to the SC for verification. If the validation
succeeds (i.e., the result and the proof match), the SC returns the result to the
DU and issues the remuneration to the winning SP.

If the SP finds a problem with the outsourced task, it declares the task
invalid to seek compensation. When the task deadline passes and none of the
participants can find the result, the SC checks whether any SP has declared the
task invalid. If so, the data user’s remuneration is seized and compensated to
the SP who declared the task invalid, and all the SPs’ deposits are refunded; if
not, the remuneration is returned to the DU, and the deposits of participants are
refunded to their original location. To prevent dishonest SPs from maliciously
declaring a task invalid, if there exists an SP who finds the result and passes the
verification, the SC seizes the dishonest complainants’ deposit and releases it to
the winner.

2.2 Threat Model

Considering the realistic scenarios, we assume that SPs and DUs are potentially
malicious: 1) the SP may return incorrect results in an attempt to cheat the
remuneration, 2) the DU may submit an incorrect query request to squander
the SPs’ computational resources or reject the correct result to refuse to pay the
remuneration.

In addition, all blockchain peers can monitor the traffic flowing through the
smart contract, including search tokens, results, and proofs, from which they
may learn some sensitive information of data.

2.3 Append-Only Block Store

We turn our focus to the study of efficient storage on blockchain. In the literature,
most SSE schemes work on random access storage devices. Although there exist
some blockchain-based SSE schemes whose underlying storage does not support
random access, they are built on a higher-level abstraction, making them work
on “virtual” random access storage devices. Expressly, these studies assume that
the fragmented append-only data storage has been transformed into a “random
access” view of storage through some protocol, such as smart contracts.

However, existing storage abstractions are inefficient due to the performance
drain caused by their conversion mechanism. For instance, some SSE schemes
that use smart contracts to store indexes generate many transactions in the
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setup phase, burdening the blockchain network and costing the data owner a
significant amount of money. Our goal is to propose a simple and efficient storage
abstraction that can be built on top of blockchain transactions or other types
of data shards while avoiding the enormous overhead associated with complex
conversion operations.

We introduce an append-only block store (ABS) as a storage abstraction for
blockchains. ABS is a subset of the block storage model, where anyone cannot
alter previously written blocks and can only add new ones to ABS. ABS returns
the block address when a block is appended, which is used to access the data
later. The ABS block is limited in length by the public parameter γ. When the
length of written data exceeds γ, ABS stops writing rather than slicing the data,
requiring the caller to slice the data itself. Without sacrificing generality, we will
assume that the length of a block address is constant, denoted by laddr.

We now define the ABS model with a modification of the ADS model pro-
posed by [1] to explicitly constrain the block size. An append-only block store
ΠABS = (Init,Get,Put) consists of three algorithms:

– ABS ← Init (γ): is an initialization algorithm that takes as input a public
parameter γ specifying the maximum block length and outputs an empty
append-only block store ABS.

– v/⊥ ← Get (ABS, addr): is an algorithm that takes as input an append-only
block store ABS and an address addr. If the block specified by addr exists, it
returns the block content v; otherwise, it returns ⊥.

–
(
ABS′, addr

) ← Put (ABS, v): is an algorithm that takes as input an append-
only block store ABS and a value v to be written. If the length of v is greater
than the public parameter γ, the algorithm aborts. Otherwise, it outputs
the address addr associated with v and the updated append-only block store
ABS′.

In our design, when someone wants to write data into the ABS, it needs
to broadcast the data through some API in some medium (e.g., transactions).
Then, the entire blockchain network writes the data to the ABS through mining.

To read data from ABS, full-node SPs can call the method Get efficiently
because they store the complete blockchain data locally, which is an off-chain
operation. DUs can also implement the method through some API to establish
a connection to a full node, which leads to high latency. Therefore, weighing
performance and security, we assume that DUs call the method Put by themselves
to guarantee the integrity of written data, outsource heavy operations involving
multiple Get method calls to SPs for efficient reads, and take some measures to
guarantee reliable reads, which we will describe below.

2.4 ABS-Based Lookup Table

Further, we propose a lookup table data structure ΠLT adapted to the ABS
model. ΠLT provides two algorithms: the initialization algorithm LTInit and the
query algorithm LTGet. Unlike conventional lookup tables, ΠLT writes data to
the ABS only once during initialization and does not permit update operations.
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Formally, an ABS-based lookup table ΠLT = (LTInit, LTGet) contains two
algorithms:

–
(
LT,ABS′) ← LTInit ({(l1, v1), . . . , (ln, vn)} ,ABS): is an algorithm that takes

as input n label/value pairs and an append-only block store ABS, then it
outputs the updated append-only block store ABS′ and a lookup table stored
on ABS′.

– v/⊥ ← LTGet (l, LT,ABS): is an algorithm that takes as input a label, an
append-only block store ABS and a lookup table LT stored on ABS. If the
label l exists in LT, it outputs the corresponding value stored in LT; otherwise,
it returns ⊥.

Recall that the algorithm LTGet is off-chain for full nodes such as SPs. In
the whole paper, the lengths of keys and values in ΠLT are fixed, denoted by lkey

and lvalue, respectively.

2.5 ABS-Based Publicly Verifiable Searchable Symmetric
Encryption

Assume that there is a collection of D documents with identifiers id1, id2, . . . ,
idD. A database DB = (idi,Wi)D

i=1 is a tuple of identifier/keyword-set pairs
where idi ∈ {0, 1}lid and Wi ⊆ {0, 1}∗, such that keyword w ∈ Wi if and
only if the file identified by idi contains the keyword w. The set of keywords
contained in DB is W =

⋃D
i=1 Wi. Let DB(w) = {idi|w ∈ Wi} denote the set

of documents containing keyword w, and N the number of document/keyword
pairs (i.e., N =

∑D
i=1 |Wi|).

We devise an ABS-based publicly verifiable SSE (PVSSE) scheme without
considering fairness, which we will introduce in the next section. The blockchain
nodes are only regarded as ordinary servers storing encrypted indexes and per-
forming search operations without the function of arbiters, which is consistent
with the traditional system model. In our setting, the search results are publicly
verifiable, i.e., all entities can use the DU’s public key to verify the correctness of
the results, which lays the foundation for our fair SSE framework construction.

An ABS-based publicly verifiable SSE scheme ΠABS
PVSSE = (KeyGen,EDBSetup,

TokGen,Search,Verify) contains five algorithms:

– (PK,SK) ← KeyGen(1λ): is a key generation algorithm run by the DU. It
takes as input a security parameter λ and then outputs a public key PK and
a secret key SK, where PK is open to the public, and SK is kept in secret
by the user.

– (EDB,ABS′) ← EDBSetup(SK,DB,ABS): is run by the DU to encrypt the
given database. It takes as input a secret key SK, a database DB, and an
append-only block store ABS and then outputs an encrypted database EDB
stored on the updated store ABS′.

– τ ← TokGen(SK,w): is a token generation algorithm run by the DU to gen-
erate a token for a keyword. It takes as input a string w and a secret key SK
and outputs a search token τ .
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– (R, prf) ← Search(EDB, τ,ABS): is a search algorithm run by the SP to search
for the files that contains the keyword w. It takes as input τ , EDB, and ABS
and then outputs the result R and the corresponding proof prf. Note that the
search operations are off-chain.

– accept/reject ← Verify(PK, τ,R, prf): is a verification algorithm run by any
entity to check whether R is correct and complete. It takes as input a public
key PK, a token τ , a set of results R, and a proof prf, and outputs accept if
R matches prf. Otherwise, it outputs reject.

The definition of ABS-based PVSSE is almost the same as that of traditional
SSE, except that the storage model is changed to ABS. Moreover, the security
and soundness definitions of ABS-based PVSSE are also compatible with those
of the traditional verifiable SSEs, which will not be discussed in detail due to
space constraints.

For simplicity, the formalization of PVSSE here does not involve modeling the
storage of the actual file payloads. There is no agreement in the literature of SSE
in dealing with this issue. Considering the case of decentralized environments,
we argue that the encrypted files can be stored in any decentralized file system,
such as IPFS.

2.6 Cryptographic Primitives

Pseudo-random Function. A pseudo-random function (PRF) F : K×X → Y
is a polynomial-time computable function that cannot be distinguished from a
truly random function by any polynomial-time adversary. The formal definition
of PRFs is given in [11].

Digital Signature. A digital signature scheme is a triple of algorithms Πsig =
(KeyGen,Sign,Verify). The probabilistic key generation algorithm KeyGen takes
as input a security parameter and outputs a pair (pk, sk), where sk is called a
secret signing key, and pk is called a public verification key. The probabilistic
signing algorithm Sign takes as input a secret key sk and a string m and then
outputs a signature σ. The deterministic verification algorithm Verify takes as
input a public key pk, a message m, and a signature σ and then outputs either
accept or reject. Informally, a digital signature scheme is secure if any polynomial-
time adversary cannot forge a valid message/signature pair. We refer the reader
to [11] for a formal definition of digital signatures.

Symmetric Encryption. We follow the definition of symmetric encryption in
[5]. A symmetric encryption scheme is a pair of algorithms (E,D). The encryp-
tion algorithm E takes as input a key K and a plain text m and outputs a
ciphertext c. The decryption algorithm D takes as input a key K and a cipher-
text c, then it outputs m if c was produced by E(K,m). We say that a symmetric
encryption scheme is RCPA-secure (a stronger notion than CPA-secure) if the
ciphertexts are computationally indistinguishable from truly random strings.
The concrete definition of RCPA can be found in [5].
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3 The Proposed Constructions

In this section, we give the specific constructions of the ABS-based lookup table,
the publicly verifiable SSE, and the final fair SSE framework, respectively, in a
step-by-step manner.

3.1 B′ Tree: An Implementation of the ABS-Based Lookup Table

We first propose read-only B′ trees based on the design concept of B+ trees to
instantiate the ABS-based lookup table, where the nodes can be stored via ABS
blocks. Similar to B+ trees, B′ trees store all satellite data in the leaf nodes and
only keywords and child pointers in the internal nodes. The difference is that
B′ trees do not support update operations and require that all data be written
simultaneously in the setup phase. We retain the links between the leaf nodes
to facilitate range queries.

We define that an internal node of an M -order B′ tree can hold up to M
children. Each node x of a B′ tree has x.n fixed-length keys x.key1, . . . , x.keyx.n

in non-descent order and a boolean x.leaf that marks whether x is a leaf
node. Furthermore, if x is an internal node, it also contains x.n + 1 children
x.child1, . . . , x.childx.n+1, satisfying that if ki be any key stored in a subtree
rooted at x.childi, then k1 < x.key1 ≤ k2 < x.key2 ≤ · · · ≤ kx.n < x.keyx.n ≤
kx.n+1; if x is a leaf node, it additionally contains x.n fixed-length values labeled
by keys and a pointer x.ptrnext to the next leaf node. For any node x, the lengths
of its contained keys, values (if any), x.n, and x.leaf are fixed and the same as
those of other nodes, which we denote by lkey, lvalue, ln, and lbool, respectively.

Other properties of B′ trees, as well as the search algorithm LTGet, are con-
sistent with those of B+ trees, and the reader is referred to [12] for more details.

Initialization Algorithm. Given n key/value pairs (l1, v1), . . . , (ln, vn), the
initialization algorithm LTInit for constructing an M -order B′ tree is as follows:

1. If n = 0, return ⊥; otherwise:
2. Sort key/value pairs (l1, v1), . . . , (ln, vn) in non-descent order according to the

key. The result is (l′1, v
′
1), . . . , (l

′
n, v′

n).
3. Slice the ordered key/value pair {(l′1, v

′
1), . . . , (l

′
n, v′

n)} into �n/(M − 1)	 sub-
sets

{
B1, B2, . . . , B�n/(M−1)�

}
evenly, which means that the size of the last

two subsets satisfies
∣
∣B�n/(M−1)�−1

∣
∣ − ∣

∣B�n/(M−1)�
∣
∣ ≤ 1, while the size of the

rest is M − 1.
4. For subsets B =

{
B1, B2, . . . , B�n/(M−1)�

}
, call the algorithm LeafBuild

shown in Fig. 1 to generate a B′ tree from the bottom up and return the
address of the root node as LT.

3.2 ΠABS
PVSSE Construction

Based on the ABS-based lookup table, we further illustrate the detailed construc-
tion of ΠABS

PVSSE, which combines with the ideas of Πbas in [5] and the verifiable
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LeafBuild (B = {B1, B2, . . . , Bm} ,ABS)

1 : If B is empty, then return ⊥; otherwise:

2 : Initialize m empty leaf nodes x1, . . . , xm

3 : p ← ⊥
4 : for i ← m to 1 do

5 : Write the key/value pairs contained in Bi to the leaf node xi

6 : x.ptrnext ← p, x.n ← |Bi|
7 : addri ← Put(ABS, xi)

8 : p ← addri

9 : Let κi be the smallest key of the subset Bi, where 2 ≤ i ≤ m

10 : return InternalBuild({κ2, . . . , κm} , {addr1, . . . , addrm} ,ABS)

InternalBuild (K = {k1, . . . , km} ,ADDR = {addr1, . . . , addrm+1} ,ABS)

1 : If K is empty, then return addr1; otherwise:

2 : Initialize �m/M� empty internal nodes x1, . . . , x�m/M�

3 : Initialize two empty lists K
′
,ADDR

′

4 : i ← 0, j ← 1

5 : while m − i ≥ M do

6 : i
′ ← i

7 : i ← i + min(M − 1, �(m − i)/2	)
8 : κj ← ki

9 : xj .n ← i − i
′ − 1

10 : Write ki′+1, . . . , ki−1 to xj .key1, . . . , xj .keyxj.n

11 : Write addri′+1, . . . , addri to xj .child1, . . . , xj .childxj.n+1

12 : (ABS, addr
′
j) ← Put(ABS, x)

13 : Push κj to K
′, and push addr

′
j to ADDR

′

14 : j ← j + 1

15 : x�m/M�.n ← m − i

16 : Write ki+1, . . . , km to x�m/M�.key1, . . . , x�m/M�.keyx�m/M�.n

17 : Write addri+1, . . . , addrm+1 to x�m/M�.child1, . . . , x�m/M�.childx�m/M�.n+1

18 : (ABS, addr
′
�m/M�) ← Put(ABS, x�m/M�)

19 : Push addr
′
�m/M� to ADDR

′

20 : return InternalBuild(K′
,ADDR

′
,ABS)

Fig. 1. Tree build algorithm of B′ Tree.

hash table (VHT) in [3]. Let F : {0, 1}λ × {0, 1}∗ → {0, 1}λ be a variable-
input-length PRF, LT = (LTInit, LTGet) be an ABS-based lookup table, Πsig be
a digital signature scheme, and E = (E,D) be a symmetric encryption scheme.
The detailed construction is given in Fig. 2.

Unlike previous verifiable SSE schemes, our design uses digital signatures
instead of MACs to enable public verifiability by DUs’ public keys. On the
skeleton of Πbas, we embed the VHT into the construction, replace MACs with
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KeyGen(1λ)

1 : K ←$ {0, 1}λ
, K

′ ←$ {0, 1}λ

2 : (pk, sk) ← Πsig.KeyGen(1λ)

3 : return (PK = pk, SK = (K, K
′
, sk))

EDBSetup(SK,DB,ABS)

1 : Parse SK as (K, K
′
, sk)

2 : Initialize three empty lists L, L
′
, L

′′

3 : foreach w ∈ W do

4 : K1 ← F (K, 1‖w) , K2 ← F (K, 2‖w)

5 : K3 ← F K
′
, 1‖w

)
,wtag ← F (K′

, 2‖w)

6 : Initialize a counter c ← 0

7 : foreach id ∈ DB (w) do

8 : l ← F (K1, c) , d ← E (K2, id)

9 : c ← c + 1

10 : Push (l, d) to L

11 : ĩd ← id1‖id2‖ . . . ‖idNw ,

where idi ∈ DB (w)

12 : prf ← Πsig.Sign(wtag‖ĩd)

13 : dprf ← E (K3, prf)

14 : Push (wtag, dprf) to L
′

15 : (LTin,ABS) ← LTInit (L,ABS)

16 : Sort L
′ in ascending lexicographic

order of keys

17 : i ← 0

18 : for (wtag, dprf) ∈ L
′
do

19 : prf′ ← Πsig.Sign(sk,wtag‖i)

20 : Push wtag, dprf , i, prf′
)

to L
′′

21 : i ← i + 1

22 : (LTprf ,ABS) ← LTInit(L′′
,ABS)

23 : return (EDB = (LTin, LTprf),ABS)

TokGen(SK, w)

1 : Parse SK as (K, K
′
, sk)

2 : K1 ← F (K, 1‖w) , K2 ← F (K, 2‖w)

3 : K3 ← F K
′
, 1‖w

)
,wtag ← F (K′

, 2‖w)

4 : return τ = (K1, K2, K3,wtag)

Search(EDB, τ,ABS)

1 : Parse EDB as (LTin, LTprf) and τ as

(K1, K2, K3,wtag)

2 : Initialize an empty list R
3 : for c ← 0 until LTGet returns ⊥ do

4 : d ← LTGet (F (K1, c) , LTin,ABS)

5 : id ← D (K2, d)

6 : Push id to R
7 : if R �= ∅ do

8 : (dprf , i, prf′) ← LTGet (wtag, LTprf ,ABS)

9 : prf ← D(K3, dprf)

10 : else

11 : Find i such that wtagi < wtag < wtagi+1

12 : (dprfi
, i, prf′i) ← LTGet (wtagi, LTprf ,ABS)

13 : (dprfi+1 , i + 1, prf′i+1) ←
LTGet wtagi+1, LTprf ,ABS

)

14 : prf ← wtagi, i, prf′i,wtagi+1, prf′i+1

)

15 : return (R, prf)

Verify(PK, τ,R, prf)

1 : Parse τ as (K1, K2, K3,wtag)

2 : if R �= ∅ do

3 : Parse R as id1, id2, . . . , id|R|
)

4 : ĩd ← id1‖id2‖ . . . ‖id|R|

5 : return Πsig.Verify(PK,wtag‖ĩd, prf)

6 : else

7 : Parse prf as

wtagi, i, prf′i,wtagi+1, prf′i+1

)

8 : if wtagi < wtag < wtagi+1 do

9 : return Πsig.Verify(PK,wtagi‖i, prf′i) and

Πsig.Verify(PK,wtagi+1‖i + 1, prf′i+1)

10 : else

11 : return reject

Fig. 2. The detailed construction of ΠABS
PVSSE.

digital signatures, and simplify some operations to meet the smart contract
environment.

Specifically, to build the encrypted database, the key generation algorithm
KeyGen called by the DU selects two keys K, K ′, where K is used to derive keys
for PRF (to derive the retrieving labels) and encryption (to encrypt the identi-
fiers) per keyword, and similarly K ′ is used to derive keys for PRF (to derive the
proof labels) and encryption (to encrypt the proof information) per keyword. In
addition, KeyGen invokes the underlying digital signature scheme to obtain the
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signing key and verification key. Subsequently, the setup algorithm EDBSetup
iterates over the identifiers in DB(w) for each keyword w. For each identifier,
it computes a retrieving label by applying the PRF to a counter, encrypts the
identifier, and adds the retrieving label/ciphertext pair to a list L. To achieve
public verifiability, it also uses PRF to derive a proof label wtag for each key-
word w, concatenates and signs all the document identifiers in DB (w), and then
creates a list L′ of all label/signature pairs. In order to prevent malicious ser-
vices from returning faulty empty results, it sorts the list L′, assigns the ordinal,
and generates another signature on the ordinal and the label wtag for each item.
Finally, it obtains a list L′′ of quadruples of the form (wtag, a signature on the
result, an ordinal, a signature on the ordinal) and creates two ABS-based lookup
tables LTin and LTprf from L and L′′, respectively.

To search for keyword w, the DU re-derives the keys and the proof label
wtag for w and sends them to the SP. The search algorithm called by the SP
starts by computing retrieving labels and decrypting the result. If the result is
not empty, it looks up the signature prf corresponding to the result from LTprf

and returns the result and signature. By contrast, if the result is empty, the
algorithm queries LTprf for the two labels wtagi and wtagi+1 adjacent to wtag,
and returns the two labels, their ordinals, and the corresponding signatures.

The verification algorithm takes the following checks depending on whether
the result is empty. If the result is not empty, it verifies the signature on the
result. Otherwise, it checks whether wtag is between wtagi and wtagi+1, and
verifies the signatures on the ordinals of these two labels. If the verification
passes, wtag does not exist in LTprf , and hence the result does not exist.

We argue that for SPs, the search algorithm involving multiple Get calls of
ABS is off-chain, which significantly costs less time than the counterparts where
the search operations are executed by smart contracts.

3.3 Πfair Construction

Based on the ABS-based PVSSE scheme, we finally give the specific construc-
tion of the fair SSE framework. Let ΠABS

PVSSE be an ABS-based PVSSE scheme,
of which the digital signature scheme Πsig is provided by the specific blockchain
platform. We give a formal construction of Πfair in Fig. 3, where the global vari-
able msg.sender denotes the method caller, msg.value denotes the fee attached
to the call, and currentTime denotes the current time. The smart contract main-
tains a dictionary T , where the key is the task tag and the value is the task
information, including the search token, the address of the encrypted index, and
the task remuneration.

Setup. In the setup phase, each participant generates a public/private key pair
(pk, sk) using a wallet program. Any peer node can deploy a smart contract of
Πfair on the blockchain. After being created, the smart contract initializes an
empty dictionary T .

Subsequently, the DU generates an SSE key by calling ΠABS
PVSSE.KeyGen, then

it generates and uploads the encrypted database by calling ΠABS
PVSSE.EDBSetup.
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PublishTask(tag, tk, tx, ddl)

1 : Assert T [tag] == ⊥
2 : Assert ddl > currentTime

3 : Pall ← ∅, Pcit ← ∅
4 : issuer ← msg.sender

5 : $remuneration ← msg.value

6 : Generate a tuple τ ← (tk, tx, ddl, issuer,

$remuneration, Pall, Pcit)

7 : Put the key/value pair [tag : t] to T

8 : Broadcast the event of the arrival

of a new task

Withdraw(tag)

1 : Assert T [tag] �= ⊥
2 : (tk, tx, ddl, issuer, $remuneration, Pall,

Pcit) ← T [tag]

3 : Assert issuer == msg.sender

4 : Assert ddl > currentTime and Pall = ∅
5 : Delete T [tag]

6 : Send $remuneration to msg.sender

AnnounceResult(tag, result, prf)

1 : Assert T [tag] �= ⊥
2 : (tk, tx, ddl, issuer, $remuneration, Pall,

Pcit) ← T [tag]

3 : Assert issuer �= msg.sender

4 : Assert ddl > currentTime

5 : Assert msg.sender ∈ Pall

6 : Assert msg.sender /∈ Pcit

7 : Assert ΠABS
PVSSE.Verify(pkissuer, tk, result,

prf) returns accept

8 : $award ← $remuneration

9 : foreach p ∈ Pall do

10 : if p ∈ Pcit then

11 : $award ← $award + $remuneration

12 : else Send $remuneration to p

13 : Send $award to msg.sender

and inform issuer of the result

14 : Delete T [tag]

Participate(tag)

1 : Assert T [tag] �= ⊥
2 : (tk, tx, ddl, issuer, $remuneration, Pall,

Pcit) ← T [tag]

3 : Assert issuer �= msg.sender

4 : Assert ddl > currentTime

5 : Assert $remuneration ≤ msg.value

6 : Assert msg.sender /∈ Pall

7 : Pall ← Pall ∪ {msg.sender}
8 : $change ← msg.value − $remuneration

9 : Send $change to msg.sender

10 : T [tag] ← (tk, tx, ddl, issuer,

$remuneration, Pall, Pcit)

ClaimInvalid(tag)

1 : Assert T [tag] �= ⊥
2 : (tk, tx, ddl, issuer, $remuneration, Pall,

Pcit) ← T [tag]

3 : Assert issuer �= msg.sender

4 : Assert ddl > currentTime

5 : Assert msg.sender ∈ Pall

6 : Assert msg.sender /∈ Pcit

7 : Pcit ← Pcit ∪ {msg.sender}
ClaimTimeout(tag)

1 : Assert T [tag] �= ⊥
2 : (tk, tx, ddl, issuer, $remuneration, Pall,

Pcit) ← T [tag]

3 : Assert ddl ≤ currentTime

4 : if Pcit �= ∅ then

5 : $refund ← $remuneration/|Pcit|
6 : foreach p ∈ Pcit then

7 : Send $refund to p

8 : else

9 : Send $remuneration to issuer

10 : foreach p ∈ Pall then

11 : Send $remuneration to p

12 : Delete T [tag]

Fig. 3. The detailed construction of Πfair.

Recall that in order to enable fairness, when generating the encrypted index,
the DU needs to sign the DB(w) for each keyword w in DB as proof of faithful
search execution by SPs.

Task Publishing and Withdrawl. The DU who wants to search for its data
on the blockchain publishes a search task by calling Πfair.PublishTask with argu-
ments (tag, tk, tx, ddl), where tag is the task identifier generated by the DU, tk
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is the search token generated by calling the method ΠABS
PVSSE.TokGen, tx is the

address of the encrypted index, and ddl is the task deadline. In addition, the DU
needs to set a fee for the task, which will be included in the message sent to the
SC.

The SC initially checks if the task tag exists in the dictionary T (i.e., another
task with the same tag has not finished) and if the task deadline is valid. Sub-
sequently, the SC creates two empty sets Pall and Pcit and extracts the issuer
and the task remuneration. Then the SC creates a tuple to record the task detail
and adds the tuple as a value and tag as a key to the dictionary T . Finally, it
broadcasts the arrival of the new task to the peers.

When the issuer stops outsourcing the search, it can submit a task withdrawal
request by calling Πfair.Withdraw with argument tag. The SC will check the
validity of the task and the canceler. If no SP has participated in the task, the
SC permits the task cancellation, deletes the corresponding item from T , and
refunds the remuneration to the issuer.

Task Participation. When a task is published, the SC broadcasts an event
including the above task arguments to all subscribed SPs. Based on the content,
the SP determines whether to participate. If it decides to participate and com-
pete for the reward, it can call Πfair.Participate with the argument tag and attach
the message with its deposit equivalent to the remuneration. The SC will check
if the task, the participant, and the deposit meet the conditions. If the above
conditions are satisfied, the SC adds the participant to the Pall and refunds the
excess deposit.

After participating in the task, the SP utilizes the search token tk pro-
vided by the DU to search over the EDB whose address is specified by tx
stored on the blockchain. When the SP finds the result and the related
proof successfully, denoted by result and prf respectively, it verifies whether
ΠABS

PVSSE.Verify(pkDU, tk, result, prf) returns accept using the public key pkDU of
the DU. If the equation holds, the SP calls Πfair.AnnounceResult with arguments
(tag, result, prf) to announce the successful completion of the task. After the
SC receives the message, it first checks that the task and the participant are
valid and verifies that the result returned by the SP is correct and complete
by calling ΠABS

PVSSE.Verify(pkDU, tk, result, prf). If the validation succeeds, which
means that the SP performed the search honestly and returned the correct result,
the SC performs a series of monetary operations and returns the deposit to the
honest SPs (i.e., those who have not invalidated the task). As for dishonest
complainants, the SC seizes their deposits and sends them to the winner as a
reward. Finally, the SC informs the DU of the correct result and removes the
task information from T .

When the SP finds that the search token or encrypted index provided by
the DU is wrong, or the proof previously incorporated in the encrypted index
is invalid, it can raise a task invalidity complaint by calling Πfair.ClaimInvalid
with parameter tag. The SC performs a series of validity checks and adds the
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complainant to Pcit. Once the task has expired and no SP has found the result,
the SC divides the remuneration equally as compensation to each complainant.

Task Expiration Without Any Winner. When the current time exceeds
the deadline, anyone can raise a task expiration declaration to the SC. The SC
validates the existence of the task and ensures that it has indeed expired. If
no SP claims the task is invalid, the task remuneration is refunded; otherwise,
the task remuneration is shared equally among the SPs that declared the task
invalid. Finally, all SPs have their deposits refunded.

4 Security Analysis

In this section, we discuss the security of our proposed framework in terms of
confidentiality, soundness, and fairness.

4.1 Confidentiality

We first discuss the confidentiality of the proposed ABS-based PVSSE construc-
tion ΠABS

PVSSE, which is the basis for that of the fair SSE framework Πfair.
We follow the ideal/real simulation paradigm of SSE [2,5] to demonstrate

the confidentiality of the scheme. We define the leakage function L of scheme
ΠABS

PVSSE as
L (DB,w) =

(
N, {DB (w)}w∈w , |W |) ,

where the leakage function L takes as input a database DB and a list of queries
w and outputs the size of the database N , the plain file identifiers contained in
the database DB for each query w, and the number of keywords |W |.
Theorem 1. If F is a secure PRF and E = (E,D) is RCPA-secure, then ΠABS

PVSSE

is L-secure against non-adaptive attacks.

The proof of the theorem is basically identical to [5], and the sketch is given
later; a complete and formal proof can be found in [5].

Proof Sketch: To prove non-adaptive security, we give the construction of the
simulator S, which takes as input the return value of the leak function L (i.e.,
the size N of the database, DB(w) for each query keyword w, and the number
of keywords |W |) and outputs the view of the server (i.e., EDB) and the cor-
responding search token for each query. Without loss of generality, we assume
that the adversary’s queries w are non-repeating.

The simulator S iterates over the queries and generates Ki,1,Ki,2,Ki,3,wtagi

←$ {0, 1}λ for the i-th query wi. Next, for each id ∈ DB(wi), S calculates l,
d, and dprf , then it adds (l, d) to L and (wtagi, dprf) to L′ as EDBSetup does.
Subsequently, S adds random pairs to L until L has N items and creates LTin

by calling LTInit (L,ABS). Similarly, S adds random pairs to L′ until L′ has |W |
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items and creates LTprf (as in lines 16 to 22 of EDBSetup). Finally, S outputs
EDB = (LTin, LTprf) and τ = (τ1, . . . , τq), where τi = (Ki,1,Ki,2,Ki,3,wtagi).

The hybrid argument given in [5] can also be applied to this proof. The
first hybrid shows that selecting Ki,1,Ki,2 randomly is indistinguishable from
deriving them from the secure PRF F (K, ·). Similarly, the second hybrid shows
that selecting Ki,3,wtagi randomly is indistinguishable from deriving them from
the secure PRF F (K ′, ·). The third hybrid states that the unqueried k-v pairs
in LTin and LTprf are pseudo-random. Therefore, the output produced by S is
indistinguishable from the view of the real world. 
�

We turn to the confidentiality analysis of Πfair. The confidentiality of Πfair

relies on the underlying PVSSE scheme ΠABS
PVSSE. SPs cannot sniff any information

other than the leakage L. It is noted that the scope of the leakage is extended
from a single server to all peers of the blockchain network since the state of the
smart contract is public.

4.2 Soundness

Intuitively, the soundness of PVSSE signifies that the server cannot forge a
result/proof pair (R, prf) where R has not been previously signed by the user
such that ΠABS

PVSSE.Verify returns accept. Our design relies on the security of the
underlying PRF and digital signature. Depending on whether the result forged
by the server is empty, we analyze the soundness separately. On the one hand, if
the forged result is not empty, the server cannot forge evidence unless it knows
the signing key owned by the user or finds a collision of the retrieving labels
computed by F . On the other hand, if the forged result is empty, the server
needs to provide the two adjacent wtags, their ordinals, and the corresponding
signatures, which is also a difficult problem for a server that does not know the
secret signing key. Therefore, if the underlying PRF F and the digital signature
scheme are secure, our scheme can be inferred to be sound.

The soundness of Πfair is dependent on ΠABS
PVSSE. As long as ΠABS

PVSSE is sound,
Πfair is equally sound, i.e., a malicious SP cannot forge proof for a wrong result
to deceive the smart contract.

4.3 Fairness

Πfair achieves fairness by constructing a multi-party game in which both SPs and
DUs tend to cooperate. We discuss the fairness of the scheme in several cases as
follows.

– If DUs and SPs are honest, the scheme will work appropriately, the remuner-
ation will be awarded to the winning SP, and all SPs will be returned their
deposits.

– Malicious DUs may refuse to pay the remuneration, send a faulty search
request, or upload fraudulent proof in the setup phase (i.e., the proof and the
result may not match, even if the result is correct). Refusal to pay is impossible
because our scheme requires the DU to pay the remuneration beforehand.
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The complaint mechanism can solve the latter two cases, i.e., SPs can file a
complaint if they find something wrong with the request or the proof. If none
of the SPs finds the result until the end of the task, the smart contract can
conclude that the task is wrong and seize the remuneration to recompense the
complainants. Under the stimulation of the penalty mechanism, DU tends to
behave honestly.

– Malicious SPs may send incorrect results or directly claim the task is invalid
without performing any substantive operation. The former is impossible due
to the soundness of ΠABS

PVSSE. For the latter case, whenever an honest SP suc-
ceeds in finding the result and proof within the time limit, the deposits of the
malicious SPs will be seized and compensated to the honest winner by the
SC. With the combination of penalty and incentive mechanisms, SPs tend to
behave honestly.

– It is crucial to set the task time appropriately to ensure fairness. Too short
task time will lead to fraud from dishonest SPs, whereas too long task time
may lead to the decline of user experience. Therefore, the task time needs to
be set according to the specific network situation, the number of nodes, and
the performance of each node.

5 Implementation and Experimental Results

5.1 Implementation Details

We implement the proposed schemes in Python and Solidity and conduct the
experiments on a computer with an AMD Ryzen 5700G CPU, 32 GB of RAM,
running Ubuntu 22.04. Inspired by [1], we use Ethereum to instantiate ABS
by storing blocks via transactions, whose hashes are used for block addresses.
We conduct our experiments on the Ganache test network and interface with
the network via Metamask and the Ethereum API web3.py. The Init method
of ABS is instantiated by generating a Metamask wallet, while the Put and Get
methods are instantiated using the Ethereum APIs web3.eth.sendTransaction
and web3.eth.getTransaction, respectively.

For cryptographic primitives, we use the Python cryptography package to
implement symmetric encryption via AES-256 and PRF via HMAC-SHA-256.
Furthermore, we implement Πsig using Web3 APIs web3.eth.accounts.sign
and web3.eth.accounts.recover, whose underlying signature algorithm is
ECDSA with SHA3-256. Thus, the data user’s signature key corresponds to
the key pair of the Metamask wallet. For the fair SSE framework Πfair, we pro-
gram a smart contract FairContract using the Solidity language and deploy it
to the Ganache test network at the cost of 2, 946.65k gas.

For full implementation, we set the parameters as follows: we set γ to 64 KB
for ABS implementation, lkey = lvalue = laddr = 32 bytes (the hash length of an
Ethereum transaction), lbool = 1 byte and ln = 4 bytes for B′ tree implementa-
tion, and lid = 8 bytes for SSE implementation.
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5.2 Performance Evaluation

For comparison, we implement the scheme of [8], where the storage and search
of data are performed by the smart contract. We modify the scheme of [8] by
removing the Add and Delete methods and restricting the writing of encrypted
indexes to the setup phase. Due to the gas limit, we slice the massive DB(w)
into multiple chunks of size 1, 000 and send each chunk to the smart contract in
turn. We program a smart contract SSEContract and deploy it to the same test
network at the cost of 930.89k gas.

Table 1. Database properties in our experiment.

DB name (w, id) pairs Distinct keywords

DB1 100,381 1,000

DB2 100,180 10,000

DB3 99,596 5,000

DB4 500,012 25,000

Using the Python Faker library and the os.random method, we generate four
databases whose main properties are summarized in Table 1.

We measure the gas used, the number of transactions, the running time in
the setup phase, and the running time and the gas used by each participant in
the query phase.

Setup Performance. Figure 4(a)–(c) depict the time costs, gas usage, and
transaction counts for Πfair and SSEContract on various datasets. We can
see that our design reduces the initialization time and gas consumption by
about 90% and the number of transactions by approximately 80%. Specifically,
when deploying DB4 with large amounts of data, SSEContract requires more
than 30 min, whereas our solution requires less than 3 min. The results demon-
strate that our design achieves a significantly lower initialization overhead than
SSEContract, indicating that Πfair will reduce deployment costs significantly and
be suitable for a wider range of use cases.

Table 2. The gas consumption of different entities for search in the unit of 103 gas.

Gas Used By the DU Gas Used By the winning SP Gas Used By other SPs

DB1 DB2 DB3 DB4 DB1 DB2 DB3 DB4 DB1-DB4

Πfair 116.3 180.0 160.9 164.3 163.2 92.7

SSEContract 2, 400.9 368.8 625.9 665.4
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(a) Setup time (b) Gas used in the setup phase

(c) Transaction count in the setup phase (d) Search time

Fig. 4. Efficiency evaluations.

Query Performance. In the query phase, we further measure the time cost
and the gas usage of each party, averaging the results over 100 randomly selected
queries. Figure 4(d) shows the “entire search time” for both schemes, which refers
to the time interval between when the DU posts a search task and when it
receives the correct result. Overall, our design outperforms SSEContract and
performs substantially better on databases containing high-frequency keywords,
owing to the underlying B′ tree, which reduces the frequency of reading ABS
blocks per search.

Table 2 shows the comparison of the gas consumption of different entities
for search between the two schemes. In our design, the gas consumption varies
between different entities. For SSEContract, only the DU executing the smart
contract method consumes gas. As Table 2 shows, in our design, the DU con-
sumes only 116.3k of gas to publish the search task, and the SP uses 92.7k of
gas for participation. In addition, the SP that finds the result consumes more
gas due to the additional call to the AnnounceResult method, the amount of
which varies depending on the size of the result. As for SSEContract, the gas
consumed by the DU is positively correlated with the size of the result. Overall,
our scheme efficiently reduces the amount of gas consumed for search compared
to SSEContract, since the search operation with high consumption is shifted to
off-chain execution, while the smart contract is only used for the lifecycle of the
task.
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6 Conclusion

Existing blockchain-based SSE schemes cannot simultaneously achieve high effi-
ciency and fairness. This paper uses the aforementioned issue as a springboard
to provide an effective and fair solution for searching for encrypted data on the
blockchain. We first build a generic abstraction model ABS for blockchain stor-
age, compatible with the majority of blockchain platforms. Based on ABS, we
propose a lookup table data structure and an implementation of it to achieve effi-
cient storage and search. We further propose a publicly verifiable SSE scheme in
which indexes are organized as ABS-based lookup tables, and the search oper-
ations are shifted to be executed off the chain, thereby significantly reducing
the time overhead and gas usage. Then, we use smart contracts to introduce
fairness to SSE via multi-party gaming. We implement our scheme in Solidity
and Python and deploy it on Ethereum. The experimental results show that our
design is effective and practical.
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Abstract. A fair exchange protocol allows two parties to exchange their
secret messages fairly. The protocol is said to be fair if either both par-
ties receive secrets from each other or neither of them does. However,
complete fairness was proven not always possible by Cleve (STOC 1986)
as a corrupted party can always abort early to obtain more advantages
than the other party. Thus, we should consider partial fairness. In this
paper, we specifically discuss resource fairness (one of partial fairness),
which means parties require similar computation resources to recover
secrets even if the protocol is aborted at an arbitrary round. One of the
methods used to achieve resource fairness is gradual release, where two
parties gradually release their private information. We put forward a pro-
tocol named GRUZ (Gradual Release Using Zero-knowledge) to realize
gradual release in the two-party exchange problem using zero-knowledge
from garbled circuits (ZKGC) without blockchain that many past works
rely on. Two parties first encrypt messages with their secret keys. Then
they gradually release their secret keys one bit at a time alternately
so that either party gains an advantage of at most one bit if he/she
aborts. The authenticity of the exchanged keys is guaranteed by zero-
knowledge proof. We implement this protocol with standard primitives
AES, SHA256, and ECDSA, which are compatible with real-world appli-
cations such as digital currency exchange. We show that our protocol is
practical by analyzing its running time and communication costs.

Keywords: Fair exchange · Zero-knowledge · Garbled circuits ·
Digital currency

1 Introduction

Fair exchange protocols enable the fair exchange of secrets between the two
parties, where fairness refers to either both parties receive the intended messages,
or neither of them does. Fairness was first considered in the exchange problem
[41], and it is later extended to secure multiparty computation [48].

Ideally, fairness should guarantee the atomicity of the exchange. Despite this
ideal definition of fairness, Cleve [13] proved that complete fairness is impossible
in general when there are half or more dishonest parties. But there are also works
showing that complete fairness is possible in secure two-party and multiparty
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computation without an honest majority for certain functions [21,23]. Gordon,
Liu, and Shi [25] discussed the round complexity of MPC with fairness. Besides,
Gordon et al. [22] studied primitives for fair computation.

Since complete fairness is not always attainable, partial fairness [24] seems to
be the best one can hope for in many scenarios. There are a few definitions and
approaches [26] to partial fairness. One is probabilistic fairness, in which case
parties should know the correct answer with higher confidence as the protocol
progresses. Another type of fairness is resource fairness put forward by Garay et
al. [17,38,44,45], which guarantees that both parties need a similar amount of
resources to recover the secrets.

Blum [8] introduces a method to achieve resource fairness, which Brickell et
al. [9] referred to as “gradual release”, and they constructed a protocol based
on discrete logarithm. In addition, Even [15] realizes the protocol with partial
fairness using Merkle puzzles. Informally speaking, gradual release let the two
parties disclose their secrets one bit (block) at a time in an alternating fashion.
As a result, at any point during the protocol execution, if a malicious party
chooses to abort, he gains an advantage of at most one bit (block) over the other
party. Therefore, two parties always need similar resources to reveal the other
party’s secret.

In this paper, we focus on the concept of resource fairness. Under this concept,
fair exchange of digital signatures is discussed by Garay and Pomerance [18]
with applications to digital currency exchange (also known as Interchain Swap).
For instance, suppose Alice plans to trade x BTC for y ETH from Bob by
exchanging the digital signatures of the corresponding transfers. The message to
be exchanged to be digitally signed writes something like “Alice sends x BTC
to Bob” (or “Bob sends y ETH to Alice”, respectively).

To solve the above problem, most of the works relied on smart contracts [1–4]
running over blockchains. In this case, the smart contracts are conditioned that
both parties agree on the exchange before timeout. Besides, Choudhuri et al. [12]
used the public bulletin property of blockchain to build fair exchange protocols.
Later, Paul and Shrivastava [40] improved the performance using blockchain and
trusted hardware.

Although blockchain-based exchange protocols are becoming increasingly
practical, those protocols rely on infrastructures such as smart contracts or public
bulletins which may not always be possible. Further, previous protocols realizing
partial fairness without blockchains either used zero-knowledge proof in a black
box way [17] or relied on number theoretic and assumptions such as factorization
and quadratic residuosity [8,9]. We present a novel and practical way to achieve
resource fairness for the secret exchange problem without using blockchain.

In this work, we design and realize GRUZ (Gradual Release Using Zero-
knowledge), a “gradual release”-based contract signing protocol with resource
fairness, which is based on zero-knowledge proof from garbled circuits (ZKGC)
[29]. Let Alice and Bob first encrypt their signatures using the respective private
keys and then exchange their keys bit by bit alternatively. In this way, even if
one party chooses to abort the protocol at any point, he or she will only gain
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an advantage of at most one bit in terms of the uncertainty about the space to
be enumerated by brute force. During the exchange, zero-knowledge proofs are
used to prove the validity of the keys to be revealed. A zero-knowledge proof
(ZKP) protocol [20] allows a prover to prove some NP statement to a verifier
without revealing anything substantial beyond the validity of the statement. A
garbled circuit (GC), introduced by Yao [47], is widely used as a way to realize
two-party secure computation. Zero-knowledge from garbled circuits (ZKGC)
combines the two techniques and realizes zero-knowledge proofs using GCs. A
good advantage of this method is that it is easy to express NP relations using
Boolean circuits. Our contributions can be summarized as follows:

– We design a practical resource-fair exchange protocol without relying on
blockchains, which follows the “gradual release” approach and is based on
zero-knowledge proof from garbled circuits.

– We instantiate this protocol with standard and widely deployed cryptographic
primitives, i.e. AES, SHA256 and ECDSA. Especially, we instantiate ECDSA with
secp256k1 which is used in Bitcoin and Ethereum. Therefore, our implemen-
tation is compatible with and can be directly applied to real-world applica-
tions such as digital currency exchange.

– We provide an implementation of the protocol along with performance eval-
uation. Our protocol exhibits affordable performance in terms of the running
time and communication cost.

Our protocol has many potential applications, such as contract signing and
electronic cheque deposit by exchanging the corresponding signatures. Further-
more, it can also be used for fair exchange of digital assets, which we will discuss
in Sect. 3.1.

2 Preliminaries

The following Table 1 concludes frequently used mathematical notations.

Table 1. Mathematical notations

Notation Meaning

n Input size

w Prover’s input as witness

{Cn} Circuit family

R(x; w) NP relation where (x, w) ∈ R iff. C(x, w) = 1

(K0
i , K1

i ) True and false input labels for wire i

Δ Global offset under free-XOR

σ Signature

k Private key

κ Computational security parameter

{ri}i∈[κ] a sequence of random strings
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2.1 Relation and Language

An NP relation R(x;w) is defined by a polynomial-sized uniform circuit family
{Cn} and (x, w) ∈ R iff. C(x,w) = 1. We then define the corresponding language
L(R) induced by this relation as L(R) = {x : ∃w s.t. C(x,w) = 1}.

2.2 Zero-Knowledge Proof

Zero-knowledge proof was put forward by Goldwasser et al. [20] Prover P uses a
witness w to prove an NP statement to verifier V. In brief, a pair of algorithms
(P,V) is said to be zero-knowledge if for every PPT verifier V, there exists a
PPT simulator Sim such that the views ViewP,V(x), Sim(x) are computationally
indistinguishable for every input x.

We define some ideal functionality of our zero-knowledge from garbled cir-
cuits (ZKGC) protocol described in Sect. 3.

Fig. 1. Ideal functionality F cho for oblivious transfer

Fig. 2. Ideal functionality F com for commitment

The above figures Fig. 1 and Fig. 2 define ideal functionalities for choosing
input and committing messages respectively. The OT (Oblivious Transfer) [41]
we use is weak committing OT instead of standard OT since it requires an open
command.

2.3 Garbling Scheme

In this section, we describe the privacy-free garbling scheme [16], which is a kind
of garbling scheme designed for ZKGC.

A garbling scheme [6] is defined as a tuple G = (Gb,En,Ev,De,Ve):
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– (GC, e, d) ← Gb(1κ, f). This algorithm takes as input security parameter κ,
boolean function f : {0, 1}n → {0, 1} and some randomness. Then it generates
garbled circuit GC, decoding information d and encoding information e =
{K0

i ,K1
i }i∈[n] where n is the input size and K0

i ,K1
i are input labels.

– X := En(e, x), which generates garbled input X using encoding information
e and input x.

– Y := Ev(GC,X). It evaluates the garbled circuit GC using garbled input X
and outputs garbled output Y .

– y := De(d, Y ). The algorithm decodes garbled output Y using decoding infor-
mation d and outputs the final output y.

To let prover believe in the correctness of the garbled circuit, another algo-
rithm Ve is required [29].

– {0, 1} ← Ve(GC, e, f). It outputs accept if the garbled circuit is indeed a
description of f .

A garbling scheme should meet the following properties:

Definition 1. A garbling scheme G satisfies correctness if for any boolean func-
tion f : {0, 1}n → {0, 1} and x ∈ {0, 1}n, the probability that

(GC, e, d) ← Gb(1κ, f), f(x) �= De(d,Ev(GC,En(e, x)))

is negligible.

Definition 2. A garbling scheme G has authenticity if for every boolean func-
tion f : {0, 1}n → {0, 1} and input x ∈ {0, 1}n, the probability that any PPT
adversary A outputs the following is negligible:

(GC, e, d) ← Gb(1κ, f),X = En(e, x), Y ← A(GC, d,X),De(d, Y ) /∈ {f(x),⊥}

Definition 3. A garbling scheme G has verifiability if for every boolean function
f : {0, 1}n → {0, 1} and input x ∈ {0, 1}n such that f(x) = 1, and for any PPT
adversary A there exists an expected polynomial time algorithm Ext such that
the following is negligible:

(GC, e, d) ← A(1κ, f),Ve(GC, e, d) = 1,Ext(GC, e) �= Ev(GC,En(e, x))

2.4 Garbled Circuits and Elliptic Curves Group

Garbled circuits was proposed by Yao [47] as a way to perform secure two-
party computation. It has gone through lots of improvements, such as point-
and-permute [5], free-XOR [34], row reduction method [36], half-gates [49] and
the state-of-the-art three halves protocol [43]. Here, we describe free-XOR briefly
since it is important in our protocol. Besides, we also introduce elliptic curves
group as in Sect. 3.3 we will discuss how to use free-XOR on elliptic curves group,
which is an essential technique of our paper.
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Free-XOR. We use (K0
i ,K1

i ) to denote the wire labels indicating true and false
respectively for the ith wire. There is a global offset Δ under the free-XOR
setting. And two labels for any wire i satisfy K0

i = K1
i ⊕ Δ.

For an XOR gate in Fig. 3, suppose A and A⊕Δ are wire labels corresponding
to 0 and 1 for one input, and B, B ⊕ Δ are 0,1 wire labels for the other input.
Then C = A⊕B = (A⊕Δ)⊕ (B ⊕Δ) and C ⊕Δ = A⊕ (B ⊕Δ) = (A⊕Δ)⊕B.

Fig. 3. Wire Labels under free-XOR setting

Elliptic Curves Group. Koblitz [33] and Miller [35] use elliptic curves cryptosys-
tems. An elliptic E curve over a field F meet the condition of an abelian group. Its
group identity is ∞, a point at infinity. And for a point on the curve (x, y) ∈ E,
its negative is (x,−y) since (x, y) + (x,−y) = ∞.

2.5 Symmetric Encryption

Encryption algorithms can be broadly divided into symmetric (private) encryp-
tion and asymmetric (public) encryption. Specifically, AES (the Advanced
Encryption Standard) is a famous symmetric encryption scheme designed by
Daemen and Rijmen [14]. The syntax of symmetric key encryption is:

– k ← KeyGen(κ) where κ is the security parameter. The output k is the secret
key.

– c ← Enc(k,m) where m is the message to be encrypted and c is the ciphertext.
– m ← Dec(k, c) is the decryption algorithm.

Any adversary can not break an ideal symmetric encryption scheme better
than enumerating the key space. Ideally, any x bits leakage on the encryption
key should reduce the key space exactly to its 1/2x.

2.6 Commitment

A commitment scheme that commits to message m should meet the following
requirements [31]:
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Hiding. Any PPT adversary A can not win the following experiment with proba-
bility more than 1

2 +negl(κ) for a commitment scheme meeting hiding property:

C A
choose m0,m1

b ← {0, 1} (m0,m1)←−−−−−−
c = Com(mb, r)

c−−−→
compute b′

b
?= b′ b′←−−−−

Binding. If c = Com(m, r) is the commitment of message m, then for any PPT
adversary A, binding ensures the possibility that he/she outputs m′ �= m, r′ such
that c = Com(m, r) = Com(m′, r′) is negligible.

2.7 ECDSA

ECDSA (Elliptic Curve Digital Signature Algorithm) [42], which is an elliptic
curve analogue of DSA (Digital Signature Algorithm) [37]. It [30] is a signature
protocol based on elliptic curves group.

Suppose G is an elliptic curve group with generator g over Zq. ECDSA con-
sists of the following PPT algorithms [31]:

– (pk, sk) ← KeyGen(1κ): choose a random x ∈ Zq and let y = gx. The public
key and private key are pk := (G, q, g, y), sk := x. Besides, function H :
{0, 1}∗ → Zq is a hash function. F : G → Zq outputs the x part of a point on
elliptic curve.

– σ ← Sign(sk,m): choose a uniform k ∈ Zq and let r = F (gk), s = k−1(H(m)+
xr) mod q. If r = 0 or s = 0, restart with another choice of k, otherwise
output signature σ = (r, s).

– {0, 1} ← Verify(pk,m, σ): check if r = F (gH(m)·s−1
yr·s−1

). Output 1 if they
are the same, otherwise output 0.

3 Construction

In this section, we will describe our protocol for realizing fair exchange using
zero-knowledge from garbled circuits (ZKGC). First, we will give the intuitions
followed by a concrete description of the protocol.
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3.1 Intuitions

Consider the contract-signing [7] case where two parties Alice and Bob wish to
exchange their respective signatures σ of contracts. They decide to first encrypt
their signatures using private keys k. After encryption Enc(k, σ) = ct, they
then exchange their private keys k bit by bit. In this way, if either Alice or
Bob chooses to abort the protocol, she or he will only obtain an advantage
of at most one bit of k. To realize the protocol, they need to also prove the
validity of the signature σ and make commitments of each bit of key k, ci =
Com(ki, ri), · · · , cκ = Com(kκ, rκ) where κ is the length of private keys and
computational security parameter. Overall, the following relation needs to be
met:

RZK(ct, pk, {ci}i∈[κ]; k, σ, {ri}i∈[κ]) :
Enc(k, σ) = ct and Verify(pk, σ) = 1

and
{
Com(ki, ri) = ci

}
i∈[κ]

Here, the relation R(x;w) is defined in Sect. 2.1. The semicolon separates x
and witnesses w.

This scenario is not the only application since our protocol can also be used
for exchanging any digital goods by replacing the second equation Verify(pk, σ) =
1 with C(σ) = 1, where C(·) is a function that checks the validity of the corre-
sponding message. Although the exchanged messages are not limited to signa-
tures, in our protocol, we focus on exchanging signatures.

The instantiation of this zero-knowledge proof is not trivial, we have to handle
both large Boolean circuits and algebra computation. The symmetric encryp-
tion and the commitment are naturally Boolean circuits. However, the ECDSA
signature involves elliptic curve operations, which can not be garbled directly.
Fortunately, ZKGC, with the combination of Free-XOR on elliptic curves group,
meets all of our need. In the following parts, we will show the technique we use
to realize Verify(pk, σ) = 1 in RZK by realizing ECDSA in garbled circuits.

3.2 Zero-Knowledge Verification of ECDSA

Recall the verification of ECDSA in Sect. 2.7. The verifier checks whether r =
F (gH(m)·s−1

yr·s−1
), where F outputs the x part of a group element. Although

we can represent the whole function in Boolean circuits to garble it, the size of
the circuit will be considerably large.

To reduce the circuit size, we make some slight modifications. The verifier
first computes (two possible) gk from r and checks if gk = gH(m)·s−1

yr·s−1
=

(gH(m)yr)s−1
. This will reject for only a negligible fraction of valid signatures

and does not accept any invalid signatures. This is because the field size does
not match the group order.

To zero-knowledge prove that the prover has a valid signature, the prover
first opens r as a public parameter. This will not harm the security because
any algorithm which can compute a valid s from r will break the EUF-CMA
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property of ECDSA. Thus, consider gk = (gH(m)yr)s−1
, where gk,H(m), y, r are

all public, and only s is private. Now the statement is a proof of knowledge for
the discrete logarithm problem. We show how to prove it on garbled circuits in
the next subsection.

3.3 Free-XOR on Elliptic Curves Group

We extend the usage of free-XOR to elliptic curve groups where the ideas come
from Garillot et al. [19] and Chase et al. [10]. Under the setting of free XOR on
elliptic curve group over Zq, suppose A + aΔ is the wire label corresponding to
truth value a for one input wire, and B + bΔ is the wire label of value b for the
other input wire where truth values a, b ∈ Zq. Since (A + aΔ) + (B + bΔ) =
(A + B) + (a + b)Δ, free-XOR on an elliptic curve group with generator g over
Zq can be expressed as:

gA+aΔ · gB+bΔ = g(A+B)+(a+b)Δ

where (A+B)+(a+b)Δ is the wire label of the output wire indicating truth value
a+b ∈ Zq. On the elliptic curve, the output label has the form of g(A+B)+(a+b)Δ.

Next, we will show how to apply this method in detail. If prover needs to
prove his knowledge of a secret m to verifier, parties can first exchange a value
c = gm and let prover show that gm is indeed c through a garbled circuit con-
structed by verifier. Meanwhile, the validity of this message m is also guaranteed
through commitment. To prove c = gm, prover can first express m as a binary
m = mn−1 · · · m1m0. Verifier, who generates the garbled circuit, also generates
random labels Ai, i ∈ [n] for these values. Through oblivious transfer [41], prover
gets garbled values An−1 +mn−1Δ, · · · , A0 +m0Δ as inputs for the garbled cir-
cuit. During circuit evaluation, for each bit i of message m, prover receives the
following ciphertexts, where the hash functions are circular correlation robust-
ness (CCR) hash functions [11,27] (or simply, random oracle) and Bi, i ∈ [n] are
randomly generated labels:

{
H(Ai + 0Δ) ⊕ gBi+2i·0Δ

H(Ai + 1Δ) ⊕ gBi+2i·1Δ

Prover can decrypt one of them and gets gBi+2imiΔ, the garbled value of the
corresponding value on elliptic curve. Adding all these values, prover gets:

gBn−1+2n−1mn−1Δ · · · gB1+21m1Δ · gB0+20m0Δ = g(Bn−1+···+B1+B0)+mΔ=gC+mΔ

which is the garbled output. Verifier receives this value from prover and compares
it with her garbled value of m on elliptic curve using public value c = gm and
accepts if they are the same.
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Fig. 4. Zero-knowledge from Garbled Circuits (ZKGC) Protocol

3.4 Protocol Description

The protocol of performing zero-knowledge from garbled circuits [29] is described
in Fig. 4, where verifier acts as the garbled circuit constructor and prover is the
circuit evaluator. Ideal functionality F cho and F com are described in Sect. 2.2.

The full protocol Fig. 5 is divided into three stages. Two parties Alice and
Bob first do some preparation work. Then they run the ZKGC protocol in Fig. 4
and at last reveal their secrets.

3.5 Security Analysis

In this section, we show a proof sketch about the security of our protocol. Our
protocol achieves resource fairness as follows:

1. Any party who aborts at the preparation phase or ZK phase, learns nothing
about the private message and private key of the other party.

2. Any party who aborts at the exchange phase, can obtain at most one bit
advantage on enumerating the remaining keys.

3. Any party who doesn’t follow the protocol, will be caught by the other party.

As stated above, we also assume that the commitment scheme and symmetric
encryption are ideal. We leave it as an open problem whether a security proof
can be obtained in the standard model.
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Fig. 5. The GRUZ protocol

For the first claim, the transcripts during the first two phases are a ciphertext,
commitments and a zero-knowledge proof. Intuitively they do not leak any infor-
mation about the private message and private key, because of the ideal cipher, the
(ideal) hiding property of commitment scheme and the zero-knowledge property,
respectively. The second claim is straightforward. Both parties exchange keys bit
by bit alternately. One party can obtain at most one bit advantage if he or she
aborts at any point. The third claim is guaranteed by the soundness property of
ZK and the binding property of commitment scheme.

4 Implementation and Experimental Results

We have implemented the protocol in Sect. 3 by instantiating the symmetric
encryption with AES128 in ECB mode, the commitment scheme with SHA256
and the signature scheme with ECDSA where the elliptic curve is secp256k1.
The oblivious transfer is instantiated by actively secure IKNP protocol [28,32].
Our implementation relies on emp-toolkit [46] library and can be found at
github.com/kzoacn/emp-swap. Based on this implementation, we conducted
experiments on the following relations:

RZK(ct, pk, {ci}i∈[κ]; k, σ, {ri}i∈[κ]) :
AES(k, σ) = ct and Verify(pk, σ) = 1

and
{
SHA256(ki, ri) = ci

}
i∈[κ]
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We run the experiments on a Ubuntu 20.04 LTS machine with AMD R© Ryzen
5600X CPU and 16GB of RAM in LAN setting. The simulated communication
channel has 10Gbps bandwidth and 1ms delay. Parameters and results for the
experiments are reported in Table 2.

Table 2. Experiments Result. Enc refers to the symmetric encryption part. Verify refers
to the verification part. Com refers to the commitment part, which repeats SHA256 128
times. RZK refers to the whole execution.

Circuit Circuit size #AND gates Prover time Verifier time Communication size

Enc 67,232 13,602 – – –

Verify 8,192 2,048 – – –

Com 30,222,336 11,625,600 – – –

RZK 30,297,889 11,641,379 4.20 s 4.21 s 187.9 MB

Zero-knowledge phase plays the main role in our protocol, thus we analyze
this phase only. From the table we can see the major cost is the commitment,
which is dominated by the size of the circuit. The execution time and commu-
nication time are acceptable for practice use.

5 Conclusion and Future Directions

Our GRUZ (Gradual Release Using Zero-knowledge) protocol uses zero-
knowledge from garbled circuits (ZKGC) [29] to realize gradual release in the fair
exchange problem without using blockchain. We also implement it with standard
cryptographic primitives AES, SHA256, and ECDSA. Our results show that our
protocol is acceptable for practice.

In the future, we plan to investigate making zero-knowledge proof more suc-
cinct and using zk-friendly primitives, which can reduce proof size and improve
running time and communication costs. Besides, we can generalize our protocol
to secure multiparty computation with resource fairness.
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Abstract. Lightning Network (LN), the most widely deployed payment
channel for Bitcoin, requires channel parties to generate and store dis-
tinct revocation keys for all n payments of a channel to resolve fraudulent
channel closures. To reduce the required storage in a payment channel,
eltoo introduces a new signature type for Bitcoin to enable payment ver-
sioning. This allows a channel party to revoke all old payments by using
a payment with a higher version number, reducing the storage complex-
ity from O(n) to O(1). However, eltoo fails to achieve bounded closure,
enabling a dishonest channel party to significantly delay the channel
closure process. Eltoo also lacks a punishment mechanism, which may
incentivize profit-driven channel parties to close a payment channel with
an old state, to their own advantage.

This paper introduces Daric, a payment channel with unlimited life-
time for Bitcoin that achieves optimal storage and bounded closure.
Moreover, Daric implements a punishment mechanism and simultane-
ously avoids the methods other schemes commonly use to enable pun-
ishment: 1) state duplication which leads to exponential increase in the
number of transactions with the number of applications on top of each
other or 2) dedicated design of adaptor signatures which introduces com-
patibility issues with BLS or most post-quantum resistant digital signa-
tures. We also formalise Daric and prove its security in the Universal
Composability model.

Keywords: Bitcoin · Scalability · Payment channel · Lightning
network · Watchtower

1 Introduction

Due to its permissionless nature, Bitcoin suffers from poor transaction through-
put [9,14,25]. Payment channel constitutes a promising solution, which allows
two parties to perform several transactions without touching the blockchain
except for creating and closing the channel. In more details, two parties create a
payment channel by locking Bitcoins in a shared address. Then, they pay each
other arbitrarily many times by exchanging authenticated off-chain transactions
that spend the shared address and split the channel funds among parties. Each
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party can finally close the channel by publishing the last authenticated transac-
tions on the blockchain. Payment channels can also be linked to form a payment
channel network (PCN) where each payment can be routed via intermediaries.

Since each party’s share of coins in a channel changes over time, one might
attempt to close the channel with an old state to maximize her profit. Lightning
Network [24]–the most popular payment channel network– adopts a punishment
mechanism to prevent parties from acting dishonestly. In this network, upon
authorizing a new state, channel parties exchange some revocation secrets to
revoke the previous state. Then, if a party publishes a revoked state, her counter-
party, who is supposed to be always online, uses the corresponding revocation
secrets to take all the channel funds. Parties might also delegate the punishing
job to a third party, called the watchtower [24].

Although elegantly designed, the Lightning Network has some shortcomings.
Firstly, since channel parties must store all the revocation secrets, received from
their counter-parties, their storage amount increases linearly with the number
of channel updates. Moreover, to detect and punish the misbehaving party, the
channel state is duplicated meaning each party has its own copy of the state.
Then, when for adding an application (e.g. Virtual channel [6]) on top of the
channel, parties have to split their channel into sub-channels, the state of each
sub-channel is duplicated and it must propagate on both duplicates of the parent
channel. Thus, state duplication causes the number of transactions to exponen-
tially rise with the number of applications k built on top of each other [5].

Towards a different direction, the payment channel eltoo [12] introduces
ANYPREVOUT [13] (also known as NOINPUT) as a new Bitcoin signature type to
deploy the concept of versioning. This allows channel parties to override the
current channel state by creating a state with a higher version number, which
can be published upon fraud. So, channel parties in eltoo do not store any revo-
cation secrets from old channel states. This simplifies the key management and
offers more affordable watchtowers as the transaction with the highest version
invalidates all previous states. Furthermore, if an honest party forgets about an
update and publishes an outdated state, it does not result in the loss of funds.

However, eltoo is incentive incompatible because its lack of punishment might
encourage a dishonest party to publish an old state; Either the other side corrects
it or the dishonest party wins [23]. The only discouraging factor–the fee for
publishing the old state–is also determined by the dishonest party. Thus, she
can set it to the minimum possible value, i.e. few cents for some blockchains
such as Bitcoin hard forks (e.g. Litecoin and Bitcoin Cash) and less than 1 USD
for Bitcoin. Moreover, the transaction fee is independent of the channel capacity
(i.e. the total funds in the channel). Therefore, even for payment channels with
huge capacity of several BTCs (e.g., channels listed in [1]), the dishonest party’s
cost will be still below 1 USD (See Sect. 6.2 for detailed analysis). Additionally,
enforcing a large transaction fee or restricting the channel capacity (proposed in
[3]) might be unfavourable to the honest party.

Furthermore, a dishonest party in eltoo might publish multiple outdated
states to delay the channel closure process [2]. Thus, eltoo fails to achieve bounded
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closure, i.e. honest party is not guaranteed that the channel closure completes
within a bounded time. This compromises the security of time-based payments,
e.g. Hash-Time Lock Contract (HTLC) (See Sect. 6.1 for further analysis).

Therefore, the main motivation of this paper is designing a Bitcoin payment
channel that (1) provides optimal storage, (2) achieves bounded closure, (3)
provides incentive compatibility, and (4) avoids state duplication.

1.1 Contributions

The contributions of the paper are as follows:

– We present a new Bitcoin payment channel, called Daric, which (i) is prov-
ably secure in the Universal Composability (UC) framework, (ii) achieves con-
stant size storage for both channel parties and the watchtower, (iii) provides
bounded closure, (iv) provides punishment mechanism and hence achieves
incentive compatibility, (v) avoids state duplication without needing any par-
ticular property (e.g. adaptor signature properties) for the underlying digital
signature, and (vi) attains unlimited lifetime, given that channel parties on
average pay each other at most once per second. Table 1 compares Daric with
other Bitcoin payment channels.

Table 1. Comparison of different payment channels with n channel updates and k
recursive channel splitting.

Scheme Party’s Watch. Lifetime Incent. # of Ada. Sig. Bnd.

St. Req. St. Req. Compat. Txs Avoid. Cls.

Lightning† [24] O(n) O(n) Unlimited Yes O(2k) Yes Yes

Generalized† [5] O(n) O(n) Unlimited Yes O(1) No Yes

Outpost [18] O(n) O(log(n)) Limited Yes O(2k) Yes Yes

FPPW [20] O(n) O(n) Unlimited Yes O(1) No Yes

Cerberus [8] O(n) O(n) Unlimited Yes O(2k) Yes Yes

Sleepy† [7] O(n) N/A Limited Yes O(2k) Yes Yes

eltoo [12] O(1) O(1) Unlimited§ No O(1) Yes No

Daric (this work) O(1) O(1) Unlimited§ Yes O(1) Yes Yes

†: If parties pre-generate n keys in a merkle tree, their storage requirements decrease
to O(log(n)) but the channel lifetime becomes limited to n channel updates.
§: Given that the channel update rate is at most one update per second.

– We compare Daric and eltoo and show Daric is robust against an attack [2] to
eltoo, that we also formalize in this paper. We further perform a cost benefit
analysis to assess the attacker’s revenue in practice. We also show (i) Daric
provides a higher deterrent effect against profit-driven attackers than eltoo
and (ii) unlike eltoo, Daric’s deterrent effect is flexible.
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– We compare Daric, eltoo, Lightning, Generalized, Sleepy, Cerberus, FPPW
and Outpost channels with respect to the amount of data that is published on
the blockchain in different channel closure scenarios (See Table 3). We show
that Daric in the dishonest closure scenario outperforms Lightning with at
least 1 HTLC output as well as all other schemes. In the non-collaborative
closure scenario, Daric outperforms Lightning with at least 7 HTLC outputs
as well as Generalized, eltoo and FPPW. Moreover, we compute the num-
ber of operations required for each channel update and show that (i) Unlike
Lightning, Daric values are independent of the number of HTLC outputs m
and (ii) Daric is comparable with other schemes (see Table 3).

1.2 Related Works

The first payment channel [26] is unidirectional and hence cannot continue work-
ing if the payer’s balance is depleted. DMC [14] uses decrementing timelocks but
suffers from limited channel lifetime. For Lightning channel [24], an existing
state is replaced upon authorizing a new state and then revoking the previous
one where each party has his own version of transactions. Generalized channel
[5] uses adaptor signatures to distinguish the publisher of a revoked state from
her counter-party. In this way, Generalized channel avoids state duplication.

Outpost [18], Cerberus [8], FPPW [20] and the very recent work Garrison [22]
are other payment channels, which improve their watchtower properties. Sleepy
channel [7] is a bi-directional payment channel without watchtowers where par-
ties can go offline for prolonged periods. Towards a different direction, Teechain
[19] requires channel parties to possess Trusted Execution Environment (TEE).

2 Background and Notations

2.1 Outputs and Transactions

Throughout this work, we define different attribute tuples. Let U be a tuple of
multiple attributes including the attribute attr. To refer to this attribute, we
use U.attr. Our focus in this work is on Bitcoin or any other blockchains with
Unspent Transaction Output (UTXO) model. In this model, units of value–which
we call coins–are held in outputs. Each output contains a condition that needs
to be fulfilled to spend the output. Satisfying a condition might require one
or multiple parties’ signatures. Such a condition contains public keys of all the
involved parties and we say those parties own the output. A condition might also
have several subconditions, one of which must be satisfied to spend the output.

A transaction changes ownership of coins, meaning it takes a list of existing
outputs and transfers their coins to a list of new outputs. To distinct between
these two lists, we refer to the list of existing outputs as inputs. A transaction TX
is formally defined as the tuple (txid, Input, nLT,Output,Witness). The identifier
TX.txid ∈ {0, 1}∗ is computed as TX.txid := H([TX]), where [TX] is called the
body of the transaction defined as [TX] := (TX.Input, TX.nLT, TX.Output) and H
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is a hash function, which is modeled as a random oracle. The attribute TX.nLT
denotes the value of the parameter nLockT ime, where TX is invalid unless its
nLockT ime is in the past. The attribute TX.Input is a list of identifiers for all
inputs of TX. The attribute TX.Output is a list of new outputs. The attribute
TX.Witness is a list where its ith element authorizes spending the output that
is taken as the ith input of TX. We also use [TX] and TX to denote (TX.nLT,
TX.Output) and (TX.nLT, TX.Output, TX.Witness), respectively.

Floating Transactions. Each signature in a Bitcoin transaction contains a flag,
called SIGHASH, which specifies which part of the transaction has been signed.
Typically, signatures are of type SIGHASH ALL, meaning the signature authorizes
all inputs (i.e. references to previous outputs) and outputs. The SIGHASH of type
ANYPREVOUT indicates that the signature does not authorize the inputs. This
allows the signer to refer to any arbitrary UTXO whose condition is met by the
transaction witness data. Such a transaction is called a floating transaction.

Timelocks. The relative timelock of T rounds (a round in our paper is consid-
ered the same as the round in [5,7]) in an output condition is denoted by T+

and means the output cannot be spent unless at least T rounds passed since the
output was recorded on the blockchain. The absolute timelock of i in an out-
put condition is shown by i≥ and means the output cannot be spent unless the
nLockT ime parameter in the spending transaction is equal to or greater than i.
Since a transaction may only be recorded on the blockchain if its nLockT ime is
in the past, i≥ in an output condition ensures the output cannot be spent unless
i is expired (i.e. i is in the past). Table 2 summarizes the notations.

Table 2. Summary of notations

Notation Description

TX Transaction TX = (txid, Input, nLT,Output,Witness)

TX Tuple (TX.nLT, TX.Output, TX.Witness)

[TX] Tuple (TX.Input, TX.nLT, TX.Output)

[TX] Tuple (TX.nLT, TX.Output)

T+ The relative timelock of T rounds

i≥ The absolute timelock of i

Representation of Transaction Flows. We use charts to illustrate transac-
tion flows. As Fig. 1 shows, doubled edge and single edge rectangles represent
published and unpublished transactions, respectively. Since the output of TX
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with the value of a + b has two subconditions, it is denoted by a diamond shape
with two arrows. One of the subconditions can be fulfilled by both A and B and
is relatively timelocked by T rounds and another subcondition can be fulfilled by
C and contains an absolute timelock of i. Dotted arrow to TX′′ shows it is a float-
ing transaction whose signature matches the public key pkC . This transaction
is denoted by TX′′ to emphasize that since it is a floating transaction, its input
is unspecified and can be any output with matching condition. The nLockT ime
parameter for TX and TX′ is 0, so it is not shown inside these transactions.

Fig. 1. A sample transaction flow.

2.2 Payment Channel

A payment channel between two parties Alice (or A) and Bob (or B) allows them
to perform a number of transactions without publishing every single transaction
on the blockchain. To create a channel with channel capacity of a + b coins, A
and B respectively deposit a and b coins into a joint address that is controlled
by both parties. Parties can update their balance in the channel off-chain by
agreeing on a new way to split the channel funds. Each party can close the
channel at any time by enforcing the latest channel state on the blockchain
where dispute between channel parties are resolved on the blockchain.

Lightning Channels [24]. To create a Lightning channel, A and B publish a
funding transaction to respectively deposit a and b coins into a joint address.
Each party also has its own copy of an off-chain transaction, called the commit
transaction, that spends the joint address and splits the channel funds between
A and B accordingly, i.e. each commit transaction has two outputs: one output
holding a coins owned by A and the other output holding b coins owned by B.
Each party can publish the commit transaction to close the channel, but parties
typically create new commit transactions to update their shares in the channel.

As one may submit an intermediate state (which is already replaced by a
later state) to the blockchain, the channel parties will need to punish such mis-
behaviours. Thus, after each channel update, parties revoke their previous state
by exchanging two revocation transactions (one version for each party) that take
the output of the old commit transactions and give the balance of the dishonest
party to the honest party. However, the honest party (e.g. A) must publish the
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revocation transaction before the dishonest party (e.g. B) can claim his balance.
So, to give precedence to the revocation transaction, B has to wait for a relative
timelock of T rounds (in practice, one day) before he can claim his output. This
gives some time to A to publish the revocation transaction.

eltoo [12]. An eltoo channel is created like a Lightning channel, but each state is
represented by two transactions: (i) the update transaction and (ii) the settlement
transaction, where both parties have the same version of these two transactions.
Each update transaction is a floating transaction that transfers all the channel
funds to a new joint address. The update transaction’s output can be spent by
its corresponding settlement transaction, which splits the channel funds among
parties. If A submits an old update transaction, she has to wait for a relative
timelock of T rounds before she can publish the corresponding settlement trans-
action. It gives some time to B to publish the latest update transaction (which
is a floating transaction) and override the already published update transaction.

3 Solution Overview

To provide a high level overview of our solution, we start by reviewing the
limitations of the Lightning channel and then gradually present our work.

Revocation per State. Parties’ and their watchtower’s storage in a Lightning
channel increases over time as they should store some revocation-related data
for each revoked state. Our main idea to reduce their storage is transforming the
revocation transactions into floating transactions. Thereby, participants only
need to store the latest revocation transaction with the largest version number
and use it upon fraud. However, for a Lightning channel, (i) the monetary value
of each revocation transaction typically differs from one state to another, and
(ii) each commit transaction might have multiple HTLC outputs and hence the
number of revocation transactions might also differ from one state to another.
So, since revocation transactions of different states differ in value and number,
it is infeasible to replace them all with the latest revocation transactions.

Therefore, our first modification is following the punish-then-split mecha-
nism, introduced in [5]. According to this mechanism, the commit transaction
sends the channel funds to a new joint output, which is controlled by both par-
ties. Output of this commit transaction can be spent by its corresponding split
transaction after T rounds where outputs of the split transaction split the chan-
nel funds between A and B. If A publishes a revoked commit transaction, B must
spend its output within T rounds with the corresponding revocation transaction.
This revocation transaction gives all the channel funds to B. Figure 2 depicts
the transaction flows for this channel where each party stores a single revocation
transaction with fixed monetary value (i.e. a + b coins) per state.
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Fig. 2. Transaction flows for a Lightning channel with punish-then-split mechanism
where TXFU denotes the funding transaction and TXACM,i, TX

A
SP,i and TXARV,i (or respectively

TXBCM,i, TX
B
SP,i and TXBRV,i) denote the commit, split and revocation transactions held by

A (or respectively held by B) for state i.

Revocation per Channel. In the scheme, depicted in Fig. 2, channel parties
need to store a revocation transaction for each revoked state. Therefore, storage
requirements of channel parties (or their watchtower) increase with each channel
update. To solve this issue, we transform revocation transactions into floating
transactions, i.e. the signatures in a revocation transaction, held by A, are of type
ANYPREVOUT and meet the output condition of all commit transactions, held by
B, and vice versa. It allows parties to only store the last revocation transaction.

Avoiding State Duplication. Since each state in the introduced scheme con-
tains two split transactions (one for each party), the scheme suffers from state
duplication. To avoid this, we transform split transactions into floating trans-
actions. Then, each state contains one split transaction (held by both parties),
which spends any of two commit transactions of that state.

State Ordering. Since split and revocation transactions are floating, it must
be guaranteed that the latest commit transaction cannot be spent using any split
or revocation transaction from previous states. Otherwise, the honest party, who
has published the latest commit transaction, might lose some funds in the chan-
nel. To achieve this requirement, we repurpose [12] the nLockT ime parameter of
split and revocation transactions to store the state number : the number of times
the channel has been updated to date. Furthermore, we add the state number
to the output condition of each commit transaction as an absolute timelock.
Then, since the absolute timelock in output condition of the last commit trans-
action would be larger than the nLockT ime parameter in any split or revocation
transaction from previous states, the mentioned requirement is met.

Putting Pieces Together. The transaction flow for state i of Daric is depicted
in Fig. 3. Let channel be in state n. To close the channel, each party (e.g. A) can
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Fig. 3. Transaction flows for state i of a Daric channel.

publish the latest commit transaction (e.g. TXA
CM,n), wait for T rounds and finally

publish the latest split transaction TXSP,n. There is no revocation transaction for
the latest state. If party B publishes a revoked commit transaction (i.e. TXB

CM,i

with i < n), then party A instantly publishes the latest revocation transaction
TXA

RV,n−1 to take all the channel funds.

4 Protocol Description

This section presents our protocol using the transaction flows depicted in Fig. 3.
The lifetime of a Daric channel can be divided into 4 phases including “create”,
“update”, “close, and “punish”. We introduce these phases through Sects. 4.1 to
4.4. The technical report [21] provides the formal description of the protocol.

4.1 Create

To create the channel, A and B sign and publish the funding transaction TXFU on
the blockchain. By publishing this transaction, A and B fund the channel with
a and b coins, respectively, but since output of the funding transaction can only
be spent if both parties agree, one party might become unresponsive to raise a
hostage situation. To avoid this, before signing the funding transaction, parties
commit to the initial channel state, i.e. state 0, by exchanging signatures for the
corresponding commit and split transactions. Let us explain different steps of
the channel creation phase in more details.

Step 1: At the first step, A and B send their funding sources (i.e. txidA

and txidB) to each other. This enables them to create the body of the funding
transaction [TXFU]. Step 2: Having the transaction identifier of TXFU, parties
create the body of the commit transactions, i.e. [TXA

CM,0] and [TXB
CM,0]. Steps 3:

Parties exchange the required signatures (with SIGHASH of type ANYPREVOUT) to
create the floating transaction TXSP,0. This floating transaction could take output
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of TXA
CM,0 or TXB

CM,0 as its input. Step 4: Parties exchange the required signatures
to create the commit transactions TXA

CM,0 and TXB
CM,0. Step 5: Parties exchange

the required signatures to create the funding transactions TXFU. Step 6: Parties
publish the funding transaction on the blockchain.

The absolute timelock in output script of commit transactions and corre-
spondingly the nLockT ime parameter in the split transaction must be in the
past. Otherwise, parties have to wait to publish such transactions. As explained
in Sect. 3, the timelock is set to the state number and hence its value increases
with each channel update. Absolute timelocks lower than 500,000,000 specify the
block number after which the transaction can be included in a block. According
to the value of the current block height, if we set the initial timelock to the first
state number, i.e. 0, the channel can be updated around 700,000 times. How-
ever, absolute timelocks equal to or larger than 500,000,000 specify the UNIX
timestamp after which the transaction will be valid. According to the value
of the current timestamp, if we set the initial timelock (and correspondingly
nLockT ime parameter) to 500,000,000, the channel can be updated around 1
billion times [12]. Moreover, the current timestamp increases one unit per sec-
ond, meaning if the average rate of the channel update is up to once per second,
the channel can be updated an infinite number of times.

4.2 Update

Let the channel be in state i ≥ 0 and channel parties decide to update it to
state i + 1. The update process is performed in two sub-phases. The first sub-
phase is similar to steps 2 to 4 of channel creation phase where channel parties
create two new commit transactions TXA

CM,i+1 and TXB
CM,i+1 as well as a new split

transaction TXSP,i+1 for the new state. In the second sub-phase, channel parties
revoke the state i by signing two revocation transactions TXA

RV,i and TXB
RV,i. The

revocation transaction TXA
RV,i (or respectively TXB

RV,i) contains no input yet and

can spend output of any commit transaction TXB
CM,j (or respectively TXA

CM,j) with
j ≤ i. With each channel update, the state number and hence the timelock value
in the output condition of each commit transaction and nLockT ime in split and
revocation transactions increase by one unit. Let us explain different steps of the
channel update phase in more details.

Step 1: Parties create the body of the commit transactions, i.e. [TXA
CM,i+1]

and [TXB
CM,i+1]. Steps 2: Parties exchange the required signatures (with SIGHASH

of type ANYPREVOUT) to create the floating transaction TXSP,i+1. This floating
transaction takes output of TXA

CM,i+1 or TXB
CM,i+1 as its input. Step 3: Parties

exchange the required signatures to create the commit transactions TXA
CM,i+1 and

TXB
CM,i+1. Step 4: Parties exchange the required signatures (with SIGHASH of type

ANYPREVOUT) to create the floating transactions TXA
RV,i and TXB

RV,i.
In [21], we discuss the cases where a party misbehaves during the update.
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4.3 Close

Assume while the channel between A and B is in state n, they decide to collab-
oratively close it. To do so, A and B exchange signatures for a new transaction,
called modified split transaction TXSP, and publish it on the blockchain. This
transaction takes the funding transaction’s output as its input and splits the
channel funds among channel parties. If one of the channel parties, e.g. party B,
becomes unresponsive, its counter-party A can still non-collaboratively close the
channel by publishing TXA

CM,n, adding the output of TXA
CM,n as an input to TXSP,n

to transform it into TXSP,n, and finally publishing TXSP,n after T rounds.

4.4 Punish

Let the channel be in state n. If a dishonest channel party, let’s say A, publishes
an old commit transaction TXA

CM,i with i < n on the ledger, party B transforms

TXB
RV,n−1 into TXB

RV,n−1 and instantly publishes it on the blockchain.

5 Security Analysis

In this section, we firstly provide some payment channel notations as well as our
security model, which follow previous works on layer-2 solutions [5,15–17]. Then,
we present desired properties of a payment channel and an ideal functionality F
that attains those properties. Finally, we show Daric protocol is a realization of
the ideal functionality F and hence achieves its desired properties.

5.1 Notation and Security Model

We use an extended version of the universal composability framework [10] to
formally model the security of our construction. This extended version [11], called
Global Universal Composability framework (GUC), supports a global setup. To
simplify our model, we assume that the communication network is synchronous,
meaning that the protocol is executed through multiple rounds and parties in
the protocol are connected to each other via an authenticated communication
channel which guarantees 1-round delivery. Transactions are recorded by a global
ledger L(Δ,Σ), where Σ is a signature scheme used by the blockchain and Δ
is an upper bound on the blockchain delay: the number of rounds it takes a
transaction to be accepted by the ledger. The technical report [21] provides
more details on our security model.

A payment channel γ is defined as an attribute tuple γ := (id, users, cash, st,
sn, flag, st′), where γ.id ∈ {0, 1}∗ defines the channel identifier, γ.users represents
the identities of the channel users, γ.cash ∈ R≥0 is the total funds locked in
the channel, γ.st := (θ1, . . . , θl) is a list of l outputs defining the channel state
after the last complete channel update and γ.sn is the state number. The flag
γ.flag ∈ {1, 2} and the state γ.st′ will be explained below.
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The initial value of γ.flag and γ.st′ are 1 and ⊥, respectively. Assume that
the channel has been updated n ≥ 0 times and the channel state after the nth

update is st and hence we have γ.st = st. Now, assume that parties start the
update process to update the state of the channel from state st to st′. From a
particular point in the channel update process onward, at least one of the parties
has sufficient data to enforce the new state st′ on the blockchain when parties
have not completely revoked the state γ.st yet. The flag γ.flag is set to 2 to
identify such occasions and γ.st′ is set to st′ to maintain the new state. Thus,
when γ.flag = 2, the channel might be finalized with either γ.st or γ.st′. At the
end of the channel update process, once the state st was revoked by both parties,
γ.st and γ.st′ are set to st′ and ⊥, respectively, and γ.flag is set to 1.

5.2 Ideal Functionality

This section closely follows [5] to introduce desired security and efficiency prop-
erties of a payment channel as following:

– Consensus on creation: A channel γ is created only if both channel parties
in the set γ.users agree to create it.

– Consensus on update: A channel γ is updated only if both channel parties
in the set γ.users agree to update it. Also, parties reach agreement on update
acceptance or rejection within a bounded number of rounds (the bound might
depend on the ledger delay Δ).

– Bounded closure with punish: An honest user P ∈ γ.users has the assur-
ance that within a bounded number of rounds (the bound might depend on
the ledger delay Δ), she can finalize the channel state on the ledger either by
enforcing a state that gives her γ.cash coins, or by enforcing γ.st if γ.flag = 1
or by enforcing either γ.st γ.st′ otherwise.

– Optimistic update: If both parties in γ.users are honest, the channel update
completes with no ledger interaction.

Appendix A introduces an ideal functionality F that achieves these proper-
ties. Theorem 1 shows Daric protocol, denoted by π, is a realization of F and
hence achieves its desired properties. It follows from 14 Lemmas. Due to space
limits, we refer readers to the technical report [21] for the full security proof.

Theorem 1. Let Σ be an EUF − CMA secure signature scheme. Then, for any
ledger delay Δ ∈ N, the protocol π UC-realizes the ideal functionality F(T ) with
any T > Δ.

In the technical report [21], we formally define π and provide a simulator S
where S has interaction with F and L. The simulator simulates content and
timing of all messages of the honest party to the adversary and also translates
any message from the adversary into a message to the ideal functionality, such
that an indistinguishable execution of the protocol in the ideal world is emulated.
Thus, our protocol would be as secure as the ideal functionality F . We also
prove for any action that causes the ideal functionality to output Error with non-
negligible probability, the simulator constructs a reduction against the existential
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unforgeability of the underlying signature scheme Σ with non-negligible success
probability, which contradicts with our assumption regarding the security of Σ.
This proves our protocol provides the desirable properties of F .

6 Daric Versus Eltoo

In Sect. 6.1, we present an attack to eltoo whose main purpose is to postpone
the channel closure. We show this attack is practically profitable when applied
to eltoo but it cannot be applied to Daric. In Sect. 6.2, we analyze Daric and
eltoo to compare their robustness against profit-driven attackers. We use the
statistical data derived from the Lightning network to enable such an analysis.

6.1 HTLC Security

This section presents an attack against HTLC security in eltoo (previously infor-
mally discussed in [2]) and analyzes the attacker’s revenue. Let the adversary
represent two nodes on the PCN: node M1 and node M2. Assume that the
adversary has established N channels from M1 to victim nodes V1, . . . , VN and
N channels from victim nodes to M2. The channel between M1 and Vi is denoted
with γi. The adversary performs N simultaneous HTLC payments from M1 to
M2 through V1, . . . , VN . Let the payment value for all HTLCs be A coins and
the timelock for all these payments for M1’s channels be T . Assume that M2

accepts the payments and provides the required secrets for all HTLC payments
and hence M2 is paid N ·A coins in total. Then, victims provide the secrets to the
node M1. However, M1 does not update her channels with victims. Therefore,
victims attempt to claim all HTLCs on-chain. To prevent victims from closing
their channels in time, M1 takes the following steps:

1. Submit a valid Delay transaction TXDe with N + 1 inputs and N + 1 outputs
where the ith input-output pair corresponds with an outdated state of the
channel γi and the last input-output pair adds further funds to be used as
the transaction fee, which is set to any value larger than A.

2. If TXDe is published and the timelock T is still unexpired, go to step 1.
3. Once the timelock T is expired, submit the latest channel state for all channels

and claim their HTLC outputs.

In the explained scenario, to replace the already submitted transaction TXDe with
the latest state of the channel γi, Vi has to set a transaction fee that is larger
than the total absolute transaction fee of TXDe [27]. But since the transaction fee
for TXDe is larger than A, Vi will be unwilling to pay such a transaction fee.

Once the HTLC timelock is expired and the latest channel state is added to
the ledger, there will be a race between M1 and each victim to claim the HTLC
output. The adversary will have a better chance to win the race if she has a
better network connection with a higher number of nodes.

Now we perform a cost benefit analysis to determine if the attack is profitable
to the attacker. For a fixed value of A, with setting N to the largest possible
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value, the adversary 1) reduces the fee per channel for each delay transaction
and 2) reduces the pace at which outdated states are added to the blockchain. A
Bitcoin transaction can contain up to 100,000 VBytes (where each VByte equals
four weight units) and each input-output pair contains 222 bytes of witness data
and 84 bytes of non-witness data [21]. Therefore, TXDe can cover up to around

100,000
0.25×222+84 ≈ 715 eltoo channels. The minimum possible fee rate is 1 Satoshi
per VByte. Thus, if A is set to 100,000 Satoshi, the total fee for each delay
transaction would be 100,000 Satoshi.

At the time of writing this paper (in April 2022), the average transaction
fee is quite low and hence transactions with the minimum fee rate are added
to the blockchain in 30 min. It means if HTLC timelocks are set to 3 days,
144 delay transactions are published before timelocks getting expired. In other
words, the adversary pays 144A as transaction fee to earn up to 715A. In more
congested times, it might take several hours for a transaction with minimum
fee rate to be added to the blockchain. Thus, the attack could be even more
profitable to the attacker. This attack is inapplicable to Daric because once the
attacker publishes an old commit transaction, the only valid transactions are the
revocation transactions held by her counter-party.

6.2 Punishment Mechanism

Prior to providing a formal analysis, we provide intuitions as follows. The only
cost for a dishonest party in eltoo is the fee for publishing the old state, which
could be (i) less than 1 USD for Bitcoin and (ii) independent of the channel
capacity. However, given that the balance of each party in a Daric channel cannot
be less than 1% of the channel capacity (which is currently deployed in the
Lightning network), the minimum amount that a dishonest party might lose
would have the following properties: (i) It is proportional to the channel capacity,
(ii) Its value (around 20 USD on average in the Lightning network in April 2022)
is typically significantly larger than the transaction fee and (iii) It is easily raised
by increasing the minimum possible balance of each channel party from 1% of
the channel capacity to a higher proportion. Therefore, Daric’s deterrent effect
against profit-driven attackers is higher and more flexible than that of eltoo.

Now, we perform a more formal comparison between eltoo and Daric. We
assume the channel party either stays online or employs a watchtower that is
fair w.r.t the hiring party [20] (i.e. the watchtower guarantees its client’s funds
in the channel). For the former case, let p denote the probability that the honest
channel party successfully reacts upon fraud, i.e. 1−p is the probability that the
honest party, due to crash failures or DoS attacks, fails to react. We show that (i)
to discourage attacks by profit-driven parties, p for eltoo must be more significant
than that of Daric, and (ii) unlike Daric, increase in the channel capacity in
eltoo channels raises the minimum value of p that is required to prevent fraud.
However, achieving large values of p (e.g. 0.9999) could be difficult for ordinary
users. This indicates eltoo needs a way to punish profit-driven attackers.

To monitor a channel, the watchtower’s collateral equals the channel capacity
[8,20]. Let C denote the total capacity of Bitcoin payment channel network
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and CW denote the total capital that fair watchtowers have spent to watch
their clients’ channels. Then, the probability that a randomly selected payment
channel is monitored by a fair watchtower is roughly computed as CW

C .
Assume that a dishonest party A creates an eltoo channel with channel capac-

ity of CA coins, where the initial balance of A and her counter-party are CA and
0, respectively. For now, we assume that parties know if their counter-parties are
using a fair watchtower. We will relax this assumption later. If the channel is
being monitored by a fair watchtower, A continues using the channel in an hon-
est way. Otherwise, she sends all her balance to her counter-party in exchange
for some products or services and then submits the initial channel state to the
blockchain. In such a case, with probability of 1 − p and p, A’s revenue and her
loss would be CA − f and f , respectively, where f denotes the transaction fee.
Thus, A is discouraged to attack iff:

(CA − f)(1 − p) − f · p < 0 ⇔ p > 1 − f

CA
.

For a Daric channel, A is discouraged to attack iff:

0.99 · CA · (1 − p) − 0.01 · CA · p < 0 ⇔ p > 0.99.

The threshold value for eltoo is typically more significant than that of Daric.
At the time of writing this paper, the average values of f for a transaction and CA
for a Lightning channel are around 0.000055 BTC and 0.04 BTC, respectively,
leading to 1 − f

CA
≈ 0.999. But the adversary can practically set f to the

lowest possible value (i.e. 1 Satoshi per VByte) leading to f ≈ 0.0000021 and
1 − f

CA
≈ 0.9999 for eltoo [21]. Therefore, (i) to discourage attacks, the honest

party would require to meet a higher p in eltoo than in Daric, (ii) the threshold
for eltoo depends on the channel capacity, and (iii) the threshold for Daric can
simply decrease from 0.99 to lower values.

In the above analysis, we assumed that A knows whether her counter-party
is hiring any fair watchtower. Considering the opposite case, the probability that
the channel is not being monitored by any fair watchtower and the honest party
fails to react upon fraud would be p0 := (1− CW

C )(1−p). Thus, with probability
of p0 and 1 − p0, A’s revenue and her loss in an eltoo channel would be CA − f
and f , respectively. Thus, A is discouraged to attack iff:

(CA − f) · p0 − f · (1 − p0) < 0 ⇔ p > 1 −
f

CA

1 − CW

C

.

Similarly, for a Daric channel we have:

0.99 · CA · p0 − 0.01 · CA · (1 − p0) < 0 ⇔ p > 1 − 0.01
1 − CW

C

.

As explained earlier, the threshold value for eltoo depends on CA and is typically
more significant than that of Daric.
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7 Performance Analysis

Table 3 shows the total number of weight units of transactions, published on the
blockchain for different payment channels in different channel closure scenarios.
Since the weight units of a transaction directly impacts its fee, we use this
parameter to compare different schemes. Payment channels perform similarly
in the collaborative channel closure, so we do not consider this scenario in our
analysis. Since the funding transaction is the same in all schemes, we do not
involve it in our comparison results either. To do a consistent comparison, we
assume that each transaction output is either P2WSH1 or P2WPKH2 , each
public key and signature are respectively 33 bytes and 73 bytes, shared outputs
are implemented using the OP CHECKMULTSIG opcode (rather than using multi-
party signing), and each state contains m HTLC outputs with 0 ≤ m ≤ 966 [4]
where each party is the payer for m

2 HTLC outputs and the payee for the rest.
Once a dishonest party in a Lightning channel publishes a revoked commit

transaction, m + 1 revoked outputs are created. For simplicity, we assume that
the victim claims all the revoked outputs through one transaction. Cerberus [8],
Sleepy [7] and Outpost [18] have not explained ways HTLC is added to these
schemes and discussing it is out of the scope of this paper, so Table 3 contains
their figures with m = 0.

As Table 3 shows, in the dishonest closure scenario, (1) the weight units
for Lightning and eltoo increase linearly with the number of HTLC outputs m
compared to Daric, Generalized and FPPW and (2) Daric (with weight unit
equal to 1239) is more cost effective than other schemes with m ≥ 1. In the non-
collaborative closure scenario with m �= 0, Daric outperforms Generalized, eltoo
and FPPW channels with any value of m and Lightning channel with m > 6.

Table 3 also compares the number of operations performed by each party
for a channel update. To count the operations, we additionally assume that i)
channel parties delegate the monitoring task to a watchtower and ii) they do not
compute a signature unless it is supposed to be sent to their counter-party or
their watchtower. The technical report [21] provides complete details regarding
the way figures of Table 3 have been computed.

A Ideal Functionality

This section defines an ideal functionality F(T ) with T > Δ that achieves the
desired properties stated in Sect. 5.2. To simplify the notations, we abbreviate
F := F(T ). The ideal functionality F stores a set Γ of all the created channels
and their corresponding funding transactions. The set Γ can also be treated as
a function s.t. Γ (id) = (γ, TX) with γ.id = id if γ exists and Γ (id) =⊥ otherwise.
Before presenting the ideal functionality F in details, we briefly introduce its
different phases and explain the way F achieves the desired properties.

1 Pay-to-Witness-Script-Hash: Used to lock bitcoin to a SegWit script hash.
2 Pay-to-Witness-Public-Key-Hash: Used to lock bitcoin to a SegWit public key hash.
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Table 3. On-chain cost of different closure scenarios and number of operations per-
formed by each party for a channel update for different payment channels with m
HTLC outputs (0 ≤ m ≤ 966). Cerberus [8], Sleepy [7] and Outpost [18] have not
explained ways that HTLC outputs can be added to their schemes, so their figures in
this table are for m = 0 only.

Dishonest closure Non-coll. closure Num. of operations

Scheme #Tx weight units #Tx weight units Sign Verify Exp.

Lightning [24] ≥ 2 ≥1209+582.5 m 1+m 724+793 m 2+2 m 1+m
2 2

Generalized [5] 2 1342 2+m 1432+696 m 3 2 1

FPPW [20] 2 2045 2+m 1562+696 m 6 10 1

Cerberus [8] 2 1798 1 772 3 6 0

Outpost [18] 3 2632 3 3018 4 4 0

Sleepy [7] 3 2172 3 2558 5 5 0

eltoo [12] 3 2268+696 m 2+m 1588+696 m 2 2 1

Daric (this work) 2 1239 2+m 1363+696 m 4 3 0

a) Create: In this phase, F receives messages (INTRO, γ, tidP ) and (CREATE,
γ.id) from both parties in rounds τ0 and τ0 +1, respectively, where tidP specifies
the funding source of the user P . Then, if the corresponding funding transaction
appears on the ledger L within 2+Δ rounds, F sends the message (CREATED, γ.id)
to both parties and stores γ and the funding transaction in Γ (γ.id). If the CREATE
message is not received from both parties but the funding transaction appears
on L within 2 + Δ rounds, F outputs Error. Since the message CREATED might
be sent to the parties only if they both have sent the message CREATE to F , the
ideal functionality achieves “consensus on creation”.

b) Update: One of the parties, denoted by P , initiates this phase by send-
ing the message (UPDATE, id,θ, tstp) to F , where id is the channel identifier, θ
is the new channel state and tstp is the number of rounds needed to prepare
prerequisites of the channel update (e.g. preparing the needed HTLCs). Due to
disagreeing with the new state or failure in preparing its prerequisites, party Q
can stop it by not sending the message (UPDATE − OK, id) in step 2. Abort by
P or Q in next steps causes the procedure ForceClose(id) to be executed. The
property “optimistic update” is satisfied because if both parties act honestly,
the channel can be updated without any blockchain interaction. Furthermore,
if P or Q disagree to update the channel, they can stop sending the UPDATE or
UPDATE − OK messages, respectively. This stops the channel update process with-
out changing the latest channel state. Also, in cases where either P or Q stop
cooperating, the procedure ForceClose(id) is executed. This procedure takes at
most Δ rounds to complete. This also guarantees “consensus on update”.

c) Close: If F receives the message (CLOSE, id) from both parties, a trans-
action TX is expected to appear on L within Δ + 1 rounds. This transaction
spends the output of the funding transaction and its outputs equal the latest
channel state γ.st. If the CLOSE message is received only from one of the parties,
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F executes the procedure ForceClose(id). In both cases, output of the funding
transaction must be spent within Δ + 1 rounds. Otherwise, F outputs Error.

d) Punish: If a transaction TX spends the funding transaction’s output of a
channel γ, one of the following events is expected to occur: 1) another transaction
appears on L within Δ rounds where this transaction spends output of TX and
sends γ.cash coins to the honest party P ; or 2) another transaction whose outputs
correspond to the channel state γ.st or γ.st′ appears on L within T + Δ rounds.
Otherwise, F outputs Error. According to its definition, “bounded closure with
punish” is achieved, if F returns no Error in the close and punish phases.

We describe the ideal functionality below. Normally, once F receives a mes-
sage, it performs several validations on the message. But to simplify the descrip-
tion, we assume that messages are well-formed. Data exchange between F and
other parties is represented by directed arrows. If F sends the message m to
party P in round τ0, we denote it with m

τ0
↪−→ P . Similarly, if F is supposed to

receive the message m from party P in round τ0, we denote it with m
τ0←−↩ P .

Ideal Functionality F(T )
Create

upon (INTRO, γ, tidP )
τ0←−↩ P :

– If (INTRO, γ, tidQ)
τ0←−↩ Q, then continue. Else stop.

– If (CREATE, id)
τ0+1←−−−↩ γ.users:

• Wait if in round τ1 ≤ τ0 + 3 + Δ a transaction TXFU with TXFU.Input =
(tidP , tidQ) and TXFU.Output = {(γ.cash, ϕ)} appears on the ledger L. If
yes, set Γ (γ.id) := (γ, TXFU) and (CREATED, γ.id)

τ1
↪−→ γ.users. Else stop.

Otherwise:
• Wait if in round τ1 ≤ τ0 + 3 + Δ a transaction TXFU with TXFU.Input =

(tidP , tidQ) and TXFU.Output = {(γ.cash, ϕ)} appears on the ledger L. If
yes, Output Error

τ1
↪−→ γ.users. Else, stop.

Update

Upon (UPDATE, id,θ, tstp)
τ0←−↩ P , parse (γ, TX) := Γ (id) and proceed as follows:

1. Send (UPDATE − REQ, id,θ, tstp)
τ0+1

↪−−−→ Q.

2. If (UPDATE − OK, id)
τ1≤τ0+1+tstp←−−−−−−−−−↩ Q, then set γ.flag := 2 and γ.st′ := θ and

send (SETUP, id)
τ1+1

↪−−−→ P . Else stop.

3. If (SETUP − OK, id)
τ1+1←−−−↩ P , then (SETUP′, id)

τ1+2
↪−−−→ Q. Else ForceClose(id)

and stop.
4. If (SETUP′ − OK, id)

τ1+2←−−−↩ Q, then (UPDATE − OK, id)
τ1+3

↪−−−→ P . Else execute
ForceClose(id) and stop.

5. If (REVOKE, id)
τ1+3←−−−↩ P , then (REVOKE − REQ, id)

τ1+4
↪−−−→ Q. Else execute

ForceClose(id) and stop.
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6. If (REVOKE′, id)
τ1+4←−−−↩ Q, set γ.st := θ, γ.flag := 1, γ.st′ :=⊥, γ.sn :=

γ.sn + 1, Γ (id) := (γ, TX), (UPDATED, id)
τ1+5

↪−−−→ γ.Users and stop. Else exe-
cute ForceClose(id) and stop.

Close

upon (CLOSE, id)
τ0←−↩ P , distinguish:

Both agreed: If (CLOSE, id)
τ0←−↩ Q, let (γ, TXFU) := Γ (id) and distinguish:

– If in round τ1 ≤ τ0 + 1 + Δ, TXSP, with TXSP.Output = γ.st and TXSP.Input =
TXFU.txid||1 appears on L, set Γ (id) := (⊥, TXFU), (CLOSED, id)

τ1
↪−→ γ.users and

stop.

– If in round τ0 +1+Δ, the TXFU is still unspent, output Error
τ0+1+Δ

↪−−−−−→ γ.users
and stop.

Q disagreed: Else, execute ForceClose(id) in round τ0 + 1.

Punish (executed at the end of every round τ0)

For each (γi, TXi) ∈ Γ check if there is a transaction TX on the ledger L s.t.
TX.Input = TXi.txid‖1 and γi �=⊥. If yes, distinguish:

1. Punish: For the honest P ∈ γi.users, in round τ1 ≤ τ0 + Δ, a transaction
TXj with TXj .Input = TX.txid‖1 and TXj .Output = (γ.cash, pkP ) appears on L.
Then, (PUNISHED, id)

τ1
↪−→ P , set Γ (id) := (⊥, TXi) and stop.

2. Close: In round τ1 ≤ τ0 +T +Δ a transaction TXj appears on L where one of
the following two sets of conditions hold: 1) γ.flag = 1, TXj .Input = TX.txid‖1
and TXj .Output = γ.st or 2) γ.flag = 2, TXj .Input = TX.txid‖1 and either
TXj .Output = γ.st or TXj .Output = γ.st′. Then, set Γ (id) := (⊥, TXi) and
(CLOSED, id)

τ1
↪−→ γ.users.

3. Error: Otherwise, Error
τ0+T+Δ

↪−−−−−→ γ.users.

Subprocedure ForceClose(id)

Let τ0 be the current round and (γ, TXFU) := Γ (id). If within Δ rounds,

TXFU.Output is still an unspent output on L, then output Error
τ0+Δ

↪−−−→ γ.users.
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Sanchez, P., Riahi, S.: Generalized channels from limited blockchain scripts and
adaptor signatures. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS,
vol. 13091, pp. 635–664. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-92075-3 22

6. Aumayr, L., Maffei, M., Ersoy, O., Erwig, A., Faust, S., Riahi, S., Hostáková, K.,
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Abstract. Smart home is an emerging paradigm that facilitates the user
to control remotely appliances and devices from anywhere through the
internet connection using a networked device. The privacy-preserving
authentication protocol is an important way for the security and pri-
vacy of remote access in the smart home. Recently, Lin et al. pro-
posed a blockchain-based mutual authentication (HomeChain) protocol
to achieve reliable auditing and anonymous authentication. Their work
has drawn wide attention and continues to be widely cited. However,
we propose two universal attacks against HomeChain and demonstrate
that in Homechain, a malicious home gateway can break the anonymity
of users and a malicious authorized user can break the traceability.
Meanwhile, to address the above problems, we design a new secure and
privacy-preserving blockchain-based authentication protocol by leverag-
ing a secure short group signature scheme. Finally, we conduct extensive
experiments and compare our performance with that of HomeChain. The
experiment results show that our protocol achieves stronger security and
privacy at the expense of a slightly higher computation and communica-
tion cost.
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wide attention from academia and industry [24]. Smart home is an intelligent
residence that uses internet-connected devices to enable the remote control and
automatic management of appliances and systems. Its application gives tremen-
dous convenience to homeowner’s work, study and lifestyle. For example, in a
smart home environment, users can program their lights to go on and the garage
door to open, regardless of the user’s location.

While smart home technology had made great progress, its network security
and information privacy risks had become obstacles to hinder its further applica-
tion [26]. As an example, the sensors and the wireless communication channel in
the smart home networks may be subject to exploitation [20]. Without the secu-
rity and privacy guarantee, attackers can introduce serious financial and health
problems through tampering, modifying, or intercepting transmitting informa-
tion. Statistically, a smart home could suffer from over ten thousand hacking
attempts in a single week1. Therefore, how to improve system security and pri-
vacy has become a fundamental requirement in the smart home environment.

Identity authentication [6,9,17,22,30] is a promising cryptographic primi-
tive that can mitigate the above communication issues [1,18,23,29]. Vaidya et
al. [1] presented a secure one-time password-based authentication scheme using
the smart card in smart home environments. Luo et al. [17] proposed a secure
gateway-based two-factor authentication framework to enhance the security of
smart home. Guo et al. [6] designed an efficient remote authentication scheme
for fog-enabled smart home, which has the feature of low latency. However, most
of these schemes were designed with no consideration of the anonymity in the
smart home, that is, a malicious attacker can easily obtain the real identities
of devices and users, thereby threatening users’ privacy. Clearly, it is urgently
needed to design a secure framework in the smart home to realize its privacy
protection for individuals.

Recently, some researchers [10,19,21,25] have proposed privacy-preserving
authentication protocols that not only achieve the authenticity and validity of
transmitting messages, but also support the anonymity of honest users and trace-
ability of malicious users. Shuai et al. [19] proposed a two-factor-based anony-
mous authentication protocol for smart homes using elliptic curve cryptography.
Poh et al. [21] proposed a privacy-preserving scheme that provides data confiden-
tiality as well as entity and data authentication to prevent an outsider from learn-
ing or modifying the data communicated between the device service provider,
gateway, and the user. Generally, based on the technical characteristics, existing
privacy-preserving authentication protocols could be divided into several types,
including multi-factor-based [19,33], PKI/ID-based [8,16], certificateless-based
[12,31] and blockchain-based [4,5,15].

While existing privacy-preserving authentication protocols solve the basic
security and privacy problems to a certain extent, there are still some chal-
lenges requiring urgent solutions. For example, the multi-factor-based protocols
are generally simple to realize, but most of them need to equip with hardware

1 https://www.which.co.uk/news/2021/07/how-the-smart-home-could-be-at-risk-
from-hackers/.

https://www.which.co.uk/news/2021/07/how-the-smart-home-could-be-at-risk-from-hackers/
https://www.which.co.uk/news/2021/07/how-the-smart-home-could-be-at-risk-from-hackers/
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equipment to ensure their security. However, some existing PKI/ID-based proto-
cols have to suffer from the issues of certificate management or key escrow [15].
In addition, most protocols are based on single-server architecture, which may
raise a significant limitation [13], i.e. single point of failure.

Blockchain [28] as an emerging technology has been considered to be one of
the most promising technologies because of its properties such as decentraliza-
tion, verifiability, and immutability. Currently, blockchain technology is widely
introduced by scholars [3,27] to ensure the security of systems. For example,
Zhang et al. [32] applied blockchain in electronic auctions to solve the problems
of auction opacity and data security. Feng et al. [4] introduced a novel blockchain-
assisted privacy-preserving authentication system, in which the blockchain is
used to preserve users’ privacy and provide automatic authentication. Lin et
al. [14] presented a conditional privacy-preserving authentication protocol by
leveraging a digital signature scheme and Ethereum technology. However, both
Feng et al. [4] and Lin et al. [14] can not trace the real identity of malicious
behaviors or verify the integrity of transmitted messages. Moreover, affected by
the blockchain, some blockchain-based protocols [11,34] introduce frequent inter-
actions or high communication/computation overhead. To overcome the above
problems, Lin et al. [13] proposed a blockchain-based secure mutual authentica-
tion system that can be applied in smart homes and other applications. They
proved that HomeChain satisfies security and privacy requirements in authen-
ticating the users’ access. Currently, their work has been widely cited in three
years.

However, in this paper, our cryptanalysis shows that in Homechain, the user
privacy may be compromised during the authenticating signatures phase. It is
because a malicious or compromised home gateway can judge whether two sig-
natures are from the same group user. Moreover, we observe that HomeChain
cannot trace the users’ real identity as they claimed, that is, a malicious authen-
ticated user can generate a special group signature that can be successfully ver-
ified but cannot trace the real identity from the signature. Hence, our work will
be able to help cryptographers and engineers design more secure and efficient
authentication schemes for IoT by avoiding these two vulnerabilities.

1.1 Contributions

The main contributions of this paper are summarized as follows:

– We propose two universal attacks against Lin et al.’s HomeChain protocol to
demonstrate that a malicious authenticated user or home gateway can break
the anonymity and traceability of their protocol.

– We propose an enhanced protocol based on their original framework, based on
an efficient short group signature scheme. The scheme is leveraged to ensure
the security and privacy of the whole authentication process.

– We implement our protocol and test the time costs of main operations and
analyze the performance of both HomeChain and enhanced protocol.
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1.2 Organization

The organization of the rest sections is listed below. In Sect. 2, we briefly review
Lin et al. ’s HomeChain protocol. In Sect. 3, we focus on our attacks against
HomeChain protocols, describing in detail their process. In Sects. 4 and 5, we
propose an enhanced solution and compare it with HomeChain in terms of per-
formance. Finally, we provide a conclusion to this paper.

2 Review of HomeChain

In this section, we give a brief overview of the HomeChain protocol introduced
by Lin et al. [13]. HomeChain mainly contains four roles that are group manager,
group member, home gateway, and consensus node. And, it includes five main
phases, namely System Setup, Request Control, State Delivery, Chain Transac-
tion and Handle Dispute.

System Setup. This step is executed by the group manager and mainly con-
tains two processes: parameter initialization and member registration.

Parameter Initialization: In this step, the group manager generates the
system parameter and the main secret key. It first chooses a security parameter
λ, and then produces the group public parameters GPP = (q,G1,G2,GT , e, P1,
P2, H(·)), where G1,G2, and GT are cyclic groups of order q (of length λ bits),
e : G1 × G2 → GT is a bilinear pairing, P1, P2 are two generators of G1 and
G2, and H : {0, 1}∗ → {0, 1}256 is a secure hash function, respectively. Then, it
performs as follows.

– choose three random numbers d, s, u ← Z
∗
q and compute D = dP1, S = sP2,

U = uP1.
– set msk = (d, s) as the group main private key, u ← Z

∗
q as the tracing key,

and gpk = (D,S,U) as the group public key.

In addition, it also needs to invoke the parameter generation algorithm in
ECIES [7] to generate the parameters EPP = {E,G, p, q, a, b, P, h}, where a, b
are the elliptic curve parameter, P is a generator of G, and h is a secure hash
function. Finally, the public system parameter is (gpk,GPP,EPP ), while the
main private key is gsk.

Member Registration: Once receiving the registration request from the
user with identity ID, the group manager needs to generate a group private key
gski = (xi, Zi) for the group member by executing the following steps:

– choose xi ← Z
∗
q and compute Zi = (d − xi)(sxi)−1P1.

– compute tagi = H(xiZi) as user’s tag. Meanwhile, the group manager main-
tains tagi in a member list List = (IDi, GUi, tagi).

Then, each group member allocates its individual group private key to sign a
transaction. Correspondingly, the home gateway as a verifier holds the group
public key for the transaction verification. In addition, the home gateway needs
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to generate a public/private key pair (Q = dP, d ∈ Z
∗
q) by invoking the key

generation algorithm KGen in ECIES, where the public key Q is used to encrypt
the group member’s public key.

Request Control. To publish a request with the home gateway, a group mem-
ber first generates a fresh public/private key pair (pk, sk) by invoking the KGen
algorithm in ECIES, which is a suggested way to avoid replay attacks. Then,
it constructs the transaction from his requirements and invokes the Enc algo-
rithm in ECIES to encrypt the request information inf = (transaction version
‖public key ‖device information ‖control order), and obtains the correspond-
ing ciphertext ciphertext = Encpk(inf). Next, to obtain a valid transaction, it
signs the ciphertext under the group public key gpk by using the group member’s
private key gski:

– choose k ← Z
∗
q and compute C1 = kP1, C2 = xiZi + kU , and Q = e(U, S)k.

– compute the digest = H(transaction version ‖public key‖ device informa
tion‖ control order), c = H(C1, C2, Q, digest), and w = kc + xi.

– return TXaccess = (C1, C2, c, w) as the signature of request information.

Finally, the group member constructs the request information and a group sig-
nature into a transaction TXaccess, and then uploads this access request into
the smart contract via calling a function uploadRequest.

State Delivery. Once receiving the new requests from the group member, the
home gateway can retrieve the request via the function getRequest and verify
the availability of this request by executing the following steps:

Q∗ =
e(C2, S)e(wP1, P2)

e(cC1 + D,P2)
(1)

and a digest digest = H(msg) of messages msg. Then it checks that

c∗ = H(C1, C2, Q
∗, digest) (2)

In addition, the home gateway needs to determine whether the transaction has
appeared in the existing revocation list. If not, it decrypts the message via the
decryption algorithm in ECIES using its private key, which aims to obtain the
group member’s information such as the public key. Then it responds to the
request by connecting to the target home device. Note that the home gateway
will encrypt the feedback from the target device using the group member’s fresh
public key pk and generate the corresponding MAC using its private key skhg,
which can ensure the confidentiality and validity of returned information.
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Chain Transaction. Consensus nodes are responsible for retrieving all valid
transactions within the transaction collection period in the smart contract via
the getRequest algorithm. The consensus nodes use the PBFT consensus mech-
anism to reach a consensus on the pending block, that is, there are no less than
two-thirds of the total consensus nodes approving this block. Finally, this block
will be chained to the blockchain.

Handle Dispute. Group manager can trace the transaction Txunusual back to
the actual group member when unusual/abnormal behaviors are detected. The
group manager first retrieves the transaction associated with such behavior,
and then invokes the GTrace algorithm for revealing the real identity of the
requester, where the main calculation is as follows:

tagi = H(xiZi) = H(C2 − uC1) (3)

After this, the group manager can obtain the real identity of the signer by
searching the whole List = (IDi, GUi, tagi) via tagi.

3 Cryptanalysis of HomeChain

According to the work [13], Lin et al. claimed that HomeChain satisfies the
security and privacy requirements in verifying the group members and home
gateway. In this section, we will analyze the security of the HomeChain protocol
and point out two concrete attacks against HomeChain, namely linkable mes-
sage attack, and untraceable signature attack. In the linkable message attack,
a malicious home gateway can determine whether the two signatures are from
the same group user. In the untraceable signature attack, a user can generate a
special group signature that can be verified successfully, but the group manager
cannot trace the real identity of the signer through the signature. The detailed
attacks are presented as follows.

3.1 Linkable Message Attack

If a malicious home gateway can determine whether group signatures are from
the same user, it can link multiple messages from the same user, which may cause
privacy leakage through the association of multiple messages. For convenience,
we suppose that A is a malicious or compromised home gateway and B is a
usual group member. Let TX1, TX2 be two access request transactions and
σ1 = (C1, C2, c, w), σ2 = (C∗

1 , C∗
2 , c∗, w∗) be the corresponding signature. Then,

A can implement the linkable message attack through the following steps:

1. Suppose B initiates a request to access the temperature sensor at time TS1.
B first generates a signature σ1 on the request information, and then con-
structs the request information and signature σ1 into a transaction TX1. The
information is uploaded to the smart contract via uploadRequest algorithm.
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2. A monitors the smart contract for retrieving the new access request and can
obtain B′s access request transaction TX1 and the corresponding signature
σ1. Since A is curious about B′s behavior, it will record the signature σ1.

3. After obtaining the TX1 from B, A performs the Eq. (4) for each subsequent
signature retrieved.

wP1 − cC1
?= w∗P1 − c∗C∗

1 (4)

By Eq. 4, A can determine whether two messages are from the same group
user. If yes, which means (σ1, σ2) are from the same group user. Otherwise,
this means that two signatures are from different users.

4. B initiates a request to turn on the conditioner at time TS2. Similarly, B
generates a signature σ2 on the request information and constructs the request
information and signature σ2 into a transaction TX2 followed by uploading
it to the smart contract via the uploadRequest algorithm.

5. After A retrieves the TX2, it can know that TX2 is from B via Eq. (4).
We present the proof of Eq. (4) below:

Left = wP1 − cC1

= (kc + xi)P1 − cC1

= kcP1 + xiP1 − ckP1

= xiP1

(5)

Right = w∗P1 − c∗C∗
1

= (k∗c∗ + x∗
i )P1 − c∗C∗

1

= k∗c∗P1 + x∗
i P1 − c∗k∗P1

= x∗
i P1

(6)

According to Eq. (5) and Eq. (6), we know that the Eq. (4) holds if xi and x∗
i are

equal. Because Each xi corresponds to a specific user, and then which indicates
that TX1, TX2 are from the same group user.

By launching the linkable message attack, A can know that B accesses the
temperature sensor at TS1 and turns on the conditioner at TS2. Even worse, A
can make a prediction that B is going home if possible. Moreover, since all
requests are structured as transactions and stored on the blockchain, which
makes it easier for A to obtain the user’s request. If A records B′s behavior
for several days in a row, in this case, A can easily predict the B′s daily activi-
ties.

3.2 Untraceable Signature Attack

Besides, Lin et al. claimed that the HomeChain satisfies traceability, that is, the
group manager can reveal the real identity of the user from the signature. How-
ever, we observe that their protocol may be not available at the identity tracing
phase, because an authorized group user can easily generate a special signature
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that can be successfully verified but can not be traced. In this subsection, we
give a detailed description to further illustrate the attack.

Assuming that a user B wants to frequently change the device’s state or
maliciously publish revocation transactions without being tracked by the group
manager. B holds the secret key (xi,Zi), and it performs untraceable signature
attack in the following steps:

1. B generates a fresh public/private key pair (pk, sk), and obtains the
ciphertext by encrypting the request information = (transaction version
‖public key ‖ device information ‖control order).

2. It constructs the transaction from his/her requirement by performing the
following three steps. 1) it randomly chooses k, t ← Z

∗
q and computes C∗

1 =
ktP1, C2 = xiZi + kU , and Q = e(U, S)k. 2) it computes a digest digest=
H(msg) of the message, a hash value c = H(C∗

1 ,C2,Q, digest), and w = ktc
+ xi. 3) It outputs σ∗ = (C1, C2, c, w) and uploads the request into smart
contract via the uploadRequest algorithm.

3. The home gateway monitors the smart contract to retrieve the new request,
and then it executes the verification process as follows:

Q∗ =
e(C2, S)e(wP1, P2)

e(cC∗
1 + D,P2)

=
e(xiZi + kU, S)e((ktc + xi)P1, P2)

e(cktP1 + D,P2)

=
e((d − xi)s−1P1, S)e(kU, S)e(ktcP1, P2)e(xiP1, P2)

e(cktP1, P2)e(D,P2)

=
e(dP1, P2)e(kU, S)e(kctP1, P2)

e(cktP1, P2)e(dP1, P2)

= e(U, S)k

(7)

c∗ = H(C∗
1 , C2, Q

∗, digest) (8)

According to Eq. (7) and Eq. (8), since Q = Q∗ and c = c∗, and thus the
signature sent by the user can pass the verification. However, the signature can
not be traced, with details as follows:

tag∗ = H(C2 − uC∗
1 )

= H(xiZi + kU − uktP1)
= H(xiZi + (1 − t)kU)

(9)

According to Eq. (9), we observe that tag �= tag∗. As a result, the signature
corresponding to B’s misbehavior passes the verification, but the real identity
of the B cannot be traced by the group manager. Therefore, an authorized user
can perform malicious behavior and cannot be traced by launching this attack,
however, which is a fatal drawback for the anonymous system.
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4 The Enhanced Protocol

To solve the above vulnerabilities in the HomeChain protocol analyzed in Sect. 3,
we design a new blockchain-based mutual authentication protocol based on
an efficient and secure group signature scheme [2]. The new protocol follows
the framework of Homechain and mainly includes five phases, namely Sys-
tem Setup, User Initialization, Request Control, State Delivery, Chain
Transaction, and Handle Dispute. In addition, we also adopt the same smart
contract functions as the Homechain, and see Reference [13] for details.

System Setup. This phase is primarily targeted towards the group manager
and is used to initialize the whole system. The group manager obtains the group
public key gpk and the group private key gsk by executing the following steps:

– select the system parameters (G1, G2, GT , p, g1, g2, e), where G1, G2, GT are
multiplicative cyclic groups of prime order p, g1 is a generator of G1, g2 is
a generator of G2, and e is a computable map e : G1 × G2 → GT . Then, it
chooses a secure hash function H: {0, 1}∗ → Z

∗
p.

– select h ← G1 \ {1G1} and ξ1, ξ2 ← Z
∗
p, and set (u, v) ∈ G1 such that

uξ1 = vξ2 = h ∈ G1.
– select γ ← Z

∗
p and set w = gγ

2 ∈ G2.
– generate the public parameters of ECIES, like Homechain. In addition, let

MAC = MACkey(msg) denote the MAC generation function, where msg is
the message to be sent, key is the negotiated key, and MAC is the MAC for
authenticating message.

where the group public key is gpk = (g1, g2, h, u, v, w) and the group private key
is gsk = (ξ1, ξ2, γ). Finally, the group manager publishes the group public key
to the participants.

User Initialization. This phase is used to initialize the new group member
and generate the public/private key pair of the home gateway, which mainly
includes two processes.

– Group Member Join. Any user who wants to join the group needs to be
authenticated by the group manager. For each user i, the group manager
proceeds as follows:

• select a random number xi ← Z
∗
p and compute the value Ai = g

1/(γ+xi)
1 ,

where γ is the main group private key.
• set the private key gsk[i] = (Ai, xi) of the user i.

– Home Gateway Setup. In our system, each home gateway needs to keep the
group public key gpk = (g1, g2, h, u, v, w) for transaction verification. In addi-
tion, the home gateway needs to generate his/her public/private key pair
(pkhg, skhg) by invoking the key generation algorithm KGen in ECIES.

Request Control. If a group member i tries to publish a request, it needs
to execute the following steps:

– generate a new public/private key pair (pki = yiP ∈ G, ski = yi ∈ Z
∗
q) by

invoking the KeyGen algorithm in ECIES.
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– construct a requirement information info, where the public key must be
included. For example, the group member tries to switch off the lights in the
room, then the information is info = (01||pk||l01||to), where 01 is current
version, l01 is the light identity, to is the control order of “switch off”.

– encrypt the requirement information using the public key pkhg of the home
gateway to generate the transaction information ciphertext = Encpkhg

(01||pk
||l01||to).

– sign the transaction information to generate the transaction TXaccess using
the group member’s private key gsk[i] = (Ai, xi) and perform the following
steps:

• it first selects exponents α, β ← Z
∗
p, and computes T1 = uα, T2 = vβ ,

T3 = Aih
α+β , δ1 = xiα, δ2 = xiβ.

• it randomly picks blinding values (rα, rβ , rxi
, rδ1 , rδ2) ← Z

∗
p, and

computes R1 = urα , R2 = vrβ , R3 = e(T3, g2)rxi · e(h,w)−rα−rβ

·e(h, g2)−rδ1−rδ2 , R4 = T
rxi
1 · u−rδ1 , and R5 = T

rxi
2 · v−rδ2 .

• it computes c = H(ciphertext, T1, T2, T3, R1, R2, R3, R4, R5), sα = rα +
cα, sβ = rβ + cβ, sxi

= rxi
+ cxi, sδ1 = rδ1 + cδ1, sδ2 = rδ2 + cδ2.

• it outputs a signature σ = (T1, T2, T3, c, sα, sβ , sxi
, sδ1 , sδ2) and constructs

an access transaction TXaccess = (ciphertext, σ).
– upload this request into the smart contract via the uploadRequest algo-

rithm.

State Delivery. In our system, the home gateway will monitor the
smart contract for processing new requests. If a request is monitored,
the home gateway will retrieve the request via the algorithm getRe-
quest. Then, it first verifies the validity of this transaction TXaccess =
(ciphertext, T1, T2, T3, c, sα, sβ , sxi

, sδ1 , sδ2) by the following steps:

– it needs to rederive R̃1 = usα/T c
1 , R̃2 = vsβ/T c

2 , R̃3 = e(T3, g2)sxi ·
e(h,w)−sα−sβ · e(h, g2)−sδ1−sδ2 · (e(T3, w)/e(g1, g2))c, R̃4 = T

sxi
1 /usδ1 , and

R̃5 = T
sxi
2 /vsδ2 .

– it checks that:

c
?= H(ciphertext, T1, T2, T3, R̃1, R̃2, R̃3, R̃4, R̃5) (10)

– the transaction is valid if this check succeeds.

If the transaction is valid and has not appeared in existing revoca-
tion transaction list which can be obtained by calling the getRL algo-
rithm, then the home gateway can obtain the public key pki of the
group member by decrypting the transaction information version‖public key‖
device information ‖control order}, including the group member’s public key,
the target device information, and control order. Then, similar to Homechain,
the home gateway responds to the request by connecting to the devices. To
protect the privacy of the feedback, the home gateway encrypts it using the
group member’s public key pki. In addition, it also computes a MAC using the
private key skhg. Thus, the final response is Data = Encpki

(feedback) and
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MAC = MACkey(Data), where feedback is the execution result or the device’s
status information and key = pk

skhg

i . As a result, (Data, MAC) is uploaded into
the smart contract via the uploadResponse algorithm. After the response has
been received by the group member via the getResult algorithm, he/she uses
his/her private key ski to recompute MAC

′
= MACkey′ (Data), where key′ =

pkski

hg . If MAC ′ = MAC holds, then it implies that the response is not from an
impersonator. Hence, it can obtain the response information about the request
by decrypting the Data via the Dec algorithm using ski.

Chain Transaction. This phase is the same as Homechain. Specifically,
consensus nodes are responsible for retrieving transactions in the smart contract
via the getRequest algorithm, and compete with each other for chaining the
block to the blockchain. The process is described as follows.

– Collect all valid transactions (Tx1, Tx2, ..., Txn) within the transaction col-
lection period (a certain system period of time). Note that the invalid trans-
actions to be illegitimate signatures will be discarded.

– The consensus nodes use the PBFT consensus mechanism for chaining the
valid transactions. Namely, the present recorder first pends some valid trans-
actions into a block. Then, all the consensus nodes reach a consensus on this
pending block when there are no less than two-third of total consensus nodes
approving this block. Hence, this block is finally chained into the blockchain.

Handle Dispute. This phase is used to handle the disputes of users by
breaking the anonymity. In our system, the group manager can trace the real
identity of the group member by using the transaction Txunusual. When a mali-
cious behavior is detected, the group manager can then retrieve the transaction
associated with such behavior and reveal the real identity

by performing the following steps:

– it takes as input a group public key gpk = (g1, g2, u, v, w) and
the corresponding group manager’s private key gmsk = (ξ1, ξ2),
together with a message ciphtext and a transaction TXaccess =
(ciphertext, T1, T2, T3, c, sα, sβ , sxi

, sδ1 , sδ2).
– it verifies that TXaccess is a valid signature on ciphtext.
– it uses the three elements (T1, T2, T3) and recovers the user’s identity Ai as

Ai = T3/(T ξ1
1 · T ξ2

2 ).
– it looks up the user index corresponding to the identity Ai to trace the real

identity.

Here, the group manager can periodically and selectively revoke illegal group
members’ private key (Ai, xi) into a Revocation List revoList followed by updat-
ing the revoList via the addRL algorithm.

4.1 Correctness and Security Analysis

Correctness. It is straightforward to see that correctness can be guaran-
teed as long as the authorized participants execute correctly. For authorized



A Blockchain-Based Mutual Authentication Protocol for Smart Home 261

users, they have the signature secret key (Ai, xi) distributed by the key
authorization center, and thus always generate valid group signatures σ =
(T1, T2, T3, c, sα, sβ , sxi

, sδ1 , sδ2) to achieve anonymous authentication.
Security. To address the problems of Homechain, our enhanced protocol

adopts a new security group signature scheme based on its original frame-
work. Specifically, for the linkable message attack, the signing key (Ai, xi) in
our enhanced protocol is encrypted using the linear encryption scheme, which
can break the link of different signatures from the same user. For example, the
value Ai is encrypted to generate the ciphertext T3 = Aih

α+β under the public
key h. For the untraceable signature attack, our enhanced protocol can resist
this attack through the group signature scheme. In our protocol, the users can
be anonymously authenticated only through generating a valid group signature
σ that contains a real identity. According to the correctness and security of the
based group signature scheme, the group manager can decrypt the ciphertext of
identity using the main group secret key, i.e., Ai = T3/(T ξ1

1 ·T ξ2
2 ). Therefore, our

protocol can ensure the traceability. Note that we omit other security analyses
that have been proven in the work [13], because the processes are the same for
both our protocol and Homechain.

Table 1. The execution time of different cryptographic operations in milliseconds.

Operation The notations of operations Execution time

TG1a A point addition in G1 0.006 ms

TG1pm A point multiplication in G1 1.320 ms

TG2pm A point multiplication in G2 16.550 ms

TGTpm A point multiplication in GT 0.004 ms

TG1ep A one exponentiation in G1 1.317 ms

TG2ep An exponentiation in G2 17.902 ms

TGTep An exponentiation in GT 6.057 ms

TGTbp A bilinear pairing in GT 17.886 ms

TG1m A multiplication in GT 0.006 ms

TGTm A multiplication in GT 0.029 ms

Tmi A modular inversion in Zq 0.003 ms

Th A general hash function 0.001 ms

5 Experiment Analysis

In this section, we give a performance analysis between HomeChain and our
improved HomeChain in terms of computation and communication overhead.

The computation overhead and communication overhead experiments are
conducted with a desktop owning a 3.4 GHz Inter(R) Core(TM) i5-7500 CPU



262 B. Chen et al.

Table 2. The comparison between HomeChain and improved HomeChain in compu-
tation cost and communication cost.

Phase Computation cost Communication cost

HomeChain Improved HomeChain HomeChain Improved HomeChain

System Setup (2 + 2t)TG1pm + tTh +
TG2pm + tTmi

tTG1ep + TG2ep t|G1| + t|Zq| t|G1| + t|Zq|

Request Control 6TG1pm + TG1a + 4Th +
TGTep + Tenc +
uploadRequest

3TG1pm + 9TG1ep +
3TG1m + 3TGTbp +
3TGTep + 2TGTm +
3Th + uploadRequest

3|G1| + 2|hash| + |Zq| +
|cAES |

4|G1| + 2|hash| +
5|Zq| + |cAES |

State Delivery 3TGTbp + 8TG1pm +
TG1a + 10Th +
getResult + getRL +
uploadResponse +
getRequest

8TG1ep + 4TG1m +
5TGTbp + 4TGTep +
4TGtm + 6Tg1pm + 9Th +
getResult + getRL +
uploadResponse +
getRequest

4|G1| + 4|hash| + |Zq| +
|cAES |

5|G1| + 4|hash| +
5|Zq| + 2|cAES |

Chain Transaction 3TGTbp + 2TG1pm +
TG1a + 2Th + getRL

8TG1ep + 4TG1m +
5TGTbp + 4TGTep +
4TGTm + Th + getRL

3|G1| + 2|hash| + |Zq| +
|cAES |

4|G1| + 2|hash| +
5|Zq| + |cAES |

Handle Dispute TG1pm + TG1a + Th +
addRL

2TG1ep+2TG1m+addRL 3|G1| + 2|hash| + |Zq| +
|cAES |

4|G1| + 2|hash| +
5|Zq| + |cAES |

(a) Computation overhead (b) Communication overhead

Fig. 1. The comparison of HomeChain and improved HomeChain in computation and
communication overhead

and 8 GB of RAM. We use Pairing-Based Cryptography Library (PBC) with
version 0.4.7. For bilinear pairing is a map e: G1 × G2 → GT , in which Type-
D Pairing is utilized. In practices, the order of all groups is 160 bits and the
SHA-256 is choosen as the basic hash function. To compare the communication
overhead, we first count the byte size of different elements. The size of the element
in G1 is 40 bytes, the size of a one-way hash value is 32 bytes. At the same time, it
is assumed that the original messages sent in different scenarios are all included
in the finite field Z

∗
q and have a size of 20 bytes. In additon, these messages are

encrypted by the AES algorithm.
We first summarize the time-consuming cryptographic operations and list

the notations and relevant execution time in Table 1, where each of these results
is an average result of 1000 times. Then, we theoretically analyze the compu-
tation and communication overhead of HomeChain and improved HomeChain,
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the results are shown in Table 2. For further comparison, the numerical analysis
results are shown in Fig. 1. The results show that the improved HomeChain is
inferior to HomeChain in terms of computation cost and communication cost,
but the improved HomeChain provides higher security. The computation and
communication costs of the improved HomeChain are within acceptable limits,
but higher security is a priority.

6 Conclusions

In this paper, we first reviewed the HomeChain protocol, and then pinpointed
the vulnerabilities in both the State Delivery phase and the Handle Dispute
phase. The cryptanalysis demonstrates that HomeChain is vulnerable to two
universal attacks: 1) a malicious home gateway can determine whether the two
signatures are from the same user. 2) an authorized user can generate a special
signature that can be verified but the group manager cannot trace the real iden-
tity. To solve the two vulnerabilities in the HomeChain protocol, we introduce
a new authentication protocol by leveraging a new group signature. Finally, the
experimental results show that our enhanced protocol achieves stronger security
at the expense of slightly higher storage and computing costs.
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Abstract. Users have personal or business need to share most private
and confidential documents; however, often at the expense of privacy
and security. A sought after feature in the trending ephemeral context
is to set download constraints of a particular file - a file can only be
downloaded a limited number of times and/or for a limited period of
time. Emerging end-to-end encrypted file sharing services with enhanced
expiration control are attempts to meet the needs. Although such new
services have drawn much attention, their server can still observe and
control metadata of such download constraints, which could reveal partial
data information. To address this challenge, we propose OblivSend, a
privacy-preserving file sharing web service that 1) supports end-to-end
encryption, 2) allows a limited period of time and a limited number of
downloads at users’ control, and 3) protects expiration control metadata
from the server efficiently by lightweight cryptographic primitives. We
develop a proof of concept prototype implemented in Hyperledger Fabric
on a Research Cloud and evaluations demonstrate that our prototype can
function as intended to achieve privacy of metadata without sacrificing
user experience.

Keywords: Security and privacy protection · Web application
security · Privacy-preserving protocols · Metadata protection · Smart
contract

1 Introduction

Individuals’ security and privacy are fundamental rights, not only in the real
world but also the digital universe. Far-too-frequent high-profile data leakages
and mass surveillance projects [24,36] remind people of the vulnerability and
sensitivity of personal data, hence the increasing privacy awareness brings up a
growing group of privacy concerned users, who demand safe and private services
including file sharing services. Existing regulations and acts to protect personal
data, such as the General Data Protection Regulation (GDPR) [9] and the Cal-
ifornia Consumer Privacy Act (CCPA) [41], also impose on service providers to
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Fig. 1. Firefox Send. Choose when a file expires and the number of downloads [27].

grant individuals control over their private information. There are a quantity of
file sharing services in the market, such as Gmail, DropBox, even instant mes-
saging tools like WhatsApp, but these services often have constraints: emails and
instant messengers have harsh attachment size limit that a 30-s 1080p footage can
easily exceed; and most file hosting services do not support client-side encryp-
tion or self-destruct, which means your long-lived files can be decrypted any time
simply by a rogue employee or if cooperated with government surveillance.

Among existing services, Firefox Send [27], officially launched by Mozilla in
March 2019, allows to share files up to 2.5 GB at a time with end-to-end encryp-
tion (E2EE) from any modern browsers. Send empowers a user to encrypt a
file and its metadata including file name, size and type before uploading (see
Fig. 1); then send the file link (via a secure channel of the user’s choice) to dedi-
cated receiver(s) who can then request the service for downloading. In addition,
it offers extra security control to users over the files they share: setting files to
expire after a certain period of time or number of downloads. Send incorporates
two most desired features, E2EE and ephemeral, which meets personal needs
of more secure connections and intimate sharing.

However, limitations of Send are also apparent: 1) Users have to fully trust
the service to honestly check if a file has expired. 2) Users send expiration control
metadata, i.e. download number and time limits that are used to check if a file
has expired on a download request, to Send in plaintext, which can be used to
indicate the popularity and sensitivity of specific file(s).

Metadata privacy has drawn increasingly attention after the Edward
Snowden leaks. “If you have enough metadata, you don’t really need content”,
“we kill people based on metadata” [32,33]. Since sharing a file is similar to call-
ing and messaging someone, metadata access in file sharing is also concerning.
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1.1 Motivation

To illustrate the motivation of hiding the expiration control metadata (expiration
metadata for short in the rest of the paper), we present some privacy issues
resulted from potential leakage of expiration metadata, even with E2EE file
sharing systems.

User Story 1: Sensitivity Derived from Expiration Metadata. Alice is an
oncologist. Due to COVID-19, she shares files with patients and other contacts
in an E2EE system. Alice shares electronic medical records with her patients
and sets each to expire after 1 download or 1 day. With the knowledge of the
expiration metadata, a curious server knows that Alice shares some files of strict
access, hence deduces they are sensitive. Bob is a patient of Alice and downloads
his report from the system. With Alice’s identity and the sensitivity of the file,
the server thus infers Bob is suspected to have cancer, which has implications
on his insurance and other indemnities.

User Story 2: Frequency Derived from Expiration Metadata. A medi-
cal institution distributes confidential reports to different teams of professionals
using an E2EE system and sets the download number limit as the number of
team members. For instance, a cancer service team has 6 doctors and all files
shared to the team are set to expire after 6 downloads. With side information
about the institution’s teams, likely available via a web search from its home-
page, a server can infer the disease in each file. Bob visits Alice in the institution,
even without Alice’s identity, a server can reasonably deduce Bob’s disease from
the file Alice downloads without decryption.

User-input expiration metadata by itself may not be damaging; however,
when combined with other metadata, scaling to a great population, and observed
in aggregate, it can be meaningful and reveal sensitive information [23,33].

1.2 Our Contributions

We propose OblivSend, a secure and ephemeral file-sharing system that for
the first time provides users with advanced and oblivious expiration control.
OblivSend puts forward a new framework of a file-sharing service that not only
supports comprehensive file expiration control, but is also expiration-metadata-
private, which is a generic solution that can be integrated into other file sharing
services. To understand our contribution, we now outline the main challenges
OblivSend aims to address.

Challenge 1: How to Achieve Expiration Control over Protected Expi-
ration Metadata? We define expiration metadata as a download number limit
and a download time limit to ensure expiration control of a file sharing service.
Users are not able to download a file upon exceeding the pre-set number of
downloads or elapse time. Unfortunately, though more secure file sharing ser-
vices promise expiration control as a premium feature [15,27,34], inadequate
discussion has since occurred to understand the privacy of expiration metadata
and how they impact the way people experience file sharing over the network. To
the best of our knowledge, whereas many scholars focus on protection of general
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Table 1. Secure file sharing services.

Product E2EE Time Lim. No. Lim. Oblivious
OblivSend ✓ ✓ ✓ ✓

Firefox Send [27] ✓ ✓ ✓ ✗

DropSecure [15] ✓ ✓ Future ✗

SendSafely [34] ✓ ✓ ✗ ✗

WhatsApp [45] ✓ Future ✗ ✗

Digify [17] ✗ ✓ ✗ ✗

Dropbox [14] ✗ ✗ ✗ ✗

security control metadata in file sharing such as user identity and access pattern
[6], there is no prior research aiming to prevent leakage of expiration metadata,
hence a gap exists to address such expiration-metadata-privacy.

Challenge 2: How to Grant Expiration Control Power to a User Rather
than a Service Provider? Users pursue E2EE file sharing services because
they do NOT trust a service provider to keep their encryption keys. Therefore,
it is an obvious defect that users adopt an E2EE service, but completely trust the
service to check the expiration conditions and control if a file can be downloaded
and decrypted. We assume a server that provides file storage services and fulfils
upload and download requests; but wants to learn the expiration metadata,
furthermore, actively manipulate its internal download state that is compared
to expiration conditions.

OblivSend supports E2EE meanwhile protects the expiration metadata
through the entire course with oblivious expiration control. Overall, our con-
tributions are:

1 Hiding expiration metadata. We hide expiration metadata of file sharing
services, both download number and time limits, through the entire life cycle
by adopting cryptographic secret sharing scheme and garbled Bloom filter.

2 Oblivious expiration control. We enforce oblivious expiration control by
transferring the responsibility for checking expiration conditions from a server
to clients.

3 Precautionary detection. We audit and precautionarily detect forged
download state at a serve side leveraging the immutability of smart contract.

4 Implementation. We implement a OblivSend prototype and develop a
smart contract program cover a Hyperledger Fabric network. We use them to
evaluate the performance of OblivSend and show that OblivSend has negli-
gible extra computation and communication overhead on top of a traditional
E2EE file sharing system.

2 Related Work

2.1 Existing Secure File Sharing Services

Table 1 compares several existing secure file sharing applications or web services.
We organise the comparison by the following properties: 1) Does the service
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support E2EE? 2) Does the service support user-controlled file expiration? 3) Is
the server oblivious of the expiration control?

While E2EE has become increasingly preferred when users choose a web
service, additional impermanence or ephemeral feature, such as Telegram Secret
Chat [40] and Gmail confidential mode [18], inspired and pioneered by SnapChat
is another highly pursued trend that dominates the internet [15,27,34,45]. With
certain expiration control, people can be confident that what they share is only
accessible to dedicated users for a limited period of time or number of times, and
they are able to wipe out all their “secrets” with a Thanos snap so that nothing
will stay in a server for longer than necessary and become a vulnerability later.
Emerging file sharing services that grant users expiration control are the file-
sharing versions of Snapchat.

In addition to Send, DropSecure and SendSafely claim to offer zero-knowledge
E2EE. DropSecure (premium) automatically destroys files from the servers after
seven days and plans to support download number limit in the future. As an
instant messaging service, WhatsApp also supports E2EE attachments, and has
been developing its “Expiring Messages” feature. Services such as Dropbox and
Digify provide an addition layer of security on top of server-side encryption,
which enables a user to double encrypt files or folders by setting a password.

Some email services also support E2EE but the size of attachments is limited
to 25 MB per email [30,42], and other approaches to share file securely online
have low usability for none technical users [19,28,38].

2.2 Privacy-Preserving Web Services

In recent literature, researchers and practitioners have made great efforts to pro-
pose and promote privacy-preserving systems. [4,20,29] allow privacy-preserving
data aggregation that enables monitoring, collection and analysis of statistics on
the population without explicitly learning each user’s individual contribution.
[11,16,20] offers privacy-preserving safe browsing experience, while the former two
protect sensitive user information entered into a browser and cached from auto-
filled forms from sophisticated attackers and malware without trusting any part
of the web applications, and the latter detects and blocks unsafe websites with-
out leaking either users’ browsing history or the lists of unsafe URLs maintained
by third-party blacklist providers. [7] enables privacy-preserving smart contracts
that address blockchain’s lack of confidentiality by separating consensus from exe-
cution. Similar attempts have been made to develop metadata-private systems,
but with a limited focus on secure messaging, either group messaging [10,46], or
private messaging [2,22,43,44], and private presence and notification [5].

OblivSend is aiming to strike a good balance of the above desired features
and usability; further, address the security challenges mentioned in Sect. 1.

3 Preliminaries

OblivSend makes black box use of secret sharing, garbled Bloom filter, smart
contract, collision-resistant pseudorandom functions and hash functions.
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Table 2. Notation

Notation Description
λ, σ, l Security parameters
N (T ) A finite set of integers from 1 to n (or t) that denotes all download

numbers (or time units) allowed by OblivSend
LN (LT ) A finite set of integers from 1 to lN (or lT ) where lN (lT ) is the

download number (or time) limit
SU A user secret shared securely between a data owner and clients
EN (ET ) A key element bound to download number (or time)
FK A secret key used for file encryption that is composed of EN and

ET

KN (KT ) A finite set of protection keys to cipher a number (or time) key
element

CEN
(CET

) A finite set of cipher number (or time) elements encrypted using
each element in KN (or KT )

ABN (ABT ) A finite set of encrypted payload messages used for GBFN (or
GBFT )

MN (MT ) A map of all elements in N (or T ) paired with their hash values
k Number of hash functions in a garbled Bloom filter
m Length of a garbled Bloom filter
H A set of k independent hash functions {h0, ..., hk−1} each hi(j)

on input j outputs an index number over [0, m − 1] uniformly
GBFN (GBFT ) A garbled Bloom filter encoding a set N (or T )

PRF A pseudorandom function {0, 1}2σ $←− {0, 1}σ × {0, 1}∗ that on
input a σ-bit key and some string, outputs a 2σ-bit pseudorandom
string

Notation. We define parameters, entities, denotations in OblivSend in Table 2.

Secret Sharing [35] is a fundamental cryptographic primitive that splits a
secret s into n shares such that the secret s can be recovered efficiently with any
subset of t or more shares. With any subset of less than t shares, the secret is
unrecoverable and the shares give no information about the secret. A scenario
when t = n is applied in this scheme, and a secret related to a file encryption
key can be restored via simple ⊕(XOR) operations.

The scheme generates n − 1 random bit strings r1, r2, ..., rn−1 of the same
length as the secret s, and computing rn = r1 ⊕ r2⊕, ...,⊕rn−1 ⊕ s. Each ri is
a share of the secret s. It is apparent that s can be recovered by (XOR)ing all
the shares r1 ⊕ r2⊕, ...,⊕rn−1 ⊕ rn and any subset of less than n shares reveals
no information about the secret and the secret is unrecoverable.

Garbled Bloom Filter (GBF) is a data structure introduced in [13] that
encodes a set of at most n λ-bit strings in an array of length m, which supports
membership query with no false negative and negligible false positive. Instead of
generating an array of bits of 0 and 1 in a standard Bloom filter [3], a GBF adds
secrets of x ∈ S using the XOR-based secret sharing scheme depicted above.
While querying the GBF for membership checking, only if y ∈ S, the XOR
operations will recover y from the GBF.
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Fig. 2. Adding secrets into a GBF. x1 is hashed into 3 numbers 0, 4, 7, and 3 shares
of s1 are allocated to index 0, 4, 7; x2 is mapped to 2, 7, 9, where an existing share s31
is reused at index 7.

To add an element x ∈ S to a garbled Bloom filter, the element x is first split
into k λ-bit strings using the XOR-based secret sharing scheme depicted in the
previous paragraph, then is mapped by k hash functions into k index numbers
and each location hi(x) is allocated with one secret share to form an array of λ-
bit strings. To query an element y, the element y is mapped by the same k hash
functions into k index numbers and all bit strings at the corresponding array
locations hi(y) are collected and XORed together. To query an element y, the
element y is mapped by the same k hash functions into k index numbers and all
bit strings at the corresponding array locations hi(y) are collected and XORed
together. If y ∈ S, the XOR operation will recover y as a result of XORing its
k shares retrieved from the garbled Bloom filter by their indices. If y �∈ S, then
the probability of the XOR result is the same as y is negligible in λ.

Remark: During the course, a specific location j ← hi(x) may have been occupied
by a share of a previously added secret, and in this case the existing share stored
at GBF [j] is reused (line 18 in Algorithm 2), otherwise, the previously added
secret will not be recoverable in the query phase. For instance, in Fig. 2, when
we add s2, GBF [7] has already been occupied by s31 and reused as a share of s2,
since s32 = s12 ⊕ s31 ⊕ s2, s2 = s12 ⊕ s31 ⊕ s32 still stands.

According to [13], the false positive probability of a garbled Bloom filter,
which is the probability that for y �∈ S, the recovered string from XORing all
GBFS [hi(y)] is the same as y coincidentally, is at most 2−λ.

In our proposed framework, x is either a download number or time unit, and
the secret whose shares are added is either a cipher key element or a payload mes-
sage. When y, which is the current download count or elapse time unit, is within
the corresponding download limit, the cipher key element can be recovered.

Smart Contract is a “computerised transaction protocol” first coined by Nick
Szabo in 1997 [39] that digitally enforces secure relationships and credible trans-
actions over public networks via a blockchain. It intends to minimises trust and
eliminates needs for third parties, and common application of a smart contract
ranges from financial to logistics, healthcare to energy resources. [1,25,47].

Since blockchain is a massive decentralised ledger by nature, once a trans-
action is validated and written to the blockchain, it can neither be deleted nor
modified without a majority of collusion, which makes the blockchain immutable.
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Our proposed scheme builds smart contract into the framework because it is
automatic and direct, fast and cheap, and tamper-proof.

4 System Overview

In OblivSend, when a data owner uploads a file, the data owner is able to set
the file to expire after a number of downloads or period of time. When a client
makes a download request to OblivSend, OblivSend sends the encrypted file
to the client, and the client can only decrypt the file if it has not expired. To
understand how OblivSend performs these operations securely, we present an
overview of OblivSend’s design, threats and security goals.

4.1 Intuition

We now present several attempts, beginning with naive approaches that are
obviously insecure and proceeding to a practical version of our proposed scheme.

Attempt #1: Client-End Encryption of Expiration Metadata. A natural
approach is to simply encrypt the expiration metadata and send the resulting
ciphertext to a server. Assuming we use proper encryption schemes so that the
server is able to verify a client’s download request by comparing its current
internal download state with the ciphertext of download limits. Based on the
comparison results, the server determines to send the encrypted file to the client
or not. This design should offer metadata privacy even when they are held by a
malicious server.

It is obvious that although it prevents tampering with the stored metadata,
it does not prevent a malicious server from manipulating the comparison result.
Such an attacker can allow downloads after a file has expired by using an old
internal state, and vice versa. Further, the server is able to deduce the expira-
tion metadata based on its internal download state on the boundary if a new
download request fails the comparison.

Attempt #2: Server is Oblivious of the Comparison. Instead of com-
paring the its internal download state with encrypted download limits, a server
computes an output using its internal download state, and sends the output and
the encrypted file to the client. Only if the internal download state fulfils the
pre-set expiration conditions, the output can unveil the file encryption key.

This approach deprives the server of the ultimate power to grant or deny a
download request. The server is oblivious of the comparison outcome, moreover
not able to learn about the expiration metadata. However, it still requires a single
trust party, the server, to compute the output using the correct internal download
state. It is apparently not desirable because a single authority is easy to attack
and collude. Besides, this protocol does not prevent the server from replaying
an old computation result to the client. In practice, such an attacker can always
permit a download request regardless of the pre-set expiration conditions.
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Attempt #3: Use Smart Contract to Audit State. In order to address the
single trust issue, we require decentralised trust that reduces the trust level of a
single server. We use a public ledger on a blockchain to keep a world download
state, and a client interacts with a smart contract to post and get the world
download state. The server still computes an output but the output is encrypted
using its internal download state. The client requests the world download state
from the smart contract, and only if the world download state in the ledger is
consistent with the internal state used by the server, the output can be recovered.
It is impossible for an adversary to tamper the world download state in the ledger
without a majority of collusion because of the immutable nature of a blockchain.
This is a practical and more accepting setting, and exposes no extra trace on
the blockchain by publishing hashed digests rather than real data.

Remark. Like the previous attempt, the protocol described above does not pre-
vent a server from replaying old computation results. However, it precautionarily
detects such replaying attack, and indeed prevents a client from downloading an
expired file even if the server keeps replaying old computation results, and hope-
fully ensures that the server gains nothing from such attacks.

Our Design Intuition. The above attempts provide an intuition for our ideas,
and OblivSend uses the following techniques to realise our intuition. OblivSend
hides expiration metadata leveraging secret sharing and GBF. It first maps the
download count and time unit up to system default download limit (i.e. the
maximum download count or time unit allowed by OblivSend) into a GBF’s
locations, and puts secret shares of a cipher key element in locations mapped
from counts or time units under the download limit but a payload message
in those over the limit. OblivSend builds two GBFs for number and time limits
respectively. On a download request, an OblivSend’s server computes both GBFs
using its internal download state and sends the result to a client. If its internal
download state does not exceed either limit, shares from corresponding locations
of each GBF result recover the corresponding cipher key element.

Further, OblivSend takes advantage of the immutability of a blockchain to
audit the server integrity. The client requests for the world download state on a
blockchain via a smart contract, and validates the server’s internal state. Only
if the states are consistent can a client decrypt the cipher key element, and with
both key elements, the client can rebuild the file decryption key and decrypt
the file. The server is oblivious of all the subsequent validation and decryption
operations after handing over the GBF computation results, hence is no longer
a central authority to grand or deny a download request and never knows if the
expiration conditions have reached or not. Note this is a loose description, the
detailed construction is elaborated in Sect. 5.

4.2 Framework

Figure 3 shows that OblivSend consists of four parties and three phases:
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Fig. 3. High-level framework. Shaded areas are components introduced by OblivSend.

– Data Owner is a sender of file(s), who generates keys, encrypts the file(s),
sets download limits, and encodes the file encryption key and expiration meta-
data into GBFs before uploading them to a server.

– Server is where the encrypted files and GBFs are stored, who computes the
GBFs using its internal download state and returns the GBF results and
encrypted files on download requests.

– Smart Contract on a blockchain is a program that truthfully receives,
updates, and returns the world download state.

– Client is the file(s) recipient who retrieves the encrypted file(s) and GBF
results from the server, and the world download state from the smart contract.
The client validates the GBF results before it decrypts the file(s).

Upload consists of 4 steps according to Fig. 3: 1) Data Owner generates a
file encryption key composed of a number and a time key element, and encrypts
a file; then populates hashes for each allowed download count and time unit and
puts them into two maps; it generates a user secret and ciphers the two key
elements using the user secret and hashes, then put the cipher key elements into
two GBFs based on the download limits accordingly. 2) Data Owner uploads the
GBFs, the encrypted file and an upload timestamp to Server. 3) Server returns a
file URL. 4) Data Owner sends a hash value of the file URL as a unique identifier,
two maps of hashes, and an upload timestamp to Smart Contract.

During Sharing, Data Owner appends a user secret to the file URL and
sends the share URL to trusted Client(s) via some out-of-band communication
independent of OblivSend (as discussed in Sect. 4.3).

Download includes the following operations shown on Fig. 3: 6) Client ren-
ders the share URL, and requests Server for the encrypted file by the file URL
and an download timestamp. 7) Server returns the encrypted file and the GBF
computation results using its internal download state. 8) Client queries Smart
Contract for hashes of the world download state by the hash file URL and
the download timestamp. 9) Smart Contract returns the hashes by looking up
the world download count number and elapse time unit in the maps on the
blockchain. 10) Client imports the user secret from the share URL and validates
Server’s download state by decrypting the GBF results with the user secret
and hashes. If Server’s internal state is consistent with the world state on the
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blockchain, Client can decipher the GBF results. If neither the current down-
load count nor the elapse time unit has exceeded the pre-set download limits,
the deciphered GBF results are the two key elements, and Client can rebuild the
file encryption key to decrypt the file.

OblivSend changes Send ’s framework to a minimal extend while improving its
security performance. A notable variation is the usage of GBF to hide expiration
metadata and ensure server obliviousness. Another extension is the introduction
of Smart Contract on the left hand side of Fig. 3, which provides a mechanism
to audit the server integrity to detect any forged download state. We make such
minimal extension on purpose so as OblivSend’s oblivious expiration control is
generic and can be applied to other file sharing services.

4.3 Threat Models and Security Goals

Threat Models. We assume that an attacker can compromise any set of users
and an OblivSend server, while at least one client is honest. In particular,
OblivSend considers the following threats:

(a) The server would sniff the expiration metadata, hence deduces valuable
information of encrypted data.

(b) The server would forge its internal download state. A replay attack is typical
that allows a client to download after a file has expired.

(c) An attacker controlling a client tries to compromise the privacy of data that
is not shared with him/her.

Assumptions. Out-of-band communication. A data owner in OblivSend shares
a URL with client(s) through third party end-to-end secured channels of their
own control, such as Telegram [40], Signal [31]. The share URL can be sent
via secure messages similar to communicating user identities or notifications in
[6,21]. OblivSend only uses such out-of-band communication once at the sharing
stage, which is the same as Send and a common practice of other secure file
sharing systems [14,27], keeping all other activities within OblivSend.

Blockchain. OblivSend makes black-box use of a blockchain and a standard
assumption that a blockchain is immutable. If any set of peer nodes are compro-
mised or an attacker seeks membership of a blockchain, who attempt to mutate
the world download state on a blockchain, it becomes visible to all participants
who, by a simple majority of votes [8], can prevent such unlawful actions from
happening. We also inherent general blockchain security assumptions, which is
not narrated in this paper.

Anonymous Network. In order to hide other metadata during file sharing,
OblivSend assumes the data owner and clients communicate with the server in
an anonymous manner that does not reveal their network information via exist-
ing tools such as Tor [12] or secure messaging [10,43,44] based on decentralised
trust.



280 Y. Shen et al.

Algorithm 1: Upload.Generate
Input: σ, N , T
Output: FK, SU , CEN

, CET
, ABN , ABT , MN , MT

1 Initialisation;

2 Generate SU , EN , ET
$←− {0, 1}σ;

3 Compute FK ← hash(EN ||ET );
4 for p ∈ N do
5 p̂ ← hash(p), MN [p] ← p̂;
6 KN [p] ← PRFSU

(p̂);
// protect the key element

7 CEN
[p] ← EncKN [p](EN );

8 ABN [p] ← EncKN [p](“ABORT”);
9 endfor
10 for q ∈ T do
11 q̂ ← hash(q), MT [q] ← q̂;
12 KT [q] ← PRFSU

(q̂);
13 CET

[q] ← EncKT [q](ET );
14 ABT [q] ← EncKT [q](“ABORT”);
15 endfor

OblivSend does not address denial-of-service attacks.

Security Goals. OblivSend sets the following goals to address the above threats:

(a) Expiration metadata privacy. OblivSend ensures expiration metadata
is totally at a data owner’s control, and not visible in transit or at rest on
either the server or the blockchain.

(b) Server integrity auditing. OblivSend uses the public audit-ability of a
blockchain underpinned by its immutability feature to detect forged down-
load state on a server before actual decryption takes place.

(c) File confidentiality. A client is not able to recover the encryption key and
decrypt the file by guessing the current download state.

(d) General metadata protection. OblivSend does not reveal to the
blockchain the following in plaintext: user IP, file URL, download limits,
download state, upload and download timestamps.

OblivSend achieves the goals above based on common cryptographic assump-
tions and we provide extended discussion in Sect. 5.1.

5 Detailed Construction

In this section, we describe key components of OblivSend and present their
algorithms. We also provide security analysis of OblivSend.

Upload.Generate. Run by the data owner at the beginning of the upload phase
to generate a user secret SU , a file encryption key FK that composed of two
key elements (EN , ET ), and two maps (MN ,MT ) of all members in the system
allowed download number set N and time unit set T with their hashes. The data
owner also generates a protection key from a pseudorandom function on SU and
a hash value of n ∈ N or t ∈ T (line 6, 12 in Algorithm 1) and ciphers the key
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Algorithm 2: Upload.Encode
Input: N , lN , m, k, λ, CEN

, ABN , H
Output: GBFN

1 Initialise GBFN ;
2 for p ∈ N do
3 emptySlot ← −1;

// under download limit
4 if p ≤ lN ;
5 final ← CEN

[p];
6 for i = 0 to k − 1 do

// get an index via hashing
7 j ← hi(p);
8 if GBFN [j] == NULL then
9 if emptySlot == -1 then

// Reserve a location
10 emptySlot ← j;
11 else

// generate a secret share

12 GBFN [j]
$←− (0, 1)λ;

13 final ← final ⊕ GBFN [j];
14 else

// reuse an existing share
15 final ← final ⊕ GBFN [j];
16 endfor

// store final in the reserved location
17 GBFN [emptySlot] ← final;

// over download limit
18 else
19 final ← ABN [p];
20 for i = 0 to k − 1 do
21 j ← hi(p);
22 if GBFN [j] == NULL then
23 if emptySlot == -1 then
24 emptySlot ← j;
25 else
26 GBFN [j]

$←− (0, 1)λ;
27 final ← final ⊕ GBFN [j];
28 else
29 final ← final ⊕ GBFN [j];
30 endfor
31 GBFN [emptySlot] ← final;
32 endfor
33 for i = 0 to m − 1 do
34 if GBFN [i] == NULL then

// store random strings

35 GBFN [j]
$←− (0, 1)λ;

36 endfor

elements using the protection keys (line 7, 13 in Algorithm 1). The data owner
encrypts a file using FK, sends SU to clients during the sharing phase, and sends
MN and MT to a smart contract. The cipher elements (CEN

, CET
) and payload

messages (ABN , ABT ) are to be added into GBFs in Upload.Encode.

Upload.Encode. Run by the data owner to construct two GBFs (GBFN , GBFT )
encoding the cipher key elements (CEN

, CET
). It has two purposes: 1) to encode

the elements that can compose the file encryption key into GBFs (line 17 in
Algorithm 2) to ensure E2EE; 2) to map the download limits into GBF locations
(line 4, 7 in Algorithm 2) to preserve expiration metadata privacy meanwhile
enforce expiration control. The data owner sends GBFN and GBFT to a server
together with the encrypted file C and an upload timestamp. Algorithm 2 takes
the number element and download number limit as an example. For download
time limit, it takes inputs T , LT , m, k, λ, CET

, ABT , H, and outputs GBFT .

Download.Compute. Run by the server on a download request from a client to
compute GBFN and GBFT using the current download count c and elapse time
unit e. If c ∈ LN and e ∈ LT , shares of the cipher key elements will recover
CEN

[c] and CET
[e], otherwise cipher payload messages (ABN [c], ABT [e]). The

server returns the computation results RN , RT to the client.

Download.Validate. Run by the client to decipher the GBF results RN and RT

using the hashes of current download state (ĉ∗, ê∗) fetched from the smart con-
tract. If both elements are deciphered successfully (line 4, 5 in Algorithm 4), it
proves that the current download state c and e used by the server are authen-
tic, i.e. c = c∗ and e = e∗; otherwise, we must have KN [c∗] �= KN [c] and/or
KT [e∗] �= KT [e] that are used to envelop the key elements in Upload.Generate (see
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Algorithm 3: Download.Compute
Input: GBFN , GBFT , c, e, k, H
Output: RN , RT

1 Initialise RN , RT ← {0}λ;
2 for i ∈ [k] do
3 p ← hi(c);
4 RN ← RN ⊕ GBFN [p];
5 q ← hi(e);
6 RT ← RN ⊕ GBFT [q];
7 endfor
8 return RN , RT ;

Algorithm 4: Download.Validate
Input: SU , RN , RT , ĉ∗, ê∗
Output: FK
1 Initialise EN

∗, ET
∗ ← NULL;

// element protection keys
2 KN [c∗] ← PRFSU

(ĉ∗);
3 KT [e∗] ← PRFSU

(ê∗);
// fail on inconsistent download states

4 EN
∗ ← DecKN [c∗](RN );

5 ET
∗ ← DecKT [e∗](RT );

6 FK ← hash(EN
∗||ET

∗);

line 6, 12 in Algorithm 1). The unveiled secrets (EN
∗, ET

∗) are either (EN , ET )
or “ABORT” depending on whether the current download state satisfies the
download limits. Only if c ∈ LN and e ∈ LT , the secrets are the key elements
and the client can reassemble FK and eventually decrypt the file.

5.1 Security Guarantee

We now present security guarantees of OblivSend w.r.t. the goals given in
Sect. 4.3.

Expiration Metadata Privacy. OblivSend hides expiration metadata from
a server yet is able to enforce the expiration control by using GBFs in
Upload.Encode. The data owner maps each n ∈ N and t ∈ T to the GBF’s
locations and adds shares of cipher key elements only to the locations hashed
from n ≤ lN and t ≤ lT (line 4–17 in Algorithm 2). All other locations are filled
with cipher payload messages (line 18–31 in Algorithm 2) or random strings
(line 35 in Algorithm 2). Although the server holds the GBFs, the standard
secret sharing technique ensures the shares of the cipher key elements and pay-
load messages are of the same λ-length hence indistinguishable, and each share
reveals no information about the secret. OblivSend never discloses the expiration
metadata to a smart contract either, and the only information exposed is the
system download limit in MN and MT populated in Upload.Generate (line 5, 11
in Algorithm 1), which is visible to all OblivSend users hence not introducing
extra security risks.

Further, OblivSend enforces the expiration control at the client side, hence
neither the server nor the smart contract is aware of the decryption outcomes
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to deduce the download limits. If a server wants to learn the download limits, it
needs to decrypt RN and RT (line 4, 5 in Algorithm 4): if the decryption succeeds,
the download state c and e used are under the download limits; otherwise, over
the limits. In order to decrypt RN (or RT ), the server requires KN [c∗] (or KT [e∗])
that is and output of PRF on SU . A security parameter σ is used to generate
SU , and the probability of a server to find KN [c∗] is 2−σ, which is negligible for
all sufficiently large σ. The smart contract does not have RN or RT , thus not
able to decrypt them and infer the download limits.

Server Integrity Auditing. OblivSend makes use of the public audit-ability
of a blockchain to precautionarily detect if a server has tampered its download
state. Recall the immutability assumption of a standard blockchain in Sect. 4.3,
the world download state store on a blockchain is immutable, which means that
the hash state (ĉ∗, ê∗) fetched via the smart contract is authentic. If a server
uses a forged download state, e.g. a replay attack, we must have c �= c∗ and/or
e �= e∗. Note that the server computes RN and RT using its internal download
state c and e, and the secret shares from mapped locations of c and e recover
CEN

[c] (or ABN [c] if c > lN ) and CET
[e] (or ABT [e] if e > lT ), which are

encrypted using KN [c] and KT [e] respectively in Upload.Generate (line 7–8, 13–
14 in Algorithm 1). The probability that a client can decrypt RN using KN [c∗]
is Pr(c �= c∗ : KN [c] = KN [c∗]). Since KN [i] is an output of a PRF on SU

and ĉ∗ (line 6 in Algorithm 1), the server’s probability to trick the client into
decrypting RN computed from an illegitimate download number c is negligible
if PRF is collision resistant.

Though OblivSend does not prevent a server from manipulating its state, it
detects the inconsistency and prevents file decryption from happening. As long
as one honest client reports the server’s misbehaviour to the data owner after a
decryption failure, the data owner can re-upload the file and share a new URL,
hence such attack gains no information and little value.

File Confidentiality. OblivSend uses hash values rather than the original
download numbers and time units to protect the two key elements EN and
ET , so that a semi-honest client cannot recover the key elements and decrypt a
file by guessing a download state that has not expired without non-trivial com-
putation. In Download.Validate, the client already has RN , RT , SU , and wants
to get EN and ET not using (ĉ∗, ê∗) but trying a download state (u, v) that is
as minimal as possible. In order to recover EN and ET , the client needs KN [c]
and KT [e], hence ĉ and ê (line 2–5 in Algorithm 4). Therefore, the client needs
to find a pair of u and v so that û = ĉ and v̂ = ê and this event occurs with at
most negligible probability if the hash function is collision resistant.
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General Metadata Protection. OblivSend sends a hash file URL, uploads and
downloads timestamps and the maps of system-allowed download numbers and
time units to a smart contract, and the smart contract updates and keeps a world
download state that includes a current count and elapse time unit corresponding
to a file in a public ledger on a blockchain. However, OblivSend only publishes a
digest of hashes to a ledger. Therefore, no extra trace will be visible to adversaries
because of the preimage resistance property of hash functions. Since OblivSend
assumes an anonymous network (in Sect. 4.3), users’ IP addresses are garbled
when communicating with a server or a smart contract, and OblivSend encrypts
metadata such as file name, size, type in the same way as Send does [27]. Hence,
OblivSend addresses general metadata privacy in file sharing.

6 Implementation and Evaluation

6.1 Implementation

We implement a command-line-based OblivSend prototype on Hyperledger Fab-
ric programmed in Go. Since the purpose is not to measure the AES efficiency or
network transmit throughput, we use a demo string instead of a real file in the
prototype. We have the following settings: security parameters σ = 128, l = 256
(SH-256). The size of N (i.e. number of elements to be added to GBFN ) is 100
(maximum download number), and the size of T is 2016 (maximum 7 days with
a minimum of 5min), which follows Send ’s setting. Security parameter λ = 64
that yields a negligible false positive probability 2−64. The number of hash func-
tions k = 5, and the length of GBF m = kn

ln2 ≈ 1.44kn that is optimal [13], both
of which can be passed dynamically during experiments. H is a family of 128-bit
hash functions.

We present pseudo-codes of key functions performed by each party, and
Pseudo-code 1 is an example that shows how a peer node executes a smart
contract in response to a client’s download request. Each peer in a blockchain
network hosts a copy of the ledger, and OlibvSend can perform read and write
operations against the ledger by invoking a smart contract which queries the
most recent value of the ledger and returns it to OblivSend and/or updates the
value of the ledger. In Pseudo-code 1, the smart contract takes a hash url and a
download timestamp from the client’s request, and queries the most recent value
of the ledger. It first validates its local copy of the ledger and then returns the
value, meanwhile increments the download count and synced an updated digest
to the world state.
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Pseudo-codes of other main functions are enclosed in Appendix. Note that the
blockchain architecture is out of scope hence the implementation of Hyperledger
Fabric network, e.g. how to build the network, and how to install smart contract
(aka chaincode) onto peers, are not detailed.

6.2 Evaluation

The prototype Hyperledger Fabric network is deployed on a single cloud instance.
It consists of one orderer node and two peer nodes, and runs in a docker-local
container environment. We created an instance in a Research Cloud on Ubuntu
18.04 LTS (Bionic) amd64 (with Docker) version, with 2 virtual CPUs and 8 GB
RAM. We used a Dell Precision 5530 with Intel i7 2.6GHz CPU, 32 GB RAM
to make a SSH connection to the cloud instance.

Running Time. During the experiments, we measured the total running time
of the upload phase and download phase respectively. The upload phase starts
when a data owner initiates the upload request and ends after sending data to a
smart contract, which includes the time consumed to build the GBFs, generate
keys, maps, a hash URL, and all underlying data processing. We also measured
the total download time that starts from a client extracting the file URL and
ends immediately after the client outputting the decrypted demo, which includes
operation time at both the server side (computing the GBFs) and the smart
contract side (looking up for hashes and communication overhead). The com-
munication overhead when querying and syncing the world state in a ledger on
a blockchain is recorded separately as latency time. We do not, however, include
communication overhead at the smart contract end during the upload phase as
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it occurs after data owner successfully uploads the data hence that does not
explicitly impact user experience. We set one client to request a download for
each experiment and ran 1000 independent experiments with random download
limits, and the calculated average time is recorded in Table 3.

Table 3. Average total running time (ms) (record size = 1000).

Phase Operation Latency Running time

Upload 220.5283 NA 220.5283
Download 2.5385 1470.6911 1483.3837

We test the download number limit by fixing the time limit as the maxi-
mum of 7 days, and experiment download time limit separately by setting the
download number limit as the default number 100. As can be seen in Fig. 4a
and Fig. 4b, the total running times are consistent over different download limit
settings due to the undifferentiated construction of GBFs. The average total
running time that Data Owner takes to finish all upload operations is 220.53
ms, which is a satisfying performance. With regard to the download phase, the
average total running time 1483.38 ms, of which the latency time constitutes
over 99%. However, our proposed protocol is an privacy-enhanced extension of
secure large file sharing system, and in a real scenario, downloading a 25-MB file
over mobile can take 8 s and a 1-GB file takes 3min on fixed broadband just for
transit (according to [26], world-wide average download speed for fixed broad-
band and mobile are 74.64 and 30.47 Mbps as of March 2020), not considering
all underlying data processing operations. Therefore, an average of 1.5-s delay
does not have substantial impact from the perspective of user interaction and
experience.

Scalability. OblivSend is a secure and impermanent file sharing system that is
dedicated for confidential and intimate files, hence we refer to existing secure
file sharing or messaging tools [37,45] to determine pragmatic maximum allowed
download number and time, which are the size n (or t) of the GBFs. We consider
the maximum set size n = 5000 and t = 8640 (i.e. expiration time from 5 mins
to 30 days). According to [13], the running time of building a GBF increases
almost linearly in the set size, and the estimated running time of building the
GBFs on a 128-bit security parameter ≈1.3 s when uploading a file, which is not
noticeable by an end user during the course of uploading a file.

Remark: The experiment demonstrates feasible application of GBF and smart
contract in secure file sharing solutions, but a limitation of OblivSend is that
it does not process download requests in a concurrent context. The order of a
client raising a download request decides the current download count hence yields
different decryption outcomes. An existing solution [21] is to have the server, not
the client to publish data to a blockchain. However, this is not feasible in our
protocol as OblivSend audits server’s integrity using the immutable ledger on a
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(a) Change Number Limit Only

(b) Change Time Limit Only

Fig. 4. Running time

blockchain as discussed in Sect. 5.1. The challenge related with concurrent access
remains to be solved and future work for this topic.

7 Conclusion

We propose OblivSend, a lightweight privacy-preserving file sharing web service
that for the first time protects expiration metadata from the server and mean-
while ensures E2EE by adopting cryptography protocols like garbled Bloom fil-
ter and novel Smart Contract technology. We have successfully implemented the
design and built a prototype over a Hyperledger Fabric network. We also con-
ducted experiments to evaluate its performance. The result is as expected and
encouraging, demonstrating that OblivSend has stronger security without per-
formance sacrifice. OblivSend precautionarily detects malicious mutations of a
server’s internal state, and we consider a simple scenario that one client requests
download after another, both of which is open for further work.
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Abstract. Advanced Persistent Threats (APTs) are among the most
sophisticated threats facing critical organizations worldwide. APTs
employ specific tactics, techniques, and procedures (TTPs) which make
them difficult to detect in comparison to frequent and aggressive attacks.
In fact, current network intrusion detection systems struggle to detect
APTs communications, allowing such threats to persist unnoticed on vic-
tims’ machines for months or even years.

In this paper, we present EarlyCrow, an approach to detect APT
malware command and control over HTTP(S) using contextual sum-
maries. The design of EarlyCrow is informed by a novel threat model
focused on TTPs present in traffic generated by tools recently used as
part of APT campaigns. The threat model highlights the importance
of the context around the malicious connections, and suggests traffic
attributes which help APT detection. EarlyCrow defines a novel mul-
tipurpose network flow format called PairFlow, which is leveraged to
build the contextual summary of a PCAP capture, representing key
behavioral, statistical and protocol information relevant to APT TTPs.
We evaluate the effectiveness of EarlyCrow on unseen APTs obtaining
a headline macro average F1-score of 93.02% with FPR of 0.74%.

Keywords: Advanced persistent threats · Network intrusion
detection · Command and control

1 Introduction

Advanced Persistent Threats (APTs) are known to be the most sophisticated
long-term attack campaigns targeting highly protective organizations [2]. APTs
are generally aware of internal defenses related to their target [42], and usually
do not send spam, participate in DDoS attacks, or aggressively propagate to
other hosts to spread infections at scale [22].

APT malware are those malicious tools known to be used by APT cam-
paigns. The most common is the Remote Access Trojan (RAT), typically com-
posed of a builder, stub, and controller. The builder initiates a new instance
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stub upon the infection. The stub runs on the victim machine and contains a
hard-coded Fully Qualified Domain Name (FQDN) or IP to communicate to the
RAT controller, which resides on the Command and Control (C&C) server [41].
Rootkits, spyware, downloaders, and keyloggers may also be part of an APT
campaign. APT malware such as DarkComet includes these functions in one
ecosystem [22], which may capture the audio, explore files and drop malicious
tools through visiting URLs [23]. Griffon, used by FIN 7, can gather informa-
tion, load Meterpreter, and take screenshots [28]. Hutchins et al. [31] propose
a kill chain to defend against APTs at various stages, including reconnaissance,
weaponization, delivery, exploitation, installation, and C&C. These stages nor-
mally iterate over a long time [35]. In order to limit the damage inflicted by
an APT, it is essential to detect them at an early stage, and in particular as
they establish communication with the C&C. By inspecting honeypot data, we
find that the communication to C&C starts immediately once the machine is
infected. Several automated tasks are performed, including establishing fallback
channels and downloading further payloads from the C&C server. These activ-
ities intentionally behave as legitimate web browser activities, attempting to
evade Network Intrusion Detection Systems (NIDSs).

In Sect. 2, we introduce the first public measurement study of APT mal-
ware C&C communication to investigate the deployed TTPs. We leverage our
measurements to identify the features necessary to recognize such TTPs at the
network level, and compare them with existing features from the literature.
We found that the use of evasive TTPs leads to significant overlap with legiti-
mate behavior, confusing the decision boundaries based on some known features.
Based on this analysis, we build EarlyCrow, a tool to detect APT activity in
network traffic. EarlyCrow generates four sets of data focused on connections,
hosts, destinations, and URLs. Features from these sets are grouped to form
a ContextualSummary. The ContextualSummary has multidimensional
features that help in building more informative random forest trees used for clas-
sification as described in Sect. 3. We evaluate EarlyCrow on traffic from APT
malware excluded from the measurement study and training set in order to test
generalization and mimic a real-world scenario (Sect. 4). Fresh malware samples
are also investigated to confirm the feature importance identified by our mea-
surement study on the training set. We also investigate how the performance of
EarlyCrow is affected by different deployment scenarios, where it has visibility
on HTTP traffic or where it can only observe opaque HTTPS traffic.

In summary, our main contributions are:

• We present an evidence-based analysis of various TTPs used by APTs. These
TTPs are known to be used to evade NIDS [14]. We also introduce a mea-
surement study on various APT malware over popular and novel features to
capture TTPs usage.
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• We implement EarlyCrow1, a tool to detect evasive malicious communi-
cation over HTTP(S). EarlyCrow focuses primarily on APTs but is also
effective against stealthy botnets.

• We evaluate the classification performance of new and existing features for
malicious traffic detection under different scenarios distinguishing ATP, bot-
net, and legitimate traffic.

2 Threat Model

Defining a relevant threat model, and focusing on a narrow set of attacks are
recommended best practices when proposing a novel NIDS [43]. There are several
ways to approach threat modeling for APTs at the network level. We consider
four popular cases of APT that involve HTTP(S) traffic, each of which deploys
at least one C&C TTP. In Case I, the infected machine contains APT malware
with a hard-coded FQDN. The malware issues a DNS query to resolve the FQDN
to an IP address. The subsequent communication to the C&C server can be
via HTTP or HTTPS. After that, the malware may initiate a fallback channel,
another popular TTP used by APTs [19], using either of the strategies described
in Cases I–IV, only this time no longer for the initial communication. In Case
II, the APT malware connects to a URL whose domain component is a hard-
coded IP address, in order to bypass malicious domain detectors, and its fallback
channel can be established using the DNS over HTTPS (DoH) TTP [21], as in
CobaltStrike [33], which is used by SUNBURST [24]. Case III is similar to Case
I in using a hard-coded FQDN, but the subsequent communication uses raw
TCP rather than HTTP during the malicious operation. Case IV is similar to
Case II in using direct IP without DNS resolution, but then uses raw TCP
communication as in Case III. Both Case III and IV may use fallback channel
with various TTPs, although not including those related to HTTP(S).

Additional TTPs introduced by MITRE and relevant to APTs can be com-
bined with the use of a fallback channel: web protocol [13] where an adversary
may use HTTP to avoid network filtering and mimic legitimate and expected
connections, non-application protocols [20] such as Raw TCP, UDP or ICMP,
encrypted channel [18] to hide C&C malicious content, fast flux [17] is a sub-
technique of dynamic resolution to obtain different IPs for the same FQDN, and
data obfuscation through protocol impersonation [15] to impersonate legitimate
use of HTTP or to mimic a trustworthy entity using a fake SSL/TLS certificate.

This paper focuses on Case I and II, where at least one malicious HTTP(S)
connection exists between the infected host and C&C server. Other cases are
challenging to detect with low False Positive Rate (FPR) at the network level
only, and require additional host-level logs.

2.1 TTP Relevant Data

The TTPs considered here are a group of host and network-level techniques used
by APTs to evade Host and Network IDSs. To track TTPs at the network level,
1 EarlyCrow code, datasets, and experiments are publicly available at [1].
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an investigator needs to collect “static” Indicators of Compromise (IoCs) for
known APTs, or analyze sequences of network packets and assess the likelihood
of specific TTPs manifested by the traffic behavior. Security vendors publish IoCs
of discovered APTs. Novel attacks can be discovered when suspicious TTPs are
being observed, as for instance in the HTTP request and response behavior.

IoC-Like Data. APT campaigns dedicate one or more FQDN(s) to locate C&C
servers. They may mimic the targeted organization interests, or use dynamic
resolution, which is another TTP [16] used to communicate back to C&C
servers [3,22]. The resolved FQDN holds at least one A resource record. Some
APTs provide several A resource records to provide fallback channels for follow-
up connections. URLs are known to be used as IoCs, and used in HTTP-based
malware detection [7,34,38,40]. Some APT malware download an executable
file or pass other malicious FQDNs, IPs, or configuration commands in URL
parameters of subsequent requests. A typical URL structure includes FQDN,
nested folders (which we will refer to as depth), filename, parameters and values
with a delimiter (&) to separate between them and (=) to assign value to the
parameter, and encoded strings which typically contain %-encoding.

Traffic Data. Although multiple traffic-based TTPs were used by APTs in the
past, it is challenging to capture them by configuring NIDS with straightforward
rules. For this reason, we need to consider the context where malicious packets
are sent. First, we need to cover the details of HTTP requests and responses,
and then the traffic behavior of all protocols used for the same flow. HTTP
request and response context involves consecutive HTTP transactions composed
of several requests and responses. A request is mainly characterized by the URL,
method type (e.g. GET, POST) and User-Agent (UA). Response headers spec-
ify among other properties, the content type and status codes. To detect APT
malware, we need to efficiently store that information between two endpoints in
one flow and enable the NIDS to extract valuable statistics at the packet level.

Due to the stealthiness and low-profile operation of APTs, we also need to
provide a way to investigate Traffic Behavior. This can be achieved by stor-
ing packets arrival times, their lengths and other related information. Such a
summary needs to cover the control and data planes of TCP, UDP and ICMP
packets. With this summary on data points, NIDS designers can catch APTs
TTPs such as fallback channel and using non-application protocols. For instance,
a host contacting three different destinations after only one DNS query can be
a sign of infection by the fallback channel technique. Another example is the
non-application protocol TTP, when the APT malware opens a legitimate look-
ing HTTP connection which is followed by a sequence of malicious raw TCP
packets.

2.2 Measurements

We provide several measurements taken on the training set summarized in
Table 2 and described in Sect. 4. Since our objective is to detect APTs at the
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early stage, all measurements are observed during the first 15min of each con-
nection. In Sect. 4.2, we will investigate these measurements and other proposed
features, to see if they generalize to unseen malware.

Traffic Statistical Measurements. Statistical end-to-end observations may
highlight the evasive behavior of APTs compared to legitimate actors. The pres-
ence of a slight deviation may reflect malicious use of three TTPs, including
non-application protocols, data obfuscation through protocol impersonation and
web protocol. Since this study focuses on malicious HTTP(S) usage, we mea-
sure the HTTP packets ratio across all classes. Other related protocols are also
measured, including raw TCP and DNS ratios. Legitimate connections show a
positive linear relationship between DNS and HTTP packets (Fig. 1). With every
additional page requested by a user, such packets are exchanged with a remote
web server in order to fetch additional resources. For APTs, we notice that DNS
ratios are half or less than for legitimate or botnets, respectively. 95.2% of APTs
do not exceed a 0.19 DNS ratio, compared to 0.38 for legitimate and 0.46 for
botnets.

Next, we focus on DNS requests and conclude that almost no malicious
behavior exceeds the legitimate, except for Conficker botnets, which use Domain
Generation Algorithms (DGAs). 84% of APT or botnet traffic issues 2 or 6
requests at most, while legitimate traffic can generate up to 18. Once a domain
is resolved to one or more IPs, a typical APT avoids requesting another DNS for
the rest of HTTP communication unless they plan to establish another fallback
channel. Another useful feature is the raw TCP ratio, which helps detect the
non-application protocols TTP: a high ratio indicates the adversary uses HTTP
as camouflage while still heavily relying on raw TCP. It is extremely rare for an
APT to have a raw TCP ratio lower than 48.84%, whereas we observed minimum
ratios of 2% of legitimate, and 0% of botnets.

Since we focus on the early stage of connections originating from the victim
side, we found that around 70.58% of APTs receive 3.35 times more data than
they send to the remote server, compared to 1.45 and 0.75 for legitimate and
botnets, respectively. This is consistent with the threat model in [3], where an
adversary uploads more tools on the victim’s machine at the beginning of an
APT campaign to continue other operations such as lateral movement, unlike
botnets which may show more data exfiltration behavior. We also examine the
number of resumed connections. Legitimate HTTP usage typically increases the
number of resumed connections, since shortly after a web resource is downloaded,
the TCP connection is terminated with FIN. Upon clicking another link, even
for the same website, a new TCP three-way handshake is initiated. We count
that as a resumed connection. With a web caching service, the scenario remains
similar, although the server is contacted via a proxy or content delivery network
(CDN). While legitimate and botnets connections may easily be resumed up to
21 times, APTs tend to terminate less (roughly 50% less). It seems plausible
that APTs avoid frequent connection termination and resumption to increase
stealthiness.
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Fig. 1. Measurements for APT, botnets, and legitimate connections.

Time-Based Measurements. We measure stealthiness and low profile of APTs
by monitoring time-based features. Delta, the packet inter-arrival time between
a remote server and a host, is estimated based on the arrival time difference
between packets, independently from their protocol. For 94.73% of cases, we
found the mean delta time in seconds to be at most 23.5 × 10−2 for APTs,
6× 10−2 for botnets and 0.5× 10−2 for legitimate. Hence, APTs may act slower
than botnets and legitimate by up to 4 and 47 times respectively.

A new metric, data packet exchange idle time, is proposed to measure the
time difference between actual data packets. We found APTs idle time to be 3
and 6.57 times shorter than botnets and legitimate: 92% of cases have an idle
time of at most 28, 84, and 184 s, respectively. Once APTs establish a commu-
nication channel, they send bursts of data packets (low idle time), then pause
communications (high delta) until the next burst. We also measure the max-
imum magnitude of outliers which exceed the Simple Moving Average (SMA)
with respect to the predefined bins described in Sect. 3.3. We found that for
84% of the cases, the maximum magnitude for APTs (0.338 KB) is half the one
for botnets (0.676 KB), and 10% of the one for legitimate (3.33 KB). These
three time-based features partially capture the low and stealthy profile of APTs
compared to botnets or legitimate.

Remote Web Server. Analysis of contacted web servers may help identifying
the web protocol and fallback channel TTPs. Typical web servers mostly adhere
to best practices in setting up their HTTP configurations. APTs appear to be
more professionally configured than botnets, but not as much as legitimate ones.
For instance, the packet failure rate for legitimate servers and APTs (HTTP
responses with status codes 4xx and 5xx) is relatively low. To be precise, 90%
have at most one packet failure, while the botnets may receive as many as five.
Total GET and POST requests are less similar. 92% of APTs and legitimates
have 9 and 10 or less, respectively while the botnets have up to 14.
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We also investigate the ratios of content types declarations. We focus on
the ratios of HTML and images, since these are most frequently used in HTTP
connections. 73% of APTs, legitimate and botnets declare HTML 2%, 2% and
98% of the time, so APT behavior in this case is similar to legitimate. However,
due to the possible use of the data obfuscation through protocol impersonation
TTP, we found that APTs and botnets are less likely to declare image type, which
is not the case for web browsing activities. 70% of legitimate declare images 30%
at most during a connection, while it is zero for both APTs and botnets.

Next, we measure the URL characteristics, due to their proven effectiveness
for detecting malicious web servers. Measuring the distinct URLs accessed in a
given network may highlight the rich number of web pages which is more likely
to be legitimate [30,38]. We observe that APTs invest heavily in legitimate-
looking pages, to evade NIDS that rely on URL-based features. For example,
we find that 87% of botnets query only one URL, while legitimate and APTs
query up to five and four, respectively. APTs have more resources than botnets
in general. As depicted in Fig. 1, 90% of APTs have 3 nested folders (depth),
close to legitimate, which is 4, while botnets have 1 at most. URL parameters
differ even more: 87% of APTs and legitimate use 3 and 7, while botnets use
only 1. Following that, URL length is determined by the length of FQDNs,
depths, filenames, parameters, values, fragments, and strings. 90% of legitimate
URL lengths are 249 or less, whereas APTs and botnets are up to 145 and 109.
Finally, APTs deploy a fallback channel in several ways, as discussed in Sect. 2.
We measure the number of HTTP(S) connections established to an IP without
a previous domain resolution. 57.89% of APTs reached 32% of C&C with IP
only, while it is 9% and 1% for botnets and legitimates. Therefore, it is unusual
for legitimate to perform such behavior, while it is more common for APTs and
occasional for botnets.

3 EARLYCROW

EarlyCrow detects malicious HTTP(S) connections, and in particular APT
malware. In this section we discuss the architecture of EarlyCrow, and how
the features used by EarlyCrow are extracted and updated.

3.1 Architecture Overview

EarlyCrow is composed of four main processes, as depicted in Fig. 2. First,
it starts with buffering and dispatching using PairFlow (Fig. 2, 1 ), which
summarizes a PCAP into contextually relevant fields including packet behavior,
domain and URL list, UA, status code, and content type for HTTP. After the
PairFlow HTTP variant is generated, these flows are preprocessed for pro-
file pivoting (Fig. 2, 2 ) to generate three profiles: Host, Destination, and URL.
Then, two types of feature extraction follow (PairFlow and profile features in
Fig. 2, 3 ) to form a ContextualSummary (Fig. 2, 4 ) which is the input for a
random forest classifier. When another PairFlow is received, it will follow the
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same workflow. A further step is required when the new PairFlow matches one
of the previous ContextualSummary ID in the repository. The Contextual-
Summary updating process (Fig. 2, 5 ) is responsible for updating the matched
ContextualSummary to maintain the contextualization and reclassify again.
The rest of this section discusses in detail the feature space generation and how
the ContextualSummary is formed.

3.2 PAIRFLOW

PairFlow is a proposed data format that allows the NIDS designer to quickly
pivot flows into many profiles such as host, destination, and URL profiles. Pair-
Flow data can also be used by detectors of malicious domains or IPs. Instead of
detecting one flow according to the initiation and termination of TCP, protocol-
based or time window, PairFlow digests all information to extract features
later based on the whole context over time.

PairFlow receives raw PCAP data and stores these packets in a buffer until
a time window of size t has passed. The buffer sends the current granular data
with all the connections of a network during a time window, to the Tracking
module to group unique pairs and label related packets. A unique pair refers
to any (possibly bidirectional) connection observed between a host on the local
network and a remote server. We take the source of the pair to be the local host,
and the destination to be the remote server. Next, the Aggregator module adds
a PairFlow ID and time window to the flow data. The Aggregator module
is also responsible for marking packets according to their plane, extracting the
domains and HTTP fields. Next, the Encapsulation module groups all these
pieces of information contextually, so that all possible TTPs discussed in Sect. 2
can be analyzed later. Therefore, each pair of connections has a comprehensive
description of their packets behavior (described in Sect. A.3), HTTP settings,
accessed domains, and cipher suites setting. Finally, PairFlow outputs four
additional JSON files which can be used by any external classifier. We only use
the HTTP variant for EarlyCrow. The technical details for each component
of PairFlow can be found in Appendix A.
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3.3 PAIRFLOW Features

EarlyCrow benefits from using the statistical features produced by Pair-
Flow, which are presented in Appendix A and Table 5. It also extracts higher-
level contextual features from the TCP and UDP planes.

Statistical Behavior. As we found in Sect. 2, where raw TCP ratio may reveal
the non-application protocols TTP. We count the raw TCP ratio per PairFlow
in addition to other protocols ratios such as DNS, which can also detect APTs
malicious use of HTTP because it tends to request a domain resolution one time
during a connection [3]. From Data Sub-Plane in Fig. 5, we calculate GET/POST
requests and the fraction of status codes started with 1xx, 2xx, 3xx, 4xx, 5xx to
identify the most salient behavior of such a connection. Using the control sub-
plane, we count the termination of TCP connection FIN-ACK (0x11) during a
PairFlow instead of the sequence of TCP handshaking, i.e., SYN, SYN-ACK,
ACK (0x02, 0x12, 0x10) due to the lower computation cost. However, to exclude
a typical HTTP flow (e.g., browsing sessions) and reduce false positives, we
consider also the number of DNS requests during a given PairFlow, using the
UDP plane. EarlyCrow calculates the number of declarations of content types
and their ratios to the others in the data sub-plane. Examples of considered
types include JavaScript, HTML, image, video, application, and text.

Time-Based Behavior. The challenge of time-based features is to identify
APTs connections that operate at low-profile mode. First, we consider using a
couple of time-based features from the PairFlow such as packet TTL, duration
of the PairFlow, and delta packets inter-arrival time. We also measure the
max/min/mean data packet exchange idle time using the data sub-plane, the
difference between subsequent data packets’ arrival time. During a typical web
browsing session, there is little or no difference between delta packet inter-arrival
time and data packet exchange idle time.

We propose additional time-based features that attempt to measure the
stealthy behavior with time-series techniques. We present features based on the
simple moving average (SMA). The purpose of the SMA is to average the data
points over a time window of size t decided in advance, so that an analyst
can identify when a data point is above or below such average. SMAk can be
described as follows: 1

k

∑n
i=n−k+1 pi, where p is the packet length, k is the num-

ber of previous data points in a time window, and n is the current data point.
Since packets arrive asynchronously, in order to calculate an SMA we need to
introduce a sampling rate such that packets arriving within two sampling events
are combined together in a single point. For example, if the time window is
one minute and we sample points every second then k = 60 and if we receive
two packets of length respectively 128 and 32 between seconds 5 and 6, then
p6 = 160. After calculating the SMA, we can extract the number of outliers
and their ratio and magnitude. Outliers are those points two times above the
corresponding SMAk. Therefore, we can capture the stealthy behavior of APTs,
which has fewer outliers than legitimate and botnet traffic. However, it is also
essential to find the number of packets below and above average. These features
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can capture the APTs that touch or slightly exceed the SMA, reflecting cautious
operation.

3.4 Profiles Features

Profiles features are generated based on all PairFlows with longer time win-
dows, for example lasting days, weeks, or even months. EarlyCrow queries
the related information using a host IP, destination IP, and FQDN for the host,
destination, and URL profiles, respectively. The purpose of the host profile is to
identify whether that host has a sign of infection, such as discrepant information
or a fallback channel. The destination profile may reflect those destinations that
an enterprise can access and avoid some false positives. The URL profile helps
identify the typical use of a given FQDN. FQDNs commonly accessed without
parameters or values, especially with GET as method type, could signal the use
of the dynamic DNS or fast flux technique to point to frequently changed IP
addresses known to be used for APTs [3]. The URL profile helps pinpoint the
malicious use of HTTP protocol from their past behavior. Nevertheless, APT
cannot be easily detected based on such single features, so these will only con-
tribute in part to the final classification.

Host Profile. The host profile aims to investigate the effect of infection on a
machine behavior over t̂ time, which should be longer than the selected granu-
larity t time for PairFlow. Benign hosts should have specific characteristics in
terms of resumed connections, DNS requests per flow, time difference of sequence
connections, and type of UA used. When a host is infected with APT malware,
its characteristics may move to another point further from the benign host cen-
troid. For instance, it is suspicious for a host to initiate a connection by IP only,
which is highly linked to a fallback channel. EarlyCrow investigates the num-
ber of resumed connections per flow for each host. Similarly, we extracted the
DNS request per flow to identify a host with lower DNS requests than expected,
which is also a sign of APTs using dynamic resolution, DGA, and data obfusca-
tion through protocol impersonation TTPs.

In addition, we measure the Mean Time Difference of Sequenced Connections
(MTDSC), which can help to identify fallback channel. MTDSC can be calculated
as follows: 1

n

∑n
i=0 ti+1 − ti, where n is the number of new connections and t are

their timestamps. The input timestamp should be the first packet sent or received
from Control, UDP, or ICMP planes for any PairFlow, where the source is the
same host. We also compute a ratio of connected destinations using IP only to
those with FQDN. The feature can capture the APTs behavior of using DNS
requests to locate the IP address of C&C; once the first channel is established,
APT malware sends another IP as a fallback channel and starts another three-
way handshake. It can also indicate the malicious use of DoH. As pointed out in
Sect. 2, any client that uses HTTP will have an optional UA in a request packet,
and it could be a (non-)browser, malicious string, or just an empty. Similar to
[38], we extract several features for UA, including the distinct number of UAs
and their popularity among an enterprise.
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Destination Profile. The destination profile analyzes the servers contacted
by internal hosts to find the characteristics of the provided services. We are
interested in determining if it is normal for a destination to have fewer/more DNS
requests, short/long data packet exchange idle times, high/low packet failure
rates, sending/receiving dominant, and high/low resumed connections.

For instance, we measure the number of DNS requests per flow for a destina-
tion to investigate if such destination is using dynamic resolution, DGA or data
obfuscation through protocol impersonation TTPs. An APT destination tends
to have fewer DNS requests than usual. Once the domain is resolved and TCP
establishment has been completed, it is rare to request more DNS packets. The
legitimate use of HTTP(S) is to query the DNS packet every time they visit each
page. Therefore, the number of DNS requests is directly proportional to HTTP
packets. It is also essential to measure the destination data packet exchange
idle time to identify legitimate web servers with a reasonable time to be idle
for browsing. Again, the data packet exchange idle time here focuses only on
the meantime of zero data exchange packets from a destination point of view
without considering the control ones.

As pointed out in Sect. 2, some APTs use protocol impersonation such as
HTTP as a camouflage to communicate with C&C. Thus, identifying the packet
failure for each destination can explain if the failure comes from the destination
itself or the PairFlow in Sect. 3.3. The objective is to find if a destination
mimics web browsing activities while mainly communicating with the victims
through raw TCP as non-application protocol. Another important aspect for each
destination is calculating the number of resumed connections. Browsing behavior
has frequently more resumed connections than the APT ones as we presented
in our measurement study (Sect. 2.2). Finally, we observe the number of hosts
connected to each destination. Popular web servers and botnets destinations
are routinely contacted by a considerable number of hosts. In contrast, APTs
typically infect as few as possible hosts, hence receiving few connections to their
destinations.

URL Profile. We present URL-based features which are separated from those
in the destination profile, as many FQDN-based URLs share the same IP or
vice versa. The URL profile summarizes the standard behavior of resources and
the traffic statistics for each FQDN or IP-based URL. We count here how many
URLs are reached during a connection and how many are distinct. A malicious
C&C server typically has fewer than a legitimate one (Sect. 1).

We also check if a URL has a query string, filename, and whether it has
an executable extension, then calculate the fraction of the number of each
field compared to the distinct number of URLs. A legitimate URL is likely to
possess a filename with a variety of extensions. Other statistical features, i.e.,
Min/Max/Mean, are also calculated on URL length, depth, number of parame-
ters, values, and fragments.
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Table 1. EarlyCrow features. Note that features reused from the literature are
computed from PairFlow data rather than from other data formats.

ID Feature New? ID Feature New?

I. PairFlow features
1 Total bytes [7,8,46] 28–31 Number and ratio below and above

average
�

2 Sent/received ratio [7,8,38,46] 32–33 Number and ratio outliers �
3–9 Ratio of raw TCP, raw UDP, ICMP,

DNS, HTTP, TLS and SSL packets
� 34–37 Outliers magnitude Max/Min/ Mean/SD �

10–13 Ratio of HTTP response packets with
2xx, 3xx, 4xx, 5xx

[38] 38–40 Data packet exchange idle time
Max/Min/Mean

�

14–15 Ratio of frequent GET and POST [38,40] 41 Active duration �
16–19 Content length total/Max/ Min/Median � 42–45 Packet TTL Max/Min/Mean/SD �
20–26 Ratio of content type Javascript, HTML,

Image, Video, App, Text, and Empty
[38] 46–49 Delta packets interarrival time Max/

Min/Mean/SD
Similar to [7]

27 Number of resumed connections � 50 Number of DNS request �
II. Host profile features

51–53 Max/Min/Mean time difference of
sequenced connections

� 59 Distinct UAs per host �

54 Ratio of connected destination IP only to
FQDN

� 60 Inverse average of UA popularity [39]

55–57 Max/Min/Mean of resumed connections
per flow for a host

� 61–62 Fraction of UA 1, and 5 [39]

58 Number of DNS request per flow for a
host

� 63 Ratio of UAs [39]

II. Destination profile features
64 Number of hosts connected to destination [39] 72 Number of distinct URLs associated to a

destination
�

65–67 Destination received/sent Max/ Min/Avg � 73–75 Destination Max/Min/Mean packets
failure

�

68–70 Destination data packet exchange idle
time Max/Min/Mean

� 76–81 Max/Min/Mean number and ratio of
DNS request per flow for a destination

�

71 Number of resumed connections per flow
for a destination

�

II. URL profile features
82 Fraction of URLs filename [38] 94–96 URLs values Max/Min/Mean [7,38,40]
83 Fraction of URLs filename exe � 97–99 URLs fragments Max/Min/Mean [38]
84 Number of distinct extensions [38] 100 Fraction of query [38]
85–87 URLs length Max/Min/Mean [7,30,38,40] 101 Number of strings �
88–90 URLs depth Max/Min/Mean [7,38,40] 102 Number of URLs and distinct ones [32]
91–93 URLs parameters Max/Min/Mean [7,30,38,40]

3.5 CONTEXTUALSUMMARY

When all features are extracted for a received PairFlow and profile-based fea-
tures are prepared, the ContextualSummary module collects these features
in one bundle to be dispatched to the classifier. When a new PairFlow is
received, EarlyCrow checks the ContextualSummary repository to iden-
tify if the pair had been already processed in the past. If so, the PairFlow will
be processed as described in the previous sections. Then, it will be dispatched
to the updating process module to combine the new flow with the previous ones
as described in the next section. The purpose is to track the same connection
over time to catch malicious behavior. For example, if a malicious actor bypasses
EarlyCrow for the first flow, it will be tracked over time until it gets blocked.
Indicators associated to positive detections may stay in the ContextualSum-
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mary repository and the blacklists for training the classifier. In Table 1, we
summarize all features included in ContextualSummary.

3.6 CONTEXTUALSUMMARY Updating Process

While PairFlows are stored in a repository, the ContextualSummary gets
updated over time, using different rules for Host, Destination, and URL Profiles.
If an incoming PairFlow has no associated ContextualSummary (Fig. 2,
6 ), a new one is created. Otherwise the new PairFlow is considered for fea-
ture extraction, causing an update of the corresponding features of the associated
ContextualSummary (Fig. 2, 7 ). The time window is expanded with the new
PairFlow to describe the overall time window covered by the Contextual-
Summary. However, updating profile-based features could cause higher time
complexity because these profiles are to be updated for every different Contex-
tualSummary. Therefore, new profile-based features are recalculated every t̂
time, such that t̂ > t, where t is the selected granularity for EarlyCrow. For
instance, we can configure t̂ at 15min in our experimental settings, which is
higher than t by 50% if t at 10min.

EarlyCrow considers different methods to update features according to
their data type. Numerical features are updated by using a weighted average. As
shown in Fig. 2, each ContextualSummary stores the last PairFlow ID as a
counter of previous ones to be used for the weighted average formula. EPFLAG-
based features, Boolean data types, are updated with OR operation with an
incoming one to summarize the overall protocol used during ContextualSum-
mary. For instance, APTs often have the DNS packets at the first PairFlow,
but not the subsequent one, as we discussed in Sect. 2. Therefore, updating the
ContextualSummary does not reset EPFLAG for the DNS. For Host-Profile
features, strings of UA are stored to accurately extract other related UA, such
as the number of distinct UAs which cannot be updated without having access
to their strings.

4 Evaluation

This section evaluates EarlyCrow in a standard setting to investigate how our
system performs against APTs and botnets. We evaluate EarlyCrow perfor-
mance on the three datasets described below. The same experiments are per-
formed on a baseline, inspired by Made [38], which is a NIDS detecting C&C
used by botnets, ransomware, and APTs. Since we assume EarlyCrow to run
in parallel with a malicious-domain detector, we omit domain-related features,
which would also not be relevant for the considerable portion of traffic conform-
ing to the Case II pattern of Sect. 2.

4.1 Datasets

APT malware attacks a few targets in discontinued time-frames spanning months
or years, unlike other malware and common attacks. Therefore, the chance of
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Table 2. Dataset characteristics used for measurements (training set) and for unseen
malware evaluation (testing set).

Label Set Malware families

Malicious (567,090
packets)

Training Bitsadmin (0.09%), Carbank (0.05%), Conficker (27.56%),
Mivast&Sakula (0.93%), NanoCore (0.13%), njRAT (28.45%), PlugX
(0.11%), Remcos (0.87%), Sogou (3.65%), Virut (9.59%), Zebrocy
(0.98%),

Testing (unseen) Ammyy (1.01%), ChChes (0.13%), CobaltStrike (0.39%), Dridex
(0.23%), Emotet (0.02%), Empire (1.70%), FlawedAmmy (0.24%),
ImminentMonitor (11.27%), MagicHound (0.40%), OnionDuke
(0.14%), PoisonIvy (0.25%), Ramnit (0.21%), StrongPity (11.38%),
Zeus (0.04%)

Legitimate
(766,641 packets)

Training: 70%, Testing: 30%

finding a real network infected with various APT campaigns is unrealistic. We
resort to raw PCAP captures from two different honeypot networks, each of
which includes legitimate, APTs and botnets C&C connections (Table 2). These
APTs are often temporarily inactive. Due to this, we run them during multiple
time windows (April 2020–January 2021, October–November 2019) until each
campaign’s activities are resumed, and their command and control are activated.

APTraces. We run different active malware using Any.Run2 sandbox machines
to generate PCAP files. These malware families are known to be used by 48
APT campaigns, and they were active and tied to an APT campaign at the
time of the capture. These include RATs (njRAT, Imminent Monitor, Cross-
RAT, Mivast & Sakula, NanoCore, PlugX, PoisonIvy) and trojans (Empire,
OnionDuke, MiniDuke, Remcos, StrongPity, Zebrocy). We also consider legiti-
mate connections from the same sandbox to avoid data bias based on the victim
machine, configuration settings, or temporal bias [5] against legitimate.

Malware Capture Facility Project (MCFP). The MCFP3 includes mal-
ware used in APTs such as (Magic Hound and Cobalt), admin tools (Ammyy),
and RATs (njRAT ). We also add botnets captures that use HTTP(S) for C&C
communication (Conficker, Dridex, Emotet, Ramnit, Sogou, Virut, Zeus) and
normal traffic (CTU-Normal-12, 20–22). After PairFlow compiles the PCAPs
and generates HTTP variant files, we build three combined datasets: APTs vs.
Legitimate, botnets vs. Legitimate, and Malicious (APTs or botnets) vs. Legiti-
mate.

4.2 Classification Performance

Classifiers are evaluated in two modes. First, HTTP-Mode, which assumes the
administrator connects the NIDS to a web proxy to decrypt HTTPS and accesses
features such as UA, HTTP response codes, content type, and URL. Second,

2 https://any.run.
3 https://www.stratosphereips.org/datasets-overview.

https://any.run
https://www.stratosphereips.org/datasets-overview
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Table 3. Classification performance.

Classifier name Known malware Unseen malware
FPR Prec. Recall Acc. F1 mF1 FPR Prec. Recall Acc. F1 mF1

I. Dataset: APTs vs. Legitimate
EarlyCrow 0.40 94.20 93.69 99.17 99.17 93.89 0.74 94.48 91.67 98.11 98.08 93.02
Baseline 0.49 92.4 89.09 98.75 98.73 90.45 0.00 98.04 75.00 96.22 95.63 82.33
EarlyCrow-HTTPS 0.51 92.85 93.18 99.03 99.03 92.79 0.74 94.68 92.81 98.28 98.26 93.72
Baseline-HTTPS 0.72 82.90 68.96 97.19 96.72 73.18 0.00 96.70 56.82 93.47 91.10 60.29

II. Dataset: Botnets vs. Legitimate
EarlyCrow 0.48 96.49 95.40 98.92 98.91 95.90 0.19 96.77 92.01 99.26 99.24 94.25
Baseline 0.57 94.64 86.92 97.61 97.49 90.24 0.19 95.08 78.85 98.35 98.16 85.06
EarlyCrow-HTTPS 0.42 96.79 95.02 98.92 98.90 95.84 0.19 95.49 81.48 98.53 98.40 87.12
Baseline-HTTPS 0.96 90.73 80.76 96.39 96.14 84.79 0.00 48.25 50.00 96.51 94.79 49.11

III. Dataset: Malicious vs. Legitimate
EarlyCrow 0.86 95.41 94.79 98.29 98.29 95.06 0.93 94.77 91.60 97.51 97.46 93.11
Baseline 0.93 93.76 88.20 96.97 96.86 90.68 0.19 95.89 76.10 94.85 94.15 82.62
EarlyCrow-HTTPS 0.93 95.07 94.76 98.23 98.23 94.89 0.93 94.27 89.22 97.01 96.92 91.54
Baseline-HTTPS 0.95 91.21 78.66 95.13 94.689 83.47 0.00 95.22 54.76 90.53 86.86 56.18

HTTPS-Mode, where the administrator places the NIDS at the network edge
without deciphering HTTPS. Because of imbalanced classes of APT (3.9%) and
botnet (8.3%) compared to legitimate, we focus on macro average F1-score (mF1)
in Table 3.

Known Malware. We randomly split the training and testing sets ten times.
Then, we take the average performance under two constraints. First, the malware
should be presented in both sets. Second, the infected hosts and the destination
C&C server should be unique and not leaked from training to testing. Early-
Crow obtains the best performance with mF1 of 93.89%, 95.9%, and 95.06%
for the three datasets. Even in HTTPS mode, which cannot take advantage of
plaintext HTTP features such as headers or URL details, EarlyCrow still out-
performs the baseline on both three tasks, scoring 92.79%, 95.84%, and 94.89%
respectively. Note that EarlyCrow can operate almost similar on both modes
on known malware. However, we will investigate that on unseen malware.

Unseen Malware. We train our classifiers on the training set that used for
our measurement study. Then we evaluate the performance against unseen mal-
ware described in Table 2. EarlyCrow obtains the best performance with mF1
of 93.02%, 94.25%, and 93.11% for the three datasets. On all three tasks in
HTTPS mode, EarlyCrow surpasses the baseline, achieving 93.72%, 87.12%,
and 91.54%. For EarlyCrow, the performance loss between known and unseen
is marginally low (1.96% of mF1) in the third dataset, while the baseline suffers
a loss of 8.04%.
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Fig. 3. Effect of using only the top % of features.

4.3 Discussion

We limit our discussion to the results of unseen malware on the third dataset pre-
sented in Table 2, which evaluates the generalization of EarlyCrow to mimic
the real-world environment.

Features Diversity. The detection of APTs necessitates a spread of features,
as presented in Sect. 2. In Fig. 3, we show the extent to which additional fea-
tures affect the performance of the various classifiers. The first 10% of fea-
tures for EarlyCrow show rapid improvements in terms of precision but with
poor recall. Also, stronger features between 48% and 62% can improve the per-
formance of mF1 up to 92.26% for EarlyCrow-HTTPS. Adding more fea-
tures afterward increases the detection rate, enabling more unseen APTs to be
detected. Furthermore, a system with diverse and strong features will require
more time and resources to defeat as opposed to one that relies on a few partic-
ular features [47].

Top Features. We investigate the feature importance of the third dataset in
HTTPS mode, which comprises APTs, botnets, and legitimate samples, because
it is the one closest to a realistic scenario for APT hunting. Figure 4 illustrates
the top features based on their information gain. MTDSC is an effective fea-
ture that reveals 82% of hosts infected with APTs and botnets spend up to 73.7
and 38.5 s, which are higher than 1.1 s of typical benign hosts, confirming the
expected HTTP browsing. The longer time for APTs indicates using a fallback
channel, which is generally established after a long time. Next, the average num-
ber of DNS requests for a host per connection is lower in APTs than botnets
and legitimate, with 90% at most 2, 6, and 19, respectively. Interestingly, hosts
infected with APTs have higher connections reaching further destinations by IP
without domain resolution as fallback channels. This is consistent with our mea-
surement study in Sect. 2.2. 70% of APTs use such an approach, with 88% or
less for their connections, compared to only 1% for the legitimate.

While 60% of legitimate connections are repeated six times resumed or less,
botnets are rarely disconnected, and APTs are weakly imitating legitimate web
protocol TTPs, with two-thirds lower. Next, APTs and botnets are considerably
slower than legitimate, with mean delta inter-arrival times at most 33.5× 10−2,
46 × 10−2, and 0.5 × 10−2 seconds at 95% of their probability. We confirm
that APTs tend to switch from HTTP to raw TCP for malicious operations
representing non-application protocols. Within a PairFlow, we find that 50%
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Fig. 4. Cumulative distribution of top features gains on the testing set for Early-
Crow-HTTPS.

of APTs rely on 81.09% (58.35% for legitimate) of the whole exchange packets on
raw TCP, indicating the adversary use HTTP as camouflage while still relying on
TCP for many tasks. Nonetheless, the APTs and botnets are faster regarding the
difference between data packets. They tend to be shorter/faster than legitimate,
where 90% of them take 104, 124, and 168 s, respectively.

Evasion Attacks. In Table 4, we break down the results of EarlyCrow-
HTTPS on unseen malware. 92% of unseen malware are detected with at least
one C&C communication, and 64% of different malware are fully detected. How-
ever, one server belonging to StrongPity is not detected in HTTPS. We found
StrongPity is not using a fallback channel, and its measurement reflects a legiti-
mate one. In HTTP mode, EarlyCrow managed to detect StrongPity because
of its malicious URL characteristics, such as using .exe file extension, and lacks
a rich web server (i.e., No. of URLs distinct) compared to the proportional data
volume. Also, some C&C servers belonging to OnionDuke and Zeus managed to
evade detection. These servers are established as fallback channels with minimum
data transfers, which evade many features. Since the malware is detected on a
specific machine, we recommend a SOC analysis to sanitize the victim machine
from the malware to stop other possible C&C communications.

Table 4. Detection rate on unseen malware over HTTPS.

Malware C&C servers Detection (%) Malware C&C servers Detection (%)

Ammyy 8 100 ImminentMonitor 4 75

ChChes 1 100 Magic-Hound 3 100

CobaltStrike 2 100 OnionDuke 6 33.34

Dridex 2 100 PoisonIvy 1 100

Emotet 13 53.84 Ramnit 2 100

Empire 5 100 StrongPity 1 0

FlawedAmmy 4 100 Zeus 3 33.34
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4.4 Limitations

APT Campaigns. EarlyCrow is geared toward detecting the early stages of
infection. Nevertheless, it is difficult to conclude which suspicious activities are
due to advanced adversaries and which are due to mainstream malware vari-
ants. Hence, we recommend tracking APT campaigns and malware activities
over a longer period of time on a live system. This could be done by deploying
EarlyCrow on the network of several likely targets, such as a sovereign entity
or large financial institution, over months and periodically reevaluating Early-
Crow reports against each APT campaign to drive further improvement. By
maintaining our repository publicly accessible [1], we encourage collaboration
with the open source and research communities to run EarlyCrow on their
targeted networks and to share their findings for further improvements.

Adversarial Robustness. Previous work has studied adversarial attacks
against deep learning based NIDS [12,26,27,36], and discussed robustness for
traditional machine learning such as random forest [9,37,38]. Although Ear-
lyCrow is motivated by the techniques used by APTs to evade NIDS, Prac-
tical and Feature-space Attacks [11,25] specifically targeting PairFlow fields
and EarlyCrow features may still be possible. For instance, Random Interval-
Time (RIT) [8,44] and Random Duplication (RD) [29] were used against botnets,
and could be tested against APTs. The former generates adversarial samples by
altering packets’ arrival times, which APTs could easily do, although it may
have less effect on lower volume traffic. The latter duplicates the number of
packets randomly, and may be less useful to APTs, but still useful as a measure
of robustness.

Practical and Feature-space Attacks [25] could also be considered. In a Prac-
tical Black-box Attack (PBA) the adversary knows what traffic features are
selected by the classifiers, including in our case, the PairFlow fields from
Table 5. Moreover, adversaries can access most features published in the past to
adapt their traffic according to the targeted feature extraction to evade NIDS.
We refer such assumption to Practical Gray-Box Attack (PGA) for those features
used in the literature presented in Table 1. Another two attack configurations
can be considered [11,25,48], including Feature-space Grey-box Attack (FGA),
Feature-space Black-box Attack (FBA). FGA may attack all features produced
by EarlyCrow, while the FBA is produced by the state of art baseline, i.e.,
reproducible Made and non-novel features in Table 1. However, there are several
variations in finding the optimization of evasion attacks. We suggest to adopt
variants of Euclidean norm [10,45] (lp) for black-box configuration and free-range
[49] for Gray-box.

Execution Time. EarlyCrow can speed up its execution by running its mod-
ules (of Fig. 2, 3 ) in parallel using Hadoop, similar to [30], optimizing memory
hierarchy, and pipelining the main processes (Fig. 2, 1 – 3 ). The current imple-
mentation aims to prove the concept and focuses on detection performance. Fur-
ther investigations of how to improve and measure execution speed and memory
footprint in a production environment are left for future work.
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5 Related Work

There is very limited previous work on detecting APTs at the network level.
Detecting C&C in general is the closest area. In our approach we test several
features from the literature which can be relevant for APTs including URLs and
UA features [32,38–40], traffic exchange bytes [7,8,38,46], HTTP content types
[38,39], and GET and POST ratio [38,40]. Besides directly using such features,
EarlyCrow pivots them into host, destination and URL profiles, and combines
them in contextual summaries.

Some previous works focuses on detecting APTs in addition to other kinds
of malicious communications [38,39]. Oprea et al. [39] propose a belief prop-
agation (BP) algorithm to detect early-stage infection of APTs. They model
enterprise communication using a bipartite graph with two vertices, hosts, and
domains based on simulated attacks. Once the detector identifies a malicious
remote host or domain based on several features, BP identifies communities of
malicious domains with similar features that are part of the same attack cam-
paign. Domain scores are calculated as a supervised linear regression weighted
sum of features. As discussed in Sect. 4, APTs tend to infect a lower number
of hosts than botnets. Therefore, EarlyCrow consider other features based on
different TTPs discussed in Sect. 2.

EarlyCrow is closer to Made [38], which instead uses web proxy logs at
the edge of an enterprise network to detect malicious C&C communications,
including APTs. Made leverages features related to the communication, HTTP
request, response and its content, URL, and UAs. These are used by a random
forest classifier to assign a risk score for each connection. As discussed in Sect. 4,
Made is not as effective on HTTPS traffic, which is nowadays harder to intercept
and decrypt due to technical and legal requirements. In addition, EarlyCrow
considers five other TTPs besides the Web Application Protocol TPP at the
heart of Made.

ExeceScent [37] detects C&C domains by clustering incoming requests into
five templates, including median URL path, URL query component, User-Agent,
other headers, and destination network. These templates are used to estimate
similarity scores to predefined Control Protocol Templates (CPT) centroids.
However, this is open to evasion if an adversary copies the UA of the victim
machine from the Windows Registry [9]. In addition, it is not possible to extract
most HTTP header features when HTTPS is in use, which hinders the gener-
alization process and may result in mixing APTs with legitimate ones in many
clusters. A related approach [7] adopts similar features, only using histogram
bins which also can be evaded using HTTPS.

BAYWATCH [30] is a filtering system to detect the beaconing of infected
hosts. Universal and local whitelist are filtered, then beaconing can be detected
using Fourier transform and Gaussian mixture model, awarding a high agglom-
erative hierarchical clustering score for strong periodicity. BAYWATCH filters
URLs and domains that are likely to be legitimate. Unprocessed connections
with all previous features are sent to a random forest for classification. BAY-
WATCH can be computationally expensive for only beaconing behavior, and
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many APTs also have non-beaconing connections. EarlyCrow detect mali-
cious connections regardless of their pattern. Finally, Kitsune [36] adopts an
ensemble of autoencoders, proving the efficiency of unsupervised deep learning
to detect classic attacks such as ARP poisoning and SYN DoS, which are rarely
used by APTs. As discussed in Sect. 1, we avoid using deep learning because of
the scarce dataset representing various APTs TTPs, which is essential for deep
learning models.

6 Conclusions

We presented a threat model for APTs which focuses on the TTPs used by
adversaries to avoid existing NIDS. As part of our measurement study, we demon-
strated the significant overlap between APT and legitimate behaviors, and clari-
fied their characteristics. Taking this into account, we designed and implemented
EarlyCrow, a tool which can detect APT malware network activities that are
missed by current deployed defense mechanisms. Our results demonstrate the
importance of using diverse features based on contextual fields to detect unseen
APT malware. We recommend using EarlyCrow as an additional layer of
defense, besides SIEM, Host Intrusion detectors (HIDS), and domain detectors.
While EarlyCrow is motivated by the NIDS-avoiding behavior of APTs, adver-
sarial attacks specifically targeting PairFlow fields and EarlyCrow features
may still be possible. A study of adversarial defenses and their robustness, and
deployment issues is left to future work.

A PAIRFLOW

EarlyCrow defines a novel multipurpose network flow format called Pair-
Flow, which is leveraged to build the contextual summary of a PCAP capture,
representing key behavioral, statistical and protocol information relevant to APT
TTPs. We discuss the details of each component in the following.

A.1 Tracking

Packets Retrieving. The tracking module identifies all unique pair connec-
tions on the network and filters out those using non-IP protocols (Fig. 5, 1 ).
For each unique pair connection, PairFlow tracks, bidirectionally, all packets
related to a pair. These packets are designated with an initial Flow ID. The
Flow ID holds unchanged for all packets during the same time window for a
given pair connection. Each packet will maintain its individual index for the
aggregation step later. Packets with the same Flow ID may also use different
protocols. Therefore, each one has a one hot encoding flag called Encoding Pro-
tocol Flag (EPFLAG) used later for further filtering. These flags started with
EPFLAG_Protocol, where a protocol is a subset of {TCP, UDP, DNS, ICMP,
HTTP, SSL/TLS}.
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DNS Requests and Responses. The tracked packets do not include DNS
requests and responses, which are responsible for locating the IP address needed
to establish a connection. That is due to the pair connection being between the
host and the DNS server, which is different than the destination. Similar to [4],
to track these DNS packets, a destination of the present pair will be used as a
Local PTR to find all DNS response packets from the PCAP repository. Once
found, the DNS response resource records will be used to find all related DNS
requests. Now, any packets belonging to the pair connection are attached and
sorted according to their arrival time. Those packets outside of time window are
not included.

A.2 Aggregation

Header Generation. Besides the individual packet ID from the PCAP, every
packet is also designated with a Flow ID composed of a ContextualSummary
ID (CSID) and a PairFlow ID (PFID). The former is unique for the lifetime
of a pair, while the latter is unique for a time window. Any packets from that
PairFlow will always have the same Flow ID. To assign the PFID, the aggrega-
tion module will check the ContextualSummary repository to find if the pair
has been processed in the past (Fig. 5, 2 ). If so, the incoming PFID will be the
last used PFID for the same pair and ContextualSummary ID, incremented
by one. Otherwise, a new and unique ContextualSummary will be created,
and the PFID will start with zero.

Packets Aggregation. The aggregator module creates a PairFlow to store
PairFlow ID, sorted packet index, pair connection, time window, EPFlag,
FQDNs, URL, UAs, SSL/TLS settings, and initial flow-based statistics. The
initial flow-based statistics include the number of protocol-based packets (i.e.,
TCP, UDP, ICMP, HTTP, SSL/TLS, DNS packets), total (encrypted) bytes,
total (encrypted) bytes sent/received. Time-based statistics include packet Time
to Live (TTL) and delta packets interarrival time max/min/median and the flow
duration at the same time window. Similar to [6], we separate TCP packets into
data and control packets to be used later in the encapsulation process. Finally,
preprocessed flows are dispatched to the encapsulation step for further process-
ing.
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Fig. 5. Overview of the PairFlow workflow.

A.3 Encapsulation

The encapsulation phase explicitly groups packet behavior, FQDN and URL,
HTTP(S) and initial statistical behavior implicit in preprocessed flows in order
to make contextual information readily available (Fig. 5, 3 ). The data types
involved include list of strings and tuples, Boolean and numeric fields, as shown
in Table 5.

Packet Behavior. Packet Behavior encapsulates all packets according to their
protocol type (TCP, UDP, and ICMP) in a list of tuples. The first element is
the packet index for traceability of a given packet inside the original PCAP for
further investigation.

The TCP plane involves the control and data sub-planes as shown in
Fig. 5. Each packet in the data sub-plane holds protocol name, request/response
and their types, content type, timestamp, and packet length for each packet.
For example, an HTTP request packet can be described as (460854, ‘HTTP’,
‘Request’, ‘GET’, ‘Empty Content’, 1066.51, 383) and its response (460895,
‘HTTP’, ‘Response’, 200, ‘text/javascript’, 1066.86, 429). This helps the upper
system work on time series traffic and monitor the anomaly for a given Pair-
Flow. Further packet-level statistical analysis such as counting GET/POST,
HTTP response types, content analysis can be achieved as described in Sect. 3.3.

The control sub-plane provides the behavior of the initial connections before
the data exchange begins, the TCP continuation, or the termination of the TCP
connection. For example, when TCP establishes a connection with three-way
handshaking, it will summarize SYN, SNYACK, ACK packets as follows (72095,
‘0x02’, 215.73 s, 74), (72126, ‘0x12’, 215.78 s, 70 B), (72127, ‘0x10’, 215.78 s, 66
B). Then it will follow a stream of packets with TCP flag = 0x10 (ACK) until the
connection is disconnected with flag FIN. This will be useful for analyzing any
problem with time series or monitoring the discontinuity of such a PairFlow
as we can see in Sect. 3.4.
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UDP plane records all UDP-based packets with protocol name, packet type,
timestamp, and packet length. For example, if there are two packets for DNS
which are request and response for a specific domain, they will be summarized
as follows: (21160, ‘DNS’, ‘DNS Request’, 141.44 s, 75 B), (21219, ‘DNS’, ‘DNS
Response’, 141.54, 547 B). ICMP Plane is similar to the UDP plane but for the
ICMP only. However, the type and code are reporting ICMP settings for each
packet. The plane can be helpful for any classifier detecting ICMP-based attacks.

FQDN and URL. As depicted in Fig. 5, domain list encapsulates all FQDNs
related information in a list of tuples. Each tuple holds an FQDN, its A and
NS resource records, and the domain age extracted from the WHOIS file. This
helps malicious domain detectors, which often rely on FQDN strings, relative
DNS zone, and WHOIS files. URL encapsulates each relevant element of URL
during a connection in a tuple which includes FQDN, web page filename, the
number of parameters, values and fragments, and whether it contains encoded
strings or not.

HTTP(S). HTTP encapsulates HTTP-level information for a given connec-
tion, in particular, distinct HTTP server names, status codes, content types
and UAs. TLS Protocols summarizes the security settings between a client and
server. Cipher suites for both client and server are stored in a list. Cipher suites
includes the key exchange/agreement (e.g. RSA, Elliptic-curve Diffie-Hellman
(ECDH), Elliptic Curve Digital Signature Algorithm (ECDSA)), authentication
(e.g. RSA), block/stream ciphers (e.g. AES, RC4) with their block cipher mode
(e.g. CBC) and message authentication (e.g. MD5, SHA-x). Extension types are
also listed for each connection which summarizes the cipher suite settings such as
extended master secret, session tickets, and Elliptic Curve (EC) point formats.
Supported Groups are also stored, known as the EC setting (e.g., secp256r1,
secp521r1).

Initial Statistical Behavior. A few essential fields are important to be sum-
marized statistically. We calculate max, min, mean packet TTL, delta packets
interarrival time, and duration for a given PairFlow. We also calculate the
total (encrypted) bytes and the ratio of sent/received (encrypted) bytes. Max,
min, median of cipher suites bytes, and server and client extension bytes are also
calculated. We also provide a statistical summary of individual protocol number
of packets such as raw TCP, raw UDP, ICMP, DNS, HTTP, TLS, and SSL. We
summarize statistical fields in Table 5.
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Table 5. Summary of PairFlow data fields (B: Boolean, LS: List of Strings, LT: List
of Tuples, N: Numerical).

ID Field Type ID Field Type

I. Informative fields
1 Flow ID N 17 HTTP servers LS

2–3 Source & destination S 18 Status codes LS
4 Packet data points LT 19 Content type LS
5 EPFLAG S 20–21 Client and server ciphersuites LS

6–12 EPFLAG raw TCP, raw UDP,
ICMP, DNS, HTTP, TLS and SSL

B 22–23 Client and server extension types LS

13 FQDN LS 24–25 Client and server signature
algorithms and hashes

LS

14 Resource records: type nameserver LS 26–27 Client and server supported groups LS
15 Resource records: type A LS 28 ALPAN next protocol LS
16 URL LT 29 EC point format LS

II. Statistics fields
30 Total bytes N 44–48 TTL Max/Min/Mean/SD N

31–32 Total sent/received bytes N 49–52 Delta packets interarrival time
Max/Min/Mean/SD

N

33 Total encrypted bytes N 53–56 Content length
Total/Max/Min/Median

N

34–35 Total encrypted sent/received bytes N 57–59 Client and server ciphersuites bytes
Max/Min/Median

N

36–42 Number of raw TCP, raw UDP,
ICMP, DNS, HTTP, TLS and SSL
packets

N 60–62 Client and server extensions bytes
Max/Min/Median

N

43 Duration N

A.4 Variants Extraction

PairFlow processing also exports four variant JSON files which can be used
by any external classifier (Fig. 5, 4 ). FQDN.json includes all domains and their
hostname lists that have been accessed during a given PairFlow. In addition,
resource records such as A, NS are also included and domain age extracted from
WHOIS file, which appears to be useful for domain detection [3]. TCP-UDP-
ICMP.json is dedicated for those classifiers use time-series for detection [6,30].
All three planes are presented here in addition to related statistical fields such
as packet TTL and delta packets interarrival time. HTTP.json is employed for
those interested to detect malicious HTTP connections [30,38]. Other classifiers
may deploy HTTPS.json for detecting encrypted communications without deci-
phering the traffic [4]. A detailed study of the other variants is left for future
work.
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Abstract. Recently, malware targeting IoT devices has become more
prevalent. In this paper, we propose a practical ATtack detection and
Live malware Analysis System (ATLAS) that provides up-to-date threat
intelligence for IoT. ATLAS consists of a hybrid IoT honeypot infras-
tructure, attack attribution, malware downloader and live malware anal-
ysis system. Since deployment, ATLAS received 859 distinct malware
binaries targeting 17 real IoT devices. When compared with VirusTotal
timestamps, 65% of these samples have been seen first by our infrastruc-
ture or are yet to be known to VirusTotal to date. Through static and
dynamic analysis of 17 malware samples, we are able to identify not only
the attack vectors, but also command & control (C&C) communication
methods and other characteristics. We show that a novel adaptive clus-
tering technique is capable of performing automated malware analysis
to detect known malware families as well as 0-day malware. Evaluation
with 204 ARM 32-bit malware results in detection of 44 clusters. Fur-
ther in depth analysis on the selected samples that forms new clusters
(potential 0-day malware) indicates that they are indeed novel variants
of IoT malware using evolving attack vectors: 17 binaries formed new
clusters and did not belong to any known cluster nor to VirusTotal.

Keywords: IoT Honeypot · Attack Detection · Live Malware
Analysis · Threat Intelligence

1 Introduction

For the first time in 2020, the number of Internet of Things (IoT) connec-
tions from connected cars, smart homes, connected industrial equipment and
machines, etc. surpassed the number of non-IoT connections from smartphones,
laptops and computers. IoT is defined as a network of things that has physi-
cal or virtual representation in the digital world, sensing/actuation capability, a
programmability feature and are uniquely identifiable [11]. By 2025, more than
30 billion devices will be connected to the Internet via sensors, processors and
software in the home and workplace.
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This demand for seamless connections of users and machines to the Inter-
net has accelerated the deployment of 5G networks, which provide increased
data rates, low-latency data communication for time-sensitive IoT applications
and connectivity of massive numbers of IoT devices. On the other hand, the
fourth industrial revolution, also known as Industry 4.0, refers to a range of new
technologies that are fusing the physical, digital, and biological worlds together.
This revolutionary shift has profound impacts on the way humans live, work and
interact. Industry 4.0 solutions are highly dependent on IoT devices as the key
source of data.

Rise of IoT Compromises: While the emergence of 5G, Industry 4.0 and IoT
benefit users and stakeholders, it also opens opportunities to malicious actors to
exploit vulnerabilities of these new technologies. Malware targeting IoT devices
has become more prevalent in recent years, following the most notorious dis-
tributed denial-of-service (DDoS) attack by the Mirai malware in 2016. For just
the past two years in retrospect, Nozomi Networks has reported an increase
in threats to IoT and operational technology networks, especially by IoT bot-
nets for the first six months of 2020. According to ReversingLabs, IoT malware
samples increased by 7% in 2020 in comparison to 2019, while the number of
attempted Telnet and Secure Shell (SSH) brute-force logins increased by 47%.
For 2021, Kaspersky reported 1.51 billion breaches of IoT devices, up more than
two fold increase from 639 million in 2020. Industry 4.0, 5G and widespread
adoption of IoT increase attack campaigns and new forms of malware exploiting
IoT vulnerabilities. Consequently, a detection system that provides up-to-date
threat intelligence is imperative for early detection and mitigating risks thereby
ensuring minimal impact on operational and business continuity [12,13].

Honeypot for IoT Threat Detection: Honeypots are security resources
whose value lies in their ability to be probed, attacked and compromised. There
are generally two types of honeypots: first, low-interaction honeypots, which
present simulated or emulated environments to attackers, and second, high-
interaction honeypots, which show real systems to attackers [18]. Honeypots are
often used to survey the threat landscape. The characteristics of honeypots are
that they are deceptive, discoverable, interactive, and monitored. In this work,
we propose ATLAS, an attack detection and live malware analysis system for IoT
threat intelligence. The ATLAS system implements a hybrid honeypot infras-
tructure and provides real-time threat intelligence for IoT security by detecting,
attributing attacks and performing live malware analysis.

Our Contributions: (a) Design and implementation of a hybrid, lightweight
and scalable IoT honeypot infrastructure that is capable of receiving attacks,
attribution and downloading malware that targets IoT devices.

(b) A novel adaptive clustering technique that is capable of performing live
malware analysis. The technique extracts the binary’s call graph for each mal-
ware file downloaded to build clusters and detect novel malware.
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(c) Analysis of 204 ARM 32-bit malware samples using the proposed technique,
finding 17 0-day malware binaries since they form new clusters.

(d) Reverse engineering and analysis of 17 selected IoT malware downloaded
by the honeypot. Using static and dynamic analysis techniques, in-depth under-
standings of the attack vectors, C&C methods, and additional characteristics
specific to IoT malware are identified.

Organisation: The remainder of this paper is organised as follows. Section 2
describes design considerations and implementation of the proposed hybrid IoT
honeypot infrastructure. Section 3 covers attribution of attacks received through
IoT honeypots, malware downloading technique, reverse engineering of selected
IoT malware and live malware analysis system. The evaluation results of down-
loaded malware binaries with VirusTotal (VT), in depth IoT malware analy-
sis and adaptive clustering results are presented in Sect. 4. We summarize the
related work in this field in Sect. 5 and conclude the paper in Sect. 6.

2 Hybrid IoT Honeypot Infrastructure

In this section, we describe the design and implementation of hybrid IoT honey-
pot infrastructure. Following an outline of attacker and system model, we discuss
implementation details.

2.1 Attacker Model

We consider two types of attackers: (1) attackers in the initial phase of exploit
creation and (2) attackers conducting large-scale attacks. An attacker in the
former scenario explores Internet-connected devices and establishes a cyber kill
chain, which consists of reconnaissance, weaponization, delivery, exploitation,
installation, command-and-control, and action on intent phases. An attacker in
the latter case aims to identify as many vulnerable devices as possible, exploit
them, and gather them into a botnet to conduct large-scale attacks. For both
scenarios, we assume the attacker is looking for real vulnerable devices to exploit
and proliferate further.

2.2 Design

This section discusses various considerations taken into account when designing
a honeypot infrastructure that exposes IoT devices to the Internet.

IoT Honeypot with Real and Emulated IoT Devices: We anticipate the
proposed IoT honeypot infrastructure will include real IoT devices as well as
low-interaction devices that emulate certain services (e.g. Telnet, SSH). Having
real IoT devices as high-interaction honeypot maximizes the attack surface for
the attackers allowing full access to the underlying system. We also note that
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recent IoT malware have exploited specific vulnerabilities present in certain man-
ufacturers or types of IoT devices. Meanwhile, security researchers and industry
experts use low-interaction honeypots to survey the threat landscape. Having
low-interaction honeypot complements high-interaction counterparts and allows
us to compare the efficacy of one or another.

Exposing IoT Honeypot on the Internet: It is imperative that our honey-
pot devices require public IP addresses to expose them on the Internet. Public IP
addresses of Infrastructure as a Service (IaaS) or Virtual Private Server (VPS)
belong to cloud service providers and they are identifiable via autonomous sys-
tem (ASN). Alternatively, Virtual Private Network (VPN) service providers offer
public IP addresses from servers located in various nations, allowing us to deploy
our devices at different geolocations while they remain within the perimeter of
our honeypot infrastructure. In contrast to Iaas and VPS, determining the true
identity of VPN IP addresses requires a considerable amount of time and effort.

Network Traffic Collection and Malware Download: To detect the attacks
targeting the devices in our honeypot, it is crucial to capture all network traf-
fic coming into and exiting the honeypot infrastructure. Furthermore, we must
detect outgoing connections made by devices as these may be attempts by mali-
cious actors to establish network connections to C&C servers. Malware samples
that correspond to the attacks provide further insight and enable in depth anal-
ysis of the threats.

Live Network Traffic Monitoring and Malware Analysis: As with typ-
ical security operations centers (SOCs), the honeypot infrastructure shall have
the ability to detect and analyse activities on networks, IoT devices, and other
systems and equipment (e.g. network switches, firewalls) hosting the infrastruc-
ture itself in real-time. Several monitoring and data analytics platforms exist,
including ELK stack [5], Splunk [21], Security Onion [4], among others, which
are widely used by industries and by security researchers alike.

Investigative measures are taken with the intent of discovering the scope and
scale of attacks if anomalous activities are detected that are indicative of attacks
being received and compromised. Such investigations include digital forensics,
malware reverse engineering, and analysis. If the honeypot infrastructure will
have a large number of devices, it is preferable to automate as much as possible
and keep the time-consuming and resource-intensive work for last resort.

Orchestration of Honeypot Infrastructure: Ability to operate the honey-
pot infrastructure around the clock is crucial. As such, the design shall automate
addition of new IoT devices, setting up of VPN connections to have public IP
addresses, removal of existing devices. In addition, monitoring of the status of
the entire infrastructure and orchestration of various components of the infras-
tructure in isolation are required.
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Fig. 1. Attack Detection and Live Analysis System for IoT (ATLAS)

Proposed Hybrid IoT Honeypot Infrastructure: Considering these design
consideration aspects, we envision and propose a hybrid IoT honeypot infras-
tructure, as illustrated in Fig. 1. It consists of these main components: (1) VPN
Forwarder, (2) IoT Network and (3) Live Dashboard. The following section pro-
vides details of each component.

2.3 Implementation

This section describes the implementation of the proposed hybrid IoT honeypot
infrastructure based on the design considerations in the previous section.

Honeypot with Heterogeneous IoT Devices: The implementation phase
begins with choosing which IoT devices will be exposed to the Internet. A basic
query on Shodan search engine for IoT devices returns millions of results. IP
cameras form majority of these results followed by home routers, printers, etc.
We chose to include different kinds of IoT devices in our honeypot in order
to provide a rich attack surface that can be used to detect recent threats and
potential vulnerabilities in these devices. 17 real IoT devices, which include IP
cameras, printer, smart plug, smart bulb, industrial control systems devices such
as programmable logic controller (PLC), remote terminal unit (RTU), human-
machine interface (HMI) as well as industrial control system (ICS) emulators
based on conpot [19] are selected in our implementation. Table 1 shows the type,
manufacturer, and model number of the IoT devices that have been selected and
integrated into the honeypot.

VPN Forwarding with Docker Container: In order to scale the honeypot
infrastructure as the number of devices increase, we adopted a lightweight app-
roach to establish VPN tunnels to VPN servers and acquire public IP addresses.
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Table 1. Details of Real and Emulated IoT Devices

Type Manufacturer Model Location

IP Camera D-Link DCS-942L Canada, US, UK

D-Link DCS-930L US, UK, UK

D-Link DCS-5020L UK

Provision ISR PT-838E US, UK, Germany

Vstarcam C7837WIP (B) Germany

IP Printer† HP Officejet Pro 6830 US, UK, Israel

Smart Plug Belkin WeMo F7C027uk (C75) Czech

Belkin WeMo F7C063 (2B4) Germany

TP-Link HS100 (8923) Sweden

TP-Link HS100 (96DA) Netherlands

Smart Bulb TP-Link LB130 Canada

Industrial Control
System (ICS)

Schneider Modicon Quantum 140 US

Schneider Modicon STBNIP 2212 US

Schneider Modicon STBNIP 2212 US

Schneider Magelis HMIGTO 6310 US

Siemens S7-1500 Netherlands, UK, US

Industrial Control
System Emulator

Siemens S7-200 UK

Siemens S7-200 (Variant) US

Siemens S7-300 (IEC104, SNMP) Israel

Guardian Tank Monitoring System Germany

Kamstrup Smart Meter Canada
† Two HP Officejet Pro 6830 IP Printers.

In particular, a customised docker container has been developed with the func-
tionalities to establish VPN tunnels to servers in specified geolocations, to set up
port forwarding to IoT devices on the IoT network (see Fig. 1) and automatic
capturing of network traffic received on exposed public IP addresses.

We performed nmap port scan of IoT devices in their factory default state
and the container exposes the same open ports as IoT device on the public
facing network interface. Location column in Table 1 shows geolocations of IoT
devices that have been exposed via corresponding IP addresses provided by VPN
servers. Our implementation allows multiple containers to forward the network
traffic to the same IoT device, thus increasing geographic presence given a limited
number of actual IoT devices. For example, there are three containers which are
forwarding the network traffic from the VPN servers located in Canada, US and
UK for D-Link DCS-942L camera as shown in Table 1.

A set of shell scripts and a CSV file are used to automate the number of con-
tainers and their names, IP addresses, open ports, and forwarding IP addresses
to the real IoT devices on the IoT Network. To expose an IoT device on the
Internet, the user first connects the device to the IoT Network, then updates
the CSV file with the necessary information and uses the script to establish
end-to-end connectivity between VPN server and IoT device. With an aid of a
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shell script and also thanks to docker container, we could bring all containers
or individual ones online or offline within seconds. There are a total of 17 real
IoT devices and 5 ICS emulators (see Table 1) exposed to the Internet via 31
docker containers that forward network traffic from the VPN servers in various
geolocations.

Live Network Traffic Monitoring with Elastic Stack: We have selected
Elastic Search, Logstash and Kibana (ELK) stack for live monitoring and visu-
alization of network traffic flowing to and from our honeypot infrastructure.
Every docker container in VPN Forwarder captures the network traffic contin-
uously. Using TShark, the PCAP files captured are converted into JavaScript
Object Notation (JSON) format output. We created a customised template for
Logstash, which is the log forwarding engine of ELK stack, to map selected
attributes of JSON output and indexing in Elasticsearch subsequently. Further,
we developed several custom scripts that query Elasticsearch to select the data
that is most pertinent (e.g. the number of successful logins, HTTP URLs, etc).
The results of these queries are then visualized with the Kibana dashboard.

Automation and Orchestration of Honeypot Infrastructure: When
implementing the honeypot infrastructure, automation has been incorporated
to the maximum extent possible. For the VPN Forwarder, the docker containers
are orchestrated with docker-compose. Inside each docker container, VPN tun-
nelling, network traffic capturing and port forwarding are automated with shell
scripts. Captured PCAP files are converted into JSON files with a Python script
and ingested by Logstash component of ELK stack thus enabling visualization
with various dashboards in Kibana almost instantly. Attack attribution imple-
mentation as described in the next section makes use of inotifywait to detect
new PCAP files written to the file system and check any outbound connection
attempts from any of IoT devices. Similarly, malware download and malware
analysis implementation are automated. To realize the automation work to the
maximum extent possible, we rely on native Linux functionalities such as cron
jobs, systemd services, rsync, shell scripts and Python scripts.

3 Attack Detection and Live Malware Analysis

This section discusses attribution of attacks targeting IoT devices based on the
hybrid honeypot infrastructure in Fig. 1 and the implementation of a malware
downloader component. We also describe implementation of a machine learning-
based live malware analysis technique and an offline reverse engineering envi-
ronment for the analysis of IoT malware.

3.1 Attack Attribution

To detect network traffic originating from any of IoT devices on the IoT Network,
we incorporated a network switch with span port functionality. All IoT devices
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are connected to the IoT Network via this network switch. The span port enables
us to capture all network traffic at one place. For every PCAP file captured on
the span port interface, we look for outbound connections, which are attempted
connections to IP addresses outside of IoT Network. Outbound TCP connections
are identified using TCP flags (SYN flag set and ACK reset) whereas outbound
UDP traffic is identified as traffic originating from the devices in our honeypot
and destined for outside of IoT Network VLAN.

We associate malicious outbound connection attempts (most likely to C&C
server) are the effects of attack commands issued previously by an attacker. We,
therefore, perform packet inspection of historical PCAPs, to attribute outbound
connection attempt to its corresponding attack command. We start backtracking
by identifying the outbound IP, IP of the device and the protocol over which
the device communicates, and then filtering historical PCAPs accordingly. We
inspect a maximum of 30 min of historical network traffic. Backtracking happens
incrementally until we find the packet and hence the command that causes the
outbound attempt. By this means, we are able to attribute an attack (exploit
attempt) to an outbound connection.

3.2 Malware Download

Outbound connection attribution reveals the original attack command. The next
step is to complete this connection with the malicious server and download
attack payload. Allowing this operation on the devices in honeypot poses a
risk of unknown malware taking control of devices, possibly the honeypot itself
and unintentional proliferation of malware. The firewall in Fig. 1 blocks any
outbound connections initiated from the IoT Network. We created an indepen-
dent component, called Malware Downloader, to perform this downloading step
independently and in isolation. We implemented a Python script for parsing of
WGET and TFTP commands. It includes a listener that continuously listens
for new messages indicating that new attack commands have been attributed to
outbound connections. Every new message is then parsed to extract the com-
mand. Subsequently, the attack command is executed to establish a connection
with the potential C&C server and download the malware.

3.3 Live Malware Analysis System

Many of the latest IoT malware are derived from the infamous Mirai malware
and share many similarities. Because IoT devices use heterogeneous hardware
and software, IoT devices vary greatly from each other. While many IoT devices
run on ARM architecture, there are IoT devices that runs on PowerPC, SuperH
SH-4, MIPS, etc. Once the IoT device is exploited, several binaries that target
different CPU architectures are downloaded. Subsequently, the device is then
infected with the binary that matches the underlying hardware. We have noted
similar characteristics with the malware binaries downloaded by the Malware
Downloader component as described in Sect. 3.2.
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For the downloaded binaries, queries to the VT API are made to obtain the
analysis report and establish the ground truth labels. VT provides detection
results from the analysis of more than 60 security vendors for a given URL, IP
address, domain name or file hash. However, each security vendor applies its
own proprietary malware classification scheme independently resulting inconsis-
tencies among labels from different vendors.

We have also evaluated AVClass2 [20], an automatic malware tagging tool
that extracts clean tags and categorizes the malware sample based on the given
labels (e.g. VT analysis report). AVClass2 aims to mitigate the inconsistent
malware labelling issue and generates a generic tag for a given malware sam-
ple. AVClass2 is tested with the malware samples downloaded by our honeypot
infrastructure and generate the corresponding tags. Since AVClass2 is designed
to generate generic tags for malware that target a wide range of systems and
software (e.g. Windows, Linux, etc.), specific labels for IoT malware are filtered
out during the tag generation.

Our primary objective is to realize an automated system that analyzes the
downloaded malware binaries and detect unknown (0-day) samples. Therefore,
we decided to adopt an unsupervised machine learning based technique rather
than establishing the ground truth labels for supervised classification.

Ghidra 
(Headless Mode)

Malware
Binaries

Adaptive Clustering

Custom Ghidra 
Extension 

BinExport 
Extension 

Fig. 2. Live Malware Analysis System

Figure 2 shows an automated live malware analysis system that has been
implemented. The system comprises of (1) Ghidra, (2) BinExport, (3) Cus-
tom Ghidra Extension and (4) Adaptive Clustering components. Ghidra is the
open-source reverse engineering tool developed by the National Security Agency
(NSA). Ghidra headless analyser allows users to create projects, perform various
binary analysis and run scripts without using the graphical user interface (GUI).
BinExport is the extension for IDA Pro, Ghidra and Binary Ninja for exporting
disassembly data into the protocol buffer format [9]. Custom Ghidra Extension
is implemented by making use of BinExport and Ghidra headless analyser to
generate the disassembly data for each malware binary. We rely on inotifywait
to detect any new malware binary that has been downloaded. Subsequently, the
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headless analyser is run with the customised Ghidra extension to obtain the
corresponding BinExport output file.

Adaptive Clustering in Fig. 2 mainly consists of (1) BinExport parser and
(2) machine learning based adaptive clustering implementation. The BinExport
parser takes in the BinExport file in protocol buffer format as generated by the
custom Ghidra extension and parses it into JSON format. The BinExport file
includes meta information such as executable name, id, architecture name, call
graph and details of various read/write/executable sections, etc.

The adaptive clustering algorithm is implemented in Python and the pseu-
docode is listed in Algorithm 1. The Adaptive Clustering components is first
initialised with the signature of a malware binary. The signature is composed
with the function names (also known as mangled name) from the call graph. For
each new malware binary, m, the Trend Micro locality sensitive hash (TLSH)
distance between the signature of new malware binary and the signatures of
malware binaries, which have been designated as the centroids of existing clus-
ters, is computed (line 14 of Algorithm 1). TLSH is a locality sensitive hashing
scheme developed by Trend Micro [15]. It is able to generate similar hash values
for signatures which are closer to one and another. If TLSH distance between
the new malware signature and all existing signatures is greater than n × σ
(standard deviation), then a new cluster is formed (line 5 of Algorithm 1).

Otherwise, the new malware signature is added into the closest existing clus-
ter. In such case, the new mean signature is re-computed using TF-IDF of all
existing signatures in that cluster and the centroid signature, which is closest
to the mean signature, is identified. The new standard deviation value is also
re-computed. TF-IDF stands for term frequency (TF), which summarizes how
frequently a given word (in our case, function name) appears within a document
(call graph), and inverse document frequency (IDF), which downscales words
that occur frequently in documents. By this means, the adaptive clustering com-
ponent detects whether the newly download malware binary belongs to one of
the existing clusters or differs significantly thus requiring further investigation
and analysis.

3.4 Reverse Engineering of IoT Malware

Each time a new cluster is created by the automated malware analysis system,
it indicates that the downloaded sample may be a 0-day malware and should
be analyzed further. Hence, we have set up a reverse engineering environment
with the following software and hardware components: (1) IDA Pro 7.6 SP1 - A
binary analysis tool commonly used by reverse engineers, malware analyst and
cybersecurity professionals. It is also possible to use other open-source tool such
as Ghidra [14] for binary analysis. (2) Lumen [1] - An open-source alternative
Lumina server of IDA Pro for looking up of function signatures maintained in
the database. (3) Raspberry Pi (RPi) Kit - Since most of IoT devices run on
ARM architecture, RPi is a useful hacking kit to perform dynamic analysis of the
downloaded malware binaries. (4) ARM Linux Debug Server - IDA Pro supports
remote debugging. By running the debug server on the RPi target, the malware
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could be executed in a controlled manner and most of IDA Pro features (e.g.
memory snapshot) are made available.

Reverse engineering begins with static analysis. In this step, the malware
is first loaded into IDA Pro and searched for strings. For the malware with
encrypted strings, decryption attempt is made with an aid of Python script.
Then, Lumina plugin is run to resolve functions based on the signatures stored in

Algorithm 1. Adaptive Clustering Algorithm
1: procedure AdaptiveClustering(m)
2: Get call graph g from malware m
3: Get a list of call graph, G, of centroids of existing clusters
4: d = GetMinimumDistance(G, g)
5: if d > n ∗ σ then � New Cluster
6: Create a new cluster with m
7: Update the existing cluster list
8: else
9: Add m into the closest cluster

10: μ = GetNewMean(c)

11: σ =

√∣∣∣∣ (n∗(σ2+μ2)+d2)
(n+1) − μ2)

∣∣∣∣ � n = # of malware in the closest cluster

12: end if
13: end procedure

14: procedure GetMinimumDistance(G, g)
15: Initialize TLSH distance list l
16: tlsh g = tlsh.hash(g)
17: for i ← 1, n do � n = # of clusters
18: tlsh i = tlsh.hash(Gi)
19: s = tlsh.diff(tlsh g, tlsh i)
20: Append s to l
21: end for
22: Get Minimum TLSH distance d from l
23: return d
24: end procedure

25: procedure GetNewMean(c)
26: v = TfidfVectorizer � Initialize TF-IDF vectorizer
27: m = fit transform(c) � Return 2d document-term matrix m
28: f = get feature names � Column names for matrix m
29: Convert m into Pandas dataframe d
30: Sum every element in each row of d � Each row is a malware in cluster c
31: Compute average for each row
32: return row r with absolute minimum difference as new mean μ
33: end procedure
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the database. The functionality of the malware is analysed subsequently. Depend-
ing on the nature of IoT malware, certain samples may require dynamic analysis
especially for packed binaries. In such cases, entry point to the malware execu-
tion is first identified via static analysis step. The malware is then copied over
to the RPi target and ARM Linux Debug Server is run. A break point is set at
the entry point in IDA Pro and the malware is executed. From the decryption
stub, the original entry point is identified and the malware is unpacked. Then,
memory snapshot of the malware is taken in IDA Pro and typical static analysis
step proceeds as described earlier.

Putting it all together, ATtack detection and Live Malware Analysis System
(ATLAS) for IoT as depicted in Fig. 1 consists of the hybrid IoT honeypot
infrastructure, attack attribution, malware downloader and live malware analysis
system implementation.

4 Results

In this section, we describe experimental results obtained by analyzing mal-
ware downloaded by the ATLAS system and using adaptive clustering based on
machine learning algorithm to detect both known and unknown (possibly 0-day)
malware.

4.1 Evaluation of IoT Malware with VirusTotal

Whenever the Downloader component downloads malware, a timestamp is auto-
matically prefixed to the file name of the binary. ATLAS-IoT downloaded 859
distinct malware (i.e. unique hashes) between August 2020 and October 2021.
The malware targets x86, x86 64, PowerPC, SuperH SH-4, SPARC, MIPS, ARM
and even NXP Coldfire CPU architectures. We perform evaluation with the anal-
ysis status and information available in VT. In particular, we compare our times-
tamp with that of the first submission recorded by VT. We have implemented
a script that generates SHA256 hashes for the malware and makes API calls to
VT to query the first submission and analysis status. The script populates the
malware file name, SHA256 hash, our downloaded timestamp and API response
from VirusTotal into a CSV file.

For 35% of the 859 distinct malware downloaded, VT has earlier timestamps
compared to ours. On the other hand, we have earlier timestamps for 40% of
the malware. For the remaining 25%, VT does not have these hashes and no
first submission has been recorded yet as of 2 October 2021. These samples
are potentially 0-day malware and worthy of in depth reverse engineering and
analysis.
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4.2 Analysis Results of Selected IoT Malware

From 859 distinct malware downloaded, 17 samples are selected for in depth
analysis using the reverse engineering environment as described in Sect. 3.4.
The selection consists of 14 ARM 32-bit, 2 x86 64-bit, 1 MIPS 32-bit malware.
Malware samples were selected as follows: (1) 4 samples for which VT has earlier
submission timestamp than ours, (2) 6 samples for which we detected earlier than
VT and (3) 7 samples for which VT has no detection results yet. The details of
the selected malware samples are provided in Table 2, which includes the MD5
hash, the ATLAS download timestamp, the VT first submission timestamp, and
the VT malware family classification.

As described in Sect. 3, reverse engineering and analysis begin with the static
analysis step. For each malware, we identify the attack vectors, information
related to C&C server and other characteristics such as whether the malware
has spreading and self-removing functionality, etc. Out of 17 malware samples,
16 of them are analysed statically whereas 1 malware requires dynamic analysis
due to its advanced protection feature. Table 3 provides the analysis results. It
is noted that majority of the selected malware includes TCP and UDP flooding
attack vectors. Malware 4 features Lynx flooding attack. Malware 6, 7, 15 and
17 include Telnet scanner using default credentials to brute force the service
with spreadable capability. Malware 3, 9 and 11 feature GAME attack vector
while malware 3, 9, 10, 11 and 16 include OVH attack. Both GAME and OVH
attack commands operates via UDP. The OVH attack may link to the attack
on OVH DDoS protection service. Malware 7 and 15 have the functionality to
download file from remote server.

Seven malware incorporate string obfuscation technique to bypass antivirus
and intrusion detection system which use string-based signature detection. In
this case, a decryptor script is developed for string de-obfuscation. There are
five malware with C&C obfuscation mechanism with the intention to bypass
intrusion detection system and intrusion prevention system, and also making the
analysis harder. C&C obfuscation requires simulation of C&C server, perform
dynamic analysis and debugging the malware to understand the C&C protocol.

Malware 15 uses Internet Relay Chat (IRC), a simple and low bandwidth
communication method, for communication with C&C. The remaining malware
used raw socket-based approach. Malware 2 and 16 have anti-debug functionality
to slow down the reverse engineering and analysis. Malware 1, 2 and 17 includes
self-removal feature deleting the footprint on the file system once it is loaded and
run in the memory.

Out of 17 malware analysed, malware 16 is the unique malware with
advanced protection technique and attack vectors. Firstly, the malware itself
is packed with a customised packer to slow down the reverse engineering process
and to prevent antivirus from detecting using strings Indicators of Compromise.
Therefore, the dynamic analysis approach as described in Sect. 3.4 is adopted
for this malware. In contrast to other malware, this malware includes unique
attack vectors such as LDAP flooding, TFTP flooding, CLOUDFLARE attack
and possibly contains VPN tunnelling services.
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Detailed analysis of 17 malware and the corresponding VT analysis results
shed light on detection of new or 0-day samples enabling us to evaluate formation
of new clusters using the proposed adaptive clustering technique.

4.3 Adaptive Clustering Results

The adaptive clustering algorithm described in Sect. 3.3 determines whether the
downloaded malware belongs to one of the existing clusters (i.e. a closely related
variant of existing malware) or forms a new cluster (0-day malware).

We applied the adaptive clustering to 143 ARM 32-bit malware which have
VT analysis results available. The algorithm performs clustering of the malware
binaries within seconds. Figure 3 shows the adaptive clustering results. The black
color node represents the centroid of a cluster whereas the red color nodes are
members nodes in each cluster. Each cluster represents the malware binaries
that are closely related to each other. The adaptive clustering results 29 clus-
ters for 143 ARM 32-bit malware. We then analyzed the VT detection results
from various security vendors. For 143 ARM 32-bit malware, Trend Micro detec-
tion engine reports 25 distinct classification labels. Malware Family column in
Table 2 belongs to Trend Micro labels. Similarly, Kaspersky reports 15 labels
with no detection results for 3 malware, 22 for Fortinet, 37 for Microsoft with
no detection results for 8 malware and 19 for AVClass2. It is evident from the
VT detection results that the classification scheme used by security vendors vary

Fig. 3. Adaptive Clustering Results for 143 Malware
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Table 3. Analysis Results for 17 IoT Malware

Malware # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Attack Vector

TCP ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

UDP ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VSE ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗

HTTP ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓

HEX ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓

LYNX ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

STD ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✗

TELNET ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓

LDAP ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗

GAME ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗

VPN ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗

TFTP ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗

Cloudflare ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗

OVH ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗

ICMP ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗

File Download ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗

Spoofing ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗

XMAS ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗

Packed ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗

String Obfuscation ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✗

Anti-Debug ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗

Self-Removal ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Spreadable ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Command & Control

Obfuscation ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✗

Method § § § § § § § § § § § § § § † § §

IP:Port

#1: 142.11.xxx.xxx:277*

#2: —

#3: 78.141.xxx.xxx:111*

#4: 80.211.xxx.xxx:101*

#5: 107.173.xxx.xxx:666*

#6: 93.170.xxx.xxx:129*

#7: 93.170.xxx.xxx:129*

#8: 195.58.xxx.xxx:576*

#9: 85.204.xxx.xxx:717*

#10: 104.248.xxx.xxx:59372*

#11: 95.156.xxx.xxx:53071*

#12: 185.244.xxx.xxx:369*

#13: 104.248.xxx.xxx:48632*

#14: 95.214.xxx.xxx:666*

#15: 193.239.xxx.xxx:80*

#16: 107.172.xxx.xxx:839*

#17: 194.147.xxx.xxx:282*

§ Raw socket for communication with C&C server. † IRC for communication
with C&C server. ∗ C&C IP addresses are anonymized.
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significantly among each other and establishing a consistent ground truth has
been challenging.

On the other hand, we have looked into the malware file names used with the
exploits. As explained in Sect. 4.1, IoT exploits often download several binaries
that target different CPU architectures. For example, one IoT exploit down-
loads four malware binaries for ARM CPU with ARMv4, ARMv5, ARMv6 and
ARMv7 instruction set architectures. In such cases, the hashes of binaries are
different though they share the same functionality since they are downloaded
together one after another. Analyzing such patterns and malware file names for
143 samples results in 28 distinct groups (i.e. clusters) closely relating to 29
cluster produced by the adaptive clustering technique.

Next, we tested the adaptive clustering with 14 ARM 32-bit samples, which
we performed in depth analysis in Sect. 4.2. In this case, 7 samples (1, 4, 7,
11, 15, 16, 17) highlighted with red color in Table 3 form new cluster and the
remaining 7 samples are classified into the existing 29 clusters. Interestingly, VT
does not have analysis results for 5 of the 7 samples. For other two samples,
VT has the results because we were the first to submit them to VT. There is
a strong correlation between the results of in depth analysis in Table 3 and the
malware samples that form new clusters. These samples have relatively unique
attack vectors and other characteristics such as packed status, anti-debug fea-
ture, self-removal and spreadable capability (cyan color in Table 3). Among the
7 samples, malware 16 has several unique characteristics (e.g. LDAP, VPN,
TFTP, Cloudflare, OVH attack vectors) highlighting its significance for further
investigation.

In addition, we have also applied the adaptive clustering to another 47 ARM
32-bit malware for which VT does not have analysis results. The adaptive clus-
tering reports 10 new clusters in this case. Therefore, the analysis of 17 samples
in Sect. 4.2, further evaluation with additional 47 samples and the results of
adaptive clustering demonstrate that our proposed live malware analysis system
is practical and capable of detecting 0-day malware. The detected 0-day samples
are novel variants of IoT malware using evolving attack vectors and other unique
characteristics as revealed by the in-depth analysis.

5 Related Work

This section reviews the existing work on design and implementation aspects
of honeypots for IoT threat intelligence. Moreover, we examine techniques such
as attack attribution, malware download, and malware analysis that have been
integrated into the proposed honeypots for an end-to-end threat intelligence
framework.

Pa Pa et al. [16] were the first to propose a honeypot exclusively for IoT.
Using a honeypot called IoTPOT, they captured Telnet-based attacks on various
IoT devices. IoTPOT consists of a low-interaction frontend responder cooperat-
ing with a high-interaction backend called IoTBOX. This work mainly focus on
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Telnet-based attacks that target IoT devices and does not consider the exploita-
tion via other network protocols (e.g. exploitation via HTTP targeting vulnera-
ble web server in IoT devices). Captured malware samples were analyzed manu-
ally with an aid of IoTBOX to identify distinct malware families. Luo et al. [10]
presented an automatic way to build an IoT honeypot called IoTCandyJar. It
uses publicly available IoT devices on the Internet to gather responses to its own
requests. They used heuristics and machine learning techniques to customize the
scanning procedure for improving response logic.

Guarnizo et al. [6] proposed SIPHON, a high-interaction honeypot which
incorporates real IoT devices. Authors used cloud service providers such as
Amazon Web Services (AWS) to expose IoT devices through geographically dis-
tributed IP addresses on the Internet. The honeypot systems in [6] and [10] do
not include attack attribution, malware download and analysis capabilities. Pre-
vious works by Amit et al. [22] and Aung et al. in [3] focus on the analysis of
network traffic captured by the IoT honeypots, but do not incorporate auto-
mated live malware analysis for the detection of known malware families as well
as 0-day malware.

Wang et al. [23] developed a hybrid IoT honeypot consisting of low-interactive
components with Telnet/SSH services running in a virtual environment and
vulnerable services in IoT devices, called IoTCMal. Their work primarily focuses
on homology analysis of malicious samples by deploying IoTCMal on 36 VPS
instances distributed in 13 cities of 6 countries.

Recently, Kato et al. [8] proposed X-POT, an adaptive honeypot frame-
work that improves the observation capabilities of honeypots by utilizing the
responses collected from the host through Internet-wide scanning. The authors
deployed HTTP X-POT on the Internet and observed attacks targeting various
IoT devices and captured several malware samples. The authors rely on VirusTo-
tal and AVClass for malware analysis and labelling respectively. No automated
live analysis was performed to detect variants of known malware families and
0-day malware.

Signature-based and behavorial-based methods are often employed for detec-
tion of IoT malware. Park et al. [17] proposed a method for constructing a behav-
ioral graph representing the execution behavior for a family of malware instances
in order to significantly improve detection rates. Wüchner et al. [24] proposed a
malware detection approach that uses compression-based mining on quantitative
data flow graphs to derive highly accurate detection models. As highlighted by
Alrubayyi et al. in [2], both signature-based and behavorial-based methods are
not suitable for detecting unknown (i.e. 0-day) malware. Therefore, the authors
discussed recent advances in employing Artificial Immune Systems (AIS), which
are intrusion detection algorithms inspired by human adaptive immune system
techniques for better malware detection, especially for IoT. Recently, Jeon et
al. [7] proposed a dynamic analysis for IoT malware detection scheme that uses
convolution neural networks (CNN) in a cloud-based environment under a vir-
tual embedded system to detect and classify IoT malware.
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While honeypot systems have been proposed and implemented not only by
research communities but also by security industries for IoT threat intelligence,
our review revealed a need for an end-to-end framework that detects attacks, per-
forms automated malware analysis, and classifies them into known and unknown
families thereby providing the vital up-to-date threat intelligence for IoT.

6 Conclusion

In this paper, we proposed ATLAS, a practical attack detection and live mal-
ware analysis system for IoT threat intelligence. ATLAS exposed IoT devices
on the Internet via a lightweight and scalable hybrid honeypot infrastructure.
Using VPN tunnels, 17 real IoT devices and 5 ICS emulators are made accessible
from 31 public IP addresses at different geographic locations. Despite having a
smaller set of heterogeneous IoT devices, ATLAS received attacks and down-
loaded malware samples, of which 65% either have earlier timestamps or have
unique hashes compared to VirusTotal. The adaptive clustering algorithm per-
forms live analysis and classifies the malware samples into existing families or
creates new clusters. Analysis of 204 ARM 32-bit malware samples using the pro-
posed technique finds 17 0-day malware binaries that are indeed novel variants
of IoT malware using evolving attack vectors.
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Abstract. Developing a safe application is so important as to properly
install it in a system, and not an application’s tampered version. In a
similar note, developers should properly care about applications’ unin-
stall process to avoid leaving traces of sensitive data behind in the system
or interfere with the remaining applications. Until now, the academic lit-
erature has paid little attention to uninstall procedures so far. Moreover,
a whole ecosystem of application uninstallers has been created, mak-
ing multiple uninstallers available in software repositories. A key point
is to understand how these applications work so as to develop stronger
systems. To this end, we present a landscape work evaluating the oper-
ation of the 11 most downloaded uninstaller applications from the three
most popular Internet software repositories. We discovered that most of
these applications are not very different from the native Windows unin-
staller. Although evaluated uninstallers present a more organized User
Interface, thus enhancing usability, they are only able to find the same
installed application as the native Windows uninstaller, but not broken
installations. Few uninstallers apply heuristics to find broken application
installations. However, we show that those heuristics can be abused by
attackers to remove third applications. Finally, we also show that none
of the removers is resistant to malicious uninstallers that terminate the
remover process.

Keywords: Uninstaller · Installer · Removal · Malicious code

1 Introduction

Safety and security are key aspects of any modern application. Thus, to cope with
the safety and security requirements of a modern application, software engineers
are often looking for ways of writing better code [11,19]. However, the challenge
does not finish there. As important as developing a safe and secure application
is to properly install this application in a system and not a tampered/vulnerable
version of it [1]. Similarly, as important as properly installing an application is
to uninstall it to not leave traces of sensitive data in the system [10] or interfere
with the remaining applications.
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Unfortunately, the academic literature has been giving little attention to
uninstall procedures so far, and few to no works on the subject can be found in
the major research paper databases. It causes us to have a poor understanding of
an ongoing phenomenon: the popularity of application uninstallers, which can be
found at hundreds in any popular Internet software repository and with a large
number of downloads (e.g., 80K for IoBit and 400K for Revo in the Softonic
repository). Application uninstallers (or removers) are often recommended by
users in forums and/or websites [9] to be used in the cases where the native
Windows uninstaller fails, but its consequences are not well understood.

To bridge this gap, we delve into the internals of Windows uninstallers to
present a landscape of the operation of application uninstallers in this plat-
form. We selected the 11 most popular apps from 3 popular software reposito-
ries (CNET [3], Softonic [22], and Softpedia [23]) and completely analyzed their
operations regarding their removal capabilities, interactions with the user and
with the operating system.

We discovered that, on the one hand, most of these applications are not very
different from the native Windows uninstaller in operation, often displaying the
same installed apps with no additional capability of searching for broken instal-
lations. On the other hand, the User Interfaces presented by these applications
are clearly more detailed than the Windows’ native one, presenting much more
information, which might explain user’s preference for them.

A few installers present advanced uninstall capabilities, such as the ability to
perform system checkpoints or the application of heuristics to find files remaining
from broken installations. We discovered that these capabilities and heuristics
implicitly assume that the targeted uninstaller will be well-behaved. We demon-
strate that multiple attacks are possible if a malicious uninstaller is the target
of them, such as removing third-party files and even processes termination. In
this scenario, the usage of the uninstallers would cause more harm than good.

In summary, our contributions are as follows: (1) We contextualize the usage
of application uninstallers and the challenges associated with their use; (2) We
present a summary of legitimate and malicious uninstaller’s operations on Win-
dows; (3) We discuss the limits of their application to the removal of protected
applications.

This paper is organized as follows: In Sect. 2, we introduce related work and
discuss the gap of understanding on the operation of uninstallers; In Sect. 3,
we revisit the operation of uninstallers on the Windows system; In Sect. 4, we
introduce the methodology we adopted to conduct our experiments and the
research questions we aim to answer; In Sect. 5, we present experiments results
regarding the actual operation of popular uninstallers; In Sect. 6, we discuss the
implications of our findings; In Sect. 7, we draw our conclusions.

2 Related Work: Why Studying Uninstallers?

Before we explain how we evaluated uninstallers, it is key to understand why
evaluating them is important. When a user is not satisfied with a software piece
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and wants to remove it, the straightforward option is to use the native Windows
uninstall solution. However, it is not rare to find cases where the native unin-
staller fails to remove an application. In these cases, it is common that users try
to use standalone removal tools (Uninstallers and Removers), since it is also com-
mon to find websites recommending the use of this type of solution [9]. This ends
up creating an entire ecosystem of application uninstallers, as can be found in
any popular software repository (e.g., CNET [3]). This ecosystem must be stud-
ied and understood, as uninstalling software is as safety- and security-critical for
a system as installing new ones.

Whereas the academic literature is full of good research on the software
development topic (e.g., secure development and coding practices [11,19]), lit-
tle attention has been given so far to the problem of uninstalling applications:
We could find almost no research work in the main research paper databases
(e.g., ACM, IEEE, Springer, and so on). Meanwhile, the largest part of the
information users can find about uninstallers is delivered via grey literature [24]
(i.e., websites, blog posts, and so on). Unfortunately, publications in this type
of literature often do not present formal evaluations of uninstallers or a strong
methodology to evaluate them, such that we understand that there is currently
an understanding gap about the operation of these solutions.

We believe the subject has been given little attention so far because the unin-
stallation problem is often seen in the literature as a management problem [18]
rather than also a technological problem. A few works in the literature address
the uninstallation problem from a more technical point-of-view and, if so, they
are very limited in scope (e.g., a forensic analysis of uninstalled steganography
apps [28]). We believe that uninstallers must be studied more broadly to present
a landscape, as recently done for applications installers [1].

The related work on application installers already pinpointed some limita-
tions of the associated uninstallers, such as the improper definition of the unin-
staller executable [1]. In this work, we aim to go further and analyze the behav-
ior of the applications designed to uninstall these failure-prone applications. For
instance, we aim to evaluate whether uninstallers can clean registry keys after
the application removal. Previous research work has demonstrated that poten-
tially sensitive information remained resident in the registry after the uninstall
of some specific software [10].

Therefore, this work aims to shed light on the greater scenario of uninstallers
operation. It is important to notice that application uninstallers are available to
most platforms (e.g., Android [7]), but we focused our efforts in this paper on
the Windows platform due to the popularity of uninstallers in this ecosystem.

3 Background: How Windows Supports Uninstallers?

Before understanding how third-party uninstallers operate, it is key to
understand how Windows applications are installed and removed natively.
On Windows, installers should register the installed applications with
the Windows registry by creating an entry in the proper registry
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branch [13]. Applications installed for a single user must add their infor-
mation to the key at HKEY_CURRENT_USER\Software\Microsoft\Windows\
CurrentVersion\App Paths. Applications installed for all users in the
machine should add their information to the key at HKEY_LOCAL_MACHINE
\Software\Microsoft\Windows\CurrentVersion\App Paths.

The Windows’ “Installed Apps” menu gathers information from these keys to
display the installed apps and their removal/edit options. The first uninstallation
problem is that nothing prevents an app from not registering with Windows (e.g.,
executable files directly extracted from compressed files–zips). In these cases, the
application will be not found in the Windows’ “Installed Apps” menu.

When the application registers itself with Windows, it must set some required
registry keys, such as the application name, the provider, and the uninstaller
path. Therefore, when a user requires an application to be uninstalled by the
native Windows uninstaller, the uninstaller checks the path stored in this registry
key and launches the registered removal process.

The problem with this approach is that nothing prevents an application to
register a fake or a broken uninstall path, such that the uninstaller will not
be able to create a process from it. In this case, the application is never really
uninstalled. Although this is considered a bad practice according to the security
policies of large software ecosystem providers (e.g., Google [8], Microsoft [17]),
this strategy is often used by many applications available for user’s download.

Another problem is that Windows completely trusts the invoked uninstaller
to remove the application files and keys. However, if the application’s native
installer does not do a great job removing its own application, files and reg-
istry keys will remain in the system. Overall, there are many reasons why an
application might be not properly removed, for instance:

– Installations without registering associated keys [12].
– Installers setting the APPNOREMOVE key [14], that prevents the native uninstall

to launch the uninstall process.
– Implementation bugs, such as applications setting registry keys greater than

60 chars [15], which is unsupported by Windows.

When we consider the possibilities above discussed, we notice that the process
of uninstalling an application is not straightforward. Therefore, we consider that
understanding how uninstallers handle those conditions is essential for develop-
ing better applications.

The Role of the Third-Party Uninstallers. Face to this challenging removal
scenario, third-party uninstallers promise to succeed in the cases where conven-
tional removal fails. They promise not only to remove the applications listed
by the Windows, but also to discover the ones that did not register with the
Windows, remove files from previous, broken installation, and even defeat pro-
tections that prevent a software to be uninstalled. All these cases are evaluated
in this paper.
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4 Methodology: What Do We Aim to Discover?
and How?

In this section, we present the questions we aimed to answer, the applications
we considered in our analysis, and the approach for inspecting them.

Research Questions. We defined the following Research Questions (RQs) to
help us to understand the uninstallers:

– RQ1. What is the anatomy of the uninstallers? This question aims to
answer what are the modules and components of a typical uninstaller. It also
aims to answer how uninstallers are structured.
• RQ1.1 Are there applications bundled in the uninstallers? This

derived question aims to answer whether additional components not
essential to the uninstallers operations are added to them.

– RQ2. How do uninstallers operate? This question aims to answer how
uninstallers interact with system components.
• RQ2.1 Do uninstallers include extra features? This derived ques-

tion aims to answer whether uninstallers provide non-traditional mecha-
nisms to uninstall applications.

– RQ3. What is the difference for the native uninstaller? This question
aims to answer whether there is any significant advantage on migrating to a
standalone application.

– RQ4. Do uninstallers handle drivers, services, and privileged com-
ponents? This question aims to answer what are the limits of uninstallers
operations.

– RQ5. Are there any performance gains in using an uninstaller? This
question aims to verify if claims of perceived performance gains made by some
vendors and users are real.

– RQ6. Do uninstallers leave files in the system? This question aims to
answer what is the potential of uninstallers for cleaning files.
• RQ6.1 Did uninstallers evolve?. We repeated the experiments

reported in the literature [10] to check whether the scenario changed over
time.

– RQ7. Are uninstallers able to remove protected applications? This
question aims to answer what are the capabilities of the uninstallers.
• RQ7.1 Are uninstallers resistant to tampering attempts? This

derived question aims to answer how resistant to malicious applications
uninstallers are.

• RQ7.2 Are uninstallers able to remove malware? This question
aims to answer whether uninstallers can unlock resources from malicious
processes, such as hypothesized by some users in forums [4–6].

Uninstallers Selection. To provide a landscape of the uninstallers, we followed
the same strategy adopted in the reference study of application installers [1]: the
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Table 1. Selected Uninstallers. We selected the most popular applications that
were successfully downloaded and not part of a security solution. Columns represent,
respectively, tool name, tool version, if they are embedded in security solutions (✓) or
not (✗), if they were successfully downloaded (✓) or not (✗), if they run on VM (✓) or
not (✗), and their ranking in the repositories. Empty fields mean that the data is not
available and/or the criteria does not apply.

Uninstaller Version Security Downloaded VM CNET Softonic Softpedia

Iobit 11.0.1.14 ✗ ✓ ✓ 1 2

Revo 2.1.5.0 ✗ ✓ ✓ 2 1 2

Your 7.5.2014.3 ✗ ✓ ✓ 3 3

Advanced ✗ ✗ 4 6 8

Easy ✗ ✗ 5

Wise 2.3.6.140 ✗ ✓ ✓ 6

Ashampoo 10.10.00.13 ✗ ✓ ✓ 7 9 15

Zsoft 2.5 ✗ ✓ ✓ 8 12

Anvi 1.0 ✗ ✓ ✓ 9

Smarty 4.9.6 ✗ ✓ ✓ 10 11

Puran 3.0 ✗ ✓ ✓ 11

Handy 1.2 ✗ ✓ ✓ 12 12

Absolute 5.3.1.26 ✗ ✓ ✓ 13 9

Ccleaner ✓ 14

Bazooka Adware ✓ 15

Uninstall Manager ✗ ✗ 16

Total Uninstall 6.16.0 ✗ ✓ ✗ 17 10 5

search for applications in the most popular online software repositories. Our
search in December/2021 revealed the existence of 275 uninstallers entries for
the uninstaller keyword for CNET [3], 6 thousand for Softonic [22] (unfiltered),
and 268 for Softpedia [23].

Unfortunately, we cannot handle these amounts via manual analysis, as
required by the experiments we designed, such that we opted for selecting the
applications ranked first in the repositories (the most downloaded ones), hypoth-
esizing them to be more representative of the solutions most users install in their
machines. We found a low agreement between the ranks of all repositories, such
that we tried to maximize our coverage by considering the most popular apps in
the higher rank positions in the majority of the repositories. We discovered that
considering the CNET rank as a reference was the selection that maximize the
rank position coverage.

From all possible uninstallers to be selected, we discarded those that were
not successfully downloaded (e.g., server errors on the repository side and/or
corrupted files), those that did not execute in Virtual Machines (VMs)–used
for tests–,and also discarded those that were part of security solutions, since
the analysis of security solutions is different from our goal of analyzing the
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uninstallers by themselves (specific analyses are reported in the academic liter-
ature [2]). Table 1 shows the 11 selected uninstallers and their respective rank
positions for the multiple repositories. We also show the downloaded apps’ ver-
sions for the sake of reproducibility.

Removed Apps Selection. The applications we targeted to remove using the
uninstallers were the native applications installed with Windows, additional
Microsoft products installed in typical user’s machines (e.g., Office), and the
top-10 most popular applications used by the users (e.g., browsers) according to
the rankings of the same repositories that we downloaded the uninstallers. The
number of applications used in each experiment varied according to their goals: a
random one, when designing a malicious uninstaller; all of them simultaneously,
when evaluating the presence of sensitive information.

Analysis Methodology: To inspect the uninstaller applications, we manually
installed each of them into a fresh Virtual Machine (VM) and inspected the
installed files (static analysis) and their interaction with system components
while we interacted with the application’s UI (interactive dynamic analysis). All
monitoring was performed using either Microsoft native tools, such as regedit,
for registry inspection, or Microsoft complements, such as SysInternals [16], for
advanced system state inspection. The VMs were restored to the original state
after each uninstaller was tested.

Copyright Information: During our experiments, no decompilation was per-
formed so as to not violate the creator’s copyright. All analyses were performed
by statically examining the installed software files and/or the behavior of the
applications during their normal execution.

5 Evaluation: What We Discovered?

In this section, we present our experiment’s results and show how they contribute
to understanding uninstaller’s operations.

5.1 RQ1. the Anatomy

We started our investigation by analyzing the structure of the uninstallers, as
summarized in Table 2. Our initial goal was to use the complexity of their con-
structions as a proxy for evaluating the complexity of their operations. Our ini-
tial hypothesis was that these installers would be complex pieces of software that
integrate with multiple parts of the system to be able to perform the removal
actions that the installers and the OS itself was not able to perform. Instead, we
found that most applications were simpler than expected.

In fact, some uninstallers are even standalone applications, operating from a
self-contained binary, which embeds all capabilities and presents all data hard-
coded within it. Their simplicity associated with the great number of Windows
libraries imported by them makes us to hypothesize then that they operate only
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like wrappers for invoking the proper Windows native functions designed to
remove software.

Being a standalone application is not a problem, simplicity is desired, since
the application is well-designed and follows the best practices. Interestingly, in
the case of the Anvi installer, the standalone application does not register its
own binary with the system, thus not appearing in the list of installed software.
In some sense, the uninstaller application acts the same way that the software
it is designed to remove acts.

Table 2. Uninstallers Anatomy. Files and Components. Columns represent, respec-
tively, tool name, if they are registered with the Windows (✓) or not (✗), the number
of executable files it is composed of, if it is composed of shared libraries (✓) or not
(✗), the number of kernel drivers composing the tool, if the applications stores data in
databases (✓) or not (✗), and if it relies on configuration files (✓) or not (✗).

Unnstaller Register EXE DLL Drv DB Config

Iobit ✓ 21 ✓ 3 ✓ ✗

Revo ✓ 1 ✗ ✗ ✗ ✗

Your ✓ 6 ✗ ✗ ✗ ✓

Wise ✓ 3 ✗ ✗ ✓ ✓

Ashampoo ✓ 6 ✓ ✗ ✓ ✗

ZSoft ✓ 2 ✗ ✗ ✗ ✓

Anvi ✗ 1 ✗ ✗ ✗ ✗

Smarty ✓ 2 ✓ ✗ ✗ ✗

Puran ✓ 2 ✗ ✗ ✗ ✓

Handy ✓ 1 ✗ ✗ ✗ ✗

Absolute ✓ 4 ✓ 1 ✗ ✗

Even the uninstallers that are not standalone are not complex, with a minor-
ity presenting even libraries. We hypothesized initially that libraries would be
used to implement custom removal algorithms, but we mostly found libraries
used for compatibility (e.g., zlib for compression support). Similar reasoning can
be applied for kernel drivers, which are found only in two uninstallers. Most unin-
stallers operate in the same privilege level as the software they aim to remove.

Even when they are not standalone binaries, most uninstallers do not keep
usage sessions in the current system. We only found 3 uninstallers storing infor-
mation about the system in databases (all cases in sqlite databases). In most
cases, they simply use information hardcoded in the binaries or gathered from
configuration (config) files (often stored in plain) to increase their removal capa-
bilities and intelligence.

In the case of the Wise uninstaller, the configuration file stores a list of rat-
ings for popular applications and also an application exclusion list (e.g., Firefox,
Chrome, Opera), whose files will not be touched by the uninstaller, limiting
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the aggressiveness of the heuristics, but also the removal capabilities. Lists are
also found in the Ashampoo uninstaller. In this case, a whitelist, protected against
modifications only by filesystem permissions, is used by the application. It means
that the applications present in the whitelist will not be removed from a system
by the removal software and its heuristics. The approach used by the ZSoft unin-
staller is of blocklisting applications. It means that the removal software looks
for the presence of specific, known “bad” applications to be removed. We identi-
fied that the “bad” reputation of a given software is given by the StopBadware
list [25], present in the configuration files of this application.

RQ1.1. Bundling. Most uninstaller applications are distributed in limited
forms to incent a purchase, as shown in Table 3. As a limitation, a few of them
will display ads to the user. The worst case, however, is when the uninstallers
are delivered with additional packages bundled in the original file. In this case,
whereas users are looking for an application to remove software from their sys-
tem, the final result is that more software is installed, which is not reasonable.

Table 3. Application Bundling. Some uninstallers distribute other applications
during their installation. Columns shows, respectively, the tool name, the type of con-
tented bundled with it, if it displays ads (✓) or not (✗) and of which type (if available),
and the license type.

Uninstaller Bundled Ads Type

Iobit Itop suite Opera Freemium
Itop screen recorder Driverbooster
Itop vpn

Revo ✗ ✗ Freemium
Your ✗ ✗ Shareware
Wise ✗ ✗ Freeware
Ashampoo ✗ ✗ Shareware
ZSoft ✗ ✗ Freeware
Anvi ✗ ✗ Shareware
Smarty ✗ ✗ Shareware
Puran ✗ ✗ Freeware
Handy ✗ Random Ads Freeware
Absolute Games ✗ Freeware

5.2 RQ2. Operation

The key goal of our investigation is to discover how uninstallers really remove
the applications. For such, we requested the evaluated uninstallers to remove
multiple applications under different settings. A summary of the uninstaller’s
capabilities is shown in Table 4.
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Our first finding is that in an overall manner the uninstallers display the
same installed application as Windows, which indicates that they search the
same registry locations. Only two uninstallers performed a full registry search.
On the one hand, broader searches are useful to find software not installed in
standard locations. On the other hand, this strategy ends up generating false
positive reports.

Table 4. Uninstallers Operation. Uninstallers first invoke the native uninstaller.
Some apply heuristics after that. Columns show, respectively, tool name, if the list of
installed apps is retrieved from the Windows subsystem or directly from the registry,
if it invokes the native uninstaller (✓) or not (✗), if the removal process is automated
(✓) or not (✗), and if it has custom removal heuristics (✓) or not (✗).

Uninstaller List Native Auto Custom

Iobit Windows ✓ ✓ ✗

Revo Windows ✓ ✓ ✗

Your Windows ✓ ✓ ✗

Wise Windows ✓ ✓ ✗

Ashampoo Windows ✓ ✗ ✓

ZSoft Registry ✓ ✗ ✗

Anvi Windows ✓ ✗ ✓

Smarty Windows ✓ ✓ ✗

Puran Windows ✓ ✗ ✓

Handy Registry ✓ ✗ ✗

Absolute Windows ✓ ✗ ✗

We discovered that a universal uninstaller’s strategy is to invoke the
original uninstaller of the application to be removed before taking any other
action to remove the software. This strategy is adopted by all evaluated applica-
tions. Whereas some applications seem limited to this functionality, acting only
as another GUI for the removal process, some applications try to complement
the removal procedure. In this sense, the uninstaller’s philosophy seems more to
try to clean residual entries than trying to remove applications by themselves.

The strategies used to perform additional cleanings are varied. Some unin-
stallers perform custom scans, asking the user if they want to remove a given file.
It does not seem to be a significant advantage in comparison to manual removal
procedures. The only clear benefit in it is to automatically locate files, but no
decision is taken by the application. Other uninstallers try to add intelligence to
the process by employing heuristics to automatically identify which files must
be removed.

To evaluate the identified third-party uninstaller’s capabilities in practice, we
created a crafted application installation with an integrated custom uninstaller
that purposely did not remove registry keys and installation files. We applied
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the third-party uninstallers to check their actions over the remaining installation
artifacts. We summarize the results in Table 5.

Table 5. Removal Experiment. Heuristics might be tricked to remove the wrong
files. Columns represent, respectively, tool name, if the tool was able to remove apps
from the installed apps list (✓) or not (✗), if they were able to remove associated
registry keys (✓) or not (✗), if they were able to remove associated files (✓) or not (✗),
and if they are prone to remove wrong files (✓) or not (✗).

Uninstaller List Registry Files Wrong

Iobit ✓ ✓ ✓ ✓

Revo ✓ ✓ ✓ ✓

Your ✓ ✓ ✗ ✗

Wise ✓ ✓ ✓ ✓

Ashampoo ✓ ✓ ✓ ✓

ZSoft ✓ ✓ ✗ ✗

Anvi ✓ ✗ ✗ ✗

Smarty ✓ ✓ ✓ ✓

Puran ✓ ✗ ✗ ✗

Handy ✓ ✓ ✗ ✗

Absolute ✓ ✗ ✗ ✗

All uninstallers were able to run the native uninstaller (our custom one) and
thus remove the application from the list of installed apps. However, it does not
mean that applications were fully uninstalled by all of them. Not all uninstallers
were able to wipe the registry entries associated with the application that were
intentionally left by our uninstaller. Similarly, not all of them were able to follow
the paths stored in the registry keys and delete the files intentionally left in the
filesystem. The only solutions able to perform this type of uninstallation were
the ones using heuristics. The heuristic used by the uninstallers is to follow the
path added to the InstallLocation key and suggest the removal of whatever
is pointed by it.

A major drawback of using heuristics is that they provide no guarantee that
they will remove correct files, and this characteristic might even be abused.
To demonstrate that, we configured an application installation whose
InstallLocation path points to another application’s folders, unrelated to our
targeted application. In all cases, the installers suggested removing the unre-
lated folders, even when we pointed them to native Windows folders, which
might even break the system operation.

RQ2.1. Extra Features. In addition to their original function of uninstalling
applications, many uninstallers also offer other facilities to the users. Table 6
summarizes the extra features we found on the evaluated uninstallers.
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Table 6. Extra Features. Some uninstallers present additional monitoring and man-
agement resources. Columns show, respectively, tool name, if they filter installers by
size (✓) or not (✗), by usage frequency (✓) or not (✗), if they handled installed updates
(✓) or not (✗), if they have cleaning capabilities (✓) or not (✗), if they monitor new
installations (✓) or not (✗), and if they create installation checkpoints (✓) or not (✗).

Uninstaller Size Freq. Upd. Clean. Mon. Checkpoint

Iobit ✓ ✓ ✗ ✗ ✓ ✗

Revo ✗ ✗ ✗ ✗ ✗ ✗

Your ✗ ✗ ✗ ✓ ✗ ✗

Wise ✗ ✗ ✗ ✗ ✗ ✗

Ashampoo ✗ ✗ ✓ ✗ ✓ ✗

ZSoft ✗ ✗ ✗ ✗ ✗ ✓

Anvi ✓ ✗ ✗ ✗ ✗ ✗

Smarty ✗ ✗ ✗ ✗ ✗ ✓

Puran ✗ ✗ ✗ ✗ ✗ ✗

Handy ✗ ✗ ✓ ✗ ✗ ✗

Absolute ✗ ✓ ✓ ✗ ✗ ✗

Many features offered by the installers are focused on usability rather than
on the removal process itself (e.g., identifying very large files, rarely used files,
unattended update files left in the system, and so on). Some facilities are related
to the removal but do not involve a specific process (e.g., cleaning the system),
such that they were evaluated separately.

Two extra features are of our particular interest when evaluating uninstallers:
(i) the ability to monitor new installations, and (ii) the ability of performing
system checkpoints. These two functions are not natively provided by Windows
and they would be useful to the users. We discovered, however, that these two
functions are very limited in all uninstallers. We discovered, for instance, that
the so-called monitors do not perform whole-system monitoring, as expected.
Instead, they only search specific locations and registry keys, such that stan-
dalone installers are not identified (e.g., EXE files extracted from zip folders)
and manual registry edits are also not reported.

The checkpoint mechanism works similarly on both evaluated uninstallers
that offer this capability. The user takes a snapshot of the current system state
(files and registry keys) before installing an application, installs it, and takes a
new snapshot after it. The newly added files and registry keys are then reported.
If the user asks for application removal, these files will be removed.

The snapshot mechanism is very fast, such that we hypothesized that the
uninstallers do not look for file contents (not even a hash/digest). We evalu-
ated this hypothesis by modifying an existing file and we discovered that this
was also reported as a new file. We then hypothesized that the uninstaller was
identifying it via the filesystem’s modification time. We confirmed that by re-
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saving files, with no actual modification, during the snapshot, such that these
files were reported as new. Whereas timing-efficient, this approach is problematic
because it reports any modified file as belonging to the installed application
and suggests its removal. When we modified a system file, this file was also
suggested for removal, which might break the system operation.

5.3 RQ3. the Differences

One of the goals of this research work is to investigate the reasons why one would
prefer a third-part uninstaller than the native solution. We did not discover many
differences to support such migration, except the one here discussed.

Table 7. Applications with NOREMOVE option. Most uninstallers simply ignore the
option. The set of columns show, respectively, tool name and if the tool was able to
remove applications with the NOREMOVE option set (✓) or not (✗).

Uninstaller Removed Uninstaller Removed

Windows ✗ ZSoft ✗

IoBit ✓ Anvi ✓

Revo ✓ Smarty ✓

Your ✓ Puran ✓

Wise ✓ Handy ✓

Ashampoo ✓ Absolute ✓

Applications might mark themselves to not be removed by setting the
APPNOREMOVE key in the registry. In this case, the native Windows uninstaller will
not display the uninstall button for that application, even though the applica-
tion will still be displayed in the list of installed apps. We evaluated the behavior
of the other uninstallers in this case. Table 7 shows that all uninstallers except
for ZSoft simply ignore this registry key and invoke the registered uninstaller
anyway. Whereas skilled users might perform manual registry editing to remove
the key and allow the native Windows uninstaller to remove the application, we
consider that in this scenario the third-part uninstallers perform better than the
native one because even users with less knowledge about Windows internals can
remove applications in this setting.

5.4 RQ4. Privileges

As important as to identify that a given resource must be removed is to have
the ability to remove it. In practice, this might be challenging due to permission
issues (e.g., a file might be locked, a process might still be running, the access to
a key might require admin privileges). Therefore, we aimed to evaluate how unin-
stallers handle these conditions. We discovered that, since the uninstallers rely
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on the invocation of the original uninstaller, they have almost the same capabil-
ities as them. In this sense, the uninstallers do not elevate themselves to admin,
but they wait for the native uninstallers to do so to remove the files. If they do,
the files are removed. If they do not remove a file that requires special permis-
sions, the standalone uninstallers will not be able to remove them as well. Sim-
ilarly, if the native uninstaller unloads kernel drivers and stops services, these
will be removed. However, if the standalone uninstallers are required to remove
them while running, any attempt will fail due to the lack of proper permis-
sions. Whereas we understand that this scenario is somehow expected and
thus acceptable, most uninstallers do not make it clear to the users. In our
searches, we found that only the Revo uninstaller stated in its manual that
drivers must be removed in safe mode [26].

5.5 RQ5. Performance

It is common to find users in Web forums recommending the use of uninstallers
and/or cleaners to speed up system performance. The hypothesis behind it is that
having fewer files and/or registry keys in the system would make searches faster,
as the system would have to traverse smaller structures, which is a reasonable
hypothesis at a first glance [20]. This “popular knowledge” become widespread
to the point of that some solutions even advertise performance gains. Therefore,
it is important to investigate to which extent these supposed performance gains
are significant.

Two of the uninstallers solutions that we evaluated made explicit performance
claims: You Uninstaller and Ashampoo. In the first case, the advertised clean-
ing function is, in fact, limited to a few pre-defined locations, such as browser’s
history, cookies, and so on. Even though this might have a (limited) impact
on navigation, it is hard to consider these actions as a performance improve-
ment to the system. In the second case, the uninstaller presents a solu-
tion to clean the registry tree as a whole. We evaluated its impact by tak-
ing a snapshot of the registry tree before and after the cleaning. We dis-
covered that the solution is very conservative when removing keys. It only
removes registry entries with no associated keys (empty), but it does not remove
orphaned keys (e.g., keys that point to invalid paths). On the one hand, the
solution works both for the current user (HKCU) as well as for the other uses
(HKLM). On the other hand, it is very conservative and does not touch keys
that affect the system (e.g., HKCR).

In the end, after an average of 10 repetitions, the solution removed 500
keys from an average of 318 thousand keys with 564 thousand associated val-
ues present in our fresh Windows installation. We consider that this result
(less than 0.2% effect) is not significant to support claims of performance gains.
To confirm this hypothesis, we executed 10 repetitions of a Windows reg-
istry benchmarking tool [21] and measured the depth of the traversed registry
branches and the actual time spent traversing them. We noticed no statistical
difference between the system state before and after the system cleanup.
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5.6 RQ6. Remaining Files

A good uninstaller application should be able to remove all traces of an
installed application from the registry and filesystem. Of course, this is the
main task of the native application uninstaller, but since in this work we
assume the user is using some other application because the native uninstaller
already failed, we would like to verify whether the third-part uninstallers are
able to bridge this gap. Unfortunately, they are not. Since most uninstallers
only invoke the native uninstaller to remove the application, they end up
failing in the same aspects as the original uninstaller. The uninstallers that per-
form additional heuristic checks indeed remove more files, but no uninstaller com-
pletely removed all files of any application we tested. This essentially happened
because applications often install their files in two distinct locations: Program
Files, for the binaries; and AppData, for the configuration files. Since only the
first location is affected by the requirements to register the application with the
Windows registry, the heuristics are only able to correlate this location with the
installed application, always leaving the second folder untouched.

RQ6.1. Evolution. A major problem with files and registry keys left
in the filesystem is that they can potentially reveal sensitive information
about the users, as demonstrated by a previous work [10]. We repeated
their experiment to verify if the situation improved with time and if the
use of third-party uninstallers is a viable option for cleaning the system
after an uninstall. To do so, we installed the same application considered
in the original work (in updated versions) in a fresh Windows installation.
We populated these applications with data from an entire day of use. For
instance, for the mail client, we registered an account in it and sent and
received emails. We inspected the filesystem and the registry after we unin-
stalled the applications using the native uninstaller and the third-part ones.
We notice that no clear sensitive information is left by the native uninstaller
(e.g., no key storing email addresses), which we might credit to
enhancement to the native uninstaller itself over time. On the other
hand, configuration and temporary files were still spread all over the filesystem
after the installation. The files stored in the AppData folder were
cleaned by the third-part uninstallers, but there were remaining files in
other folders after the application of all solutions. Therefore, we con-
clude that whereas uninstallers might help removing some orphan files,
they are not the solution for definitively eliminating all files, especially if one is
concerned with privacy leaks.

5.7 RQ7. Protection

If uninstallers are supposed to remove badly-behaved applications, they should
be protected at least against the basic types of interference attempts, such as
termination. We inspected the uninstallers in search of signs of self-protection
mechanisms to evaluate their protection level. We did not find, however, for all
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uninstallers, OS-independent protection mechanisms, which indicates that they
assume that the software they will uninstall is well-behaved (i.e., they will oper-
ate following the best standards, ordinary methods, and not abusing interfaces).

For two uninstallers, we identified components that could be used to increase
self-protection (e.g., kernel drivers that could be used to prevent access to the
uninstaller files). We discovered, however, that these components are only part of
the uninstaller engine and not part of self-protection modules (e.g., kernel drivers
are used as callback mechanisms). In the case of the Absolute uninstaller, the
driver could be terminated by any user/process having admin privileges (in the
last instance, it could be even the application requested to be uninstalled). In the
case of the IoBit, there were 3 drivers running in our test environment (respon-
sible for the process, registry, and filesystem callbacks, respectively). Whereas
the first two were resistant to termination due to the lack of proper permissions,
the filesystem driver was easily terminated by the admin (which we interpreted
as a bug, since the other 2 drivers were protected).

RQ7.1. Anti-tampering. To demonstrate uninstallers vulnerabilities due to
the lack of self-protection mechanisms, we developed some attacks1 that could
be leveraged by a malicious application to not be removed by an uninstalling
application.

Our first attack is based on the fact that the standalone uninstallers directly
call from their main process the application registered in the registry as an unin-
staller for the target application rather than calling them from a child/protected
process. This allows the targeted uninstaller to identify the PID of their par-
ent processes (the standalone uninstallers) and directly attempt to terminate
this Process ID (PID). If no protection mechanism is employed, the attack will
succeed and the targeted application remains installed in the system.

Table 8. Uninstaller Termination. Uninstallers can be terminated by the targeted
uninstall application. The set of columns show, respectively, tool names, and if the
installers were terminate (✓) or not (✗) by a malicious uninstaller.

Uninstaller Terminated Uninstaller Terminated

Windows Crashed ZSoft ✓

IoBit ✓ Anvi ✓

Revo ✓ Smarty ✓

Your ✓ Puran ✓

Wise ✓ Handy ✓

Ashampoo ✓ Absolute ✓

1 Attack demos available at: https://www.youtube.com/watch?v=Rkw6WbD-nMY,
https://www.youtube.com/watch?v=mZPb7h4cy80, and https://www.youtube.
com/watch?v=0AjFCZWUhfU.

https://www.youtube.com/watch?v=Rkw6WbD-nMY
https://www.youtube.com/watch?v=mZPb7h4cy80
https://www.youtube.com/watch?v=0AjFCZWUhfU
https://www.youtube.com/watch?v=0AjFCZWUhfU
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We developed a Proof-of-Concept (PoC) uninstall application for this attack
and registered it as the uninstall of an application to be removed by the
standalone uninstallers. Table 8 shows this experiment’s results. Whereas the
Windows installer crashed, but did not terminate, all standalone uninstallers
terminated before removing the targeted application.

The problem with the first attack is that terminating the application is notice-
able for the user and might raise concerns. A more effective strategy would be to
remove the application from the list of installed software without actually unin-
stalling it. We developed a second class of attacks with this goal by exploiting
the facts that (i) installers have no self-protection mechanisms; and (ii) they rely
on standard system interfaces for their operation.

Our second attack consisted of injecting a DLL into the uninstaller appli-
cations to hook the Windows APIs used by the uninstallers to remove our
PoC application from the installed applications list. In other words, we devel-
oped a userland rootkit. Table 9 shows that we were able to inject the DLL
and remove applications from the list of all standalone uninstallers when the
processes were already launched with the injected DLL. It also shows that
injection was possible in runtime into all but three uninstallers. The two failure
cases are due to their process being protected against memory writes after the
process setup phase, which is the only self-protection measure we found among
all uninstallers we inspected.

Table 9. Uninstaller Tampering. External code might affect uninstaller’s opera-
tions. Columns show, respectively, the tool name, if the tool is affected by code injection
at startup (✓) or not (✗), at runtime (✓) or not (✗), and by external kernel drivers (✓)
or not (✗).

Uninstaller Userland Kernel
Startup Runtime

IoBit ✓ ✗ ✓

Revo ✓ ✗ ✓

Your ✓ ✓ ✓

Wise ✓ ✓ ✓

Ashampoo ✓ ✓ ✓

ZSoft ✓ ✓ ✓

Anvi ✓ ✓ ✓

Smarty ✓ ✗ ✓

Puran ✓ ✓ ✓

Handy ✓ ✓ ✓

Absolute ✓ ✓ ✓

We also developed a third attack that does not depend on code injection
to demonstrate that the reliance on OS APIs is the weakest point of the unin-
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staller’s security model. We developed a kernel driver that implements callbacks
to prevent uninstallers from accessing registry keys associated with the targeted
application, which could be performed by a malicious software that prevents
uninstallations. In other words, we developed a kernel rootkit. Table 9 shows that
this strategy succeeded against all uninstallers, removing the targeted applica-
tion from the list of installed software without actually removing the application
from the system.

RQ7.2. Anti-malware. Considering the self-protection limitations that we pre-
sented above, we understand that uninstallers are not suitable as a replacement
for security solutions for the task of malware detection, as suggested in some
Web forums, since an armored malware could terminate them or interfere with
their operation. Moreover, we also did not find evidence of an actual capability
of removing malware traces in any of the solutions. In our tests, we infected
a system with multiple samples collected from VirusShare [27] (10 randomly-
chosen samples tested against each uninstaller) that created AutoRun keys for
persisting in the registry. Even after we manually removed the malicious bina-
ries from the system and left the keys orphan, the uninstallers were still not
able to detect it and remove these entries from the registry. In other words,
the uninstallers were not able to identify that the malware samples were the
original parents of the leftover AutoRun keys. This happens mostly because the
removal heuristics used by the uninstallers rely on data that is often set by
benign applications (paths in registry keys) that were not set by the malware
samples.

6 Discussion: What Are the Implications of Our
Findings?

Based on our findings, we here present a brief discussion about some implications
of our findings.

The Need for Better Uninstallers Using Current Technology. Whereas
most of the investigated uninstallers did not present significantly greater removal
capabilities than the native Windows one, all of them present a better user inter-
face (UI)/user experience (UX), in the sense that applications are categorized,
ranked, locations are displayed, and so on (see RQ 2.1). These information pieces
are not available in the standard Windows tool. We believe that this might be one
of the reasons why users adopt this kind of solution rather than using the native
installer. Therefore, OS developers (e.g., Microsoft/Windows) should investigate
refactoring and enhancement possibilities of their native solutions. We believe
that incorporating the features from the third-part solutions to a native system
is an immediately applicable action that does not depend on the development
of new technologies.

The Need for Better Uninstallers Using Next-gen Technology. Whereas
enhancing the UI/UX is an immediately applicable action, enhancing the removal
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capabilities depends on the development of new technologies. When we analyze
the removal procedure, we observe that uninstallers fail to remove files remaining
from broken installation because no system component keeps track of processes’
interactions all the time. Therefore, for the development of an efficient uninstal-
lation procedure, systems would have either to (i) monitor the system constantly
to identify which files/registry keys/so on were accessed by each process; or (ii)
tag the touched files so one could identify to which applications a file/registry
key belongs. If we develop a tagging mechanism, one could remove files associ-
ated with a process by looking at the registry keys tags or, otherwise, remove
registry keys associated with a process by looking for the tags assigned to a file
belonging to that process. Efficiently tagging resources consists of a significant
open research problem that must be addressed by the research community.

Study Limitations. Whereas this study presented a comprehensive analysis
of the most popular uninstallers, thus covering a significant user base, it is
important to highlight that this study is noth exhaustive. The manual approach
required to inspect the uninstallers limited the number of uninstallers that our
research team was able to analyze. We understand that our current findings
are a first step to shed light on the uninstallers landscape. For the future, more
research is warranted to cover a greater number of uninstallers, of distinct nature,
and covering distinct platforms.

7 Conclusion

In this work, we investigated the operation of the 11 most downloaded appli-
cation uninstallers from the 3 most popular Internet software repositories. We
analyzed their operation against well-behaved and malformed uninstallers to
characterize their weak and strong aspects. Based on our experiments, we con-
cluded the following about their operation: (1) Most installers are similar to
the native Windows uninstaller, finding the same installed applications and not
locating broken installations; (2) Some installers provide interesting additional
features, such as creating a system checkpoint, but this feature might corrupt
files if not applied immediately after the broken application installation; (3) The
heuristics employed by a few installers to clean broken installation files might
be abused by a malicious uninstaller to force the removal of third-party’s files;
(4) The installers are not resistant against a malicious uninstaller designed to
terminate the uninstaller application.

We recommend the OS vendors to: (1) Redesign their uninstallation systems.
The third-part uninstallers all present better application organization than the
native uninstaller (e.g., categorizing them), such that this might work as an
incentive for users adopting this type of solution rather than the native one.

We recommend for users: (1) Do not confuse removing an application from
the installed apps list with actually removing the application files. Sensitive
files might still be resident in the filesystem after an application removal; (2)
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Application uninstallers are not secure robust enough to remove malware, thus
they should not be used as a replacement for Antiviruses and security solutions.

Reproducibility. All code developed for our experiments are available at
https://github.com/marcusbotacin/Uninstallers.
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Abstract. In the past years, a number of static application security test-
ing tools have been proposed which use so-called code property graphs
(CPGs), a graph model which keeps rich information about the source
code while enabling its user to write language-agnostic analyses. How-
ever, they suffer from several shortcomings. They work mostly on source
code and exclude the analysis of third-party dependencies if they are
only available as compiled binaries. Furthermore, they are limited in
their analysis to whether an individual programming language is sup-
ported or not. While often support for well-established languages such
as C/C++ or Java is included, languages that are still heavily evolv-
ing, such as Rust, are not considered because of the constant changes in
the language design. To overcome these limitations, we extend an open
source implementation of a code property graph to support LLVM-IR
which can be used as output by many compilers and binary lifters. In
this paper, we discuss how we address challenges that arise when map-
ping concepts of an intermediate representation to a CPG. At the same
time, we optimize the resulting graph to be minimal and close to the
representation of equivalent source code. Our case-study on detecting
cryptographic misuse indicates that existing analyses can be reused and
that the analysis time is comparable to operating on source code. This
makes the approach suitable for a security analysis of large-scale projects.

1 Introduction

Despite huge efforts of researchers and industry put into identifying vulnerable
software, many software systems still suffer from various security weaknesses.
The concept of code property graphs (CPG) [1] has been introduced to sim-
plify identifying vulnerabilities and bugs in the source code of programs. A CPG
covers properties of abstract syntax trees (AST), control flow graphs and data
flow graphs, among others, thus containing all information relevant for a secu-
rity analysis. The CPG enables its user to identify vulnerabilities or bugs by
performing reusable graph queries. This perk led to a widespread adaption and
several implementations [1–7]. Even if the graphs mimic the source code with a
minimal loss of information, the graph provides an abstraction of the actual code.
This abstraction is suitable to support a language-agnostic analysis of software.
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Unfortunately, the implementations are limited with respect to the supported
programming languages since each language requires a separate translation.

As compilers suffer from a similar problem, the use of intermediate repre-
sentations (IR) has become popular. The IR abstracts from the programming
language but, in many cases, still contains a significant amount of high-level
information such as the types of variables which is lost in the compiled binary and
can barely be recovered [8]. The lack of such information can worsen the analysis
results. The Low Level Virtual Machine (LLVM) project proposes LLVM-IR [9],
a very popular IR. Numerous compiler frontends exist to translate source code
to LLVM-IR. E.g., clang1 translates the languages C, C++ and Objective-C to
LLVM-IR and has been extended by Apple to support Swift2. Other frontends
exist to support a wide range of programming languages (e.g., Rust).

While LLVM-IR was designed for compilers, it is also frequently used as
output format of binary lifters [10–13]. This way, a lifter supporting multiple
architectures and types of binary files can avoid the need to implement the
translation for different flavors of assembly code or application binary interfaces.
As binary lifting has meanwhile become a stable technique [14], its output can be
used to perform a security analysis of the binary without requiring the sources.

If source code is available, analyzing the differences between the code and the
binary can identify the security implications of compiler optimizations [15]. E.g.,
side channel vulnerabilities introduced by compilers are still a major concern of
developers of cryptographic libraries [16]. As LLVM-IR can be emitted at all
stages of the compilation, it can already contain such vulnerabilities.

In this paper, we show how we overcome shortcomings of existing CPG tools
by enabling the analysis of LLVM-IR in such a graph. This bridges the gap
between the analysis of source code written in higher-level programming lan-
guages and the analysis of programs (or dependencies) that may exist only in
binary form. When including support for LLVM-IR in a CPG, several challenges
arise from the static single assignment (SSA) form, the exception handling rou-
tine, instructions missing in high-level programming languages and significantly
different syntactic representations of some concepts in LLVM-IR and other lan-
guages.

Contrary to prior work, we do not require to run any LLVM passes before-
hand, helping us to keep the graph smaller. At the same time, we aim to retrieve
as much high-level information as possible and map the code to high-level con-
cepts whenever possible. Rather than handling LLVM-IR-specific instructions,
e.g., cmpxchg3, only as a generic function call, we translate the concepts into
existing CPG node types that represent the behavior of a higher-level program-
ming language. This allows us to re-use existing concepts in queries, such as
if-statements or pointer referencing. Our case-study shows that our integration

1 https://clang.llvm.org/.
2 https://github.com/apple/llvm-project.
3 The cmpxchg instruction compares a given argument against a value stored in a

memory address. If they are equal, a new value, specified in a second argument is
stored in memory. This is similar to if(*addr == arg0) *addr = arg1; in C/C++.

https://clang.llvm.org/
https://github.com/apple/llvm-project
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of LLVM-IR into a CPG enables us to identify misuses of cryptographic APIs,
a common security weakness. It further shows that we support not only the
analysis of programs whose source code is available, but also of lifted binaries,
enabling us to identify weaknesses and vulnerabilities regardless of the source
code’s availability. In summary, our contributions are as follows:

– We present the first mapping of all LLVM-IR instructions to existing CPG
nodes with full compatibility to the existing structure. This ensures that
existing analyses are fully compatible with the representation.

– We show how we can keep the size of the CPG minimal.
– We are the first to include LLVM-IR’s exception handling routines in a CPG.
– We extended the open source project cpg4 to support our concepts.

2 Background

2.1 The Code Property Graph

The cpg project [7] enables a graph-based representation of source code of dif-
ferent programming languages. To date, the focus lies in Java and C/C++ but
experimental support for Python, Go and TypeScript is also available. The goal
of the project is to provide a language-agnostic representation of the source code.
This enables a security expert to identify vulnerabilities or bugs. Furthermore,
the cpg library comprises a way to store the graph in neo4j5, and makes the
graph accessible via a command line interface. For some cases, the library can
also evaluate the value which can be held by a node. All this allows a security
expert to write custom queries either to the graph database or the in-memory
representation of the CPG. The cpg library is designed in a way to allow reusing
these queries among all supported programming languages. To fulfill this goal,
the cpg library implements a thorough class hierarchy which accounts for vari-
ous types of statements and expressions. The CPG encodes information such as
the class hierarchy of the code under analysis, the control flow graph, and the
call graph in a single graph. The current design mainly targets object-oriented
programming languages. To deal with a possible lack of some code fragments or
errors in the code, the library is resilient to incomplete, non-compilable and to
a certain extent even incorrect code.

2.2 The LLVM Intermediate Representation

The Instructions. The LLVM-IR is used as IR of the LLVM project. Its main
purpose lies in providing an abstraction of code to ease the optimization and
analysis of the program in a language- and architecture-independent way. The
LLVM-IR holds values in global variables (prefixed with @) and local variables
(prefixed with %) both of which can be named or unnamed. The LLVM-IR follows

4 https://github.com/Fraunhofer-AISEC/cpg.
5 https://neo4j.com/.

https://github.com/Fraunhofer-AISEC/cpg
https://neo4j.com/
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the static single assignment (SSA) form. Hence, every variable can be written
to exactly once. This limitation does not affect global variables as they are
represented as memory locations and are accessed via store or load operations.

Overall, the LLVM-IR differentiates between 65 instructions. Of these, 13 are
arithmetic operations, 6 are bitwise operations, and 13 instructions cast types.
The remaining instructions call functions, handle exceptions, load from or store
to memory, manipulate aggregated types or jump to other program locations.
The instructions can be enhanced with metadata to note the calling convention,
optimizations or desired properties of functions and parameters, among others.

Besides the basic instructions, LLVM-IR contains numerous so-called “intrin-
sics”. Those are functions which model certain standard library functionality, or
model frequent actions which have to be represented differently on different
architectures. Some intrinsics repeat or refine basic instructions, others insert
functionality such as the automated memory management in Objective-C.

The LLVM-IR supports a simple type system and differentiates between a
set of primitive types and aggregated types such as structs, arrays and vectors.
Additionally, LLVM-IR has a type for labels (i.e., jump targets), metadata and
a so-called token which is used by certain instructions to transport information.
Overall, the type system resembles C rather than object-oriented programming
languages. In fact, object-oriented concepts are handled by the respective lan-
guage frontend in LLVM. The frontend translates the object-oriented properties
to concepts such as VTables for overriding methods, and method name mangling
to support overloaded functions. In the case of Objective-C, it uses the dynamic
dispatching strategy. Other languages make use of similar concepts.
Accessing LLVM-IR. The LLVM project offers a C++ and a C API to parse
LLVM-IR and LLVm bitcode files. As the CPG project is mainly implemented in
Java, access to the API has to be provided via the Java Native Interface (JNI).
We use the open source project javacpp-presets6 which provides access to the C
API via JNI. Unfortunately, the C API has a flat type hierarchy in its functions
to access the LLVM-IR’s AST, thus making the parsing of instructions and the
extraction of their elements more error-prone if not parsed correctly7. However,
as our evaluation in Sect. 6 shows, our implementation works in a stable way.

3 Related Work

Code Property Graphs. Researchers and industry proposed multiple use
cases and implementations of CPGs and analysis tools [1–7,17,18]. All of these
tools differ in their support for programming languages.

Closest to our work is the tool llvm2cpg [19] which uses Joern [5] as graph
representation. The respective CPG represents most instructions as function calls
and does not try to infer any of the high-level information. Furthermore, it uses
the reg2mem LLVM pass to address the ϕ instruction of LLVM-IR, which sig-
nificantly increases the code base. This results in additional instructions present
in the graph and thus slows down the analysis and makes it more error-prone.
6 https://github.com/bytedeco/javacpp-presets/tree/master/llvm.
7 Typically, an incorrect API call leads to a segfault.

https://github.com/bytedeco/javacpp-presets/tree/master/llvm
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liOS [18] constructs a CPG holding assembly instructions and the function
bodies lifted to LLVM-IR to analyze iOS apps. The graph model cannot be
used to represent source code. Furthermore, liOS does not specifically address
LLVM-IR instructions since the analyses mainly operate on assembly code.

Plume [4] and Graft [3,20] only support Java bytecode, a different low-level
language. Plume builds the graph incrementally to analyze data flows and has
been merged into Joern in a revised version. Graft follows a similar goal. Other
tools [1,5,7,17] analyze source code and differ in their level of abstractions and
supported languages. Some tools extend CPGs for specific use cases, e.g., ana-
lyzing cloud apps [6] or finding vulnerabilities with deep learning [2].
Graph-Based Security Analysis. Various other works investigated in the
usage of other graph-based representations of the source code to identify bugs or
vulnerabilities [21–23] or similar code fragments [24,25], traverse the graph [26]
or improve the analysis [27]. These works aim to provide a rich basis for analyzing
the graphs. Many of the proposed techniques operate on other graph structures
(e.g. the AST). However, the CPG combines a multitude of information and
includes the respective relations, thus making the required information available
for the analysis. Hence, these approaches can still be applied to the CPG.
Static Analysis of Multiple Programming Languages. Other works target
the analysis of multiple programming languages [28–33]. Some of the frameworks
rely on language-agnostic ASTs [34,35] or aim to provide a common pattern for
the AST of multiple languages [36,37]. However, ASTs are cannot be used to find
all kinds of bugs as they do not contain the required information [1]. Teixeira et
al. [38] even propose to translate source code to a custom language.

Furthermore, various intermediate representations (IRs) have been proposed
either for compilers (e.g., LLVM [39], GIMPLE [40], HIR [41], or CIL [42]), or
specifically targeting code analysis (e.g. VEX IR [43], jimple [44], BIL [45], REIL
[46], ESIL [47], DBA [48,49] or RASCAL [50]). Since the IRs are often tailored
to a specific use case or language, they differ in the information available in the
instructions and their abstractions. Many of the IRs are integrated in analysis
toolchains whose analyses are often specific to a use case and cannot easily be
ported to other tools. Therefore, integrating such IRs in an abstract analysis
platform like the CPG can enable further generalized security analysis.

Numerous tools [51–63] can analyze multiple programming languages. How-
ever, they can often barely share the analyses between the languages. The CPG
representation allows reusing analyses across languages.

4 Enabling the Analysis of LLVM-IR with Code Property
Graphs

Existing graph-based approaches to security analysis mostly focus on the analysis
of programs with available source code. In this section, we present our approach
which also enables static security analysis of lifted binaries using CPGs. E.g.,
this allows us to detect the misuse of cryptographic functions, as shown in our
evaluation (Sect. 6.1). In detail, we describe how we map different LLVM-IR
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instructions to CPG nodes while reusing only existing node types. We show how
to represent LLVM-specific constructs similar to their equivalents in already
supported programming languages. We show how to model 1) arithmetic and
logical instructions, 2) access to aggregate types, 3) the ϕ instruction and 4)
LLVM-IR’s exception handling routine with a minimal increase of nodes.

4.1 Basic Instructions

Many instructions are known from other programming languages. We can
coarsely differentiate between arithmetic and logical operations, operations
which enforce specific interpretations of types, and operations which are com-
posed of numerous steps but are often performed atomically on the CPU. In this
section, we explain how we include those respective instructions in the CPG.

Almost all programming languages have a common subset of instructions or
operations. This includes arithmetic, bitwise and logic operations, or compar-
isons which we map to their representation in high-level languages (+, -, *, /,
%,ˆ , &, |,«, », <, <=, etc.). Other instructions like jumps, calls, return instruc-
tions are modeled with their representation in C code. For if- and switch/case-
statements, the branches or cases contain a simple goto statement. Later, a CPG
pass removes such indirections whenever possible to reduce the size of the graph.

For some instructions, LLVM-IR can enforce a specific interpretation of the
types of the arguments. E.g., the instructions udiv, sdiv and fdiv represent a
division and are mapped to the binary operator /. Yet, they interpret the values
as unsigned (udiv), signed (sdiv) or floating point value (fdiv). In the CPG,
we add typecasts to the arguments to enforce the correct interpretation. In the
context of a security analysis, such information helps to determine the type and
signedness of values for detecting numerical errors (e.g., integer overflows).

In addition, some comparators of floating point values check if a number is
ordered or not (i.e., if it is NAN). We split these comparisons into a check if the
number is ordered and the actual comparison. E.g., the comparators ult and olt
compare two floating point values and are mapped to the < operator. However,
the ult comparison checks if a value a is unordered or less than value b and thus is
modeled as the statement std::isunordered(a)||a<b. Similarly, we model the
olt comparison with !std::isunordered(a)&&!std::isunordered(b)&&a<b.

Some of LLVM’s instructions like atomicrmw and cmpxchg are known from
assembly code rather than high-level languages and perform multiple operations
atomically. The cmpxchg instruction loads a value from memory and replaces
it with an operand if the value equals another operand. In the CPG, we model
this by a block of statements holding the comparison, an if statement and the
assignment in the then-branch. We annotate the block to keep the information
that all this is performed atomically. Similarly, we model atomicrmw as a block
of statements performing a load, an optional comparison and if-statement and an
assignment to a variable. By modeling these instructions with a representation
similar to source code, we simplify subsequent analyses. In contrast, prior work
[19] models these instructions as a call to custom functions.
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Fig. 1. The graph representing the insertvalue instruction. We can see the literal struct
which is generated as well as the access to the field.

4.2 Handling Aggregate Types

High-level languages provide syntactic means to access elements of complex types
like arrays, structs or objects. In LLVM-IR, arrays and structs are still available
and their values can be accessed by special instructions. Since operations on
such types offer a frequent attack surface (e.g., for memory corruptions), an
accurate modeling of aggregated types and handling the access to their elements
is relevant for a security analysis.

For arrays which are represented as a vector, the instructions
extractelement and insertelement provide access to the elements. Both
instructions are represented as an ArraySubscriptionExpression in the CPG,
one being the left-hand side of the assignment and one the right-hand side. For
all other aggregate types, the instructions getelementptr, extractvalue, and
insertvalue model the access to the element either by the index inside an array
or by the position of a field inside a structure. The code %b = insertvalue i32,
i8 %a, i8 7, 1 shows how the second element of the variable a is set to 7. We
model the instruction as a copy of a to the variable b and an assignment of the
value 7 to the accessed field_1. Figure 1 shows the resulting graph with the
initialization of b on the bottom right, and the access to the field on the left.

The example uses an interesting concept of LLVM-IR: a so-called literal struc-
ture, a struct whose layout is defined in the instruction. For such structs, we
generate a type which is identified by the types of its fields. Hence, all literal
structs with the same list of fields are regarded as the same type. In our exam-
ple, the struct is named literal_i32_i8 and has the fields field_0 of type i32
and field_1 of type i8. The top left of Fig. 1 shows the declaration of the type.
While the instructions insertvalue or extractvalue read or write values from
memory, it is sometimes desirable to retrieve a pointer to an element of a struc-
ture. For this case, the instruction getelementptr computes a memory address
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without accessing memory. Listing 1.1 illustrates the usage of this instruction on
a named struct. Listing 1.2, in turn, shows the same code written as C. Figure 2a
shows the definition of the named struct and the connections between the fields
for the graph retrieved from LLVM-IR. The result is remarkably similar to the
graph in Fig. 2b which represents the C code. This similarity lets us reuse exist-
ing analyses for the graphs retrieved from LLVM-IR and shows that the graphs
are structurally identical. In fact, the relations between variables and fields could
be better resolved which can lead to improved analysis results.

Listing 1.1. The instruction getelementptr for a named struct
%RT = type { i8 , [10 x [20 x i32]], i8 }
%ST = type { i32 , double , %RT }
define i32* @foo(%ST* %s) {

%arrayidx = getelementptr inbounds %ST , %ST* %s,
i64 1, i32 2, i32 1, i64 5, i64 13

ret i32* %arrayidx
}

Listing 1.2. The C code for the example in Listing 1.1
struct RT { char A; int B[10][20]; char C; };
struct ST { int X; double Y; struct RT Z; };
int *foo(struct ST *s) {return &s[1].Z.B[5][13];}

4.3 The ϕ-Instruction

The SSA form enforces that each variable is assigned exactly once in LLVM-IR.
However, in some cases, it is required to assign a value multiple times. A frequent
example is a loop counter which is set before executing the loop and is updated
on each iteration. To allow such behavior without duplicating code and without
storing the values in memory, the ϕ-instruction is used. It assigns the target
variable one of the inputs based on the previously executed basic block (BB).

As most programming languages do not have such an instruction, there is no
fitting node to represent this in the CPG. To address this issue, prior work [19]
relied on the LLVM reg2mem pass8 which translates the instruction to multiple
load and store operations. However, this pass also transforms the access to other
variables and thus significantly increases the size of the resulting CPG. As this
reduces the scalability of subsequent analyses, we avoid this LLVM pass. We
collect all ϕ-instructions during the translation. Finally, we parse the instructions
to identify the predecessor BBs and add an assignment to the target variable at
the end of the BB. To keep the CPG clean, we further insert a declaration of
the variable at the beginning of the function containing the ϕ-instruction and all
BBs9. This, however, breaks the SSA form. The snippet in Listing 1.3 contains
the ϕ-instruction while Listing 1.4 shows the function’s model in the CPG.

8 https://llvm.org/doxygen/Reg2Mem_8cpp_source.html.
9 For all other variables, the statement of the assignment performs the declaration.

https://llvm.org/doxygen/Reg2Mem_8cpp_source.html
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Fig. 2. LLVM-IR using getelementptr and equivalent C code result in structurally
nearly identical CPGs. The CPG contains structs (light pink) and their fields (beige),
constants (green), the method argument (yellow) and return statement (purple). The
elements in arrays (brown) and fields are accessed (dark pink). (Color figure online)

4.4 Exception Handling

For a security analysis, a suitable representation of the exception handling is
necessary to identify weaknesses which originate from a missing or incorrect
handling of errors. Since LLVM-IR offers a rich system for exception handling,
this information should also be included in the CPG. The CPG represents excep-
tion handling routines with try-catch statements. To make the LLVM-IR fit into
this pattern, we need to identify which instructions form a try-block and which
ones form a catch-block. Concerning the try-block, we represent the invoke
instruction as a try-block surrounding a function call and a goto-statement.
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Listing 1.3. Code snippet using the
ϕ-instruction.
define i32 @main(i32 %x) {

%cond = icmp eq i32 %x,
10

br i1 %cond , label %BB1 ,
label %BB2

BB1:
%a = mul i32 %x, 32768
br label %BB3

BB2:
%b = add i32 %x, 7
br label %BB3

BB3:
%y = phi i32 [ %a, %BB1

],
[ %b, %BB2 ]

ret i32 %y
}

Listing 1.4. Snippet using the ϕ-
instruction as modeled in the CPG.
define i32 @main(i32 %x) {

; VariableDeclaration of
%y

%cond = icmp eq i32 %x,
10

br i1 %cond , label %BB1 ,
label %BB2

BB1:
%a = mul i32 %x, 32768
%y = %a
br label %BB3

BB2:
%b = add i32 %x, 7
%y = %b
br label %BB3

BB3:
ret i32 %y

}

For the catch-blocks, however, such a straightforward model is not possible.
In LLVM, the catchswitch instruction selects a matching catchpad based on
the signature of the catchpad-instruction of a basic block. The catchpad contains
the code of the catch-block and is ended by a catchret instruction. However,
the matching and signature cannot easily be transferred to a high-level name.
Therefore, we model this construct as a catch-block which catches all exceptions
and contains if-statements representing the signature matching. If none of them
matches, the exception is thrown again. The remaining constructs such as the
cleanuppad and its cleanupret instruction are not modeled specifically.

Another way to mark a catch-block is the landingpad-instruction which,
again, filters for the right object to catch. Once more, the matching is specific to
the programming language and thus, modelling this is left to future work. If we
cannot translate the instructions to concepts supported by the CPG, we model
them as special functions similar to the LLVM intrinsics.

5 LLVM-Specific CPG Passes

The frontend parses and translates the code linearly with the exception of han-
dling the ϕ statement. This, however, leads to a state where some of the nodes
generated by the frontend serve as intermediate steps and can therefore be opti-
mized after having processed the whole code base. In particular, as we will show,
we inline unconditional jump targets and improve the generated catch-blocks.
This clean-up phase takes place in a pass over the CPG nodes and serves to
increase the stability and scalability of subsequent security analyses.
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First, none of the conditional jumps (if-statements) and switch/case-
statements incorporates a meaningful body of statements. Instead, they are mod-
eled as goto statements to other basic blocks (BB). E.g., after the translation,
an if-statement looks as follows: if(cond){goto BB1;}else{goto BB2;}. The
pass identifies all BBs which have only a single predecessor and replaces the
respective goto-statement with the BB. Note that we do not perform this trans-
formation if multiple predecessors exist because it would increase the number of
nodes.

Second, the pass removes the instructions which serve as intermediate steps
during the generation of catch-blocks. Recall that a catch-block is initially mod-
eled by catching all types of exceptions or objects, since, e.g. when translating
the invoke instruction, we do not yet know which exceptions are handled inside
the block. However, in the case of a landingpad instruction, we have a single
object which is caught and the respective instruction is at the beginning of the
generic catch-block. Therefore, we can refine the object which is caught and
remove the intermediate step. For other exception handling techniques, in turn,
we have empty throw statements which should propagate the exception caught
by the generic catch block if none of the switch/case-statements match the actual
object. Since we can now flatten the graph by removing unnecessary indirections
(e.g., unconditional jumps as above, or simply wrappers around statements which
had been introduced by the line-by-line translation), we can easily propagate the
object caught by the generic catch-block to the throw statements.

As we explicitly aim to handle lifted or decompiled code, a second pass
can remove method stubs, i.e., methods whose only purpose is to call a library
method. The main purpose of this pass is to simplify subsequent analyses.

6 Experimental Evaluation

To reuse the same analyses for the graphs constructed from source code as well
as the ones containing LLVM-IR, we carefully designed the translation in a way
to mimic the concepts used in source code as closely as possible. In this section,
we first show a case study which advocates that we can reuse queries that aim
to identify security concerns in source code to query LLVM-IR. Second, we test
the implementation against the Rust standard library to show the applicability
of the approach to large-scale projects. All measurements were performed on a
Ubuntu 20.04 running on an Intel i5-6200U CPU and 20 GB of RAM.

6.1 Case Study: Cryptographic Misuse

This case study is driven by the anticipated usages of the CPG on LLVM-IR.
First, it should enable a security analysis of the LLVM-IR without the need to
rewrite existing analyses. Second, it should be scalable by introducing a minimal
number of nodes. The toolchain should be able to operate on LLVM-IR emitted
during the compilation of a program (subsequently, we call this “compiled LLVM-
IR”) or when lifting a binary (we call this “lifted LLVM-IR”). To show that these
properties are fulfilled, we 1) compare the sizes of graphs retrieved from compilers
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Table 1. Results for detecting misuse of cryptographic libraries.

Analysis time [ms] # Nodes # Functions Problem found
Source Code

Original file 171 328 38 Yes
macOS M1 using XCode

Compiled ll 1091 5279 151 Yes
Lifted ll 256 1743 76 Yes
Decompiled 179 971 149 No

Ubuntu x86-64 clang
Compiled ll 163 1371 57 Yes
Lifted ll 127 911 48 Yes
Decompiled 80 594 101 Yes

Ubuntu x86-64 g++
Lifted ll 242 1702 89 Yes
Decompiled 148 1137 200 Yes

Linux AArch64 (cross compiled)
Lifted ll 250 1891 93 Yes
Decompiled 158 1176 209 Yes

Linux arm 32 bit (cross compiled)
Lifted ll 132 1123 51 Yes
Decompiled 71 626 102 Yes

and lifters, 2) compare the runtime of the analysis, and 3) show that the weakness
can be identified with the same analysis in all samples.

We implemented a TLS-client in C++ which uses the openssl library. It
accepts the insecure hashing algorithm MD5 as one of the options. First, we
tested the toolchain against the original cpp file, which identified the respective
issue. Next, we used XCode on macOS with the M1 chip and clang on Ubuntu
running on a x64 CPU to emit the LLVM-IR which can be retrieved during
compilation. As LLVM-IR also serves as target LLVM-IR for many lifters, we
lifted binaries of the test file which had been compiled on the Mac and on Ubuntu
with various compilers. We use RetDec [10] to lift the binaries to LLVM-IR and
also decompiled them to a C-style file10. Table 1 summarizes the analysis time,
how many nodes and functions are included in the graph and if the problem could
be found successfully. We discuss the observations in the following paragraphs.
Size of the Graphs. One of our goals is to keep the sizes of the graph small.
Therefore, we compare the size of the graphs retrieved from compiled and lifted
LLVM-IR and when decompiling a binary file.

10 We compiled a custom version of RetDec to update the disassembler and support the
endbr64 instruction which had not been supported at the time of the experiments.
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One observation is the significant increase in functions contained in the
LLVM-IR compared to the original C file. This can be explained by stubs intro-
duced by the compiler. Note, however, that RetDec seems to remove some of
the functions which have been introduced during compilation. This reduction
facilitates and speeds up a subsequent security analysis on the resulting graph.

Not only does RetDec reduce the number of functions contained in the binary
but it also reduces the number of nodes compared to compiled LLVM-IR. This
observation is in-line with recent research which found that some lifters, including
RetDec, can reduce the complexity of the code represented by LLVM-IR as well
as the number of elements it contains [14] while keeping the main functionality
of the code available. The authors further observed that RetDec’s output is not
suitable for recompiling in most cases. However, as the CPG library aims to
handle incomplete, non-compilable and to a certain extent even incorrect code,
this limitation should not affect the representation and further analysis.

Compared to the lifted LLVM-IR, the decompiled C files contain more func-
tions but less nodes. This is explained by the possibility to summarize multiple
LLVM-IR instructions in a single C statement. Overall, the reduction of nodes
can be explained by RetDec’s passes which aim to eliminate unnecessary code.
Runtime of the Analysis. We ran the translation to the CPG and the bug
detection query 100 times for each of the files and report the average runtimes in
Table 1. First, it is interesting to note that the analysis time of the decompiled
files is comparable to the one of the original cpp-file. The reduced number of
nodes explains the speedup in some cases. The overall analysis time for the
LLVM-IR files is ranging between 0.74 to 11.1 times the time of the original file.
It is notable that the graphs retrieved from the LLVM-IR files contain 2.8 to 16.1
times the amount of nodes of the original file and still the runtime improved.
Identification of Weaknesses. To detect the misconfiguration in the test
file, we implemented a query to identify the arguments of calls to the function
SSL_CTX_set_cipher_list. To implement this analysis, we use the constant
propagation implemented in the analysis module included in the CPG library11.

With the query, we are able to identify the flaw in the original C file and in
the compiled and lifted LLVM-IR files. However, when decompiling the binary
compiled on macOS using the M1 chip, we failed to identify the misuse. We
manually investigated the case and found that the CDT library12 which the
CPG library uses for parsing the C file fails to identify the name of a field.
Therefore, the data flow between the field and the method call is not resolved.
Stability of the Translation. All samples could be represented in the CPG
without crashes. However, the LLVM-IR retrieved during compilation of a pro-
gram contains a much richer semantics and uses various different instructions.
This results in warnings, some of which show that nested instructions are not yet
handled. The other ones indicate that a different scoping for variables in a try-
catch block is expected because LLVM-IR’s scoping differs to other languages.

11 https://github.com/Fraunhofer-AISEC/cpg/tree/master/cpg-analysis.
12 https://www.eclipse.org/cdt/.

https://github.com/Fraunhofer-AISEC/cpg/tree/master/cpg-analysis
https://www.eclipse.org/cdt/
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Table 2. Performance when analyzing Rust libraries.

# Filename LoC # Nodes # Functions # Errors Analysis time [ms]

1 addr2line 879 2327 29 9 3641

2 adler 488 1707 25 2 507

3 alloc 4925 13482 253 91 6505

4 cfg_if 9 1 0 0 23

5 compiler_builtins 9990 34304 338 0 23670

6 core 80193 263729 3608 1879 2872096

7 gimli 23702 72845 411 43 112269

8 hashbrown 276 529 26 0 193

9 libc 1477 3619 130 0 646

10 memchr 11063 40602 257 108 32639

11 miniz_oxide 15760 54868 294 166 79863

12 object 14174 50060 277 5 47806

13 panic_abort 71 87 9 0 124

14 panic_unwind 927 2619 67 25 610

15 proc_macro 92115 244010 5488 2570 15260350

16 rustc_demangle 14669 44069 437 309 43281

17 rustc_std_workspace_alloc 9 1 0 0 107

18 rustc_std_workspace_core 9 1 0 0 102

19 std 157377 468223 5923 2629 9303378

20 std_detect 558 1921 15 0 659

21 unwind 106 230 2 0 273

6.2 Application to the Rust Runtime

To assess the applicability to real-world programs, we retrieved the LLVM-IR
from the standard and core libraries of Rust. We chose Rust since it is not yet
supported by the CPG implementation and provides the option to compile to
LLVM-IR. Overall, the test set includes 21 distinct LLVM files which are listed
in Table 2 together with their size and the results. We report the time it took to
translate the file (including various CPG passes) as well as the number of nodes
which could not be parsed accurately. For the latter, we need to extend the
LLVM-specific translation to include more cases of “nested” LLVM expressions.
Stability. We want to assess the maturity level of the translation step against
a large and unknown codebase consisting of a total of 428, 777 lines of LLVM-
IR. To measure this, the graph includes specific nodes, called ProblemNode, for
each expression which could not be parsed correctly. While we handle all types
of instructions, some arguments of the instructions can be computed in line by
type casts, or simple arithmetic operations, among others. Overall, we could
observe 7, 836 of such ProblemNodes, which accounts for 0.60% of all 1, 299, 234
nodes. This result is encouraging and indicates that the current implementation
is already capable of handling the vast majority of all combinations of state-
ments13.
13 We will manually investigate the ProblemNodes to parse the statements in the future.
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Fig. 3. Relation between lines of code, nodes in the CPG and the fraction of Prob-
lemNodes. For non-trivial samples, the error-rates are randomly distributed.

The fraction of nodes which cannot be handled differs significantly among
the samples and ranges between 0% to 1.05%. Larger files are more likely to lead
to an error during the translation. In addition, it is possible that the varying
amount of complexity of the code could trigger more errors. To validate this,
we set the average number of CPG nodes per line of code as complexity of the
LLVM instructions. Among the samples, this ratio ranges between 1.22 and 3.67.

We plot this relation in Fig. 3. Neither of the graphs gives a strong indication
for this idea since the error rates seem to be randomly distributed for all non-
trivial samples. Neither the size nor the complexity of the samples lead to a
conceptual limitation. Instead, some samples use unsoppurted expressions more
frequently which can easily be addressed in the implementation.

Scalability. Another goal is to assess the scalability of the implementation on
real-world software with many lines of code. Two factors can impact the analysis
time: The lines of code and the number of nodes in the graph. According to
Table 2, an increase of LoC leads to more nodes in the graph in most cases.
Figure 4 plots the time of the analysis (i.e., the translation to the CPG and all
CPG passes but the ControlFlowSensitiveDFGPass) for the number of nodes.
With the exception of one sample, the analysis time seems to grow linearly
depending on the number of nodes in the graph. Interestingly, when we only
consider the analysis time of the LLVM-specific translation and pass of the CPG,
the outlier is no longer present. This shows that the LLVM-related translation
and CPG pass do scale well even for larger samples but that some of the other
CPG passes seem to perform poorly in the presence of a specific combination of
nodes.

Comparison to Prior Work. To compare our approach to prior work which
relied on LLVM’s reg2mem pass to remove ϕ nodes, we ran our toolchain but
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Fig. 5. Comparison of the analysis time of our approach and prior work for each file
of Table 2. Our analysis typically finishes much faster.

first executed the respective pass. As Figs. 5 and 6 show, our approach leads to
a significant reduction of nodes and time required to generate the graph.

7 Discussion

Our evaluation suggests that our translation and CPG model can unify source
code and low-level representations such as LLVM-IR in a single graph represen-
tation. This increases the reusability of analyses and queries on the graph.

We found that the LLVM-IR retrieved from binary lifters is significantly eas-
ier to handle by the graph. This is due to the fact that most lifters tend to
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Fig. 6. Comparison of the number of nodes of our approach and prior work for each
file of Table 2. Our CPG contains fewer nodes.

use rather conservative steps for their translation. This results in the LLVM-IR
being closer to assembly code with comparably simple types of instructions. The
LLVM-IR retrieved during the compilation, in contrast, features numerous highly
specialized instructions which typically make the translation more difficult. Fur-
thermore, the graphs retrieved from lifted binaries are typically smaller than the
ones which can be retrieved when the LLVM-IR is retrieved during the com-
pilation. This makes it an interesting application since it simplifies and speeds
up the analysis. Last, we found that the graph of the decompiled binary is only
marginally smaller than the one holding the lifted LLVM-IR instructions. This
small advantage will, however, not outweigh the error-prone and time-consuming
decompliation step in most scenarios which is required to retrieve the code.

Validity of the Results. The main threat to the validity of the findings is
the set of test samples. In particular, as we could see in Sect. 6.1, the compiler
has a significant impact on the generated LLVM-IR and the resulting complexity
which needs to be handled by our toolchain. Hence, testing the toolchain against
different compilers and configurations might lead to different results. To address
this potential issue, we used XCode on macOS and clang on Ubuntu, and we
also generated the LLVM-IR with Rust’s crates build system. Furthermore, we
used a binary lifter to showcase a possible application to such a scenario.

Limitations. As our evaluation against the Rust standard library showed, a
small amount of instructions could not be parsed correctly. This is explained
by the possibility of LLVM-IR to hold sub-statements for the arguments. While
we do handle the concepts and operators (e.g., casts), their potential usage in a
specific sub-statement needs to be added to the translation step. To identify all
possible combinations, a more extensive testing is required.

Future Work and Research Directions. The resulting graph can be used
as an entry point for further research to better include specifics of certain plat-



Representing LLVM-IR in a Code Property Graph 377

forms. One example is the analysis of the LLVM-IR emitted by XCode for apps
written in Apple’s programming languages Swift or Objective-C. Their calling
conventions differ significantly from other programming languages. As an exam-
ple, Objective-C makes use of a dynamic dispatching routine which requires
extensive tracing of a method’s arguments to recover type information and the
method name as a string [18,64]. This information is present in the CPG but has
to be combined to identify the calls. Similarly, it is necessary to model Swift’s
calling conventions and memory model since it differs significantly from the one
of C++ [65,66]. However, to date, the differences are not fully explored. Future
work should identify differences and integrate this knowledge into the CPG.

Furthermore, software written in C or C++ can rely on macros which are
used similar to function calls in the source code and represented as such but are
replaced with their specific implementation in LLVM-IR. This discrepancy needs
to be addressed appropriately to better analyze such programs. In the current
stage, addressing such inconsistencies between source code and the binary is left
to manual efforts of the user of the cpg library. Additional efforts are necessary
to reduce these manual efforts and ease the usability of the analysis toolchain.

Last, adapting the solution to the analysis of closed-source software is promis-
ing. Once such scenario is the analysis of cloud functions while auditing a con-
figuration of the cloud deployment. In such scenarios, the source code might not
be available to the auditor but an image (e.g., of a container) together with the
compiled binary of the function can be accessed and analyzed. Hence, lifting
those functions to LLVM-IR and finally using this representation for an analysis
is promising to improve the analysis of cloud setups.

Recent research [14] showed that lifting is a stable technique for many appli-
cations. However, lifted or decompiled binaries still suffer from a lack of informa-
tion which are crucial for a security analysis [8]. Hence, further research should
study which gaps still exist to apply existing tools to lifted binaries.

Generalizability. Since the SSA form is also used by other IRs (e.g. Shim-
ple [67], WALA [63], SIL [68]), some of the challenges generalize to those IRs.
Hence, the concepts presented in this paper can be reused to add further code
representations using the SSA form to the CPG. Furthermore, some parts of
our concept could be ported to other projects which suffer from similar issues.
However, the applicability and impact depend on the projects’ data models.

8 Conclusion

We showed how we extended an open source CPG implementation to handle
LLVM-IR. While the majority of instructions can easily be mapped to the high-
level equivalents, the ϕ instruction and the LLVM exception handling instruc-
tions impose challenges to the translation. However, we could transform the
program to the CPG representation with a reasonable increase in nodes while
prior work suffered from huge performance penalties. The similarity between the
resulting graph and the one of the code fractions in high-level languages allows
to reuse existing analyses detecting security weaknesses or bugs. Our evaluation
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suggests that the approach scales to larger projects. Future work is necessary
to include characteristics of some programming languages (e.g. Swift), to add
analyses for further use cases, such as analyzing closed-source cloud functions,
binaries and side-channel vulnerabilities, and to study the gaps of binary lifting.
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Abstract. Hardware Performance Counters (HPCs) are at the center
of a research discussion: Is their use effective for malware detection? In
this paper, we try to clarify the discussion by evaluating prior work pre-
senting HPC criticism and highlighting their implicit assumptions and
the potential research opportunities created by them. We discovered that
HPCs are particularly good at detecting malware that exploits architec-
tural side-effects, but not as good as traditional detection approaches at
detecting pure-software malware, such that detection approaches must
be combined. We also identified that most of the controversy about HPCs
originates from researchers not clearly stating which type of malware they
were considering. Thus, we claim the need for a theory of maliciousness
to better state malware threats and evaluate proposed defenses.

Keywords: Performance counter · Malware · Science of security

1 Introduction

Modern processors [11] are equipped with special registers (counters) that auto-
matically count the occurrence of some CPU events (e.g., cache hits, branch
predictions) during code execution. Researchers have recently pointed HPCs as
a promising way to detect malware [1,5,6], via the identification of (ab)normal
execution profiles. However, no technique presents only benefits and some HPC
researchers started to present criticism to HPCs for malware detection. The
most significant one is that HPC metadata might not be informative about the
execution content. An implicit assumption of most work in the HPC field is
that a misbehavior at the software level corresponds to a misbehavior at the
hardware level. Whereas this is a plausible hypothesis, it has been revealed not
true in many cases. A significant work on HPC criticism (presented in [21] and
extended in [22]) demonstrated the case of a ransomware sample that is malicious
at the software level but indistinguishable at the hardware level, which led to
the authors of these papers claiming HPCs’ infeasibility for malware detection.
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At the same time that the presented criticism emerged, new publications
about HPC kept appearing, and even Intel decided to adopt a HPC-based app-
roach in its security products [12], exactly to tackle the problem of ransomware.
This controversy immediately leads to the question: Is there anyone right and/or
wrong in this controversy? To answer this broad question, we (i) revisited the
problem of detecting malware using HPCs by analyzing the findings of some
representative works published in the academic literature; and (ii) We investi-
gated the root cause of the contradictory results. We discovered that the distinct
works adopt different definitions of malware: some involving only software effects,
and others involving hardware effects. We present experiments to demonstrate
that HPCs are much more effective in identifying hardware than software side
effects. Therefore, in our view, the controversy can be solved (or mitigated) if
an integrated view is employed in the analyses.

Further, we understand that the differences on the understanding of what is
malware and the effectiveness of the proposed detection solutions come from the
lack of a widely accepted theory of maliciousness, which should clearly establish
which effects are or not considered malicious and thus help judge which defenses
are suitable for these cases. In other words, we believe that answering the ques-
tion of whether malware is well-defined or not via a theory of maliciousness also
answers the question of whether HPCs are suitable for malware detection or not
by delimiting their scope and goals.

While this theory is not fully elaborated by the security community, we
present ideas to help driving this development. More specifically, we propose
the concept of attack space reduction, which involves the reduction of the possi-
bilities of action of a given sample, a goal that is clearly accomplished by HPCs,
since arbitrary malicious constructions designed to trigger architectural side-
effects are blocked by HPC models that enforce standard executions in terms of
metadata.

2 Results on HPC for Malware Detection: Is It Effective?

What is reported about HPCs for malware detection? To understand
whether the discussion about HPC applications for malware detection is justi-
fied or not, we surveyed the literature and found examples that demonstrate the
origin of the controversy. Our goal in this work is not to present an exhaustive
survey of all published work in the field (which is presented in [1,22]), but to
highlight the distinct conclusions about the same aspect. Therefore, we searched
papers in the most popular research repositories for computer science (ACM,
IEEE, and Springer) and screened the papers with the HPC keyword in the
title and/or abstract that was cited at least once. We noticed that each paper
represents its result using a different metric, and that they reached distinct con-
clusions. To illustrate the extreme cases (greatest variation): (i) The work of
Botacin et al. [1] presented accuracy rates ranging from 36% to 97% and con-
cluded that using HPCs for malware detection was feasible; (ii) Demme et al. [5]
presented FPRs ranging from 35.7% to 83.1% and also concluded that HPCs for
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malware detection was feasible; (iii) whereas Zhou et al. [22] presented F1-scores
ranging from 14.32% to 78.75% and concluded HPC for malware detection was
unfeasible. Face that huge variation, a better evaluation of the reasoning made
by the distinct authors is required to understand the discussion involving HPCs.

What Is Behind the Conclusions? On the negative side, Zhou et al [22]
clarify to us what motivates their uncertainty: “The underlying assumption for
previous HPC-based malware detectors are that malicious behavior affects mea-
sured HPC values differently than benign behavior. However, it is questionable,
and in fact counter-intuitive, why the semantically high-level distinction between
benign and malicious behavior would manifest itself in the micro-architectural
events that are measured by HPCs.” In fact, only a few studies so far inves-
tigated the side effects of malware execution at the architectural level, which
makes this a reasonable argument until further research is developed. On the
positive side, the authors that concluded that HPCs are effective also have a
good argument. They indeed presented scenarios in which HPC-based detec-
tion was possible. If HPC-based detection is possible in many scenarios, nobody
would care if one has already identified the correlation between detection and
HPC values or not. It would be simply used. Thus, the discussion turns also into
a matter of if the obtained results are robust enough for allowing conclusions
about HPCs applicability.

Are These Datasets Enough? Once the discussion turned into an exper-
imental robustness discussion, it is important to investigate how experiments
were performed. Zhou et al [22] again explain their criticism of the studies
with positive conclusions: “the correlations and resulting detection capabilities
reported by previous works frequently result from small sample sets and exper-
imental setups that put the detection mechanism at an unrealistic advantage.”.
This indeed demonstrates an experimental fragility. The problem with this crit-
icism is that most of the criticizing studies also suffer from the same problem
that they point out. Once again to show extreme cases, the works with a pos-
itive conclusion for HPC applications used only 4K [1] and 503 [5] samples,
whereas the works with a negative conclusion for HPC application used only
2.3K [22] and 313 [4] samples. We notice that the considered datasets are all
limited, especially in comparison to studies using other techniques for malware
detection, such as typical ML classifiers. Thus, greater conclusions can only be
taken if more studies are performed. Therefore, we conclude that the discussion
about HPC is worth to be addressed and that further research is warranted. The
next step is to understand how to contribute to this discussion.

3 A View on Debunking: Is Malware Well Defined?

Is a Single Counter-Example Enough? Zhou et al [22] developed a ran-
somware sample not detected by the HPC-based approach to claim its infeasi-
bility. In their own words “We also demonstrate the infeasibility in HPC-based
malware detection with Notepad++ infused with a ransomware, which cannot be
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detected in our HPC-based malware detection system”. The authors are right in
their feeling that some events cannot be differentiated and logically this single
counter-example debunks the feasibility of HPCs. So, is the discussion finished?
To answer this question, we must take a closer look and try to understand:
Why did researchers care about proving it? Cohen’s work [3] already proved
in the ’80s that a perfect malware detector does not exist. Isn’t this work just
an extension of this conclusion? It happens that security is by nature a prac-
tical subject and researchers and companies are always trying to find ways to
detect malware in practice, in the average case, regardless of their limitations
for specific cases. In this sense, if we accept that single counter-examples discard
entire techniques, such as HPCs, we should have also to discard signatures, since
they have already been proven evadable [18], even though they are still used by
AVs [20]. Similarly, we should have to stop using ML, since adversarial attacks
have been demonstrated [15], even though the ML use has increased over time
for ML drawbacks mitigation). Therefore, the discussion about HPC should not
be whether mechanisms can be bypassed or not, but in which cases. The HPCs’
use would make sense if it is good at detecting some type of malware or in some
specific scenario.

When HPC Are Suitable?When HPC are suitable? In the argumentation
against HPCs, Zhou el al [22] state that: “we believe that there is no causation
between low-level micro-architectural events and high-level software behavior.”.
Whereas this argument makes sense for malware samples that act maliciously by
invoking high-level APIs, this statement misses an entire class of attacks: those
that act maliciously by exploiting architectural side-effects. We are currently
aware of many attacks that exploit side effects and that can be detected via the
architectural anomalies that they cause, such as (i) RowHammer [7], that can
be detected via the excessive number of cache flushes [14]; (ii) ROP attacks [9],
that can be detected due to the excessive number of instruction misses [19]; and
(iii) DirtyCoW [8], that can be detected due to excessive paging activity.

The architectural nature of these attacks suggests that HPCs might be par-
ticularly good at detecting samples targeting it. To evaluate this hypothesis,
we repeated previous work’s strategies and developed two classifiers: The first
is based on typical dynamic features used in ML detectors, such as tuples of
invoked functions over time [10]; and the second using the performance counters
supposed to detect the aforementioned events [1]. We performed all tests in a
Linux environment, using the perf tool for HPC data collection, and considered
the 10-folded evaluation of a set of 1K malware samples (we identified 50 to
target the architecture) and 1K goodware collected from the system directories.

To create the test dataset, we relied on a collection of all 5K unique Linux
malware samples available in the Virusshare (virusshare.com) and Malshare
(malshare.com) repositories between 2012–2020, thus constituting a represen-
tative set of the existing Linux malware threats. At each test run, we randomly
sampled a subset of this greater dataset to build a test dataset with an equal
number of x86 samples for each year. The random sampling respects the family
distribution observed in the original collection: 24% of Exploits, 22% of Virus,
20% of Backdoors, 10% of Rootkits, and 4% of Generic labels. All samples
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that cause side-effect were labeled as Exploits, according to the application of
AVClass [17] over Virustotal (virustotal.com) labels.

This distribution between samples that cause and do not cause side-effects
was selected to reflect the proportion of samples that we found in the wild
during our research, limited by the current number of samples causing side-effects
available in the online malware repositories. We fine-tuned hyper-parameters for
all tested classifiers and we are reporting the results for the best combination
(RandomForest classifier in both models).

Comparing the accuracy results for the tested classifiers (remember that the
dataset is balanced), we notice that the traditional (non-HPC) ML approach
outperforms the HPC one in the overall scenario (93.4% vs. 85.55%), which
is compatible with Zhou et al’s. However, if we isolate the evaluation of the
“ordinary” samples from those that cause side-effects, we notice that the whole
detection capability of typical ML systems is due to the classification of “ordi-
nary” samples (98% vs. 85%). The HPC approach significantly outperformed it
when classifying the samples that cause side effects (6% vs 96%). The impact
of these two datasets in the final result is proportional to their relative presence
on the dataset. We expect architectural malware to become more popular over
time.

4 Towards a Definition of Malware Detection
Effectiveness

The Need for Better Positioning. The presented experimental results show
that one cannot simply claim HPC is not good for malware detection. While this
result is somehow expected, why haven’t other researchers framed the problem
as such? In our view, the controversy originated because there is not a consen-
sus in the research community as a whole about what is objectively considered
malware and therefore how to handle it. We do not find consensus Even if we
look to the NIST standards [16]. All definitions are broad and do not characterize
samples regarding their form or precise target, even though they all state that
malware is something undesired. Whereas most people, including researchers,
might have developed a generic feeling about malware as something undesired
and that the solution for it is to get rid of malicious files, the few attempts
towards formally defining malware have been often revealed as problematic in
the detection context due to the multiple corner-cases about the subject. The
hardness in defining malware is made clear when we consider the “tricky” cases.
Following are some of the multiple examples: (i) can software be considered
malicious for some users and not for others?; (ii) can a performed action be con-
sidered malicious in the context of one software piece but legitimate for another?;
and finally, (vi) in the specific context of this work, if the malware target is the
system architecture and not another application or data, is it still malware?
And how to handle this case? While these questions are not formally answered,
researchers have been working with operational definitions of malware, which
might suffice for most research work, but sometimes might lead to controversies
as the one here presented.
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When Zhou et al [22] criticize HPC, their implicit assumption (operational
definition) is that malware is the “ordinary” samples employing high-level con-
structs, as it is clear in “both ransomware and benignware use cryptographic
APIs, but the ransomware maliciously encrypt user files, while the benignware
safeguards user information.”, thus discarding the samples that intentionally
cause side effects. However, it is hard to not consider these sample’s activities
as malicious, especially because both types of attacks might be associated: A
sample might cause side-effects to escalate privileges and further cause more
impacting harm via high-level actions. This highlights the need for better posi-
tioning attacks and defenses in a context. So, how to advance toward a definition?
And, how to advance towards more defenses against whatever malware can be?

Towards better positioning. In our view, we need a theory of maliciousness to
measure malware attacks and defenses. In science, concepts do not exist without
a theory [2] (one possible view of science). Thus, one could not measure malware
attacks and defenses without a theory of maliciousness–composed not only
by the definition of what is considered malware, but it also brings multiple
implicit and explicit consequences, such as how to measure the malware problem.
Therefore, the point of this paper is not that we need only an extended taxonomy
to include malware samples that cause side effects, but we need a theory of
malware that explains why this type of sample is considered malicious and how
we detect them (eventually using HPCs). Thus, a good theory of maliciousness
should shape our understanding of the problem and provide tools/methods to
let us know if we succeeded in controlling it.

Whereas we would like to be able to provide a complete theory of malicious-
ness, we acknowledge that this can only be achieved in the future by integrated
community work. Meanwhile, we can give some hints about how it might look
like using HPCs as a good example. We understand that a key contribution to
a theory of maliciousness is the concept of attack space, i.e., the possibilities of
actions that an attacker has over a resource to be protected. For HPCs, the attack
space is defined in two dimensions: software and hardware, as shown in Fig. 1.
There, an application can be positioned somewhere in the plane defined by the
software interactions it performs and the hardware effects it causes to perform
these interactions. As defenders, we are interested in blocking both undesired
software behaviors as well as their architectural roots and consequences.

Figure 1a illustrates the current scenario, in which we have an unbounded
attack space, with malware and goodware samples mixed all over the space, as
any malware implementation is allowed. Figure 1b illustrates what happens when
HPCs are applied: the space is partially bounded in the performance direction,
clearly positioning the (performance anomalous) samples out of the boundaries
as malware. Though, there are still some remaining malware and goodware sam-
ples mixed in the (non-anomalous performance) bounded space, which explains
why additional classifiers (such as typical ML ones) are still required for complete
malware detection. When these are applied, the attack space is constrained in the
software direction, as shown in Fig. 1c. More formally, we can start hypothesizing
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Fig. 1. The role of HPCs in security. Reducing the attack space.

the definition of the security provided by a solution as to how much it bounds the
attack space, even though reducing it from a “greater” infinite. The key insight
behind that is that it inverts the incentives. In an unbounded space (e.g., no
performance restrictions), malware authors are free to place their samples any-
where, which requires defenders to counteract the attacks. In a more bounded
space, such as the ones provided by HPCs, attackers are forced to conform their
payloads to the behavior and/or form of the benign/desired applications, which
is supposedly harder and more costly.

Attack Surface vs. Attack Space. The attack space concept resembles the
attack surface concept [13]. Whereas they have similar goals, they have a signif-
icant difference: the attack surface concept aims to limit the number of objects
susceptible to being attacked, but it does not say anything about the nature
of the possible attacks, which might be potentially infinite; the attack space
concept does not say anything about the number of susceptible objects, but it
limits the characteristics of the attacks to be performed against them. Thus, we
understand them as complementary aspects to be evaluated in conjunction.

Making HPC Practical. A way to evaluate if a technology contributes to mak-
ing systems more secure is to verify if its addition to a set of existing techniques
reduces the attack space. We intentionally refer to a set of techniques because
it is naive to imagine that a standalone technology will reduce the attack space
in all dimensions. In light of this definition and of the previous experiments, we
believe that HPCs increase security. When HPCs are combined with typical ML
detectors, the detection rate is increased to a value (97.9%) that is not reached
by any solution individually for both sample datasets. Thus, HPCs should be
seen as part of a pipeline of malware detectors that contribute to security by
establishing borders in specific dimensions (e.g., architectural).

5 Conclusion

We revisited the problem of malware detection using HPCs to clarify the existing
controversy about its feasibility. We discussed the current attempts to support
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and debunk HPCs and concluded that (i) although the discussion is justified,
since research works present contradictory verdicts about the HPCs’ feasibility
for malware detection based on a wide range of metrics, (ii) we cannot discard
HPCs as useful, since they present particularly good results for malware samples
that cause side effects. We identified that most of the controversy comes from
distinct interpretations of the malware concept, which sometimes considers only
software effects and sometimes also includes hardware side effects. In summary,
we recommend HPCs application as part of a pipeline of security solutions.
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Abstract. With the widespread deployment of Internet of Things (IoT)
devices, firmware vulnerabilities can result in considerable damage. How-
ever, existing firmware fuzzing methods, which rely on program excep-
tion signals, can only find memory corruption vulnerabilities that lead
to program crashes. Fuzzing also misses vulnerabilities that exist in the
execution path but are not triggered. To solve this problem, we propose
Anatomist, the first enhanced firmware vulnerability discovery method
based on program state abnormality determination with whole-system
replay. The Anatomist first identifies the dangerous operation candi-
dates during whole-system replay. Using single-path symbolic tracing,
Anatomist determines whether the program states of dangerous opera-
tion candidates are abnormal. Also, Anatomist identifies vulnerabilities
on the execution path based on program state abnormality determina-
tion. We implemented Anatomist and compared the results of Anatomist
with those of FirmAFL, the most advanced firmware vulnerability discov-
ery method, on the FirmAFL dataset. The experimental results showed
that Anatomist increased the vulnerability discovery speed by 741.64%
on average. Additionally, Anatomist successfully found 3 0-day vulner-
abilities in 3 firmware, including 2 memory corruption vulnerabilities
and 1 logic vulnerability. The experimental results demonstrated that
Anatomist augments firmware vulnerability discovery in two aspects.
Anatomist can detect untriggered vulnerabilities on the execution path
that are missed by fuzzing. In addition, Anatomist can also identify logic
vulnerabilities that cannot be detected by fuzzing.

Keywords: Firmware vulnerability · Augmented vulnerability
discovery · Whole-system

1 Introduction

There are many firmware vulnerabilities and they are either introduced by
upstream supply chains or caused by flawed implementation of firmware. As
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many embedded devices are deployed in production and life, firmware vulner-
abilities can cause significant damage to the real world, such as AMNESIA:33
vulnerabilities [1], NAME:WRECK vulnerabilities [2], and attacks on Smart-
UPS devices [3]. However, the discovery of firmware vulnerabilities is challenging
for three reasons. First, firmware is widely deployed on various platforms with
nonstandard underlying operating systems, using diverse instruction sets such
as ARM and MIPS [4–6]. Second, firmware vulnerabilities are complex and dif-
ficult to detect. Different interactions can trigger firmware vulnerabilities, such
as network messages, file streams and standard input and output streams. Addi-
tionally, the phenomenon of logic vulnerability [7], such as information leakage,
command injection, and authentication bypass vulnerabilities, is unnoticeable
and will not cause abnormal program behaviors. Therefore, detecting these vul-
nerabilities is difficult. Third, firmware runs in embedded environments with
limited resources, and some program analysis methods [8] do not work well in
these environments. Thus, an effective vulnerability discovery method for multi-
type firmware vulnerabilities is urgently needed.

Currently, the most advanced firmware vulnerability discovery method is
FirmAFL [9], the high-throughput greybox fuzzer of IoT firmware. By combin-
ing system-mode emulation and user-mode emulation in a novel way, FirmAFL
exhibits high compatibility (system-mode emulation) and provides high through-
put (user-mode emulation). However, fuzzing has two main shortcomings. First,
fuzzing relies on program exception signals to find memory corruption vulnerabil-
ities [10], and cannot detect logic vulnerabilities [7] that do not cause programs
to crash, such as command injection, information leakage, and authentication
bypass vulnerabilities. Second, fuzzing refers to a process of repeatedly running
a program with generated inputs that may be syntactically or semantically mal-
formed [11]. The vulnerability is only triggered when the program execution path
passes the vulnerability and the generated inputs satisfy the vulnerability con-
ditions. There are cases where the program execution path passes through the
vulnerability but the inputs do not meet the vulnerability conditions. Fuzzing
cannot find these untriggered vulnerabilities that are present in the execution
path.

Program states cover the memory, registers, and program semantics when
running. Program states always remain normal during execution, but abnormal
program states will cause vulnerabilities. Memory state abnormalities lead to
memory corruption vulnerabilities [10], and logic semantic state abnormalities
lead to logic vulnerabilities [7]. For example, the memory state is abnormal if the
memory writing operation oversteps the bounded memory object, which leads
to a memory overflow vulnerability. The semantic state will be abnormal if the
arguments of command execution function can be controlled by users, which
leads to a command injection vulnerability. The root causes of every type of
vulnerability are different. Program state abnormalities are closer to the root
causes of the vulnerability than the program exception signal. Determining pro-
gram state abnormalities caused by different vulnerabilities requires custom rules
based on expert knowledge.
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Rather than relying on program exception signals, some vulnerability discov-
ery methods based on program states, such as Bunkerbuster [12] and Timeplayer
[13], have been proposed. These methods identify vulnerabilities by checking
whether the program state is abnormal according to custom vulnerability rules.
However, due to the limited resources of embedded platforms, capturing exe-
cution traces using hardware processor tracing functions [14] prevents Bunker-
buster from being used in firmware. Timeplayer is designed to find only uninitial-
ized variable vulnerabilities and cannot discover other multi-type vulnerabilities
that are widespread in firmware. How to effectively discover multi-type firmware
vulnerabilities, including memory corruption and logic vulnerabilities remains
an open question.

Based on our observations, we identified the following two challenges: C1:
How do we obtain accurate semantics required by constructing program states
while the target program in firmware is running? IoT devices always remove their
debug interfaces. The source codes of firmware are also unavailable. Additionally,
due to the limited resources and the nonstandard underlying systems of embed-
ded platforms, some existing program analysis methods cannot be applied with
firmware. C2: Although program states can convey more information about
vulnerabilities than program exception signals, how do we effectively discover
multi-type firmware vulnerabilities based on the program state? After obtaining
the firmware runtime semantics, it is also necessary to determine where and with
which criteria the program state needs to be checked.

Thus, to develop a better solution, we propose Anatomist, the first enhanced
firmware vulnerability discovery method based on program state abnormality
determination with whole-system replay. The augmentation is twofold. First,
Anatomist can detect untriggered vulnerabilities as long as the execution path
passes through them. Second, Anatomist can identify both memory corrup-
tion vulnerabilities and logic vulnerabilities. To overcome C1, we choose the
whole-system deterministic record and replay [15] to extract runtime semantics
of firmware. To overcome C2, we first identify dangerous operation candidates
during deterministic replay and then determine whether the symbolic program
states of these candidates are abnormal during single path symbolic tracing.

Anatomist records the execution of firmware in whole-system mode, saves the
snapshot and the execution record, and finally replays the whole system execu-
tion process. During this replay, Anatomist automatically taints network message
inputs and records the execution path of the target program. To demonstrate
the effectiveness of our approach, Anatomist defines two types of dangerous
operations, corresponding to the memory corruption class overflow vulnerabil-
ity and the logic class command injection vulnerability. During the replay, if
Anatomist finds that the target program is performing a dangerous operation
that is affected by the tainted inputs, Anatomist extracts information regard-
ing the operation, such as the taint label of the inputs affecting the operation,
the PC value of the operation, and other information relevant to program state
abnormality determination.
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After obtaining information about dangerous operation candidates,
Anatomist performs single-path symbolic tracing [16] based on the recorded
program execution path of the target software. Single-path symbolic tracing
performs symbolic execution [17] along the recorded execution path. Anatomist
partially symbolizes network messages based on all recorded taint labels that
affect the dangerous operations instead of symbolizing all network messages.
When symbolic execution reaches the recorded dangerous operation, Anatomist
extracts the constraints of the corresponding symbolic inputs and determines
whether the dangerous operation satisfies the program state abnormality con-
dition based on the symbolic constraints and the recorded dangerous operation
information. Finally, Anatomist locates the vulnerable code if any program state
is determined to be abnormal.

We implemented Anatomist and performed experiments to evaluate its effec-
tiveness. We directly compared the performance of Anatomist with that of the
state-of-the-art firmware vulnerability discovery method, FirmAFL, on the Fir-
mAFL dataset. The experimental results showed that Anatomist increased the
vulnerability discovery efficiency by 741.64% on average. In addition, Anatomist
found 3 0-day vulnerabilities in 3 firmware. In summary, we make the following
contributions:

– We developed the first enhanced firmware vulnerability discovery technique
based on program state abnormality determination with whole-system replay.
It identifies dangerous operation candidates during whole-system replay,
determines whether the program states of dangerous operation candidates
are abnormal during single-path symbolic path tracing, and finally identifies
the vulnerabilities.

– We designed and implemented a novel method, Anatomist. By defining dan-
gerous operations, Anatomist can not only detect memory corruption vulner-
abilities and logic vulnerabilities, but can also identify untriggered vulnera-
bilities on the execution path.

– We compared Anatomist with the state-of-the-art firmware vulnerability
discovery method, FirmAFL, and the experimental results showed that
Anatomist increased the vulnerability discovery efficiency by 741.64% on aver-
age. Anatomist also found 3 0-day vulnerabilities in 3 firmware.

The remainder of the paper is organized as follows: We introduce the back-
ground and provide an example that motivates our research in Sect. 2. In Sect. 3,
we provide an overview of our Anatomist approach, specify the detailed design
and describe the implementation. Then, we demonstrate the evaluation results
on experimental subjects in Sect. 4. The discussion is in Sect. 5 and we conclude
the paper in Sect. 6.
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2 Background and Motivation

2.1 IoT Fuzzing

Fuzzing has been proven to be one of the most effective ways of discovering
unknown bugs and has been widely used in both industry and academia. For
IoT firmware, there are some wellknown fuzzing methods.

IOTFUZZER [18] is an automatic blackbox fuzzing framework designed
specifically for detecting memory-corruption flaws in IoT firmware. Most IoT
devices are controlled through their official mobile apps. These apps often con-
tain rich information about the protocol they use to communicate with devices,
such as command (seed) messages, URLs, and encryption/decryption schemes.
Based on these observations, IOTFUZZER runs a protocol-guided fuzz with-
out a priori knowledge of the protocol. Without heavyweight protocol analysis,
IOTFUZZER is lightweight, reliable, and capable of generating effective test
payloads.

Avatar [19] is a framework that enables complex dynamic analysis of embed-
ded devices by orchestrating the execution of an emulator together with the
real hardware. By forwarding I/O accesses from the emulator to the embedded
device and dynamically optimizing the distribution of code and data between
the two environments, Avatar constructs a hybrid execution environment con-
sisting of both a processor emulator (QEMU) and real hardware, where Avatar
acts as a software proxy between the emulator and the real hardware. Avatar
also applies a whitebox fuzzing tool to this hybrid execution environment. Based
on Avatar, Avatar2 [20] is further upgraded to a dynamic multi-target orches-
tration framework to enable interoperability between different dynamic binary
analysis frameworks, debuggers, emulators, and real physical devices.

Firmadyne [21] is the first automated dynamic analysis system to specifically
target Linux-based firmware on network-connected COTS devices in a scalable
manner. Using an instrumented kernel, Firmadyne realizes software-based full
system emulation to analyze thousands of firmware binaries automatically. Based
on the observation that simple heuristics can often avoid widespread emulation
failure cases, FirmAE [6] developed several arbitration techniques to address
these failures and achieve a far greater emulation success rate.

FirmAFL [9], built on top of AFL and Firmadyne, is the first high-throughput
greybox fuzzer for IoT firmware. By augmenting process emulation with full
system emulation, FirmAFL addresses the performance bottleneck caused by
system-mode emulation and achieve high-throughput greybox fuzzing for IoT
firmware.

However, the abovementioned fuzzing methods detect vulnerabilities accord-
ing to program exception signals. Therefore, these methods cannot discover logic
vulnerabilities that do not cause the program to crash. Additionally, vulnerabil-
ity triggering requires program inputs to meet certain conditions. Therefore,
vulnerabilities that exist in the execution path but are not triggered cannot be
detected by fuzzing methods. In essence, existing fuzzing methods identify vul-
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nerabilities based on vulnerability symptoms (e.g., crashes) rather than program
state abnormalities (e.g., memory state corruption).

2.2 Program State Based Vulnerability Discovery

In recent years, some bug hunting approaches based on program state abnor-
mality determination have been proposed, such as Bunkerbuster [12] and Time-
player [13]. Bunkerbuster is designed for terminal programs that run on a regular
Linux system. First, Bunkerbuster collects end-host data using hardware pro-
cessor tracing, cleverly inferring input structures and segmenting traces. Then,
Bunkerbuster reconstructs symbol states based on execution traces to achieve
better vulnerability detection and root cause analysis. Bunkerbuster can effec-
tively detect and localize 4 types of vulnerabilities: overflow, use-after-free, dou-
ble free, and format string bugs. However, gathering data using hardware pro-
cessor tracing [14] prevents Bunkerbuster from being used in firmware due to
the restricted resources of embedded platforms.

Timeplayer is designed for effectively detecting the use of uninitialized vari-
ables and contains two key techniques: differential replay and symbolic taint
analysis. Timeplayer records a program execution in multiple instances, replays
two different instances with vanilla and poisoned values of memory, and finally
compares differences of program states to find the event of using an uninitial-
ized variable. After that, Timeplayer determines the exact location where the
variable was allocated using a symbolic taint analysis. However, Timeplayer is
designed specifically to find the uninitialized variable vulnerability and cannot
be used to detect multi-type vulnerabilities of the firmware.

2.3 Motivating Example

Listing 1.1 shows an example, CVE-2017-3193, a stack overflow vulnerabil-
ity, and the 0-day vulnerability discovered by Anatomist, a command injec-
tion vulnerability. For the convenience of presentation, some unimportant
codes have been omitted. Program cgibin reads the environment variable
HTTP_SOCAACTION (line 6) and directly copies it to the stack variable
buf (line 10) without any length check, which causes the stack overflow vulnera-
bility. The buf variable is finally passed as an argument to the system function
(line 14) after being checked and processed (line 13). The buf string is not strictly
limited, which ultimately leads to a command injection vulnerability. Notably,
the command injection vulnerability is a new 0-day vulnerability discovered by
Anatomist but missed by FirmAFL in our experiments.

In practice, the fuzzing method mutates HTTP_SOCAACTION to
find vulnerabilities. The overflow vulnerability will be discovered only if
HTTP_SOCAACTION exceeds buf and causes cgibin to crash. However,
when HTTP_SOCAACTION does not exceed buf , the vulnerability is not
triggered and cannot be discovered, even if the execution path passes this vul-
nerability. Additionally, since this logic class command injection vulnerability
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1 i n t hnap_main( i n t a1 , i n t a2 , i n t ∗a3 )
2 {
3 char ∗ env , process_env ;
4 char buf [ 2 5 6 ] ;
5 /∗ Read from environment va r i ab l e ∗/
6 env = getenv ( "HTTP_SOAPACTION" ) ;
7 /∗ Simple p roce s s ∗/
8 process_env = s t r r c h r ( v5 , ’ / ’ )+1;
9 /∗ Copy to s tack without l ength check ∗/

10 s t r cpy ( buf , process_env ) ; //Overflow
11

12 /∗ Check and proce s s the buf . ∗/
13 check_and_process ( buf ) ;
14 system ( buf ) ; //Command i n j e c t i o n
15

16 /∗ Omitting unimportant codes ∗/
17 . . .
18 re turn 0 ;
19 }

Listing 1.1. CVE-2017-3193 and the 0-day vulnerability discovered by Anatomist.

does not crash cgibin, the fuzzing method cannot detect it. Two important ques-
tions remain: How do we find vulnerabilities that exist in the execution path but
have not been triggered? How do we find multi-type firmware vulnerabilities,
including memory corruption and logic vulnerabilities?

3 Method

Motivated by the considerations discussed above, we propose Anatomist, the
first enhanced firmware vulnerability discovery method based on program state
abnormality determination with whole-system replay. An overview of our app-
roach is shown in Fig. 1. Anatomist makes improvements in two key areas. First,
Anatomist is capable of discovering untriggered vulnerabilities present on the
execution path. Second, Anatomist can find both memory corruption vulnera-
bilities and logic vulnerabilities. Beginning with a virtual machine containing
the firmware, Anatomist records the execution process and generates snapshot
and execution records. Then, Anatomist performs a whole-system deterministic
replay to replay the execution process. During this replay, Anatomist identi-
fies dangerous operation candidates (Subsect. 3.1). Then, Anatomist determines
whether the dangerous operation causes the program state abnormality during
the single-path symbolic tracing (Subsect. 3.2). If the program state is abnormal,
the dangerous operation leads to a vulnerability. We use an example to explain
the workflow of Anatomist (Subsect. 3.3), and the implementation details are
presented in Subsect. 3.4.

3.1 Dangerous Operation Candidates

Programs perform some dangerous operations, such as memory writing and com-
mand execution, and these operations can often cause program state abnormali-
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Fig. 1. An overview of Anatomist.

ties if not performed correctly. Specifically, memory overflow vulnerabilities only
occur during memory operations. Taking the command injection vulnerability as
an example of logic vulnerabilities, command injection vulnerabilities only occur
during command execution. Therefore, program dangerous operations are pre-
requisites for vulnerability triggering. Based on our observations, we found that
if the program performs a dangerous operation that can be influenced by network
message input, this dangerous operation has the potential to cause the program
state to be abnormal. Therefore, we identify these operations as candidates for
further verification by the program state abnormality determination.

Because of the limited resources of embedded platforms, some program anal-
ysis methods do not work well [8]. We use the whole-system record and replay
[15] to extract the runtime semantics of firmware. Whole-system deterministic
record and replay is a technology that records the whole system execution of
a running virtual machine for replay later. This technique can access all codes
and all data, enabling iterative, deep, whole-system analysis, and can be flexibly
applied to embedded scenarios, overcoming the challenge C1. We make a virtual
machine image of the firmware, then record the execution process of the virtual
machine, and finally save the snapshot and execution records. We replay the exe-
cution process to identify dangerous operation candidates and save the execution
path. To demonstrate the effectiveness of our method, we defined two types of
dangerous operations, memory writing and command execution, corresponding
to memory corruption class overflow vulnerabilities and logic class command
injection vulnerabilities. Program logic flaws in the implementation result in
logic vulnerabilities. Logic vulnerabilities allow attackers to perform malicious
operations by utilizing the program normal functions without violating the pro-
gram memory states. Common logic vulnerabilities include command injection,
authentication bypass and information leakage vulnerabilities. In this paper, we
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choose the command injection vulnerability as the target of logic vulnerability
mining.

During the whole-system replay, Anatomist automatically taints the network
message inputs. If any of the two previously defined dangerous operations are
affected by the inputs, Anatomist records related information for the program
state abnormality determination later. Specifically, a writing operation is con-
sidered to be affected by the inputs if the memory that stores the length of the
writing operation is tainted; a command execution operation is considered to
be affected by the inputs if any parameter of the command execution functions
is tainted. The information recorded for the memory writing operation includes
the PC of the operation, the input tainted labels that influence the operation,
and the size of the destination memory space being written. For the command
execution operation, related information is recorded, including the PC of the
operation and the input tainted labels that influence command execution.

3.2 Program State Abnormality Determination

After obtaining the dangerous operation candidates, single-path symbolic tracing
is performed to determine whether the program states of dangerous operation
candidates are abnormal according to the recorded execution path. Single-path
symbolic tracing can avoid the most significant shortcoming of symbolic exe-
cution: state explosion. Keeping the execution path of the target program the
same, this technique treats data as symbolic (multiple possible values) data,
places constraints on the symbolic data, and tracks the possible data values that
can reach a program state [16]. Additionally, based on previously recorded input
taint labels affecting dangerous operation candidates, Anatomist only symbol-
izes these influential inputs, rather than all inputs, reducing the overhead of
symbolic execution and further improves execution efficiency.

When the PC of a candidate memory writing operation is hit by the single-
path symbolic tracing, Anatomist extracts the symbolic constraints correspond-
ing to the taint labels, which represent the length of the writing operation. It
determines whether the constraint can be larger than the size of the memory
space being written. If it can be satisfied, the dangerous operation will lead to a
memory state abnormality and further cause a memory overflow vulnerability.

When symbolic execution performs a candidate command execution oper-
ation, Anatomist extracts the symbolic constraints corresponding to the taint
labels, which represent the command execution string. Suppose this constraint
is not strictly limited and can be interspersed with malicious commands. In that
case, this dangerous operation can cause a semantic state abnormality, which
can lead to a command injection vulnerability.

As mentioned above, to overcome the challenge C2, Anatomist first identi-
fies two types of dangerous operation candidates and records related information
during the whole-system replay. Then, Anatomist performs single-path symbolic
tracing to determine further whether the operations cause the program states to
be abnormal. Using this technique, Anatomist augments two aspects of firmware
vulnerability discovery: 1) the ability to discover untriggered vulnerabilities on
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1 i n t main ( ){
2 char ∗ recv_buf = mal loc ( 1 0 ) ;
3 SOCKET servSock ;
4 sockaddr_in sockAddr ;
5 SOCKADDR clntAddr ;
6 /∗Omitting unimportant codes ∗/
7 . . .
8

9 /∗ Es t ab l i s h i ng socket communication∗/
10 bind ( servSock , (SOCKADDR∗)&sockAddr , s i z e o f (SOCKADDR) ) ;
11 l i s t e n ( servSock , 2 0 ) ;
12 i n t nS ize = s i z e o f (SOCKADDR) ;
13 SOCKET clntSock = \
14 accept ( servSock , (SOCKADDR∗)&clntAddr , &nSize ) ;
15 /∗ Rece iv ing network message inputs ∗/
16 i n t strLen = recv ( c lntSock , recv_buf , 10 , 0 ) ;
17

18 /∗Doing dangerous ope ra t i on s ∗/
19 i n t l ength = ( i n t ) recv_buf [ 0 ] ;
20 char dst [ 2 5 6 ] = "" ;
21 memcpy( dst , recv_buf+1, l ength ) ; //Dangerous opera t i on
22 system ( recv_buf +5); //Dangerous opera t i on
23

24 /∗Omitting unimportant codes ∗/
25 . . .
26 re turn 0
27 }

Listing 1.2. An example code that explains the Anatomist’s workflow.

the execution path; and 2) the ability to find both memory corruption vulnera-
bilities and logic vulnerabilities.

3.3 Workflow

We use example codes, shown in Listing 1.2, to explain the workflow of
Anatomist. The workflow is demonstrated in Fig. 2. The example code mainly
consists of the following parts: constructing socket communication (lines 10–
13), receiving network message inputs (line 16), the memory writing dangerous
operation (line 21), and the command execution dangerous operation (line 22).

Anatomist first records the whole system execution of the target program
and then deterministically replays this process in whole-system mode. During
this replay, Anatomist identifies the dangerous operation candidates and saves
the execution path of the target program. When the replay performs the mes-
sage receiving (line 16), Anatomist automatically taints the received messages,
and the tainted label is 0 − 9. When the replay performs the memory writing
dangerous operation (line 21), Anatomist finds that the length of this writing
operation is tainted, and this operation is affected by the tainted memory, so
Anatomist records information regarding this candidate operation: the tainted
label [0] which influences this operation, the address PCmemcpy and the length
of dst. When the replay performs the command execution operation (line 22),
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Fig. 2. The workflow of Anatomist while discovering vulnerabilities in Listing 2.

Anatomist finds that the argument of system is tainted and this operation is
affected by the tainted memory, so Anatomist records information regarding this
candidate operation: the tainted labels [5, 6, 7, 8, 9] which influence this operation
and the address PCsystem.

After obtaining the dangerous operation candidates, Anatomist performs
single-path symbolic tracing according to the recorded path. When symbolic exe-
cution performs message receiving, Anatomist partially symbolizes the received
messages based on recorded taint labels [0, 5, 6, 7, 8, 9]. During single-path sym-
bolic tracing, Anatomist determines whether the program states of candidate
operations are abnormal. When symbolic execution hits PCmemcpy, Anatomist
extracts the constraint of recv_buf [0] according to recorded tainted labels. After
inspection, Anatomist finds that the constraint can be larger than the length of
dst, which causes the memory state to be abnormal and leads to a memory over-
flow vulnerability. When symbolic execution hits PCsystem, Anatomist extracts
the constraint of recv_buf [5, 9]. After the check, Anatomist finds that the con-
straint allows the presence of malicious commands, which causes the semantic
state to be abnormal and leads to command injection vulnerability. After the
program state abnormality determination, Anatomist generates the bug reports.

3.4 Implementation

In this paper, we use the whole-system deterministic record and replay [15] to
extract the required runtime semantics. Whole-system deterministic record and
replay records the execution scenario and allow users to develop multiple plugins
based on the replay to conveniently extract semantics. We implement Anatomist
based on PyPanda [22] with rich interfaces and make the virtual machine images
of the firmware with the firmware emulation tool FirmAE [6].

We use PyPanda to start the prepared virtual machine image, interact with
the virtual machine using sending packet scripts, record the whole system exe-
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cution of the virtual machine, and save the initial snapshot and the execution
records. During the whole-system replay, we extract our needed runtime seman-
tics and identify dangerous operation candidates. PyPanda provides multiple
callback and hook mechanisms, which allow users to monitor various events.
We use the cb_before_block_exec callback to obtain the execution path of
the target program. Hooking functions used to receive messages, such as read
and recv, we obtain the address and the length of network inputs. Utilizing
the taint_label_ram function, we taint these inputs. For command execution
dangerous operation candidates, we hook related functions, such as system and
execve. When the hook is triggered, we use the taint_check_ram function to
determine if any function parameter is tainted. If any of them is tainted, we use
the taint_get_ram function to obtain taint labels. For memory writing dan-
gerous operation candidates, we hook functions related to memory copy, such
as strcpy and memcpy. To obtain the length of the memory being written, we
need to determine whether the memory belongs to stack or heap. For the stack,
we use the distance between the memory address and the stack bottom as the
memory length; for the heap, we hook functions related to heap allocation and
release, such as malloc and free, dynamically maintain the heap list and record
the size of each heap according to the function parameters.

We implement part of the program state abnormality determination based
on angr [23]. After obtaining the dangerous operation candidates and the target
program execution path, by customizing the explore technique, we make the
symbolic execution explore along the recorded path to determine whether the
program states of dangerous operation candidates are abnormal. When the sym-
bolic execution hits the PC of the dangerous operation candidate, we extract
the symbolic constraint corresponding to the taint labels. Then, we use the Z3
solver [24] to determine if there is a solution to the expression that makes the
program state abnormal, e.g., the length of the write operation is greater than
the legal space of the memory being written. If there is a solution, the dangerous
operation can make the program state abnormal and lead to a vulnerability.

4 Evaluation

The experiments were performed on Ubuntu 16.04 with 16 GB of RAM and
an Intel Core i9 CPU with 4 cores (i9-9880H, 2.30 GHzx4). In this section, we
address the following questions in our evaluation:

– Is Anatomist effective compared to existing techniques and is it able to detect
untriggered vulnerabilities? We compared the results of Anatomist to those
of FirmAFL, the state-of-the-art firmware vulnerability discovery method,
on the FirmAFL dataset. Our experiments showed that Anatomist increased
the vulnerability discovery efficiency by 741.64% on average and identified
untriggered vulnerabilities (Subsect. 4.1).

– Is Anatomist able to detect unknown firmware vulnerabilities, including mem-
ory corruption and logic vulnerabilities? We selected 3 firmware. By analyz-
ing regular messages captured on the network, Anatomist found 3 new 0-day
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Table 1. Experimental comparison of Anatomist and FirmAFL on the FirmAFL
dataset.

ID Type Vendor Device FirmAFL Anatomist Improvement

CVE-2017-3193 Memory overflow Dlink DIR-850L 2 h 43 m3 s 6 m 6 s 2672.95%
CVE-2016-1558 Memory overflow Dlink DAP-2695 2 h 59 m4 s 3 m 48 s 4712.28%
EDB-ID-38720 Memory overflow Dlink DIR-817LW 19m 11 s 6 m 59 s 274.70%
EDB-ID-24926 Memory overflow Dlink DIR-815 1 h 31 m 58 s 44m 14 s 207.91%

Average: 1 h 53 m 19 s 15m 17 s 741.64%

vulnerabilities, 2 buffer overflow vulnerabilities and 1 command injection vul-
nerability. Two CNVD IDs were issued (Subsect. 4.2).

Dataset and Selection Criteria. We chose FirmAFL, the most advanced
firmware vulnerability discovery method, to compare with our method and con-
ducted experiments on its dataset. However, we could only reproduce 4 of the
test cases in the dataset using its open source code. The remaining cases crashed
and quit during reproduction. Therefore, we performed a comparison experiment
on these four test cases. Additionally, we selected three types of target devices,
DIR-850L, DCS-930L, and Tenda AC15, which are easily accessed firmware, as
targets for vulnerability mining and captured some regular network messages of
these devices, which were used as inputs to Anatomist.

4.1 Comparison with FirmAFL

We successfully reproduced four test cases of FirmAFL’s dataset using its open
source code, but the rest of the test cases crashed and exited during the repro-
duced process. Therefore, we compared Anatomist with FirmAFL using these
four test cases. In our experiments, we first used FirmAFL to perform a fuzzing
process on the target firmware. During this process, we sent the mutated inputs
generated by FirmAFL to Anatomist synchronously. Anatomist deeply analyzed
this execution path based on program state abnormality determination and iden-
tified vulnerabilities that were present in the path but had not been triggered.

The experimental results are shown in Table 1. Using the CVE-2017-3193
on DIR-850L as an example, FirmAFL fuzzed out the crash at 2 h 43m3 s,
but Anatomist found this vulnerability at 6m6 s. This means that FirmAFL
generated a mutated input at 6m6 s, and the execution path corresponding to
this input passed through the vulnerability, though the program did not crash.
Therefore, FirmAFL missed this untriggered vulnerability. FirmAFL continued
to mutate the input until 2 h 43m3 s, when the vulnerability was triggered and
the program crashed. However, when Anatomist analyzed the mutated input
generated by FirmAFL, Anatomist accurately identified the untriggered vulner-
ability based on program abnormality determination as soon as the execution
path passed the vulnerability, avoiding wasting resources.

Anatomist detects vulnerabilities on average 741.64% more efficiently than
FirmAFL and can significantly improve the efficiency of existing fuzz-based
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Table 2. Newly discovered 0-day vulnerabilities.

ID Type Vendor Device Version Time(s)

CNVD-2021-34233 Memory overflow Dlink DSC-930L 1.05 41.5
CNVD-2021-37577 Memory overflow Tenda Tenda AC15 15.03 51.3
Reported Command injection Dlink Dir-850L 1.03 49.6

firmware vulnerability mining methods. Anatomist can find untriggered vulner-
abilities based on program state abnormality determination when the program
execution path passes through a vulnerability, instead of waiting until a mutated
input signals a program exception. Anatomist also avoids the waste of resources
associated with fuzzing, which misses untriggered vulnerabilities on the execu-
tion path and continues mutating the input until the program crashes.

4.2 Discovering New Vulnerabilities

For convenient access to firmware, we selected three types of target devices,
namely, DSC-930L, Tenda AC15, and Dir-850L. We implemented Anatomist
to perform vulnerability mining on three firmware. The vulnerability discovery
results are shown in Table 2. The “Time(s)” column represents the time spent by
Anatomist to analyze the network packet which passed the vulnerability codes.
Anatomist successfully discovered 3 0-day vulnerabilities, including 2 memory
corruption class overflow vulnerabilities and 1 logic class command injection
vulnerability. Two vulnerabilities were issued 2 CNVD IDs and one vulnerability
has been reported.

The two memory corruption class 0-day vulnerabilities were discovered by
analyzing regular messages captured on the network, which did not cause the
program to crash. However, based on program state abnormality determination,
Anatomist found vulnerabilities in the execution path that could lead to an
abnormal program memory state. In addition, by analyzing the mutated inputs
generated by FirmAFL, Anatomist found the command injection 0-day vulner-
ability in the execution path. Even if this vulnerability was not triggered and
was missed by FirmAFL, Anatomist found the abnormal program semantic state
where the user could control the command string parameter.

Compared to fuzzing, which can only find memory corruption vulnerabili-
ties that lead to program crashes, Anatomist can successfully identify memory
corruption and logic vulnerabilities. Based on program state abnormality deter-
mination, Anatomist can locate the abnormal program state, identify the vul-
nerability and further discover the vulnerabilities missed by fuzzing, significantly
improving the effectiveness of vulnerability mining.
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5 Discussion

5.1 Vulnerability Class

In this paper, we defined two types of dangerous operations corresponding to
memory corruption overflow vulnerability and logical command injection vulner-
ability. Anatomist discovers vulnerabilities by determining whether the program
state of these two types of dangerous operations is abnormal. In this paper, the
two types of dangerous operations were sufficient to illustrate Anatomist’s abil-
ity to uncover both types of vulnerabilities and their effectiveness and clearly
detail the workflow. However, this can be expanded further by adding more
types of dangerous operations to identify more types of vulnerabilities, such as
memory corruption heap vulnerabilities [25] and logical information leakage vul-
nerabilities [26]. This can be accomplished with engineering efforts, and we will
implement them in the next step. In addition, we tested Anatomist on 4 test
cases in the FirmAFL dataset, and Anatomist successfully located all vulnerabil-
ities. We will use Anatomist to analyze more vulnerability datasets to evaluate
the false positives and false negatives of the vulnerability detection results.

5.2 Obtaining Input

In contrast to fuzzing, which automates the process of mutating input to find
program vulnerabilities, Anatomist requires program input to determine if the
program state on the execution path is abnormal. However, this is not a dis-
advantage of Anatomist. Unlike fuzzing’s lightweight, high-frequency program
testing, Anatomist deeply analyzes the known execution path to identify poten-
tial untriggered vulnerabilities based on program state abnormality determina-
tion. Anatomist complements the fuzzing technique; mutated inputs generated
by fuzzing can be sent to Anatomist for more thorough state abnormality deter-
mination, which can find vulnerabilities that are missed by fuzzing, avoiding
wasting resources. In addition, regular network messages can be used as input
to Anatomist. Our experiments showed that untriggered vulnerabilities may be
present in the normal execution path of a program, and Anatomist can identify
new vulnerabilities in this way.

5.3 Path Exploration

Anatomist is currently only able to determine the program state abnormal for a
single path, and we will develop it for multi-path exploration. Existing methods
for path exploration include Bunkerbuster [12], Directed Greybox Fuzzing [27],
and VulFuzz [28].

Based on vulnerability root causes, Bunkerbuster uses bug class-specific
search strategies, including use after free, double free, overflow and format string
vulnerabilities, to expand the set of reconstructed states and to find vulnerable
codes. Results have shown that Bunkerbuster’s exploration heuristics are more
effective than breadth-first and depth-first searches.
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VulFuzz, a vulnerability-oriented fuzz framework, employs security vulnera-
bility metrics to direct and prioritize fuzz testing toward the most vulnerable
components. This approach assigns weights to thoroughly test the most vulnera-
ble components. VulFuzz assigns a weight to each identified vulnerable function.
Seeds able to pass vulnerable functions are given higher priority. Based on the
coverage table and weighted function count, VulFuzz determines whether a seed
input should be added to the high-priority queue, low-priority queue, or disre-
garded.

Directed Greybox Fuzzing (DGF) is a technique that explores program paths
in a directed manner, aiming to generate inputs to efficiently reach a given set
of target program locations. On a high level, DGF treats reachability as an opti-
mization problem and utilizes a specific meta-heuristic to minimize the distance
of the generated seeds to the targets. DGF employs a simulated annealing-based
power schedule that gradually assigns more energy to seeds closer to the target
locations and less energy to seeds farther away.

We will investigate path state space exploration techniques based on previ-
ous work. The mechanism of path state space composition, the representation of
path state spaces, and path state exploration techniques need to be carefully con-
sidered. The aim is to eventually explore multiple path state spaces, efficiently
explore program paths that are more prone to vulnerabilities, and perform pro-
gram state abnormality determination on top of these paths to discover unknown
vulnerabilities.

6 Conclusions

In this paper, we present Anatomist, the first enhanced firmware vulnerabil-
ity discovery method based on program state abnormality determination with
whole-system replay. Based on the whole-system record and replay, Anatomist
identifies two types of dangerous operation candidates. Then, using single-path
symbolic tracing, Anatomist further determines whether any program state of
the dangerous operation candidate is abnormal. Finally, Anatomist detects the
vulnerability if any program state is abnormal.

We compared Anatomist with FirmAFL, and the experimental results showed
that Anatomist increased the vulnerability discovery efficiency by 741.64%
on average. Additionally, Anatomist discovered 3 0-day vulnerabilities on 3
firmware. Anatomist can find memory corruption and logic vulnerabilities in
firmware. Additionally, Anatomist can identify untriggered vulnerabilities missed
by fuzzing, avoid the waste of resources typical of fuzzing, and greatly improve
the efficiency of vulnerability discovery.
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Abstract. A crucial component of unstructured threat information
is the Indicator of Compromise (IOC), which includes malicious IP
addresses and domain names. Because non-malicious IP addresses and
domain names exist in the threat intelligence texts, the extracted IOCs
are often blended with benign entities. Therefore, the current IOC extrac-
tion methods are limited in accuracy when determining whether an entity
is malicious. In this paper, the problem of IOC recognition is defined
as the issue of aspect-level text polarity classification and an aspect-
enhanced deep network model for IOC recognition (AspIOC) is pre-
sented. While proposing a pre-training model, the network combines IOC
contextual characteristics with IOC character features. We collect about
100,000 samples and construct a dataset using an open-source web plat-
form. The experimental results demonstrate that the accuracy and F1
of the proposed IOC discovery method are 99.92%. Our model is better
than the most advanced methods currently in use and satisfies industry
standards for IOC recognition.

Keywords: Indicator of compromise · Deep neural network ·
Aspect-level text polarity classification

1 Introduction

The format of the indicators such as IP addresses and domain names are com-
paratively uniform. However, non-malicious IPs and domain names frequently
appear in threat intelligence materials. Using regular expressions makes it hard
to determine whether the extracted results are malicious. With the addition of
artificial features and the designation of non-malicious entities as O (Other) enti-
ties, Diońısio [3] and Long [11] adopted the concept of named entity recognition.
Nevertheless, the predictive power of this method is limited because it is challeng-
ing to provide the appropriate initial IOC embeddings for the classic BiLSTM
network. Liao [9] and Zhu [19] attempted to represent contextual information by
adopting the text classification approach and developing syntactic dependency.
But the syntactic dependency mechanism relies on an external language model

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
W. Susilo et al. (Eds.): ISC 2022, LNCS 13640, pp. 411–421, 2022.
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and can easily inject wrong clues, also the text classification model does not con-
sider the characteristics of threat intelligence text, and therefore the accuracy is
low.

In view of the above problems, this paper proposes a neural network integra-
tion model called AspIOC. The model is based on aspect feature improvement
to extract IOCs in threat intelligence reports. For the first time, we regard the
issue of identifying malicious IPs and domain names as aspect-level text polarity
classification, where the aspect word is the IP or the domain name in a sentence.
The AspIOC consists of three parts: the character-level feature extraction from
the aspect terms, the contextual feature extraction by the pre-training model,
and the interactive feature extraction from the aspect terms and the context.
Experimental results show that the model can detect malicious IP addresses and
domain names more effectively. To sum up, the main contributions of this paper
are as follows:

– For the first time, we model the IOC recognition problem as an aspect-level
sentiment analysis problem. The importance of IOCs in the threat intelligence
texts is just like the aspect phrases in the regular texts, hence the notion of
aspect-level sentiment analysis methods is appropriate to this issue.

– The multi-model fusion technique is adopted, which significantly improves
the performance of our method. The fused models involve the DistillBERT
pre-training model, the interactive fusion model of aspect words and context,
and the aspect word character-level feature extraction model.

– We construct a sentence-level dataset with 100,420 IP addresses and domain
names. The accuracy and F1 of our model are both 99.92%, which outperform
the state-of-the-art models.

2 Related Work

There are two paradigms to extract IOC objects. The first is named entity
recognition, and the other is the filtering technique. Diońısio [3] automatically
extracted character-level and word-level features using BiLSTM and CRF mod-
els. Long [11] was inspired by the attention mechanism model such as Trans-
former. His work incorporated the self-attention mechanism into BiLSTM and
also combined some artificial rules. Zhao [18] improved the extraction accuracy
by using a multi-granularity feature set and n-gram character composition. By
creating the syntactic dependency graph, Liao [9] and Zhu [19] divided the IOCs
into several attack phases. The former specifically developed a set of contextual
feature words and described the relationship between the extracted object and
the feature words. Kazato [6] used the GCN model to compute IOC malice levels,
while Kuyama [7] used the attribute characteristics of domain names as input
to develop an SVM classification model.

The aspect-level sentiment analysis model has attracted much attention in
the problem of text polarity classification. Tang [13] presented the TD-LSTM and
TC-LSTM models. Wang [15] emphasized the function of aspect terms based on
TC-LSTM. With the advent of the attention mechanism, Chen [1] reconstructed
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the BiLSTM and GRU structures based on the memory network. Liu [10] used
GRU networks to learn the weight of each memory unit. Huang [5] created several
interactions between aspect terms and contextual words. The crucial component
of Fan’s work [4] was the more nuanced interaction between the context and
the aspect term in the representation calculation. Emotion analysis began to
use the pre-training model Bert [2] in 2018. After giving the Bert model both a
complete sentence and a contextual section close to the aspect word, Zeng [17]
used attention and pooling approaches to integrate the two outputs.

In our method proposed in this paper, we first pre-extract IOCs using regular
expressions, and then innovatively establish a deep neural network based on the
idea of aspect-level sentiment classification, and also combine the context and
character features of aspect words to improve the model’s performance.

3 Model

The structure of AspIOC is shown in Fig. 1. In AspIOC, the embedding layers
convert the sentence and aspect terms to embedded vectors. We then feed word
embeddings and the char embeddings of the aspect term into the interactive
feature extraction model and the contextual feature extraction model to gener-
ate two vectors, i.e., the interactive feature output and the contextual feature
output, which are rich in semantic information. We also feed char embeddings
into the character-level feature extraction model, which outputs three character-
composition feature vectors based on different attention mechanisms, i.e., Bi-
linear, Dot-product, and MLP. The five vectors in the output layer are then
combined and spliced into one vector which is used to get the classification result
of the model. We will further describe these three feature extraction models in
the following parts.

3.1 IOC Character-Level Feature Extraction Based on Attention
Mechanisms

Due to the two characteristics of IPs and domain names in threat intelligence, i.e.,
invalidation handling and the randomness of character composition, we propose
an IOC character-level feature extraction model based on attention mechanisms.

To prevent users from clicking on links and accessing malicious websites by
mistake, writers invalidate the harmful IPs and domain names in the threat
intelligence texts by changing their original forms to forms containing special
symbols as shown in Table 1. However, the scope for such processing is limited.
As to the security-related corpus we obtain, invalidation handling is absent in
32% of malicious IP samples and 75% of domain names. Hence, invalidation
handling can not be regarded as an essential feature.
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Fig. 1. The AspIOC’s fundamental architecture

Table 1. Conversion examples in invalidation handling

Original forms IOC special symbols

. [.] or (.) or (DOT) or [dot] or [d0t]

@ [at] or (AT)

http hxxp

https hxxps

In addition, a significant number of malicious domain names are generated
by using random algorithms, and the character composition of these malicious
domains differs from that of non-malicious domain names [16]. The attention
mechanism is proposed for identifying crucial details quickly. For example, we
want the model to focus on the specific blocks of IPs and domain names, such
as invalid processing replacement components.

Furthermore, the attention weight matrix [12] in this study is calculated in
three ways: Dot-product, Bi-linear, and MLP. Each method involves calculating
the weight value of each character of an aspect word, then weighting the character
vector according to the weight value and fusing it to create a feature vector.
(1)Dot-product

Key matrix KN∗M and Query matrix Q1∗M . Weight Score = Q ∗ KT.
(2)Bi-linear
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Key matrix KN∗M , Query matrix Q1∗M , and parameter matrix WM∗M .
Weight Score = Q ∗ WT ∗ KT.
(3)MLP

Key matrix KN∗M , Query matrix Q1∗M , and parameter matrix W 2M .After
increasing the dimension and replication operations, the K and Q matrix change
into K

′1∗N∗M and Q
′1∗N∗M , Weight Score = tanh([K

′
, Q

′
] ∗ W ).

These three mechanisms have different numbers of trainable parameters and
are increasingly complex, and they can extract different level features of IOCs,
i.e., shallow, middle, and deep level features. The output of the aspect word
character-level feature extraction model is then generated by connecting the
vectors produced by the three attention algorithms.

3.2 Contextual Feature Extraction of IOCs Based on DistillBERT

Our contextual feature extraction model is built using DistillBERT1 from the
HuggingFace2 open source community, as shown in Fig. 2.

Fig. 2. The IOC contextual feature extraction model based on DistillBERT

The Contextual Feature Output in Fig. 2 consists of two separate pieces.
The DistillBERT output generates the left half of the vector, corresponding to
the position of the “[CLS]” [2]. The output vector on the right half combines the
position of the aspect term with the feature extraction result of DistillBERT. We
calculate the relative position weight of each word based on its distance from
the aspect term. Formula 1 calculates the value α in the weight matrix: L is

1 https://huggingface.co/distilbert-base-uncased.
2 https://huggingface.co/.

https://huggingface.co/distilbert-base-uncased
https://huggingface.co/
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the distance between the word and the aspect term’s edge, and a is a distance
threshold that determines whether to decay amount α [17].

α =
{

1 − L−a
sentence length , L > a

1 , else
(1)

3.3 Interactive Feature Extraction of IOC Aspect Words
and Context

The interactive feature extraction model of aspect terms and context is built, as
shown in Fig. 3. Aspect word vectors and IOC context vectors are two indepen-
dent inputs in the model which interact deeply through attention mechanisms.
Unlike the model in Sect. 3.3, which treats complete sentences as input, the
model in this section focuses more on vectors of aspect words.

The fundamental structure of the model is constructed by eight-fold stack-
ing one basic unit, and the residual network idea is introduced to prevent the
gradient from disappearing in the deep network. The basic unit is shown in the
dotted box in Fig. 3.

Fig. 3. The architecture of an interactive feature extraction model for context and
aspect terms

As shown in Fig. 3, the Query matrix represents the aspect word, the
Key matrix represents the context, and the feature interaction between
the aspect word and the context contains two parts: (1) When calculating
Weights for Key, Query and Key complete the feature interaction through the
parameter W . The matrix Weights for Key is calculated using the MLP atten-
tion mechanism in Sect. 3.2. (2) The matrix Weighted Context Information,
as the intermediate result of the basic unit, is added to the Query matrix of the
current unit, and the final result is the Interactive Feature.
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4 Experiment

4.1 Dataset Construction

We collect the data for constructing our dataset through an open web platform.
We have developed a threat data collector to automatically collect network threat
data from a variety of sources, including international security blogs (e.g., Dark
Reading3, Threatpost4), hacker forum posts (e.g., Blackhat5, Hack56) and secu-
rity announcements (e.g., Microsoft7, Cisco8). Some open-source English short
text datasets (e.g., Yelp Dataset9, sentiment140 Dataset10) form part of the data.
The following are two examples. “The device sent the spear-phish from the VPN
IP 193.180.255[.]2” is a malicious sample and “Qianxin Threat Intelligence File
In-depth Analysis Platform (https://sandbox.ti.qianxin.com/sandbox/page)” is
a non-malicious one.

After manual download and automatic crawler gathering, we use regular
matching to see if it contains IPs, domain names, or invalidated handling
structures to complete sentence-level filtering. In Table 2, the variables IP and
Domain represent the regular expressions to extract IPs and domain names,
and the other two are intermediate variables. Then we use VirusTotal11 to fur-
ther filter the obtained IPs and domain names and finally get 50,235 malicious
samples and 50,185 non-malicious samples. There are about an equal amount of
samples in each category.

Table 2. The regular expression

Variable Pattern

invalid handle dot ’(?:\.|\[\.\]|\(\.\)|\(dot\)|\(d0t\)|\[dot\]|\[d0t\]){1}’
IP ’(?i)(\ d{1,3}’+invalid handle dot+’){3}\ d{1,3}’
exp domain ’([a-zA-Z0-9][-a-zA-Z0-9]{0,61}’+invalid handle dot+’)+

(?:com|edu|gov|int|mil|net|org|biz|info|
pro|name|museum|network|coop|aero|xxx|xyz|
idv|cn|eu|uk|us|fr|de|gs)’

Domain ’(?i)(?<![-a-z0-9 \\./])’+exp domain+’(?![-a-z0-9 \\./])’

3 https://www.darkreading.com/.
4 https://threatpost.com/.
5 https://www.blackhat.com/.
6 https://forums.hak5.org/.
7 https://docs.microsoft.com/zh-cn/security-updates/securitybulletins/

securitybulletins.
8 https://www.cisco.com/c/zh cn/support/security/security-manager/products/

security-advisories-list.html.
9 https://www.yelp.com/dataset.

10 https://www.kaggle.com/datasets/kazanova/sentiment140.
11 https://www.virustotal.com/gui/.

https://sandbox.ti.qianxin.com/sandbox/page
https://www.darkreading.com/
https://threatpost.com/
https://www.blackhat.com/
https://forums.hak5.org/
https://docs.microsoft.com/zh-cn/security-updates/securitybulletins/securitybulletins
https://docs.microsoft.com/zh-cn/security-updates/securitybulletins/securitybulletins
https://www.cisco.com/c/zh_cn/support/security/security-manager/products/security-advisories-list.html
https://www.cisco.com/c/zh_cn/support/security/security-manager/products/security-advisories-list.html
https://www.yelp.com/dataset
https://www.kaggle.com/datasets/kazanova/sentiment140
https://www.virustotal.com/gui/
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4.2 Comparative Experiment and Result Evaluation

The proposed IOC recognition algorithm AspIOC is compared to state-of-the-
art models on the aspect-level text classification task in Table 3, including
TNET LF [8], AOA [5], and MGAN [4] with attention mechanism, Bert-SPC
[2], Roberta-SPC [20] with pre-training model, and ASA-WD [14] with both
pre-training model and graph neural network.

The experiment employs identical super-parameter settings to ensure a fair
comparison. The optimizer is Adam. The rate of learning is 2e-5. There are 16
batches, 40 epochs, and an 85-word sentence limit. Table 3 presents the results
of the experiment.

Table 3. Results of the experiment

Model Accuracy Macro F1 The number of trainable parameters

TNET LF 99.07% 99.07% 3700352

AOA 98.59% 98.59% 2890802

MGAN 98.71% 98.71% 3616202

Bert-SPC 99.74% 99.74% 109483778

Roberta-SPC 99.86% 99.86% 124647170

ASA-WD 99.38% 99.38% 122068226

AspIOC(ours) 99.92% 99.92% 68454710

4.3 Ablation Experiments

Ablation experiments are performed on the three parts of AspIOC using a
step-by-step superposition model structure. In Table 4, Attention represents
the attention-based character-level feature extraction model, Interactive-Feature
represents the interaction feature extraction model, Dbert represents the Distill-
BERT contextual feature extraction model, and Bert represents the replacement
of the DistillBERT with Bert-base.

Table 4. Ablation experiment results of AspIOC

Model Accuracy Macro F1 The number of trainable parameters

Attention 99.23% 99.23% 996302

Interactive-Feature 99.32% 99.32% 362402

Attention+Interactive-Feature 99.81% 99.81% 1268402

Attention+Interactive-Feature+Bert 99.89% 99.89% 111574070

Attention+Interactive-Feature+Dbert 99.92% 99.92% 68454710
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In Table 5, we ablate three attention mechanisms (i.e., Bi-linear, Dot-product,
and MLP) in the character-level feature extraction model to verify their effec-
tiveness. The Dot-product works best when the mechanisms perform alone. The
experimental results of the two combinations are relatively the same, and the
combination of the three mechanisms achieves the best result.

Table 5. Ablation experiment results of three attention mechanisms

Model Accuracy Macro F1 The number of trainable parameters

MLP 98.04% 98.04% 272101

Bi-linear 98.17% 98.17% 361501

Dot-product 98.23% 98.23% 271501

MLP+Bi-linear 99.03% 99.03% 633601

MLP+Dot-product 99.05% 99.05% 544401

Bi-linear+Dot-product 99.08% 99.08% 633001

MLP+Bi-linear+Dot-product 99.23% 99.23% 996302

5 Conclusion

In this paper, in order to accurately identify meaningful IOC in unstructured
threat intelligence texts, an aspect-enhanced IOC recognition model AspIOC is
proposed. For the first time, we introduce aspect-level sentiment analysis into the
investigation of IOC recognition, inspired by the compositional characteristics
of IOC characters and the crucial role of IOCs in the semantics representation
of the threat intelligence texts. AspIOC uses DistillBERT to obtain the IOC
contextual semantic features, integrates three attention mechanisms to extract
IOC character-level features, and also obtains interaction features from these
two kinds of features. We collect about 100,000 samples using an open-source
web platform. Experimental results show that the recognition performance of
AspIOC is better than that of the state-of-the-art IOC recognition and text
classification models. Future research on the IOC recognition systems will focus
on more complex scenarios, such as IOC detection in unstructured threat infor-
mation like images.
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Abstract. Convolutional Neural Networks (CNNs) have been widely
used in various areas. As the training of CNNs requires powerful comput-
ing resources, data owners are now employing clouds to accomplish the
task. However, this inevitably introduces serious privacy issues against
the data owners, as the training images are now outsourced to the clouds,
who may illegally spy on the content of the images for potential bene-
fit. In this work, we propose HeHe, a CNN training framework over
encrypted images with practical efficiency via additively homomorphic
encryption and a delicate interaction scheme in CryptoHeader, which are
shallow layers of the network. To evaluate whether the image content is
preserved through a processing system, we propose (α, β)-recoverable,
a novel image privacy model, and theoretically prove HeHe is robust
against it. We test HeHe on several datasets in the aspects of accuracy,
efficiency, and privacy. The empirical study justifies that HeHe is prac-
tical for the CNN training over encrypted images while preserving the
accuracy with acceptable training cost and content leakage.

Keywords: Convolutional neural networks · Privacy preservation ·
Homomorphic encryption

1 Introduction

Thanks for the convenience brought by cloud computing, a large number of con-
volutional neural network (CNN) applications are gradually outsourced to public
clouds, which we refer to as cloud service providers (CSP). As a result, the data
owner (DO) can now accomplish the computation-intensive CNN training task
at a very low cost by outsourcing the training work to a particular CSP, without
buying and implementing a powerful and expensive GPU platform or large stor-
age devices themselves. In this regard, a new paradigm emerged alongside, Deep
Learning as a Service (DLaaS). However, DLaaS inevitably introduces privacy
issues against the DO, as the CSP may spy on the data of the DO for training.

For instance, a medical institution collects many medical images and wants
to train a disease diagnosis model, with which the workload of doctors can be
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Fig. 1. HeHe: Using encrypted images to train convolutional neural networks.

significantly reduced. Obviously, DLaaS makes a great sense in this scenario,
where a CSP will be employed to store the dataset and train a CNN. Small
hospitals or doctors can use the trained model to analyze and make diagnoses by
merely uploading their medical images. However, both the training and inference
require uploading patients’ medical images to the cloud, which inevitably brings
in privacy issues. In another case, suppose that a CSP proposes a new model and
provides training and inference services to users who want to apply the model
over their own dataset. Meanwhile, the CSP may want to kept the model secret
against potential competitors, thus the model training can only be completed in
the cloud and the users have to outsource their data to the CSP.

In all these scenarios, the sensitive data uploaded to the CSP suffer from
significant privacy issues as follows, even if the CSP strictly follows the CNN
training procedure. First, the CSP (or some internal employees) may spy on the
private images or use them for benefit; Second, the CSP may be attacked by an
outsider adversary, who will probably obtain all these sensitive images.

As a promising cryptographic primitive, homomorphic encryption (HE) pro-
vides opportunities to perform a series of operations over ciphertext, which is
adopted in privacy computing recently [4,7,9,15]. However, these schemes mainly
focus on inference, but not training, which is more complex. Existing HE schemes
suffer from three limitations to be applied in practical training tasks: 1) The noise
amount of a ciphertext grows with the increase in the number of operations, too
much noise will cause incorrect decryption. Training involves backpropagation
and the computation chain is longer, which limits the depth of networks. 2) Some
specific operations during network training, e.g., comparison (in max-pooling
and ReLU), division and logarithm (in the cross entropy), are not supported by
HE schemes. 3) The computational cost of HE (especially ciphertexts multipli-
cation) is expensive, orders of magnitude larger than plaintexts. The training of
deep networks is a kind of computation-intensive task. We advocate that it is
impractical to carry out all operations solely over ciphertext.

In this regard, we propose HeHe (Header Homomorphic encrypted) to
enable training CNNs over encrypted images with satisfactory efficiency. First,
driven by the limitation 3), we propose to encrypt only the first few shallow
layers of the network, instead of all layers. The layers trained over ciphertexts
are referred to as CryptoHeader, as shown in Fig. 1. Such an idea is originated
from the following observation. Sensitive personal identifier information is leaked
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more in detailed visual features (i.e., shallow layers) than semantic features (i.e.,
deep layers). For instance, when training a car classifier, sensitive information
like license plate numbers is only observable from visual features, and when train-
ing the character recognizer, sensitive information such as personal handwriting
characteristics can be easily detected from visual features [31]. The introduction
of CryptoHeader avoids the computation of cross-entropy under ciphertext (with
aspect to limitation 2)), which cannot be realized in HE schemes, and reduces
the amount of the ciphertexts computation significantly.

Second, we design an interactive training protocol under the cooperation of
the DO and the CSP, where the length of ciphertexts computation chain is kept
limited, and the computation over ciphertext on the CSP is restricted to addi-
tions instead of ciphertext-wise multiplication (with aspect to limitations 1)&2)).
In this way, HeHe avoids the usage of fully homomorphic encryption (FHE),
which is far from practical [26], and employs only additively homomorphic
encryption (AHE), which is widely adopted in cloud privacy [2,29,39]. Third,
through encrypted gradient computation in batch-based update, we reduce the
information leakage of a single input image to the CSP.

Another problem needs to consider is how to determine the number of Cryp-
toBlocks. To this end, we propose (α, β)-recoverable, a pixel-level privacy model,
to estimate the leakage of visual information for images. Given predefined pri-
vacy requirements (i.e., α and β) and backbone networks for training tasks, we
present a strategy to estimate the minimum number of CryptoBlocks to meet
the privacy requirements. Our contributions are summarized as follows.

– We proposing a CNN training framework over encrypted images. The shallow
layers are trained over ciphertext, while the deep layers are not. In this way,
the sensitive identifier information involved in the images can be effectively
protected while the overall training cost is kept in an acceptable volume.

– For training CryptoBlocks over ciphertext, we design an interactive training
scheme. Through the scheme, the CSP no need to implement FHE to perform
non-linear activations, such that the cost and training errors can be reduced.

– We design an index structure to enable the CSP to perform the backpropa-
gation independently, thus reducing the number of interactions. Besides, we
propose to decrypt and update the gradients of parameters based on the sum
of a mini-batch, such that the gradients for a single sample are not leaked.

– We propose a novel privacy model in terms of visual recovery rate and prove
that HeHe is secure under it. We evaluate different datasets and networks in
experiments and justify the effectiveness and efficiency of our framework.

2 Related Work and Preliminaries

Privacy-Preserving Machine Learning. There are many schemes for pri-
vate inference [6,7,9,17,21,24,30]. Compared with inference, training is much
more complex, which introduces a series of challenges. Although some schemes
are proposed for training shallow models [12,13,34]. Training deep networks pri-
vately is far from practical usage due to the overhead or rigorous settings.
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GELU-Net [39] is a secure two-party computing protocol to complete the
training over the encrypted data samples. The scheme is based on homomor-
phic encryption and the noise injection mechanism. Similarly, some researchers
designed secure multi-party computation protocols [25,35,36] to complete the
training of machine learning models. Compared with the homomorphic encryp-
tion methods, the training speed had been greatly improved. However, they
require more than two CSPs to collaborate and also assume that there is no
collusion between CSPs, which is hard to guarantee in practice.

Convolutional Neural Network. Convolutional Neural Networks is a stack
of different layers, such as the convolution, pooling, activation, BatchNorm, and
fully connected layers. Some recent studies have proposed models that reach
hundreds of layers [14,16]. The convolutional, max-pooling, and ReLU layers
are three basic layers in CNNs. The convolution can be represented as: y =∑

w,h x(j +w, k+h)K(w, h)+b, where K is a w×h filter and b is the bias. The
max-pooling layer is: y = max(

∑
w,h x(j+w, k+h)), it’s parameter-free and used

to compress feature maps. The most commonly used activation function is ReLU:
y = max(0,x). It mainly provides non-linearity to improve the fitting ability of
the model. For a more detailed introduction, we recommend to read [11].

Additively Homomorphic Encryption. Additively homomorphic encryp-
tion is a public-key cryptosystem that supports the addition on encrypted values
and obtains the encrypted sum. Compared with FHE, the construction of AHE
is simpler and more efficient in computation [1]. Our scheme will use Paillier [28],
and its homomorphic addition and scalar multiplication are:

Enc(x1+x2 (mod n))=Enc(x1)·Enc(x2)
(
mod n2

)
,

Enc(k · x1 (mod n)) = Enc(x1)
k (

mod n2
)
,

(1)

where n is a parameter of the public key.

3 Problem Statement

3.1 System Model

In DLaaS, users offer data to the cloud, and the cloud provides computing ser-
vices. We follow this paradigm. Model training is completed with the joint par-
ticipation of the data owner (i.e., client) and cloud service provider (i.e., server).
There are two basic entities in our framework:

– Client. The client manages private and public keys and owns the training
images. The client has limited computational resources to train a CNN itself.

– Server. A server is employed to perform the CNN training task. It holds the
client’s public keys and supports CNNs’ computations over ciphertext that
are encrypted using Paillier. In addition, we assume the server has extensive
computing capability and never suffers from computational resources.

Notably, in this work, we focus on model training. Thus, how the trained model
is further used is beyond the scope of this paper.
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3.2 Privacy Model

Our goal is to protect the client’s training images against potential adversaries,
i.e., defending input inference attack. In our setting, the server is honest-but-
curious, which is a common assumption widely adopted in related works [17,21,
25,35,39]. That means, the server interacts with the client following the protocol
strictly to ensure correct training, but curiously makes additional attempts to
illegally access and spy on training data for benefit. In our training system, only
one cloud is employed, which is different from the schemes that are based on
secure multi-party computation [25,35].

In our problem setting, an adversary A will try various methods to grab
the original image content. Unfortunately, to the best of our knowledge, there
is no measure to estimate whether and how much the visual content within an
arbitrary image is leaked. In this regard, hereby we propose a novel criterion,
namely (α, β)-recoverable, to evaluate the content leakage for a given image, the
definition of (α, β)-recoverable is as follows.

Definition 1. ((α, β)-recoverable). For a RGB image M , which is processed
by a system Σ, an adversary A towards Σ can observe it as M ′. First, transform
M(M ′) to a uniform color space [5,22] Mucs = (J, a, b) (M ′

ucs =(J ′, a′, b′)). For
each pixel xi ∈ M , let x′

i denotes the observed pixel in M ′, compute perceptual
distance:

ΔE∗
i =

√

(Ji − J ′
i)

2 + (ai − a′
i)

2 + (bi − b′
i)

2
.

Then we call M is (α, β)-recoverable if

∑m
i=1

(
ΔE∗

i

max(ΔE∗) ≤ β
)

m
≤ α, (0 ≤ α, β ≤ 1) ,

where max (ΔE∗) is the domain size of perceptual distance, and m is the number
of pixels in M .

Herein β describes the similarity threshold of pixel level, and α describes the
similarity threshold w.r.t. the whole image. Generally, the larger α and smaller
β refers to a weaker privacy requirement for a system Σ, which correspondingly
demands a stronger ability of the adversary A. For instance, (1, 0)-recoverable
requires the adversary to get the original image content pixel-by-pixel exactly.
In particular, let PrΣ(α, β) be the probability that a system Σ to be (α, β)-
recoverable, then we consider Σ to be secure under (α, β)-recoverable when
PrΣ(α, β) is small enough. Experiments to verify the effectiveness of the (α, β)-
recoverable are presented in Appendix A.

4 Proposed Framework

CNNs are generally composed of multiple stacking structures, we design a pro-
tocol, namely CryptoBlock, for implementing several stack structure of CNN
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Fig. 2. The training process of HeHe framework. (No need to encrypt the output of
the last CryptoBlock (Line 17 of Algorithm 1).)

Algorithm 1. HeHe Forward Propagation
Input: A batch B contains b images, B = (x1,x2, · · · ,xb)
Output: The category-probability vectors Y

1: Client:
2: Shuffle and encrypt B as [B], send [B] to server
3: Assign [F0] ← [B], [F0] = ([f1] , [f2] , · · · , [fb])

4: for k in 1 : n do
5: Server :
6: for i in 1 : b do
7: Get feature map [fci ] ← ConvHE ([fi] , θk)

8: Pack feature maps [Fc
k] = ([fc1 ] , [fc2 ] , · · · , [fcb ])

9: Send [Fc
k] to client and store [Fc

k]

10: Client:
11: Decrypt [Fc

k] as Fc
k

12: Fk ← MaxPool (ReLU (Fc
k))

13: if k < n then
14: Encrypt Fk as [Fk]
15: Send [Fk] to server
16: else
17: Send Fk to server

18: Server :
19: Forward propagation rest CNN layers Y ← Forward (Fn)

over ciphertext. As shown in Fig. 2a, we assign the server to perform the com-
putation of encrypted convolutional layers and the client to complete ReLU and
max-pooling layers. During the forward propagation, each CryptoBlock requires
one interaction with the client. CryptoHeader is adaptively composed of n Cryp-
toBlocks, where n is a hyperparameter to balance the trade-off between efficiency
and privacy leakage. Figure 2b illustrates the overall interactions between client
and server for a single training iteration of HeHe.

In this section, we first introduce the forward and backward propagations of
HeHe in Sects. 4.1 and 4.2. Next, we introduce how to use the index to accelerate
backpropagation in Sect. 4.3. Finally, we give the privacy analysis of HeHe in
Sect. 4.4.
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Algorithm 2. HeHe Backpropagation
Input: The output Y, the target of batch T , and server stored (θ, [Fc])
Output: The updated CNN

1: Server :
2: Backward the rest CNN layers Gf

n ← Backward (Y, T )

3: for k in n : 1 do
4: Client:
5: Get Gf

k from server

6: Gp ← BackMaxPooling
(

Gf
k

)

7: Gr ← BackReLU
(
Gp
k

)
8: Send Gr to server
9: Server :
10: [Gw

k ] ← BackConvWeightHE

(
Gr
k,

[
Fc

k−1

])

11: Gf
k−1 ← BackConvInput (Gr

k, θk)

12: Server :

13: Assign [gi] ←
([

Gw
1,i

]
,
[
Gw
2,i

]
, · · · ,

[
Gw
n,i

])

14: Sum all gradients [Δ] ←
∑b

i=1 [gi]

15: Send [Δ] to client

16: Client:
17: Decrypt [Δ] as Δ, send Δ to server

18: Server :
19: Update θi ← θi − 1

b γΔi in CryptoHeader

4.1 Forward Propagation

Given the proposed schemes of CryptoHeader as well as CryptoBlock, Algorithm
1 outlines the forward propagation in HeHe. For each CryptoBlock, the server
takes charge of convolution over ciphertext and outputs the results, which are
kept encrypted to the client (Lines 5–9). Upon receiving the convolution results,
the client decrypts them with the private key. Then it performs ReLU and max-
pooling sequentially over the plaintext like the classical forward propagation.
Afterward, it encrypts the results with the public key and sends the ciphertext
to the server (Lines 10–17), which will continue to perform the convolution itera-
tively then. When n CryptoBlocks have been accomplished, the server continues
with the forward propagation over the rest layers in plaintext without the help
of the client anymore (Lines 18–19).

During the whole procedure, ciphertext-based operations are restricted to
only the convolution, where the parameters of the model are all learned on
the server and can be directly used. Therefore, the homomorphic convolution
operation ConvHE can be regarded as the dot product of encrypted input [F ]
and plain kernel parameters θ, based on Eqs. (1). As there is no multiplication
of ciphertexts, the forward propagation can be implemented based on AHE.

4.2 Backpropagation

During backpropagation, the server computes the rest plaintext layers of the
backbone network in the same way as traditional CNN training to get the gra-
dient Gf

n corresponding to the nth CryptoBlock’s output, then computes the
gradients of each CryptoBlock in reverse order.
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Algorithm 3. Construct Index I.
Input: The input feature map Fc

Output: The output feature map F and
the index I

1: Fr ← ReLU (Fc)
2: F, I ← MaxPool (Fr)
3: for each entry Fi in F do
4: if Fi = 0 then
5: Ii ← −1

Algorithm 4. Use Index I.
Input: The I and input gradient Gf

Output: The output gradient Gr

1: Initialize the gradient Gr ← {0}
2: for each entry Ii in I do
3: if Ii �= -1 then
4: Gr[Ii] ← Gf [Ii]

For each CryptoBlock, since the computation of max-pooling and ReLU lay-
ers are completed in the client, the server sends the feature map Gf to the client.
Then the client completes the backpropagation of the max-pooling and ReLU
layers and sends output Gr to the server. Next, the server back propagates the
convolutional layer and gets the gradients of the convolutional kernel. According
to the backpropagation of CNNs, the gradients [Gw] of convolutional kernels can
be obtained by the homomorphic convolution BackConvWeightHE from input
[Fc] and output Gr, based on Eqs. (1). Then, the server computes the gradi-
ents Gf

k−1 of the input, which can be obtained by performing the convolution
over Gr

k and the convolutional kernel θ. Since both Gr
k and θ are plaintext, the

obtained gradients Gf
k−1 are also plaintext, thus the plaintext Gf

k−1 can be fed
into the next CryptoBlock to compute the next layer’s gradients. The procedure
is summarized in Algorithm 2.

The above description indicates that the computation of backpropagation
does not require any multiplication over ciphertexts, either. After computing the
gradients of CryptoHeader, the server gets the encrypted gradients [Δ]. Different
from the scheme in [39], we take mini-batch as the unit during the training phase.
Hence, before sending the gradients to the client, we sum up the encrypted
gradients of all images following the homomorphic addition mechanism. This
method protects every single image’s gradients. Finally, when the client decrypts
and returns the plaintext gradients Δ to the server, the server can update the
model parameters, where b is the batch size and γ is the learning rate.

4.3 Index I
During the forward propagation, for the max-pooling layer, the traditional CNN
training implementation employs an index table to mark the correct positions
for gradients, which are to be computed within the backpropagation phase. In
our scheme, as the client executes ReLU and max-pooling within CryptoBlock
during forward propagation and we do not wish the server to query the client
again for such index during backpropagation, we redesign the index table so
that the gradient propagation of ReLU and max-pooling layers can be completed
simultaneously no matter the feature map is encrypted or not.

To realize that, we additionally attach a label over the original index table to
indicate whether the corresponding neuron is activated by ReLU or not. Algo-
rithms 3 and 4 illustrate the detailed process for building the index structure
during forward propagation and how it can be used during backpropagation.
We can use Algorithm 3 to compute I and send it to the server (Line 12 of
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Algorithm 1), and use Algorithm 4 to replace lines 4–8 of Algorithm 2. Notably,
Gr[i] refers to the ith entry of matrix Gr according to Z-Order.

Therefore, with the index I, during the backpropagation, there is only one
interaction with the client after all gradients of CryptoBlocks are computed.
Assuming that the CryptoHeader consists of n CryptoBlock, the training of a
batch requires n + 1 interactions.

4.4 Privacy Analysis

First, to ease the understanding, we consider the probability for an image to be
(α, β)-recoverable against an adversary without knowledge from Σ.

Lemma 1. ((α, β)-recoverable probability of random guess). For an
image M containing m pixels, and an processing system Σ that leaks no infor-
mation about M , then the probability for Σ to be (α, β)-recoverable over M is

PrΣ(α, β) =
m∑

i=αm

(
m
i

)
βi (1 − β)m−i

.

Proof. For a single pixel x, from Definition 1, we have ΔE∗
x

max(ΔE∗) ≤ β, assume
the color distribution in nature is uniform, then whether x is recoverable is a
Bernoulli trial with p=β. For all m pixels, it’s a binomial distribution B (m,β),
thus PrΣ(α, β) = 1 − CDFB(αm).

In our framework, the deep layers of the network are not encrypted and
computed by the server, which inevitably introduces some information leakage
during the training. This information can be used by some adversaries to infer
the original content of the input image.

In the forward propagation, an adversary from the server-side can access the
following. 1) The plain feature map Zn of the CryptoHeader’s output. 2) The
index I of each CryptoBlock. On the other hand, in the backpropagation, an
adversary from the server-side can access: 1) The plain gradients Gf of each
feature map in CryptoHeader. 2) The plain summed gradients Δ of each batch.
Given the above information leakage, we shall discuss the probability for HeHe
to be (α, β)-recoverable under the semi-honest model in the following.

Proposition 1 (The (α, β)-recoverable probability in forward propaga-
tion of HeHe). In forward propagation of HeHe, for an image M with m
pixels, the probability of HeHe to be (α, β)-recoverable is

PrΣ(α, β) =

⎧
⎪⎨

⎪⎩

1 if α≤ mr

m
m−mr∑

i=αm−mr

(
m−mr

i

)
βi (1−β)m−mr−i if α> mr

m

and mr = λnm
∏n

i=1 k−2
i , where n denotes the number of CryptoBlocks, λ

denotes the averaged activate rate of ReLU, and ki is the kernel size of ith

max-pooling layer.
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Proof. The adversary gets plain Fn, to recover the input data X . As described
in Algorithm 1, let f(·) denote the forward propagation of CryptoHeader, then
Fn = f(X ). If the CryptoHeader is invertible and the adversary gets inverse
function f ′(·), it could recover plain input X through X = f ′(Fn). Therefore,
we need to analyze the invertibility of CryptoHeader.

CryptoHeader consists of convolutional, ReLU, and max-pooling layers. First,
we study the invertibility of those layers. Afterward, the invertibility of Crypto-
Header is discussed.

(a) The invertibility of three layers.
Convoluational layer performs linear operations. Let the weights of the convo-
lutional be w, and ni (resp., no) denote the size of input (resp., output) feature
map f i (resp., fo). For each convolutional patch xk, there is fk = w·xk, 1 ≤ k ≤
no. Therefore, using fo to derive f i can be formalized as solving the following
linear system of no equations with respect to ni variables: WX = fo, where W
is an no × ni matrix, X is a column vector with ni entries, and fo is a column
vector with fo entries. The convolution is a sliding window operation and every
patch is different, therefore, the row vectors of W are linearly independent and
the rank of the augmented matrix A is r (A) = min (ni, no). If ni > no, then
r (A) = no < ni, so the system has infinite solutions and convolutional layer is
non-invertible. Otherwise (i.e., ni ≤ no), then r (A) = ni > no, so the system
has a single solution and the convolutional layer is invertible.

ReLU layer executes f(x) = max(0,x) for each value of feature map f . Thus
the negative value is mapped to 0, which is non-invertible; and the positive value
remains unchanged, which is invertible. Let λ denote the averaged activate rate,
where λ=Pr(x>0), so λm values of input can be recovered.1

Max-pooling layer performs: f(x) = max(x) for each pooling patch xk of
input feature map f , thus only the maximum value is reserved. With the help of
the index I, which is built in Algorithm 3, the adversary can map the maximum
value to the original input. Let k denote the pooling size such that the size of
pooling patch is k2, therefore, k−2n elements of input can be recovered.

(b) The invertibility of CryptoHeader.
Summarize the above analysis, the invertibility of CryptoHeader can be divided
into two cases:

case 1) There exists a convolutional layer in CryptoHeader such that ni > no.
Then this convolutional layer is non-invertible, which makes the CryptoHeader
non-invertible. Therefore, in this case, the probability of (α, β)-recoverable
directly follows Lemma 1.

case 2) All convolutional layers in CryptoHeader satisfy ni ≤ no, thus all
convolutional layers are invertible. We first compute the number of recovered
elements mr, to achieve it, we compute the recovery rate of each layer and
multiply them to get the total number of recovered elements.

1 Although λ cannot be estimated accurately in CNNs, it has been empirically studied
and justified to be bounded by 0.25 [10].
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Assume the number of CryptoBlocks in CryptoHeader is n. For the ith Cryp-
toBlock, let ki denote the kernel size of the max-pooling layer, and λ denotes
the averaged activate rate of ReLU, then mr = λnm

∏n
i=1 k−2

i . Therefore, if
α ≤ mr

m = λn
∏n

i=1 k−2
i , the recovery probability is 1, and for α > mr

m , as
the adversary has no information about other elements, applying Lemma 1, the
probability can be obtained.

Proposition 2 (The (α, β)-recoverable probability in backpropagation
of HeHe). In backpropagation, for an image M with m pixels, the probability
of HeHe to be (α, β)-recoverable is equivalent to random guess in Lemma 1.

Proof. From Line 10 of Algorithm 2, for the first convolutional layer, the adver-
sary wants to get the plaintext input image F0. Consider the worst case that
BackConvWeight is invertible, the adversary already has the plaintext gradient
of feature map Gf

1 , so it can use the inverse function of BackConvWeight to
recover input if he can obtain the convolutional kernel’s plaintext gradient of
M . However, it’s infeasible in HeHe.

In our framework, only the summed gradients over a batch of convolutional
kernels, namely Δ, are decrypted and sent to the server, this ensures that the
server cannot access the convolutional kernel’s plaintext gradient of a single
image Gw, thus the adversary cannot recover the input data through the inverse
function of BackConvWeight. Therefore, the adversary can not infer any infor-
mation of the original image during the backpropagation.

In a word, the privacy guarantee of our framework comes from: 1) The invert-
ibility of the neural network. 2) Encrypt key information in the training, such
as CryptoHeader and gradient gi in backpropagation.

Notably, the probability for the HeHe framework to be (α, β)-recoverable is
determined by the parameters of the CryptHeader, regardless of the selection of
the backbone network. The client could adjust the parameters {n, k} according
to the required privacy level to adapt the appropriate CryptoHeader.

5 Experiments

We empirically demonstrate the performance of HeHe on benchmark datasets
and study the results in terms of accuracy, efficiency, and privacy, respectively.

5.1 Experiments Setup

Datasets and Networks. MNIST is a 28×28 pixels gray handwritten digit
dataset [20], containing 60,000/10,000 images to train/test. We use the LeNet-
5 [20] as the backbone network and replace the first n convolutional layers with
CryptoHeader. Due to the pixel redundancy of MNIST, we adopt the same
preprocessing method as [12] to perform 2× subsampling of original images.
The SVHN is a 32×32 RGB digit dataset [27], containing 73,257/26,032 images
to train/test. We adopt the DenseNet-40 [16] as the backbone network while
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Table 1. Model architectures for different datasets

Dataset
CryptoHeader

Network
CryptoBlock 1 α CryptoBlock 2 α CryptoBlock 3 α

MNSIT

⎡
⎢⎢⎢⎢⎣

conv 3 × 3

outch = 6

ReLU

pool 2 × 2

⎤
⎥⎥⎥⎥⎦

1/16

⎡
⎢⎢⎢⎢⎣

conv 3 × 3

outch = 16

ReLU

pool 1 × 1

⎤
⎥⎥⎥⎥⎦

1/4 N/A N/A LeNet-5

SVHN

⎡
⎢⎢⎢⎢⎣

conv 3 × 3

outch = 12

ReLU

pool 2 × 2

⎤
⎥⎥⎥⎥⎦

1/16

⎡
⎢⎢⎢⎢⎣

conv 3 × 3

outch = 18

ReLU

pool 1 × 1

⎤
⎥⎥⎥⎥⎦

1/4

⎡
⎢⎢⎢⎢⎣

conv 3 × 3

outch = 18

ReLU

pool 1 × 1

⎤
⎥⎥⎥⎥⎦

1/4 DenseNet-40

CIFAR-10

⎡
⎢⎢⎢⎢⎣

conv 3 × 3

outch = 12

ReLU

pool 2 × 2

⎤
⎥⎥⎥⎥⎦

1/16

⎡
⎢⎢⎢⎢⎣

conv 3 × 3

outch = 18

ReLU

pool 1 × 1

⎤
⎥⎥⎥⎥⎦

1/4

⎡
⎢⎢⎢⎢⎣

conv 3 × 3

outch = 18

ReLU

pool 1 × 1

⎤
⎥⎥⎥⎥⎦

1/4 DenseNet-100

the first convolutional layer is replaced by CryptoHeader. Also, we preprocess
images using 2× subsampling similar to MNIST. The CIFAR-10 dataset [19]
contains 32×32 RGB images of 10 common objects, containing 50,000/10,000
to train/test. We select the DenseNet-100 [16] as the backbone network. These
datasets are widely used by researchers [14,16,20,39].

CryptoHeader. In our framework, the CryptoHeader is composed of n Cryp-
toBlocks, and the different settings of n will directly affect the training perfor-
mance. Therefore, for the models used in different datasets, we vary the settings
of n to evaluate the performance of different CryptoHeader structures. In partic-
ular, we vary n = {1, 2, 3} except for LeNet-5 in MNIST, which is only applicable
for n = {1, 2}, as LeNet-5 only has two convolutional layers. Table 1 shows the
CryptoHeader and backbone networks that are used in different datasets, as well
as the recovery rate α of each CryptoBlock. We configure all convolutional layers
with kernel size 3 and max-pooling layers with kernel size 2 or 1 (equivalent to
no pooling), the outch denotes the output channel size of convolutional layer.
These configurations are similar to the mainstream CNNs study [14,16].

Furthermore, we could customize the parameters and the number of Crypto-
Blocks according to different training requirements to get better performance.

Implementation Details. We conduct our experiments on Alibaba Cloud ECS
c6.8xlarge instances with Intel Xeon(Cascade Lake) Platinum 8269 @ 2.5 GHz.
The client and server are in the WAN setting and the peak bandwidth is
100 Mbps. We implement HeHe scheme in python based on the Paillier library
python-paillier2 and the popular deep learning framework PyTorch. For a fair
comparison, we train MNIST and SVHN without any data augmentation; we

2 python-paillier, https://github.com/n1analytics/python-paillier.

https://github.com/n1analytics/python-paillier
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Fig. 3. The accuracy and overhead of varying the number of CryptoBlocks.

follow the popular data augmentation setting that is widely used for CIFAR-
10 [14,16]. We choose Adam [18] as the optimizer and use the default learning
rate 0.001. The models for MNIST and SVHN are trained in 10 epochs, and
CIFAR-10 is trained in 20 epochs with a batch size of 256.

5.2 Comparison of Different CryptoBlocks

We evaluate the effect of the numbers of CryptoBlocks employed in HeHe, in all
three perspectives, including accuracy, efficiency, and privacy.

For each dataset, we use the original backbone network in plaintext (i.e.,
LeNet-5 for MNIST, DenseNet-40 for SVHN, and DenseNet-100 for CIFAR-10)
as baseline approaches for training comparison and adopt the same hyperpa-
rameters in our HeHe. Figure 3a shows the prediction accuracy for the trained
models for each dataset by varying the value of n. Obviously, as n increases, the
prediction accuracy of MNIST remains almost the same. However, for SVHN and
CIFAR-10, there exist some gap between the baseline and HeHe. By profoundly
investigating the models and implementations, we find the following reasons for
this phenomenon. 1) To reduce the computational overhead, we set up a smaller
number of kernels for the first convolutional layer than the original model (from
24 to 12); 2) The image size of both SVHN and CIFAR-10 datasets are 32×32
pixels, which are small. When dealing with small images, the baseline DenseNet
model does not use pooling operations to avoid information loss [16]. However,
there are pooling layers in our CryptoHeader, which will introduce the loss of
accuracy. When trained on large-size images, the state-of-the-art CNNs [14,16]
adopt max-pooling layers, so we shall have the same model structure as the base-
lines. Therefore, the loss of accuracy introduced by the above difference, whether
max-pooling is employed or not, will be eliminated in the scenario3.

The computational overhead of HeHe mainly comes from the homomorphic
evaluation of ciphertexts, which is inefficient compared with the computations
3 We do not show the results in large-size datasets due to the limited computing

resources we have currently.
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Table 2. Accuracy comparison

Scheme MNIST SVHN CIFAR-10

Square [9] 98.3% 19.6% 25.2%

Polynomial [7] 98.7% 25.9% 35.0%

GELU-Net [39] 96.9% N/A N/A

HeHe 98.4% 88.5% 82.6%

Plaintext baselines 98.9% 92.3% 85.0%

in plaintext. Figure 3b shows the training time of one batch with batch size 256,
and the training time increases almost linearly with the number of CryptoBlocks
for all the datasets and corresponding models.

According to Sect. 4.4, for the non-invertible elements of input, HeHe does not
disclose any information about them and thus approximate recover is avoided.
Therefore, our framework could satisfy any setting of β. Next, we compute the
minimum value of αmin that different CryptoHeaders can satisfy, as shown in
Table 1. αmin can be computed as: αmin =p−2

sub×
∏n

i=1 αi, where psub is the stride
of subsampling used in input preprocess. In our experiment, we set psub =2 for
MNIST and SVHN; and set psub = 1 for CIFAR-10. αi is the recovery rate of
the ith CryptoBlock. For MNIST, obtain αmin ={1/64, 1/256} for two Crypto-
Header configurations; in SVHN, αmin ={1/64, 1/256, 1/1024} for three Cryp-
toHeader configurations; in CIFAR-10, αmin ={1/16, 1/64, 1/256}. Finally, we
compute the probability of HeHe to be (α, β)-recoverable using Proposition 1, for
a recommend setting (α=0.5, β=1/3) in Appendix A. It can be easily proved
that we can achieve PrΣ (0.5, 1/3) < 10−15 for all models under the aforemen-
tioned settings. It is small enough to satisfy the proposed privacy criterion in
the end of Sect. 3.2.

Generally, increasing the number of CryptoBlocks will enhance privacy, but
will bring more computational overhead. In the following, we fix the number of
CryptoBlocks to 2 to compare accuracy and overhead against baseline methods.

5.3 Predication Accuracy

In this part, we test the prediction accuracy using the trained model of HeHe
and the baseline plaintext approach. Besides, for this group of tests, we also
compare HeHe with a group of privacy-preserving inference schemes of CNNs.

For the inference over encrypted images, many schemes use the FHE [6,9,14,
15]. However, due to the limitation of FHE, some structures in CNNs need to be
approximated. On the one hand, the max-pooling widely adopted in state-of-the-
art CNNs is robust to extract salient features [3]. As the homomorphic encryp-
tion doesn’t support numerical comparison between ciphertexts, the network
for inference over encrypted images cannot use the max-pooling layer. Existing
schemes adopt average-pooling instead [9,39]. Furthermore, since the homomor-
phic encryption is unable to support division directly, the sum function

∑
xi is
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Table 3. Training time of one batch

Scheme MNIST SVHN CIFAR-10

HeHe Forward 16.7 s 87.5 s 388.2 s

Back 6.6 s 32.5 s 157.9 s

Total 23.3 s 120 s 546.1 s

GELU-Net (forward) [39] 85.5 s N/A N/A

Plaintext baselines 0.1 s 0.2 s 4.3 s

Fig. 4. The feature maps generated by CryptoHeaders in different models.

used to approximate the average pooling [9]. On the other hand, the activation
function is an important structure in CNNs that significantly affects the non-
linear mapping and the convergence of the training. Unfortunately, homomorphic
encryption cannot address this operation either, so CryptoNets [9] adopts the
square function instead, while some other schemes use higher-order polynomial
functions [7,15]. Although polynomial can bring better approximation, repeated
multiplications will cause decryption failure and huge time overhead, so it’s far
from practical. As a comparison, we additionally test the prediction accuracy
for both square and polynomial approximations for the activation function in
this group of experiments. In particular, we adopt the square approximation
in CryptoNets [9] and the second-order polynomial y = 0.125x2 + 0.5x + 0.25
approximation that are recently proposed in [7], respectively.

Different from inference, training a CNN has to update the model parameters
iteratively, so the accuracy loss in the above approximations will be enlarged
across iterations. For deep network and large image classification tasks, the
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accuracy loss is more significant. As shown in Table 2, for the MNIST dataset,
the approximation does not cause significant accuracy loss because a shallow
network, LeNet-5, is adopted as the backbone. However, for both SVHN and
CIFAR-10, as deep networks are adopted (i.e., 40 and 100 convolutional layers
respectively), the training will not converge due to the approximation.

To overcome this problem, one related effort, namely GELU-Net [39], selects
to compute the activation function on the client, such that there is no accuracy
loss as approximation is never used. However, since GELU-Net needs to repeat-
edly add and remove noise during the training to achieve privacy protection,
it will reduce the training accuracy. Furthermore, because GELU-Net does not
provide any mechanism for implementing the BatchNorm layer, it cannot be
applied to deep networks.

Our HeHe framework does not encrypt BatchNorm layers so that it can be
applied to the training of deep CNNs. Compared with the existing schemes, we
achieve the best accuracy for deep CNNs.

5.4 Training Time

In this part, we show the training time compared with baselines in the tested
datasets. For reference, we also showcase the cost of the state-of-the-art privacy-
preserving CNN training scheme, GELU-Net [39]4. Table 3 lists the training time
of one batch, including the forward and backward propagation. Compared with
GELU-Net, we achieve 5× speed-up for the forward propagation.

Although HeHe has introduced significant costs compared with plaintext
baselines, to the best of our knowledge, it is the most practical solution for the
CNN training over encrypted images that preserves the accuracy with acceptable
training cost. HeHe is especially appealing in many scenarios when the training
images are sensitive. Besides, as an early effort in the privacy-preserving CNN
training, we suggest an effective way that future works can follow and make
improvements. Notably, due to the limitation of computing power, HeHe on
our experimental platform is time-consuming. In fact, for practical applications,
the model training can rely on much powerful computing resources in a cloud,
and the network except CryptoHeader can also be significantly accelerated by a
powerful GPU cluster, so the training time of HeHe can be greatly reduced.

5.5 Visual Effect Study

In Sect. 4.4, we have given the probability of an image processing system to
be (α, β)-recoverable, To justify our proposed privacy model as well as HeHe
empirically, we perform a group of visual study over the images M ′ that can be
observed by an honest-but-curious adversary from the server-side.

4 As [39] does not provide enough details for reproduction, we can only list the cost
reported in their paper for reference. Besides, they only reported the cost of inference,
which is equivalent to the forward propagation.
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Fig. 5. Visual effects of two potential attacks. (a) The gradients of images in different
models, (b) recovered images from the CryptoHeader’s output.

Firstly, we visually examine the feature maps generated from CryptoHeader
by varying the number of CryptoBlocks as n = {1, 2, 3} in different datasets.
The results of the plaintext feature maps that can be observed by the server are
shown in Fig. 4. After the computation of several CryptoBlocks, the information
related to image recognition has been transformed from visual features to high-
level abstracts, so these feature maps are visually indistinguishable.

Secondly, some works propose to visualize the feature maps based on gra-
dients [37,38], so we additionally visually present the gradients. As shown in
Fig. 5a, we extract the gradients in different stages during training, including the
beginning, the middle, and the end, respectively. For the MNIST dataset, the
training network is relatively simple. Thus the gradient propagates to the input
image, which can reflect a tiny amount of contour information but is enough to
blur the specific digits. The other two datasets can be completely confused.

Notably, although there exist some methods [32,33] that are claimed to be
able to recover the original images more clearly, they have to modify the prop-
agation of activation layers in the network. However, as the activation layers
of CryptoHeader in our framework are completely performed by the client, the
server cannot maliciously tamper with the activation layers, HeHe is robust
against these approaches.

Besides, recently there exist some efforts that aim to recover the original
image based on feature maps [8,23]. Following these efforts, we adopt their
method to recover the images through the plaintext feature maps observed by
the server within HeHe. Figure 5b shows the original images and the recovered
ones side-by-side. In line with [23], the recovering model works as follows, we fix
the training model and inject random noise into the input images and optimize
the input under the supervision of CryptoHeader’s output of the original image.
For the MNSIT, as it is the gray image and the context (i.e., digit) is extremely
simple, this method can get a very blurred contour. For the other two datasets,
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it is difficult to optimize the noise according to the original image. Notably, ordi-
nary image classification tasks can never be so simple as MNIST. Therefore, we
advocate that HeHe is robust enough in ordinary image classification tasks even
in face of the latest learning-aware image recovery models.

6 Conclusion

We elaborately drew the HE into the CNNs’ training and proposed HeHe, a
new encrypted training framework over the semi-honest CSP. We construct
the CryptHeader, which consisted of n CryptBlocks, to realize the training
over encrypted images with practical efficiency while preserving the content of
images. Further, we designed interactive forward propagation and backpropaga-
tion to avoid using the expensive FHE. All these efforts achieve a better trade-off
between utility and privacy. We proposed (α, β)-recoverable to evaluate how the
image content is preserved through an processing system and theoretically prove
that HeHe is robust against it. Although HeHe has introduced high costs com-
pared with plaintext baselines, to the best of our knowledge, it is the most
practical solution for deep CNNs training over encrypted images that preserves
the accuracy with acceptable training cost.

Acknowledgements. This work is supported by National Natural Science Founda-
tion of China (No. 61972309 and No. 62272369) and the Key Technology Innovation
Project of Hangzhou (2022AIZD0132).

A Adaptability of (α, β)-Recoverable

The (α, β)-recoverable attempts to bridge the pixel recoverable and image pri-
vacy. To feel the recovery rate of different leakage intuitively, we generate differ-
ent noisy images and compute the recovery rate i.e., α under different β settings
(we adapt CAM02UCS [22] as color space), some results are shown in Fig. 6.
After compare the different β, we empirically choose β = 1/3 as a suitable
threshold, because it makes the change of α perceptually uniform.

Note that both α and β are preset by users based on their privacy require-
ment. After many empirical estimates, we give recommend values α = 0.5, β =
1/3, and we adapt them in HeHe experiments.

One drawback of (α, β)-recoverable is it could not measure the similarity for
some posteriori transformations e.g., rotation and translation. But these only
happen when the adversary gets the outsourced images used by users. Fortu-
nately, it cannot happen in HeHe, because the images are encrypted by users.
Thus, under the application scenario of HeHe, (α, β)-recoverable can measure
the recovery rate of the image soundly.
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Fig. 6. The recovery rate of different leakages (β=1/3).
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Abstract. In CRYPTO’2019, Gohr firstly introduced deep learning
into differential cryptanalysis. He successfully found 5/6/7/8-round neu-
ral differential distinguishers of Speck32/64 and mounted key recovery
attacks against 11/12-round Speck32/64 with a variant of Bayesian opti-
mization. In this paper, we make some improvements to Gohr’s frame-
work and apply it to Simeck32/64. We also present some parameter tun-
ing experience for running deep learning assisted key recovery attacks.
As proof, we obtain 8/9/10-round neural differential distinguishers for
Simeck32/64 and successfully recover the penultimate round and last
round subkeys for 13/14/15-round Simeck32/64 with low data complex-
ity and time complexity.

Keywords: Deep learning · Neural distinguisher · Key recovery
attack · Block cipher · Simeck

1 Introduction

Deep learning [1], as an important branch of machine learning, is a rapidly
evolving pattern analysis method. It has been widely used in various fields,
such as machine translation [2,3] and autonomous driving [4]. In the field of
cryptography, Rivest [5] first pointed out in ASIACRYPT’1991 various connec-
tions between cryptography and machine learning and suggested some possible
research directions for the cryptanalytic applications of machine learning. Since
then, some scholars have begun to study the application of machine learning
methods in cryptography with little success, and it was not until deep learn-
ing tools were proposed that the field began to develop rapidly and attract the
attention of the community. At present, deep learning has been applied to cryp-
tographic implementations [6–8], side-channel attacks [9–11] and cryptanalysis.
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Differential cryptanalysis [12] is one of the mainstream analysis techniques
for modern block ciphers. It was proposed by Biham and Shamir to break the
Data Encryption Standard (DES) block cipher, and today it has been developed
into many variants [13–16] and applied to various block ciphers. The first step
in differential cryptanalysis is to construct differential distinguishers of the cryp-
tographic primitives. Then an attacker can carry out the key recovery attacks
based on the differential distinguishers. To reduce the manual workload, some
automatic tools, such as Mixed Integer Linear Programming (MILP) [17,18],
Constraint Programming (CP) [19,20] and Boolean Satisfiability Problem or
Satisfiability Modulo Theories (SAT/SMT) [21,22] are used to improve differ-
ential cryptanalysis. In addition, machine learning, especially deep learning, is
also used as an auxiliary tool to participate in differential cryptanalysis.

Gohr’s work [23] in CRYPTO’2019 is groundbreaking in combining deep
learning and differential cryptanalysis. He firstly obtained some powerful cryp-
tographic distinguishers by training deep residual neural networks and then
mounted a key recovery attack by utilizing the obtained neural distinguishers
with a variant of Bayesian optimization. As a result, Gohr found 5/6/7/8-round
neural differential distinguishers of Speck32/64 and performed successful key
recovery attacks against 11/12-round Speck32/64.

Gohr’s work has attracted a lot of attention. Some related work [24,25] try
to study the interpretability of Gohr’s framework, and some [26–35] attempt
to make some improvements to Gohr’s framework and better apply it to block
ciphers such as Speck, Simon and Simeck. Most improvements focus on the part
of neural distinguishers. They investigated the data format of training the neu-
ral distinguishers, the network structure of building the neural distinguisher,
and even the selection of the fixed plaintext difference, with the aim of obtain-
ing neural distinguishers with higher accuracy or covering more rounds. Only a
few explored key recovery attacks on top of neural distinguishers. Fu et al. [26]
first promoted the accuracies of neural distinguishers by proposing the poly-
tope differential neural distinguishers with the concept of (d + 1)−polytope
(d−difference). Then they compared three different ways of performing key
recovery attacks using different types of neural distinguishers and concluded
that when using a mix of a single differential neural distinguisher and a poly-
tope differential neural distinguisher for the key recovery attack, the key recov-
ery success rate and data/time complexity were well balanced. As a result, Fu
et al. implemented 13-round actual key recovery attacks based on deep learning
against Simeck32/64 with a low data and time complexity. Bao et al. [31] intro-
duced the generalized neutral bits techniques and the framework of conditional
differential neural cryptanalysis. They sought to improve the success rate of deep
learning assisted key recovery attacks, considering not only the accuracies and
the number of rounds of neural distinguishers, but also the classical differential
paths spliced in front of neural distinguishers. They also explored deep learning
assisted key recovery attacks from the perspective of data complexity. As proof,
they carried out successful key recovery attacks on 13-round Speck32/64 and
16-round Simon32/64. Even so, this field is still worthy of further exploration.
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Fu et al. and Bao et al. both selected neural distinguishers with high accura-
cies, without considering the actual features of deep learning-based key recovery
attacks. Can we further improve deep learning assisted key recovery attacks if we
choose the neural distinguishers considering the intrinsic nature of deep learning
assisted key recovery attacks instead of only considering the accuracies?

In this paper, we choose appropriate neural distinguishers from the view-
point of key recovery attacks and discuss parameter tuning in deep learning
assisted key recovery attacks. To prove the effectiveness of our work, we take
Simeck32/64 as an example. We firstly train 8/9/10-round neural distinguishers
of Simeck32/64, where the fixed plaintext difference of training/validation/test
datasets are chosen from literature [36] or found by the MILP model. Then we
plot the wrong key response profiles of all the neural distinguishers we got and
choose the distinguishers with the same input plaintext difference and with the
wrong key response profiles of obvious statistical patterns, as well as those splic-
ing after one relatively long classical differential path with high probability and
sufficient neutral bits. In the stage of key recovery attacks, we summarize some
experience with parameter tuning that can get successful results as quickly as
possible. As a result, we mount 13/14/15-round deep learning assisted key recov-
ery attacks against Simeck32/64 successfully. A brief summary of our results and
previous results is presented in Table 1. As shown in Table 1, our deep learning
assisted key recovery attack on Simeck32/64 takes two more rounds than previ-
ous work that also leverages deep learning. Whether the traditional method or
the deep learning method recovers the same number of key bits under the same
number of attack rounds, our method has obvious advantages in time complexity
and data complexity than the previous methods.

The organization of this paper is as follows. Section 2 briefly describes the
lightweight block cipher Simeck and introduces Gohr’s deep learning assisted key
recovery attack framework. In Sect. 3, we introduce our improved deep learn-
ing assisted key recovery attack framework in details. In Sect. 4, we apply the
improved framework to Simeck32/64 and mount 13/14/15-round deep learning
assisted key recovery attacks for Simeck32/64 successfully. Finally, we conclude
this paper in Sect. 5.

2 Preliminaries

2.1 Description of Simeck

Simeck [40] is a family of iterated lightweight block ciphers proposed by Yang,
Zhu, Suder, Aagaard, and Gong in CHES’2015. The design of Simeck combines
the Simon and Speck block ciphers proposed by NSA, which leads to a more
compact and efficient implementation in hardware.

The round function of Simeck is composed of three operations: bit-wise XOR
(⊕), bit-wise AND (&), and left circular shift (≪). Let (Li−1, Ri−1) and Ki be
the input state and subkey of the i-th round of Simeck, respectively. Then the
output state of the i-th round is (Li, Ri), which can be computed as follows:
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Table 1. Summary of key recovery attacks on Simeck32/64

Rounds Data
complexity

Time
complexity

Success
rate

Number of recover
key bits

Reference

13 222 256 86.7% 64 [37,38] �

230 236 99.7% 64 [39] �

217.7 232.8 98% 64 [26] �

216 227.95 88% 64 This paper �

14 224 256 86.7% 64 [37,38] �

232 238 84.1% 64 [39] �

223 232.99 88% 64 This paper �

15 232 256 86.7% 64 [37,38] �

224 233.90 88% 64 This paper �

Data complexity = 2k × nc × 2. Where k is the number of neutral bits, nc is the
number of structures, and 2 corresponds to two ciphertexts in a pair of ciphertexts.
Time complexity is calculated based on that one-second equals to 223.304 full-round
encryptions of Simeck32/64 on the device we use for the key recovery attacks.
�: The success rate is calculated according to [38]. The time/data complexity under
the fixed success rate is calculated with the method in [37].
�: The time complexity given in [39] is that of recovering one bit key, which is
scaled here.
The token � use deep learning for key recovery attacks, while the tokens �, � use
traditional methods.

Li = F (Li−1) ⊕ Ri−1 ⊕ Ki,

Ri = Li−1,
(1)

where
F (x) = (x&(x ≪ 5)) ⊕ (x ≪ 1). (2)

Generally, Simeck2n/mn denotes Simeck with 2n bits block size and mn bits
key size, where n is the word size, and n is required to be 16, 24, or 32. In this
paper, we mainly focus on Simeck32/64. For Simeck32/64, let (L0, R0) be the
plaintext, then the ciphertext can be denoted as (L32, R32). The subkeys for each
round are generated from a master key by a key schedule. For the concrete key
schedule algorithm, the reader can refer to [40].

2.2 Introduction to Deep Learning Assisted Key Recovery Attack
Framework

In [23], Gohr first presented neural distinguishers trained by deep residual neural
networks (ResNet) [41], then developed a highly selective key search policy on
top of neural distinguishers based on a variant of Bayesian optimization. In this
paper, we call Gohr’s framework the deep learning assisted key recovery attack.
The overall framework of deep learning assisted key recovery attack is shown in
Fig. 1 and will be introduced in details in this subsection.
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Fig. 1. The framework of deep learning assisted key recovery attack

Neural Distinguisher Based on Differential Cryptanalysis. Obtaining
a valid cryptographic distinguisher is the first and crucial step in performing
a key recovery attack. In general, the purpose of a cryptographic distinguisher
is to distinguish between CIPHER and RANDOM. Due to the difference in
the statistics used for distinguishing, there are differential distinguishers, lin-
ear distinguishers and integral distinguishers. Gohr’s neural distinguishers are
essentially “all-in-one” differential distinguishers [42]. The neural networks can
be trained as neural distinguishers to distinguish between the ciphertext pairs
encrypted by plaintext pairs with a fixed difference and the ciphertext pairs
encrypted by random plaintext pairs.

In this part, we will elaborate on how to obtain the r-round neural distin-
guisher against a specific cipher. The steps are as follows:

1. Build the neural network to be trained.
2. Generate the corresponding datasets against the r-round target cipher,

including the training dataset, validation dataset, and test dataset.
3. Train the neural network with the corresponding datasets to become the

neural distinguisher.

Firstly, we discuss the type of neural network that can be trained as a neural
distinguisher. In Gohr’s work, he chose ResNet. The core component of ResNet
is the residual block, also known as skip connection. ResNet can alleviate the
gradient disappearance problem in deep neural network training, and deeper
networks can be trained. Thus, it is a good choice to train the neural network
with residual blocks such as ResNet as a neural distinguisher. As for the specific
structure of ResNet, it should be designed according to the objective cipher to
be distinguished.

For training the neural network we had built, we need to generate the training
dataset, validation dataset and test dataset. These datasets are generated in the
same way but differ in quantity. The generation of datasets is based on the fixed
plaintext difference and describe as follows:

1. Generate n uniformly distributed plaintext pairs (Pi, P
′
i ) and n uniformly

distributed keys Ki according to the block size and key size of the objective
cipher. Then generate n uniformly distributed binary-valued real/random
labels Yi. All the above are generated by using the Linux random number
generator.
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2. If Yi = 1, replace (Pi, P
′
i ) with (Pi, Pi⊕Δ), where Δ denotes the plaintext dif-

ference chosen in advance. Moreover, (Pi, Pi ⊕Δ) are called the real plaintext
pairs, while the others are called the random plaintext pairs.

3. Encrypt the real/random plaintext pairs by the r-round objective cipher to
obtain the corresponding ciphertext pairs. Furthermore, the ciphertext pairs
with the real labels Yi = 1 are called the real samples, while the others are
called the random samples.

Obviously, the goal of neural network training is to distinguish between
CIPHER and RANDOM, which can be regarded as a binary classification task.
Therefore, we take accuracy as the performance metric. Theoretically, as long
as the accuracy of the trained neural network is steadily greater than 0.5, we
think it is a valid neural distinguisher. Furthermore, the higher the accuracy, the
stronger the discrimination ability of the neural distinguisher.

Key Recovery Attack on Top of Neural Distinguishers. To demonstrate
the utility of the neural distinguishers as research tools, Gohr constructed a
partial-key recovery attack based on Bayesian Search on top of the (r−1)-round
and r-round neural distinguishers. The overall framework is shown in Fig. 1.

Firstly, the r-round neural distinguisher is extended to a (s + r)-round dis-
tinguisher by prepending a s-round differential transition Δ′ −→ Δ with a prob-
ability of pdt, where Δ is the fixed plaintext difference used in the (r − 1)-round
and r-round neural distinguishers.

Then the (s+ r)-round distinguisher is extended by one round by encrypting
the initial plaintext pairs to the desired difference Δ′. This step is at no additional
cost for ciphers where the subkey addition occurs after the non-linear operation
in the round function.

The last and most important step is the partial-key recovery attack, that is
recovering k−1 and k−2 in the Fig. 1. To rank candidate subkeys, the following
equation is used to compute the score of the candidate subkey k by combining
scores Zi,k returned from individual ciphertext pairs:

vk :=
n∑

i=1

log2(Zi,k/(1 − Zi,k)). (3)

where n is the number of ciphertext pairs used for grading the subkey once,
and Zi,k denotes the response value of the neural distinguisher for the partially
decrypted ciphertext pairs (Ci,k, C

′
i,k). (Ci,k, C

′
i,k) is decrypted by one round

under the subkey k from the ciphertext pairs (Ci, C
′
i).

In one trial decryption, Eq. 3 is firstly computed for subkey candidates k−1

using the r-round neural distinguisher. If the score for some k−1 exceeds the
threshold c1, decrypt the ciphertext pairs (Ci,k−1 , C

′
i,k−1

) by one more round
under the subkey k−2 to the ciphertext pairs (Ci,k−2 , C

′
i,k−2

), and grade k−2 by
Eq. 3 using the (r − 1)-round neural distinguisher. If the score for k−2 exceeds
the threshold c2, return the current subkeys guess (k−2, k−1).
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During the process of a deep learning assisted key recovery attack, there are
some key points to pay attention to, which are elaborated as follows.

– The neutral bits [43] are introduced to enhance the signal of the extended
(s + r)−round distinguisher. Suppose that there are k neutral bits in the s-
round differential transition Δ′ −→ Δ, and one plaintext pair conforms the
differential Δ′ −→ Δ, then by flipping the neutral bits of the plaintext pair,
a plaintext structure consisting of 2k conforming plaintext pairs is generated.
By doing this, the samples fed to the neural distinguisher are more likely to
be of the desired distribution.

– A standard exploitation-exploration technique, namely Upper Confidence
Bounds, is used to focus the key search on the most promising ciphertext
structures. During the process of key recovery, we generate nc plaintext pairs
at random that satisfy the difference after one round of encryption is Δ′ and
construct the corresponding (1 + s + r + 1)-round ciphertext structure for
each plaintext pair. Considering how the ciphertext structures are generated,
it is inefficient to spend the same amount of computation on every ciphertext
structure. In general, we execute m(m > nc) iterations to guess the sub-
keys. In each iteration, we pick one ciphertext structure and try to search
the subkeys. After one trial decryption is made on each ciphertext structure,
calculate a priority score for each ciphertext structure by Eq. 4 and determine
the order of the ciphertext structures to be tested according to the scores. In
Eq. 4, wi

max is denoted as the highest distinguisher score of the i-th ciphertext
structure obtained so far. ni is the number of previous iterations in which the
i-th ciphertext structure has been selected and j is the number of the current
iteration. α is set to

√
nc, where nc is the number of ciphertext structure

available. Each time the test of the ciphertext structure is finished, the scores
of all the ciphertext structures are updated.

– Bayesian optimization is used to construct an effective key search algorithm,
which is presented in Algorithm 1. An important observation is that the wrong
key randomization hypothesis does not always hold for one-round decryp-
tion. More specifically, the expected response of the neural distinguisher
upon wrong-key decryption will depend on the bitwise difference between the
trial subkey and the real subkey. By precomputing the wrong-key response
profile of the neural distinguisher, which is illustrated in Algorithm2, one
can attempt to decrypt on a small set of subkey candidates after another
rather than on all possible subkey candidates. This can significantly reduce
the search space of subkey candidates, thus saving a lot of computational
budgets. In addition, in each iteration, the Bayesian Key Search Algorithm
is first applied to recover k−1, and then used to recover k−2.

si := wi
max + α

√
log2(j)/ni. (4)

For more details on deep learning assisted key recovery attacks, please refer
to [23,44].
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Algorithm 1: Bayesian Key Search Algorithm [23,31]
Input:

C = {C0, C1, · · · , Cm−1}: a ciphertext structure;
ND: a neural distinguisher;
μ, σ: the wrong key response profile of ND;
n: the number of subkey candidates to be generated within each iteration;
l: the number of iterations.

Output:
L: the list of tuples of recommended subkeys and their scores.

1 S := {k0, k1, · · · , kn−1} ← choose n values at random without replacement from
the set of all subkey candidates.

2 L ← {}
3 for t = 1 to l do
4 for ∀ki ∈ S do
5 for j = 0 to m − 1 do
6 C′

j,ki
= F −1

ki
(Cj)

7 vj,ki = ND(C′
j,ki

)
8 sj,ki = log2(vj,ki/(1 − vj,ki))

9 end

10 ski =
∑m−1

j=0 sj,ki ; /* the combined score of ki */

11 L ← L||(ki, ski)

12 mki =
∑m−1

j=0 vj,ki/m

13 end
14 for k ∈ {0, 1, · · · , 216 − 1} do

15 λk =
∑n−1

i=0 (mki − μki⊕k)2/σ2
ki⊕k

16 end
17 S ← argsortk(λ)[0 : n − 1] ; /* Pick n subkeys with the n smallest

score to form the new set of candidate subkeys S */

18 end
19 return L

3 Our Deep Learning Assisted Key Recovery Attack
Framework

In the previous section, we introduced the general framework of deep learning
assisted key recovery attacks, which usually can be seen as a two-step process.
The first step is to train long-round neural distinguishers with high accuracies,
where accuracy is the performance metric of the neural distinguisher. The second
step is to perform a partial key recovery attack using Bayesian optimization after
prepending a classical differential transition in front of the neural distinguisher.

In traditional differential cryptanalysis, the first step is to search for the
differential distinguisher with high probability, where probability is the perfor-
mance metric of traditional differential distinguisher. A high-probability differ-
ential distinguisher is also an advantageous prerequisite when recovering partial
keys in the second step. Inspired by this, the researchers of neural differential
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Algorithm 2: Wrong-key Response Profile Precompution
Input:

ND: a r-round neural distinguisher;
n: the number of real subkeys k used for averaging.

Output:
μδ: the mean of the response of ND for the trial subkey k ⊕ δ;
σδ: the standard deviation of the response of ND for the trial subkey k ⊕ δ.

1 for δ ∈ {0, 1, · · · , 216 − 1} do
2 for i = 1 to n do
3 C′

ki⊕δ = F −1
ki⊕δ(Ci) ; /* Ci is a (r + 1)-round ciphertext pair,

F −1 is the decryption round function of the target cipher,

and ki is the last-round real subkey of Ci */

4 Ri,δ = ND(C′
ki⊕δ)

5 end
6 μδ =

∑n
i=1 Ri,δ/n

7 σδ =
√∑n

i=1(Ri,δ − μδ)2/
√

n

8 end
9 return μδ,σδ

distinguisher also naturally take the acquisition of high-accuracy neural distin-
guisher as the research goal, and believe that this is beneficial to the subsequent
key recovery attacks based on Bayesian optimization. However, deep learning
assisted key recovery attacks based on Bayesian optimization differ from tradi-
tional key recovery attacks. In the traditional key recovery attack, probability
is not only the performance metric of the differential distinguisher, but also
plays a key role in the key recovery attack, that is, it affects the success rate
and the data complexity of the key recovery attack. However, in deep learning
assisted key recovery attacks, accuracy is the performance metric for judging
neural distinguisher. While in the Bayesian key search algorithm, it is the wrong
key response profile of the neural distinguisher that plays an important role.
The classical differential transition before the neural distinguisher also affects
the data complexity of the deep learning assisted key recovery attack.

Based on the above discussion, in this paper, we shift the focus from the
neural distinguisher with high accuracy to the neural distinguisher suitable for
Bayesian key search, that is, neural distinguisher with the following properties:
(1) The wrong key response profile of the neural distinguisher is as regular as
possible; (2) The probability of the classical differential transition is high enough
and the number of neutral bits searched for the classical differential transition is
more enough. The complete deep learning assisted key recovery attack procedure
including our improvement is summarized as follows.

1. Train the (r − 1)/r-round valid neural distinguishers with the fixed input
difference Δ1,Δ2, · · · ,Δp for the target cipher, respectively.

2. Precompute the wrong key response profile for each of the (r − 1)/r-round
neural distinguishers.
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3. Pick the neural distinguishers with regular wrong key response profiles and
denote the input difference as Δ1,Δ2, · · · ,Δs, respectively.

4. Search for the s-round classical differential transition Δ′ −→ Δi(i = 1, · · · , q)
with high probability using the MILP model for each fixed input difference
we denoted in the previous step.

5. Search for neutral bits for each Δ′ −→ Δi(i = 1, · · · , q).
6. Pick the neural distinguishers if the prepended classical differential transition

has high enough probability and more enough neutral bits.
7. Perform the (1 + s + r + 1)-round deep learning assisted key recovery attack

with careful parameter tuning.

3.1 The Choice of Input Difference of Neural Distinguishers

During training a neural distinguisher, the plaintext difference corresponding to
the real sample is required to be chosen in advance, which is called the input
difference of the neural distinguisher for convenience. A large number of exper-
iments have proved that the input difference of the neural distinguisher affects
the number of rounds and accuracy of the neural distinguisher. In this part, we
present two methods to select the input difference of the neural distinguisher.

Method 1: Select the input difference of the classical differential path from
the existing literature as the input difference of the neural distinguisher. The
choice of input difference of the neural distinguisher determines the distribution
of the real samples. The goal is to make the distribution of real and random
samples as different as possible. This goal is consistent with the goal of traditional
differential distinguisher. Therefore, it is reasonable and efficient to choose the
input difference of the classical differential path as the input difference of the
neural distinguisher.

Method 2: Firstly, the input differences of the classical differential transition
with high probabilities were searched out with the MILP model, and then the
neural distinguishers with these input differences were trained with short epochs,
and finally the input differences of the neural distinguishers with higher accuracy
were selected to further train long epochs. This method is essentially an exten-
sion of previous method. At the same time, considering that the deep learning
experiment is time-consuming, this method performs a preliminary screening of
a large number of input differences with fewer epochs before moving to formal
training the neural distinguisher, saving a significant amount of time.

The above two methods are both practical and, to some extent, ensure the
effectiveness of the neural distinguishers obtained while avoiding a large number
of invalid attempts.

3.2 The Experience of Tuning Parameters in Deep Learning
Assisted Key Recovery Attack

In the deep learning assisted key recovery attack, the choice of parameters plays
a decisive role in the success rate and complexity of the attack. In this part, we
list some of our experience in parameter tuning for reference by other peers.
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– Number of Structures: The number of ciphertext structures to be gen-
erated. The higher the value is set, the more plaintext pairs are generated
randomly, the more likely it is to find conforming pairs and then generate
ciphertext structures composed of conforming pairs, and the more likely it
is to successfully recover the subkeys. While the data complexity will be
increased. In order to trade off data complexity and success rate of the attack,
if the probability of classical differential transition is pdt, the number of struc-
tures is best set to a value greater than 1/pdt, like 2/pdt.

– Number of Iterations: The number of iterations of Bayesian optimization.
The larger the value is set, the more likely it is to select the more optimal
ciphertext structure for key recovery. Meanwhile, it is possible to run all the
iterations because the guess key is not returned in advance, increasing the
running time. The number of iterations should be set considering both the
success rate and time complexity of the attack. It is recommended to set it
to twice the number of structures.

– c1/c2: The thresholds for guessing the last and penultimate rounds subkeys.
The smaller the value of c1 is set, the more combinations of (k−2, k−1) will
verified in the next step, and vice versa. The smaller the value of c2 is set, the
larger the bitwise difference between the guess subkeys and the real ones. If
c2 is set too large, it is possible to fail to guess the subkeys due to too strict
requirements. The choice of c1/c2 affects the success rate and time complexity
of the attack. We have not found a clear direction of adjustment for c1/c2. In
practice, we adjust them based on the specific results of the experiment.

– Neutral Bits: The neutral bits used in the deep learning assisted key recov-
ery attack. Obviously, the more neutral bits used in the attack, the more data
complexity and the higher success rate of the attack. Therefore, we can reduce
the data complexity of the attack by using as few neutral bits as possible while
ensuring the success rate of the key recovery attack.

4 Applications to Simeck32/64

In this section, we present our experimental results on Simeck32/64 to demon-
strate the effectiveness of our work1. Our best attack is the 15-round deep learn-
ing assisted key recovery attack against Simeck32/64, which is expected to suc-
ceed with a data complexity of 224 and a time complexity of 233.90, and its success
rate is roughly 88%. Our attacks have a lower data/time complexity compared
with previous work. The comparison can be seen in Table 1.

4.1 Neural Distinguishers of Simeck32/64

To carry out deep learning assisted key recovery attacks against Simeck32/64, the
first step is to obtain valid neural distinguishers of round-reduced Simeck32/64.
1 The experiments of training neural distinguishers reported in this paper are per-

formed on a workstation with an NVIDIA GeForce RTX 2080 Ti GPU, while the
experiments of key recovery attacks reported in this paper are executed on a work-
station with an NVIDIA Tesla V100 GPU.
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In this subsection, we will describe the details on how to train the neural distin-
guishers for Simeck32/64 and precompute the corresponding wrong key response
profiles for these neural distinguishers.

As shown in Subsect. 2.2, the steps of training a neural distinguisher can be
divided into three steps. We explain the specific process step by step as follows.

The first step is to build the network to be trained. Because the block size
and key size of Simeck32/64 and Speck32/64 are the same, we adopt the same
neural network structure as that of Gohr, which has been shown to be a good
choice by Gohr.

The second step is to generate the training/validation/test dataset to train
the neural distinguisher. Firstly, for training a neural distinguisher, we generate
a training dataset of size 107 and a validation/test dataset of size 106, that is,
n = 107 for the training dataset and n = 106 for the validation/test dataset. The
number of real and random samples in both datasets are balanced. Secondly,
for the real samples, we use two methods described in Subsect. 3.1 to choose
the plaintext difference Δ, also called the input difference of the neural distin-
guisher. Using the first method, we try Δ = (0x8000, 0x4011), (0x0001, 0x8022),
(0x0008, 0x0114), (0x0010, 0x0228), which are input difference of classical dif-
ferential distinguisher chosen from [36]. Using the second method, we try
Δ = (0x8000, 0x0001), (0x0001, 0x0003), (0x0002, 0x0046), (0x0040, 0x08c0).
Thirdly, for training an r-round neural distinguisher, the real/random samples
are generated by encrypting an r-round Simeck32/64. Here, we try r = 8, 9, 10.

The third step is to train the neural network to become the neural distin-
guisher. Each training covers 50 epochs; and for each epoch i, the learning rate
li is set to li := α+ (n−1)−i mod n

n−1 × (β −α), with α = 10−5, β = 2×10−3, where
n is the number of training epochs (here n = 50). In practical, to ensure the
accuracy of neural distinguisher is greater than 0.5 strictly, we claim that the
neural distinguisher with an accuracy higher than 0.51 is a valid distinguisher.

The results on the neural distinguishers of Simeck32/64 can be found in
Table 2. Furthermore, the wrong key response profiles of these neural distin-
guishers can be precomputed with the Algorithm 2 and the results can be found
in Fig. 2 and Fig. 3. In each subplot, the abscissa represents the bitwise difference
in decimal between the trial subkey and the real subkey and the ordinate repre-
sents the mean of the response of the r-round neural distinguisher for the trial
subkey. In the title of each subplot, the first term denotes the number of rounds
of the neural distinguisher, and the second term denotes the input difference of
the neural distinguisher. As can be seen from Table 2, if the input differences of
the neural distinguishers are different, the accuracies of the neural distinguishers
are also different. This is because the distributions of real samples corresponding
to different input differences are actually different. The abilities to distinguish
between real and random samples are naturally different. Combining Table 2
with Fig. 2 and Fig. 3, it is clear that a higher-accuracy neural distinguisher
does not necessarily have a more regular wrong key response profile. Thus the
accuracy and the wrong key response profile are actually two different metrics
for the neural distinguisher.
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Table 2. Neural distinguishers of Simeck32/64

Input difference (Δ) Rounds (s) Test accuracy

(0x8000,0x4011) 8 0.6503

9 0.5519

10 0.5213

(0x0001,0x8022) 8 0.6310

9 0.5534

10 0.5201

(0x0008,0x0114) 8 0.6488

9 0.5563

10 0.5204

(0x0010,0x0228) 8 0.6498

9 0.5565

10 0.5219

(0x8000,0x0001) 8 0.7531

9 0.6323

10 0.5423

(0x0001,0x0003) 8 0.7510

9 0.6316

10 0.5302

(0x0002,0x0046) 8 0.7529

9 0.6271

10 0.5438

(0x0040,0x08c0) 8 0.7498

9 0.6334

10 0.5421

4.2 Search Neutral Bits for Classical Differential Transition
of Simeck32/64

Splicing a s-round classical differential transition in front of the (r − 1)/r-round
neural distinguishers is the second step in performing a deep learning assisted
key recovery attack. The connection requirement is that the output difference of
the classical differential transition and the input difference of both neural distin-
guishers are the same. To make the distinguisher longer, the classical differential
transition prepended to the neural distinguisher is desired to be as long as pos-
sible. Meanwhile, in order to amplify the distinguisher’s signal in the process of
the key recovery attack, the probability of the classical differential transition is
desired to be as high as possible and the number of neutral bits searched for the
classical differential transition is desired to be as large as possible.
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(a) 8, (0x8000, 0x4011) (b) 9, (0x8000, 0x4011) (c) 10, (0x8000, 0x4011)

(d) 8, (0x0001, 0x8022) (e) 9, (0x0001, 0x8022) (f) 10, (0x0001, 0x8022)

(g) 8, (0x0008, 0x0114) (h) 9, (0x0008, 0x0114) (i) 10, (0x0008, 0x0114)

(j) 8, (0x0010, 0x0228) (k) 9, (0x0010, 0x0228) (l) 10, (0x0010, 0x0228)

Fig. 2. The wrong key response profile of 8/9/10-round neural distinguishers with input
difference (0x8000, 0x4011), (0x0001, 0x8022), (0x0008, 0x0114), (0x0010, 0x0228) for
Simeck32/64.

In the previous subsection, we obtained 8 sets of neural distinguishers with
different input differences and plotted the corresponding wrong key response
profiles. As can be seen from Fig. 2 and Fig. 3, the wrong key response profiles of
the neural distinguishers with some input differences are more regular than the
wrong key response profiles of the neural distinguishers with other input differ-
ences. Furthermore, the wrong key response profile is critical to the optimization
step of the Bayesian key search algorithm. That is, in the process of key recovery
attacks, the neural distinguishers with more regular wrong key response profiles
can better optimize the process of Bayesian key search. As a result, we pick the
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(a) 8, (0x8000, 0x0001) (b) 9, (0x8000, 0x0001) (c) 10, (0x8000, 0x0001)

(d) 8, (0x0001, 0x0003) (e) 9, (0x0001, 0x0003) (f) 10, (0x0001, 0x0003)

(g) 8, (0x0002, 0x0046) (h) 9, (0x0002, 0x0046) (i) 10, (0x0002, 0x0046)

(j) 8, (0x0040, 0x08c0) (k) 9, (0x0040, 0x08c0) (l) 10, (0x0040, 0x08c0)

Fig. 3. The wrong key response profile of 8/9/10-round neural distinguishers with input
difference (0x8000, 0x0001), (0x0001, 0x0003), (0x0002, 0x0046), (0x0040, 0x08c0) for
Simeck32/64.

neural distinguishers with input difference (0x8000, 0x4011), (0x0001, 0x8022),
(0x8000, 0x0001), (0x0001, 0x0003) and consider splicing the classical differential
transition in front of them.

We use the traditional MILP method to search for the classical differential
transitions with high probability. In the MILP model, a constraint is added to
ensure that the output difference of the differential transition is equal to the input
difference of the neural distinguishers we choose in advance. The optimization
solver used to solve the MILP model is Gurobi [45]. After the classical differ-
ential transition is obtained, the neutral bits can be found by a simple exhaus-
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tive search. The experimental results are listed in the Table 3. From Table 3,
we can easily see that when the input difference of the neural distinguisher
is (0x8000, 0x0001), the prepended classical differential transitions have higher
probabilities and more numbers of neutral bits. Therefore, we finally choose the
neural distinguishers with the input difference (0x8000, 0x0001) to perform deep
learning assisted key recovery attack in the sequel. All of the above are precom-
puted before the actual attack, which are not included in the complexity of the
key recovery attack.

Table 3. Classical differential transition of Simeck32/64

Round(s) Input(Δ′) Output(Δ) Prob.(pdt) Neutral bits

2 (0x0002, 0x4015) (0x8000,0x4011) 2−8 [0, 27, 23, 17, 14, 29,
12, 13, 8, 7, 6, 4, 2, 1,
10]

3 (0x4015, 0x8028) 2−16 [1, 7, 13, 28]

4 (0x8000, 0x4014) 2−18 [12]

2 (0x0004, 0x802a) (0x0001,0x8022) 2−8 [1, 24, 18, 15, 28, 13,
11, 14, 8, 7, 5, 3, 2, 9,
30]

3 (0x802a, 0x0051) 2−16 [2, 8, 14, 29]

4 (0x0001, 0x8028) 2−18 [13]

2 (0x8002, 0x0004) (0x8000,0x0001) 2−6 [0, 29, 27, 25, 24, 23,
19, 18, 17, 15, 30, 14,
12, 10, 9, 8, 7, 6, 4, 3,
2, 1, 13, 31]

3 (0x0004, 0x800a) 2−8 [11, 24, 18, 15, 14, 13,
28, 30, 8, 7, 3, 2, 1, 9]

4 (0x8008, 0x0017) 2−14 [1, 2, 8, 14, 29]

5 (0x0001, 0x8008) 2−16 [13]

2 (0x0004, 0x000b) (0x0001,0x0003) 2−6 [0, 28, 25, 24, 19, 18,
15, 30, 13, 14, 9, 8, 7,
4, 3, 2, 1, 10, 31]

3 (0x0008, 0x0015) 2−10 [0, 2, 3, 8, 9, 12, 14, 15,
29]

4 (0x0010, 0x002b) 2−14 [13]

4.3 Deep Learning Assisted Key Recovery Attacks of Simeck32/64

In this part, we will show the experimental results of our 13/14/15-round deep
learning assisted key recovery attack for Simeck32/64. For each experiment with
different parameters, we executed 100 tests. For each test, we claimed it is suc-
cessful when the hamming weight of the difference between the real and guessed
subkeys is no more than 2.
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Table 4. Parameters used in the 13/14/15-round deep learning assisted key recovery
attack of Simeck32/64

Rounds Number of structures Number of iterations c1 c2

13 27 28 10.0 10.0

14 29 210 10.0 10.0

15 29 210 10.0 10.0

Table 5. 13-round deep learning assisted key recovery attack of Simeck32/64

Neutral bits Data complexity Time complexity Success rate

[0, 29, 27, 25, 24, 23, 19, 18] 216 227.95 88%

[0, 29, 27, 25, 24, 23, 19] 215 227.76 84%

[0, 29, 27, 25, 24, 23] 214 227.30 72%

[0, 29, 27, 25, 24] 213 227.30 38%

[0, 29, 27, 25] 212 226.63 15%

For deep learning assisted key recovery attack against 13-round Simeck32/64,
we prepended the 2-round classical differential transition (0x8002, 0x0004) →
(0x8000, 0x0001) with the probability 2−6 in front of the 8/9-round neural
distinguishers to recover the 12/13-round subkeys. For 14-round Simeck32/64,
we prepended the 3-round classical differential transition (0x0004, 0x800a) →
(0x8000, 0x0001) with the probability 2−8 in front of the 8/9-round neural distin-
guishers to recover the penultimate and last subkeys. For 15-round Simeck32/64,
we spliced the same 3-round classical differential transition as that in the 14-
round attack in front of the 9/10-round neural distinguishers to recover the
14/15-round subkeys. After our careful adjustment, other parameters except the
neutral bits used in the experiments are shown in Table 4. We change the data
complexity by controlling the number of neutral bits used in the experiments.
The results of the 13/14/15-round attacks are shown in Table 5, Table 6, and
Table 7, respectively. Generally, the more neutral bits used in an attack, the
higher the data/time complexity of the attack, and the higher the success rate
of the attack. However, since the plaintexts used for the attack are randomly
generated and the number of tests is limited, the time complexity and success
rate of the attacks are only experimental results rather than theoretical results.
Therefore, there are some experimental results with higher data complexity but
lower time complexity or success rate.



460 L. Lyu et al.

Table 6. 14-round deep learning assisted key recovery attack of Simeck32/64

Neutral bits Data
complexity

Time
complexity

Success
rate

[11, 24, 18, 15, 14, 13, 28, 30, 8, 7, 3, 2, 1, 9] 224 234.06 85%

[11, 24, 18, 15, 14, 13, 28, 30, 8, 7, 3, 2, 1] 223 232.99 88%

[11, 24, 18, 15, 14, 13, 28, 30, 8, 7, 3, 2] 222 231.93 85%

[11, 24, 18, 15, 14, 13, 28, 30, 8, 7, 3] 221 231.12 86%

[11, 24, 18, 15, 14, 13, 28, 30, 8, 7] 220 230.29 87%

[11, 24, 18, 15, 14, 13, 28, 30, 8] 219 229.51 83%

[11, 24, 18, 15, 14, 13, 28, 30] 218 228.98 79%

[11, 24, 18, 15, 14, 13, 28] 217 228.73 81%

[11, 24, 18, 15, 14, 13] 216 228.55 57%

[11, 24, 18, 15, 14] 215 229.03 30%

[11, 24, 18, 15] 214 227.39 4%

Table 7. 15-round deep learning assisted key recovery attack of Simeck32/64

Neutral bits Data
complexity

Time
complexity

Success
rate

[11, 24, 18, 15, 14, 13, 28, 30, 8, 7, 3, 2, 1, 9] 224 233.90 88%

[11, 24, 18, 15, 14, 13, 28, 30, 8, 7, 3, 2, 1] 223 233.07 79%

[11, 24, 18, 15, 14, 13, 28, 30, 8, 7, 3, 2] 222 232.12 82%

[11, 24, 18, 15, 14, 13, 28, 30, 8, 7, 3] 221 231.32 82%

[11, 24, 18, 15, 14, 13, 28, 30, 8, 7] 220 230.24 81%

[11, 24, 18, 15, 14, 13, 28, 30, 8] 219 230.00 68%

[11, 24, 18, 15, 14, 13, 28, 30] 218 230.05 51%

[11, 24, 18, 15, 14, 13, 28] 217 229.21 23%

[11, 24, 18, 15, 14, 13] 216 228.89 13%

5 Conclusion

In this paper, we shift our focus from increasing the accuracy of neural distin-
guishers to selecting the neural distinguishers that are appropriate for Bayesian
key search algorithm. Then, we performed the deep learning assisted key recovery
attack against round-reduced Simeck32/64. As a result, we were able to attack
the 13/14/15-round Simeck32/64 successfully with a lower data/time complexity
than traditional wisdom. As far as we know, this is currently the optimal deep
learning assisted key recovery attack against Simeck32/64. In addition, we sum-
marize two methods for picking the input difference of the neural distinguisher
and the experience of parameter tuning for the deep learning assisted key recov-
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ery attack. Furthermore, we explore the relationship between the success rate
and the data complexity of deep learning assisted key recovery attack in the
experiment.
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38. Selçuk, A.A.: On probability of success in linear and differential cryptanalysis. J.
Cryptol. 21(1), 131–147 (2008)

39. Bagheri, N.: Linear cryptanalysis of reduced-round SIMECK variants. In:
Biryukov, A., Goyal, V. (eds.) INDOCRYPT 2015. LNCS, vol. 9462, pp. 140–152.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26617-6 8

40. Yang, G., Zhu, B., Suder, V., Aagaard, M.D., Gong, G.: The Simeck family of
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Abstract. High bandwidth, data privacy issues, and single point of fail-
ure require the development of Federated learning (FL) in large-scale
peer-to-peer (P2P) networks. In this paper, we propose the first fine-
grained global model training protocol, dubbed CFL, which is efficient
and privacy-preserving. Rigorous analyses show that CFL guarantees
the privacy and data integrity and authenticity of local model update
parameters under two widespread threat models. Ingenious experiments
on the Trec06p and Trec07 datasets show that the global model trained
by CFL has good classification accuracy, rapid convergence rate, and
dropout-robustness. Compared to the first global model training proto-
col for FL in P2P networks, CFL improves communication efficiency and
computational efficiency.

Keywords: Federated learning · Peer-to-peer network ·
Communication efficiency · Privacy-preserving

1 Introduction

Federated learning (FL) [12] relies too much on the central server. However, the
central server gives rise to several drawbacks: (1) untrustworthy [6]; (2) high
computational costs and high bandwidth requirements [10]; (3) single point of
failure [5,7]. As a result, how to deploy FL without the central server deserves
deep research, which is referred to as the decentralized FL [7] or FL in peer-to-
peer (P2P) networks [2].

Consequently, some decentralized FL involving algorithms [1,5,15], and
frameworks [3,7,9,13] have been proposed successively. Also, decentralized verti-
cal FL has been studied [6,11,16]. However, all existing decentralized FL works
are coarse-grained, which cannot guide the global model training in practice.
Recently, Chen et al. [2] proposed a fine-grained PPT protocol for FL in P2P
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networks. However, PPT has several shortcomings. First, PPT is inefficient for
FL in large-scale P2P networks where massive clients are involved. Second, PPT
is vulnerable to hijacking attacks [8], which leaves a potential privacy leakage
risk to the system. Third, the signature scheme in PPT requires extra storage
space and heavy computational power. Therefore, an intuitive question is How
to efficiently and securely achieve FL in large-scale P2P networks.

Our response to this question is a Cluster Federated Learning (CFL) global
model training protocol. Specifically, we expand the system model of PPT [2]
by involving large amounts of clients. To improve the communication efficiency
of the system, CFL aggregates local model update parameters hierarchically.
Instead of leveraging the digital signature scheme, CFL guarantees security and
computation efficiency through the authenticated encryption scheme, whose key
is established by a random pairwise keys scheme enhanced by a proposed key
revocation mechanism which improves the security against hijacking attacks [8].
To the best of our knowledge, CFL is the first fine-grained model training proto-
col for FL in large-scale P2P networks, which is efficient and privacy-preserving.

The main contributions are as follows:

A Global Model Training Protocol for FL in Large-Scale P2P Net-
works. We propose a fine-grained global model training protocol for FL in
large-scale P2P networks. Compared to the PPT protocol, larger amounts of
clients could train the global model in a higher communication and computation
efficient manner with the deployment of the proposed CFL protocol.

A Secure and Privacy-Preserving Protocol. The proposed CFL protocol
can protect the privacy of the client’s individual local contributions by a ran-
dom noise, which is generated initially and eliminated ultimately. Besides, CFL
guarantees the data integrity and authenticity of local contributions by leverag-
ing the authenticated encryption scheme. Particularly, CFL can guarantee the
confidentiality of the communication key against hijacking attacks [8].

Experimental Evaluation. We conduct experiments on the Trec06p and
Trec07 datasets, which demonstrate that the proposed CFL protocol can ensure
the classification accuracy and the rapid convergence rate of the global model.
Also, the dropout-robustness of the system is achieved by CFL. More impor-
tantly, CFL improves communication efficiency by 43.25% and computational
efficiency by 0.87% compared to PPT [2].

2 Background

2.1 System Model

In the context of FL in large-scale P2P networks, potential clients U= {ui|i =
1, · · · , Z} have constant wireless communication ranges. The clients in U truly
participate in the global model training process are target clients, denoted by
C={ci|i=1, · · · , N}, C⊆U. Each target client ci has a local dataset Di of size
|Di| containing private training data. Besides, a server loosely connected with a
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few potential clients is responsible for coordinating FL tasks, which means the
server cannot aggregate clients’ local contributions directly. The goal of target
clients is to collaboratively train a global ML model W .

Communication Model. All data is transmitted through public communication
channels. In addition, all target clients can only communicate with their single-
hop neighbor clients within their constant wireless communication ranges, and
only a few clients could communicate with the server directly.

2.2 Threat Model

In the context of FL in large-scale P2P networks, security and privacy are the
most important concerns. Thus, we consider the internal semi-honest partici-
pants threat model and the external malicious adversaries threat model [2,12].
We further consider hijacking attacks [8] from external malicious adversaries
when establishing communication keys, which is thoughtless in PPT [2].

In the internal semi-honest participants threat model, the server and target
clients perform prescribed operations honestly but are curious about others’ local
model update parameters, which means they could infer private information from
others’ local model update parameters by model inversion attacks [4].

In the external malicious adversaries threat model, a malicious adversary A
could execute tampering attacks [14] and impersonation attacks [14] to threaten
the data integrity and the authenticity of aggregated local contributions. More
seriously, A could execute hijacking attacks, where A hijacks honest participants
to obtain the communication keys, and hence tampers with the aggregated model
update parameters when aggregating local contributions.

3 System Design

CFL first divides all potential clients into several clusters L={Lh|h=1, 2, · · · λ}
based on their constant wireless communication ranges. Thus, the local con-
tributions can be aggregated hierarchically, i.e., aggregation within a single
cluster and aggregation across clusters subsequently. For gravity, we regular-
ize the symbols in a specific cluster Lh ∈ L. The potential clients in Lh are
denoted by U h ={uh,i|i=1, 2, · · · , zh}, and all U h (h = 1, 2, · · · , λ) make up U,
i.e., U =

⋃λ
h=1 U h. The clients that actually participate in a specific round of

global model training are target clients, denoted by C h ={ch,i|i=1, 2, · · · , nh},
C h ⊆U h, and all C h (h = 1, 2, · · · , λ) make up C, i.e., C =

⋃λ
h=1 C h.

Then, CFL establishes communication keys for potential clients within a sin-
gle cluster through a proposed Secure Communication Key Establishment
Protocol in Fig. 1.

After establishing communication keys, all potential clients collaboratively
train the global model. Taking the t-th round as an example, the server first
distributes a global model W t to the potential clients directly connected to it.
These potential clients subsequently pass W t to other potential clients within
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Fig. 1. Secure communication key establishment protocol.

the same cluster. Afterwards, ch,i initializes the local model as W t, and trains
it on its local dataset Dh,i, shown as:

wt
h,i ← Train(W t,Dh,i). (1)

Then, ch,i calculates the local model update parameters, shown as:

xt
h,i = wt

h,i − W t. (2)

Subsequently, ch,i calculates its weighted local model update parameters Xt
h,i =

ph,ix
t
h,i, where ph,i = |Dh,i|∑nh

i=1 |Dh,i| .
Next, all target clients aggregate their local model update parameters within

their clusters. We illustrate the aggregation process within a single cluster as the
Inner-Cluster Model Aggregation Protocol in Fig. 2.

Subsequently, each leader client uploads sumt
h directly to the server, and the

server aggregates all sumt
h, h = 1, · · · , λ, shown as:

SUM t =
λ∑

h=1

qhsumt
h, (3)

where qh =
∑

Di∈Lh
|Di|

∑N
i=1 |Di| is the aggregation weight of the cluster Lh. Consequently,

the server updates the global model, shown as:

W t+1 = W t + SUM t . (4)

Finally, the server distributes W t+1 to all potential clients, and the target
clients iteratively train and aggregate until the global model converges to the
optimal result W ∗. By integrating the above processes, wo obtain the proposed
CFL protocol, illustrated in Fig. 3.
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Fig. 2. Inner-cluster model aggregation protocol.

Fig. 3. High-level view of the CFL protocol.

4 Security Analysis

CFL is Privacy-Preserving Facing an Honest-but-Curious Server. To defend
against model inversion attacks [4] from the server, CFL aggregates local con-
tributions in a privacy-preserving manner, where the server can only obtain the
aggregation result rather than the individual local model update parameters.

CFL is Privacy-Preserving Facing Honest-but-Curious Target Clients. To resist
model inversion attacks [4] from target clients, a random noise is introduced to
disturb the aggregated model update parameters. Therefore, all target clients
can only obtain disturbed local contributions or the intermediate aggregation
results, rather than the precise local model update parameters.

CFL is Privacy-Preserving Facing Honest-but-Curious Potential Clients. CFL
adopts the authenticated encryption to protect aggregated model update param-
eters. Therefore, an honest-but-curious potential client cannot eavesdrop the
plaintext of other’s local model update parameters.
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CFL Guarantees the Data Integrity and Authenticity of the Aggregated Model
Update Parameters. To defend against tampering attacks [14] and impersonation
attacks [14], CFL adopts authenticated encryption, where the authentication tag
can effectively resist unauthorized tampering of messages and verify whether the
sender is a trusted source.

CFL Guarantees the Confidentiality of the Communication Keys. The Secure
Communication Key Establishment Protocol is enhanced by a voting-
based key revocation mechanism to remove the contaminated keys, thereby
eliminating the possibility of malicious adversaries stealing communication keys.
Therefore, the confidentiality of the communication key is ensured.

5 Experiments and Evaluation

In this section, we conduct the experiments in a spam classification scenario.
All experiments are implemented on the same computing environment (Linux
Ubuntu 16.04, Intel i7-6950X CPU, 64 GB RAM and 5TB SSD) with Tensorflow,
Keras and PyCryptodome.

5.1 Experimental Setting

Dataset. The datasets used in our experiments consist of Trec06p and Trec07,
which are two English e-mail datasets from the real world. The Trec06p dataset
contains 12910 hams and 24912 spams in the main corpus with messages, and
Trec07 contains 25220 hams and 50199 spams.

Parameter Tuning. We first divide Trec06p into a training set and a testing
set, and the training set is adopted to train the original global model. In addition,
the Trec07 dataset is divided into two parts. One part is further divided into
100 local datasets for target clients. The other part serves as the Trec07 testing
set to evaluate the global model performance. The ML model is Convolutional
Neural Network (CNN). The gradient descent algorithm is set as SGD. Besides,
we use the AES-GCM-128bit algorithm for authenticated encryption.

5.2 Experimental Results and Evaluation

To validate the model performance, we evaluate the accuracy and loss value of the
global model in Fig. 4. After 14 rounds of global model training, the global model
converges, and the accuracy and loss value of the final global model are 99.32%
and 0.0356 on the Trec07 testing set. The results show that CFL guarantees the
convergence of the global model with high classification accuracy. Besides, to
validate the dropout-robustness of CFL, we randomly set 15% dropout clients.
In this case, the global model converges at 16 rounds, and the accuracy and loss
value of the global model are 99.26% and 0.0343, which are close to the values
without dropout clients. That is, CFL is dropout-robust.
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Fig. 4. Global model performance on the Trec07 testing set.

More importantly, we record the averaging communication times achieving
a round of aggregation in Table 1. Compared to PPT [2], CFL improves the
communication efficiency by about 43.25%. Such an improvement benefits from
the cluster-based division.

Table 1. Communication times

Percentage of dropout clients (%) 0 1 2 5 10 15

CFL’s communication times 105 106 104 105 102 92

PPT’s communication times 191 186 185 184 172 164

In addition, we record the time of each operation in Table 2, where the
authenticated encryption (decryption) in our protocol consumes less time than
the encryption (decryption) and signature (verification) in the PPT protocol [2],
which achieves a 0.87% improvement in terms of computational efficiency.

Table 2. Computational performance

Index Operations Time(ms/1000 byte)

1 Encryption(AES-128 bit) 170.8248

2 Decryption(AES-128 bit) 0.0282

3 Signature(Elgamal-2048 bit) 0.0003

4 Verification(Elgamal-2048 bit) 0.0071

5 Encryption (AES-GCM-128 bit) 169.3596

6 Decryption(AES-GCM-128 bit) 0.0163
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6 Conclusion

Aiming to solve the problems of a single point of failure and high communica-
tion costs in FL, we propose a CFL protocol for FL in large-scale P2P networks,
focusing on efficient and privacy-preserving model training. Some interesting
researches could further improve CFL in the future. On the one hand, an effec-
tive design for FL in dynamic P2P networks could flourish the development of
decentralized FL in practice. On the other hand, along with the hardware devel-
opment of clients, a computation-friendly homomorphic encryption algorithm
could improve the communication efficiency of the system more.

References

1. Assran, M., Loizou, N., Ballas, N., Rabbat, M.: Stochastic gradient push for dis-
tributed deep learning. In: Proceedings of the 36th ICML, 9–15 June 2019, Long
Beach, CA, USA, pp. 344–353 (2019)

2. Chen, Q., Wang, Z., Zhang, W., Lin, X.: PPT: a privacy-preserving global
model training protocol for federated learning in P2P networks. arXiv preprint
arXiv:2105.14408 (2021)

3. Dubey, A., Pentland, A.: Differentially-private federated linear bandits. In: Pro-
ceedings of the 33rd NeurIPS, 6–12 December 2020, virtual, pp. 6003–6014 (2020)

4. Fredrikson, M., Jha, S., Ristenpart, T.: Model inversion attacks that exploit con-
fidence information and basic countermeasures. In: Proceedings of the 22nd ACM
SIGSAC CCS, 12–16 October 2015, Denver, CO, USA, pp. 1322–1333 (2015)

5. Gibiansky, A.: Bringing HPC techniques to deep learning. Technical report, Baidu
Research (2017)

6. He, C., Tan, C., Tang, H., Qiu, S., Liu, J.: Central server free federated learning
over single-sided trust social networks. arXiv preprint arXiv:1910.04956 (2019)

7. Hu, C., Jiang, J., Wang, Z.: Decentralized federated learning: a segmented gossip
approach. arXiv preprint arXiv:1908.07782 (2019)

8. Hu, Q., Du, B., Markantonakis, K., Hancke, G.P.: A session hijacking attack against
a device-assisted physical-layer key agreement. IEEE Trans. Industr. Inf. 16(1),
691–702 (2019)

9. Li, Q., Wen, Z., He, B.: Practical federated gradient boosting decision trees. In:
The 34th AAAI, 7–12 February 2020, New York, NY, USA, vol. 34, pp. 4642–4649
(2020)

10. Lian, X., Zhang, C., Zhang, H., Hsieh, C., Zhang, W., Liu, J.: Can decentralized
algorithms outperform centralized algorithms? A case study for decentralized par-
allel stochastic gradient descent. In: Proceedings of the 31st NeurIPS, 4–9 Decem-
ber 2017, Long Beach, CA, USA, pp. 5330–5340 (2017)

11. Marfoq, O., Xu, C., Neglia, G., Vidal, R.: Throughput-optimal topology design for
cross-silo federated learning. In: Proceedings of the 33rd NeurIPS, 6–12 December
2020, virtual, vol. 33, pp. 19478–19487 (2020)

12. McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-
efficient learning of deep networks from decentralized data. In: Proceedings of the
20th AISTATS, 20–22 April 2017, Fort Lauderdale, FL, USA, vol. 54, pp. 1273–
1282 (2017)

http://arxiv.org/abs/2105.14408
http://arxiv.org/abs/1910.04956
http://arxiv.org/abs/1908.07782


472 Q. Chen et al.

13. Ramanan, P., Nakayama, K.: Baffle: blockchain based aggregator free federated
learning. In: IEEE International Conference on Blockchain, 2–6 November 2020,
Rhodes, Greece, pp. 72–81 (2020)

14. Stallings, W.: Cryptography and Network Security. Pearson Education India,
Noida (2006)

15. Yang, K., Jiang, T., Shi, Y., Ding, Z.: Federated learning based on over-the-air
computation. In: 2019 IEEE ICC, 20–24 May 2019, Shanghai, China, pp. 1–6 (2019)

16. Yang, S., Ren, B., Zhou, X., Liu, L.: Parallel distributed logistic regression
for vertical federated learning without third-party coordinator. arXiv preprint
arXiv:1911.09824 (2019)

http://arxiv.org/abs/1911.09824


Bilateral Privacy-Preserving Task
Assignment with Personalized Participant

Selection for Mobile Crowdsensing

Shijin Chen1, Mingwu Zhang1(B) , and Bo Yang2

1 School of Computer Science, Hubei University of Technology, Wuhan, China
csmwzhang@gmail.com

2 School of Computer Science, Shaanxi Normal University, Xi’an, China

byang@snnu.edu.cn

Abstract. Mobile crowdsensing (MCS) as an emerging data collection
paradigm allows people to collect data for more effective decision-making.
Task assignment as an integral part of MCS plays an important role in
the working of the system. However, the balance between system effi-
ciency and result accuracy is still a challenge to be solved, while the
privacy of requesters and task participants are needed to be considered
during assigning tasks. This paper proposes a bilateral privacy-preserving
task assignment scheme with personalized participant selection for MCS.
With the design of a privacy-preserving top-k selection sub-protocol, the
proposed scheme supports the task requester to personalize the selection
of participants for task assignment. The balance between efficiency and
accuracy is entirely determined by the preference of the task requester.
The proposed scheme provides the protections of the privacy of both the
task content and personalized parameters of the requester and the status
and identity of the participants. Simulation experiments are performed
on smart devices with a real-world dataset, and the results demonstrate
the effectiveness of the proposed task assignment scheme compared to
the previous work.

Keywords: Task assignment · Participant selection · Privacy · Mobile
crowdsensing

1 Introduction

With the rapid development of the Internet of Things, numerous existing smart
devices have a wide variety of sensors embedded (e.g., GPS, camera and ther-
mometer), which establishes the basis for the implementation of mobile crowd-
sensing (MCS) [4,6]. MCS as an emerging data collection paradigm allows people
to collect data for better decision making through a crowd of smart devices, and
it has been used in various fields such as traffic violation [8], environmental
monitoring [10] and health application [2,9].
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Task assignment, as an integral part of MCS, allows a task requester (TR)
relying on the crowdsensing service provider (CSP) to select task participants
with matching task requirements [5,18]. During the task assignment process,
each task participant (TPi) does not want private data (e.g., computational
capacity, network bandwidth, data size, and address location) to be leaked.
Arguably, these status data expose the privacy of task participants, such as
data privacy, identity privacy and location privacy [14,26]. In addition, there
are privacy concerns regarding the personalized parameters and the task con-
tent of the TR. These privacy issues hinder their willingness to participate in
the system [17,25,28].

In general, task assignment in MCS considers three main aspects: efficiency,
accuracy and privacy [20]. However, balancing efficiency and accuracy is chal-
lenging while preserving privacy. For example, the server has to wait for all par-
ticipants to submit their model updates before aggregation in federated learning
(FL), which will decrease the system efficiency of model aggregation in resource-
constrained devices in MCS [24]. Some existing works consider the adoption of
participant selection to improve the efficiency [12,23,27] for MCS. However, these
works cannot support personalized privacy-preserving task assignment and main-
tain an ideal accuracy. Some studies support personalized privacy-preserving
task assignment, however, they either take insufficient consideration on the pri-
vacy of task content, favor individualized choices of participants or ignore the
preferences of requester for the task [7,19,21]. Besides that, how to maximize
the protection of privacy data of the TR and participants while supporting per-
sonalized participant selection is also a challenge [11].

To address the challenges mentioned above, we propose a bilateral privacy-
preserving task assignment with personalized participant selection for MCS. We
consider a combination of efficiency, accuracy and privacy issues. Particularly,
we present a secure top-k selection protocol based on the weighted Euclidean
algorithm. The TR can choose the suitable participants according to different
preferences. The choice between efficiency and accuracy is left entirely to the TR.
In terms of privacy, a secure top-k selection protocol protects the personalized
parameters for TR and the status for participants. Moreover, we protect the
task content with broadcast encryption and hide the identity of the participants
from the TR. Our contributions in this work are summarized as follows.

– We present a secure top-k selection protocol that allows a requester to per-
sonalize the selection of participants for the task based on the requirements
of the task, which can balance efficiency and accuracy.

– In our scheme, it achieves the protection of the privacy of personalized param-
eters and task content of the TR, as well as the status data of the participants.
At the same time, the identities of the selected participants are kept private
from the TR.

– We give the concrete scheme and provide the security analysis. We also pro-
vide the experiential results of FL task assignment on multiple smart devices
with a real-world dataset. The experiments demonstrate the effectiveness of
our scheme.
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Roadmap. The remainder of this paper is organized as follows. Some essential
preliminaries are given in Sect. 2. In Sect. 3, we give a detailed description of the
problem, including the system model, security model, and design goals. Next,
we present the concrete construction in Sect. 4. We provide the security analysis
in Sect. 5. Finally, we give the experimental results in Sect. 6 and summarize our
work in Sect. 7.

2 Preliminaries

In this section, we review some preliminaries in our scheme.

2.1 Weighted Euclidean Distance

The weighted Euclidean distance (WED) [22,29] is considered an effective
method for computing the distance of two vectors, which can be expressed as
Eq. (1), where

−→
X = (x1, x2, ..., xl),

−→
Y = (y1, y2, ..., yl) are two l-dimensional

vectors, and d(
−→
X,

−→
Y ) denotes the WED between vectors

−→
X and

−→
Y .

−→
U =

(u1, u2, ..., ul) is a weight vector to balance the influence of different dimensions
on distance and

−→
X can be defined as a reference point.

d(
−→
X,

−→
Y ) =

√
√
√
√

l∑

i=1

ui(xi − yi)2 (1)

Furthermore, to facilitate the adaptation to homomorphic cryptosystem, we
can transform Eq. (1) as follows.

[

d(
−→
X,

−→
Y )

]2

=
l∑

i=1

uix
2
i − 2uixiyi + uiy

2
i (2)

2.2 Homomorphic Encryption

Rivest et al. proposed the concept of homomorphic encryption [15], in which
the proposal of homomorphism allows us to perform operations on ciphertexts
without decryption. To facilitate the design of scheme, we introduce an additively
homomorphic cryptosystem, i.e., Paillier encryption scheme [13], and it consists
of three algorithms: HE.KeyGen, HE.Enc and HE.Dec, which are described as
follows.

– HE.KeyGen: The key generation algorithm takes as input a security param-
eter κ. Let p and q be two randomly selected large prime numbers, and
|p| = |q| = κ. Compute N = pq and λ = lcm(p − 1, q − 1). Define func-
tion L(u) = (u − 1)/N where μ = (L((1 + N)λ mod N2))−1. Finally set
public key pk = (N, 1 + N) and private key sk = (λ, μ).
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– HE.Enc: The encryption algorithm takes as input a message m ∈ ZN and
public key pk. Then the plaintext m can be encrypted as Eq. (3), where r ∈
Z

∗
N is a random number.

c = HE.Enc(m, pk) = (1 + N)m · rN mod N2 (3)

– HE.Dec: The decryption algorithm takes as input a ciphertext c and a private
key sk = (λ, μ), and compute

m = HE.Dec(c, sk) = L(cλ mod N2) · μ mod N (4)

Let m1 and m2 be two plaintexts. We denote [[m]]pk as the ciphertext of m
under pk. The homomorphic properties can described as follows.

– Additive homomorphism:

[[m1 + m2]]pk = [[m1]]pk ∗ [[m2]]pk (5)

– Scalar-multiplication homomorphism:

[[m1 · m2]]pk = ([[m1]]pk)m2 (6)

2.3 Broadcast Encryption

The idea of broadcast encryption is based on the Identity-based encryption (IBE)
system and is come up with to reduce computational and communication over-
head when sharing data to multiple users [3].

– BE.KeyGen: Let G as a bilinear map group with prime order p, the algorithm
first sets a random number α ∈ Zp and a generator g. Then it computes
gi = g(α

i) ∈ G, where i ∈ {1, 2, ...,K,K + 2, ..., 2K}. With a random number
γ ∈ Zp is picked, it can compute v = gγ ∈ G. Besides, the public key is
computed as Eq. (7).

PK = (g, g1, ..., gK , gK+2, ..., g2K , v) ∈ G
2K+1 (7)

Then the private key for each participant TPi is computed as Eq. (8).

SKi = gγ
i ∈ G (8)

– BE.Enc: Given a set of privileged users Pk, the algorithm picks a random
number r ∈ Zp. The session key can be computed as Eq. (9).

KEY = e(gK+1, g)
r ∈ GT (9)

The header Hdr is computed as Eq. (10).

Hdr =

⎛

⎝gr, (v ·
∏

j∈Pk

gK+1−j)
r

⎞

⎠ ∈ G
2 (10)

With the session key KEY , a message can be encrypted by other available
cryptosystems (e.g., AES).
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– BE.Dec: For simplicity, the algorithm defines Hdr = (C0, C1). Any partici-
pant TPi ∈ Pk can use the known information (Hdr, PK, i, SKi,Pk) to derive
the session key as in Eq. (11).

KEY =
e(gi, C1)

e(SKi · ∏

j∈Pk,j �=i gK+1−j+i, C0)
(11)

Next, the ciphertext can be decrypted by the session key KEY and the
corresponding decryption algorithm.

3 Problem Formulation

This section is dedicated to the presentation of system model, threat model and
design goals.

3.1 System Model

There exist four types of entities in the system: Key Generation Center
(KGC), Task Requester (TR), Crowdsensing Service Provider (CSP) and
Task Participant (TPi), which is shown in Fig. 1.

Fig. 1. System model

– Key Generation Center (KGC): KGC is a trusted third party responsible
for generating the private key for each participant. When the key genera-
tion process is finished, KGC can go offline without participating in the task
assignment process.

– Task Requester (TR): Each TR can request status data from the partici-
pants via CSP and select the best k participants to participate in the task by
the weighted Euclidean distance algorithm. But TR does not want the refer-
ence point and weight vector it employs in the weight Euclidean algorithm to
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be leaked to anyone. Also, the content of the task can only be decrypted by
the selected participants, and no entity without permission should decrypt
the content of the task (including CSP).

– Crowdsensing Service Provider (CSP): The CSP is responsible for for-
warding status data and aggregating the information of k participants when
they are selected. Specifically, the CSP is required to receive personalized par-
ticipant selection requests from TR. Then, the CSP broadcasts the request
to all participants and receives response ciphertexts from those willing to
participate in the task. CSP sends the disordered ciphertext to TR and nego-
tiates with TR to compute a task ciphertext that can only be decrypted by
the selected k participants. Finally, the CSP broadcasts the processed task
cipher to all participants.

– Task Participant (TPi): Suppose there are K participants in MCS. Each
participant TPi periodically collects its status data (e.g. CPU, memory, band-
width, battery and data size), then reports them to CSP. After a participant
TPi is selected, TPi can decrypt the task content. However, participants do
not expect the privacy of status data to be revealed.

3.2 Threat Model

All entities except KGC in the MCS system are assumed to be semi-honest,
namely honest-but-curious, meaning they will follow the agreed-upon protocol
but will try to learn as much as the data during the protocol performing, while
KGC is a trusted entity. Based on the capabilities of the above entities, we can
define the list of private data as follows.

– Input: The reference point
−→
X as well as the weight vector

−→
U of the TR and

the status vector of each participant TPi are required to be kept secret from
others. Furthermore, the identity of the selected participants should be kept
private from the TR.

– Output: The task content T encrypted by the TR can be correctly decrypted
only by the selected k participants and should be kept secret from others.

In addition, we assume that all external polynomial time adversaries have
the ability to eavesdrop on the communication channel between TR, CSP and
TPi. But external adversaries will have no access to any useful information other
than the ciphertext. However, the external adversaries should not have access to
any useful information except ciphertexts.

3.3 Design Goals

We give a formal description of the goals that our scheme needs to be achieved.

– Personalized Participant Selection: TR can select participants with dif-
ferent status by customizing the reference point and the weight vector. For
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example, TR can reduce the time required to perform a task by prioritiz-
ing participants with higher computational performance and lower network
latency. Also, TR can get better results by prioritizing participants with more
sensing data.

– Bilateral Privacy Preservation: The proposed scheme provides the pro-
tection of the privacy data defined in Sect. 3.2. For example, the status data
and identity of all participants are private. Also, all parameters adopted by
the TR to select participants also need to be preserved.

– Practicality: The task assignment scheme should be efficient, specifically,
the proposed scheme should be validated in experiments and have a better
practicality than the previous work.

4 Our Scheme

In this section, at first we give an overview of the proposed scheme and the
building blocks, and then we provide the concrete construction of our scheme.

4.1 Overview

Fig. 2. Overview of the scheme

As shown in Fig. 2, the workflow of our scheme consists of four phases as follows.

1. Initialization: In this phase, KGC runs the BE.KeyGen algorithm to assign
the corresponding private key to each participant TPi and exposes the public
key. Similarly, TR performs the HE.KeyGen algorithm to obtain the key pair
and publishes the public key.
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2. Status Request: In order to collect status data for participant selection,
TR selects an optimal vector

−→
X and a weight vector

−→
U , and then encrypts

them. Next, TR distributes it to each participant TPi via CSP. Each TPi

needs to collect its status data(e.g., network bandwidth, computing power,
and the number of samples in the smart device) periodically, encrypts them
and sends the cipher messages to CSP.

3. Participant Selection: The CSP rearranges all ciphertexts and sends them
to the TR. TR can decrypt these ciphertexts, sort them to get the top-k
indexes, and send them to CSP. After that, a collection of k selected partici-
pants Pk can be generated by CSP.

4. Task Assignment: To securely and efficiently assign tasks to participants,
CSP aggregates the information of k participants and sends it to TR. A tem-
porary session key KEY is selected by TR to encrypt the task content. Then,
TR delivers the encrypted task content and broadcast the header to the CSP.
Once the broadcast header is processed by the CSP, it will be broadcast to all
participants along with the task cipher. Eventually, the selected k participants
can decrypt and obtain the content of the task.

4.2 SKS-WED Protocol

We provide a secure top-k participant selection in MCS, namely, SKS-WED
protocol, described in Algorithm 1. Particularly, TR chooses a vector

−→
X =

(x1, x2, ..., xl) as a reference point and a weight vector
−→
U = (u1, u2, ..., ul), where

l(l ≥ 2) is the dimension of the vector. Next, TR can encrypt the status data
as Eq. (12) by using the Paillier encryption algorithm HE.Enc. Note that, the
selection method of two vectors is based on previous experience, which is beyond
the scope of this paper. We will give a example in the experiment.

{

Cx,i = [[−2uixi]]pkc

Cu,i = [[ui]]pkc

(12)

Then TR broadcasts ({Cx,i}i∈{1,...,l}, {Cu,i}i∈{1,...,l}) to TPi. TPi collects
the status data

−→
Y i = (y1,i, y2,i, ..., yl,i) periodically and then aggregates them as

Eq. (13) and sends the aggregated ciphertext to TR.

Cy,i =
l∏

j=1

(Cx,j)yj,i · (Cu,j)y2
j,i (13)

Eventually, TR decrypts Cy,i to compute Eq. (14) and selects the k partici-
pants with the smallest di after sorting.

{

d′
i = HE.Dec(Cy,i, skc)

di = d′
i +

∑l
j=1 ujx

2
j

(14)
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Algorithm 1. SKS-WED protocol

Input: TR holds reference point
−→
X and weight vector

−→
U and key pair (pkc, skc), a set

of all K participants P.

Input: TPi holds the status data
−→
Y i.

Output: Optimal k participants Pk = {TP1, TP2, ..., TPk}.
TR do:

1: for i ← 1 to l do
2: Cx,i ← HE.Enc(−2uixi, pkc)
3: Cu,i ← HE.Enc(ui, pkc)
4: end for
5: Send {Cx,i}i∈{1,...,l}, {Cu,i}i∈{1,...,l} to TPi∈P.

TPi do:
6: for i ← 1 to l do
7: Cy,i ← ∏l

j=1(Cx,j)
yj,i · (Cu,j)

y2
j,i

8: end for
9: Send Cy,i tp TR.

TR do:
10: for i ← 1 to K do
11: d′

i ← HE.Dec(Cy,i, skc)
12: di ← d′

i +
∑l

j=1 ujx
2
j

13: end for
14: Sorts {di}.
15: Chooses Pk = {TP1, TP2, ..., TPk} with the smallest {di}.
16: return Pk.

4.3 Concrete Construction of Our Scheme

In this section, we present the detailed construction of bilateral privacy-
preserving task assignment with personalized participant selection. As in Fig. 2,
it consists of four steps such as Initialization , Status Request , Participant
Selection and Task Assignment .

4.3.1 Initialization

1. KGC runs the BE.KeyGen algorithm with the number of participants K
to generate PK = (g, g1, ..., gK , gK+2, ..., g2K , v), SKi = gγ

i . Next, KGC pub-
lishes PK and sends SKi to each participant TPi separately over a temporary
secure channel.

2. TR chooses a security parameter κ and runs the HE.KeyGen(κ) algorithm
of homomorphic cryptosystem to get pkc = (N, 1 + N) and skc = (λ, μ), TR
then publishes pkc.

4.3.2 Status Request

1. TR chooses two vectors
−→
X = (x1, x2, ..., xl) and

−→
U = (u1, u2, ..., ul) based on

specific scenario requirements. Next, TR encrypts
−→
X and

−→
U by Eq. (12).
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2. TR broadcasts
({Cx,i}i∈{1,...,l}, {Cu,i}i∈{1,...,l}

)

to all participants via CSP.
3. TPi collects its status data

−→
Y i, encrypts the status data

−→
Y i by Eq. (13) and

reports Cy,i to CSP.

4.3.3 Participant Selection

1. CSP disrupts the order of the received ciphertext, and forwards cipher mes-
sages to the TR.

2. Upon TR receives Cy,i from all K participants in P, TR selects the k(k ≥ 2)
participants with the smallest di as Pk = {TP1, TP2, ..., TPk}. For more
detailed computations, please refer to SKS-WED protocol in Sect. 4.2.

3. Next, TR sends the index of the top-k ciphertexts to CSP so that the CSP
can rearrange the top-k indexes to generate the set of participants Pk =
{TP1, TP2, ..., TPk}.

4.3.4 Task Assignment

1. With the set of participants Pk and a random number r′, CSP computes
Eq. (15) and sends (C ′

0, C
′
1) to TR.

{

C ′
0 = gr′

C ′
1 = (v · ∏

j∈Pk
gK+1−j)r′ (15)

2. TR sets a random number r, computes (C∗
0 , C∗

1 ) as Eq. (16).
{

C∗
0 = (C ′

0)
r

C∗
1 = (C ′

1)
r

(16)

Besides, TR can compute the session key KEY as in Eq. (9). With a symmet-
ric encryption algorithm SE.Enc, TR encrypts the task content T following
Eq. (17). Then, TR sends (CT, C∗

0 , C∗
1 ) to CSP.

CT = SE.Enc(KEY,T) (17)

3. CSP computes Hdr as in Eq. (18) and broadcasts (CT,Hdr) to all partici-
pants.

Hdr =
(

(C∗
0 )

1
r′ , (C∗

1 )
1
r′

)

(18)

4. A selected participant TPi can derive the session key KEY according to
Eq. (11), and then employs the decryption algorithm SE.Dec to obtain the
task content T as in Eq. (19).

T = SE.Dec(KEY,CT) (19)
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5 Security Analysis

Theorem 1. The status data of participants is computationally indistinguish-
able.

Proof: Given the leakage function L=
{

pkc, skc, {xi}i∈[1,...,l], l, d
}

, where d =
∑l

i=1 xiyi. Besides, two probability models Real(κ) and Ideal(κ) defined as fol-
lows.

Real(κ): A challenger C runs the HE.KeyGen(κ) algorithm to get (pkc, skc),
publishes pkc and sends skc to A. Then, chosen by A. So A can sends {Ci}i∈[1,...,l]

to C, where Ci = [[xi]]pkc
. Next, C chooses {yi}i∈[1,...,l], yi ∈ ZN , to com-

putes Cy =
∑l

i=1 Cyi

i and sends Cy to A. So A can decrypts Cy to obtain
l =

∑l
i=1 xiyi.

Ideal(κ): Similarly, a simulator S has pkc and (pkc, skc) owned by A. Next,
A chooses {xi}i∈[1,...,l], xi ∈ ZN , l > 1 and sends {Ci}i∈[1,...,l] to C. C randomly

chooses {y′
i}i∈[1,...,l−1], yi ∈ ZN , y′

l = d−∑l−1
i=1 xiy

′
i

xl
, to computes C ′

y =
∑l

i=1 C
y′
i

i

and sends C ′
y to A. So A can decrypts C ′

y to obtain d′ =
∑l

i=1 xiy
′
i.

As d and d′ have the same value, A does not have a negligible advantage to
distinguish {yi} and {y′

i} in Real(κ) or Ideal(κ). Therefore, the status data of
participants is protected.

Theorem 2. The privacy data
−→
X and

−→
U is semantically secure against chosen

plaintext attack if the Decision Composite Residuosity (DCR) assumption holds.

Proof: The Paillier cryptosystem has been proven to be semantically secure
under the indistinguishable against chosen plaintext attack (IND-CPA) model
under the DCR assumption [13]. As the ciphertext of

−→
X and

−→
U fully obeys the

Paillier cryptosystem, the privacy data is secure under the IND-CPA model.
Thus, the privacy data of CSP does not reveal to a PPT adversary A.

Lemma 1. If the K-Bilinear Diffie-Hellman Exponent (K-BDHE) assumption
holds, then the broadcast encryption cryptosystem is computationally indistin-
guishable against the chosen ciphertext attack (IND-CCA) [3].

Theorem 3. The task content of the requester is privacy-protected against the
chosen ciphertext attack if and only if the broadcast encryption system is chosen-
ciphertext secure and the symmetric encryption system is also secure.

Proof: As stated in Lemma 1, the broadcast encryption employed in the proposed
scheme is secure under the IND-CCA model. The key adopted in the proposed
scheme to encrypt the task content T is derived from broadcast encryption,
and the algorithm employed to encrypt T is the encryption algorithm in the
symmetric cryptosystem. If a PPT adversary A can break our scheme, then it
can use our scheme to break the above cryptosystem. Since the above schemes
have been proven to be secure, our scheme is also secure.
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Theorem 4. The identities of the participants are privacy-protected against TR
if and only if the discrete logarithm problem (DLP) is difficult.

The CSP in the proposed scheme incorporates a random number r′ as an
exponent when aggregating participant information. If a PPT adversary A can
identify the participants, then he can use our scheme to attack the DLP problem.
This is contrary to the fact that the DLP is difficult and therefore the identity
of the participants is privacy-protected.

6 Experiments

We have implemented our scheme in a series of simulation environments and
describe it detailed in this section. To demonstrate that the proposed task assign-
ment scheme is effective, we simulated the scheme in a scenario where a FL
training task for handwritten digit recognition.

6.1 Experimental Setting

We conduct a series of experiments on a cloud server as the CSP and several
smart devices as TPi with different performances as shown in Table 1 to verify
our scheme. The configuration of the cloud server is given below.

– CPU: Intel Xeon Gold 6240R @ 16x 2.394 GHz
– RAM: 16 GB
– OS: Ubuntu 20.04.3 LTS x86 64

Table 1. Hardware configuration for participants

Properties Honor8-Lite Raspberry-Pi-4B Redmi-K30-Pro

CPU Kirin 655 BCM 2835 Snapdragon 865

RAM 4GB 4 GB 8 GB

OS EMUI 5.0 Raspberry Pi MIUI 13

Kernel Linux 5.4.0 Linux 5.4.0 Linux 5.4.0

Also, we employ the Charm-crypto [1] based Python 3.7 as the cryptographic
library. Then, some conditions were constructed following the experimental steps
of Zhang et al. [27] and Wang et al. [16]. Specifically, we simulate 1000 TPi in
MCS. Their computational power and the number of samples fit a Gaussian
distribution with a mean of 60 and a standard deviation of 10. Unless otherwise
specified, the security parameter used is κ = |p| = |q| = 512 and the model
accuracy testing experiments with a fixed seed. The two vectors adopted by
CSP for participant selection are

−→
X = (100, 100) and

−→
U = (1, 1).
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The CSP and TPi need to collaborate together in the built experiments to
perform a crowdsensing task (e.g., recognizing the written words of people in a
region). As a result, we deploy a convolutional neural network (CNN) for the
FL classification task by using the MNIST dataset with PyTorch framework.
Specially, the CNN model consists of three 5 × 5 convolution layers with ReLU
activation function, and the first two of which follow a 2 × 2 max pooling. Then,
there are two fully connected layers activated by the ReLU function and the
softmax function, respectively. Moreover, the hyperparameters of the model can
be described as follows. The epoch of the global model is 100, which means that
CSP needs to perform 100 rounds of aggregation operations. Local epoch for
each TPi is 10 and batch size is 8. Learning rate for all entities is 0.01 with
SGD momentum is 0.9. Besides, we will give other detailed parameters in the
experimental results.

6.2 Performance Evaluation

Based on the above experimental condition configuration, we present a series of
results separately.

Figure 3 shows a comparison of the computational overhead of reporting sta-
tus data with different smart devices as TPi. Further, the comparison of different
numbers of status data encrypted by the TPi during the status data reporting
phase is depicted in Fig. 3a, where the number of encrypted status data is set
from 2 to 50. Fig. 3b illustrates the comparison of the encryption TPi’s status
data for different security parameters. Obviously, with the security parameter
set to κ = 512, even if TPi needs to report about 50 pieces of status data, its
computation cost will not exceed 0.2 s. Similarly, TPi takes less than 0.2 s to
report two encrypted status data with parameter κ = 1024. Compared to the
time consumption of model training, our computational overhead in the par-
ticipant selection method is almost negligible while preserving the privacy of
TPi.

Fig. 3. Comparison of the participant’s status data reporting
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Next, we will analyze the computational overhead of our overall scheme com-
pared with FedSky in two different cases. We configure some key parameters as
follows. Each TPi reports its local sample size and computational power as

−→
Y i,

and these data all conform to a Gaussian distribution with mean as 60 and stan-
dard deviation as 10. In particular, computational power is the average size of
training dataset processed in a minute by TPi and the number of training rounds
is 100. The participant selection constraints for FedSky are set to [10, 1000]. As
shown in Fig. 4a and Fig. 4c, we simulate two cases where 100 participants are
selected from 1000 participants. All the status data in Case 1 follow an ideal
Gaussian distribution, while Case 2 includes an artificially added point. The
existence of the special point is justified by the fact that a participant may have
a lot of sample data but has a limited computational power. It is worth noting
that the training time of FL in MCS is affected by the slowest TPi processing
the local samples among all selected participants. Thus, the efficiency of FedSky
will be greatly affected when there is a TPi as the special red point wrapped
by a circle in the system. In Fig. 4b and Fig. 4d, the computational overheads of
the above two cases for one-round training are presented and additional cases
of selecting 10 and 50 participants are considered. Our scheme has a high com-

Fig. 4. Two cases, the computational power and the number of samples conform to a
Gaussian distribution with mean as 60 and standard deviation as 10.
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putational overhead in the participant selection process because of the use of
single-threaded homomorphic encryption to protect the status data of the par-
ticipants. However, our scheme avoids these issues to improve training efficiency
with personalized participant selection.

We also compare the accuracy of our model with FedSky in Fig. 5 for different
numbers of TPi selected. In particular, we set TPi to provide its computational
power and local sample size, and the upper and lower bound constraints in
FedSky are set to 10 and 100 respectively. Similarly, the computing power and
the number of local samples in TPi fit a Gaussian distribution with standard
deviation is 10 and mean is 60, and the number of training rounds shown is from
6 to 100. It can be seen that the accuracy of our scheme with a larger number
of participants selected is almost comparable to that of FedSky.

Meanwhile, as shown in Fig. 6, we also compare the FL task accuracy under
two different data distributions, independent identical distribution(IID) and non-
independent identical distribution(Non-IID). Concretely, different participants
are randomly assigned with different samples in the IID setting, where the main
classification samples in the Non-IID setting accounts for 70%, and the remaining
samples are randomly obtained from others. Moreover, we collect accuracy data

Fig. 5. Comparison of model testing accuracy for the case of choosing different number
of TPi.

Fig. 6. Comparison of the accuracy under different distributions.
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from 2 to 100 rounds. Fig. 6a shows that our scheme can obtain an accuracy close
to that of FedAvg even if only 100 participants are selected to participate in the
training task. Furthermore, our accuracy comparison with FedSky is shown in
Fig. 6b. Overall, our scheme can guarantee security and training efficiency while
obtaining a relatively close accuracy.

7 Conclusion

In this work, we propose a bilateral privacy-preserving task assignment with
personalized participant selection for mobile crowdsensing system. Specifically,
we provide the SKS-WED protocol as a top-k selection sub-protocol to per-
form the selection of participants in relatively excellent conditions to decrease
the impact of resource-constrained devices. In addition, the TR can personalize
the reference point and weight parameters to adjust the participant selection,
i.e., select participants with more data to improve the accuracy of the results.
Moreover, the privacy of both the selection parameters, the task content for
TR and the status data, the identity for participants also be protected. Finally,
we demonstrate the feasibility of our scheme through some necessary analyses,
comparisons with previous work, and a series of experiments. In the future, we
will consider the issue of matching participants under multi-tasking and further
improving system efficiency.
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Abstract. Federated learning (FL) enables multiple clients to jointly
train a global model without exposing local private datasets. The main
challenges for FL include communication efficiency, privacy and robust-
ness. In order to reduce the transmission cost of FL, there are cur-
rently some attempts to apply compressed sensing (CS) and quanti-
zation strategies as well as a combination of both. Insufficiently, they
ignore privacy and robustness. Differential privacy (DP) can guaran-
tee privacy by adding noise to gradient updates, but the convergence
or performance of the model will be reduced. In order to overcome the
shortcomings of existing methods, we propose the CS-DP-SignSGD algo-
rithm to address the above challenges. Specifically, the model updates
are compressed and quantized, which greatly reduces the transmission
cost. The one-bit quantization strategy SignSGD based on the major-
ity voting mechanism, which has natural Byzantine robustness, is used.
Since CS reduces the model size, CS-DP-SignSGD adds Gaussian noise
to the compressed model, which can reduce the amount of added noise
and improve model quality without losing privacy. More notably, we pro-
pose an adaptive threshold selection scheme to sparsely represent gra-
dients in the CS process, which achieves a certain degree of protection
for the sparse representation strategy. Finally, we carry out privacy and
convergence analyses of the algorithm. Experiments on the MNIST and
Fashion-MNIST datasets demonstrate the effectiveness of our proposed
method.

Keywords: Federated learning · Compressed sensing · SignSGD ·
Efficiency · Privacy · Byzantine robustness

1 Introduction

The challenges faced by traditional centralized machine learning include the high
transmission cost of centralized data, the exposure of sensitive data to the server,
and data privacy without guarantee. A kind of distributed machine learning
algorithm-Federated learning (FL) is proposed in [1], where clients can jointly
train a global model without sharing private data. The FL model in this paper
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consists of a server and several clients, and is trained according to the following
steps: Step 1: The server sends the initial global model to the selected clients
in this round of training. Step 2: Each client trains the model with local data
and transmits gradient updates back to the server. Step 3: The server aggregates
the gradients from clients, and then sends the aggregated gradients to clients to
update the local model and perform the next round of training.

The advantages of FL include: First, it provides confidentiality for each par-
ticipant’s training data by sharing only model updates rather than raw data.
Second, in order to reduce communication cost, the client can perform multi-
ple rounds of local SGD iterations, and then send model updates to the server.
Third, in each round of training, only some clients can be selected to update and
train the global model, which will further reduce the communication overhead
and make this method more favorable for situations involving a large number of
clients. It is pointed out in [1] that the communication cost in FL is still much
larger than the computational cost. Even though the FL system has reduced a
large amount of transmitted data by transmitting model updates, such models
like neural networks still contain a large number of parameters. For example, the
convolutional neural network in [1] contains 1,663,370 parameters. In order to
reduce the transmission cost, gradient quantization is proposed in [2] and [3] to
achieve data compression in both upstream and downstream communications.
In [2], SignSGD with majority voting is proposed, in which only the signs of the
gradients are transmitted to the server, thereby greatly saving the communica-
tion overhead. However, quantization only reduces the bits of a single gradient
and does not contribute to the total number of gradients. Compressed sensing
(CS) enables sampling below the Nyquist rate and near optimal reconstructed
signal, thereby reducing computational overhead and the number of measure-
ments. Currently, CS has also been applied to reduce the number of gradients
transmitted in FL [4].

In [5], the one bit-CS algorithm that only retains the sign of the measurements
is applied to FL, but privacy protection is not considered in the algorithm.
Besides, its sparse representation strategy for gradients is to remove most of
the gradients with small values, i.e., keep the gradients of Top-K. This sparse
representation uses a fixed threshold to filter gradients, but the training process
of the model varies between different clients and different iteration rounds, so
this is not reasonable. Furthermore, when the attacker knows the positions of
the K largest gradients retained in each round, he can easily infer that the rest
of the gradients are set to 0.

FL guarantees the privacy of training data by transmitting gradients. How-
ever, if the gradients are leaked, the attacker can use the gradients to infer
whether a certain piece of data [6] or group attribute [7] is included in the data
set of a client, or even recover all the training data [8]. Fortunately, differential
privacy (DP), a widely used privacy model [9], can provide privacy protection
for each participant. It provides DP guarantee by adding noise to the shared
gradients. However, the amount of noise added is proportional to the model size
(number of model parameters or weights). The more noise is added, the lower
of the convergence or the weaker of the model performance. It is proposed in [4]
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to compress gradients before adding noise, which can reduce the scale of adding
noise and improve the convergence of the model.

There may be also malicious clients in FL systems. Malicious clients can
compromise the global model by modifying local training data or model updates
sent to the server. This eventually results in the global model exhibiting low
accuracy on normal datasets or datasets specifically chosen by the attacker. A
number of Byzantine robust FL methods are proposed in [10,11], which are
resistant to malicious clients. The main idea of these methods is to mitigate the
influence of statistical outliers among the clients’ model updates, but requires
additional computational cost in the detection of outliers. It has been shown
in [2] that SignSGD based on the majority voting mechanism has Byzantine
robustness in the aggregation of quantized gradients, and can still show better
performance in systems with more than half of malicious clients.

To the best of our knowledge, there is no related research that can overcome
all the above-mentioned problems and obtain a FL algorithm that combines
high communication efficiency, privacy protection and robustness. Our proposed
CS-DP-SignSGD algorithm combines CS and SignSGD to greatly reduce the
communication cost in both upstream and downstream communications, and
introduces an adaptive threshold selection method to sparsely represent gradi-
ents. At the same time, in order to prevent the privacy and security risks brought
by gradient leakage, Gaussian noise is added to the compressed gradients to pro-
vide DP protection for all gradients, and the Byzantine robustness of SignSGD
is used to make the model resistant to malicious client attacks.

In summary, our contributions are as follows:

(1) For the first time, CS, one-bit quantization and DP are introduced into FL,
and an efficient, secure and Byzantine robust CS-DP-SignSGD algorithm
is proposed. By using CS, the amount of noise that needs to be added is
reduced, and the model performance is improved while reducing the trans-
mission cost in both upstream and downstream communications.

(2) An adaptive threshold selection scheme is proposed when the gradient is
sparsely represented. Based on the absolute value of the gradient, the K-th
largest absolute value of the gradient is adaptively selected as the threshold
to filter out the unimportant gradients.

(3) The proposed algorithm is used to perform image classification tasks on
two commonly used datasets. Compared with the FedAvg and SignSGD
baseline algorithms, the model accuracy is improved by about 6% and 3%,
respectively. The sparse representation proposed makes the model converge
faster, and the model performance remains optimal in the end compared to
Top-K.

2 Preliminary

2.1 Compressed Sensing

Compressed sensing (CS) [12] is a breakthrough signal acquisition and manip-
ulation paradigm that performs simultaneous sensing and compression, leading
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reducing computational overhead and number of measurements. A signal x ∈ R
n

working under CS is assumed to have a sparse representation s ∈ R
n in some

basis or dictionary Ψ ∈ R
n×n, that is,

x = Ψs, (1)

Here, s is K-sparse if ‖s‖0 = K. Ψ denotes Discrete Fourier/Cosine or Wavelet
Transform. If x is already sparse, then Ψ can be the identity matrix which corre-
sponds to the canonical sparsity basis. With the assumption on the sparsity, CS
performs the linear sensing step with the sensing operator Φ ∈ R

m×n, acquiring
a small number of measurements y ∈ R

m, with m < n and m = γ × n, where γ
is the compression ratio:

y = Φx. (2)

(2) represents both the sensing and compression step that can be realized at
the sensor level. Hence, we obtain a limited number of measurement y for other
processing steps from CS sensors. Combining (1) and (2), the CS model can be
written as

y = ΦΨs. (3)

In some applications, we need to reconstruct x from the measurement y.
The reconstruction of x is often considered to find the sparsest solution for an
underdetermined linear system.

min
s

‖s‖0 s.t. ‖y − ΦΨs‖2 ≤ ε, (4)

where ε is the amount of residual error allowed in the approximation. Numer-
ous algorithms have been proposed to solve the problem in (4) over the years,
which could be roughly categorized into linear programming algorithms [12]
and greedy algorithms [13]. Among these algorithms, iterative hard thresholding
(IHT) algorithm has been widely studied. This reconstruction method is robust
to observation noise and can guarantee near-optimal reconstruction.

2.2 Local Differential Privacy (LDP)

Many companies including Google, Apple, and Microsoft employ local differential
privacy (LDP) to combat inference attacks against shared data values [9]. The
users in an LDP system will upload perturbed data values instead of the raw
data values. A formal definition of LDP is provided in Definition 1. The privacy
loss consumption of the algorithm output is captured by the privacy budget ε.
ε = 0 means that the input and output are unrelated, achieving perfect privacy
protection; ε −→ ∞ means that there is no privacy guarantee.

Definition 1. Let A : 2X → Y be a randomized algorithm. The algorithm A
is (ε, δ) −local differentially private, where ε, δ > 0, if and only if for all data
entries D1,D2 ∈ X and all outputs Y ∈ Y, we have:

Pr [A (D)1 ∈ Y ] ≤ exp (ε) Pr [A (D)2 ∈ Y ] + δ. (5)
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If δ = 0, A is ε−local differentially private. For two adjacent inputs D1 and D2,
which differ by at most one piece of data, the purpose of LDP is to make the
distributions of A (D1) and A (D2) are as close as possible, and the degree of
similarity is measured by ε and δ.

3 The Proposed Algorithms

3.1 CS-DP-SignSGD

The proposed CS-DP-SignSGD scheme is presented in Algorithm 1, all the clients
are initialized with the same model structure and parameters w0. Since aggre-
gation servers are often limited in bandwidth or computing power, such as base
stations in wireless communication, only a part of clients can be selected by the
server to participate in aggregation. This paper uses the randomization method
to choose the clients, which is proposed in [1]. Before the t-th round of iteration
training (t ≥ 0), a set It containing kt clients is randomly selected to participate
in this round of iteration.

Each client uses the data set and the current model wt to train locally for
k rounds, and obtains the updated model wi

t ← SGD (wt,Di) , i ∈ It. Then
the update of each local model is obtained as di

t ← wi
t − wt, i ∈ It. Because it

requires high cost to directly transmit di
t to the server, CS-DP-SignSGD performs

gradient compression and quantization firstly, and then transmits the one-bit
measurements to the server. To be more specific, the sparse representation of
local updates di

t is realized using Algorithm 2. The sparse vector gi
t ∈ R

N is
given as gi

t ← Algorithm 2
(
di

t

)
.

According to CS theory, the aggregation operation on all measurements is
equivalent to the same operation on original gradients. By analyzing the Byzan-
tine Robustness of SignSGD, we propose to preserve signs of all gradients before
compression, which can ensure the aggregating of the measurements is equiva-
lent to aggregating the signs of all gradients. The operation of taking the signs
of gradients can be expressed as ci

t ← sign
(
gi

t

)
, where ci

t ∈ R
N . Then, ci

t is
compressed with a random measurement matrix At ∈ R

M×N (M < N), which
gets the compressed measurements yi

t ← Atc
i
t.

DP protection is achieved by adding noise to the gradients. The scale of
the added noise is positively related to the sensitivity S, which in turn is often
proportional to the model size N . The more noise you add, the larger the per-
turbation error will be, and the worse the model convergence or performance
will be. In the proposed algorithm, the perturbation error is less since noise is
added to the compressed measurements with the size M < N . Specifically, we
employ Analytic Gaussian Mechanism to add noise on gradients. Each client
uses the one-bit compressor dpsign(·) with DP proposed in [14] to quantize the
measurements, and then transmits dpsign(yi

t) to the server. The dpsign(·) is
defined as (6).
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Definition 2. For
any given gradient yi

t, the compressor outputs dpsign(yi
t, ε, δ), the j-th entry

is given by

dpsign(yi
t, ε, δ)j =

⎧
⎪⎪⎨

⎪⎪⎩

1, with probability Φ

(
(yi

t)j

σ

)

−1, with probability 1 − Φ

(
(yi

t)j

σ

)
,

(6)

where δ is the noise scale satisfying Φ
(

�
2σ − εσ

�
)
−eεΦ

(
− �

2σ − εσ
�
)

≤ δ (Analytic
Gaussian Mechanism [15]).

Algorithm 1: CS-DP-SignSGD

Input: initial parameters w0, global round T , learning rate η,
compressor dpsign(·), measurement matrix At, current residual error vector et,
error decay rate λ.
Output: optimized parameters wT+1.
Initialization: All clients are initialized with the same global model with
parameters w0.
1:for t = 0, ..., T do
2: A set It of clients are randomly chosen.
3: for i ∈ It in parallel do
4: wi

t ← SGD (wt,Di)
5: di

t ← wi
t − wt

6: gi
t ← Algorithm 2

(
di

t

)

7: ci
t ← sign

(
gi

t

)

8: yi
t ← Atc

i
t

9: Send dpsign(yi
t)to server.

10: end
11: The server does:

12: push yglo
t ← sign

(
1
kt

∑
i∈It

dpsign
(
yi

t

)
+ et

)
to the clients.

13: update residual error:

14: et+1 = λ ∗ et + (1 − λ) ∗
(

1
kt

∑
i∈It

dpsign
(
yi

t

)− 1
kt

yglo
t

)

15: for i ∈ {1, 2, ..., It} in parallel do:

16: rt ← BIHT
(
At, g

glo
t

)

17: wt+1 ← wt − ηrt

18: end
19:end
20:Return wT+1.

When the server receives one-bit measurements from multiple clients, it will
use a majority-based voting strategy to fuse the measurements and compensate
for the error caused by quantization, which can be expressed as
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yglo
t ← sign

(
1
kt

∑

i∈It

dpsign
(
yi

t

)
+ et

)

, (7)

where et represents the quantization error, and the update of this error is

et+1 = λ ∗ et + (1 − λ) ∗
(

1
kt

∑

i∈It

dpsign
(
yi

t

)− 1
kt

yglo
t

)

, (8)

where λ is the decay rate of the error. Then, the fusion result yglo
t ∈ {−1, 1}M

is transmitted back to all clients. Each client reconstructs the global model
update rt based on the received yglo

t by means of the BIHT algorithm [16], i.e.,
rt ← BIHT

(
At, g

glo
t

)
. Each client updates the global model wt+1 ← wt − ηrt,

where η is the learning rate.

3.2 Sparse Representation of Gradients with Adaptive Threshold

In our approach, CS is used to compress gradients. According to the CS theory,
the sparse signal model can ensure a high compression rate. As long as the target
signal has a sparse representation in a known basis or frame in advance, the
original signal can be reconstructed without distortion. However, the gradients
of the model often cannot meet the requirement of sparse representation, that
is, most of the gradients are not 0. At the same time, according to the previous
works [17], most gradients updated by clients are insignificant with values close
to 0. The gradient is negligible for model aggregation operation if the gradient
is close to 0. Therefore, the client can achieve sparse representation of gradients
by reserving only the Top-K most important values (with gradient values much
larger than 0), and set the rest of gradients to 0. However, in the face of a powerful
attacker, this sparse method has certain vulnerability. Once the attacker obtains
the positions of the Top-K gradients, it can be inferred that the rest of the
gradients are set as 0.

In this paper, we compare
∣
∣di

t [j]
∣
∣+ ρ with θ + ν to evaluate whether di

t [j] is
significant, where θ is the threshold, ρ and ν are Gaussian noises used to distort
the original gradient and the threshold for comparison. Note that if a gradient
is larger, the probability that it can pass the evaluation is higher, which means
it is more significant. Inspired by the Top-K algorithm, which is widely used to
select significant gradients for compression in FL model compression algorithm,
we adaptively set θ by considering the K-th most significant gradient. Different
from the Top-K sparse algorithm, which is always fixed to reserve the Top-K
gradients, the adaptive threshold method can only guarantee that larger gradi-
ents have a greater probability of being reserved. DP noises will be added to
distort both gradients and the threshold in our method. This makes the Top-K
gradients no longer be reserved every time. Assuming that the attacker knows
the positions of the Top-K gradients, he cannot directly infer that the gradi-
ents in the rest of the positions are set to 0. Sparse representation of gradients
with adaptive threshold is provided in Algorithm 2. All gradients are judged: if
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∣
∣di

t [j]
∣
∣+ ρ > θ + ν, then di

t [j] will be put into set βt. Therefore, only the Top-P
gradients in the set are retained and the others are set to 0. Finally the sparse
representation gi

t of all gradients can be obtained.

Algorithm 2: Sparse Representation of Gradients with Adaptive Threshold

Input: the gradients of the t-th round di
t, the number of preserved gradients P

Output: the sparse representation of gradients gi
t.

Sort di
t [j] in decreasing order and θ is equal to the K-th largest absolute value.

1:for j=0,...,d do

2: Generate Gaussian noise ρ = N
(
0, σ2

)
, ν = N

(
0, σ

′2
)

3: If
∣
∣di

t [j]
∣
∣+ ρ > θ + ν, di

t [j] then

4: Put di
t [j] into set βt

5: end

6:end

7:Sort βt and only reserve the Top-P values.

8:for j=0,...,d do // The d represents the number of gradients in di
t

9: if di
t [j] in βt then

10: gi
t [j] = di

t [j]

11: end

12: else

13: gi
t [j] = 0

14: end

15:end

16:Return gi
t.

4 Theoretical Analysis

4.1 Privacy Analysis

The server can only access the noisy measurements from multiple clients which
is sufficiently perturbed to ensure DP. It is emphasized that the sparse repre-
sentation process is ultimately to obtain P preserved gradients. Therefore, the
privacy protection of sparsified gradients is discussed in this subsection.

Theorem 1. (Privacy of CS-DP-SignSGD). CS-DP-SignSGD is (ε, δ) −
differentially private for any ε > 0 and δ ∈ (0, 1).

Proof. In order to prove the CS-DP-SignSGD is (ε, δ) −differentially private, we
just need to prove dpsign(·, ε, δ) is (ε, δ) −differentially private [18]. We start
from the one-dimension scenario and consider any two items a, b that satisfy
‖ a − b ‖2≤ 
2. Without loss of generality, assume that dpsign(a, ε, δ) =
dpsign(b, ε, δ) = z. Then we get

P (dpsign(a, ε, δ) = z) = Φ
( a

σ

)
=
∫ a

−∞

1√
2πσ

e− x2

2σ2 dx. (9)
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P (dpsign(b, ε, δ) = z) = Φ

(
b

σ

)
=
∫ b

−∞

1√
2πσ

e− x2

2σ2 dx. (10)

and
P (dpsign(a, ε, δ) = z)
P (dpsign(b, ε, δ) = z)

=

∫ a

−∞ e− x2

2σ2 dx

∫ b

−∞ e− x2

2σ2 dx
=

∫∞
0

e− (x−a)2

2σ2 dx

∫∞
0

e− (x−b)2

2σ2 dx
(11)

According to Analytic Gaussian Mechanism [15], we can derive that
e−ε ≤

∣
∣
∣P (dpsign(a,ε,δ)=z)

P (dpsign(b,ε,δ)=z)

∣
∣
∣ ≤ eε with probability at least 1 − δ.

For the multi-dimension scenario and considering any two items a, b that
satisfy ‖ a − b ‖2≤ 
2 and v ∈ {−z, z}d, we have

P (dpsign(a, ε, δ) = v)
P (dpsign(b, ε, δ) = v)

=

∫
D

e− ‖x−a‖2
2

2σ2 dx

∫
D

e− ‖x−b‖2
2

2σ2 dx
, (12)

where D is some integral area depending on v. Similarly, we get that
e−ε ≤

∣
∣
∣P (dpsign(a,ε,δ)=v)

P (dpsign(b,ε,δ)=v)

∣
∣
∣ ≤ eε with probability at least 1 − δ.

We have proved dpsign(·, ε, δ) is (ε, δ) −differentially private. Therefore, what
the server gets is the noisy measurements. Our emphasis on security is also
derived from this, and subsequent sign(·) and BIHT (·) will not affect the secu-
rity of the process.

4.2 Convergence Analysis

In order to facilitate the convergence analysis, the following commonly adopted
assumptions are made.

Assumption 1. (lower Bound). For all w and an optional result F ∗, we have
objective value F (w) ≥ F ∗.

Assumption 2. (Smoothness). For any wi and wj , we require for the non-
negative constant L.

F (wi) ≤ F (wj) + 〈F (wj), wi − wj〉 +
L

2
‖wi − wj‖22 (13)

where 〈·, ·〉 is the standard inner product.

Assumption 3. The total number of clients (i.e., kt) is odd. Assumption 1 and
2 are standard for non-convex optimization [19] and Assumption 3 is to ensure
there always exists a winner in the majority vote [16], which can be relaxed.
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In this paper, a typical federated optimization problem with kt normal work-
ers in CS-DP-SignSGD is considered to minimize the finite-sum objective of the
form

min F (w)
w∈Rd

, s.t F (w)
�
=

1
kt

∑kt

i=1fi(w), (14)

where fi(w) is the loss function defined by the private dataset of client i and the
current global model w.

Theorem 2. (Convergence of CS-DP-SignSGD). When Assumption 1, 2 and 3
are satisfied, by running Algorithm 1 T rounds with the learning rate η = 1

kt

√
Tn

,
we have

1
T

T∑

t=1

‖F (wt)‖22
α

≤
[
F (w(1)) − F ∗ + (C2 + LC2 + L2βγ)

]√
n√

T
, (15)

where α ≥ α0 is a constant, γ ∈ (0, 1] is the compression ratio, β and C are two
positive constants, L is a non-negative constant and the dimension of compressed
gradients is R

γn.

The proof of Theorem 2 follows the strategy of taking qt = wt − ηktB(et)
such that qt is updated in a similar way as wt in the non error-feedback scenario,
where B (·) is the simplification version of algorithm BIHT (·). For brevity, the
decay rate λ in Algorithm 1 is omitted, so et+1 = et + 1

kt

∑kt

i=1ŷ
i
t − 1

kt
yglo

t , where
ŷi

t = dpsign(yi
t).

Lemma 1. Let qt = wt − ηktB(et), we have

q(t+1) = q(t) − ηB(
∑kt

i=1ŷ
i
t). (16)

Proof.
qt+1 = wt+1 − ηktB(et+1)

= wt − ηrt − ηktB(et+1)

= wt − ηrt − ηktB(et +
1
kt

∑kt

i=1ŷ
i
t − 1

kt
yglo

t )

= wt − ηktB(et) − ηB(
∑kt

i=1ŷ
i
t)

= q(t) − ηB(
∑kt

i=1ŷ
i
t).

(17)

According to [18], there exists a positive constant β > 0 such that
E

[∥
∥e(t)

∥
∥2
2

]
≤ βγn,∀t. Therefore, we have
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E

[
F (q(t+1)) − F (q(t))

]

≤ −ηktE

[〈
F (q(t)),

1
kt

B(
∑kt

i=1ŷ
i
t)
〉]

+
L

2
E

[∥
∥
∥−ηB(
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We bound the first term as
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We can know there exists C > 0 such that E [|B(dpsign(·)|] ≤ C based on [16].
Then, the last term can be bounded as
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Plugging (19) and (20) into (18) yields
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Rewriting (21) and taking average over t = 1, 2, 3, ..., T on both sides, we have
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Taking η = 1
kt

√
Tn

and w(1) = q(1) yields (15).

5 Performance Evaluation

5.1 Datasets and Experimental Setup

Datasets and models: The model used by the local client is a simple feed-forward
neural network with 64 hidden units. It is important to emphasize that our main
goal is not to achieve state-of-the-art accuracy, but to verify the effectiveness of
our proposed method. The datasets are MNIST dataset and Fashion-MNIST
dataset. MNIST dataset contains 60000 training images and 10000 test images
of handwritten digits from 0 to 9. Fashion-MNIST dataset contains 60000 train-
ing images and 10000 test images of ten different classes of fashion items. The
experiments are conducted on a Windows platform with an AMD Ryzen 7 5800H
CPU and 32 GB RAM.

Implementation details: The FL system contains a central server and It

clients. In the following experiments, It is fixed at 30, which means 30 clients
will be randomly selected to participate in the training in each round. The num-
ber of labels c is fixed at 10, which is assigned to each client and can be used
as a metric to measure the data heterogeneity. For fair comparison, we set the
same hyper-parameters (batch size as 256, local epoch as 2, and learning rate as
0.01) for all algorithms on both datasets. We set L2 norm bound as 1, privacy
budget ε = 1, error decay rate λ = 0.5, the level of sparsity to be 0.001, and the
compression ratio is fixed at γ = M/N = 0.5.

5.2 Comparison Between the Proposed Algorithm and the Baseline
Algorithms

We compare the performances of the proposed algorithm and the baseline meth-
ods including FedAvg [1], SignSGD [2], and DP-SignSGD [14] on the MNIST
and Fashion-MNIST datasets. It can be easily observed from Fig. 1 that, on
the MNIST dataset, CS-DP-SignSGD significantly outperforms SignSGD and
FedAvg and slightly outperforms DP-SignSGD. Similar results can also be seen
from Fig. 2 for Fashion-MNIST.
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The reason is that the injected noises in DP-SignSGD and CS-DP-SignSGD
act as regularization technique. Meanwhile, much noise added will result in
the negative impact on model performance. The application of CS reduces the
amount of data in the early stage, which reduces the amount of Gaussian noise
added later, and the model performance can be further improved. But at the
same time, CS will also bring a certain gradient reconstruction error. When com-
munication rounds is less than 30, performance of the proposed method is lower
than DP-SignSGD due to the reconstruction error. As the number of commu-
nication rounds increases, compared with DP-SignSGD, the proposed method
reduces the amount of added noise and the performance increases roughly 2%–
3% finally. In addition, we notice that FedAvg does not outperform all other
baselines under the same hyper-parameter setting and communication rounds
between the server and clients. Because FedAvg converges slowly, it can perform
better by increasing the local training time, reducing the local mini-batch size
and assigning a much larger initial learning rate that decays exponentially [20].
In addition, we notice that the model accuracy obtained when training with
Fashion-MNIST dataset is lower than MNIST. After analysis, we believe the
reason is that the model used in this paper is only for the verification of the
scheme, which is relatively simple and is not suitable for more complex classifi-
cation tasks.

Fig. 1. MNIST test accuracy Fig. 2. Fashion-MNIST test accuracy

In terms of communication efficiency, all the SignSGD based methods reduce
the communication overhead each round by 32 times compared with FedAvg
using full-precision gradients. CS-DP-SignSGD uses CS on the basis of SignSGD.
In the experiments, the compression ratio is set to 0.5, which further reduces
the communication overhead to 1/64 of FedAvg. As shown in Fig. 3, in the case
of the same communication overhead, CS-DP-SignSGD performs more iteration
rounds, and the corresponding accuracy is higher, followed by SignSGD. In addi-
tion, it needs to be emphasized that the communication cost of DP-SignSGD is
the same as that of SingSGD, so it is not shown here.



504 D. Xiao et al.

Fig. 3. Test accuracy attained by FedAvg, SignSGD and CS-DP-SignSGD after upload-
ing a certain amount of data to the central server.

5.3 Sparsifying Methods

In order to verify the superiority of our proposed sparse representation algo-
rithm, as shown in Fig. 4, we obtain different model performances on the MNIST
dataset by using three sparse representation methods for CS-DP-SignSGD, that
is, random gradient preservation, Top-K gradient preservation, and the adaptive
threshold sparsifying. As can be seen from the figure, the proposed sparsifying in
this paper is significantly better than random gradient preservation and slightly
better than Top-K sparse method [21]. On the one hand, it shows that the
larger the gradient, the greater the impact on the model performance, and with
only some of the largest gradients, we can achieve the same model performance
as using all the gradients. On the other hand, compared to Top-K gradient
preservation, the adaptive threshold sparsifying proposed in this paper performs
slightly better because of the more flexible preservation of gradients. By per-
forming the same experiment on the Fashion-MINIST dataset, we obtain similar
experimental results as the MNIST dataset from Fig. 4.



Communication-Efficient and Secure Federated Learning 505

Fig. 4. The accuracy of CS-DP-SignSGD with random preservation sparsifying, Top-K
sparsifying and adaptive threshold sparsifying in MNIST and Fashion-MNIST.

Fig. 5. The performance of CS-DP-SignSGD with different percentage of Byzantine
parties in MNIST.

5.4 Byzantine Robustness

In addition to normal participants in FL, there may be Byzantine attackers
who destruct the global model by modifying the local dataset or the model
uploaded to the server. Ultimately, the corrupted model shows poor performance
on common datasets or specific datasets. In this paper, we mainly consider the
attacker who destroys the model, and assume that the attacker uses a stronger
attack than randomly changing the gradient sign, that is, reversing the signs of
all uploaded gradients, i.e., byzantine:sign

(
yi

t

)
= −sign

(
yi

t

)
. In the meantime,
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we ignore the attack method of rescaling the gradients, because SignSGD just
aggregates all the signs of gradients, which is naturally robust to the attack of
changing the value of the gradients.

Figure 5 shows the model accuracy of the CS-DP-SignSGD algorithm against
different numbers of Byzantine attackers on the MNIST dataset. It can be found
that when 40% of the participants are Byzantine attackers, the performance of
the algorithm CS-DP-SignSGD proposed in this paper can still remain stable.
Furthermore, we compare the robustness of the proposed algorithm with other
algorithms. As shown in Fig. 6, when 20% of the participants are Byzantine
attackers, in the early stage of training, the accuracy of CS-DP-SignSGD is low
due to the reconstruction errors. But when the number of iterations reaches a cer-
tain number, the proposed algorithm approaches and finally slightly outperforms
DP-SignSGD. This shows that CS-DP-SignSGD also has a good performance in
Byzantine robustness under the requirement of communication efficiency and
security. The robustness of CS itself can enhance the Byzantine attack resis-
tance capability of CS-DP-SignSGD to a certain extent.

Fig. 6. Test accuracy with Byzantine attackers in MNIST.

6 Conclusion

Based on SignSGD, CS and DP, we propose an efficient and secure FL algorithm
CS-DP-SignSGD. In the proposed algorithm, the compressed and quantized one-
bit measurements are aggregated by the server, and then the aggregated gradi-
ents are sent to the clients for reconstruction to obtain the currently updated
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model. The proposed scheme realizes data compression in both upstream and
downstream communications, which greatly improves the communication effi-
ciency and the privacy protection of gradients. Different from the traditional
Top-K sparse representation method, the adaptive threshold sparsifying is inno-
vatively proposed to sparsely represent gradients, which protects the sparsifying
rules and enhances the security of the sparsifying process. Theoretical analy-
ses prove the privacy and convergence of the proposed scheme. Through the
experiments on the datasets MNIST and Fashion-MNIST, it is proved that the
proposed algorithm is superior to both the FedAvg and SignSGD algorithms in
terms of model performance and communication efficiency. Some future research
avenues include exploring how to further enhance the robustness of FL systems
under various Byzantine attack scenarios and applying CS tools to more complex
FL scenarios, such as decentralized FL and vertical FL.
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