
Eike Kiltz
Vinod Vaikuntanathan (Eds.)

LN
CS

 1
37

48

20th International Conference, TCC 2022
Chicago, IL, USA, November 7–10, 2022
Proceedings, Part II

Theory
of Cryptography

Lecture Notes in Computer Science 13748

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

More information about this series at https://link.springer.com/bookseries/558

https://springerlink.bibliotecabuap.elogim.com/bookseries/558

Eike Kiltz · Vinod Vaikuntanathan (Eds.)

Theory
of Cryptography
20th International Conference, TCC 2022
Chicago, IL, USA, November 7–10, 2022
Proceedings, Part II

Editors
Eike Kiltz
Ruhr University Bochum
Bochum, Germany

Vinod Vaikuntanathan
Massachusetts Institute of Technology
Cambridge, MA, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-22364-8 ISBN 978-3-031-22365-5 (eBook)
https://doi.org/10.1007/978-3-031-22365-5

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-1178-048X
https://orcid.org/0000-0002-2666-0045
https://doi.org/10.1007/978-3-031-22365-5

Preface

The 20th Theory of Cryptography Conference (TCC 2022) was held during November
7–10, 2022, at the University of Chicago, USA. It was sponsored by the International
Association for Cryptologic Research (IACR). The general chair of the conference was
David Cash.

The conference received 139 submissions, of which the Program Committee (PC)
selected 60 for presentation giving an acceptance rate of 43%. Each submission was
reviewed by at least three PC members in a single-blind process. The 44 PC members
(including PC chairs), all top researchers in our field, were helped by 116 external
reviewers, who were consulted when appropriate. These proceedings consist of the
revised version of the 60 accepted papers. The revisions were not reviewed, and the
authors bear full responsibility for the content of their papers.

We are extremely grateful to Kevin McCurley for providing fast and reliable techni-
cal support for the HotCRP review software whenever we had any questions. We made
extensive use of the interaction feature supported by the review software, where PC
members could anonymously interact with authors. This was used to ask specific techni-
cal questions, such as those about suspected bugs or unclear connections to prior work.
We believe this approach improved our understanding of the papers and the quality of
the review process. We also thank Kay McKelly for her fast and meticulous help with
the conference website.

This was the eighth year that TCC presented the Test of Time Award to an out-
standing paper that was published at TCC at least eight years ago, making a significant
contribution to the theory of cryptography, preferably with influence also in other areas
of cryptography, theory, and beyond. This year, the Test of Time Award Committee
selected the following paper, published at TCC 2011: “Perfectly secure oblivious RAM
without random oracles” by Ivan Damgård, SigurdMeldgaard, and Jesper Buus Nielsen.
The award committee recognized this paper for “the first perfectly secure unconditional
Oblivious RAM scheme and for setting the stage for future Oblivious RAM and PRAM
schemes”. The authors were invited to deliver a talk at TCC 2022. The conference also
featured two other invited talks, by Rahul Santhanam and by Eran Tromer.

This year, TCC awarded a Best Young Researcher Award for the best paper authored
solely by young researchers. The award was given to the paper “A Tight Computational
Indistinguishability Bound of Product Distributions” by Nathan Geier.

We are greatly indebted to the many people who were involved in making TCC 2022
a success. A big thanks to the authors who submitted their papers and to the PC mem-
bers and external reviewers for their hard work, dedication, and diligence in reviewing
the papers, verifying their correctness, and discussing the papers in depth. We thank
the University of Chicago Computer Science department, Google Research, Algorand
Foundation, NTT Research, and Duality Technologies for their generous sponsorship
of the conference. A special thanks goes to the general chair David Cash, and to Brian
LaMacchia, Kevin McCurley, Kay McKelly, Sandry Quarles, Douglas Stebila, and the

vi Preface

TCCSteering Committee. Finally, we are thankful to the thriving and vibrant community
of theoretical cryptographers. Long Live TCC!

September 2022 Eike Kiltz
Vinod Vaikuntanathan

Organization

General Chair

David Cash University of Chicago, USA

Program Committee Chairs

Eike Kiltz Ruhr-Universität Bochum, Germany
Vinod Vaikuntanathan MIT, USA

Steering Committee

Jesper Buus Nielsen Aarhus University, Denmark
Krzysztof Pietrzak Institute of Science and Technology, Austria
Huijia (Rachel) Lin UCSB, USA
Yuval Ishai Technion, Israel
Tal Malkin Columbia University, USA
Manoj M. Prabhakaran IIT Bombay, India
Salil Vadhan Harvard University, USA

Program Committee

Gilad Asharov Bar-Ilan University, Israel
Marshall Ball New York University, USA
Amos Beimel Ben Gurion University, Israel
Fabrice Benhamouda Algorand Foundation, USA
Nir Bitansky Tel Aviv University, Israel
Zvika Brakerski Weizmann Institute of Science, Israel
Anne Broadbent University of Ottawa, Canada
Yilei Chen Tsinghua University, China
Ran Cohen Reichman University, Israel
Geoffroy Couteau CNRS, IRIF, Université Paris Cité, France
Nils Fleischhacker Ruhr University Bochum, Germany
Rishab Goyal University of Wisconsin-Madison, USA
Siyao Guo NYU Shanghai, China
Dennis Hofheinz ETH Zurich, Switzerland
Gabe Kaptchuk Boston University, USA
Jonathan Katz University of Maryland, USA

viii Organization

Dakshita Khurana UIUC, USA
Susumu Kiyoshima NTT Research, USA
Karen Klein ETH Zurich, Switzerland
Venkata Koppula Indian Institute of Technology Delhi, India
Eyal Kushilevitz Technion, Israel
Alex Lombardi University of California, Berkeley, USA
Julian Loss CISPA Helmholtz Center for Information

Security, Germany
Fermi Ma Simons Institute and UC Berkeley, USA
Mohammad Mahmoody University of Virginia, USA
Ryo Nishimaki NTT Corporation, Japan
Adam O’Neill University of Massachusetts Amherst, USA
Emmanuela Orsini KU Leuven, Belgium
Omer Paneth Tel Aviv University, Israel
Alon Rosen Bocconi University, Italy
Lior Rotem The Hebrew University, Israel
Ron Rothblum Technion, Israel
Peter Scholl Aarhus University, Denmark
Sruthi Sekar UC Berkeley, USA
Katerina Sotiraki UC Berkeley, USA
Nicholas Spooner University of Warwick, UK
Noah Stephens-Davidowitz Cornell University, USA
Stefano Tessaro University of Washington, USA
Prashant Vasudevan National University of Singapore, Singapore
David Wu University of Texas at Austin, USA
Yu Yu Shanghai Jiao Tong University, China
Mark Zhandry NTT Research and Princeton University, USA

Additional Reviewers

Damiano Abram
Amit Agarwal
Shweta Agrawal
Nicolas Alhaddad
Benedikt Auerbach
Renas Bacho
Christian Badertscher
Saikrishna Badrinarayanan
James Bartusek
Gabrielle Beck
Alexander Bienstock
Dung Bui
Suvradip Chakraborty

Rohit Chatterjee
Arka Rai Choudhuri
Kelong Cong
Hongrui Cui
Eric Culf
Dana Dachman-Soled
Pratish Datta
Lalita Devadas
Nico Döttling
Thomas Espitau
Jaiden Fairoze
Oriol Farràs
Weiqi Feng

Ben Fisch
Danilo Francati
Tore Frederiksen
Cody Freitag
Rachit Garg
Romain Gay
Nicholas Genise
Suparno Ghoshal
Aarushi Goel
Eli Goldin
Shai Halevi
Mathias Hall-Andersen
Dominik Hartmann

Organization ix

Alexandra Henzinger
Martin Hirt
Viet Tung Hoang
Charlotte Hoffmann
Justin Holmgren
James Hulett
Yuval Ishai
Palak Jain
Ruta Jawale
Zhengzhong Jin
Daniel Jost
Chethan Kamath
Martti Karvonen
Julia Kastner
Shuichi Katsumata
Fuyuki Kitagawa
Sabrina Kunzweiler
Ulysse Lechine
Derek Leung
Hanjun Li
Baiyu Li
Xiao Liang
Yao-Ting Lin
Tianren Liu
Qipeng Liu
Chen-Da Liu-Zhang

Sébastien Lord
George Lu
Takahiro Matsuda
Pierre Meyer
Pratyush Mishra
Tamer Mour
Marta Mularczyk
Alice Murphy
Varun Narayanan
Hai Nguyen
Maciej Obremski
Michele Orrù
Hussien Othman
Tapas Pal
Giorgos Panagiotakos
Dimitris Papachristoudis
Guillermo Pascual Perez
Anat Paskin-Cherniavsky
Robi Pedersen
Luowen Qian
Willy Quach
Nicholas Resch
Lawrence Roy
Yusuke Sakai
Pratik Sarkar
Benjamin Schlosser

Akash Shah
Yixin Shen
Omri Shmueli
Min Jae Song
Fang Song
Pratik Soni
Shravan Srinivasan
Igors Stepanovs
Dominique Unruh
Neekon Vafa
Benedikt Wagner
Hendrik Waldner
Mingyuan Wang
Hoeteck Wee
Ke Wu
Zhiye Xie
Sophia Yakoubov
Takashi Yamakawa
Eylon Yogev
Peter Yuen
Rachel Zhang
Jiaheng Zhang
Vassilis Zikas
Leo de Castro
Akin Ünal

Contents – Part II

Encryption

Forward-Secure Encryption with Fast Forwarding . 3
Yevgeniy Dodis, Daniel Jost, and Harish Karthikeyan

Rate-1 Incompressible Encryption from Standard Assumptions 33
Pedro Branco, Nico Döttling, and Jesko Dujmović

Achievable CCA2 Relaxation for Homomorphic Encryption 70
Adi Akavia, Craig Gentry, Shai Halevi, and Margarita Vald

Multi-party Computation I

Round-Optimal Honest-Majority MPC in Minicrypt and with Everlasting
Security: (Extended Abstract) . 103
Benny Applebaum, Eliran Kachlon, and Arpita Patra

Sublinear Secure Computation from New Assumptions . 121
Elette Boyle, Geoffroy Couteau, and Pierre Meyer

How to Obfuscate MPC Inputs . 151
Ian McQuoid, Mike Rosulek, and Jiayu Xu

Statistical Security in Two-Party Computation Revisited . 181
Saikrishna Badrinarayanan, Sikhar Patranabis, and Pratik Sarkar

Protocols: Key Agreement and Commitments

On the Worst-Case Inefficiency of CGKA . 213
Alexander Bienstock, Yevgeniy Dodis, Sanjam Garg, Garrison Grogan,
Mohammad Hajiabadi, and Paul Rösler

Adaptive Multiparty NIKE . 244
Venkata Koppula, Brent Waters, and Mark Zhandry

On the Impossibility of Algebraic Vector Commitments in Pairing-Free
Groups . 274
Dario Catalano, Dario Fiore, Rosario Gennaro, and Emanuele Giunta

xii Contents – Part II

Four-Round Black-Box Non-malleable Schemes from One-Way
Permutations . 300
Michele Ciampi, Emmanuela Orsini, and Luisa Siniscalchi

Theory I: Sampling and Friends

A Tight Computational Indistinguishability Bound for Product
Distributions . 333
Nathan Geier

Secure Sampling with Sublinear Communication . 348
Seung Geol Choi, Dana Dachman-Soled, S. Dov Gordon, Linsheng Liu,
and Arkady Yerukhimovich

Secure Non-interactive Simulation from Arbitrary Joint Distributions 378
Hamidreza Amini Khorasgani, Hemanta K. Maji, and Hai H. Nguyen

Secure Non-interactive Reducibility is Decidable . 408
Kaartik Bhushan, Ankit Kumar Misra, Varun Narayanan,
and Manoj Prabhakaran

Multi-party Computation II

Round-Optimal Black-Box Secure Computation from Two-Round
Malicious OT . 441
Yuval Ishai, Dakshita Khurana, Amit Sahai, and Akshayaram Srinivasan

Fully-Secure MPC with Minimal Trust . 470
Yuval Ishai, Arpita Patra, Sikhar Patranabis, Divya Ravi,
and Akshayaram Srinivasan

SCALES: MPC with Small Clients and Larger Ephemeral Servers 502
Anasuya Acharya, Carmit Hazay, Vladimir Kolesnikov,
and Manoj Prabhakaran

OnPerfectly Secure Two-Party Computation for Symmetric Functionalities
with Correlated Randomness . 532
Bar Alon, Olga Nissenbaum, Eran Omri, Anat Paskin-Cherniavsky,
and Arpita Patra

Lattices

Public-Key Encryption from Homogeneous CLWE . 565
Andrej Bogdanov, Miguel Cueto Noval, Charlotte Hoffmann,
and Alon Rosen

Contents – Part II xiii

PPAD is as Hard as LWE and Iterated Squaring . 593
Nir Bitansky, Arka Rai Choudhuri, Justin Holmgren, Chethan Kamath,
Alex Lombardi, Omer Paneth, and Ron D. Rothblum

Parallelizable Delegation from LWE . 623
Cody Freitag, Rafael Pass, and Naomi Sirkin

How to Sample a Discrete Gaussian (and more) from a Random Oracle 653
George Lu and Brent Waters

Anonymity, Verifiability and Robustness

Anonymous Whistleblowing over Authenticated Channels 685
Thomas Agrikola, Geoffroy Couteau, and Sven Maier

Poly Onions: Achieving Anonymity in the Presence of Churn 715
Megumi Ando, Miranda Christ, Anna Lysyanskaya, and Tal Malkin

The Price of Verifiability: Lower Bounds for Verifiable Random Functions 747
Nicholas Brandt, Dennis Hofheinz, Julia Kastner, and Akin Ünal

Bet-or-Pass: Adversarially Robust Bloom Filters . 777
Moni Naor and Noa Oved

Author Index . 809

Encryption

Forward-Secure Encryption with Fast
Forwarding

Yevgeniy Dodis1, Daniel Jost1(B) , and Harish Karthikeyan2

1 New York University, New York, USA
{dodis,daniel.jost}@cs.nyu.edu

2 J.P. Morgan AI Research, New York, USA
harish.karthikeyan@jpmchase.com

Abstract. Forward-secure encryption (FSE) allows communicating par-
ties to refresh their keys across epochs, in a way that compromising the cur-
rent secret key leaves all prior encrypted communication secure. We inves-
tigate a novel dimension in the design of FSE schemes: fast-forwarding
(FF). This refers to the ability of a stale communication party, that is
“stuck” in an old epoch, to efficiently “catch up” to the newest state, and
frequently arises in practice. While this dimension was not explicitly con-
sidered in prior work, we observe that one can augment prior FSEs—both
in symmetric- and public-key settings—to support fast-forwarding which
is sublinear in the number of epochs. However, the resulting schemes have
disadvantages: the symmetric-key scheme is a security parameter slower
than any conventional stream cipher, while the public-key scheme inherits
the inefficiencies of the HIBE-based forward-secure PKE.

To address these inefficiencies, we look at the common real-life sit-
uation which we call the bulletin board model, where communicating par-
ties rely on some infrastructure—such as an application provider—to help
them store and deliver ciphertexts to each other. We then define and con-
struct FF-FSE in the bulletin board model, which addresses the above-
mentioned disadvantages. In particular,

– Our FF-stream-cipher in the bulletin-board model has: (a) constant
state size; (b) constant normal (no fast-forward) operation; and (c)
logarithmic fast-forward property. This essentially matches the effi-
ciency of non-fast-forwardable stream ciphers, at the cost of constant
communication complexity with the bulletin board per update.

– Our public-key FF-FSE avoids HIBE-based techniques by instead
using so-called updatable public-key encryption (UPKE), introduced
in several recent works (and more efficient than public-key FSEs). Our
UPKE-based scheme uses a novel type of “update graph” that we con-
struct in this work. Our graph has constant in-degree, logarithmic
diameter, and logarithmic “cut property” which is essential for the effi-
ciency of our schemes. Combined with recent UPKE schemes, we get
two FF-FSEs in the bulletin board model, under DDH and LWE.

Y. Dodis—Partially supported by gifts from VMware Labs and Algorand Foundation,
and NSF grants 1815546 and 2055578.
D. Jost—Research supported by the Swiss National Science Foundation (SNF) via
Fellowship no. P2EZP2 195410.
H. Karthikeyan—Work done while at New York University, New York, USA.

c© The Author(s), under exclusive license to Springer Nature Switzerland 2022
E. Kiltz and V. Vaikuntanathan (Eds.): TCC 2022, LNCS 13748, pp. 3–32, 2022.
https://doi.org/10.1007/978-3-031-22365-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22365-5_1&domain=pdf
http://orcid.org/0000-0002-6562-9665
https://doi.org/10.1007/978-3-031-22365-5_1

4 Y. Dodis et al.

1 Introduction

Forward Secrecy. Encryption is the fundamental building block of cryptogra-
phy designed to protect the confidentiality of data such as messages. The security
of encryption is, however, confined by its requirement to secretly store the keys.
Indeed, leaking an encryption scheme’s secret key material typically means that
all security is forgone. With cryptographic applications nowadays also typically
running on a wide variety of different (and often poorly maintained) devices,
alongside other software outside of the control of the cryptographic engineer,
such key exposures pose a very real threat scenario.

This risk can be partially mitigated by forward security, which refers to the
concept that the corruption of a system at some point should not adversely affect
the security of prior operations. While initially proposed as a concept for key
exchange [20,32] it soon got broadened to incorporate a variety of non-interactive
cryptographic primitives, such as forward-secure public-key encryption [16] and
forward-secure signatures [6,40]. Roughly speaking, the non-interactive notions
share the idea that they divide time into epochs with the objective that leaking
the secret state at epoch i does not endanger the security properties of past
epochs j < i.

Fast-Forwarding. In this work, we investigate a novel dimension of the price—
in terms of computational and storage overhead—of forward-secure encryption:
fast-forwarding. The term fast-forwarding refers to the ability of a stale com-
munication party, that is “stuck” in an old epoch, to efficiently “catch up” to
the newest state. Such a situation, for instance, might occur if the user has a
device that is only sporadically used and has consequently been turned off over
a prolonged period.

Indeed, for many applications recovering the latest (or a recent) state seems of
intrinsically higher priority than recovering the intermediate states. For example,
in an email or a group chat it is often the case that messages sent weeks or months
ago might simply no longer be relevant while replying to a recent conversation
might be urgent. Moreover, in many communication protocols sending messages
requires first obtaining (reasonably) up-to-date key material, further motivating
the need for fast-forwarding. An example would be secure group messaging (such
as MLS) where the group maintains a shared symmetric key that is distributed
using public-key cryptography, which is then used to symmetrically encrypt and
authenticate messages. It has been proposed to strengthen MLS’ forward secrecy
[3] by replacing the PKE used for distributing those group keys with a variant of
FS-PKE (called UPKE). One of the main drawbacks of that proposal, however,
was the lack of fast-forwarding, resulting in a party stuck in an old state having to
restore the latest group keys in linear time before being able to send any message.
While sequentially downloading old messages might be fine, being unable to
send messages—until that process is completed—could trigger an assortment of
problems.

Forward-Secure Encryption with Fast Forwarding 5

1.1 Basic Solutions and a New Dimension

The functionality of forward-secure encryption—either symmetric- or public-
key—automatically ensures that one can (fast-)forward from period i to period
j � i in time proportional to (j−i). In this work, we will call such solutions linear
and ask if one can build forward-secure encryption with a sublinear fast-forward
property. To the best of our knowledge, this question was not explicitly consid-
ered in the literature. However, one can look at existing techniques for ensuring
forward security and come up with some initial observations and solutions.

Symmetric Encryption: Stream Ciphers. Forward-secure symmetric-key
encryption is typically achieved using basic stream ciphers, constructed from
iteratively evaluating a pseudorandom generator (PRG) [7]. While this construc-
tion is efficient, as it only requires a constant size state and a constant number
of cryptographic operations to encrypt the next message, it does not allow fast-
forwarding: if the receiver last decrypted ciphertext i and now gets ciphertext
j � i, then they need to advance the underlying PRG by (j − i) steps. The
existence of an efficient fast-forwarding method would be highly surprising for
any widely used stream cipher, as they are not based on number theory.1

Instead, we can observe that the Goldreich-Goldwasser-Micali (GGM) con-
struction can be turned into a forward-secure PRG with the fast-forwarding
property. More concretely, one can adapt the template for building forward-
secure signature schemes [6,40], where the PRG outputs correspond to the GGM
tree’s leaves and store the current leaf’s right sibling path, i.e., the set of nodes
from which exactly all leaves to the right of the current leaf can be deduced. We
outline this in more detail in the full version [21].

Lemma 1 (Informal). The template [6,40] (for building forward-secure sig-
nature schemes) can be adapted to the Goldreich-Goldwasser-Micali (GGM) con-
struction [30] to build a forward-secure PRG with the fast-forward property. If n
denotes the maximal number of epochs, then the scheme stores O(log(n)) seeds
as local state, and sequential updating as well as fast-forwarding from epoch i to
j > i take O(log(n)) PRG expansions.

While practically efficient, this folklore construction comes at the cost of
worst-case logarithmic sequential evaluations, logarithmic local state, as well as
a priori bounded number of overall evaluations. While some of those restric-
tions can be circumvented using more elaborate constructions—such as growing
trees or potentially a cleverly designed amortized evaluation strategy—at least
logarithmic-sized storage seems inherent. Thus, wearing a theoretician’s hat, the
first question we ask is:

Question 1. Can one have a model that allows for fast-forward stream ciphers
simultaneously having: (a) constant state size; (b) constant sequential (no fast-
forward) operation; and (c) sublinear (ideally, logarithmic) fast-forward property?
1 The number-theoretic Blum-Blum-Shub PRG [8] can be modified to allow sublinear

(in fact, logarithmic) fast-forwarding by additionally keeping the factorization of
N = pq. Doing so, however, loses forward security.

6 Y. Dodis et al.

Forward-Secure Public-Key Encryption. In the public-key setting,
Canetti, Halevi, and Katz [16] introduced the notion of forward-secure public-key
encryption (FS-PKE) and presented a generic construction of FS-PKE from hier-
archical identity-based encryption (HIBE). Their construction essentially mirrors
the simple logarithmic construction of the fast-forward PRG mentioned above,
but replaces the “GGM tree” with the “HIBE tree.” As a result, we observe that
this construction allows us to fast-forward from any epoch i to any epoch j > i
using O(log j) many HIBE secret-key expansions, needs logarithmic-sized stor-
age of HIBE keys (which, in turn, might be long, depending on the HIBE used)
and does worst-case logarithmic many secret-key expansions to just proceed to
the next epoch.

As of today, this generic construction from HIBE remains the only non-trivial
FS-PKE known. Unfortunately, while HIBE schemes from various assumptions
exist [9,10,15,18,25,26], they are all either built from primitives not readily
available in widespread cryptographic libraries (e.g., bilinear maps) or are pri-
marily theoretical. To the best of our knowledge, this plays a significant role in
why FS-PKE has never gained significant adoption in the real world. Hence, we
ask:

Question 2. Can one have a meaningful model for fast-forward public-key
encryption that potentially enables more efficient schemes than the generic
HIBE-based solution mentioned above?

Bulletin Board Model. To address our motivating questions above, we notice
that most secure real-world communication applications critically rely on the
existence of some centralized server, whose job is to store and appropriately
route encrypted messages to the corresponding participants. In other words,
since communicating parties might not all be online, or might not have direct
communication channels among them, one anyway has to implement some mech-
anism where old ciphertexts will be delivered to parties when those parties come
online and request them. In practice, those servers often perform additional tasks
such as helping people discover each other’s keys, verifying the authenticity of
the keys, serializing the order of concurrently received messages, etc.

End-to-end (E2E) security means that this centralized infrastructure is
treated as untrusted, ensuring that a breach or a subpoena cannot affect the
users’ security. For most applications, however, the server’s collaboration is
required for correctness.2 Generally speaking, for such server-assisted protocols,
one requires that the most harm a malicious server can inflict is a denial of ser-
vice (DoS) attack. This is typically deemed an acceptable risk, as a DoS attack
is against the service provider’s economic incentives.

In our work, we assume the existence of such a server and abstract it as a
bulletin board functionality. Intuitively (see Sect. 3.1), this functionality allows
2 Indeed, many secure messaging systems are designed for the rather peculiar model

where the server is assumed to be somewhat-but-not-fully trusted. For instance,
MLS aims to provide E2E security, yet exhibits weaknesses if the server does not
consistently order messages.

Forward-Secure Encryption with Fast Forwarding 7

all the parties to append some data to a public board, in a way that this data
is automatically serialized (so that everybody reads it in the same order), and
cannot disappear. Moreover, while the size of the bulletin board is allowed to
grow linearly with the number of epochs, it does not “count” toward any of the
parties’ storage. However, it is also not completely “free”, as any party’s read-
ing/appending to the bulletin board counts toward the efficiency of this party.
More concretely, for primitives using this bulletin-board model, we consider the
communication complexity (both in the size of transmitted messages as well as
required rounds) as part of the respective efficiency notion but choose to disre-
gard the server’s storage requirements. This is motivated by real-world commu-
nication applications often treating server storage as essentially free (at least for
“short” messages such as control messages or text messages, but not necessarily
multi-media content) while paying close attention to the efficiency constraints
of end-user devices. While disregarding server storage is an oversimplification,
we remark that purging could be done in practice, at a potential functionality
loss.3 We can now make our Questions 1 and 2 more precise. Namely, we will
ask (and answer) them in the bulletin-board model :

Question 3. Assuming the existence of a bulletin board, can we design forward-
secure fast-forward stream ciphers and public-key encryption schemes satisfying
the efficiency requirements stated in Questions 1 and 2, respectively?

It is prudent to point out that regular forward-secure stream ciphers are
already extremely efficient. The bulletin board, however, will help us achieve the
fast-forward property whose study we initiate. Even with fast-forwarding, how-
ever, the bulletin board model may be primarily of theoretical interest, as the
adapted GGM construction is most likely efficient enough for all practical pur-
poses, and the communication latency with the bulletin board likely outweighs
the reduced local storage requirement. Nevertheless, we view Question 1 as an
interesting open theoretical problem, as even a solution with fast-forwarding and
either constant storage or constant sequential updates is an open problem.

In contrast, in the public-key setting there exists no truly practical4 FS-
PKE. It also appears that the bulletin board does not offer any benefit for
the HIBE-based FS-PKE schemes. However, for its variant known as Updatable
Public-Key Encryption (UPKE) [3,36], the bulletin board provides some critical
functionality support. We discuss this in more detail below to motivate our new
notion of fast-forward UPKE.

1.2 Our Contributions

Modeling. We provide a simple yet powerful formalization of the bulletin board
model capturing a central server offering shared untrusted storage to assist the
3 These concerns are interesting but orthogonal to our contributions.
4 Despite some remarkable progress in the construction of pairing-based HIBE

(e.g. [10]) over the last decades, those solutions have never gained any widespread
adoption, partially for their omission from popular cryptographic libraries.

8 Y. Dodis et al.

protocol execution. Our model entirely avoids complications such as interactive
models of computation, is carefully designed to ensure that it does not introduce
any side-effects such as the access pattern leaking secret information, and allows
to easily capture bandwidth constraints.

We then provide rigorous definitions of two forward-secure encryption prim-
itives in the bulletin board model, using a common template: fast-forwardable
stream cipher and fast-forwardable updatable public-key encryption (FF-UPKE).
We define correctness as well as IND-CPA security for both notions. We stress
that our notions are the first formalization of the fast-forwarding property: while
we observe that GGM-PRF and HIBE-based FS-PKE happen to allow for such
an operation, none of the respective notions mandates/formalizes it.

Fast-Forwardable Stream Cipher. As a first scheme, we present a fast-
forwardable stream cipher, in the bulletin board model, that requires constant
(in the number of epochs) storage and a constant number of cryptographic oper-
ations to sequentially advance to the next epoch while allowing to fast-forward
to any epoch j in O(log j) cryptographic operations. The communication band-
width of each operation also coincidences with the number of cryptographic
operations mentioned above. Thus, we answer the first part of Question 3 affirma-
tively. Our construction is based on carefully adapting the GGM-based forward-
secure stream cipher to:

(1) avoid the logarithmic worst-case computational complexity by appropriate
amortization;

(2) offload most of the local storage to the bulletin board without compromising
forward secrecy.

Roughly speaking, our scheme expands two GGM nodes per sequential
update to ensure that whenever we need a leaf it has already been expanded. As
this leads to linearly many expanded but not yet consumed seeds, we have to
properly outsource to the bulletin board. This is achieved by encrypting them
under independent keys associated with the GGM nodes (also derived from the
parent seed), over time forming a linked list among the leaves in increasing order.
In the meantime, forward-secrecy is preserved as all encryptions obey the tree’s
preorder, i.e., we only encrypt a node v’s seed under nodes with a smaller pre-
order index. Let us briefly remark on the potential use-cases of such a solution.
Compared to the folklore GGM-based solution, in most settings, trading loga-
rithmic local computation and storage overhead for the need for communication
appears to be highly undesirable. However, when used e.g. in the context of
secure messaging, the party has to communicate with the server anyway, and as
such our construction does not incur a cost in terms of round-trips but merely
bandwidth. In such cases, trading a small bandwidth overhead for a logarithmic
computation gain could be worthwhile.

One might attempt to apply the same techniques to the HIBE-based FS-PKE
construction. We observe, however, that they do not directly translate over, as
the senders cannot help the (typically single) receiver. As a result, while the

Forward-Secure Encryption with Fast Forwarding 9

respective solution inherently does support logarithmic fast-forwarding (with-
out even using the bulletin board) supporting constant-time sequential updates
does not work in the same way as in the symmetric setting. Concretely, when
using a bulletin board to amortize sequential updates (by outsourcing encryp-
tions of secret keys) only receivers knowing those secret keys can upload the
respective ciphertexts. This has two major drawbacks. First, for a setting with
a single receiver, once the receiver fast-forwards to obtain the decryption key of
an epoch j � i, they would be “stuck” there and have to make up the missed
(j−i) sequential operations to “complete” the bulletin board before being able to
sequentially update in a constant number of operations again. Second, for certain
applications where all receivers are assumed to be only sporadically online, hav-
ing receivers to maintain the bulletin board is generally undesirable. We thus
focus on the slightly different primitive of updatable public-key encryption—
which is well-suited for the bulletin-board model—instead.

Detour: Updatable Public-Key Encryption. Motivated by various applica-
tions to secure messaging, forward-secure PKE in a setting where an untrusted
server provides synchronization among parties has been considered under the
name UPKE in the literature [3,36]. The idea of UPKE is that one can use
ciphertexts—conveniently serialized and placed on the bulletin board (abstract-
ing the messaging server)—to also contain information on how to move from
the old (pk, sk) tuple, into a new (pk′, sk′), in a way that: (a) new messages will
be encrypted by pk′ and decrypted by sk′; (b) exposure of sk′ does not help to
decrypt prior ciphertexts (including the one just sent under pk); (c) the per-
son preparing ciphertext helps to “move” from sk to sk′ without knowing either
secret key but pk only. To show the potential of the bulletin board, the work
of [36] provided a very simple and efficient UPKE (in the random oracle model)
that has similar efficiency to the underlying ElGamal encryption. Recently, [22]
also built two standard model UPKE schemes from the DDH and LWE assump-
tions, which were again much more efficient than their HIBE-based counterparts
based on either DDH or LWE.

These constructions further validated the intuition that UPKE may be a
significantly cheaper alternative compared to regular FS-PKE. They, however,
eschew the inherent fast-forwarding property the generic HIBE-based FS-PKE
enjoys. It thus remained an open problem whether it is possible to build a truly
efficient fast-forwardable PKE primitive. In this work, we provide a partially
affirmative answer for FF-UPKE. While not truly practical, our constructions are
again more efficient when compared to their HIBE counterparts from the same
assumptions. Specifically, the LWE-based construction is significantly simpler
and more efficient than the best-known post-quantum secure FS-PKE scheme
(see Sect. 1.3). Moreover, our novel approach initiates the study in this new
dimension and hopefully serves as a launchpad for improved construction. Crit-
ically, we propose a generic FF-UPKE construction (much like the original FS-
PKE scheme) that is not tethered to any particular assumption. In this process,
we introduce a new primitive, whose instantiation directly implies FF-UPKE.

10 Y. Dodis et al.

Our Work: FF-UPKE. We define FF-UPKE. As with standard UPKE,
the sender can create special ciphertexts which do not encrypt messages,5 but
can help move from the current tuple (pki, ski) for epoch i to the next tuple
(pki+1, ski+1) for epoch (i + 1). To support fast-forwarding from epoch i to
epoch j, we introduce a special “leaping” algorithm. This algorithm can help a
receiver6 who currently holds ski to get to the latest key skj , by only reading a
sublinear (in (j−i)) number of messages from the bulletin board, and performing
a sublinear number of cryptographic operations. See Definition 4.

Aside from solving the practical problem of allowing an offline receiver to
quickly catch up with the current messages, FF-UPKE also weakens the strictly
sequential requirement of standard UPKE, that receiver should read and process
every previous key update message. Indeed, the sublinear efficiency requirement
of FF-UPKE means that the receiver has multiple “opportunities” to catch up,
even if it cannot access some of the key update messages.7

FF-UPKE Construction. We also present a novel FF-UPKE scheme. To
this end, we observe that all existing UPKE schemes refresh the secret key by
having the sender choose an “update secret” δ that is then sent encrypted under
the current public key pki. After decrypting δ using ski, the next secret key
ski+1 = ski + δ (using appropriate group operation +), while the sender can
compute the next public key pki+1 using only the current public key pki and the
value δ. Our generic FF-UPKE construction is built around the idea of so-called
cumulative updates using any so-called update-homomorphic UPKE scheme—a
notion we introduce to formalize that multiple such update messages can be
homomorphically combined. (See Definition 6 for the precise formalization of
this requirement.)

As in prior UPKE schemes, in our construction, the sender for epoch i will
choose update secret δi+1, and we will have the invariant that skj = ski +Δ[i, j],
where Δ[i, j] := (δi+1+. . .+δj), for any j > i. Now, however, senders can use the
update homomorphism to create encryptions upi,j that “cumulatively encrypt”
Δ[i, j] under pki, for certain carefully chosen pairs i < j. Those encryption are
then stored in the bulletin board to allow the receiver to fast-forward.

Finally, we show that with minor modifications the standard model
DDH/LWE UPKE schemes of Dodis et al. [22] both satisfy the above homo-
morphism.8

5 For the highest security, these can be sent after every regular ciphertext encrypting
a message, but we do not require this to allow for the most flexibility.

6 Of course, a new sender who “fell behind” other senders, can trivially “catch up” by
retrieving the latest public key from the bulletin board.

7 Of course, the sender for epoch i should still be able to get the current key pki.
8 Interestingly, the most efficient random-oracle based scheme [3,36] does not appear

to be update-homomorphic, and will not be enough for our purposes.

Forward-Secure Encryption with Fast Forwarding 11

G̃8 G̃8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Fig. 1. The update graph G̃16, consists of two subgraphs G̃8 and an extra node.

Technical Tool: Update Graph. As one can see, the efficiency of our cumu-
lative update scheme for building FF-UPKE from update-homomorphic UPKE
critically depends on the properties of what we call an update graph G, which will
govern the collection of edges (i, j) for which parties need to maintain update
ciphertexts upi,j . As it turns out (see Definition 8), three such parameters will
be essential for understanding the efficiency of our construction:

– The maximum in-degree α(n) of any vertex j ≤ n;
– The diameter β(n) of the sub-graph of the first n vertices;
– The cardinality γ(n) of the active set that includes all vertices i < n which

have at least one edge (i, j) with j > n in G.

We call such graphs (α(n), β(n), γ(n))-update graphs. To the best of our knowl-
edge, while many related notions of dynamic graphs are known in the literature
(e.g., see [42] and references therein), including graphs having small in-degree
and diameter, the exact notion of update graph we need for our construction is
new.

We build a nearly optimal (2,O(log n),O(log n))-update graph. Our con-
struction is inspired by the simple family of spanner graphs that recursively
join two consecutive graphs of an equal number of nodes with an overarching
edge spanning from the first to the last node. We observe that this results in a
graph with logarithmic diameter but also logarithmic indegree. To circumvent
the growing indegree, we modify this construction slightly and, in each recursive
step, add one additional node at the end, to which the overarching edge con-
nects. We call this graph G̃n, where n denotes its number of nodes. See Fig. 1 for
the example of G̃16.

As we will see, using this graph G̃ results in our final FF-UPKE scheme
having logarithmic overhead for key update and fast-forwarding, and no overhead
for public-key size, encryption, and decryption, as compared to the underlying
update-homomorphic UPKE.

Putting it All Together. Instantiating our generic cumulative update scheme
with our update graph and the two homomorphic-update UPKE scheme from
DDH and LWE, we get two concrete FF-UPKE schemes from DDH and LWE,
respectively, achieving greater efficiency than the best-known HIBE-based FS-

12 Y. Dodis et al.

PKE scheme from the same assumption (see Sect. 1.3) and answering Question
2 in the affirmative, in the bulletin board model.

1.3 Related Work

Hierarchical Identity Based Encryption. As mentioned before, the work of
Canetti, Halevi, and Katz [17] showed how to generically construct Forward-
Secure Public Key Encryption from Hierarchical Identity Based Encryption
[29,33]. Indeed, over time, various HIBE schemes have been proposed under
an assortment of assumptions such as LWE [2,18], CDH/DDH [15,25,26],
and pairing-based Diffie-Hellman Assumptions [9,10], among others. However,
despite the beautiful theory, HIBE-based schemes have not found much adop-
tion in practice, either due to the reluctance of practitioners to use pairings, or
because the constructions are rather impractical. For example, the CDH/DDH-
based constructions [15,25,26], while giving us constructions of FS-PKE in the
standard model, rely on garbled circuits. More formally, if κ is the security
parameter, it relies on a chain of O(κ) such circuits, and the blow-up of the pub-
lic key operations performed by the circuits is significant. HIBE constructions
based on LWE [2,18] rely on either lattice trapdoors or GPV-style pre-image
sampling [28] which are inefficient and quite complex. Additionally, all of these
HIBE constructions suffer from overhead of O(κ) to support an unbounded num-
ber of time periods in the FS-PKE construction built from HIBE. Thus, while
our new DDH/LWE schemes are not yet as practical as PKEs from the same
assumption (and we also did not try to optimize all the constants in our con-
structions for the elegance of presentation), they certainly are more efficient than
the corresponding HIBE-based FS-PKEs, even taking into account the reliance
on the bulletin board model.

Forward-Secure Signatures. Anderson [4] first proposed the idea of Forward-
Secure signatures. The idea was that the compromise of a secret key at a time
i should not allow for the forgery of messages at a time j < i. Construction
of this primitive was proposed by Bellare and Miner [6] and later extended and
improved by Malkin et al. [40]. There are still other constructions that are secure
in the random oracle model [1,34,38].

Key Evolving Encryption Schemes. Two recent works - Jaeger and Stepanovs
[35] and Poettering and Rössler [41] - proposed a scheme that was secure even
when the key updates were labeled by arbitrary (even adversarially chosen)
strings. This is a stronger setting than even FS-PKE and unsurprisingly, these
constructions were realized from HIBE Schemes.

Updatable Public Key Encryption. The work of Jost et al. [36] and Alwen et al. [3]
formally introduced the primitive and presented constructions that were secure
in the random oracle model. The work of Dodis et al. [22] explored construc-
tions that were secure in the standard model. In addition, they also considered
extensions of the simpler CPA-based security definition to stronger definitions.

Forward-Secure Encryption with Fast Forwarding 13

Updatable Encryption. Updatable Encryption [11,12,14,27,37,39], vastly differ-
ent from the idea of UPKE, explores the orthogonal problem of updating the
ciphertext that was encrypted under a key at a time i to be consistent, i.e.,
decryptable by the key at a time j > i. This primitive, however, is for the sym-
metric key setting. Informally, the construction produces different ciphertexts for
the same messages under different keys. The goal is to produce tokens that help
update the ciphertext without revealing any information about the underlying
message.

Key Insulated Public Key Cryptosystems. Key Insulated Public Key Cryptosys-
tems [23,24], though motivated for other purposes, achieves the feature of fast-
forwardability. They do this by offering random-access key updates which help
move from the current period i to any other period j. However, the constructions
and indeed the setting assume that there is a party that is trusted, resistant to
exposure/leakage, and has a secure channel to the secret key owner.

Puncturable (Public Key) Encryption. Puncturable Encryption [5,43] and Punc-
turable PKE [19,31,44] achieve forward secrecy on a per ciphertext basis. That
is, puncturing has to work purely based on received ciphertexts, rather than
dividing time into epochs, with senders not having to “target” a certain epoch
or obtain an updated (public) key. Hence, puncturable PKE solves a much more
difficult problem than FS-PKE or fast-forwardable UPKE, leading to signifi-
cantly less efficient solutions.

Puncturable PRFs. Our fast-forwardable PRG construction is quite similar to
some of the constructions of puncturable PRFs based on the GGM construction
[13]. We remark, however, that the (standard) notion of a puncturable PRF
is quite different and, for example, lacks the iterative aspect of “continuously
re-puncturing” which we require for our notion.

2 Preliminaries

We write N := {1, 2, . . .} and for x ∈ N we write [x] := {1, 2, . . . , x}. We write
x ← a to assign the value a to the variable x. Moreover, for a set S we write
x ←$ S to denote sampling an element from S uniformly at random or according.
For a probabilistic algorithm A, we write A(·; r) to denote that A is run with
explicit randomness r. The security parameter is denoted by κ.

A directed graph G = (V,E) consists of a vertices set V and an edge set
E ⊆ V 2. For an edge (u, v) ∈ E, we call u the tail and v the head. For a node
w ∈ V , we denote by E in

G (w) := {(u, v) ∈ E | v = w} the set of incoming
edges, and by Eout

G (w) := {(u, v) ∈ E | u = w} the set of outgoing edges,
respectively. Moreover, we denote by deginG (w) := |E in

G (w)| and degoutG (w) :=
|Eout

G (w)| the in- and outdegrees, respectively. We often omit to specify the graph
for these functions when the context is clear. For u, v ∈ V we say that edges(
(v1, v2), (v2, v3), . . . , (vn, vn+1)

) ∈ En is a path of length n from v1 to vn+1. If
the concrete path is not of relevance, we sometimes use u � v as a shorthand

14 Y. Dodis et al.

notation for and refer by |u � v| to its length. Additionally, we refer to d(u, v)
as the minimum length of all paths from u to v (or ∞ if no such path exists).
Finally, the diameter of the graph G refers to the maximal distance between any
nodes u and v for which a path exists, i.e., diam(G) := max{d(u, v) | u, v ∈
V ∧ d(u, v) 	= ∞}.

Cryptographic Primitives. We make use of a pseudo-random generator with
expansion factor 4, which is a function PRG.Expand : {0, 1}κ → {0, 1}4κ such
that the two distribution ensembles

{
PRG.Expand(s) | s ← $ {0, 1}κ

}
κ∈N

and{
k ←$ {0, 1}4κ

}
κ∈N

are computationally indistinguishable.
Moreover, we use a nonce-based symmetric encryption scheme, which is a

tuple of deterministic algorithms (SE.Enc,SE.Dec), such that for any encryption
c ← SE.Enc(k,m, n), the corresponding decryption recovers the correct message
m ← SE.Dec(k, c, n). We require the scheme to satisfy standard IND-CPA secu-
rity as long as the nonce n is not reused.

3 Fast-Forwarding in the Bulletin Board Model

3.1 Bulletin Board

In this work, we consider a setting where parties can make use of an append-
only bulletin board BB to store and retrieve (shared) information, reducing their
storage and computation costs. Intuitively, BB can be thought of as an associative
array where for an index idx ∈ I they can retrieve a value v ← BB[idx] either
returning the previously stored value v or a special error symbol ⊥. Along the
same lines, BB[idx] ← v′ sets the value to v′ if it has been previously undefined,
or ignores the new value.

We formalize this by using a partial function BB : I ⇀ V. Moreover, we define
two additional operators on the bulletin board: restriction and appending. For
a subset of possible indices I, BB�I denotes the modified bulletin board only
defined for those indices. We will use this operation as a convenient way to
handle a party “fetching” a subset of the values of the bulletin board alongside
the associated indices. The append operations append another bulletin board
to the existing one while ignoring all already defined values. We will use this
operation to represent a party “uploading” new values to the bulletin board.

Definition 1. For an index space I and a value space V, we call a partial function
BB : I ⇀ V a bulletin board. That is, BB ⊂ I × V such that for all idx ∈ I and
v1, v2 ∈ V, (idx, v1) ∈ BB and (idx, v2) ∈ BB implies v1 = v2. For a set of indices
I ⊆ I, we denote by BB�I function restriction. That is, BB�I := {(idx, v) ∈ BB |
idx ∈ I}. Moreover, for bulletin boards BB1 and BB2, we define BB1 ++ BB2 :=
BB1 ∪ BB2�I\dom(BB1), where dom denotes the domain.

3.2 Fast-Forwardable Stream Ciphers

We investigate the construction of fast-forwardable forward-secure stream
ciphers in the bulletin-board model. It is easy to see that the folklore stream

Forward-Secure Encryption with Fast Forwarding 15

cipher construction from a PRG yields this as long as the PRG is both forward
secure and fast forwardable. We, thus, focus on fast-forwardable PRGs9 instead.

Definition 2. A Fast-Forwardable PRG (FF-PRG) consists of the determinis-
tic algorithms (Init,Update,Update-Idx, Leap, Leap-Idx), where:

– The (st1,R1,BBinit) ← Init(key) algorithm takes key ∈ {0, 1}κ and produces
an initial state st1, output R1, and initial bulletin board state BBinit.

– The (sti+1,Ri+1,BBup) ← Update(sti,BB�Ii) algorithm takes a state and parts
of the bulletin board as inputs, and produces the updated state and the next
output, as well as content to upload to the bulletin board. The corresponding
update-index algorithm Ii ← Update-Idx(i) determines the part of the bulletin
board required for this operation.

– The (stj ,Rj) ← Leap(sti, j,BB�Ii,j) algorithm takes a state sti, the target
epoch j > i, and parts of the bulletin board as inputs, to leap to the j-th state
and output. The indices are determined by Ii,j ← Leap-Idx(i, j).

Efficiency. For an FF-PRG scheme to be non-trivial we require fast-forwarding
to be of sub-linear complexity in j − i, concerning both running time and com-
munication complexity. More specifically, we require the output size of Leap-Idx
to be bounded by fixed polynomials of the security parameter κ, i.e., to be inde-
pendent of j − i. This in turn also implies that the running time of Leap is
bounded by a fixed polynomial in κ.

Correctness and Security. For correctness, we intuitively expect that fast-
forwarding results in the same output and state as sequentially advancing
throughout the epochs. Note, however, that fast-forwarding is meant to be a
“catching up” mechanism. Thus, we require fast-forwarding only to work when-
ever some other party (using the same bulletin board) has already reached the
target epoch. A formal description of the correctness game is presented in the
full version [21].

The key indistinguishability game of an FF-PRG formalizes that Ri look
indistinguishable from fresh uniform random outputs. Forward security moreover
asserts that for past outputs this holds even once the state is leaked. Note that
for defining security, fast-forwarding is irrelevant, as Leap does not write to
the bulletin board and, by correctness, results in the same state as sequential
updates.

Definition 3 (Security). A FF-PRG is secure, if every PPT adversary A has
negligible advantage (i.e., 2Pr[Key-IndistA = true] − 1) in winning the key
indistinguishability game depicted in Fig. 2.

We remark that having explicit indexing algorithms Update-Idx and Leap-Idx
that depend on public information only, guarantees that the access pattern to
the bulletin board does not leak confidential information about a party’s state.
9 For simplicity, we henceforth omit explicitly mentioning forward secrecy as part of

each primitive’s name.

16 Y. Dodis et al.

Game FF-PRG Key Indist.

Initialization

b ←$ {0, 1}
safe ← true

n ← 1
key ←$ {0, 1}κ

(st,R,BB) ← Init(key)
if b = 1 then R ←$ {0, 1}κ

return (R,BB)

Oracle Update

I ← Update-Idx(n)
n ← n + 1
(st,R,BBup) ← Update(st,BB�I)
BB ← BB ++ BBup

if b = 1 ∧ safe then
R ←$ {0, 1}κ

return (R,BBup)

Oracle Corrupt

safe ← false

return st

Finalization

Input: b′ ∈ {0, 1}
return b = b′

Fig. 2. The security game of FF-PRGs.

Constructions. In Sect. 4, we present an FF-PRG scheme with the following
properties: First, Init and Update perform a constant number of cryptographic
operations and output a constant number of elements to be uploaded to the
bulletin board, i.e., |BBinit|, |BBup| ∈ O(1). Second, Update only requires a con-
stant number of elements from the bulletin board, i.e., |Update-Idx(i)| ∈ O(1).
Third, all elements on the bulletin board are of size O(κ) (such as a key or an
encryption). Finally, Leap(sti, j,BBin) performs at most O(log j) operations and
Leap-Idx(i, j) is of cardinality at most O(log j).

Recall from Sect. 1.2 that while introducing additional communication might
often be undesirable there are settings where communication with a centralized
server anyways occurs, such as the symmetric ratcheting layer of Signal. There,
switching this to our protocol would not add communication latency, but only
slightly increased bandwidth. Moreover, our scheme is concretely efficient and
for 2T epochs reduces the secret storage compared to the GGM tree by roughly
a factor of T/7. For example, for T = 20 under standard parameter choices of
128 bit seeds we go from 320 bytes to 122 bytes (and the bulletin board material
after 220 epochs will be under 50 MB).

3.3 Fast-Forwardable Updatable Public-Key Encryption

We now proceed to formalize fast-forwardable UPKE in the bulletin board
model.

Definition 4. A Fast-Forwardable Updatable Public-Key Encryption scheme
is a tuple of PPT algorithms FF-UPKE := (KeyGen,Encrypt,Decrypt,UpdatePK,
UpdatePK-Idx,UpdateSK,UpdateSK-Idx, LeapSK, LeapSK-Idx), defined as follows:

– The (pk1, sk1,BBinit) ← KeyGen(1κ) algorithm outputs an initial secret/
public key pair sk1 and pk1 and an initial state of the bulletin board.

– The c ← Encrypt(pki,m) algorithm encrypts m under the public key pki and
the deterministic m ← Decrypt(ski, c) algorithm decrypts c using the corre-
sponding secret key.

– The (pki+1,BBup) ← UpdatePK(pki,BB�Ii) algorithm takes a public key and
parts of the bulletin board as input, and outputs the updated public key and
content to be upload to the bulletin board.

Forward-Secure Encryption with Fast Forwarding 17

– The deterministic ski+1 ← UpdateSK(ski,BB�Ii) algorithm takes a secret key
and parts of the bulletin board as inputs, and outputs the updated secret key.

– The deterministic skj ← LeapSK(ski, j,BB�Ii,j) algorithm takes a secret key
ski, the target epoch j > i, and parts of the bulletin board as inputs.

The deterministic algorithms Ii ← UpdatePK-Idx(i), Ii ← UpdateSK-Idx(i), and
Ii,j ← LeapSK-Idx(i, j) determine the part of the bulletin board required for the
respective operations.

Modeling and Efficiency. One of the key properties of UPKE is that
UpdatePK may be probabilistic. It is thus assumed that multiple senders coor-
dinate on the advancing of epochs, with only one party executing UpdatePK
and then distributing the updated public key to the other senders. (Indeed, this
synchronization requirement seems to be what gives UPKE a significant perfor-
mance lead over FS-PKE.) While in practice this might be achieved by storing
the public key on the bulletin board, passing around an explicit public key allows
us to easily model that during an epoch parties do not need to access the bulletin
board.

Moreover, UpdateSK does not write any information to the bulletin board for
the following reasons: First, there is typically only one receiver (per key pair) in
a public-key setting, so there is no need to upload information that might help
other receivers. Second, if the receiver had to somehow assist senders, this would
introduce additional online requirements contradicting the asynchronous nature
of public-key communication. (The synchronization among senders to prevent
conflicting updates does not require all or any particular of them to be online.)

We require all algorithms except LeapSK to run in polynomial time indepen-
dent of the epoch i. The LeapSK is allowed to run in time sublinear in j − i
(non-triviality). However, we stress that LeapSK-Idx must have a running time,
and thus output size, of a fixed polynomial independent of j − i, meaning that
LeapSK has communication complexity at most poly(log j).

Correctness and Security. In a nutshell, there are two ways for an adversary
to break correctness: (1) he breaks the correctness of the encryption, i.e., comes
up with a message such that its encryption does not decrypt properly, or (2)
he breaks the correctness of the fast-forwarding mechanism. For simplicity, we
require from an FF-UPKE scheme that fast-forwarding from epoch i to j results
in the same secret key skj as would have resulted from sequentially updating.
Note that since FF-UPKE is designed for a setting where parties might use bad
randomness, the correctness game allows the adversary to choose all randomness.
A formal definition of correctness can be found in the full version [21].

Security is formalized as an IND-CPA game, depicted in Fig. 3. The game
allows the adversary to make a single challenge from which he must decide
whether he received encryption of m0 or m1. Ahead, he can make an arbitrary
number of updates to the public key, potentially supplying the randomness.
Moreover, to formalize forward secrecy, he can corrupt the receiver’s state to

18 Y. Dodis et al.

Game FF-UPKE IND-CPA

Initialization

b ←$ {0, 1}
safe ← true

chall ← false

n ← 1
(pk, sk,BB)

← KeyGen(1κ)
return (pk,BB)

Oracle Update

Input: r ∈ R ∪ {⊥}
if r = ⊥ then

r ←$ R
safe ← true

Ipk ← UpdatePK-Idx(n)
Isk ← UpdateSK-Idx(n)
n ← n + 1
(pk,BBup)

← UpdatePK(pk,BB�Ipk ; r)
BB ← BB ++ BBup

sk ← UpdateSK(sk,BB�Isk)
return (pk,BBup)

Oracle Challenge

Input: m0,m1 ∈ M
if ¬chall

∧ |m0| = |m1| then
c ← Encrypt(pk,mb)
safe ← false

chall ← true

return c

Oracle Corrupt

if chall ∧ safe then
return sk

Finalization

Input: b′ ∈ {0, 1}
return b = b′

Fig. 3. The IND-CPA game of FF-UPKE.

obtain the secret key—once at least one is secure, i.e., not with adversarially
chosen randomness, an update has been applied. Similar to the FF-PRG notion,
we observe that the LeapSK algorithm is irrelevant for security.

Definition 5 (Security). An FF-UPKE is said to be IND-CPA secure, if every
PPT adversary A has a negligible advantage in winning the IND-CPA game
depicted in Fig. 3.

Constructions. In Sect. 5, we present a generic FF-UPKE scheme where public
and secret keys do not grow with the epoch number i, the UpdatePK algorithm
reads and writes O(log i) positions on the bulletin board, UpdateSK reads O(1)
positions, and LeapSK accesses O(log j) position to fast-forward from epoch i
to j. The construction makes use of a so-called Update-Homomorphic UPKE
scheme as a building block. In the full version [21] we provide two concrete instan-
tiations of this building block, based off minor modifications the standard-model
UPKE schemes introduced in the recent work of Dodis et al. [22]. Both lead two
bulletin board values of the order of O(κ2) many cryptographic elements.

4 Constructing a Fast-Forwardable PRNG

In this section, we present a construction of a fast-forwardable PRNG. We first
introduce the basic variant supporting a bounded number of epochs. We then
extend this construction in Sect. 4.2 to an unbounded number of epochs.

4.1 The Basic Construction

Our construction is based on the GGM construction. To this end, we first observe
that in a GGM tree of height h, and thus 2h leaves, there are a total of 2h−1 inner
nodes to expand. Hence, the amortized number of expansions over the course of
the 2h −1 many possible updates in this tree is just one. In the following, we will

Forward-Secure Encryption with Fast Forwarding 19

show that if for each update we do two expansions, then at the time we need a
new leaf it has already been derived.

Implemented naively, this would of course make a party’s state grow linearly
in the number of updates, which is where the outsourcing to the bulletin board
comes into play. Roughly speaking, rather than keeping all the expanded seeds
in the local state, we encrypt them under an appropriate key to outsource. Those
encryption keys are derived from the GGM tree as well. To this end, we modify
the expansion step of a node v’s seed as follows:

(svleft , kvleft , svright , kvright) ← PRG.Expand(sv),

where kv is an encryption key associated with v. Using this key, we can then
encrypt another node’s seed su and key ku using nonce-based symmetric encryp-
tion, i.e., c ← SE.Enc(kv, (su, ku), n). Concretely, we use the index u as nonce,
n = u, and store this ciphertext at index (v, u) in the bulletin board.

To ensure forward secrecy, only certain such links can be stored. Recall to
this end that when using the GGM construction as a forward-secure PRNG,
one expands the tree’s nodes according to the preorder traversal and keeps the
nodes from the copath (sometimes called sibling path) that are right children as
a state. Hence, to preserve forward secrecy, we maintain the following invariant:

I1. Whenever the bulletin board stores an encryption c ← SE.Enc(kv, (su, ku), u)
for nodes u and v, then preorderIdx(v) < preorderIdx(u),

where preorderIdx(v) returns v’s index according to the preorder traversal.

Initialization. Let us now turn our attention towards which such links we want
to outsource. Initially Init(key) first derives a seed s and outsourcing key k for
the root (e.g., (s, k, ·, ·) ← PRG.Expand(key) and then proceeds to expand the
leftmost path in the GGM. The copath is outsourced to the bulletin board by
encrypting each node under the previous when traversing the copath from the
leaf to the root. Additionally, we encrypt the first copath node under its left
sibling, i.e., the first epoch’s leaf. All of those encryptions satisfy Invariant 1.

See Fig. 4 for the example of GGM4, the GGM tree of height 4, at the
end of the Init operation. For clarity, we labeled each node with its preorder
index. White nodes represent inner nodes that have already been expanded,
black nodes those for which the seeds are currently known, and gray nodes are
currently beyond the expansion horizon. The dotted arrows represent the out-
sourced encryptions, i.e., a dotted arrow from node v to u means that we store
SE.Enc(kv, (su, ku), u) at position (v, u) in the bulletin board.

The Init algorithm outputs the seed R1 = sh+1 (of the leftmost leaf) and a
state containing the following values: the key ki and the seeds and keys of the
thirst three nodes on i’s right copath, starting at its right sibling. We call those
three nodes the initial frontier, which we discuss in a moment. In our example
of GGM4, this is s5 and (sj , kj) for j ∈ {6, 7, 10}.

20 Y. Dodis et al.

1

2

3

4

5 6

7

T1

10

T2

17

T3

Fig. 4. The tree GGM4 after the Init algorithm. Dotted arrows represent encryptions
outsourced to the bulletin board.

Expanding the Tree. The nodes are expanded according to their preorder
index. We call the first not yet expanded node the frontier. In our example of
GGM4, the initial frontier is node 7, which is then expanded into nodes 8 and 9. In
this step, Update “replaces” (they remain on the bulletin board but are no longer
needed for this party) the links (6, 7) and (7, 10) with the following ones: (6, 8),
(8, 9), and (9, 10). (All those newly added encryptions satisfy Invariant 1.) The
new frontier is now 10. When later expanding node 10 into nodes 11 and 14, we
upload links (9, 11), (11, 14), and (14, 17), replacing the existing links (9, 10) and
(10, 17). See Fig. 5 for the state of the tree after the expansion of f = 10. More
generally, when expanding f, we consider the following two additional nodes

– f− := prevLeaf(f) denoting the the largest leaf index f− < f that is not a
descendent of f.

– f+ := rCoPath(f) denoting the first node on f’s right copath,

and replace the links (f−, f) and (f, f+) by link

– (f−, leftChild(f)),
– (leftChild(f), rightChild(f)),
– (rightChild(f), f+).

We observe that by definition rCoPath(rightChild(f)) = rCoPath(f) = f+

and rCoPath(leftChild(f)) = rightChild(f). Thus, storing those additional links
maintains the first of the following invariant that will become crucial for fast
forwarding.

I2. For any v not on the leftmost path, if sv has been computed, then the link
(v, rCoPath(v)), i.e., SE.Enc(kv, (srCoPath(v), krCoPath(v)), rCoPath(v)), has been
added to the bulletin board.

I3. For any leaf v except the leftmost one, if sv has been computed, then the
link (prevLeaf(v), v) has been added to the bulletin board.

To be able to efficiently create those links described above, our algorithm
keeps at any point in time the index, seed, and key of the f, f−, and f+ as part
of the state. After the expansion, those pointers of course have to be adjusted
and the respective seeds and keys locally stored.

Forward-Secure Encryption with Fast Forwarding 21

1

2

3

4

5
(1)

6
(2)

7

8
(3)

9
(4)

10

11

12

(5)

13

(6)

14

15

(7)

16

(8)

17

18

19

20

(9)

21

(10)

22

23

(11)

24

(12)

25

26

27

(13)

28

(14)

29

30

(15)

31

(16)

Fig. 5. A visualization of the node expansion in the enhanced GGM construction.

– If leftChild(f) is not a leaf, then f′ becomes this node. The new f+ is thus is
the right sibling that we also just derived and f− remains unchanged.

– If leftChild(f) is a leaf, then this node becomes the new f−. The new f gets
the old f+. Its first right copath node becomes the new f+. While for the
latter we do not have seed or key readily stored, we know from Invariant 2
that there is a link from the old to the new f+ stored in the bulletin board
that we can use to retrieve those values.

Sequential Updates. For each sequential update from epoch e to e + 1, the
Update algorithm has to output the seed of the (e+1)-th leaf, which we denote by
leaf(e+1). For this to be done in a constant number of cryptographic operations,
the algorithm relies on a link (leaf(e), leaf(e+1)) is readily stored in the bulletin
board. Recall from Invariant 3 that such a link exists as long as the seed leaf(e+1)
has been derived at this point, meaning that Update just needs to expand the
frontier sufficiently fast.

We achieve this by doing two expansions per invocation of Update, as long
as there are still nodes to expand. Consider the inner nodes on the copath of the
leftmost leaf. Those node root h − 1 trees T1, . . . Th−1 of increasing height that
still need to be expanded after Init, as shown in Fig. 4. During the first update,
i.e., when moving to node 6 in our example of GGM4, we can expand T1. More
generally, we observe that Tj has 2j leaves and Tj+1 has 2j inner nodes that
need to be expanded. Hence, doing two expansion steps per Update invocation
maintains the following invariant:

I4. By the time the epoch advances from Tj to Tj+1, i.e., when transitioning
from epoch e to e + 1 such that leaf(e) ∈ Tj and leaf(e + 1) ∈ Tj+1, the tree
Tj+1 has already been fully expanded.

In summary, our algorithm achieves sequential updating using at most three
elements from the bulletin board (one to derive the new epoch’s output and two
for the tree expansion) and two PRG expansion and uploading at most six new
elements to the bulletin board.

22 Y. Dodis et al.

Fast Forwarding. We now describe the process of forwarding from epoch
e to e′ � e in logarithmic time. Observe that by Invariant 2 there is an
encryption chain along the right copath of leaf(e) stored in the bulletin board.
(This holds as the second node on the right copath of leaf(e) is equal to
rCoPath(rCoPath(leaf(e))) and so forth.) Thus, Update can work analogously to
the basic GGM-PRNG construction by determining the first node of this copath
intersecting with leaf(e′)’s path and recover this node decrypting a logarithmic
number of ciphertexts. Then, the seed and key of leaf(e′) can be derived using a
logarithmic number of PRG.Expand calls. The local state consisting of the keys
and seeds of f−, f, and f+ can be restored analogously.

Finally observe that for the party to be able to continue from epoch e′ it
may not sufficient to just recover the local state, as subsequent calls to both
Update and Leap require certain links to be stored in the bulletin board. For our
setting, where we assume that Leap is only used to catch up with other parties,
this is not an issue, however. For each epoch between e and e′ the first party
reaching it must have done so using a sequential update, uploading all necessary
encryptions as part of this process.

Efficiency. Let n denote the maximal number of epochs, i.e., n = 2h. Then, the
Init algorithm performs O(log(n)) many cryptographic operations and uploads
this many elements to the bulletin board. Afterwards, Update requires at most
3 = O(1) elements from the bulletin board and performs O(1) cryptographic
operations and uploads at most 6 = O(1) elements. So far we have glossed over
how the UpdateSK-Idx(e) algorithm works. In short, it needs to be able to com-
pute leaf(e), the f corresponding to leaf(e), rCoPath(f) and prevLeaf(f). Each
of them can be easily computed in time O(log n) given that f advances at the
predictable double speed compared to leaf(e). Finally, Leap requires O(log n) ele-
ments from the bulletin board and performs O(log n) computation. In addition,
Leap-Idx(e, e′) needs to compute the elements of the right copath of leaf(e) that
are ancestors of leaf(e′), the corresponding frontier f′, and prevLeaf(f′). It then
outputs the corresponding paths to recover e′, prevLeaf(f′), f′, and rCoPath(f′),
where the latter can be directly recovered from f′. All of those computations can
be done in O(log n) as well.

Correctness and Security. Let us briefly summarize the main results of this
section, which is that our modifications to the forward-secure GGM-based PRNG
do not affect either correctness or security. A proof of the follow theorem is
presented in the full version [21].

Theorem 1. The scheme outlined in Sect. 4.1 is correct and secure FF-PRNG,
for a bounded number of at most 2h epochs.

Forward-Secure Encryption with Fast Forwarding 23

4.2 Supporting an Unbounded Number of Epochs

In this section, we now briefly outline how our construction can be extended to
support an unbounded number of epochs, and in the process reduce the running
time of Init to O(1).

In a nutshell, we can apply the idea of a sequence of GGM trees of growing
height, as used in [40]. Their roots can be derived using a forward-secure PRNG,
such as the folklore construction from PRG.Expand. Recall from Invariant 4 that
within a tree GGMt, Update is done expanding before the epoch reaches the
subtree Tt−1 (cf. Figure 4). As this subtree has 2t−1 more leaves, we can spend
this time initializing the next tree GGMt+1 instead, deriving its leftmost path
and storing encryptions of its copath on the bulletin board.

We refer to the full version of the paper [21] for a more detailed description
of the scheme.

5 Fast-Forwardable Updatable Public-Key Encryption

Our generic FF-UPKE uses any update-homomorphic UPKE (H-UPKE) and is
built around the idea of so-called cumulative updates, i.e., update ciphertexts
that aggregate a sequence of individual updates. We use an update graph to
govern which cumulative updates are produced, to balance the senders’ overhead
with the receiver’s ability to fast forward. (For instance, the complete update
graph would allow the receiver to update in constant time while imposing an
undesirable linear overhead on each sender, while the empty update graph results
in a plain UPKE without fast-forwarding.)

5.1 Update-Homomorphic UPKE

As a building block—to allow for cumulative updates—our construction makes
use of an update-homomorphic UPKE scheme, constituting a special case of
updatable public-key encryption.

In brief, in addition to a key-generation algorithm (pk1, sk1, pp) ←
KeyGen(1κ), and respective message encryption and decryption algorithms c ←
Encrypt(pki,m) and m ← Decrypt(ski, c), an update-homomorphic UPKE scheme
provides the following structure:

(1) update ciphertext consist of an encrypted update message, i.e., upi+1 ←
UpdEnc(pki, δi+1), sampled using δi+1 ← UpdGen(pp) based on the public
parameters pp;

(2) update messages are elements from the secret-key space which forms a group
under some operator 	;

(3) the secret keys are updated according to ski+1 = ski 	 δi+1;
(4) UpdEnc is message homomorphic, i.e., there is an algorithm Upd-Comb(up,

up′) homomorphically combining two updates encrypted under the same
public key pki.

24 Y. Dodis et al.

Using the shorthand notation Δ[j,�] := (δj+1 	 · · · 	 δ�), the homomorphism
property thus ensures that we can compute an encryption that is equivalent to
Upi

[j,�] ← UpdEnc(pki,Δ[j,�]) from two partial updates Upi
[j,k] and Upi

[k,�], for
any j < k <
. More formally, we define update-homomorphic UPKE schemes
as follows.

Definition 6. An update-homomorphic UPKE (H-UPKE) scheme is a tuple
of algorithms (KeyGen,Encrypt,Decrypt,UpdGen,UpdEnc,UpdDec,UpdatePK,
Upd-Comb) for which the secret-key space SK forms a semigroup (i.e., is asso-
ciative with respect to some operator) and the algorithms are defined as follows:

– the key-generation algorithm (pk1, sk1, pp) ← KeyGen(1κ), which outputs an
initial key pair sk1 and pk1, as well as public parameters pp;

– the encryption algorithm c ← Encrypt(pki,m) and the and deterministic
decryption algorithm m ← Decrypt(ski, c), respectively;

– the update-sample algorithm δi+1 ← UpdGen(pp) producing δi+1 ∈ SK;
– the deterministic public-key update algorithm pki+1 ← UpdatePK(pki, δi+1),

which given a public key and an update message produces an updated one;
– the update-encryption algorithm upi

j ← UpdEnc(pki, δj), for j > i;
– the update-combination algorithm Upi

[j,�] ← Upd-Comb(Upi
[j,k],Up

i
[k,�]), merg-

ing two updates encrypted under the same public key pki.
– the and deterministic update-decryption Δi

[j,�] ← UpdDec(ski,Up
i
[j,�]);

Correctness and Security. We formalize correctness using two separate prop-
erties. The first property essentially demands that the pairs (Encrypt,Decrypt)
and (UpdEnc,UpdDec) represent correct pairs of encryption and decryption algo-
rithms for their respective message spaces—analogously to the standard UPKE
definition. This is formalized in the game on the left side of Fig. 6. To account
for the evolving sequence of public and secret keys, as well as the use of bad ran-
domness, the game allows the adversary to update the keys an arbitrary number
of periods under his randomness before submitting a challenge message to be
encrypted. The adversary wins if either the ciphertext or one of the update mes-
sages gets decrypted incorrectly. The second property concerns homomorphism
and is, thus, unique to update-homomorphic UPKE. It requires that the out-
put of Upd-Comb must correctly decrypt to the multiplication of the underlying
update secrets (for the group operator), i.e., that

Δ[j,k] 	 Δ[k,�]

= UpdDec
(
ski,Upd-Comb

(
UpdEnc(pki,Δ[j,k]),UpdEnc(pki,Δ[k,�])

))
.

Finally, we require IND-CPA security. The IND-CPA game is essentially the
same as for regular UPKE, when accounting for the imposed special structure
of the updating mechanism, via the sender invoking

1. δ ← UpdGen(pp)
2. up ← UpdEnc(pk, δ)
3. pk′ ← UpdatePK(pk, δ),

Forward-Secure Encryption with Fast Forwarding 25

Game UPKE IND-CPA

Initialization

b ←$ {0, 1}
safe ← true

chall ← false

n ← 1
(pk, sk, pp) ← KeyGen(1κ)
return pk

Oracle Corrupt

if chall ∧ safe then
return sk

Oracle Update

Input: r1, r2 ∈ R ∪ {⊥}
if r1 = ⊥ ∨ r2 = ⊥ then

r1 ←$ R
r2 ←$ R
safe ← true

n ← n + 1
δ ← UpdGen(pp; r1)
up ← UpdEnc(pk, δ; r2)
pk ← UpdatePK(pk, δ)
sk ← sk � δ
return (pk, up)

Oracle Challenge

Input: m0,m1 ∈ M
if ¬chall ∧ |m0| = |m1| then

c ← Encrypt(sk,mb)
safe ← false

chall ← true

return c

Finalization

Input: b′ ∈ {0, 1}
return b = b′

Fig. 6. The IND-CPA game of Update-Homomorphic Updatable Public-Key Encryp-
tion (H-UPKE).

and on the other side the receiver using δ ← UpdDec(sk, up) and sk′ ← sk 	 δ.
A formal description of the resulting IND-CPA game can be found on the right
hand side of Fig. 6.

Definition 7 (Security). A UPKE scheme is said to be IND-CPA secure if
any PPT adversary A has a negligible probability of winning the game depicted
in Fig. 6.

Schemes. In the full version [21] we show that with minor modifications the
standard-model UPKE schemes of Dodis et al. [22] do lend themselves to an
update-homomorphic UPKE scheme, resulting in instantiations under either the
DDH or the LWE assumption. We remark that both constructions have some
(different) caveats: the LWE-based scheme supports a bounded number of homo-
morphic operations, supporting aggregation of at most q atomic updates (but
q can be chosen superpolynomially large at the expense of slightly larger other
parameters) while the DDH-based construction supports an a priori unbounded
number of aggregations but decryption of an aggregated update takes local com-
putation time O(

√
n) in the number of underlying updates n.

5.2 Update Graphs

A crucial part of our construction will be deciding which cumulative updates to
generate. If, on the one hand, we insert too few such cumulative updates, then
LeapSK-Idx(i, j) ≈ j − i loses the fast-forward property. If, on the other hand,
we insert too many—e.g., all of them—then both UpdatePK will need both to
read and write linearly many elements from the bulletin board. Indeed, such a
solution would represent in many aspects the trivial dual solution to no fast-
forwarding, as the former requires linear bandwidth for the receiver whereas the
latter requires linear bandwidth for all the senders.

26 Y. Dodis et al.

To examine those trade-offs in more detail, we reformulate the insertion of
cumulative updates as a graph-theoretic problem. To simplify the reasoning
about the index set, we moreover include the atomic (non fast-forward) updates
into the graph, as formalized by the following definition.

Definition 8. Let α, β, γ : N → N. An (α, β, γ)-update graph G = (N, E) is a
directed acyclic graph with the following properties:

1. ∀i ∈ N : (i, i + 1) ∈ E,
2. ∀(i, j) ∈ E : i < j,
3. ∀n ∈ N : deginG (n) ≤ α(n),
4. ∀n ∈ N : diam(Gn) ≤ β(n),
5. ∀n ∈ N : |activeG(n)| ≤ γ(n),

where activeG(n) := {i ∈ [n − 1] | ∃j > n : (i, j) ∈ E}, and (Gn)n∈N with
Gn := ([n], En) and En := E ∩ [n]2 denotes the sequence of prefix graphs.

Looking slightly ahead, let us briefly consider how the different parameters
will affect the efficiency of our construction. First, the number of update messages
required by LeapSK is bounded by β(j). Second, activeG(n) ≤ γ(n) corresponds
to the set of cumulative updates that need to be extended when a sender initiates
the i-th epoch using UpdatePK. Finally, the indegree represents the number of
“finalized” updates for the respective epoch. This mainly becomes of relevance
if the FF-UPKE scheme is deployed in a single-sender setting.

To be of use for our construction, we need that a given update graph can be
efficiently computed. Specifically, our construction will need to compute the sets
E in

G (i) and activeG(i) for each node i, as well as computing short paths between
any nodes i and j.

Definition 9. We say that an (α, β, γ)-update graph G = (N, E) is implemented
by a pair of deterministic algorithms (G.Eval,G.Path) if:

– G.Eval(n) outputs E in(n) and active(n) in O(poly(log n)) time;
– G.Path(i, j) outputs a path e from node i to j such that |e| ≤ β(j) in

O(poly(β(j) · j)).

5.3 A Generic Construction

We now construct a Fast-Forwardable UPKE scheme based on an Update-
Homomorphic UPKE scheme and an update graph. The basic idea is very simple:
When the sender j chooses the corresponding update secret δj+1, in addition to
updating pkj to pkj+1, they will also

(1) produce fresh ciphertext Up[j,j+1] encrypting δj+1 under pkj ; and
(2) for every i ∈ active(j + 1) ∪ E in(j + 1), fetch Up[i,j] from the bulletin board,

and use the update-homomorphic property of the UPKE to compute cipher-
texts Up[i,j+1] to be published in the bulletin board.

Forward-Secure Encryption with Fast Forwarding 27

On the receiving side, if the receiver knows key ski, and wishes to jump to
some key skj for j > i, it will:

(1) compute a short “leap path” i = i0 → ii → · · · → id = j in the update
graph;

(2) retrieve d ciphertexts {Up[ik,ik+1]} from the bulletin board;
(3) decrypt Upi0,i1 using ski = ski0 to get Δ[i0,i1];
(4) compute ski1 := ski0 	 Δ[i0,i1];
(5) iterate steps (3)–(4) d times to finally “catch up” with skj = skid .

A formal description of the scheme is presented in Fig. 7.

A Single-Sender Variant. When deployed in a single-sender setting, such as
a two-party secure messaging scheme (considered as the original motivation for
UPKE by Jost et al. [36]) the scheme can be slightly tweaked for a different
storage/bandwidth trade-off. To this end, we observe that in our scheme the
receiver will never access the temporary “ongoing” update messages but only
ever use an element (i, j) if (i, j) ∈ E. As a consequence, the sender may choose
to upload only the elements from E in(n) while keeping the ongoing cumulative
updates as part of his local state.

This works nicely since the sender does not need arbitrary γ(n) + α(n) many
of the O(n) so far uploaded elements, but in each step we have

active(n) ∪ E in(n) ⊆ active(n − 1) ∪ {n − 1},

implying that O(γ + α(n)) storage suffices. Additionally, this variant has the
distinct advantage that UpdatePK does not need to read anything from the
bulletin board, i.e., UpdatePK-Idx(n) = ∅, potentially reducing latency.

The corresponding protocol is depicted in Fig. 7 as well using the
dashed boxes . For simplicity, we model the local state as the public key con-

taining a “local” bulletin board.

Correctness and Efficiency. Correctness of the construction follows essen-
tially directly from the correctness of the underlying Update-Homomorphic
UPKE scheme, which is formalized in parts of the correctness of a regular UPKE
scheme plus the correctness condition of the homomorphism. Moreover, by the
construction the various parameters of the update graph directly translate to
the efficiency of the scheme, yielding the following result.

Theorem 2. The FF-UPKE schemes presented in Fig. 7 are correct if the
underlying scheme H-UPKE is correct and update homomorphic as formalized
via the games from Fig. 6.

Moreover, the regular scheme has public and secret keys of roughly the same
size, and encryption and decryption of the same efficiency, as the underlying
H-UPKE scheme. Using an (α, β, γ)-update graph, yields the following efficiency:

28 Y. Dodis et al.

Protocol Fast-Forwardable UPKE

KeyGen(1κ)

BBinit[·] ← ⊥
(pkH-UPKE, skH-UPKE, ppH-UPKE) ← H-UPKE.KeyGen(1κ)
pk ← (1, pkH-UPKE, ppH-UPKE)

BB[·, ·] ← ⊥
pk ← (1, pkH-UPKE, ppH-UPKE,BB)
sk ← (1, skH-UPKE)
return (pk, sk,BBinit)

Encrypt(pk,m)

parse (·, pkH-UPKE, ·) ← pk

parse (·, pkH-UPKE, ·, ·) ← pk

c ← H-UPKE.Encrypt(pkH-UPKE,m)
return c

Decrypt(sk, c)

parse (·, skH-UPKE) ← sk
m ← H-UPKE.Encrypt(skH-UPKE, c)
return m

UpdatePK(pk,BB)

parse (n, pkH-UPKE, ppH-UPKE) ← pk

parse (n, pkH-UPKE, ppH-UPKE,BB) ← pk

n ← n + 1
BB′[·, ·] ← ⊥
// Generate the regular update
δ ← H-UPKE.UpdGen(pp)
pk′

H-UPKE ← H-UPKE.UpdatePK(pk, δ)
up(n−1,n) ← H-UPKE.UpdEnc(pk, δ)

// Update all active cumulative updates
(In,A) ← G.Eval(n)
for all i ∈ A ∪ In \ {n − 1} do

up(i,n−1) ← BB[i, n − 1]
up(i,n) ← H-UPKE.Upd-Comb(up(i,n−1), up(n−1,n))
BB′[i, n] ← up(i,n)

BB′[n − 1, n] ← up(n−1,n)

pk′ ← (n, pk′
H-UPKE, ppH-UPKE)

return (pk′,BB′)

BB′′[·, ·] ← ⊥
BB′′[n − 1, n] ← up(n−1,n)

pk′ ← (n, pk′
H-UPKE, ppH-UPKE,BB

′)
return (pk′,BB′′)

UpdateSK(sk,BB)

parse (n, skH-UPKE) ← sk
n ← n + 1
δ ← H-UPKE.UpdDec(skH-UPKE,BB[n − 1, n])
skH-UPKE ← skH-UPKE � δ
sk′ ← (n, skH-UPKE)
return sk′

LeapSK(sk, j,BB)

parse (n, skH-UPKE) ← sk
if j ≤ n then

return ⊥
e ← G.Path(n, j)
for (u, v) ∈ e do

δ ← H-UPKE.UpdDec(skH-UPKE,BB[u, v])
skH-UPKE ← skH-UPKE � δ

n ← j
sk′ ← (n, sk′

H-UPKE)
return sk′

UpdatePK-Idx(n)

I ← ∅

(In,A) ← G.Eval(n + 1)
for all i ∈ A ∪ In \ {n} do

I ← I ∪ {(i, n)}
return I

UpdateSK-Idx(n)

return {(n, n + 1)}

LeapSK-Idx(n, j)

e ← G.Path(n, j)
I ← ∅

for (u, v) ∈ e do
I ← I ∪ {(u, v)}

return I

Fig. 7. The FF-UPKE protocols are built from an Update-Homomorphic UPKE

scheme H-UPKE and an update graph G. Lines enclosed in solid boxes belong to

the regular multi-sender protocol, whereas lines enclosed in dashed boxes represent
the single-sender variant.

– UpdatePK: |UpdatePK-Idx(n)| ≤ γ(n + 1) and |BBup| ≤ γ(n + 1) + 1. More-
over, UpdatePK needs O(γ(n + 1)) as many cryptographic operations as the
underlying scheme.

– UpdateSK: |UpdateSK-Idx(n)| = 1 and UpdateSK uses O(1) as many crypto-
graphic operations as the underlying scheme.

Forward-Secure Encryption with Fast Forwarding 29

– LeapSK: |LeapSK-Idx(n, j)| ≤ β(j) and LeapSK uses O(β(j)) as many cryp-
tographic operations as the underlying scheme.

The single-sender scheme has a secret key of roughly the same size as the
underlying H-UPKE scheme, and a public key size of roughly γ(n) as big as the
underlying scheme (modeling local storage) and the same efficiency except that
|UpdatePK-Idx(n)| = 0 and |BBup| ≤ α(n + 1).

A proof is presented in the full version of the paper [21].

Security. Security also follows directly from the security of the underlying
Update-Homomorphic UPKE scheme, as intuitively the cumulative updates rep-
resent a computation on public data.

Theorem 3. The FF-UPKE schemes presented in Fig. 7 are IND-CPA secure,
according to Definition 5, if the underlying scheme H-UPKE is IND-CPA secure
according to Definition 7.

A proof can be found in the full version [21] of this document.

6 Conclusions and Open Problems

We identified fast-forwarding as a compelling property of forward-secure encryp-
tion, and have shown that in the practically relevant bulletin-board model fast-
forwarding can be obtained at little additional cost. First, we have constructed
a fast-forwardable stream cipher that maintains a constant local state and has
a constant running time per update operation. This essentially matches the
efficiency of non-fast-forwardable stream ciphers at the cost of constant commu-
nication complexity with the bulletin board per update.

Second, we presented a generic construction of a fast-forwardable updatable
public-key encryption scheme from a novel primitive of an update-homomorphic
UPKE scheme. This bridges the gap between forward-secure PKE, for which
fast-forwardability is the norm, and its more efficient cousin UPKE, where none
of the existing schemes were fast-forwardable. As a feasibility result, we presented
instantiations based on the DDH and LWE assumptions, respectively.

While neither instantiation is truly practical, we believe that our novel
construction of FF-UPKE could ultimately lead to constructions significantly
outperforming those of forward-secure PKE, resolving the dilemma of prac-
tical public-key encryption to having to choose between forward-secrecy and
fast-forwarding. Accordingly, this leaves the construction of efficient update-
homomorphic UPKE schemes as an intriguing problem, demonstrating that
while highly practical UPKE schemes are known to exist in the ROM, the search
for efficient schemes in the standard model may be of interest for the sake of
exhibiting homomorphic properties typically unknown to ROM constructions.

Acknowledgments. We would like to thank Michael Elkin for a useful discussion
about update graphs and bringing [42] to our attention.

30 Y. Dodis et al.

References

1. Abdalla, M., Reyzin, L.: A new forward-secure digital signature scheme. In:
Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 116–129. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3 10

2. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 28

3. Alwen, J., Coretti, S., Dodis, Y., Tselekounis, Y.: Security analysis and improve-
ments for the IETF MLS standard for group messaging. In: Micciancio, D., Ris-
tenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12170, pp. 248–277. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-56784-2 9

4. Anderson, R.: Invited lecture. In: Fourth Annual Conference on Computer and
Communications Security. ACM (1997)

5. Aviram, N., Gellert, K., Jager, T.: Session resumption protocols and efficient for-
ward security for TLS 1.3 0-RTT. J. Cryptol. 34(3), 1–57 (2021). https://doi.org/
10.1007/s00145-021-09385-0

6. Bellare, M., Miner, S.K.: A forward-secure digital signature scheme. In: Wiener, M.
(ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 431–448. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 28

7. Bellare, M., Yee, B.: Forward-security in private-key cryptography. In: Joye, M.
(ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 1–18. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-36563-X 1

8. Blum, L., Blum, M., Shub, M.: Comparison of two pseudo-random number gener-
ators. In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.) CRYPTO’82, pp. 61–78.
Plenum Press, New York (1982)

9. Boneh, D., Boyen, X.: Efficient selective-id secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24676-3 14

10. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with con-
stant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 440–456. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639 26

11. Boneh, D., Eskandarian, S., Kim, S., Shih, M.: Improving speed and security in
updatable encryption schemes. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020.
LNCS, vol. 12493, pp. 559–589. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-64840-4 19

12. Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomorphic PRFs
and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS,
vol. 8042, pp. 410–428. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40041-4 23

13. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applica-
tions. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp.
280–300. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-
0 15

14. Boyd, C., Davies, G.T., Gjøsteen, K., Jiang, Y.: Fast and secure updatable encryp-
tion. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12170, pp.
464–493. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56784-2 16

https://doi.org/10.1007/3-540-44448-3_10
https://doi.org/10.1007/978-3-642-13190-5_28
https://doi.org/10.1007/978-3-030-56784-2_9
https://doi.org/10.1007/s00145-021-09385-0
https://doi.org/10.1007/s00145-021-09385-0
https://doi.org/10.1007/3-540-48405-1_28
https://doi.org/10.1007/3-540-36563-X_1
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/11426639_26
https://doi.org/10.1007/978-3-030-64840-4_19
https://doi.org/10.1007/978-3-030-64840-4_19
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-030-56784-2_16

Forward-Secure Encryption with Fast Forwarding 31

15. Brakerski, Z., Lombardi, A., Segev, G., Vaikuntanathan, V.: Anonymous IBE,
leakage resilience and circular security from new assumptions. In: Nielsen, J.B.,
Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 535–564. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-78381-9 20

16. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 16

17. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 207–222. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24676-3 13

18. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a
lattice basis. J. Cryptol. 25(4), 601–639 (2011). https://doi.org/10.1007/s00145-
011-9105-2

19. Derler, D., Jager, T., Slamanig, D., Striecks, C.: Bloom filter encryption and appli-
cations to efficient forward-secret 0-RTT key exchange. In: Nielsen, J.B., Rijmen,
V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 425–455. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-78372-7 14

20. Diffie, W., van Oorschot, P.C., Wiener, M.J.: Authentication and authenticated
key exchanges. Des. Codes Cryptogr. 2(2), 107–125 (1992)

21. Dodis, Y., Jost, D., Karthikeyan, H.: Forward-secure encryption with fast forward-
ing. Cryptology ePrint Archive, Paper 2022/1233 (2022). https://eprint.iacr.org/
2022/1233, full version of this report

22. Dodis, Y., Karthikeyan, H., Wichs, D.: Updatable public key encryption in the
standard model. In: Nissim, K., Waters, B. (eds.) TCC 2021. LNCS, vol. 13044,
pp. 254–285. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90456-2 9

23. Dodis, Y., Katz, J., Xu, S., Yung, M.: Key-insulated public key cryptosystems. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 65–82. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7 5

24. Dodis, Y., Katz, J., Xu, S., Yung, M.: Strong key-insulated signature schemes. In:
Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 130–144. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36288-6 10

25. Döttling, N., Garg, S.: From selective IBE to full IBE and selective HIBE. In:
Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 372–408. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70500-2 13

26. Döttling, N., Garg, S.: Identity-based encryption from the diffie-hellman assump-
tion. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 537–
569. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7 18

27. Everspaugh, A., Paterson, K., Ristenpart, T., Scott, S.: Key rotation for authenti-
cated encryption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10403, pp. 98–129. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63697-9 4

28. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC,
pp. 197–206. ACM Press (2008). https://doi.org/10.1145/1374376.1374407

29. Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-36178-2 34

30. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986)

https://doi.org/10.1007/978-3-319-78381-9_20
https://doi.org/10.1007/3-540-39200-9_16
https://doi.org/10.1007/978-3-540-24676-3_13
https://doi.org/10.1007/978-3-540-24676-3_13
https://doi.org/10.1007/s00145-011-9105-2
https://doi.org/10.1007/s00145-011-9105-2
https://doi.org/10.1007/978-3-319-78372-7_14
https://eprint.iacr.org/2022/1233
https://eprint.iacr.org/2022/1233
https://doi.org/10.1007/978-3-030-90456-2_9
https://doi.org/10.1007/3-540-46035-7_5
https://doi.org/10.1007/3-540-36288-6_10
https://doi.org/10.1007/978-3-319-70500-2_13
https://doi.org/10.1007/978-3-319-63688-7_18
https://doi.org/10.1007/978-3-319-63697-9_4
https://doi.org/10.1007/978-3-319-63697-9_4
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1007/3-540-36178-2_34

32 Y. Dodis et al.

31. Green, M.D., Miers, I.: Forward secure asynchronous messaging from puncturable
encryption. In: 2015 IEEE Symposium on Security and Privacy, pp. 305–320. IEEE
Computer Society Press (2015). https://doi.org/10.1109/SP.2015.26

32. Günther, C.G.: An identity-based key-exchange protocol. In: Quisquater, J.-J.,
Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 29–37. Springer,
Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4 5

33. Horwitz, J., Lynn, B.: Toward hierarchical identity-based encryption. In: Knudsen,
L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-46035-7 31

34. Itkis, G., Reyzin, L.: Forward-secure signatures with optimal signing and verify-
ing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 332–354. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 20

35. Jaeger, J., Stepanovs, I.: Optimal channel security against fine-grained state com-
promise: the safety of messaging. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018. LNCS, vol. 10991, pp. 33–62. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96884-1 2

36. Jost, D., Maurer, U., Mularczyk, M.: Efficient ratcheting: almost-optimal guar-
antees for secure messaging. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019.
LNCS, vol. 11476, pp. 159–188. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17653-2 6

37. Klooß, M., Lehmann, A., Rupp, A.: (R)CCA secure updatable encryption with
integrity protection. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS,
vol. 11476, pp. 68–99. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17653-2 3

38. Kozlov, A., Reyzin, L.: Forward-secure signatures with fast key update. In: Cimato,
S., Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS, vol. 2576, pp. 241–256. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-36413-7 18

39. Lehmann, A., Tackmann, B.: Updatable encryption with post-compromise security.
In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp.
685–716. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7 22

40. Malkin, T., Micciancio, D., Miner, S.: Efficient generic forward-secure signatures
with an unbounded number of time periods. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 400–417. Springer, Heidelberg (2002). https://doi.org/
10.1007/3-540-46035-7 27

41. Poettering, B., Rösler, P.: Towards bidirectional ratcheted key exchange. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 3–32.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 1

42. Solomon, S., Elkin, M.: Balancing degree, diameter and weight in euclidean span-
ners. In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS, vol. 6346, pp. 48–59.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15775-2 5

43. Sun, S., et al.: Practical backward-secure searchable encryption from symmetric
puncturable encryption. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM
CCS 2018, pp. 763–780. ACM Press (2018). https://doi.org/10.1145/3243734.
3243782

44. Wei, J., Chen, X., Wang, J., Hu, X., Ma, J.: Forward-secure puncturable identity-
based encryption for securing cloud emails. In: Sako, K., Schneider, S., Ryan,
P.Y.A. (eds.) ESORICS 2019. LNCS, vol. 11736, pp. 134–150. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-29962-0 7

https://doi.org/10.1109/SP.2015.26
https://doi.org/10.1007/3-540-46885-4_5
https://doi.org/10.1007/3-540-46035-7_31
https://doi.org/10.1007/3-540-44647-8_20
https://doi.org/10.1007/978-3-319-96884-1_2
https://doi.org/10.1007/978-3-319-96884-1_2
https://doi.org/10.1007/978-3-030-17653-2_6
https://doi.org/10.1007/978-3-030-17653-2_6
https://doi.org/10.1007/978-3-030-17653-2_3
https://doi.org/10.1007/978-3-030-17653-2_3
https://doi.org/10.1007/3-540-36413-7_18
https://doi.org/10.1007/978-3-319-78372-7_22
https://doi.org/10.1007/3-540-46035-7_27
https://doi.org/10.1007/3-540-46035-7_27
https://doi.org/10.1007/978-3-319-96884-1_1
https://doi.org/10.1007/978-3-642-15775-2_5
https://doi.org/10.1145/3243734.3243782
https://doi.org/10.1145/3243734.3243782
https://doi.org/10.1007/978-3-030-29962-0_7

Rate-1 Incompressible Encryption
from Standard Assumptions

Pedro Branco1(B), Nico Döttling2 , and Jesko Dujmović2,3

1 Johns Hopkins University, Baltimore, MD 21218, USA
pedrodemelobranco@gmail.com

2 Helmholtz Center for Information Security (CISPA), 66123 Saarbrücken, Germany
{doettling,jesko.dujmovic}@cispa.de

3 Saarland University, 66123 Saarbrücken, Germany

Abstract. Incompressible encryption, recently proposed by Guan,
Wichs and Zhandry (EUROCRYPT’22), is a novel encryption paradigm
geared towards providing strong long-term security guarantees against
adversaries with bounded long-term memory. Given that the adversary
forgets just a small fraction of a ciphertext, this notion provides strong
security for the message encrypted therein, even if, at some point in
the future, the entire secret key is exposed. This comes at the price of
having potentially very large ciphertexts. Thus, an important efficiency
measure for incompressible encryption is the message-to-ciphertext ratio
(also called the rate). Guan et al. provided a low-rate instantiation of
this notion from standard assumptions and a rate-1 instantiation from
indistinguishability obfuscation (iO). In this work, we propose a sim-
ple framework to build rate-1 incompressible encryption from standard
assumptions. Our construction can be realized from, e.g. the DDH and
additionally the DCR or the LWE assumptions.

1 Introduction

Incompressible Cryptography. [19,26,27,32,34,42] is a flourishing paradigm try-
ing to leverage memory limitations of adversaries to achieve strong security goals.
While traditionally, the goal of cryptography in the bounded storage model [40] is
to minimize the need for computational assumptions or even obtain information-
theoretically secure constructions, incompressible cryptography is geared more
toward mitigating the consequences of key exfiltration and key exposure attacks.
In this work, we focus on the notion of incompressible encryption [26,32]1

recently coined by Guan et al. [32]. An incompressible encryption scheme pro-
duces large, incompressible ciphertexts and guarantees that any adversary who
forgets even a small fraction of the ciphertext data will learn nothing about the
encrypted data, even if he is later given the corresponding secret key!

1 Dziembowski [26] introduced this concept under the name forward-secure storage in
the symmetric key setting.

c© The Author(s), under exclusive license to Springer Nature Switzerland 2022
E. Kiltz and V. Vaikuntanathan (Eds.): TCC 2022, LNCS 13748, pp. 33–69, 2022.
https://doi.org/10.1007/978-3-031-22365-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22365-5_2&domain=pdf
http://orcid.org/0000-0002-5914-7635
http://orcid.org/0000-0003-1043-5094
https://doi.org/10.1007/978-3-031-22365-5_2

34 P. Branco et al.

One motivation for incompressible encryption is to hamper adversaries con-
ducting a mass-surveillance operation by forcing them to store massive amounts
of ciphertext data even if they are just interested in a tiny fraction of the
encrypted data. In a similar scenario, an adversary trying to exfiltrate informa-
tion encrypted under an incompressible encryption scheme from a data-center
will have to exfiltrate massive amounts of data, even if his exfiltration target is
just a small piece of information.

An orthogonal notion to incompressible encryption is encryption in the
bounded-retrieval model [3,4,8,9,22,25,36,42] where the goal is to make the
secret key large and incompressible (to make it hard to exfiltrate) while keeping
all other system parameters small, such as the sizes of public keys and cipher-
texts, as well as the overhead of encryption and decryption.

Encryption with High Rate. An important efficiency measure of encryption
schemes is their ciphertext expansion or rate. The rate of an encryption scheme
is the ratio between plaintext size and ciphertext size. The closer the rate is to 1,
the more efficient a scheme manages to pack information into a ciphertext. Con-
versely, the closer the rate is to 0, the less information is encoded in potentially
large ciphertexts. For incompressible encryption, achieving a high rate (ideally
converging to 1), especially if we think of the data center application above,
where a small rate would also put a massive burden on the data center.

Guan et al. [32] provided two constructions of incompressible encryption.

– A construction from the minimal assumption of public-key encryption which
has ciphertext-rate approaching 0.

– A construction from indistinguishability obfuscation (iO) [6,28,37] which
achieves ciphertext-rate approaching 1.

We remark that their rate-1 construction relies on non-black-box techniques and
iO, which gives this result a strong feasibility flavor.

Given this state of affairs, this work is motivated by the following question:

Can we build a rate-1 incompressible encryption scheme based on standard
assumptions while only making black-box use of cryptographic primitives?

1.1 Our Results

In this work, we build a rate-1 incompressible encryption scheme from standard
assumptions while only using black-box techniques. Our result uses what we call
programmable hash proof systems (HPS) (which are a variant of standard HPS
[16,17] with some additional properties), plain-model incompressible encodings
[42] and a pseudorandom generator (PRG). In particular, we prove the following
theorem.

Theorem 1 (Informal). Let S be the storage capacity of the adversary and let
n be the size of the encrypted messages. Assuming programmable HPS, incom-
pressible encodings and PRGs exist, there is an incompressible encryption scheme
fulfilling the following properties:

Rate-1 Incompressible Encryption from Standard Assumptions 35

1. Ciphertexts are of size n + nε · poly(λ) for some ε > 0.
2. The public key is of size nε′ · poly(λ) for some ε′ > 1/2.
3. Moreover, the size of ciphertexts is only slightly larger than the adversary’s

storage space, that is, S + poly(λ).

The ciphertext rate n/(n + nε · poly(λ)) approaches 1 for large enough mes-
sages. Additionally, the public key is sublinear in the size of the encrypted mes-
sage.

In terms of assumptions, incompressible encodings can be based on either
decisional composite residuosity (DCR) or learning with errors (LWE). The PRG
can be based on any one-way function. We also show that programmable HPS
can be instantiated from the decisional Diffie-Hellman (DDH) assumption by
tweaking the famous HPS by Cramer and Shoup [17]. Consequently, our final
incompressible encryption scheme can be based solely on standard assumptions.

Streaming Encryption. Streaming encryption/decryption is a property of incom-
pressible encryption schemes which allows the honest encryptor/decryptor to
perform operations with very low storage capacity. It is easy to see that stream-
ing decryption is an inherently conflicting property with high rate ciphertexts
[32]. This is because the honest decryptor needs storage at least as large as the
size of the message. Otherwise, an adversary can essentially mimic the decryp-
tor and learn something about the encrypted message (e.g., the most significant
bit).

However, we note that our scheme has stream encryption, i.e., the honest
encryptor does not need much space to perform encryption. This follows from the
fact that the incompressible encodings construction of [42] has stream encoding.

Extension to CCA Security. In the security experiment for incompressible
encryption presented in [32] the adversary is never allowed to query a decryp-
tion oracle. In other words, their work only considered IND-CPA incompressible
encryption. In this work, we also give the adversary access to an decryption oracle
extending incompressible encryption to IND-CCA2 incompressible encryption.
We stress that IND-CCA2 security is usually considered the right security defi-
nition to use in practice. We show that our construction is, in fact, is IND-CCA2
incompressible secure.

1.2 Comparison with Previous Work

[32] presented two incompressible encryption schemes. The first one is based
only on the minimal assumption of PKE. However, the ciphertext rate is very
far from 1. The second one achieves rate-1 but is based on iO. We compare these
schemes in Table 1.

36 P. Branco et al.

Table 1. Comparison with previous work. Here, n denotes the size of the encrypted
messages and ε′ is any constant between 1/2 and 1.

Ciphertext
rate

Public key
size

Hardness
assumption

Security

[32] 1/poly(λ) poly(λ) PKE IND-CPA

[32] 1 poly(λ) iO IND-CPA

Our result 1 nε′ · poly(λ) DDH ∧
(DCR ∨ LWE)

IND-CCA2

Other Related Work. Some recent works made significant progress in the area of
incompressible cryptography. The works of [19,27,42] proposed constructions for
incompressible encodings either in the random oracle model or in the CRS model.
The work of [34] used the BSM together with computational assumptions to
propose constructions of primitives that are not known just from computational
assumptions, such as virtual grey-box obfuscation.

Incompressible cryptography is closely related to the bounded storage model
(BSM) [39]. However, most works in the BSM (e.g. [5,13,24,33,45]) focus on
achieving unconditional security for primitives that are already known from com-
putational assumptions such as public-key encryption and oblivious transfer.

Open Problems. We leave the open problem of developing an incompressible
encryption scheme that combines concretely short public keys with small cipher-
texts. A possible approach for this would be to find a programmable hash proof
system where the size of the public key is essentially independent of the size of
the encapsulated key.

Full Version. In the full version [11], we justify focusing on the plain model
by providing a simple incompressible encryption scheme that is secure in the
random oracle model but is broken for any instantiation of the random oracle.
This provides another uninstantiability for the random oracle in the vein of
[7,10,12,14,21,29,31,41].

The full version also contains a programmable HPS based on isogeny-based
assumptions with worse parameters than the DDH programmable HPS and
a programmable HPS based on the hardness of LWE with superpolynomial
modulus-to-noise ratio with better parameters than the DDH programmable
HPS. The LWE construction, however, only results in incompressible IND-CPA
security.

2 Technical Overview

In this technical overview, we sketch the main techniques to build an IND-CPA
incompressible scheme. We later argue how these techniques can be tweaked to
obtain a scheme that is IND-CCA2 incompressible secure.

Rate-1 Incompressible Encryption from Standard Assumptions 37

Security Notion. The syntax and correctness notions for incompressible encryp-
tion are identical to standard public-key encryption (PKE). The main difference
is in the security definition. Since the security notion of incompressible encryp-
tion is relatively new, we will briefly detail its security experiment here. Consider
the following security game between a challenger C and a 3-stage PPT adversary
A = (A1,A2,A3).

1. C creates a pair of public and secret keys pk, sk.
2. Given pk, the first stage A1 chooses two messages m0,m1.
3. C chooses b ←$ {0, 1} uniformly at random and encrypts ct ← Enc(pk,mb).
4. Given the ciphertext ct and the state of A1, the second stage A2 produces

a state st of size S < |ct|. That is, the state st should be somewhat smaller
than ct.

5. Now, the third stage A3 receives as input the state st (produced by A2) and
the secret key sk. The goal of A3 is to guess the bit b.

We say that an incompressible encryption is secure if, for any adversary, A the
advantage of winning the following game is negligible in the security parameter
λ.

2.1 The Scheme of GWZ

Before we provide an outline of our construction, we will briefly discuss the
underlying ideas of the low-rate incompressible encryption scheme constructed
in [32]. At the very core is the following idea: The ciphertext essentially consists
of a very long truly random random string R and a short payload part c =
(c1, c2), where c1 is an encryption of a seed k for a randomness extractor Ext,
and c2 = Ext(k,R) ⊕ m is essentially a one-time-pad encryption of the message
m under the key Ext(k,R). Clearly, if c1 was not part of the ciphertext, then
security of this scheme follows routinely by the following observations:

– In the view of the third stage A3 of the adversary R has high min-entropy,
as R is uniformly random and the state st is significantly shorter than R.

– Furthermore, as we assume c1 is not part of the ciphertext, st is independent
of k

– Hence by the extraction property of Ext the string Ext(k,R) is uniformly
random in the adversary’s view, and therefore mb is statistically hidden.

Now, the main idea of [32] to make this approach work even though c1 is
part of the ciphertext is to encrypt k in such a way that c1 can be made indepen-
dent of the extractor seed k. This is achieved by choosing a suitable encryption
scheme for which c1 can be chosen independently of k, and a suitable secret
key which decrypts c1 to k can be chosen after the fact, i.e. after the leakage st
has been computed. [32] provide an elegant construction of such a scheme from
non-compact single-key functional encrytion, which can be built from any public
key encryption scheme [30].

38 P. Branco et al.

2.2 The Big Picture

While our construction departs significantly from the blueprint of [32] we use the
same high-level concept of an encryption scheme that allows delaying secret-key
generation in the security proof. Rather than constructing incompressible PKE
directly, we first tackle the intermediate and simpler task of realizing a rate-1
incompressible symmetric-key encryption. In a second step, we will then trans-
form any incompressible SKE scheme into an incompressible PKE scheme in a
rate-preserving way. It turns out that even constructing a rate-1 incompressible
SKE from standard assumptions is a non-trivial task and does not follow, e.g.
from the (low-rate) public-key construction of [32].

Since our two steps are independent of one another, improvements of either in
future work will lead to better incompressible encryption schemes. For simplicity,
in the following outline, we will focus only on CPA security, whereas in the main
body, we present a CCA secure construction (Fig. 1).

LWE

DCR

Rate-1
Incompressible
Encodings

Rate-1
Incompressible
SKE

Programmable HPS (Sec.5)

Rate-1
Incompressible
PKE

[42]

[42]

Sec.4 Sec.6

Fig. 1. Overview of the results in this work, bold arrows are contributions of this work.

2.3 Rate-1 Incompressible Symmetric-Key Encryption

In the symmetric-key setting, the syntax and correctness of incompressible SKE
are pretty much that of standard symmetric-key encryption, whereas the security
notion is similar to that of incompressible PKE, just with the difference that the
first stage A1 of the adversary is not given a public key (as there is none). Thus,
the security notion we consider here is the incompressible encryption-analogue
of security against an eavesdropper (IND-EAV).

Failed Naive Attempts. As a (failed) very first attempt, one may try “make work”
an incompressible SKE construction from the One-Time-Pad (OTP), i.e. the
secret key k is a random bit-string as long as the message m and the ciphertext
is c = k ⊕ m. However, the obvious issue with this is that such a ciphertext
c decomposes into many one-bit ciphertexts ci = ki ⊕ mi, and it is enough
for A2 to leak a few bits of c to enable A3 to partially decrypt c and thus

Rate-1 Incompressible Encryption from Standard Assumptions 39

distinguish encryptions of m0 from encryptions of m1. As a next idea, one may
try the following: Encryption chooses a (fresh) pseudorandom generator (PRG)
seed s, encrypt m into m̂ = m ⊕ PRG(s), use k to encrypt the seed s into a
header ciphertext c, i.e. the encryption of m is (Enc(k, s),m ⊕ PRG(s)). While
this approach does look promising, we observe that it is stuck at either leakage-
rate 1/2 or ciphertext-rate 1/2, that is as soon as A3 learns Enc(k, s) in its
entirety and a few bits of mb ⊕PRG(s), he will be able to distinguish encryptions
of m0 from m1.

Introducing Circularity. Clearly, we need some kind of mechanism to glue the
two ciphertexts components together, i.e. we want to make it such that if some
parts of m̂ are missing, then c will be useless (and vice versa). As a first, heuristic
“hands-on” approach to achieve this, we can try to use m̂ as a source of ran-
domness from which we extract a key to mask the seed s. Thus, let Ext(·, ·) be a
seeded randomness extractor. We compute a ciphertext (c, m̂) by first computing
m̂ = m ⊕ PRG(s) for a random seed s as before, but then encrypt s into c via
c = s ⊕ Ext(k, m̂), i.e. we use k as an extractor seed to extract a one-time-pad
key Ext(k, m̂) from m̂. Clearly, given k and a ciphertext (c, m̂), we can decrypt
by first computing s = c ⊕ Ext(k, m̂) and then m = m̂ ⊕ PRG(s). The rationale
for why we hope this construction to be secure is that as soon as a significant
fraction of the bits of m̂ are lost, the output of the extractor Ext(k, m̂) should
look uniform, and thus m̂ = m⊕PRG(s) should hide m by the pseudorandomness
of PRG. However, this circularity backfires when trying to establish security of
this construction just from the pseudorandomness of PRG and the randomness-
extraction property of Ext: In order to use pseudorandomness of PRG, we first
need to remove the s from the view of the adversary, but c = s ⊕ Ext(k, m̂) is
correlated with s given k. On the other hand, in order to use the randomness
extraction property of Ext we need that m̂ has high entropy given st. But all the
entropy of m̂ = m ⊕ PRG(s) comes from the seed s, which is very small. Hence
≈ λ bits of m̂ suffice to information-theoretically determine s.

Consequently, while heuristically, this construction seems secure, it seems
unlikely the individual security properties of PRG and Ext suffice to prove this
construction secure.

Breaking Circularity. Hence, what we need is a mechanism to break the circular-
ity, which we have just introduced. Looking at where establishing security of the
above construction gets stuck, a natural point to start is to make it such that m̂
looks like it has a large amount of real entropy once a few bits of m̂ are missing,
i.e. L(m̂) being computationally indistinguishable from L(r̂) for a high-entropy
distribution r̂ for any efficiently computable leakage function L(·)2.

Incompressible Encodings. Fortunately, an encoding mechanism achieving this
notion called incompressible encodings was just recently introduced and con-
structed by Moran and Wichs [42]. As a technical tool, they introduced the

2 In our case the leakage function L is described by the adversary’s second stage A2.

40 P. Branco et al.

notion of HILL-entropic encoding in their work, which will be sufficient, if not
to say ideally suited for our construction. Such a scheme consists of an encod-
ing algorithm En and a decoding algorithm De, both of which rely on a (large)
common random string crs←$ {0, 1}t:

– The encoding algorithm Encrs(m) is a randomized algorithm which takes a
message m and produces an encoding m̂

– The decoding algorithm Decrs(m̂) is a deterministic algorithm which takes an
encoding m̂ and returns a message m.

In terms of correctness, one naturally requires that encoding followed by decod-
ing leads to the original message. Security-wise, we require that there exists a
simulator Sim which on input a message m produces a pair (crs′, m̃), which is
computationally indistinguishable from a real pair of crs and encoding of m, i.e.

(crs,Encrs(m)) ≈c Sim(m),

where crs←$ {0, 1}t. Additionally, we require that if (crs′, m̃) ← Sim(m), then m̃
has almost full true min-entropy given crs′, i.e. H̃∞(m̃|crs′) ≥ (1−ε)n, where H̃∞
is the average conditional min-entropy. The (very) high level idea how this can
be achieved is that in simulation the common random string and the encoded
message switch roles, in the sense that the simulated common random string crs′

encodes the message m, whereas the encoding m̃ now has room to have (very)
high entropy.

Moran and Wichs [42] provide two instantiations of their construction, one
from DCR and one from LWE. These constructions achieve rate-1, i.e., the encod-
ing is only slightly larger than the encoded message. The conceptual idea behind
the construction is rather elegant: The encoding function Encrs(m) generates a
pair of public key and trapdoor (pk, td) of preimage-sampleable surjective lossy
function F (for which we have efficient constructions from DCR or LWE) and
sets x to be a randomly sampled preimage of m⊕ crs, i.e. x = F−1

td (m⊕ crs), and
sets m̂ = (pk, x). To decode m̂, one computes m = Fpk(x) ⊕ crs. The simulator
Sim chooses a highly lossy public key p̃k, chooses x uniformly at random, and
sets crs′ = m ⊕ Fp̃k(x) and m̃ = (p̃k, x). Given that Fpk is regular for surjective
keys pk, meaning that if x is uniform then Fpk(x) is also (statisticalluy close to)
uniform, we can routinely establish that real pairs (crs, m̂) are computationally
indistinguishable from simulated (crs′, m̃) using the indistinguishability of sur-
jective public keys pk and highly lossy public keys p̃k. Moreover, for simulated
pairs (crs′ = m ⊕ Fp̃k(x), m̃ = (p̃k, x)) we can easily argue that x (and hence m̃)
has high min-entropy given crs′ = m ⊕ Fp̃k(x), as Fp̃k is highly lossy and hence
x has high min entropy given Fp̃k(x).

Moran and Wichs [42] go on to show that for any incompressible
encoding/HILL-entropic encoding, the common random string crs must be as
long as the message, if one wants to establish security from a falsifiable assump-
tion [43] under a black-box reduction.

The Full Construction. We will now provide our complete construction of incom-
pressible SKE and sketch the security proof. For our scheme, the secret key

Rate-1 Incompressible Encryption from Standard Assumptions 41

K is a uniformly random bit-string of suitable length which will be parsed as
K = (crs, k), where crs is the common random string for a HILL-entropic encod-
ing (En,De), and k is the seed for a randomness extractor Ext. Encryption and
decryption work as follows.

– Enc(K = (crs, k),m): Choose a uniformly random PRG seed s←$ {0, 1}λ and
compute m̂ = Encrs(m ⊕ PRG(s)). Compute c = s ⊕ Ext(k, m̂) and output the
ciphertext ct = (c, m̂).

– Dec(K = (crs, k), ct = (c, m̂)): Compute s = c ⊕ Ext(k, m̂) and output m =
Decrs(m̂) ⊕ PRG(s).

Correctness of this scheme follows routinely.
Security of this scheme is established along the following lines. First we rely

on the security of the HILL-entropic encoding to replace (crs, m̂) with a simulated
pair (crs′, m̃) = Sim(m⊕PRG(s)). By the security of the HILL-entropic encoding,
this modification is (computationally) unnoticeable to the adversary. However,
now the encoding m̃ has true high min-entropy given crs′. Thus, using a min-
entropy chain rule (e.g. by [23]) we can argue that m̃ still has sufficiently high
min-entropy given both crs′ and a leak L(m̃). Hence, the randomness extraction
property guarantees that Ext(k, m̃) will extract uniform randomness (given crs′

and L(m̃)). To establish this we need a mild extra property of the extractor Ext
that given a (uniformly random) extractor output y and m̃ we can sample a
key k′ after the fact such that (k′, y) ≈ (k,Ext(k, m̃)). Hence in the next hybrid
modification, we can thus replace c = s ⊕ Ext(k, m̃) with a uniformly random
and independent string c′. Now that c′ is independent of s, we can use the
pseudorandomness property of PRG to replace m⊕PRG(s) in (crs′, m̃) = Sim(m⊕
PRG(s)) with a uniformly random string u, i.e. (crs′, m̃) = Sim(u). We have finally
arrived at an experiment where the ciphertext ct = (c′, m̃) is independent of the
message m, and hence the adversary’s advantage is 0.

Concerning the rate of this scheme, note that a ciphertext ct = (c, m̂) has
rate 1, as c is just of size poly(λ) (independent of the message length n), and the
HILL-entropic encoding m̂ is rate 1.

2.4 From Symmetric-Key to Public-Key Incompressible Encryption
via Hash Proof Systems

Now that we have a construction of incompressible SKE, we need a way to
establish a long key K between the sender and receiver. This is a job for a key
encapsulation mechanism (KEM) [18]. A key-encapsulation mechanism consists
of:

– A key-encapsulation mechanism consists of a key-generation algorithm
KeyGen which produces a pair of public and secret keys (pk, sk).

– An encapsulation algorithm which takes a public key pk and produces a sym-
metric key K and a ciphertext header c0 encapsulating K.

– A decapsulation algorithm Dec which takes a secret key sk and a ciphertext
header c0 and outputs a key K.

42 P. Branco et al.

The correctness requirement is the obvious one, whereas the standard security
requirement is that K is pseudorandom given pk and c0. A symmetric key K
generated via a KEM can now be used to encrypt a message m into a payload
ciphertext c1 using a symmetric key encryption scheme. The full ciphertext is
c = (c0, c1).

However, to transform an incompressible SKE into an incompressible PKE
not just any key encapsulation mechanism will do. The simple reason is that in
the incompressible (public key) encryption security game, the adversary gets to
see the secret key sk in the end, which will allow him to decapsulate the (short)
ciphertext header c0 into the symmetric key K. But the standard security notion
of KEMs discussed above does not require that the encapsulated key K follows a
uniform distribution. Indeed, e.g. for simple PRG-based KEMs, the encapsulated
key is statistically far from uniform. However, recall that in our construction
of incompressible SKE above, we made critical use of the fact that the key K
follows a uniform distribution and that the security reduction can program it in
a suitable way.

Thus, we need a KEM which we can switch into a mode in which the cipher-
text header c0 encapsulates a truly uniform key K. As we need the ciphertext
header c0 to be substantially shorter than the encapsulated key K, the entropy
of K in this mode must come from the secret key sk.

Enter Hash Proof Systems. This is where hash proof systems (HPS) [17] come
into play3. Recall that HPS are defined relative to an NP-language L ⊆ {0, 1}k.
We have a key-generation algorithm KeyGen which generates a public or projected
key pk, and a secret or hashing key sk. The hashing or decapsulation algorithm
Decap takes the secret key sk and any x ∈ {0, 1}k and produces a hash value
K. The restricted hashing or encapsulation algorithm Encap takes a public key
pk, an x ∈ L and a witness w (with respect to a fixed NP-relation for L) for
membership of x in L and produces a hash-value K.

In terms of correctness or completeness, we require that Decap and Encap
agree on L, i.e. if x ∈ L and w is a valid witness for x, then it holds that
Decap(sk, x) = Encap(pk, x, w).

In terms of security, we require smoothness, namely given that x /∈ L, it holds
that Decap(sk, x) is statistically close to uniform given pk.

HPS are especially useful for sparse pseudorandom languages L, such as
the decisional Diffie-Hellman (DDH) language) [17]. We define this language
with respect to a pair of (randomly chosen) generators g, h ∈ G, where G is a
cryptographic group of prime order p. A pair x = (g′, h′) is in L, if there exists
an r ∈ Zp such that g′ = gr and h′ = hr. The DDH assumption states that
a random element in L, i.e. a pair (gr, hr) is computationally indistinguishable
from a pair of uniformly random group elements (u, v)4.

3 HPS have been instrumental in many prior works on leakage resilience cryptography
e.g. [3,36].

4 Note that such a pair is not in L, except with negligible probability 1/p.

Rate-1 Incompressible Encryption from Standard Assumptions 43

In the Cramer-Shoup [17] scheme, the secret key sk = (α, β) consists of
two uniformly random values α, β ∈ Zp, and the public key pk is computed
as pk = gαhβ . Given a public key pk an instance c0 = (gr, hr) with witness
r, we compute a key K = pkr. Given a secret key sk = (α, β) and an instance
c0 = (g′, h′) we compute a key K = g′αh′β . It follows routinely that encapsulation
and decapsulation agree on L. Moreover, for a (g∗, h∗) /∈ L it holds K∗ = g∗αh∗β

is uniformly random given pk = gαhα by a simple linear algebra argument.
Hash Proof Systems, and in particular the Cramer-Shoup HPS (almost) give

us a KEM with the desired properties. Namely, given pk and (g, h), to encapsu-
late a key k we choose a uniformly random r ∈ Zp and compute c0 = (gr, hr)
and K = pkr. To decapsulate K from c0 = (g′, h′) given sk = (α, β), we compute
K = g′αh′β .

A typical proof-strategy using HPS lets a reduction compute the encapsu-
lated key (on the sender’s side) via the decapsulation algorithm using the secret
key. Correctness of the HPS ensures that this does not change K. Hence this
modification will not be detected by an adversary. Now we don’t need the wit-
ness r anymore. We can replace c0 with a uniformly random c′

0 and argue that
this modification is computationally undetectable by the adversary, thanks to
the DDH assumption. Since now c′

0 is outside of L w.o.p, it holds that K is
uniform even given pk, as desired.

However, this is still not enough to make our security reduction go through.
It turns out we not only have to ensure that K is uniform given pk, but also that
for any given K and fixed pk and c0 we can find a secret key sk (compatible with
pk) such that Decap(sk, c0) = K. Realizing this property using the Cramer-Shoup
HPS directly seems hard, as in order to sample an sk = (α, β) with K = g′αh′β

we would need to compute a discrete logarithm of K.

Programmable Hash Proof Systems. For this purpose, we will consider a notion
of programmable hash proof systems, which obey a stronger smoothness notion.
In short, such an HPS has the following property. Given a public key pk, a (fake)
ciphertext header c∗

0 (not in L) and secret auxiliary information aux depending
on both pk and c0, we can sample a uniformly random secret key sk∗ such that
Decap(sk∗, c∗

0) = K, for which it holds that (pk, c∗
0, sk

∗) ≈s (pk, c∗
0, sk) if K is

chosen uniformly random.
Our idea to achieve this is simple: We will concatenate Decap (and also

Encap) with a balanced small range hash function HC : G → {0, 1}, i.e. we have
Decap′(sk, c0) = HC(Decap(sk, c0)) and Encap′(pk, c0, r) = HC(Encap(pk, c0, r)).
Here balanced means that if h ∈ G is a uniformly random group element, then
HC(h) is statistically close to a uniformly random bit. While there exist deter-
ministic constructions of such extractors for certain groups (e.g. [15]) we can
find such an HC for any group via the leftover-hash lemma [35]. For such a hash
function, we can efficiently sample a uniformly random pre-image h ∈ G of K for
which we do know the discrete logarithm (with respect to a generator g ∈ G). We
achieve this via rejection sampling: Given a bit K ∈ {0, 1}, choose a uniformly

44 P. Branco et al.

random z ∈ Zp and test whether HC(gz) = K (which happens with probability
1/2), and reject and resample if the test fails.

Now let h = gy, pk = gt and c∗
0 = (g′ = gr, h′ = gs) be a public key and

(fake) ciphertext, for which the auxiliary information is (y, t, r, s), i.e. the discrete
logarithms of pk and c∗

0. Given a key K ∈ {0, 1}, we first sample a uniformly
random z ∈ Zp such that HC(gz) = K. Now we have 2 linear constraints (over
Zp) on sk = (α, β) ∈ Z

2
p, namely

t = α + β · y

from pk = gα · hβ and
z = αr + βs

from HC(gz) = HC(g′α ·h′β). Since we now have two equations and two unknowns
α and β, we can solve for α and β using basic linear algebra.

We do pay a price to get programmability: Instead of getting log(|G|) key bits
per public key pk, we only get a single bit. Naturally, this can be improved up to
log(λ) key-bits while keeping the above rejection sampling procedure expected
polynomial time.

The Full Construction. We are now ready to present our fully-fledged construc-
tion. This construction will have a large public key. We will later discuss how
the size of the public key can be reduced.

Assume thus that (Enc,Dec) is an incompressible SKE scheme, and that
(KeyGen,Encap,Decap) is a programmable HPS for a decision-membership-hard
language L, for concreteness assume the DDH language. Our incompressible
PKE construction is given by the following algorithms.

– The key-generation algorithm KeyGen′ generates random group elements
g, h ∈ G and n pairs of public and secret keys (pk1, sk1), . . . , (pkn, skn) using
KeyGen (on g, h) and set PK = (g, h, pk1, . . . , pkn) and SK = (sk1, . . . , skn).

– The encryption algorithm Enc′ proceeds as follows, given a public key PK =
(g, h, pk1, . . . , pkn) and a message m. First, generate a random DDH instance
c0 = (g′ = gr, h′ = hr) using a random r ←$Zp. Now compute the key-bits
K1 = Encap(pk1, c0, r), . . . ,Kn = Encap(pkn, c0, r) and set K = (K1, . . . ,Kn).
Next, we use K to encrypt m using the incompressible SKE scheme, i.e. we
compute c1 = Enc(K,m) and output the ciphertext c = (c0, c1).

– The decryption algorithm Dec′ takes a secret key SK = (sk1, . . . , skn) and a
ciphertext c = (c0, c1), and proceeds as follows. First, it decapsulates the key
K = (K1, . . . ,Kn) by computing K1 = Decap(sk, c0), . . . , Kn = Decap(skn, c0).
Next, it decrypts c1 to m via m = Dec(K, c1).

Correctness of this scheme follows routinely from the correctness of its com-
ponents.

Note that if the incompressible SKE scheme (Enc,Dec) is rate-1, then so is
our public-key scheme (KeyGen′, Enc′, Dec′), as the only additional information
in ciphertexts c = (c0, c1) is the header c0, which consists of just two group
elements. On the other hand, note that the size of the public key of this scheme

Rate-1 Incompressible Encryption from Standard Assumptions 45

scales with the size n of the symmetric key K, which in our symmetric-key
construction scales with the size of the message m.

Security of the Full Construction. We will now turn to sketching the security
proof for the main construction. In the first hybrid step (somewhat expectedly),
we use the HPS Decap algorithm instead of the Encap algorithm to compute
the key-bits Ki in the encryption of the challenge ciphertext. That is, in the
encryption of the challenge ciphertext we replace Ki = Encap(pki, c0, r) with
Ki = Decap(ski, c0) for all i = 1, . . . , n. Due to the correctness property of the
HPS, this modification does not change the distribution of K. Hence this hybrid
change goes unnoticed by the adversary. In the second hybrid step, since we
don’t need r anymore, we replace c0 = (gr, hr) with a uniformly random c′

0. We
can use the DDH assumption to argue that this modification goes unnoticed.

The next hybrid step is the critical one: We choose g, h, the pki and c′
0 with

auxiliary information, i.e. together with their discrete logarithms with respect to
g, choose K←$ {0, 1}n uniformly at random and sample each ski such that Ki =
Decap′(ski, c

′
0) using the programming algorithm of the programmable HPS. We

can argue statistical indistinguishability using the programmability property of
HPS. The crucial observation now is that the public key PK = (g, h, pk1, . . . , pkn)
and the ciphertext header c0 are computed independently of K and SK, and in
fact we choose SK depending on K, i.e. we can choose SK after everything else.

This now allows us to turn an adversary A with non-negligible advantage in
this hybrid experiment into an adversary A′ with the same advantage against the
incompressible SKE scheme. A′ first generates PK as in the hybrid experiment
and provides PK to the first stage A1 of A, which will output m0,m1. Now the
second stage A′

2 gets to see a symmetric-key encryption c1 of mb, and turns
this into a public-key encryption by setting c = (c0, c1), where c0 computed as
in the hybrid experiment. This ciphertext c is then given A2, which outputs a
state/leak st, and A′

2 outputs the same state st.
Finally, A′

3 given a symmetric key K and the state st proceeds as follows.
Using the auxiliary information aux5. and the key K, it samples a secret key SK =
(sk1, . . . , skn) such that for all i = 1, . . . , n it holds that Ki = Decap′(ski, c0), as
in the hybrid experiment. Then, A′

3 runs A3 on SK and st and outputs whatever
A3 outputs.

It is not hard to see that from the view of A, A′ simulates the hybrid
experiment perfectly. Hence, the advantage of A′ against the incompressible
symmetric-key security experiment is the same as that of A against the hybrid
experiment, and we derive the desired contradiction.
5 There is a technical subtlety in the security definition of incompressible SKE which

we omitted before: We allow the first stage A′
1 of a symmetric-key adversary A′ to

produce a large state (i.e. scaling with the message size), which is provided to both
A′

2 and A′
3. This is to communicate a potentially large public key PK from A1 to A3

without putting a burden on the leakage-budget of the leaker-stage A′
2. One could

consider an alternative definition where this communication from A′
1 to A′

3 is not
allowed. In such a setting we could still prove our construction secure by compressing
the auxiliary information aux from which PK and c0 are generated using a PRG.

46 P. Branco et al.

Reducing the Public-Key-Size. As mentioned above, the construction we dis-
cussed in the last two paragraphs has a near-optimal ciphertext size (i.e. increas-
ing the size of the symmetric-key ciphertext only by two group elements). In
contrast, it has a very large public key which scales linearly with the size of the
encrypted messages/the ciphertexts.

We will now discuss a tradeoff which achieves a better balance between
ciphertext size and public key size. Concretely, we will provide a tradeoff which
achieves a ciphertext size of n + nεpoly(λ) for an 0 < ε < 1 and public key size
nε′

poly(λ) for an 1/2 < ε′ < 1. I.e. we achieve ciphertext rate 1 − nε−1poly(λ),
which approaches 1 for sufficiently large n, while having a key of sublinear size.

In order to declutter the presentation, we will switch from multiplicative
notation of group operations in G to additive notion in the following discussion.
That is we will denote group elements gx by [x], and write α · [x] instead of
(gx)α. Furthermore, we will consider vectors and matrices of group elements,
i.e. if x ∈ Z

k
p is a vector, then [x] is its element-wise encoding in the group G.

Likewise, we write an encoding of a matrix A ∈ Z
k×l
p as [A].

In our discussion above we considered a HPS for the two-dimensional DDH
language, i.e. the language consisting of all r · [v] given two [v], where v ∈ Z

2
p is

a randomly chosen 2-dimensional vector over Zp.
Thus let v ∈ Z

k
p be a randomly chosen k-dimensional vector. The goal of the

k-dimensional DDH problem is to distinguish ([v], t · [v]) from ([v], [u]), where
v and u are chosen uniformly random from Z

k
p and r is chosen uniformly from

Zp. It follows routinely via a standard rerandomization argument that the k-
dimensional DDH problem is hard, given that the 2-dimensional DDH problem
is hard.

We can construct an HPS for k-DDH analogously to the 2-dimensional case:
Fix a vector [v] ∈ G

k. The secret key sk is a random vector ααα ∈ Z
k
p, whereas the

public key is given by [pk] = ααα�[v], i.e. the inner product of ααα and [v]. Given a
vector [w] = r·[v] and a witness r, the Encap algorithm computes [K] = r·[pk]. On
the other hand, given any vector [w] ∈ G

k and a secret key sk = ααα, the Decap
algorithm computes ααα� · [w]. Arguing correctness and smoothness are again
simple exercises in linear algebra. Furthermore, this HPS satisfies a stronger
notion of k − 1-smoothness: Given uniformly random [w1], . . . , [wk−1], it holds
that

(pk,ααα�[w1], . . . ,ααα�[wk−1]) ≈s (pk, [u1], . . . , [uk−1]),

where the [u1], . . . , [uk−1] are uniformly random in G. Establishing this is again
routine linear algebra.

We will first briefly discuss how the HPS can be made programmable. In
essence, we follow the same idea as above: We take a balance function HC :
G → {0, 1} and define the Decap algorithm to compute HC(ααα�[w]). We claim
this construction is k − 1-programmable. That is, given [v], [pk] = [t], uniformly
random [w1], . . . [wk−1] together with the witnesses v, t and w1, . . . ,wk−1, and
a random K = (K1, . . . ,Kk−1) ∈ {0, 1}k−1, we can efficiently sample a uniformly

Rate-1 Incompressible Encryption from Standard Assumptions 47

random ααα ∈ Z
k
p such that t = ααα�v and Ki = HC(ααα�[wi]) for i = 1, . . . , n.

We proceed as above: First we choose uniformly random zi ∈ Zp such that
Ki = HC([zi]) for all i. Then we get the linear equation system

ααα�v = t

ααα�w1 = z1

...

ααα�wk−1 = zk−1.

Since the wi are chosen uniformly random, this system has full rank w.o.p., and
hence we can find a matching secret key ααα via simple linear algebra.

Now, plugging this programmable HPS into our construction of incompress-
ible PKE, we obtain the following parameters.

– A single public pk consisting of one group element can be used to encapsu-
late k key bits. Hence, to encapsulate n key bits we need n/k public keys
amounting to n/k group elements.

– The ciphertext header now contains k · (k − 1) ≤ k2 group elements (in the
above notation the vectors [w1], . . . , [wk−1]).

Hence, if we want to strike a balance where the (additive) ciphertext overhead
is of the same size as the public key, we obtain the relation

n

k
= k2,

which yields to k = n1/3. Hence, for this choice of parameters the public key con-
sists of a n2/3 group elements (which is sublinear), and the size of the ciphertext
is n + n2/3 log(|G|) = n(1 − n−1/3 log(|G|)) bits, which approaches rate 1.

2.5 Extension to CCA Security

The scheme described so far achieves IND-CPA incompressible security. This
work also considers an IND-CCA2 incompressible security definition where the
adversary gets oracle access to a decryption oracle.

To achieve IND-CCA2 security, we follow the framework of [17]. We add a
second hash proof system that acts as integrity proof for ciphertexts. The second
hash proof system does not need to be programmable but universal2 [17] or 2-
smooth [1]. It allows the decryption oracle to only answer queries to honestly
generated ciphertexts. This mechanism ensures that the decryption oracle does
not give up entropy of the programmable HPS’s secret key.

In the main body of this work, we provide the full construction that achieves
this level of security.

48 P. Branco et al.

3 Preliminaries

The acronym PPT denotes “probabilistic polynomial time”. Throughout this
work, λ denotes the security parameter. By negl(λ), we denote a negligible func-
tion in λ, that is, a function that vanishes faster than any inverse polynomial
in λ. Let n ∈ N. Then, [n] denotes the set {1, . . . , n}. If A is an algorithm, we
denote by y ← A(x) the output y after running A on input x. If S is a (finite)
set, we denote by x←$ S the experiment of sampling uniformly at random an
element x from S. If D is a distribution over S, we denote by x←$ D the element
x sampled from S according to D.

For two probability distributions X,Y , we use the notation X ≈s Y to state
that the distributions are statistically indistinguishable and X ≈c Y to state
that the distributions are computationally indistinguishable.

For ease of notation, in any of our constructions we assume public param-
eters p are known to every algorithm and every secret key sk also contains the
corresponding public key pk.

We present some information-theoretical notions and results that will be
instrumental throughout this work.

Definition 1 (Average Min-Entropy [23]). For two jointly distributed ran-
dom variables (X,Y), the average min-entropy of X conditioned on Y is defined
as

H̃∞(X|Y) = −log(Ey ←$ Y [maxx Pr[X = x|Y = y]]).

Lemma 1 (Lemma 2.2 b) of [23]). For random variables X,Y,Z where Y is
supported over a set of size T , we have

H̃∞(X|(Y,Z)) ≥ H̃∞((X,Y)|Z) − log(T) ≥ H̃∞(X|Z) − log(T).

Definition 2 (Average-Case Extractor [23]). Let n, d,m ∈ N. A function
Ext : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε) strong average-case min-entropy
extractor if, for all random variables (X,Y) where X takes values in {0, 1}n

and H̃∞(X|Y) ≥ k, we have that (Ud,Ext(X,Ud), Y) is ε-close to (Ud, Um, Y),
where Ud and Um are independent uniformly random strings of length d and m
respectively.

Lemma 2 (Generalized Leftover Hash Lemma 2.4 of [23]). Let n,m ∈ N.
Let {Hr : {0, 1}n → {0, 1}m}r∈R be a family of universal hash functions, then
Ext(x, r)
→ Hr(x) is an average-case (k, ε)-strong extractor whenever m ≤ k −
2log(1ε) + 2.

Definition 3 (Pseudorandom Generator). Let n,m = poly(λ). A function
G : {0, 1}n → {0, 1}m is a pseudorandom generator if, for uniformly random
s←$ {0, 1}n and r ←$ {0, 1}m, we have

G(s) ≈c r.

Rate-1 Incompressible Encryption from Standard Assumptions 49

Definition 4 (Collision-Resitant Hash Function). Let n,m, l = poly(λ). A
collision-resistant hash function is a seeded function CRHF : {0, 1}n ×{0, 1}m →
{0, 1}l with the property that for all PPT adversaries A, random seed s ∈ {0, 1}n

we have A(s) outputs x,x′ with x �= x′ and CRHFs(x) = CRHFs(x′) with negligible
probability.

3.1 Decisional Diffie-Hellman Assumption

In the following, let G be a (prime-order) group generator, that is, G is an algo-
rithm that takes as an input a security parameter 1λ and outputs (G, p, g), where
G is the description of a multiplicative cyclic group, p is the order of the group
which is always a prime number unless differently specified, and g is a generator
of the group. Sometimes we denote the size of the group by |G|.

We denote by [a] be value ga. Similarly, if A ∈ Z
n×m
p is a matrix with entries

ai,j then [A] denotes the matrix where each (i, j)-entry is the value gai,j . Note
that given x ∈ Z

n
p , y ∈ Z

m
p and [A], we can compute xT [A] = [xT A] and

[A]y = [Ay].
In the following we state the decisional version of the Diffie-Hellman (DDH)

assumption.

Definition 5 (Decisional Diffie-Hellman Assumption). Let (G, p, g)←$

G(1λ). We say that the DDH assumption holds (with respect to G) if for any PPT
adversary A
|Pr[1 ← A((G, p, g), ([a], [b], [ab]))] − Pr[1 ← A((G, p, g), ([a], [b], [c]))]| ≤ negl(λ)

where a, b, c←$Zp.

3.2 Public-Key Encryption

Definition 6 (Public-Key Encryption). A public-key encryption (PKE)
scheme is a triple of PPT algorithms

(pk, sk) ← KeyGen(1λ): Given the security parameter λ the key-generation algo-
rithm outputs a public key pk and a secret key sk.

c ← Enc(pk,m): Given a public key pk and a message m encryption outputs a
ciphertext c.

m ← Dec(sk, c): Given a secret key sk and a ciphertext c decryption outputs a
message m.

Correctness. For all λ, S ∈ N, messages m and (pk, sk) in the range of KeyGen
we have that m = Dec(sk,Enc(pk,m)).

IND-CPA Security. For all λ ∈ N and all adversaries A = (A1,A2) we have that

Pr

⎡
⎢⎢⎣b ← A2(st, c) :

(pk, sk) ← KeyGen(1λ)
(m0,m1, st) ← A1(pk)

b ←$ {0, 1}
c ← Enc(pk,mb)

⎤
⎥⎥⎦ ≤ 1

2
+ negl(λ).

50 P. Branco et al.

3.3 HILL-Entropic Encodings

We recall the notion of HILL-entropic encodings from [42].

Definition 7 (HILL-Entropic Encodings [42]). An (α, β)-HILL-entropic
encoding scheme with selective security in the CRS setting consists of two PTT
algorithms:

– c ← Encrs(1λ,m): An encoding algorithm that takes a common random string
crs and a message m producing an encoding c.

– m ← Decrs(c): A decoding algorithm that takes a common random string crs
and an encoding c and produces a message m.

Correctness. There is some negligible μ such that for all λ ∈ N and all m ∈
{0, 1}∗ we have

Pr[Decrs(Encrs(1λ,m)) = m] = 1 − μ(λ).

α-Expansion. For all λ, k ∈ N and all m ∈ {0, 1}k we have |Encrs(1λ,m)| ≤
α(λ, k).

β-HILL-Entropy. There exists an algorithm SimEn s.t. for any polynomial k =
k(λ) and any ensamble of messages m = {mλ} of length |mλ| = k(λ), consider
the following “real” experiment:

– crs←$ {0, 1}t(λ,k)

– c ← Encrs(1λ,mλ)

and let CRS,C denote the random variables for the corresponding values in the
“real” experiment. Also consider the following “simulated” experiment:

– (crs′, c′) ← SimEn(1λ,mλ)

and let CRS′, C ′ denote the random variables for the corresponding values
in the “simulated” experiment. We require that (CRS,C) ≈c (CRS′, C ′) and
H̃∞(C ′|CRS′) ≥ β(λ, k).

We call a (α,β)-HILL-entropic encoding good if α(λ, k) = k(1+o(1))+poly(λ)
and β(λ, k) = k(1 − o(1)) − poly(λ). Moran and Wichs [42] provide good HILL-
entropic encodings from DCR [20,44] or LWE [46] in the CRS model. They also
show that the CRS must be as big as the encoded message.

4 Incompressible Symmetric-Key Encryption

In this section, we define incompressible symmetric-key encryption (SKE) and
give a construction from entropic encodings.

Rate-1 Incompressible Encryption from Standard Assumptions 51

4.1 Definition

First, we recall the notion of forward-secure storage [26] under the name of
incompressible symmetric-key encryption. For our purposes we only need IND-
EAV style security but this could be extended similar to what we did with
incompressible public-key encryption.

Definition 8 (Incompressible SKE). An incompressible symmetric-key
encryption scheme is a tuple of PPT algorithms using uniformly random keys k

c ← Enc(k,m): Given a symmetric key k and a message m encryption it outputs
a ciphertext c.

m ← Dec(sk, c): Given a symmetric key k and a ciphertext c decryption it outputs
a message m.

We require size of message space, size of key space, and size of ciphertext space
to be polynomials over the security parameter λ and the space bound S; that is,
n = n(λ, S), k = k(λ, S), and l = l(λ, S) respectively.

Correctness. For all λ, S ∈ N, messages m and keys k ∈ {0, 1}k we have that
m = Dec(k,Enc(k,m))

Security. For security parameter λ and space bound S, a symmetric-key encryp-
tion scheme (Enc,Dec) has incompressible SKE security if for all PPT adver-
saries A = (A1,A2,A3) the probability of winning the following experiment is
≤ 1

2 + negl(λ).

DistIncomSKE
A,Π (λ, S) Experiment:
– Run the adversary (m0,m1, st1) ← A1(1λ) to receive two messages m0

and m1

– Sample a bit b ←$ {0, 1} uniformly at random
– Sample k←$ {0, 1}n(λ,S) uniformly at random
– Run c ← Enc(k,mb) to encrypt mb

– Run the adversary st2 ← A2(st1, c) to produce a state st2 smaller than S
– Run the final adversary b′ ← A3(k, st1, st2,m0,m1)
– The adversary wins if b = b′

4.2 Construction

Now we show how to build incompressible symmetric-key encryption using HILL-
entropic encodings, extractors, and pseudorandom generators.

Construction 1. Let λ be the security parameter, S be the space bound of the
adversary and n be the size of the message space. Let (En,De) be an (α, β)-
HILL-entropic encoding, Ext : {0, 1}α(λ,n) × {0, 1}d(λ) → {0, 1}λ be a (β(λ, n) −
S, negl(λ)) strong average-case min-entropy extractor where d(λ) is a polynomial
and G : {0, 1}λ → {0, 1}n be a PRG.

52 P. Branco et al.

Enc(k,m):
– Parse k = (k1, k2, crs).
– Sample s←$ {0, 1}λ uniformly at random.
– Let c1 ← Encrs(1λ, G(s) ⊕ m).
– Let c2 ← s ⊕ Ext(c1, k1) ⊕ k2.
– Return c = (c1, c2).

Dec(k, c):
– Parse k = (k1, k2, crs).
– Parse c = (c1, c2).
– Let s ← Ext(c1, k1) ⊕ c2 ⊕ k2.
– Return Decrs(c1) ⊕ G(s).

Parameters. The ciphertexts are of size λ + α(λ, n). The keys are of size d(λ) +
t(λ, n), where t(λ, n) is the size of the encoding’s crs. Notice that the extractor
exists if β(λ, n) − S − 2 log

(
1

negl(λ) + 2
)

≥ λ according to Lemma 2. So, the

adversary is allowed a leakage of size S ≤ β(λ, n) − λ − 2 log
(

1
negl(λ) + 2

)
.

Therefore, if we choose a “good” entropic encoding we get a rate of
n

n(1+o(1))+poly(λ) , allowed leakage of S = n(1 − o(1)) − poly(λ), and keysize of
k = n(1 + o(1)) + poly(λ).

Correctness. By the correctness of the entropic encoding Decrs(Encrs(1λ, G(s) ⊕
m)) = G(s)⊕m. Since Ext is deterministic under a fixed key k1 then Ext(c1, k1)⊕
c2 ⊕ k2 = Ext(c1, k1) ⊕ s ⊕ Ext(c1, k1) = s. Therefore, Decrs(c1) ⊕ G(s) = m.

Theorem 2 (Security). The incompressible SKE presented in Construction 1
has incompressible SKE security if (En,De) is an (α, β)-HILL-entropic encoding,
Ext is a (β(λ, n) − S, negl(λ)) strong average-case min-entropy extractor, and G
is a pseudorandom generator each with the listed parameters.

Proof. We prove security via hybrids. First we list the hybrid and then argue
their indistinguishability. In each hybrid we highlight the changes compared to
the previous one.

H0:
– Run the adversary m0,m1, st1 ← A1(1λ) to receive two messages m0 and

m1.
– Sample bit b ←$ {0, 1} uniformly at random.
– Sample k←$ {0, 1}n uniformly at random.
– Run c ← Enc(k,mb) to encrypt mb.
– Run the adversary st2 ← A2(st1, c) to produce a state st2 smaller than S.
– Run the final adversary b′ ← A3(k, st1, st2,m0,m1).
– The adversary wins if b = b′.

Rate-1 Incompressible Encryption from Standard Assumptions 53

In H1 we explicitly represent what happens in Enc.

H1:
– Run the adversary m0,m1, st1 ← A1(1λ) to receive two messages m0 and

m1.
– Sample bit b ←$ {0, 1} uniformly at random.

– Sample k1 ←$ {0, 1}d(λ,n) uniformly at random.

– Sample k2 ←$ {0, 1}λ uniformly at random.

– Sample crs←$ {0, 1}t(λ,n) uniformly at random.

– Sample s←$ {0, 1}λ uniformly at random.

– Let c1 ← Encrs(1λ, G(s) ⊕ mb).

– Let c2 ← s ⊕ Ext(c1, k1) ⊕ k2.

– Let c ← (c1, c2) and k ← (k1, k2, crs).
– Run the adversary st2 ← A2(st1, c) to produce a state st2 smaller than S.
– Run the final adversary b′ ← A3(k, st1, st2,m0,m1).
– The adversary wins if b = b′

In H2 we switch the entropic encoding to the simulated code that has a lot of
entropy.

H2:
– Run the adversary m0,m1, st1 ← A1(1λ) to receive two messages m0 and

m1.
– Sample bit b ←$ {0, 1} uniformly at random.
– Sample k1 ←$ {0, 1}d(λ,n) uniformly at random.
– Sample k2 ←$ {0, 1}λ uniformly at random.

–

– Sample s←$ {0, 1}λ uniformly at random.
– Let (crs, c1) ← SimEn(1λ, G(s) ⊕ mb).
– Let c2 ← s ⊕ Ext(c1, k1) ⊕ k2.
– Let c ← (c1, c2) and k ← (k1, k2, crs).
– Run the adversary st2 ← A2(st1, c) to produce a state st2 smaller than S.
– Run the final adversary b′ ← A3(k, st1, st2,m0,m1).
– The adversary wins if b = b′.

I H3 we switch the order in which we sample c2 and k2.

H3:
– Run the adversary m0,m1, st1 ← A1(1λ) to receive two messages m0 and

m1.
– Sample bit b ←$ {0, 1} uniformly at random.
– Sample k1 ←$ {0, 1}d(λ,n) uniformly at random.

54 P. Branco et al.

–

– Sample s←$ {0, 1}λ uniformly at random.
– Let (crs, c1) ← SimEn(1λ, G(s) ⊕ mb).

– Sample c2 ←$ {0, 1}λ uniformly at random.

– Let c ← (c1, c2) .
– Run the adversary st2 ← A2(st1, c) to produce a state st2 smaller than S.
– Let k2 ← c2 ⊕ Ext(c1, k1) ⊕ s.

– Let k ← (k1, k2, crs).
– Run the final adversary b′ ← A3(k, st1, st2,m0,m1).
– The adversary wins if b = b′.

In H4 we replace the output of the extractor Ext by a uniformly random value.

H4:
– Run the adversary m0,m1, st1 ← A1(1λ) to receive two messages m0 and

m1.
– Sample bit b ←$ {0, 1} uniformly at random.
– Sample k1 ←$ {0, 1}d(λ,n) uniformly at random.
– Sample s←$ {0, 1}λ uniformly at random.
– Let (crs, c1) ← SimEn(1λ, G(s) ⊕ mb).
– Sample c2 ←$ {0, 1}λ uniformly at random.
– Let c ← (c1, c2).
– Run the adversary st2 ← A2(st1, c) to produce a state st2 smaller than S.

– Sample k2 ←$ {0, 1}λ uniformly at random.
– Let k ← (k1, k2, crs).
– Run the final adversary b′ ← A3(k, st1, st2,m0,m1).
– The adversary wins if b = b′.

Finally we replace the output of G(s) by a uniformly random value.

H5:
– Run the adversary m0,m1, st1 ← A1(1λ) to receive two messages m0 and

m1.
– Sample bit b ←$ {0, 1} uniformly at random.
– Sample k1 ←$ {0, 1}d(λ,n) uniformly at random.
– Sample s←$ {0, 1}λ uniformly at random.
– Sample r ←$ {0, 1}n uniformly at random.

– Let (crs, c1) ← SimEn(1λ, r).

– Sample c2 ←$ {0, 1}λ uniformly at random.
– Let c ← (c1, c2).
– Run the adversary st2 ← A2(st1, c) to produce a state st2 smaller than S.
– Sample k2 ←$ {0, 1}λ uniformly at random.
– Let k ← (k1, k2, crs).

Rate-1 Incompressible Encryption from Standard Assumptions 55

– Run the final adversary b′ ← A3(k, st1, st2,m0,m1).
– The adversary wins if b = b′.

H0 ≈ H1:
The differences between H0 and H1 are purely syntactical. In H1 we just show
more detail of Enc.

H1 ≈c H2:
Instead of sampling the common random string for the entropic encoding
uniformly at random and then encoding G(s) ⊕ m we simulate both steps
using SimEn. Assume there exists a PPT adversary A = (A1,A2,A3) that
can distinguish the two hybrids H1 and H2 with a non-negligible advantage
of ε. From this we construct a PPT adversary A′ = (A′

1,A′
2) that can break

the β-HILL-entropy of (En,De) with advantage ε.
A′

1(1
λ):
– Run the adversary m0,m1, st1 ← A1(1λ) to receive two messages m0

and m1

– Sample bit b ←$ {0, 1} uniformly at random
– Sample k1 ←$ {0, 1}d(λ,n) uniformly at random
– Sample s←$ {0, 1}λ uniformly at random
– Return G(s) ⊕ mb

A′
2(crs, c1):

– Let c2 ← s ⊕ Ext(c1, k1)
– Let c ← (c1, c2)
– Run the adversary st2 ← A2(st1, c) to produce a state st2 smaller

than S
– Run the final adversary b′ ← A3(k, st1, st2,m0,m1)
– Return b′

If A can distinguish H1 from H2 then A′ can distinguish a uniformly
random crs←$ {0, 1}t(λ,n) and c1 ← En(1λ, G(s) ⊕ mb) from (crs, c1) ←
SimEn(1λ, G(s) ⊕mb) as it perfectly simulates H2 in the case that (crs, c1) ←
SimEn(1λ, G(s) ⊕ mb) and perfectly simulates H1 in the other case.

H2 ≈ H3:
In H3 we switch the order in which we sample c2 and k2. From the view of
the adversary this is statistically identical.

H3 ≈s H4:
Let C1, C2, CRS, K1, K2, and ST2 denote the random variables for the corre-
sponding values in the experiment and Uλ independent uniform randomness
of length λ. By the β-HILL entropy of the entropic encoding we know that
H̃∞(C1|CRS) ≥ β. Using Lemma 1 we deduce that

H̃∞(C1|(CRS,K2, ST2, C2)) ≥ β − 2λ − log(S)

Therefore, the extractor gives us that (K1,K2, CRS, ST2, Uλ) and
(K1,K2, CRS, ST2,Ext(C1,K1)) are statistically close.

H3 ≈c H4:
In H4 we encode a uniformly random string instead of G(s) ⊕ mb. Assume

56 P. Branco et al.

there exists a PPT adversary A = (A1,A2,A3) that can distinguish the
two hybrids H3 and H4 with a non-negligible advantage of ε. From this we
construct a PPT adversary A′ that can break the pseudorandomness of G
with advantage ε.
A′(r′):

– Run the adversary m0,m1, st1 ← A1(1λ) to receive two messages m0

and m1

– Sample bit b ←$ {0, 1} uniformly at random
– Sample k1 ←$ {0, 1}d(λ,n) uniformly at random
– Sample s←$ {0, 1}λ uniformly at random
– Sample r ← r′ ⊕ mb uniformly at random
– Let (crs, c1) ← SimEn(1λ, r)
– Sample c2 ←$ {0, 1}λ uniformly at random
– Let c ← (c1, c2)
– Run the adversary st2 ← A2(st1, c) to produce a state st2 smaller

than S
– Run the final adversary b′ ← A3(k, st1, st2,m0,m1)
– Return b′

If A can distinguish H3 from H4 then A′ can distinguish G(s) with uniformly
random s←$ {0, 1}λ from uniformly random r′ ←$ {0, 1}n as it perfectly sim-
ulates H3 in the case that r′ ← G(s) and perfectly simulates H4 in the other
case.

H4:
In H4 the winning probability of the adversary is 1

2 as it gets no information
about b at all.

5 Programmable Hash Proof Systems

In this work we think of a hash proof systems as a key encapsulation mechanism
where the encapsulated key is independent of the public key and the ciphertext
under certain conditions. This allows us to later resample the secret key in the
incompressibility experiments.

For our construction we need two different hash proof systems. One that is
Y -programmable and one that is 2-smooth both using the same language.

5.1 Definitions

First we define hash proof system that we will use as a mask in our encryption
scheme.

Definition 9 (Y -Programmable Hash Proof System [17,38]). A Y -
programmable hash proof system is defined over a NP language L ⊂ X, where
each element x in the language L has a witness w. Additionally there exist a sub-
set Y ⊂ X \ L and efficient ways to sample a language L with a corresponding
trapdoor tdL, an x ∈ L with its witness w and an x ∈ Y with a corresponding
trapdoor tdx

Rate-1 Incompressible Encryption from Standard Assumptions 57

– (p, tdL) ← Gen(1λ, 1k): Given the security parameter λ, the encapsulated key
size k the language generation algorithm that outputs public parameters p
defining a language L and a trapdoor tdL to that language.

– (x ∈ L, w) ← sampL(p): Given the public parameters, it outputs an element
x ∈ L with the corresponding witness w.

– (x ∈ Y, tdx) ← sampY (p, tdL): Given the public parameters and a trapdoor
tdL, it outputs x ∈ Y and the corresponding trapdoor tdx.

The hash proof system itself consists of these algorithms:

– (pk, sk) ← KeyGen(p): Given the public parameters, the key generation algo-
rithm outputs a public key pk and a secret key sk.

– k ← Encap(pk, x, w): Given the public lye pk, en element x and a witness w.
the key encapsulation algorithm outputs an encapsulated key k.

– k ← Decap(sk, x): Given the secret key sk and any x ∈ X, the key decap-
sulation algorithm outputs an encapsulated key. k. Notice x can be outside
L.

– sk′ ← Program(tdL, tdx, sk, x, k) Given two trapdoors tdL, tdx, a secret key sk,
an element x ∈ Y , and an encapsulated key k, the programming algorithm
outputs a new secret key sk′.

Correctness. For all λ, k ∈ N, (p, tdL) in the range of Gen(1λ, 1k), (pk, sk) in the
range of KeyGen(p), x ∈ L and for k ← Encap(pk, x, w), we have k = Decap(sk, x)
with |k| = k.

Language Indistinguishability. For all λ, k ∈ N if we sample (p, tdL) ←
Gen(1λ, 1k), L x ← sampL(p), and (x∗ ∈ Y, tdx∗) ← sampY (p, tdL), we have
the computational indistinguishability: x ≈c x∗.

Programmability. For all λ, k ∈ N, (p, tdL) in the range of sampL(1λ, 1k),
(pk, sk) in the range of KeyGen(p), k ∈ {0, 1}m, and for (x, tdx) in the range
of sampY (p, tdL), sk′ ← Program(tdL, tdx, sk, x, k), we have Decap(sk′, x) = k.

Y -Programmable Smoothness. For all λ, k ∈ N, (p, tdL) in the range of
Gen(1λ, 1k), (pk, sk) in the range of KeyGen(p), (x, tdx) in the range of
sampY (p, tdL), k ∈ {0, 1}m, and sk′ ← Program(tdL, tdx, sk, x, k) we have statis-
tical indistinguishability (pk, sk, x) ≈s (pk, sk′, x).

Notice, if Y = X \ L then Y -programmable smoothness implies smoothness.
Next we recall 2-smooth hash proof systems with our adjusted notation.

Definition 10 (2-Smooth Hash Proof System [1,17]). A 2-smooth hash
proof system is defined over a NP language L ⊂ X as above The hash proof
system itself consists of the following algorithms:

– (pk, sk) ← KeyGen(p): Given the public parameters, the key generation algo-
rithm that outputs a public key pk and a secret key sk.

– k ← Encap(pk, x, w, τ): Given public key pk, an element of the language x ∈
L, its witness w, and a tag τ , the key encapsulation algorithm outputs an
encapsulated key k.

58 P. Branco et al.

– k ← Decap(sk, x, τ): Given the secret key sk, any x ∈ X, and a tag τ . the
key decapsulation algorithm outputs an encapsulated key k. Notice x can be
outside L.

Correctness. For all λ, k ∈ N, (p, tdL) in the range of Gen(1λ, 1k), (pk, sk) in
the range of KeyGen(p), x ∈ L, tags τ , and for k ← Encap(pk, x, w, τ), we have
k = Decap(sk, x, τ) with |k| = k.

Language Indistinguishability. Exactly as above.

2-Smoothness. For all λ, k ∈ N, (p, tdL) in the range of Gen(1λ, 1k), x, x′ ∈
X \ L, two tags τ, τ ′ such that (x, τ) �= (x′, τ ′), let (pk, sk) ← KeyGen(p)
and sample k←$ {0, 1}k we have computational indistinguishability between
(pk,Decap(sk, x, τ),Decap(sk, x′, τ ′)) and (pk,Decap(sk, x, τ), k).

5.2 Programmable Hash Proof System from DDH

In our protocols we need programmable HPS with a big encapsulated key space
(for classic notation [17] this would be called the hash space).

Some smooth hash proof systems are easily transformed into programmable
HPS with big encapsulated keys by generating more public keys and using them
on the same x ∈ X. These HPS include the one from weak pseudorandom
effective group actions [2]. That transformation causes the public key size to
scale linearly with the size of the encapsulated key and leave the size of the
ciphertext indepent of the encapsulated key size. We provide more details about
this in the full version [11].

We present a variant of the original [17] HPS with an interesting trade off.
Here both public key size and ciphertext size scale in the 2/3-power with k, the
size of the encapsulated key.

Construction 2. Let HC : G×{0, 1}log(|G|) → {0, 1} denote a 1-bit randomness
extractor over a group element; if this function is applied over a matrix of group
elements, then it means that the function is applied entry-wise with the same
randomness. In the following let �, s ∈ N such that �·s = k. We get an interesting
tradeoff for our application when � = k1/3 and s = k2/3.

Gen(1λ, 1k) :
– (G, p, g)←$ G(1λ).
– Sample h←$Z

�
p \ {0} uniformly at random.

– Return p = (G, p, g, [h]) and tdL = h.
sampL(p) :

– Parse p = (G, p, g, [h]).
– Sample y ←$Z

�−1
p uniformly at random.

– Return x = [y] and w = y.
sampY (p, tdL) :

– Parse p = (G, p, g, [h]).

Rate-1 Incompressible Encryption from Standard Assumptions 59

– Let tdL = h.
– Sample E←$Z

�×(�−1)
p such that

(
h E

)
is invertible uniformly at random.

– Return x = [E] and w = E.
KeyGen(p):

– Parse p = (G, p, g, [h]).
– Sample r ←$ {0, 1}log(|G|) the public randomness for a extractor.
– Sample A←$Z

s×�
p uniformly at random.

– Return pk = (A[h], r) and sk = A.
Encap (pk, c = [hyt] , w = y):

– Parse p = (G, p, g, [h] ∈ G
�).

– Parse pk = ([f] ∈ G
s, r).

– Let K ← HC([f]yt, r) the component-wise extractor of the outer product
between f and y.

– Return k = K.
Decap (sk, x = [E] ∈ G

�×(�−1)):
– Parse pk = ([f], r)
– Parse sk = A ∈ Z

s×�
p .

– Let K ← HC(A[E], r) the component-wise extractor of the product between
A and [E].

– Return k = K.
Program(tdL, tdx, sk, x, k):

– Parse pk = ([f], r), tdL = h ∈ Z
�
p, tdx = E ∈ Z

�×(�−1)
p , sk = A, and

k = K ∈ {0, 1}s×(�−1).
– For each i ∈ [�−1], j ∈ [s] sample Bi,j ←$Zp such that Ki,j = HC([Bi,j], r)

via rejection sampling.
– Set B = (B)i,j. Let A′ ← (

Ah B
) (

h E
)−1.

– Return sk′ = A′.

Correctness. For any (p = (G, p, g, [h]),tdL) in the range of Gen, (pk =
([Ah], r),sk = A) in the range of KeyGen, and [hyt] ∈ L we have Encap(pk, [hyt])
outputs k = HC([Ah]yt, r) = HC([Ahyt], r). Decapsulation then outputs
k = HC(A[hyt], r) = HC([Ahyt], r).

Programmability. Since we choose h and E s.t.
(
h E

)
is invertible Program always

outputs a matrix A′ with the property that A′E = B and k = HC([B], r).

Programmable Smoothness. If we first sample k uniformly random and then
program for the key k Program(tdL, tdx, sk, x, k) the resulting distribution over B
will be uniformly random. And because

(
h E

)
is invertible then A′ is a uniformly

random under the condition that A′h = Ah. The same holds for A. Therefore,
(pk, sk = A, x) and (pk, sk′ = A′, x) are identically distributed.

Theorem 3 (Language Indistinguishability). If DDH is hard for G then
elements from the language L = {[h]yt|y ∈ Z

�−1
p } and Y = {[E]|E ∈ Z

�×(�−1)
p ∧(

h E
)

is invertible} of Construction 2 are indistinguishable.

60 P. Branco et al.

Proof. We prove security via hybrids. First we list the hybrids and then argue
their indistinguishability. In each hybrid we highlight the changes compared to
the previous one.

H0:
– Let (p, tdL) ← Gen(1λ, 1k).
– Let (pk, sk) ← KeyGen(p).
– Let (x,w) ← sampL(p).
– Let k ← Encap(pk, x, w).
– Run the adversary A(pk, sk, x).

H1:
– Sample a group (G, p, g)←$ G(1λ) .

– Sample r ←$ {0, 1}log(|G|) the randomness for the extractor .

– Sample h←$Z
�
p \ {0} uniformly at random .

– Sample A←$Z
s×�
p uniformly at random .

– Let p = (G, p, g, [h]) .

– Let pk = ([Ah], r) and sk = A .

– Sample y ←$Z
�−1
p uniformly at random .

– Let x = [hyt] = [C] .
– Run the adversary A(pk, sk, x).

H2,i:
– Sample a group (G, p, g)←$ G(1λ).
– Sample r ←$ {0, 1}log(|G|) the randomness for the extractor.
– Sample h←$Z

�
p \ {0} uniformly at random.

– Sample A←$Z
s×�
p uniformly at random.

– Let p = (G, p, g, [h]).
– Let pk = ([Ah], r) and sk = A.
– Sample y ←$Z

�−1
p uniformly at random.

– Let [C] = [hyt].

– Sample E←$Z
l×(l−1)
p uniformly at random .

– Replace the first i entries of [C] by the first i entries in [E] .
– Let x = [C].
– Run the adversary A(pk, sk, x).

H3:
– Sample a group (G, p, g)←$ G(1λ).
– Sample r ←$ {0, 1}log(|G|) the randomness for the extractor.
– Sample h←$Z

�
p \ {0} uniformly at random.

– Sample A←$Z
s×�
p uniformly at random.

– Let p = (G, p, g, [h]).

Rate-1 Incompressible Encryption from Standard Assumptions 61

– Let pk = ([Ah], r) and sk = A.
– Sample E←$Z

l×(l−1)
p uniformly at random such that

(
h E

)

is invertible .
– Let x = [E].
– Run the adversary A(pk, sk, x).

H0 ≈ H1:
The differences between H0 and H1 are purely syntactical. In H1 we just show
more detail of Gen and Encap.

H1 ≈ H2,0:
The differences between H1 and H2,0 are purely syntactical.

H2,i ≈c H2,i+1:
In H2,i+1 we replace the n + 1st element of C by a random one. Assume
there exists a PPT adversary A that can distinguish the two hybrids H2,i

and H2,i+1 with a non-negligible advantage of ε. From this we construct a
PPT adversary A′ that can break DDH with advantage ε.
A′ ((G, p, g), ([a], [b], [ρ])):

– Let u ← i mod l
– Let v ← �i/l�
– Sample r ←$ {0, 1}log(|G|) the randomness for the extractor
– Sample h←$Z

�
p \ {0} uniformly at random

– Replace [xu] by [a]
– Sample A←$Z

s×�
p uniformly at random

– Let p = (G, p, g, [h])
– Let pk = ([Ah], r) and sk = A
– Sample y ←$Z

�−1
p uniformly at random

– For u′ ∈ [l] and v′ ∈ [l − 1] let Cu′,v′ ←

⎧
⎪⎨
⎪⎩

[ρ] if u′ = u, v′ = v

[b]xu′ if u′ �= u, v′ = v

[xu′]yv′ else

– Sample E←$Z
l×(l−1)
p

– Replace the first i entries of [C] by the first i entries in [E]
– Let x = [C]
– Run the adversary b′ ← A(pk, sk, x)
– Return b′

If A distinguishes between H2,i and H2,i+1 then A′ distinguishes between
ρ = ab and ρ being uniformly random as A′ perfectly simulates H2,i in the
case that ρ = ab and H2,i+1 if r is uniformly random.

H2,m ≈s H3:
H2,m is statistically close to H3 because with probability 1− negl(λ) we have(
h E

)
is invertible.

Parameters. For an encapsulated key of size k this scheme roughly gets us public
parameters of size k1/3 · poly(λ), public key of size k2/3 · poly(λ) and elements
from X of size k2/3 · poly(λ).

62 P. Branco et al.

5.3 2-Smooth Hash Proof System from DDH

The above hash proof system only is programmable if x ∈ Y . To make our
encryption scheme CCA secure we need a efficient way to check whether x ∈ L
or x ∈ X \ L. To do this we construct the 2-smooth hash proof system below
that is defined over the same language.

Construction 3. We construct a 2-smooth hash proof system with a output size
of λ using an extractor Ext : G�−1 × {0, 1}p → {0, 1}λ and a collision resistant
hash function CRHF that maps into Zp. As a language description we use the
same as in Construction 2.

KeyGen(p):
– Parse p = (G, p, g, [h]).
– Sample r ←$ {0, 1}log(|G|) uniformly at random.
– Sample s←$ {0, 1}λ uniformly at random.
– Sample a,b←$Z

�
p uniformly at random.

– Return pk = (at[h],bt[h], r, s) and sk = (a,b).
Encap (pk, x = [hyt] ∈ G

�×(�−1), w = y ∈ Z
�−1
p , τ):

– Parse p = (G, p, g, [h] ∈ G
�) and pk = ([f], [f ′] ∈ G, r, s).

– Let [d] = ([f]y) + (CRHFs(x, τ)[f ′]y).
– Return k = Ext([dt], r).

Decap (sk, x = [E] ∈ G
�×(�−1), τ):

– Parse p = (G, p, g, [h] ∈ G
�) and pk = ([f], [f ′] ∈ G, r, s).

– Parse sk = (a ∈ Z
�
p,b ∈ Z

�
p).

– Parse x = [E] ∈ G
�×(�−1).

– Return k = Ext(at[E] + CRHFs(x, τ)bt[E], r).

Correctness. For any (p = (G, p, g, [h]),tdL) in the range of Gen, (pk =
(at[h],bt[h], r, s),sk = (a,b)) in the range of KeyGen, and [hyt] ∈ L we have
Encap(pk, [hyt]) outputs

k = Ext
(
(([f]y) + ([f]CRHFs(x, τ)y))t , r

)
= Ext

(
[(ath)yt + CRHFs(x, τ)(bth)yt], r

)
.

On the other hand, decapsulation outputs

k = Ext(at[hyt] + CRHFs(x, τ)bt[hyt], r) = Ext
(
[(ath)yt + CRHFs(x, τ)(bth)yt], r

)

Language Indistinguishability. Since we use the same language as in Construction
2 the language indistinguishability holds by the same argument.

2-Smoothness. For all λ, n ∈ N, (p, tdL) in the range of Gen(p), x, x′ ∈ X \ L,
two tags τ, τ ′ such that (x, τ) �= (x′, τ ′), let (pk, sk) ← KeyGen(p) and sample
k←$ {0, 1}m. Let γ ← CRHFs(x, τ) and γ′ ← CRHFs(x′, τ ′). Using (x, τ) �=
(x′, τ ′) and the collision resistance of CRHF we can assume that γ �= γ′.

Rate-1 Incompressible Encryption from Standard Assumptions 63

In the following let d = at[E]+γbt[E] (computed in Decap(sk, x, τ)) and d′ =
at[E′] + γ′bt[E′] (computed in Decap(sk, x′, τ ′)). Then the following equation
holds: (

f f ′ dt d′t) =
(
at bt

) (
h 0 E E′

0 h γE γ′E′

)

If x, x′ ∈ X \ L then there exists a column z with index i in E s.t. z is linearly
independent of h and z′ with index i′ in E′ s.t. z′ is l.i. of h. Then the following
equation also holds:

(
f f ′ di d′

i′
)

=
(
at bt

) (
h 0 z z′

0 h γz γ′z′

)

Now, we argue that the matrix on the right side has rank 4. We have that
(
h
0

)

and
(

0
h

)
are linearly independent. Moreover,

(
z
γz

)
is outside the span of

(
h
0

)

and
(

0
h

)
because h and z are linearly independent. Finally,

(
z′

γ′z′

)
is outside

the span of
(

z
γz

)
,
(
h
0

)
, and

(
0
h

)
. To see this, assume that this is not the case,

i.e., that there exists a linear combination
(

z′

γ′z′

)
= c1

(
z
γz

)
+ c2

(
h
0

)
+ c3

(
0
h

)
.

Assume there exist c1,c2,c3 ∈ N
+ such that z′ = c1z+c2h and γ′z′ = c1γz+c3h.

Then we replace z′ in the second equation

γ′(c1z + c2h) = c1γz + c3h

⇔ (γ′ − γ)c1z = (c3 − γ′c2)h

This however can only be true if γ′ − γ = 0 because z is linearly independent of
h.

Since a and b are chosen uniformly at random then so are f ,f ′, di, and
d′

i. If di and d′
i are uniformly random then Decap(sk, x, τ) = Ext(dt, r) and

Decap(sk, x′, τ ′) = Ext(d′t, r) are statistically close to uniformly random by the
extractor property.

Parameters. For the same language as in Construction 2 with public parameters
of size k1/3 ·poly(λ) and elements of k2/3 ·poly(λ) Construction 3 roughly results
in public keys of size 2k1/3 · poly(λ) and an encapsulated key of size λ.

6 Incompressible PKE from Incompressible SKE
and HPS

First we extend the incompressible encryption security notion [32] to the chosen
ciphertext scenario and then we show a new construction paradigm using hash
proof systems and incompressible symmetric-key encryption.

64 P. Branco et al.

6.1 CCA Incompressible Encryption

We use the definition of incompressible encryption by Guan et al. [32]. It defines
a public-key encryption scheme where the adversary has to know most of the
ciphertext to decrypt it even with access to the secret key.

Definition 11 (Incompressible PKE). An incompressible public-key encryp-
tion scheme is a triple of PPT algorithms

(pk, sk) ← KeyGen(1λ, 1S): Given the security parameter λ and a space bound S
the key-generation algorithm outputs a public key pk and a secret key sk.

c ← Enc(pk,m): Given a public key pk and a message m the encryption algorithm
outputs a ciphertext c.

m ← Dec(sk, c): Given a secret key sk and a ciphertext c the decryption algorithm
outputs a message m.

Both size of message space and size of ciphertext space are polynomials over
security parameter λ and space bound S, that is, n = n(λ, S) and l = l(λ, S)
respectively.

Correctness. For all λ, S ∈ N, messages m and (pk, sk) in the range of KeyGen
we have that m = Dec(sk,Enc(pk,m)).

CCA Incompressible Security. Similar to standard IND-CCA (sometimes
referred to as IND-CCA2) security we extend incompressible encryption such
that the adversary has access to an encryption oracle.

For security parameter λ and space bound S, a public key encryption
scheme (KeyGen,Enc,Dec) has incompressible CCA PKE security if for all PPT
adversaries A = (A1,A2,A3) wins the following experiment with probability
≤ 1

2 + negl(λ).

DistCCAIncomPKE
A,Π (λ, S) Experiment:
– Run key generation algorithm KeyGen(1λ, 1S) to obtain (pk, sk).
– Run the adversary m0,m1, st1 ← ADecsk

1 (pk) on public key pk with oracle
access to Dec(sk, ·) to receive two messages m0, m1 and state st1.

– Sample bit b ←$ {0, 1} uniformly at random.
– Run c ← Enc(pk,mb) to encrypt mb.
– Run the adversary st2 ← ADecsk

2 (pk, c, st1) with oracle access to Dec(sk, ·)
for all inputs but c to produce a state st2 smaller than S.

– Run the final adversary b′ ← A3(sk, st1, st2,m0,m1).
– The adversary wins if b = b′.

Rate. We define the rate by |m|
|Enc(pk,m)| the size of a message divided by a cipher-

text encrypting the message. We say a scheme has rate-1 when the rate is 1−o(1).

Rate-1 Incompressible Encryption from Standard Assumptions 65

6.2 Construction

We construct a encryption scheme that very much resembles the classic Cramer-
Shoup [17] scheme. Instead of masking the ciphertext with the randomness that
comes out of the hash proof system we use it as a key for an incompressible
symmetric-key encryption scheme.

Construction 4 (Incompressible PKE). Given security parameter λ, space
bound S, and message length n let (KeyGen′, Encap′, Decap′, Program′) be a Y -
programmable hash proof system for a language L ⊂ X (where you can sample
x with according witness from L and sample x with according trapdoor from
Y) where the representation size of X is p(λ, S, n) and encapsulated keys of size
k(λ, Ssym, n), (KeyGen′′, Encap′′, Decap′′) is a 2-smooth hash proof system for the
same language with encapsulation key size of λ and public key size p′(λ, S, n),
and (Encsym, Decsym) be an incompressible SKE with messages of size n, keys
of size k(λ, Ssym, n) and ciphertexts of size l(λ, Ssym, n) with incompressible SKE
adversary being allowed to leak a state of size Ssym = S + p(λ, S, n) + p′(λ, S, n).

KeyGen(1λ, 1S):
– Generate language and corresponding trapdoor (p, tdL) ← Gen(1λ, 1n).
– Let (pk′, sk′) ← KeyGen′(p).
– Let (pk′′, sk′′) ← KeyGen′′(p).
– Return pk = (pk′, pk′′) and sk = (sk′, sk′′).

Enc(pk,m):
– Parse pk = (pk′, pk′′)
– Let (x,w) ← sampL(p).
– Let k ← Encap′(pk′, x, w).
– Let csym ← Encsym(k,m).
– Let π ← Encap′′(pk′′, x, w, csym).
– Return c = (x, csym, π).

Dec(sk, c):
– Parse sk = (sk′, sk′′).
– Parse c = (x, csym, π).
– If π = Decap′′(sk′′, x, csym)

• Let k ← Decap′(sk′, x)
• Return m = Decsym(k, csym).

– Return ⊥.

Parameters. (KeyGen,Enc,Dec) is an incompressible PKE with messages of size
n, ciphertexts of size l(λ, Ssym, n)+p(λ, S, n)+p′(λ, S, n), the adversary is allowed
a leak of size S = Ssym − p(λ, S, n) − p′(λ, S, n), and the public key is of size
p(λ, S, n) + p′(λ, S, n).

When instantiating the two hash proof systems with Constructions 2, 3
and the incompressible SKE with Construction 1 then (KeyGen,Enc,Dec) is
an incompressible PKE with messages of size n, ciphertexts of size (n +
n2/3poly(λ))(1 + o(1)), the adversary is allowed a leak of size S = n(1 − o(1)) −
poly(λ)(n(1 + o(1)))2/3, the public key is of size n2/3(1 + o(1))poly(λ), and the
secret key is of size n(1 + o(1))poly(λ).

66 P. Branco et al.

Correctness. Follows from the correctness of (KeyGen′, Encap′, Decap′,
Program′), (KeyGen′′, Encap′′, Decap′′), and (Encsym, Decsym).

Theorem 4 (Security). The PKE Construction 4 has incompressible CCA
PKE security if (KeyGen′, Encap′, Decap′, Program′) is a programmable hash
proof system with the listed parameters, (KeyGen′′, Encap′′, Decap′′) is a 2-
smooth hash proof system with the listed parameters, and (Encsym, Decsym) is
an incompressible secure SKE with the listed parameters.

The proof of this theorem can be found in the full version [11] of this paper.

Acknowledgement. We would like to thank Stefan Dziembowski, Daniel Wichs, and
the anonymous reviewers of TCC for discussions and comments.

Nico Döttling is funded by the European Union. Views and opinions expressed are
however those of the author(s) only and do not necessarily reflect those of the European
Union or the European Research Council Executive Agency. Neither the European
Union nor the granting authority can be held responsible for them. (ERC-2021-STG
101041207 LACONIC).

Part of the work of Pedro Branco was done while at IST University of Lisbon.

References

1. Abdalla, M., Benhamouda, F., Pointcheval, D.: Disjunctions for hash proof sys-
tems: new constructions and applications. In: Oswald, E., Fischlin, M. (eds.)
Advances in Cryptology - EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 69–
100. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 3

2. Alamati, N., De Feo, L., Montgomery, H., Patranabis, S.: Cryptographic group
actions and applications. In: Moriai, S., Wang, H. (eds.) Advances in Cryptology -
ASIACRYPT 2020, Part II. LNCS, vol. 12492, pp. 411–439. Springer, Heidelberg
(2020). https://doi.org/10.1007/978-3-030-64834-3 14

3. Alwen, J., Dodis, Y., Naor, M., Segev, G., Walfish, S., Wichs, D.: Public-key
encryption in the bounded-retrieval model. In: Gilbert, H. (ed.) Advances in Cryp-
tology - EUROCRYPT 2010. LNCS, vol. 6110, pp. 113–134. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-13190-5 6

4. Alwen, J., Dodis, Y., Wichs, D.: Leakage-resilient public-key cryptography in the
bounded-retrieval model. In: Halevi, S. (ed.) Advances in Cryptology - CRYPTO
2009. LNCS, vol. 5677, pp. 36–54. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-03356-8 3

5. Aumann, Y., Rabin, M.O.: Information theoretically secure communication in the
limited storage space model. In: Wiener, M.J. (ed.) Advances in Cryptology -
CRYPTO 2099. LNCS, vol. 1666, pp. 65–79. Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-48405-1 5

6. Barak, B., et al.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
Advances in Cryptology - CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 1

7. Bellare, M., Boldyreva, A., Palacio, A.: An uninstantiable random-oracle-model
scheme for a hybrid-encryption problem. In: Cachin, C., Camenisch, J. (eds.)
Advances in Cryptology - EUROCRYPT 2004. LNCS, vol. 3027, pp. 171–188.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3 11

https://doi.org/10.1007/978-3-662-46803-6_3
https://doi.org/10.1007/978-3-030-64834-3_14
https://doi.org/10.1007/978-3-642-13190-5_6
https://doi.org/10.1007/978-3-642-03356-8_3
https://doi.org/10.1007/978-3-642-03356-8_3
https://doi.org/10.1007/3-540-48405-1_5
https://doi.org/10.1007/3-540-48405-1_5
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/978-3-540-24676-3_11

Rate-1 Incompressible Encryption from Standard Assumptions 67

8. Bellare, M., Dai, W.: Defending against key exfiltration: efficiency improvements
for big-key cryptography via large-alphabet subkey prediction. In: Thuraisingham,
B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017: 24th Conference on
Computer and Communications Security, pp. 923–940. ACM Press, Dallas, TX,
USA (2017). https://doi.org/10.1145/3133956.3133965

9. Bellare, M., Kane, D., Rogaway, P.: Big-key symmetric encryption: resisting key
exfiltration. In: Robshaw, M., Katz, J. (eds.) Advances in Cryptology - CRYPTO
2016, Part I. LNCS, vol. 9814, pp. 373–402. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53018-4 14

10. Black, J.: The ideal-cipher model, revisited: an uninstantiable blockcipher-based
hash function. In: Robshaw, M.J.B. (ed.) Fast Software Encryption - FSE 2006.
LNCS, vol. 4047, pp. 328–340. Springer, Heidelberg (2006). https://doi.org/10.
1007/11799313 21

11. Branco, P., Döttling, N., Dujmovic, J.: Rate-1 incompressible encryption from
standard assumptions. IACR Cryptol. ePrint Arch. 697 (2022). https://eprint.iacr.
org/2022/697

12. Brzuska, C., Farshim, P., Mittelbach, A.: Random-oracle uninstantiability from
indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015:
12th Theory of Cryptography Conference, Part II. LNCS, vol. 9015, pp. 428–455.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7 17

13. Cachin, C., Maurer, U.: Unconditional security against memory-bounded adver-
saries. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 292–306.
Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052243

14. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
J. ACM 51(4), 557–594 (2004). https://doi.org/10.1145/1008731.1008734

15. Chevalier, C., Fouque, P.A., Pointcheval, D., Zimmer, S.: Optimal randomness
extraction from a Diffie-Hellman element. In: Joux, A. (ed.) Advances in Cryp-
tology - EUROCRYPT 2009. LNCS, vol. 5479, pp. 572–589. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-01001-9 33

16. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0055717

17. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive cho-
sen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) Advances in
Cryptology - EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidel-
berg (2002). https://doi.org/10.1007/3-540-46035-7 4

18. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33(1),
167–226 (2003)

19. Damg̊ard, I., Ganesh, C., Orlandi, C.: Proofs of replicated storage without timing
assumptions. In: Boldyreva, A., Micciancio, D. (eds.) Advances in Cryptology -
CRYPTO 2019, Part I. LNCS, vol. 11692, pp. 355–380. Springer, Heidelberg (2019).
https://doi.org/10.1007/978-3-030-26948-7 13

20. Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some applications of
Paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC 2001: 4th Inter-
national Workshop on Theory and Practice in Public Key Cryptography. LNCS,
vol. 1992, pp. 119–136. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44586-2 9

https://doi.org/10.1145/3133956.3133965
https://doi.org/10.1007/978-3-662-53018-4_14
https://doi.org/10.1007/978-3-662-53018-4_14
https://doi.org/10.1007/11799313_21
https://doi.org/10.1007/11799313_21
https://eprint.iacr.org/2022/697
https://eprint.iacr.org/2022/697
https://doi.org/10.1007/978-3-662-46497-7_17
https://doi.org/10.1007/BFb0052243
https://doi.org/10.1145/1008731.1008734
https://doi.org/10.1007/978-3-642-01001-9_33
https://doi.org/10.1007/BFb0055717
https://doi.org/10.1007/BFb0055717
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/978-3-030-26948-7_13
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/3-540-44586-2_9

68 P. Branco et al.

21. Dent, A.W.: Adapting the weaknesses of the random oracle model to the generic
group model. In: Zheng, Y. (ed.) Advances in Cryptology - ASIACRYPT 2002.
LNCS, vol. 2501, pp. 100–109. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-36178-2 6

22. Di Crescenzo, G., Lipton, R.J., Walfish, S.: Perfectly secure password protocols in
the bounded retrieval model. In: Halevi, S., Rabin, T. (eds.) TCC 2006: 3rd Theory
of Cryptography Conference. LNCS, vol. 3876, pp. 225–244. Springer, Heidelberg
(2006). https://doi.org/10.1007/11681878 12

23. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139
(2008). https://doi.org/10.1137/060651380, https://doi.org/10.1137/060651380

24. Dodis, Y., Quach, W., Wichs, D.: Speak much, remember little: cryptography in the
bounded storage model, revisited. Cryptology ePrint Archive, Report 2021/1270
(2021). https://eprint.iacr.org/2021/1270

25. Dziembowski, S.: Intrusion-resilience via the bounded-storage model. In: Halevi,
S., Rabin, T. (eds.) TCC 2006: 3rd Theory of Cryptography Conference. LNCS,
vol. 3876, pp. 207–224. Springer, Heidelberg (2006). https://doi.org/10.1007/
11681878 11

26. Dziembowski, S.: On forward-secure storage (extended abstract). In: Dwork, C.
(ed.) Advances in Cryptology - CRYPTO 2006. LNCS, vol. 4117, pp. 251–270.
Springer, Heidelberg (2006). https://doi.org/10.1007/11818175 15

27. Garg, R., Lu, G., Waters, B.: New techniques in replica encodings with client
setup. In: Pass, R., Pietrzak, K. (eds.) TCC 2020: 18th Theory of Cryptography
Conference, Part III. LNCS, vol. 12552, pp. 550–583. Springer, Heidelberg (2020).
https://doi.org/10.1007/978-3-030-64381-2 20

28. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
Annual Symposium on Foundations of Computer Science, pp. 40–49. IEEE Com-
puter Society Press, Berkeley, CA, USA (2013). https://doi.org/10.1109/FOCS.
2013.13

29. Goldwasser, S., Kalai, Y.T.: On the (in)security of the Fiat-Shamir paradigm. In:
44th Annual Symposium on Foundations of Computer Science, pp. 102–115. IEEE
Computer Society Press, Cambridge, MA, USA (2003). https://doi.org/10.1109/
SFCS.2003.1238185

30. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded
collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
Advances in Cryptology - CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 11

31. Goyal, R., Koppula, V., Waters, B.: Lockable obfuscation. In: Umans, C. (ed.) 58th
Annual Symposium on Foundations of Computer Science, pp. 612–621. IEEE Com-
puter Society Press, Berkeley, CA, USA (2017). https://doi.org/10.1109/FOCS.
2017.62

32. Guan, J., Wichs, D., Zhandry, M.: Incompressible cryptography. In: Dunkelman,
O., Dziembowski, S. (eds.) Advances in Cryptology - EUROCRYPT 2022, Part I.
LNCS, vol. 13275, pp. 700–730. Springer, Heidelberg (2022). https://doi.org/10.
1007/978-3-031-06944-4 24

33. Guan, J., Zhandry, M.: Simple schemes in the bounded storage model. In: Ishai, Y.,
Rijmen, V. (eds.) Advances in Cryptology - EUROCRYPT 2019, Part III. LNCS,
vol. 11478, pp. 500–524. Springer, Heidelberg (2019). https://doi.org/10.1007/978-
3-030-17659-4 17

https://doi.org/10.1007/3-540-36178-2_6
https://doi.org/10.1007/3-540-36178-2_6
https://doi.org/10.1007/11681878_12
https://doi.org/10.1137/060651380
https://doi.org/10.1137/060651380
https://eprint.iacr.org/2021/1270
https://doi.org/10.1007/11681878_11
https://doi.org/10.1007/11681878_11
https://doi.org/10.1007/11818175_15
https://doi.org/10.1007/978-3-030-64381-2_20
https://doi.org/10.1109/FOCS.2013.13
https://doi.org/10.1109/FOCS.2013.13
https://doi.org/10.1109/SFCS.2003.1238185
https://doi.org/10.1109/SFCS.2003.1238185
https://doi.org/10.1007/978-3-642-32009-5_11
https://doi.org/10.1109/FOCS.2017.62
https://doi.org/10.1109/FOCS.2017.62
https://doi.org/10.1007/978-3-031-06944-4_24
https://doi.org/10.1007/978-3-031-06944-4_24
https://doi.org/10.1007/978-3-030-17659-4_17
https://doi.org/10.1007/978-3-030-17659-4_17

Rate-1 Incompressible Encryption from Standard Assumptions 69

34. Guan, J., Zhandry, M.: Disappearing cryptography in the bounded storage model.
In: Nissim, K., Waters, B. (eds.) TCC 2021: 19th Theory of Cryptography Confer-
ence, Part II. LNCS, vol. 13043, pp. 365–396. Springer, Heidelberg (2021). https://
doi.org/10.1007/978-3-030-90453-1 13

35. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

36. Hazay, C., López-Alt, A., Wee, H., Wichs, D.: Leakage-resilient cryptography from
minimal assumptions. In: Johansson, T., Nguyen, P.Q. (eds.) Advances in Cryp-
tology - EUROCRYPT 2013. LNCS, vol. 7881, pp. 160–176. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38348-9 10

37. Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-founded
assumptions. In: STOC, pp. 60–73. ACM (2021)

38. Kalai, Y.T.: Smooth projective hashing and two-message oblivious transfer. In:
Cramer, R. (ed.) Advances in Cryptology - EUROCRYPT 2005. LNCS, vol. 3494,
pp. 78–95. Springer, Heidelberg(2005). https://doi.org/10.1007/11426639 5

39. Maurer, U.: Conditionally-perfect secrecy and a provably-secure randomized
cipher. J. Cryptol. 5(1), 53–66 (1992)

40. Maurer, U.M.: Protocols for secret key agreement by public discussion based on
common information. In: Brickell, E.F. (ed.) Advances in Cryptology - CRYPTO
1992. LNCS, vol. 740, pp. 461–470. Springer, Heidelberg (1993). https://doi.org/
10.1007/3-540-48071-4 32

41. Maurer, U.M., Renner, R., Holenstein, C.: Indifferentiability, impossibility results
on reductions, and applications to the random oracle methodology. In: Naor, M.
(ed.) TCC 2004: 1st Theory of Cryptography Conference. LNCS, vol. 2951, pp.
21–39. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1 2

42. Moran, T., Wichs, D.: Incompressible encodings. In: Micciancio, D., Ristenpart,
T. (eds.) Advances in Cryptology - CRYPTO 2020, Part I. LNCS, vol. 12170, pp.
494–523. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-56784-
2 17

43. Naor, M.: On cryptographic assumptions and challenges (invited talk). In: Boneh,
D. (ed.) Advances in Cryptology - CRYPTO 2003. LNCS, vol. 2729, pp. 96–109.
Springer, Heidelberg 2003). https://doi.org/10.1007/978-3-540-45146-4 6

44. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) Advances in Cryptology - EUROCRYPT 19 LNCS,
vol. 1592, pp. 223–238. Springer, Heidelberg 1999). https://doi.org/10.1007/3-540-
48910-X 16

45. Raz, R.: A time-space lower bound for a large class of learning problems. In: Umans,
C. (ed.) 58th Annual Symposium on Foundations of Computer Science,pp. 732–
742. IEEE Computer Society Press, Berkeley, CA, USA (2017). https://doi.org/
10.1109/FOCS.2017.73

46. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) 37th Annual ACM Symposium on Theory
of Computing, pp. 84–93. ACM Press, Baltimore, MA, USA (2005). https://doi.
org/10.1145/1060590.1060603

https://doi.org/10.1007/978-3-030-90453-1_13
https://doi.org/10.1007/978-3-030-90453-1_13
https://doi.org/10.1007/978-3-642-38348-9_10
https://doi.org/10.1007/11426639_5
https://doi.org/10.1007/3-540-48071-4_32
https://doi.org/10.1007/3-540-48071-4_32
https://doi.org/10.1007/978-3-540-24638-1_2
https://doi.org/10.1007/978-3-030-56784-2_17
https://doi.org/10.1007/978-3-030-56784-2_17
https://doi.org/10.1007/978-3-540-45146-4_6
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1109/FOCS.2017.73
https://doi.org/10.1109/FOCS.2017.73
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1145/1060590.1060603

Achievable CCA2 Relaxation
for Homomorphic Encryption

Adi Akavia1(B) , Craig Gentry2, Shai Halevi3 , and Margarita Vald4

1 University of Haifa, Haifa, Israel
adi.akavia@gmail.com

2 TripleBlind, New York City, USA
3 Algorand Foundation, New York City, USA

shaih@alum.mit.edu
4 Intuit Inc., Petah Tikva, Israel
margarita.vald@cs.tau.ac.il

Abstract. Homomorphic encryption (HE) protects data in-use, but can
be computationally expensive. To avoid the costly bootstrapping proce-
dure that refreshes ciphertexts, some works have explored client-aided
outsourcing protocols, where the client intermittently refreshes cipher-
texts for a server that is performing homomorphic computations. But is
this approach secure against malicious servers?

We present a CPA-secure encryption scheme that is completely inse-
cure in this setting. We define a new notion of security, called funcCPA,
that we prove is sufficient. Additionally, we show:

– Homomorphic encryption schemes that have a certain type of circuit
privacy – for example, schemes in which ciphertexts can be “sani-
tized” – are funcCPA-secure.

– In particular, assuming certain existing HE schemes are CPA-secure,
they are also funcCPA-secure.

– For certain encryption schemes, like Brakerski-Vaikuntanathan, that
have a property that we call oblivious secret key extraction, funcCPA-
security implies circular security – i.e., that it is secure to provide
an encryption of the secret key in a form usable for bootstrapping
(to construct fully homomorphic encryption).

Namely, funcCPA-security lies strictly between CPA-security and CCA2-
security (under reasonable assumptions), and has an interesting relation-
ship with circular security, though it is not known to be equivalent.

1 Introduction

Homomorphic encryption (HE) supports computing over encrypted data without
access to the secret key. HE is a prominent approach to safeguarding data and

The first author thanks the Israel Science Foundation (grant 3380/19) and Israel
National Cyber Directorate via the Haifa, BIU and Tel-Aviv cyber centers for their
support. The fourth author thanks Yaron Sheffer for helpful discussions. Pre-prints for
preliminary versions of this works appeared in [2,3,7].

c© The Author(s), under exclusive license to Springer Nature Switzerland 2022
E. Kiltz and V. Vaikuntanathan (Eds.): TCC 2022, LNCS 13748, pp. 70–99, 2022.
https://doi.org/10.1007/978-3-031-22365-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22365-5_3&domain=pdf
http://orcid.org/0000-0003-0853-3576
http://orcid.org/0000-0003-3432-7899
http://orcid.org/0000-0003-1149-7182
https://doi.org/10.1007/978-3-031-22365-5_3

Achievable CCA2 Relaxation for Homomorphic Encryption 71

minimizing the impact of potential breaches, especially useful for outsourcing
of computations over sensitive data, as required by the industry cloud-based
architecture.

The security notion achievable for HE schemes is security against chosen-
plaintext attack (CPA-security), whereas it is well known that security against
chosen-ciphertext attack (CCA2-security) is not achievable due to the inher-
ent malleability of HE schemes. However, CPA-security is not always sufficient
for securing protocols, as it considers only honestly generated ciphertexts and
has no guarantees in settings where an adversary is allowed to inject its own
maliciously crafted ciphertexts into an honest system (see e.g. [40], Chap. 10).
Therefore, relying on CPA-security typically secures protocols only against semi-
honest adversaries e.g. in [1,4,6,8,25,29,42] (unless further cryptographic tools
are employed to enhance security).

In practice however security against malicious adversaries is desired to com-
bat real-life attacks. A natural question therefore is the following:

Is there a relaxation of CCA2 -security that is achievable for HE schemes
and secures protocols against malicious attackers?

Our Contribution. In this work we answer affirmatively the above question
by providing a new security notion, showing it is achievable for HE schemes and
that it guarantees privacy against malicious adversaries for a wide and natural
family of protocols.

The new security notion, named function-chosen-plaintext-attack (funcCPA-
security), is a relaxation of CCA2 security for public key encryption schemes.
Concretely, while CCA2 security captures resiliency against adversaries that
receive decryptions of ciphertexts of their choice, funcCPA guarantees resiliency
only against adversaries that receive re-encryptions of the underlying cleartext
values of ciphertexts of their choice (or, more generally, encryptions of the result
of a computation on those values); See Definition 6. That is, in funcCPA the
adversary sees only ciphertexts, no cleartext values; nonetheless, the adversary
has full control on the computation performed on the underlying values, even
without knowing them, and can inject maliciously crafted ciphertexts.

We note that funcCPA-security is clearly implied by CCA2, moreover, we show
it is a strict weakening of CCA2 by showing it is achievable for HE schemes (where
CCA2-security is not). Furthermore, funcCPA-security implies CPA-security, but
not vice-versa. To prove the latter, we provide: (1) a security proof showing, for a
wide and natural family of outsourcing protocols (named, client-aided outsourcing
protocols), that they preserve privacy when instantiated with any funcCPA-secure
encryption scheme; and (2) an attack that breaks privacy in these protocols when
instantiated with a (carefully crafted) CPA-secure encryption scheme. This shows
that funcCPA-security lies strictly between CPA and CCA2 security.

To prove that funcCPA is achievable for HE schemes we show how to construct
funcCPA-secure HE schemes from any CPA-secure HE scheme equipped with
a sanitization algorithm, including the HE schemes of Gentry [23], Brakerski-
Vaikuntanathan [12] and Ducas and Micciancio [19] (where sanitization is as
defined in [20], see Definition 3).

72 A. Akavia et al.

Theorem 1 (funcCPA-secure HE scheme achievability, informal). Every
CPA-secure HE scheme with a sanitization algorithm can be transformed into a
funcCPA-secure HE scheme.

To further motivate the definition of funcCPA-security we note that many
secure outsourcing protocols in the literature provide the server with the capa-
bility of seeing re-encryptions of ciphertexts of its choice, and even encrypted
results of computations performed on the underlying values of such ciphertexts.
For example, in [42] the client provides the server with re-encryptions for cipher-
texts of the server’s choice, with the goal of avoiding costly bootstrapping at the
server’s side. Likewise, in [1,4,6,8,25,29] the server obtains, via interaction with
the client, the encrypted results of applying various computations on the under-
lying cleartext values of ciphertexts of its choice, including computing compar-
isons [8], minima [1,4], linear equations solutions [6,25], ReLU [29].

To capture and generalize secure outsourcing protocols such as discussed
above [1,4,6,8,25,29], we define a natural family of protocols named: client-
aided outsourcing protocols. This family consists of all protocols where a client
generates keys and uploads encrypted data to a server; the server executes com-
putations over the encrypted data and sends encrypted results to the client;
moreover, the server may send the client (typically few and lightweight) queries
of the form (e, G), for e a vector of ciphertexts and G a function, so that the
client computes G on the underlying cleartext values and sends the server the
encrypted result e′ ← Encpk(G(Decsk(e))).

We prove that client-aided outsourcing protocols instantiated with funcCPA-
secure schemes preserve privacy against malicious servers.

Theorem 2 (privacy against malicious servers, informal). Client-aided
outsourcing protocols instantiated with any funcCPA-secure scheme preserve pri-
vacy against malicious servers.

Conversely, the attack we exhibit exemplifies that CPA-security does not provide
privacy against malicious servers for this class of protocols.

Theorem 3 (attack, informal). There exist CPA-secure HE schemes so that
for client-aided outsourcing protocols instantiated with these schemes, there is
an attack by the server that recovers the client’s input.

Achievability by existing schemes of funcCPA-security. To avoid the performance
overhead incurred due to using sanitization we examine the achievability of func-
CPA-security for popular HE schemes. We prove that the leveled HE schemes of
BV [12], BGV [11] and B/FV [10,21] are leveled-funcCPA-secure (based on their
CPA-security). That is, they satisfy a natural adaptation of funcCPA to leveled
settings, where the funcCPA oracle answers queries with ciphertexts for the next
level.1 Our security proof requires essentially no modifications to the schemes
1 This leveled-funcCPA oracle is useful, for example, in applications where the oracle is

employed to replace deep homomorphic computations that will consume many levels
of the scheme by a query to the oracle that consumes only a single level.

Achievable CCA2 Relaxation for Homomorphic Encryption 73

(other than a slight change in their evaluation keys generation that has little
influence on performance) and without any extra security assumptions.

Theorem 4 (leveled HE are leveled-funcCPA-secure, informal). The lev-
eled HE schemes of BV, BGV, B/FV are leveled-funcCPA-secure.

More generally, the above holds for every leveled HE scheme with keys generated
independently for each level (as specified in Definition 9).

In contrast, for the homomorphic schemes of BV and BGV we show that func-
CPA-security implies (weak) circular security. Concretely, we show that the func-
CPA oracle enables generating from the public key an encryption of the secret key
(in the encoding required for bootstrapping), and thus funcCPA-security elimi-
nates the need for the weak circular security assumption. This can be interpreted
as a barrier on proving funcCPA-security for these schemes, as it would resolve
the long standing open problem on the necessity of circular security assumption
(see e.g. Question 11 in Peikert’s survey [37]).

Theorem 5 (funcCPA vs. circular security, informal). If the homomorphic
encryption scheme of BV or BGV is funcCPA-secure, then it is weakly circular
secure.

On the necessity of funcCPA against semi-honest adversaries. To further study
the funcCPA-security notion, we examine its necessity against semi-honest adver-
saries. We prove that for client-aided outsourcing protocols satisfying a natural
property, CPA-security suffices against semi-honest adversaries. The property we
require is that the protocol is cleartext computable in the sense that the client’s
input determines the underlying cleartext values of the ciphertexts transmitted
throughout the protocol. This captures the fact that the encryption in the pro-
tocol is an external wrapping of the cleartext values, used merely for achieving
privacy against the server, and does not affect the underlying cleartext compu-
tation. This property is natural in outsourcing protocols, where the server does
not contribute any input to the computation but rather it is only a vessel for
storing and processing encrypted data on behalf of the client.

Theorem 6 (privacy against semi-honest servers, informal). Cleartext-
computable client-aided outsourcing protocols using a CPA-secure encryption
scheme preserve privacy against semi-honest servers.

Our Techniques. Our definition of funcCPA (Definition 6) extends CPA by
granting the adversary in the CPA experiment access to an Encpk(G(Decsk(·)))
oracle for a family of functions G. Namely, the adversary can submit (possibly,
adaptive) queries (e, G), for ciphertexts e and a function G ∈ G of its choice,
and receive an encrypted result e′ ← Encpk(G(Decsk(e))).

To prove achievability of funcCPA for sanitized HE schemes (Theorem 1), we
first define the notion of circuit-privacy+ that lies between the semi-honest and
malicious definitions of circuit privacy in allowing maliciously formed ciphertexts

74 A. Akavia et al.

but requiring honestly generated keys. We then show how to transform CPA-
secure schemes with a sanitization algorithm into CPA-secure circuit-private+

schemes (Lemma 2). Finally, we prove that CPA-secure circuit-private+ schemes
are funcCPA-secure.

For our attack proving the insufficiency of CPA-security (Theorem 3) we
first show that every CPA-secure scheme can be slightly modified to yield a
punctured CPA-secure scheme with which our attack is applicable. The attack
uses a single query e′ ← Encpk(G(Decsk(e))), where e is a concatenation of the
client’s encrypted input with a special “trapdoor” ciphertexts planted in the
public-key. The query e hits the puncturing of the scheme so that the result e′

reveals the client’s input. The encryption scheme remains CPA secure, despite the
puncturing, because the trapdoor ciphertext is infeasible to generate honestly
i.e. by encrypting an efficiently samplable message.

Related Work. Several CCA relaxations were previously considered. Relax-
ing CCA2 by forbidding querying the decryption oracle on any ciphertext that
decrypt to the same message as the challenge ciphertext (or extensions of this
notion) was proposed in [13,38,41]. However, for HE this is unachievable (because
the adversary can produce ciphertexts that decrypt to related messages, query
the decryption oracle on those, and consequently recover the message in the
challenge ciphertext).

CCA1-secure HE schemes were constructed in a line of work including [31,33].
This however seems insufficient for privacy against malicious servers in client-
aided outsourcing protocols, because CCA1 does not guarantee security if non-
trivial queries are submitted after the challenge. Moreover, CCA1 is known to
be unachievable for fully homomorphic encryption schemes that follow Gentry’s
blueprint (because they provide an encryption of the secret key for the pur-
pose of bootstrapping, and querying the CCA1 oracle on this ciphertext would
recover the secret key and break security); and even when deviating from Gen-
try’s blueprint, CCA1 is only known to be achievable from non-standard assump-
tions [14]: indistinguishability obfuscation (iO) or succinct non-interactive argu-
ments of knowledge (SNARKs).

In contrast, we show that funcCPA-security is: (1) sufficient for guarantee-
ing privacy against malicious servers in client-aided outsourcing protocols; (2)
achievable for HE schemes, even fully homomorphic ones that follow Gentry’s
blueprint; and (3) achievable from standard assumptions.

Insufficiency of CPA-security for protocols utilizing homomorphic encryption
was considered by Li and Micciancio [32]. They show that protocols instantiated
with the CPA-secure approximate HE schemes of CKKS [16] are insecure when
the protocol exposes decryptions to the attacker, even for semi-honest adver-
saries. In contrast, our attack applies both to exact and approximate schemes
and even when no decryptions are provided (albeit with a malicious adversary).

Prior versions of this work. Preliminary versions of this work appeared in [2,3,7]:
The notion of funcCPA-security and its implication to privacy against malicious

Achievable CCA2 Relaxation for Homomorphic Encryption 75

servers (Theorem 2) was introduced in [3], in the context of presenting new
privacy preserving machine learning protocols. We remark that these protocols
were published in [4,5], albeit with security only against semi-honest servers. The
study of funcCPA was extended in [7] by introducing the generic construction
of funcCPA-secure encryption from sanitization (Theorem 1); proving the insuf-
ficiency of CPA-security for privacy against malicious servers (Theorem 3); and
proving the sufficiency of CPA-security for privacy against semi-honest servers
in cleartext computable client-aided outsourcing protocols (Theorem 6). Open
problems presented in [7] were addressed in [2], where we proved that leveled HE
schemes are (leveled) funcCPA-secure (Theorem 4), and introduced connections
between funcCPA and circular-security (Theorem 5). In addition, [2] introduced
the observation that funcCPA w.r.t the identity function (i.e., with an oracle that
can only refresh ciphertexts) implies funcCPA w.r.t an oracle that can compute
all the circuits for which the scheme is homomorphic (Lemma 1).

Follow-up Work. A follow-up work by Nuida [35] proposed a different definition
of funcCPA (albeit, using the same name funcCPA). It was shown in [35] that
their definition does not guarantee privacy in client-aided outsourcing protocols,
and the thrust of that work was to study several possible treatments of invalid
ciphertexts.

We stress that the results from [35] have no bearing on our funcCPA definition,
in particular we show in Theorem 2 that our definition does imply privacy for
client-aided protocols. We note that our results hold regardless of how invalid
ciphertexts are treated (as long as funcCPA holds wrt an oracle that uses the
same treatment as the client in the protocol). See Remark 2. We also note that
[35, Theorems 3 and 5] are special cases of [7, Theorem 7].

Paper organization. Preliminary definitions are given in Sect. 2. Our results
on funcCPA definition, sufficiency and achievability in Sect. 3. Our result on
the insufficiency of CPA against malicious adversaries in Sects. 4, and on its
sufficiency against semi-honest ones for natural protocols in Sect. 5. We conclude
in Sect. 6.

2 Preliminaries

We briefly specify standard definitions. See details in our full version [2].

Terminology and notations. For n ∈ N, we denote by [n] the set {1, . . . , n}.
We use standard definitions (see e.g. Goldreich [26]) for negligible and poly-
nomial functions with respect to the security parameter λ, denoted neg(λ) and
poly(λ); probabilistic polynomial time algorithms, denoted ppt; random variables;
probability ensembles; computationally indistinguishability ; statistical distance
denoted by Δ(·, ·); and (strong) one-way function.

CPA-secure public key encryption. We use the standard definition for public key
encryption (PKE) scheme E = (Gen,Enc,Dec) and its properties of correctness,

76 A. Akavia et al.

CPA-indistinguishability experiment against an adversary A denoted EXPcpa
A,E(λ),

and CPA-security for single and multiple messages. A scheme is fully decryptable
if applying the decryption algorithm on any ciphertext in the ciphertext space
returns an element from the message space (and requiring, in addition, that the
ciphertext space is efficiently recognizable). See the formal definitions in [30].

Homomorphic encryption. A homomorphic public-key encryption scheme (HE)
is a public-key encryption scheme equipped with an additional ppt algorithm
called Eval that supports “homomorphic evaluations” on ciphertexts. The cor-
rectness requirement is extended to hold with respect to any sequence of homo-
morphic evaluations performed on ciphertexts. A fully homomorphic encryption
scheme must satisfy an additional property called compactness requiring that
the size of the ciphertext does not grow with the complexity of the sequence of
homomorphic operations.

Definition 1 (Homomorphic encryption (HE)). A homomorphic public-
key encryption (HE) scheme E = (Gen,Enc,Dec,Eval) with message space M
is a tuple of ppt algorithms as follows: (Gen,Enc,Dec) is a correct PKE. Eval
(homomorphic evaluation) takes as input the public key pk, a circuit C : M� →
M, and ciphertexts c1, . . . , c�, and outputs a ciphertext ĉ ← Evalpk(C, c1, . . . , c�).

The scheme is secure if it is a CPA-secure PKE; compact if its decryption
circuit is of polynomial size (in the security parameter); C-homomorphic for a
circuit family C if for all C ∈ C and all inputs x1, . . . , x� to C, letting (pk, sk) ←
Gen(1λ) and ci ← Enc(pk, xi) it holds that:

Pr[Decsk(Evalpk(C, c1, . . . , c�)) �= C(x1, . . . , x�)] ≤ neg(λ)

where the probability is taken over all the randomness in the experiment; and
fully homomorphic if it is compact and C-homomorphic for C the class of all
circuits.

A C-homomorphic encryption scheme is bootstrappable if it supports homo-
morphic evaluation of all circuits composed from copies of its decryption circuit
connected by a single gate from the set of gates (see [22, Definitions 4.1.2–4.1.3]).

A HE scheme is leveled (leveled HE) if for each L ∈ Z
+ given as an extra

parameter to Gen, denoted (pk, sk) ← Gen(1λ, 1L), the scheme compactly eval-
uates all circuits of depth at most L. The complexity of its algorithms is poly-
nomial in L on top of λ. CPA-security for leveled HE is defined similarly to the
standard CPA definition except for the capability of the adversary to choose the
level to which the challenge ciphertext is encrypted (to guarantee security of the
scheme for all the levels). More formally,

The CPA indistinguishability experiment EXPcpa
A,E(λ,L) for leveled HE is parame-

terized by the security parameter λ and number of levels L, and executed between
a challenger Chal and an adversary A as follows:

1. Gen(1λ, 1L) is run by Chal to obtain keys (pk�, sk�)�∈{0,...,L} (we consider the
public key pk� to include the evaluation key evk� if exists).

2. Chal provides the adversary A with (pk�)�∈{0,...,L}. A sends to Chal two mes-
sages x0, x1 ∈ M s.t. |x0| = |x1| and � ∈ {0, . . . , L}.

Achievable CCA2 Relaxation for Homomorphic Encryption 77

3. Chal chooses a random bit b ∈ {0, 1}, computes a ciphertext c ← Encpk�
(xb)

and sends c to A. We call c the challenge ciphertext.
4. A outputs a bit b′.
5. The output of the experiment is defined to be 1 if b′ = b (0 otherwise).

Definition 2 (CPA security for leveled HE). A leveled HE scheme E =
(Gen,Enc,Dec,Eval) is CPA-secure if for every ppt adversary A, there exists a
negligible function neg such that for all sufficiently large λ and every L polyno-
mial in λ,

Pr[EXPcpa
A,E(λ,L) = 1] <

1
2

+ neg(λ)

where the probability is over all randomness in the experiment.

Sanitization. A ciphertext sanitization algorithm for a homomorphic encryption
re-randomizes ciphertexts to make them statistically close to other (sanitized)
ciphertexts decrypting to the same plaintext. Sanitization algorithms exists for
most contemporary HE schemes [20].

Definition 3 (Sanitization algorithm [20]). A Sanitize algorithm for a
homomorphic public-key encryption scheme E = (Gen,Enc,Dec,Eval) is a ppt
algorithm that takes a public key pk and a ciphertext c and returns a ciphertext,
so that with probability ≥ 1 − neg(λ) over the choice of (pk, sk) ← Gen(1λ) the
following holds:

– (Message-preservation) ∀c in the ciphertext space:
Decsk(Sanitizepk(c)) = Decsk(c).

– (Sanitization) ∀c, c′ in the ciphertext space s.t. Decsk(c) = Decsk(c′):

Δ ((Sanitizepk(c), (pk, sk)) , (Sanitizepk(c′), (pk, sk))) ≤ neg(λ).

Interactive client-server protocols. The protocols considered in this work involve
two-parties, client and server, denoted by Clnt and Srv respectively, where the
client has input and output, the server has no input and no output, and both
receive the security parameter λ. The client and server interact in an interactive
protocol denoted by π = 〈Clnt,Srv〉. The server’s view in an execution of π,
on client’s input x, no server’s input (denoted by ⊥), and security parameter
λ, is a random variable viewπ

Srv(x,⊥, λ) capturing what the server has learned,
and defined by viewπ

Srv(x,⊥, λ) = (r,m1, . . . ,mt) where r is the random coins
of Srv, and m1, . . . ,mt are the messages Srv received during the protocol’s exe-
cution. The client’s output in the execution is denoted by outπClnt(x,⊥, λ). The
protocol preserves privacy if the views of any server on (same length) inputs are
computationally indistinguishable [27, Definition 2.6.2 Part 2]:2

2 The server has no input or output, so we do not require security against the client.

78 A. Akavia et al.

Definition 4 (Correctness and privacy). An interactive client-server pro-
tocol π = 〈Clnt,Srv〉 for computing F : A → B, where the server has no input or
output is said to be:

Correct: if Srv and Clnt are ppt and for all x ∈ A,
Pr[outπClnt(x,⊥, λ) = F (x)] > 1 − neg(λ).

Private: if for every ppt server Srv∗ and every ppt distinguisher D that chooses
x0, x1 ∈ A s.t. |x0| = |x1|, there exists a negligible function neg(·) such that
for every λ ∈ N, it holds that:

|Pr[D(viewπ
Srv∗(x0,⊥, λ)) = 1] − Pr[D(viewπ

Srv∗(x1,⊥, λ)) = 1]| ≤ neg(λ)

where the probability is taken over the random coins of Clnt and Srv∗.

Definition 4 captures malicious adversaries, but can be relaxed to semi-honest
ones by quantifying only over the prescribed Srv rather than every ppt Srv∗. We
call the former privacy against malicious servers and the latter privacy against
semi-honest servers.

Client-aided outsourcing protocols. We formally define the family of client-aided
outsourcing protocols, or (E ,G)-aided outsourcing protocols, parameterized by a
PKE scheme E with message space M and a family of functions G = {Gn : M →
M}n∈N. We note that E can be any PKE scheme (i.e., not necessarily an HE
scheme).

Definition 5 ((E ,G)-aided outsourcing protocol). Let E = (Gen, Enc,Dec)
be a public-key encryption scheme with message space M, and G = {Gn : M →
M}n∈N a family of functions. An interactive client-server protocol π =
〈Clnt,Srv〉 for computing a function F : A → B is called an (E ,G)-aided out-
sourcing protocol if it has the following three stage structure:

1. Client’s input outsourcing phase (on input x ∈ A): Clnt runs (pk, sk) ←
Gen(1λ), encrypts its input c ← Encpk(x), and sends c and pk to Srv.

2. Server’s computation phase: Srv performs some computation and in addi-
tion may interact (multiple times) with Clnt by sending it pairs (e, n), for e a
vector of ciphertexts and n ∈ N, receiving in response Encpk(Gn(Decsk(e))).

3. Client’s output phase: Srv sends to Clnt the last message of the protocol;
upon receiving this message, Clnt produces an output.

Remark 1 (multiple inputs and outputs). The query e and response e′ can be
vectors of ciphertexts, with decryption and encryption in Encpk(Gn(Decsk(e)))
computed entry-by-entry. Throughout the paper we slightly abuse notations and
denote by M, Dec, Enc, e and e′ also their extension to vectors.

3 A Sufficient and Achievable Relaxation of CCA2

In this section we formally define funcCPA-security and prove that client-aided
protocols instantiated with a funcCPA-secure scheme preserve privacy against

Achievable CCA2 Relaxation for Homomorphic Encryption 79

malicious adversaries (Sect. 3.1); Show that funcCPA-secure HE is achievable from
any HE equipped with a sanitization algorithm (Sect. 3.2); Prove that funcCPA-
security is satisfied by all leveled schemes satisfying a natural property, e.g., the
leveled HE schemes of BV [12], BGV [11] and B/FV [10,21] (Sect. 3.3); Con-
versely, show that funcCPA-security for homomorphic schemes with (another)
natural property, e.g., the schemes of BV [12] and BGV [11], implies weak cir-
cular security (Sect. 3.4).

3.1 funcCPA-Security: A Sufficient Relaxation of CCA2

We define the function-chosen-plaintext attack (funcCPA-security) security
notion of public-key encryption, and show that (E ,G)-aided outsourcing proto-
cols preserve privacy against malicious servers if E is funcCPA-secure. We remark
that E may be a PKE that is not necessarily a HE.

The definition captures a weaker adversary than the standard CCA2 adver-
sary in the sense that the adversary has access to a “decrypt-function-encrypt”
oracle, specified with respect to a family of functions, where the adversary may
submit a ciphertext together with a function identifier and receive in response
a ciphertext that is produced as follows. The submitted ciphertext is first
decrypted, then the requested function is calculated on the plaintext and the
result is encrypted and returned to the adversary.

More formally, we define funcCPA-security via a funcCPA-experiment speci-
fied for a public-key encryption scheme E = (Gen,Enc,Dec) with message space
M, a family of functions G = {Gn : M → M}n∈N, and an adversary A, as
follows:

The funcCPA indistinguishability experiment EXPFcpa
A,E,G(λ):

1. Gen(1λ) is run to obtain a key-pair (pk, sk)
2. The adversary A is given pk and access to a decrypt-function-encrypt oracle,

denoted Encpk(G(Decsk(·))), defined as follows: queries to Encpk(G(Decsk(·)))
are pairs consisting of a ciphertext e and a function index n, and the response
is e′ ← Encpk(Gn(Decsk(e))).

3. A outputs a pair of messages x0, x1 ∈ M with |x0| = |x1|.
4. A random bit b ∈ {0, 1} is chosen, and the ciphertext c ← Encpk(xb) is

computed and given to A. We call c the challenge ciphertext. A continues to
have access to the Encpk(G(Decsk(·))) oracle.

5. The adversary A outputs a bit b′. The experiment’s output is defined to be
1 if b′ = b, and 0 otherwise.

Definition 6 (funcCPA). A PKE scheme E = (Gen,Enc,Dec) with message
space M is funcCPA-secure w.r.t. a family of functions G = {Gn : M → M}n∈N

(funcCPA-secure w.r.t. G) if for all ppt adversaries A, there exists a negligible
function neg(·) such that for all sufficiently large λ,

Pr[EXPFcpa
A,E,G(λ) = 1] ≤ 1

2
+ neg(λ)

80 A. Akavia et al.

where the probability is taken over the random coins used by A, as well as the
random coins used to generate (pk, sk), choose b, and encrypt.

Remark 2 (Handling decryption errors). In Definitions 5 and 6 we do not include
an explicit discussion of how decryption errors are treated. This is because our
theorem showing that funcCPA implies privacy (Theorem 7) holds with any treat-
ment of errors, as long as errors are treated identically by both the client in the
client-aided outsourcing protocol and the oracle in the funcCPA-experiment. An
example of a possible treatment of errors follows: if decryption fails on a query
(e, n) submitted to the client or oracle, they return Encpk(Gn(m)) for an arbi-
trary message m ∈ M. Another example is provided in our preprint [3].

Theorem 7 (funcCPA implies privacy). Let E be a PKE with message space
M and G = {Gn : M → M}n∈N a family of functions. If E is funcCPA-secure
w.r.t. G, then every (E ,G)-aided outsourcing protocol preserves privacy against
malicious servers.

Proof. Let π be a (E ,G)-aided outsourcing protocol for a function F : A → B.
Assume by contradiction that privacy does not hold for π. That is, there exists
a ppt distinguisher D that chooses x0, x1 ∈ A with |x0| = |x1|, a malicious ppt
server Srv∗, and a polynomial p(·) such that for infinitely many λ ∈ N:

Pr[D(viewπ
Srv∗(x1,⊥, λ)) = 1] − Pr[D(viewπ

Srv∗(x0,⊥, λ)) = 1] ≥ 1
p(λ)

(1)

We show that given D and Srv∗ we can construct an adversary A that violates
the funcCPA security of E with respect to the family G.

The adversary A participates in EXPFcpa
A,E,G as follows:

1. Upon receiving pk, A outputs x0, x1 (as computed by D).
2. Upon receiving cx ← Encpk(xb) from the challenger, A internally executes

Srv∗ and behaves as the Clnt in the execution of the protocol π: in the client’s
input outsourcing phase of π, A sends (cx, pk) to Srv∗; in the server’s com-
putation phase of π, every incoming message (e, n) to Clnt is redirected to
the oracle Encpk(G(Decsk(·))) and the response is sent to Srv∗ as if it were
coming from Clnt.

3. A runs the distinguisher D on viewSrv∗ (Srv∗’s view in A during Step 2) and
outputs whatever D outputs.

The adversary A is ppt due to Srv∗ and D being ppt. Note that π is perfectly
simulated.

We denote by viewEXPF cpa

Srv∗ (xb,⊥, λ) the view of Srv∗, simulated by A, in
the execution of EXPFcpa

A,E,G with bit b being selected by the challenger. Since A
behaves exactly as Srv∗ in π, it holds that for every b ∈ {0, 1},

Pr[D(viewπ
Srv∗(xb,⊥, λ)) = 1] = Pr[D(viewEXPF cpa

Srv∗ (xb,⊥, λ)) = 1] (2)

Achievable CCA2 Relaxation for Homomorphic Encryption 81

From Eqs. 1 and 2 it follows that:

Pr[D(viewEXPF cpa

Srv∗ (x1,⊥, λ)) = 1] − Pr[D(viewEXPF cpa

Srv∗ (x0,⊥, λ)) = 1] ≥ 1
p(λ)

(3)

Therefore, we obtain that:

Pr[EXPFcpa
A,E,G(λ) = 1]

=
1

2
· (

Pr[EXPFcpa
A,E,G(λ) = 1|b = 1] + Pr[EXPFcpa

A,E,G(λ) = 1|b = 0]
)

=
1

2
·
(
Pr[D(viewEXPF cpa

Srv∗ (x1, ⊥, λ)) = 1] + Pr[D(viewEXPF cpa

Srv∗ (x0, ⊥, λ)) = 0]
)

=
1

2
+

1

2
·
(
Pr[D(viewEXPF cpa

Srv∗ (x1, ⊥, λ)) = 1] − Pr[D(viewEXPF cpa

Srv∗ (x0, ⊥, λ)) = 1]
)

≥ 1

2
+

1

2
· 1

p(λ)

where the last inequality follows from Eq. 3. Combining this with A being ppt
we derive a contradiction to E being funcCPA secure. This concludes the proof.

�

We observe that for fully decryptable C-homomorphic schemes, it suffices to
prove funcCPA-security w.r.t the identity function I to obtain funcCPA-security
w.r.t C. We note that full decryption holds for well-known schemes including [10,
11,17,19,24,39].

Lemma 1. Let E = (Gen,Enc,Dec,Eval) be a fully decryptable3 C-homomorphic
PKE scheme. If E is funcCPA-secure w.r.t the identity function I then it is
funcCPA-secure w.r.t C.

Proof. Let E = (Gen,Enc,Dec,Eval) be a fully decryptable C-homomorphic
encryption scheme with message space M and ciphertext T that is funcCPA-
secure w.r.t the identity function I : M → M. For any ppt adversary A that
participates in EXPFcpa

A,E,C we construct an adversary B for EXPFcpa
B,E,I that behaves

as follows: The adversary B runs A internally while relaying messages between
the challenger and A, with the exception that Encpk(C(Decsk(·))) queries are
treated as follows: first the queried ciphertext is forwarded to the challenger
that returns a fresh ciphertext of the encrypted value, then Eval is executed over
this fresh ciphertext and the result ciphertext is forwarded again to the chal-
lenger that returns a fresh ciphertext for its underlying value. That is, B does
the following:
3 We note that the fully decryptable requirement addresses decryption errors. This

requirement can be replaced by including in Definition 6 the following treatment of
errors: in case of a decryption error, the funcCPA oracle returns an encryption of the
queried function on an arbitrary message in the message space.

82 A. Akavia et al.

– Upon receiving pk from challenger, forward it to A.
– Answer queries (e, n) to Encpk(C(Decsk(·))) by sending (e, I) to the chal-

lenger and obtaining a fresh ciphertext e′ (and ⊥ if e /∈ T), computing
e′′ ← Evalpk (Cn, e′) and sending (e′′, I) to the challenger. The response to
the second query is given to A.

– Once A generates x0, x1 forward them to the challenger and return the
response c ← Encpk(xb) to A.

– Output the b′ that A outputs.

The adversary B is ppt (due to A and Eval being ppt), and all the interaction
of A is perfectly simulated by B due to E being fully decryptable together with
C-homomorphic. More formally, letting (pk, sk) ← Gen(1λ), for all C ∈ C and
c1, . . . c� ∈ T it holds that:

Pr
[

Decsk(Evalpk(C,Encpk(Decsk(c1)),...,Encpk(Decsk(c�))))
�=

C(Decsk(c1),...,Decsk(c�))

]

≤ neg(λ)

(if A submits a ciphertext not in T then the challenger’s response is ⊥ in both
executions). Since the number of queries of A is polynomial in λ the indistin-
guishability of EXPFcpa

A,E,C(λ) and EXPFcpa
B,E,I(λ) follows. Finally, from the funcCPA-

security of E w.r.t I we conclude that

Pr[EXPFcpa
A,E,C(λ) = 1] ≤ 1

2
+ neg(λ)

as required.
�

3.2 Sanitized HE Schemes are funcCPA-Secure

We show how to transform any HE scheme E that has a sanitization algorithm
into a sanitized HE scheme, denoted E santz, so that if E is CPA-secure, then E santz

is funcCPA-secure.

Definition 7 (Sanitized scheme E santz). Let E = (Gen,Enc,Dec,Eval) be HE
scheme with message space M and a sanitization algorithm Sanitize. We define
its sanitized scheme E santz = (Gen,Encsantz,Dec,Evalsantz) as follows: Gen and Dec
are as in E; Encsantz takes a public key pk and a message m ∈ M and outputs:

Encsantzpk (m) = Sanitizepk (Encpk(m)) ;

Evalsantz takes pk, a circuit C, and ciphertexts c1, . . . , c� and outputs:

Evalsantzpk (C, c1, . . . , c�) = Sanitizepk (Evalpk(C,Sanitizepk(c1), . . . ,Sanitizepk(c�))) .

We note that E santz inherits the compactness, security and correctness properties
of E (in particular, correctness holds due to correctness of E and the message-
preservation property of Sanitize). The homomorphism of E santz may, in gen-
eral, hold with respect to a subset of the circuits for which E is homomorphic.
Nonetheless, when employing the sanitization algorithm of Ducas and Stehlé [20]
both E and E santz are fully homomorphic.

Achievable CCA2 Relaxation for Homomorphic Encryption 83

Theorem 8 (E santz is funcCPA-secure). Let E be a fully decryptable CPA-
secure HE scheme with a sanitization algorithm; E santz its sanitized scheme. If
E santz is C-homomorphic, then it is funcCPA-secure w.r.t. C.4

Proof. To prove the theorem we first enhance the definition of circuit privacy to
circuit-privacy+ (cf. Definition 8 below); then show that the sanitized scheme
E santz satisfies circuit-privacy+ for C (cf. Lemma 2 below); and show that if a
C-homomorphic CPA-secure encryption scheme satisfies circuit-privacy+ for C,
then it is funcCPA-secure w.r.t. C (cf. Lemma 3 below). We conclude that E santz

is funcCPA-secure w.r.t. C. �

Circuit-privacy+. Our definition of circuit-privacy+ addresses maliciously gen-
erated ciphertexts by quantifying over all ciphertexts in the ciphertext space,
rather than only over ciphertexts that were properly formed by applying the
encryption algorithm on a message. Prior definitions of circuit privacy either
considered the semi-honest settings where both the keys and the ciphertext are
properly formed [9,23,28], or considered settings where both keys and cipher-
texts may be maliciously formed [18,28,34,36]. In contrast, in our settings the
keys are properly formed whereas the ciphertexts may be maliciously formed.

Definition 8 (Circuit-privacy+). A C-homomorphic PKE scheme E = (Gen,
Enc,Dec,Eval) is circuit-private+ for C if the following holds with probability
≥ 1 − neg(λ) over the choice of (pk, sk) ← Gen(1λ): For every circuit C ∈ C
over � inputs and ciphertexts c1, . . . , c� in the ciphertext space of E the following
distributions are statistically close:

Δ (Encpk (C (Decsk(c1), . . . ,Decsk(c�))) ,Evalpk (C, c1, . . . , c�)) ≤ neg(λ)

where the distributions are over the random coins of Enc and Eval.

We prove that the sanitized scheme E santz is circuit-private+.

Lemma 2 (E santz is circuit-private+). Let E be a fully decryptable HE scheme
with a sanitization algorithm, and E santz its sanitized scheme. If E santz is C-
homomorphic, then it is circuit-private+ for C.

Proof. We highlight the key steps; the formal details appear in Appendix A.
To prove that E santz is circuit-private+ we show that ciphertexts resulting

from homomorphic evaluation over maliciously crafted ciphertexts are statisti-
cally close to those resulting from first decrypting then computing in cleartext
and then encrypting the output. Sanitizing these ciphertexts (as done in E santz)
is aimed for guaranteeing this statistical closeness. However, the sanitization
guarantee holds only if these ciphertexts decrypt to the same message; proving
the latter is the heart of our proof.

We cannot rely on homomorphism to argue the latter, because correct evalua-
tion is guaranteed only on “fresh” encryptions (cf. maliciously crafted ciphertexts

4 We slightly abuse notations and allow funcCPA with respect to a circuit family.

84 A. Akavia et al.

as in our scenario). To address this issue we introduce a “hybrid” experiment,
where we decrypt-and-then-encrypt the ciphertexts given as input to Eval, which
guarantees that they are fresh encryptions. (We rely on full decryption to ensure
that decryption yields some element in the message space.) In this hybrid exper-
iment correct evaluation indeed holds.

To guarantee that correct evaluation holds even without re-encryption, we
rely on the fact that in E santz we sanitize also the input to Eval and not just its
output. This “inner” sanitization guarantees that the sanitized input ciphertexts
are statistically close to those in the hybrid experiment (since they decrypt to
the same message); from this (together with their statistical independent due to
injecting fresh randomness in each sanitization) we derive that the ciphertext
produced by the homomorphic evaluation is statistically close to the one pro-
duced in the hybrid experiment. This in turn implies that they decrypt to the
same message. �

Circuit-privacy+ implies funcCPA. We prove that a HE scheme is funcCPA-secure
if it is CPA-secure and circuit-private+.

Lemma 3 (circuit-privacy+ implies funcCPA). Let E be a CPA-secure PKE.
If E is C-homomorphic and circuit-private+ for C, then E is funcCPA-secure
w.r.t. C.

Proof. The main proof idea is to carefully replace Encpk(G(Decsk(·))) oracle calls
with Eval operations; details follow.

Let E = (Gen,Enc,Dec,Eval) be a CPA-secure C-homomorphic encryption
scheme with message space M that is circuit-private+ for C. For any ppt adver-
sary A that participates in EXPFcpa

A,E,C we construct an adversary B for EXPcpa
B,E

that behaves as follows: The adversary B runs A internally while relaying mes-
sages between the challenger and A, with the exception that Encpk(C(Decsk(·)))
queries are answered using Eval. That is, B does the following:

– Upon receiving pk from challenger, forward it to A.
– Answer queries (e, n) to Encpk(C(Decsk(·))) by e′ ← Evalpk (Cn, e).
– Once A generates x0, x1 forward them to the challenger and return the

response c ← Encpk(xb) to A.
– Output the b′ that A outputs.

The adversary B is ppt (due to A and Eval being ppt), and all the inter-
action of A is perfectly simulated by B except for the responses to queries to
Encpk(C(Decsk(·))) that are simulated using Eval. Circuit privacy+ of E guar-
antees that these responses are indistinguishable from decrypting, applying Cn

and encrypting the result.
More formally, we define a series of hybrid executions that gradually move

between EXPFcpa
A,E,C experiment (where Encpk(C(Decsk(·))) oracle is used) to

EXPcpa
B,E experiment (where Eval is used). Let q denote an upper bound on the

number of queries done by A, we define q + 1 hybrids as follows:

Hybrid H0 is defined as the execution of EXPFcpa
A,E,C .

Achievable CCA2 Relaxation for Homomorphic Encryption 85

Hybrid Hi is defined for i ∈ [q]. The hybrid Hi is defined as EXPFcpa
Ai,E,C , where Ai’s

last i queries are answered using Eval instead of oracle Encpk(C(Decsk(·))).

Note that Hq is equivalent to the CPA-experiment EXPcpa
B,E , and hence,

Pr[EXPcpa
B,E(λ) = 1] = Pr[EXPFcpa

Aq,E,C(λ) = 1] (4)

In each pair of adjacent hybrids Hi−1 and Hi the difference is that in Hi the
(q − i + 1)’th query is done using Eval instead Encpk(C(Decsk(·))) oracle. In this
case the indistinguishability follows from E being circuit private+ for C. Namely,

|Pr[EXPFcpa
Ai,E,C(λ) = 1] − Pr[EXPFcpa

Ai−1,E,C(λ) = 1]| ≤ neg(λ).

Since q is polynomial in λ, by the hybrid argument the indistinguishability of
EXPFcpa

A,E,C and EXPcpa
B,E follows. Finally, from the CPA-security of E and Eq. 4 we

conclude that
Pr[EXPFcpa

A,E,C(λ) = 1] ≤ 1
2

+ neg(λ)

As required. �

3.3 funcCPA Security of leveled HE Schemes

We show that CPA implies funcCPA for leveled HE schemes satisfying a natural
property. This property is satisfied, e.g., by BV [12], BGV [11] and B/FV [10,21]
(with a slight modification of their evaluation key), see Corollary 1.

Concretely, we address leveled HE schemes where each level is associated
with a set of keys (usually, public, secret and evaluation keys), each ciphertext is
associated with a (efficiently recognizable) level corresponding to the keys used
for this ciphertext, and the scheme has independent level keys in the sense that
the public and secret key pair can be sampled independently for each level, and
the evaluation key for each level can be efficiently generated from the secret key
for the current level and the public key for the next level.

Definition 9 (independent level keys). We say that a leveled HE scheme
E = (Gen,Enc,Dec,Eval) has independent level keys if Gen (level key gener-
ation) takes as input the security parameter 1λ and a number of levels 1L,
uses ppt algorithms GenKey and GenEvKey, and outputs for each level � ∈
{0, . . . , L} a public key, secret key, and an evaluation key defined by: (pk�, sk�) ←
GenKey(1λ) and evk� ← GenEvKey(sk�, pk�−1) denoted: (pk�, evk�, sk�,)�∈[L] ←
Gen(1λ, 1L)

We reformulate the definition of funcCPA to capture security for leveled HE
schemes (leveled-funcCPA) as follows: the adversary can choose the level to which
the challenge ciphertext is encrypted, and the “decrypt-function-encrypt” oracle
is modified to return a ciphertext for the next level. That is, to answer a query
on a ciphertext of level �, the ciphertext is first decrypted using sk�, then the
requested function is calculated on the plaintext and the result is encrypted

86 A. Akavia et al.

under the public-key for the next level pk�−1 and returned to the adversary, see
Definition 10.

The leveled-funcCPA indistinguishability experiment EXPFcpa
A,E,G(λ,L) for leveled

HE is parameterized by the security parameter λ and number of levels L, and
executed between a challenger Chal and an adversary A:

1. Gen(1λ, 1L) is run to obtain keys (pk�, sk�)�∈{0,...,L} (we consider the public
key pk� to include the evaluation key evk� if it exists).

2. The adversary A is given (pk�)�∈{0,...,L} and access to a decrypt-function-
encrypt oracle, denoted {Encpk�−1(G(Decsk�

(·)))}�∈[L], defined as follows: the
queries to this oracle are pairs (e�, n) consisting of a ciphertext e� of some
level � ∈ [L] (where the level is efficiently identifiable given the ciphertext)
and a function index n, and the response is e′ ← Encpk�−1(Gn(Decsk�

(e�))).5

3. A outputs a pair of messages x0, x1 ∈ M s.t. |x0| = |x1| and � ∈ {0, . . . , L}.
4. A random bit b ∈ {0, 1} is chosen, and the ciphertext c ← Encpk�

(xb) is
computed and given to A. We call c the challenge ciphertext. A continues to
have access to the oracle.

5. The adversary A outputs a bit b′. The experiment’s output is defined to be
1 if b′ = b (0 otherwise).

Definition 10 (funcCPA for leveled HE). A leveled HE scheme E =
(Gen,Enc,Dec,Eval) with message space M is leveled-funcCPA-secure with
respect to a family of functions G = {Gn : M → M}n∈N (leveled-funcCPA-secure
w.r.t. G) if for all ppt adversaries A, there exists a negligible function neg(·)
such that for all sufficiently large λ and every L polynomial in λ,

Pr[EXPFcpa
A,E,G(λ,L) = 1] <

1
2

+ neg(λ)

where the probability is taken over all random coins of the experiment.

We prove that CPA-secure leveled HE schemes with independent level keys are
funcCPA-secure w.r.t any admissible family G. Admissible here says that all Gn ∈
G are polynomial-time computable and have fixed output length |Gn(x0)| =
|Gn(x1)| for all x0, x1 ∈ M. (We note that the latter trivially holds when G is a
family of circuits.)

Theorem 9 (leveled HE is funcCPA). Let E be a leveled HE scheme with
independent level keys. If E is CPA-secure, then E is leveled-funcCPA-secure w.r.t.
any admissible family G.

Proof. Let E = (Gen,Enc,Dec,Eval) be a CPA-secure public-key leveled HE
scheme with message space M. Assume by contradiction that there exists an
admissible family of functions G = {Gn : M → M}n∈N over M such that E

5 In case of an error, compute e′ ← Encpk�−1(Gn(m)) for an arbitrary m ∈ M.

Achievable CCA2 Relaxation for Homomorphic Encryption 87

is not funcCPA-secure w.r.t G. That is, there exists a ppt adversary A and a
polynomial p(·) such that for infinity many λ and L it holds that:

Pr[EXPFcpa
A,E,G(λ,L) = 1] >

1
2

+
1

p(λ)
(5)

We show below that given A we can construct an adversary B that wins in
EXPcpa

B,E(λ,L) with non-negligible advantage, violating the CPA security of E .
The adversary B executes A, relaying messages between the challenger and

A, while responding to any query (e�, n) from A with an encryption using pk�−1

of Gn on an arbitrary message m ∈ M. That is B does the following,

– Upon receiving (pk�)�∈{0,...,L} from challenger, forward it to A.
– Answer queries (e�, n) for a ciphertext e� of level � by e′ ← Encpk�−1(Gn(m))

for an arbitrary m ∈ M.
– Once A generates x0, x1 and � forward them to the challenger and return the

response c ← Encpk�
(xb) to A.

– Output the b′ that A outputs.

The adversary B is ppt due to adversary A being ppt and admissibility of
G. Moreover all the interaction of A is perfectly simulated by B except for the
responses to queries to {Encpk�−1(G(Decsk�

(·)))}�∈[L] that are simulated using
encryption of the image of Gn on an arbitrary message.

Let EXPFcpa#
experiment denote this variant of EXPFcpa that is simulated

by A, namely EXPFcpa#
is an experiment identical to EXPFcpa except that each

query (e�, n) to Chal is answered by the encryption of Gn(m) under pk�−1 for
arbitrary m ∈ M.

By definition of EXPFcpa#
it holds that,

Pr[EXPFcpa#

A,E,G (λ,L) = 1] = Pr[EXPcpa
B,E(λ,L) = 1] (6)

Furthermore, the CPA security and independent level keys of E guarantees
(as shown in Lemma 4 below) that A’s winning probability in EXPFcpa#

and
EXPFcpa is computationally indistinguishable. In particular,

|Pr[EXPFcpa#

A,E,G (λ,L) = 1]

−Pr[EXPFcpa
A,E,G(λ,L) = 1]| ≤ neg(λ) .

(7)

Putting Eq. 7 together with Eqs. 5–6 it follows that

Pr[EXPcpa
B,E(λ,L) = 1] ≥ 1

2
+

1
p(λ)

− neg(λ). (8)

Combining this with A being ppt we derive a contradiction to E being CPA
secure. This concludes the proof. �

88 A. Akavia et al.

Let EXPFcpa#
be as defined in the proof of Theorem 9, i.e., it is identical to

EXPFcpa except that Chal, upon receiving queries (e�, n), instead of responding
as in step 2 in Definition 10, responds by sending the encryption under pk�−1 of
Gn(m) for an arbitrary message m ∈ M (rather then m = Decsk�

(e�)). We show
that the adversary is indifferent to the correctness of answers it receives from
the Chal in the sense that its output distribution in EXPFcpa and EXPFcpa#

is
indistinguishable.

Lemma 4. Let E = (Gen,Enc,Dec,Eval) be a CPA-secure leveled HE scheme
with a message space M. Let G = {Gn : M → M}n∈N be a family of admissible
functions. If E has independent level keys then for any ppt adversary A, there
exists a negligible function neg(·) such that for all sufficiently large λ and every
L polynomial in λ the following holds:

|Pr[EXPFcpa#

A,E,G (λ,L) = 1] − Pr[EXPFcpa
A,E,G(λ,L) = 1]| ≤ neg(λ)

Proof. The proof relies on keys independence; details appear in the full ver-
sion [2]. �

Schemes with independent level keys. In BV, BGV and B/FV, for example,
indeed each ciphertext is associated with a level and there are independent
encryption and decryption keys (pk�, sk�) for each level �. Moreover, the evalu-
ation key evk� (called key switching in BV, BGV and B and re-linearization
keys in FV) is essentially the encryption of an efficiently computable func-
tion of the secret key sk� of the current level (concretely, the encryption of
sk′

� = Powersof2(sk� ⊗ sk�)) under the public key pk�−1 for the next level.
More accurately, to generate evk� they use a fresh public key pk′

�−1 with
which they mask sk′

�. This is important when instantiating their scheme as a
fully homomorphic encryption, i.e., when there’s a single key tuple (pk, evk, sk)
used for all levels, in which case using pk (rather than pk′) to encryt a function
of sk would require a circular security assumption. In contrast, when using these
schemes as a leveled HE, as we do, then anyhow the keys (pk�, sk�) are sampled
independently from (pk�−1, sk�−1), and so encrypting sk′

� under pk�−1 requires no
circular security assumption. Therefore, their generation of the evaluation keys
can be modified to output the encryption of sk′

� under pk�−1, without harming
correctness or security.6 With this slight modification indeed these scheme satisfy
Definition 9.

Proposition 1. The leveled HE schemes of BV, BGV and B/FV [10–12,21]
(with the aforementioned evaluation key) have independent level keys.

Corollary 1. The leveled HE schemes of BV, BGV and B/FV [10–12,21] (with
the aforementioned evaluation key) are leveled-funcCPA-secure.

6 We remark that the noise in the modified evaluation keys is slightly larger: the noise
of a fresh ciphertext, rather than a sample from the error distribution; nonetheless,
this makes essentially no difference when using the scheme.

Achievable CCA2 Relaxation for Homomorphic Encryption 89

3.4 Barriers on Proving funcCPA for Existing HE Schemes

In this section we prove that if the homomorphic encryption scheme of BV [12] or
BGV [11] is funcCPA-secure, then it is (weakly) circular secure. More generally,
we show the above holds for all schemes satisfying a property we call oblivious
secret key extraction (ObvSK). In the following we first formally define weak
circular security and ObvSK; then prove that for schemes supporting ObvSK,
funcCPA-security w.r.t a proper family F implies weak circular security; and
conclude by showing that the schemes of BV and BGV support ObvSK.

Circular security extends CPA-security to capture security of public key encryp-
tion schemes against adversaries seeing an encryption of the secret key [15, Def-
inition 2.5].

Circular security is required by all fully homomorphic encryption schemes
following Gentry’s [22] blueprint, as they publish an encryption of the secret
key to be used during bootstrapping (where bootstrapping [22] is the process of
homomorphically evaluating the scheme’s decryption circuit with a hardwired
ciphertext on an encrypted secret key as input). Specifically, they require security
to hold against adversaries seeing an encryption of the secret key in the encoding
by which it is specified as input to the decryption circuit (see [12, Definition 3.8]).

Weak circular security is formally stated, for a public key encryption scheme
E = (Gen,Enc,Dec), using the following experiment between a challenger Chal
and an adversary A (where sk denotes the secret key when specified in the
encoding as required for the decryption circuit):

The weak circular indistinguishability experiment EXPwc
A,E(λ):

1. Chal computes (pk, sk) ← Gen(1λ) and csk ← Encpk(sk), and sends (pk, csk)
to A.

2. A sends to Chal two messages x0, x1 s.t. |x0| = |x1|.
3. Chal chooses a random bit b ∈ {0, 1}, computes a ciphertext c ← Encpk(xb)

and sends c to A. We call c the challenge ciphertext.
4. A outputs a bit b′.
5. The output of the experiment is defined to be 1 if b′ = b (0 otherwise).

Definition 11 (weak circular security). A PKE scheme E = (Gen,Enc,Dec)
is weakly circular secure if for every ppt adversary A, there exists a negligible
function neg(·) such that for all sufficiently large λ,

Pr[EXPwc
A,E(λ) = 1] ≤ 1

2
+ neg(λ)

where the probability is taken over the random coins of A and Chal.

Oblivious secret key extraction captures the ability to generate, from the public
key, ciphertexts encrypting data related to the secret key, so that from their
decryption one can efficiently compute the secret key in the encoding as required
for the decryption circuit.

90 A. Akavia et al.

Definition 12 (oblivious secret key extraction (ObvSK)). Let E = (Gen,
Enc,Dec) be a PKE scheme with message space M, and F = {Fn : M → M}n∈N

be a family of functions. We say that E supports oblivious secret key extraction
(ObvSK) w.r.t F if there exists a ppt algorithm Alg that takes a public key pk
and outputs n = n(λ) ciphertexts under pk, so that the following holds. There
exists a negligible function neg(·) such that for all λ ∈ N the following holds:

Pr
[

(pk,sk)←Gen(1λ)
(c1,...,cn)←Alg(pk)

Fn(Decsk(c1),...,Decsk(cn))=sk

]

≥ 1 − neg(λ) (9)

where the secret key sk outputted by Fn is in the encoding required for the decryp-
tion circuit, and where the probability is taken over the randomness in Gen and
Alg.

funcCPA-security for schemes supporting ObvSK implies weak circular security.
Next we show that if a public key encryption scheme E support ObvSK w.r.t F
and is funcCPA-secure w.r.t G that contains F , then E is weakly circular secure.

Theorem 10. Let E = (Gen,Enc,Dec) be a PKE scheme that is funcCPA-secure
w.r.t a family of functions G. If E is ObvSK w.r.t F and F ⊆ G then E is weakly
circular-secure.

Proof. The proof idea is, given pk, to first use Alg (from the ObvSK property) to
get encrypted data related to sk; then use Encpk(G(Decsk(·))) (from the funcCPA
property) to transform them to ciphertexts csk encrypting sk (in the encoding
for the decryption circuit); finally show that –if the scheme is not circular secure–
then using csk we can break funcCPA-security. The formal details follow.

Suppose by contradiction that E is not circular-secure, i.e., there exists a
ppt adversary A that wins EXPwc

A,E with non-negligible advantage over a random
guess. We construct an adversary B that runs A internally and breaks funcCPA-
security of the scheme.

The adversary B participates in the funcCPA-security experiment as fol-
lows. First, given pk from Chal, B computes (c1, . . . , cn) ← Alg(pk) (for Alg
as guaranteed by the ObvSK property), sends a query ((c1, . . . , cn), n) to the
Encpk(G(Decsk(·))) oracle (provided as part of the funcCPA experiment), and
receives in response (the vector of ciphertexts)

csk = Encpk(Fn(Decsk(c1), . . . ,Decsk(cn))),

which is an encryption of the secret key sk in the encoding as needed for boot-
strapping with 1−neg(λ) probability (by the ObvSK property). Next B, internally
runs A, while providing to it csk together with pk, relaying messages between
A and Chal, and outputting the guess b′ outputted by A.

The view of A in EXPFcpa
B,E is identical to its view in EXPwc

A,E (except with
a neg(λ) probability, for the case of failure in the ObvSK). Implying (by the
contradiction assumption)

Achievable CCA2 Relaxation for Homomorphic Encryption 91

Pr[EXPFcpa
B,E (λ) = 1] >

1
2

+
1

p(λ)

for some polynomial p(·), in contradiction to the funcCPA-security of E . �

As a corollary from Theorem 10 we conclude that for bootstrappable ObvSK
schemes, funcCPA-security implies full homomorphism without relying on any
circular security assumption.

Corollary 2. Let E = (Gen,Enc,Dec,Eval) be a bootstrappable HE scheme that
supports ObvSK w.r.t F . If E is funcCPA-secure w.r.t G and F ⊆ G then E is
fully homomorphic.

Proof. The proof is derived by combining the following two facts. First, by The-
orem 4.3.2 in [22], bootstrappable HE schemes that are weakly circular secure
are fully homomorphic. Second, by Theorem 10, if E support ObvSK w.r.t F and
it is funcCPA-secure w.r.t G that contains F , then E is weakly circular secure.
Combining the above, we conclude that E is fully homomorphic. �

Schemes supporting ObvSK. BV and BGV are examples of schemes supporting
ObvSK. More generally, we show that ObvSK is supported by all public key
encryption schemes E = (Gen,Enc,Dec) satisfying the following:

1. The secret key sk = (1, s) and ciphertext c are from the ring:
– LWE-based schemes: Zn+1

q

– RLWE-based schemes: R2
q for Rq = Zq[x]/F [X]

where q, n, d are positive integers, d a power of 2, F [X] = Xd + 1, and s has
small coefficients in the sense that decryption correctness holds on ciphertexts
encrypting each coefficient of s.

2. Decryption is via inner-product (with messages encoded in the least signifi-
cant bits): Decsk(c) =

[

[〈c, sk〉]q
]

p
where [z]x is the remainder of z in division

by x and p a positive integer.

In the following let FLWE = {FLWE
n : Zn

q → {0, 1}n·�log q	}q,n denote a fam-
ily of functions that given (s1, . . . , sn) ∈ Z

n
q outputs sk = (1, s) ∈ Z

n+1
q in

the encoding as required by the decryption circuit in LWE-based schemes satis-
fying the above properties. Similarly, let FRLWE = {FRLWE

d : Rq → R2
q}q,d

denote a family of functions that given (s′
d−1, . . . , s

′
0) ∈ Rq outputs sk =

(1, (−s′
0, s

′
d−1, . . . , s

′
1)) ∈ R2

q in the encoding as required by the decryption circuit
in the RLWE-based schemes satisfying the above properties. (Here (s′

d−1, . . . , s
′
0)

is a vector of coefficients specifying a polynomial s′(X) ∈ Rq, and 1 denotes the
unit element in Rq.) Moreover, for a scheme E satisfying the above properties,
either in the LWE-based or RLWE-based form, we use the short hand notation
of denoting by FGLWE the family FLWE in case E is LWE-based, and FRLWE

otherwise.

Proposition 2. Suppose E = (Gen,Enc,Dec) satisfies (1)–(2) above. Then E
supports ObvSK w.r.t to FGLWE.

92 A. Akavia et al.

Proof. The proof appears in the full version [2].

As an immediate corollary from Proposition 2 we obtain that the addressed
schemes support ObvSK.

Corollary 3 (BV and BGV support ObvSK). The HE schemes from
BV [12] and BGV [11] support ObvSK w.r.t to FGLWE.

Since these schemes are known to be bootstrappable, then combining Corol-
lary 3 with Corollary 2 we derive that if they are funcCPA-secure then they are
fully homomorphic.

Corollary 4. If BV [12] or BGV [11] is funcCPA-secure w.r.t to G containing
FGLWE, then it is fully homomorphic.

4 CPA Insufficiency Against Malicious Adversaries

We show that CPA-security is insufficient for guaranteeing privacy in client-
aided outsourcing protocols. For this purpose we construct a CPA-secure PKE
scheme and exhibit an input-recovery attack that completely breaks privacy in
client-aided outsourcing protocols instantiated with our scheme. In fact, we can
transform any CPA-secure encryption scheme E with message space M of super
polynomial size, using a one-way function f and any function G, into a CPA-
secure encryption scheme Ef for which our attack works on any (Ef ,G)-aided
outsourcing protocol for any G containing G . Moreover, if E was an HE scheme
then so is Ef . For simplicity of the presentation we concentrate on G being the
identity function I for the construction of Ef . The scheme Ef is similar to E ,
except for the key difference that its encryption and decryption are “punctured”
on a random point m∗ ∈ M, where its public key implicitly specifies m∗ by
augmenting it with f(m∗) and Encpk(m∗).7 See our construction in Fig. 1 and
Theorem 11. Our attack breaks security in the strong sense that the server is
able to completely recover the client’s input; See Theorem 12.

Theorem 11 (properties of Ef). For every PKE scheme E and one-way func-
tion f over the message-space of E, the scheme Ef (cf. Figure 1) is a PKE scheme
satisfying the following. If E is CPA-secure, compact, and C-homomorphic, then
Ef is CPA-secure, compact, and C × C-homomorphic.8

Proof. Correctness, compactness and homomorphism of Ef follow directly from
the properties of E . The CPA-security of Ef follows from the CPA-security of E
and the one-wayness of f : the encryption in Ef is identical to encrypting pairs
7 In case our G of interest does not contain the identity function, we slightly modify Ef

by replacing each occurrence of Encpk(m
∗) and f(m∗) in Fig. 1 with Encpk(G(m∗))

and f(G(m∗)) respectively for an efficiently computable G ∈ G, and slightly modify
the proof by replacing each occurrence of I by G.

8 We note that a C × C-homomorphic encryption scheme is also C-homomorphic, as
we can embed C in C × C, e.g., by mapping every C ∈ C into (C,C) ∈ C × C.

Achievable CCA2 Relaxation for Homomorphic Encryption 93

Genf (1λ): Given 1λ, output (pkf , skf) computed as follows. Let (pk, sk) ← Gen(1λ)
and sample a uniformly random m∗ ∈ M. Set

pkf := (pk,Encpk(m∗), f(m∗)) and skf := (sk, f(m∗)).

Encf

pkf (m): Given m = (m1,m2) ∈ M × M, if f(m2) = f(m∗) then output (m1,m2),

else output
(Encpk(m1),Encpk(m2)).

Decf

skf (c): Given c = (c1, c2), if f(c2) = f(m∗) then output (c1, c2), else output

(Decsk(c1),Decsk(c2)).

Evalf
pkf (C, c1, ..., c): Given a circuit C = C1 × C2 over inputs, and ciphertexts

ci = (ci,1, ci,2) for i ∈ [], do the following. For each i ∈ [], if f(ci,2) = f(m∗) then set
ci = (Encpk(ci,1),Encpk(ci,2)), else set ci = ci. Output

(Evalpk(C1, c1,1, ..., c 1),Evalpk(C2, c1,2, ..., c 2)).

Fig. 1. The construction of the scheme Ef = (Genf ,Encf ,Decf ,Evalf) from a PKE
scheme E = (Gen,Enc,Dec,Eval) with message space M and ciphertext space T and a
one-way function f over M. The message-space and ciphertext-space of Ef are M×M
and (T × T) ∪ (M × M) respectively.

(m1,m2) of messages under E , except if m2 is a pre-image of f(m∗), but the
latter occurs with no more than a negligible probability due to f being a one-
way function and m∗ being a random message. See formal details in the full
version [2]. �

We present our attack in which the server recovers the client’s input in any
(Ef ,G)-aided outsourcing protocol for G containing the identity function I. We
remark that our attack is applicable from every PKE E , regardless of whether it
is a HE scheme.

Theorem 12 (CPA-security does not imply privacy). For every PKE
scheme E with message-space M and every one-way function f over M, there
exists a CPA-secure PKE scheme Ef so that for every family of functions
G = {Gn : M → M}n∈N containing the identity function I and every (Ef ,G)-
aided outsourcing protocol there is a server’s strategy that recovers the client’s
input.

Proof. Denote E = (Gen,Enc,Dec). Set Ef = (Genf ,Encf ,Decf) to be the
encryption scheme constructed from E and f in Fig. 1.

Our active input-recovery attack is applicable on any (Ef ,G)-aided outsourc-
ing protocol π = 〈Clnt,Srv〉 as follows.

1. Clnt executes phase 1 of π. That is, it runs (pkf , skf) ← Genf (1λ) to obtain a
public key pkf = (pk,Encpk(m∗), f(m∗)), encrypts its input x by computing
cx ← Encf

pkf (x, x) and sends cx and pkf to Srv.

94 A. Akavia et al.

2. Upon receiving cx = (c1, c2) and pkf , Srv generates a new ciphertext e =
(c1,Encpk(m∗)), where Encpk(m∗) is taken from pkf , and sends (e, I) to Clnt.

3. Clnt sends (c′
1, c

′
2) ← Encf

pkf (I(Decf
skf (e))) to Srv.

4. Upon receiving the client’s response (c′
1, c

′
2), Srv outputs c′

1.

The attack recovers the client’s input x because c′
1 = x as explained next.

Observe that I(Decf
skf (e)) = (x,m∗) is a message where the encryption algo-

rithms Encf
pkf is punctured, implying that

Encf
pkf (I(Decf

skf (e))) = (x,m∗).

Namely, (c′
1, c

′
2) = (x,m∗) in Step 3, and so c′

1 = x. �

5 CPA Implies Privacy Against Semi-honest Adversaries

We define a natural property for (E ,G)-aided outsourcing protocols (called clear-
text computable), and show that for protocols satisfying this property, CPA-
security guarantees privacy against semi-honest servers; See Theorem 13.

Cleartext computable protocols. A protocol is cleartext computable if the mes-
sages whose encryption constitutes the client’s responses to the server’s queries
are efficiently computable given only the client’s input. To formalize this we
first define the client’s cleartext response. Let π = 〈Clnt,Srv〉 be an (E ,G)-aided
outsourcing protocol (cf. Definition 5). The client’s cleartext response in an exe-
cution of π on client’s input x and randomness rClnt, server’s randomness rSrv,
and security parameter λ ∈ N, is defined by:

clear-resπ((x, rClnt), rSrv, λ) = (Gn1(Decsk(e1)), . . . , Gnq
(Decsk(eq)))

where (sk, pk) ← Gen(1λ) is the key pair generated by the client in Phase 1 of
π; q is the number of queries sent from server to client in Phase 2 of π; and for
each j ∈ [q], (ej, nj) and Encpk(Gnj

(Decsk(ej))) are the jth server’s query and
the corresponding client’s response respectively with Gnj

(Decsk(ej)) being the
underlying cleartext response message.

Definition 13 (cleartext computable). An (E ,G)-aided outsourcing proto-
col π = 〈Clnt,Srv〉 for computing a function F : A → B is cleartext computable
if Srv is ppt and there exists a ppt function h such that for all inputs x ∈ A, all
client and server randomness rClnt and rSrv, respectively, and all λ ∈ N

clear-resπ((x, rClnt), rSrv, λ) = h(x)

CPA-security implies privacy for cleartext computable protocols. We show that
for cleartext computable (E ,G)-aided outsourcing protocols, CPA-security of E
implies that the protocol preserves privacy against semi-honest servers.

Similarly to Theorem 9, the family G should be admissible in the sense that
all Gn ∈ G are polynomial-time computable (in the security parameter) and
have fixed output length, i.e., |Gn(x0)| = |Gn(x1)| for all x0, x1 ∈ M.

Achievable CCA2 Relaxation for Homomorphic Encryption 95

Theorem 13 (privacy of cleartext computable protocols). Every cleart-
ext computable (E ,G)-aided outsourcing protocol preserves privacy against semi-
honest servers, provided that E is CPA-secure and G is admissible.

Proof. We show that for cleartext computable protocols, when instantiated
with a CPA-secure encryption scheme, a semi-honest server cannot distinguish
encrypted response of correct or random values, and hence privacy follows. The
formal proof appears in the full version [2].

6 Conclusions

In this work we introduce the notion of funcCPA, which is a strict relaxation of
CCA2-security, show it is achievable for HE schemes (unlike CCA2) and sufficient
for ensuring privacy against malicious servers for the wide an natural family of
client-aided outsourcing protocols (unlike CPA, as we prove). In contrast, against
semi-honest adversaries, we prove that CPA-security suffices for ensuring privacy
in all cleartext computable client-aided outsourcing protocols.

A Proof of Lemma 2

We prove Lemma 2 showing that for every fully decryptable HE scheme E
that has a sanitization algorithm Sanitize, if its sanitized version E santz is C-
homomorphic, then it is circuit-private+ for C.

Proof (of Lemma 2). Let E = (Gen,Enc,Dec,Eval) be a fully decryptable HE
scheme with a sanitization algorithm Sanitize. Denote by E santz = (Gen,Encsantz,
Dec,Evalsantz) its sanitized version as specified in Definition 7. Let C be the set of
circuits so that E santz is C-homomorphic. We show that E santz is circuit-private+

for C.
Fix a circuit C ∈ C over � inputs, ciphertexts c1, . . . , c�, a security param-

eter λ. To prove circuit-privacy+ holds we need to show the two ciphertexts
Encsantzpk (C (Decsk(c1), · · · ,Decsk(c�))) and Evalsantzpk (C, c1, . . . , c�) are statisti-
cally close, with overwhelming probability over the choice of (pk, sk) ← Gen(λ).

By definition of E santz,

Encsantzpk (C (Decsk(c1), · · · ,Decsk(c�)))

= Sanitizepk (Encpk (C (Decsk(c1), . . . ,Decsk(c�))))
(10)

and

Evalsantzpk (C, c1, . . . , c�)

= Sanitizepk (Evalpk (C,Sanitizepk(c1), . . . ,Sanitizepk(c�)))
(11)

By the sanitization property of Sanitize, if two ciphertexts decrypt to the
same plaintext then their sanitized version is statistically close. Therefore it is

96 A. Akavia et al.

sufficient to show that the corresponding ciphertexts in the above two equa-
tions (i.e., Encpk (C (Decsk(c1), . . . ,Decsk(c�))) and Evalpk(C,Sanitizepk(c1), . . . ,
Sanitizepk(c�))) decrypt to the same plaintext.

The correctness property of E together with it being fully decryptable ensures
that for every (pk, sk) ← Gen(1λ):

∀i ∈ [�] : Pr[Decsk(Encpk(Decsk(ci))) = Decsk(ci)] ≥ 1 − neg(λ) (12)

and

Pr
[

Decsk(Encpk(C(Decsk(c1),...,Decsk(c�))))
=C(Decsk(c1),...,Decsk(c�))

]

≥ 1 − neg(λ) (13)

where the probabilities are taken over the random coins of the encryption algo-
rithm.

From Eq. 12 together with the sanitization property of Sanitize, we obtain
that, for each i ∈ [�], with probability ≥ 1−neg(λ) over the choice of (pk, sk) ←
Gen(1λ):

Δ ((Sanitizepk(Encpk(Decsk(ci))), (pk, sk)) , (Sanitizepk(ci), (pk, sk))) ≤ neg(λ)

Moreover, with probability ≥ 1 − neg(λ), the above holds for all i ∈ [�] simulta-
neously (by union bound).

Since Sanitize uses independent randomness for each i ∈ [�], its output on
distinct i’s is statistically independent. So the joint distribution over all i ∈ [�]
is likewise negligible (since the statistical distance of the joint distribution of
independent random variables is the sum of their statistical distances, and the
number of random variables is � = poly(λ)). Namely,

Δ
(

(Sanitizepk(Encpk(Decsk(c1))),...,Sanitizepk(Encpk(Decsk(c�))),(pk,sk)),
(Sanitizepk(c1),...,Sanitizepk(c�),(pk,sk))

)

≤ neg(λ) (14)

The C-homomorphism of E santz guarantees that E∗ = (Gen,Encsantz,Dec,Eval)
is likewise C-homomorphic (due to the message-preservation property of
Sanitize), and hence for every (pk, sk) ← Gen(1λ) it holds that,

Pr
[
Decsk(Evalpk(C,Sanitizepk(Encpk(Decsk(c1))),...,Sanitizepk(Encpk(Decsk(c�)))))

=C(Decsk(c1),...,Decsk(c�))

]
≥ 1 − neg(λ) (15)

Combining Eqs. 14–15 we guarantee correctness of Eval on the sanitized
c1, . . . , c�. That is, for every (pk, sk) ← Gen(1λ) it holds that,

Pr
[

Decsk(Evalpk(C,Sanitizepk(c1),...,Sanitizepk(c�)))
=C(Decsk(c1),...,Decsk(c�))

]

≥ 1 − neg(λ)

Using the correctness property of E as stated in Eq. 13 we obtain that for
every (pk, sk) ← Gen(1λ) it holds that with probability ≥ 1 − neg(λ) over the
random coins of the experiment,

Decsk (Evalpk (C,Sanitizepk(c1), . . . ,Sanitizepk(c�)))

=Decsk (Encpk (C (Decsk(c1), . . . ,Decsk(c�))))

Achievable CCA2 Relaxation for Homomorphic Encryption 97

This concludes the proof as by the sanitization property of Sanitize, we obtain
that with probability ≥ 1−neg(λ) over the choice of (pk, sk) ← Gen(1λ) and the
random coins in Enc and Eval the following distributions are statistically close,

Sanitizepk (Encpk (C (Decsk(c1), . . . ,Decsk(c�))))

and
Sanitizepk (Evalpk (C,Sanitizepk(c1), . . . ,Sanitizepk(c�)))

as desired. �

References

1. Akavia, A., Feldman, D., Shaul, H.: Secure search on encrypted data via multi-ring
sketch. In: Lie, D., Mannan, M., Backes, M., Wang, X., eds Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security, CCS 2018,
Toronto, ON, Canada, October 15–19, 2018, pages 985–1001. ACM (2018)

2. Akavia, A., Gentry, C., Halevi, S., Vald, M.: Achievable CCA2 relaxation for homo-
morphic encryption. Cryptology ePrint Archive, Paper 2022/282 (2022). https://
eprint.iacr.org/2022/282

3. Akavia, A., Leibovich, M., Resheff, Y.S., Ron, R., Shahar, M., Vald, M.: Privacy-
preserving decision tree training and prediction against malicious server. Cryptol-
ogy ePrint Archive, Paper 2019/1282 (2019). https://eprint.iacr.org/2019/1282

4. Akavia, A., Leibovich, M., Resheff, Y.S., Ron, R., Shahar, M., Vald, M.: Privacy-
preserving decision trees training and prediction. In: Hutter, F., Kersting, K., Lijf-
fijt, J., Valera, I. (eds.) ECML PKDD 2020. LNCS (LNAI), vol. 12457, pp. 145–161.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67658-2 9

5. Akavia, A., Leibovich, M., Resheff, Y.S., Ron, R., Shahar, M., Vald, M.: Privacy-
preserving decision trees training and prediction. ACM Trans. Priv. Secur. 25(3),
1–30 (2022)

6. Akavia, A., Shaul, H., Weiss, M., Yakhini, Z.: Linear-regression on packed
encrypted data in the two-server model. In: Brenner, M., Lepoint, T., Rohloff, K.,
eds Proceedings of the 7th ACM Workshop on Encrypted Computing & Applied
Homomorphic Cryptography, WAHC@CCS 2019, London, UK, November 11–15,
2019, pp. 21–32. ACM (2019)

7. Akavia, A., Vald, M.: On the privacy of protocols based on CPA-secure homomor-
phic encryption. Cryptology ePrint Archive, Report 2021/803 (2021). https://ia.
cr/2021/803

8. Bost, R., Popa, R.A., Tu, S., Goldwasser, S.: Machine learning classification over
encrypted data. In: NDSS, vol. 4324, p. 4325 (2015)

9. Bourse, F., Del Pino, R., Minelli, M., Wee, H.: FHE circuit privacy almost for
free. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 62–89.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5 3

10. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical gapSVP. In: Advances in Cryptology - CRYPTO 2012–32nd Annual Cryp-
tology Conference, Santa Barbara, CA, USA, August 19–23, 2012, pp. 868–886.
Proceedings (2012)

11. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: Innovations in Theoretical Computer Sci-
ence 2012, Cambridge, MA, USA, January 8–10, 2012, pages 309–325 (2012)

https://eprint.iacr.org/2022/282
https://eprint.iacr.org/2022/282
https://eprint.iacr.org/2019/1282
https://doi.org/10.1007/978-3-030-67658-2_9
https://ia.cr/2021/803
https://ia.cr/2021/803
https://doi.org/10.1007/978-3-662-53008-5_3

98 A. Akavia et al.

12. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. SIAM J. Comput. 43(2), 831–871 (2014)

13. Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing chosen-ciphertext security. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 565–582. Springer, Heidel-
berg (2003). https://doi.org/10.1007/978-3-540-45146-4 33

14. Canetti, R., Raghuraman, S., Richelson, S., Vaikuntanathan, V.: Chosen-ciphertext
secure fully homomorphic encryption. In: Fehr, S. (ed.) PKC 2017. LNCS, vol.
10175, pp. 213–240. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-
662-54388-7 8

15. Cash, D., Green, M., Hohenberger, S.: New definitions and separations for circular
security. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 540–557. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-30057-8 32

16. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arith-
metic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT
2017. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70694-8 15

17. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: fast fully homomor-
phic encryption over the torus. J. Cryptol. 33, 34–91 (2019)

18. Chongchitmate, W., Ostrovsky, R.: Circuit-private multi-key FHE. In: Fehr, S.
(ed.) PKC 2017. LNCS, vol. 10175, pp. 241–270. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54388-7 9

19. Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less
than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9056, pp. 617–640. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46800-5 24

20. Ducas, L., Stehlé, D.: Sanitization of FHE ciphertexts. In: Fischlin, M., Coron, J.-
S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 294–310. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49890-3 12

21. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR
Cryptol. ePrint Arch. 2012, 144 (2012)

22. Gentry, C.: A fully homomorphic encryption scheme. Ph. D thesis, Stanford Uni-
versity (2009). https://crypto.stanford.edu/craig

23. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings
of the 41st Annual ACM Symposium on Theory of Computing, STOC ’09, pp.
169–178. Association for Computing Machinery, (2009)

24. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-40041-4 5

25. Giacomelli, I., Jha, S., Joye, M., Page, C.D., Yoon, K.: Privacy-preserving
ridge regression with only linearly-homomorphic encryption. In: Preneel, B., Ver-
cauteren, F. (eds.) ACNS 2018. LNCS, vol. 10892, pp. 243–261. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-93387-0 13

26. Goldreich, O.: The Foundations of Cryptography - Basic Techniques, vol. 1. Cam-
bridge University Press, Cambridge (2001)

27. Hazay, C., Lindell, Y.: Efficient Secure Two-Party Protocols. ISC, Springer, Hei-
delberg (2010). https://doi.org/10.1007/978-3-642-14303-8

28. Ishai, Y., Paskin, A.: Evaluating branching programs on encrypted data. In: Vad-
han, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 575–594. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-70936-7 31

https://doi.org/10.1007/978-3-540-45146-4_33
https://doi.org/10.1007/978-3-662-54388-7_8
https://doi.org/10.1007/978-3-662-54388-7_8
https://doi.org/10.1007/978-3-642-30057-8_32
https://doi.org/10.1007/978-3-642-30057-8_32
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-662-54388-7_9
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-49890-3_12
https://crypto.stanford.edu/craig
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-319-93387-0_13
https://doi.org/10.1007/978-3-642-14303-8
https://doi.org/10.1007/978-3-540-70936-7_31

Achievable CCA2 Relaxation for Homomorphic Encryption 99

29. Juvekar, C., Vaikuntanathan, V., Chandrakasan, A.: Gazelle: a low latency frame-
work for secure neural network inference. In: Proceedings of the 27th USENIX
Conference on Security Symposium, SEC’18, pp. 1651–1668. USENIX Association
(2018)

30. Katz, J., Lindell, Y.: Introduction to Modern Cryptography (Chapman &
Hall/CRC Cryptography and Network Security Series). Chapman & Hall/CRC
(2007)

31. Lai, J., Deng, R.H., Ma, C., Sakurai, K., Weng, J.: CCA-Secure Keyed-Fully Homo-
morphic Encryption. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y.
(eds.) PKC 2016. LNCS, vol. 9614, pp. 70–98. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49384-7 4

32. Li, B., Micciancio, D.: On the security of homomorphic encryption on approximate
numbers. IACR Cryptology ePrint Archive 2020, 1533 (2020)

33. Loftus, J., May, A., Smart, N.P., Vercauteren, F.: On CCA-secure somewhat homo-
morphic encryption. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118,
pp. 55–72. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28496-
0 4

34. Malavolta, G.: Circuit privacy for quantum fully homomorphic encryption. IACR
Cryptol. ePrint Arch. 2020, 1454 (2020)

35. Nuida, K.: How to handle invalid queries for malicious-private protocols based
on homomorphic encryption. In: Proceedings of the 9th ACM on ASIA Public-
Key Cryptography Workshop, APKC ’22, pp. 15–25, New York, NY, USA (2022).
Association for Computing Machinery

36. Ostrovsky, R., Paskin-Cherniavsky, A., Paskin-Cherniavsky, B.: Maliciously
circuit-private FHE. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS,
vol. 8616, pp. 536–553. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44371-2 30

37. Peikert, C.: A decade of lattice cryptography. Found. Trends Theor. Comput. Sci.
10(4), 283–424 (2016)

38. Prabhakaran, M., Rosulek, M.: Homomorphic encryption with CCA security. In:
Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 667–678. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-70583-3 54

39. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM 56(6), 84–93 (2009)

40. Rosulek, M.: The joy of cryptography. http://joyofcryptography.com
41. Shoup, V.: A proposal for an ISO standard for public key encryption. IACR Cryp-

tol. ePrint Arch., p. 112 (2001)
42. Wang, W., et al.: Toward scalable fully homomorphic encryption through light

trusted computing assistance. CoRR abs/1905.07766 (2019)

https://doi.org/10.1007/978-3-662-49384-7_4
https://doi.org/10.1007/978-3-662-49384-7_4
https://doi.org/10.1007/978-3-642-28496-0_4
https://doi.org/10.1007/978-3-642-28496-0_4
https://doi.org/10.1007/978-3-662-44371-2_30
https://doi.org/10.1007/978-3-662-44371-2_30
https://doi.org/10.1007/978-3-540-70583-3_54
http://joyofcryptography.com

Multi-party Computation I

Round-Optimal Honest-Majority MPC in
Minicrypt and with Everlasting Security

(Extended Abstract)

Benny Applebaum1 , Eliran Kachlon1(B) , and Arpita Patra2

1 Tel-Aviv University, Tel-Aviv, Israel
benny.applebaum@gmail.com, elirn.chalon@gmail.com

2 Indian Institute of Science, Bangalore, India

arpita@iisc.ac.in

Abstract. We study the round complexity of secure multiparty com-
putation (MPC) in the challenging model where full security, including
guaranteed output delivery, should be achieved at the presence of an
active rushing adversary who corrupts up to half of parties. It is known
that 2 rounds are insufficient in this model (Gennaro et al. Crypto
2002), and that 3 round protocols can achieve computational security
under public-key assumptions (Gordon et al. Crypto 2015; Ananth et
al. Crypto 2018; and Badrinarayanan et al. Asiacrypt 2020). However,
despite much effort, it is unknown whether public-key assumptions are
inherently needed for such protocols, and whether one can achieve simi-
lar results with security against computationally-unbounded adversaries.

In this paper, we use Minicrypt-type assumptions to realize 3-round
MPC with full and active security. Our protocols come in two flavors:
for a small (logarithmic) number of parties n, we achieve an optimal
resiliency threshold of t ≤ �(n − 1)/2�, and for a large (polynomial)
number of parties we achieve an almost-optimal resiliency threshold of
t ≤ 0.5n(1 − ε) for an arbitrarily small constant ε > 0. Both protocols
can be based on sub-exponentially hard injective one-way functions in
the plain model.

If the parties have an access to a collision resistance hash function,
we can derive statistical everlasting security for every NC1 functionality,
i.e., the protocol is secure against adversaries that are computationally
bounded during the execution of the protocol and become computation-
ally unlimited after the protocol execution.

As a secondary contribution, we show that in the strong honest-
majority setting (t < n/3), every NC1 functionality can be computed
in 3 rounds with everlasting security and complexity polynomial in n
based on one-way functions. Previously, such a result was only known
based on collision-resistance hash function.

1 Introduction

Interaction is a valuable and expensive resource in cryptography and distributed
computation. Consequently, a huge amount of research has been devoted towards

A full version of this paper appears in [AKP21].

c© The Author(s), under exclusive license to Springer Nature Switzerland 2022
E. Kiltz and V. Vaikuntanathan (Eds.): TCC 2022, LNCS 13748, pp. 103–120, 2022.
https://doi.org/10.1007/978-3-031-22365-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22365-5_4&domain=pdf
http://orcid.org/0000-0003-4792-369X
http://orcid.org/0000-0001-5913-1636
http://orcid.org/0000-0002-8036-4407
https://doi.org/10.1007/978-3-031-22365-5_4

104 B. Applebaum et al.

characterizing the amount of interaction, typically measured via round com-
plexity, that is needed for various distributed tasks (e.g., Byzantine agree-
ment [LF82,DR85,FM85], coin flipping [Cle86,MNS16], and zero-knowledge
proofs [GK96,CKPR01]) under different security models. In this paper, we focus
on the problem of general secure-multiparty-computation (MPC) in the challeng-
ing setting of full security (including guaranteed output delivery) with maximal
resiliency. That is, even an active (aka Byzantine or malicious) adversary that
controls a minority (up to half) of the parties should not be able to violate
privacy or to prevent the honest parties from receiving a valid output. In this
setting, originally presented in the classical work of Rabin and Ben-Or [RB89],
we assume that each pair of parties is connected by a secure and authenticated
point-to-point channel and that all parties have access to a common broadcast
channel, which allows each party to send a message to all parties and ensures
that the received message is identical.

The round complexity of honest-majority fully-secure MPC protocols was
extensively studied. The lower-bound of [GIKR02,GLS15] shows that two rounds
are insufficient for this task even when the parties are given access to a common
reference string (CRS). In [AJL+12], a 5-round protocol was constructed based
on Threshold Fully-Homomorphic Encryption (TFHE) and Non-Interactive
Zero-Knowledge proofs (NIZK). An optimal round complexity of three, was
later obtained by [GLS15] in the CRS model by relying on a stronger vari-
ant of TFHE that can be based on the learning with errors (LWE) assumption.
Later in [BJMS20] the CRS was removed, and in [ACGJ18] LWE was replaced
by weaker public-key primitives like general public-key encryption (PKE) and
two-round witness indistinguishable proofs (Zaps). (The latter can be based on
primitives like trapdoor permutations [DN07] and indistinguishability obfusca-
tion [BP15], or on intractability assumptions related to bilinear groups [GOS12]
and LWE [BFJ+20,GJJM20].)

The above results may give the impression that public-key assumptions are
essential for honest-majority fully-secure MPC. However, if one puts no restric-
tion on the round complexity, then, as shown by Rabin and Ben-Or [RB89], one
can obtain unconditional results and no assumptions are needed at all! Specifi-
cally, every efficiently computable function can be securely computed with statis-
tical security against computationally-unbounded adversaries.1 Constant-round
versions of this protocol are known either with an exponential dependency in the
circuit-depth (or space-complexity) of the underlying function [IK00], or with
computational security under the weakest-known cryptographic assumption: the
existence of one-way functions [BMR90,DI05]. Moreover, for the special case of
3 parties (and single corruption), 3-round protocols were constructed by [PR18]
based on injective one-way functions.

This leaves an intriguing gap between general-purpose optimal-round proto-
cols to protocols with larger round complexity, both in terms of the underlying
assumptions and with respect to the resulting security notion. We therefore ask:

1 Interestingly, perfect security is impossible to achieve in this setting as it requires a
strong honest-majority of 2n/3 [BGW88].

Round-Optimal Honest-Majority MPC in Minicrypt 105

Q1: Are public-key assumptions inherently needed for 3-round fully-secure
honest-majority MPC? Is it possible to replace these assumptions with
symmetric-key assumptions?
Q2: Is it possible to obtain 3-round fully-secure honest-majority MPC with
some form of unconditional security against computationally-unbounded
adversaries?

We answer these questions to the affirmative. We show that 3-round MPC
with full security at the presence of honest-majority can be realized based on
Minicrypt-type assumptions without relying on PKE, and present variants of our
protocol that achieve statistical everlasting security. To the best of our knowl-
edge, this is the first construction of everlasting-secure protocol in this setting
regardless of the underlying assumptions. We continue with a detailed description
of our results.

1.1 Our Contribution

1.1.1 Round-Optimal MPC in Minicrypt
We present the first 3-round general MPC protocol under Minicrypt assump-
tions. In fact, our protocol consists of 1 offline (input-independent) round, and 2
online rounds. To obtain our main result, we reveal a strong connection between
round-optimal MPC and round-optimal protocols for functionalities whose out-
put depends on the input of a single party, aka single input functionalities (SIF).
In particular, we prove the following theorem.

Theorem 1. Assuming the existence of non-interactive commitment scheme,
there exists a compiler that takes a protocol sif with 1 offline round and 1 online
round for single input functionalities, and outputs a protocol with 1 offline round
and 2 online rounds for general MPC, with the same resiliency as sif.

In a recent result by the same authors [AKP22], a round-optimal SIF protocol
was presented based on the existence of injective one-way functions with sub-
exponential hardness. The protocol has optimal resiliency when the number of
parties n is logarithmic in the security parameter, and almost-optimal resiliency
when the number of parties is polynomial in the security parameter. Since injec-
tive one-way function implies the existence of perfectly-binding non-interactive
commitment scheme [Blu81,Yao82,GL89], we obtain the following theorem by
plugging the protocol of [AKP22] in Theorem 1.

Theorem 2. Assuming the existence of injective one-way functions with sub-
exponential hardness, for every ε > 0, every efficiently-computable functionality
can be realized in 1 offline round and 2 online rounds in the plain model, with
full security against an active rushing adversary, under one of the following
conditions.

– (Optimal resiliency for small number of parties) The number of parties n is
at most logarithmic in the security parameter, and the adversary corrupts less
than n/2 parties.

106 B. Applebaum et al.

– (Almost-optimal resiliency for polynomially-many parties) The number of
parties n is allowed to be polynomial in the security parameter, and the adver-
sary corrupts less than n · (12 − ε) parties.

In concrete terms, for an n-party functionality given by a boolean circuit C,
and for security parameter κ, we derive (a) an honest majority protocol with
complexity poly(|C|, κ)2O(n) which is poly(κ) when n = O(log κ) and |C| =
poly(κ); and (b) t = n·(12−ε) resilient protocol of complexity poly(n, κ, |C|, 21/ε2)
which simplifies to poly(κ) when |C| = poly(κ) and ε > 0 is an arbitrarily small
constant. In fact, even if ε mildly decreases with κ, e.g., ε = Ω(1√

log κ
), the overall

complexity remains polynomial. (See also the discussion in [AKP22].)
Let us further mention that two-round SIF protocols with optimal resiliency

and polynomially many parties can be obtained if one is willing to make stronger
assumptions (e.g., random oracle or correlation intractable functions), or if the
adversary is non-rushing [AKP22]. These results extend to the MPC setting via
Theorem 1.

1.1.2 Round-Optimal MPC with Everlasting Security in Minicrypt
The notion of statistical everlasting security [MU10] can be viewed as a hybrid
version of statistical and computational security. During the run-time, the adver-
sary is assumed to be computationally-bounded (e.g., cannot find collisions in
the hash function) but after the protocol terminates, the adversary hands its
view to a computationally-unbounded analyst who can apply arbitrary compu-
tations in order to extract information on the inputs of the honest parties. This
feature is one of the main advantages of information-theoretic protocols: after-
the-fact secrecy holds regardless of technological advances and regardless of the
time invested by the adversary.

We show that Theorem 1 yields a round-optimal MPC protocol with ever-
lasting security when it is instantiated with statistically-hiding commitments
and everlasting secure round-optimal SIF protocol. Such a SIF protocol was also
realized in [AKP22] based on collision-resistant hash functions. Since the latter
are known to imply statistically-hiding commitments [DPP98,HM96], we derive
the following theorem.

Theorem 3. Given access to a collision resistant hash function, every NC1

functionality can be realized in 1 offline round and 2 online rounds, with full
everlasting security against an active rushing adversary, under the same condi-
tions of Theorem 2.

Remark 1 (On the use of hash function). Similarly to the everlasting SIF pro-
tocol from [AKP22], our protocol assumes that all parties are given an access to
a collision resistance hash function h, and we (implicitly) prove that any adver-
sary that violates the security of the protocol can be efficiently compiled into
an adversary that finds collisions in the hash function h. Theoretically speaking,
such a function should be chosen from a family of functions H in order to defeat

Round-Optimal Honest-Majority MPC in Minicrypt 107

non-uniform adversaries.2 One may assume that h is chosen “once and for all”
by some simple set-up mechanism. In particular, this set-up mechanism can be
realized distributively by a single round of public-coin messages by letting each
party sample randomness ri that specifies a hash function hi and then taking h to
be the concatenated hash function [Her09]. This simple set-up protocol remains
secure even against an active rushing adversary that may corrupt all the par-
ticipants except for a single one. Alternatively, the choice of the hash function
can be abstracted by a CRS functionality, or even, using the multi-string model
of [GO14] with a single honestly-generated string. It should be emphasized that
this CRS is being used in a very weak way: It is “non-programmable” (the sim-
ulator receives h as an input) and it can be sampled once and for all by using
the above trivial public-coin mechanism. Finally, even if one counts this extra
set-up step as an additional round, to the best of our knowledge, our protocol
remains the only known solution that achieves everlasting security, regardless of
the underlying assumptions.

Remark 2 (On NC1 functionalities). All our everlasting-security protocols are
restricted to NC1. More generally, the computational complexity of these proto-
cols grows exponentially with the depth or space of the underlying function. This
is expected since even for strictly-weaker notions of security (e.g., passive statis-
tical security against a single corrupted party), it is unknown how to construct
efficient constant-round protocols for functions beyond NC1 and log-space. (In
fact, this is a well-known open problem that goes back to [BFKR90].)

The difference between everlasting and computational security is fundamental
and is analogous to the difference between statistical commitments and compu-
tational commitments or statistical ZK arguments vs. computational ZK argu-
ments (see, e.g., the discussions in [BCC88,NOVY98]). In both the former cases,
we get computational security against “online cheating” and statistical security
against after-the-fact attacks.

We note that all previous protocols inherently fail to achieve everlasting
security. Indeed, for technical reasons (that will be discussed later in Sect. 2),
previous constructions emulate private channels over a broadcast channel via the
use of PKE. Furthermore, the (encrypted) information that is delivered over this
channel fully determines the inputs. Thus, an analyst that collects the broadcast
messages and later breaks the secrecy of the PKE (e.g., via brute-force) can learn
all the private inputs of the parties.

1.1.3 Round-Optimal MPC for t < n/3 with Everlasting Security
from OWF
For strong honest-majority, where t < n/3, we provide a 3-round protocol for
general MPC with everlasting security in the plain model based on the exis-
tence of one-way functions. This protocol is round-optimal by the lower bound
of [GIKR02].
2 In a uniform setting, one could use a keyless hash function; see also the discussion

of Rogaway [Rog06].

108 B. Applebaum et al.

Theorem 4. Assuming the existence of one-way functions, every NC1 func-
tionality can be realized in the plain model by a 3-round protocol that provides
everlasting security against an active rushing adversary corrupting t < n/3 of
the parties. If we are willing to compromise to computational security, we obtain
a secure protocol for every efficiently computable functionality.

Known round-optimal protocols in this regime, all appear in [AKP20], either
achieve (1) statistical security but with running time exponential in n, or (2)
everlasting security from collision resistant hash-functions and a CRS as a
trusted setup, or (3) computational security from injective one-way function in
the plain model. Therefore, our construction can be seen as the first round-
optimal construction that efficiently achieves some form of security against
unbounded adversaries in the plain model. Moreover, it does so only based
on one-way functions. As a primary tool, we design a verifiable secret sharing
(VSS) with everlasting security in 2 rounds from OWFs. Known VSS proto-
cols in this regime either achieve (1) statistical security but with running time
exponential in n with t < n/3 [AKP20], (2) everlasting security from collision
resistant hash-functions and a CRS as a trusted setup with t < n/2 [BKP11],
or (3) computational security from non-interactive commitments schemes with
t < n/2 [BKP11].

1.1.4 Summary of the Results
We summarize our results in the honest-majority regime in Table 1 and compare
them to the existing results. In Table 2 we summarize our results in the strong
honest-majority regime, and compare them to the existing results.

Table 1. Comparison of our work with the state-of-the-art relevant results

Ref. Rounds Threshold Setup
plain/CRS

Security
it/es/cs†

Cryptographic
assumptions

[RB89] circuit-depth t < n/2 Plain it –

[IK00]� constant > 3 t < n/2 Plain it –

[BMR90,DI05] constant > 3 t < n/2 Plain cs OWF

[PR18] 3 n = 3, t = 1 Plain cs Injective OWF

[GLS15] 3 t < n/2 CRS cs threshold multi-key FHE

[BJMS20] 3 t < n/2 Plain cs LWE

[ACGJ18] 3 t < n/2 Plain cs PKE, Zaps

This 3 t < n(1
2

− ε)§ Plain cs sub-exponential injective
OWF

This� 3 t < n(1
2

− ε)§ CRS es collision resistant hash
function

† it: information-theoretic, es: everlasting security, cs: computational security.
� For NC1 circuits
§ We achieve t < n/2 when n is logarithmic in the security parameter.

Previous Unpublished Version and a Sibling Paper. A previous version of this
paper contained a weak form of some of the current results together with 2-
round SIF protocols based on the Fiat-Shamir heuristic. The SIF protocols were

Round-Optimal Honest-Majority MPC in Minicrypt 109

Table 2. Comparison of our work with the state-of-the-art relevant results for t < n/3

Ref. Rounds Threshold Setup
plain/CRS

Security
it/es/cs†

Cryptographic
assumptions

Complexity in
terms of n

[AKP20]� 3 t < n/3 Plain it – Exponential

[AKP20] 3 t < n/3 Plain cs injective OWF Polynomial

[AKP20]� 3 t < n/3 CRS es collision-
resistant
hash-function

Polynomial

This� 3 t < n/3 Plain es OWF Polynomial

This 3 t < n/3 Plain cs OWF Polynomial
† it: information-theoretic, es: everlasting security, cs: computational security.
� For NC1 circuits

strengthened and were fully moved to [AKP22], and the derivation of the 3-round
MPC protocols was significantly changed and modularized, leading to the new
compiler (Theorem 1). Theorem 4 is also new and did not appear in previous
versions. Overall, the current version of this writeup and [AKP22] contain a
disjoint sets of results that together fully subsume the previous versions of this
paper.

2 Technical Overview

In this section, we give a detailed overview of our constructions while emphasiz-
ing the main novelties. Section 2.1 is devoted to the proof of the main theorem
(Theorem 1) and Sect. 2.2 is devoted to the strong honest-majority result (The-
orem 4). Throughout, we assume that there are n parties, P1, . . . , Pn, of which
at most t are corrupt, where we assume two settings: t < n/2 for Sect. 2.1 and
t < n/3 for Sect. 2.2. We assume that the parties communicate over secure point-
to-point channels and over a broadcast channel.

2.1 Main Theorem

Our goal is to prove our main Theorem 1, that states that assuming the existence
of non-interactive commitments we can transform any sif protocol with 1 offline
round and 1 online round into a 3 round protocol for general MPC with the same
resiliency as sif. Following previous works [GLS15,ACGJ18], we prove Theorem 1
by using the following outline: (1) We start with a 2 round protocol Πsm with
security against semi-malicious adversary that is allowed to choose its input and
randomness, but other than that plays honestly; (2) We upgrade the security of
the protocol to hold against a first-round fail-stop adversary that, in addition
to choosing its input and randomness, is allowed to abort a corrupted party
during the first round of the protocol; (3) We compile the protocol to a new
protocol with an extra offline round that achieves security against a fully fail-
stop adversary that is allowed to abort a corrupted party at any round; (4)
We transform the protocol for fail-stop adversaries to a protocol for malicious

110 B. Applebaum et al.

adversaries. Jumping ahead, previous constructions employed Zaps/NIZK for
the last step and PKE/threshold homomorphic encryption both for steps (3)
and (4). We will show how to relax these assumptions.

The Initial Protocol Πsm. Our starting point is a 2-round protocol Πsm that
is secure against a rushing semi-malicious adversary that corrupts a minority
of the parties. For concreteness, we use the protocol of [ABT18], though any
other protocol could be used. This protocol provides perfect security for NC1

functionalities and computational security for P/poly functionalities, assuming
the existence of one-way functions. The protocol is fully describe in the full
version of this paper [AKP21]. The first round of the protocol consists only of
private messages, and the second round consists of broadcast messages. (In fact,
using standard techniques we can transform any 2-round protocol to a protocol
that satisfies this property, see e.g., [GIKR01].) We denote the first-round private
message from Pi to Pj by aij , and the second-round broadcast of Pi by bi.

2.1.1 Coping with First-Round Aborts
Roughly speaking, when an adversary aborts, we let the other parties emulate
her role for the remaining rounds. The emulation is relatively simple when the
abort happens in the first round of Πsm since the parties have a chance to respond
to the abort in the second round. Specifically, suppose that Pi aborts in the first
round. Then the other parties face 2 problems: (1) Pi did not send her first
round messages; and (2) the first-round messages that were directed to Pi were
lost and will be missing later during the reconstruction of output. The first issue
is solved by letting each party to locally generate the outgoing messages of Pi

by running Pi on the all-zero input and the all-zero random tape.3 To solve the
second issue, we modify the protocol so that each first round message from Pj to
Pi is also being shared among all other parties. That is, in the first round, every
Pj shares each of its first-round outgoing messages aj1, . . . , ajn via Shamir’s
secret sharing, using degree-t polynomials. If Pi aborts during the first round
then in the second round, the parties reconstruct all the 1st round incoming
messages of Pi. After the second round, the parties have enough information
to locally continue the emulation of Pi (with respect to the all-zero inputs)
and generate her second round broadcast messages. We note that in previous
works (e.g., [ACGJ18]) first-round aborts are handled differently by adding an
additional “function-delayed” requirement on the initial protocol Πsm, and that
this property is not required for our compiler.

2.1.2 Coping with Second-Round Aborts
Second-round aborts are trickier to handle: When the honest parties send their
second-round messages, they do not know which other parties are about to abort.
Accordingly, one has to support “silent emulation”, that is, any subset of n − t

3 Here, among other places, we use the fact that Πsm is secure against a semi-malicious
adversary.

Round-Optimal Honest-Majority MPC in Minicrypt 111

second-round messages should suffice for emulating all other second-round mes-
sages. In previous works, the implementation of this mechanism employs heavy
tools (threshold homomorphic encryption in [GLS15] and PKE plus garbled cir-
cuits in [ACGJ18]) and requires an additional offline round. We review these
ideas and present an information-theoretic variant of them.

Ananth et al. [ACGJ18] (ACGJ) first use PKE to ensure that all the com-
munication between the parties will be over the broadcast channel. That is, in
a preprocessing round (denoted Round 0), every Pi generates keys (pki, ski) for
PKE, and broadcasts pki. In the following rounds, the private channel from Pj to
Pi is emulated by letting Pj broadcast her message encrypted under the public
key pki of Pi. After this modification, we can write the second-round message of
party Pi as a function fi that given

(1) the encrypted messages (Aji)j∈{1,...,n} that Pi receives in Round 1,
(2) the input x(i) and randomness ri of Pi in the simulation of Πsm, and
(3) the secret key ski,

outputs the public broadcast message bi that Pi sends in the second round.
(That is, fi decrypts the messages Aji using ski in order to obtain aji,
and then computes the second round broadcast bi of Pi in Πsm based on
(x(i), ri, (aji)j∈{1,...,n}).) Observe that fi depends on private inputs (items 2,
3) and on some public values (item 1) that will be broadcasted during the first
round. The key observation is that the private inputs are already known before
the first round begins. This fact will be exploited to delegate the computation
of fi.

Specifically, at the beginning of the first round, we let every Pi generate a
garbled circuit for a function fi. During the first round, Pi broadcasts the garbled
circuit together with the labels of (x(i), ri) and ski. In addition, Pi secret-shares
all the labels that correspond to every potential ciphertext value (Aji)j∈[n]. The
actual ciphertexts, (Aji)j∈{1,...,n}, are broadcasted concurrently during the first
round by the corresponding parties, and so, in the second round, all the non-
aborted parties publish the shares of the corresponding labels. Consequently,
after this round, everyone can recover the correct labels via secret reconstruc-
tion of the secret sharing, and hence obtain the broadcast bi of Pi. To make
the proof go through, ACGJ assume that the garbled circuit is adaptively pri-
vate [BHR12] in the sense that privacy holds even if the adversary first gets
to see the garbled circuit, and only then chooses the inputs to the circuit and
receive the corresponding labels.

We note that the same approach can be applied without relying on any com-
putational assumptions. First, instead of using PKE, we let the parties exchange
one-time pads during the offline round. That is, in Round 0 we let every Pi sam-
ple random pads ηi = (ηi1, . . . , ηin) and send the pad (“key”) ηij to Pj by using
a private channel. Now a first-round message aji from Pj to Pi can be broad-
casted in an encrypted form Aji := aji + ηij . (For technical reasons that will be
explained later, we encrypt the message under the receiver’s key.) The garbled
circuits can also be instantiated with an information-theoretic garbled circuits,
aka perfect randomized encodings. (The second-message function of Πsm is now

112 B. Applebaum et al.

“simple enough” to allow such a realization.) Furthermore, we avoid the need
for adaptive garbled circuits, by sharing the garbled circuit together with the
labels of (x(i), ri) and ηi among all the other parties; these shares are later
revealed during the second round.4 We note that the above description is over-
simplified and, in order to handle second-round aborts together with first-round
aborts, we need to slightly modify the function fi. (See the full version of this
paper [AKP21] for full details.)

2.1.3 From Fail-Stop to Malicious Adversary
To obtain a protocol with security against a malicious adversary, we follow the
GMW paradigm and ask each party to prove in zero-knowledge that she fol-
lowed the protocol. Ignoring for now the exact details of the zero-knowledge
proof, the basic idea is that a malicious deviation from the protocol will be
caught due to the soundness properties of the proof, and will be treated as if the
cheater aborted the computation. Crucially, here too one must assume that the
underlying protocol works over a broadcast channel. As discussed in [ACGJ18], if
the underlying semi-malicious protocol uses private channels, then a party may
need to prove different statements to different parties in order to establish hon-
est behavior, which may lead to inconsistent views regarding her “abort” status.
Indeed, [GLS15,ACGJ18] make here another use of PKE in order to make sure
that the protocol’s messages are delivered over a broadcast channel. In fact, this
usage of PKE dates back to the GMW compiler [GMW87].

Generating Public Committing Transcript. We can use the previous maneuver
to shift all private messages to Round 0 via one-time pads, however, the resulting
protocol is still not ready for “zero-knowledge compilation”. Indeed, even if we
add a zero-knowledge layer, the adversary can cheat either by “claiming that
she received different messages” (i.e., changing the keys that correspond to her
incoming messages) or by “claiming that she sent different messages”. Intuitively,
the problem is that our information-theoretic solution is non-committing. We
solve this problem via the use of non-interactive commitment (NICOM). Details
follow.

In the preprocessing round (Round 0), we let each party Pi broadcast a vector
of commitments, (Ci1, . . . , Cin) to all her private keys, (ηi1, . . . , ηin), for the one-
time pads, and send oij , the opening of Cij , to Pj over the private channel.
In addition, we let all parties commit to their inputs and randomness for the
fail-stop protocol in Round 1 just like in the standard GMW transform. (We
emphasize that Round 0 is still input-independent.) Next, we employ some zero-
knowledge primitive (to be discussed below) to prove that a party Pi computes

4 We note that [ACGJ18] implicitly shared the garbled circuit as well. Indeed, recall
that they (a) shared the “input labels” and (b) employed the adaptively secure
garbled circuit from [BHR12]. The latter is obtained by taking a standard garbled
circuit and encrypting the offline part under a one-time pad that is released as part of
the online input. The combination of these two steps, (a) and (b), indirectly induces
(a somewhat complicated) secret sharing of the garbled circuit and the input labels.

Round-Optimal Honest-Majority MPC in Minicrypt 113

a message properly with respect to the public commitments. Specifically, in the
first round party Pi can prove that the garbled circuit for fi was generated
properly with respect to her committed randomness, committed input, and with
respect to the one-time keys, η1i, . . . , ηni, that he received from all other parties
in the preprocessing round. For the last part we exploit the fact that Pi also
received a witness, oji, that connects the keys to their commitments.

This approach almost works. The only problem is that a party Pj may cheat
in Round 0 by sending to Pi a “bad” pair of key/opening (ηji, oji) that are
inconsistent with the public commitment Cij . Fortunately, there is a simple
round-efficient solution: If the key is malformed, we simply send the messages
from Pi to Pj in the clear un-encrypted. Formally, in Round 1, Pi broadcasts a
list Li of all parties that sent invalid openings in Round 0. If Pi needs to send a
private message aij to a party Pj according to Πsm, for Pj /∈ Li, then Pi simply
sends the encrypted message aij + ηji over the broadcast channel. For a party
Pj ∈ Li, we simply let Pi send the message aij unencrypted over the broadcast
channel. We also use the same mechanism for additional private messages that
the parties have to exchange, that are not necessarily a part of the protocol
Πsm (e.g., sending private shares for the garbled circuit). As before, we only
use encryption in Round 1, while Round 2 consists only of public unencrypted
messages. This modification does not violate privacy since messages from Pi to
Pj will be sent unencrypted only if one of these parties is corrupted, which means
that the adversary is supposed to learn the message anyway.

Instantiating the Zero-Knowledge Layer. Finally, we have to instantiate the zero-
knowledge layer in a round-preserving way. Previous works either make use of
NIZK at the expense of adding a CRS [AJL+12,GLS15] or exploited the offline
round to set-up some multi-party variant of ZK [GOS12,ACGJ18]. In terms
of assumptions both approaches rely on NIZK/Zaps which are known to be
equivalent assuming one-way functions [DN07]. We strongly exploit the existence
of honest majority, and observe that these primitives can be replaced by a SIF
protocol. Given a relation R, define the single input functionality that (1) takes
the statement x and witness w from the prover, and (2) if R(x,w) = 1 it returns
x to all parties, and if not, it returns a failure symbol ⊥ to all parties. We can
therefore realize a round-efficient variant of multi-verifier zero-knowledge proof
(MVZK) based on SIF with 1 offline round and 1 online round. We emphasize
that the security of SIF protocols is formulated via an MPC-based definition
by relating the protocol to an ideal SIF functionality. This leads to security
guarantees that are stronger than those achieved by standalone versions of the
MVZK primitive (e.g., the SIF protocol provides knowledge-extraction).

Summary. Overall, the SIF is being employed as follows. In Round 0, the par-
ties execute the offline round of the SIF protocol, exchange one-time pads and
publish their commitments. In Round 1, we let every Pi commit to its input
and randomness, and let Pi prove via SIF that (1) for every Pj /∈ Li, the public
encrypted message from Pi to Pj is consistent with the committed input and
randomness of Pi, and it is encrypted with the committed random pad ηji; (2)

114 B. Applebaum et al.

for every Pj ∈ Li, the public unencrypted message from Pi to Pj is consistent
with the committed input and randomness of Pi. Similarly, in Round 2 every
Pi proves via SIF that its public broadcast is consistent with (1) its committed
input and randomness; (2) the unencrypted public incoming message from Pj ,
for every Pj for which Pi ∈ Lj ; and (3) the decrypted incoming message from
Pj , where the decryption used the committed random pad ηij , for every Pj for
which Pi /∈ Lj .

Remark 3 (Everlasting security). All the components, except for the NICOM
and SIF, are information-theoretic. As a result, we derive the everlasting security
version of the protocol by plugging-in NICOM and SIF with everlasting security
guarantees. The protocol remains the same and the proof of security is given in
a unified way.

Remark 4 (Reusing the preprocessing round). Recall that the preprocessing
round consists of exchanging committed one-time pads, and initializing the SIF
protocol. If one does not care about everlasting security, the one-time pads can
be replaced with (committed) pairwise private-keys for a symmetric encryption
scheme, and in this case the same keys can be used for many invocations of the
protocol. Under this modification, we can reuse the preprocessing step (Round 0)
or even treat it as a private-key infrastructure provided that the preprocessing
step of the SIF is also reusable. While the construction from [AKP22] does
not satisfy this property, other SIF constructions (e.g., based on NIZK) can be
used to achieve this property. We remark that, even if one employs NIZK-based
SIF, our approach is beneficial since it bypasses the need for PKE. Indeed,
the Fiat-Shamir heuristic [FS86] suggests that NIZK can be based on strong
symmetric-key assumptions like correlated robust hash functions [CGH04], and
may not require PKE-based assumptions. (See [CCH+19] for further discussion
and references).

Remark 5 (On non black-box use of the commitment scheme). Observe that our
compiler uses the underlying commitment scheme in a non black-box way. This
is a common characteristic of GMW-type compilers, where the zero-knowledge
proofs use the underlying cryptographic primitives in a non black-box way, and
it occurs in previous round-optimal protocols as well, including [ACGJ18].

2.2 Strong Honest-Majority MPC with Everlasting Security
from OWF

We continue with an overview of the 3-round MPC protocol that provides
everlasting security in the plain model for strong honest-majority, t < n/3.
In [AKP20] it is shown that such a protocol follows from a 2-round protocol
for verifiable secret sharing (VSS) that provides everlasting security. We design
such a protocol based on digital signatures whose existence is equivalent to the
existence of one-way functions [Rom90].

Round-Optimal Honest-Majority MPC in Minicrypt 115

The VSS Functionality. We will need the following variant of VSS.5 The func-
tionality receives a symmetric bivariate polynomial F (x, y) of degree at most t
in each variable from a distinguished party D, called the dealer, and delivers to
each party Pi the univariate polynomial fi(x) := F (x, i). The use of symmetric
bivariate polynomials can be seen as an extension of the standard Shamir’s t-
out-of-n secret sharing, that allow us to make a consistency-check between any
pair of parties Pi and Pj , since fi(j) = F (j, i) = F (i, j) = fj(i).

2-Round VSS Protocol. In the first round, we let D generate a signature-key and
a verification-key for a digital signature scheme, and broadcast the verification-
key. In addition, we let D send fi(x) to Pi, together with a signature on the
tuples (i, j, fi(j))j∈{1,...,n}. At the end of the first round, a party is happy with
D if all the signatures it received are valid, and it is unhappy with D otherwise.
Observe that if D is honest then all honest parties are happy. The second round
of the protocol consists of (1) consistency check for happy parties, and (2) public
recovery of the shares of unhappy parties. We elaborate on these two issues in
the next subsections.

2.2.1 Consistency Check
The goal of the consistency check is to ensure that (a) there are at least t + 1
happy honest parties, and that (b) all of them are consistent with each other, i.e.,
fi(j) = fj(i) for every happy and honest Pi and Pj . Looking forward, this will
imply that the shares of the happy honest parties fully determine a symmetric
bivariate polynomial F (x, y) of degree at most t in each variable, where for an
honest D the polynomial F (x, y) is the input polynomial of D.

It is not hard to achieve (a). In Round 2, each party declares, via broadcast,
whether she is happy or not, and we discard the dealer if there are more than t
unhappy parties. This guarantees that an honest dealer will never be discarded
(since all honest parties are happy) and a corrupt dealer must gain the support
of at least (n−t)−t ≥ t+1 happy honest parties in order to remain undiscarded.

2-Wise Consistency via Reveal-if-Not-Equal Gadget. Pair-wise consistency (item
b) is being handled via a special comparison gadget that takes from each pair of
happy parties (Pi, Pj) the points mA = fi(j),mB = fj(i) and their correspond-
ing signatures sA, sB , and broadcasts an equality bit that indicates whether
mA = mB and in case of inequality releases the points and their signatures
(mA, sA,mB , sB). When Pi and Pj are honest, a disagreement accompanied with
valid signatures certifies that D is corrupted. Of course, when mA = mB , we
do not want any information about mA,mB to be revealed to the other parties.
If 3 rounds are allowed then we can easily realize the gadget by letting Pi and
Pj compare their values privately on the second round (by exchanging messages

5 Previous works on VSS [CGMA85] usually define VSS as a standalone primitive that
satisfies a set of requirements (see, e.g., [KKK09,BKP11]). Following [AKP20] (see
also [AL17]) we consider VSS as an ideal functionality. We mention that any VSS
that satisfies the ideal-functionality definition also satisfies the standalone definition.

116 B. Applebaum et al.

over the private channel) and then announcing the result at the next round. We
avoid this overhead by making an additional observation: When one of the par-
ties, say Pi, is corrupt we do not care about the privacy nor the correctness of the
gadget. Privacy does not matter since the adversary already knows mB = fj(i).
As for correctness, even if the “gadget misbehaves”, an honest dealer is protected
against a disqualification by the security of the signatures.

We realize the gadget with the aid of garbled circuits (or perfect randomized
encodings). Let g be a function that takes (mA,mB , sA, sB), returns 1 if mA =
mB , and returns (mA,mB , sA, sB) otherwise. In the first round, we let Alice (Pi)
generate a garbled circuit G for g, and send the randomness used to generate G
to Bob (Pj). Conveniently, g is “simple enough” (i.e., an NC1 function) so we
can obtain an information-theoretic garbled circuit G. In the second round, Alice
broadcasts G, together with the labels corresponding to her inputs in G, and Bob
broadcasts the labels corresponding to his inputs in G. It is not hard to see that
the properties of the protocol follow directly from the correctness and security of
the garbled circuit. Based on this gadget, after the second round everyone learns
whether Alice and Bob are in agreement, and, in case they disagree, whether the
dealer should be discarded due to a conflicting pair of valid signatures. If the
dealer was not discarded in any consistency check of a pair (Pi, Pj), we conclude
that all happy honest parties are consistent.

2.2.2 Handling Unhappy Parties
It remains to explain how to help unhappy (honest) parties to recover a share
that is consistent with all the happy honest parties. The main idea is to let
every unhappy Pi ask from every other Pj to publicly reveal all the common
information, i.e., the value fj(i) and the corresponding signature. Since we have
only 1 additional round, we design an additional gadget with 1 offline round and
1 online round similarly to the reveal-if-not-equal gadget.6 In this gadget, Alice
inputs a bit flagA, while Bob inputs some secret sB . When Alice and Bob are
honest, if flagA = 0 then the listeners learn no information about sB , while if
flagA = 1 they learn sB. As before, when one of the parties is corrupt there are
no security guarantees.

We use this mechanism for every pair (Pi, Pj), where Pi takes the role of
Alice and Pj takes the role of Bob. We let Pi input flagA = 1 if Pi is unhappy,
and flagi = 0 otherwise; in addition, Pj sets sB to be the share fj(i) together
with the corresponding signature. Observe that if both Pi and Pj are honest
and happy, then the adversary learns no information about their common point;
however, if Pi is unhappy and Pj is happy, then all the parties learn the point
fj(i) together with a valid signature.

An honest unhappy Pi will be able to reveal all evaluations fj(i) from happy
honest parties Pj , together with valid signatures. We let all parties interpolate
over all values whose corresponding signatures were valid, in order to obtain
fi(x). Since there are at least t + 1 happy honest parties, we are promised that
fi(x) is either consistent with the polynomial F (x, y) defined by the shares of
6 In fact, in our construction we merge the two gadgets.

Round-Optimal Honest-Majority MPC in Minicrypt 117

the happy honest parties, or has degree more than t, in which case all the parties
reject the dealer. Finally, for an honest D and a corrupt unhappy Pi, the values
that are revealed with valid signatures must be consistent with F (x, y), so the
interpolated polynomial will have degree at most t, and D will not be discarded.

Acknowledgements. B. Applebaum and E. Kachlon are supported by the Israel
Science Foundation grant no. 2805/21. A. Patra would like to acknowledge financial
support from DST National Mission on Interdisciplinary Cyber-Physical Systems (NM-
ICPS) 2020–2025 and SERB MATRICS (Theoretical Sciences) Grant 2020–2023.

References

[ABT18] Applebaum, B., Brakerski, Z., Tsabary, R.: Perfect secure computation in
two rounds. In: Theory of Cryptography - 16th International Conference,
TCC 2018, Panaji, India, 11–14 November 2018, Proceedings, Part I, pp.
152–174 (2018)

[ACGJ18] Ananth, P., Choudhuri, A.R., Goel, A., Jain, A.: Round-optimal secure
multiparty computation with honest majority. In: Shacham, H., Boldyreva,
A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 395–424. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-96881-0 14

[AJL+12] Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V.,
Wichs, D.: Multiparty computation with low communication, computation
and interaction via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-29011-4 29

[AKP20] Applebaum, B., Kachlon, E., Patra, A.: The resiliency of MPC with low
interaction: the benefit of making errors (extended abstract). In: Pass, R.,
Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12551, pp. 562–594. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-64378-2 20

[AKP21] Applebaum, B., Kachlon, E., Patra, A.: Round-optimal honest-majority
MPC in minicrypt and with everlasting security. IACR Cryptol. ePrint
Arch. 2021, 346 (2021). https://eprint.iacr.org/2021/346

[AKP22] Applebaum, B., Kachlon, E., Patra, A.: Verifiable relation sharing and
multi-verifier zero-knowledge in two rounds: trading NIZKs with honest
majority. Cryptol. ePrint Arch. 2022, 167 (2022). https://ia.cr/2022/167,
To appear in CRYPTO 2022

[AL17] Asharov, G., Lindell, Y.: A full proof of the BGW protocol for perfectly
secure multiparty computation. J. Cryptol. 30(1), 58–151 (2017). https://
doi.org/10.1007/s00145-015-9214-4

[BCC88] Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowl-
edge. J. Comput. Syst. Sci. 37(2), 156–189 (1988)

[BFJ+20] Badrinarayanan, S., Fernando, R., Jain, A., Khurana, D., Sahai, A.: Sta-
tistical ZAP arguments. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT
2020. LNCS, vol. 12107, pp. 642–667. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-45727-3 22

[BFKR90] Beaver, D., Feigenbaum, J., Kilian, J., Rogaway, P.: Security with low com-
munication overhead. In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO
1990. LNCS, vol. 537, pp. 62–76. Springer, Heidelberg (1991). https://doi.
org/10.1007/3-540-38424-3 5

https://doi.org/10.1007/978-3-319-96881-0_14
https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-030-64378-2_20
https://eprint.iacr.org/2021/346
https://ia.cr/2022/167
https://doi.org/10.1007/s00145-015-9214-4
https://doi.org/10.1007/s00145-015-9214-4
https://doi.org/10.1007/978-3-030-45727-3_22
https://doi.org/10.1007/978-3-030-45727-3_22
https://doi.org/10.1007/3-540-38424-3_5
https://doi.org/10.1007/3-540-38424-3_5

118 B. Applebaum et al.

[BGW88] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems
for non-cryptographic fault-tolerant distributed computation (extended
abstract). In: Proceedings of the 20th Annual ACM Symposium on Theory
of Computing, 2–4 May 1988, Chicago, Illinois, pp. 1–10 (1988)

[BHR12] Bellare, M., Hoang, V.T., Rogaway, P.: Adaptively secure garbling with
applications to one-time programs and secure outsourcing. In: Wang, X.,
Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 134–153. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4 10

[BJMS20] Badrinarayanan, S., Jain, A., Manohar, N., Sahai, A.: Secure MPC: laziness
leads to GOD. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS,
vol. 12493, pp. 120–150. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-64840-4 5

[BKP11] Backes, M., Kate, A., Patra, A.: Computational verifiable secret sharing
revisited. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol.
7073, pp. 590–609. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-25385-0 32

[Blu81] Blum, M.: Coin flipping by telephone. In: Advances in Cryptology: A
Report on CRYPTO 81, CRYPTO 81, IEEE Workshop on Communica-
tions Security, Santa Barbara, California, 24–26 August 1981, pp. 11–15
(1981)

[BMR90] Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure proto-
cols (extended abstract). In: Proceedings of the 22nd Annual ACM Sym-
posium on Theory of Computing, 13–17 May 1990, Baltimore, Maryland,
pp. 503–513 (1990)

[BP15] Bitansky, N., Paneth, O.: ZAPs and non-interactive witness indistinguisha-
bility from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B.
(eds.) TCC 2015. LNCS, vol. 9015, pp. 401–427. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46497-7 16

[CCH+19] Canetti, R., et al.: Fiat-Shamir: from practice to theory. In: Charikar, M.,
Cohen, E. (eds.) Proceedings of the 51st Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2019, Phoenix, AZ, USA, 23–26 June 2019,
pp. 1082–1090. ACM (2019)

[CGH04] Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology,
revisited. J. ACM 51(4), 557–594 (2004)

[CGMA85] Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing
and achieving simultaneity in the presence of faults (extended abstract). In:
26th Annual Symposium on Foundations of Computer Science, Portland,
Oregon, USA, 21–23 October 1985, pp. 383–395 (1985)

[CKPR01] Canetti, R., Kilian, J., Petrank, E., Rosen, A.: Black-box concurrent zero-
knowledge requires omega∼(log n) rounds. In: Proceedings on 33rd Annual
ACM Symposium on Theory of Computing, 6–8 July 2001, Heraklion,
Crete, pp. 570–579 (2001)

[Cle86] Cleve, R.: Limits on the security of coin flips when half the processors
are faulty (extended abstract). In: Proceedings of the 18th Annual ACM
Symposium on Theory of Computing, 28–30 May 1986, Berkeley, California,
pp. 364–369 (1986)

[DI05] Damg̊ard, I., Ishai, Y.: Constant-round multiparty computation using a
black-box pseudorandom generator. In: Shoup, V. (ed.) CRYPTO 2005.
LNCS, vol. 3621, pp. 378–394. Springer, Heidelberg (2005). https://doi.
org/10.1007/11535218 23

https://doi.org/10.1007/978-3-642-34961-4_10
https://doi.org/10.1007/978-3-030-64840-4_5
https://doi.org/10.1007/978-3-030-64840-4_5
https://doi.org/10.1007/978-3-642-25385-0_32
https://doi.org/10.1007/978-3-642-25385-0_32
https://doi.org/10.1007/978-3-662-46497-7_16
https://doi.org/10.1007/11535218_23
https://doi.org/10.1007/11535218_23

Round-Optimal Honest-Majority MPC in Minicrypt 119

[DN07] Dwork, C., Naor, M.: Zaps and their applications. SIAM J. Comput. 36(6),
1513–1543 (2007)

[DPP98] Damg̊ard, I., Pedersen, T.P., Pfitzmann, B.: Statistical secrecy and multibit
commitments. IEEE Trans. Inf. Theory 44(3), 1143–1151 (1998)

[DR85] Dolev, D., Reischuk, R.: Bounds on information exchange for byzantine
agreement. J. ACM 32(1), 191–204 (1985)

[FM85] Feldman, P., Micali, S.: Byzantine agreement in constant expected time
(and trusting no one). In: 26th Annual Symposium on Foundations of Com-
puter Science, Portland, Oregon, USA, 21–23 October 1985, pp. 267–276
(1985)

[FS86] Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identi-
fication and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986.
LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/
10.1007/3-540-47721-7 12

[GIKR01] Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: The round complexity
of verifiable secret sharing and secure multicast. In: Proceedings on 33rd
Annual ACM Symposium on Theory of Computing, 6–8 July 2001, Herak-
lion, Crete, pp. 580–589 (2001)

[GIKR02] Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: On 2-round secure mul-
tiparty computation. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442,
pp. 178–193. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45708-9 12

[GJJM20] Goyal, V., Jain, A., Jin, Z., Malavolta, G.: Statistical zaps and new oblivious
transfer protocols. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020.
LNCS, vol. 12107, pp. 668–699. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-45727-3 23

[GK96] Goldreich, O., Krawczyk, H.: On the composition of zero-knowledge proof
systems. SIAM J. Comput. 25(1), 169–192 (1996)

[GL89] Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions.
In: Proceedings of the 21st Annual ACM Symposium on Theory of Com-
puting, 14–17 May 1989, Seattle, Washigton, USA, pp. 25–32 (1989)

[GLS15] Dov Gordon, S., Liu, F.-H., Shi, E.: Constant-round MPC with fairness
and guarantee of output delivery. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9216, pp. 63–82. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 4

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to solve any protocol problem.
In: Proc. of STOC (1987)

[GO14] Groth, J., Ostrovsky, R.: Cryptography in the multi-string model. J. Cryp-
tol. 27(3), 506–543 (2014)

[GOS12] Groth, J., Ostrovsky, R., Sahai, A.: New techniques for noninteractive zero-
knowledge. J. ACM 59(3), 1–35 (2012)

[Her09] Herzberg, A.: Folklore, practice and theory of robust combiners. J. Comput.
Secur. 17(2), 159–189 (2009)

[HM96] Halevi, S., Micali, S.: Practical and provably-secure commitment schemes
from collision-free hashing. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol.
1109, pp. 201–215. Springer, Heidelberg (1996). https://doi.org/10.1007/3-
540-68697-5 16

[IK00] Ishai, Y., Kushilevitz, E.: Randomizing polynomials: a new representation
with applications to round-efficient secure computation. In: 41st Annual
Symposium on Foundations of Computer Science, FOCS 2000, 12–14
November 2000, Redondo Beach, California, pp. 294–304 (2000)

https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-45708-9_12
https://doi.org/10.1007/3-540-45708-9_12
https://doi.org/10.1007/978-3-030-45727-3_23
https://doi.org/10.1007/978-3-030-45727-3_23
https://doi.org/10.1007/978-3-662-48000-7_4
https://doi.org/10.1007/3-540-68697-5_16
https://doi.org/10.1007/3-540-68697-5_16

120 B. Applebaum et al.

[KKK09] Katz, J., Koo, C.-Y., Kumaresan, R.: Improving the round complexity of
VSS in point-to-point networks. Inf. Comput. 207(8), 889–899 (2009)

[LF82] Lamport, L., Fischer, M.: Byzantine generals and transaction commit pro-
tocols. Technical Report 62, SRI International (1982)

[MNS16] Moran, T., Naor, M., Segev, G.: An optimally fair coin toss. J. Cryptol.
29(3), 491–513 (2016). https://doi.org/10.1007/s00145-015-9199-z

[MU10] Müller-Quade, J., Unruh, D.: Long-term security and universal compos-
ability. J. Cryptol. 23(4), 594–671 (2010). https://doi.org/10.1007/s00145-
010-9068-8

[NOVY98] Naor, M., Ostrovsky, R., Venkatesan, R., Yung, M.: Perfect zero-knowledge
arguments for NP using any one-way permutation. J. Cryptol. 11(2), 87–
108 (1998). https://doi.org/10.1007/s001459900037

[PR18] Patra, A., Ravi, D.: On the exact round complexity of secure three-party
computation. In: Advances in Cryptology - CRYPTO 2018–38th Annual
International Cryptology Conference, Santa Barbara, CA, 19–23 August
2018, Proceedings, Part II, pp. 425–458 (2018)

[RB89] Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty proto-
cols with honest majority (extended abstract). In: Proceedings of the 21st
Annual ACM Symposium on Theory of Computing, 14–17 May 1989, Seat-
tle, Washigton, pp. 73–85 (1989)

[Rog06] Rogaway, P.: Formalizing human ignorance: collision-resistant hashing
without the keys. IACR Cryptol. ePrint Arch. 281 (2006)

[Rom90] Rompel, J.: One-way functions are necessary and sufficient for secure signa-
tures. In: Ortiz, H. (ed.) Proceedings of the 22nd Annual ACM Symposium
on Theory of Computing, 13–17 May 1990, Baltimore, Maryland, pp. 387–
394. ACM (1990)

[Yao82] Yao, A.C.: Theory and applications of trapdoor functions (extended
abstract). In: 23rd Annual Symposium on Foundations of Computer Sci-
ence, Chicago, Illinois, USA, 3–5 November 1982, pp. 80–91 (1982)

https://doi.org/10.1007/s00145-015-9199-z
https://doi.org/10.1007/s00145-010-9068-8
https://doi.org/10.1007/s00145-010-9068-8
https://doi.org/10.1007/s001459900037

Sublinear Secure Computation from New
Assumptions

Elette Boyle1,2, Geoffroy Couteau3, and Pierre Meyer1,3(B)

1 Reichman University, Herzliya, Israel
eboyle@alum.mit.edu

2 NTT Research, Sunnyvale, USA
3 Université Paris Cité, IRIF, CNRS, Paris, France

{couteau,pierre.meyer}@irif.fr

Abstract. Secure computation enables mutually distrusting parties to
jointly compute a function on their secret inputs, while revealing nothing
beyond the function output. A long-running challenge is understanding
the required communication complexity of such protocols—in particular,
when communication can be sublinear in the circuit representation size of
the desired function. For certain functions, such as Private Information
Retrieval (PIR), this question extends to even sublinearity in the input
size.

We develop new techniques expanding the set of computational
assumptions for sublinear communication in both settings:

– Circuit size. We present sublinear-communication protocols for
secure evaluation of general layered circuits, given any 2-round rate-1
batch oblivious transfer (OT) protocol with a particular “decompos-
ability” property. In particular, this condition can be shown to hold
for the recent batch OT protocols of (Brakerski et al. Eurocrypt
2022), in turn yielding a new sublinear secure computation feasi-
bility: from Quadratic Residuosity (QR) together with polynomial-
noise-rate Learning Parity with Noise (LPN).
Our approach constitutes a departure from existing paths toward
sublinear secure computation, all based on fully homomorphic
encryption or homomorphic secret sharing.

– Input size. We construct single-server PIR based on the Computa-
tional Diffie-Hellman (CDH) assumption, with polylogarithmic com-
munication in the database input size n. Previous constructions from
CDH required communication Ω(n). In hindsight, our construction
comprises of a relatively simple combination of existing tools from
the literature.

Keywords: Foundations · Private information retrieval · Secure
multiparty computation

1 Introduction

Secure computation enables mutually distrusting parties to jointly compute a
function on their secret inputs, while revealing nothing beyond the function
c© The Author(s), under exclusive license to Springer Nature Switzerland 2022
E. Kiltz and V. Vaikuntanathan (Eds.): TCC 2022, LNCS 13748, pp. 121–150, 2022.
https://doi.org/10.1007/978-3-031-22365-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22365-5_5&domain=pdf
https://doi.org/10.1007/978-3-031-22365-5_5

122 E. Boyle et al.

output. We focus on the case of two-party computation with semi-honest (pas-
sive) security. Since the seminal feasibility results of the 1980s [Yao86,GMW87,
BGW88,CCD88], a major challenge in the area of secure computation has been if
and when it is possible to break the “circuit-size barrier.” This barrier refers to the
fact that all classical techniques for secure computation required a larger amount
of communication than the size of a boolean circuit representing the function
to be computed. In contrast, insecure computation only requires exchanging the
inputs, which are usually considerably smaller than the entire circuit.

Early positive results with sublinear communication either required exponen-
tial computation [BFKR91,NN01], or (as discussed later) were limited to very
simple functions such as point functions [CGKS95,KO97,CG97] or constant-
depth circuits [BI05].

Beyond the Circuit-Size Barrier. This situation changed with the breakthrough
result of Gentry [Gen09] on fully homomorphic encryption (FHE). FHE is
a powerful primitive supporting computation on encrypted data, which can
be used to build optimal-communication protocols in the computational set-
ting [DFH12,AJL+12], by having parties perform the desired computation
locally on encrypted inputs without additional communication. However, despite
significant efforts, the set of assumptions under which we know how to build FHE
is very narrow. Standard approaches are restricted to lattice-based assumptions,
such as Learning With Errors (LWE), and in particular do not include any of the
traditional assumptions which were used in the 20th century. Very recent devel-
opments in indistinguishability obfuscation imply results based on an alternative
(relatively exotic) bundle of assumptions [CLTV15,JLS22].1

The work of [BGI16] first showed that secure computation with commu-
nication sublinear in the circuit size could also be based on assumptions not
known to imply FHE, via a new primitive of homomorphic secret sharing (HSS).
HSS can be viewed as a relaxation of FHE, where homomorphic evaluation can
be distributed among two parties who do not interact with each other. More
concretely, from the Decisional Diffie-Hellman (DDH) assumption, [BGI16] con-
structed a form of HSS for branching programs (including NC1), implying secure
computation for the corresponding function class with asymptotically optimal
communication. In turn, this was shown to yield secure computation for general
layered circuits2 of size s with sublinear communication O(s/ log s), by evaluat-
ing in (log s)-depth blocks, and communicating only between blocks.

Since then, the HSS-based approach and variations have resulted in sublinear-
communication secure protocols from an additional assortment of assumptions.
Following the [BGI16] blueprint, the works of [FGJI17,OSY21,RS21] were able
to replace the DDH assumption with Decision Composite Residuosity (DCR).

1 Namely, subexponential security of the combination of: Learning Parity with Noise,
plus polynomial-stretch pseudorandom generators in NC0, plus the Decision Linear
assumption on symmetric bilinear groups of prime order [JLS22].

2 A depth-d circuit is layered if it can be divided into d layers such that any wire
connects adjacent layers.

Sublinear 2PC from New Assumptions 123

The framework was recently abstracted and extended to further algebraic struc-
tures, including a class of assumptions based on class groups of imaginary
quadratic fields [ADOS22]. In addition, the work of [CM21] built HSS for log log-
depth circuits (yielding O(s/ log log s) communication secure computation for
layered circuits) based on a strong flavor of the Learning Parity with Noise (LPN)
assumption: with a small number of samples, but assuming super-polynomial
hardness, with inverse-superpolynomial noise rate.

To date, these two approaches—FHE and HSS—still comprise the only
known paths to sublinear-communication secure computation for general circuit
classes, without resorting to superpolynomial computation or setup assumptions
such as correlated randomness [IKM+13,DNNR17,Cou19]. It remains a moti-
vated research agenda not only to continue expanding the set of distinct com-
putational assumptions upon which sublinear secure computation can be built,
but additionally of exploring new types of approaches toward this goal.

Private Information Retrieval. As mentioned, one exception to the above treat-
ment is the special case of specific simple functionalities: most prominently, the
task of Private Information Retrieval (PIR) [CGKS95,KO97]. A (single-server)
PIR protocol roughly amounts to a secure computation protocol (with one-sided
privacy) for the specific function f(x, i) = xi with x ∈ {0, 1}n and i ∈ [n]. Unlike
the case of general computation (where the communication complexity of the
underlying function may be Ω(n) even without security), PIR can admit secure
protocols with communication sublinear (even polylogarithmic) in the input size.

For many years, protocols for PIR with polylogarithmic communication in
n were known only from the Decisional Composite Residuosity (DCR), Learn-
ing with Errors (LWE), or Phi-hiding assumptions [CMS99,Cha04,Lip05,OS07].
More recently, such constructions were achieved from Quadratic Residuosity
(QR), or Decisional Diffie-Hellman (DDH) [DGI+19].

1.1 Our Results

We present new approaches and techniques for both of the above settings, ulti-
mately extending the set of computational assumptions under which we can
achieve sublinear-communication secure computation protocols.

Our results fall within two primary categories:

– We obtain (slightly) sublinear secure two-party computation for general lay-
ered circuits, through a new path of low-communication batch oblivious trans-
fer.

– We explore the specific goal of Private Information Retrieval (PIR), and pro-
vide a new construction with polylogarithmic communication based on Com-
putational Diffie-Hellman (CDH).

We emphasize that our protocols execute in polynomial runtime, and do not rely
on any correlated randomness assumptions.

124 E. Boyle et al.

Sublinear 2PC for Layered Circuits. We present a new approach toward secure
two-party computation protocols for general layered circuits, with communica-
tion complexity that scales sublinearly in the circuit size. As opposed to building
FHE or HSS, our approach begins with protocols for “batch Oblivious Transfer”
with low communication.

Oblivious Transfer (OT) is an atomic functionality in which sender and
receiver parties begin with inputs m0,m1 ∈ {0, 1} and b ∈ {0, 1}, respectively;
at the conclusion the receiver learns the selected message mb; and neither party
learns further information about one another’s inputs. OT was shown to be a
complete functionality for general secure computation [Kil00], where OT proto-
col execution(s) take place for each nonlinear gate of the corresponding circuit.

OT protocols are known from a number of standard assumptions, in just two
rounds of communication (i.e., one message from receiver to sender, and one
message in return); but, the communication complexity for all such solutions is
(inherently) significantly larger than the input size. Very recently, it was shown
by Brakerski et al. [BBDP22] how to achieve a batched version of OT, still in
two rounds, and with rate-1 communication. That is, for a collection of message
pairs ({m

(i)
0 ,m

(i)
1 })i∈[k] and selection bits (b(i))i∈[k], a sender and receiver could

perform k parallel batched executions of OT in communication roughly k.
We prove that any such protocol which satisfies an additional decomposabil-

ity property suffices to imply secure computation protocols for general layered
circuits with sublinear communication complexity. To define decomposability,
consider the communication structure of any 2-round rate-1 batch OT proto-
col. In the first round, the receiver sends k + o(k) bits to the sender,3 somehow
encoding its selection bits b(i). In response, the sender performs some computa-
tion as a function of its message pairs {m

(i)
0 ,m

(i)
1 }, and returns k + o(k) bits in

response, somehow encoding the k selected messages, m
(i)

b(i) . For the constructions
of [BBDP22], the sender’s message size is just k + polylog(k).

We say that the (2-round, rate-1) batch OT protocol is decomposable if for any
agreed subset S ⊂ [k] of indices, the sender can choose a corresponding subset of
|S| + polylog(k) of its return message bits, such that sending this partial sender
response reveals exactly the corresponding subset of selected messages (m(i)

b(i))i∈S

to the receiver. Namely, given the partial response, these |S| messages can be
recovered, and no information is revealed about m

(i)

b(i) for i /∈ S.

Theorem 1 (Sublinear 2PC from Decomposable Batch OT - informal).
Assume existence of 2-round rate-1 batch OT with the above “decomposability”
property. Then for any k, we can securely compute layered (synchronous) circuits
of depth d and size s using poly(22

k

, s) computation and O(22
k ·d ·poly(λ)+s/k)

communication.
In particular, for k = O(log log s), we obtain communication O(s/ log log s+

d1/3 ·s2(1+ε)/3 ·poly(λ)), for an arbitrary small constant ε. The latter is sublinear
in s whenever d = o(s1−ε/poly(λ)), i.e., the circuit is not too “tall and skinny”.
3 Our construction can actually handle arbitrary constant client-to-server upload rate,

as long as the sender-to-receiver download rate is 1.

Sublinear 2PC from New Assumptions 125

This decomposability property is not simply hypothetical, but rather was
inspired by the batch-OT protocols of Brakerski et al. [BBDP22], which we show
to satisfy the requirement. At a high level, the sender’s message in their protocols
consists of an encryption of the selected message bits (computed homomorphi-
cally as a function of receiver-sent ciphertexts of its selection bits, together with
the message pairs {m

(i)
0 ,m

(i)
1 }), compressed à la [DGI+19] to rate 1. The result-

ing rate-1 ciphertexts have the structure of a polylog(k)-size “header” string,
independent of the messages, together with a single bit of information for each
encrypted message bit. Decomposability thus follows (pseudo)directly, by simply
omitting those information bits corresponding to encrypted messages the sender
wishes to drop (i.e., [k]\S).4

In turn, we obtain the following corollary.

Corollary 2 (Sublinear 2PC from QR+LPN - informal). The conclusion
of Theorem 1 holds based on Quadratic Residuosity (QR) and Learning Parity
with Noise (LPN) for any inverse-polynomial noise rate.

Our result is summarized on Table 1, where we also recall the state of the art
in sublinear secure computation. We remark that while sublinear O(s/ log log s)-
communication protocols were known from a variant of LPN from [CM21], their
result must assume superpolynomial hardness of LPN with a small inverse-
superpolynomial error rate. In contrast, our result requires only polynomial
hardness of LPN, with any inverse-polynomial error rate (as inherited by the
construction of [BBDP22]).

We finally mention that this result is also not implied by the construc-
tions of pseudorandom correlation functions (PCF) [BCG+20] from QR+LPN
of [OSY21] (or in fact any of the line of work on pseudorandom correlation
generators (PCG) [BCG+19]). While PCG/PCFs enable the generation of large
quantities of random instances of OT with sublinear communication, the best
known approaches for utilizing these random correlations within an actual secure
computation protocol require communication that scales linearly with the circuit
size.

Private Information Retrieval. Motivated by the goal of building decomposable
rate-1 batch OT from new assumptions, we then turn to a deeper exploration
of one of the required underlying components from the [BBDP22] batch OT
construction: (single-server) Private Information Retrieval (PIR).

We succeed in constructing PIR with polylogarithmic communication from
the Computational Diffie-Hellman assumption. While this is only one sub-
component required to obtain the necessary batch OT from LPN+CDH,5 this
provides one step toward this direction. But, more importantly, it constitutes a
new feasibility result of its own right. From CDH, previously no PIR protocol
was known with communication o(n).
4 We are of course sweeping details under the rug here, and refer the reader to the

main body for a more complete treatment.
5 Indeed, the approach of [BBDP22] requires also a form of homomorphic encryption

compressible to rate 1.

126 E. Boyle et al.

Table 1. Existing protocols for secure computation with sublinear communication
under various assumptions, in the computational setting.

Assumptions Circuit class Sublinearitya

[Gen09] LWE P/poly O(n + m)

[BGI16] DDH Layered circuits O(n + m + s/ log s)

[OSY21,RS21] DCR Layered circuits O(n + m + s/ log s)

[CM21] Superpoly LPNb Layered circuits O(n + m + s/ log log s)

[ADOS22] Class groups Layered circuits O(n + m + s/ log s)

This work LPN + QRc Layered circuits O
(

n + m + d1/3 · s2(1+ε)/3 · poly(λ) + s
log log s

)

a We use n for input size, m for output size, s for circuit size, and d for circuit depth.
b [CM21] assumes the superpolynomial hardness of the LPN assumption with dimension N , O(N) samples,
and noise rate No(1)−1.
c We assume the polynomial hardness of LPN with dimension N , poly(N) samples, and inverse-polynomial
noise rate.

Theorem 3 (PIR from CDH - informal). Based on the Computational
Diffie-Hellman (CDH) assumption, there exists single-server PIR on n-bit
databases with communication polylog(n) and O(log(n)) rounds.

In hindsight, our construction forms a surprisingly simple and clean combi-
nation of two existing tools from the literature. Along the way, we identify an
improved procedure for converting between a weak form of “semi-PIR” as consid-
ered in [BIP18], which reveals the client’s queried index with some probability,
to full-blown secure PIR. We refer the reader to the Technical Overview for more
details.

2 Technical Overview

We assume familiarity with standard cryptographic assumptions such as QR,
LPN, CDH, and DDH, and refer the reader to the full version for a formal state-
ment of these assumptions.

2.1 Sublinear 2PC for Layered Circuits from Decomposable Batch
OT

We consider Boolean circuits over any base of gates with fan-in two.
Toward our sublinear 2PC result for layered circuits, we begin by focusing

on circuits of low depth k (e.g., think of k = log log log s), and devise a secure
protocol with communication n + m + (22

k · poly(λ)), for input size n, output
size m, circuit size s, and security parameter λ. Given such a tool, we can
appropriately divide a larger layered circuit into depth-k blocks where the sum
of all block input and output sizes is s/k, and then iteratively compute (secret
shares of) each layer output via the sub-protocol. Combined, this yields a secure
computation for the layered circuit with overall communication O(s/k + 22

k · d ·
poly(λ)), as desired.

Sublinear 2PC from New Assumptions 127

Starting Point: An SPIR Viewpoint. Consider a circuit with input size n, out-
put size m, and low depth k. Given fan-in 2, each output bit is computed as
a function of at most 2k input bits. We may thus view the circuit output as
dictated by m separate truth tables, each of size 22

k

, indexed by the values of
the corresponding relevant 2k input bits. More concretely, think of one party as
holding the (partially collapsed) truth tables incorporating its known inputs, and
the second party as holding its own input string, dictating the relevant position
of each truth table. We will refer to the first party as “sender” and second as
“receiver”.

Given this perspective, protocols for (Symmetric) Private Information
Retrieval (SPIR) immediately come to mind. An SPIR protocol is a strengthened
version of PIR, where the client additionally learns nothing beyond its queried
value of the database. Secure computation of our circuit precisely amounts to m
instances of SPIR, where the receiver party learns exactly the desired indexed
values of the m truth tables.

However, the situation is not so simple: Even the best known (S)PIR
protocols have communication polylogarithmic in the database size. Apply-
ing m instances of SPIR for the m outputs would thus yield communication
polylog(2k) · m ∈ Ω(km), killing sublinearity.

In order to obtain sublinear communication, we must somehow leverage that
the m SPIR instances are not completely independent, but rather are made
with correlated queries. That is, although there are m instances each with (2k)-
bit index values, the m·2k selection bits have several repeats, collectively coming
from different subsets of only n < m · 2k input bits.

Toward Batch SPIR with Correlated Queries. Our task becomes precisely to
construct such an object: m-instance batch SPIR, with significantly lower com-
munication complexity given correlated queries.

For purposes of discussion, suppose there existed a 2-round rate-1 protocol for
oblivious transfer, where each sender and receiver (magically) sends only a single
bit. Given access to such a tool, then by leveraging ideas from the literature (e.g.,
achieving PIR from linearly homomorphic encryption [KO97]), we would be set.
Indeed, the receiver would simply send 1 bit for each input bit, corresponding
to the first OT message using this value as a selector bit. These first messages
could then be reused by the sender in multiple, recursive executions.

More concretely, suppose the server holds a database of N bits and that the
receiver wants to retrieve the element stored at index x = (x1, . . . , xlog N). If the
receiver sends a message otr1 generated as its first-round OT-receiver message
for the first bit x1 of the desired index, the server can take the database, pair
up elements whose indices differ only on the first bit, then apply the OT-server
computation with respect to otr1 on each pair in order to retrieve a single-bit
response for each, creating a new “database” of half the number of elements, each
corresponding to a 1-bit sender answer message. If instead the receiver sends
messages (otr1, . . . , otrlog N), one for each bit of the desired index, the server
can now iteratively compress the database down to a single bit by building a
“Merkle tree” where in each recursive iteration corresponding to input index

128 E. Boyle et al.

bit xi, the new “database” is split into pairs of messages whose indices differ
only in this index, and performing the OT-server computation on each pair
produces a new list of 1-bit sender answer messages of again half the length.
At the conclusion, the server will be left with a single message value remaining,
which by construction precisely enables the receiver to recover the target value
stored at index x. This approach extends directly for m distinct databases with
the same total receiver message (otr1, . . . , otrlog N), since the corresponding OT-
receiver messages can be used independently in any mix and match format across
databases. In turn, the sender would need to send only m total bits response,
one bit for each database query.

Of course, unfortunately, we do not have such a strong rate-1 OT. We thus
turn to the next closest alternative which does exist: 2-round rate-1 batch OT, as
recently achieved by Brakerski et al. [BBDP22]. Batch OT considers a collection
of � message pairs ({m

(i)
0 ,m

(i)
1 })i∈[�] and selection bits (b(i))i∈[�], and enables a

sender and receiver to perform � parallel batched executions of OT with com-
munication roughly �. Attempting to apply the above strategy with rate-1 batch
OT, however, poses significant challenges.
– The batching structure restricts the “mix and match” abilities of the sender

when using the receiver’s OT message. The sender must respond to the entire
batched vector of receiver’s selection bits at any stage, without freely accessing
subsets of selection bits. Instead, the above approach involves using each
selection bit b(i) within a different number (N/2i) of message pairs.

– Even worse, the sender’s (batch) response in general is only defined given all
� pairs of messages to be selected by the bits b(1), . . . , b(�). In contrast, the
above approach crucially relies on the ability to choose the message pairs for
selection bit b(i) dynamically as a function of the server’s responses given the
previous selection bits b(1), . . . , b(i−1).

– Finally, it is no longer the case that for each selected message the sender has
a single corresponding response bit. In fact, rate 1 here does not even mean
that for � instances that exactly � bits are sent in each direction, but rather
just asymptotically �+o(�). This means that in each recursive OT execution,
the sender’s messages (and thus “database entry” size) may grow, leading to
large growth and ultimately large communication upon further recursions.

Decomposable Batch OT. With this motivation, we introduce the notion of
decomposable (2-round, rate-1) batch oblivious transfer, which can be seen as
a strengthening of two-round batch OT with constant upload-rate (i.e. the size
of the receiver message is linear in the batch size �) and download-rate asymp-
totically one (i.e. the size of the sender message is � + o(�)). The differences boil
down to a notion of decomposability which we impose on the sender message.

At a high level, what we want to capture is the fact that the receiver should
be able to retrieve the ith selected message in the batch if and only it also has
access to the ith bit of the sender message (using its own internal state saved
from generating the receiver message). More generally, given only a subset of the
bits of the sender message, the receiver should able to retrieve the corresponding
subset of selected messages in the batch.

Sublinear 2PC from New Assumptions 129

Slightly more formally, we say that the (2-round, rate-1) batch OT protocol
is decomposable if for any agreed subset S ⊂ [�] of indices, the sender can choose
a corresponding subset of |S| + polylog(�) of its return message bits, such that
sending this partial sender response reveals exactly the corresponding subset of
selected messages (m(i)

b(i))i∈S to the receiver. Namely, given the partial response,
these |S| messages can be recovered, and no information is revealed about m

(i)

b(i)

for i /∈ S.
For our purposes, it will suffice to consider a relaxation of the notion we just

described, and allow the sender message to have some small overhead rather than
having a one-to-one correspondence between the bits on the sender message and
the � selected messages. In this relaxed form, we require that the sender message
be comprised of two parts: a “reusable” part (of size o(�)), and a “decomposable”
part (of size �). On its own, the reusable part should reveal nothing about the
messages, but can be used to “decode” each bit of the decomposable part so as
to retrieve (exactly) the corresponding selected message in the batch. Among
other benefits of this relaxation, it allows us to consider constructions whose
download-rate is only asymptotically one.

This decomposability property is not only enough for our needs, but perhaps
more importantly, is achievable, in fact achieved by the batch OT constructions
of [BBDP22]. Roughly speaking, the sender message in their construction is com-
posed of a rate-1 encryption of the vector of requested message bits, with struc-
ture consisting of a short “header” independent of the message bits, together
with a single ciphertext bit encoding each message bit separately. Decompos-
ability can then be achieved by sending only those ciphertext bits encoding the
desired subset of messages.

Slightly more accurately, this describes the situation for all but an inverse-
polynomial fraction of message bits (corresponding to noisy coordinates of an
LPN ciphertext sent by the receiver), which actually encode the incorrect mes-
sages. In order to separately address these values, they employ a “co-PIR” (or
“punctured OT” [BGI17]) to efficiently mask out the undesired values from the
receiver, and a separate PIR to learn the correct values for these positions. The
separate PIR query responses appear as part of the short “header” information
of the server’s response, which may sound like an issue, as this portion should
not reveal information directly about any message bits. However, this problem
does not occur, because the extra PIR queries are set up to actually reveal the
difference between the masked-out incorrect message (ri ⊕m1−b) and the target
message mb. Because of the mask, this difference value (revealed in the header)
provides no information about any message in the absence of the corresponding
value (ri ⊕ m1−b) from the payload portion of the ciphertext, as required by
decomposability. We refer the reader to Sect. 3.2 for further details.

Sublinear 2PC from Decomposable Batch OT. This decomposability property
directly allows us to address one of the above challenges of batch OT: we will not
have issues with exponential growth of the database entry size in the recursive
OT executions. Instead, the result of one iteration of the batch OT on n inputs

130 E. Boyle et al.

will result in a short o(n)-size header together with n bits that each provide
information about a distinct queried message. The header string we will put to
the side (ultimately we will send the collection of all the headers, which is still
sufficiently short). The remaining n bits induce the recursive sender-message
database that, as desired, consists of exactly 1 bit per message.

In fact, if we temporarily suppose that the assignment graph structure of n
input bits to m = n output bits can be decomposed as the disjoint union of
2k matchings, then we have a solution. Each disjoint matching will correspond
directly to a different instance of n-input batch OT, where each of the n inputs
is simultaneously used to index a different database. Applying the recursive
solution as above, the sender will ultimately compute a single bit for each output,
as well as a collection of header strings from each of the batch OT executions.

The remaining challenge is that general circuits do not have such nice regular
structure, instead with inputs appearing in different numbers of output compu-
tations, with inconvenient correlations, demanding a stronger form of “mix and
match” of batched OT queries beyond a direct approach.

To address this issue, we modify the structure of batch OT receiver queries,
effectively extending the batch size (say from n to 2n), and employing a careful
choice of how to pack extra copies of more highly influential input bits into the
queried vector, so that the overall total number of batch OT instances remains
sufficiently small that the overhead of extra header strings does not negatively
impact the final communication complexity. We refer the reader to the technical
body for a detailed treatment of this procedure.

2.2 Polylogarithmic PIR from CDH

We now turn our attention to our second contribution: private information
retrieval with polylogarithmic communication from the computational Diffie-
Hellman assumption. A private information retrieval (PIR) is a two party proto-
col between a server S holding a string z (the database) and a client C holding
an integer i. At the end of the interaction, the client should learn zi, without
revealing i to the server. A polylogarithmic PIR is a PIR where the total com-
munication is poly(λ, log |z|), where λ is the security parameter.

Below, we sketch our approach to building polylogarithmic PIR from CDH.
In hindsight, our construction is in fact relatively straightforward, and follows
from an elegant combination of two recent results. We outline the sequence of
implications below.

CDH Laconic PSI Half-PIR Random-index
PIR PIR=⇒ =⇒ =⇒ =⇒

[ABD+21] Lemma 19 Lemma 22 [GHM+21]

Laconic PSI. A private set intersection protocol is a two-party protocol allow-
ing a receiver to securely compute the intersection of its input set SR with

Sublinear 2PC from New Assumptions 131

the set SS of a sender: at the end of the protocol, the receiver learns SR ∩ SS

and nothing more. A laconic PSI protocol, introduced in [ABD+21], addition-
ally enforces that the protocol is two-round (receiver to sender, then sender to
receiver), and both the total communication and the sender runtime are bounded
by poly(λ, log |SR|, |SS |). The work of [ABD+21] showed that laconic PSI can
be constructed from anonymous hash encryption, a primitive that can be con-
structed (in particular) from the CDH assumption [DG17b,DG17a,BLSV18].

From Laconic PSI to Half-PIR. Given a laconic PSI protocol, we exhibit a
construction of polylogarithmic-communication PIR, using in addition a pseu-
dorandom function. However, our construction only achieves a very weak form
of security: it only guarantees that the index i is kept hidden from the server
with probability 1/2. This notion, which we call half-PIR, has been introduced
in [BIP18] (under the name Rand1

2PIR). It was shown in [BIP18] that polyloga-
rithmic half-PIR already suffices to construct slightly sublinear PIR (with com-
munication O(|z|/ log |z|)); looking ahead, we will provide a stronger reduction
and show that it actually implies polylogarithmic PIR.

Our construction of half-PIR proceeds as follows: the client and the server
agree on a PRF key K. The server with input z builds the set SR =
{FK(1||z1), · · · , FK(|z|||z|z|)}, and the client with input i builds the set SS =
{FK(i||b)}, where b is a uniformly random bit. The core properties that this
achieves are:

– If b = zi, then |SR ∩ SS | = 1 (note that |SS | = 1), and
– If b �= zi, then |SR ∩ SS | = 0 with high probability.

To show the second property, we rely on the security of the PRF to argue that
a collision between PRF evaluations on distinct inputs is highly unlikely (pro-
vided the PRF outputs are large enough). Note, therefore, that we rely on the
PRF security to argue the correctness of the construction (while this is slightly
unusual, this kind of arguments has been used a few times in the literature).

Now, the server and the client execute a laconic PSI, which has total com-
munication poly(λ, log |z|) (since |SS | = 1). At the end of the protocol, the
server, who plays the role of the receiver, sends |SR ∩ SS | to the client. Note
that |SR ∩ SS | = (1 − b) ⊕ zi, hence the client can decode zi from this informa-
tion. Yet, whenever |SR ∩ SS | = 0, the security of the laconic PSI implies that
the server actually learns nothing about i: this guarantees client security with
probability 1/2. When |SR ∩SS | = 1, however, the server learns the intersection
SR ∩ SS = FK(i||zi), and can in particular retrieve i easily.

From Half-PIR to PIR. We now turn to constructing a polylogarithmic PIR from
a polylogarithmic half-PIR. Here, our construction is mostly a simple observa-
tion: half-PIR implies random-index PIR via a straightforward construction. A
random-index PIR, introduced in [GHM+21], is a PIR protocol where the client
has no input, and receives (i, zi) where the index i is picked uniformly at ran-
dom between 1 and |z|. Given a half-PIR, building a random-index PIR is almost
immediate: the client and the server execute λ parallel instances of a half-PIR

132 E. Boyle et al.

protocol, where the client uses uniformly random independent indices in each
instance. With overwhelming probability, at least one of these instances will be
secure (in the sense that the server does not learn the index); the client simply
outputs (i∗, zi∗) where i∗ is the index used in the first such execution.

Eventually, random-index PIR was recently shown in [GHM+21] to imply
full-fledged PIR, with a log |z| blowup in communication and round complexity.
The key observation underlying this reduction is that a single invocation of a
random-index PIR, together with sending log |z| bits, allows to reduce the task of
executing a PIR on a size-|z| database to that of executing a PIR on a size-|z|/2
database. The construction follows by recursively invoking this construction (we
provide a more detailed description of this construction in Sect. 4.3). Combining
all these building blocks together leads to a logarithmic-round, polylogarithmic-
communication PIR from the CDH assumption.

3 Sublinear Computation for log log-Depth Circuits

3.1 Decomposable Two-Round Batch Oblivious Transfer

We introduce the notion of decomposable two-round batch oblivious transfer (Def-
inition 4), which can be seen as a strengthening of two-round batch OT with
constant upload-rate and download-rate asymptotically one. The differences boil
down to a notion of decomposability which we impose on the sender message,
which should be comprised of a (small) reusable part and a linear-size decom-
posable part : the receiver should be able to retrieve the ith selected message in
the batch if and only it also has access to the ith bit of the decomposable part
of the sender message (along with the reusable part).

Definition 4 (Decomposable Two-Round Batch Oblivious Transfer).
Let k ∈ N

� and α(·) = o(n). A semi-honest two-round decomposable batch OT
protocol with α(·)-overhead between a sender and a receiver is defined as a triple
of PPT algorithms dec-OT = (dec-OTR, dec-OTS, dec-OTD) with the following
syntax and properties:

– Syntax.
dec-OTR : On input the security parameter 1λ and a vector of selection bits

�b = (b1, . . . , bk) ∈ {0, 1}k, dec-OTR outputs a receiver message
otr ∈ {0, 1}O(k) and an internal state st; without loss of generality
we assume that st contains all the random coins used by dec-OTR
as well as �b.

dec-OTS : On input the security parameter 1λ, a receiver message otr, and a
database ((m(i)

0 ,m
(i)
1))i∈[k] ∈ {0, 1}2k comprised of k pairs of bits,

dec-OTS outputs a sender message ots = (ots�, otsdec), which is
comprised of a reusable part ots� ∈ {0, 1}α(k) and a decomposable
part otsdec ∈ {0, 1}k.

dec-OTD : On input a batch subset K ⊆ [k], a partial sender message ots′ ∈
{0, 1}α(k)+|K|, and an internal state st, dec-OTD outputs a vector
of messages (m̃i)i∈K ∈ {0, 1}|K|.

Sublinear 2PC from New Assumptions 133

– Decomposable Correctness. For every λ ∈ N
�, K ⊆ [k], every �b =

(b1, . . . , bk) ∈ {0, 1}k, and every �m = ((m(i)
0 ,m

(i)
1))i∈[k] ∈ {0, 1}2k,

Pr

⎡

⎢

⎣
(m̃1, . . . , m̃|K|) = (m(i)

bi
)i∈K :

(otr, st) $← dec-OTR(1λ,�b)
(ots�, otsDB) $← dec-OTS(1λ, otr, �m)

(m̃1, . . . , m̃|K|)
$← dec-OTD(K, (ots�, [otsdec]K), st)

⎤

⎥

⎦
= 1.

– Receiver Security (against Semi-Honest Sender). There exists an
expected polynomial time simulator SimS such that for every λ ∈ N

� and
every �b = (b1, . . . , bk) ∈ {0, 1}k,

{

otr : (otr, st) $← dec-OTR(1λ,�b)
}

c≈ {

SimS(1λ)
}

.

– Decomposable Sender Security (against Semi-Honest Receiver).
There exists an expected polynomial time simulator SimR such that for every
λ ∈ N

�, every K ⊆ [k], every �b = (b1, . . . , bk) ∈ {0, 1}k, and every
�m = ((m(i)

0 ,m
(i)
1))i∈[k] ∈ {0, 1}2k,

{

(ots�, [otsdec]K , otr, st) :
(otr, st) $← dec-OTR(1λ,�b)

(ots�, otsBD) $← dec-OTS(1λ, otr, �m)

}

c≈
{

(sim�, simdec, otr, st) :
(otr, st) $← dec-OTR(1λ,�b)

(sim�, simdec) $← SimR(1λ,K, (m(i)
bi

)i∈K ,�b, otr, st)

}

.

3.2 Instantiation Under QR + LPN, Adapted from [BBDP22]

As noted previously, two-round decomposable batch oblivious transfer can be
seen as a strengthening of two-round batch OT with constant upload-rate and
download-rate asymptotically one. As a matter of fact, the construction of batch
OT with optimal rate from [BBDP22] natively satisfies the extra requirements
and can be cast as two-round decomposable batch OT with sublinear overhead.

Theorem 5 (Corollary of [BBDP22, Sect. 7]). Assume the QR assumption
and the binary LPN assumption LPN(dim, num, ρ) with dimension dim = poly(λ),
number of samples num = dimc (for any constant c > 1), and noise rate
ρ = numε−1 (for some constant ε < 1). Then for any � = �(λ), there exists
a decomposable two-round batch oblivious transfer for batch size k = � · num
where

– The receiver message otr has size (�2 · dim + � · numε) · poly(λ) + k
– The sender message ots = (ots�, otsdec) has size |ots�| = (num + � · numε) ·

poly(λ) and |otsdec| = k.

134 E. Boyle et al.

In particular, for appropriate parameters (sufficiently large �, and num suffi-
ciently larger than �), |otr| = k + o(k), and |ots�| = o(k).

The proof of Theorem 5 is deferred to the full version of this paper. Note that
the construction of batch OT in [BBDP22] from LPN plus DDH or LPN plus
polynomial-modulus LWE can similarly be shown to be decomposable. However,
two-party sublinear secure computation is already known under these assump-
tions, via HSS for NC1 [BGI16,BKS19].

3.3 Bounded Query Repetitions

At a high level the goal of this section is to show how a receiver message of dec-OT
can be re-used, possibly with imbalances in how many times each selection bit in
the batch is re-used, while asymptotically preserving upload- and download-rate.

Definition 6 (Decomposable Two-Round Batch Oblivious Transfer
with Bounded Query Repetitions). Let k ∈ N

� and α = o(n). A semi-
honest two-round decomposable batch OT protocol with α(·)-overhead and T -
bounded query repetitions between a sender and a receiver can be defined as a
triple of PPT algorithms rep-OT = (rep-OTR, rep-OTS, rep-OTD) with the fol-
lowing syntax and properties:

– Syntax.
• rep-OTR: On input the security parameter 1λ and a vector of selection

bits �b = (b1, . . . , bk) ∈ {0, 1}k, rep-OTR outputs a receiver message otr ∈
{0, 1}O(k) and an internal state st; without loss of generality we assume
that st contains all the random coins used by rep-OTR as well as �b.

• rep-OTS: On input the security parameter 1λ, a query otr, a database
((m(i)

0 ,m
(i)
1))i∈[k′] ∈ {0, 1}2k′

(where k ≤ k′ ≤ k ·T), and a vector of repe-
titions rep = (rep1, . . . , repk) ∈ [0, T]k such that

∑k
i=1 repi = k′, rep-OTS

outputs a sender message ots = (ots�, otsdec), which is comprised of a
reusable part ots� ∈ {0, 1}α(k) and a decomposable part otsdec ∈ {0, 1}k′

,
as well as rep.

• rep-OTD: On input a batch subset K ⊆ [k′], a partial sender message
ots′ ∈ {0, 1}α(k)+|K|, a vector of repetitions rep = (rep1, . . . , repk) ∈
[0, T]k such that

∑k
i=1 repi = k′, and an internal state st, rep-OTD out-

puts a vector of messages (m̃i)i∈K ∈ {0, 1}|K|.
– Decomposable Correctness. For every λ ∈ N

�, K ⊆ [k′], every �b =
(b1, . . . , bk) ∈ {0, 1}k, and every �m = ((m(i)

0 ,m
(i)
1))i∈[k′] ∈ {0, 1}2k′

,

Pr

⎡

⎢

⎣
(m̃1, . . . , m̃|K|) = (m(i)

σi)i∈K :
(otr, st) $← rep-OTR(1λ,�b)

((ots�, otsdec), rep) $← rep-OTS(1λ, otr, �m, rep)
(m̃1, . . . , m̃|K|)

$← rep-OTD(K, (ots�, [otsdec]K), rep, st)

⎤

⎥

⎦
= 1 ,

where σi := bmax{j : (
∑

j′<j repj′)≤i} .

Sublinear 2PC from New Assumptions 135

– Receiver Security (against Semi-Honest Sender). There exists an
expected polynomial time simulator SimS such that for every λ ∈ N

� and
every �b = (b1, . . . , bk) ∈ {0, 1}k,

{

otr : (otr, st) $← rep-OTR(1λ,�b)
}

c≈ {

SimS(1λ)
}

.

– Decomposable Sender Security (against Semi-Honest Receiver).
There exists an expected polynomial time simulator SimR such that for every
λ ∈ N

�, every rep = (rep1, . . . , repk) ∈ [0, T]k such that ‖rep‖1 = k′, every
K ⊆ [k′], every �b = (b1, . . . , bk) ∈ {0, 1}k, and every �m = ((m(i)

0 ,m
(i)
1))i∈[k′] ∈

{0, 1}2k′
,

{

(ots�, [otsdec]K , otr, st) :
(otr, st) $← rep-OTR(1λ,�b)

(ots�, otsdec) $← rep-OTS(1λ, otr, �m, rep)

}

c≈
{

(sim�, simdec, otr, st) :
(otr, st) $← rep-OTR(1λ,�b)

(sim�, simdec) $← SimR(1λ,K, (m(i)
σi)i∈K ,�b, rep, otr, st)

}

where σi := bmax{j : (
∑

j′<j repj′)≤i} .

Lemma 7 (From dec-OTto rep-OT). If dec-OT is a semi-honest two-round
decomposable batch OT protocol with α overhead, then the construction rep-OT
from Fig. 1 is a semi-honest two-round decomposable batch OT protocol with
α · T overhead and T -bounded repetitions.

The proof of Lemma 7 is deferred to the full version of this paper.

3.4 Two-Round Batch SPIR with Correlated Queries

We next introduce and achieve a notion of batch symmetric PIR with correlated
queries. This corresponds to batch SPIR where the queries are not independent;
rather, the total entropy w used to describe the queries is small, and the queried
indices can be reconstructed via a public function that “mixes and matches” the
individual bits of entropy �α = (α1, . . . , αw) in a public manner. This will allow
us to compress k size-N databases each down to a single bit—achieving batch
SPIR—using batch OT on the selection bit vector �α, by building a “Merkle-like
forest” (seeing each 1-out-of-2 OT in the batch as a roughly length-halving hash
function): the correlation in the queries across different databases is what allows
the nodes of the Merkle forest to be batched.

In more detail, if the w bits of entropy are α1, . . . , αw, “mixing and matching”
means that each of the (n = log N)-bit queries to a single database can be
obtained by concatenating n of the bits αi, possibly permuted. In the notation
below, the jth query is given by vector (αsj,1 , . . . , αsj,n

). We will be interested
in how many times a given αi appears within the k queries (counted by the

136 E. Boyle et al.

Fig. 1. From dec-OT with α overhead to rep-OT with α · T overhead.

Sublinear 2PC from New Assumptions 137

occurrence function ti below), as well as how many times it appears in specific
position j′ ∈ [n] within the k queries (denoted below by ti,j′). If all ti,j′ are
bounded by T , then for each level j′ ∈ [n] in the “Merkle forest” we can achieve
the desired length-halving compression by using at most T batch OT sender
computations on the original batch OT selection vector �α.

Definition 8 (“Mix and Match” Functions). A “mix and match” function
MixAndMatch : {0, 1}w → [N]k is one parameterised by k ordered subsets of n :=
log N elements of [w], Sj = (sj,1, . . . , sj,n) ∈ [w]n for j ∈ [k] such that:

∀�α = (α1, . . . , αw) ∈ {0, 1}w,MixAndMatch(α1, . . . , αw) := (x1, . . . , xk),
with xj := αsj,1 · · · αsj,n

∈ [N].

Such a function is associated with an occurrence function, which counts the
occurrences of each input position in the outputs:

t· : [w] → [k]

i �→ ti =
k
∑

j=1

1i∈Sj

Each ti (i ∈ [w]) can be decomposed as ti = ti,1 + · · · + ti,n, where ti,j′ is equal
to the number of values of j ∈ [k] such that sj,j′ = i.

– MixAndMatch is said to be T -balanced if ∀i ∈ [w],∀j′ ∈ [n], ti,j′ ≤ T .
– MixAndMatch is said to be T -balanceable if it can be expressed as the function

MixAndMatch = (MixAndMatch′ ◦ replicate), where MixAndMatch : {0, 1}w′ →
[N]k is a T -balanced mix-and-match function and replicate is defined as:

replicate : {0, 1}w → {0, 1}w′

(b1, . . . , bw) �→ (b‖�t1/T	
1 ‖ . . . ‖b

‖�tw/T	
w)

where w′ :=
∑

i∈[w]

�ti/T �.

Lemma 9. Let w, n ∈ N be a sufficiently large integers. For any family of
unordered subsets S1, . . . , Sk ∈ (

[w]
n

)

there exists an ordering of each subset
Sj such that the mix-and-match function induced by the resulting (S̃j)j∈[k] is
polylog(w)-balanceable.
Furthermore, such orderings can be found in expected constant time.

The proof of Lemma 9 is deferred to the full version of this paper.

Definition 10 Two-Round Batch Computational Batch SPIR with Cor-
related “Mix and Match” Queries). A semi-honest two-round batch SPIR
protocol with correlated “mix and match” queries between a sender and a
receiver can be defined as a triple of PPT algorithms corrSPIR = (corrSPIRR,
corrSPIRS , corrSPIRD) parameterised by a public T -balanceable “mix and match”
function (Definition 8) MixAndMatch : {0, 1}w → [N]k with the following syntax
and properties:

– Syntax.

138 E. Boyle et al.

• corrSPIRR : On input the security parameter 1λ and a vector of selection
bits �b = (b1, . . . , bw) ∈ {0, 1}w, corrSPIRR outputs a receiver message
spirR ∈ {0, 1}O(w) and an internal state st; without loss of generality, we
assume st contains all the coins used by corrSPIRR as well as �b.

• corrSPIRS : On input the security parameter 1λ, a receiver message spirR,
and k N -bit databases �m1, . . . , �mk ∈ {0, 1}N , corrSPIRS outputs a sender
message spirS ∈ {0, 1}O(k).

• corrSPIRD : On input a sender message spirS and an internal state st,
corrSPIRD outputs a vector of messages (m̃1, . . . , m̃k) ∈ {0, 1}k.

– Correctness.

∀�b = (b1, . . . , bw) ∈ {0, 1}w
, ∀ �M = (�m1, . . . , �mk) ∈ {0, 1}N·k

,

Pr

⎡
⎢⎢⎣(m̃1, . . . , m̃k) = (�m1[x1], . . . , �mk[xk]) :

(spirR, st)
$← corrSPIRR(1λ,�b)

spirS
$← corrSPIRS(1λ, spirR, �M)

(m̃1, . . . , m̃k)
$← corrSPIRD(spirS , st)

⎤
⎥⎥⎦ = 1

where (x1, . . . , xk) := MixAndMatch(�b).

– Security. The following protocol securely realises FcorrSPIR (Fig. 2) in the
presence of a semi-honest adversary: the receiver computes (spirR, st) $←
corrSPIRR(1λ,�b) and sends spirR to the sender, who in turn computes spirS

$←
corrSPIRS(1λ, spirR, �M) and returns spirS; finally, the receiver computes and
outputs (m̃1, . . . , m̃k) $← corrSPIRD(spirS , st).

Fig. 2. Ideal functionality FcorrSPIR for batch SPIR with correlated “Mix and Match”
queries

Sublinear 2PC from New Assumptions 139

Theorem 11. Assume that rep-OT is a semi-honest two-round decomposable
batch OT protocol with α(·)-overhead and T -bounded query repetitions. Then
construction (corrSPIRR, corrSPIRS , corrSPIRD) from Fig. 3 is a two-round batch
SPIR protocol with correlated “mix and match” queries. Furthermore the size of
the receiver message is linear in w + k · n/T and the size of the sender message
is upper bounded by k + (log N) · (N − 1) · α(w + k · n/T) (where k is the batch
number and N is the size of each of the k databases).

3.5 Sublinear Computation of log log-Depth Circuits from corrSPIR

In this section Theorem 12 shows how to build sublinear secure computation for
shallow (roughly log log-depth) circuits from corrSPIR, with an explicit protocol
provided in Fig. 4. Main Theorem 1 combines all of the previous theorems and
shows that sublinear secure computation for shallow circuits can be based on
QR + LPN.

Theorem 12. If corrSPIR is a two-round batch SPIR protocol with correlated
“mix and match” queries, then Π2PC from Fig. 4 securely computes the random-
ized functionality (�x0, �x1) �→ {(�r, C(�x0 ⊕ �x1) ⊕ �r) : �r

$← {0, 1}m} in the presence
of a semi-honest adversary corrupting (at most) one of the two parties.

The proof of Theorem 12 is deferred to the full version of this paper.
Our first main theorem follows from the combination of Theorem 5—which

instantiates dec-OT from QR + LPN—, Lemma 7—which provides a construc-
tion of rep-OT from dec-OT—, Theorem 11—which provides a construction of
corrSPIR from rep-OT, and Theorem 12—which provides a secure computation
protocol from corrSPIR.

Main Theorem 1 (Sublinear Secure Computation from QR + LPN). Assume
the QR assumption and the binary LPN assumption LPN(dim, num, ρ) with
dimension dim = poly(λ), number of samples num = (n + m)1/3 · poly(λ), and
noise rate ρ = numε−1 (for some constant ε < 1). Then for any n-input m-
output boolean circuit C of size s and depth k, there is a two-party protocol for

Fig. 3. corrSPIR from rep-OT.

140 E. Boyle et al.

Fig. 3. (continued)

Sublinear 2PC from New Assumptions 141

Fig. 3. (continued)

securely computing C using only O(n + m + 2k+2k · polylog(n) · poly(λ) · ((n +
m)2/3 + (n + m)(1+2ε)/3)) bits of communication, and computation poly(λ, 22

k

).

The discussion on the parameters is deferred to the full version of this paper.

Corollary 13 (Sublinear Secure Computation of log log-Depth Cir-
cuits). Assume the QR assumption and the binary LPN assumption
LPN(dim, num, ρ) with dimension dim = poly(λ), number of samples num =
(n+m)1/3 ·poly(λ), and noise rate ρ = num−1/2. Then for any n-input m-output
boolean circuit C of polynomial size s and depth log log s/4, there is a two-party
protocol for securely computing C using only O(n+m+

√
s ·poly(λ) · (n+m)2/3)

bits of communication, and polynomial computation.

3.6 Extension to Layered Circuits

Layered circuits are boolean circuits whose gates can be arranged into lay-
ers such that any wire connects adjacent layers. It is well-known from previ-

142 E. Boyle et al.

Fig. 4. Secure computation of low-depth circuits from corrSPIR

Sublinear 2PC from New Assumptions 143

ous works [BGI16,Cou19,CM21] that sublinear protocols for low-depth circuits
translate to sublinear protocols for general layered circuits: the parties simply
cut the layered circuit into low-depth “chunks”, and securely evaluate it chunk-
by-chunk. We refer to the full version of this paper for the extension of our
protocol to layered circuits.

4 Polylogarithmic PIR from CDH

A private information retrieval is a two-party protocol between a server S holding
a string z (the database) and a client C holding an integer i, where only the client
receives an output. The security parameter λ and the length n(λ) = poly(λ) =
|z| of the server database are a common (public) input. We let ViewS(λ, z, i)
denote the view of S during its interaction with C on respective inputs (z, i)
with common input (λ, n = |z|), and by OutC(λ, z, i) the output of C after the
interaction.

Definition 14 (Private Information Retrieval). A private information
retrieval for database size n = n(λ) (n-PIR) is an interactive protocol between a
PPT server S holding a string z ∈ {0, 1}n and a PPT client C holding an index
i ≤ n which satisfies the following properties:

– Correctness: there exists a negligible function μ such that for every λ ∈ N,
z ∈ {0, 1}n, i ∈ [n]:

Pr[OutC(λ, z, i) = zi] ≥ 1 − μ(λ).

– Security: there exists a negligible function μ such that for every PPT adver-
sary A, large enough λ ∈ N, (i, j) ∈ [n]2, and z ∈ {0, 1}n:

|Pr[A(1λ+n,ViewS(λ, z, i)) = 1] − Pr[A(1λ+n,ViewS(λ, z, j)) = 1]| ≤ μ(λ, n).

– Efficiency: A PIR is polylogarithmic if its communication complexity
c(λ, n), measured as the worst-case number of bits exchanged between S
and C (over their inputs (z, i) and their random coins), satisfies c(λ, n) =
poly(λ, log n).

Main Theorem 2. Assuming the hardness of the computational Diffie-
Hellman assumption against poly(n)-time adversaries, there exists a polyloga-
rithmic n-PIR protocol, with polylogarithmic client computation, and O(log n)
rounds.

4.1 Laconic Private Set Intersection

Definition 15 (Laconic PSI [ABD+21]). An �PSI scheme LPSI =
(Setup,R1,S,R2) is defined as follows:

– Setup(1λ): Take as input a security parameter 1λ and outputs a common
reference string crs.

144 E. Boyle et al.

– R1(crs, SR): takes as input a crs and a receiver set SR. Outputs a first PSI
message psi1 and a state st.

– S(crs, SS , psi1): takes as input a crs, a sender set SS, and a first PSI message
psi1. Outputs a second PSI message psi2.

– R2(crs, st, psi2): takes as input a crs, a state st, and a second PSI message
psi2. Outputs a set X .

An �PSI protocol satisfies the following properties:

– Correctness: for every sets (SR, SS), given crs
$← Setup(1λ), (psi1, st)

$←
R1(crs, SR), psi2

$← S(crs, SS , psi1), and X $← R2(crs, st, psi2), it holds that
X = SR ∩ SS with probability 1.

– Security: the two-round protocol defined by LPSI = (Setup,R1,S,R2) imple-
ments the PSI functionality given on Fig. 5 in the semi-honest model.

– Efficiency: there exists a fixed polynomial poly such that both the length of
psi1 and the running time of S are bounded by poly(λ, log |SR|).

Fig. 5. PSI functionality Fpsi

Lemma 16 (�PSI from CDH [ABD+21]). Assuming the security of the com-
putational Diffie-Hellman assumption against poly(n)-time adversaries, there
exists an �PSI protocol for receiver sets of size n with statistical receiver security
and computational (semi-honest) sender security.

4.2 From Laconic PSI to Half-PIR

We define the notion of half-PIR, first introduced in [BIP18] (under the name
Rand1

2PIR). Informally, a half-PIR behaves as a regular PIR with probability 1/2;
otherwise, correctness and security might not hold. The receiver gets notified
when the scheme successfully worked as intended.

Definition 17. A half-PIR protocol is defined as an n-PIR (Definition 14)
where the correctness and security properties are modified as follows:

– Correctness: there exists a negligible function μ such that for every λ ∈ N,
z ∈ {0, 1}n, i ∈ [n]:

Pr[OutC(λ, z, i) = (zi, success)] ≥ 1/2 − μ(λ).

Sublinear 2PC from New Assumptions 145

– Security: there exists a negligible function μ such that for every PPT adver-
sary A, large enough λ ∈ N, (i, j) ∈ [n]2, and z ∈ {0, 1}n, it holds that
|pi − pj | ≤ μ(n, λ), where for an integer k ∈ [n], pk denotes the conditional
probability Pr[A(1λ+n,ViewS(λ, z, k)) = 1 | OutC(λ, z, k)2 = success].

Below, we recall the definition of pseudorandom functions (PRFs), first intro-
duced in the seminal work of [GGM84]. For simplicity, we restrict our attention
to PRFs with key length and output length equal to the security parameter λ.

Definition 18 (Pseudorandom function [GGM84,NR95]). A pseudoran-
dom function with input size m is syntactically defined by a function family
F = {FK : {0, 1}m(λ) �→ {0, 1}λ}λ∈N,K∈{0,1}λ , where the output FK(x) can be
computed from (K,x) in polynomial time, and which satisfies the following secu-
rity property: for every λ ∈ N and every oracle PPT attacker A, it holds that

∣

∣

∣Pr
K

[A(1λ)FK(·) = 1] − Pr
R

[A(1λ)R(·) = 1]
∣

∣

∣ ≤ negl(λ),

where K
$← {0, 1}λ, and R : {0, 1}m �→ {0, 1}λ is a truly random function. Fur-

thermore, we say that the PRF is T (λ)-secure if the above inequality still holds
when A is additionally given 1T as input.

For a high-level intuition of the protocol provided in Fig. 6, we refer to the full
version of this paper.

Fig. 6. Half-PIR from Laconic PSI and PRF.

146 E. Boyle et al.

Security Analysis. The security analysis is deferred to the full version of this
paper.

Instantiating the Functionalities. Pseudorandom functions can be constructed
from one-way functions [GGM84]. Instantiating the functionality Fpsi with the
CDH-based laconic PSI protocol of [ABD+21] involves communication and client
computation poly(λ, log |SR|) = poly(λ, log n) (since |SR| = n). Summing up, we
have:

Lemma 19. Assuming the hardness of the computational Diffie-Hellman
assumption against poly(n)-time adversaries, there exists a (constant-round)
polylogarithmic half-PIR protocol for databases of size n (where the client com-
putation is also polylogarithmic).

4.3 From Polylogarithmic Half-PIR to Polylogarithmic PIR

We now describe a simple generic transformation from Half-PIR to PIR.

Random-Index PIR. First, we recall the definition of random-index PIR
from [GHM+21]:

Definition 20 (Random-Index PIR). A random-index PIR for database of
size n is a two-party protocol between a server and a client which implements
the random-index PIR functionality given on Fig. 7 in the semi-honest model.

Interestingly, random-index PIR was recently shown to imply full-fledged
PIR, with only a logarithmic (in n) blowup in communication and rounds,
in [GHM+21]:

Fig. 7. Random-index PIR functionality Frpir.

Lemma 21. If there exists a random-index PIR protocol for databases of size n
with communication complexity c(λ, n) and round complexity r(λ, n), then there
exists an n-PIR protocol with communication complexity O(c(λ, n) · log n) and
round complexity O(r(λ, n) · log n).

We refer to the full version of this paper for a high-level explanation, and
to [GHM+21] for a formal proof of Lemma 21.

Sublinear 2PC from New Assumptions 147

From Half-PIR to Random-Index PIR. By the above, constructing PIR from
half-PIR is reduced to constructing random-index PIR from half-PIR. The lat-
ter, however, is straightforward: the client and the server can simply execute a
half-PIR, where the client picks its input uniformly at random. At the end of
the protocol, if the client receives fail, both parties simply restart the protocol.
By the correctness of the half-PIR, a successful execution will happen after an
expected O(1) number of restarts. Below, we describe a slight variant of this
where the client runs λ half-PIRs in parallel, and outputs the lexicographically
first successful output.

Random-Index PIR from Half-PIR.

Parameters: The protocol is parameterised with a security parameter λ,
and a database size n = n(λ) ≤ 2λ · negl(λ). The server holds an input
string z ∈ {0, 1}n; the client has no input.

Protocol: The client samples λ uniformly random integers
(i1, · · · , iλ) $← [n]λ. The client and the server run in parallel λ instances
of a half-PIR protocol with respective client inputs ij and server input z.
The client receives outputs OutC(λ, z, ij).

Output: The client sets j∗ to be the lexicographically first j such
that OutC(λ, z, ij) = (zj , success) for some bit zj . The client outputs
(zj∗ , success). If there is no such j, the client outputs ⊥ instead.

The security analysis is deferred to the full version of this paper. Combining
this protocol with Lemma 21, we get:

Lemma 22. If there exists a half-PIR protocol for databases of size n with com-
munication complexity c(λ, n) and round complexity r(λ, n), then there exists an
n-PIR protocol with communication complexity O(λ · c(λ, n) · log n) and round
complexity O(r(λ, n) · log n).

Putting together Lemmas 19 and 22 finishes the proof of Theorem 2.

Acknowledgments. Elette Boyle and Pierre Meyer were supported by AFOSR Award
FA9550-21-1-0046, a Google Research Award, and ERC Project HSS (852952). Geoffroy
Couteau was supported by the ANR SCENE.

References

[ABD+21] Alamati, N., Branco, P., Döttling, N., Garg, S., Hajiabadi, M., Pu, S.:
Laconic private set intersection and applications. In: Nissim, K., Waters,
B. (eds.) TCC 2021. LNCS, vol. 13044, pp. 94–125. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-90456-2_4

https://doi.org/10.1007/978-3-030-90456-2_4

148 E. Boyle et al.

[ADOS22] Abram, D., Damgård, I., Orlandi, C., Scholl, P.: An algebraic framework
for silent preprocessing with trustless setup and active security. Cryptol.
ePrint Arch. (2022)

[AJL+12] Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V.,
Wichs, D.: Multiparty computation with low communication, computation
and interaction via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-29011-4_29

[BBDP22] Brakerski, Z., Branco, P., Döttling, N., Pu, S.: Batch OT with optimal
rate. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022. Lec-
ture Notes in Computer Science, vol. 13276, pp. 157–186. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-07085-3_6

[BCG+19] Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient
pseudorandom correlation generators: silent OT extension and more. In:
Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol.
11694, pp. 489–518. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-26954-8_16

[BCG+20] Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Correlated
pseudorandom functions from variable-density LPN. In: 61st FOCS, pp.
1069–1080. IEEE Computer Society Press (2020)

[BFKR91] Beaver, D., Feigenbaum, J., Kilian, J., Rogaway, P.: Security with low com-
munication overhead. In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO
1990. LNCS, vol. 537, pp. 62–76. Springer, Heidelberg (1991). https://doi.
org/10.1007/3-540-38424-3_5

[BGI16] Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure
computation under DDH. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016,
Part I. LNCS, vol. 9814, pp. 509–539. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53018-4_19

[BGI17] Boyle, E., Gilboa, N., Ishai, Y.: Group-based secure computation: optimiz-
ing rounds, communication, and computation. In: Coron, J.-S., Nielsen,
J.B. (eds.) EUROCRYPT 2017, Part II. LNCS, vol. 10211, pp. 163–193.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56614-6_6

[BGW88] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems
for non-cryptographic fault-tolerant distributed computation (extended
abstract). In: 20th ACM STOC, pp. 1–10. ACM Press (1988)

[BI05] Barkol, O., Ishai, Y.: Secure computation of constant-depth circuits with
applications to database search problems. In: Shoup, V. (ed.) CRYPTO
2005. LNCS, vol. 3621, pp. 395–411. Springer, Heidelberg (2005). https://
doi.org/10.1007/11535218_24

[BIP18] Boyle, E., Ishai, Y., Polychroniadou, A.: Limits of Practical Sublinear
Secure Computation. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018,
Part III. LNCS, vol. 10993, pp. 302–332. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96878-0_11

[BKS19] Boyle, E., Kohl, L., Scholl, P.: Homomorphic secret sharing from lattices
without FHE. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part
II. LNCS, vol. 11477, pp. 3–33. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-17656-3_1

[BLSV18] Brakerski, Z., Lombardi, A., Segev, G., Vaikuntanathan, V.: Anonymous
IBE, leakage resilience and circular security from new assumptions. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part I. LNCS, vol.

https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-031-07085-3_6
https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/3-540-38424-3_5
https://doi.org/10.1007/3-540-38424-3_5
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-319-56614-6_6
https://doi.org/10.1007/11535218_24
https://doi.org/10.1007/11535218_24
https://doi.org/10.1007/978-3-319-96878-0_11
https://doi.org/10.1007/978-3-319-96878-0_11
https://doi.org/10.1007/978-3-030-17656-3_1
https://doi.org/10.1007/978-3-030-17656-3_1

Sublinear 2PC from New Assumptions 149

10820, pp. 535–564. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-78381-9_20

[CCD88] Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure
protocols (extended abstract). In: 20th ACM STOC, pp. 11–19. ACM Press
(1988)

[CG97] Chor, B., Gilboa, N.: Computationally private information retrieval
(extended abstract). In: 29th ACM STOC, pp. 304–313. ACM Press (1997)

[CGKS95] Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information
retrieval. In: 36th FOCS, pp. 41–50. IEEE Computer Society Press (1995)

[Cha04] Chang, Y.-C.: Single database private information retrieval with logarith-
mic communication. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.)
ACISP 2004. LNCS, vol. 3108, pp. 50–61. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-27800-9_5

[CLTV15] Canetti, R., Lin, H., Tessaro, S., Vaikuntanathan, V.: Obfuscation of prob-
abilistic circuits and applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC
2015, Part II. LNCS, vol. 9015, pp. 468–497. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46497-7_19

[CM21] Couteau, G., Meyer, P.: Breaking the circuit size barrier for secure com-
putation under quasi-polynomial LPN. In: Canteaut, A., Standaert, F.-
X. (eds.) EUROCRYPT 2021, Part II. LNCS, vol. 12697, pp. 842–870.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77886-6_29

[CMS99] Cachin, C., Micali, S., Stadler, M.: Computationally private information
retrieval with polylogarithmic communication. In: Stern, J. (ed.) EURO-
CRYPT 1999. LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48910-X_28

[Cou19] Couteau, G.: A note on the communication complexity of multiparty
computation in the correlated randomness model. In: Ishai, Y., Rijmen,
V. (eds.) EUROCRYPT 2019, Part II. LNCS, vol. 11477, pp. 473–503.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3_17

[DFH12] Damgård, I., Faust, S., Hazay, C.: Secure two-party computation with low
communication. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 54–
74. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-
9_4

[DG17a] Döttling, N., Garg, S.: From selective IBE to full IBE and selective HIBE.
In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677,
pp. 372–408. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70500-2_13

[DG17b] Döttling, N., Garg, S.: Identity-based encryption from the Diffie-Hellman
assumption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS,
vol. 10401, pp. 537–569. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7_18

[DGI+19] Döttling, N., Garg, S., Ishai, Y., Malavolta, G., Mour, T., Ostrovsky, R.:
Trapdoor hash functions and their applications. In: Boldyreva, A., Mic-
ciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 3–32.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_1

[DNNR17] Damgård, I., Nielsen, J.B., Nielsen, M., Ranellucci, S.: The TinyTable pro-
tocol for 2-party secure computation, or: gate-scrambling revisited. In:
Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401,
pp. 167–187. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7_6

https://doi.org/10.1007/978-3-319-78381-9_20
https://doi.org/10.1007/978-3-319-78381-9_20
https://doi.org/10.1007/978-3-540-27800-9_5
https://doi.org/10.1007/978-3-662-46497-7_19
https://doi.org/10.1007/978-3-030-77886-6_29
https://doi.org/10.1007/3-540-48910-X_28
https://doi.org/10.1007/978-3-030-17656-3_17
https://doi.org/10.1007/978-3-642-28914-9_4
https://doi.org/10.1007/978-3-642-28914-9_4
https://doi.org/10.1007/978-3-319-70500-2_13
https://doi.org/10.1007/978-3-319-70500-2_13
https://doi.org/10.1007/978-3-319-63688-7_18
https://doi.org/10.1007/978-3-319-63688-7_18
https://doi.org/10.1007/978-3-030-26954-8_1
https://doi.org/10.1007/978-3-319-63688-7_6
https://doi.org/10.1007/978-3-319-63688-7_6

150 E. Boyle et al.

[FGJI17] Fazio, N., Gennaro, R., Jafarikhah, T., Skeith, W.E.: Homomorphic secret
sharing from paillier encryption. In: Okamoto, T., Yu, Y., Au, M.H., Li,
Y. (eds.) ProvSec 2017. LNCS, vol. 10592, pp. 381–399. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-68637-0_23

[Gen09] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzen-
macher, M. (eds.) 41st ACM STOC, pp. 169–178. ACM Press (2009)

[GGM84] Goldreich, O., Goldwasser, S., Micali, S.: How to construct random func-
tions. In: 25th FOCS, pp. 464–479. IEEE Computer Society Press (1984)

[GHM+21] Gentry, C., Halevi, S., Magri, B., Nielsen, J.B., Yakoubov, S.: Random-
index PIR and applications. In: Nissim, K., Waters, B. (eds.) TCC 2021.
LNCS, vol. 13044, pp. 32–61. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-90456-2_2

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game
or a completeness theorem for protocols with honest majority. In: Aho, A.
(eds.) 19th ACM STOC, pp. 218–229. ACM Press (1987)

[IKM+13] Ishai, Y., Kushilevitz, E., Meldgaard, S., Orlandi, C., Paskin-Cherniavsky,
A.: On the power of correlated randomness in secure computation. In:
Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 600–620. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-36594-2_34

[JLS22] Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from LPN over
Fp, DLIN, and PRGs in NC0. In: Eurocrypt 2022 (2022, to appear)

[Kil00] Kilian, J.: More general completeness theorems for secure two-party com-
putation. In: 32nd ACM STOC, pp. 316–324. ACM Press (2000)

[KO97] Kushilevitz, E., Ostrovsky, R.: Replication is NOT needed: SINGLE
database, computationally-private information retrieval. In: 38th FOCS,
pp. 364–373. IEEE Computer Society Press (1997)

[Lip05] Lipmaa, H.: An oblivious transfer protocol with log-squared communica-
tion. In: Zhou, J., Lopez, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS,
vol. 3650, pp. 314–328. Springer, Heidelberg (2005). https://doi.org/10.
1007/11556992_23

[NN01] Naor, M., Nissim, K.: Communication preserving protocols for secure func-
tion evaluation. In: 33rd ACM STOC, pp. 590–599. ACM Press (2001)

[NR95] Naor, M., Reingold, O.: Synthesizers and their application to the paral-
lel construction of pseudo-random functions. In: 36th FOCS, pp. 170–181.
IEEE Computer Society Press (1995)

[OS07] Ostrovsky, R., Skeith, W.E.: A survey of single-database private infor-
mation retrieval: techniques and applications. In: Okamoto, T., Wang,
X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 393–411. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-71677-8_26

[OSY21] Orlandi, C., Scholl, P., Yakoubov, S.: The rise of paillier: homomorphic
secret sharing and public-key silent OT. In: Canteaut, A., Standaert, F.-X.
(eds.) EUROCRYPT 2021, Part I. LNCS, vol. 12696, pp. 678–708. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-77870-5_24

[RS21] Roy, L., Singh, J.: Large message homomorphic secret sharing from DCR
and applications. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS,
vol. 12827, pp. 687–717. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-84252-9_23

[Yao86] Yao, A.C.-C.: How to generate and exchange secrets (extended abstract).
In: 27th FOCS, pp. 162–167. IEEE Computer Society Press (1986)

https://doi.org/10.1007/978-3-319-68637-0_23
https://doi.org/10.1007/978-3-030-90456-2_2
https://doi.org/10.1007/978-3-030-90456-2_2
https://doi.org/10.1007/978-3-642-36594-2_34
https://doi.org/10.1007/11556992_23
https://doi.org/10.1007/11556992_23
https://doi.org/10.1007/978-3-540-71677-8_26
https://doi.org/10.1007/978-3-030-77870-5_24
https://doi.org/10.1007/978-3-030-84252-9_23
https://doi.org/10.1007/978-3-030-84252-9_23

How to Obfuscate MPC Inputs

Ian McQuoid(B), Mike Rosulek, and Jiayu Xu

Oregon State University, Corvallis, OR 97331, USA
{mcquoidi,rosulekm,xujiay}@oregonstate.edu

Abstract. We introduce the idea of input obfuscation for secure two-
party computation (io2PC). Suppose Alice holds a private value x and
wants to allow clients to learn f(x, yi), for their choice of yi, via a secure
computation protocol. The goal of io2PC is for Alice to encode x so that
an adversary who compromises her storage gets only oracle access to the
function f(x, ·). At the same time, there must be a 2PC protocol for
computing f(x, y) that takes only this encoding (and not the plaintext
x) as input.

We show how to achieve io2PC for functions that have virtual black-
box (VBB) obfuscation in either the random oracle model or generic
group model. For functions that can be VBB-obfuscated in the random
oracle model, we provide an io2PC protocol by replacing the random ora-
cle with an oblivious PRF. For functions that can be VBB-obfuscated
in the generic group model, we show how Alice can instantiate a “per-
sonalized” generic group. A personalized generic group is one where only
Alice can perform the algebraic operations of the group, but where she
can let others perform operations in that group via an oblivious interac-
tive protocol.

1 Introduction

Alice has invested significant resources into training a machine-learning clas-
sifier. She decides to capitalize on her investment by creating a service where
customers can pay her to classify inputs of their choice. The classifier itself is
sensitive, and so are the inputs of Alice’s clients, so her service uses secure two-
party computation (2PC) to perform these classifications. She deploys a server
that repeatedly runs the 2PC protocol with customers. This server is a high-
value target for attackers, since it must store the details of Alice’s proprietary
classifier. If a hacker compromises Alice’s server it is unavoidable that he learns
her classifier. . . or is it?

Input Obfuscation for 2PC. Abstractly, Alice has an input x and she wants
to use a 2PC protocol to allow customers to repeatedly learn f(x, yi) for any
yi of their choice. An attacker who compromises her computer can gain oracle
access to the function f(x, ·) by running the 2PC protocol in its head, playing
the role of Alice using her private state information which was compromised. In
this work, we investigate whether compromising Alice’s computer can leak no
c© The Author(s), under exclusive license to Springer Nature Switzerland 2022
E. Kiltz and V. Vaikuntanathan (Eds.): TCC 2022, LNCS 13748, pp. 151–180, 2022.
https://doi.org/10.1007/978-3-031-22365-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22365-5_6&domain=pdf
https://doi.org/10.1007/978-3-031-22365-5_6

152 I. McQuoid et al.

more than oracle access to f(x, ·). Input obfuscation for 2PC (io2PC) refers
to (1) a way for Alice to encode her input x, along with (2) a 2PC protocol
for computing functions of x that takes this encoding—not x—as input. The
encoding itself should leak only oracle access to the function f(x, ·).

Why isn’t This Trivial? If knowledge of Alice’s encoded input is equivalent to
having oracle access to f(x, ·), then her encoded input is actually a virtual-
black-box (VBB) obfuscation. So a natural approach is to use a 2PC protocol
that takes the obfuscation from Alice, and the input y from Bob evaluates the
obfuscation on y and gives the result to Bob.

Unfortunately, this natural approach does not work. The reason is that we
require a strong definition of VBB described in Sect. 2.2 which precludes known
constructions of non-trivial functions in the standard model as these obfusca-
tions rely on weakened definitions of VBB [7,9,25]. It is possible to construct
VBB for trivial functions such as the constant function, but all (non-trivial)
instances of VBB to our knowledge are in an idealized model such as the random
oracle model [21], the generic group model [2], or the generic graded encodings
model [5]. As the algorithm that evaluates a VBB obfuscation on an input will
call the ideal model’s oracle, this algorithm cannot be implemented inside of a
2PC protocol.

One way to think about io2PC is designing a 2PC protocol for obliviously
evaluating an obfuscated program, even if the obfuscation scheme requires an
idealized model.

1.1 Overview of Our Results

We first formally define io2PC, and then show how to achieve it for certain classes
of functions.

Inspiration from saPAKE. In io2PC we are interested in allowing a server to
encode a function in such a way that even on compromise, the adversary only
obtains oracle access to the underlying function. This kind of security property
is similar to one found in the definition of strong asymmetric password-
authenticated key exchange (saPAKE) [19]. In saPAKE, a server wants to
authenticate clients using passwords and stores only “digests” of the passwords
so that when an adversary steals the server’s storage, the adversary gains only
oracle access to a password-checking functionality (i.e. it can submit a password
guess and learn whether that guess is correct). In other words, the adversary
gains oracle access to a point function for each user, with the distinguished point
being the user’s password. It is therefore natural to think of saPAKE as a special
case of io2PC, considering only point functions.

Although the oracle saPAKE protocols provide on compromise is a point
function, saPAKE protocols are much stronger than pure point functions as
they allow for joint key establishment. To simplify, we can consider lighter VBB
obfuscations of point functions in the random oracle model [21]. An obfuscation
of the point function f(x, ·) simply consists of the value Ox = H(x), for random

How to Obfuscate MPC Inputs 153

oracle H, where the obfuscation can be “evaluated” on y by computing H(y) and
comparing it to Ox. As we will see in Sect. 3, this simple construction doesn’t
meet the security requirements for io2PC as it allows the oracle interaction in the
obfuscation to take place before server compromise. This is exactly the issue that
OPAQUE [19] set out to solve for asymmetric PAKE (aPAKE) protocols. Jareki,
Krawczyk, and Xu present a compiler which augments an aPAKE protocol by
replacing the client’s input with the output of an oblivious pseudo-random
function (OPRF) on the client’s input. Roughly, an OPRF is a two-party
protocol for evaluating a PRF F on a client’s input x and a server’s key k
where the client learns the PRF output F (k, x) and the server learns nothing.
We discuss modeling this primitive in further detail in Sect. 4.1. The OPAQUE
technique allows the server to gatekeep the oracle behind an interactive protocol.
This prevents the adversary from evaluating the oracle call locally until the server
is compromised. It is tempting to apply the OPAQUE compiler directly to our
VBB point function, and generally this idea underlying the OPAQUE compiler
serves as valid intuition for the techniques used in our compilers.

Our Result for Random-Oracle VBB Obfuscations. Our main constructions
develop and extend the analogy of applying the OPAQUE compiler directly
to VBB obfuscations. We construct io2PC for a function f , if the related class
of functions Cf = {f(x, ·) | x ∈ {0, 1}n} has a VBB obfuscation in the random
oracle model. The obfuscation scheme consists of algorithms Obf and ObfEval
satisfying the following:

– Correctness: ObfEvalH(ObfH(x), y) = f(x, y)
– Virtual black box: For any probabilistic polynomial-time (PPT) adversary

A, there exists a PPT simulator S such that AH(ObfH(x))’s view can be
simulated by S given only black-box access to f(x, ·).

In our io2PC protocol Alice chooses and stores an OPRF key k and uses the keyed
OPRF in place of a random oracle to compute Ox = ObfOPRF(k,·)(x). She then
stores Ox instead of x for future interactions. As in the OPAQUE protocol, we
require an OPRF protocol where knowledge of the key k only gives oracle access
to F (k, ·). Thus, even when an adversary steals the encoding Ox, the OPRF
still acts as a random oracle, in terms of observability and programmability, to
the simulator. This is what allows us to reduce to VBB security and argue that
Ox leaks no more than oracle access to f(x, ·). It is indeed possible to realize
such an OPRF protocol in the random oracle model; in this case, the OPRF
algorithm itself makes calls to the random oracle. Since our simulator must
be efficient, but reduces to the simulator for the VBB obfuscation, our results
do not immediately generalize to virtual grey-box (VGB) obfuscations. This is
because VGB simulators can be inefficient and would not be simulatable under
our restrictions.

When a client wants to interactively evaluate f(x, y), the goal is to instead
run ObfEvalOPRF(k,·)(Ox, y), since Alice holds only Ox instead of x. However, the
two cannot simply run this computation as a 2PC protocol, since OPRF involves

154 I. McQuoid et al.

calls to the random oracle. Instead, Alice can send Ox to the client, who runs
ObfEval?(Ox, y). The parties can then run an OPRF protocol each time ObfEval
makes an oracle query.

Our Result for Generic-Group Obfuscation. In our random-oracle result, we can
think of the OPRF as a “personalized” random oracle. It is a random function
that only Alice, holding the OPRF key, can evaluate and her evaluations of this
function are visible and programmable to the simulator. She can also allow a
client to evaluate this function (without leaking the input to Alice) using the
OPRF protocol.

Suppose we have a VBB obfuscation now in the generic group model. What
is the analogy of a “personalized” generic group? How can Alice instantiate
a group, for which only she has the key, which acts as a generic group with
respect to the simulator, and yet she can grant access to the group operations
via an oblivious protocol? We formalize a personalized generic group as an ideal
functionality, and then show how to realize such a functionality. Of course, our
protocol is in the generic group model, just as the OPRF (“personalized random
oracle”) protocol is in the random oracle model.

We show that our main io2PC technique also applies to VBB obfuscations in
the generic group model. In other words, Alice can obfuscate her input, replacing
the generic group with her personalized group during the obfuscation process.
The client can evaluate the obfuscated program, deferring group operations to
the oblivious personalized generic group protocol.

Additionally, we provide example applications of our personalized protocols
and show that the hyperplane-membership obfuscation of [10] is indeed a VBB
obfuscation in the generic group model. Previously, the obfuscation was proven
VBB with an inefficient simulator, under the Strong DDH assumption. Using this
hyperplane obfuscation in our main protocol, we achieve an io2PC for hyperplane
membership.

We conjecture that io2PC is possible for functions that are VBB-obfuscatable
in the generic graded encoding model (i.e. all circuits [6]); however, we leave this
result for future work.

1.2 Related Work

Upon server compromise, an adversary learns no more than oracle access to some
residual function. Specific instances of this kind of property have been consid-
ered previously: in the context of [strong] asymmetric password-authenticated
key exchange (aPAKE) [4,19], where server compromise should reveal no more
than an equality-test oracle; and by Thomas et al. [24], where server compromise
should reveal no more than a set-membership oracle. Our study of io2PC system-
atizes security properties and constructions of this kind, which have previously
been studied in an ad hoc way.

Beyond the context of server compromise, the more general idea of leaking
oracle access appears in some MPC models: In both non-interactive multiparty
computation (NIMPC) [3] and the one-pass computation model [15], each party

How to Obfuscate MPC Inputs 155

speaks only once in the protocol, with the difference in models being the commu-
nication pattern (star topology vs path topology). In these models, it is inevitable
that certain types of corruption allow the adversary to re-execute the protocol
on different inputs an unlimited number of times. Such an adversary can thereby
learn the output of the function on many inputs of its choice, with the honest
parties’ inputs being fixed. Therefore, the best possible security in these models
is if the protocol leaks no more than oracle access to this residual function.

Beyond this similarity of defining best-possible security with respect to a
residual functino oracle, there are important differences between these prior
works and ours. In the NIMPC protocols of [3] and one-pass protocols of [13,15],
the residual functions are completely learnable from oracle queries, either by
virtue of being over a small domain, or by being algebraically simple. Our work
is meant to be used with unlearnable residual functions—for example, we instan-
tiate our framework with point functions and hyperplane membership queries.

More fundamentally, prior works like [14] in the NIMPC model define security
in the style of indistinguishability obfuscation (iO)—if two vectors of inputs for
honest parties result in functionally identical residual functions, then the proto-
col must hide which input vector the honest parties use. This kind of definition
for MPC is not conducive to composable security. By contrast, we explicitly
require a virtual black-box (VBB) style of security, and define security in the
UC framework. Our VBB-style definition also models the fact that, after com-
promising the server, the adversary must expend some effort each time it wants
to evaluate the residual function.

2 Preliminaries

Let κ be the security parameter. We assume that all algorithms have 1κ as input
and do not explicitly write it.

2.1 Idealized Models

In an idealized model, all parties have oracle access to some exponentially large
random object. In the random oracle model, the random object is a function
H : {0, 1}∗ → {0, 1}n. In the ideal permutation model, the random object is a
pair of functions Π,Π−1 : X → X where Π and Π−1 are inverses.

We also consider the generic group model, which we discuss in more detail
in Sect. 5.1.

Immediately below, we define VBB obfuscation in an idealized model, making
the definition agnostic with respect to the actual choice of idealized model. We
simply let all algorithms have oracle access to some idealized oracle Ora, which
may be a random oracle or a generic group.

156 I. McQuoid et al.

2.2 Obfuscation

Definition 1. Let Cf = {f(x, ·) | x ∈ {0, 1}∗} be a class of functions. An
obfuscation for Cf (in the Ora-idealized model) is a tuple of polynomial-time
algorithms (Obf,ObfEval), where

– ObfOra(x) outputs an obfuscated program Ox;
– ObfEvalOra(Ox, y) outputs a value z in the range of f .

The obfuscation satisfies correctness if for all x, y, we have
ObfEvalOra(ObfOra(x), y) = f(x, y) with overwhelming probability.

We often omit explicitly writing Ora if it is clear from the context.
Looking ahead, we replace the idealized oracle in ObfEval with an interactive

protocol. Hence, we must require that the number of oracle queries does not
depend on the input.

Definition 2. An obfuscation (Obf,ObfEval) for Cf has input-independent
query complexity if there is a polynomial function c such that for all x, y,
ObfEvalOra(Ox, y) makes c(κ) queries to its Ora oracle. Throughout the paper,
we then refer to an obfuscation with this property as a triple (Obf,ObfEval, c).

Virtual black-box (VBB) security means that holding an obfuscated program
is equivalent to having oracle access to the function being obfuscated. In our
io2PC protocol, we need to explicitly relate the number of queries an adversary
makes to its idealized oracle, and the number of queries the simulator makes to
its function oracle.

Definition 3. An obfuscation (Obf,ObfEval, c) has virtual black-box (VBB)
security with simulation rate r if there exists a polynomial-time simulator
Sim = (Sim0,Sim1) such that for any polynomial-time adversary A and any x,
the distributions

{Ox ← ObfOra(x);AOra(Ox)} (real interaction)

{(Ox, state) ← Sim1();ASim
f(x,·)
2 (state)(Ox)} (ideal interaction)

are indistinguishable, and furthermore in the ideal interaction QS ≤ r· QA

c , where
QS is the number of queries Sim2 makes to its function oracle, and QA is the
number of queries A makes to its oracle interface.

We also need the following extractability property of obfuscation to handle
the case where a corrupt server generates an obfuscated program in our io2PC
protocol.

Definition 4. A VBB obfuscation (Obf,ObfEval, c) for Cf is extractable if for
any polynomial-time adversary A, there is a polynomial-time algorithm Extract
such that

Pr
[
ObfEvalOra(O, y) �= f(x, y) : (y,O) ← AOra

x := Extract(O,H)

]

is negligible, where H is the list of A’s queries.

How to Obfuscate MPC Inputs 157

In Sect. 6 we describe examples of obfuscation schemes that satisfy these
definitions.

Standard Model VBB. Recall that at least trivial VBB obfuscations are possible
in the standard model. Even in an idealized model, if ObfEval never queries
its oracle, then we have a VBB obfuscation in the standard model. However,
our constructions need something slightly stronger than VBB. In particular,
Definition 3 and Definition 4 require an idealized model for non-trivial functions.
A standard-model VBB allows the evaluator to learn f(x, ·) on an unbounded
number of inputs, for the cost of 0 oracle queries, making the simulation rate
for Definition 3 infinite. A similar observation has been made in the context
of asymmetric PAKE [16]: aPAKE seems impossible to achieve in the standard
model, as measuring the time of an offline dictionary attack requires counting
the adversary’s oracle queries. In Definition 4, the simulator’s only advantage
over a regular adversary is that it can observe the obfuscator’s idealized oracle
queries.

So our protocol paradigm is incompatible with (at least non-trivial) standard-
model VBB. But the spirit of io2PC is possible for standard-model VBB. The
server stores an obfuscation Ox of f(x, ·). The parties can do a standard 2PC
protocol computing (Ox, y) → ObfEval(Ox, y), which is possible because ObfEval
is a standard-model program. Upon compromising the server, an adversary learns
only Ox which is equivalent to oracle access to f(x, ·) by the VBB property. This
protocol does not achieve our specific io2PC functionality, though, because the
simulator cannot perform the necessary extractions of x from Ox, and of an
adversary’s oracle queries to f(x, ·) after compromising the server to learn Ox.

3 Defining io2PC

In this section, we formally define io2PC. The ideal functionality is presented
in Fig. 1. In FiO2PC and future functionalities, we leverage the universal com-
posability framework’s ability to analyze a single protocol instance by providing
unique session and subsession identifiers (sid, ssid).

Intuitively, io2PC can be thought of as an extension of VBB obfuscation to an
interactive setting where the server may store its obfuscated input for long peri-
ods. This setting has been studied in the context of (strong) asymmetric PAKE
[12,19], where the server stores a “password file” (e.g., the hash of its password)
instead of the plain password. Similar to the asymmetric PAKE functionality,
this is modeled as follows: In the initialization phase, the server sends its input
to FiO2PC who stores it. After that, the functionality provides an interface for
the adversary to compromise the server—the Compromise query—which corre-
sponds to stealing the server’s long-term storage in the real world. This allows
the adversary to perform offline evaluations, in which it evaluates the function
primed on the server’s input, without any online interaction.

In an online evaluation, the server can use the stored input, or use a replace-
ment input if the server is corrupt. This is meant to model the real-world sce-
nario where a corrupt server executes the protocol on fresh input instead of using

158 I. McQuoid et al.

Parameters:
– client C, server S, and ideal adversary A∗

Storage:
– three maps, status, budget and input

On command (Init, sid, x) from S:
1. If status[sid] is defined: ignore the message.
2. Set status[sid] := active.
3. Set input[sid] := x.
4. Set budget[sid] := 0.
5. Send (Init, sid, S) to A∗.

On command (Compromise, sid) from A∗:
6. Set status[sid] := compromised.

On command (OfflineEval, sid, y) from party P ∈ {A∗, S}:
7. If P = A∗, and either status[sid] �= compromised or S is honest: ignore the

message.
8. If status[sid] is undefined: send (IOEval, sid, ⊥) to P.
9. Otherwise, retrieve x := input[sid] and send (OfflineEval, sid, f(x, y)) to P.

On command (IOEval, sid, ssid, x′) from S:
10. If S is honest, retrieve x := input[sid], otherwise, set x := x′.
11. Send (IOEval, sid, ssid, S) to A∗.
12. If C is corrupt: set budget[sid] := budget[sid] + r.
13. Wait for (IOEval, sid, ssid, y) from C or (Abort, sid, ssid) from A∗.
14. If honest C sends (IOEval, sid, ssid, y): send (IOEval, sid, ssid, f(x, y)) to C.
15. If corrupt C sends (IOEval, sid, ssid, y):

– Set budget[sid] := budget[sid] − 1 and send (IOEval, sid, ssid, f(x, y)) to
C.

16. If A∗ sends (Abort, sid, ssid):
– If S is corrupt, send (IOEval, sid, ⊥) to C.

On command (Redeem, sid, ssid, y) from A∗:
17. If status[sid] is undefined: ignore the message.
18. Retrieve x := input[sid].
19. If budget[sid] = 0, send (IOEval, sid, ssid, ⊥) to A∗.
20. Otherwise set budget[sid] := budget[sid]−1 and send (IOEval, sid, ssid, f(x, y))

to A∗.

Fig. 1. The functionality FiO2PC computing Cf with simulation rate r

stored input. Finally, the client may query against the functionality and receive
the function result on the client and server’s inputs.

3.1 Simulation Rate

Our eventual io2PC protocol has the following interesting property. A corrupt
client may perform k different IOEval sessions in such a way that it eventually

How to Obfuscate MPC Inputs 159

learns (only) k outputs of the function, but the simulator cannot extract any of
the client’s inputs until after the kth session.1 We handle this issue in FiO2PC

with a ticketing mechanism. During each IOEval the client need not immediately
learn the output of f . Rather, the functionality grants a ticket that entitles the
client to one evaluation of f , and this evaluation of f can be redeemed at any
later point.

More generally, the functionality can grant r tickets for a single IOEval. Intu-
itively, think of IOEval as granting some resources to the client, which it can use
to evaluate f . But there may be “cheap” inputs to f which require r times fewer
resources than the worst case, in which case one session of IOEval may provide
enough resources for a corrupt client to learn r outputs of the function.

3.2 Server Compromise and Offline Evaluation

Following the treatment of server compromise in aPAKE [12,19], our functional-
ity separates Byzantine server corruption and server compromise. Upon being
compromised, the server only leaks its long-term storage to the adversary but
remains honest ; in other words, a Compromise query does not allow the server
to be controlled by the adversary. On the other hand, server corruption not only
leaks the entire state of the server to the adversary, but additionally allows for
complete control of the server. We consider the static corruption model, but cru-
cially, we allow the adversary to adaptively compromise an honest server. This is
reflected in our FiO2PC functionality: the adversary can compromise the server
via a Compromise message at any time, which marks the status of the current
session compromised, after which the adversary can perform offline evaluations.
However, in subsequent online evaluations, a compromised server is still treated
as honest.

Furthermore, similar to the (strong) aPAKE functionality, we require that
both Compromise and OfflineEval messages be accounted for by the environ-
ment. In particular, this means that the ideal adversary (simulator) cannot take
certain actions without some corresponding real-world event caused by the real
adversary: the ideal adversary cannot send Compromise unless the real adversary
compromises the server, and it cannot send OfflineEval unless the real adversary
performs some “work” (in the form of random oracle or generic group queries)
that corresponds to evaluating f . The rationale is similar to why Byzantine
corruptions are accounted for by the environment in the UC framework: to pre-
vent the simulator from corrupting all parties and making the simulation trivial.
Indeed, the Compromise and OfflineEval messages can be formally modeled as a
special form of corruption—see [8,16] for a detailed description.

1 Essentially, our protocol for IOEval simply allows the client to make some fixed
number of OPRF queries. Instead of using those OPRF queries for k sequential
evaluations of the function, the client can schedule the OPRF queries in parallel—
e.g., the first query in all k evaluations, then the second query in all k evaluations,
etc.

160 I. McQuoid et al.

3.3 Preventing Precomputation

We require that OfflineEval commands sent by a corrupt client are accounted for
by the environment, and can only be issued by the environment if the real-world
adversary does some observable “work”. Crucially, that “work” must happen
after server compromise. This requirement means that the client cannot “pre-
compute” work before compromise that permits the simulator to send many
OfflineEval commands instantly upon server compromise.

This feature is analogous to the definition of strong aPAKE. In non-strong
aPAKE, an adversary can learn all parties’ stored passwords instantly upon com-
promise of the password file. In strong aPAKE, an adversary can only make pass-
word guesses after compromise, and these password guesses must be accounted
for by the environment—i.e. they must correspond to observable work performed
after compromise by the adversary. In this sense, our FiO2PC functionality is
analogous to the strong flavor of aPAKE.

4 io2PC for Random-Oracle-Model Obfuscation

In this section, we describe a compiler for realizing io2PC from functions that
have VBB obfuscation in the random oracle model. Let us first recall the
OPAQUE compiler [19] from aPAKE to saPAKE. The OPAQUE compiler works
by replacing the input password pw to the starting aPAKE protocol with the
evaluation OPRF(pw). This compiler serves as a source of intuition for an inter-
mediate compiler for io2PC which takes a VBB obfuscation in the random oracle
model and replaces the input x to each random oracle evaluation with OPRF(x).

Recall the point function obfuscation Ox = H(x) for random oracle H, with
evaluation H(·) ?= Ox [21]. Applying this compiler, we arrive at the io2PC pro-
tocol in which the server stores O′

x = H(OPRF(x)) and interactively evaluates
H(OPRF(·)) ?= O′

x by sending O′
x to the client then acting as the server in an

OPRF protocol. This intuitive compiler is not far from the truth, as for ran-
dom oracle H, H(OPRF(·)) is itself an OPRF, so we simplify slightly by instead
replacing all random oracle invocations directly with OPRF invocations. Indeed,
with a small modification replacing the OPRF in this compiler with a verifiable
OPRF (VOPRF), we achieve the compiler described in Sect. 4.2.

4.1 Oblivious PRF

An Oblivious Pseudorandom Function (OPRF) [11] for a Pseudorandom Func-
tion (PRF) family F(·) is, generally, a two-party protocol for realizing the func-
tionality where a server who holds a key k and a client who holds an input
x evaluate Fk(x) with output (ε, Fk(x)). Namely, the client learns Fk(x) and
the server learning nothing about the input x or the output Fk(x). OPRFs have
found many applications and have been extended to support verification of client
and server inputs [18,20].

How to Obfuscate MPC Inputs 161

Our functionality FVOPRF, in Fig. 2, for a verifiable OPRF (VOPRF) with
active compromise closely follows the functionality of Jarecki, Krawczyk, and
Xu [19].

Parameters:
– client C, server S, and ideal adversary A∗

Storage:
– two maps, status and F

On command (VOPRFInit, sid) from S:
1. If status[sid] is defined: ignore the message.
2. Set status[sid] := active.
3. Send (VOPRFInit, sid, S) to A∗.

On command (Compromise, sid) from A∗:
4. Set status[sid] := compromised.

On command (OfflineEval, sid, x) from party P ∈ {A∗, S}:
5. If status[sid] �= compromised or S is not corrupted, and P �= S: ignore the

message.
6. If status[sid] is undefined: send (VOPRFEval, sid, ⊥) to P.
7. Otherwise, if F [x] is undefined, set F [x] ← H, and send (OfflineEval, sid, F [x])

to P.

On command (VOPRFEval, sid, ssid, x) from C:
8. If status[sid] is undefined: send (VOPRFEval, sid, ⊥) to C.
9. Send (VOPRFEval, sid, ssid, C) to A∗, (VOPRFEval, sid, ssid) to S, and wait

for (SComplete, sid, ssid) from S.
10. Send (SComplete, sid, ssid, S) to A∗ and wait for either (Deliver, sid, ssid) or

(Abort, sid, ssid) from A∗.
11. If A∗ sends (Abort, sid, ssid):

– If F [x] is undefined, set F [x] ← H and send (VOPRFEval, sid, F [x]) to C.
12. If A∗ instead sends (Abort, sid, ssid):

– If S is corrupt, send (VOPRFEval, sid, ⊥) to C.

Fig. 2. The functionality FVOPRF for evaluating random function F with range H

The main difference between the functionality in Fig. 2 and the comparable
OPRF functionality [19] is the addition of the Abort query. FVOPRF is verifiable
in the sense that it allows for a client to abort in the face of a corrupt server who
may, for example, commit to a PRF key through a public key and use a different
PRF key during evaluation. Instead of presenting multiple tables indexed by
a function parameter as in previous functionalities [18], FVOPRF uses a single
key provided during initialization and then exposes Abort. This verifiability also
models the client’s ability to verify consistent key usage between various OPRF
interactions with a given server. The client will be assured that all interactions
compute the same underlying PRF or else the client can abort.

162 I. McQuoid et al.

Our VOPRF functionality Fig. 2 differs from others in the literature (e.g., [1]).
Our definition requires that the outputs of the VOPRF are pseudorandom even
to the server. This requirement is related to the fact that io2PC (like asymmetric
PAKE) requires programmability of outputs from the simulator, even for the
server’s non-interactive evaluations of the OPRF [16]. In particular, this means
that to provide input obfuscation to non-trivial functions we must rely on some
assumption with stronger programmability than afforded by a CRS. As such, we
cannot achieve this functionality outside a strongly programmable model such
as the random oracle model or the generic group model.

The requirement that the outputs of the VOPRF are pseudorandom even to
the server is necessary to realize the intuition that a corrupt client can only gain
oracle access to the underlying PRF on server compromise. We like to think
of such a (V)OPRF as a “personalized” Random Oracle which the server can
let another party evaluate, privately, on some input. When an honest server is
compromised by a corrupt client, the client gains the ability to evaluate this
personal random function at will; however, since the outputs of the function are
pseudorandom to the server they are also pseudorandom to a client who compro-
mises the server’s storage. To meet the idea of oracle access, these evaluations
must also be observable. With these two properties, we can see that the exposed
oracle is analogous to a personalized random oracle.

Jarecki, Kiayias, and Krawczyk [18] provide an efficient UC instantiation of
a VOPRF in the random oracle model under a one-more Gap DH assumption.
We recall that protocol—called 2HashDH-NIZK therein for its eponymous entry
and exit hashes—in Fig. 3.

Similar to previous results for the 2HashDH-NIZK protocol [18] in Fig. 3
and its non-verifiable derivative [19], we know that 2HashDH-NIZK satisfies our
requirements for adaptive compromise, and relative to S’s public key, 2HashDH-
NIZK satisfies our verifiability requirements. The inclusion of a NIZK does not
significantly modify the proof for adaptive compromise, and we may consider
the existence of an authenticated channel, mediated through the authenticated
channel functionality FAUTH to provide the server’s public key to the client.
In situations where the public key of the server is known a-priori to the client,
we may drop the need for an authenticated channel; however, in the cases we
consider for io2PC, the existence of an authenticated channel is already assumed.

4.2 io2PC Protocol

We present our OPRF-based io2PC protocol in Fig. 4. In the initialization phase,
the server computes an obfuscation of its input x, with the random oracle queries
made via evaluating the random function in FVOPRF offline. Crucially, after
computing the obfuscated input Ox, the server only stores Ox and erases the
original input x. In online evaluation, the server sends its storage Ox to the client,
who then runs the obfuscation evaluation procedure to compute the function
result with the random oracle queries made via evaluating the random function
in FVOPRF online (so the client runs evaluation with FVOPRF c times).

How to Obfuscate MPC Inputs 163

Parameters:
Generator g of cyclic group of order q
Random Oracles H1(·), H2(·), H3(·)
Client C and Server S
KeyGen:

S samples k ← Zq.
S stores k and returns public key gk.

Compromise:
S returns stored key k.

Offline Evaluation:
On input x, S returns H2(gk, x, H1(x)k)

Online Evaluation:
C, on input x, samples r ← Zp and

sends (H1(x))r to S.
S, on message b from C sends h = gk,

bk, and NIZKH3(b, bk, g, gk) to C.
C, on message h, c, π from S, verifies

π is a valid proof then returns
H2(h, x, c1/r).

Fig. 3. VOPRF protocol 2HashDH-NIZK

Our protocol bears a resemblance to the OPAQUE strong aPAKE proto-
col [19], where the client evaluates an OPRF on its password and obtains a point
obfuscation of the password (called the “randomized password” in [19]), receives,
from the server, an encryption of the client’s authenticated key exchange (AKE)
credentials under the randomized password, decrypts and learns its credentials,
and then runs an AKE protocol with the server. However, since our goal here is
not key exchange, our protocol is significantly simpler than OPAQUE: the server
only needs to send the obfuscation (the randomized password) to the client, and
no AKE protocol is run between the client and the server.

Using Verifiable OPRF. Our io2PC protocol requires a verifiable OPRF,
meaning that the client should be convinced that the server uses a consistent
OPRF key. The alert reader may notice that OPAQUE does not require a verifi-
able OPRF. However, OPAQUE corresponds to a variant of io2PC for the special
case of point functions, and some situations arise in the special case of io2PC
which are not present in that special case.

First, point-function obfuscation (and hence OPAQUE) requires only a single
call to the OPRF/random oracle. In the general case, if multiple random oracle
queries are required to evaluate an obfuscation, and these oracle queries are
replaced by OPRF calls, what should happen if a corrupt server changes its
OPRF key between those calls? This is not just a hypothetical question—in the
obfuscation presented in Sect. 6.2, the evaluation algorithm should make some
“dummy queries” to its oracle so that the total number of queries does not
depend on the input. But the choice of which queries are “dummies” depends on
the input. A corrupt server could therefore observe whether changing its OPRF
key in an instance leads to any change in the client’s output, thereby deducing
whether a query is a dummy or not.

Second, point function obfuscation is special because the effect of substituting
the “wrong” OPRF key can be easily simulated. Using the wrong OPRF key
for a point function makes the point function output false with overwhelming

164 I. McQuoid et al.

probability, and this can be simulated by the corrupt server simply choosing a
random target point for the point function. But in general, it is not immediate
that selectively changing the OPRF key is equivalent to choosing a different
obfuscated input.

Theorem 1. Suppose (Obf,ObfEval, c) is a VBB obfuscation for Cf with sim-
ulation rate r, in the random oracle model. Then the io2PC protocol (Fig. 4)
realizes the FiO2PC functionality computing Cf with simulation rate r (Fig. 1) in
the FVOPRF-hybrid world.

Parameters:
– Obfuscation (Obf, ObfEval, c) for the class of functions Cf = {f(x, ·) | x ∈

{0, 1}∗}, in the random oracle model.
– Client C and server S.

On command (Init, sid, x) for S:
1. S: Send (VOPRFInit, sid) to FVOPRF

2. S: Run O ← Obf?(x), where each time Obf queries its oracle at q:
– Send (OfflineEval, sid, ssid, q) to FVOPRF

– Receive response (OfflineEval, sid, ssid, r)
– Give r to Obf as the response to its oracle query

3. S: Store O .

On command (Compromise, sid) from A∗:
4. A∗ must also send (Compromise, sid) to FVOPRF

5. A∗ learns O .

On command (IOEval, sid, ssid) for S:
6. S: Send (sid, ssid, O) to C.
7. Both parties set i := 0.
8. C: Await command (IOEval, sid, ssid, y).
9. C: Run z := ObfEval?(O , y), where each time ObfEval queries its oracle at q:

– C: Send (VOPRFEval, sid, ssid‖i, q) to FVOPRF

– S: Await (VOPRFEval, sid, ssid‖i) from FVOPRF

– Both: set i := i + 1
– S: If i > c: abort. Otherwise, send (SComplete, sid, ssid‖i) to FVOPRF

– C: Await response (VOPRFEval, sid, ssid‖i, r) from FVOPRF

– C: Give r to Obf as the response to its oracle query
10. C: Output (IOEval, sid, ssid, z)

Fig. 4. The io2PC protocol for computing function f , based on a VBB obfuscation in
the random oracle model.

We provide the main ideas for the simulator here and provide a proof of this
theorem in the full version of this paper.

How to Obfuscate MPC Inputs 165

In the Case that S is Corrupt. Sim simulates FVOPRF and keeps track of
all queries the corrupt server makes to the functionality. Upon receiving
(IOEval, sid, ssid,C) from F , and (sid, ssid,Ox) from the corrupt server, Sim
makes dummy OPRF evaluations VOPRFEval and receives Deliver, until it
receives a total number of c Deliver messages from A. Finally, Sim calculates
x := Extract(Ox,H) and sends (IOEval, sid, ssid, x) to F . In this case, we write
S∗ for the server to stress the fact that it is corrupt. The simulator Sim behaves
as follows:

In the Case that C is Corrupt. On Init from F , Sim runs Ox := SimObf1(),
the first phase of the VBB simulator for (Obf,ObfEval). When A compromises
the server and FVOPRF, Sim sends Ox to A.2 When A queries its offline OPRF
oracle on input p after compromise, Sim runs SimObf2() with the adversary
querying H(p). When SimObf2 makes a query y to its oracle f(x, ·), Sim sends
(OfflineEval, y) to F , and on F ’s response (OfflineEval, z), Sim sends z to SimObf2
as the response to its query. Finally, when SimObf2 outputs q as the response to
the adversary’s H(p) query, Sim sends q to A as the OPRF output. On IOEval
from F , Sim sends Ox to the corrupt client. If A queries the OPRF on input p,
Sim runs SimObf2() with the adversary querying H(p) until c queries are made.
Finally, when SimObf2 makes a query y to its function oracle f(x, ·):
– If this is the first such query since the last (IOEval,S) from F , Sim sends

(IOEval, y) to F .
– Otherwise, Sim sends (Redeem, y) to F .

On F ’s response (IOEval, z), Sim sends z to SimObf2 as the response to its
query. Finally, when both of the following happen: (1) SimObf2 outputs q as
the response to the adversary’s H(p) query, and (2) A sends Deliver aimed at
FVOPRF, Sim sends (VOPRFEval, q) to the corrupt client.

5 io2PC for Generic-Group Obfuscations

5.1 Generic Groups

Generic groups were introduced by Shoup [23] as a way to model an idealized
cyclic group where the only allowable operations are the standard group oper-
ations. Consider an encoding σ : Zp → {0, 1}∗ of group elements (without loss
of generality, the cyclic group of order p) into strings. The group operation (on
encoded elements) is defined by the function multσ(σ(x), σ(y)) = σ(x+y mod p).
In Shoup’s generic group model, parties have access to an oracle for multσ for
a uniformly chosen encoding σ, along with an encoding of the group generator.
Under such a random encoding, the encoding of a group element leaks nothing
about that item’s “identity” (i.e. its discrete log).

2 Following e.g., [19], we assume that A always sends a Compromise message to S and
FVOPRF simultaneously. These two actions correspond to a single action in the real
protocol, i.e. compromising the server.

166 I. McQuoid et al.

Maurer [22] proposed a slightly different model of generic groups, where the
encoding of elements is not bijective; i.e. each group element may have many valid
encodings. In this model, a stateful oracle maintains a mapping D : {0, 1}∗ → Zp,
where an abstract handle h represents the group element D[h] ∈ Zp. A party
can query its oracle to multiply handles h1, h2—to do this, the oracle chooses a
new handle h3 and records D[h3] = D[h1] + D[h2] mod p.

In Shoup’s generic group model, every group element x has a unique encod-
ing σ(x), which means that it is trivial to test equality of group elements. In
Maurer’s model, the oracle must provide an equality-test function—i.e. given
handles h1, h2 the oracle returns D[h1]

?= D[h2].
The two generic group models are equivalent in terms of algorithmic power

(e.g., the discrete log problem is equally difficult in both models) [17]. However,
the distinction is important when incorporating generic groups into a larger
cryptographic system. For example, in the Shoup model one may compute a
hash of a group element’s encoding, so that anyone who can compute the same
group element can also compute the same hash. In the Maurer model, two parties
may compute two different handles for the “same” group element, so one must
be more careful about the distinction between handles and the group elements
they represent.

In this work we use a generic group model more similar to Maurer’s model.
The details are given in Fig. 5. Group elements may be represented by many
handles, and the oracle must therefore provide an explicit equality test feature.
Without loss of generality, we provide a zero-test feature as it is simpler.

In Maurer’s model, the handles can be sequential numbers—i.e. the ith ora-
cle query is given handle “i”. This suffices to reason about non-interactive algo-
rithms. In our setting, the generic group oracle is a common resource shared
among many parties (similar to a random oracle), and in that case sequence
numbers would reveal how many group operations other parties have performed.
Our generic group oracle therefore chooses new handles uniformly at random.

Conventions. Although technically a generic group is modeled as an oracle, it
becomes too cumbersome to notate all group operations as oracle calls. Instead,
we use standard (multiplicative) group notation to denote operations in the
group, as is standard.

A group requires both a group operation and inverses. Since we always con-
sider groups of known order p, inverses can be computed by raising to the p − 1
power, which can be done with the group-multiplication oracle, so we do not
provide a separate explicit group-inverse oracle.

Our generic group formulation assumes that every handle represents some
group element. Any handle not specifically generated by the oracle corresponds
to a uniformly chosen group element. Hence, parties can generate [handles of]
random group elements at any time.

Standard Concepts. The generic group oracle uses a map dlog to keep track of
the discrete log of every handle. The discrete log of a group element is of course

How to Obfuscate MPC Inputs 167

dlog := empty map
g∗ ← {0, 1}2κ

dlog[g∗] := 1

ZeroTest(g1):
if dlog[g1] undefined: dlog[g1] ← Zp

return dlog[g1]
?= 0

Mult(g1, g2):
if dlog[g1] undefined: dlog[g1] ← Zp

if dlog[g2] undefined: dlog[g2] ← Zp

g3 ← {0, 1}2κ

dlog[g3] := dlog[g1] + dlog[g2] mod p
return g3

gen():
return g∗

Fig. 5. A generic group oracles for group of order p, with handles of length 2κ

an element of Zp. A common proof technique in the generic group model is to
keep track of discrete logs symbolically.

We use the mathbb font to denote formal variables like K,R. Then we extend
the contents of dlog to contain not only scalars from Zp but rational functions
in these formal variables—i.e. dlog[·] ∈ Zp(K,R, . . .). When multiplying group
elements, the new handle’s dlog value is still recorded as dlog[g3] = dlog[g1] +
dlog[g2], but now addition denotes (symbolic) addition of functions over the
formal variables.

In our security proofs, we write an expression like “gaK+b” to indicate that
the simulator generates a new group handle whose dlog value is the symbolic
expression aK + b. Our convention is that lowercase letters like a, b will denote
scalars from Zp.

In a standard generic-group security proof, a random group element like gr

will be replaced by a symbolic one gR. After an adversary performs group opera-
tions, other group elements may have dlog-values that are expressions including
R. A zero-test on such a group element is performed by checking whether the
dlog of that group element is identically (symbolically) zero. A standard argu-
ment shows that symbolic zero-tests are indistinguishable from real/concrete
zero-test, provided that all symbolic dlog expressions have bounded degree, and
the dlog formal variables take the place of uniformly chosen (concrete) discrete
log values.

5.2 Personalized Generic Group

In the previous sections, we saw that we can convert a VBB obfuscation into
an io2PC protocol by replacing a random oracle with an oblivious PRF. We like
to think of an OPRF as a kind of “personalized” random oracle. It is a ran-
dom function, to which only the server has the key; yet the server can allow
the client to evaluate the function on a private input. Even if the server’s key
to the OPRF is stolen, the adversary’s access to the random function is observ-
able/programmable to the simulator.

In this section we extend this analogy from random oracles to generic groups.
A personalized generic group (PGG) is a group to which only the server

168 I. McQuoid et al.

has the key; yet the server can allow the client to perform the group operation
on private inputs. If the server’s key to the group is stolen, the adversary’s access
to the group is analogous to a true generic group.

We formally define a personalized generic group as an ideal functional-
ity Fpgg in Fig. 6. The functionality maintains a map DLog associating dis-
crete logs with handles, similar to a standard generic group. The server
can perform group operations at any time by sending appropriate commands
(OfflineMult,OfflineZeroTest) to the functionality. The client can perform group
operations, but only interactively (OnlineMult,OnlineZeroTest) and only with
approval from the server. These group operations are oblivious—the server does
not learn which group elements the client is operating on. Only after designating
the session as compromised can a corrupt client also gain the ability to perform
the group operations unilaterally.

We point out some other notable aspects of the definition: There are a few
things that a client can do non-interactively, i.e. without the server’s assistance
and approval. A client can freely “clone” a handle, resulting in another handle
with the same DLog value. In our eventual PGG protocol, this is indeed possible,
but does not seem to give obvious advantage to the client. The client can also
generate a handle representing a random group element since by default, all
handles correspond to uniform group elements.

A corrupt server can learn all discrete logs of all handles. This makes the
simulation considerably easier, but does not seem to represent any issues with
our usage of the functionality. Note that if the server is honest but a corrupt
client compromises the session, the client cannot learn discrete logs. This helps
reflect the fact that the corrupt client can obtain at most oracle access to a
generic group upon compromising the session. It is likely that our PGG protocol
could be proven secure without letting the simulator for a corrupt server learn
all discrete logs, but at the cost of increased proof complexity.

The OnlineMult and OfflineMult commands are not analogous. OfflineMult is
more powerful than OnlineMult, since it allows the caller (either the server or
a client after the session is compromised) to perform arbitrary linear combina-
tions of group elements, not just a single group operation between two elements.
We could define the PGG ideal functionality so that OnlineMult is more pow-
erful than a single group operation, and our protocol could achieve this feature
in a natural way. We have chosen to model only the minimal functionality of
OnlineMult.

The simulator for a Fpgg protocol should only call OfflineMult at most once
for each multiplication made (after compromise) in the common group by the
corrupt client; and it should call OfflineZeroTest at most once for each zero-test
made in the common group by the corrupt client. i.e. an adversary must expend
new effort for each OfflineMult and OfflineZeroTest, and furthermore that effort
must be expended after compromise. However, recall that an OfflineMult is more
powerful than a single multiplication. A corrupt client could perform a single
multiplication in the common group that is as powerful as a single OfflineMult
(which performs a more powerful linear combination of group elements) in the

How to Obfuscate MPC Inputs 169

personalized group.3 For this reason, it is much more important to measure
an adversary’s effort in terms of zero-tests and not group multipli-
cations, since the simulator does not precisely preserve the number of group
multiplications between the common group and personalized group. Only the
zero-tests are preserved exactly.

5.3 Protocol for Personalized Generic Groups

In this section we describe our protocol for a personalized generic group. The
protocol is in the ideal permutation model and uses a generic group itself. This
leads to a high potential for confusion. We differentiate between the common
group and the personalized group:

The common group is the generic group that is used by the protocol. Both
parties have unrestricted oracle access to the operations of this group. Group
element handles are associated with their discrete log via a map that we call dlog.
In the security proof, the simulator finds it useful to play the role of this generic
group and maintain the dlog map differently (e.g., with symbolic expressions
rather than scalars from Zp).

The personalized group is one that is realized by the protocol. In the ideal
functionality for this personalized group, handles are associated with their dis-
crete log via a map that we call DLog. The goal of this personalized group is to
carefully restrict the client’s access to the operations that involve DLog, via an
interactive protocol.

Main Idea. In our protocol, a “key” for a personalized generic group consists of
a key k to a strong PRP F , with forward and inverse evaluation denoted F+ and
F− respectively, and a random generator ĝ (of the common group). An element
in the personalized group with discrete log x is represented by a handle of the
form (Fk(m), ĝxgm) for m ∈ Z providing a multiplicative blind gm. This kind of
encoding can be motivated as follows:

A client who doesn’t know the “key” to the personalized group can only
create handles of random elements, because the action of F±

k is unpredictable.
After compromising the server and learning the “key” (k, ĝ), an adversary

can invert the PRP to obtain m, then remove the gm blinding term to obtain
simply ĝx. In other words, after compromising the server, the handle becomes
equivalent to knowing ĝx. The adversary can now perform group operations on
these unblinded values of the form ĝx, without the server’s help. But since we
are in a generic group, the simulator can continue to observe the adversary’s
group operations on these values.

With the help of the server, it is possible for the client to perform group
operations on two of these handles:

1. Consider two handles of the form (c1, g1) and (c2, g2), where c1 =
Fk(m1), c2 = Fk(m2) and g1 = ĝx1gm1 , g2 = ĝx2gm2 . The client can perform

3 This is indeed possible in our protocol but would be mitigated if the common-group
oracle had a group-multiplication feature exactly as powerful as OfflineMult of Fpgg.

170 I. McQuoid et al.

g3 = g1g2 = ĝx1+x2gm1+m2 . This is half of a valid handle for the element with
discrete log x1 + x2. If the client can obtain an encryption of Fk(m1 + m2),
they will be able to construct a complete and correct handle.

2. The client and server run a 2PC protocol, where the client provides c1, c2,
and the server provides k, and the client learns Fk(m1 + m2). The server
learns nothing. Note that this 2PC protocol involves no group operations in
the common generic group – it merely involves arithmetic on exponents and
PRP evaluation.

Similarly, the client can perform a zero-test with the server’s help:

1. Given a handle (c1, g1) the client wants to know whether these have the form
c1 = Fk(m1) and g1 = ĝ0gm1 = gm1 . In other words, the client should learn
whether c1 encrypts the discrete log of g1.

2. Our approach again involves enlisting the help of a 2PC protocol. The client
provides c1 and the server provides k, so m1 can be obtained inside the 2PC
functionality. The functionality provides two basic functions: First, it chooses
a random s and lets the client learn gs·m1 using the value of m1 that it
computed. Next, it allows the client to raise any group element of its choice
to the s power. Assuming the client chooses to compute gs

1, the result equals
gs·m1 if and only if g1 = gm1 . We discuss exactly how this is done below.

Details and Fine Print. The full details of our protocol are given in Fig. 8, where
the separate 2PC functionality invoked by the parties is described in Fig. 7. This
“helper functionality” is a typical reactive functionality that can be securely
realized by any standard 2PC protocol. The preceding outline captures the main
intuition of our protocol, but there are several necessary modifications required
for technical reasons.

First, the handles are “wrapped” in an ideal permutation Π±—i.e. a valid
handle is h of the form Π(c1, g1) where c1, g1 are as described above, and Π is an
ideal permutation. By enlisting the ideal permutation, the simulator can observe
every time a new handle is generated or an existing handle is “unpacked” into
its two components.

In our outline, the parties run an oblivious protocol that allows a client,
who holds handles Π(Fk(m1), ĝx1gm1) and Π(Fk(m2), ĝx2gm2), to obtain a new
handle Π(Fk(m1+m2), ĝx1+x2gm1+m2). However, this new handle would leak its
“history” to anyone who holds k, which would be undesirable. The new handle
should instead have a fresh mask m3, rather than a mask m1 + m2 derived
from its parent handles. When the parties run a 2PC to let the client learn its
new ciphertext, the client should instead learn Fk(m3) for a fresh m3. Then the
client needs to learn a correction term Δ = gm3−m1−m2 so it can complete the
handle as Π

(
Fk(m3), (g1 · g2 · Δ) = ĝx1+x2gm3

)
. Since the 2PC functionality

itself cannot generate group elements (this would require contacting the generic
group oracle for the common group), it delegates this task to the server. i.e. it
gives m3 − m1 − m2 to the server, who generates and sends Δ = gm3−m1−m2 to
the client.

How to Obfuscate MPC Inputs 171

Parameters:
– group order p
– handle length �
– client C and server S

Storage:
– map DLog; our convention is uninitialized entries of DLog are sampled uni-

formly from Zp before being used.
– map status

On input (Init, sid, h ∈ {0, 1}�) from server S:
1. If status[sid] already defined: abort.
2. Set status[sid] := active.
3. Send (Init, sid, S, h) to C.
4. Set DLog[h] := 1.

On (Compromise, sid) from A∗:
5. Set status[sid] := compromised.

On input (OnlineMult, sid, ssid, h1, h2) from C:
6. Give (OnlineMult, sid, ssid) to S and await response (Deliver, sid, ssid)
7. Sample h3 ← {0, 1}�.
8. Set DLog[h3] := DLog[h1] + DLog[h2] mod p.
9. Give (OnlineMult, sid, ssid, h3) to P .

On input (OfflineMult, sid, ssid, u0, (u1, h1), . . . , (un, hn)) from party P ∈ {S, A∗}:
10. If status[sid] �= compromised and P = A∗: do nothing.
11. Sample h′ ← {0, 1}�.
12. Set DLog[h′] := u0 + u1DLog[h1] + · · · + unDLog[hn] mod p.
13. Give (OfflineMult, sid, ssid, h′) to P .

On input (cmd ∈ {OnlineZeroTest, OfflineZeroTest}, sid, ssid, h) from party P ∈
{A∗, S}:
14. If status[sid] �= compromised and cmd = OnlineZeroTest and P = A∗: do

nothing.
15. If cmd = OnlineZeroTest:

Give (OnlineZeroTest, sid, ssid) to S and await response (Deliver, sid, ssid)
16. Give (cmd, sid, ssid, [DLog[h] ?= 0]) to P .

On input (Identify, h) from corrupt S:
17. Give DLog[h] to S

On input (Register, v) from corrupt S:
18. h ← {0, 1}�

19. DLog[h] := v
20. Give h to C

On input (CloneHandle, h) from corrupt C:
21. h′ ← {0, 1}�

22. DLog[h′] := DLog[h]
23. Give h′ to C

Fig. 6. The personalized generic group functionality Fpgg.

172 I. McQuoid et al.

However, the server may cheat and send a different group element than the
functionality intended. To prevent this, the functionality authenticates the group
element with a one-time MAC. The functionality gives random MAC key α, β
to the client, and gives s and its one-time MAC μ = αs + β to the server. Now
the server can send both gs and gμ to the client, who can check the MAC in the
exponent via (gs)α · gβ ?= (gμ).

There are two conceptual steps in the zero-test protocol which are more com-
plicated than our high-level outline. First, the 2PC helper functionality wants
the client to learn the group element gm1s. It delegates this to the server, using
the same method above with one-time MACs, so that the client can be sure that
it receives the intended group element. Actually, we must blind the exponent
m1s from the server (since it also learns s below, and it should not learn m1

which is tied to this particular handle)—so the functionality gives a random z
to the client, and asks the server to deliver gm1s+z. The client can unblind by
multiplying with g−z.

Second, the 2PC functionality gives s to the server so that the server can
take part in a blind exponentiation protocol (raising a group element of the
client’s choice to the s power). It is important to ensure that the server raises
the client’s element to the correct power, since otherwise the server could easily
cause a zero-test to fail even when it should correctly succeed. For this, we (1)
have the functionality deliver the value gs to the client (via delegating to the
server), and (2) have the server run a simple verifiable exponentiation protocol,
where the client can be convinced that its group element was indeed raised to
the s power.

Security. In the full version of this paper we prove the following:

Theorem 2. The protocol in Fig. 8 UC-securely realizes Fpgg (Fig. 6) in the
generic group and ideal-permutation model, when F is a strong PRP.

We provide a sketch of the main ideas here. The case of a corrupt server is
considerably easier. It is easy to see that the server’s view during OnlineMult,
OnlineZeroTest gives no information about the client’s choice of handles, since
all the communication is mediated through the helper functionality Fhelper. The
Fpgg functionality allows a corrupt server to both learn the discrete log for any
handle, and also directly register a handle with a chosen discrete log. The simu-
lator can use these features to intercept all of the adversary’s Π± oracle queries
and relay discrete log information between the functionality and the actual group
elements used for h = Π(·, g1).

The case of a corrupt client is considerably more complex, but the main idea
is as follows. In the real world, handles have the form h = Π(c, ĝDLog[h]gF−1

k (c)).
We use the technique of symbolic discrete logs (described in Sect. 5.1) to model
the adversary’s ignorance of certain values. The adversary does not know the
discrete log of ĝ, so we represent it by a formal variable K. Before the session
is compromised, the adversary does not know F−1

k (c) for any c, so we represent
this value by formal variable Mc. The adversary initially does not know anything
about the DLog[h] values, so we represent them by formal variables Dh.

How to Obfuscate MPC Inputs 173

Parameters:
– modulus p
– strong PRP F ± : {0, 1}κ × Zp → Zp

– client C and server S

Storage: value k, initially sampled as k ← {0, 1}κ

On command (HelpInit, sid) from S:
1. Sample α, β, c, s ← Zp

2. μ = αs + β // one-time MAC of s under key (α, β)
3. Send (HelpInit, sid, α, β, c) to C and send (HelpInit, sid, s, μ, c, k) to S.

On command (HelpMult, sid, ssid, c1, c2) from C:
4. Send (HelpMult, sid, ssid) to S await response (Deliver, sid, ssid).
5. m1 := F −1

k (c1); m2 := F −1
k (c2).

6. α, β, m3 ← Zp.
7. c3 = Fk(m3).
8. s = m3 − m1 − m2 mod p.
9. μ = αs + β mod p. // one-time MAC of s under key (α, β)

10. Give (HelpMult, sid, ssid, α, β, c3) to C and give (HelpMult, sid, ssid, s, μ) to S

On command (HelpZeroTest, sid, ssid, c) from C:
11. Send (HelpZeroTest, sid, ssid) to S and await response (Deliver, sid, ssid)
12. m := F −1

k (c).
13. α, β, γ, s, z ← Zp.
14. t := sm + z
15. μ = αs + βt + γ mod p. // one-time MAC of (s, t) under key (α, β, γ)
16. Give (HelpZeroTest, sid, ssid, α, β, γ, z) to C and

give (HelpZeroTest, sid, ssid, s, t, μ) to S

Fig. 7. Helper functionality Fhelper for our personalized generic group protocol.

The adversary can only gain information about group elements (in the com-
mon group) through a zero-test. When the adversary makes such a zero-test, the
simulator observes it and checks the dlog value of that group element. This dlog
is a symbolic expression over the formal variables. Formal variables Mc and K

represent values that are random from the adversary’s point a view, so if the dlog
expression is not symbolically equal to zero as a function of those variables, then
the zero test in the real world would succeed only with negligible probability.
Hence the simulator can simply claim that the zero-test fails. However, the dlog
expression may contain Dh terms which represent concrete DLog[h] values, and
depending on the actual values in DLog[h] the dlog expression may or may not
be identically zero as a function of the other formal variables. In that case, the
simulator must know whether the concrete DLog values make the dlog expression
identically zero. We carefully analyze what kinds of expressions are possible in
dlog, and show that this situation only happens when the simulator needs to
know whether a single DLog[h] value is zero, and then only after the adversary
has done an OnlineZeroTest on h. In all other cases, the concrete values in DLog

174 I. McQuoid et al.

Parameters:
– generic group 〈g〉 of prime order p, with handles of length 2κ
– strong PRP F ±

– ideal permutation Π± : (Zp × {0, 1}2κ) → (Zp × {0, 1}2κ)
– client C and server S

On input (Init, sid) for server S:
1. S: Send (HelpInit, sid) to Fhelper

2. C: Receive (HelpInit, sid, α, β, c) from Fhelper

3. S: Receive (HelpInit, sid, s, μ, c, k) from Fhelper

4. S: Store (ĝ := gs−m, k), where m := F −1
k (c).

5. S: Send (S = gs, M = gμ) to C.
6. C: If Sα · gβ �= M : abort.
7. C: Output (Init, sid, h = Π(c, S))

On input (Compromise, sid) from A∗:
8. A∗ should learn (k, ĝ)

On input (OnlineMult, sid, ssid, h1, h2) for C:
9. C: (c1, g1) = Π−1(h1); (c2, g2) = Π−1(h2).

10. C: Send (HelpMult, sid, ssid, c1, c2) to Fhelper

11. S: Await (Deliver, sid, ssid) from environment and forward it to Fhelper

12. C: Receive (HelpMult, sid, ssid, α, β, c3) from Fhelper

13. S: Receive (HelpMult, sid, ssid, s, μ) from Fhelper

14. S: Send (S = gs, M = gμ) to C.
15. C: If Sα · gβ �= M : abort.
16. C: Output (OnlineMult, sid, ssid, h3 = Π(c3, g1 · g2 · S))

On input (OnlineZeroTest, sid, ssid, h1) for C:
17. C: (c1, g1) = Π−1(h1).
18. C: Send (HelpZeroTest, sid, ssid, c1) to Fhelper

19. S: Await (Deliver, sid, ssid) from environment and forward it to Fhelper

20. C: Receive (HelpZeroTest, sid, ssid, α, β, γ, z) from Fhelper

21. S: Receive (HelpZeroTest, sid, ssid, s, t, μ) from Fhelper

22. S: Send (S = gs, T = gt, M = gμ) to C.
23. C: If Sα · T β · gγ �= M : abort.
24. C: a, b, c ← Zp; A := ga

1 · gb; C := gc
1; send (A, C) to S.

25. S: Send A′ = As and C′ = Cs to C
26. C: If (A′)c �= (C′)a · Sbc: abort
27. C: Output (OnlineZeroTest, sid, ssid, [(C′)1/c ?= T · g−z])

On input (OfflineMult, sid, ssid, u0, (u1, h1), . . . , (un, hn)) for S:
28. S: For each i ∈ [n] do: (ci, gi) = Π−1(hi); mi := F −1

k (ci)
29. S: m∗ ← Zp; c∗ := Fk(m∗); h∗ = Π(c∗, ĝu0

∏
i gui

i · gm∗−∑
i mi)

30. S: Output (OfflineMult, sid, ssid, h∗)

On input (OfflineZeroTest, sid, ssid, h1) for S:
31. S: (c1, g1) = Π−1(h1); m1 := F −1

k (c1)

32. S: Output (OfflineZeroTest, sid, ssid, [g1
?= gm1])

Fig. 8. Our personalized generic group protocol.

How to Obfuscate MPC Inputs 175

have no bearing on whether a dlog expression is symbolically zero (at least before
session compromise).

When the adversary compromises the session, it learns the PRP key k. This
makes the F−1

k (c) values no longer uncertain from the adversary’s point of view.
We model this by having the simulator replace every formal variable Mc with a
concrete value F−1

k (c), after compromise. This changes what kinds of expressions
the adversary is able to make appear in dlog. After the compromise, there are
more situations where the concrete values in DLog[h] have a bearing on whether
a dlog expression is symbolically zero. In those cases, the simulator can use
OfflineMult,OfflineZeroTest to learn the relevant information about those DLog
values.

5.4 io2PC Protocol for Generic-Group Obfuscation

Finally, with a personalized generic group, we can realize io2PC for any function
that has a suitable VBB obfuscation in the generic group model. The protocol
is essentially the same as our io2PC for random-oracle obfuscation (Fig. 4), but
we replace the OPRF with a personalized generic group. We give the details in
Fig. 9.

Theorem 3. Suppose (Obf,ObfEval, c) is a VBB obfuscation for Cf with sim-
ulation rate r, in the generic group model. Then the io2PC protocol (Fig. 9)
realizes the FiO2PC functionality computing Cf with simulation rate r (Fig. 1) in
the Fpgg-hybrid world.

The proof is essentially identical to that of Theorem 1, with the obvious
changes replacing the random oracle/OPRF with generic group/personalized
group.

6 Compatible Obfuscations

In this section we discuss obfuscations that are compatible with our io2PC
approach, namely those that are input-independent, virtual black-box, and
extractable.

6.1 Point Functions

For the point function, i.e. the function family Cf where f(x, y) = (x ?= y), there
is a simple obfuscation in the random oracle model. We only sketch the scheme
and its security argument: given a random oracle H with range H, let Obf(x)
output H(x), and ObfEval(Ox, y) output (H(y) ?= Ox). Clearly, this scheme
is correct and input-independent with query rate c = 1. The VBB simulator
chooses Ox ← H and answers the adversary’s H(y) queries as follows: it learns
whether y = x via querying f(x, y), and if so, it returns Ox; otherwise it returns
a random element in H. The simulation rate is 1 as QS = QA.

176 I. McQuoid et al.

Parameters:
– Obfuscation (Obf, ObfEval, c) for the class of functions Cf = {f(x, ·) | x ∈

{0, 1}∗}, in the generic-group model.
– Client C and server S.

On command (Init, sid, x), S for S:
1. S: Send (Init, sid) to Fpgg

2. S: Receive response (Init, sid, h)
3. S: Run O ← Obf?(x), where each time Obf queries its oracle:

– If the query is of the form Mult(h1, h2):
• Send (OfflineMult, sid, ssid, 0, (1, h1), (1, h2)) to Fpgg

• Receive response (OfflineMult, sid, ssid, h3)
• Give h3 to Obf as the response to its oracle query

– If the query is of the form ZeroTest(h1):
• Send (OfflineZeroTest, sid, ssid, h1) to Fpgg

• Receive response (OfflineZeroTest, sid, ssid, b)
• Give b to Obf as the response to its oracle query

4. S: Store O .

On command (Compromise, sid) from A∗:
5. A∗ must also send (Compromise, sid) to Fpgg

6. A∗ learns O .

On command (IOEval, sid, ssid) for S:
7. S: Send (sid, ssid, O) to C.
8. Both parties set i := 0
9. C: Await command (IOEval, sid, ssid, y).

10. C: Run z := ObfEval?(O , y), where each time ObfEval queries its oracle:
– If the query is of the form Mult(h1, h2):

• C: Send (OnlineMult, sid, ssid‖i, h1, h2) to Fpgg

• S: Await (OnlineMult, sid, ssid‖i) from Fpgg

• S: Send (Deliver, sid, ssid‖i) to Fpgg

• C: Await response (OnlineMult, sid, ssid‖i, h3) from Fpgg

• C: Give h3 to Obf as the response to its oracle query
– If the query is of the form ZeroTest(h1):

• C: Send (OnlineZeroTest, sid, ssid‖i, q) to Fpgg

• S: Await (OnlineZeroTest, sid, ssid‖i) from Fpgg

• Both: set i := i + 1
• S: If i > c: abort. Otherwise, send (Deliver, sid, ssid‖i) to Fpgg

• C: Await response (OnlineZeroTest, sid, ssid‖i, b) from Fpgg

• C: Give b to Obf as the response to its oracle query
11. C: Output (IOEval, sid, ssid, z)

Fig. 9. The io2PC protocol for computing function f , based on a VBB obfuscation in
the generic group model.

How to Obfuscate MPC Inputs 177

For the extractability property, Extract(O,H) checks if there is an x ∈ H
such that H(x) = O. If there is more than one such x, Extract aborts; if there is
exactly one such x, it outputs x; if there is no such x, it outputs ⊥. It is not hard
to see that the probability of the bad event in the definition of extractability is
negligible (it happens only if A finds a collision in H, or finds O, y with O = H(y)
without querying H(y)).

6.2 Hyperplane Membership

Extending the idea of point-function obfuscation above, we may consider the
same function in higher dimensional spaces. In this section, we provide a new
proof for a hyperplane membership protocol in the generic group model.

Let p be a prime with ||p|| = κ and d = poly(κ). For x ∈ Z
d
p, define function

Fx : Zd
p → {false,true} as

Fx(y) =

{
true if 〈x,y〉 = 0
false otherwise

i.e. Fx computes membership in the subspace of Zd
p containing all vectors orthog-

onal to x. We use Fd
p to denote the function family {Fx}. Obfuscation of Fd

p

has been considered previously [10], and we recall the construction below.

Obfuscation. The obfuscation in Fig. 10 is due to Canetti, Rothblum, and
Varia [10] whose proof is based on strong DDH assumption proven in the GGM,
but the proof constructs an inefficient simulator in the dimension of the ambient
space. We reconsider the protocol and prove for an efficient simulator with access
to a global GGM.

Parameters:
Generic group G with handle space H.
Public generator g of prime order p.
Ambient space dimension d.
Obf(x):

Sample a generator γ of G.
Return O = (γ i)i∈[d].

ObfEval(O ,y):
Interpret O as (oi)i∈[d] ∈ Hd.

Return
∏

i o i
i

?= g0

Fig. 10. VBB hyperplane membership obfuscation

On input x = (xi)i∈[d] ∈ Z
d
p and input y = (yi)i∈[d] ∈ Z

d
p, correctness is

immediately evident as ObfEval(Obf(x),y) computes
∏

i (γxi)yi = γ〈x,y〉 ?= γ0.
The obfuscation algorithm Obf(x) must be careful about optimizing its generic
group operations, however. Even if xi = xj for distinct i, j, the obfuscation

178 I. McQuoid et al.

algorithm must ensure that distinct handles are generated for γxi and γxj ; e.g.,
by separately multiplying by g0. Finally, note that depending on how Fig. 10
is implemented, the number of multiplication queries that ObfEval makes is
data dependent. Specifically, when evaluating exponentiation through squaring
ObfEval will compute g2 with one query while computing g127 will require 12
queries. To make the total number of multiplication queries a constant, we may
simply require a constant-time exponentiation algorithm.

In our previous definition for simulation rate, we stated that for an obfus-
cation to have simulation rate r, it must hold that QS ≤ r · QA

c . However, the
GGM oracle has two interfaces for queries: the multiplication query Mult and
the zero test query ZeroTest. As we stated earlier (see Sect. 5.2), it is much
more important to measure an adversary’s effort in terms of zero-tests and not
group multiplications. If we only count ZeroTest queries, the obfuscation scheme
is indeed limited by a single query with QS = QA. In the theorem below, the
statements about query rate and simulation rate refer only to ZeroTest queries.

Virtual Black-Box Property

Theorem 4. The scheme in Fig. 10 is a VBB obfuscation Definition 3 for F in
the Generic Group Model, with query rate c = 1 and simulation rate r = 1.

Proof Sketch:
The simulator Sim replaces the obfuscation Ox with uniformly sampled handles
O ← Hd and then plays the role of the two GG oracles Mult and ZeroTest. In
the real world, the obfuscation uses a sampled generator γ with uniform discrete
logarithm and since this value is outside the adversary’s view, we represent it
with the formal variable K. Sim then catalogs the symbolic discrete logarithms
of all multiplications the adversary makes relative to handles {oi}i∈[d], compris-
ing O, and the public generator g. As the adversary can only gain information
about relations between group elements through a zero-test, it can’t tell if O was
replaced until it interacts with the ZeroTest oracle. When the adversary makes
such a zero-test, Sim checks the discrete logarithm of that group element. By
construction, the discrete logarithm of these queries will take on the form of a
polynomial K (

∑
i aixi) + z, for coefficients ai, z ∈ Zp, relative to base g. Noting

that
∑

i aixi is exactly 〈x,a〉, Sim may then check if this combination is zero by
querying the function oracle f(x,a). But since the simulator does not need to
know the xi to make the query, the simulator may run agnostic of the input x.

A full proof of this property and the security of the construction is given in
the full version of this paper.

Extractability. The construction in Fig. 10 is extractable (Definition 4)
through the following algorithm:

– Extract on input (O,H) iterates through all handles in H and catalogs their
discrete logarithms relative to g in a list DL.

• If any handles h were sampled by A, Extract samples a uniform discrete
logarithm DL[h] ← Zp.

How to Obfuscate MPC Inputs 179

– Extract, interprets O as (oi)i∈[d] ∈ Hd, and for each oi:
• If DL[oi] is defined, Extract sets xi := DL[oi].
• Otherwise, Extract samples xi ← Zp.

– Extract finally returns x = (xi)i∈[d].

A proof of this property is given in the full version of this paper.

References

1. Albrecht, M.R., Davidson, A., Deo, A., Smart, N.P.: Round-optimal verifiable
oblivious pseudorandom functions from ideal lattices. In: Garay, J.A. (ed.) PKC
2021, Part II. LNCS, vol. 12711, pp. 261–289. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-75248-4 10

2. Bartusek, J., Lepoint, T., Ma, F., Zhandry, M.: New Techniques for Obfuscating
Conjunctions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part III. LNCS,
vol. 11478, pp. 636–666. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-17659-4 22

3. Beimel, A., Gabizon, A., Ishai, Y., Kushilevitz, E., Meldgaard, S., Paskin-
Cherniavsky, A.: Non-Interactive Secure Multiparty Computation. In: Garay, J.A.,
Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 387–404. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1 22

4. Bellovin, S.M., Merritt, M.: Augmented encrypted key exchange: a password-based
protocol secure against dictionary attacks and password file compromise. In: Den-
ning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby, V. (eds.) ACM CCS 1993,
pp. 244–250. ACM Press (1993)

5. Brakerski, Z., Rothblum, G.N.: Obfuscating conjunctions. In: Canetti, R., Garay,
J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 416–434. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-40084-1 24

6. Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via
generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
1–25. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 1

7. Canetti, R.: Towards realizing random oracles: hash functions that hide all partial
information. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 455–469.
Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052255

8. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press (2001)

9. Canetti, R., Dakdouk, R.R.: Obfuscating point functions with multibit output.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 489–508. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 28

10. Canetti, R., Rothblum, G.N., Varia, M.: Obfuscation of hyperplane membership.
In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 72–89. Springer, Heidel-
berg (2010). https://doi.org/10.1007/978-3-642-11799-2 5

11. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious
pseudorandom functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–
324. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7 17

12. Gentry, C., MacKenzie, P., Ramzan, Z.: A method for making password-based
key exchange resilient to server compromise. In: Dwork, C. (ed.) CRYPTO 2006.
LNCS, vol. 4117, pp. 142–159. Springer, Heidelberg (2006). https://doi.org/10.
1007/11818175 9

https://doi.org/10.1007/978-3-030-75248-4_10
https://doi.org/10.1007/978-3-030-75248-4_10
https://doi.org/10.1007/978-3-030-17659-4_22
https://doi.org/10.1007/978-3-030-17659-4_22
https://doi.org/10.1007/978-3-662-44381-1_22
https://doi.org/10.1007/978-3-642-40084-1_24
https://doi.org/10.1007/978-3-642-54242-8_1
https://doi.org/10.1007/BFb0052255
https://doi.org/10.1007/978-3-540-78967-3_28
https://doi.org/10.1007/978-3-642-11799-2_5
https://doi.org/10.1007/978-3-540-30576-7_17
https://doi.org/10.1007/11818175_9
https://doi.org/10.1007/11818175_9

180 I. McQuoid et al.

13. Gordon, S.D., Malkin, T., Rosulek, M., Wee, H.: Multi-party computation of poly-
nomials and branching programs without simultaneous interaction. In: Johans-
son, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 575–591.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 34

14. Halevi, S., Ishai, Y., Jain, A., Komargodski, I., Sahai, A., Yogev, E.: Non-
Interactive Multiparty Computation Without Correlated Randomness. In: Takagi,
T., Peyrin, T. (eds.) ASIACRYPT 2017, Part III. LNCS, vol. 10626, pp. 181–211.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6 7

15. Halevi, S., Lindell, Y., Pinkas, B.: Secure computation on the web: computing
without simultaneous interaction. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 132–150. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22792-9 8

16. Hesse, J.: Separating symmetric and asymmetric password-authenticated key
exchange. In: Galdi, C., Kolesnikov, V. (eds.) SCN 2020. LNCS, vol. 12238, pp.
579–599. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57990-6 29

17. Jager, T., Schwenk, J.: On the equivalence of generic group models. In: Baek, J.,
Bao, F., Chen, K., Lai, X. (eds.) ProvSec 2008. LNCS, vol. 5324, pp. 200–209.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88733-1 14

18. Jarecki, S., Kiayias, A., Krawczyk, H.: Round-optimal password-protected secret
sharing and T-PAKE in the password-only model. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 233–253. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-45608-8 13

19. Jarecki, S., Krawczyk, H., Xu, J.: OPAQUE: an asymmetric PAKE protocol
secure against pre-computation attacks. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018, Part III. LNCS, vol. 10822, pp. 456–486. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78372-7 15

20. Jarecki, S., Liu, X.: Efficient oblivious pseudorandom function with applications to
adaptive OT and Secure Computation of Set Intersection. In: Reingold, O. (ed.)
TCC 2009. LNCS, vol. 5444, pp. 577–594. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00457-5 34

21. Lynn, B., Prabhakaran, M., Sahai, A.: Positive results and techniques for obfusca-
tion. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 20–39. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-
3 2

22. Maurer, U.M.: Abstract models of computation in cryptography (invited paper).
In: Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 1–12.
Springer, Heidelberg (2005). https://doi.org/10.1007/11586821 1

23. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-69053-0 18

24. Thomas, K., et al.: Protecting accounts from credential stuffing with password
breach alerting. In: 28th USENIX Security Symposium (USENIX Security 19),
Santa Clara, CA, pp. 1556–1571. USENIX Association (2019)

25. Wee, H.: On obfuscating point functions. In: Gabow, H.N., Fagin, R. (eds.) 37th
ACM STOC, pp. 523–532. ACM Press (2005)

https://doi.org/10.1007/978-3-642-38348-9_34
https://doi.org/10.1007/978-3-319-70700-6_7
https://doi.org/10.1007/978-3-642-22792-9_8
https://doi.org/10.1007/978-3-642-22792-9_8
https://doi.org/10.1007/978-3-030-57990-6_29
https://doi.org/10.1007/978-3-540-88733-1_14
https://doi.org/10.1007/978-3-662-45608-8_13
https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/978-3-642-00457-5_34
https://doi.org/10.1007/978-3-642-00457-5_34
https://doi.org/10.1007/978-3-540-24676-3_2
https://doi.org/10.1007/978-3-540-24676-3_2
https://doi.org/10.1007/11586821_1
https://doi.org/10.1007/3-540-69053-0_18

Statistical Security in Two-Party
Computation Revisited

Saikrishna Badrinarayanan1, Sikhar Patranabis2, and Pratik Sarkar3(B)

1 Snap, Seattle, USA
2 IBM Research India, Bangalore, India

sikhar.patranabis@ibm.com
3 Department of Computer Science, Boston University, Boston, USA

pratik93@bu.edu

Abstract. We present a new framework for building round-optimal one-
sided statistically secure two party computation (2PC) protocols in the
plain model. We demonstrate that a relatively weak notion of oblivi-
ous transfer (OT), namely a three round elementary oblivious trans-
fer eOT with statistical receiver privacy, along with a non-interactive
commitment scheme suffices to build a one-sided statistically secure two
party computation protocol with black-box simulation. Our framework
enables the first instantiations of round-optimal one-sided statistically
secure 2PC protocols from the CDH assumption and certain families of
isogeny-based assumptions.

As part of our compiler, we introduce the following new one-sided sta-
tistically secure primitives in the pre-processing model that might also
be of independent interest:

1. Three round statistically sender private random-OT where only the
last OT message depends on the receiver’s choice bit and the sender
receives random outputs generated by the protocol.

2. Four round delayed-input statistically sender private conditional dis-
closure of secrets where the first two rounds of the protocol are inde-
pendent of the inputs of the parties.

The above primitives are directly constructed from eOT and hence we
obtain their instantiations from the same set of assumptions as our 2PC.

1 Introduction

Secure two party computation (2PC) enables two mutually distrusting par-
ties to compute a function on their private inputs without revealing anything

S. Badrinarayanan—Work done while the author was affiliated with Visa Research
USA.
S. Patranabis—Most of the work was done while the author was affiliated with Visa
Research USA.
P. Sarkar—Supported by NSF Awards 1931714, 1414119, and the DARPA SIEVE
program.

c© The Author(s), under exclusive license to Springer Nature Switzerland 2022
E. Kiltz and V. Vaikuntanathan (Eds.): TCC 2022, LNCS 13748, pp. 181–210, 2022.
https://doi.org/10.1007/978-3-031-22365-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22365-5_7&domain=pdf
https://doi.org/10.1007/978-3-031-22365-5_7

182 S. Badrinarayanan et al.

beyond their output. An important question in the study of secure computa-
tion has been designing protocols in minimal rounds. The phenomenal work
of Katz and Ostrovsky [KO04] showed that four rounds are necessary when
one party receives the output and five rounds are necessary if both parties
wish to receive output. Starting with [KO04], there has been a large body of
work in designing round-optimal protocols in the plain model, secure against
a probabilistic polynomial time (PPT) malicious adversary, in the two-party
setting [ORS15,COSV17,CCG+21] and the multi-party setting with dishonest
majority [GMPP16,BHP17,ACJ17,BGJ+18,HHPV18,CCG+20].

Statistical Security. A natural question to ask is can we obtain round
optimal protocols when the parties are computationally unbounded? For the
specific problem of zero knowledge proofs/arguments, this question has been
well studied [GMW91,Nao91,GK96,BJY97,NOVY98,HNO+09]. In particular,
assuming collision resistant hash functions: (i) Statistical zero knowledge argu-
ments for NP, where soundness is computational and zero knowledge is sta-
tistical, are known in four rounds (round optimal) with black-box simula-
tion [BJY97] and (ii) Computational zero knowledge proofs for NP, that sat-
isfy statistical soundness and computational zero knowledge, are known in
five rounds (round optimal) with black-box simulation [GK96]. There has
also been work on building round-optimal (two rounds) statistically secure
protocols for weaker functionalities like ZAPs and witness indistinguishable
proofs/arguments [DN07,KKS18,BFJ+20,GJJM20].

Handling computationally unbounded adversaries for general two party func-
tionalities is more challenging. For instance, Katz [Kat08] proved that it is impos-
sible to obtain four round zero knowledge (ZK) proofs. This immediately rules
out statistical security in four rounds for a two party secure computation protocol
where only one party (denoted as the receiver) wishes to learn the output and the
other party (denoted as the sender) is computationally unbounded. Therefore,
the best possible security that one can hope for in four rounds is security against
a computationally unbounded receiver and a PPT sender. This was termed as
one-sided statistical security by Khurana and Mughees [KM20]. The works of
[OPP14,CO17,KKS18] considered weaker notions such as one-sided statistical
security with respect to super-polynomial time simulation. However, the question
of obtaining one-sided statistically secure protocols with (standard) polynomial-
time black-box simulation remained elusive for a long time. Only recently, this
question was addressed by the work of [KM20]. They constructed round-optimal
one-sided statistically secure two-party computation protocols with black-box
simulation-based security against malicious adversaries:

– A four round statistically sender private (SSP) protocol where the receiver
obtains the output at the end of fourth round,

– A five round statistically sender private protocol where the receiver obtains
the output at the end of fourth round and the sender obtains the output at
the end of fifth round.

The underlying building blocks in [KM20] are two-round statistically sender
private OT (SSPOT) [BD18,NP01,HK12] and a non-interactive commitment

Statistical Security in Two-Party Computation Revisited 183

Fig. 1. Roadmap of our compiler

scheme. They instantiate the above protocol based on Learning with Errors
(LWE), Decisional Diffie Hellman (DDH) or Quadratic Residuosity (QR). How-
ever, it was left as an open problem in their work to study the minimal assump-
tions required to obtain round-optimal 2PC protocols with one-sided statistical
security, following similar investigations on assumptions versus round complexity
in zero knowledge arguments/proofs with statistical security. For instance, it is
unknown whether we can build round-optimal one-sided statistically secure 2PC
protocols from other standard assumptions such as the Computational Diffie-
Hellman (CDH) or the newer class of isogeny-based assumptions. In this work,
we ask the following question:

Can we construct round-optimal one-sided statistically secure 2PC proto-
cols with black-box simulation in the plain model from a wider class of
assumptions?

184 S. Badrinarayanan et al.

1.1 Our Contributions

We answer the above question in the affirmative. We establish a general com-
piler to achieve round-optimal one-sided statistically secure 2PC protocols that
relies on potentially weaker (or “less structured”) cryptographic primitives as
compared to those used by [KM20]. These primitives can be instantiated from
essentially all commonly used cryptographic assumptions, including new instan-
tiations from the CDH assumption and certain isogeny-based assumptions such
as the Reciprocal CSIDH assumption (which were not known before and are
contributions of this work), as well as instantiations from LWE, LPN (+ deran-
domization techniques)1, Quadratic Residuosity, N th Residuosity, and decisional
CSIDH (all of which follow from existing works). In particular, the new instan-
tiations from CDH and Reciprocal CSIDH are enabled precisely by the usage of
potentially weaker (or “less structured”) cryptographic primitives in our frame-
work as compared to those used by [KM20]. Our approach is conceptually similar
to that taken by the authors of [AMPS21] to weaken the underlying primitives
for round-optimal secure computation (MPC) protocols which are secure against
adaptive corruption of parties, but the techniques used by our compiler are fun-
damentally different.

Our Ingredients. We introduce the notion of statistically receiver private
(SRP) elementary OT in the plain model following the work of Dottling et
al. [DGH+20]. We denote it as eOT2 throughout the paper. It is a three round
OT protocol, where the sender, with no input, sends the first message that can
be viewed as a pre-processing phase, the receiver sends the second message based
on its choice bit, and then, the sender computes random outputs (which can be
viewed as its two input messages in the traditional OT definition) and sends
the final OT message. Elementary security ensures that a maliciously corrupt
receiver is unable to compute both sender outputs. Statistical receiver privacy
implies that the choice bit is statistically hidden from a maliciously corrupt
sender, with unbounded computational power. We show that such an OT proto-
col combined with a non-interactive commitment scheme suffices for one-sided
statistical security. This yields a four-round 2PC protocol where the receiver
obtains the output at the end of the fourth round, and a five-round protocol
where both parties obtain the output. Our contributions are summarized in
Theorem 1 and has been depicted in Fig. 1.

Theorem 1 (Informal). Assuming a non-interactive commitment scheme and
a three round statistically-receiver private elementary OT, denoted as eOT, there
exists:

1 Throughout this paper, when we refer to the LPN assumption, we refer to the
“extremely low-noise” variant of LPN with noise parameters in the O

(
(logn)2 /n

)

regime, as used in many recent works, including [BF22].
2 We consider that our eOT protocol provides statistical receiver privacy, as opposed to

the elementary OT protocol defined in [DGH+20] which only provides computational
receiver privacy.

Statistical Security in Two-Party Computation Revisited 185

– A four-round 2PC protocol where the receiver obtains the output at the end
of the protocol,

– A five-round 2PC protocol where both parties obtain the output.

Both our protocols achieve statistical security against a malicious receiver and
computational security against a malicious sender in the plain model3 and require
black-box simulation.

We demonstrate that a two-round SSPOT implies eOT and a non-interactive
commitment scheme, hence re-obtaining the results of [KM20] through our com-
piler. Instantiating the SSPOT from LPN+Nissan Wigderson style derandomiza-
tion [BF22] and isogeny-based assumption, like decisional CSIDH [ADMP20], we
obtain new instantiations of our compiler. In addition, we also build eOT and
non-interactive commitments from CDH and other isogeny based assumptions
like reciprocal4 CSIDH [LGdSG21]. This gives us one-sided statistical 2PC from
CDH and reciprocal CSIDH which was not known before. Combining the above
results, we obtain one-sided statistical 2PC from most well-studied assumptions
in cryptography.

Theorem 2 (Informal). Assuming CDH, LWE, LPN (+derandomization
techniques), QR, N th Residuosity, or isogeny-based assumptions (decisional
CSIDH or Reciprocal CSIDH), there exists:

– A four-round 2PC protocol where the receiver obtains the output at the end
of the protocol,

– A five-round 2PC protocol where both parties obtain the output.

Both our protocols achieve statistical security against a malicious receiver and
computational security against a malicious sender in the plain model and require
black-box simulation.

As part of our building blocks, we introduce the notion of statistically sender
private conditional disclosure of secrets CDS in the preprocessing model and
demonstrate that eOT (and information theoretic garbling for NC1 circuits)
suffices for its construction. This is a weakening of two-round statistically sender
private conditional disclosure of secrets which is built from two-round SSPOT.
Our primitive could be of independent interest, especially in constructing one-
sided statistically secure MPC protocols from different assumptions. Formally,

Theorem 3. Assuming a three round statistically-receiver private elementary
OT, there exists a four-round statistically sender private conditional disclosure
of secrets CDS for NC1 circuits in the pre-processing model, where the first two
rounds of CDS are input-independent.
3 For the five round protocol, receiver is the party that obtains output first (at the

end of round four) and sender is the party that obtains output at the end of round
five.

4 Reciprocal CSIDH is quantum equivalent to computational CSIDH, which is weaker
than decisional CSIDH. However, reciprocal CSIDH and decisional CSIDH assump-
tions are incomparable in the classical setting.

186 S. Badrinarayanan et al.

Instantiating eOT from the above assumptions, we obtain the CDS from most
well-studied assumptions as follows.

Theorem 4. Assuming CDH, LWE, LPN (+derandomization techniques), QR,
N th Residuosity, or isogeny-based assumptions (decisional CSIDH or Reciprocal
CSIDH), there exists a four-round statistically sender private conditional disclo-
sure of secrets CDS for NC1 circuits in the pre-processing model, where the first
two rounds of CDS are input-independent.

The information theoretic garbling [Kol05] for NC1 circuits is used to con-
struct the above CDS for NC1 circuits. The above CDS for NC1 circuits suffice
for one-sided statistical 2PC for all circuits.

Roadmap. We provide a detailed overview of our protocols in Sect. 2. Then
we define our building blocks in Sect. 3. We define other OT protocols in Sect.
4 and construct them from eOT. These OTs protocol would be instrumental in
our final compiler. We construct our round optimal one-sided statistically secure
2PC protocol πexp against explainable parties in Sect. 5. Finally, we compile
πexp to obtain a round optimal one-sided statistically secure 2PC protocol πmal

which is secure against malicious corruptions in Sect. 6. In the same section we
construct statistically sender private CDS in preprocessing model. Finally, we
provide instantiations of eOT from different assumptions in Sect. 7.

2 Technical Overview

In this section we demonstrate that a three round statistically receiver private
elementary OT, denoted as eOT, and a non-interactive commitment scheme suf-
fices to obtain a five round (which is round optimal) 2PC protocol that obtains
security against a computationally unbounded receiver and a PPT sender. Then
we instantiate eOT and the commitment scheme from various assumptions.
Along the way, we introduce new primitives of independent interest - statistical
conditional disclosure of secrets CDS in the preprocessing model and a three
round random SSP-OT, and instantiate them from various assumptions.

2.1 One-Sided Statistical Two-Party Computation Protocol

Our compiler builds upon the compiler of [KM20] by weakening the underlying
primitives in their compiler. We recall their protocol for completeness. [KM20]
constructed a five round 2PC protocol against malicious adversaries. The first
party, denoted as the receiver, is computationally unbounded and obtains the
output at the end of fourth round. The second party, called the sender, is com-
putationally bounded and obtains the output at the end of fifth round. The
protocol proceeds through two transformations- where [KM20] first constructs
a protocol which is secure against explainable adversaries and then compiles it
(interactive proofs) to obtain security against malicious adversaries.

Statistical Security in Two-Party Computation Revisited 187

Robust 2PC Secure Against Explainable Adversaries. As the first step,
[KM20] considered explainable adversaries5 which generates protocol messages
in the support of the distribution of all honestly generated transcripts, and the
simulator needs to extract the input and randomness of the adversarial party
from the transcript. In this setting, the classical garbled circuit based approach
of [Yao86], where the receiver is the evaluator and sender is the garbler, fails
since the receiver is computationally unbounded and information theoretically
private garbling scheme is known only for NC1 circuits.

Reversing the Roles. [KM20] takes a different approach where the receiver gar-
bles the circuit and sender evaluates it. The sender obtains the wire labels cor-
responding to its input through a statistical receiver private OT, hence hiding
its input against an unbounded corrupt receiver. The OT protocol takes three
rounds, starting from the receiver (acting as the sender of the OT), and the
garbled circuit is sent in the third round by the receiver.

Simulating against Explainable Parties. The simulator needs to simulate against
explainable adversaries by extracting their inputs. To enable extraction of the
corrupt sender’s input the sender is also required to commit to its input using
a four round statistically hiding and computationally binding extractable com-
mitment scheme. Similarly, the receiver commits to its input and randomness
using a three round statistically binding and computationally hiding extractable
commitment scheme. These commitments allow a simulator to extract the input
and randomness of the explainable adversarial parties. The simulator against a
corrupt sender’s extracts the sender’s input at the end of fourth round from the
commitment scheme and obtains the correct output only at the end of fourth
round. However, the receiver is required to send the garbled circuit in the third
round. This creates a problem in simulation since a corrupt sender, evaluating
the garbled circuit, distinguishes an interaction with an honest receiver from an
interaction with the simulated receiver based on the garbled circuit output.

One Last Modification. To avoid this, the receiver garbles a different circuit
so that the garbled circuit computes an encryption of the output. The sender
obtains the garbled circuit at the end of third round, evaluates it to obtain the
encrypted output and then sends it to the receiver in the fourth round. The
receiver decrypts the output and sends it to the sender in the fifth round. In
the ideal world the simulator sends a simulated garbled circuit which outputs an
encryption of 0 to the corrupt sender, hence providing correct simulation in the
ideal world. [KM20] also ensured that the first two rounds of the protocol are
robust - i.e. if the parties behave maliciously in the first 2 rounds of the protocol
then they can influence the protocol output but they would fail to infer any

5 It is different from the notion of semi-malicious security [MW16] where the adversary
in addition to generating the the protocol messages in the support of the distribution
of all honestly generated transcripts, also outputs the input and randomness that
was used, on a special tape.

188 S. Badrinarayanan et al.

information about the honest party’s input. The robustness property is crucial
when we upgrade to security against malicious adversaries.

Summary. To summarize the result of [KM20] they obtain a robust 5-round
secure two-party computation protocol πexp with black-box simulation against
unbounded explainable receivers and PPT explainable senders, where the
receiver obtains its output at the end of fourth round and the sender obtains its
output at the end of the fifth round. Their underlying primitives are as follows:

1. Three round oblivious transfer with statistical privacy for a receiver and com-
putational privacy for a sender,

2. Three round statistically binding and computationally hiding commitment
scheme satisfying extractability.

3. Four round statistically hiding and computationally binding commitment
scheme satisfying extractability.

4. Information theoretic garbled circuits for NC1 circuits (used by [KM20] to
validate a specific NC1 relation as part of their statistically secure two-round
CDS protocol – we expand more on this subsequently).

Overview of Our Contributions. We demonstrate that an elementary OT
protocol (denoted simply as eOT in rest of the paper) and a non-interactive
commitment scheme suffices to instantiate the above primitives and hence yield
the protocol πexp from eOT and a non-interactive commitment scheme.

1. The three round SRP-OT protocol, denoted as iOT, that satisfies indistin-
guishability based sender security is built from eOT in Sect. 4.1 in a round
preserving manner. We discuss it in Sect. 2.2.

2. The three round statistically binding and computationally hiding commit-
ment scheme can be constructed [PRS02] from any non-interactive commit-
ment scheme.

3. The four round statistically hiding and computationally binding commitment
scheme satisfying extractability can be obtained [KM20] by replacing the
non-interactive commitment scheme in [PRS02] with a two round statisti-
cally hiding commitment scheme. We build the two round statistically hiding
commitment scheme from SRP iOT in Sect. 5.2 and we briefly discus about
it in Sect. 2.2.

4. Garbled circuits can be obtained [Yao86,LP07] from one way functions.

The Final Compiler. Next, the security of πexp is uplifted such that it is secure
against malicious adversaries using zero knowledge protocols as follows.

Tackling a Malicious Sender. The sender is required to prove that it generated
the second and fourth round messages of πexp correctly. This is performed using
a four round delayed-input statistical zero knowledge protocol SZK where the
input statement is chosen by the sender (behaving as the prover) in the last
round of SZK. SZK is run in parallel to πexp and the robustness of the first two

Statistical Security in Two-Party Computation Revisited 189

rounds of πexp ensures that the input of an honest receiver is not leaked even if a
corrupt sender constructs the second round message of πexp maliciously. We also
require SZK to be an argument of knowledge for reasons, discussed later. SZK
can be built [LS91] from two round statistically hiding commitment scheme.

Tackling a Malicious Receiver. Similar to the sender, the receiver is required to
prove that it generated the first, third and fifth round messages of πexp correctly.
This is performed using a five round delayed-input zero knowledge proof ZKP
where the input statement is chosen by the receiver (behaving as the prover) in
the last round of ZKP. ZKP is run in parallel to πexp and the robustness of the first
two rounds of πexp ensures that the input of an honest sender is not leaked even
if a corrupt receiver constructs the first round message of πexp maliciously. ZKP
can be built [LS91]+ [GK96] from two round statistically hiding commitment
scheme. However, a maliciously constructed third round message of πexp could
leak an honest sender’s input when the sender sends the fourth round message
of πexp. ZKP fails to address this issue since it takes five rounds to complete and
an honest sender could detect the malicious behavior of a corrupt receiver only
at the end of the fifth round. This leaks the honest sender’s inputs.

Conditional Disclosure of Secrets. [KM20] addresses the above situation by using
a two round conditional disclosure of secrets CDS where the receiver sends the
public key for the CDS alongwith the third round message of πexp. The sender
encrypts the fourth round message of πexp under the CDS public key and input
statement - the first and third round message of πexp is constructed in an explain-
able manner by the receiver. The receiver successfully decrypts the fourth round
message of πexp if it produces a witness attesting to the fact that the first and
third round message of πexp is explainable. If the receiver fails to produce such a
witness, then the CDS plaintext (fourth round message of πexp) remains statisti-
cally hidden. The CDS protocol requires soundness against a statistical receiver
and witness privacy against a semi-honest computationally bounded sender. In
the final protocol, the sender is required to prove in the fourth round that it
constructed the CDS sender message correctly using SZK since the CDS pro-
vides security guarantees against a semi-honest sender. We require the SZK to
be argument of knowledge so that the simulator (against a corrupt sender) is
able to extract the encrypted CDS plaintext, which is the fourth round message
of πexp, in order to generate the final message of the protocol.

Note that [KM20] constructs an NC1 circuit which checks the validity of
receiver’s witness. The authors of [KM20] then proceed to construct a (two-
round) CDS protocol with statistical security for the class of relations that are
verifiable by NC1 circuits by combining two round statistically sender private OT
with information-theoretic garbled circuits for NC1. In fact, it can be shown (via
dashed lines in Fig. 1) that two-round statistically sender private OT suffices to
instantiate the 2PC protocol of [KM20]. However, two-round statistically sender
private OT is a relatively strong primitive and is not known from many well-
studied assumptions, like CDH.

190 S. Badrinarayanan et al.

Our Proposal. We shift our starting point to presumably weaker primitives -
a three round SRP eOT protocol where only the second OT message depends
on the receiver’s input and the sender’s outputs are random. We show that eOT
suffices for compiling πexp to our final protocol πmal which provides statistical
security against a malicious receiver and computational security against a mali-
cious sender as follows:

1. By applying round-preserving transformations on eOT we obtain a three
round delayed-input statistical sender private OT protocol SSPOT - where
only the last OT message depends on the receiver’s input and the sender’s
outputs are random. Combining SSPOT with information theoretic garbling
for NC1 we obtain a four round statistical CDS protocol where the first two
rounds, aka preprocessing phase, are independent of the input statement and
the witness. This new primitive suffices for conditional disclosure of secrets
in the above 2PC protocol since the first two rounds can be used for the
preprocessing phase of the SSPOT and the last two rounds can be used to run
the input-dependent phase of CDS.

2. The four round delayed-input statistical zero knowledge SZK can be built
[LS91] from two round statistically hiding commitment.

3. The five round delayed-input zero knowledge proof ZKP can be obtained
[LS91]+ [GK96] from two round statistically hiding commitment.

4. The first two rounds of iOT implies a two round statistically hiding commit-
ment scheme.

Previously, we have shown that πexp can be obtained from a non-interactive
commitment scheme and eOT. Combining the two results, we obtain our one-
sided 2PC protocol from a non-interactive commitment scheme and eOT.
Instantiations. We demonstrate that a two-round statistical sender pri-
vate OT implements eOT (by applying OT reversal techniques [WW06]) and
the first message of the two-round statistical sender private OT is a non-
interactive commitment scheme. Hence, our result generalizes the work of [KM20]
and we obtain instantiations from LWE, QR, N th residuosity, DDH, Deci-
sional CSIDH and LPN+Nissan Wigderson derandomization by instantiating
[BD18,NP01,HK12,HK12,ADMP20,BF22] the underlying two-round statisti-
cal sender private OT from the above assumptions. Furthermore, we build
eOT and the non-interactive commitment scheme from CDH and reciprocal
CSIDH [LGdSG21] assumptions. This was not previously known from [KM20].
To summarize, our proposed framework enables one-sided statistical 2PC from
essentially all well-studied cryptographic assumptions.

2.2 Constructing Our Ingredients from eOT

Next, we briefly introduce our ingredient primitives and discuss their construc-
tions. A roadmap explaining our framework based on these ingredients can be
found in Fig. 1.

Three Round Statistically Receiver Private eOT. We introduce the notion
of statistically receiver private elementary OT in plain model following the work

Statistical Security in Two-Party Computation Revisited 191

of [DGH+20]. It is a three round OT protocol where the sender sends the first
message as a preprocessing phase, the receiver sends the second message based
on its choice bit, and the sender sends the third message. The sender obtains ran-
dom outputs. The elementary security ensures that a maliciously corrupt receiver
is unable to compute both sender outputs. Statistical receiver privacy implies
that the choice bit is statistically hidden from a maliciously corrupt sender. We
show that a two round statistically sender private OT can be used to build
eOT through OT reversal techniques [WW06], hence obtaining instantiations
from a wide variety of assumptions (namely LWE, QR, N th residuosity, DDH,
Decisional CSIDH and LPN+Nissan Wigderson derandomization). We also con-
struct eOT from CDH by building upon the two-round CDH based protocol of
[DGH+20] in the crs model. In the CDH-based eOT instantiation, the sender
sends the crs of the CDH based protocol of [DGH+20] as the OT first message
and then their two-round CDH based protocol is run between the parties using
the first message as the crs. We also provide the first construction of eOT based
on reciprocal CSIDH assumption.6

Three Round Statistically Receiver Private iOT. We uplift the security
of eOT to construct iOT such that it obtains indistinguishability based secu-
rity against a malicious receiver. If the receiver’s choice bit is γ then m1−γ is
computationally indistinguishable from a random string to a malicious receiver.
We perform this in a round-preserving way by applying the elementary OT
(via search OT) to indistinguishability-based security OT transformations from
[DGH+20] based on Goldreich-Levin hash function. This yields iOT from the
same set of assumptions as eOT.

Three Round Delayed-Input Statistically Sender Private SSPOT. Next,
we introduce the notion of delayed-input statistically sender private SSPOT,
where only the last OT message depends on the receiver’s choice bit γ. It is a
three round OT protocol where the receiver sends the first message as a receiver
preprocessing phase, the sender sends the second message as a sender prepro-
cessing phase, and the receiver sends the third message based on γ. The sender
obtains random output strings. We carefully apply OT reversal techniques on
three-round SRP iOT in a round-preserving way to obtain a version of SSPOT

where the sender obtains random output bits. Then we combine multiple such bit
SSPOT protocol with a randomness extractor to obtain the final SSPOT protocol.
This yields SSPOT from the same set of assumptions as iOT (and eOT).

Statistically Sender Private CDS with Preprocessing. We introduce the
notion of conditional disclosure of secrets CDS in the preprocessing phase. The
first two rounds of CDS are input-independent. The receiver sends the third
message which depends on the statement-witness pair. The sender encrypts the
plaintext under the statement and sends the ciphertext as the fourth message.

For our 2PC protocol, we require security against a maliciously corrupted
statistical receiver and a computationally bounded semi-honest sender. We con-
6 Reciprocal CSIDH assumption is quantum equivalent to computational CSIDH and

it is incomparable to decisional CSIDH.

192 S. Badrinarayanan et al.

struct an NC1 circuit which checks the validity of receiver’s witness by relying on
the result of [KM20]. Then we proceed to combine our three round delayed-input
SSPOT protocol with information theoretic garbling scheme [Kol05] for NC1 cir-
cuit to construct our CDS, where the first two rounds of CDS are the prepro-
cessing phases of SSPOT. In the third round of the CDS the receiver inputs the
witness bits as the choice bit of the SSPOT protocol. Upon obtaining the SSPOT

third round messages, the semi-honest sender garbles an NC1 circuit outputs the
plaintext if verification of the receiver’s witness succeeds corresponding to the
input statement. The sender sends a mapping between the random outputs of
SSPOT to the wire labels corresponding to the witness bits. The receiver decrypts
the wire labels corresponding to the witness bits and evaluates the garbled cir-
cuit to obtain the plaintext. This yields our CDS protocol from SSPOT and one
way functions, obtaining the CDS protocol from the same set of assumptions as
eOT.

Two Round Statistically Hiding Commitment. We show that the first two
rounds of eOT is a two round statistically hiding commitment where the verifier
(acting as the eOT sender) sends the first message as the setup phase. The
committer (acting as the eOT receiver) commits to bit γ using the OT second
message. Statistical receiver privacy of eOT ensures that statistical hiding of γ.
If a corrupt committer breaks binding of the commitment scheme with two valid
decommitments corresponding to bits 0 and 1, then those decommitments can
be used to break computational sender privacy of eOT by recovering both sender
messages of eOT. This yields two round statistically hiding commitments from
the same set of assumptions as eOT.

3 Preliminaries

We present our notations and discuss the building blocks in this section.

3.1 Notations

We denote by a ← D a uniform sampling of an element a from a distribution D.
The set of elements {1, . . . , n} is represented by [n]. We denote the computational
security parameter by κ and statistical security parameter by μ respectively. Let
Zq denote the field of order q, where q = p−1

2 and p are primes. Let G be the
multiplicative group corresponding to Z

∗
p with generator g, where CDH assump-

tion holds. We denote a field of size O(2μ) as F. For a bit b ∈ {0, 1}, we denote
1 − b by b̄. In our paper we consider one-sided statistical 2PC protocol against
explainable parties and also against malicious corruption of parties. We refer to
the paper of [KM20] for the one-sided statistical security model against explain-
able parties and against malicious adversaries for the sake of completeness.

3.2 Oblivious Transfer Protocols

We define our OT notions - eOT, iOT and SSPOT, as follows.

Statistical Security in Two-Party Computation Revisited 193

Elementary OT with Statistical Receiver Privacy (eOT). We denote a
three round OT protocol, where sender sends the first message and the sender
receives random outputs, by a tuple of four algorithms defined as follows:

– OT
(1)
S→R(1κ): The sender computes ot1 as the OT sender message and sends

it to the receiver.
– OT

(2)
R→S(1

κ, γ, ot1): The receiver computes the OT receiver message ot2 and
internal state stR based on choice bit γ and ot1. The receiver sends ot2 to the
sender.

– OT
(3)
S→R(1κ, ot2): The sender computes (ot3,m0,m1). The sender sends ot3 as

the OT sender message and outputs (m0,m1) ∈ {0, 1}.
– OTR(stR, ot3): The receiver computes m′ and outputs it.

Correctness. The above three-round OT protocol is said to be correct if for any
security parameter κ ∈ N and any bit γ ∈ {0, 1}, letting

ot1 ← OT
(1)
S→R(1κ) , (ot2, stR) ← OT

(2)
R→S(1

κ, γ, ot1),

(ot3,m0,m1) ← OT
(3)
S→R(1κ, ot2) , m′ ← OTR(stR, ot3),

we have m′ = mγ with overwhelming probability.

Statistical Receiver Privacy. The above OT protocol satisfies statistical receiver
privacy if the two tuples are statistically close.

{OT(2)
R→S(1

κ, 0, ot1), ot1} s≈ {OT(2)
R→S(1

κ, 1, ot1), ot1},

where ot1 ← A(1κ) is generated by an adversary A who maliciously corrupts
the sender.

Elementary Sender Security. The work of [DGH+20] introduced the notion of
elementary sender security in the crs model. It is the weakest security notion
against a malicious receiver. We extend their notion to the plain model. Let
A = (A1,A2) denote a non-uniform adversary who maliciously corrupts the
receiver. To break elementary security the adversary is required to output both
strings m0 and m1. This is formalized by the following experiment.
Expκ

eOT(A) :

1. Run ot1 ← OT
(1)
S→R(1κ).

2. Obtain (ot2, stA) ← A1(1κ, ot1).
3. Run (ot3,m0,m1) ← OT

(3)
S→R(1κ, ot2).

4. Obtain (m∗
0,m

∗
1) ← A2(stA, ot3) and output 1 iff (m∗

0,m
∗
1) == (m0,m1).

We say that the OT protocol satisfies elementary sender security if
Pr[Expκ

eOT(A) = 1] = neg(κ).

Definition 1. We denote a three-round OT protocol with the above algorithms
as eOT if it satisfies sender elementary security and statistical receiver privacy.

194 S. Badrinarayanan et al.

Indistinguishability OT with Statistical Receiver Privacy (iOT). We
denote a three round OT protocol, where sender sends the first message and the
parties have chosen inputs, by a tuple of four algorithms defined as follows:

– OT
(1)
S→R(1κ): The sender computes ot1 as the OT sender message and sends

it to the receiver.
– OT

(2)
R→S(1

κ, γ, ot1): The receiver computes the OT receiver message ot2 and
internal state stR based on choice bit γ and ot1. The receiver sends ot2 to the
sender.

– OT
(3)
S→R(1κ, (m0,m1), ot2): The sender computes ot3 based on ot2 and its

inputs (m0,m1) ∈ {0, 1}. The sender sends ot3 as the OT sender message.
– OTR(stR, ot3): The receiver computes m′ and outputs it.

Correctness. The above three-round OT protocol is said to be correct if for any
security parameter κ ∈ N and any bit γ ∈ {0, 1}, letting

ot1 ← OT
(1)
S→R(1κ) , (ot2, stR) ← OT

(2)
R→S(1

κ, γ, ot1),

ot3 ← OT
(3)
S→R(1κ, (m0,m1), ot2) , m′ ← OTR(stR, ot3),

we have m′ = mγ with overwhelming probability.

Statistical Receiver Privacy. The above OT protocol satisfies statistical receiver
privacy if the two tuples are statistically close.

{OT(2)
R→S(1

κ, 0, ot1), ot1} s≈ {OT(2)
R→S(1

κ, 1, ot1), ot1},

where ot1 ← A(1κ) is generated by an adversary A who maliciously corrupts
the sender.

Indistinguishability-Based Sender Security. Sender’s indistinguishability security
was defined in [DGH+20] in the crs model. We extend it to the plain model via an
experiment Expcrs,r,w,b

iOT (A) between a non-uniform PPT adversary A = (A1,A2)
and a challenger, where the experiment is parameterized by random coins r ∈
{0, 1}κ, a bit w ∈ {0, 1}, and a bit b ∈ {0, 1}:

Expw,b
iOT(A):

1. Run ot1 ← OT
(1)
S→R(1κ).

2. Run (m0,m1, ot2, stA) ← A1(1κ, ot1; r).
3. If b = 0, compute ot3 ← OT

(3)
S→R(1κ, (m0,m1), ot2).

4. If b = 1, compute ot3 ← OT
(3)
S→R(1κ, (m′

0,m
′
1), ot2) where m′

w ← {0, 1} and
m′

1−w := m1−w.
5. Output s ← A2(stA, ot3).

We say that iOT satisfies sender’s indistinguishability security if for any PPT
adversary A, the following holds where the probability is taken over r ← {0, 1}κ.

|Pr[Expcrs,r,w,0
iOT (A) = 1] − Pr[Expcrs,r,w,1

iOT (A) = 1] ≤ neg(κ).

Statistical Security in Two-Party Computation Revisited 195

Definition 2. We denote a three-round OT protocol with the above algorithms
as iOT if it satisfies indistinguishability-based sender security and statistical
receiver privacy.

Statistically Sender Private Random OT (SSPOT). We denote a three-
round OT protocol, where the receiver sends the first message and the sender
obtains random outputs, by a tuple of four algorithms defined as follows:

– OT
(1)
R→S(1

κ): The receiver computes ot1 as the OT receiver message and stR
as the internal state. The receiver sends ot1 to the sender and stores stR as
the internal receiver state.

– OT
(2)
S→R(1κ, ot1): Given the OT message ot1, the sender outputs a message ot2

and secret internal state stS.
– OT

(3)
R→S(stR, γ, ot2): Given a secret state stR, choice bit γ and a message ot2,

the receiver computes m′ ∈ {0, 1}� and the OT message ot3. The receiver
sends ot3 to the sender and outputs m′.

– OTS(stS, ot3): Given the secret state stS and a message ot3, it outputs two
string-messages (m0,m1) ∈ {0, 1}�.

Remark. Note that the receiver’s choice bit γ is not included in the first algorithm
OT

(1)
R→S and is only used in the algorithm OT

(3)
R→S thereby allowing the protocol

to enjoy a “delayed-input” feature.

Correctness. The above protocol is said to be correct if for any κ ∈ N and any
bit γ ∈ {0, 1}, letting

(ot1, stR) ← OT
(1)
R→S(1

κ) , (ot2, stS) ← OT
(2)
S→R(1κ, ot1),

(ot3,m′) ← OT
(3)
R→S(stR, γ, ot2) , (m0,m1) ← OTS(stS, ot3),

we have m′ = mγ with overwhelming probability.

Computational Receiver Privacy. The above protocol satisfies computational
receiver privacy if for any κ ∈ N, any b ∈ {0, 1}, and any non-uniform PPT
adversary A = (A1,A2), letting β = Expκ,b(A), we have

|Pr[β = 0] − Pr[β = 1]| ≤ negl(κ),

where the experiment Expκ,b(A) is defined as follows:
Expκ,b(A):

1. (ot1, stR) ← OT
(1)
R→S(1

κ).
2. (ot2, st) ← A1(1κ, ot1).
3. (ot3,m′) ← OT

(3)
R→S(stR, b, ot2).

4. b′ ← A2(ot3, st).
5. If b = b′, output 0. Else, output 1.

196 S. Badrinarayanan et al.

Statistical Sender Privacy. Consider an execution of the above three round pro-
tocol involving an honest sender and an (unbounded, non-uniform) malicious
adversary A = (A1,A2):

(ot1, stR) ← A1(1κ) , (ot2, stS) ← OT
(2)
S→R(1κ, ot1),

(ot3, st) ← A2(stR, γ, ot2) , (m0,m1) ← OTS(stS, ot3).

Let Viewκ(A) denote the view of the adversary A = (A1,A2) in the above
protocol execution. A three-round SSP-string-sROT protocol is said to satisfy
statistical sender privacy if for any κ ∈ N and any (unbounded, non-uniform)
adversary A = (A1,A2), there exists a bit β ∈ {0, 1} such that the following two
distributions are statistically indistinguishable:

(Viewκ(A),mβ)
s≈ (Viewκ(A),U),

where U ← {0, 1}|mβ | denotes a random bit string of size |mβ |.
Definition 3. We denote a three-round OT protocol with the above algorithms
as SSPOT if it satisfies statistical sender privacy and computational receiver pri-
vacy.

3.3 Additional Preliminaries

In this section, we briefly describe some cryptographic primitives that we use for
our constructions.

Garbling Schemes. A garbling scheme [Yao86,LP09,BHR12] consists of the
following algorithms: Gb takes a circuit C as input and outputs a garbled circuit
GC, encoding information Keys, and decoding information d. En takes an input
x and encoding information Keys and outputs a garbled input X. Ev takes a
garbled circuit and garbled input X and outputs a garbled output Y. Finally, De
takes a garbled output Y and decoding information and outputs a plain circuit-
output (or an error, ⊥). There is an additional verification algorithm Ve in the
garbling scheme which when accepts a given (GC,Keys, d) signifies that the GC
is correct, and that the garbled output corresponding to any clear output can
be extracted. The garbling scheme used in our protocols need to satisfy several
properties such as correctness, privacy, verifiability and reconstructability. We
refer to the full version of our paper [BPS22] for formal definitions.

We are interested in a class of garbling schemes referred to as projective in
[BHR12]. When garbling a circuit C : {0, 1}n �→ {0, 1}m, a projective garbling
scheme produces encoding information of the form Keys =

(
Keys0i ,Keys

1
i

)
i∈[n]

,
and the encoded input X corresponding to x = (xi)i∈[n] can be interpreted as
X = En(x,Keys) = (Keysxi

i)i∈[n]. Information-theoretic Garbled circuits for NC1
circuits with information theoretic privacy can be built from one way functions
[Yao86,LP09] based on one-way functions satisfies.

Zero-Knowledge Proofs and Arguments for NP [KM20]. An n-round
delayed-input interactive protocol for deciding a language L corresponding to
a relation R is denoted by 〈P,V〉 and it proceeds as follows:

Statistical Security in Two-Party Computation Revisited 197

– At the beginning of the protocol, P and V receive the size of the instance and
execute the first n − 1 rounds.

– At the start of the last round, P receives input (x,w) ∈ R and V receives x.
Upon receiving the last round message from P, V outputs 0 or 1.

For our protocols, we rely on proofs and arguments for NP that satisfy delayed-
input completeness, adaptive soundness and adaptive ZK. We again refer to the
full version of our paper [BPS22] for formal definitions. We point out that four
round delayed-input statistical zero knowledge arguments can be obtained from
[LS91] by relying on two round statistically hiding commitments, while five round
delayed-input zero knowledge proofs can be obtained by relying on [GK96], where
the instance is adaptively chosen in the last round by the combining techniques
from [LS91]. The proof system can be instantiated from two round statistically
hiding commitments.

Low Depth-Proof Systems [KM20]. The authors of [KM20] described how
any computation that is verifiable by a family of polynomial sized circuits can
be transformed into a proof that is verifiable by a family of circuits in NC1. The
works of [GGH+13] and [KM20] presented a simple construction of a low-depth
non-interactive proof for any NP-verification circuit. The prover P executes the
NP-verification circuit on the witness and generates the proof as the sequential
concatenation (in some specified order) of the bit values assigned to the individ-
ual wires of the circuit. The verifier V proceeds by checking consistency of the
values assigned to the internal wires of the circuit for each gate. In particular
for each gate in the NP-verification circuit the verifier checks if the wire vales
provided in the proof represent a correct evaluation of the gate. Since the verifi-
cation corresponding to each gate can be done independent of every other gate
and in constant depth, we have that V itself is constant depth. We again refer
to the full version of our paper [BPS22] for formal definitions.

4 Three Round Oblivious Transfer Protocols

In this section, we describe our statistically sender private SSPOT construction
from eOT which satisfies statistical receiver privacy. First, we build iOT from
eOT and then we build SSPOT from iOT. All our protocols are round preserving
in nature. The corresponding definitions of the OT protocols can be found in
Sect. 3.2. Our SSPOT protocol enjoys a delayed-input feature since only the last
OT protocol message depends on the receiver’s input. This will be useful later
on in obtaining statistically sender private CDS in the preprocessing model and
also our one-sided statistical 2PC.

4.1 Statistically Receiver Private Indistinguishability-Based OT

We denote an elementary OT protocol as eOT = (eOT.OT
(1)
S→R, eOT.OT

(2)
R→S,

eOT.OT
(3)
S→R, eOT.OTR). We construct our indistinguishability based SRP-bit

OT protocol, denoted as iOT, as follows:

198 S. Badrinarayanan et al.

– OT
(1)
S→R(1κ): The sender obtains eOT.ot1 ← eOT.OT

(1)
S→R(1κ). The sender

sends ot1 = eOT.ot1 as the OT sender message.
– OT

(2)
R→S(1

κ, γ, ot1): The receiver computes the OT receiver message as
(eOT.ot2, eOT.stR) ← eOT.OT

(2)
R→S(1

κ, γ, ot1). It sends ot2 = eOT.ot2 to the
sender and stores stR = eOT.stR.

– OT
(3)
S→R(1κ, (m0,m1), ot2): The sender performs the following:

• The sender runs eOT sender protocol for κ times on ot2 to compute

{eOT.ot3,i, (eOT.m0,i, eOT.m1,i)} = eOT.OT
(3)
S→R(1κ, ot2),

for i ∈ [κ].
• Sender computes eOT.mα = (eOT.mα,1, . . . eOT.mα,κ) for α ∈ {0, 1}.
• Denote the length of eOT.m0 and eOT.m1 as n = n(κ) where n =

|eOT.m0| = |eOT.m1|.
• The sender samples s0, s1 ← {0, 1}n as the description of the Goldreich-

Levin Hash function.
• The sender computes pα = mα ⊕ 〈eOT.mα, sα〉 for α ∈ {0, 1}.

The sender sends ot3 = ({eOT.ot3,i}i∈[κ], s0, s1, p0, p1).
– OTR(stR, ot3): The receiver performs the following:

• The receiver runs eOT decryption algorithm for κ times to compute

{eOT.mγ,i} = eOT.OTR(eOT.stR, eOT.ot3,i),

for i ∈ [κ].
• The receiver sets eOT.mγ = (eOT.mγ,1, . . . , eOT.mγ,κ).
• The receiver outputs mγ = pγ ⊕ 〈eOT.mγ , sγ〉.

Correctness. It can be verified in a straightforward manner.

Lemma 1. The above protocol satisfies perfect receiver’s privacy if eOT satisfies
perfect receiver privacy.

Proof. The receiver’s choice bit γ is perfectly hidden in OT message ot2 =
eOT.ot2 if eOT.ot2 perfectly hides γ.

Lemma 2. The above protocol satisfies sender’s indistinguishability based secu-
rity if eOT satisfies computational sender’s elementary security.

Proof. The work of [DGH+20] showed that the above transformation converts an
elementary OT to an iOT OT protocol (via search OT). By combining Theorems
5.2 and 5.3 of [DGH+20] we prove the above theorem. We refer to their paper
for more details regarding the proof steps. �

Statistical Security in Two-Party Computation Revisited 199

4.2 Three Round Statistically Sender Private OT

Our SSPOT construction relies on randomness extractors and the leftover hash
lemma. We briefly define them as follows for completeness.

Definition 4. (Randomness Extractor.) Ext : {0, 1}n × {0, 1}d → {0, 1}� is a
strong (k, ε) randomness extractor if for every k-source X ∈ {0, 1}n the following
holds:

{Ud,Ext(X,Ud)} ε≈ {Ud, U�},

where Ud and U� are uniformly sampled d-bit and �-bit strings respectively.

Definition 5. (Leftover Hash Lemma.) If H = {h : {0, 1}n → {0, 1}�} is a
pairwise independent hash family of hash function where � = k − 2 log2(

1
ε), then

Ext(x, h)
def
= h(x) is a strong (k, ε) extractor.

Construction. We denote an iOT protocol as iOT = (iOT.OT
(1)
S→R, iOT.OT

(2)
R→S,

iOT.OT
(3)
S→R, iOT.OTR). We define our SSP-OT SSPOT as a tuple of four algo-

rithms defined as follows:

– OT
(1)
R→S(1

κ):
• The receiver runs iOT protocol for n times by computing {iOT.ot1,i} =

iOT.OT
(1)
S→R(1κ) for i ∈ [n].

• The receiver sends ot1 = {iOT.ot1,i}i∈[n] as the OT receiver message.
– OT

(2)
S→R(1κ, ot1): The sender performs the following for i ∈ [n]:

• The sender samples γi ← {0, 1}.
• The sender computes (iOT.ot2,i, iOT.stR,i)= iOT.OT

(2)
R→S(1

κ, γi, iOT.ot1,i)
with choice bit set to γi.

• The sender samples a mapping Mapi ← {0, 1}.
• The sender samples a pairwise independent hash function h ← Hκ.

The sender sends ot2 = (h, {iOT.ot2,i,Mapi}i∈[n]) as the OT sender message
and stores stS = {iOT.stR,i,Mapi, γi}i∈[n] as the internal state.

– OT
(3)
R→S(1

κ, b, ot2):
• The receiver samples p0,i ← {0, 1} and sets p1,i = b⊕p0,i for every i ∈ [n].

The receiver computes iOT.ot3,i = iOT.OT
(3)
S→R(1κ, (p0,i, p1,i), iOT.ot2,i)

for every i ∈ [n].
• The receiver sets tb,i = Mapi ⊕ p0,i.
• The receiver sets tb = (tb,1, . . . , tb,n).
• The receiver computes mb = H(tb).

The receiver sends ot3 = {iOT.ot3,i}i∈[n] as the OT receiver message and
outputs mb as the output.

– OTS(stS, ot3):
• The sender computes ai = iOT.OTR(iOT.stR,i, iOT.ot3,i) for i ∈ [n].
• The sender computes ti,0 = Mapi ⊕ ai and ti,1 = γi ⊕ ti,0.
• For α ∈ {0, 1}, the sender sets tα = (tα,1, . . . , tα,n).
• For α ∈ {0, 1}, the sender computes mα = H(tα).

The sender outputs (m0,m1).

200 S. Badrinarayanan et al.

Correctness. The sender computes pi,γi
from the ith iOT run. The sender sets

t0,i = Mapi ⊕ ai = Mapi ⊕ pγi,i and t1,i = γi ⊕ t0,i = γi ⊕ Mapi ⊕ pγi,i. The
receiver computes the following from the ith OT:

(b′, t′bi
) = (p0,i ⊕ p1,i,Mapi ⊕ p0,i)

= (p0,i ⊕ p1,i,Mapi ⊕ pγi,i ⊕ (p0,i ⊕ p1,i) · γi)
= (b,Mapi ⊕ pγi,i ⊕ b · γi)
= (b, t0,i ⊕ b · γi)
= (b, tb,i).

The sender outputs mα = H(tα) for α ∈ {0, 1}. And the receiver outputs mb =
H(tb) thus proving correctness.

Lemma 3. The above protocol satisfies statistical sender privacy if iOT satisfies
statistical receiver privacy and H is a (�n

2 �, ε)-randomness extractor.

Proof. The sender’s secret input γi to the ith iOT remains hidden due to sta-
tistical receiver privacy of iOT. Without loss of generality, assuming a corrupt
receiver obtains atmost �n

2 � bits of t0 and �n
2 � bits of t1 simultaneously by setting

b == 0 for n
2 runs of iOT and setting b == 1 for the rest n

2 runs of iOT. In such a
case, �n

2 � bits of t1 remains hidden and is uniformly distributed. Thus the input
space of the hash function H has an entropy of k = �n

2 � and � = �n
2 �−2 log2(

1
ε).

Applying the leftover hash lemma we argue that H behaves as a (k, ε) random-
ness extractor and thus statistically hiding m1. The same argument holds for
statistically hiding m0 if the receiver sets b == 1 in �n

2 � runs of iOT. �
Lemma 4. The above protocol satisfies computational receiver privacy if iOT
satisfies computational sender privacy.

Proof. We demonstrate that execution of the protocol with choice bit b == 0
is indistinguishable from the execution of the protocol with choice bit b == 1
through a sequence of (n + 1) hybrids. We defer the detailed description of the
hybrids and the corresponding indistinguishability arguments to the full version
of our paper [BPS22]. �

5 One-Sided Statistically Secure 2PC Against
Explainable Parties

We describe our one-sided statistically secure 2PC protocol πexp secure against
explainable parties in this section. High level overview can be found in Sect. 2.1.

5.1 Protocol πexp

The work of [KM20] built a 2PC protocol against explainable parties given:
(i) a three round statistically binding and computationally hiding commitment

Statistical Security in Two-Party Computation Revisited 201

scheme satisfying extractability, (ii) a four round statistically hiding and com-
putationally binding commitment scheme satisfying extractability, (iii) infor-
mation theoretic garbled circuits for NC1 circuits, and (iv) a three round OT
protocol with statistical privacy for a receiver and computational privacy for a
sender (see [KM20] for the formal theorem statement). We demonstrate that our
elementary OT protocol (with statistical receiver privacy) and a non-interactive
commitment/public key encryption scheme with perfect decryption suffices to
instantiate the primitives used by their construction:

1. Three round statistically binding and computationally hiding commitments
can be based on any non-interactive commitment scheme [PRS02], which
can itself be based on any public-key encryption [LS19] (satisfying perfect
correctness) or injective one-way function [Blu81].

2. Four round statistically hiding and computationally binding commitment
scheme satisfying extractability can be obtained from two round statistically
hiding commitment schemes which we build from iOT in Sect. 5.2.

3. Garbled circuits can be obtained [Yao86] from one way functions.
4. The three round SRP-OT protocol is instantiated using the iOT protocol from

Sect. 4.1.

5.2 Two Round Statistically Hiding Commitment

We denote an iOT protocol as iOT = (iOT.OT
(1)
S→R, iOT.OT

(2)
R→S, iOT.OT

(3)
S→R,

iOT.OTR). We define a two round statistically hiding commitment Com as tuple
of three algorithms (Com1,Com2,Decom) between a sender and a receiver as
follows:

– Com1(1κ): The receiver computes c1 = iOT.ot1 = iOT.OT
(1)
S→R(1κ). The

receiver sends c1 as the first message of the commitment scheme.

– Com2(1κ, c1, b): The sender computes (c2, d) = iOT.OT
(2)
R→S(1

κ, b, c1). The
sender sends c2 as the commitment and stores st = (b, d) as the decom-
mitment.

– Decom(st, (c1, c2)): The sender sends st = (b, d) as the decommitment. The
receiver performs the following for i ∈ [κ] :

• Computes (iOT.oti3, (m
i
0,m

i
1)) = iOT.OT

(3)
S→R(1κ, c1).

• The receiver aborts if iOT.OTR(st, iOT.oti3) �= mi
b.

The receiver outputs accept if the above checks pass.

Theorem 5. Com = (Com1,Com2,Decom) is a two round statistically hid-
ing commitment scheme with computational binding if iOT satisfies statistical
receiver privacy and computational sender security.

Proof. We argue hiding and binding of Com as follows:

– The sender’s committed bit b remains statistically hidden in c2 since c2 is the
output of iOT.OT

(2)
R→S algorithm and c2 statistically hides b due to statistical

receiver privacy of iOT.

202 S. Badrinarayanan et al.

– If a corrupt receiver breaks binding of the protocol by producing two valid
openings (0, d0) and (1, d1) then it breaks sender privacy of the iOT protocol.
mi

0 (resp. mi
1) can be correctly decrypted using (0, d0) (resp. (1, d1)) as the

receiver’s decryption randomness. �

6 One-Sided Statistically Secure 2PC Against Malicious
Corruptions

We describe our one-sided statistically secure 2PC protocol πmal secure against
malicious corruption of parties in this section. We rely on the following primitives
for our protocol.

1. Five round one-sided statistically secure 2PC protocol against explainable
parties where both parties get the output. We instantiate it using πexp based
on eOT (Sect. 5.1) and non-interactive commitments.

2. Four round statistically sender private Conditional Disclosure of Secrets,
denoted as CDS, in the preprocessing phase where the first two rounds are
input-independent.

3. Four round delayed-input statistical zero knowledge SZK. This can be built
[LS91] from two round statistically hiding commitment.

4. The five round delayed-input zero knowledge proof ZKP. This can be obtained
[LS91]+ [GK96] from two round statistically hiding commitment.

5. Four round statistically sender private Conditional Disclosure of Secrets,
denoted as CDS, in the preprocessing phase where the first two rounds are
input-independent.

The two round statistically hiding commitment is built from eOT (via iOT)
in Sect. 5.2. Next, we formally define and construct the CDS protocol before
proceeding to the construction of πmal.

6.1 Conditional Disclosure of Secrets in the Preprocessing Model

We denote a Conditional Disclosure of Secrets in preprocessing model as a tuple
of five algorithms CDS = (CDS1,CDS2,CDS3,CDS4,CDS5) defined as follows:

– CDS1(1κ): The receiver computes (cds1, stR) in the preprocessing phase. The
receiver sends cds1 and stores stR as the internal state.

– CDS2(1κ, cds1): The sender computes (cds2, stS) in the preprocessing phase.
The sender sends cds2 and stores stS as internal state.

– CDS3(1κ, (x,w), stR, cds2): The receiver computes (cds3, stR) based on the
statement x, witness w and cds2. The receiver sends cds3 and updates stR
as the internal state.

– CDS4(1κ, (x, ptxt), stS, cds3): The sender encrypts plaintext ptxt based on
statement x and cds3 to compute cds4. The sender sends cds4.

– CDS5(stR, cds4): The receiver outputs ptxt′ as the decrypted message.

The above algorithms should satisfy the following properties:

Statistical Security in Two-Party Computation Revisited 203

Correctness. For any (x,w) ∈ L, and message ptxt ∈ {0, 1}∗ the following holds:

Pr

[
CDS5(stR, cds4) == ptxt

∣
∣(cds1, stR) ← CDS1(1

κ), (cds2, stS) ← CDS2(1
κ, cds1),

(cds3, stR) ← CDS3(1
κ, (x,w), stR, cds2), cds4 ← CDS4(1

κ, (x, ptxt), stS, cds3)

]
= 1.

Message Indistinguishability. For any x /∈ L, cds∗3 ∈ {0, 1}∗ and any two equal-
length messages ptxt0, ptxt1, the following distributions are statistically indis-
tinguishable:

CDS4(1κ, (x, ptxt0), stS, cds
∗
3)

s≈ CDS4(1κ, (x, ptxt1), stS, cds
∗
3).

Receiver Simulation. There exists a simulator Sim = (Sim1,Sim2) such that for
any PPT distinguisher D = (D1,D2), such that for any x ∈ L, with R(x,w) = 1
the following holds:

∣
∣
∣
∣ Pr[D2(CDS3(1κ, (x,w), stR, cds2), stD) = 1|(cds1, stR) ← CDS1(1κ),

(cds2, stD) ← D1(1κ)] − Pr[D2(Sim2(x, stSim), stD) = 1|(cds1, stSim) ← Sim1(1κ),

(cds2, stD) ← D1(1κ)]
∣
∣
∣
∣ ≤ neg(κ).

It can be observed that cds1 and cds2 are independent of x and hence can be
performed offline in a preprocessing phase.
Construction. We denote an SSPOT protocol as SSPOT = (SSPOT.OT

(1)
R→S,

SSPOT.OT
(2)
S→R, SSPOT.OT

(3)
R→S, SSPOT.OTS).

– CDS1(1κ): For i ∈ [n], the receiver computes cdsi1 = oti1 = SSPOT.OT
(1)
R→S(1

κ).
The receiver sends cds1 = {cdsi}i∈[n] to the sender and stores stR = ⊥ as the
internal state.

– CDS2(1κ, cds1): For i ∈ [n], the sender performs the following: (cdsi2,SSPOT.

stiS) = SSPOT.OT
(2)
S→R(1κ, cdsi1). The sender sends cds2 = {cdsi2}i∈[n] to the

receiver and stores stS = {SSPOT.stiS} as the internal sender’s state.
– CDS3(1κ, (x,w), stR, cds2): The receiver denotes w = {wi}i∈[n]. It computes

(cdsi3,m
′
i) = OTR→S(1κ, wi, cds

i
2) for i ∈ [n]. The receiver sends cds3 =

{cdsi3}i∈[n] to sender and stores stR = (w, {m′
i}i∈[n]) as internal state.

– CDS4(1κ, (x, ptxt), stS, cds3): The sender performs the following:
1. Computes the following circuit C:

C(x,w, ptxt) = ptxt iff (R(x,w) == 1)
= 0, otherwise

204 S. Badrinarayanan et al.

x is hardcoded in the circuit, w ∈ {0, 1}n and ptxt ∈ {0, 1}� are inputs to
the circuit. The sender garbles circuit C as (GC, lab) ← Garble.Gb(1κ, C).
The computes

2. For i ∈ [n], it computes (mi
0,m

i
1) = SSPOT.OTS(SSPOT.stiS, cds

i
3).

3. Parse lab = {lab0i , lab1i }i∈[n+�]. For i ∈ [n], α ∈ {0, 1}, the sender com-
putes yα

i = mα
i ⊕ labα

i . Set y = {y0
i , y1

i }i∈[n].
4. Compute the wire labels corresponding to input ptxt ∈ {0, 1}� as follows

(Li = Garble.En(ptxti, {lab0n+i, lab
1
n+i})) for i ∈ [�].

The sender sends cds4 = (GC,y, {Li}i∈[�]) to the receiver.
– CDS5(stR, cds4): For i ∈ [n], the receiver computes lab′

i = m′
i ⊕ ywi

i . The
receiver sets lab′

n+i = Li for i ∈ [�]. The receiver evaluates the garbled circuit
to obtain ptxt′ = Garble.Ev(GC, {lab′

i}i∈[n+�]). The receiver outputs ptxt′ as
the decrypted message.

Correctness. The receiver obtains lab′
i = labwi

i for i ∈ [n] from the ith OT
protocol corresponding to witness bit wi. It evaluates the garbled circuit GC to
obtain the message ptxt′ == ptxt if R(x,w) = 1.

Theorem 6. Assuming SSPOT is a four round OT protocol with statistical
sender privacy against a malicious receiver and computational receiver privacy
against a semi-honest sender, and Garble is an information theoretic garbling
scheme for NC1 circuits, then CDS is a conditional disclosure of secrets for
statements x ∈ L which are verifiable by relations R(x, ·) that can be computed
by NC1 circuits. Moreover, it provides receiver simulation against a malicious
receiver and message indistinguishability against a semi-honest sender.

Proof. We defer the detailed proof to the full version of our paper [BPS22]. �

6.2 Protocol πmal

We compile the 2PC protocol πexp of [KM20] (Sect. 5.1), which is secure against
unbounded explainable receiver and PPT explainable sender, to be secure against
malicious corruptions. Our protocol πmal can be found below and the security is
summarized in Theorem 7. High level overview can be found in Sect. 2.1.

Construction. The receiver R has input A and sender S has input B. We present
our compiler πmal = (R1,S1,R2,S2,R3,S3) as follows:

– R1(1κ,A): The receiver performs the following:
1. Sample rR ← {0, 1}∗ and compute π1

exp = πexp.R1(A; rR) according to the
explainable protocol.

2. Set (z1, stZKP,P) ← ZKP.P(1κ) and (z′
1, stSZK,V) ← SZK.V1(1κ) as the first

messages of the ZK proof with R as prover, and SZK argument with R as
verifier, respectively.

3. Set (cds1, stCDS,R) = CDS.CDS1(1κ) as the first message of the CDS
scheme as receiver.

Statistical Security in Two-Party Computation Revisited 205

4. Send π1
mal = (π1

exp, z1, z
′
1, cds1).

5. Store stR = (A, rR, stZKP,P, stSZK,V, stCDS,R).
– S1(1κ,B, π1

mal): The sender performs the following:
1. Sample rS ← {0, 1}∗ and set π2

exp = πexp.S1(π1
exp,B; rS) according to the

explainable protocol.
2. Set (z2, stZKP,V) ← ZKP.V1(z1, 1κ), (z′

2, stSZK,P) ← SZK.P1(z′
1) as the

second message of the ZKPproof with S as verifier, and SZK argument
with sender as prover, respectively.

3. Sample rCDS
S ← {0, 1}∗ and compute (cds2, stCDS,S) = CDS.CDS2(rCDS

S ,
cds1) as the second message of the CDS scheme as sender.

4. Send π2
mal = (π2

exp, z2, z
′
2, cds2).

5. Store stS = (B, rS, stZKP,V, stSZK,P, stCDS,S).
– R2(stR, π2

mal): The receiver performs the following:
1. Compute π3

exp = πexp.R2(π2
exp,A; rR). Set statement xCDS =

(π1
exp, π

2
exp, π

3
exp) and witness wCDS = (A, rR, ldp) where ldp is a low-depth

proof of

(π1
exp = πexp.R1(A; rR) ∧ π3

exp = πexp.R2(π2
exp,A; rR)).

2. Compute (cds3, stCDS,R) ← CDS.CDS3(1κ, (xCDS, wCDS), stCDS,R, cds2).
3. Compute (z3, stZKP,P) ← ZKP.P2(z2, stZKP,P) and (z′

3, stSZK,V) ←
SZK.V2(z′

2, stSZK,V).
4. Send π3

mal = (π3
exp, z3, z

′
3, cds3).

5. Update stR = (A, rR, stZKP,P, stSZK,V, stCDS,R).
– S2(stS, π3

mal): The sender performs the following:
1. Set π4

exp = πexp.S2(π3
exp,B; rS).

2. Set statement xCDS = (π1
exp, π

2
exp, π

3
exp). Compute CDS response

cds4 ← CDS.CDS4(rCDS
S , (xCDS, π

4
exp), stCDS,S, cds3).

3. Compute (z4, stZKP,V) ← ZKP.V2(z3, stZKP,V).
4. Set the statement xSZK = (cds1, cds2, cds3, cds4, xCDS) for witness wSZK =

(B, rCDS
S , rS, π

4
exp) and set z′

4 ← SZK.P2(z′
3, xSZK, stSZK,P).

5. Send π4
mal = (cds4, z4, z′

4).
6. Update stS = (B, rS, stZKP,V, stSZK,P)

– R3(stR, π4
mal): The receiver performs the following:

1. Set the statement as xSZK = (cds1, cds2, cds3, cds4, xCDS). The receiver
aborts if the verification fails as SZK.V3(z′

4, xSZK, stSZK,V) = 0. Otherwise,
decrypt π4

exp = CDS.CDS5(stCDS,R, cds4) and compute the final message
as (π5

exp, out) = πexp.R3(π4
exp,A; rR).

2. Set xZKP = (π1
exp, π

2
exp, π

3
exp, π

4
exp, π

5
exp), wZKP = (A, rR) and compute the

ZKP proof as z5 = ZKP.P3(z4, xZKP, stZKP,P).
3. Send π5

mal = (π5
exp, z5) to the sender and output out.

– S3(stS, π5
mal): Set statement xZKP = (π1

exp, π
2
exp, π

3
exp, π

4
exp, π

5
exp) for ZKP proof.

If ZKP.V3(z5, xZKP, stZKP,V) == 0 then abort. Else, output πexp.S3(π5
exp,B; rS).

206 S. Badrinarayanan et al.

We denote the statement for the CDS as follows:

LCDS = {(π1
exp, π

2
exp, π

3
exp) : ∃(A, rR, ldp) s.t. ldp is a low depth proof of

π1
exp = πexp.R1(A; rR) ∧ π3

exp = πexp.R2(π2
exp,A; rR)}

The SZK statement proven by the sender is as follows:

LSZK = {(cds1, cds2, cds3, cds4, xCDS) : ∃(B, rCDS
S , rS, π

4
exp) s.t. π2

exp = S1(π
1
exp,B; rS)∧

(cds2, stCDS,S) = CDS.CDS2(r
CDS
S) ∧ cds4 = CDS.CDS4(r

CDS
S , (xCDS, π

4
exp), stCDS,S, cds3)}.

We denote the ZKP statement proven by the receiver as follows:

LZKP = {(π1
exp, π

2
exp, π

3
exp, π

4
exp, π

5
exp)∃(A, rR) s.t. π1

exp = πexp.R1(A; rR)

∧π3
exp = πexp.R2(π2

exp,A; rR) ∧ π5
exp = πexp.R3(π4

exp,A; rR)}.

Theorem 7. Assuming the following holds:

1. Four round delayed-input adaptive statistical zero-knowledge arguments of
knowledge SZK = (V1,P1,V2,P2,V3) with adaptive soundness,

2. Five round delayed-input adaptive computational zero-knowledge proofs
ZKP = (P1,V1, P2,V2,P3,V3) with adaptive soundness,

3. Four round statistical Conditional Disclosure of Secrets CDS = (CDS1, CDS2,
CDS3, CDS4, CDS5) for NP relations verifiable by NC1 circuits with two
rounds of preprocessing phase and two rounds of input-dependent phase,

4. Five round robust two-party secure computation protocol πexp = (R1, S1,
R2, S2, R3, S3) against unbounded explainable receiver and PPT explainable
sender

there exists a robust 5-round secure two-party computation protocol πmal =
(R1, S1, R2, S2, R3, S3) with black-box simulation against unbounded malicious
receivers and PPT malicious senders, where the receiver obtains its output at
the end of fourth round and the sender obtains its output at the end of the fifth
round.

Proof. We defer the detailed proof to the full version of our paper [BPS22]. �

7 Instantiations of eOT

We instantiate eOTfrom CDH, reciprocal CSIDH assumption and two-round
SSPOT. Due to lack of space, we only describe the CDH-based instantiation
here. We refer to the full version of our paper [BPS22] for the instantiations
based on the reciprocal CSIDH assumption and two-round SSPOT.

CDH-Based Instantiation. We define our elementary OT protocol eOT =
(OT(1)

S→R,OT
(2)
R→S,OT

(3)
S→R,OTR) as a tuple of four algorithms defined as follows:

Statistical Security in Two-Party Computation Revisited 207

– OT
(1)
S→R(1κ): The sender samples Q ← G. The sender sends ot1 = Q as the

OT sender message.
– OT

(2)
R→S(1

κ, γ, ot1): The receiver performs the following with input choice bit
γ as follows:

• Sample sk ← Zq.
• Set pkγ = gsk and set pk1−γ = Q

pkγ
.

The receiver sends ot2 = pk0 as the OT receiver message and sets stR = (γ, sk).
– OT

(3)
S→R(1κ, ot2): The sender computes following:

• Generate pk1 = Q
pk0

.
• Sample r ← Zq. Compute R = gr.
• Compute m0 = pkr

0 and m1 = pkr
1.

The sender sends ot3 = R as the OT sender message and outputs (m0,m1)
as the output.

– OTR(stR, ot3): The receiver computes mγ = Rsk and outputs mγ .

Correctness. The sender outputs (m0,m1). The receiver outputs mγ = Rsk =
grsk = pkr

γ corresponding to bit γ.

Lemma 5. The above protocol satisfies perfect receiver’s elementary security.

Proof. The distribution of pk0 is randomly distributed over G irrespective of the
value of γ. �
Lemma 6. The above protocol satisfies computational sender’s elementary secu-
rity based on the CDH assumption.

Proof. Let A be an adversary breaking sender privacy of the above OT protocol,
then we build an adversary B breaking the CDH assumption. Recall that A
receives Q = gq from the sender (for an uniformly sampled q ← Zq), sends
pk0 to the sender, receives R = gr from the sender (for an uniformly sampled
r ← Zq) and wins if it outputs m0 = pkr

0 and m1 = pkr
1. The CDH adversary B

(acting as the sender) receives (g,X = gx, Y = gy) as the CDH challenge. B sets
Q = X and sends it to A. Upon receiving pk0 from A, B sends R = Y to A. If
A succeeds then it outputs m0 = pky

0 and m1 = pky
1. B outputs m0 · m1 to the

CDH challenger. Recall that pk0 · pk1 = Q = X. If A succeeds then B breaks
CDH since the following holds:

m0 · m1 = pky
0 · pky

1 = (pk0 · pk1)y = Xy

�

References

[ACJ17] Ananth, P., Choudhuri, A.R., Jain, A.: A new approach to round-optimal
secure multiparty computation. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017, Part I. LNCS, vol. 10401, pp. 468–499. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63688-7 16

https://doi.org/10.1007/978-3-319-63688-7_16

208 S. Badrinarayanan et al.

[ADMP20] Alamati, N., De Feo, L., Montgomery, H., Patranabis, S.: Cryptographic
group actions and applications. In: Moriai, S., Wang, H. (eds.) ASI-
ACRYPT 2020, Part II. LNCS, vol. 12492, pp. 411–439. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-64834-3 14

[AMPS21] Alamati, N., Montgomery, H., Patranabis, S., Sarkar, P.: Two-round adap-
tively secure MPC from isogenies, LPN, or CDH. In: Tibouchi, M., Wang,
H. (eds.) ASIACRYPT 2021. LNCS, vol. 13091, pp. 305–334. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-92075-3 11

[BD18] Brakerski, Z., Döttling, N.: Two-message statistically sender-private OT
from LWE. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018, Part II.
LNCS, vol. 11240, pp. 370–390. Springer, Cham (2018). https://doi.org/
10.1007/978-3-030-03810-6 14

[BF22] Bitansky, N., Freizeit, S.: Statistically sender-private OT from LPN and
derandomization. Cryptology ePrint Archive, Report 2022/185 (2022).
https://ia.cr/2022/185

[BFJ+20] Badrinarayanan, S., Fernando, R., Jain, A., Khurana, D., Sahai, A.: Sta-
tistical ZAP arguments. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT
2020, Part III. LNCS, vol. 12107, pp. 642–667. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45727-3 22

[BGJ+18] Badrinarayanan, S., Goyal, V., Jain, A., Kalai, Y.T., Khurana, D., Sahai,
A.: Promise zero knowledge and its applications to round optimal MPC.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol.
10992, pp. 459–487. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-96881-0 16

[BHP17] Brakerski, Z., Halevi, S., Polychroniadou, A.: Four round secure compu-
tation without setup. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I.
LNCS, vol. 10677, pp. 645–677. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-70500-2 22

[BHR12] Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits.
In: Yu, T., Danezis, G., Gligor, V.D. (eds.) ACM CCS 2012, pp. 784–796.
ACM Press (2012)

[BJY97] Bellare, M., Jakobsson, M., Yung, M.: Round-optimal zero-knowledge
arguments based on any one-way function. In: Fumy, W. (ed.) EURO-
CRYPT 1997. LNCS, vol. 1233, pp. 280–305. Springer, Heidelberg (1997).
https://doi.org/10.1007/3-540-69053-0 20

[Blu81] Blum, M.: Coin flipping by telephone. In: Gersho, A. (ed.) CRYPTO 1981,
vol. ECE Report 82–04, pp. 11–15. University of California, Santa Barbara,
Department of Electrical and Computer Engineering (1981)

[BPS22] Badrinarayanan, S., Patranabis, S., Sarkar, P.: Statistical security in two-
party computation revisited. Cryptology ePrint Archive, Paper 2022/1190
(2022). https://eprint.iacr.org/2022/1190

[CCG+20] Rai Choudhuri, A., Ciampi, M., Goyal, V., Jain, A., Ostrovsky, R.: Round
optimal secure multiparty computation from minimal assumptions. In:
Pass, R., Pietrzak, K. (eds.) TCC 2020,Part II. LNCS, vol. 12551, pp. 291–
319. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64378-
2 11

[CCG+21] Choudhuri, A.R., Ciampi, M., Goyal, V., Jain, A., Ostrovsky, R.: Obliv-
ious transfer from trapdoor permutations in minimal rounds. In: Nissim,
K., Waters, B. (eds.) TCC 2021, Part II. LNCS, vol. 13043, pp. 518–549.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90453-1 18

https://doi.org/10.1007/978-3-030-64834-3_14
https://doi.org/10.1007/978-3-030-92075-3_11
https://doi.org/10.1007/978-3-030-03810-6_14
https://doi.org/10.1007/978-3-030-03810-6_14
https://ia.cr/2022/185
https://doi.org/10.1007/978-3-030-45727-3_22
https://doi.org/10.1007/978-3-319-96881-0_16
https://doi.org/10.1007/978-3-319-96881-0_16
https://doi.org/10.1007/978-3-319-70500-2_22
https://doi.org/10.1007/978-3-319-70500-2_22
https://doi.org/10.1007/3-540-69053-0_20
https://eprint.iacr.org/2022/1190
https://doi.org/10.1007/978-3-030-64378-2_11
https://doi.org/10.1007/978-3-030-64378-2_11
https://doi.org/10.1007/978-3-030-90453-1_18

Statistical Security in Two-Party Computation Revisited 209

[CO17] Chongchitmate, W., Ostrovsky, R.: Circuit-private multi-key FHE. In:
Fehr, S. (ed.) PKC 2017, Part II. LNCS, vol. 10175, pp. 241–270. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54388-7 9

[COSV17] Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Round-optimal
secure two-party computation from trapdoor permutations. In: Kalai, Y.,
Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677, pp. 678–710.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2 23

[DGH+20] Döttling, N., Garg, S., Hajiabadi, M., Masny, D., Wichs, D.: Two-round
oblivious transfer from CDH or LPN. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020, Part II. LNCS, vol. 12106, pp. 768–797. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-45724-2 26

[DN07] Dwork, C., Naor, M.: Zaps and their applications. SIAM J. Comput. (2007)
[GGH+13] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Can-

didate indistinguishability obfuscation and functional encryption for all
circuits. In: 54th FOCS, pp. 40–49. IEEE Computer Society Press (2013)

[GJJM20] Goyal, V., Jain, A., Jin, Z., Malavolta, G.: Statistical zaps and new obliv-
ious transfer protocols. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT
2020, Part III. LNCS, vol. 12107, pp. 668–699. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45727-3 23

[GK96] Goldreich, O., Kahan, A.: How to construct constant-round zero-
knowledge proof systems for NP. J. Cryptol. 9(3), 167–190 (1996)

[GMPP16] Garg, S., Mukherjee, P., Pandey, O., Polychroniadou, A.: The exact round
complexity of secure computation. In: Fischlin, M., Coron, J.-S. (eds.)
EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 448–476. Springer, Hei-
delberg (2016). https://doi.org/10.1007/978-3-662-49896-5 16

[GMW91] Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but
their validity for all languages in NP have zero-knowledge proof systems.
J. ACM (1991)

[HHPV18] Halevi, S., Hazay, C., Polychroniadou, A., Venkitasubramaniam, M.:
Round-optimal secure multi-party computation. In: Shacham, H.,
Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 488–
520. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-
0 17

[HK12] Halevi, S., Kalai, Y.T.: Smooth projective hashing and two-message obliv-
ious transfer. J. Cryptol. 25(1), 158–193 (2012)

[HNO+09] Haitner, I., Nguyen, M.-H., Ong, S.J., Reingold, O., Vadhan, S.P.: Statisti-
cally hiding commitments and statistical zero-knowledge arguments from
any one-way function. SIAM J. Comput. (2009)

[Kat08] Katz, J.: Which languages have 4-round zero-knowledge proofs? In:
Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 73–88. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-78524-8 5

[KKS18] Kalai, Y.T., Khurana, D., Sahai, A.: Statistical witness indistinguishability
(and more) in two messages. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018, Part III. LNCS, vol. 10822, pp. 34–65. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-78372-7 2

[KM20] Khurana, D., Mughees, M.H.: On statistical security in two-party compu-
tation. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part II. LNCS, vol.
12551, pp. 532–561. Springer, Cham (2020). https://doi.org/10.1007/978-
3-030-64378-2 19

https://doi.org/10.1007/978-3-662-54388-7_9
https://doi.org/10.1007/978-3-319-70500-2_23
https://doi.org/10.1007/978-3-030-45724-2_26
https://doi.org/10.1007/978-3-030-45727-3_23
https://doi.org/10.1007/978-3-662-49896-5_16
https://doi.org/10.1007/978-3-319-96881-0_17
https://doi.org/10.1007/978-3-319-96881-0_17
https://doi.org/10.1007/978-3-540-78524-8_5
https://doi.org/10.1007/978-3-319-78372-7_2
https://doi.org/10.1007/978-3-030-64378-2_19
https://doi.org/10.1007/978-3-030-64378-2_19

210 S. Badrinarayanan et al.

[KO04] Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8 21

[Kol05] Kolesnikov, V.: Gate evaluation secret sharing and secure one-round two-
party computation. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol.
3788, pp. 136–155. Springer, Heidelberg (2005). https://doi.org/10.1007/
11593447 8

[LGdSG21] Lai, Y.-F., Galbraith, S.D., Delpech de Saint Guilhem, C.: Compact, effi-
cient and UC-secure isogeny-based oblivious transfer. In: Canteaut, A.,
Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 213–
241. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5 8

[LP07] Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party compu-
tation in the presence of malicious adversaries. In: Naor, M. (ed.) EURO-
CRYPT 2007. LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-72540-4 4

[LP09] Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party
computation. J. Cryptol. 22(2), 161–188 (2009)

[LS91] Lapidot, D., Shamir, A.: Publicly verifiable non-interactive zero-knowledge
proofs. In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol.
537, pp. 353–365. Springer, Heidelberg (1991). https://doi.org/10.1007/3-
540-38424-3 26

[LS19] Lombardi, A., Schaeffer, L.: A note on key agreement and non-interactive
commitments. IACR Cryptology ePrint Archive, p. 279 (2019)

[MW16] Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-
key FHE. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part
II. LNCS, vol. 9666, pp. 735–763. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49896-5 26

[Nao91] Naor, M.: Bit commitment using pseudorandomness. J. Cryptol. (1991)
[NOVY98] Naor, M., Ostrovsky, R., Venkatesan, R., Yung, M.: Perfect zero-knowledge

arguments for NP using any one-way permutation. J. Cryptol. (1998)
[NP01] Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: Rao

Kosaraju, S. (ed.) 12th SODA, pp. 448–457. ACM-SIAM (2001)
[OPP14] Ostrovsky, R., Paskin-Cherniavsky, A., Paskin-Cherniavsky, B.: Mali-

ciously circuit-private FHE. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014, Part I. LNCS, vol. 8616, pp. 536–553. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44371-2 30

[ORS15] Ostrovsky, R., Richelson, S., Scafuro, A.: Round-optimal black-box two-
party computation. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015,
Part II. LNCS, vol. 9216, pp. 339–358. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 17

[PRS02] Prabhakaran, M., Rosen, A., Sahai, A.: Concurrent zero knowledge with
logarithmic round-complexity. In: 43rd FOCS, pp. 366–375. IEEE Com-
puter Society Press (2002)

[WW06] Wolf, S., Wullschleger, J.: Oblivious transfer is symmetric. In: Vaudenay,
S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 222–232. Springer, Hei-
delberg (2006). https://doi.org/10.1007/11761679 14

[Yao86] Yao, A.C.-C.: How to generate and exchange secrets (extended abstract).
In: 27th FOCS, pp. 162–167. IEEE Computer Society Press (1986)

https://doi.org/10.1007/978-3-540-28628-8_21
https://doi.org/10.1007/11593447_8
https://doi.org/10.1007/11593447_8
https://doi.org/10.1007/978-3-030-77870-5_8
https://doi.org/10.1007/978-3-540-72540-4_4
https://doi.org/10.1007/3-540-38424-3_26
https://doi.org/10.1007/3-540-38424-3_26
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-44371-2_30
https://doi.org/10.1007/978-3-662-48000-7_17
https://doi.org/10.1007/11761679_14

Protocols: Key Agreement
and Commitments

On the Worst-Case Inefficiency of CGKA

Alexander Bienstock1(B), Yevgeniy Dodis1, Sanjam Garg2,3,
Garrison Grogan5, Mohammad Hajiabadi4, and Paul Rösler1

1 New York University, New York, USA
{abienstock,dodis,paul.roesler}@cs.nyu.edu

2 UC Berkeley, Berkeley, USA
sanjamg@berkeley.edu

3 NTT Research, East Palo Alto, USA
4 University of Waterloo, Waterloo, Canada

mdhajiabadi@uwaterloo.ca
5 Berkeley, USA

Abstract. Continuous Group Key Agreement (CGKA) is the basis of
modern Secure Group Messaging (SGM) protocols. At a high level, a
CGKA protocol enables a group of users to continuously compute a
shared (evolving) secret while members of the group add new members,
remove other existing members, and perform state updates. The state
updates allow CGKA to offer desirable security features such as forward
secrecy and post-compromise security.

CGKA is regarded as a practical primitive in the real-world. Indeed,
there is an IETF Messaging Layer Security (MLS) working group devoted
to developing a standard for SGM protocols, including the CGKA pro-
tocol at their core. Though known CGKA protocols seem to perform
relatively well when considering natural sequences of performed group
operations, there are no formal guarantees on their efficiency, other than
the O(n) bound which can be achieved by trivial protocols, where n
is the number of group numbers. In this context, we ask the following
questions and provide negative answers.
1. Can we have CGKA protocols that are efficient in the worst case? We

start by answering this basic question in the negative. First, we show
that a natural primitive that we call Compact Key Exchange (CKE)
is at the core of CGKA, and thus tightly captures CGKA’s worst-case
communication cost. Intuitively, CKE requires that: first, n users
non-interactively generate key pairs and broadcast their public keys,

The full version [10] of this article is available in the IACR eprint archive as article
2022/1237.
Y. Dodis—Partially supported by gifts from VMware Labs and Algorand Foundation,
and NSF grants 1815546 and 2055578.
S. Garg—This research is supported in part by DARPA under Agreement No.
HR00112020026, AFOSR Award FA9550-19-1-0200, NSF CNS Award 1936826, and
research grants by the Sloan Foundation, and Visa Inc. Any opinions, findings and
conclusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the United States Government or DARPA.
M. Hajiabadi—Work supported by an NSERC Discovery Grant RGPIN/03270-2022.
c© The Author(s), under exclusive license to Springer Nature Switzerland 2022
E. Kiltz and V. Vaikuntanathan (Eds.): TCC 2022, LNCS 13748, pp. 213–243, 2022.
https://doi.org/10.1007/978-3-031-22365-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22365-5_8&domain=pdf
http://orcid.org/0000-0002-2324-5671
https://eprint.iacr.org/2022/1237
https://doi.org/10.1007/978-3-031-22365-5_8

214 A. Bienstock et al.

then, some other special user securely communicates to these n users
a shared key. Next, we show that CKE with communication cost o(n)
by the special user cannot be realized in a black-box manner from
public-key encryption, thus implying the same for CGKA, where n
is the corresponding number of group members.

2. Can we realize one CGKA protocol that works as well as possible in
all cases? Here again, we present negative evidence showing that no
such protocol based on black-box use of public-key encryption exists.
Specifically, we show two distributions over sequences of group oper-
ations such that no CGKA protocol obtains optimal communication
costs on both sequences.

1 Introduction
Secure Group Messaging (SGM) platforms such as Signal Messenger, Facebook
Messenger, WhatsApp, etc., are used by billions of people worldwide. SGM has
received lots of attention recently, including from the IETF Messaging Layer
Security (MLS) working group [8], which is creating an eponymous standard for
SGM protocols. While these protocols’ security properties are well documented,
understanding their efficiency properties remains a central research question.

Continuous Group Key Agreement (CGKA) is at the core of SGM protocols.
First formalized in [3], CGKA allows a group of users to continuously compute a
shared (evolving) symmetric key. This shared group key is re-computed as users
asynchronously add (resp. remove) others to (resp. from) the group, as well as
execute periodic state refreshes. CGKA provides very robust security guaran-
tees: it not only requires privacy of group keys from non-members, including
the facilitating delivery server (which users send CGKA ciphertexts to, in case
other group members are offline), but much more. Even in the event of a state
compromise in which a user’s secret state is leaked to an adversary, group keys
should shortly become private again through ordinary protocol state refreshes.
Furthermore, in face of such a state compromise, past group keys should remain
secure. The former security requirement is referred to as post-compromise secu-
rity (PCS), while the latter is referred to as forward secrecy (FS).

Ideally, for use in practice, CGKA protocols should use simple, well-
established, and efficient cryptographic primitives and have O(log n) commu-
nication per operation (or at most sub-linear), where n is the number of group
members. Indeed, many CGKA protocols in the literature described below claim
to have “fair-weather” O(log n) communication, meaning that when conditions
are good, communication cost per operation is O(log n). Such informal claims
have pleased practitioners and supported their beliefs that CGKA can be used
in the real-world. However, no such formal efficiency guarantees, nor any non-
trivial definitions of such good conditions have ever been established. Indeed, as
elaborated upon below, there are no formal analyses showing that a CGKA pro-
tocol can do any better than the trivial O(n) communication cost per operation,
on any non-trivial sequence of operations.

CGKA Protocols in the Literature. Many CGKA protocols have been introduced
in the literature to provide the above security properties. The largest portion

On the Worst-Case Inefficiency of CGKA 215

of these are based on a basic tree structure, as in the Asynchronous Ratchet
Tree (ART) protocol [21] and the TreeKEM family of protocols [1,3–6,9,11],
the simplest of which is currently used in MLS [8]. Most of these tree-based
protocols are of the same approximate form (although they have slightly differ-
ent efficiency profiles; see [6] for a comparison based on simulations): each node
contains a Public Key Encryption (PKE) key pair, users are assigned to the
leaves and only store the secret keys on the path from their leaf to the root, and
the root is the group secret. When a user executes an operation, they refresh
the secret keys along the path(s) of one (or more) leaves to the root, encrypt-
ing these secrets to the siblings along the path(s). Thus, in very specific good
conditions, communication can easily be seen to be O(log n). However, due to
PCS requirements (elaborated on below), the trees in all of these protocols may
periodically degrade, resulting in Ω(n) communication complexity in the worst
case, even amortized over many operations.

Instead of using a tree structure, Weidner et al. suggest using pairwise chan-
nels of the Continuous Key Agreement scheme derived from the famous two-
party Signal Secure Messaging protocol [2,14,18,20,26,28,32]. However, this
trivial construction of course requires Ω(n) communication per operation.

In summary, all known CGKA protocols (based on public-key encryption)
achieve the same worst-case efficiency as the trivial protocol.

1.1 Our Results

In this paper, we work towards understanding the possible efficiency guarantees
that any CGKA protocol can achieve in the worst-case, i.e., in cases when the
conditions are not good. We start by asking the following question:

Can we construct a CGKA protocol that does better than the trivial CGKA
protocol in the worst-case?

We provide a negative answer to the above question. In particular, we show
that every CGKA (from PKE) has large Ω(n) worst-case communication cost.
Although one can hope that this worst-case will not occur often in practice,
until there are better, well-defined assumptions on the structure of operation
sequences under which practitioners hope that good efficiency bounds can be
proven, there is always a danger of bad efficiency in some cases. As the first step
of this lower bound, we show that a natural primitive which we call Compact
Key Exchange (CKE) is at the core of CGKA, and in fact tightly captures the
worst-case communication cost of CGKA. The heart of our negative result is
then a black-box separation showing that PKE are insufficient for efficiently
realizing CKE. Finally, using the above equivalence, we translate this result into
the aforementioned lower bound on CGKA.

Given that no CGKA protocol can be efficient in the worst case, we ask:

Can we realize one CGKA protocol that works as well as possible in all
cases?

Here again, we present negative evidence showing that no such protocol based
on black-box use of PKE exists. Specifically, we show two distributions over

216 A. Bienstock et al.

sequences of group operations such that no single CGKA protocol making only
black-box use of PKE obtains optimal communication costs on both sequences.
That is, any CGKA protocol which acts well on one distribution of operations
must have much worse Ω(n) communication cost on the other distribution; oth-
erwise, it violates our CKE lower bound.

1.2 Compact Key Exchange

To prove our CGKA lower bound, we first isolate and define Compact Key
Exchange (CKE), a novel primitive that captures one type of scenario that
results in large CGKA communication. CKE is related to Multi-Receiver Key
Encapsulation Mechanisms [30]. It involves n users who each non-interactively
broadcasts a public key, and another special user who sends those n users an
encryption of a symmetric key, which only the n users can decrypt. As explained
below, we will show that CKE is equivalent to CGKA, in terms of worst-case
communication complexity.

1.3 Standard Security of Continuous Group Key Agreement

Our CGKA lower bound focuses on the efficiency ramifications of post-
compromise security (PCS). The standard form of PCS required for CGKA
in the literature [1,3,6,21] is in fact quite strong. Informally, it requires the
following two properties:

1. Double-join prevention. A malicious user may memorize randomness used in
operations they execute. If they are removed from the group at a later time,
they must be prevented from using this memorized randomness to re-join the
group without invitation.

2. Resilience to randomness leakage. An honest user’s malfunctioning device may
continuously leak randomness which the user samples for CGKA operations
(e.g., due to implementation flaws or an installed virus). Once the leakage is
stopped (due to updating the implementation or removing the virus) and the
user performs a state update, the adversary must be prevented from using
the previously leaked randomness to obtain future group secrets.

Thus, once a user is removed, all group secrets should be independent of any
randomness sampled by them. Similarly, if a user executes a state refresh, all
new group secrets should be independent of any randomness previously sampled
by them.

We emphasize that while the two properties above are rather strong, weak-
ening PCS to exclude them (i.e., where we assume randomness is never leaked
and securely deleted after each operation) yields many trivial CGKA protocols
(from any PKE) with O(log n) worst-case communication. For example, one can
simply use Tainted TreeKEM (TTKEM) [6] without taints. In all these protocols
honest parties need to sample secrets for other parties, and are then trusted to
delete them once communicated (encrypted) to these other parties. Clearly, most

On the Worst-Case Inefficiency of CGKA 217

real-world implementations should not be comfortable with this level of trust,
and should especially strive for property 1 above instead. Indeed, from very
early on in the MLS standardization initiative, requiring property 1 was deemed
important1 and ultimately prioritized over efficiency2 in the version of TreeKEM
used by MLS [8, §13.1]. This protocol, as well as other existing protocols, such as
TTKEM, explicitly prevent double-joins (e.g., by sometimes blanking or tainting
nodes that are not on the path to the root from the leaf of a user that is exe-
cuting an operation) at great efficiency cost; Ω(n) in the worst-case. Moreover,
even though property 2 may seem especially strong, all CGKA definitions in the
literature require both properties [1,3,6,21], and our lower bound holds for both
(in isolation). Nevertheless, we leave it as an interesting topic for future work
to study what kind of efficiency guarantees can be obtained in a more restricted
setting, where property 2 is not required.

1.4 Equivalence of CKE and CGKA Worst-Case Communication
Complexity

The first step in proving our Ω(n) CGKA lower bound (from PKE) is showing
that CKE and CGKA with the standard PCS notion detailed above are equiva-
lent, both in terms of implication and worst-case communication complexity. It
is important to note that in all our definitions of CKE and CGKA, we specify
the weakest correctness and security requirements under which our lower bounds
hold. This only strengthens our lower bound. For example, we only consider non-
adaptive, passive adversaries.

CKE is at the Core of CGKA. In Sect. 3, we show that CGKA implies CKE and
furthermore that the worst-case communication complexity of CKE from black-
box PKE lower bounds that of CGKA from the same primitives. The intuition
is as follows. Consider a CGKA group with n members at a certain time during
its lifetime. To ensure that our lower bound is meaningful, we allow for any
sequence of operations to be executed up until this point. Now, consider the
situation in which user A adds k new users. If the CGKA protocol only uses
PKE, then each added user only stores secrets (besides their own) that were
generated by user A.3 If user B removes user A as the next operation, then due
1 First proposal of the TreeKEM design with a discussion about the double-join

problem: https://mailarchive.ietf.org/arch/msg/mls/e3ZKNzPC7Gxrm3Wf0q96ds
LZoD8/.

2 Proposal to prevent double-joins in TreeKEM, resulting in linear complexity in the
worst-case: https://mailarchive.ietf.org/arch/msg/mls/Zzw2tqZC1FCbVZA9LKE
RsMIQXik/.

3 Note: for any CGKA protocol, it could be that each of the added k users may share
secrets with all of the current group members, derived from non-interactive key
exchange using key-bundles stored on a server. However, these shared secrets are
only between pairs of users, and thus do not seem useful for establishing the group
secret (since secure communication between pairs of users can already be achieved
via PKE).

https://mailarchive.ietf.org/arch/msg/mls/e3ZKNzPC7Gxrm3Wf0q96dsLZoD8/
https://mailarchive.ietf.org/arch/msg/mls/e3ZKNzPC7Gxrm3Wf0q96dsLZoD8/
https://mailarchive.ietf.org/arch/msg/mls/Zzw2tqZC1FCbVZA9LKERsMIQXik/
https://mailarchive.ietf.org/arch/msg/mls/Zzw2tqZC1FCbVZA9LKERsMIQXik/

218 A. Bienstock et al.

to PCS, every secret which the k added users shared with any of the current
group members cannot be re-used; user A must have generated all of them and
thus could potentially (maliciously) re-join the group without being added if
one of the secrets is reused. Thus, as part of the remove operation, user B must
communicate the new group key to each of the other k added users, with only
the knowledge of their (independent) public keys. This is exactly the setting of
CKE. Indeed if k = Ω(n), and additionally we can show that the ciphertext size
for CKE must be Ω(n), then we can show the same for when user B removes
user A in CGKA above. Furthermore, if user C then removes user B, we are in
the same situation again, and thus this ciphertext must also be Ω(n). We can
repeat this scenario ad infinitum, where after a user executes a remove in the
sequence, they add a new user, such that even amortized over a long sequence of
operations, the communication cost is Ω(n). We in fact further generalize this
result in Sect. 3 to intuitively show that if α users add the k new users then
execute � rounds of sequential state refreshes, the combined communication cost
of each round is Ω(k).

A bit more formally, we show how to construct CKE for k users from CGKA
in a manner such that if the CGKA ciphertext is small for the above operation
and the CGKA protocol only uses PKE in a black-box manner, then the cor-
responding CKE ciphertext is small, contradicting our lower bound for CKE,
discussed below.
Difference from Lower Bound of [11]. It is important to mention that our CGKA
communication complexity lower bound already holds for fully synchronous, non-
concurrent CGKA executions. Hence, the lower bound by Bienstock et al. [11]
that uses symbolic proof techniques to show a communication lower bound for
concurrently initiated operations in CGKA executions (with required fast PCS
recovery4) is entirely independent with respect to our employed methods and
resulting statement.

CKE Tightly Implies CGKA. For completeness, in the full version [10] we also
show that one can use CKE to construct a CGKA protocol where the worst-
case communication complexity of the CGKA protocol is proportional to that
of the used CKE protocol. The CGKA protocol simply lets the user, executing
a given CGKA operation, run the CKE algorithm of the special CKE user to
communicate a fresh group key to the public keys of all current CGKA group
members. Therefore, CGKA and CKE are surprisingly equivalent in terms of
both cryptographic strength and worst-case (communication) complexity; f one
could construct CKE efficiently, they could also construct CGKA efficiently, and
vice versa.

1.5 Black-Box Compact Key Exchange Lower Bound
In order to prove the CGKA lower bounds discussed above, we need a lower
bound on the underlying CKE primitive. Therefore, in Sect. 4, we prove a black-
4 Unlike in [1] who circumvent the [11] lower bound by allowing for slower PCS recov-

ery.

On the Worst-Case Inefficiency of CGKA 219

box separation showing that all CKE protocols that make black-box use of
public-key encryption (PKE) require the ciphertext sent from the special user to
the n users to have size Ω(n), irrespective of the sizes of the public keys that the
n users have sent to the special user. Our impossibility holds even if the scheme
comes with a CRS, of arbitrary size. Ruling out schemes that allow for a CRS
will help us with our CGKA lower bounds.

Intuitively, since the n public keys are generated independently from each
other, our result implies that there is no non-trivial “compression” operation
that the special user can do to save over the trivial protocol: choosing a key and
separately encrypting the key to each user independently.

Relations to Broadcast Encryption. We note that the notion of CKE is incom-
parable to that of broadcast encryption, at least in an ostensible sense. Recall
that a broadcast encryption scheme is a type of attribute-based encryption that
allows for broadcasting a message to a subset of users, in a way that the result-
ing ciphertext is compact. One crucial difference between broadcast encryption
and CKE is that under CKE, users have independent secret keys, while under
broadcast encryption, user secret keys are correlated, all obtained via a master
secret key.

Relations to Other Black-Box Impossibility Results. The work of Boneh et al. [15]
shows that identity-based encryption (IBE) is black-box impossible from trap-
door permutations (TDPs). A striking similarity between IBE and CKE is that
both deal with some form of compactness: that of public parameters (PP) for
IBE and of ciphertexts in CKE. The techniques of [15] crucially rely on the
number of identities being much larger than the number of queries required to
generate a public parameter. In our setting, this is no longer the case: the number
of queries made by the encryption algorithm to generate a compact ciphertext
may be much larger than n, and hence the techniques of [15] do not work in our
setting. In addition, we allow the CRS to grow with the number of identities.

Extensions and Limitations of Our Impossibility Results. We believe that out
impossibility should extend quite naturally to separate CKE from trapdoor per-
mutations (TDPs), though we have not worked out the details. Our impossibility
results have no bearing on the base primitive being used in a non-black-box way,
and indeed by using strong tools such as indistinguishability obfuscation (which
inherently results in non-black-box constructions), one might be able to build
compact CKE.

Overview. Our impossibility result is proved relative to a random PKE oracle
O := (g, e, d). We give an attack against any CKE protocol (CRSGen, Init,
Comm, Derive) (Definition 7) instantiated with O. To give some intuition about
the attack, suppose e is an encryption oracle, whose output length (i.e., the
ciphertext length) is sufficiently larger than its input length (i.e., the length of
(pk, m, r)). This in particular implies that in order to get a valid (pk, c)—one
under which there exists some m and r such that e(pk, m, r) = c—one has to call

220 A. Bienstock et al.

the e oracle first. Now if a CKE ciphertext for n users has length o(n), this means
that one can “embed” at most o(n) valid e-ciphertexts into C. Say the ciphertexts
are c1, . . . , ct with corresponding public keys pk1, . . . , pkt, where t ∈ o(n). This
means that we need at most t effective trapdoors (with respect to O) to decrypt
C, namely the trapdoors that correspond to (pk1, . . . , pkt). Also, since C should
be decryptable by each user, the set of “effective” trapdoors for each user (those
required to decrypt C) should be a subset of all these t trapdoors. Now since
t = o(n), there exists a user whose effective trapdoors are a subset of all other
users. But since the CKE secret keys for all users are generated independently
and with no correlations, if we run the CKE key generation algorithm many
times, we should be able to recover all the required trapdoors, for at least one
user. This is the main idea of the proof.

The above overview is overly simplistic, omitting many subtleties. For exam-
ple, an e-ciphertext that is decrypted may come from one of the public keys
PK1, . . . , PKn (which can be arbitrarily large), and not from C itself. Second,
the notion of “embedded ciphertexts” in C is not clear. We will formalize all
these subtleties in Sect. 4 and will give a more detailed overview there, after
establishing some notation.

New Techniques. Our proofs introduce some techniques that may be of indepen-
dent interest. Firstly, our proofs involve oracle sampling steps (a technique also
used in many other papers), but one novel thing in our proofs is that we need to
make sure that the sampled oracles do not contain a certain set of query/response
pairs. In comparison, prior oracle sampling techniques involve choosing oracles
that agree with a set of query/answer pairs. This technique of making certain
query/response pairs off-limits, and the implications proved, might find applica-
tions in proving other impossibility results. Moreover, our proofs use theorems
about non-uniform attacks against random oracles [19,22] to argue that an o(n)
CKE ciphertext cannot embed n ciphertexts; we find this connection novel.

In Sect. 4, we will give an overview (and the proof) for the restricted con-
struction setting in which oracle access is of the form (CRSGeng, Initg, Comme,
Derived). This will capture most of the ideas that go into the full proof. We will
then give a proof for the general construction case in the full version [10].

1.6 No Single Optimal CGKA Protocol Exists

In Sect. 5, we present another negative result for CGKA protocols that make
black-box use of PKE. Naturally, CGKA protocols proceed in an online manner
such that users do not know which operations will be executed next. There-
fore, users have to make choices when executing operations that may result in
unnecessary communication. We leverage this situation to show that there does
not exist any single CGKA protocol that makes black-box use of PKE and that
has optimal communication costs for every sequence that may be executed. More
specifically, for every CGKA protocol Π, there exists some distribution of CGKA
operations Seq and some other CGKA protocol Π′ such that Π has much higher
communication costs than Π′ when executing Seq.

On the Worst-Case Inefficiency of CGKA 221

Our driving example is as follows: suppose again that starting with a CGKA
group in arbitrary state, k users are added by user A and remain offline. Next,
α users (including user A) execute state refreshes. In this case, some protocols
might use a strategy which, through these state refreshes, create and commu-
nicate extra redundant secrets for the k added users, while others may use a
strategy which simply relies on those secrets communicated by user A. For the
former strategy, if the k added users afterwards come online and execute their
own state refreshes, then the communication of these extra secrets will have
been unnecessary, and a protocol which follows the latter strategy will have
much lower communication cost. However, for the latter strategy, if one of the
α − 1 users, user j, who only communicated a small amount (o(k)) in their state
refresh thereafter remains offline while the other α − 1 users execute rounds of
sequential state refreshes, then we know from what we prove in Sect. 3 that each
of the rounds will have Ω(k) communication cost. This is intuitively because the
k added users mostly share secrets with the α − 1 users excluding user j, and
thus when these α − 1 users perform state refreshes, they must re-communicate
secrets to the k added users. On the other hand, a protocol that follows the
former strategy can have much lower communication cost if the state refresh
ciphertext of user j alone was large (Ω(k)). This is intuitively because the k
added users still share enough secrets with user j, so that when the other α − 1
users execute their state refreshes, they do not need to communicate much new
to the added users.

1.7 Lessons Learned for Practice

Our results show that the execution of a CGKA protocol causes impractical
communication overhead amongst the group members if (1) the CGKA protocol
is built from PKE only, (2) the CGKA protocol achieves the weakest accepted
notion of security, and (3) group members of the protocol execution initiate cer-
tain non-trivial operation sequences. We note that, on an intuitive level, PKE
are essentially the only building blocks of all practical CGKA constructions.
Furthermore, all of the non-trivial operation sequences employed for our lower
bounds are legitimate, and could happen in practice. Consequently, imprac-
tical worst-case communication overheads seem to be inevitable. However, in
order to avoid such impractical communication overheads, one could (a) try to
find suitable practical building blocks other than PKE to circumvent the lower
bound, (b) lower the security requirements for CGKA (which we strongly advise
against!), or (c) identify all problematic operation sequences and then forbid
their execution. We believe that (a) finding better constructions and (c) iden-
tifying all such problematic operation sequences are interesting questions that
we leave open for future work. However, for (a), we emphasize that one would
ultimately need to circumvent our CKE lower bound. Although one may be able
to do so using strong primitives such as indistinguishability obfuscation (as in
the multi-party non-interactive key exchange of [16]), we view it as a challenging
problem to do so from practical tools other than PKE.

We provide some further consequences of our lower bound in practice below.

222 A. Bienstock et al.

CGKA with Two Administrators. Many real-world SGM systems in production
may impose membership policies on users. That is, it could be that there are only
a few “administrators” that are allowed to add and remove others from the group,
while everyone else can only update their state and send messages. As shown
by [12], for the setting in which there is only ever one administrator, CGKA boils
down to the classical setting of Multicast Encryption [13,17,24,25,29,31,33].
Since there is only one administrator in Multicast, O(log n) communication com-
plexity is easily achieved even with security property 1 above [12] (however,
security property 2 already results in Ω(n) complexity for the administrator in
Multicast). This is due to the fact that the sole administrator is never removed
and executes all operations; thus she can use a tree as in some of the aforemen-
tioned CGKA protocols, and never allow it to degrade.

Therefore, a natural question is: In the setting of two administrators that
can replace one another with new administrators, and where only property 1,
but not property 2, is required for the administrators; can we retain O(log n)
communication?5 One can observe that our above lower bound answers this
question in the negative. Indeed, there only ever need to be two administrators
in the group. If so, then as above, one administrator can add k users, then the
second administrator can replace the first with a new third administrator, then
the third administrator can replace the second administrator, and so on. Thus,
the jump from one to two administrators in the worst case requires communica-
tion to increase from O(log n) to Ω(n) per operation, if security property 1 (and
not 2) is required.

MLS Propose-and-Commit Framework. The latest MLS protocol draft (version
14) [8], uses the “propose-and-commit” framework for CGKA. In this frame-
work, users can publish many messages that propose different group operations
(adding/removing others or updating their state), and a new group key is not
established until some user subsequently publishes a commit message. The moti-
vation behind this design is to allow for greater concurrency of CGKA operations:
In prior drafts of MLS, users would attempt to establish a new group key with
each operation. If many users desired to execute an operation at the same time
and published corresponding CGKA ciphertexts, the delivery server would have
to choose one such ciphertext to deliver to all group members (and thus only
one of the group operations would be executed). With propose-and-commit, the
delivery server still has to choose between commit messages, but many proposed
group operations can be combined inside a single commit.

We however observe that we can still apply our above CGKA lower bound to
this framework. Indeed, consider the scenario wherein one user (resp. adminis-
trator) A proposes to add k users, then publishes a commit for these additions.
Thereafter, some other user (resp. administrator) B can replace A in a new
proposal, then publish a commit for this replacement. Again, replacements can
be repeated ad infinitum, and it can easily be seen that each such commit will

5 If neither administrator is removed, of course O(log n) communication can be
retained if they share a multicast tree.

On the Worst-Case Inefficiency of CGKA 223

still cost Ω(n) communication. Hence, our result of Sect. 3 naturally holds in the
propose-and-commit framework.

2 Definitions

In this section, we define syntax and non-adaptive, one-way notions of security
for Continuous Group Key Agreement and Compact Key Exchange. First, we
introduce some notation.

Notation. For algorithm A, y ← A(x; r) means that A on input x with random-
ness r outputs y. If r is not made explicit, it is assumed to be sampled uniformly
at random, and we use notation y ←$ A(x). We will also use the notation x ←$ X
to denote uniformly random sampling from set X. We will use dictionaries for our
CGKA security game. The value stored with key x in dictionary D is denoted
by D[x]. The statement D[∗] ← v initializes a dictionary D in which the default
value for each key is v.

2.1 Continuous Group Key Agreement

In the simple, restricted form that we consider here, Continuous Group Key
Agreement (CGKA) allows a dynamic set of users to continuously establish sym-
metric group keys. For participating in a group, a user first generates a public
key and a secret state via algorithm Gen. With the secret state, a user can add
or remove users to or from a group via algorithms Add and Rem. Furthermore,
each user can update the secrets in their state from time to time to recover
from adversarial state corruptions via algorithm Up. We call the latter three
actions group operations. After all users process a group operation via algorithm
Proc, they share the same group key. In order to analyze the most efficient form
of CGKA, we assume a central bulletin board B to which public information
on the current group structure is posted (initially empty). Thus, newly added
users can obtain the relevant information about the group (which intuitively
may be of size Ω(n) anyway, where n is the current number of group members)
from B, instead of receiving it explicitly from the adding user. Note: the MLS
protocol specification indeed suggests the added user can obtain the group tree
of the protocol (size Ω(n)) from a bulletin board (the delivery server) in this
manner [8].

In the following, the added user simply downloads the entire board. Of course,
in practice, this would be very inefficient, but this only strengthens our lower
bound on the amount of communication sent between current group members
(as opposed to the amount of information retrieved from the bulletin board by
added users).

224 A. Bienstock et al.

Definition 1. A Continuous Group Key Agreement scheme CGKA = (Gen,
Add, Rem, Up, Proc) consists of the following algorithms:6

– Gen is a PPT algorithm that outputs (ST, PK).
– Add is a PPT algorithm that takes in (ST, PK), where ST is the secret state of

the user invoking the algorithm and PK is the public key of the added user, and
outputs (ST′, K, C), where ST′ is the updated secret state of the invoking user,
K is the new shared group key, and C is the ciphertext that is sent to (and
then processed by) the group members. For efficiency purposes, C = (CG, CB)
consists of a share CG that is sent to all group members directly and a share
CB that is posted to the central bulletin board B.

– Rem is a PPT algorithm that takes in (ST, PK), where ST is the secret state
of the user invoking the algorithm and PK is the public key of the removed
user, and outputs (ST′, K, C) as above.

– Up is a PPT algorithm that takes in secret state ST of the user invoking the
algorithm and outputs (ST′, K, C) as above.

– Proc is a deterministic, polynomial time algorithm that takes in (ST, CG),
where ST is the secret state of the user invoking the algorithm and CG is
the ciphertext directly received for an operation, and outputs updated state
and group key (ST′, K). For users that were just added to the group, Proc
additionally takes in bulletin board B. If the operation communicated via C
removes the processing user from the group, K is set to a special symbol ⊥.

Correctness and Security. We define correctness and security of CGKA via
games that are played by an adversary A, in which A controls an execution of
the CGKA protocol. For simplicity and clarity, we only consider a non-adaptive
protocol execution in a single group. The games are specified in Fig. 1.

Before either game starts, the adversary specifies the sequence of queries to
the oracles Gen(), Add(), Rem(), Up(), and Corr() that will be executed.
Gen() allows the adversary to initialize a new user, from which it receives the
corresponding public key PK. The other oracles allow the adversary to execute
group operations, i.e., to add, remove, and update users, respectively. Addition-
ally, for the security game, the adversary beforehand specifies the epoch t which
it will attack, i.e., for which it will guess the group key. The game starts in epoch
t = 0, then increments t each time a group operation oracle is queried. The game
forces the adversary to first query Add() to initialize the group. It keeps track of
group members for each epoch using dictionary G. For simplicity, in each group
operation query, the game immediately uses each current group member’s state
to process the resulting ciphertext directly sent to them, CG, along with the

6 For the sake of comprehensible communication analysis, we do not provide an
explicit Create(ST,PK1, . . . ,PKn) algorithm (for which in practice, Ω(n) cipher-
text size could be tolerated). Instead, we require the group creator to one-by-one
add PK1, . . .PKn, which allows us to prove a more meaningful lower bound on just
Add, Rem, and Up operations.

On the Worst-Case Inefficiency of CGKA 225

Fig. 1. The CGKA correctness and security games.

current bulletin board B, in the case of an added user. Dictionary K keeps track
of the group key that each user computes for each epoch. Each group operation
oracle returns C = (CG, CB) to the adversary.

226 A. Bienstock et al.

Definition 2. A CGKA scheme CGKA is correct if for every adversary A
against the correctness game defined by Fig. 1, and for all t and PK, PK′ ∈ G[t]:
Pr

[
K[t, PK] = K[t, PK′]

]
= 1.

Our notion of security is slightly weakened compared to the standard defini-
tion in the CGKA literature, which only strengthens our lower bound. That is,
the corruption of a user may affect the security of those keys that were estab-
lished in the past while this user was a group member. Thus, forward secrecy is
not captured. Also, we do not consider authenticity.7 However, our notion still
captures basic security requirements plus standard PCS requirement (mentioned
in the introduction), as explained below.

We first explain the importance of dictionary Rand, in addition to sets
WeakEpochs and WeakUsers, which allow the game to capture this security.
Rand keeps track of the randomness the users sample to execute the operations
of each epoch. Intuitively, WeakEpochs and WeakUsers keep track of those
epochs and users that are insecure, respectively. When the adversary queries
oracle Corr(PK), the game returns the corresponding user’s secret state, as well
as the randomness which she used to execute all of her past group operations.
Thus, the game adds PK to WeakUsers and since we do not require forward
secrecy, it also adds to WeakEpochs every past epoch in which the correspond-
ing user was in the group. Now, for every Up(PK) query, the game removes PK
from WeakUsers. This in part captures PCS: in every group operation query,
if there are still weak users in the group (i.e., (WeakUsers∩G[t+1]) �= ∅), then
the game adds the new epoch t + 1 to WeakEpochs. So, if there is a member
of the group that was corrupted and did not since update their state, the epoch
is deemed weak. Conversely, as soon as every group member updates their state
or is removed after a corruption, epochs are no longer deemed weak.

After receiving all return values of the pre-specified sequence’s queries to
these oracles, the adversary outputs a key K. This key K is a guess for the actual
group key established in epoch t, where t is the pre-specified attack epoch. Note
that this recoverability definition is weaker than standard indistinguishability
definitions, which strengthens our lower bound.

Definition 3. A CGKA scheme CGKA is secure if for every PPT adversary
A = (A1, A2) against the security game defined by Fig. 1:

Pr [K ←$ A2(ω, Trans) : K = K[t, PK∗]; t /∈ WeakEpochs;
PK∗ ∈ G[t]; (ω, Seq, t) ←$ A1(1λ)] ≤ negl(λ),

where A1 non-adaptively specifies the sequence of oracle queries Seq and the
attacked epoch t, and A2 guesses the attacked key when obtaining the transcript
of oracle return values Trans.

7 Analyzing the effect of required authenticity under weak randomness [7] on (commu-
nication) complexity in the group setting [27], as well as of extended security goals
such as anonymity [23] remains an interesting open question.

On the Worst-Case Inefficiency of CGKA 227

2.2 Compact Key Exchange

We can now define Compact Key Exchange with access to a common reference
string (CRS). Such protocols allow some users 1, . . . , n to sample independent
(across users) key pairs (SK1, PK1), . . . , (SKn, PKn), then publicly broadcast
PK1, . . . , PKn. Upon reception of these public keys, special user 0 generates a
key K and message C, and broadcasts C. Finally, upon reception of C, every
user i ∈ [n] uses SKi, the set of public keys {PKj}j∈[n], and C to derive K.

Definition 4. A Compact Key Exchange scheme CKE = (CRSGen, Init,
Comm, Derive) in the standard model with common reference string CRS ∈ CRS
consists of the following algorithms:

– Init is a PPT algorithm that takes in CRS ←$ CRSGen(1λ) and outputs
(SK, PK).

– Comm is a PPT algorithm that takes in CRS and set {PKi}i∈[n] and outputs
(K, C).

– Derive is a deterministic, polynomial time algorithm that takes in CRS, SKi,
where i ∈ [n], set {PKj}j∈[n], and C, and outputs K.

For correctness, we require that for any n, and for every i ∈ [n]:

Pr
[
K ← Derive

(
CRS, SKi, {PKj}j∈[n], C

)
: (K, C) ←$ Comm

(
CRS, {PKj}j∈[n]

)
;

∀j ∈ [n], (SKj ,PKj) ←$ Init(CRS);

CRS ←$ CRSGen(1λ)
]

= 1.

For security, we require that for every PPT adversary A that specifies n =
poly(λ):

Pr
[
K ←$ A (

CRS, {PKi}i∈[n], C
)

: (K, C) ←$ Comm
(
CRS, {PKi}i∈[n]

)
;

∀i ∈ [n], (SKi, PKi) ←$ Init(CRS);
CRS ←$ CRSGen(1λ)

] ≤ negl(λ).

Ideally, |C| should be a small function (perhaps independent) of n.

Remark 1. Of course, there is a simple CKE protocol (without CRS) from
PKE scheme PKE = (Gen, Enc, Dec), where |C| = O(λ · n): Init() simply
samples sk ←$ {0, 1}λ, then computes pk ← Gen(sk) and outputs (sk, pk).
Comm({pki}i∈[n]) samples K ←$ {0, 1}λ, and for each i ∈ [n] computes
ci ←$ Enc(pki, K). It then outputs (K, C), where C = (c1, . . . , cn). Finally,
Derive(ski, {pkj}j∈[n], C) computes K ← Dec(ski, ci) and outputs K. Correct-
ness and security follow trivially.

3 From CGKA to CKE Tightly

In this section, we show that CKE is at the core of CGKA, both in terms of
cryptographic strength and worst-case communication complexity, by providing

228 A. Bienstock et al.

a tight construction of the former from the latter. Due to space constraints, the
simpler counter direction—building CGKA from CKE, tightly—is provided in
the full version [10]. From these two reductions, we show that the worst-case
communication complexity of CGKA operations is asymptotically equivalent to
the size of CKE ciphertexts. That is, we show that the best possible size of
a CKE ciphertext implies 1. a lower bound on the worst-case communication
complexity of CGKA operations; and 2. an upper bound for the same. With
this result, we additionally prove that the communication overhead in a CGKA
group is necessarily increased if group members remain offline after they were
added to the group. Indeed, based on our Ω(n) lower bound on CKE ciphertext
size for protocols that make black-box use of PKE from Sect. 4, we show that
worst-case communication overhead for CGKA protocols that make black-box
use of PKE is Ω(k), where k is the number of added users who remain inactive
after being added to the group. Furthermore, we show that this holds even for
(unboundedly) many consecutive operations.

To illustrate our proof idea, consider the following execution of a CGKA
protocol: Let users A and B be members of an existing CGKA group. User
A adds k new users to this group before user B removes A from the group
and B finally conducts a state update. After A is removed and B updates his
state, the group must share a key that is secure even if A is corrupted after
he is removed or B was corrupted before his update, and there were no other
corruptions. (Note that these corruptions of A and B must be harmless w.r.t.
security because A was removed and B updated his state to recover according
to PCS.) We observe that the only information received by the k new users so
far were A’s add-ciphertexts and B’s remove- and update-ciphertexts. Since A
may have been corrupted (which reveals the randomness she used for adding the
k users), the add-ciphertexts may contain no confidential payload. Similarly, B
might have been corrupted until he updated his state. Hence, B’s ciphertext that
updates his state is the only input from which the k users can derive a secure
group key. This update ciphertext intuitively corresponds to a CKE ciphertext
that establishes a key with the k newly added users. In our proof, we generalize
this intuition to show that, as long as k new group members remain passive, a
recurring linear communication overhead in Ω(k) cannot be avoided when active
group members repeatedly update the group’s key material.

3.1 Embedding CGKA Ciphertexts in CKE Ciphertexts

With our proof that CGKA implies CKE, we directly lift the communication-cost
lower bound for CKE from Sect. 4 to certain bad sequences in a CGKA execution.
That means, our proof implies that such bad sequences in a CGKA execution
lead to a linear communication overhead in the number of affected users. For
this, we build a CKE construction that embeds specific CGKA ciphertexts in its
CKE ciphertexts. Thus, a CGKA scheme that achieves sub-linear communication
costs in the number of affected group members for these embedded ciphertexts
results in a CKE with compact ciphertexts, which contradicts our lower bound
from Sect. 4.

On the Worst-Case Inefficiency of CGKA 229

Components of Bad Sequences. Intuitively, a bad CGKA sequence is an oper-
ation sequence in a CGKA session during which k passive users are added to
the group that stay offline while (few) other members actively conduct CGKA
operations continuously. A CGKA session that contains such a sequence can be
split into (1) a pre-add phase that ends when the first of these k passive users
is added and (2) the subsequent bad sequence itself. The bad sequence contains
(2.a) the add operations due to which the passive users become group members
as well as (2.c) multiple, potentially overlapping, iterations of collective update
assistances. With these collective update assistances, the active users update key
material for the newly added passive users, which causes the communication
overhead in Ω(k). From the perspective of each collective update assistance, the
remaining operations in a bad sequence can be categorized into (2.b) ineffec-
tive pre-assistance operations and (2.d) an irrelevant end. (The numbering in
the above enumeration reflects the order of these components within the bad
sequence)

Let sequence Seq = (Op1, . . . , Opn) be the execution schedule of a CGKA
session, where each Opt is a tuple that refers to an executed group operation
with the following format: Opt = (Up, PK, ⊥) means that PK updates their state;
Opt = (Add, PK, PK∗) means that PK adds PK∗; Opt = (Rem, PK, PK∗) means
that PK removes PK∗; see Sect. 2.1 for more details. Further, let PU , |PU | = k,
be the public key set of the k passive users, such that for every PK∗ ∈ PU there
exists an operation (Add, ·, PK∗) but neither an operation (Rem, ·, PK∗) nor an
operation (·, PK∗, ·) in sequence Seq.

(1) The pre-add phase starts at the beginning of the entire sequence and ends
with the tA

1 − 1th operation, where OptA
1

= (Add, ·, PK∗) is the first operation
that adds a user PK∗ ∈ PU to the group. (2.a) The add operations, starting
with operation OptA

1
, end with the last operation OptA

k
= (Add, ·, PK∗) that adds

a user PK∗ ∈ PU to the group. (Also operations other than adding passive users
can be contained in this phase.)

(2.c) The first collective update assistance ends when all active users con-
ducted their first update after the add operations. During such a collective update
assistance, the active users both propagate new own key material but also col-
lectively establish and communicate new key material for the passive users. We
define AU t∗ as the public key set of users who are active between the tA

1 th and
t∗th operation. That means PK∗ ∈ AU t∗ iff there exists at least one opera-
tion Opt = (·, PK∗, ·) but no operation Opt = (Rem, ·, PK∗) for tA

1 ≤ t ≤ t∗ in
sequence Seq. Every collective update assistance by active users in set AU t∗ is
determined by its final operation Opt∗ , t∗ > tA

k , for which it must hold that all
users PK∗ ∈ AU t∗ conducted an update operation between the tA

k +1th and t∗th
operation. Such a collective update assistance consists of a set of effective opera-
tions EOt∗ from sequence Seq. These effective operations establish key material
with the passive users and, in total, have a communication overhead of Ω(k) as
we will prove. (2.b) Operations executed prior to the t∗th operation that are not
in set EOt∗ are called ineffective pre-assistance operations. (2.d) The remain-
ing sequence after the t∗th operation is the irrelevant end. In summary, a bad

230 A. Bienstock et al.

sequence from the perspective of one (out of potentially many) collective update
assistances is structured as follows: (2.a) add operations between the tA

1 th and
tA
k th operation, (2.b) ineffective pre-assistance operations between the tA

k + 1th
and t∗ − 1th operation, (2.c) effective operations between the tA

k + 1th and t∗th
operation that constitute this collective update assistance, and (2.d) irrelevant
end after the t∗th operation.

The effective operations consist of all active users’ operations since their
respective most recent update operation. That means, for each active user public
key PK ∈ AU t∗ , the set of effective operations EOt∗ in a collective update assis-
tance contains all operations Opt′ = (·, PK, ·) that were initiated since the most
recent update operation OptPK = (Up, PK, ·) by user PK, where tPK ≤ t′ ≤ t∗

with maximal tPK, respectively.

Intuition for a Bad Sequence. Active users establish secret key material for pas-
sive users in collective update assistances. The communication overhead in Ω(k)
that is induced by such a collective update assistance can be distributed among
all corresponding effective operations. That means, active users can trade the
work of establishing key material and the corresponding necessary communica-
tion overhead within each collective update assistance. However, it is important
to emphasize that operations only establish key material to passive users effec-
tively if the involved active users are not corrupted at that point. Hence, from
the perspective of a CGKA group key computed with the t∗th operation, prior
operations only contribute effectively to its secure computation if the involved
users were able to recover from a potential earlier corruption. Such a recovery
from a corruption is achieved via an update operation. This is the reason why
the effective operations are defined as each active user’s last operations since
their most recent state update. During and after these state updates, the active
users collectively assist the passive users in securely deriving the same CGKA
group key in the t∗th operation.

Based on the above terminology, we formulate our communication overhead
lower bound in the following theorem:

Theorem 1 (CGKA Lower Bound). Let Seq be an execution schedule of a
CGKA session during which k passive users are added to the group until the tA

k th
operation. Let t∗ determine the last operation of any subsequent collective update
assistance such that all active users in set AU t∗ conduct an update between the
tA
k +1th and t∗th operation. Finally, let EOt∗ be the corresponding set of effective

operations that consist of all active users’ most recent update and subsequent
operations until the t∗th operation. The total size of ciphertexts sent by operations
in set EOt∗ is Ω(k) for every CGKA construction that makes black-box use of
PKE.

The proof of Theorem 1 is provided in the full version [10].
In Corollary 1 we formulate a simpler, more specific variant of bad sequences

that is directly implied by Theorem 1. Consider a sequence Seq in which the
active users, after adding the passive users, only conduct state update operations.

On the Worst-Case Inefficiency of CGKA 231

Then, the effective operations of each collective update assistance in sequence Seq
are simply the most recent state updates by each active user.

Corollary 1 (Effective Update Operations). Let Seq be an execution sched-
ule of a CGKA session during which k passive users are added to the group until
the tA

k th operation. Let t∗ determine the last operation of any subsequent collec-
tive update assistance such that all active users in set AU t∗ conduct an update
between the tA

k +1th and t∗th operation. If all operations after the tA
k th operation

are state updates, then the total size of ciphertexts sent due to the most recent
updates by each active user in set AU t∗ is Ω(k) for every CGKA construction
that makes black-box use of PKE, where |AU t∗ | = |EOt∗ |.

Overlapping Collective Update Assistances. We want to point out that effective
operations of different collective update assistances may overlap. For example,
an active user A may update their state during the sequence Seq precisely once
after the passive users were added. The remaining active users B and C may
repeatedly perform new updates until the end of the sequence. In this case,
the effective operations of all collective update assistances in sequence Seq will
include the single update operation by A and always the most recent operations
of B and C since their respective latest update in this sequence. As we will
show in Sect. 5, there exists no optimal strategy to exploit the fact that effective
operations of different collective update assistances can overlap. For example,
one cannot successfully predict which single effective operations are in several
collective update assistances and thus make these single operations have large
communication overhead, so that large costs are not repeated several times.

Continuous Update Assistances. We finally come back to our motivating exam-
ple CGKA execution schedule. In this schedule, only one user A adds the k
passive users, and another user B removes A thereafter. In order to show that
adding k passive users can induce a continuous communication overhead, we
extend this execution schedule: after adding the k passive users, l active users
replace each other, one after another. More precisely, first a user A adds k users
as well as a second user B, then user B removes A and adds a new user C,
then C replaces user B by a new user D, and so on. Each of these active users
additionally performs a state update after replacing their predecessor. The effect
of this cascade of replace-update sequences is that each contained update oper-
ation constitutes a single collective update assistance, individually inducing a
communication overhead of Ω(k).8 As a result, the entire schedule induces a
communication overhead of Ω(k · l). We formally define this CGKA execution
schedule in Definition 5 and give the corresponding Corollary 2.

Definition 5 (Continuous Update Assistance). Let Seq be an operation
schedule of a CGKA session during which user PK0 adds k passive users to
the group until the tA

k th operation. Schedule Seq contains a Continuous Update
8 We strike out “collective” because each update assistance is conducted by a single

active user in this execution schedule.

232 A. Bienstock et al.

Assistance of length l after the tA
k th operation if Seq proceeds after the tA

k th
operation with l repetitions of operation sequences (Opi,A, Opi,R, Opi,U), i ∈ [l],
where Opi,A = (Add, PKi, PKi+1), Opi,R = (Rem, PKi+1, PKi), and Opi,U =
(Up, PKi+1, ⊥) for independent users PKj , j ∈ [l + 1].

Corollary 2 (Continuous Communication Overhead). For every CGKA
execution schedule Seq that contains a Continuous Update Assistance of length l
after the tA

k th operation, the total size of ciphertexts output by the 3l operations
after the tA

k th operation is Ω(k · l) for every CGKA construction that makes
black-box use of PKE.

The proof of Corollary 2 is a direct application of Theorem 1 via a sim-
ple hybrid argument that considers each replace-update sequence in Seq as a
collective update assistance.

4 CKE Lower Bound from PKE

Before showing our lower bound for CKE from PKE, we need to define the model
in which we prove it.

Preliminaries. For a function f we write f(∗) = y to indicate f(x) = y for
some input x. We generalize this notation for the case in which some part of the
input is fixed, writing f(a1, ∗) = y, interpreted in the natural way. Due to space
limitations, many other preliminaries are deferred to the full version [10].

CKE in the Ψ -Model. The model for our proof gives the protocol and adversary
access to an oracle distribution, defined as follows:

Definition 6. We define an oracle distribution Ψ that produces oracles
(O, u, v), where O = (g, e, d). The distribution is parameterized over a secu-
rity parameter λ, but we keep it implicit for better readability.

– g : {0, 1}λ �→ {0, 1}3λ is a random length-tripling function, mapping a secret
key to a public key.

– e : {0, 1}3λ × {0, 1} × {0, 1}λ �→ {0, 1}3λ: is a random function satisfying the
following: for every pk ∈ {0, 1}3λ, the function e(pk, ·, ·) is injective; i.e., if
(m, r) �= (m′, r′), then e(pk, m, r) �= e(pk, m′, r′).

– d : {0, 1}λ × {0, 1}3λ �→ {0, 1} is the decryption oracle, where d(sk, c) outputs
m ∈ {0, 1} if e(g(sk), m, ∗) = c; otherwise, d(sk, c) = ⊥.

– v : {0, 1}3λ × {0, 1}3λ �→ {⊥, }, is a ciphertext-validity checking oracle:
v(pk, c) outputs if c is in the range of e(pk, ·, ·) (that is, c := e(pk, ∗, ∗));
otherwise, it outputs ⊥.

– u : {0, 1}3λ × {0, 1}3λ �→ {0, 1} ∪ {⊥}, is an oracle that decrypts wrt invalid
public keys; given (pk, c), if there exists sk such that g(sk) = pk, then
u(pk, c) = ⊥; otherwise, if there exists a message m ∈ {0, 1} such that
e(pk, m, ∗) = c, return m; else, return ⊥.

Now, we can define CKE in the Ψ -model.

On the Worst-Case Inefficiency of CGKA 233

Definition 7. A Compact Key Exchange scheme in the Ψ -model is defined
equivalently as in Definition 4, except that each of the CKE algorithms and the
adversary additionally have access to the Ψ oracles. We denote such access using
Ψ as a superscript in the corresponding algorithms, e.g., InitΨ (CRS). All other
syntax and security requirements stay the same.

4.1 Proof Outline

Our lower bound is derived from the following two lemmas. The first lemma
shows a random (g, e, d) constitutes an ideally-secure PKE protocol, even
against adversaries that have access to the oracles (u, v), in addition to (g, e, d).
The second lemma shows that the security of any proposed CKE protocol
(CRSGen, Init, Comm, Derive), instantiated with a random O := (g, e, d), may
be broken by an adversary making at most a polynomial number of queries to
(O, u, v). The black-box separation will then follow.

Lemma 1 (O is secure against (O, u, v)). For any polynomial-query adver-
sary A: Pr[AO,u,v(pk, c) = b] ≤ 1/2 + 1

2λ/2 , where (g, e, d, u, v) ←$ Ψ , O :=
(g, e, d), b ←$ {0, 1}, sk ←$ {0, 1}λ, pk = g(sk), r ←$ {0, 1}λ and c =
e(pk, b; r).

The following lemma shows how to break compact CKE constructions relative
to the PKE oracles. The lemma shows that even for encrypting single-bit keys
(i.e., |K| = 1), a CKE ciphertext cannot be sub-linear in n.

Lemma 2 (Breaking CKE relative to (O, u, v)). Let (CRSGen, Init,
Comm, Derive) be a candidate black-box construction of CKE, where for any
CKE ciphertext C, |C| ≤ 3λ(n−1)

2 . For any constant c, there exists a polynomial-
query adversary BrkO,u,v such that Pr[BrkO,u,v(PK1, . . . , PKn, C) = K] ≥ 1− 1

λc ,

where (g, e, d, u, v) ←$ Ψ , O := (g, e, d), CRS ←$ CRSGenO(1λ), (PKi, ∗) ←$
InitO(CRS) for i ∈ [n], and (K, C) ←$ CommO(CRS, PK1, . . . , PKn).

Roadmap. Lemma 1 is proved in a straightforward way (hence omitted), given
the random nature of the oracles. The proof of Lemma 2 is the main techni-
cal bulk of our paper, consisting of the description of an attacker and attack
analysis. We first describe the attacker for the case (Initg, Comme, Derived) in
Sect. 4.2, and will then describe an attack against general constructions in the
full version [10]. Lemma 2 will follow similarly from the below simpler attack. We
may now obtain the following from Lemmas 1, 2, proved via standard black-box
separation techniques.

Theorem 2. There exists no fully-black-box construction of CKE schemes from
PKE schemes with CKE ciphertext size o(n)|c|, where |c| denotes the ciphertext
size of the base PKE scheme.

234 A. Bienstock et al.

4.2 Attack for (CRSGeng, Initg,Comme,Derived)

We will show an attack for the case in which oracle access is of the form
(CRSGeng, Initg, Comme, Derived). This already captures the main ideas behind
the impossibility result. We will then show how to relax this assumption.

Attack Overview. Let (PK1, . . . , PKn, C) be the public keys and the ciphertext.
We show an impossibility as long as |C| ≤ 3λ(n−1)

2 , where recall that 3λ is
the size of a base ciphertext as per oracles generated by Ψ (Definition 6). This
particular choice for the size of C will ensure that C can “embed” at most n − 1
base ciphertexts, in a sense we will later describe.

For simplicity, in this overview we assume that the scheme does not have a
CRS. The attack is based on the following high-level idea. During the generation
of each (PKi, SKi) ←$ Initg(1λ) a set of g-type query/answer pairs made. Let
KPairi = {(pki,1, ski,1), . . . , (pki,t, ski,t)} be the set of public/secret key pairs pro-
duced during the generation of PKi. These public keys are in someway encoded
in PKi, and the ability to decrypt with respect to these base pki,j public keys is
the only advantage that the ith party, who has SKi, has over an adversary.

Consider a random execution of (K, C) ←$ Comme(PK1, . . . , PKn), and let
Q = {(pk1, bi, ri, ci) | i ∈ [f]} contain the set of all query/answer pairs, and
let Qc = {c1, . . . , cf }. Since the ciphertext C is compact, C can embed at most
(n−1) ciphertexts ci from the set Qc. By embedding we mean anyone, including
the legitimate users, given only C can extract at most n − 1 valid pairs (pki, ci)
without querying e.

Now for each user consider its local decryption execution. Each user per-
forming decryption will need to decrypt pairs of the form (pk, c), in order to
recover a shared K. We focus on those pairs which are valid, meaning that c is
in the range of e(pk, ·, ·). Looking ahead, the reason for this is that for invalid
pairs for which the answer is ⊥, an adversary can already simulate the answer
by calling u. Let S′

i be the set of valid pairs that come up during decryption per-
formed by user i. Since C embeds at most n−1 valid pairs (pk, c), for some user h:
S′

h ⊆ S′
1∪. . . S′

h−1. In other words, the set of base trapdoors needed to decrypt S′
h

is a subset of those for S′
1∪ . . . S′

h−1. Moreover, in order for any user to be able to
decrypt some (pk, c), the user should have observed a query/answer pair (pk, sk)
during its execution of Initg(1λ). Thus, recalling KPairh, the set of base secret
keys needed to decrypt elements in S′

h is a subset of KPair1 ∪ . . . , ∪KPairh−1.
But each of these KPairi sets (for i ∈ [n]) is obtained by running Initg(1λ) on a
security parameter, and so if an adversary runs Initg(1λ) many times and col-
lects all query/answer pairs in a set Freq, the adversary with high probability
will collect all the trapdoors needed to successfully decrypt for at least one user.

How to Perform Simulated Decryption? So far, the discussion above says that an
adversary can collect a set Freq which with high probability contains all (pk, sk)
pairs needed to decrypt with respect to at least one user. But even given Freq, it
is unclear how to perform decryption for any user. The adversary cannot simply
“look at” Freq and somehow decrypt C — the adversary will need a secret key

On the Worst-Case Inefficiency of CGKA 235

SK to be able to run Derive(SK, ·). The solution is to let the adversary sample a
“fake” secret keys for users, in a manner consistent with query-answer knowledge
of Freq.

We make the following assumption for the construction (CRSGeng, Initg,
Comme, Derived) that we want to prove an impossibility for. The assumption
is made only for ease of exposition.

Assumption 3. We assume for any oracle (g, e, d) ←$ Ψ picked as in Defi-
nition 6, each algorithm in (CRSGeng, Initg, Comme, Derived) makes only a
security parameter λ number of queries.

Definition 8 (Partial oracles and consistency). We say a partial oracle O1
(defined only on a subset of all points) is Ψ -valid if for some O2 ∈ Supp(Ψ): O1 ⊆
O2, where Supp denotes the support of a distribution. We say an oracle (g, e, d)
is PKE-valid if it satisfies PKE completeness. A partial PKE-valid oracle is one
which is a subset of a PKE-valid oracle. Note that any Ψ -valid oracle is PKE-
valid as well. We say a partial oracle O1 is consistent with a set of query/response
pairs S if O1 ∪ S is PKE-valid.

We also need to define the notion of a partial oracle forbidding a set of
query/response pairs. This technique of forbidding a set of query/answer pairs
will be used extensively in our constructions, and to the best of our knowledge,
no previous impossibility results deal with this technique.

Definition 9 (Forbidding queries). Let Forbid consists of “wildcard” queries/
responses, of the form (q −→

z
∗) or (∗ −→

z
u), where z ∈ {g, e}. We say that a

partial oracle O1 = (g̃, ẽ) forbids Forbid if (a) for any (q −→
z

∗) ∈ Forbid the
oracle z̃ is not defined on input q and (b) for any (∗ −→

z
u) the oracle z̃ is not

defined on any input point with a corresponding output u (i.e., y is not in the
set of output points defined under z̃).

The attacker will first perform many random executions of Initg(CRS) to col-
lect all likely query/response pairs: those that appear during a random execution
with a high-enough probability. This will allow the adversary to learn the secret
keys for all likely base pk’s that might be embedded to more than one user’s
CKE public key. Once this step is done, the attacker will sample partial oracles
that are consistent with the set of collected query/answer pairs. Recall that by
Assumption 3 any execution of Initg(CRS) makes exactly λ queries. We say a
partial oracle O′ (defined only on a subset of points) is minimal for an execution
InitO

′
(CRS; R), if the execution makes queries only to those points defined in O′,

and nothing else. This means in particular that O′ is defined only on λ points.
In the definition below, we talk about sampling minimal partial oracles O′ that
agree with some set of query/answer pairs.

Definition 10 (Sampling partial oracles). We define the procedure ConsOrc.
In this definition we assume that the algorithm Initg,e makes both g and e queries
(as opposed to g only), since this definition will also be used for the general
attack.

236 A. Bienstock et al.

– Input: (CRS, PK, Freq, Forbid): A CRS CRS, public key PK, and set of query/
answer pairs Freq and a set of query/answer pairs Forbid. The set Forbid
consists of “wildcard” forbidden queries/responses, of the form (q −→

z
∗) or

(∗ −→
z

u), where z ∈ {g, e}.
– Output: (SK, O′) or ⊥, produced as follows. Sample a partial Ψ -generated

O′ = (g′, e′) defined only on λ queries (see Assumption 3), sample ran-
domness R and a resultant SK uniformly at random subject to the condi-
tions that (a) O′ is consistent with Freq; (b) O′ forbids Forbid (Definition 9)
(c) InitO

′
(CRS; R) = (PK, SK) and (d) O′ is R-minimal: the execution of

InitO
′
(CRS; R) makes only queries to those in O′, and nothing else. If no

such (SK, O′) exists, output ⊥.9

In our attack, the adversary will try performing simulated decryptions for
different parties. The adversary will do so by sampling a simulated secret key
S̃K for that party, along with a partial oracle g′ relative to which S̃K is a secret
key for that party’s public key PK (i.e., (PK, S̃K) ←$ Initg

′
(CRS)). The adversary

will then perform decryption with respect to an oracle g′♦∗O that is the result
of superimposing g′ on the real oracle O. We will define the superimposed oracle
below. Essentially, the superimposed oracle is defined in a way so that it agrees
with g′, it is a valid PKE oracle, and also agrees with the real oracle as much
as possible. In the definition below we define this superimposing process, but
note that we are not claiming that the output of g′♦∗O on a given query can be
necessarily obtained by making a polynomial number of queries to O.

As notation we use (sk1 −→
g

pk1) to denote a query/answer pair of g-type.
We use similar notation for other types of queries. If L is a set of query/answer
pairs, we use Query(L) to denote the query parts of the elements of L.

Definition 11 (Composed Oracles ♦∗). Let O := (g, e, d) be a Ψ -valid
oracle (a possible output of Ψ) and let

g′ := {(sk1 −→
g

pk1), . . . , (skw −→
g

pkw)}

be a partial Ψ -valid oracle consisting of only g-type queries. We define a composed
oracle g′♦∗O := (g̃, e, d̃) as follows.

– g̃(·): for a given sk, let g̃(sk) �= pki if sk = ski for i ∈ [w]; otherwise, g̃(sk) �=
g(sk).

– d̃(·, ·): for a given pair (sk, c), define d̃(sk, c) as follows. Assuming pk = g̃(sk),
if there exists m ∈ {0, 1} such that c = e(pk, m, ∗), return m; otherwise,
return ⊥.

In the definition above notice that the resulting oracle (g̃, e, d̃) is Ψ -valid
(i.e., and hence a valid PKE oracle, satisfying PKE completeness) as long as O
and g′ are Ψ -valid. Thus, we have the following lemma.
9 This can happen because of the presence of forbidding queries in Forbid.

On the Worst-Case Inefficiency of CGKA 237

Lemma 3. Assuming O and g′ are Ψ -valid, (g̃, e, d̃), obtained as in Defini-
tion 11, is Ψ -valid, and hence PKE-valid.

Due to space limitations, we formally define and analyze the attack in the
full version [10].

5 No Single Optimal CGKA Protocol Exists

In this section, we will show that there is no single best CGKA protocol. More
precisely, for any CGKA protocol Π, there is a distribution of CGKA sequences
and some other CGKA protocol Π′ such that on sequences drawn from this
distribution, Π′ has much lower expected amortized communication cost than
Π. We make the same restriction on protocols that we have throughout the
paper: the protocols are only allowed to use PKE.

The main intuition behind this section is the following: As we saw from
Corollary 1 of Theorem 1, if starting with a group of n users with public keys
PK1, . . . PKn in any state (for example, every user has just executed an update),

1. k users are added to the group and then remain offline (i.e., do not execute
any operations),

2. Then the α users (w.l.o.g., users 1, . . . , α with public keys PK1, . . . PKα) that
have been online since the first of the above users was added all update,

the combined size of their ciphertexts must be Ω(k). Now, consider the scenario
in which user 1 adds all of the k new users, then updates, and then users 2, . . . , α
all execute updates. While adding the k new users, user 1 may or may not
have built some structure for group members to communicate with them until
they come online (for example, in TTKEM user 1 would have sampled and
communicated key pairs for all nodes that are on the paths from the k users’
leaves to the root). The protocol Π is then left with a choice regarding the
updates of users 2, . . . , α. Roughly, either:

a. Each of the users 2, . . . , α rebuild complete structure themselves (say, sample
and communicate their own key pairs for nodes on the paths from the k users’
leaves to the root, as user 1 would have done when adding them in TTKEM)
to communicate with the k newly added users; or

b. At least one such user i does not (i.e., they only rebuild asymptotically incom-
plete structure themselves) and thus relies on some asymptotically non-trivial
amount of structure created by the users that have executed operations before
them to communicate with the k added users.

We will however show that both (a) and (b) can be losing strategies; i.e.,
no matter if a protocol Π chooses strategy (a) or (b) (or probabilistically favors
one over the other), it can be starkly outperformed by another protocol Π′ when
executing certain sequences (by the same amount in both cases). In the case of
(a), if after users 2, . . . , α execute their updates, the k added users come online
and execute their own updates, then users 2, . . . , α all rebuilt complete structure

238 A. Bienstock et al.

themselves unnecessarily – the k added users can themselves create structure
which allows others to communicate with them thereafter using O(log n) com-
munication each (for example, in TTKEM, they would just sample key pairs for
their paths). Therefore if all subsequent operations are updates, the communica-
tion of the protocol can easily stay low. So, if Π chose (a) then it communicated
a factor of Ω(k/ log n) more than it had to during the updates of Step 2; or
Ω(n/ log n) if k = Ω(n). In Sect. 5.1, we formally define the distribution con-
taining such sequences as ActiveBad and in Sect. 5.2 formally prove the statement
of the previous sentence. (Technically, for fairness reasons when comparing with
the result of the next paragraph, we also account for the communication of a
certain number of updates after Step 2. So the result, while qualitatively the
same, is quantitatively not as stark.)

In the case of (b) consider the scenario in which (i) one of the α active users,
user j, is randomly selected to become passive for the remainder of the sequence,
i.e., they never execute another operation, then (ii) the other α − 1 active users
perform � rounds of taking turns executing updates. If Π chose strategy (b) and
user j is the one who only rebuilt asymptotically incomplete structure them-
selves, then according to Corollary 1, each of the � rounds of Step (ii) will have
high Ω(k) communication each. However, if strategy (a) had been chosen by Π
(and user 1 built complete structure as well) then the communication of user j
would allow for the � rounds of Step (ii) to be executed with low communication:
O(α log n) (using TTKEM-like updates; we explain more later). So if Π chose
(b) then in expectation, it communicated a factor of Ω(�k/(α · (kα + �α log n)))
more than it had to; or Ω(n/ log n) if k = Ω(n), � = Θ(n/ log n), and α = O(1).
In Sect. 5.1, we formally define the distribution containing such sequences as
LazyBad and in Sect. 5.2 formally prove the statement of the previous sentence
(albeit with slightly different concrete parameters for k, �, and α).

5.1 Bad Sequences of Operations

We first formally define the two distributions of sequences, LazyBad and
ActiveBad, such that for any CGKA protocol Π, we can choose one of these
distributions and it will be the case that there is some Π′ which has much
lower expected communication than Π on that distribution. Both LazyBad and
ActiveBad are parameterized by:

– n: The number of users in the group before user 1 adds the new users;
– PreAddSeq: The operations of the pre-add phase, i.e., the sequence of valid

operations (the first operation is Add to create the group, only users that are
not in the group are added by users in the group, only users in the group
are removed by other users in the group, only users in the group can execute
an update, and at the end of Seq the group has n members) to be executed
before the k adds and subsequent operations of ActiveBad or LazyBad.

– k: The number of users added by user 1;
– α: the number of active users after the first of the k users is added; and

On the Worst-Case Inefficiency of CGKA 239

– �: For LazyBad, the number of rounds of updates in which one of the originally
active users is passive. We use � in ActiveBad only to ensure that on input
the same parameters, the two types of sequences have the same length (for
fairness reasons).

We define both types of sequences as distributions, even though ActiveBad(n,
PreAddSeq, k, α, �) is just one sequence (i.e., that sequence is drawn from
the distribution ActiveBad(n, PreAddSeq, k, α, �) with probability 1). In the
following, we will assume that both n and k are powers of 2, for sim-
plicity. Also, we will often make the parameters n, k, α, and � implicit
and simply refer to ActiveBad(n, PreAddSeq, k, α, �) as ActiveBad(PreAddSeq)
and LazyBad(n, PreAddSeq, k, α, �) as LazyBad(PreAddSeq). We first define
LazyBad(PreAddSeq):

Definition 12. A sequence Seq of CGKA operations drawn from distribution
LazyBad(n, PreAddSeq,
k, α, �) consists of the following phases:

– Phase P0: The pre-add phase, i.e., the operations Op1, . . . , OptA
1 −1 of

PreAddSeq.
– Phase P1: For i ∈ [k] operations Op1,i = (Add, PK1, PKn+i). Then operation

Op1,k+1 = (Up, PK1, ⊥).
– Phase P2: For i ∈ [α − 1] operations Op2,i = (Up, PKi+1, ⊥).
– Phase P3: Let j ←$ [α]. Then, for each m ∈ [�]: for every i < j (resp. i > j),

Op3,(m−1)(α−1)+i = (Up, PKi, ⊥) (resp. Op3,(m−1)(α−1)+i−1 = (Up, PKi, ⊥)),
where PKi is the most recent public key of user i.

Next, we define ActiveBad(PreAddSeq), which has the same phases 0 − 2 as
LazyBad(PreAddSeq), but differs in phase 3 as described above:

Definition 13. A sequence Seq of CGKA operations drawn from distribution
ActiveBad(n,
PreAddSeq, k, α, �) consists of the same phases P0-P2 as above then:

– Phase P3: For i ∈ [� · (α − 1)]: Op3,i = (Up, PKn+1+(i mod α), ⊥), where
PKn+1+(i mod α) is the most recent public key of user n + 1 + (i mod α).

Note that by Theorem 1, for every CGKA protocol it must be that update
Op1,k+1 = (Up, PK1, ⊥) in Phase P1 of either distribution requires Ω(k) commu-
nication, no matter what the operations of PreAddSeq were and what structure
the adds of user 1 in Phase P1 created. Since with O(k) communication, user 1
can in this update create full structure with which other users in the group can
communicate with the added PKn+1 . . . , PKn+α thereafter (as in TTKEM), it is
intuitively the best choice for a protocol to use this behavior for user 1. Thus,
since we aim to define these two distributions in a way that emphasizes the
different choices protocols can make to minimize communication, user 1’s first
update is included in Phase P1 and we define the communication complexity of
a protocol executing a sequence drawn from one of these two distributions to
include only the communication costs of the operations in Phase P2 and P3:

240 A. Bienstock et al.

Definition 14. Let Seq be a sequence of CGKA operations drawn from dis-
tribution
LazyBad(PreAddSeq) (resp. ActiveBad(PreAddSeq)) and CCΠ[Op] be the commu-
nication cost of a CGKA protocol Π executing operation Op of Seq after executing
all preceding operations of Seq in order. Then:

1. The amortized communication complexity of a protocol Π that executes Seq
is CCΠ[Seq] := (

∑
Op∈P2∪P3 CCΠ[Op])/((α − 1) · (� + 1)), where P2 and P3

are the corresponding phases in Seq of LazyBad(PreAddSeq) (resp. ActiveBad(
PreAddSeq)).

2. The expected amortized communication complexity of a protocol Π on ran-
dom Seq drawn from LazyBad(PreAddSeq) (resp. ActiveBad(PreAddSeq)) is

CCΠ(LazyBad(PreAddSeq)) := ESeq←$LazyBad(PreAddSeq)[CCΠ[Seq]]

(resp.CCΠ(ActiveBad(PreAddSeq)) := ESeq←$ActiveBad(PreAddSeq)[CCΠ[Seq]]),

where the randomness is over the choice of Seq and the random coins of Π.

5.2 Suboptimality of All CGKA Protocols

We now state and prove our Theorem showing that all CGKA proto-
cols must have suboptimal expected amortized communication complexity on
either LazyBad(PreAddSeq) or ActiveBad(PreAddSeq). First, we define a specific
PreAddSeq which intuitively leaves the CGKA group in a full state:

Definition 15. Valid sequence of CGKA operations Fulln contains the follow-
ing operations in order: (Add, PK1, PK2), (Add, PK1, PK3), . . . , (Add, PK1, PKn),
(Up, PK1, ⊥), (Up, PK2, ⊥), . . . , (Up, PKn, ⊥).

Theorem 4. Let � = O(k/ log n). Then for every CGKA protocol Π and every
PreAddSeq, there exists some other protocol Π′ such that either

CCΠ(LazyBad(PreAddSeq)) ≥ CCΠ′(LazyBad(Fulln)) · Ω(�/α2), or

CCΠ(ActiveBad(PreAddSeq)) ≥ CCΠ′(ActiveBad(Fulln)) · Ω(k/� log n).

Note that PreAddSeq can be any valid sequence that results in a group with
n members, including (but not limited to) Fulln. As will be seen, our results
combine general lower bounds for the considered protocol Π on any PreAddSeq,
with upper bounds for protocols Π′ on specifically Fulln.

Before proving the Theorem, we separate CGKA protocols Π into two classes
based on their expected behavior in phase P2 of a sequence drawn from LazyBad(
PreAddSeq) or ActiveBad(PreAddSeq). The first class of protocols are more likely
than not to have some lazy user in phase P2: i.e., a user whose update operation
Op2,i = (Up, PKi+1, ⊥) in phase P2 has communication cost CCΠ[Op] = o(k).
The other class of protocols are the opposite – they are more likely than not
to have only heavy users in phase P2: i.e., all users have update operations
Op2,i = (Up, PKi+1, ⊥) in phase P2 with communication cost CCΠ[Op] = Ω(k).

On the Worst-Case Inefficiency of CGKA 241

Definition 16. CGKA protocol Π is Lazy if Pr[∃i ∈ [α − 1] : CCΠ[Op2,i] =
o(k)] > 1/2. Otherwise, Π is Active.

Proof of Theorem 4. The following lemmas, proved in the full version [10] due
to space limitations, and which intuitively follow from the descriptions of this
section, allow us to prove Theorem 4. ��
Lemma 4. There is a protocol ΠActive that has expected amortized communica-
tion cost CCΠActive(LazyBad(Fulln)) = O(k/� + log n) on random Seq drawn from
LazyBad(n, Fulln, k, α, �).

Lemma 5. For every protocol Π that is Lazy and every PreAddSeq, the expected
total communication cost CCΠ(LazyBad(PreAddSeq)) = Ω(k/α2) on random Seq
drawn from LazyBad(n, PreAddSeq, k, α, �).

Lemma 6. There is a protocol ΠLazy that has expected total communication cost
CCΠLazy (ActiveBad(Fulln)) = O(log n) on random Seq drawn from ActiveBad(n,
Fulln, k, α, �).

Lemma 7. For every protocol Π that is Active and every PreAddSeq, its expected
total communication cost CCΠ(ActiveBad(PreAddSeq)) = Ω(k/�) on random Seq
drawn from ActiveBad(n, PreAddSeq, k, α, �).

The following corollary thus easily follows:

Corollary 3. Let k = Ω(n), � = Θ(
√

n), and α = O(
√

log n). Then for every
protocol Π, there exists some other protocol Π′ such that either on a random
sequence drawn from ActiveBad(Fulln), or from LazyBad(Fulln), Π′ has a factor
of Ω(

√
n/ log n) better amortized communication in expectation than Π does.

References

1. Alwen, J., et al.: CoCoA: concurrent continuous group key agreement. In: Dunkel-
man, O., Dziembowski, S. (eds.) EUROCRYPT 2022. LNCS, vol. 13276, pp. 815–
844. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07085-3_28

2. Alwen, J., Coretti, S., Dodis, Y.: The double ratchet: security notions, proofs, and
modularization for the signal protocol. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019, Part I. LNCS, vol. 11476, pp. 129–158. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17653-2_5

3. Alwen, J., Coretti, S., Dodis, Y., Tselekounis, Y.: Security analysis and improve-
ments for the IETF MLS standard for group messaging. In: Micciancio, D., Risten-
part, T. (eds.) CRYPTO 2020, Part I. LNCS, vol. 12170, pp. 248–277. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-56784-2_9

4. Alwen, J., Coretti, S., Jost, D., Mularczyk, M.: Continuous group key agreement
with active security. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part II. LNCS,
vol. 12551, pp. 261–290. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-64378-2_10

5. Alwen, J., Jost, D., Mularczyk, M.: On the insider security of MLS. Cryptology
ePrint Archive, Report 2020/1327 (2020). https://eprint.iacr.org/2020/1327

https://doi.org/10.1007/978-3-031-07085-3_28
https://doi.org/10.1007/978-3-030-17653-2_5
https://doi.org/10.1007/978-3-030-56784-2_9
https://doi.org/10.1007/978-3-030-64378-2_10
https://doi.org/10.1007/978-3-030-64378-2_10
https://eprint.iacr.org/2020/1327

242 A. Bienstock et al.

6. Alwen, J., et al.: Keep the dirt: tainted treekem, adaptively and actively secure con-
tinuous group key agreement. In: 2021 IEEE Symposium on Security and Privacy
(SP). IEEE (2021)

7. Balli, F., Rösler, P., Vaudenay, S.: Determining the core primitive for optimally
secure ratcheting. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part III.
LNCS, vol. 12493, pp. 621–650. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-64840-4_21

8. Barnes, R., Beurdouche, B., Robert, R., Millican, J., Omara, E., Cohn-Gordon,
K.: The Messaging Layer Security (MLS) Protocol. Internet-Draft draft-ietf-mls-
protocol-14, Internet Engineering Task Force (2022). https://datatracker.ietf.org/
doc/html/draft-ietf-mls-protocol-14. Work in Progress

9. Bhargavan, K., Barnes, R., Rescorla, E.: TreeKEM: Asynchronous Decentralized
Key Management for Large Dynamic Groups (2018). pubs/treekem.pdf https://
mailarchive.ietf.org/arch/msg/mls/e3ZKNzPC7Gxrm3Wf0q96dsLZoD8

10. Bienstock, A., Dodis, Y., Garg, S., Grogan, G., Hajiabadi, M., Rösler, P.: On the
worst-case inefficiency of CGKA. Cryptology ePrint Archive (2022)

11. Bienstock, A., Dodis, Y., Rösler, P.: On the price of concurrency in group ratcheting
protocols. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part II. LNCS, vol. 12551, pp.
198–228. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64378-2_8

12. Bienstock, A., Dodis, Y., Tang, Y.: Multicast key agreement, revisited. In: Gal-
braith, S.D. (ed.) CT-RSA 2022. LNCS, vol. 13161, pp. 1–25. Springer, Cham
(2022). https://doi.org/10.1007/978-3-030-95312-6_1

13. Bienstock, A., Dodis, Y., Yeo, K.: Forward secret encrypted RAM: lower bounds
and applications. In: Nissim, K., Waters, B. (eds.) TCC 2021. LNCS, vol. 13044,
pp. 62–93. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90456-2_3

14. Bienstock, A., Fairoze, J., Garg, S., Mukherjee, P., Raghuraman, S.: A more com-
plete analysis of the signal double ratchet algorithm. Cryptology ePrint Archive,
Report 2022/355 (2022). https://ia.cr/2022/355

15. Boneh, D., Papakonstantinou, P.A., Rackoff, C., Vahlis, Y., Waters, B.: On the
impossibility of basing identity based encryption on trapdoor permutations. In:
49th FOCS, pp. 283–292. IEEE Computer Society Press (2008)

16. Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 480–499. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44371-2_27

17. Canetti, R., Garay, J., Itkis, G., Micciancio, D., Naor, M., Pinkas, B.: Multicast
security: a taxonomy and some efficient constructions. In: IEEE INFOCOM 1999.
Conference on Computer Communications. Proceedings. Eighteenth Annual Joint
Conference of the IEEE Computer and Communications Societies. The Future is
Now (Cat. No.99CH36320), vol. 2, pp. 708–716 (1999)

18. Canetti, R., Jain, P., Swanberg, M., Varia, M.: Universally composable end-to-end
secure messaging. Cryptology ePrint Archive, Report 2022/376 (2022). https://ia.
cr/2022/376

19. Chung, K.M., Lin, H., Mahmoody, M., Pass, R.: On the power of nonuniformity in
proofs of security. In: Kleinberg, R.D. (ed.) ITCS 2013, pp. 389–400. ACM (2013)

20. Cohn-Gordon, K., Cremers, C., Dowling, B., Garratt, L., Stebila, D.: A formal
security analysis of the signal messaging protocol. In: 2017 IEEE European Sym-
posium on Security and Privacy (EuroS P), pp. 451–466 (2017)

21. Cohn-Gordon, K., Cremers, C., Garratt, L., Millican, J., Milner, K.: On ends-to-
ends encryption: asynchronous group messaging with strong security guarantees.

https://doi.org/10.1007/978-3-030-64840-4_21
https://doi.org/10.1007/978-3-030-64840-4_21
https://datatracker.ietf.org/doc/html/draft-ietf-mls-protocol-14
https://datatracker.ietf.org/doc/html/draft-ietf-mls-protocol-14
https://mailarchive.ietf.org/arch/msg/mls/e3ZKNzPC7Gxrm3Wf0q96dsLZoD8
https://mailarchive.ietf.org/arch/msg/mls/e3ZKNzPC7Gxrm3Wf0q96dsLZoD8
https://doi.org/10.1007/978-3-030-64378-2_8
https://doi.org/10.1007/978-3-030-95312-6_1
https://doi.org/10.1007/978-3-030-90456-2_3
https://ia.cr/2022/355
https://doi.org/10.1007/978-3-662-44371-2_27
https://ia.cr/2022/376
https://ia.cr/2022/376

On the Worst-Case Inefficiency of CGKA 243

In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018, pp. 1802–
1819. ACM Press (2018)

22. Coretti, S., Dodis, Y., Guo, S., Steinberger, J.: Random oracles and non-uniformity.
In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part I. LNCS, vol. 10820,
pp. 227–258. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-
9_9

23. Dowling, B., Hauck, E., Riepel, D., Rösler, P.: Strongly anonymous ratcheted key
exchange. In: ASIACRYPT 2022. LNCS (2022)

24. Harney, H., Muckenhirn, C.: RFC2093: Group key management protocol (GKMP)
specification (1997)

25. Mittra, S.: Iolus: a framework for scalable secure multicasting. In: Proceedings
of the ACM SIGCOMM 1997 Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communication, SIGCOMM 1997, pp. 277–288.
Association for Computing Machinery, New York (1997). https://doi.org/10.1145/
263105.263179

26. Perrin, T., Marlinspike, M.: The double ratchet algorithm (2016). https://signal.
org/docs/specifications/doubleratchet/

27. Poettering, B., Rösler, P., Schwenk, J., Stebila, D.: SoK: game-based security mod-
els for group key exchange. In: Paterson, K.G. (ed.) CT-RSA 2021. LNCS, vol.
12704, pp. 148–176. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
75539-3_7

28. Rösler, P., Mainka, C., Schwenk, J.: More is less: on the end-to-end security of
group chats in signal, Whatsapp, and Threema. In: 2018 IEEE European Sympo-
sium on Security and Privacy, EuroS&P 2018 (2018)

29. Sherman, A.T., McGrew, D.A.: Key establishment in large dynamic groups using
one-way function trees. IEEE Trans. Softw. Eng. 29(5), 444–458 (2003)

30. Smart, N.P.: Efficient key encapsulation to multiple parties. In: Blundo, C., Cimato,
S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 208–219. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-30598-9_15

31. Wallner, D., Harder, E., Agee, R.: RFC2627: key management for multicast: issues
and architectures (1999)

32. Weidner, M., Kleppmann, M., Hugenroth, D., Beresford, A.R.: Key agreement for
decentralized secure group messaging with strong security guarantees. In: Vigna,
G., Shi, E. (eds.) ACM CCS 2021, pp. 2024–2045. ACM Press (2021)

33. Wong, C.K., Gouda, M., Lam, S.S.: Secure group communications using key graphs.
In: Proceedings of the ACM SIGCOMM 1998 Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communication, SIGCOMM
1998, pp. 68–79. Association for Computing Machinery, New York (1998). https://
doi.org/10.1145/285237.285260

https://doi.org/10.1007/978-3-319-78381-9_9
https://doi.org/10.1007/978-3-319-78381-9_9
https://doi.org/10.1145/263105.263179
https://doi.org/10.1145/263105.263179
https://signal.org/docs/specifications/doubleratchet/
https://signal.org/docs/specifications/doubleratchet/
https://doi.org/10.1007/978-3-030-75539-3_7
https://doi.org/10.1007/978-3-030-75539-3_7
https://doi.org/10.1007/978-3-540-30598-9_15
https://doi.org/10.1145/285237.285260
https://doi.org/10.1145/285237.285260

Adaptive Multiparty NIKE

Venkata Koppula1(B), Brent Waters2,3, and Mark Zhandry2,4

1 IIT Delhi, Delhi, India
kvenkata@cse.iitd.ac.in

2 NTT Research, Sunnyvale, USA
3 UT Austin, Austin, USA
bwaters@cs.utexas.edu

4 Princeton University, Princeton, USA

Abstract. We construct adaptively secure multiparty non-interactive
key exchange (NIKE) from polynomially-hard indistinguishability obfus-
cation and other standard assumptions. This improves on all prior such
protocols, which required sub-exponential hardness. Along the way, we
establish several compilers which simplify the task of constructing new
multiparty NIKE protocols, and also establish a close connection with a
particular type of constrained PRF.

1 Introduction

Non-interactive key exchange (NIKE) is a fundamental application in public key
cryptography. In a G-party NIKE protocol, a group of G users simultaneously
publish individual public keys to a bulletin board, keeping individual secret keys
to themselves. Then just by reading the bulletin board and using their individual
private keys but no further interaction, the G users can arrive at a common key
hidden to anyone outside the group.

In this work, we build multiparty NIKE attaining adaptive security under
polynomially-hard non-interactive assumptions. Our assumptions are indis-
tinguishability obfuscation (iO) and standard assumptions on cryptographic
groups1. The main restriction is that we must bound the number of users that
can be adaptively corrupted. The number of honest users, and even the number
of adversarially generated users, can be unbounded; only the number of users
that were initially honest and later corrupted must be bounded. This improves on
prior standard-model adaptively secure schemes [BZ14,Rao14], which all bound
the total number of users, and also required either interactive or sub-exponential
assumptions. Along the way, we several compilers to simplify the design process
of iO-based multiparty NIKE. We also explore adaptive security for constrained
PRFs, giving a new construction for “one symbol fixing” constraints, and show
a close connection to multiparty NIKE.

1 We note two uses of the term “group”: the group of users establishing a shared key,
and the cryptographic group used as a tool. Which use should be clear from context.

c© The Author(s), under exclusive license to Springer Nature Switzerland 2022
E. Kiltz and V. Vaikuntanathan (Eds.): TCC 2022, LNCS 13748, pp. 244–273, 2022.
https://doi.org/10.1007/978-3-031-22365-5_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22365-5_9&domain=pdf
https://doi.org/10.1007/978-3-031-22365-5_9

Adaptive Multiparty NIKE 245

1.1 Prior Work and Motivation

NIKE has a long history, with the 2-party case dating back to the founda-
tional work of Diffie and Hellman [DH76], and the multiparty case already
referred to as “a long-standing open problem” in 2002 [BS02]. Joux gave a 3-
party protocol from pairings [Jou00]. The first protocol for G ≥ 4 used mul-
tilinear maps [GGH13], though the only protocols directly based on multilin-
ear maps that have not been attacked are limited to a constant number of
users [MZ18]. Currently, the only known solutions for a super-constant num-
ber of users are built from indistinguishability obfuscation (iO). The first such
construction for polynomially-many users was due to Boneh and Zhandry [BZ14]
(using punctured programming techniques [SW14]), with a number of follow-up
works [Rao14,KRS15,HJK+16,MZ17,GPSZ17,BGK+18].

Multiparty NIKE remains a fascinating object: the central feature of non-
interactive key exchange (as opposed to protocols requiring multiple interac-
tion rounds) is that public keys can be re-used across many groups, simplifying
key management and significantly reducing communication. This feature makes
NIKE an important tool with many applications. Multiparty NIKE in particular
is a useful tool for group key management [STW96] and broadcast encryption
with small parameters [BZ14]. Multiparty NIKE is also interesting from a foun-
dational perspective, being perhaps the simplest cryptographic object which
currently is only known via obfuscation2.

Adaptive Security. The re-use of public keys in a NIKE protocol, on the other
hand, opens the door to various active attacks. For example, if a shared key
for one group is accidentally leaked, it should not compromise the shared key
of other groups, including those that may intersect. Worse, an adversary may
participate in certain groups using maliciously generated public keys, or may
be able to corrupt certain users. Finally, decisions about which groups’ shared
keys to compromise, how the adversary devises its own malicious public keys,
which users to corrupt, and even which set of users to ultimately attack, can all
potentially be made adaptively.

Adaptive security is an important goal in cryptography generally, being the
focus of hundreds if not thousands of papers. Numerous works have considered
adaptive NIKE. In the 2-party case, adaptive security can often be obtained
generically by guessing the group that the adversary will attack. If there are a
total of N users in the system, the reduction loss is N2, a polynomial. The focus
of works in the 2-party case (e.g. [CKS08,FHKP13,BJLS16,HHK18,HHKL21])
has therefore been tight reductions, which still remains unresolved.

The situation becomes more critical in the multiparty case, where the generic
guessing reduction looses a factor of

(
N
G

) ≈ NG, which is exponential for polyno-
mial group size G. In order to make this generic reduction work, one must assume
the (sub)exponential hardness of the underlying building blocks and scale up the
security parameter appropriately. This results in qualitatively stronger under-
lying computational assumptions. A couple works have attempted to improve
2 Multiparty NIKE can also be built via functional encryption [GPSZ17], which is

equivalent to iO [BV15a,AJ15] under sub-exponential reductions.

246 V. Koppula et al.

on this reduction, achieving security in the random oracle model [HJK+16],
or under interactive assumptions [BZ14,Rao14]3. In fact, Rao [Rao14] argues
that exponential loss or interactive assumption is likely necessary, giving a black
box impossibility of a polynomial reduction to non-interactive assumptions. This
impossibility will be discussed in more depth momentarily. We also note existing
standard-model adaptively secure schemes all limit the total number of users,
including both honest and dishonest users, to an a priori polynomial bound.

Constrained PRFs. A constrained PRF is a pseudorandom function which
allows the key holder to produce constrained keys kC corresponding to func-
tions C. The key kC should allow for evaluating the PRF on any input x where
C(x) = 1, but the output should remain pseudorandom if C(x) = 0. First
proposed in three concurrent works [BW13,KPTZ13,BGI14], constrained PRFs
have become a fundamental concept in cryptography, with many follow-up works
(e.g. [BV15b,BFP+15,CRV16,DKW16,CC17,BTVW17,AMN+18]). A particu-
larly interesting class of constrained PRFs are those for bit-fixing constraints,
which give secret key broadcast encryption [BW13], for example.

Adaptivel secure constrained PRFs of of particular interest [Hof14,FKPR14,
HKW15,HKKW14,DKN+20]. Unfortunately, with one exception, all known
adaptively secure constrained PRFs require random oracles, super-polynomial
hardness, or a constant collusion resistance bound. The one exception is
[HKW15] for simple puncturing constraints, where C contains a list of
polynomially-many points, and accepts all inputs not in the list. Even with such
simple constraints, the construction requires iO, algebraic tools, and a non-trivial
proof.

1.2 Technical Challenges

Rao’s Impossibility. Rao [Rao14] proves that multiparty NIKE protocols with
standard model proofs relative to non-interactive assumptions (including iO)
must incur an exponential loss. The proof follows a meta-reduction, which runs
the reduction until the reduction receives the challenge from the underlying non-
interactive assumption. At this point, Rao argues that the adversary need not
commit to the group it will attack. Now, we split the reduction into two branches:

– In the first branch, choose and corrupt an arbitrary honest user i, obtaining
secret key ski. Then abort the branch.

– In the second branch, choose the group S to attack such that (1) S contains
only honest users for this branch, and (2) i ∈ S. User i is honest in this branch
since it was never corrupted here, despite being corrupted in the other branch.
Use ski to compute the shared group key.

From the view of the reduction, the second branch appears to be a valid adver-
sary. Hence, by the guarantees of the reduction, it must break the underlying
hard problem, a contradiction. Hence, no such reduction could exist.

3 Note that multiparty NIKE itself is an interactive assumption.

Adaptive Multiparty NIKE 247

Rao’s proof is quite general, and handles reductions that may rewind the
adversary or run it many times concurrently. It also works in the more restricted
setting where there is an upper bound on the total number of users in the system.

There is one way in which Rao’s result does not completely rule out a con-
struction: in order to guarantee that the second branch is successful, one needs
that the shared key derived from ski must match the shared key in the second
branch. This would seem to follow from correctness, as i is a member of the group
S. However, correctness only holds with respect to honestly generated public and
secret keys. The reduction may, however, give out malformed public or secret
keys that are indistinguishable from the honest keys. In this case, it may be that
ski actually computes the wrong shared key, causing the meta-reduction to fail.

Rao therefore considers “admissible reductions” where, roughly, the pub-
lic keys of users outputted by the reduction, even if not computed honestly,
uniquely determine the shared key. Analogous lower bounds have been shown
for tight reductions in the 2-party setting [BJLS16,HHK18,HHKL21], making
similar restrictions on the reduction referred to as “committing reductions”.

All existing reductions for multiparty NIKE from iO are admissible. A closer
look reveals that all such schemes derive the shared key from a constrained PRF
applied to the public values of the users. While the secret key is used to compute
this value, the value itself is not dependent on the secret key, only the public key.
Therefore, Rao’s impossibility captures all the existing techniques, and new ideas
are required to achieve adaptive security from static polynomial assumptions.

Dual System Methodology? The situation is reminiscent of HIBE and ABE,
where Lewko and Waters [LW14] showed that adaptive security cannot be
proved under polynomially hard non-interactive assumptions, using reductions
that always output secret keys which decrypt consistently. Solutions over-
coming this barrier were already known, say based on dual system encryp-
tion [Wat09,LOS+10]. The point of [LW14] was to explain necessary features of
those proofs.

The multiparty NIKE setting appears much more challenging. HIBE and
ABE benefit from a central authority which issues keys. In the proof, the reduc-
tion provides the adversary with all of the keys, which will have a special struc-
ture that allows for decrypting some ciphertexts and not others. In the NIKE
setting, the adversary is allowed to introduce his own users. This presents many
challenges as we cannot enforce any dual system structure on such users. It also
gives the adversary a lot more power to distinguish the reduction’s keys from
honestly generated keys, as the adversary can request the shared keys of groups
containing both honest and malicious users.

Recently, Hesse et al. [HHKL21] circumvent the above barriers in the 2-party
setting. However there is no obvious analog to the multiparty setting.

Another Barrier: Adaptive Constrained PRFs. Looking ahead, we will show that
adaptive multiparty NIKE implies adaptive constrained PRFs for a “one symbol
fixing” functionality (1-SF-PRF). Here, inputs are words over a polynomial-
sized alphabet Σ, and constrains have the form (?, ?, · · · , ?, s, ?, . . .), constraining
only a single position to some character. The resulting PRFs are fully collusion

248 V. Koppula et al.

resistant. 1-SF-PRFs can be seen as a special case of bit-fixing PRFs, where only
a single contiguous block of bits can be fixed. Adaptive constrained PRFs for
even very simple functionalities have remained a very challenging open question.
In particular, no prior standard-model construction from polynomial hardness
achieves functionalities that have a superpolynomial number of both accepting
and rejecting inputs. Any adaptive multiparty NIKE construction would along
the way imply such a functionality, representing another barrier.

1.3 Result Summary

– We give several compilers, allowing us to simplify the process of designing
multiparty NIKE schemes. One compiler shows how to generically remove a
common setup from multiparty NIKE (assuming iO). We note that many iO-
based solutions could be tweaked to remove setup, but the solutions were ad
hoc and in the adaptive setting often required significant effort; we accomplish
this generically.
Another compiler shows that it suffices to ignore the case where the adversary
can compromise the security of shared keys for a different groups of users.
That is, we show how to generically compile any scheme that is secure against
adversaries that cannot compromise shared keys into one that is secure even
if the adversary can.

– We show a close connection between multiparty NIKE and 1-SF-PRFs:
• Adaptively secure multiparty NIKE implies adaptively secure one-

symbol-fixing PRF.
• One-symbol-fixing PRFs, together with iO, imply a multiparty NIKE

protocol with a bounded number of honest users (and hence also cor-
ruption queries) and group size, but an unbounded number of malicious
users. This result starts by constructing a weaker NIKE protocol, and
then applying our compilers.

– We construct adaptively secure 1-SF-PRFs from iO and DDH, thus obtaining
multiparty NIKE from the same assumptions with bounded honest users.

– We give a direct construction of multiparty NIKE from iO and standard
assumptions on groups, allowing for an unbounded number of honest users.
The construction roughly follows the path above, but opens up the abstraction
layers and makes crucial modifications to attain the stronger security notion.
The main limitation is that there is still a bound on the number of users that
the adversary can adaptively corrupt, as well as on the group size.

1.4 Technical Overview

We first briefly recall the types of queries an adversary can make:

– Corrupt User. The adversary selects an honest user’s public key, and learns
the secret key.

– Shared Key. The adversary selects a list of public keys, which may contain
both honest users adversarially-generated users, and learns the shared key
for the group of users. Since the adversary’s public keys may be malformed,
different users may actually arrive at different shared keys. So the query
specifies which of the users’ version of the shared key is revealed.

Adaptive Multiparty NIKE 249

– Challenge. Here, the adversary selects a list of honest public keys, and tries
to distinguish the shared key from random.

Upgrading NIKE. In addition to providing the first iO-based NIKE, Boneh and
Zhandry [BZ14] also construct the first NIKE without a trusted setup, or crs.
Their basic idea is to first design an iO-based protocol with a crs, but where the
resulting crs is only needed to generate the shared keys, but not the individual
public keys. Then they just have every user generate their own crs; when it
comes time to compute the shared key for a group, the group arbitrarily selects
a “leader” and uses the leader’s crs.

The above works in the selective setting. However, in the adaptive setting,
problems arise. The crs contains an obfuscated program that is run on the user’s
secret key. The adversary could therefore submit a Shared Key query on an
adversarial public key containing a malicious crs. If that malicious user is selected
as the leader for the group, honest users’ secret keys will be fed into the malicious
program, the output being revealed to the adversary, leading to simple attacks.
Worse, in Rao’s basic scheme with setup, the users need to know the crs in order
to generate their public key. So in the setup-less scheme, each user would need to
wait until the leader outputs their crs before they can publish their public key,
resulting in an interactive protocol. Boneh and Zhandry and later Rao [Rao14]
therefore devised more sophisticated techniques to remove the trusted setup.

Our first result sidesteps the above difficulties, by considering the setting
where Shared Key queries are not allowed. In this setting, we can make the
above strategy of having each party run their own trusted setup fully generic.
To accommodate the case where the public keys may depend on the trusted
setup, we actually have each user produce an obfuscation of a program that
takes as input the crs, and samples a public key. In order to prove security, we
also have the secret key for a user be an obfuscated program, which is analogous
to the public key program except that is samples the corresponding secret key.
In the reduction, this allows us to adaptively embed information in the secret
key, which is needed to get the proof to work. See Sect. 3.2 for details.

Then we show how to generically lift any NIKE scheme that does not support
Shared Key queries into one that does support them, without any additional
assumptions. Combined with the previous compiler, we therefore eliminate the
crs and add Shared Key queries to any scheme. The high-level idea is to give the
reduction a random subset of the secret keys for honest users. The hope is that
these keys will be enough to answer all Shared Key queries, while not allowing
the reduction to answer the Challenge query. This requires care, as this will not
be possible if some of the Shared Key queries have too much overlap with the
Challenge query. See Sect. 3.3 for details.

Connection to Constrained PRFs. Multi-party NIKE already had a clear con-
nection to constrained PRFs, with all iO-based NIKE crucially using constrained
PRFs. In Sect. 4, we make this precise, showing that one symbol fixing (1-SF)
PRFs are equivalent to NIKE, assuming iO.

250 V. Koppula et al.

One direction is straightforward: to build a 1-SF PRF from multiparty NIKE,
create n × |Σ| users, which are arranged in an |Σ| × n grid. Each input in Σn

then selects a single user from each column, and the value of the PRF is the
shared key for the resulting set of n users. To constrain the ith symbol to be σ,
simply reveal the secret key for user σ in column i.

The other direction is more complicated, and requires additionally assuming
iO. The high-level idea is that the shared key for a group of users will be a PRF
evaluated on the list of the users’ public keys. If we pretend for the moment that
user public keys come from a polynomial-sized set Σ, we could imagine using a
1-SF PRF for this purpose.

Following most iO-based NIKE protocols, we will then have a crs be an
obfuscated program which takes as input the list of public keys, together with
one of the users secret keys, and evaluates the PRF if the secret key is valid. Our
novelty is how we structure the proof to attain adaptive security. Observe that
user σ’s secret key allows them to evaluate the PRF on any input that contains
at least one σ. This is the union of the inputs that can be computed by keys
that constrain symbol i to σ, as i ranges over all input positions.

We therefore switch to a hybrid where user σ has the aforementioned con-
strained keys covertly embedded in their secret key. In this hybrid, we crucially
allow the reduction to generate the user’s public key without knowing the con-
strained keys, and only later when the adversary makes a corruption query will
it query for the constrained keys and construct the user’s secret key. This strat-
egy is our first step to overcoming Rao’s impossibility result: the shared key is
no longer information-theoretically determined by the public keys, and is only
determined once the secret key with the embedded constrained key is specified.
We note, however, that a version of Rao’s impossibility still applies to the under-
lying adaptively secure constrained PRFs, which we will have to overcome later
when constructing our PRF.

Moving to this hybrid is accomplished using a simplified version of delayed
backdoor programming [HJK+16]. After switching the secret keys for each user,
we switch the crs program to use the embedded constrained keys to evaluate the
PRF, rather than the master key. At this point, adaptive NIKE security follows
directly from adaptive 1-SF PRF security.

Of course, NIKE protocols cannot have public keys in a polynomial-sized set.
Our actual protocol first generically compiles a 1-SF PRF into a more sophis-
ticated constrained PRF where now Σ is exponentially large. By adapting the
above sketch to this special kind of constrained PRF, we obtain the full proof.
See Sect. 4 for details.

Constructing 1-SF PRFs. We turn to constructing a 1-SF PRF. As mentioned
above, a version of Rao’s impossibility result still applies even to constrained
PRFs. Namely, an “admissible” reduction would commit at the beginning of
the experiment to the PRF functionality it provides to the adversary. Such an
admissible reduction cannot be used to prove adaptive security for constrained
PRFs, for almost identical reasons as with Rao’s impossibility. This means our
reduction must actually have the PRF seen by the adversary be specified dynam-

Adaptive Multiparty NIKE 251

ically, where its outputs are actually dependent on prior queries made by the
adversary.

One may be tempted to simply obfuscate a puncturable PRF. Boneh and
Zhandry [BZ14] show that this gives a constrained PRF for any constraint,
though only with selective security. Unfortunately, it appears challenging to to
get adaptively secure constrained PRFs with this strategy. In particular, the
punctured PRF specifies the value of the PRF at all points but one, which is
problematic given that we need to dynamically determine the PRF function in
order to circumvent Rao’s impossibility.

We will instead use algebraic tools to achieve an adaptively secure construc-
tion. Our PRF will be Naor-Reingold [NR97], but adapted from a binary alpha-
bet to a polynomial-sized alphabet. The secret key contains n × |Σ| random
values ej,σ, and the PRF on input (x1, . . . , xn) ∈ Σn outputs

F(k, x) = h
∏n

i=1 ei,xi ,

where h is a random generator of a cryptographic group. Without using any
computational assumptions, F is already readily seen to be a 1-SF constrained
PRF for a single constrained key. To constrain position i to σ, simply give out
ei,σ and ej,x for all x ∈ Σ and all j �= i.

However, we immediately run into trouble even for two constrained keys,
since constrained keys for two different i immediately yield the entire secret key.
Instead, we constrain keys in this way, except that we embed the constrained
keys in an obfuscated program. While this is the natural approach to achieve
many-key security, it is a priori unclear how to actually prove security.

We show that obfuscating the constrained keys does in fact upgrade the
single-key security of the plain scheme to many-time security. The proof is quite
delicate. Essentially, we move to a hybrid where each constrained key uses its
own independent h. The main challenge is that, since multiple keys will be able
to compute the PRF at the same point, we need to ensure consistency between
the keys. Our proof has each constrained key only use its particular h for inputs
that cannot be computed by previous constrained keys. For outputs that can
be computed by previous keys, the new constrained key will use the h for those
keys.

Interestingly, this means that keys in this hybrid must actually contain the
h’s of all previous constrained keys, and the evaluation of the PRF will actually
depend on the order constrained keys are queried. The salient point is that, when
the ith constrained key query is made, we only commit to the structure of the
PRF on the points that can be evaluated by the first i queries, but the PRF on
the remaining part of the domain is unspecified. Structuring the proof in this
way is the main insight that allows us to circumvent Rao’s impossibility and
prove adaptive security.

By careful iO arguments, we show that we are able to move to such a setting
where the h for different pieces are random independent bases. The challenge
query is guaranteed to be in its own piece, using a different h than all the
constrained keys. Therefore, once we move to this setting the constrained keys

252 V. Koppula et al.

do not help evaluate the challenge, and security follows. See the Sect. 5 for details.
By combining with our compilers, we obtain the following:

Theorem 1 (Informal). Assuming polynomial iO and DDH, there exist an
adaptively secure multiparty NIKE where the number of honestly generated users
is a priori bounded, but where the number of maliciously generated users is
unbounded.

In addition to improving to only polynomial hardness, the above improves
on existing works by enhancing the security definition to allow an unbounded
number of malicious users.

Our Final Construction. Finally, we give another NIKE construction which fur-
ther improves on the security attained in Theorem 1, at the cost of a slightly
stronger group-based assumption:

Theorem 2 (Informal). Assuming polynomial iO and the DDH-powers ass-
umption, there exist an adaptively secure multiparty NIKE where the group size
and number of corruptions is bounded, but otherwise the number of honest and
malicious users unbounded.

We note that bounding the number of corruptions is very natural, and
has arisen in many cryptographic settings under the name “bounded collu-
sions.” Examples include traitor tracing [CFN94], Broadcast encryption [FN94],
identity-based encryption [DKXY02] and its generalizations to functional
encryption [GVW12], to name a few. Bounded collusions are often seen as a
reasonable relaxation, and in many cases are stepping-stones to achieving full
security. We view bounded collusion security for NIKE similarly, except that in
some ways, bounded corruptions for NIKE is even stronger than bounded collu-
sions, in that we allow the NIKE adversary to control an unbounded number of
users, only limiting the number of users that can be corrupted adaptively.

In our construction, we no longer go through 1-SF-PRFs explicitly, but
instead open up the layers of abstraction that gave Theorem 1 and make several
crucial modifications to the overall protocol. The main technical challenge is
that, in our proof of security for 1-SF-PRFs, we must hard-code all prior queries
into each secret key. In the obtained NIKE scheme, this means hard-coding all
the keys of users generated by the challenger. But as the number of hard-coded
users can never be more than the bit-length of the secret key, this limits the
number of honest users.

In our solution, we no longer explicitly hardcode the challenger-generated
users, but switch to a hybrid where they are generated with a trigger. Only
the obfuscated programs can detect this trigger so that they look like honestly
generated users, and it moreover is impossible for the adversary to generate
users with the trigger. By a delicate hybrid argument, we are able to mimic
the security proof above using these triggers instead of the explicitly hardcoded
public keys. See the Full Version [KWZ22] for details.

Adaptive Multiparty NIKE 253

Note that the DDH-powers assumption is a q-type assumption, but this can
be proved from a single assumption in the composite order setting, assuming
appropriate subgroup decision assumptions [CM14].

1.5 Organization

Section 2 covers the definitions of multiparty NIKE and constrained PRFs that
we will study. Section 3 gives our compilers for enhancing multiparty NIKE.
Section 4 demonstrates the equivalence of 1-SF-PRFs and multiparty NIKE in
the iO setting. Section 5 gives our construction of 1-SF-PRFs from iO. Due to
lack of space, the proof of Theorem 2 removing the bound on the number of
honest users is deferred to the Full Version [KWZ22].

2 Preliminaries

2.1 Multiparty NIKE

Here, we define the version of NIKE that we will be considering.

Definition 1 (Multiparty NIKE, Syntax). A multiparty NIKE scheme with
bounded honest users is a pair (Pub,KeyGen) with the following syntax:

– Pub(1λ, 1�, 1n, 1c) takes as input the security parameter λ, an upper bound n
on the number of honest users, an upper bound � on the number of users in a
set, and an upper bound c on the number of corruptions. It outputs a public
key pk and secret key sk.

– KeyGen(U, sk) takes as input a list U of t ≤ � public keys, plus the secret key
for one of the public keys. It outputs a shared key. We have the following
correctness guarantee: for any �, n, c > 0, t ∈ [�] and any i, j ∈ [t],

Pr[KeyGen({pk1, . . . , pkt}, ski) = KeyGen({pk1, . . . , pkt}, skj)] ≥ 1 − negl

where the probability is over (pki, ski) ← Gen(1λ, 1�, 1n, 1c) for i = 1, . . . , t.

Enhanced Correctness Notions. As a technical part of our compilers, we will also
consider stronger variants of correctness. The first is perfect correctness, where
the probability above is exactly 1. The second notion is adversarial correctness,
which is defined via the following experiment with an adversary A:

– On input 1λ, A computes 1�, 1n, 1c.
– The challenger runs (pkb, skb) ← Pub(1λ, 1�, 1n, 1c) for b = 0, 1, and sends

pk0, pk1 to A
– A then computes a set U of public keys such that |U | ≤ � and pk0, pk1 ∈ U .
– The challenger computes kb = KeyGen(U, skb) for b = 0, 1. A wins if and only

if k0 �= k1.

A NIKE scheme is adversarially correct if, for all PPT adversaries A, there exists
a negligible function ε such that the A wins with probability at most ε.

254 V. Koppula et al.

Definition 2 (Multiparty NIKE, Adaptive Security). Consider the fol-
lowing experiment with an adversary A:

– The challenger initializes empty tables T and U . T will contain records
(pk, sk, b) where pk, sk are the public key and secret key for a user, and b
is a flag bit indicating if the user is honest (0) or corrupted (1). We will
maintain that if the flag bit is 0, then sk �= ⊥. U will contain sets of public
keys. The challenger also stores a set S∗, initially set to ⊥.

– A receives 1λ, replies with 1�, 1n, 1c, and then makes several kinds of queries:
• Register Honest User. Here, A sends nothing. The challenger runs

(pk, sk) ← Pub(1λ, 1�, 1n, 1c). If there is a record containing pk in T , the
challenger replies with ⊥. Otherwise, it adds (pk, sk, 0) to T , and sends
pk to A. The total number of such queries is not allowed to exceed n.

• Corrupt User. Here, A sends an pk. The challenger finds a record
(pk, sk, 0) in the table T . If no such record is found, or if a record is
found but with flag bit set to 1, the challenger replies with ⊥. Otherwise
it replies with sk. It then updates the record in T to (pk, sk, 1). The total
number of such queries is not allowed to exceed c.

• Register Malicious User. Here, A sends a public key pk. If there is no
record in T containing pk, the challenger adds to T the record (pk,⊥, 1).
There is no limit to the number of such queries.

• Shared Key. The adversary sends an unordered set S = (pk1, . . . , pkt)
of up to t ≤ � distinct public keys, as well as an index i ∈ [t]. If S∗ �= ⊥
and S = S∗, then the challenger replies with ⊥. Otherwise, the challenger
checks for each j ∈ [t] if there is a (pkj , skj , bj) ∈ T . Moreover, it checks
that ski �= ⊥. If any of the checks fail, the challenger replies with ⊥. If
all the checks pass, the challenger replies with KeyGen(S, ski). It adds the
list S to U . There is no limit to the number of such queries.

• Challenge. The adversary makes a single challenge query on an
unordered list S = (pk∗

1, . . . , pk
∗
t) of up to t ≤ � distinct public keys.

The challenger sets S∗ = S. The challenger then checks for each j ∈ [t]
that there is a record (pk∗

j , sk
∗
j , b

∗
j) in T such that b∗

j = 0. The challenger
also checks that S∗ is not in U . If any of the checks fails, the challenger
immediately aborts and outputs a random bit.
If the checks pass, the challenger chooses a random bit b∗ ∈ {0, 1} and
replies with kb∗ where k0 ← KeyGen(S∗, sk1) and k1 is uniformly random.

– A produces a guess b′ for b∗. The challenger outputs 1 iff b′ = b∗.

A Multiparty NIKE is adaptively secure if, for all PPT adversaries A, there
exists a negligible function ε such that the challenger outputs 1 with probability
at most 1

2 + ε.

Other security notions. We can also consider multiparty NIKE with unbounded
honest users, where the input 1n is ignored in Pub, and there is no limit to the
number of Register Honest User. We can similarly consider multiparty NIKE
with unbounded corruptions where there is no limit to the number of Corrupt

Adaptive Multiparty NIKE 255

User queries, and unbounded set size, where there is no limit to the set size t
that can be inputted to KeyGen or queried in Shared Key or Challenger queries.

We can also consider NIKE that is “secure with out X queries”, which means
that security holds against all adversaries that do not make any type X queries.

Common Reference String. We can also consider a crs model, where there is
a setup algorithm crs ← Setup(1λ, 1�, 1n, 1c). Then Pub is changes to have the
syntax (pk, sk) ← Pub(crs). In the adaptive security experiment, we have the
challenger run crs ← Setup(1λ, 1�, 1n, 1c) and give crs to A. It then uses the
updated Pub algorithm when registering honest users.

2.2 Constrained PRFs

A Special Case of Bit-Fixing PRFs. Here, we define a type of bit-fixing PRF.

Definition 3 (1-Symbol-Fixing PRF, Syntax). 1-SF-PRF is a tuple
(Gen,Eval,Constr,EvalC) with the following syntax:

– Gen(1λ, 1|Σ|, 1�) takes as input a security parameter λ, an alphabet size |Σ|,
and an input length �, all represented in unary. It outputs a key k.

– Eval(k, x) is the main evaluation algorithm, which is deterministic and takes
as input a key k and x ∈ Σ�, and outputs a string.

– Constr(k, i, z) is a potentially randomized algorithm that takes as input a key
k, index i ∈ [�], and symbol z ∈ Σ. It outputs a constrained key ki,z.

– EvalC(ki,z, x) takes as input a constrained key ki,z for an index/symbol pair
(i, z), and an input x. It outputs a string. We have the correctness guarantee:

EvalC(ki,z, x) =

{
⊥ if xi �= z

Eval(k, x) if xi = z

Definition 4 (1-SF-PRF, Adaptive Security). Consider the following
experiment with an adversary A:

– A on input 1λ, produces 1|Σ|, 1�. The challenger runs k ← Gen(1λ, 1|Σ|, 1�).
It returns nothing to A.

– Then A can adaptively make the following types of queries:
• Constrain. A sends i, z, and receives ki,z ← Constr(k, i, z). The chal-

lenger records each (i, z) in a table C. There is no limit to the number of
constrain queries.

• Eval. A sends an input x, and receives Eval(k, x). The challenger records
each x in a table E. There is no limit to the number of Eval queries.

• Challenge. A can make a single challenge query on an input x∗ ∈ Σ�.
The challenger flips a random bit b ∈ {0, 1} and replies with y∗ = yb

where y0 = Eval(k, x) and y1 is sampled uniformly and independently.
If at any time, x∗

i = z for some (i, z) ∈ C or x∗ ∈ E, the challenger immedi-
ately aborts and outputs a random bit.

– The adversary outputs bit b′. The challenger outputs 1 if b = b′, 0 otherwise.

256 V. Koppula et al.

A 1-SF-PRF is adaptively secure if, for all PPT adversaries A, there exists a
negligible function ε such that the challenger outputs 1 with probability at most
1
2 + ε. It is adaptively secure without Eval queries if this holds for all A that
make no Eval queries.

A 1-SF-PRF scheme is said to be adaptively secure against unique-query
adversaries if the above holds for any adversary A that makes unique constrained
key queries to the challenger.

3 Enhancing Multi-party NIKE

Here give some compilers for multi-party NIKE, which allow for simplifying the
task of designing new NIKE protocols built from iO. Our ultimate goal is to show
that one can safely ignore Shared Key and Register Malicious User queries, and
also employ a trusted setup. Our compilers then show how to lift such a scheme
into one secure under all types of queries and without a trusted setup.

3.1 Achieving Adversarial Correctness

First, we convert any NIKE that is perfectly correct into one with adversarial
correctness. While adversarial correctness is not a particular design goal in mul-
tiparty NIKE, this step will be needed in order to apply our later compilers.

Theorem 3. Assume there exists a multi-party NIKE with perfect correctness,
potentially in the crs model. Assume additionally there exists a NIZK. Then there
exists a multi-party NIKE with both perfect and adversarial correctness in the crs
model. If the perfectly correct scheme has unbounded honest users, corruptions,
and/or set size, then so does the resulting adversarially correctscheme.

Theorem 3 follows from a standard application of NIZKs, and is similar to a
theorem used in the context of two-party NIKE by [HHK18]. The proof is given
in the Full Version [KWZ22].

3.2 Removing the CRS

Next, we use iO to remove the common reference string (crs) from any multi-
party NIKE. A side-effect of this transformation, however, is that we only achieve
security without Register Malicious User queries.

Theorem 4. Assuming there exists iO an adaptively secure multi-party NIKE
in the common reference string (crs) model, then there also exists adaptively
multi-party NIKE in the plain model that is secure without Register Malicious
User queries. If the crs scheme has unbounded honest users, corruptions, and/or
set size, or has perfect and/or adversarial correctness, or only has secure without
X queries for some X, then the same is true of the resulting plain model scheme.

Adaptive Multiparty NIKE 257

Proof. Theorem 4 formalizes the ad hoc techniques for removing the CRS in
iO-based constructions starting from Boneh and Zhandry [BZ14]. The proofs
of the bounded/unbounded cases and perfect/adversarial correctness cases are
essentially the same, so we focus on the case where everything is bounded. We
will let (Setup,Pub′,KeyGen′) be a multi-party NIKE with setup.

Let F be a puncturable PRF. F can be constructed from any one-way function,
which are in turn implied by any NIKE scheme. We construct a new mutliparty
NIKE (Pub,KeyGen) without setup as follows:

– Pub(1λ, 1�, 1n, 1c): Run crs ← Setup(1λ, 1�, 1n, 1c). Sample a random PRF
key k for F. Let PKeyk,SKeyk be the programs in Figs. 1 and 2, and let
̂PKey = iO(PKeyk), ̂SKey = iO(SKeyk). pk = (crs, ̂PKey) and sk = ̂SKey.

– KeyGen(S, ski): Let pk∗ ∈ S be the minimal pk ∈ S according to some order-
ing; we will call pk∗ the distinguished public key.
Write pk∗ = (crs∗, ̂PKey

∗
). Let S′ be derived from S, where for each pk =

(crs, ̂PKey) ∈ S, we include pk′ = ̂PKey(crs∗) in S′. Also let ski = ̂SKeyi, and
run sk′

i = ̂SKeyi(crs∗). Then run and output KeyGen′(crs, S′, sk′
i).

Inputs: crs
Constants: k

1. (pk′, sk′) ← Pub′(crs; F(k, crs))
2. Output pk′

Fig. 1. The program PKeyk.

Inputs: crs
Constants: k

1. (pk′, sk′) ← Pub′(crs; F(k, crs))
2. Output sk′

Fig. 2. The program SKeyk.

Correctness: Correctness follows from the correctness of the underlying scheme:

KeyGen(S, ski) = KeyGen′(crs, S′, sk′
i) = KeyGen′(crs, S′, sk′

j)

= KeyGen(S, skj)

Security: Security is proved in the Full Version [KWZ22], following a careful
application of iO techniques.

3.3 Adding Shared Key Queries

The final compiler generically convert a NIKE scheme whose security does not
support shared key queries into one that does.

Theorem 5. Assume there exists a multi-party NIKE with adversarial cor-
rectness and adaptive security without Shared Key or Register Malicious User
queries. Then there exists a multi-party NIKE with adversarial correctness and
adaptive security (with Shared Key and Register Malicious User queries). If the

258 V. Koppula et al.

original scheme is also perfectly correct, then so is the resulting scheme. If the
original scheme has unbounded honest users, corruptions, and/or set size, then
so does the resulting scheme. The resulting scheme is in the CRS model if and
only if the original scheme is.

Note the requirement that the underlying NIKE protocol have adversarial cor-
rectness. The proof of Theorem 5 exploits the structure of multiparty NIKE,
together with combinatorial tricks, to ensure that the reduction can answer all
Shared Key queries (even on sets involving malicious users) while not being able
to answer the challenge query.

In slightly more detail, the rough idea is to randomly give the reduction some
of the secret keys for users. We give the reduction enough secret keys so that
with non-negligible probability it will be able to answer all shared key queries,
while simultaneously being unable to answer the challenge query.

The main challenge is that shared key queries can be very “close” to the
challenge query, potentially differing in only a single user. In order to be able
to answer the shared key query but not the challenge query, we must give out
the secret key for exactly the differing user, which we do not know in advance.
In our solution, every user will actually contain many sub-users. The shared key
for a group of users is then the shared key for some collection of the sub-users.
The collections of sub-users will be chosen so that the collections for each group
are “far” apart. The proof is given in the Full Version [KWZ22].

3.4 Putting It All Together

We can combine Theorems 3, 4, and 5 together, to get the following corollary:

Corollary 1. Assume there exists iO and perfectly correct multi-party NIKE in
the crs model with adaptive security without Shared Key or Register Malicious
User queries. Then there exists perfectly correct (and also adversarially correct)
multi-party NIKE in the plain model with adaptive security (under both Shared
Key and Register Malicious User queries). If the original scheme has unbounded
honest users, corruptions, and/or set size, then so does the resulting scheme.

Corollary 1 shows that, for multiparty NIKE from iO, it suffices to work in the
CRS model and ignore Shared Key and Register Malicious User queries.

4 The Equivalence of Multiparty NIKE and 1-SF-PRF

In this section, we show that NIKE is equivalent to a 1-SF-PRF. In the Full
Version [KWZ22], we show that NIKE implies 1-SF-PRF, following a simple
combinatorial construction. Here, we focus on the other direction.

4.1 From 1-SF-PRF to Special Constrained PRF

Here, we define an intermediate notion of constrained PRF, which enhances a
1-SF-PRF. The idea is that the symbol space Σ is now exponentially large.

Adaptive Multiparty NIKE 259

However, at the beginning a polynomial-sized set S is chosen, and a punctured
key is revealed that allows for evaluating the PRF on any point not in S. The
points in S then behave like the symbol space for a plain 1-SF-PRF, where it is
possible to generate keys that fix any given position to some symbol in S.

Looking ahead to our NIKE construction, the set S will correspond to the
public keys of the honest users of the system, while the rest of Σ will correspond
to maliciously-generated keys. The abstraction of our special constrained PRF in
this section is the missing link to formalize the connection between 1-SF-PRFs
and NIKE as outlined in Sect. 1.

Definition 5 (Special Constrained PRF, Syntax). SC-PRF is a tuple of
algorithms (Gen, Eval, Punc, EvalP, Constr, EvalC) with the following syntax:

– Gen(1λ, |Σ|, 1�, 1n) takes as input a security parameter λ, an alphabet size
|Σ|, an input length �, and a maximal set size n. Here, |Σ| is represented in
binary (thus allowing exponential-sized Σ), but everything else in unary.

– Eval(k, x) is the main evaluation algorithm, which is deterministic and takes
as input a key k and x ∈ Σ�, and outputs a string.

– Punc(k, S) is a randomized puncturing algorithm that takes as input a key k
and set S ⊆ Σ of size at most n. It outputs a punctured key kS.

– EvalP(kS , x) takes as input an x ∈ Σ�, and outputs a value such that

EvalP(kS , x) =

{
⊥ if x ∈ Sn

Eval(k, x) if x /∈ Sn

– Constr(k, S, i, z) is a potentially randomized constraining algorithm that takes
as input a set S, a key k, an index i ∈ [�], and symbol z ∈ S. It outputs a
constrained key kS,i,z.

– EvalC(kS,i,z, x) takes as input a constrained key kS,i,z for a set/index/symbol
triple (S, i, z), and input x. It outputs a string. The correctness guarantee is:

EvalC(kS,i,z, x) =

{
⊥ if xi �= z

Eval(k, x) if xi = z

Definition 6 (Special Constrained PRF, Adaptive Security). Consider
the following experiment with an adversary A:

– A on input 1λ, outputs |Σ|, 1�, 1n, and set S of size at most n. The challenger
runs k ← Gen(1λ, |Σ|, 1�, 1n) and kS ← Punc(k, S). It sends kS to A.

– Then A can adaptively make the following types of queries:
• Constrain. A sends i, z, and receives kS,i,z ← Constr(k, S, i, z). The chal-

lenger records each (i, z) in a table C.
• Eval. A sends an input x, and receives Eval(k, x). The challenger records

each x in a table E. There is no limit to the number of Eval queries.
• Challenge. A can make a single challenge query on an input x∗ ∈ S�.

The challenger flips a random bit b ∈ {0, 1} and replies with y∗ = yb

where y0 = Eval(k, x) and y1 is sampled uniformly and independently.

260 V. Koppula et al.

If at any time, x∗
i = z for some (i, z) ∈ C or x∗ ∈ E, the challenger immedi-

ately aborts and outputs a random bit.
– The adversary outputs bit b′. The challenger outputs 1 if b = b′, 0 otherwise.

A Special Constrained PRF is adaptively secure if, for all PPT adversaries A,
there exists a negligible function ε such that the challenger outputs 1 with prob-
ability at most 1

2 + ε.

Theorem 6. If 1-SF-PRFs exist, then so do Special Constrained PRFs.

The proof of Theorem 6 use purely combinatorial techniques. The idea is to set
the symbol space Σ for the Special Constrained PRF to be codewords over the
symbol space for the 1-SF-PRF, where the code is an error correcting code with
certain properties. We defer the details to the Full Version [KWZ22].

4.2 From Special Constrained PRF to Multiparty NIKE with Setup

As a warm up, we construct multiparty NIKE in the common reference string
model. We will need the following ingredients:

Definition 7. A single-point binding (SPB) signature is a quadruple of algo-
rithms (Gen,Sign,Ver,GenBind) where Gen,Sign,Ver satisfy the usual syntax of
a signature scheme. Additionally, we have the following:

– (vk, σ) ← GenBind(1λ,m) takes as input a message m, and produces a verifi-
cation key vk and signature σ.

– For any messages m,m′ �= m, with overwhelming probability over the choice
of (vk, σ) ← GenBind(1λ,m), Ver(vk,m′, σ′) = ⊥ for any σ′. That is, there is
no message m′ �= m where there is a valid signature of m′ relative to vk.

– For any m, GenBind(1λ,m) and (vk,Sign(sk,m)) are indistinguishable, where
(vk, sk) ← Gen(1λ). Note that this property implies that Ver(vk,m, σ) accepts,
when (vk, σ) ← GenBind(1λ,m).

Definition 8. A multi-point binding (MPB) hash function is a triple of algo-
rithms (Gen,H,GenBind) where:

– Gen(1λ, 1n) takes as input the security parameter λ, and an upper bound n
on the number of inputs to bind. It produces a hashing key hk.

– H(hk, x) deterministically produces a hash h.
– GenBind(1λ, 1n, S∗) takes as input λ, n, and also a set S∗ of inputs of size at

most n. It produces a hashing key hk with the property that, with overwhelming
probability over the choice of hk ← GenBind(1λ, 1n, S∗), for any x ∈ S∗ and
any x′ �= x (which may or may not be in S∗), H(hk, x) �= H(hk, x′).

– For any n and any set S∗ of size at most n, (S∗,Gen(1λ, 1n)) is computation-
ally indistinguishable from (S∗,GenBind(1λ, 1n, S∗)).

A single-point binding (SPB) hash function is as above, except we fix n = 1.

We will rely on the following Lemmas of Guan, Wichs, and Zhandry [GWZ22]:

Adaptive Multiparty NIKE 261

Lemma 1 ([GWZ22]). Assuming one-way functions exist, so do single-point
binding signatures.

[GWZ22] show how to construct single-point binding hash functions. We adapt
their construction to multi-point binding hashes:

Lemma 2. Assuming one-way functions and iO exist, then so do multi-point
binding hash functions.

This lemma is proved in the Full Version [KWZ22], following almost identical
ideas to the proof as [GWZ22].

We use multi-point binding hash functions in order to statistically bind to a
set of inputs S∗ with a hash that is much smaller than the inputs. Such hash
functions will contain many collisions, but the point binding guarantee means
that there is no collision with S∗. The SPB signature is used for similar reasons.

Our NIKE Construction. We don’t bound collusion queries c (that is, the num-
ber of corruption queries), but bound the number of honest users, which implic-
itly bounds the collusion queries at n.

– Setup(1λ, 1�, 1n): Run hk ← GenHash(1λ, 1�). Let Y be the range of H. Also
sample k ← GenPRF (1λ, |Y|, 1�, 1n). Let KGenhk,k be the program given in
Fig. 3, padded to the maximum size of the programs in Figs. 3 and 4, and let
̂KGen = iO(KGenhk,k). Output crs = ̂KGen.

– Pub(crs): Sample a random message m and run (vk, σ) ← GenBindSig(1λ,m).
Output pk = vk and sk = (m,σ).

– KeyGen(crs, pk1, . . . , pk�, i, ski): assume the pkj are sorted in order of increas-
ing pk according to some fixed ordering; if the pkj are not in order sort them,

and change i accordingly. Write crs = ̂KGen, pkj = vkj and ski = (mi, σi).

Then output ̂KGen(vk1, . . . , vk�, i,mi, σi).

Inputs: vk1, . . . , vk�, i, mi, σi

Constants: hk, k

1. If the vki are not sorted in increasing order, immediately abort and output ⊥.
2. If Ver(vki, mi, σi) rejects, immediately abort and output ⊥.
3. For each t ∈ [�], let ut = H(hk, vkt).
4. Output EvalPRF (k, u1||u2|| . . . ||u�)

Fig. 3. The program KGenhk,k.

Correctness. We need for any n and i, j ∈ [�], that KeyGen(crs, {pkj}j , i, ski)
outputs a value equal to KeyGen(crs, {pk1, . . . , pk�}, j, skj) with overwhelming
probability. This follows from the correctness of the signature scheme. With
overwhelming probability, Ver(vki,mi, σi) =Ver(vkj ,mj , σj) = 1. Once the sig-
nature check passes, the outputs are identical.

Security. We will prove security via a sequence of hybrid experiments.

– Gamereal : This corresponds to the security game.

262 V. Koppula et al.

• Setup Phase:
The challenger samples hk ← GenHash(1λ, 1�).
Next, it samples k ← GenPRF (1λ, |Y|, 1�, 1n).
The challenger computes ̂KGen = iO(KGenhk,k) and sends crs = ̂KGen to
the adversary. It also maintains a table T which is initially empty.

• Pre-challenge Queries The adversary makes the following queries:
∗ Honest user registration query : For the ith registration query, the

challenger chooses m∗
i , computes (vk∗

i , σ
∗
i) ← GenBindSig(1λ,m∗

i),
sets vk∗

i as the public key and (m∗
i , σ

∗
i) as the secret key. It adds

(vk∗
i , (m

∗
i , σ

∗
i), 0) to the table T .

∗ Corruption query : On receiving a corruption query for vk∗
i , the chal-

lenger sends (m∗
i , σ

∗
i) to the adversary, and updates the ith entry in

T to (vk∗
i , (m

∗
i , σ

∗
i), 1).

∗ Registering Malicious user : On receiving pk, the challenger adds (pk,⊥
, 1) to T .

• Challenge Query On receiving (vk1, . . . , vk�), the challenger checks the
table T contains a (vki, (mi, σi), 0) for each i ∈ [�]. If so, it chooses a
random bit b ← {0, 1}. If b = 0, it sends EvalPRF (k, u1|| . . . ||u�), where
ui = H(hk, vki). Else it sends a uniformly random string.

• Post-challenge Queries Same as pre-challenge queries.
• Guess Finally, the adversary sends its guess b′, and wins if b = b′.

– Game1: This experiment is identical to Game0, except that the challenger
chooses the n pairs (vk∗, σ∗) and m∗ during setup. These are used to answer
registration queries. The distribution of all components is identical to that in
the previous experiment.

– Game2: In this experiment, the challenger uses the honest users’ verifi-
cation keys to sample a hash key that is binding to all the verification
keys. That is, it replaces hk ← GenHash(1λ, 1�) in Game0 and Game1 with
hk ← GenBindHash

(
1λ, {vk∗

i }i∈[n]

)
.

– Game3: In this game, the challenger uses a different (but functionally identi-
cal) program (KGenAlt, defined in Fig. 4) for computing the CRS. The Setup
phase is now the following, with the changes from Game2 in yellow:

• Setup Phase:
For j ∈ [n], sample m∗

j and (vk∗
j , σ

∗
j) ← GenBindSig(1λ,m∗

j).

The challenger samples hk ← GenBindHash

(
1λ,

{
vk∗

j

}
j∈[n]

)
.

Next, it samples k ← GenPRF (1λ, |Y|, 1�, 1n).
The challenger computes u∗

j = H(hk, vk∗
j) and sets S = {u∗

j}j∈[n].

It computes KS ← Punc(k, S) and constrained keys

K∗
j =

(
Constr(k, S, t, u∗

j)
)
t∈[�]

. It sets v∗
j = m∗

j ⊕ K∗
j for each j ∈ [n].

The challenger computes ̂KGenAlt = iO
(
KGenAlthk,{u∗

j ,v∗
j ,K∗

j },KS

)
and

sends crs = ̂KGenAlt to the adversary. It also maintains a table T which
is initially empty.

Adaptive Multiparty NIKE 263

Inputs: vk1, . . . , vk�, i, mi, σi

Constants: Hash key hk

S =
{
u∗

j

}
j∈[n]

{
v∗

j

}
j∈[n]

Punctured key KS

1. If the vki are not sorted in increasing order, immediately abort and output ⊥.
2. If Ver(vki, mi, σi) rejects, immediately abort and output ⊥.
3. For each t ∈ [�], let ut = H(hk, vkt).

4. If ui ∈ {u∗
j }j∈[n], compute K∗

j = K∗
j,t

)
t∈[�]

= mi ⊕ v∗
i ,

then output EvalC(K∗
j,i, u1||u2|| . . . ||u�). Else output EvalP(KS , u1||u2|| . . . ||u�).

Fig. 4. The program KGenAlthk,{u∗
j ,v

∗
j ,K∗

j },KS
. (Color figure online)

– Game4: In this experiment, during setup, the challenger replaces (vk∗
j , σ

∗
j) ←

GenBindSig(1λ,m∗
j) from Game3 with (sk∗

j , vk
∗
j) ← GenSig(1λ) and σ∗

j ←
Sign(sk∗

j ,m
∗
j).

– Game5: This game represents a syntactic change. Instead of choosing m∗
j first

and then computing v∗
j , the challenger chooses uniformly random v∗

j , and sets
m∗

j = v∗
j ⊕ K∗

j . In terms of the adversary’s view, this experiment is identical
to the previous one.
Now the constrained keys are not needed during setup, and can instead be
generated adaptively during the corruption queries, which are now answered
as follows (changes from Game4 in yellow): On receiving a corruption query

for vk∗
i , the challenger computes K∗

i =
(
Constr(k, S, t, u∗

j)
)
t∈[�]

. It then

computes m∗
j = v∗

j ⊕ K∗
j and sends (m∗

i , σ
∗
i) to the adversary, and updates

the ith entry in T to (vk∗
i , (m

∗
i , σ

∗
i), 1).

In the Full Version [KWZ22], we analyse the adversary’s advantage in each of
these experiments, showing these games are computationally indistinguishable.

5 Construction of 1-SF-PRFs

The previous section worked to distill adaptively secure NIKE to the more basic
primitive of constrained PRFs for one symbol fixing. While these transforma-
tions simplify the problem, the central barriers to proving adaptive security still
remain. In this section we address these head on.

We review the main issues for adaptivity. Consider an adversary A that first
makes several constrained key queries (index1, sym1), . . . , (indexQ, symQ). Next
the A submits a challenge input x∗ such that x∗

i �= z for any pre-challenge

264 V. Koppula et al.

key query (i, z) and receives back the challenge output from the challenger.
Before submitting its guess, A will first perform some consistency checks on the
constrained keys it received. For example, it can run the evaluation algorithm
on multiple points that are valid for different sets of constrained keys and verify
that it receives the same output from each. If not, it aborts and makes no guess.

Dealing with such an attacker is difficult for multiple reasons. First, a reduc-
tion cannot simply guess x∗ or which index/symbol pairs will be queried without
an exponential loss. Second, it cannot issue constrained keys that are deviate
much from each other less this be detected by A’s consistency checks.

We overcome these issues by having the challenger gradually issues con-
strained keys that deviate from a canonical PRF which is used to evaluate on
the challenge input. However, we endeavor to keep all subsequent issued keys
consistent with any introduced deviation so that this will avoid being detected.

Diving deeper our construction will use constrained keys which are obfuscated
programs. Initially, the obfuscated program will simply check if an input x is
consistent with the single symbol fixing of the key. If so, it evaluates the canonical
PRF which is a Naor-Reingold style PRF.

The proof will begin by looking at the first key that is issued by the challenger
for some query (index1, sym1). For this key the obfuscated program will branch off
and evaluate any inputs x where xindex1 = sym1 in a different, but functionally
equivalent way to the canonical PRF. By the security of iO this will not be
detected. Moreover, this alternative evaluation for when xindex1 = sym1 will be
adopted by all further issued keys. Once this alternative pathway is set for all
keys, we can change the evaluation on such inputs to be inconsistent with the
canonical PRF, but mutually consistent with all issued keys. This follows from
the DDH assumption. The proof can then proceed to the transforming the second
issued key in a similar way such that there is a separate pathway for all inputs
x where xindex2 = sym2. The one exception is that the second and all future
keys will give prioritization to the first established pathway whenever we have
an input x where both xindex1 = sym1 and xindex2 = sym2.

The proof continues on in this way where each new key issued will establish
an alternative evaluation which will be used except when it is pre-empted by an
earlier established alternative. In this manner the constrained keys issued will
always be mutually consistent on inputs, even while they gradually deviate from
the canonical PRF. Finally, at the end of the proof all issued keys will use some
alternative pathway for all evaluations. At this point we can use indistinguisha-
bility obfuscation again to remove information about the canonical PRF from
the obfuscated programs since it is never used. With this information removed
no attacker can distinguish a canonical PRF output from a random value.

We remark that in order to execute our proof strategy, our initial obfuscated
program must be as large as any program used in the proof. In particular, it
must be large enough to contain an alternative evaluation programming for all
corrupted keys. Thus our constrained PRF keys must grow in size proportional
to � · |Σ| and our resulting NIKE is parameterized for a set number of collusions.

Adaptive Multiparty NIKE 265

5.1 Construction

– Gen(1λ, Σ, 1�): The key generation algorithm first runs G(1λ) to compute
(p, G). Next, it chooses v ← G, exponents ej,w ← Zp for each j ∈ [�], w ∈ Σ.
The PRF key K consists of (v, {ej,w}).

– Eval(K, x): Let K = (v, {ej,w}) and x = (x1, . . . , x�) ∈ Σ�. The PRF evalua-

tion on input x is vt, where t =
(∏

j≤n ej,xj

)
.

– Constr(K, i, z) : The constrained key is an obfuscation of the program
ConstrainedKeyK,i,z (defined in Fig. 5). The program is sufficiently padded
to ensure that it is of the same size as the programs ConstrainedKeyAlt,
ConstrainedKeyAlt′ (defined in Fig. 6, 7) as well as an additional program
that is used in the security proof. This additional program is specified in the
Full Version [KWZ22].
It outputs Ki,z ← iO(1λ,ConstrainedKeyK,i,z) as the constrained key.

ConstrainedKeyK,i,z

Input: x = (x1, . . . , x�) ∈ Σ�

Constants: Group element v
Exponents {ej,w}j∈[�],w∈Σ

Constraining index/symbol i ∈ [�], z ∈ Σ

1. If xi �= z output ⊥.
2. Compute t =

(∏
j≤� ej,xj

)
.

3. Output vt.

Fig. 5. Program ConstrainedKey

– EvalC(Ki,z, x): The constrained key Ki,z is an obfuscated program. The eval-
uation algorithm outputs Ki,z(x).

5.2 Security Proof

We will prove that the above construction satisfies security against unique-query
adversaries, via a sequence of hybrid games. The first game corresponds to the
original security game (security against unique query adversary). Next, we define
Q hybrid games {Gamey}y∈[Q], where Q is a bound on the total number of
constrained key queries by the adversary.

– Gamereal:
• Setup Phase: The challenger chooses v ← G, ej,w ← Zp for each j ∈

[�], w ∈ Σ. Let K = (v, (ej,w)j,w).
The challenger also maintains an ordered list L of (index, sym) pairs.
This list is initially empty, and for each (new) query, the challenger adds
a tuple to L.

266 V. Koppula et al.

• Pre-challenge queries: Next, the challenger receives pre-challenge con-
strained key queries. Let (indexj , symj) be the jth constrained key query.
The challenger adds (indexj , symj) to L.
The challenger computes the constrained key Kj ← iO(1λ,
ConstrainedKeyK,indexj ,symj

) and sends Kj to the adversary.
• Challenge Phase: Next, the adversary sends a challenge x∗ such that

x∗
i �= z for any pre-challenge key query (i, z). The challenger chooses

b ← {0, 1}. If b = 0, the challenger computes t =
∏

i ei,x∗
i

and sends vt. If
b = 1, the challenger sends a uniformly random group element in G.

• Post-challenge queries: The post-challenge queries are handled similar
to the pre-challenge queries.

• Guess: Finally, the adversary sends the guess b′ and wins if b = b′.
– Gamey: In this game, the challenger uses an altered program for the first y

constrained keys. It makes the following changes to Gamereal:
• Setup Phase: The challenger additionally samples hj ← G for all j ∈ [y].

Let H = (hj)j∈[y].
• Pre-challenge queries: Let (indexj , symj) be the jth constrained key

query. The challenger adds (indexj , symj) to L. Let s = min(y, j), and let
Ls (resp. Hs) denote the first s entries in L (resp. H). The challenger com-

putes the key Kj ← iO(1λ,ConstrainedKeyAlts,Ls,Hs,v,(ej,w),indexj ,symj
)

and sends Kj to the adversary.

ConstrainedKeyAlts,Ls,Hs,v,(ej,w),i,z

Input: x = (x1, . . . , x�) ∈ Σ�

Constants: s ∈ � · |Σ|
List Ls = indexj , symj

))
j∈[s]

Hs = (hj)j∈[s]

Group element v,
Exponents (ej,w)j,w,
Constraining index/symbol i ∈ [�], z ∈ Σ

1. If xi �= z output ⊥.
2. Compute t =

(∏
j≤� ej,xj

)
.

3. Find the smallest j ∈ [s] such that xindexj = symj .

(a) If such j exists, then output ht
j .

(b) Else output vt.

Fig. 6. Program ConstrainedKeyAlt (Color figure online)

Adaptive Multiparty NIKE 267

Analysis. We will now show that Gamereal and Gamey are computationally
indistinguishable for all y ∈ [Q]. Finally, we will show that no polynomial time
adversary has non-negligible advantage in GameQ, showing that the scheme is
secure against unique query adversaries. For any adversary A, let advA,real denote
A’s advantage in Gamereal, and let advA,y denote A’s advantage in Gamey.

Lemma 3. Assuming iO is secure, for any PPT adversary A, there exists a
negligible function negl such that for all λ, |advA,real − advA,0| ≤ negl(λ).

Proof. For y = 0, the lists Ly and Hy are empty, and as a result, the programs
are functionally identical. On any input x, both programs output vt. Therefore,
their obfuscations are computationally indistinguishable.

Lemma 4. Fix any y ∈ [Q]. Assuming DDH and security of iO, for any PPT
adversary A making at most Q queries, there exists a negligible function negl
such that for all λ, |advA,y − advA,y+1| ≤ negl(λ).

Proof. We will define hybrid games to show that Gamey and Gamey+1 are compu-
tationally indistinguishable. The main difference in the two games is with regard
to the last Q − y constrained key queries. Note that the first y constrained keys
are identical in both experiments. For each of the last Q − y constrained keys, if
(i, z) is the constrained key query, then the adversary receives an obfuscation of

– Py,i,z ≡ ConstrainedKeyAlty,Ly,Hy,v,(ej,w),i,z in Gamey,
– Py+1,i,z ≡ ConstrainedKeyAlty+1,Ly+1,Hy+1,v,(ej,w),i,z in Gamey+1

Note that the programs Py,i,z and Py+1,i,z only differ on inputs x where
xi = z (in one case the output is vt, while in the other case the output is
ht

y+1). We will prove that these two hybrid games are indistinguishable, using a
sequence of sub-hybrid experiments defined below.

– Gamey,a: This security game is similar to Gamey, except that the challenger
guesses the (y + 1)th query in the setup phase.

• Setup Phase: The challenger chooses v ← G, hj ← G for all j ∈ [y] and
ej,w ← Zp for all j ∈ [�], w ∈ Σ. Let Hy = (hj)j∈[y].
The challenger maintains an ordered list L of (index, sym) pairs which is
initially empty.
The challenger also chooses (indexy+1, symy+1) ← [�] × Σ.

• Pre-challenge queries: Next, the challenger receives pre-challenge con-
strained key queries. Let (indexq, symq) be the qth constrained key query.
The challenger adds (indexq, symq) to L.

If the (y + 1)th query is not (indexy+1, symy+1), then the challenger

aborts. The adversary wins with probability 1/2.
Let s = min(y, q), and let Ls denote the first s entries in
L. The challenger computes the constrained key Kq ← iO(1λ,
ConstrainedKeyAlts,Ls,Hs,v,(ej,w),indexq,symq

) and sends Kq to the adversary.

268 V. Koppula et al.

• Challenge Phase: Next, the adversary sends a challenge x∗ such that
x∗

i �= z for any pre-challenge key query (i, z). The challenger chooses
b ← {0, 1}. If b = 0, the challenger computes t =

∏
i ei,x∗

i
and sends vt. If

b = 1, the challenger sends a uniformly random group element in G.
• Post-challenge queries: The post-challenge queries are handled similar

to the pre-challenge queries.
• Guess: Finally, the adversary sends the guess b′ and wins if b = b′.

– Gamey,b: This security game is similar to Gamey,a, except that the challenger
chooses the hj constants and one of the ej,w exponents differently. However,
the distribution of these components is identical to their distribution in the
previous game.

• Setup Phase: The challenger chooses g ← G, b ← Zp, cj ← Zp for

all j ∈ [y]. It sets v = gb, hj = gcj .

It chooses ej,w ← Zp for all j ∈ [n], w ∈ Σ, (j, w) �= (indexy+1, symy+1) .

It chooses a ← Zp and sets eindexy+1,symy+1
= a, A = ga and T = va .

Note that the terms A and T are not used in this experiment; they will
be used in some of the following hybrid experiments. Let Hy = (hj)j∈[y].

– Gamey,c: In this security game, the challenger computes the constrained
keys differently. Instead of sending an obfuscation of ConstrainedKeyAlt (with
appropriate hardwired constants), the challenger computes an obfuscation
of ConstrainedKeyAlt′ (with appropriate hardwired constants). The program
ConstrainedKeyAlt′ is defined in Fig. 7, and is padded to be of the same size
as ConstrainedKey, ConstrainedKeyAlt and ConstrainedKeyEnd.
The main difference is that ConstrainedKeyAlt′ does not contain the expo-
nent eindexy+1,symy+1

(recall (indexy+1, symy+1) is the (y +1)th constrained key
query, and the challenger guesses this query during setup). Instead, the pro-
gram contains geindexj+1,symj+1 and veindexj+1,symj+1 . As a result, the final output
is computed differently (although the outputs are identical).
We will show that the two programs are functionally identical, and therefore
their obfuscations are computationally indistinguishable.

• Pre-challenge queries: Let (indexq, symq) be the qth constrained key
query. The challenger adds (indexq, symq) to L. Let Lj denote the first j
entries in L.
If q ≤ y, the challenger computes
Kq ← iO(1λ,ConstrainedKeyAltq,Lq,Hq,v,(ej,w),indexq,symq

) and sends Kq to
the adversary.
If the (y + 1)th query is not (indexy+1, symy+1),4 then the challenger
aborts. The adversary wins with probability 1/2.
If q > y, the challenger sends an obfuscation of the program:

ConstrainedKeyAlt′y,Ly,(indexy+1,symy+1),{cy},g,v,B,T,(ej,w)(j,w),indexq,symq

4 Recall (indexy+1, symy+1) is chosen during the setup phase.

Adaptive Multiparty NIKE 269

ConstrainedKeyAlt′

Input: x = (x1, . . . , x�) ∈ Σ�

Constants: y ∈ [� · |Σ|]
List of first y queries Ly = indexj , symj

))
j∈[y]

(y + 1)th query (indexy+1, symy+1)
exponents for computing (hj)j : (cj)j∈[y]

Group elements g, v, A, T
PRF eval exponents = (ej,w)(j,w) �=(indexy+1,symy+1)

Constraining index/symbol i ∈ [�], z ∈ Σ

1. If xi �= z output ⊥.
2. Compute t as follows:

(a) If xindexy+1 = symy+1 then set t =
(∏

j �=indexy+1
ej,xj

)

(b) Else t =
(∏

j ej,xj

)

3. Find the smallest j ∈ [y] such that xindexj = symj .
(a) If such j exists and xindexy+1 = symy+1 then output (A)t·cj

(b) If such j exists and xindexy+1 �= symy+1 then output gc
j

)t

(c) Else if no such j exists and xindexy+1 = symy+1 output (T)t.
(d) Else if no such j exists and xindexy+1 �= symy+1 output vt.

Fig. 7. Program ConstrainedKeyAlt′

– Gamey,d: In this security game, the challenger sets T to be a uniformly random
element in G instead of T = va.

– Gamey,e: This security game represents a syntactic change. We choose hj+1 ←
G and set T = ha

j+1. The element hj+1 is not used anywhere else.
– Gamey,f : In this experiment, the challenger uses ConstrainedKeyAlt for the

last Q − y constrained key queries. On receiving query (i, z), the challenger
sends an obfuscation of ConstrainedKeyAlty+1,Ly+1,Hy+1,v,(ek,w),i,z. Here Ly+1

and Hy+1 are defined as in Gamey,e.
– Gamey,g: This security game is identical to Gamey,f , and the changes in this

game are syntactic. Instead of sampling exponents cj and setting hj = gcj ,
the challenger chooses hj ← G. Similarly, the challenger samples v ← G, and
samples all the exponents ej,w ← Zp. Note that this experiment is identical to
Gamey+1, except that the challenger guesses (indexy+1, symy+1) in the setup
phase.

Claim 1. For any y ∈ [Q], and any adversary A making at most Q constrained
key queries, |advA,y − advA,y+1| = 1

�·|Σ| (|advA,y,a − advA,y,g|).

Proof. Note that the only difference between Gamey,a and Gamey is that the
challenger guesses the (y + 1)th constrained key query in the setup phase. Sim-
ilarly, the only difference between Gamey,g and Gamey+1 is that the challenger

270 V. Koppula et al.

guesses the (y+1)th constrained key query. This guess is correct with probability
1/(� · |Σ|), and therefore |advA,y − advA,y+1| = 1

�·|Σ| (|advA,y,a − advA,y,g|).

Therefore, it suffices to show that Gamey,a, . . . ,Gamey,g are computation-
ally indistinguishable. This is proved in the Full Version [KWZ22]. Proving the
indistinguishability of these hybrids completes the proof of Lemma 4.

Acknowledgements. We thank Rachit Garg and George Lu for helpful feedback on
an earlier draft of our work.

References

[AJ15] Ananth, P., Jain, A.: Indistinguishability obfuscation from compact func-
tional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015,
Part I. LNCS, vol. 9215, pp. 308–326. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-47989-6 15

[AMN+18] Attrapadung, N., Matsuda, T., Nishimaki, R., Yamada, S., Yamakawa,
T.: Constrained PRFs for NC1 in traditional groups. In: Shacham, H.,
Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 543–
574. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-
0 19

[BFP+15] Banerjee, A., Fuchsbauer, G., Peikert, C., Pietrzak, K., Stevens, S.: Key-
homomorphic constrained pseudorandom functions. In: Dodis, Y., Nielsen,
J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 31–60. Springer, Hei-
delberg (2015). https://doi.org/10.1007/978-3-662-46497-7 2

[BGI14] Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudoran-
dom functions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp.
501–519. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-
54631-0 29

[BGK+18] Boneh, D., et al.: Multiparty non-interactive key exchange and more from
isogenies on elliptic curves. J. Math. Cryptol. 14, 5–14 (2018)

[BJLS16] Bader, C., Jager, T., Li, Y., Schäge, S.: On the impossibility of tight cryp-
tographic reductions. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016, Part II. LNCS, vol. 9666, pp. 273–304. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49896-5 10

[BS02] Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptogra-
phy. Contemp. Math. 324, 71–90 (2002)

[BTVW17] Brakerski, Z., Tsabary, R., Vaikuntanathan, V., Wee, H.: Private con-
strained PRFs (and more) from LWE. In: Kalai, Y., Reyzin, L. (eds.)
TCC 2017, Part I. LNCS, vol. 10677, pp. 264–302. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70500-2 10

[BV15a] Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from
functional encryption. In: Guruswami, V. (ed.) 56th FOCS, pp. 171–190.
IEEE Computer Society Press (2015)

[BV15b] Brakerski, Z., Vaikuntanathan, V.: Constrained key-homomorphic PRFs
from standard lattice assumptions. In: Dodis, Y., Nielsen, J.B. (eds.) TCC
2015, Part II. LNCS, vol. 9015, pp. 1–30. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46497-7 1

https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-319-96881-0_19
https://doi.org/10.1007/978-3-319-96881-0_19
https://doi.org/10.1007/978-3-662-46497-7_2
https://doi.org/10.1007/978-3-642-54631-0_29
https://doi.org/10.1007/978-3-642-54631-0_29
https://doi.org/10.1007/978-3-662-49896-5_10
https://doi.org/10.1007/978-3-319-70500-2_10
https://doi.org/10.1007/978-3-662-46497-7_1

Adaptive Multiparty NIKE 271

[BW13] Boneh, D., Waters, B.: Constrained Pseudorandom Functions and Their
Applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II.
LNCS, vol. 8270, pp. 280–300. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-42045-0 15

[BZ14] Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing,
and more from indistinguishability obfuscation. In: Garay, J.A., Gennaro,
R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 480–499. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2 27

[CC17] Canetti, R., Chen, Y.: Constraint-hiding constrained PRFs for NC1 from
LWE. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part I.
LNCS, vol. 10210, pp. 446–476. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-56620-7 16

[CFN94] Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: Desmedt, Y.G. (ed.)
CRYPTO 1994. LNCS, vol. 839, pp. 257–270. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48658-5 25

[CKS08] Cash, D., Kiltz, E., Shoup, V.: The twin Diffie-hellman problem and appli-
cations. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp.
127–145. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
78967-3 8

[CM14] Chase, M., Meiklejohn, S.: Déjà Q: using dual systems to revisit q-type
assumptions. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 622–639. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-642-55220-5 34

[CRV16] Chandran, N., Raghuraman, S., Vinayagamurthy, D.: Reducing depth in
constrained PRFs: from bit-fixing to NC1. In: Cheng, C.-M., Chung, K.-
M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016, Part II. LNCS, vol. 9615,
pp. 359–385. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49387-8 14

[DH76] Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans.
Inf. Theory 22(6), 644–654 (1976)

[DKN+20] Davidson, A., Katsumata, S., Nishimaki, R., Yamada, S., Yamakawa, T.:
Adaptively secure constrained pseudorandom functions in the standard
model. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part I.
LNCS, vol. 12170, pp. 559–589. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-56784-2 19

[DKW16] Deshpande, A., Koppula, V., Waters, B.: Constrained pseudorandom func-
tions for unconstrained inputs. In: Fischlin, M., Coron, J.-S. (eds.) EURO-
CRYPT 2016, Part II. LNCS, vol. 9666, pp. 124–153. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49896-5 5

[DKXY02] Dodis, Y., Katz, J., Xu, S., Yung, M.: Key-insulated public key cryptosys-
tems. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp.
65–82. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-
7 5

[FHKP13] Freire, E.S.V., Hofheinz, D., Kiltz, E., Paterson, K.G.: Non-interactive
key exchange. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS,
vol. 7778, pp. 254–271. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-36362-7 17

[FKPR14] Fuchsbauer, G., Konstantinov, M., Pietrzak, K., Rao, V.: Adaptive secu-
rity of constrained PRFs. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT
2014, Part II. LNCS, vol. 8874, pp. 82–101. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45608-8 5

https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-662-44371-2_27
https://doi.org/10.1007/978-3-319-56620-7_16
https://doi.org/10.1007/978-3-319-56620-7_16
https://doi.org/10.1007/3-540-48658-5_25
https://doi.org/10.1007/978-3-540-78967-3_8
https://doi.org/10.1007/978-3-540-78967-3_8
https://doi.org/10.1007/978-3-642-55220-5_34
https://doi.org/10.1007/978-3-642-55220-5_34
https://doi.org/10.1007/978-3-662-49387-8_14
https://doi.org/10.1007/978-3-662-49387-8_14
https://doi.org/10.1007/978-3-030-56784-2_19
https://doi.org/10.1007/978-3-030-56784-2_19
https://doi.org/10.1007/978-3-662-49896-5_5
https://doi.org/10.1007/3-540-46035-7_5
https://doi.org/10.1007/3-540-46035-7_5
https://doi.org/10.1007/978-3-642-36362-7_17
https://doi.org/10.1007/978-3-642-36362-7_17
https://doi.org/10.1007/978-3-662-45608-8_5

272 V. Koppula et al.

[FN94] Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO
1993. LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994). https://
doi.org/10.1007/3-540-48329-2 40

[GGH13] Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lat-
tices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 1–17. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-38348-9 1

[GPSZ17] Garg, S., Pandey, O., Srinivasan, A., Zhandry, M.: Breaking the sub-
exponential barrier in obfustopia. In: Coron, J.-S., Nielsen, J.B. (eds.)
EUROCRYPT 2017, Part III. LNCS, vol. 10212, pp. 156–181. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-56617-7 6

[GVW12] Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with
bounded collusions via multi-party computation. In: Safavi-Naini, R.,
Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 11

[GWZ22] Guan, J., Wichs, D., Zhandry, M.: Incompressible cryptography. In:
Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022, Part I. LNCS,
vol. 13275, pp. 700–730. Springer, Cham (2022). https://doi.org/10.1007/
978-3-031-06944-4 24

[HHK18] Hesse, J., Hofheinz, D., Kohl, L.: On tightly secure non-interactive key
exchange. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS,
vol. 10992, pp. 65–94. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-96881-0 3

[HHKL21] Hesse, J., Hofheinz, D., Kohl, L., Langrehr, R.: Towards tight adaptive
security of non-interactive key exchange. In: Nissim, K., Waters, B. (eds.)
TCC 2021, Part III. LNCS, vol. 13044, pp. 286–316. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-90456-2 10

[HJK+16] Hofheinz, D., Jager, T., Khurana, D., Sahai, A., Waters, B., Zhandry,
M.: How to generate and use universal samplers. In: Cheon, J.H.,
Takagi, T. (eds.) ASIACRYPT 2016, Part II. LNCS, vol. 10032, pp.
715–744. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
53890-6 24

[HKKW14] Hofheinz, D., Kamath, A., Koppula, V., Waters, B.: Adaptively secure
constrained pseudorandom functions. Cryptology ePrint Archive, Report
2014/720 (2014). https://eprint.iacr.org/2014/720

[HKW15] Hohenberger, S., Koppula, V., Waters, B.: Adaptively secure puncturable
pseudorandom functions in the standard model. In: Iwata, T., Cheon, J.H.
(eds.) ASIACRYPT 2015, Part I. LNCS, vol. 9452, pp. 79–102. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6 4

[Hof14] Hofheinz, D.: Fully secure constrained pseudorandom functions using ran-
dom oracles. Cryptology ePrint Archive, Report 2014/372 (2014). https://
eprint.iacr.org/2014/372

[Jou00] Joux, A.: A one round protocol for tripartite Diffie–Hellman. In: Bosma,
W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 385–393. Springer, Heidelberg
(2000). https://doi.org/10.1007/10722028 23

[KPTZ13] Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegat-
able pseudorandom functions and applications. In: Sadeghi, A.-R., Gligor,
V.D., Yung, M. (eds.) ACM CCS 2013, pp. 669–684. ACM Press (2013)

[KRS15] Khurana, D., Rao, V., Sahai, A.: Multi-party key exchange for unbounded
parties from indistinguishability obfuscation. In: Iwata, T., Cheon, J.H.

https://doi.org/10.1007/3-540-48329-2_40
https://doi.org/10.1007/3-540-48329-2_40
https://doi.org/10.1007/978-3-642-38348-9_1
https://doi.org/10.1007/978-3-642-38348-9_1
https://doi.org/10.1007/978-3-319-56617-7_6
https://doi.org/10.1007/978-3-642-32009-5_11
https://doi.org/10.1007/978-3-031-06944-4_24
https://doi.org/10.1007/978-3-031-06944-4_24
https://doi.org/10.1007/978-3-319-96881-0_3
https://doi.org/10.1007/978-3-319-96881-0_3
https://doi.org/10.1007/978-3-030-90456-2_10
https://doi.org/10.1007/978-3-662-53890-6_24
https://doi.org/10.1007/978-3-662-53890-6_24
https://eprint.iacr.org/2014/720
https://doi.org/10.1007/978-3-662-48797-6_4
https://eprint.iacr.org/2014/372
https://eprint.iacr.org/2014/372
https://doi.org/10.1007/10722028_23

Adaptive Multiparty NIKE 273

(eds.) ASIACRYPT 2015, Part I. LNCS, vol. 9452, pp. 52–75. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6 3

[KWZ22] Koppula, V. Waters, B., Zhandry, M.: Adaptive multiparty NIKE (full
version) (2022)

[LOS+10] Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully
secure functional encryption: attribute-based encryption and (hierarchi-
cal) inner product encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010.
LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-13190-5 4

[LW14] Lewko, A., Waters, B.: Why proving HIBE systems secure is difficult. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441,
pp. 58–76. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-55220-5 4

[MZ17] Ma, F., Zhandry, M.: Encryptor combiners: a unified approach to mul-
tiparty NIKE, (H)IBE, and broadcast encryption. Cryptology ePrint
Archive, Report 2017/152 (2017). https://eprint.iacr.org/2017/152

[MZ18] Ma, F., Zhandry, M.: The MMap strikes back: obfuscation and new mul-
tilinear maps immune to CLT13 zeroizing attacks. In: Beimel, A., Dziem-
bowski, S. (eds.) TCC 2018, Part II. LNCS, vol. 11240, pp. 513–543.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03810-6 19

[NR97] Naor, M., Reingold, O.: Number-theoretic constructions of efficient
pseudo-random functions. In: 38th FOCS, pp. 458–467. IEEE Computer
Society Press (1997)

[Rao14] Rao, V.: Adaptive multiparty non-interactive key exchange without setup
in the standard model. Cryptology ePrint Archive, Report 2014/910
(2014). https://eprint.iacr.org/2014/910

[STW96] Steiner, M., Tsudik, G., Waidner, M.: Diffie-Hellman key distribution
extended to group communication. In: Gong, L., Stern, J. (eds.) ACM
CCS 96, pp. 31–37. ACM Press (1996)

[SW14] Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable
encryption, and more. In: Shmoys, D.B. (ed.) Symposium on Theory of
Computing, STOC 2014, New York, NY, USA, 31 May–03 June 2014, pp.
475–484. ACM (2014)

[Wat09] Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE
under simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol.
5677, pp. 619–636. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-03356-8 36

https://doi.org/10.1007/978-3-662-48797-6_3
https://doi.org/10.1007/978-3-642-13190-5_4
https://doi.org/10.1007/978-3-642-13190-5_4
https://doi.org/10.1007/978-3-642-55220-5_4
https://doi.org/10.1007/978-3-642-55220-5_4
https://eprint.iacr.org/2017/152
https://doi.org/10.1007/978-3-030-03810-6_19
https://eprint.iacr.org/2014/910
https://doi.org/10.1007/978-3-642-03356-8_36
https://doi.org/10.1007/978-3-642-03356-8_36

On the Impossibility of Algebraic Vector
Commitments in Pairing-Free Groups

Dario Catalano1 , Dario Fiore2 , Rosario Gennaro3 ,
and Emanuele Giunta2,4(B)

1 University of Catania, Catania, Italy
catalano@dmi.unict.it

2 IMDEA Software Institute, Madrid, Spain
{dario.fiore,emanuele.giunta}@imdea.org

3 Protocol Labs., New York, USA
rosario.gennaro@protocol.ai

4 Universidad Politecnica de Madrid, Madrid, Spain

Abstract. Vector Commitments allow one to (concisely) commit to a
vector of messages so that one can later (concisely) open the commit-
ment at selected locations. In the state of the art of vector commitments,
algebraic constructions have emerged as a particularly useful class, as
they enable advanced properties, such as stateless updates, subvector
openings and aggregation, that are for example unknown in Merkle-tree-
based schemes. In spite of their popularity, algebraic vector commitments
remain poorly understood objects. In particular, no construction in stan-
dard prime order groups (without pairing) is known.

In this paper, we shed light on this state of affairs by showing that a
large class of concise algebraic vector commitments in pairing-free, prime
order groups are impossible to realize.

Our results also preclude any cryptographic primitive that implies the
algebraic vector commitments we rule out, as special cases. This means
that we also show the impossibility, for instance, of succinct polynomial
commitments and functional commitments (for all classes of functions
including linear forms) in pairing-free groups of prime order.

1 Introduction

Vector commitments [9,27] (VC) are a class of commitment schemes that allow
a sender to commit to a vector v of n messages, in such a way that she can later
open the commitment at selected positions. Namely, the sender can convince
anyone that the i-th message in the committed vector is vi. A secure scheme
shall satisfy position binding, i.e. generating valid openings to different values
vi �= v′

i for the same position i is computationally infeasible.
The distinguishing feature of vector commitments is that commitments and

openings must be succinct. In the original notion of [9,27], this means that their
size is independent of n, the length of the vector, but a relaxed notion allowing a
logarithmic dependence in n may be considered, as in the case of the celebrated
Merkle tree construction [29].
c© The Author(s), under exclusive license to Springer Nature Switzerland 2022
E. Kiltz and V. Vaikuntanathan (Eds.): TCC 2022, LNCS 13748, pp. 274–299, 2022.
https://doi.org/10.1007/978-3-031-22365-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22365-5_10&domain=pdf
http://orcid.org/0000-0001-9677-944X
http://orcid.org/0000-0001-7274-6600
http://orcid.org/0000-0002-3297-3750
http://orcid.org/0000-0001-5294-6648
https://doi.org/10.1007/978-3-031-22365-5_10

On the Impossibility of Algebraic Vector Commitments 275

Mainly thanks to their succinctness property, vector commitments have
been shown to be a useful building block in several applications, such as
zero-knowledge sets [9,27,31], verifiable databases [3,9], succinct arguments
[4,22,25,30], proofs of retrievability [12,20], and stateless blockchains [4,10].

Analyzing the state of the art of VC schemes, we see that VC constructions
are based on two main approaches.

On one side, we have tree-based VCs, notably Merkle trees [29] and their
generalizations [24]. These constructions have the advantage of being realizable
from collision resistant hash functions, and thus can be based on the hardness
of virtually any cryptographic problem including factoring, discrete logarithm,
SIS and many more. In fact, we notice that VCs with logarithmic-size openings
are equivalent to collision-resistant hash functions. The main drawback of tree-
based schemes is that their openings are of size O(log n). Additionally, the tree-
based approach seems to inherently impede the realization of properties such as
subvector openings [4,25] and aggregation [8], that turn useful in both theoretical
and practical applications of VCs.

On the other side, we have algebraic vector commitments, notably based on
bilinear pairings [9,21,27], groups of unknown order [9], and lattices [34,35].
Roughly speaking, an algebraic VC is one in which the commitment and ver-
ification algorithm only use algebraic operations over the group that underlies
the construction (this rules out hashing group elements for example). The main
advantage of these constructions is that they admit openings of constant size,1

that are virtually optimal – a single group element in most constructions. More-
over, algebraic schemes naturally achieve useful properties such as (additive)
homomorphism, stateless updatability [9], subvector openings [4,25] and aggre-
gation [8]. Yet, the powerful versatility of existing VCs with constant-size open-
ings contrasts with the limited theoretical understanding of their foundations.

We see two main open questions related to algebraic VCs. The first one
concerns the minimal general assumption that implies them. While tree-based
schemes with logarithmic openings are well understood, being de facto equivalent
to collision-resistant hash functions2, we have no generic recipe to build algebraic
VCs with constant-size openings.3 The second question is whether algebraic VCs
can be built from “standard” prime-order groups without pairings. In this set-
ting, known constructions rely either on the tree-based approach (e.g., building
a Merkle tree on top of Pedersen hash function), or on inner-product arguments
in the random oracle model [6,7]. Both these approaches entail logarithmic-size
openings and a non-algebraic verification.

1 We include lattice-based schemes in the ‘algebraic’ category although they do not
perfectly fit our notion of using a group in a black box way; also, existing schemes
still need (poly) logarithmic-size openings.

2 A Merkle tree is a VC with logarithm openings that can be realized from any CRHF.
Conversely, in any non trivial VC the commitment procedure has to be shrinking
and collision resistant, from which CRHF can be built.

3 The only generic construction with constant size opening is the folklore one that
combines a hash function and a constant-size SNARK; yet this is non-algebraic due
to the need of encoding the hash computation in the SNARK’s constraint system.

276 D. Catalano et al.

We believe that settling these two questions would improve our understanding
of vector commitments. In this work, we focus on the second question for two
important reasons: (i) on the theoretical front, studying algebraic VCs in this
minimal setting helps us understand conceptually what are the “ingredients”
needed to build them; (ii) on the practical side, pairing-free groups of known
order are the simplest and most efficient cryptographic setting, and yet we know
of no construction of algebraic VCs there.

Our results are negative: we show that a broad class of VC schemes in this
setting cannot both be succinct and satisfy position binding.

1.1 Our Results

We informally call a vector commitment built on top of a group G of prime
order q “algebraic” if all its procedures use G in a black box way, i.e. without
relying on the representation of group elements. We show the following two main
results.

Impossibility of Algebraic VCs with Linear Verification. We start by looking
at the class of algebraic VC schemes in which the verification algorithm is a
set of linear equations over G. Specifically, for a message m and position i the
verification consists of checking that

A(z,m, i) · X ?= B(z,m, i) · Y (1)

where X = (X1,X2) are the group elements appearing respectively in the public
parameters and the commitment, openings are of the form (Y, z) with Y being a
vector of group elements and z of field elements, and A,B are functions defining
matrices with coefficients in Fq.

We believe this to be the simplest and most natural form of verification using
only group operations. However we show that whenever A depends affinely on
z,m and B is independent from them (we say such a scheme has strictly linear
verification), then it is impossible to achieve both position binding and succinct-
ness. More specifically we prove that if a scheme has position binding, commit-
ments of bit-length �c and opening proofs of bit-length �π, then asymptotically
their product is lower bounded by the length of the vector we are committing to,
i.e. �c · �π = Ω(n). Thus either �c = Ω(

√
n) or �π = Ω(

√
n). Interestingly, this

family of schemes captures generalizations of Pedersen commitments [2] which,
as we show in the full version, achieve this lower bound.

Next, we investigate how crucial are our requirements on the dependence of
A(·) and B(·) on z,m. We show they are necessary. Indeed, if we allow either
A to depend quadratically, or B affinely, on z,m then there exist succinct VC
constructions whose verification can be written in the above form over a group
G. We provide examples in the full version. The schemes we find however rely on
arithmetization techniques to encode arbitrary circuits as constraint systems of
degree 2 over a finite field [13]. This for instance means that, for proper choice
of A and B, it is possible to express, using an algebraic verification equation as

On the Impossibility of Algebraic Vector Commitments 277

(1), computations like the validity tests for a Merkle tree path, or any arbitrary
VC verification algorithm.

Despite being secure and succinct, VC schemes built this way do not satis-
factorily answer our question in a positive way, as they appear to bypass the
underlying group as their source of hardness. Indeed, either their security comes
from problems unrelated to G, or if they depend on G, they must do it in a
non-black-box way4.

Impossibility of Algebraic VCs with Generic Group Verification. Motivated by
these findings, we investigate whether VCs can be built given only black-box
access to a cryptographic group. To study this case, we just assume the VC
(which we call algebraic with generic verification) to use the underlying group
generically, without any further constraint on its verification procedure.

Eventually we provide a black-box separation in Maurer’s Generic Group
Model [28]. This informally implies that any VC using G generically and whose
position binding reduces to a hard problem in G (such as DLP or CDH) cannot
be succinct, as it must hold �c · �π = Ω(n).

1.2 Our Techniques

Our strategy to prove our impossibility results on algebraic vector commitments
consists of two main steps. (A) We show that from a VC it is possible to con-
struct a class of signature schemes. In particular, if the VC is algebraic with
linear (resp. generic) verification, the resulting signature scheme’s verification
has analogous algebraic properties. (B) We prove the insecurity of this class
of signature schemes in pairing-free groups of known order. To achieve the lat-
ter result we build on, and extend, the recent techniques of [11], that provide
negative results for a somewhat smaller family of algebraic signatures.

In what follows we give an overview on each step.

From VCs to Signatures. Given a VC scheme for vectors of length n our transfor-
mation produces a signature scheme with polynomially bounded message space
{1, . . . , n}. In a nutshell, the public key is a commitment c to a vector of n ran-
dom values (s1, . . . , sn). The signature on the message i ∈ [n] is the pair (si, πi)
where πi is the VC opening proof that c opens to si at position i. Verification
simply runs the VC verification algorithm to check that the opening is valid.

Conveniently, this transformation maps algebraic VCs with linear/generic
verification to signature schemes with the analogous property, which we then
call algebraic signatures with linear/generic verification. This happens since the
verification algorithm is essentially the same in both primitives.

The resulting signature however may not be proved existentially unforgeable
if it comes from a VC satisfying only position binding. Indeed the latter property
does not imply that every opening proof is hard to compute. However, assuming

4 For example, one may consider a Merkle-tree of Pedersen commitments which must
use the group representation to go from one level to another.

278 D. Catalano et al.

that the scheme is also succinct, an adversary who produces ‘many’ correct
openings should have to correctly guess the value of several messages si used
to generate the commitment. This can be shown to be information-theoretically
hard if the commitment and opening proofs provided have significantly smaller
bit-length than the min-entropy of those messages.

For this reason we introduce a relaxed security notion, called ϑ-unforgeability,
where an adversary must provide not only one but at least more than ϑ-many5

forgeries for non-queried messages. Setting ϑ as a proper function of the number
of queries made by the adversary, we prove that signatures from VCs are ϑ-
unforgeable.

Impossibility of Algebraic Signatures, Revisited. To conclude our impossibil-
ity result for VCs, we finally provide an impossibility result and a black-box
separation for algebraic signatures with strictly linear and generic verification
respectively. In particular, we show in both cases that the message space in a
ϑ-unforgeable construction is upper-bounded by n + ϑ with n being the num-
ber of group elements in the verification key. We also show this to be tight by
providing a construction that achieves this bound in the full version.

Notice that similar results were already proved in [11]. In their work signa-
tures are assumed to be of the form (Y, t) with Y a vector of group elements and
t ∈ {0, 1}κ. Moreover the verification procedure is assumed to consist of a linear
check as in Eq. 1. For this class of signatures, which can be shown equivalent to
our notion of algebraic with linear verification, they provide an attack running
in time O(2κ · poly(λ)).

Thus their adversary is efficient only when t = O(log λ), whereas our impossi-
bility result applies to schemes with strictly linear verification, where signatures
may contain several field elements. Likewise, their black-box separation only cap-
tures schemes with linear verification, while we extend it to signatures where all
procedures are simply required to be generic. To show that this class of schemes
is indeed more general we provide examples in the full version.

We finally stress that, as in [11], our results hold in Maurer’s Generic Group
Model [28]. For a comparison with other models of generic computation, such as
Shoup’s Generic Group Model [40], we refer to the discussion in [42].

1.3 Interpretation of Our Impossibility and Further Implications

As mentioned earlier, both our impossibility results specify precise bounds and
conditions under which VCs cannot be built generically in pairing-free groups.
The bottom line is that, whenever a position-binding VC scheme uses the group
in a black box way (and relies on it for security), then it cannot be succinct,
which we recall is the distinguishing feature of this primitive.

Another interesting aspect of our impossibility results is that they imply
analogous impossibilities for any primitive that allows one to construct alge-
braic VCs (with either strictly linear or generic-group verification) in pairing-
free groups. Notably, our impossibility applies to polynomial commitments [21],
5 Where ϑ may depend on the public parameters as well as the number of queries.

On the Impossibility of Algebraic Vector Commitments 279

and functional commitments [26] supporting any class of functions that includes
projections, i.e., Ci(v) = vi (already captured by linear forms). Indeed, each of
these primitives allows one to build a VC with exactly the same succinctness
and type of verification.6 Therefore we obtain that any secure functional com-
mitment or polynomial commitment using a pairing-free group in a black-box
way cannot be succinct (or, more precisely, they must satisfy �c · �π = Ω(n)).

Our impossibility for algebraic signatures instead can be shown to imply
analogous results for verifiable random functions [32] and identity-based encryp-
tion [5,39], the latter through the Naor-trick reduction, as observed in [11]. In
this way our black-box separation for signatures yield a simpler argument for
the tight result in [38].

An interesting question left open by our work is understanding if our results
can imply the impossibility of further cryptographic primitives via a connection
to the classes of algebraic signatures and vector commitments that we rule out.
Another open question concerns the minimal assumptions required to describe
a VC with constant-size commitment and openings. We notice that our impos-
sibility for VCs with generic verification holds in Maurer’s generic group model
[28]. When using Shoup’s GGM [40], our results may not hold as one could use
the group oracle as a random oracle [43], e.g., to build a Merkle tree of Pedersen
hashes (see a similar discussion for signatures in [11]). However, to the best of
our knowledge all these techniques would in the best case lead to schemes with
logarithmic-size openings.

1.4 Related Work

The study of impossibility results about the construction of cryptographic prim-
itives in restricted models is an important area of research that provides insights
on the foundations of a cryptographic problem. Starting with the seminal paper
of Impagliazzo and Rudich [19], a line of works study the (in)feasibility of con-
structing cryptographic primitives in a black-box way from general assumptions,
such as one-way functions or trapdoor permutations (e.g. [14–17,23,41]).

Another line of works (more closely related to ours), initiated by Papakon-
stantinou, Rackoff and Vahlis [33], considers the problem of proving impossibility
of cryptographic primitives that make black-box use of a cryptographic group
without pairings. Specifically, [33] prove that identity-based encryption (IBE)
algorithms built in this model of computation cannot be secure. Following [33],
more recent works study the impossibility, in generic group models for pairing-
free groups of known order, of other cryptographic primitives, such as verifiable
delay functions [36], identity-based encryption (with a result tighter than [33])
[38] and signature schemes [11]. In addition to proving impossibility for algebraic
signatures with generic-group algorithms, [11] also prove the generic impossibil-
ity of a class of algebraic signatures whose verification is a system of linear
equations over a group.

6 These constructions are trivial/folklore and we do not elaborate further on them.

280 D. Catalano et al.

In [37], Schul-Ganz and Segev prove a lower bound on the number of group
operations needed to verify batch membership proofs in accumulators that make
black-box use of a cryptographic group. Their lower bound applies analogously
to the verification of subvector openings in vector commitments. Despite the
result and the techniques of [37] differ from ours, both [37] and our work show
certain limitations of constructing VCs in prime order groups.

Finally, we mention the work of Abe, Haralambiev and Ohkubo [1] that also
considers a question related to constructing vector commitments. Following a
research line on structure-preserving cryptography, Abe et al. [1] investigate if
it is possible to construct commitment schemes in bilinear groups in which mes-
sages, keys, commitments, and decommitments are elements of bilinear groups,
and whose openings are verified by pairing product equations. For this class of
schemes, they prove that the commitment cannot be shrinking. Implicitly this
result also implies the impossibility of constructing succinct vector commitments
in this structure-preserving setting in bilinear groups.

1.5 Organization of the Paper

In Sect. 3 we define algebraic VCs and show our transformation to ϑ-unforgeable
signatures. Section 4 presents the definition of algebraic signatures and our
impossibility results for strictly linear verification and generic group verifica-
tion. Finally, in Sect. 5 we illustrate how to relate the parameters of our VC-
to-signatures transformation with those needed by the impossibility of algebraic
signatures.

2 Preliminaries

Notation. We denote the security parameter by λ and negligible functions with
negl(λ). We say that an algorithm is PPT if it runs in probabilistic polynomial
time. For a positive integer n, [n] denotes the set {1, . . . , n}. We use (G,+) to
denote a group of known prime order q with canonical generator G, and Fq for
the field of order q. The identity (or zero) element is denoted as 0 ∈ G. Given a
vector x ∈ F

n
q , we denote x · G = (x1G, . . . , xnG).

F
n,m
q is the space of matrices A with m columns and n rows and entries in Fq.

rkA denotes the rank of A, i.e. the maximum number of linearly independent
rows. A� is the transposed of A. All x ∈ F

n
q are assumed to be column vectors,

whereas row vectors are denoted as x�.
In what follows ‘GGM’ stands for Maurer’s Generic Group Model [28] for a

group of known prime order q. This model can be defined through two state-
ful oracles Oadd and O0

eq such that: group element are labeled with progres-
sively increasing indices, the first being associated to the canonical generator G,
Oadd(X,Y) associate the next index to the element X + Y and O0

eq(X) returns
1 if X equals the identity element, 0 otherwise.

On the Impossibility of Algebraic Vector Commitments 281

2.1 Vector Commitments

We recall the definition of vector commitments from [9].

Definition 1 (VC). A Vector Commitment scheme is a tuple of algorithms
(VC.Setup,VC.Com,VC.Open,VC.Vfy) and a message space VC.M such that

– VC.Setup(1λ) $→ pp generates the public parameters.
– VC.Com(pp,m1, . . . , mn) $→ c, aux produce a commitment to m1, . . . , mn ∈

VC.M together with some auxiliary information.
– VC.Open(pp,m, i, aux) $→ π return an opening proof that the i-th entry of a

given commitment is mi.
– VC.Vfy(pp, c,m, i, π) → 0/1 verifies the opening proof’s correctness.

We require a vector commitment scheme to satisfy perfect correct-
ness, that is, given public parameters pp ←$ VC.Setup(1λ), commitment
c, aux ←$ VC.Com(pp,m1, . . . , mn) for any mi ∈ VC.M, and opening π ←$

VC.Open(pp,mi, i, aux), it holds

Pr [VC.Vfy(pp, c,m, i, π) → 1] = 1

Moreover, to avoid trivial cases, in this paper we assume |VC.M| ≥ 2.
The main security property for a vector commitments is the so called position

binding, which informally states that no adversary can open the same position
of a given commitment to two different values. Formally

Definition 2 (Position binding). A vector commitment scheme satisfies posi-
tion binding if for any PPT adversary A there exists a negligible function ε(λ)
such that

Pr

⎡
⎣
VC.Vfy(pp, c,m, i, π) → 1
VC.Vfy(pp, c,m′, i, π′) → 1
m �= m′

∣∣∣∣∣∣
pp ←$ VC.Setup(1λ)
A(pp) → (c,m,m′, i, π, π′)

⎤
⎦ ≤ ε(λ).

The property that distinguishes VCs from classical binding commitments is
succinctness Following [9,27], a VC scheme is said succinct if there is a fixed
p(λ) = poly(λ) such that for any n the size of honestly generated commitments
and openings is bounded by p(λ). One may also consider weaker notions where
the size may be bounded by p(λ) log n or p(λ, log n).

Since in our work we are interested in understanding the feasibility of VCs
based on their level of succinctness, we consider a parametric notion. We say
that a VC has succinctness (�c, �π) if for any m1, . . . , mn ∈ VC.M, commitment
c, aux ←$ VC.Com(pp,m1, . . . , mn) and opening π ←$ VC.Open(pp,mi, i, aux)
for any i ∈ [n], we have that c (resp. π) has bit-length �c(λ, n) (resp. �π(λ, n)).

282 D. Catalano et al.

2.2 Digital Signatures

Definition 3. A signature scheme is a tuple of PPT algorithms (S.Setup, S.Sign,
S.Vfy) and a message space set S.M such that

– S.Setup(1λ) $→ (sk, vk) generates the secret and verification keys
– S.Sign(sk,m) $→ σ returns the signature of a message m ∈ S.M

– S.Vfy(vk,m, σ) → 0/1 verifies the signature σ for a message m ∈ S.M

We further require a signature scheme to satisfy perfect correctness, meaning
that if (sk, vk) ←$ S.Setup(1λ) and σ ←$ S.Sign(sk,m) for any m ∈ S.M then
the verification algorithm accepts always, i.e.

Pr [S.Vfy(vk,m, σ) → 1] = 1.

3 Algebraic Vector Commitments

In this paper we focus on vector commitments built on a pairing-free group of
known order, using it in a black box way. We start by introducing a notion of
algebraic vector commitments where the verification algorithm only consists of
a system of linear equations.

Definition 4 (Algebraic VCs with linear verification). A vector commit-
ment scheme is said to be algebraic with linear verification if the message space
is VC.M = Fq and

– VC.Setup(1λ) $→ pp such that pp = (X1, s1) ∈ G
ν1 × {0, 1}∗.

– VC.Com(pp,m1, . . . , mn) $→ c, aux such that c = (X2, s2) ∈ G
ν2 × {0, 1}∗.

– VC.Open(pp,m, i, aux) → π such that π = (Y, z) with Y ∈ G
k and z ∈ F

h
q .

– There exist A : F
h+1
q × [n] × {0, 1}∗ → F

�,n
q and B : F

h+1
q × [n] × {0, 1}∗ →

F
�,k
q matrices such that VC.Vfy(pp, c,m, i, π) → 1 if and only if, calling X =

X1||X2 and s = s1||s2
A(z,m, i, s) · X = B(z,m, i, s) · Y.

For the ease of presentation we will omit s in A and B when clear from the
context. Notice that the definition imposes linearity only with respect to group
elements while it allows procedures A,B to depend non-linearly on the field
vector element z.

As we shall see, our first impossibility result states that whenever A is an
affine function of z,m and B does not depends on z,m, then the resulting scheme
cannot be both “succinct” and position binding. We call these schemes strictly
linear since their verification equations depend linearly both in z and Y.

Definition 5 (Algebraic VCs with strictly linear verification). A vector
commitment is said to be algebraic with strictly linear verification if it satisfies
Definition 4, A(z,m, i) is an affine function7 of z,m and B(i) does not depends
on z,m.
7 i.e. A(z, m, i) = A0(i) + z1A1(i) + . . . + zhAh(i) + mAh+1(i).

On the Impossibility of Algebraic Vector Commitments 283

However, if we allow A to depend quadratically, or B linearly, on z,m then we
could use arithmetization techniques, such as R1CS, to encode a circuit rep-
resenting for example a Merkle tree verification into the verification equation
of Definition 4. This means that we can construct algebraic VC schemes with
linear verification that are succinct and position binding. Explicit examples of
such schemes are provided in the full version.

This technique however either bypasses the underlying group and may reduce
security to external problems, or rely on non-black-box usage of the group. An
example of the latter comes by encoding a Merkle tree built using an hash func-
tion whose collision resistance is based on discrete logarithm over the same group
G, such as Pedersen hash. Note that this construction would not retain algebraic
properties from the underlying group. For this reason, following an approach
similar to [11,33], we study whether in the Generic Group Model (GGM) the
security of a VC can be reduced to hard problems on the underlying group. To
this aim we provide the following more general definition.

Definition 6 (Algebraic VCs with generic verification). A vector com-
mitment scheme is said to be algebraic with generic verification if, in the
GGM, the algorithms VC.Setup,VC.Com,VC.Open,VC.Vfy are oracle machines
with access to Oadd and O0

eq.

3.1 Generic Transformation from VCs to Signatures

The strategy we adopt to show our impossibility results is to establish a connec-
tion between vector commitments and signatures, providing a way to construct
the latter from the former generically. This way we will be able to bridge exten-
sions of the impossibility results in [11] for algebraic signatures to algebraic
vector commitments.

More specifically, for a given VC (not necessarily algebraic) our transfor-
mation produces a signature scheme with polynomially bounded message space
{1, . . . , n}. The high-level idea is to compute a commitment c to random mes-
sages m1, . . . , mn, and use (pp, c) as the verification key and the auxiliary infor-
mation aux as the secret key. In order to sign a message i ∈ {1, . . . , n}, the signer
returns mi and π, the message and opening proof for the i-th position, while ver-
ification is performed by checking the correctness of π. A formal description of
the transformation is presented in Fig. 1.

3.2 ϑ-Unforgeability

In terms of security the transformation in Fig. 1 fails in general to realize a UF-
CMA-secure signature scheme. Informally, the problem is that position binding
and succinctness do not imply, per se, that every opening proof is hard to com-
pute, after having seen other openings. Indeed the latter property could be easily
violated, for example, by a VC where VC.Open attaches to every opening the
proof (m1, π1) for position 1. Notice that one could modify any VC to do so
without violating succinctness nor position binding. Yet starting from such a

284 D. Catalano et al.

SVC.Setup(1λ):

1 : VC.Setup(1λ) → pp

2 : m1, . . . , mn ←$ VC.M

3 : c, aux ←$ VC.Com(pp, m1, . . . , mn)
4 : vk ← (pp, c) sk ← (aux, {mi}n

i=1)

5 : Return vk, sk

SVC.Sign(sk, i):

1 : Parse sk = (aux, {mi}n
i=1)

2 : π ← VC.Open(pp, mi, i, aux)

3 : σ ← (mi, π)

4 : Return σ

SVC.Vfy(vk, i, σ):

1 : Parse vk = (pp, c) and σ = (mi, π). Return VC.Vfy(pp, c, mi, i, π)

Fig. 1. Generic transformation from VCs to signature schemes

VC would allow an adversary to easily forge a signature for message 1 in the
scheme in Fig. 1.

Observe that, informally, if the VC scheme were hiding, meaning that no
information about messages in unopened positions is leaked, and |VC.M| is
large enough, then the associated signature would be secure, since an adver-
sary would have to guess the right message in the i-th position. This intuition
can be extended to general VC assuming that the scheme is succinct. Indeed,
even though the commitment c or its openings π may leak information about
unopened messages among m1, . . . , mn, if their bit length is significantly smaller
than n, no adversary can produce “too many” forgeries given only a few openings,
as correctly guessing these message would be information-theoretically hard.

For this reason we introduce a relaxed notion of unforgeability for signatures,
called ϑ-unforgeability, which is enough for our purposes. In a nutshell, it requires
a winning adversary to produce at least ϑ forgeries on distinct messages, with
ϑ being a function of the queries performed and the public parameters. Next,
using the intuition above, we prove that signature schemes obtained through the
transformation in Fig. 1 satisfy this weaker notion.

Definition 7 (ϑ-UF). Given a function ϑ : {0, 1}∗ → N and a signature scheme
we define the ϑ-Unforgeability Experiment as in Fig. 2. The advantage of an
adversary A is defined as

Advϑ-UF(A) = Pr
[
Expϑ-UF

A = 1
]
.

A scheme is ϑ-Unforgeable if any PPT adversary has negligible advantage.

To provide more intuition about this notion we observe that setting ϑ = 0
yields the classic unforgeability under chosen message attacks (UF-CMA) [18]
security definition. For higher values of ϑ we obtain progressively weaker defini-
tions until ϑ(vk, Q) = |S.M|, which is trivially true for any scheme. The notion

On the Impossibility of Algebraic Vector Commitments 285

Expϑ-UF
A with adversaryA:

1 : Initialize Q ← ∅, generate sk, vk ←$ S.Setup(1λ) and send A ← vk

2 : When A → m ∈ S.M:
3 : Sign σ ←$ S.Sign(sk, m), store Q ← Q ∪ (m, σ) and send A ← σ

4 : When A → F :
5 : Return 1 if the following conditions are satisfied:

6 : For all (m, σ) ∈ F , the signature is correct, i.e. S.Vfy(vk, m, σ) → 1

7 : Messages in F were not queried, i.e. (m, σ) ∈ F ⇒ (m, ·) /∈ Q

8 : |{m : (m, ·) ∈ F}| > ϑ(vk, Q)

9 : Else return 0

Fig. 2. ϑ-Unforgeability Experiment for a given signature scheme

of t-time security is also captured by our definition setting

ϑ(vk, Q) =

{
0 If |Q| ≤ t

|S.M| If |Q| > t

Finally we can show that a signature scheme obtained from a “succinct” VC
satisfy this notion. A proof appears in the full version.

Theorem 1. Given a Vector Commitment with commitments of bit-length �c =
�c(n, λ) and opening proofs of bit-length �π = �π(n, λ), then there exists a PPT
black box reduction R of ϑ-UF for the derived signature scheme described in
Fig. 1 to the position binding property, where

ϑ(vk, Q) =
λ + �c + |Q| · (�π + log |VC.M|)

log |VC.M| .

In particular for any position binding VC, the resulting signature is ϑ-UF with
ϑ as specified above.

4 Algebraic Signatures

Having established a connection between VC and signatures we now provide
the analogous of algebraic VC with (strictly) linear/generic verification in the
signature setting. The first one is equivalent to the notion of algebraic signature
in [11] and simply constrain the verification procedure to test a system of linear
equations, albeit with a minor addition: as these signatures may come in our case
from a VC, we split S.Setup in a CRS-generator S.SetupCRS which returns the
public parameters (a list of group elements X1) and the actual key generation
algorithm S.SetupKey(X1) which produces vk and sk. Note there is no loss of
generality assuming this structure as S.SetupCRS may return an empty vector
which could then be ignored by S.SetupKey.

286 D. Catalano et al.

Definition 8. A signature scheme (S.Setup,S.Sign,S.Vfy) is said to be algebraic
with linear verification if

– S.Setup is divided into two algorithms S.SetupCRS and S.SetupKey such that
S.SetupCRS(1λ) $→ (X1, s1) ∈ G

n1 and S.SetupKey(1λ,X1, s1) $→ sk, vk
with

vk = (X, s) ∈ G
n × {0, 1}∗ : X = X1||X2, X2 ∈ G

n2 , s = s1||s2.

– S.Sign(sk,m) $→ σ where σ = (Y, z) with Y ∈ G
k and z ∈ F

h
q .

– There exist A : F
h
q × S.M× {0, 1}∗ → F

�,n
q and B : F

h
q × S.M× {0, 1}∗ → F

�,k
q

matrices such that S.Vfy(vk,m, σ) → 1 if and only if σ = (z,Y) and

A(z,m, s)X = B(z,m, s)Y.

Furthermore the scheme is said to have strictly linear verification if A(z,m, s)
is an affine function of z and B(m, s) does not depend on z.

When clear from the context we will omit for clarity the argument s in
the matrices A,B above. Next we provide an analogous for algebraic vector
commitments with generic verification. As in the previous definition we split the
setup algorithm into a procedure that prepares the CRS and another one that
uses the CRS, oblivious to any trapdoor information about it, to compute the
secret and verification keys.

Definition 9. A signature scheme (S.Setup,S.Sign,S.Vfy) is said to be alge-
braic with generic verification if, in the GGM, all algorithms have access to
Oadd and O0

eq. Furthermore we require S.Setup to be divided into two algo-
rithms S.SetupCRS and S.SetupKey such that S.SetupCRS(1λ) $→ (X1, s1) ∈
G

n1 × {0, 1}∗ and S.SetupKey(1λ,X1, s1) $→ sk, vk with

vk = (X, s) ∈ G
n × {0, 1}∗ : X = X1||X2, X2 ∈ G

n2 , s = s1||s2.

4.1 Attack to Schemes with Strictly Linear Verification

We now provide an attack for algebraic signatures with strictly linear verification.
The same notation of Definition 8 will be used below without further reference.

Theorem 2. Given a signature scheme with strictly linear verification, for any
ϑ polynomially bounded such that n2 +ϑ ≤ |S.M| there exists a PPT algorithm A
that in the unforgeability experiment in Fig. 2 performs at most n2 queries and
produces ϑ distinct forgeries with significant probability.

Proof. For the sake of presentation we build A describing first a subroutine B
which could break security by doing potentially more signing queries that n2.
Next, we show how A can use B in a black-box way to realize the full attack
with n2 queries.

On the Impossibility of Algebraic Vector Commitments 287

Similarly to the attack described in [11], upon receiving the verification key
(X, s), the subroutine B (described formally in Fig. 3) keeps track of all possible
exponents of X in an affine space L ⊆ F

n
q . Then for each message mi either

a forgery can be produced or a new condition on X is found, thus decreasing
dim L, at the cost of a signature query. This is done by checking if the system
A(z,m)x = B(m)y can be solved for a given z ∈ F

h
q and all x ∈ L. More

specifically we define S(L,m), the solutions set, as the collection of all those z
for which any x ∈ L makes the systems solvable, formally

S(L,m) = {z ∈ F
h
q : A(z,m) · L ⊆ Im B(m)}.

If S(L,m) is easy to compute, a strategy for B is to check whether S(L,m) �= ∅

and in this case to get any z ∈ S(L,m) and find, using pseudo-inverses or Gaus-
sian elimination, a vector Y ∈ G

k such that A(z,m)X = B(m)Y. Conversely, if
S(L,m) = ∅, B may request a signature (Y, z), which implies that the exponent
x of X satisfies the condition A(z,m)x ∈ Im B(m). Notice that, unlike the attack
presented in [11], B is required to be PPT and thus computing S(L,m) efficiently
is essential in our argument. This will follow as we assumed the verification to
be strictly linear, implying that S(L,m) is an affine space.

Although B effectively breaks security, we can only upper bound the number
of signatures queried by n1 + n2, i.e. one for each group element in the CRS
X1 and verification key X2, since initially L = F

n1+n2
q with dimension n1 + n2.

In order to reduce the requested signatures to be at most n2 we introduce a
preprocessing phase to find as many linear relations among group elements of
the CRS as possibile and then run B providing as input a refined space L.
Informally, if B is unable to find new relations among the elements of X1, then
dim L can at most decrease by n2, yielding the desired upper bound.

To conclude we then need to describe how the preprocessing is carried out:
The core idea is to initialize the set of possible exponents V = F

n1
q and exe-

cute several times B(vk∗, V) replying to signing queries with S.Sign(sk∗, ·) where
vk∗, sk∗ ←$ S.SetupKey(1λ,X1, s1) is freshly sampled each time. If in some of
those executions B is able to find a new relation among the group elements, then
V is updated accordingly (lowering its dimension by at least 1), and a new round
of simulations is run. Conversely if B(vk∗, V) fails to find new relations several
times in this simulated environment, then it is executed one last time with the
real verification key vk and signing oracle. If no new relation is found in this
last execution, A concludes by returning the forgeries found by B. Otherwise A
aborts.

Informally A aborts with low probability since the simulated and real exe-
cutions are identically distributed from B perspective and in particular since
no relation is found among the many simulated executions, it is unlikely this
will happen in the real one. Finally we remark that simulating the signature
challenger in this preprocessing phase is crucial. In this way the only signature
queries performed by A are those requested by the last execution of B.

Having provided the intuition behind the attacker A built on top of B, we
now proceed to prove the theorem through a sequence of claims. We begin by

288 D. Catalano et al.

Adversary B(vk, V):

1 : Set L ← V × F
n2
q ⊆ F

n1+n2
q

2 : Initialize the set of forgeries F ← ∅ and call θ ← n2 + ϑ

3 : Sample m1, . . . , mθ ←$ S.M distinct messages
4 : For i ∈ {1, . . . , θ}:
5 : If S(L, mi) �= ∅:

6 : Get a vector z ∈ S(L, mi)

7 : Find a solution Y ∈ G
k such that A(z, mi)X = B(mi)Y

8 : Set σ ← (Y, z) and store F ← F ∪ {(mi, σ)}
9 : Else:

10 : Query mi to the challenger and get σ = (Y, z)

11 : Update L ← L ∩ {x ∈ F
n
q : A(z, mi)x ∈ ImB(mi)}

12 : Return F, L

Fig. 3. B breaking ϑ-UF of an algebraic signature with strictly linear verification.

stating the following properties about B(vk, V) where we denote vk = (X, s)
with X = X1||X2, x1 the discrete logarithm of X1 and x the discrete logarithm
of X. Finally we denote π : F

n1
q × F

n2
q → F

n1
q the projection on first component,

i.e. π(x1,x2) = x1.

Claim 1. If L is an affine space, S(L,m) is an affine space. Moreover an affine
base for S(L,m) can be computed in polynomial time.

Claim 2. If x1 ∈ V then at any step of B(vk, V), x ∈ L.

Claim 3. If x1 ∈ V , B is PPT and upon returning (F,L), F is a set of valid
forgeries.

Claim 4. For a given mi, if the condition at step 5 is not satisfied, i.e.
S(L,mi) = ∅, then after step 11 the dimension of L decreases strictly.

Claim 5. After the execution of line 1, Fig 3, dim L = n2 + dim V and if
B(vk, V) returns (F,L) with π(L) = V then dim L ≥ dim V .

Next we state the following properties about A
Claim 6. A is PPT.

Claim 7. At any step of A execution, x1 ∈ V .

Claim 8. A fails with probability Pr [A(vk) → fail] ≤ 1/2.

First we observe these claims imply the thesis. Indeed by Claim 8, with
probability greater than 1/2, A does not return fail. By construction, this implies
that in the last execution B(vk, V) returns (F,L) with π(L) = V . Thus by

On the Impossibility of Algebraic Vector Commitments 289

Adversary AS.Sign(sk, ·)(vk):

1 : Parse vk = (X, s) with X = X1||X2 and s = s1||s2
2 : Initialize V ← F

n1
q the space of potential exponents of X1

3 : Do:
4 : For 2n1 + 1 times:
5 : vk∗, sk∗ ←$ S.SetupKey(1λ,X1, s1)

6 : Execute F ∗, L∗ ←$ BS.Sign(sk∗, ·)(vk∗, V)
7 : Set V ∗ ← {x1 : ∃x2 : x1||x2 ∈ L∗} the projection of L∗ on F

n1
q

8 : If V ∗ �= V :

9 : Update V ← V ∗, break

10 : Until the for-cycle ends without interruptions

11 : Execute F, L ←$ BS.Sign(sk, ·)(vk, V)
12 : Compute V ∗ as the projection of L on F

n1
q

13 : If V ∗ �= V : Return fail

14 : Else: Return F

Fig. 4. A breaking the ϑ-UF of an algebraic signature using as subroutine an algorithm
B, which is that of Fig. 3 in the case of schemes with strictly linear verification, or that
of Fig. 5 in the case of schemes with generic verification.

Claim 5 n2 + dim V ≥ L ≥ dim V at any step of B during its last execution.
As a consequence dim L can decrease at most n2 times. Applying Claim 4 we
conclude that S(L,mi) = ∅ can happen at most n2 times because each time this
occurs, dim L decreases. It follows then that for at least θ − n2 = ϑ messages,
the condition S(L,mi) �= ∅ is satisfied, meaning that B adds a new signature to
the set F , which in the end will have cardinality |F | ≥ ϑ. Finally, since x ∈ V
by Claim 7, we can apply Claim 3 to conclude that F is a valid set of forgeries,
implying that A breaks ϑ-UF.

Next, we provide a proof for each of these claims:

Proof of Claim 1. We start observing that if L is any set and x1, . . . ,xd ∈ L is
a base for the linear span of L then S(L,m) =

⋂d
i=1 S(xi,m). By construction,

xi ∈ L implies S(L,m) ⊆ S(xi,m), and in particular S(L,m) ⊆ ∩d
i=1S(xi,m).

Conversely let z be a vector in the intersection of all S(xi,m). We can find
vectors ui ∈ F

k
q such that A(z,m)xi = B(m)ui. Since x1, . . . ,xd is a base for

the linear span of L, for any x ∈ L we can express it as a linear combination
α1x1 + . . . + αdxd. In conclusion

A(z,m)x =
d∑

i=1

αiA(z,m)xi =
d∑

i=1

αiB(m)ui = B(m)
d∑

i=1

αiui.

Thus A(z,m)x ∈ Im B(m) and in particular z ∈ S(L,m).

290 D. Catalano et al.

In order to show that S(L,m) is efficiently computable it suffices to show that
S(x,m) can be computed in polynomial time for any point x. To this aim let
fx : F

h
q → F

�
q be such that f(z) = A(z,m)x. Since the scheme has strictly linear

verification (Definition 8) A(· ,m) is an affine map and so is f . Furthermore
by construction S(x,m) = f−1

x (Im B(m)) since z ∈ S(x,m) if and only if
A(z,m)x ∈ Im B(m). This concludes the argument as the preimage through
an affine map of a linear space is an affine space which can be computed in
polynomial time.

Proof of Claim 2. If x1 ∈ V then x = x1||x2 ∈ V × F
n2
q which by construction

implies that, when L is initialized, x ∈ L. Next assume by induction x ∈ L
in all previous steps. The only instruction in B that may modify L is in step
11 and when this is executed, since σ = (Y, z) is a valid signature by perfect
correctness, we have

A(z,mi)X = B(mi)Y ⇒ A(z,mi)x ∈ Im B(mi).

Proof of Claim 3. To prove that B is a PPT algorithm, observe that the for-loop
is executed θ = n2 + ϑ, that is polynomially bounded, times. Inside the loop,
checking S(L,mi) �= ∅ and possibly computing a z ∈ S(L,mi) can be done
efficiently from Claim 1 by computing a base for it. Next, calling x the discrete
logarithm of X, we have that A(z,mi)x ∈ Im B(mi) because

z ∈ S(L,mi) ⇒ A(z,mi) · L ⊆ Im B(mi) ⇒ A(z,mi)x ∈ Im B(mi)

where the last implication follows as x ∈ L by Claim 2 and the assumption x1 ∈
V . Thus, calling H a weak-inverse8 of B(mi), which can be computed efficiently,
the vector Y can be set as H · A(z,mi)X. Indeed, as A(z,mi)X ∈ Im B(mi)
there exists a vector Z ∈ G

k such that A(z,mi)X = B(mi)Z and in particular

B(mi)Y = B(mi)HA(z, mi)X = B(mi)HB(mi)Z = B(mi)Z = A(z, mi)X.

Finally, given the bases of two affine spaces, a base of their intersection can be
computed efficiently. This conclude the proof that B is PPT.

For the second part, by construction each entry in F is of the form (mi,Y, z)
such that

A(z,mi)X = B(mi)Y.

Therefore, by our definition of signatures with linear verification scheme, the
verifier accepts (mi,Y, z). The claim is thus proven.

Proof of Claim 4. Since the condition at step 5 is not satisfied, S(L,mi) = ∅ and
in particular z /∈ S(L,mi) implying that A(z,mi)x /∈ Im B(mi) for some x ∈ L.
Therefore L is not contained in the space of all x such that A(z,mi)x ∈ Im B(mi)
and in particular its dimension decreases after the execution of step 11

8 H is the weak-inverse of A if A · H · A = A.

On the Impossibility of Algebraic Vector Commitments 291

Proof of Claim 5. The first part follow as L is initially V × F
n2
q of dimension

dim V +n2. The second part follows by linear algebra since dimL ≥ dim π(L) =
dim V .

Proof of Claim 6. Since S.SetupKey,S.Sign and B are PPT algorithm, by Claim 3
in the last case, each step in the loop can be computed efficiently. In particular, as
2n1+1 is polynomially bounded, each for-loop in A can be performed efficiently.

Next we show that the procedure inside the Do-Until loop is repeated at
most n1 + 1 times. The key observation is that during the execution of B, the
space L forms a monotone decreasing sequence, implying that when B(vk∗, V) →
(F ∗, L∗) then L∗ ⊆ V ×F

n2
q . In particular this implies that π(L∗) ⊆ π(V ×F

n2
q) =

V . Thus if at any point the for-loop is halted, π(L∗) = V ∗ �= V implies V ∗ ⊆ V .
Hence the dimension of V strictly decreases, and since initially dim(V) = n1,
the foor-loop can be halted at most n1 times.

Finally, using again that B is an efficient algorithm, computing F,L can be
done in polynomial time. It follows that A is PPT.

Proof of Claim 7. We proceed by induction. Initially V = F
n1
q implies x1 ∈ V .

Next we observe that the value of V is only changed if, within the for-loop,
V ∗ �= V (see step 8, Fig. 4). Assume by induction that before this step is executed
x1 ∈ V . Then, when this happens, B(vk∗, V) → (F ∗, L∗) had been executed with
x1 ∈ V . By Claim 2 this implies that x ∈ L∗ and in particular x1 = π(x) ∈
π(L∗) = V ∗. Thus when A sets V ← V ∗, x1 ∈ V .

Proof of Claim 8. Define the following events:

– Ei,j = “During the i-th iteration of the Do-Until loop, and the j-th iteration
of the for loop, BS.Sign(sk∗, ·)(vk∗, V) returns (F ∗, L∗) such that π(L∗) = V ”.

– Elast = “BS.Sign(sk, ·)(vk, V) returns F,L with π(L) = V ”.

Furthermore let I ∼ {1, . . . , n1 + 1} be the random variable such that A termi-
nates the Do-Until loop after the I-th execution. Then we observe that, condi-
tioned on X1, s1 and the V at iteration i, the event Ei,j depends only on the
random coins used for B, S.SetupKey and S.Sign which are chosen independently
at each execution of B. In particular, for a fixed i, the events {Ei,j}j are inde-
pendent and, since for Ei,j , Ei,k with j �= k the procedure B is invoked with the
same input

Pr [Ei,j] = Pr [Ei,k] .

We may therefore define pi = Pr [Ei,1] as the success probability of each execution
of B during the i-th loop. Similarly, if I = i, the vector space V given in input
to B is by construction equal to the one used during the i-th execution of the
Do-Until loop. In particular

pi = Pr [Elast|I = i] .

292 D. Catalano et al.

To conclude we show that

Pr [A → fail] = Pr [¬Elast] =
n1+1∑
i=1

Pr [¬Elast|I = i] · Pr [I = i]

≤
n1+1∑
i=1

Pr [¬Elast|I = i] · Pr [Ei,1 ∧ . . . ∧ Ei,2n1+1]

=
n1+1∑
i=1

Pr [¬Elast|I = i] ·
2n1+1∏
j=1

Pr [Ei,j]

=
n1+1∑
i=1

(1 − pi) · p2n1+1
i

≤
n1+1∑
i=1

1
2n1 + 2

=
n1 + 1
2n1 + 2

=
1
2
.

where the first inequality comes from the fact that I = i implies Ei,j for all
j ∈ {1, . . . , 2n1 + 1}, while the second inequality comes from the fact that the
function ft(x) = (1−x)xt is upper bounded by 1/(t+1) when x ∈ [0, 1]. Indeed
ft(0) = ft(1) = 0 and its derivative vanishes only at t/(t + 1), which has to be
the maximum point, implying that

(1 − x) · xt ≤
(

1 − t

t + 1

)
·
(

t

t + 1

)t

≤ 1
t + 1

.

4.2 Attack to Schemes with Generic Verification

Theorem 3. Given an algebraic signature scheme with generic verification, for
any ϑ such that n2 + ϑ ≤ |S.M| there exists an adversary A that in the unforge-
ability experiment in Fig. 2 performs at most n2 signature queries and produces
ϑ distinct forgeries.

Moreover, calling κ an upper bound on the signature bit-length, and χ an
upper bound on the number of queries S.Vfy performs to O0

eq, then A runs in
time O(ϑ · 2κ · 2χ · poly(λ)) and performs O(ϑ · poly(λ)) queries to Oadd and O0

eq.

Proof. As done in Theorem 4 we begin by providing an attack B which breaks
the scheme but performs potentially n1 + n2 signature queries.

At a high level B, given the verification key vk = (X, s), will keep track of all
possible exponents of X in a set L and for each message m either the dimension
of L decreases by one or B finds a forgery. Assume without loss of generality
that signatures are of the form (Y′, t′) with Y′ ∈ G

k and t′ ∈ {0, 1}κ.
For any m, our adversary attempts to produce a forgery as follows: For all

possible t ∈ {0, 1}κ, it executes the verification algorithm by simulating a generic
group G̃ with oracles Õadd and Õ0

eq. More specifically, since S.Vfy requires as
input the verification key (X, s), the message m and the signatures (Y, t), B

On the Impossibility of Algebraic Vector Commitments 293

reproduces all the group elements involved by assigning dummy indexes for X̃,
Ỹ and runs S.Vfy((X̃, s),m, (Ỹ, t)). During the execution, each query to Õadd is
emulated by simply returning new incremental indexes, while to emulate Õ0

eq, χ
bits β1, . . . , βχ are chosen at the beginning of the execution so that the answer
to the i-th query will be βi. Note that each element Ti the verifier queries to
Õ0

eq has to be a linear combination of the initial group elements he received,
i.e. Ti = a�

i X̃ − b�
i Ỹ − ci · G̃ obtained though Õadd, and B can extract these

coefficients.
Repeating the execution of S.Vfy for different values of β1, . . . , βχ implicitly

defines a tree of height χ in which paths are determined by the replies B gave at
the i-th query to Õ0

eq. If at some point a path β1, . . . , βχ that makes the verifier
accept is found, B can try to find a vector Y in the real GGM, such that the
i-query S.Vfy would do to O0

eq will be answered with βi. If such a Y is found,
then (Y, t) will be a valid forgery for m.

Recalling that the i-th query has the form Ti = aiX̃ − biỸ − ci · G, then B
needs to find a vector Y such that for all i ∈ {1, . . . , χ}

a�
i X = b�

i Y + ci · G when βi = 1, a�
i X �= b�

i Y + ci · G when βi = 0

Regarding the equations on the left side, they can be packed up into a system
AX = BY + c · G. Through pseudo-inverses or Gaussian elimination is easy to
check if solutions exists for all x ∈ L (as in the proof of Theorem 2). If this is
not the case B simply discards this path and continues its brute-force search.
However, even if the previous condition is satisfied, for some of the points x in L
it may be the case that any vector y satisfying Ax = By+c fails to satisfy some
of the inequalities above a�

i x �= b�
i y+ci, implying that no solution Y ∈ G

k can
be found if x is the discrete logarithm of X. We call these points x ∈ L faulty
and, more specifically, the set of faulty points is defined as

FA,B,c
a,b,c = {x : Ax ∈ Im B+c, ∀y ∈ F

m
q Ax = By+c ⇒ a�x = b�y+c}.

Three possible cases may occur now:

– If all points in L are faulty with respect to some inequality constraint, then
B gives up on the path as the solution Y does not exist.

– If not all points are faulty B attempts to solve the system, which requires
expensive queries to Oadd,O0

eq: if a solution Y satisfying all constraints is
found, this is a valid forgery.

– If not all points are faulty, but no solution can be found, it means that x,
the discrete log of X, has to be a faulty point. This information reduces the
dimension of L as not all points in L are faulty.

Finally, if no solution can be found for any t ∈ {0, 1}κ and path β1, . . . , βχ,
B queries a signature for m and uses this information to reduce the dimension of
L. As for the proof of Theorem 2, B might overall query n1 + n2 signatures (as
opposed to the desired n1) since initially it has no information on the exponents

294 D. Catalano et al.

Adversary B(vk, V):

1 : Initialize F ← ∅ the set of forgeries

2 : Call L = V × F
n2
q the set of possible exponents of X

3 : Call θ = n + ϑ and sample m1, . . . , mθ ←$ S.M distinct messages
4 : For m ∈ –m1, . . . , mθ˝:

5 : For t ∈ –0, 1˝κ and (β1, . . . , βχ) ∈ –0, 1˝χ:

6 : Simulate a Generic Group ˜G with generator ˜G and oracles ˜Oadd and ˜O0
eq

7 : Assign indices for two vectors ˜X ∈ ˜G
n and ˜Y ∈ ˜G

k

8 : Run S.Vfy((˜X, s), m, (˜Y, t)) using ˜G

9 : When S.Vfy queries ˜Oadd(T, S):
10 : Store a way to express T + S as a linear combination of ˜X, ˜Y and ˜G

11 : Return to S.Vfy a label for T + S

12 : When S.Vfy queries ˜O0
eq(Ti) the i-th time:

13 : Store ai ∈ F
n
q , bi ∈ F

k
q and ci ∈ Fq such that Ti = a�

i
˜X − b�

i
˜Y − ci · ˜G

14 : Return βi to S.Vfy

15 : When S.Vfy halts and returns b ∈ –0, 1˝:

16 : Let A = (ai : βi = 1), B = (bi : βi = 1) and c = (ci : βi = 1)

17 : If b = 0:
18 : Continue cycle in line 5

19 : Elif A · L � ImB + c:

20 : Continue cycle in line 5

21 : Elif ∃i : βi = 0 and L ⊆ FA,B,c
ai,bi,ci

:

22 : Continue cycle in line 5

23 : Elif ∃i : βi = 0 and X ∈ FA,B,c
ai,bi,ci

· G:

24 : Update L ← L ∩ FA,B,c
ai,bi,ci

25 : Break cycle in line 5

26 : Else:
27 : Find Y ∈ G

k s.t. AX = BY + cG and a�
i X �= b�

i Y + ciG for βi = 0
28 : Store σ ← (Y, t) and F ← F ∪ –(m, σ)˝

29 : Break cycle in line 5

30 : If the cycle ended without interruptions:

31 : Query a signature for m and wait for (Y, t)

32 : Reconstruct A, B, c as in step 16 using (X, s, m,Y, t) and the group G

33 : Update L ← L ∩ –x ∈ F
n
q : Ax ∈ ImB + c˝

34 : Return F, L

Fig. 5. B breaking security of an algebraic signature scheme with generic verification.

On the Impossibility of Algebraic Vector Commitments 295

of X, i.e. dim L = n1 + n2, and each signature query may reveal only one new
linear combination among these group elements. To address this issue we use
the same strategy presented in Theorem 2, that is, we use B in a black-box
way inside the algorithm A, formally described in Fig. 4. The main idea is again
that A initially extracts linear combinations among CRS elements that could
be found by B, and finally executes B providing the retrieved information as
input. In this way B will, with significant probability, only find relations among
elements of X2, thus requesting at most n2 signatures.

A detailed description of A appears in Fig. 5, while a more detailed proof of
the Theorem appears in the full version.

5 Conclusions

5.1 Impossibility of Algebraic Vector Commitments

Using both the negative results provided in the previous sections for algebraic
signatures and Theorem 1 connecting the efficiency of a VC to the security of
the associated signature scheme, we obtain two lower bounds for algebraic vector
commitments

Theorem 4. Given a position binding algebraic VC with strictly linear verifica-
tion, let �c = �c(n) and �π = �π(n) be respectively the commitment and opening
bit length to commit to a vector of n entries. Then

ν2 +
λ + �c + ν2 · (�π + log |VC.M|)

log |VC.M| ≥ n.

Proof. Assume there exists an algebraic VC with strictly linear verification con-
tradicting the above inequality and satisfying position binding. Then by Theo-
rem 1 the signature scheme obtained through the transformation in Fig. 1 would
satisfy ϑ-UF with

ϑ(vk, Q) =
λ + �c + |Q| · (�π + log |VC.M|)

log |VC.M|
and its message space would have size |SVC.M| = n. Since vk contains ν2 group
elements excluding those that belong to the CRS, i.e. the public parameters of
the original Vector Commitment, the attacker A from Theorem 2 can produce at
least n − ν2 forgeries performing at most ν2 queries. Called Q the set of queries
performed by A we would have that

ϑ(vk, Q) ≤ λ + �c + ν2 · (�π + log |VC.M|)
log |VC.M| < n − ν2

where we use the fact that |Q| ≤ ν2 in the first inequality. This is then a contra-
diction since A would breaks the ϑ-UF of the derived signature, implying that
the given vector commitment was not binding.

296 D. Catalano et al.

Theorem 5. Given an algebraic VC with generic verification that is position
binding against unbounded adversaries performing polynomially bounded queries
to the GGM oracles Oadd, O0

eq, using the same notation of Theorem 4, then

ν2 +
λ + �c + ν2 · (�π + log |VC.M|)

log |VC.M| ≥ n.

Proof. Assuming again by contradiction that the above inequality is not satis-
fied, Theorem 1 implies that the associated signature scheme is ϑ-UF against
any unbounded adversary C making at most polynomially many signature and
group operations queries, or otherwise RC would break position binding with sig-
nificant advantage. Notice that since R is PPT, RC still performs polynomially
many generic group operations. As in the proof of Theorem 4 then, our initial
assumption implies ϑ ≤ n − ν2. Since the adversary A of Theorem 3 returns
n − ν2 signatures performing at most ν2 queries, this contradicts the ϑ-UF of
the associated signature against this adversary.

Corollary 1. Given an algebraic vector commitment with strictly linear verifi-
cation, then �c · �π = Ω(n). Analogously, given an algebraic vector commitment
with generic verification position binding against unbounded adversary perform-
ing at most polynomially many queries to the GGM oracles, �c · �π = Ω(n).

Note that this lower bound implies in both cases that either �c = Ω(
√

n) or
�π = Ω(

√
n).

5.2 Impossibility of Algebraic Signatures

As a by-product of our study on VC we also obtain the following two impossi-
bility results for algebraic signatures which extend the one presented in [11] to
a broader family of schemes.

Theorem 6. For any UF-CMA algebraic signature scheme with strictly linear
verification, n1 ≥ |S.M|.
Theorem 7. For any algebraic signature scheme with generic verification UF-
CMA secure against any unbounded adversary performing at most polynomially
many queries to the GGM oracles, n1 ≥ |S.M|.

Acknowledgements. This work has received funding in part from the European
Research Council (ERC) under the European Union’s Horizon 2020 research and inno-
vation program under project PICOCRYPT (grant agreement No. 101001283), by the
Spanish Government under projects SCUM (ref. RTI2018-102043-B-I00), RED2018-
102321-T, and SECURING (ref. PID2019-110873RJ-I00), by the Madrid Regional Gov-
ernment under project BLOQUES (ref. S2018/TCS-4339), by a research grant from
Nomadic Labs and the Tezos Foundation, by the Programma ricerca di ateneo UNICT
35 2020-22 linea 2 and by research gifts from Protocol Labs.

On the Impossibility of Algebraic Vector Commitments 297

References

1. Abe, M., Haralambiev, K., Ohkubo, M.: Group to group commitments do not
shrink. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol.
7237, pp. 301–317. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-29011-4 19

2. Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a shuffle.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
263–280. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 17

3. Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable delegation of computation over
large datasets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 111–131.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9 7

4. Boneh, D., Bünz, B., Fisch, B.: Batching techniques for accumulators with appli-
cations to IOPs and stateless blockchains. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11692, pp. 561–586. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-26948-7 20

5. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44647-8 13

6. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron,
J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 327–357. Springer, Heidel-
berg (2016). https://doi.org/10.1007/978-3-662-49896-5 12

7. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: BulletProofs:
short proofs for confidential transactions and more. In: 2018 IEEE Symposium
on Security and Privacy, pp. 315–334. IEEE Computer Society Press, May 2018.
https://doi.org/10.1109/SP.2018.00020

8. Campanelli, M., Fiore, D., Greco, N., Kolonelos, D., Nizzardo, L.: Incrementally
aggregatable vector commitments and applications to verifiable decentralized stor-
age. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp.
3–35. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3 1

9. Catalano, D., Fiore, D.: Vector commitments and their applications. In: Kurosawa,
K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 55–72. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-36362-7 5

10. Chepurnoy, A., Papamanthou, C., Zhang, Y.: Edrax: a cryptocurrency with state-
less transaction validation. Cryptology ePrint Archive, Report 2018/968 (2018).
https://eprint.iacr.org/2018/968

11. Döttling, N., Hartmann, D., Hofheinz, D., Kiltz, E., Schäge, S., Ursu, B.: On the
impossibility of purely algebraic signatures. In: Nissim, K., Waters, B. (eds.) TCC
2021. LNCS, vol. 13044, pp. 317–349. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-90456-2 11

12. Fisch, B.: PoReps: proofs of space on useful data. Cryptology ePrint Archive,
Report 2018/678 (2018). https://eprint.iacr.org/2018/678

13. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9 37

14. Gennaro, R., Gertner, Y., Katz, J.: Lower bounds on the efficiency of encryption
and digital signature schemes. In: 35th ACM STOC, pp. 417–425. ACM Press,
June 2003. https://doi.org/10.1145/780542.780604

https://doi.org/10.1007/978-3-642-29011-4_19
https://doi.org/10.1007/978-3-642-29011-4_19
https://doi.org/10.1007/978-3-642-29011-4_17
https://doi.org/10.1007/978-3-642-29011-4_17
https://doi.org/10.1007/978-3-642-22792-9_7
https://doi.org/10.1007/978-3-030-26948-7_20
https://doi.org/10.1007/978-3-030-26948-7_20
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1007/978-3-030-64834-3_1
https://doi.org/10.1007/978-3-642-36362-7_5
https://eprint.iacr.org/2018/968
https://doi.org/10.1007/978-3-030-90456-2_11
https://doi.org/10.1007/978-3-030-90456-2_11
https://eprint.iacr.org/2018/678
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1145/780542.780604

298 D. Catalano et al.

15. Gennaro, R., Trevisan, L.: Lower bounds on the efficiency of generic cryptographic
constructions. In: 41st Annual Symposium on Foundations of Computer Science,
FOCS 2000, 12–14 November 2000, Redondo Beach, California, USA, pp. 305–313.
IEEE Computer Society (2000)

16. Gertner, Y., Kannan, S., Malkin, T., Reingold, O., Viswanathan, M.: The relation-
ship between public key encryption and oblivious transfer. In: 41st Annual Sym-
posium on Foundations of Computer Science, FOCS 2000, 12–14 November 2000,
Redondo Beach, California, USA, pp. 325–335. IEEE Computer Society (2000)

17. Gertner, Y., Malkin, T., Reingold, O.: On the impossibility of basing trapdoor
functions on trapdoor predicates. In: 42nd FOCS, pp. 126–135. IEEE Computer
Society Press, October 2001. https://doi.org/10.1109/SFCS.2001.959887

18. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

19. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: 21st ACM STOC, pp. 44–61. ACM Press, May 1989. https://doi.
org/10.1145/73007.73012

20. Juels, A., Kaliski Jr., B.S.: PORs: proofs of retrievability for large files. In: Ning, P.,
De Capitani di Vimercati, S., Syverson, P.F. (eds.) ACM CCS 2007, pp. 584–597.
ACM Press, October 2007. https://doi.org/10.1145/1315245.1315317

21. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polyno-
mials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol.
6477, pp. 177–194. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-17373-8 11

22. Kilian, J.: On the complexity of bounded-interaction and noninteractive zero-
knowledge proofs. In: 35th FOCS, pp. 466–477. IEEE Computer Society Press,
November 1994. https://doi.org/10.1109/SFCS.1994.365744

23. Kim, J.H., Simon, D.R., Tetali, P.: Limits on the efficiency of one-way permutation-
based hash functions. In: 40th Annual Symposium on Foundations of Computer
Science, FOCS 1999, 17–18 October 1999, pp. 535–542. IEEE Computer Society,
New York (1999)

24. Kuszmaul, J.: Verkle trees (2018). https://math.mit.edu/research/highschool/
primes/materials/2018/Kuszmaul.pdf

25. Lai, R.W.F., Malavolta, G.: Subvector commitments with application to succinct
arguments. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol.
11692, pp. 530–560. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26948-7 19

26. Libert, B., Ramanna, S.C., Yung, M.: Functional commitment schemes: from poly-
nomial commitments to pairing-based accumulators from simple assumptions. In:
Chatzigiannakis, I., Mitzenmacher, M., Rabani, Y., Sangiorgi, D. (eds.) ICALP
2016. LIPIcs, vol. 55, pp. 30:1–30:14. Schloss Dagstuhl (2016). https://doi.org/10.
4230/LIPIcs.ICALP.2016.30

27. Libert, B., Yung, M.: Concise mercurial vector commitments and independent
zero-knowledge sets with short proofs. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 499–517. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-11799-2 30

28. Maurer, U.: Abstract models of computation in cryptography. In: Smart, N.P. (ed.)
Cryptography and Coding 2005. LNCS, vol. 3796, pp. 1–12. Springer, Heidelberg
(2005). https://doi.org/10.1007/11586821 1

29. Merkle, R.C.: A digital signature based on a conventional encryption function.
In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer,
Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2 32

https://doi.org/10.1109/SFCS.2001.959887
https://doi.org/10.1145/73007.73012
https://doi.org/10.1145/73007.73012
https://doi.org/10.1145/1315245.1315317
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1109/SFCS.1994.365744
https://math.mit.edu/research/highschool/primes/materials/2018/Kuszmaul.pdf
https://math.mit.edu/research/highschool/primes/materials/2018/Kuszmaul.pdf
https://doi.org/10.1007/978-3-030-26948-7_19
https://doi.org/10.1007/978-3-030-26948-7_19
https://doi.org/10.4230/LIPIcs.ICALP.2016.30
https://doi.org/10.4230/LIPIcs.ICALP.2016.30
https://doi.org/10.1007/978-3-642-11799-2_30
https://doi.org/10.1007/978-3-642-11799-2_30
https://doi.org/10.1007/11586821_1
https://doi.org/10.1007/3-540-48184-2_32

On the Impossibility of Algebraic Vector Commitments 299

30. Micali, S.: CS proofs (extended abstracts). In: 35th FOCS, pp. 436–453. IEEE Com-
puter Society Press, November 1994. https://doi.org/10.1109/SFCS.1994.365746

31. Micali, S., Rabin, M.O., Kilian, J.: Zero-knowledge sets. In: 44th FOCS, pp. 80–91.
IEEE Computer Society Press, October 2003. https://doi.org/10.1109/SFCS.2003.
1238183

32. Micali, S., Rabin, M.O., Vadhan, S.P.: Verifiable random functions. In: 40th FOCS,
pp. 120–130. IEEE Computer Society Press, October 1999. https://doi.org/10.
1109/SFFCS.1999.814584

33. Papakonstantinou, P.A., Rackoff, C., Vahlis, Y.: How powerful are the DDH
hard groups? Electron. Colloquium Comput. Complex, 167 (2012). https://eccc.
weizmann.ac.il/report/2012/167

34. Papamanthou, C., Shi, E., Tamassia, R., Yi, K.: Streaming authenticated data
structures. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 353–370. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-38348-9 22

35. Peikert, C., Pepin, Z., Sharp, C.: Vector and functional commitments from lat-
tices. In: Nissim, K., Waters, B. (eds.) TCC 2021. LNCS, vol. 13044, pp. 480–511.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90456-2 16

36. Rotem, L., Segev, G., Shahaf, I.: Generic-Group Delay Functions Require Hidden-
Order Groups. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol.
12107, pp. 155–180. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
45727-3 6

37. Schul-Ganz, G., Segev, G.: Accumulators in (and Beyond) generic groups: non-
trivial batch verification requires interaction. In: Pass, R., Pietrzak, K. (eds.) TCC
2020. LNCS, vol. 12551, pp. 77–107. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-64378-2 4

38. Schul-Ganz, G., Segev, G.: Generic-group identity-based encryption: a tight impos-
sibility result. In: Tessaro, S. (ed.) 2nd Conference on Information-Theoretic
Cryptography (ITC 2021). Leibniz International Proceedings in Informatics
(LIPIcs), vol. 199, pp. 26:1–26:23. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, Dagstuhl (2021). https://doi.org/10.4230/LIPIcs.ITC.2021.26. https://
drops.dagstuhl.de/opus/volltexte/2021/14345

39. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985). https://doi.org/10.1007/3-540-39568-7 5

40. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-69053-0 18

41. Simon, D.R.: Finding collisions on a one-way street: can secure hash functions
be based on general assumptions? In: Nyberg, K. (ed.) EUROCRYPT 1998.
LNCS, vol. 1403, pp. 334–345. Springer, Heidelberg (1998). https://doi.org/10.
1007/BFb0054137

42. Zhandry, M.: To label, or not to label (in generic groups). Cryptology ePrint
Archive, Report 2022/226 (2022). https://eprint.iacr.org/2022/226

43. Zhandry, M., Zhang, C.: The relationship between idealized models under com-
putationally bounded adversaries. Cryptology ePrint Archive, Report 2021/240
(2021). https://eprint.iacr.org/2021/240

https://doi.org/10.1109/SFCS.1994.365746
https://doi.org/10.1109/SFCS.2003.1238183
https://doi.org/10.1109/SFCS.2003.1238183
https://doi.org/10.1109/SFFCS.1999.814584
https://doi.org/10.1109/SFFCS.1999.814584
https://eccc.weizmann.ac.il/report/2012/167
https://eccc.weizmann.ac.il/report/2012/167
https://doi.org/10.1007/978-3-642-38348-9_22
https://doi.org/10.1007/978-3-642-38348-9_22
https://doi.org/10.1007/978-3-030-90456-2_16
https://doi.org/10.1007/978-3-030-45727-3_6
https://doi.org/10.1007/978-3-030-45727-3_6
https://doi.org/10.1007/978-3-030-64378-2_4
https://doi.org/10.1007/978-3-030-64378-2_4
https://doi.org/10.4230/LIPIcs.ITC.2021.26
https://drops.dagstuhl.de/opus/volltexte/2021/14345
https://drops.dagstuhl.de/opus/volltexte/2021/14345
https://doi.org/10.1007/3-540-39568-7_5
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/BFb0054137
https://doi.org/10.1007/BFb0054137
https://eprint.iacr.org/2022/226
https://eprint.iacr.org/2021/240

Four-Round Black-Box Non-malleable
Schemes from One-Way Permutations

Michele Ciampi1(B) , Emmanuela Orsini2 , and Luisa Siniscalchi3,4

1 The University of Edinburgh, Edinburgh, UK
michele.ciampi@ed.ac.uk

2 imec-COSIC, KU Leuven, Leuven, Belgium
emmanuela.orsini@kuleuven.be

3 Department Computer Science, Aarhus University, Aarhus, Denmark
lsiniscalchi@cs.au.dk

4 Concordium Blockchain Research Center, Aarhus, Denmark

Abstract. We construct the first four-round non-malleable commitment
scheme based solely on the black-box use of one-to-one one-way func-
tions. Prior to our work, all non-malleable commitment schemes based
on black-box use of polynomial-time cryptographic primitives require
more than 16 rounds of interaction.

A key tool for our construction is a proof system that satisfies a
new definition of security that we call non-malleable zero-knowledge with
respect to commitments. In a nutshell, such a proof system can be safely
run in parallel with any (potentially interactive) commitment scheme.
We provide an instantiation of this tool using the MPC-in-the-Head app-
roach in combination with BMR.

1 Introduction

Starting from the pioneering work of Dolev et al. [15], a long line of works has
focused on constructing new non-malleable commitment schemes with improved
characteristics, both in terms of efficiency and assumptions. Given the strong
connection of non-malleable commitments with secure multi-party computa-
tion [3,44], improvements in the area of non-malleable commitments have a big
impact on the multi-party computation (MPC) landscape. In particular, recent
developments on the round complexity of non-malleable commitments led to the
first round-optimal MPC protocols in the plain model [1,7,10,26].

The round complexity of commitment schemes based on polynomial-time
hardness assumptions in the stand-alone setting is nowadays well understood.
Non-interactive commitments can be constructed assuming the existence of 1-to-
1 one-way functions (OWFs) [19] and 2-round commitments can be constructed
assuming the existence of OWFs only. Moreover, non-interactive commitments
do not exist if one relies on the black-box use of OWFs only [34]. Recently many
progress have been made also for the case of non-malleable (NM) commitments1.
1 In this paper we will consider only NM commitments w.r.t. commitments. For the

case of NM w.r.t. decommitments see [4,14,21,35,39,41].

c© The Author(s), under exclusive license to Springer Nature Switzerland 2022
E. Kiltz and V. Vaikuntanathan (Eds.): TCC 2022, LNCS 13748, pp. 300–329, 2022.
https://doi.org/10.1007/978-3-031-22365-5_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22365-5_11&domain=pdf
http://orcid.org/0000-0001-5062-0388
http://orcid.org/0000-0002-1917-1833
http://orcid.org/0000-0003-1813-1132
https://doi.org/10.1007/978-3-031-22365-5_11

Four-Round Black-Box Non-malleable Schemes from One-Way Permutations 301

Indeed, the long sequence of very exciting positive results [2,8,9,20,22,24,31–
33,37–43] led to the work of Khurana [29] in which the authors showed how
to obtain a 3-round (which is optimal for the case of polynomial-time assump-
tions [36]) non-malleable commitment scheme based on specific number-theoretic
assumptions, and to [23] where the authors proposed a round optimal scheme
based on one-to-one OWFs.

Black-Box (BB) Constructions. While these recent results show round-optimal
constructions, they make non-black-box use of cryptography. Constant round
BB schemes are known [20,22,31,43], but their round complexity is far to be
optimal. More specifically, Goyal et al. [22] give a black-box NM commitment
protocol only based on the existence of one-way functions, but this construction
requires more than 16 rounds. In another work, Goyal et al. [24] mention that
combining their protocol with ideas from [22] would could to a 6-round protocol
but no explicit construction was given. Therefore the following question remained
open.

Does it exist a non-malleable commitment scheme that makes black-box
use of standard polynomial-time cryptographic primitives where the com-
mitment phase consists of less than 16 rounds?

In this work, we provide a positive answer, by proposing a 4-round non-
malleable commitment scheme that only makes black-box use of one-to-one one-
way functions. Whether it is possible to achieve the same result in three rounds
remains a fascinating open question.

1.1 Our Contributions

The state-of-the-art in constructing non-malleable commitments based on min-
imal assumptions shows a significant gap in the round complexity of black-box
and non-black-box protocols. In this work, we almost close this gap by describ-
ing the first 4-round non-malleable commitment that makes black-box use of
the underlying primitives and is based on the almost minimal assumption of
injective one-way functions.2 In particular, we prove the following theorem.

Theorem (Informal). Assuming one-to-one OWFs, there exists a 4-round
non-malleable commitment scheme that makes black-box use of the OWFs.

Our 4-round non-malleable commitment crucially relies on a novel 3-round
public-coin proof system that is zero-knowledge against honest verifiers (HVZK),
and such that the statement to be proven can be specified in the last round
(delayed-input property). In particular, our protocol enjoys adaptive-soundness
and adaptive-HVZK [11,12,27]. These properties guarantee that HVZK and

2 Our BB 4-round non-malleable commitment scheme satisfies the notion of stan-
dalone (or one-one) non-malleability. Obtaining a concurrent (or many-many) BB
non-malleable commitment scheme in just 4 rounds, or less, still remains an open
question.

302 M. Ciampi et al.

soundness hold even against an adversary that decides the statement to be
proven (and the witness for the HVZK case) adaptively on the first two rounds of
the protocol. A protocol that satisfies such properties and that also makes black-
box use of the underlying cryptographic primitives is proposed in [27]. What
makes our scheme different is that it also enjoys a special form of non-malleability
that we call non-malleable HVZK with respect to commitment (NMZKC).

In a nutshell, this notion allows us to safely compose the proof system in
parallel with any type of commitment scheme. In more detail, we consider the
following setting. There is a man-in-the-middle (MiM) adversary that interacts
(acting as the verifier) with an honest prover of a proof system ΠAI (where
AI stands for adaptive-input). In the right session instead, the MiM acts as
the sender for a (potentially interactive) commitment scheme Πcom, with an
honest receiver. The notion of NMZKC guarantees that the distribution of the
messages committed by the MiM in the right session is independent of whether
the messages of ΠAI are generated honestly (i.e., using the witness for some NP
statement x), or are computed using the simulator.

We believe that this tool and notion can be of independent interest. Indeed,
NMZKC proof systems might be used in place of rewind secure schemes. A
rewind secure proof system guarantees that the zero-knowledge property holds
even if an adversarial verifier is allowed to rewind the prover a bounded number
of times (this can be seen as a mild form of resettability). The reason why the
notion of rewind security has gained a lot of attention recently is exactly that it
simplifies the composition of proof systems with other primitives. For example,
it simplifies the composition of a proof system with extractable commitments.
The high-level idea is that in the security proof it is possible to extract from the
commitment without harming the zero-knowledge property of the proof system.
Hence, it is possible to check whether the distribution of the committed messages
changes depending on whether the messages of the proof system are simulated
or are generated honestly. This proof technique has been exploited in many
recent works [7,13,23]. And, more interestingly, it was used also to construct
the first one-one non-malleable commitment [24]3. As we will discuss in the
technical overview, we will replace the rewind secure proof system proposed
in [24] (that inherently makes non-black-box use of the underlying primitives)
with our NMZKC proof system.

We believe that NMZKC in some scenarios can replace the use of rewind
secure primitives, and this might be particularly helpful given that our protocol
is completely black-box in the use of the underlying cryptographic primitives.
To the best of our knowledge, no black-box rewind secure three-round HVZK
protocol is currently available. In summary, we prove the following theorem.

3 In Sect. 8 we propose a comparison between the approach based on rewind-secure
primitives of [24] and the one we propose in this work. In particular, we explain
why and how we can rely on a simpler underlying weak-non-malleable commitment
scheme compared to the one used in [24].

Four-Round Black-Box Non-malleable Schemes from One-Way Permutations 303

Theorem (Informal). Assuming one-to-one OWFs, then there exists a 3-
round delayed-input public-coin adaptive-input proof system that also is NMZKC
and it makes black-box use of the OWFs.

2 Overview of Techniques

We first describe how to construct the main tool required for our construction,
which is a commit-and-prove proof system that satisfies the definition of non-
malleable HVZK with respect to commitment. Then we show how to use this
tool to construct our four-round non-malleable commitment protocol.

2.1 Our NMZKC Protocol and New Commitment Schemes

We start this section by recalling how to turn an MPC protocol into a proof sys-
tem for any NP-relation Rel following the MPC-in-the-head approach of [28].
Let ΠMPC be an n-party MPC protocol that is secure against up to t semi-
honest corruptions. First, the prover secret-shares the witness w using an addi-
tive secret-sharing, while f will be a verification function that outputs 1 iff w is
a valid witness, i.e., f(x,w1, . . . , wn) = 1 ⇐⇒ (x,w1 ⊕ · · · ⊕ wn) ∈ Rel. Then, it
simulates all n parties running the protocol locally and sends the verifier com-
mitments to each parties’ views. Later, the verifier randomly chooses t of the
parties’ commitments to be opened, and checks that the committed messages
are consistent with an honest execution of the MPC protocol according to the
opened views. Since only t parties are opened, the verifier learns nothing about
the secret input w, while the random choice of the opened parties ensures that
enough views have been computed honestly, ensuring soundness.4

Unfortunately, this scheme is inherently non-delayed input since the prover
needs both statement and witness to generate the views that must be committed
in the first round. To overcome this limitation, we consider a specific class of
two-phase MPC protocols. In particular, we require protocols with an input-
independent offline phase, where the parties only produce correlated randomness
that will be used to speed up the second phase. In the second phase (the online
phase) the input is required and used to compute the output of the function.
We denote such protocols by ΠMPC := (Πoff

MPC,Πon
MPC), where the two algorithms

Πoff
MPC and Πon

MPC denote respectively the offline and the online phase of ΠMPC.
Equipped with such an MPC protocol, we can modify the approach of [28] as

follows. The prover only simulates Πoff
MPC, and commits to the individual views.

Then the verifier, as described before, selects a random subset of parties to
be opened. After receiving the challenge, the prover opens the requested com-
mitments and additionally runs Πon

MPC to obtain the entire views of the parties
requested by the verifier. At the end of this process, the verifier holds complete

4 This sketch protocol gives a noticeable probability of cheating to the prover, typically
the soundness of the protocol can be easily amplified via parallel repetition.

304 M. Ciampi et al.

views for all the parties it requested and can check their consistency as previously
described.

Intuitively, (non-adaptive input) HVZK comes again from the hiding of the
commitments and the (semi-honest) security of the MPC protocol. However, it
is clear that this approach fails completely against malicious provers. Indeed,
they might easily generate online messages in a malicious way for all the parties
the verifier did not ask to open. Note that in this case, ΠMPC is secure against t
corrupted parties, but the adversary might generate ill-formed online messages
for the remaining n− t. To work around this problem, we require ΠMPC to enjoy
a stronger notion of security that we call robustness. In a nutshell, this notion
requires that, when the offline phase of ΠMPC has been honestly computed, then
it is always possible to check if a message received during the online phase has
been honestly generated or not. In this way, robustness allows to prove soundness
also w.r.t. a malicious prover that specifies the inputs in the last round (i.e.
adaptive-input soundness).

The above approach guarantees that the protocol enjoys delayed-input com-
pleteness and adaptive-input soundness. However, it is not clear how to argue
that the protocol is adaptive-input HVZK given that ΠMPC is only semi-honest
secure. The reason is that we would like to rely on the security of the underlying
MPC protocol thus committing to simulated views in the first round. However,
to simulate these views the MPC simulator needs to know the input of the
corrupted parties. We recall that such input consists of a share of the witness
(which is easy to simulate) and the theorem to be proven. This is problem-
atic since the adaptive-input HVZK simulator needs to generate the first round
without knowing the theorem, hence, we cannot run the MPC simulator of the
underlying protocol.

To circumvent this issue, we make use of a special type of commitment
scheme, that we call ambiguous commitment5. Compared to a standard com-
mitment scheme, they can be opened in two modes: binding and equivocal. If
the commitment is computed using the binding mode then the commitment is
binding, otherwise, it can be equivocated to any message the sender wants.

Using ambiguous commitments, we modify our protocol as follows. The
prover generates the views of ΠMPC as before, but it creates a 2-out-of-2 secret
sharing of each of these views and commits to them using the ambiguous com-
mitment scheme in biding mode (i.e., two commitments per view are generated).
Then, the verifier challenges the prover asking to open a random subset of views
as before. In addition, for each of the opened views, the verifier asks to see the
randomness used to generate one of the two commitments and rejects if it notices
that a commitment has not been computed using the binding procedure. The
rest of the protocol proceeds as before.

The adaptive-input HVZK simulator, which we recall needs to generate the
first round without knowing the theorem, works as follows. On input the chal-
lenge it can compute one commitment in equivocal mode (the one for which the
simulator will not need to disclose its randomness), and one in binding mode. The

5 Such commitments are sometimes called equivocal or trapdoor commitments.

Four-Round Black-Box Non-malleable Schemes from One-Way Permutations 305

binding commitments simply contain a random string. The set of commitments
computed in the described way constitutes the first round.

Upon receiving the theorem, the adaptive-input HVZK simulator runs the
MPC simulator of ΠMPC. At this point, the simulator computes the xor of the
i-th view with the random string committed in the i-th binding commitment
and opens the equivocal commitment to the obtained value.

The soundness still holds because, intuitively, the verifier performs a cut-and-
choose to make sure that the commitments are all computed in binding mode.
Clearly, an adversary has still a non-negligible probability of cheating, but by
repeating the protocol we obtain a sound protocol.

Non-malleable HVZK with Respect to Commitment. So far we have only argued
that our protocol, that we denote with ΠAI, is adaptive HVZK and adaptive
sound. We also want to argue that our protocol is non-malleable HVZK with
respect to commitment. We recall that in this security notion, there is a MiM
adversary that on the left session acts as the adversary for the adaptive HVZK
security game, and in the right session it acts as the sender for a commitment
scheme. In more detail, the adversary picks a challenge and sends it to the left
session (that acts as a challenger for the experiment). The challenger tosses a
coin b, and if b = 0 then it computes the first round of ΠAI using the honest
prover procedure, otherwise it computes it using the adaptive HVZK simulator.
The adversary now picks a statement x and a witness w and sends those to
the challenger. If b = 0, the challenger runs the honest prover of ΠAI on input
(x,w) to compute a third-round message, if b = 1 instead the challenger runs
the HVZK on input x (and the previous state of the simulator), thus obtaining
the third message. The challenger then sends this third message to the MiM in
the left session and stops.

While the MiM is acting as described in the left session, it concurrently sends
a commitment in the right session. We say that ΠAI is non-malleable HVZK with
respect to commitment, if the distribution of the messages committed on the
right session by the MiM does not depend on b.

We prove that ΠAI is non-malleable HVZK with respect to any extractable
commitment Πcom. The idea is to use an adversary to the NMZKC property
to construct an adversary for the adaptive-HVZK property. That is, we let the
MiM to interact with the adaptive HVZK challenger while at the same time we
run the extractor of the commitment scheme to check how the distribution of
the committed messages changes. Unfortunately, this simple idea has a major
flaw. The rewinds made by the extractor of the commitment might also rewind
the challenger of the HVZK security game. Indeed in each rewind made by the
extractor, the MiM could send a new theorem-witness pair, and ask for a new
third round of ΠAI.

To prove that ΠAI can cope with such an adversarial behavior, we exploit
how our HVZK simulator works. We note that once the challenge is known, then
the simulator knows what commitments will be opened to honestly and what
commitments will be equivocated. If an adversary during the rewinds samples
new theorem-witness, we simply need to run multiple times the simulator of the

306 M. Ciampi et al.

underlying MPC protocol and equivocate the commitments accordingly. Hence,
we can reduce the adversary that wins in the non-malleable HVZK with respect
to commitment experiment to an adversary that either breaks the security of
our commitment or the security of the underlying MPC protocol.

Σ-Commitment. In this work, we also consider a class of three-round public
commitment schemes that we call Σ-commitment. A Σ-commitment is hiding
against honest receiver (HRH), and in addition, it is extractable. To realize a
Σ-commitment Σ = (SΣ ,RΣ), we use the approach of Goyal et al. [22], which
makes use of an information-theoretic verifiable secret sharing protocol Πvss. The
protocol works as follows. To commit to a message w, the sender SΣ runs “in
its head” the sharing phase of Πvss, with input a message m. Then the sender
commits to the views (obtained by the execution of sharing phase of Πvss) of
each player separately using a statistical binding commitment scheme Πcom. The
receiver, upon receiving these commitments, samples a random set I ⊂ [n], with
|I| ≤ t, and sends it to the sender. Finally, the sender replies by decommitting
the views corresponding to the challenge I.

The property of HRH comes from the fact that, if the challenge I is known in
advance, then we can commit to a random message and simulate the openings of
the commitment. We can prove that a simulated transcript is indistinguishable
from the transcript generated by an honest committed with input m via a simple
reduction to the security of the statistically binding commitments.

Putting Together Σ and ΠAI to Realize a Commit-and-Prove Protocol Π. We use
Σ and ΠAI to realize a black-box commit-and-prove protocol, which will be the
main building block we use to construct our non-malleable commitment scheme.
Our commit-and-prove protocol Π works as follows. The prover commits λ-times
to the witness w running Σ and proving, using ΠAI, that each committed message
w satisfies some relation Rel6. The statement to be proven can be postponed to
the last round since ΠAI is delayed-input complete.

To make sure that the same message is committed in all these executions, we
use a technique proposed by Khurana et al. in [30]. Namely, in each execution
of Σ, instead of committing to w, we commit to w||r, for some random value r.
Then, we use the protocol ΠAI to prove that a = w + rα, where α is chosen as
part of the challenge, and a is sent in the third round from the prover.

As argued in [30], since r is global across all the executions, if w �= w′ then
w + rα �= w′ + rα with overwhelming probability due to the Schwartz-Zippel
lemma. Therefore, if the committed messages are different across the (multiple)
executions, then the statement proven by ΠAI must be false, and the soundness
of ΠAI guarantees that the verifier rejects. The adaptive-input SHVZK follows
from the adaptive-input SHVZK of ΠAI and the HRH property of Σ.

6 ΠAI works for any type of secret sharing scheme, and in our case ΠAI is parametrized
by the reconstruction algorithm of the verifiable secret sharing Πvss (i.e., the prover
of ΠAI expects to receive n views generated using the sharing algorithm of Πvss). We
note that given that Πvss is information-theoretic, then ΠAI still makes black-box
use of the underlying cryptographic primitives.

Four-Round Black-Box Non-malleable Schemes from One-Way Permutations 307

Concrete Instantiation for Robust MPC. As we mentioned, one of the main tool
we rely on is a robust MPC protocol. We recall that a robust MPC protocol
allows the prover to initially commit only to the offline views, which are input-
independent, and only in the last round to “complete the proof” with the online
views. The robustness property guarantees that the commitments generated in
the first round univocally specify the actual MPC evaluation so that the online
steps only consist of an input-distribution phase and deterministic computations.
In this way, even if the prover already knows which views are going to be opened,
it cannot force the evaluation to output 1 unless Rel(x,w) = 1, except with
negligible probability.

Although robustness seems a very strong requirement, we show that a minor
modification of the standard BMR protocols leads to an efficient robust MPC
scheme. We recall that BMR [3] is a two-phase protocol consisting of an input-
independent phase, also called garbling , and an online evaluation. In the garbling
step, all parties P1, . . . , Pn involved in the protocol generate a sharing of the
garbled circuit according to some fixed secret sharing scheme 〈·〉 with t-privacy.
As in any other garbled-circuit based scheme, to garble a Boolean circuit each
wire is assigned two random keys kw,0,kw,1 encoding, respectively, the 0-value
and 1-value. The goal of the process is to generate four ciphertexts for each
gate according to the gate function, such that each output-wire key is encrypted
according to all combinations of input-wire keys which evaluate that output wire
key. During the online evaluation, these encrypted truth tables, are revealed
to all parties so to allow local evaluation of the circuit. Intuitively, it is clear
that upon collecting all the input keys, parties can start evaluating the circuit.
At this point, this evaluation is completely deterministic and does not require
any interaction. For this reason, assuming that the garbling phase is correctly
generated and the input-keys corresponding to the input-wires of the circuit are
correct, namely, they correspond to the keys generated in the offline phase, the
online views generated by each party correspond to a correct evaluation of the
garbled circuit and cannot lead to an incorrect result. In the full version, we
recall the basics of BMR-style protocols and explain the robustness property in
more detail.

2.2 4-Round Non-malleable Commitment Πnmc

We are finally ready to describe how our non-malleable commitment scheme
works. Our starting point is the 3-round public-coin commitment scheme of
Goyal et al. [24]. This commitment scheme, which we denote with Πwnmc, is non-
malleable against adversaries that never commit to ⊥ (i.e., the adversary always
generates well-formed commitments). To lift the security of such a commitment
and build a fully non-malleable commitment scheme, [24] run, in parallel to
Πwnmc, a zero-knowledge proof.

As noted in [9,24], a standard ZK proof does not suffice since the commitment
and the zero-knowledge proof might not be composed in parallel. As such, and as
we have already anticipated, in [24] the authors rely on a ZK proof that is rewind-
secure. We also note that the statement to be proven by the ZK is fully-formed

308 M. Ciampi et al.

only in the last round (since Πwnmc consists of 3 rounds.) This inherently requires
the ZK protocol to be delayed-input. To the best of our knowledge, the only
protocols that satisfy all these properties are that proposed in [23,24], which,
unfortunately, make non-black-box use of the underlying primitives. In [9], the
authors propose a ZK proof that can be composed in parallel with the weak-non-
malleable commitment of Goyal et al., but this approach requires non-black-box
access to the commitment scheme.

The idea is to use our commit-and-prove protocol Π, and argue that it can
be safely composed in parallel with Πwnmc due to the property of NMZKC.
Unfortunately, Π is only honest-verifier zero-knowledge, and here we need a
zero-knowledge proof that is secure against any type of adversaries.

To lift the security of our protocol, we rely on the FLS-trick [16] (with some
modifications). More concretely, we construct a 4-round zero-knowledge protocol
as follows. The verifier generates two commitments of two random strings, ŝ0
and ŝ1 in the first round and sends two openings in the third round. In parallel,
the verifier provides a witness indistinguishable (WI) proof, ΠcomWI, which guar-
antees that at least one of the two commitments is binding. In [30], the authors
show how to obtain this protocol in a black-box-way. The prover instead uses a 3-
round public-coin WI to prove that either the commitment Πwnmc is well-formed
or that it committed to ŝb, for some b ∈ {0, 1}. Since the receiver discloses ŝ0, ŝ1
only in the last round, the sender has no way to commit (already in the second
round), to either of these two values. As such, the (potentially corrupted) sender,
can complete an accepting WI proof only by proving that the non-malleable com-
mitment is well-formed. For more detail, we refer to the technical part of the
paper.

3 Preliminaries

Notation. Here we recall some preliminaries that will be useful in the rest of
the paper. Let λ denote the security parameter and negl(λ) any function which
tends to zero faster than λ−c, for any constant c. We write [n] to denote the set
{1, . . . , n}. We use the abbreviation ppt to denote probabilistic polynomial-time.

Let S and R two interactive algorithms, we denote by 〈S(x),R(y)〉(z) the
distribution of R’s output after an interaction with S on common input z and
private inputs x and y. A transcript of 〈S(x),R(y)〉(z) consists of all the mes-
sages exchanged during an interaction between R and S.

3.1 Commitment Schemes

A commitment scheme Πcom = (S,R) is a two-phase protocol between two ppt
interactive algorithms, a sender S and a receiver R. In the first phase, called
commit phase, S on input a message m interacts with R. Let com be the tran-
script of this interaction. In the second phase, called decommitment phase, the
sender S reveals m′ and R accepts the value committed to be m′ if and only

Four-Round Black-Box Non-malleable Schemes from One-Way Permutations 309

if S proves that m = m′. Typically, a commitment scheme satisfies two main
properties: informally, the binding property ensures that S cannot open the com-
mitment in two different ways; the hiding property guarantees that the commit
phase does not reveal any information about the message m. We refer the reader
to [18] for more details.

Ambiguous and Extractable Commitments. We formally introduce the notion
of ambiguous commitments. Compared to regular commitment schemes, with
standard commitment and opening algorithms (Com,Dec), ambiguous commit-
ments have two additional algorithms Comeq and Eq, which allow the committer
to equivocate, i.e., Comeq produces an “equivocable commitment” that Eq can
open to any message m ∈ {0, 1}�. This type of commitment schemes are some-
times called trapdoor or equivocal commitments. We provide a formal definition
and construction in the full version. In this work, we also use the notion of
extractable commitments (we refer to the full version for the formal definition).
Informally, a commitment scheme is said to be extractable if there exists an
efficient extractor that, having black-box access to a malicious committer that
successfully performs the commitment phase, is able to extract the committed
message.

3.2 Non-malleable Commitments

Here we follow the same notation of Goyal et al. [24]. Let Π = (S,R) be a
statistically binding commitment scheme and let λ be the security parameter.
Consider a man-in-the-middle (MiM) adversary A that is participating in two
interactions called the left and the right interaction. In the left interaction A
is the receiver and interacts with an honest committer S, whereas in the right
interaction A is the committer and interacts with an honest receiver R.

We compare between a MiM execution and a simulated execution. In the
MiM execution the adversary A, with auxiliary information z, is simultaneously
participating in a left and right session. In the left sessions, the MiM adversary
A interacts with S receiving commitments to values mi, i ∈ [poly(λ)], using
identities tgi of its choice. In the right session, A interacts with R attempting
to commit to related values m̃i again using identities of its choice ˜tgi. If any of
the right commitments is invalid, or undefined, its value is set to ⊥. For any i
such that tgi = tgj , for some j, set m̃i = ⊥ (i.e., any commitment where the
adversary uses the same identity of the honest sender is considered invalid). Let
mimA,m

Π (z) denote a random variable that describes the values m̃i and the view
of A, in the above experiment.

In the simulated execution, an efficient simulator Sim directly interacts with
R. Let simSim

Π (1λ, z) denote the random variable describing the values m̃i com-
mitted by A, and the output view of Sim; whenever the view contains in the
right session the same identity of any of the identities of the left session, then m
is set to ⊥.

In all the paper we denote by δ̃ a value associated with the right session
(where the adversary A plays with a receiver) where δ is the corresponding

310 M. Ciampi et al.

value in the left session. For example, the sender commits to v in the left session
while A commits to ṽ in the right session.

Definition 1 (Non-Malleable (NM) commitment scheme[24]). A com-
mitment scheme is NM with respect to commitment if, for every ppt MiM
adversary A, there exists a ppt simulator Sim such that for all m ∈ {0, 1}poly(λ)

the following ensembles are computationally indistinguishable:

{mimA,m
Π (z)}z∈{0,1}� ≈ {simS

Π(1λ, z)}z∈{0,1}� .

In this work, we also consider a weaker class of MiM adversaries called syn-
chronizing adversaries. A synchronizing adversary is one that sends its message
for every round before obtaining the honest party’s message for the next round.

3.3 Σ-Commitments

We introduce the notion of Σ-commitments, which is reminiscent of the notion
of Σ-protocols.

Definition 2. A Σ-commitment ΠΣ = ((SΣ ,RΣ),DecΣ) is a commitment
scheme where: 1) The commitment phase consists of three rounds and it is
public-coin, 2) The decommitment phase is non-interactive, and 3) It satisfies
the following properties.

– Correctness. Let m be the message the sender SΣ uses during the commit-
ment phase. If both SΣ and RΣ follow the protocol, then the receiver always
accepts the commitment as valid. Moreover, if the sender follows the protocol
during the decommitment procedure DecΣ then the receiver accepts m as the
committed message.

– Honest Receiver Hiding (HRH). There exists a polynomial-time simu-
lator Sim such that for any message m ∈ {0, 1}� and on input a random c
(sampled from the space of all the possible RΣ’s messages), outputs an accept-
ing commitment transcript of the form (a, c, z) that is computationally indis-
tinguishable from the transcript generated by the honest sender and receiver
when the receiver uses m as its input (note that Sim needs to generate the
transcript without knowing m).

– t-Special Binding. From any set of t accepting transcripts {a, ci, zi}i∈[t],
with ci �= cj for all i, j ∈ [t], for the commitment phase it is possible to extract
the message m in polynomial-time, where m is the only possible message that
the (potentially corrupted) sender can decommit to.

3.4 Adaptive-Input SHVZK

Definition 3 (Adaptive-input SHVZK). A delayed-input 3-round protocol
Π = (P,V) for relation Rel satisfies adaptive-input special honest-verifier zero-
knowledge (AI-SHVZK) if there exists a ppt simulator Sim = (Sim0,Sim1) such
that for all ppt adversaries A and for all challenges π2 there is a negligible
function negl for which

∣

∣ Pr[b′ = b] − 1
2

∣

∣ ≤ negl(λ) in the following game.

Four-Round Black-Box Non-malleable Schemes from One-Way Permutations 311

ExpAISHVZKA,Π(1λ, b, π2) :

1. The challenger sends π1 to A, where:
– If b = 0, (π1, aux) ← P(1λ, 1m), with m = |x|
– Else, if b = 1, (π1, aux) ← Sim0(1λ, 1m, π2)

2. A sends (x,w) to the challenger.
– If (x,w) ∈ Rel, the challenger sends π3 to A, where:

– If b = 0, π3 ← P(x,w, aux, aux, π2)
– Else, if b = 1, π3 ← Sim1(x, aux)

– Else, the challenger sends π3 = ⊥ to A
3. The adversary A outputs a bit b′.

3.5 One-of-Two Binding Commitments

We propose a formal definition of the one-of-two binding commitments proposed
by Khurana et al. in [30]. A one-of-two binding commitment is a three-round
interactive protocol ΠcomWI executed between a prover PcomWI and a verifier
VcomWI. Informally, in this, the prover generates two commitments in the first
round, and sends their opening third round. In parallel, the prover performs a
WI proof that guarantees that at least one of the two commitments is binding.
Moreover, the prover can equivocate the non-binding commitment to any value
he likes. In [30] the authors propose a one-of-two binding commitment scheme
that makes black-box use of one-to-one OWFs. We propose a formal definition
of the properties held by a one-of-two binding commitment scheme. We assume
the prover and verifier algorithms are stateful in the following definitions.

Definition 4 (One-of-Two Binding Commitments). A commitment is
one-of-two binding if the following properties hold.

Correctness:

– The prover PcomWI on input 1λ, the message mb ∈ {0, 1}λ, and a bit b returns
πcomWI
1

– The verifier on input 1λ and πcomWI
1 samples a random πcomWI

2
$←− {0, 1}λ and

returns it.
– The prover on input πcomWI

2 and a message m1−b ∈ {0, 1}λ computes πcomWI
3

and returns (πcomWI
3 ,m0,m1)

– The verifier on input (πcomWI
1 , πcomWI

2 , πcomWI
3 ,m0,m1) returns d ∈ {0, 1},

where d = 1 denotes that the verifier accepts, and 0 that he rejects.

Binding: For any ppt adversary A, we have that the following holds. Let
τ = (πcomWI

1 , πcomWI
2) be the first two rounds generated during the execution of

ΠcomWI by an honest receiver VcomWI and the stateful adversarial prover A(1λ).
We have that

Pr[(πcomWI
3 ,m0,m1, π

comWI
3 ,m0,m1) ← A(1λ)| VcomWI(τ, πcomWI

3 ,m0,m1) = 1 ∧
VcomWI(τ, πcomWI

3 ,m0,m1) = 1 ∧ m0 �= m0 ∧ m1 �= m1] ≤ negl(λ)

312 M. Ciampi et al.

Equivocability: For any adversary A and any m0,m1 ∈ {0, 1}λ we have that
∣

∣ Pr[b′ = b] − 1
2

∣

∣ ≤ negl(λ) in the following game.
ExpEqA,Π(1λ, b,m0,m1) :

1. The challenger sends πcomWI
1 ← PcomWI(1λ,mb, b) to A.

2. A sends πcomWI
2 to the challenger

3. The challenger sends πcomWI
3 ← PcomWI(πcomWI

2 ,m1−b) to A.
4. The adversary A outputs a bit b′.

3.6 MPC Definitions

In this work, we consider MPC protocols Π = Πoff,on = (P1, . . . , Pn), among n
parties P1, . . . , Pn, that are composed of two sub-protocols Πoff = (P1, . . . , Pn)
and Πon = (P1, . . . , Pn), where the execution Πoff does not require parties’
private inputs, namely Πoff is input independent. If each party Pi, for i ∈ [n],
runs Π honestly, then the execution of Π is called an honest execution. A view
viewi of a party Pi is composed by its private input wi, randomness ri, and
transcript τi, where τi is given by the set of messages received and sent by party
Pi during the execution of the MPC protocol Π. We denote the view of the offline
and of the online phase for a party Pi with viewoff

i and viewon
i respectively.

In the rest of the paper, we consider MPC protocols where all parties share a
public input x, and each party Pi additionally holds a local private input wi and
random tape ri. We consider protocols Πoff,on which securely realize an n-party
functionality f . The output y = f(x,w1, . . . , wn) can be computed from any
viewi = (viewoff

i , viewon
i), i.e., y = Πoff,on

f (viewi) = outi, for each i ∈ [n] .

We assume familiarity with the standard definition of MPC (referring the
reader to the full version for a formal discussion), and here we formally introduce
a new special property for an MPC protocol Π = Πoff,on = (P1, . . . , Pn).

Looking ahead, in our delayed-input protocol the prover, while committed
to viewoff

1 , . . . , viewoff
n , is allowed to generate the online views viewon

1 , . . . , viewon
n

only when it received (x,w), and after it is given any eventual random inputs and
the set of k parties/views it will need to open. This means that a malicious prover
P might arbitrarily create inconsistent views viewon

i1 , . . . , viewon
in−k

that will not be
opened, easily making all outputs to be incorrect without being caught. For this
reason we need an underlying MPC protocol with strong security requirements
and introduce the following definition of robustness.

Despite the name, this notion is different from the definition of robustness
that was given in [28] to generalize the definition of correctness in case of mali-
cious adversaries.

Roughly, an MPC protocol Π = Πoff,on is said to be robust if, given two
subsets A,H ⊂ [n], with |H| = n − |A|, and a correct execution of Πoff, the
output outj of some Pj , with j ∈ A, obtained by running the protocol on input
(x, (wi)i∈A, (wi)i∈H) and using some arbitrary randomness r′

j , is not ⊥ then
outj = y, where y = Πoff,on

f (viewi), ∀i ∈ H. Note that our definition specifically
assumes an MPC protocol Πon,off in the pre-processing model with a correctly

Four-Round Black-Box Non-malleable Schemes from One-Way Permutations 313

executed Πoff and requires that every unbounded adversary A cannot make the
parties in A output a result inconsistent with the views of honest parties. The
formal definition of robustness follows.

Definition 5 (Robustness). Let Πoff,on = (P1, . . . , Pn) be as above. Let
A ⊂ [n] and H = [n] − A. Let us denote by view the view {viewi =

(viewoff
i , viewon

i)}i∈H , { ˜viewi = (˜view
off

i , ˜view
on

i)}i∈A, such that:

– ˜view
off

i and ˜view
on

i are the views generated by running the code of Pi for Πoff

and Πon on input (x,wi), respectively, with some arbitrary randomness r′
i ∈

{0, 1}λ, for each i ∈ A;
– viewoff

i is the view generated running the code of party Pi for Πoff with some
arbitrary randomness r′

i ∈ {0, 1}λ, for each i ∈ H;
– viewon

i ∈ {0, 1}∗, for each i ∈ H.

We say that Πoff,on realizes a deterministic n-party functionality f(x,w1, . . . ,
wn) with robustness if for any A and H, such that H = {i1, . . . , in−t} and
A = {j1, . . . , jt}, the following holds: if, for each jk ∈ A, party Pjk

, on input ran-
domness rjk

and (x,wjk
), outputs outjk

= F �=⊥ with respect to the view view,
then F = fA(x,wi1 , . . . , win−t

), for some wi1 , . . . , win−t
with {i1, . . . , in−t} = H,

where fA is the function evaluated on n inputs where the inputs in positions
A = {j1, . . . , jt} are wj1 , . . . , wjt

.

Intuitively, the above definition says that as long as Πoff is correct (concretely
this can be achieved instantiating Πoff with a malicious secure protocol) and
the online phase Πon is a deterministic function of the offline phase, then Π
is robust. Notice the definition of robustness is independent of the number of
corruptions supported by Π and it can be achieved both with an honest and
dishonest majority. In the full-version we show a concrete instantiation of a
robust MPC protocol.

3.7 Verifiable Secret Sharing (VSS)

A verifiable secret sharing (VSS) scheme [6] is a two-phase protocol carried out
among n+1 parties. In the first step, a special party, also referred to as the dealer ,
shares a secret among all the other n parties, referred to as share-holders, at most
t of whom may be corrupt; in the second step, parties reconstruct the secret.
While in standard secret-sharing schemes the dealer is assumed to be honest, in
VSS schemes also the dealer can be corrupt. Loosely speaking, if the dealer is
honest, then no information about the dealer’s secret is revealed to the t corrupt
parties by the end of the sharing phase; moreover, by the end of the sharing
phase even a dishonest dealer is committed to some value that will be recovered
by the honest parties in the reconstruction phase. Furthermore, if the dealer is
honest then this committed value must be identical to the dealer’s initial input.

314 M. Ciampi et al.

Definition 6 (Verifiable Secret Sharing [5,6]). An (n+1, t)-perfectly secure
Verifiable Secret Sharing (VSS) scheme Πσ consists of a pair of protocols
(Share,Recon) that implement respectively the sharing and reconstruction phases
as follows.

– Sharing Phase (Share). Party Pn+1 (the dealer) runs on input a secret s and
randomness rn+1, while any other party Pi, i ∈ [n], runs on input a ran-
domness ri. During this phase parties can send (both private and broad-
cast) messages in multiple rounds. We will indicate with viewi the view
that Pi obtains at the end of sharing phase, and with (view1, . . . , viewn) =
Share(s, r1, . . . , rn, rn+1) the process described above.

– Reconstruction Phase (Recon). Each shareholder sends its view viewi, i ∈ [n],
of the sharing phase to each other party, and on input the views of all parties
(that might include corrupt or empty views) each party outputs a reconstruc-
tion of the secret s. All computations performed by honest parties are efficient.

The following security properties hold.

Commitment. If the dealer is dishonest then one of the following two cases hap-
pen: 1) during the sharing phase honest parties disqualify the dealer, therefore
they output a special value ⊥ and will refuse to run the reconstruction phase;
2) during the sharing phase honest parties do not disqualify the dealer, there-
fore such a phase determines a unique value s∗, that belongs to the set of
possible legal values that does not include ⊥, which will be reconstructed by
the honest parties during the reconstruction phase.

Secrecy. The computationally unbounded adversary can corrupt up to t parties
that can deviate from the above procedures. If the dealer is honest, then the
adversary’s view during the sharing phase reveals no information about s.
More formally, the adversary’s view is identically distributed under all differ-
ent values of s.

Perfect Correctness. If the dealer is honest throughout the protocols then each
honest party will output the shared secret s at the end of protocol Recon with
probability 1.

Assuming a broadcast channel, perfectly-secure (n + 1, �n/4�)-VSS scheme
are implemented in [17].

4 Non-malleable HVZK with Respect to Commitment

In this section, we introduce the new notion of non-malleable HVZK with respect
to commitment (NMZKC). Let Π = (P,V) be a proof system, and Πcom be a
(potentially interactive) commitment scheme. We consider a scenario where a
man-in-the-middle adversary A interacts in the left session with the prover of Π
(hence, A acts as the verifier for Π), and in the right session A acts as the sender
for Πcom against an honest receiver. the formal definition of NMZKC follows, and
we refer to the introductory section of the paper for an informal discussion about

Four-Round Black-Box Non-malleable Schemes from One-Way Permutations 315

this definition. Let (Sim0,Sim1) be the adaptive-input HVZK simulator for Π,
we define the experiment ExpZKA,Π,Πcom

(1λ, b, c).

ExpZKA,Π,Πcom
(1λ, b, c) : In the right session, interact with A as the receiver of

Πcom. In the left session, act as follows.

1. Set π2 ← c and send π1 to A, where:
– If b = 0, (π1, aux) $←− P(1λ, 1m), with m = |x|
– If b = 1, (π1, aux) $←− Sim0(1λ, 1m, π2)

2. Upon receiving (x,w) from A in the left session do the following
– If (x,w) ∈ Rel, the experiment sends π3 to A in the left session where:

– If b = 0, π3 ← P(x,w, aux, π2)

– Else, if b = 1, π3 $←− Sim1(x, aux)
– Else, the experiment sets π3 ← ⊥

3. Set the output of the experiment as the output of A and its view.

Definition 7 (NMZKC). Let Πcom be a commitment scheme. We say that
an adaptive-input HVZK proof system Π, with challenge space C, is a non-
malleable HVZK with respect to commitment for Πcom if there exists a ppt
simulator Sim = (Sim0,Sim1) such that, for all ppt adversary A, the following
two distributions are indistinghuishable:

{ExpZKA,Π,Πcom
(1λ, 0, c),m0}λ∈N,c∈C , {ExpZKA,Π,Πcom

(1λ, 1, c),m1}λ∈N,c∈C

where ExpZKA,Π,Πcom
(1λ, b, c) is the experiment described above and mb, with b ←

{0, 1}, is the message committed in the right session of ExpZKA,Π,Πcom
(1λ, b, c)

by A.

We note that non-malleable HVZK with respect to commitment property
is parallel composable w.r.t. multiple left sessions. The proof would follow via
standard hybrid arguments.

5 Our Delayed-Input MPC-in-the-Head Protocol ΠAI

Let L be an NP-language and Rel be the corresponding NP-relation. Let
f be an (n + 1)-argument function, with n > 2, corresponding to Rel, i.e.,
f(x,w1, . . . , wn) = Rel(x,w1 ⊕ · · · ⊕ wn). Our protocol, ΠAI = (PAI,VAI), for
the NP-relation Rel makes use of the following tools:

– A tp-private MPC protocol Πoff,on = (P1, . . . , Pn) that realizes f with robust-
ness (Definition 5).

– An ambiguous commitment scheme Πcom = (Com,Dec,Comeq,Eq).

A complete description of ΠAI = (PAI,VAI) for the NP-relation Rel can be
found in Fig. 1. At a high level, given an MPC protocol Πoff,on, as specified
above, PAI starts by emulating Πoff in its head. In particular, it generates n views

316 M. Ciampi et al.

Fig. 1. ΠAI = (PAI,VAI)

viewoff
i , i ∈ [n], corresponding to the n virtual parties and separately commits

to these views using an ambiguous commitment scheme Πcom. This is done by
sampling c random values {viewoff

(i,j)}j∈[c], for each i ∈ [n], such that viewoff
i =

⊕

j∈[c] view
off
i,j , and computing {(com(i,j), dec(i,j)) ← Com(viewoff

(i,j);R(i,j))}j∈[c].
Notice here c ≥ 2 is a small integer. This will allow the verifier to check that the
commitments are correctly generated and Πoff is honestly executed; moreover,
it will be crucial to prove adaptive-input SHVZK, as we will see later.

The prover sends the first message π1, given by the concatenation of all the
commitments, to V which replies with the challenge π2, i.e., a set of random
indices I = {i1, . . . , ik} ⊂ [n] with k ≤ tp, and one index qij

∈ [c] for each i ∈ I.
In the last round, both P and V receive the theorem x, while P also receives

w. in the last round, P first completes the emulation of the MPC protocol,
producing all the online views viewon

i , i ∈ [n]; secondly, it sends viewon
i , i ∈ I,

Four-Round Black-Box Non-malleable Schemes from One-Way Permutations 317

and opens the corresponding commitments in π1 as follows. The commitments
corresponding to the indices qij

in π2 are opened in a “binding way”, by sending
viewoff

ij ,qij
and Rij ,qij

, ij ∈ I, and the remaining c−1 commitments, for each ij ∈
I, are opened by sending the opening information decij ,q, along with viewoff

ij ,q,
for each q ∈ {1, . . . , c} \ qij

.
Finally, the verifier checks all the commitments. It verifies that all the parties

in I output 1 and that their views are consistent with each other. To simplify
the composition of our protocol with other primitives, we design the prover so
that it expects to receive a (random) n-out-of-n secret sharing of the witness
(instead of the witness itself). This is without loss of generality. We finally note
that our protocol can be parameterized to work with any n-out-of-n secret shar-
ing scheme. Moreover, it would remain black-box in the use of the underlying
cryptographic primitives as long the reconstruction phase of the secret sharing
scheme does make any calls to a cryptographic primitive. We prove the following
result.

Theorem 1. If Πoff,on is an MPC protocol that realizes f (which is described
above) with tp-privacy and robustness, and Πcom is an ambiguous commitment
scheme, then ΠAI = (PAI,VAI) (Fig. 1) for the NP-relation Rel is a 3-round
public-coin delayed-input protocol satisfying adaptive-input SHVZK adaptive-
input soundness with constant soundness error.

We establish adaptive correctness, adaptive-input soundness and adaptive-
input SHVZK. Correctness follows by inspection.

Adaptive-input soundness (Intuition). At a high level, we can see that sound-
ness can be proved using the robustness property of the MPC protocol Π and
the security properties of Πcom. If all the offline views are correctly generated,
then robustness ensures that a malicious prover will always get caught. Hence
a malicious prover can succeed either if incorrect offline views are generated, or
if some of the commitments are not computed in binding mode. We can argue
that the probability of the adversary being caught in either of the two cases is
noticeable.

Adaptive-input special honest-verifier zero-knowledge (Intuition). At
a high level, the simulator Sim = (Sim0

AI,Sim1
AI) works as follows. Let the chal-

lenge be (I, qi1 , . . . , qik
), and let Cij

= {1, . . . , c} \ {qij
}. For each ij ∈ I, and

each l ∈ Cij
, Sim0

AI computes a random value view(ij ,l). Then Sim0
AI generates

the following commitments. For each ij �∈ I and q ∈ [c] set com(ij ,q) as a com-
mitment of the the all-zero string; for each ij ∈ I compute the commitment
com(ij ,qij

) in binding mode, and for each l ∈ Cij
compute com(ij ,l) in equiv-

ocal mode. These commitments constitute the simulated message π1. In the
second phase, when x is available, Sim1

AI uses the MPC simulator to obtain
(viewoff

i , viewon
i), i ∈ [n]. For each ij ∈ I and for each l ∈ Cij

compute viewoff
ij ,l,

such that viewoff
ij ,qij

= viewoff
ij

⊕

l∈Cij
viewoff

ij ,l. Finally, for each ij ∈ I, l ∈ Cij

equivocate the commitment comij ,l to viewoff
ij ,l, and sends the openings of all the

commitments to complete the third round.

318 M. Ciampi et al.

Lemma 1. Let ΠComExt be a 3-round extractable commitment scheme with a
polynomial time extractor Ext, that extracts with non-negligible probability, then
ΠAI is non-malleable HVZK with respect to commitment ΠComExt against syn-
chronizing adversaries.

The proof of the lemma can be found in the full version.
We recall that the commitment scheme Πcom used in ΠAI can be instantiated

with any NI statistically binding scheme, which can be constructed from any
one-to-one OWF. In addition, following [28], when we say that our protocols
make black-box use of Πoff,on, it simply means that they are invoking the “next-
message function” of each party. Therefore, when Πcom is implemented using a
black-box reduction to one-way functions, the protocol ΠAI only makes black-box
use of one-way functions. More formally,

Corollary 1. Assuming the existence of one-to-one one-way functions, there
exists a 3-round public-coin delayed-input protocol satisfying adaptive-input
soundness (with constant soundness error), and adaptive-input SHVZK, which
makes black-box use of 1-1 OWFs. Moreover, let ΠComExt be a 3-round extractable
commitment scheme with a polynomial time extractor, that extracts with non-
negligible probability, then there exists a 3-round public-coin delayed-input proto-
col that is non-malleable HVZK with respect to commitment for ΠComExt against
synchronizing adversaries that makes black-box use of the 1-1 OWFs.

6 The Building Blocks of the 4-Round Black-Box
Non-malleable Commitment Scheme

In this section, we define the main building blocks necessary to define our 4-round
non-malleable commitment scheme.

6.1 Commitment from Verifiable Secret Sharing

We start by recalling some of the techniques introduced by Goyal et al. [22]. We
show that these techniques can be used to build a Σ-commitment (Definition 2)
that we denote by Π = ((SΣ ,RΣ),DecΣ) and formally describe it in Fig. 2. The
protocol makes use of the following primitives:

– An (n + 1, t)-VSS protocol Πvss = (ΠShare,ΠRecon) as defined in Definition 6.
Concretely, the protocol uses a VSS scheme with a deterministic reconstruc-
tion procedure, like the (n + 1, �n/4�)-VSS scheme described by Gennaro et
al. [17]

– A statistically binding commitment scheme Πcom = (Com,Dec).

The protocol works as follows. To commit to a message w, the sender SΣ

runs “in its head” the protocol ΠShare, which implements the sharing phase of
Πvss, with input w. Then the sender commits to the views viewj (obtained by the
execution of ΠShare) of each Pj separately using a statistical binding commitment

Four-Round Black-Box Non-malleable Schemes from One-Way Permutations 319

Fig. 2. Π = ((SΣ ,RΣ),DecΣ)

scheme Πcom. The receiver, upon receiving these commitments, samples a random
set I ⊂ [n], with |I| ≤ t, and sends it to the sender. Finally, the sender replies
by decommitting the views corresponding to the challenge I. This concludes the
commit phase.

In the full version, we prove the following theorem that we shall use in the
next sections.

Theorem 2. Let Πvss be a (n + 1, t)-VSS protocol satisfying Definition 6, with
t = k, t < 1

4n, and let Πcom be a statistically binding commitment scheme, then
Π = ((SΣ ,RΣ),DecΣ) (see Fig. 2) is a Σ-commitment.

6.2 Commit-and-Prove

In this section we construct a 3-round public-coin commit-and-prove protocol
ΠCP = (PCP,VCP) that allows proving the knowledge of a committed value w

320 M. Ciampi et al.

such that Rel(x,w) = 1, for some statement x. Our protocol makes black-box
use of the underlying primitives.

The protocol ΠCP = (PCP,VCP) is fully described in Fig. 3. It makes use of
the following tools:

– The Σ-commitment Σ = ((SΣ ,RΣ),DecΣ) defined in Fig. 2, Sect. 6.1.
– The adaptive-input SHVZK ΠAI = (PAI,VAI) with adaptive-input soundness

for the NP-relation

RelAI = {(x, a, α, {viewij
}j∈[k]), (r, {viewi}j∈[n]) : 1 ≤ i1 < · · · < ik < n ∧

w = Recon({viewi}j∈[n]) ∧ Rel(x,w) = 1 ∧ a = w + rα}.

where Recon is the reconstruction phase of an information-theoretic (n + 1, t)-
VSS protocol Πvss, with k ≤ t. We recall that to run ΠAI the prover needs the
statement and the witness only in the third round. Moreover, the prover expects
to receive the witness in a secret shared form. We recall that ΠAI works for
any type of secret sharing scheme, and in our case ΠAI is parametrized by the
reconstruction algorithm of the verifiable secret sharing Πvss (i.e., the prover
expects to receive n views generated using the sharing algorithm of Πvss). We
note that given that Πvss is information-theoretic, then ΠAI still makes black-box
use of the underlying cryptographic primitives. We also need ΠAI with the same
parameters n, k, t as Σ.

At a high-level PCP commits λ2-times to the witness w running Σ (as
described in Fig. 2) and proving, using PAI, that each committed message w
satisfies the relation Rel, and moreover that the views opened in the third round
of Σ contain shares of the witness w. To make sure that the same message is
committed in all the executions of Σ, we use a technique proposed by Khurana
et al. in [30]. Namely, in each execution of Σ, instead of committing to w, we
commit to w||r, for some random value r, and use the protocol ΠAI to addition-
ally prove that a = w + rα, where α is chosen as part of the second round, and
a is sent in the third round from the prover. As argued in [30], since r is global
across all the executions, if w �= w′ then w + rα �= w′ + rα with overwhelming
probability due to the Schwartz-Zippel lemma. Therefore, if the committed mes-
sages are different across the (multiple) executions, then the statement proven by
ΠAI must be false, and the soundness of ΠAI guarantees that the verifier rejects.

More formally, we prove the following result.

Theorem 3. Let ΠAI = (PAI,VAI) be a 3-round public-coin, delayed-input com-
plete, adaptive-input SHVZK with adaptive-input soundness for the NP-relation
RelAI, and Σ = ((SΣ ,RΣ),DecΣ) (as defined in Fig. 2) be a Σ-commitment, then
ΠCP = (PCP,VCP) is a 3-round public-coin adaptive-input SHVZK commit-and-
prove protocol for the NP-relation Rel.

We first give an intuition for the adaptive-SHVZK proof by describing how
the simulator (Sim0

CP,Sim1
CP) works. For ease of exposition let us focus on the

i-th transcript (out of λ2) w.r.t. challenge (α, π2,i), where π2,i is composed by
two sets of indices I, C. The simulator Sim0

CP on input challenge π2,i runs the

Four-Round Black-Box Non-malleable Schemes from One-Way Permutations 321

Fig. 3. ΠCP = (PCP,VCP)

HRH simulator of Σ on input I obtaining πσ
1 , πσ

3 and, consequently, the shares
{viewσ

ij
}ij∈I which will be opened in the third round (denoted by πσ

3). Sim0
CP

then runs Sim0
AI on input π2,i thus obtaining (π1,i, aux). The simulator Sim1

CP on
input theorem x samples a at random, sets X = {(x, a, α, {viewσ

ij
}ij∈I) and runs

Sim1
AI on input theorem (X, aux) thus obtaining π3,i.
The full proof of Theorem 3 can be found in the full version. Similarly to

previous protocols, we have the following result.

322 M. Ciampi et al.

Fig. 4. Πwnmc = (Swnmc,Rwnmc)

Corollary 2. Assuming the existence of one-to-one one-way functions, there
exists a 3-round public-coin adaptive-input SHVZK commit-and-prove ΠCP for
the NP-relation Rel that makes black-box use of the 1-1 OWFs.

Remark 1. To simplify the exposition of our non-malleable commitment scheme
that internally uses the commit-and-prove protocol we have just described, we
will consider the messages of ΠCP as divided into two parts: the messages related
to the proof phase, and the messages related to the commitment phase. Hence,
each round of ΠCP consists of two distinct components (e.g., the i-th round of
ΠCP will be denoted by {πi, π

σ
i }).

6.3 The 4-Round Non-malleable Commitment Scheme of [24]

The 4-round non-malleable commitment of Goyal et al. [24] is composed of two
parts: the first one is a special public-coin Πwnmc commitment scheme, that
enjoys a weak form of non-malleability. Loosely speaking, Πwnmc is non-malleable
as long as the MiM, acting as a sender, is committing to a well-formed com-
mitment. The second part is a zero-knowledge PoK that ensures that Πwnmc is
computed correctly. In Fig. 4, we recall the protocol Πwnmc. This uses as an under-
lying building block a non-interactive commitment that is statistically binding.
We replace this commitment with our interactive Σ-commitment Σ where the
challenge is a default value (i.e., this trivially makes the Σ-commitment non-
interactive). Finally, we prove that, after this modification, Πwnmc remains hid-
ing.

Lemma 2. Let Σ be the Σ-commitment described in Fig. 2, then Πwnmc =
(Swnmc,Rwnmc) described in Fig. 4 enjoys the hiding property.

This follows from Theorem 2 and from the fact that r1, . . . , r�4nmc and
a1, . . . , a�4nmc information theoretically hide the committed message.

Four-Round Black-Box Non-malleable Schemes from One-Way Permutations 323

7 Our 4-Round Black-Box Non-malleable Commitment
Scheme

An informal overview of our 4-round NM commitment is given in the Introduc-
tion. Here we provide a formal description of the protocol Πnmc presented in
Fig. 5. We conclude this section with a sketch of the proof.

7.1 Formal Description of Πnmc = ((Snmc,Rnmc),Decnmc)

Our 4-round non-malleable commitment Πnmc = ((Snmc,Rnmc),Decnmc) makes
use of the following tools.

– A 3-round public-coin delayed-input adaptive-input SHVZK commit-and-
prove protocol Πtr = (Ptr,Vtr) (as defined in Fig. 3) for the relation Reltr =
{((m0,m1), w) : m0 = w ∨ m1 = w}. We denote the adaptive-input SHVZK
simulator with Simtr.

– A 3-round public-coin SHVZK, delayed-input complete commit-and-prove
protocol ΠCP = (PCP,VCP) (as defined in Fig. 3, but using λ3 parallel rep-
etitions) for the relation RelCP defined as follows:

RelCP =
{

st =
({ai, αi}i∈[�nmc])

w =
(

m, {ri}i∈[�nmc]

) ∀ i ∈ [nmc] ai = m + riαi

}

.

– A one-of-two binding commitment scheme ΠcomWI = (PcomWI,VcomWI) (Defi-
nition 4).

The reason why we explicitly require Πtr and ΠCP to be protocols constructed
following the approach described in Sect. 6.2 is that in the security proof we will
exploit the fact that Πtr and ΠCP are based on non-malleable HVZK with respect
to commitment protocols. We refer the reader to the full version for a thorough
discussion on this and for the full proof.

Theorem 4. Let Πtr = (Ptr,Vtr) be the 3-round public-coin adaptive-input
SHVZK commit-and-prove for the relation Reltr, defined in Fig. 3, let ΠCP =
(PCP,VCP) be the 3-round public-coin SHVZK commit-and-prove for the relation
RelCP, defined in Fig. 3, let ΠcomWI = (PcomWI,VcomWI) be the one-of-two binding
commitment scheme, then Πnmc = ((Snmc,Rnmc),Decnmc), described in Fig. 5 is
a 4-round non-malleable commitment.

The corollary given below immediately follows from the results shown in
the previous sections and from the fact that ΠcomWI can be instantiated in a
black-box way from one-to-one one-way functions.

Corollary 3. Assuming the existence of one-to-one one-way functions, there
exists a 4-round non-malleable commitment that makes black-box use of the
OWFs.

324 M. Ciampi et al.

Fig. 5. Πnmc = ((Snmc,Rnmc),Decnmc)

8 Comparison with Previous Non-black-box Approaches
to Four-Round Non-malleable Commitments

As we argued, our main strategy to construct a non-malleable commitment
scheme is to lift the security of the weak non-malleable commitment scheme

Four-Round Black-Box Non-malleable Schemes from One-Way Permutations 325

of [25, Fig. 2] (that we also recall in Fig. 4), relying on a special notion of zero-
knowledge that we call non-malleable HVZK with respect to commitment. This
notion guarantees that a sender of a commitment scheme does not change the dis-
tribution of the committed messages depending on whether they receive an hon-
estly generated zero-knowledge proof or a simulated one. We construct a NMZKC
for a specific class of commitments, which includes the weak-non-malleable com-
mitment scheme of [25, Fig. 2] that we mention above.

Although our approach is inspired by [25], where the authors also lift the
security of a weak-non-malleable commitment scheme relying on zero-knowledge,
concretely, our techniques significantly depart from those of [25]. In the next
paragraphs, we highlight the main difference between the two approaches and
explain why we could use as one of the main building block the simple weak-
non-malleable commitment of [25, Fig. 2], instead of a modified version, as the
authors of [25] do.

The main technical challenge in designing non-malleable commitments with
low round complexity is due to arguing in the proof that the security of the
primitives involved in the protocol is maintained despite performing rewinds to
extract the message committed by the MiM (on the right session). One of the
primitives involved in the scheme of Goyal et al. is a non-rewind secure witness-
indistinguishable proof denoted by Π, and to cope with the rewinds performed
by the extractor in the proof (while still relying on the WI property of Π), the
prover prepares n first rounds for the non-rewind secure WI protocol (denoted
with Π). Upon receiving one valid second round from the verifier, the prover
picks one instance of Π at random (let us say the i-th) and completes the proof
providing an accepting third round only with respect to the i-th instance. Let
us denote the above protocol by Πrew.

Despite this protocol being rewind secure, Goyal et al. cannot use just one
execution of Πrew, which proves that either the committer has behaved honestly
in the algebraic part of the commitment or that the committer knows a trapdoor.
The reason is that there is a simple adversarial strategy for which such a proof
would not work in this case. Intuitively, consider a MiM that completes an
execution on the right session only if it receives a proof for the j-th instance
of Π, and aborts in any other case (note that this MiM is non-aborting with
non-negligible probability). This MiM would make the reduction to the WI of
Π fail. In particular, any rewind performed by the extractor on the right session
would make the MiM ask different second rounds for the same execution of Π (or
abort if on the left session a different instance of Π is completed). To solve this
problem the authors of [25] compute a secret sharing of the message and perform
one execution of Πrew for each of the shares. Now, even if the MiM applies the
same strategy to one run of Πrew, it is safe to allow the MiM to perform this
rewind since the only thing that will be leaked is a share of the message m (note
that two accepting transcripts for the same execution of Π for two different
second rounds might completely leak the witness). In the formal proof, Goyal
et al. need to rely on the fact that the number of executions of Π that are
not rewound (and consequently the number of shares not leaked) is sufficient to

326 M. Ciampi et al.

protect the secrecy of the message m. This modification also requires changing
how the extractor works (e.g., by relying on the quadratic polynomials). Hence,
to obtain their non-malleable commitment scheme, Goyal et al. rely on a more
sophisticated version of the weak-non-malleable commitment described in their
work. In our paper, we do not rely on any rewind secure primitive (which we
replace with a proof system non-malleable with respect to commitments), so we
do not need to split the message into shares and follow the strategy described
above. We note that similarly to us, also [9] relies on the simpler sub-scheme
of [25, Fig. 2] to obtain a 4-round concurrent non-malleable commitment scheme.
To summarize, the main difference between ours and the approach of [25] (that
relies on rewind secure primitive) is that our work is based on the observation
that the rewinds are performed in the reductions or during the simulation, and
as such, the adversary does not have clue that the rewinds are happening. Hence,
relying on primitives that are rewind-secure (i.e., the adversary can consciously
make rewinds and collect the transcripts generated during the rewinds) can be
avoided for the application we consider in the paper.

Acknowledgements. We thank Carmit Hazay and Muthuramakrishnan Venkitasub-
ramaniam for insightful discussions on the MPC-in-the-head approach. Emmanuela
Orsini was supported by the Defense Advanced Research Projects Agency (DARPA)
under contract No. HR001120C0085, and by CyberSecurity Research Flanders with
reference number VR20192203. Any opinions, findings and conclusions or recommen-
dations expressed in this material are those of the authors and do not necessarily reflect
the views of the DARPA, the US Government or Cyber Security Research Flanders.
The U.S. Government is authorized to reproduce and distribute reprints for govern-
mental purposes notwithstanding any copyright annotation therein.

References

1. Badrinarayanan, S., Goyal, V., Jain, A., Kalai, Y.T., Khurana, D., Sahai, A.:
Promise zero knowledge and its applications to round optimal MPC. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 459–487. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 16

2. Barak, B.: Constant-round coin-tossing with a man in the middle or realizing the
shared random string model. In: FOCS (2002)

3. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols.
In: 22nd Annual ACM Symposium on Theory of Computing, pp. 503–513. ACM
Press, Baltimore, MD, USA (1990). https://doi.org/10.1145/100216.100287

4. Cao, Z., Visconti, I., Zhang, Z.: Constant-round concurrent non-malleable statis-
tically binding commitments and decommitments. In: Nguyen, P.Q., Pointcheval,
D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 193–208. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-13013-7 12

5. Chatterjee, R., Liang, X., Pandey, O.: Improved black-box constructions of
composable secure computation. In: Czumaj, A., Dawar, A., Merelli, E. (eds.)
ICALP 2020: 47th International Colloquium on Automata, Languages and Pro-
gramming. LIPIcs, vol. 168, pp. 28:1–28:20. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, Saarbrücken, Germany (2020). https://doi.org/10.4230/LIPIcs.
ICALP.2020.28

https://doi.org/10.1007/978-3-319-96881-0_16
https://doi.org/10.1145/100216.100287
https://doi.org/10.1007/978-3-642-13013-7_12
https://doi.org/10.4230/LIPIcs.ICALP.2020.28
https://doi.org/10.4230/LIPIcs.ICALP.2020.28

Four-Round Black-Box Non-malleable Schemes from One-Way Permutations 327

6. Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing and
achieving simultaneity in the presence of faults. In: 26th Annual Symposium on
Foundations of Computer Science, pp. 383–395. IEEE Computer Society Press,
Portland, Oregon (1985). https://doi.org/10.1109/SFCS.1985.64

7. Rai Choudhuri, A., Ciampi, M., Goyal, V., Jain, A., Ostrovsky, R.: Round optimal
secure multiparty computation from minimal assumptions. In: Pass, R., Pietrzak,
K. (eds.) TCC 2020. LNCS, vol. 12551, pp. 291–319. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-64378-2 11

8. Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Concurrent non-malleable
commitments (and more) in 3 rounds. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016. LNCS, vol. 9816, pp. 270–299. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53015-3 10

9. Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Four-round concurrent non-
malleable commitments from one-way functions. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017. LNCS, vol. 10402, pp. 127–157. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63715-0 5

10. Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Round-optimal secure two-
party computation from trapdoor permutations. In: Kalai, Y., Reyzin, L. (eds.)
TCC 2017. LNCS, vol. 10677, pp. 678–710. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-70500-2 23

11. Ciampi, M., Parisella, R., Venturi, D.: On adaptive security of delayed-input sigma
protocols and fiat-shamir nizks. In: Galdi, C., Kolesnikov, V. (eds.) SCN 2020.
LNCS, vol. 12238, pp. 670–690. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-57990-6 33

12. Ciampi, M., Persiano, G., Scafuro, A., Siniscalchi, L., Visconti, I.: Improved or-
composition of sigma-protocols. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016.
LNCS, vol. 9563, pp. 112–141. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-49099-0 5

13. Ciampi, M., Ravi, D., Siniscalchi, L., Waldner, H.: Round-optimal multi-party com-
putation with identifiable abort. In: Dunkelman, O., Dziembowski, S. (eds.) EURO-
CRYPT 2022. LNCS, vol. 13275, pp. 335–364. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-06944-4 12

14. Dachman-Soled, D., Malkin, T., Raykova, M., Venkitasubramaniam, M.: Adaptive
and concurrent secure computation from new adaptive, non-malleable commit-
ments. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp.
316–336. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-
7 17

15. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography. In: 23rd Annual
ACM Symposium on Theory of Computing, pp. 542–552. ACM Press, New Orleans,
LA, USA (1991). https://doi.org/10.1145/103418.103474

16. Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs
based on a single random string. In: 31st Annual Symposium on Foundations of
Computer Science, pp. 308–317. IEEE Computer Society Press, St. Louis, MO,
USA (1990). https://doi.org/10.1109/FSCS.1990.89549

17. Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: The round complexity of ver-
ifiable secret sharing and secure multicast. In: 33rd Annual ACM Symposium on
Theory of Computing, pp. 580–589. ACM Press, Crete, Greece (2001). https://
doi.org/10.1145/380752.380853

18. Goldreich, O.: Foundations of Cryptography, vol. 1. Cambridge University Press,
New York (2006)

https://doi.org/10.1109/SFCS.1985.64
https://doi.org/10.1007/978-3-030-64378-2_11
https://doi.org/10.1007/978-3-662-53015-3_10
https://doi.org/10.1007/978-3-662-53015-3_10
https://doi.org/10.1007/978-3-319-63715-0_5
https://doi.org/10.1007/978-3-319-63715-0_5
https://doi.org/10.1007/978-3-319-70500-2_23
https://doi.org/10.1007/978-3-319-70500-2_23
https://doi.org/10.1007/978-3-030-57990-6_33
https://doi.org/10.1007/978-3-030-57990-6_33
https://doi.org/10.1007/978-3-662-49099-0_5
https://doi.org/10.1007/978-3-662-49099-0_5
https://doi.org/10.1007/978-3-031-06944-4_12
https://doi.org/10.1007/978-3-031-06944-4_12
https://doi.org/10.1007/978-3-642-42033-7_17
https://doi.org/10.1007/978-3-642-42033-7_17
https://doi.org/10.1145/103418.103474
https://doi.org/10.1109/FSCS.1990.89549
https://doi.org/10.1145/380752.380853
https://doi.org/10.1145/380752.380853

328 M. Ciampi et al.

19. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In:
Proceedings of the 21st Annual ACM Symposium on Theory of Computing, 14–17
May 1989, Seattle, Washigton, USA, pp. 25–32 (1989)

20. Goyal, V.: Constant round non-malleable protocols using one way functions. In:
STOC (2011)

21. Goyal, V., Khurana, D., Sahai, A.: Breaking the three round barrier for non-
malleable commitments. In: 57th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2016. IEEE (2016)

22. Goyal, V., Lee, C.K., Ostrovsky, R., Visconti, I.: Constructing non-malleable com-
mitments: a black-box approach. In: 53rd Annual Symposium on Foundations of
Computer Science, pp. 51–60. IEEE Computer Society Press, New Brunswick, NJ,
USA (2012). https://doi.org/10.1109/FOCS.2012.47

23. Goyal, V., Richelson, S.: Non-malleable commitments using Goldreich-Levin list
decoding. In: Zuckerman, D. (ed.) 60th Annual Symposium on Foundations of
Computer Science, pp. 686–699. IEEE Computer Society Press, Baltimore, MD,
USA (2019). https://doi.org/10.1109/FOCS.2019.00047

24. Goyal, V., Richelson, S., Rosen, A., Vald, M.: An algebraic approach to non-
malleability. In: 55th Annual Symposium on Foundations of Computer Science,
pp. 41–50. IEEE Computer Society Press, Philadelphia, PA, USA (2014). https://
doi.org/10.1109/FOCS.2014.13

25. Goyal, V., Richelson, S., Rosen, A., Vald, M.: An algebraic approach to non-
malleability. Cryptology ePrint Archive, Paper 2014/586 (2014). https://eprint.
iacr.org/2014/586

26. Halevi, S., Hazay, C., Polychroniadou, A., Venkitasubramaniam, M.: Round-
optimal secure multi-party computation. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018. LNCS, vol. 10992, pp. 488–520. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96881-0 17

27. Hazay, C., Venkitasubramaniam, M.: On the power of secure two-party compu-
tation. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp.
397–429. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-
5 14

28. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: Johnson, D.S., Feige, U. (eds.) 39th Annual ACM
Symposium on Theory of Computing, pp. 21–30. ACM Press, San Diego, CA,
USA (2007). https://doi.org/10.1145/1250790.1250794

29. Khurana, D.: Round optimal concurrent non-malleability from polynomial hard-
ness. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10678, pp. 139–171.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3 5

30. Khurana, D., Ostrovsky, R., Srinivasan, A.: Round optimal black-box Commit-and-
Prove. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11239, pp.
286–313. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03807-6 11

31. Lin, H., Pass, R.: Constant-round non-malleable commitments from any one-way
function. In: Fortnow, L., Vadhan, S.P. (eds.) Proceedings of the 43rd ACM Sym-
posium on Theory of Computing, STOC 2011, 6–8 June 2011, San Jose, CA, USA,
pp. 705–714. ACM (2011)

32. Lin, H., Pass, R.: Constant-round nonmalleable commitments from any one-way
function. J. ACM 62(1), 5:1-5:30 (2015)

33. Lin, H., Pass, R., Venkitasubramaniam, M.: Concurrent non-malleable commit-
ments from any one-way function. In: Canetti, R. (ed.) TCC 2008. LNCS, vol.
4948, pp. 571–588. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-78524-8 31

https://doi.org/10.1109/FOCS.2012.47
https://doi.org/10.1109/FOCS.2019.00047
https://doi.org/10.1109/FOCS.2014.13
https://doi.org/10.1109/FOCS.2014.13
https://eprint.iacr.org/2014/586
https://eprint.iacr.org/2014/586
https://doi.org/10.1007/978-3-319-96881-0_17
https://doi.org/10.1007/978-3-319-96881-0_17
https://doi.org/10.1007/978-3-662-53008-5_14
https://doi.org/10.1007/978-3-662-53008-5_14
https://doi.org/10.1145/1250790.1250794
https://doi.org/10.1007/978-3-319-70503-3_5
https://doi.org/10.1007/978-3-030-03807-6_11
https://doi.org/10.1007/978-3-540-78524-8_31
https://doi.org/10.1007/978-3-540-78524-8_31

Four-Round Black-Box Non-malleable Schemes from One-Way Permutations 329

34. Mahmoody, M., Pass, R.: The curious case of non-interactive commitments – on
the power of black-box vs. non-black-box use of primitives. In: Safavi-Naini, R.,
Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 701–718. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-32009-5 41

35. Ostrovsky, R., Persiano, G., Visconti, I.: Simulation-based concurrent non-
malleable commitments and decommitments. In: Reingold, O. (ed.) TCC 2009.
LNCS, vol. 5444, pp. 91–108. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-00457-5 7

36. Pass, R.: Unprovable security of perfect nizk and non-interactive non-malleable
commitments. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 334–354.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2 19

37. Pass, R., Rosen, A.: Bounded-concurrent secure two-party computation in a con-
stant number of rounds. In: 44th Symposium on Foundations of Computer Science
(FOCS 2003), 11–14 October 2003, Cambridge, MA, USA, Proceedings, pp. 404–
413. IEEE Computer Society (2003)

38. Pass, R., Rosen, A.: Concurrent non-malleable commitments. In: Proceedings of
the 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS
2005), 23–25 October 2005, Pittsburgh, PA, USA, pp. 563–572 (2005)

39. Pass, R., Rosen, A.: New and improved constructions of non-malleable crypto-
graphic protocols. In: STOC (2005)

40. Pass, R., Rosen, A.: Concurrent nonmalleable commitments. SIAM J. Comput.
37(6), 1891–1925 (2008)

41. Pass, R., Rosen, A.: New and improved constructions of nonmalleable crypto-
graphic protocols. SIAM J. Comput. 38(2), 702–752 (2008)

42. Pass, R., Wee, H.: Constant-round non-malleable commitments from sub-
exponential one-way functions. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 638–655. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-13190-5 32

43. Wee, H.: Black-box, round-efficient secure computation via non-malleability ampli-
fication. In: 51th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2010, 23–26 October 2010, Las Vegas, Nevada, USA, pp. 531–540. IEEE
Computer Society (2010)

44. Yao, A.C.C.: Space-time tradeoff for answering range queries. In: 14th Annual
ACM Symposium on Theory of Computing, pp. 128–136. ACM Press, San Fran-
cisco, CA, USA (1982). https://doi.org/10.1145/800070.802185

https://doi.org/10.1007/978-3-642-32009-5_41
https://doi.org/10.1007/978-3-642-00457-5_7
https://doi.org/10.1007/978-3-642-00457-5_7
https://doi.org/10.1007/978-3-642-36594-2_19
https://doi.org/10.1007/978-3-642-13190-5_32
https://doi.org/10.1007/978-3-642-13190-5_32
https://doi.org/10.1145/800070.802185

Theory I: Sampling and Friends

A Tight Computational
Indistinguishability Bound for Product

Distributions

Nathan Geier(B)

Tel Aviv University, Tel Aviv, Israel

nathangeier@mail.tau.ac.il

Abstract. Assume that distributions X0, X1 (respectively Y0, Y1) are
dX (respectively dY) indistinguishable for circuits of a given size. It is
well known that the product distributions X0Y0, X1Y1 are dX +dY indis-
tinguishable for slightly smaller circuits. However, in probability theory
where unbounded adversaries are considered through statistical distance,
it is folklore knowledge that in fact X0Y0 and X1Y1 are dX +dY −dX ·dY

indistinguishable, and also that this bound is tight.
We formulate and prove the computational analog of this tight bound.

Our proof is entirely different from the proof in the statistical case, which
is non-constructive. As a corollary, we show that if X and Y are d indis-
tinguishable, then k independent copies of X and k independent copies
of Y are almost 1 − (1 − d)k indistinguishable for smaller circuits, as
against d · k using the looser bound.

Our bounds are useful in settings where only weak (i.e. non-negligible)
indistinguishability is guaranteed. We demonstrate this in the context of
cryptography, showing that our bounds, coupled with the XOR Lemma,
yield straightforward computational generalization to the analysis for
information-theoretic amplification of weak oblivious transfer protocols.

1 Introduction

Computational indistinguishability is a fundamental concept in computational
complexity and cryptography. One of the most basic bounds in this context,
which is easy to see using a simple hybrid argument, is that for distributions
X0,X1 of distance dX , and Y0, Y1 of distance dY , with dXY denoting the distance
between X0Y0,X1Y1, we have that

dXY ≤ dX + dY ,

which holds both statistically and in the computational setting holds for slightly
smaller circuits. However, in probability theory where statistical distance, or

Supported by the European Research Council (ERC) under the European Union’s
Horizon Europe research and innovation programme (grant agreement No. 101042417,
acronym SPP), by ISF grant 18/484, and by Len Blavatnik and the Blavatnik Family
Foundation.

c© The Author(s), under exclusive license to Springer Nature Switzerland 2022
E. Kiltz and V. Vaikuntanathan (Eds.): TCC 2022, LNCS 13748, pp. 333–347, 2022.
https://doi.org/10.1007/978-3-031-22365-5_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22365-5_12&domain=pdf
http://orcid.org/0000-0002-1687-6950
https://doi.org/10.1007/978-3-031-22365-5_12

334 N. Geier

equivalently, indistinguishability against unbounded attackers is considered, it
is folklore knowledge [9, Lemma 2.2] that a better, tight bound holds:

dXY ≤ dX + dY − dX · dY .

It is tight in the sense that for every choice of dX , dY , there exist distributions
X0,X1 with distance dX and distributions Y0, Y1 with distance dY , such that
dXY = dX + dY − dX · dY . The proof of this bound uses coupling [7], and is
thus inherently non-constructive and not easy to generalize to the computational
setting. See Subsect. 1.1 for more information on dealing with coupling in the
computational setting.

It is worth noting here that another very important and foundational bound
that is easy to show statistically but was not easily generalized to the compu-
tational setting is the famous XOR Lemma, see [5] for a survey. Our bounds
are related in spirit and some of the techniques and statement formulations pre-
sented in this paper were inspired by Levin’s proof of the XOR Lemma [10], and
its presentation in [5]. Further, in Sect. 5 we show how both bounds are needed
and complement each other in order to achieve the computational generalization
to the information-theoretic weak OT amplification.

We provide a direct constructive proof of the tight bound which also works
in the computational setting, both uniform and non-uniform, with an additive
loss of ε which can be made as small as we want, by paying in increasing the
running time or circuit size with relation to 1/ε. To be more specific, for the
non-uniform case, we roughly show that.

Theorem 1 (Informal). Let X0,X1 be dX indistinguishable for size sX cir-
cuits. (Respectively Y0, Y1, dY , sY .) Then, for every k ∈ N, we have that (X0, Y0)
and (X1, Y1) are (dX + dY − dX · dY + εk) indistinguishable for size sk circuits,
where

εk ≤ (dY)k, sk ≈ min {sY , sX/k} .

Corollary 1 (Informal). Let D,Q be distributions that are d indistinguishable
for size s circuits. Then, for every m ∈ N and ε, we have that D⊗m, Q⊗m are
(1 − (1 − d)m + ε) indistinguishable for size sm,ε circuits, where

sm,ε ≈ s(1 − d)m/ log(1/ε).

And we also show similar results in the uniform setting, although with worse
dependency on 1/ε. The corollary essentially states that if the computational
distance between X and Y is at most d, then the computational distance between
the k-product of X and the k-product of Y is upper bounded by almost 1−(1−d)k

for smaller circuits, as against d · k resulted by the looser well known bound,
which in particular may be larger than 1. The proof of the corollary follows by
(carefully) applying the bound of the isolated case again and again. It should be
noted that the difference between the bounds is especially interesting when k is
not very small compared to 1/d. For example, if d = 0.5, k = 3, the tight bound
is 0.875 while the looser bound of 1.5 ≥ 1 is trivial.

A Tight Computational Indistinguishability Bound for Product Distributions 335

We also demonstrate how these bounds may be used in the computational
setting for amplification of weak oblivious transfer protocols [2,13], providing an
alternative straightforward analysis to the fact that the information-theoretic
amplification process also works computationally. In general, when considering
cryptographic primitives with multiple security properties, it is common that
amplifying one property may degrade another, inducing a trade-off. We expect
these bounds may be used in order to achieve a larger range of parameters when
amplifying a weakened version of such primitives.

Finally, an interesting observation regarding the above corollary is how the
circuit size grows only logarithmically with respect to 1/ε. We discuss it further
in the context of the amplification beyond negligible problem.

1.1 Related Work

While the aforementioned coupling technique itself is non-constructive, Maurer
and Tessaro [11] show how to derive a computational analog for it using Holen-
stein’s tight version of the hardcore lemma [6]. This approach could also be used
to derive the tight bound in a general way. However, we believe our direct and
specific approach still holds some advantages:

– Better parameters in the non-uniform setting: In our direct approach, when
building a distinguisher for D,Q from a distinguisher between D⊗m, Q⊗m,
the circuit size is multiplied by roughly log(1/ε)/(1 − d)m. In contrast, using
the hardcore approach the circuit size is multiplied by roughly

(1/ε)2 m2 (log |D| + log |Q|) .

Note that the latter must always be worse as ε < (1 − d)m for the bound to
be meaningful.

– Simplicity and explicitness: The distinguisher given by the hardcore lemma is
somewhat more involved. In contrast, here the distinguisher is rather simple
and easy to understand.

It should also be mentioned that the problem of tight direct product bounds
has also been studied further in the statistical setting, when additional assump-
tions are made about the distributions. For example, see [4,12].

1.2 Organization

We start by introducing basic definitions and notation in Sect. 2. We then con-
tinue to proving the non-uniform variants and their tightness in Sect. 3. We show
how to generalize the non-uniform variants to the uniform setting in Sect. 4. We
then demonstrate an application of these bounds in Sect. 5. Finally, in Sect. 6,
we propose a conjecture aimed to capture the XOR analog to the observation
made above regarding circuit size growth with relation to the slackness.

336 N. Geier

2 Definitions

For a distribution D, denote by D⊗k the distribution of k independent copies of
D. For distributions X0,X1 over Ω, a distinguisher is a boolean A : Ω → {0, 1},
and we let adv+

A(X0,X1) := E [A(X1) − A(X0)]. (The expectation is also over A
if it is not deterministic.) We say that distributions X0,X1 are d indistinguishable
for size s circuits if for any such circuit C, we have that adv+

C(X0,X1) ≤ d.
For distributions X,Y we will denote by (X,Y) the product distribution, given
by two independent samples from X and Y . We denote by B(p) the Bernoulli
distribution with parameter p, and more generally by B�(p) the distribution that
is equal to 1� with probability p and otherwise 0�. For a string s, we denote by
s[i] the i’th bit of s. We will denote by [m] the set {1, . . . ,m}. We denote by
X1/2 the distribution given by b ← {0, 1} , x ← Xb. An ensemble of distributions
X = {Xn} is efficiently samplable if there exists a uniform PPT sampler that
given 1n outputs a sample from Xn.

2.1 Notation

When the same distribution is used multiple times in a single expression, e.g.
(f(D), g(D)) for D, it should be interpreted that a single value d ← D is sampled
and given to both f and g, rather than two independent samples.

3 The Non-uniform Bounds and Tightness

Let us start with the non-uniform version as it is more simple and clean. The
uniform version is a generalization of the ideas presented below. Roughly speak-
ing, we show that given a distinguisher C for (X0, Y0), (X1, Y1), if C(x, ·) is not
a good enough distinguisher between Y0, Y1 for all values of x, then we can build
an amplifier for X0,X1 distinguishers. We then use this amplifier to turn the
trivial distinguisher that always outputs 1 into a good enough distinguisher.

Theorem 2. Let X0,X1 be distributions over �X bits that are dX indistinguish-
able for size sX circuits. (Respectively Y0, Y1, �Y , dY , sY .) Then, for every k ∈ N,
we have that (X0, Y0) and (X1, Y1) are (dX + dY − dX · dY + εk) indistinguish-
able for size sk circuits, where

εk :=
(dY)k · dX (1 − dY)

1 − (dY)k
≤ (dY)k, sk := min

{
sY − �X ,

sX − 1

k
− 5�Y − 1

}
.

Remark 1. We note that our starting point, k = 1, matches the simple hybrid
argument bound of dX +dY since ε1 = dX ·dY , and as k grows larger our bound
gets closer and closer to the tight bound of dX + dY − dX · dY , while the circuits
bound grows smaller. Also note that the bound is asymmetric with respect to
the circuit size bounds. This asymmetry is important for preserving a similar
circuit size when applying the isolated case over and over again. See a similar
argument in [5, Section 3].

A Tight Computational Indistinguishability Bound for Product Distributions 337

Proof. Assume toward contradiction that for some circuit C of size sk, we have
that

adv+
C ((X0, Y0) , (X1, Y1)) > (dX + dY − dX · dY + εk) .

For every fixed x, it must be that C(x, ·) is able to distinguish between Y0 and
Y1 by at most dY , otherwise we get a contradiction as the size of this circuit is
sk + �X ≤ sY . Then, for every candidate distinguisher A between X0 and X1,
we have that

adv+
C

((
X1, YA(X1)

)
, (X1, Y1)

) ≤ dY · Pr [A(X1) = 0]

adv+
C

(
(X0, Y0) ,

(
X0, YA(X0)

)) ≤ dY · Pr [A(X0) = 1]

where x, y ← X1, YA(X1) is resulted by x ← X1, b ← A(x), y ← Yb. This holds
because

adv+
C

((
X1, YA(X1)

)
, (X1, Y1)

)
= E

[
C(X1, Y1) − C(X1, YA(X1))

]

= E [C(X1, Y1) − C(X1, Y0)|A(X1) = 0] · Pr [A(X1) = 0]
+ E [C(X1, Y1) − C(X1, Y1)|A(X1) = 1] · Pr [A(X1) = 1]
= Ex←X1|A(X1)=0 [C(x, Y1) − C(x, Y0)] · Pr [A(X1) = 0]

= Ex←X1|A(X1)=0

[
adv+

C(x,·) (Y0, Y1)
]

· Pr [A(X1) = 0] ≤ dY · Pr [A(X1) = 0]

and using a symmetric argument for the second inequality. Using that (in gen-
eral)

∑

i∈[n]

adv+
C(Di,Di+1) = adv+

C(D1,Dn+1)

we conclude that

adv+
C ((X0, Y0) , (X1, Y1)) = adv+

C

(
(X0, Y0) ,

(
X0, YA(X0)

))

+ adv+
C

((
X0, YA(X0)

)
,
(
X1, YA(X1)

))
+ adv+

C

((
X1, YA(X1)

)
, (X1, Y1)

)

and thus

adv+
C

((
X0, YA(X0)

)
,
(
X1, YA(X1)

))
= adv+

C ((X0, Y0) , (X1, Y1))

− adv+
C

((
X1, YA(X1)

)
, (X1, Y1)

) − adv+
C

(
(X0, Y0) ,

(
X0, YA(X0)

))

> (dX + dY − dX · dY + εk) − (dY · Pr [A(X1) = 0]) − (dY · Pr [A(X0) = 1])
= (dX − dX · dY + εk) + dY (1 − Pr [A(X1) = 0] − Pr [A(X0) = 1])
= (dX − dX · dY + εk) + dY (Pr [A(X1) = 1] − Pr [A(X0) = 1])
= (dX − dX · dY + εk) + dY (E [A(X1)] − E [A(X0)])

= (dX − dX · dY + εk) + dY · adv+
A (X0,X1) .

In other words, we can build a new distinguisher A′ for X0,X1 by applying A
to our input x, sampling y ← YA(x) and feeding (x, y) to C, and have that

adv+
A′ (X0,X1) > (dX − dX · dY + εk) + dY · adv+

A (X0,X1) .

338 N. Geier

If we start from A0 being the trivial distinguisher that always outputs 1 and
keep repeating this process for k steps, we get that

adv+
Ak

(X0, X1) > (dX − dX · dY + εk) + dY · adv+
Ak−1

(X0, X1)

> (dX − dX · dY + εk) + dY · (dX − dX · dY + εk) + (dY)2 · adv+
Ak−2

(X0, X1)

> · · · > (dX − dX · dY + εk)

k−1∑

i=0

(dY)i + (dY)k · adv+
A0

(X0, X1)

= (dX − dX · dY + εk)

k−1∑

i=0

(dY)i =
(dX − dX · dY + εk)

(
1 − (dY)k

)

1 − dY

=

(
dX (1 − dY) + (dY)k·dX (1−dY)

1−(dY)k

) (
1 − (dY)k

)

1 − dY
=

(
dX +

(dY)k · dX

1 − (dY)k

) (
1 − (dY)k

)

= dX

(
1 − (dY)k

)
+ (dY)k · dX = dX .

And so, we have concluded that Ak distinguishes X0 from X1 with advantage
better than dX . Next, for the circuit size, in order to implement Ak we start by
applying Ak−1, sample y0 ← Y0, y1 ← Y1, use a multiplexer to choose y ← yb

where b is the output gate of Ak−1, and finally use the circuit C. Instead of
sampling y0, y1, we can simply use non-uniformity to hard-code the best samples,
at the cost of 2�Y gates. Implementing the multiplexer can be done using 3�Y +1
gates, with one gate computing ¬b and for every i ∈ [�Y] another 3 gates to
compute y[i] = (y0[i] ∧ ¬b) ∨ (y1[i] ∧ b). Overall, we conclude that size(Ak) =
size(Ak−1) + 5�Y + 1 + sk and therefore

size(Ak) = size(A0) + k · (5�Y + 1 + sk) ≤ 1 + k ·
(
5�Y + 1 +

(
sX − 1

k
− 5�Y − 1

))
= sX

which is a contradiction to our assumption that dX is an upper bound on the
advantage of size sX circuits distinguishing X0 from X1.

3.1 The N-Fold Case

Corollary 2. Let D,Q be distributions over � bits that are d indistinguishable
for size s circuits. Then, for every m ∈ N and ε, we have that D⊗m, Q⊗m are
(1 − (1 − d)m + ε) indistinguishable for size sm,ε circuits, where

sm,ε =
s − 1
km,ε

−5m�−1, km,ε =
⌈

log(dε)
log(1 − (1 − d)m + ε)

⌉
≤

⌈
log(1/dε)

(1 − d)m − ε

⌉
.

Proof. If ε ≥ (1 − d)m the statement is trivially true. Otherwise, we start from
D,Q and use Theorem 2 to repeatedly add copies of D,Q for m−1 times, using
km,ε set at the statement, where each time the added copy of D,Q is treated
as X0,X1 and D⊗i, Q⊗i are treated as Y0, Y1. Let di denote the bound on the
advantage of i copies, then we have that d1 = d and di ≤ di−1 + d − di−1 · d +
(di−1)

km,ε . We can see by induction that di ≤ 1 − (1 − d)i + ε for i ∈ [m] as

A Tight Computational Indistinguishability Bound for Product Distributions 339

di ≤ di−1 + d − di−1 · d + (di−1)
km,ε = (1 − d)di−1 + d + (di−1)km,ε

≤ (1 − d)
(
1 − (1 − d)i−1 + ε

)
+ d +

(
1 − (1 − d)i−1 + ε

)km,ε

= 1 − d − (1 − d)i + (1 − d)ε + d +
(
1 − (1 − d)i−1 + ε

)km,ε

= 1 − (1 − d)i + (1 − d)ε +
(
1 − (1 − d)i−1 + ε

)km,ε

≤ 1 − (1 − d)i + (1 − d)ε + (1 − (1 − d)m + ε)km,ε ≤ 1 − (1 − d)i + ε

where in the last inequality we used the choice of km,ε. For the circuit size, we
can easily see by induction on i that si,ε ≥ (s − 1)/km,ε − 5i� − 1, as we have
that s1,ε = s and

si,ε ≥ min
{

s(i−1),ε − �,
s − 1
km,ε

− 5(i − 1)� − 1
}

≥ min
{

s − 1
km,ε

− 5(i − 1)� − 1 − �,
s − 1
km,ε

− 5(i − 1)� − 1
}

≥ s − 1
km,ε

− 5i� − 1.

3.2 Tightness

This is somewhat folklore knowledge, that we explicitly state for the sake of
completeness. We show that for every choice of dX , dY , sX , sY , �X , �Y there exist
two pairs of distributions X0,X1 and Y0, Y1, such that X0,X1 are over �X bits
and cannot be distinguished with advantage better than dX by size sX circuits
(resp. for Y0, Y1 with �Y , dY , sY), yet (X0, Y0) and (X1,X1) can be distinguished
with advantage dX + dY − dX · dY using a size 1 circuit. For the n-fold case,
we show that for every choice of d, s, � there exist distributions X,Y over �
bits with distance at most d against s-sized circuits, such that X⊗k, Y ⊗k can
be distinguished with advantage 1 − (1 − d)k using a circuit of size 2k − 1.
We will use statistical distance in these examples, noting that the statistical
distance between distributions is equal to the maximal advantage of unbounded
adversaries distinguishing between them, and that the statistical distance from
a constant variable is equal to the probability to differ from it.

For the isolated case, we let X0 ≡ 0�X , X1 := B(dX)�X , Y0 ≡ 0�Y , Y1 :=
B(dY)�Y , where B(p)� denotes sampling from B(p) and outputting � copies of
the result. We have that size sX circuits can distinguish between X0,X1 with
advantage at most dX (resp. for Y0, Y1 with sY , dY) as this is the statistical dis-
tance between them. Also, it is easy to verify that the simple size 1 circuit which
given (x, y) computes x[1]∨y[1] distinguishes between (X0, Y0) and (X1, Y1) with
advantage 1 − (1 − dX)(1 − dY) = dX + dY − dX · dY .

For the n-fold case, let X ≡ 0�, Y := B(d)�, then size s circuits can dis-
tinguish X from Y with advantage at most d. Yet, the circuit of size 2k − 1
which given (z1, . . . , zk) computes ∨izi[1] (using a full binary tree of OR gates)
distinguishes between X⊗k and Y ⊗k with advantage 1 − (1 − d)k.

340 N. Geier

4 The Uniform Variant

We used non-uniformity two times in the proof of Theorem 2. The second time,
which is easier to deal with, is in the circuit size analysis where we hard-coded
the best samples of y0, y1 to each iteration of Ai. Instead, in the uniform version,
we will use uniform samplers of Y0, Y1.

The first use of non-uniformity was when we assumed that C(x, ·) is at most
a dY -distinguisher between Y0 and Y1, for every fixed x, otherwise we can use
non-uniformity to be done. More specifically, we used this assumption to get
that

adv+
C

((
X1, YA(X1)

)
, (X1, Y1)

) ≤ dY · Pr [A(X1) = 0] .

For the uniform case, we will relax this condition to x not being easy to hard-
code, in the following sense:

Pr
x←X1/2

[
adv+

C(x,·) (Y0, Y1) > dY + εk

]
≤ εk

where X1/2 is given by b ← {0, 1} , x ← Xb. If this condition does not hold then
we can efficiently compute a good x, except for negligible probability, assuming
that efficient uniform samplers for X0,X1, Y0, Y1 exist. Otherwise, we will see
that

adv+
C

((
X1, YA(X1)

)
, (X1, Y1)

) ≤ dY · Pr [A(X1) = 0] + 3εk

and so almost the same argument from the non-uniform case works, except
that now we lose another small additive term. Let us state and prove this more
formally:

Lemma 1. Let X0 = {X0,n},X1 = {X1,n}, Y0 = {Y0,n}, Y1 = {Y1,n} be ensem-
bles of efficiently samplable distributions, and dX(n), dY (n) be efficiently com-
putable functions between 0 and 1. Then, for every k ∈ N and time t(n) Turing
machine M distinguishing (X0, Y0) from (X1, Y1) infinitely often with advantage
at least (dX + dY − dX · dY + 7εk) for

εk :=
(dY)k · dX (1 − dY)

1 − (dY)k
≤ (dY)k,

we have that either M efficiently yields a distinguisher for Y0, Y1 through a hard-
coding of x, in the sense that for infinitely many n’s

Pr
x←X1/2

[
adv+

M(1n,x,·) (Y0, Y1) > dY + εk

]
> εk,

or there exists a time t · poly(nk) infinitely often distinguisher between X0,X1

with advantage at least dX .

Proof. For the sake of notational ease, we will drop the asymptotic notation and
replace M(1n) with C. Assume that for all but finitely many n’s,

Pr
x←X1/2

[
adv+

C(x,·) (Y0, Y1) > dY + εk

]
≤ εk.

A Tight Computational Indistinguishability Bound for Product Distributions 341

Then, for every candidate distinguisher A between X0 and X1, for all but finitely
many n’s, we have that

adv+
C

((
X1, YA(X1)

)
, (X1, Y1)

) ≤ dY · Pr [A(X1) = 0] + 3εk

adv+
C

(
(X0, Y0) ,

(
X0, YA(X0)

)) ≤ dY · Pr [A(X0) = 1] + 3εk

where x, y ← X1, YA(X1) is resulted by x ← X1, b ← A(x), y ← Yb. To see this,
we first note that

εk ≥ Pr
x←X1/2

[
adv+

C(x,·) (Y0, Y1) > dY + εk

]

≥ 1
2

Pr [A(X1) = 0] Pr
x←X1|A(X1)=0

[
adv+

C(x,·) (Y0, Y1) > dY + εk

]

which implies that

Ex←X1|A(X1)=0

[
adv+

C(x,·) (Y0, Y1)
]

≤ dY +εk +
2εk

Pr [A(X1) = 0]
≤ dY +

3εk

Pr [A(X1) = 0]
.

Plugging it into the last inequality in the following, we get

adv+
C

((
X1, YA(X1)

)
, (X1, Y1)

)
= E

[
C(X1, Y1) − C(X1, YA(X1))

]

= E [C(X1, Y1) − C(X1, Y0)|A(X1) = 0] · Pr [A(X1) = 0]

+ E [C(X1, Y1) − C(X1, Y1)|A(X1) = 1] · Pr [A(X1) = 1]

= Ex←X1|A(X1)=0 [C(x, Y1) − C(x, Y0)] · Pr [A(X1) = 0]

= Ex←X1|A(X1)=0

[
adv+

C(x,·) (Y0, Y1)
]

· Pr [A(X1) = 0] ≤ dY · Pr [A(X1) = 0] + 3εk

and use a symmetric argument for the second upper bound. Using that (in
general)

∑

i∈[n]

adv+
C(Di,Di+1) = adv+

C(D1,Dn+1)

we conclude that

adv+
C ((X0, Y0) , (X1, Y1)) = adv+

C

(
(X0, Y0) ,

(
X0, YA(X0)

))

+ adv+
C

((
X0, YA(X0)

)
,
(
X1, YA(X1)

))
+ adv+

C

((
X1, YA(X1)

)
, (X1, Y1)

)

and thus

adv+C
((

X0, YA(X0)

)
,
(
X1, YA(X1)

))
= adv+C ((X0, Y0) , (X1, Y1))

− adv+C
((

X1, YA(X1)

)
, (X1, Y1)

) − adv+C
(
(X0, Y0) ,

(
X0, YA(X0)

))
> (dX + dY − dX · dY + 7εk) − (dY · Pr [A(X1) = 0] + 3εk) − (dY · Pr [A(X0) = 1] + 3εk)

= (dX − dX · dY + εk) + dY (1 − Pr [A(X1) = 0] − Pr [A(X0) = 1])

= (dX − dX · dY + εk) + dY (Pr [A(X1) = 1] − Pr [A(X0) = 1])

= (dX − dX · dY + εk) + dY (E [A(X1)] − E [A(X0)])

= (dX − dX · dY + εk) + dY · adv+A (X0, X1) .

342 N. Geier

In other words, we can build a new distinguisher A′ for X0,X1 by applying A
to our input x, sampling y ← YA(x) and feeding (x, y) to C, and have that

adv+
A′ (X0,X1) > (dX − dX · dY + εk) + dY · adv+

A (X0,X1) .

If we start from A0 being the trivial distinguisher that always outputs 1 and
keep repeating this process for k steps, we get that

adv+
Ak

(X0, X1) > (dX − dX · dY + εk) + dY · adv+
Ak−1

(X0, X1)

> (dX − dX · dY + εk) + dY · (dX − dX · dY + εk) + (dY)2 · adv+
Ak−2

(X0, X1)

> · · · > (dX − dX · dY + εk)

k−1∑

i=0

(dY)i + (dY)k · adv+
A0

(X0, X1)

= (dX − dX · dY + εk)

k−1∑

i=0

(dY)i =
(dX − dX · dY + εk)

(
1 − (dY)k

)

1 − dY

=

(
dX (1 − dY) + (dY)k·dX (1−dY)

1−(dY)k

) (
1 − (dY)k

)

1 − dY
=

(
dX +

(dY)k · dX

1 − (dY)k

) (
1 − (dY)k

)

= dX

(
1 − (dY)k

)
+ (dY)k · dX = dX .

And so, we have concluded that Ak distinguishes X0 from X1 with advantage
better than dX . In order to implement Ak we need to run C, sample Y0, Y1 and
use a multiplexer, for k times, so we conclude that time(Ak) = t · poly(n, k).

Remark 2. In particular, we can use this lemma to show that if X0,X1 are dX

ind. and Y0, Y1 are dY ind. then (X0, Y0) and (X1, Y1) are dX +dY −dX ·dY +7εk

ind. for Turing machines with running time of

t = min{tX/poly(n, k), tY /poly(n, 1/εk)},

which may be good enough for a constant number of uses, but does not work well
beyond that, as every use costs us a division of the time bound by a polynomial.
This is why we cannot prove the n-fold case immediately by repeatedly applying
Lemma 1. The key idea is that we do not need to keep resampling and testing
over and over again, but instead, once we find a good enough x in the i’th
coordinate, we fix it for the rest of the process, or if the hard-coding of the i’th
coordinate does not succeed, the above lemma states we can distinguish there.

Theorem 3. Let X = {Xn}, Y = {Yn} be ensembles of efficiently samplable
distributions that are d(n) indistinguishable for time t(n) Turing machines.
Then, for every m = m(n), we have that X⊗m and Y ⊗m are (1−(1−d)m+7mε)
indistinguishable for time tm,ε Turing machines, where

tm,ε = t/poly(n, m, km,ε, 1/ε), km,ε =

⌈
log(ε)

log(1 − (1 − d)m + 7mε)

⌉
≤

⌈
log(1/ε)

(1 − d)m − 7mε

⌉
.

Proof. For i = 0, 1, . . . , m − 1, we try to hard-code the m − i’th coordinate
using poly(n, 1/ε) samples, and getting a distinguisher for X⊗m−i, Y ⊗m−i with

A Tight Computational Indistinguishability Bound for Product Distributions 343

advantage of at least 1− (1− d)m−i +7(m− i)ε except for negligible probability
(the probability that the estimate was good but not truthful to the expectation)
until for some i we fail to find a good value to hard-code (if we reached i = m−1
and succeeded then we are done). Once we fail, we apply the isolated case of
Lemma 1, which essentially states that if the hard-coding of X,Y into such
circuit failed, then one can build a distinguisher for them, and we are done.

Let us be more explicit about how we sample and hard-code the m − i’th
coordinate: We are given (except for negligible probability) good samples for
the coordinates in m − i + 1, . . . , m and hard-code them into A, getting a 1 −
(1 − d)m−i + 7(m − i)ε distinguisher for X⊗m−i, Y ⊗m−i, which we view as the
product of X⊗m−i−1, Y ⊗m−i−1 with X,Y . We first note that our choice of k
guarantees that εk ≤ ε for all 1 − (1 − d)m−i + 7(m − i)ε. We start by trying to
work under the “hard-coding” assumption that

Pr
z←X/Y

[
adv+

A(z,·)
(
X⊗m−i−1, Y ⊗m−i−1

)
> 1 − (1 − d)m−i−1 + 7(m − i − 1)ε + ε

]
> ε

and generate a distinguisher for X⊗m−i−1, Y ⊗m−i−1 as follows: Keep sampling
z ← X/Y and estimating adv+

A(z,·)
(
X⊗m−i−1, Y ⊗m−i−1

)
using r samples from

X⊗m−i−1/Y ⊗m−i−1, until we succeed in finding z with an estimate of at least
1−(1−d)m−i−1+7(m−i−1)ε+0.5ε, then fix this good z in this coordinate and
move forward, or stop after q tries if no such z has been found. Using Hoeffding’s
inequality, for every z, the probability that the estimate’s error is greater than
ε/2 is at most 2e−r·(ε/2)2/2. If all estimates were ε/2 accurate and a good z
has been drawn, the process succeeds in finding a z with advantage of at least
1 − (1 − d)m−i−1 + 7(m − i − 1)ε and we can move on, so our probability to fail
at that, under the above assumption, is at most

q · 2e−r·ε2/32 + (1 − ε)q ≤ 2elog(q/2)−r·ε2/32 + e−q·ε ≤ neg(n)

by choosing, say,

q = n/ε = poly(n, 1/ε), r = 64n/ε3 > (log(q/2) + n) · 32/ε2 = poly(n, 1/ε).

Hence paying with a time complexity of tm,ε · poly(n, 1/ε) for every coordinate.
If we could not find a good z, we use Lemma 1: If we can distinguish

X⊗m−i, Y ⊗m−i with advantage

(1 − d)
(
1 − (1 − d)m−i−1 + 7(m − i − 1)ε

)
+ d + 7ε

= 1 − (1 − d)m−i + (1 − d)7(m − i − 1)ε + 7ε

≤ 1 − (1 − d)m−i + 7(m − i)ε ≤ adv+
A

(
X⊗m−i, Y ⊗m−i

)

and the assumption about finding a good z to hard-code for X⊗m−i−1, Y ⊗m−i−1

does not hold, then we can build a d-distinguisher for X,Y in time tm,ε ·
poly(n, k). The probability that at some point in the process we failed to hard-
code a good z at the m − i’th coordinate even though the assumption held is
m(n) · neg(n) = neg(n).

We remark this proof is easily generalized to the case where not all pairs in
the product are identical, that is, for

⊗
Xi and

⊗
Yi, with a distance bound of

(1 − ∏
i(1 − di) + 7mε).

344 N. Geier

5 Applications

As an application, we consider the amplification of weak oblivious transfer proto-
cols. We briefly explain how our bounds, paired with Yao’s XOR Lemma, yield a
natural generalization in the computational setting to the amplification process
presented in [2, Subsection 4.3]. We note that it was already shown, using The
Hardcore Theorem [1,8], that the same amplification process also works compu-
tationally [13]. Yet we find our constructive and explicit approach more natural
and straightforward.

For the sake of simplicity, let us consider the amplification of error-less (p, q)-
weak semi-honest 1-2 OT: The receiver with bit c is trying to learn bc, where
(b0, b1) is the database of the sender. We say the protocol is (p, q) weak if the
view of the sender when c = 0 is p-indistinguishable from its view when c = 1
(equivalently, c is at most p-correlated to the view of the sender), and the view
of the receiver when bc = 0 is q-indistinguishable from its view when bc = 1.

In [2, Subsection 4.2], two fundamental operations that will be used as
building blocks in the amplification process are presented. One is an operation
called S-Reduce that amplifies indistinguishability against the sender but wors-
ens indistinguishability against the receiver, and the other is an operation called
R-Reduce that amplifies indistinguishability against the receiver but worsens
indistinguishability against the sender. Both of them work using secret sharing
over multiple applications of the underlying protocol, in the first the receiver’s
choice bit is secret shared and in the other, the sender’s database. They receive
a weak protocol W together with a parameter k and work as follows:

S-Reduce(k,W)
1: Inputs: c, (b0, b1)
2: The receiver splits c randomly into k shares {ci}k

i=1 conditioned on ⊕k
i=1ci = c.

3: The sender splits b0 randomly into k shares {b0i}k
i=1 conditioned on ⊕k

i=1b0i = b0,
and sets b1i = b0i ⊕ b0 ⊕ b1.

4: for i = 1 to k do
5: Run W with ci, (b0i, b1i).
6: end for
7: The receiver outputs the XOR of all k received bits, that is, ⊕k

i=1bci, i.

A Tight Computational Indistinguishability Bound for Product Distributions 345

R-Reduce(k,W)
1: Inputs: c, (b0, b1)
2: The receiver sets ci = c for i ∈ [k].
3: The sender splits b0 randomly into k shares {b0i}k

i=1 conditioned on ⊕k
i=1b0i = b0,

and also splits b1 randomly into k shares {b1i}k
i=1 conditioned on ⊕k

i=1b1i = b1.
4: for i = 1 to k do
5: Run W with ci, (b0i, b1i).
6: end for
7: The receiver outputs the XOR of all k received bits, that is, ⊕k

i=1bci, i.

Correctness of R-Reduce is straightforward. For S-Reduce, note that in the
i’th call the receiver learns b0i ⊕ ci · (b0 ⊕ b1). When XORing them all together
over i ∈ [k], we get b0 ⊕ c · (b0 ⊕ b1) which is exactly what we needed.

For receiver-security, if W has receiver-security of p, we can use the XOR
Lemma to deduce that S-Reduce(k,W) has receiver-security of pk + ε, because
the shares {ci}k

i=1 are random and independent (over a random choice of c) and
for every fixing of the sender’s randomness, the i’th transcript is independent
of the rest and is at most p-correlated to ci. We can also use our own product
bound to deduce that R-Reduce(k,W) has receiver-security of 1 − (1 − p)k + ε,
because for every fixing of the sender’s randomness, the transcripts are indepen-
dent conditioned on c and each one is at most p-correlated to c. Using similar
arguments, it can be shown that symmetrically, sender-security amplifies to qk+ε
in R-Reduce(k,W) and weakens to 1 − (1 − q)k + ε in S-Reduce(k,W). These
are exactly the same bounds used in the information-theoretic OT amplification
analysis, up to the additive ε paid for each use.

The goal is to use these two operations repeatedly one after the other in order
to reduce both parameters. It is already shown in [2, Lemma 4] exactly how this
is done, but for the sake of completeness let us summarize the process as follows:
Assume without loss of generality that p ≤ q (other case is symmetric). If p ≥ 0.2,
by applying R-Reduce(2, ·) followed by S-Reduce(2, ·), the distance between the
error sum p + q and 1 is multiplied by at least 1.1. Otherwise, if q > 0.4, by
applying R-Reduce(2, ·) the distance between p + q and 1 is multiplied by at
least 1.2. Otherwise, if p + q > 0.2, we again apply R-Reduce(2, ·) followed by
S-Reduce(2, ·), with the guarantee that the error sum p+q multiplies by a factor
of at most 0.8. Finally, in the case where p + q ≤ 0.2, we apply R-Reduce(4, ·)
followed by S-Reduce(4, ·), and the guarantee is that the error sum is at least
squared, that is, (p′ + q′) ≤ (p + q)2, so the progress downwards is quick.

To conclude, the same analysis from the information-theoretic setting holds
here, up to an additive ε accumulated at each use. Let p(n) be a bound on
the total number of calls to the original protocol in the information-theoretic
transformation, then all advantages throughout the process are 1/p(n)-bounded
away from 1, otherwise we would not be able to reduce them to negligible.
By setting ε′ = ε/p(n), for every advantage d through the process we have
d + ε′ ≤ ε + (1 − ε)d, so we can imagine, for the sake of the analysis, as if
every call to either S-Reduce or R-Reduce incurs a chance of ε at failing and

346 N. Geier

revealing everything, and otherwise works exactly like the information-theoretic
world. Since the number of calls is polynomial, the total probability of failing is
at most poly(n) · ε and we can make it as (polynomially) small as we want.

There is one small issue, however - the running time. In the information-
theoretic process we make log log(n) calls to S-Reduce and R-Reduce (when p
and q are constants), and each such call, when using Yao’s XOR Lemma or the
bounds in this paper, decreases the bound on the running time by a division in
a polynomial. Therefore, we need the assumption that our weak OT is secure
against nO(log log n) adversaries. We remark that this issue can be overcome by
choosing an increasing series of errors instead of fixing ε throughout the process.
If 1− (p+ q) is not lower bounded by a constant but by 1/poly(n), then we need
security against nO(log n) adversaries.

6 Open Questions

An issue that keeps appearing in security reductions where amplification is
involved is the problem of amplification beyond negligible [3]. For example see
[5, Lemma 3] and the discussion following it. Roughly speaking, in these types of
reductions we can show security holds except for negligible probability but noth-
ing concrete beyond that without increasing the running time of the reduction
to be super-polynomial.

For a more specific example, let us consider Levin’s proof of the XOR Lemma
[10]. Informally, it is shown that if for X0,X1 we have that b is at most d-
correlated to Xb by s-sized circuits, then

⊕t
i=1 bi is at most dt + ε-correlated to

Xb1 , . . . , Xbt
by s · poly(ε)-sized circuits. Note the trade-off between the reduc-

tion accuracy and the circuit size bound. Another trade-off can also be seen in
Theorem 2. If we only know that s is greater than any polynomial then we can
push ε up to negligible but nothing concrete beyond that, otherwise the circuit
size bound becomes meaningless.

As noted in [5], Rudich has observed that we cannot expect to overcome
this issue in a black-box way. Further, in [3] an example is given, based on non-
standard assumptions, of a weak OWF that cannot be amplified beyond negligi-
ble using the direct product transformation. That is, it may be that overcoming
this issue is not just hard to prove, but can be altogether false. Nonetheless,
what happens in general is still unclear, and there are still open directions of
either strengthening the impossibilities by reducing assumptions, or of showing
that some form of amplification beyond negligible is achievable.

Interestingly enough, when considering Corollary 2, we note how the circuit
size growth is actually only logarithmic in 1/ε, although linear in 1/(1 − d)m.
Still, if d and m are constants, then we can reduce the error exponentially well
while maintaining efficiency of the circuits. This brings us to the following conjec-
ture, aiming to formulate the XOR equivalent of the above, stated with specific
parameters for simplicity:
Conjecture 1 (Informal). If b is at most 0.5-correlated to Xb by s-sized circuits,
then b1 ⊕ b2 is at most 0.25 + 2−n-correlated to Xb1 ,Xb2 by s/poly(n)-sized
circuits.

A Tight Computational Indistinguishability Bound for Product Distributions 347

In other words, as long as we are not trying to achieve correlation beyond negli-
gible, we can get exponentially close efficiently. This could be seen as a first step
towards a positive result.

References

1. Barak, B., Hardt, M., Kale, S.: The uniform hardcore lemma via approximate
bregman projections. In: Mathieu, C. (ed.) Proceedings of the Twentieth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2009, New York, NY,
USA, 4–6 January 2009, pp. 1193–1200. SIAM (2009). http://dl.acm.org/citation.
cfm?id=1496770.1496899

2. Damg̊ard, I., Kilian, J., Salvail, L.: On the (im)possibility of basing oblivious trans-
fer and bit commitment on weakened security assumptions. In: Stern, J. (ed.)
EUROCRYPT 1999. LNCS, vol. 1592, pp. 56–73. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48910-X 5

3. Dodis, Y., Jain, A., Moran, T., Wichs, D.: Counterexamples to hardness ampli-
fication beyond negligible. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp.
476–493. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-
9 27

4. Fehr, S., Vaudenay, S.: Sublinear bounds on the distinguishing advantage for mul-
tiple samples. In: Aoki, K., Kanaoka, A. (eds.) IWSEC 2020. LNCS, vol. 12231, pp.
165–183. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58208-1 10

5. Goldreich, O., Nisan, N., Wigderson, A.: On Yao’s XOR-lemma. Electron. Collo-
quium Comput. Complex 2(50) (1995). http://eccc.hpi-web.de/eccc-reports/1995/
TR95-050/index.html

6. Holenstein, T.: Key agreement from weak bit agreement. In: Gabow, H.N., Fagin,
R. (eds.) Proceedings of the 37th Annual ACM Symposium on Theory of Comput-
ing, Baltimore, MD, USA, 22–24 May 2005, pp. 664–673. ACM (2005). https://
doi.org/10.1145/1060590.1060689

7. Hollander, F.: Probability theory: the coupling method (2012)
8. Impagliazzo, R.: Hard-core distributions for somewhat hard problems. In: 36th

Annual Symposium on Foundations of Computer Science, Milwaukee, Wisconsin,
USA, 23–25 October 1995, pp. 538–545. IEEE Computer Society (1995). https://
doi.org/10.1109/SFCS.1995.492584

9. Kontorovich, A.: Obtaining measure concentration from Markov contraction.
Markov Process. Related Fields 18(4), 613–638 (2012)

10. Levin, L.A.: One-way functions and pseudorandom generators. Combinatorica
7(4), 357–363 (1987). https://doi.org/10.1007/BF02579323

11. Maurer, U., Tessaro, S.: A hardcore lemma for computational indistinguishability:
security amplification for arbitrarily weak PRGs with optimal stretch. In: Mic-
ciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 237–254. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-11799-2 15

12. Renner, R.: On the variational distance of independently repeated experiments.
CoRR abs/cs/0509013 (2005). http://arxiv.org/abs/cs/0509013

13. Wullschleger, J.: Oblivious-transfer amplification. In: Naor, M. (ed.) EUROCRYPT
2007. LNCS, vol. 4515, pp. 555–572. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-72540-4 32

http://dl.acm.org/citation.cfm?id=1496770.1496899
http://dl.acm.org/citation.cfm?id=1496770.1496899
https://doi.org/10.1007/3-540-48910-X_5
https://doi.org/10.1007/978-3-642-28914-9_27
https://doi.org/10.1007/978-3-642-28914-9_27
https://doi.org/10.1007/978-3-030-58208-1_10
http://eccc.hpi-web.de/eccc-reports/1995/TR95-050/index.html
http://eccc.hpi-web.de/eccc-reports/1995/TR95-050/index.html
https://doi.org/10.1145/1060590.1060689
https://doi.org/10.1145/1060590.1060689
https://doi.org/10.1109/SFCS.1995.492584
https://doi.org/10.1109/SFCS.1995.492584
https://doi.org/10.1007/BF02579323
https://doi.org/10.1007/978-3-642-11799-2_15
http://arxiv.org/abs/cs/0509013
https://doi.org/10.1007/978-3-540-72540-4_32
https://doi.org/10.1007/978-3-540-72540-4_32

Secure Sampling with Sublinear
Communication

Seung Geol Choi1(B) , Dana Dachman-Soled2 , S. Dov Gordon3,
Linsheng Liu4 , and Arkady Yerukhimovich4

1 United States Naval Academy, Annapolis, USA
choi@usna.edu

2 University of Maryland, College Park, USA
danadach@ece.umd.edu

3 George Mason University, Fairfax City, USA
gordon@gmu.edu

4 George Washington University, Washington, USA
{lls,arkady}@gwu.edu

Abstract. Random sampling from specified distributions is an impor-
tant tool with wide applications for analysis of large-scale data. In this
paper we study how to randomly sample when the distribution is parti-
tioned among two parties’ private inputs. Of course, a trivial solution is
to have one party send a (possibly encrypted) description of its weights
to the other party who can then sample over the entire distribution (pos-
sibly using homomorphic encryption). However, this approach requires
communication that is linear in the input size which is prohibitively
expensive in many settings. In this paper, we investigate secure 2-party
sampling with sublinear communication for many standard distributions.
We develop protocols for L1, and L2 sampling. Additionally, we investi-
gate the feasibility of sublinear product sampling, showing impossibility
for the general problem and showing a protocol for a restricted case of the
problem. We additionally show how such product sampling can be used
to instantiate a sublinear communication 2-party exponential mechanism
for differentially-private data release.

1 Introduction

Random sampling is an important tool when computing over massive data sets.
It has wide application in generating small summaries of data, and serves as a key
building block in the design of many algorithms and estimation procedures. In
particular, Lp sampling has been used to develop important streaming algorithms
such as the heavy hitters, Lp norm estimation, cascaded norm estimation, and
finding duplicates in data streams [2,5,21,27].

In this work, we introduce and explore the problem of private two-party
sampling. We consider a setting in which two parties would like to sample from a
distribution whose probability mass function is distributed across the two parties.
Specifically, we assume parties P1 and P2 each hold n-dimensional vectors w1 =
(w1,1, . . . , w1,n) and w2 = (w2,1, . . . , w2,n) respectively where every wb,j is non-
negative. These vectors each represent a (possibly non-normalized) probability
c© The Author(s), under exclusive license to Springer Nature Switzerland 2022
E. Kiltz and V. Vaikuntanathan (Eds.): TCC 2022, LNCS 13748, pp. 348–377, 2022.
https://doi.org/10.1007/978-3-031-22365-5_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22365-5_13&domain=pdf
http://orcid.org/0000-0001-9563-9648
http://orcid.org/0000-0001-6797-641X
http://orcid.org/0000-0002-8982-9688
http://orcid.org/0000-0002-9045-748X
https://doi.org/10.1007/978-3-031-22365-5_13

Secure Sampling with Sublinear Communication 349

mass function of a distribution. Specifically, for b ∈ {1, 2}, i ∈ [n], the non-
negative value wb,i

||wb||1 represents the probability mass placed by distribution Db

on element i. We assume that the dimension n is very large, and our goal is to
obtain secure sampling protocols with communication that is sub-linear in n.

We consider various ways of deriving the probability mass function D of the
joint distribution from the two individual probability mass functions. Specifically,
we consider:

– L1 distribution: Sample item i with probability w1,i+w2,i
||w1+w2||1 = w1,i+w2,i∑

j(w1,j+w2,j)
.

– L2 distribution: Sample item i with probability (w1,i+w2,i)
2

||w1+w2||22 = (w1,i+w2,i)
2

∑
j(w1,j+w2,j)2

.

– Product distribution: Sample item i with probability w1,i·w2,i
〈w1,w2〉 =

w1,i·w2,i∑
j(w1,j ·w2,j)

1.

Realizing these sampling functionalities securely is immediate via generic
2PC techniques, but the resulting protocols will require communication that is
linear in the input length. With sublinear communication, however, it is unclear
how to perform some of these tasks (or whether it is even possible to do so),
even with an insecure protocol. We give a (partial) characterization of when
such sublinear sampling is possible, and give secure protocols for realizing these
functionalities where possible.

Product Sampling and the Exponential Mechanism. While L1 and L2

sampling are well-studied, to the best of our knowledge, we are the first to
consider the notion of product sampling. We describe a concrete, independent
application for this new notion: product sampling can be used to implement a
distributed version of the well-known exponential mechanism for differentially-
private data release [25].

1.1 Our Work

We explore the problems described above, providing multiple two-party proto-
cols, all with sub-linear communication, in the semi-honest security model. We
note that our protocol for product sampling has additional leakage, beyond what
is revealed by the sampling functionality. We characterize exactly what this leak-
age is, and provide evidence that similar leakage is necessary to achieve sublinear
communication. Specifically, we show the following.

L1 Sampling. We begin by constructing a two-party protocol for L1 sampling
that relies on fully homomorphic encryption (FHE). The main idea behind the
protocol is to obliviously sample from each of the two parties inputs indepen-
dently, and then to securely choose one of the two samples using an appropriately
biased coin toss. The results are described in Sect. 2.

1 Of course, if 〈w1,w2〉 = 0, the probability space is not well-defined, and in this case,
we require the protocol to simply output ⊥.

350 S. G. Choi et al.

L2 Sampling. We also provide a protocol for secure L2 sampling that relies on
fully homomorphic encryption (see Sect. 3). In this case, however, achieving L2

sampling is non-trivial. In fact, even relying on FHE, it is not immediately clear
how to compute ‖w1 + w2‖22 with sublinear communication.

Surprisingly, our L2 sampling protocol runs in constant rounds and with Õ(1)
communication2. Interestingly, it does not require us to compute ‖w1 + w2‖22.
To achieve this, we developed a novel technique called “corrective sampling”,
which we overview in the next subsection. We note that our techniques straight-
forwardly extend to Lp sampling, for constant p.

Product Sampling. We then turn to product sampling. We assume, without
loss of generality, that the vectors wb are normalized (see Sect. 4 for justification).

We first begin with a communication lowerbound, demonstrating that prod-
uct sampling with sublinear communication is impossible, even without pri-
vacy guarantees, if the two input distributions are insufficiently correlated (i.e.,
〈w1,w2〉 = o(1

n2)). We show this through a reduction from the Set Disjointness
problem.

Knowing this lowerbound, we consider the problem under a promise that the
input vectors are sufficiently correlated. Assuming that 〈w1,w2〉 = ω(log n

n), we
provide a two-party protocol for secure product sampling leaking (at most) the
inner product of the two parties’ inputs. We note that the promise itself leaks
some information, so some leakage here is inevitable. Interestingly, we observe
that the protocol can be modified to provide a trade-off between the communi-
cation cost and the leakage. We also discuss why this trade-off is inherent.

Constant Round Product Sampling. Our product sampling protocol has a
round complexity that depends on the inner product. In Sect. 5, we show how to
make our construction constant round while incurring small additional leakage.
Importantly, we must do this without computing the exact inner product which
itself requires O(n) communication [3].

Two Party Exponential Mechanism. As mentioned previously, one impor-
tant application of product sampling is the exponential mechanism for providing
differential privacy [25]. Details are in Appendix F in the full version [7].

For this particular application we face an additional challenge: the leakage
of 〈w1,w2〉 that we relied on for achieving sub-linear communication in product
sampling does not preserve differential privacy. To overcome this issue, we con-
struct a new, differentially-private approximation for inner product, and show
how to use this for building a sub-linear communication secure computation of
the exponential mechanism.

2 Throughout the paper, we will describe the round and communication complexi-
ties using the asymptotic notation only based on n. That is, all other parameters
(e.g., security parameter) independent on n will be suppressed in the asymptotic
expressions.

Secure Sampling with Sublinear Communication 351

1.2 Technical Overview

In the following, we overload notation and let D denote a distribution as well
as its probability mass function. As discussed previously, we consider the case
where a probability mass function is distributed across two parties, and the
parties would like to securely sample from the corresponding distribution. We
consider several ways in which the probability mass function can be distributed
across the two parties.

L1 Sampling of Convex Combinations. In this case, party 1 (resp. party
2) holds a vector w1 (resp. w2), indexed from 1 to n. For i ∈ [n], w1,i/||w1||1
(resp. w2,i/||w2||1) corresponds to the probability mass of i under distribution
D1 (resp. D2). The goal of the parties is to sample from the distribution D,
defined as follows for i ∈ [n]:

D[i] :=
||w1||1

||w1||1 + ||w2||1 · w1,i

||w1||1 +
||w2||1

||w1||1 + ||w2||1 · w2,i

||w2||1
=

||w1||1
||w1||1 + ||w2||1 · D1[i] +

||w2||1
||w1||1 + ||w2||1 · D2[i]

Note that the target distribution D is a convex combination of the distributions
D1 and D2 held by the two parties.

A potentially straightforward sampling protocol is to therefore have party 1
locally draw a sample i1 from D1, party 2 locally draw a sample i2 from D2,
and then run a secure two party computation that outputs i1 with probability

||w1||1
||w1||1+||w2||1 and i2 with probability ||w2||1

||w1||1+||w2||1 .
This protocol clearly has sublinear communication, but it unfortunately does

not securely realize the ideal functionality. The reason is as follows: conditioned
on the ideal functionality outputting a certain index i∗, the probability that i∗

was drawn by party 1 (resp. party 2) is w1,i∗
w1,i∗+w2,i∗

(resp. w2,i∗
w1,i∗+w2,i∗

). Thus,
if the simulator receives i∗ from the ideal functionality and has to simulate the
view of party 1, it needs to set i1 = i∗ with probability w1,i∗

w1,i∗+w2,i∗
and set i1 �= i∗

with probability w2,i∗
w1,i∗+w2,i∗

. However, the simulator is not able to simulate these
probabilities correctly, since it does not know w2,i∗ .

To get around this issue we therefore have the parties sample i1 and i2 obliv-
iously. To do this with sublinear communication, we can use fully homomorphic
encryption (FHE). Specifically, to sample i1, player 1 first encrypts his input w1

using an FHE scheme for which he does not know the secret key. The players
then jointly choose a random value r ∈ [0, ||w1||1). Player 1 then uses the homo-
morphic operations to find the value i1 chosen by this r, and the parties use
threshold decryption to recover a secret sharing of i1. The parties reverse roles
to sample i2. Details of this construction are provided in Sect. 2.

Additionally, an alternative construction that uses sub-linear OT for the
oblivious sampling is provided in Appendix D in the full version.

L2 Sampling of Component-wise Sum. In this case, party 1 (resp. party 2)
holds a vector w1 (resp. w2), indexed from 1 to n. For i ∈ [n]. The goal of the
parties is to sample from the distribution D defined as follows for i ∈ [n]:

352 S. G. Choi et al.

D[i] :=
(w1,i + w2,i)2

||w1 + w2||22
.

We present a protocol that samples from this distribution with Õ(1) com-
munication. This protocol relies on a novel technique that we call “corrective
sampling”, which is an interesting type of rejection sampling. In what follows,
we describe an insecure version of our protocol to give the intuition behind it.
To make it secure, we carry out the corrective sampling under FHE as described
in Protocol 4.

The main challenge that we face here, unlike in the case of L1 sampling, is
that it is impossible to compute ||w1+w2||22 (and therefore impossible to compute
D[i] for each i) with sublinear communication [3]. Instead, we sample index i
from a different, related, distribution, which is easy to sample with sub-linear
communication. We then show that we can efficiently correct this distribution by
rejecting with the appropriate probability. Interestingly, we show that corrective
rejection, which depends on the index i, doesn’t require us to explicitly compute
||w1 + w2||22. In fact, the parties never learn the corrective term at all!

First, as in rejection sampling, corrective sampling proceeds in trials and
in each trial, for every i, the probability that the protocol successfully samples
index i is α ·D[i] for some unknown constant 0 < α < 1. Since the same constant
α is applied to every index i, by repeating the trials, the protocol samples index
i correctly without skewing the distribution D. The expected number of trials is
1/α. We therefore need to keep 1/α ∈ O(1) to reach our target communication
complexity.

As mentioned above, we observe that the protocol never has to explicitly
compute α. Towards describing how this is done, first note that in D[i], the
denominator, ||w1+w2||22 – which we assume for purposes of this exposition is at
least 1 – is the same for every i, so it can be pushed into α without impacting the
discussion above: letting α′ = α/(||w1+w2||22), it suffices to implement rejection
sampling with a protocol that samples index i with probability α′ · (wi,1 +wi,2)2

= α · D[i]. This protocol would only need to explicitly compute (wi,1 + wi,2)2

(which can be done efficiently given i), but not α′.
Unfortunately, this does not quite work. ||w1+w2||22 can be very large, which

would then make 1/α′ large. We therefore must combine the above with another
idea to ensure that our corrective term introduces at most a O(1) overhead.

We achieve this by having each trial of the protocol work as follows:

1. It samples index i from distribution Dignore, which is easy to sample. We
note that the contribution of this distribution will be eventually canceled
out through rejection. In particular, we choose the following distribution for
Dignore:

Dignore[i] :=
w2

1,i + w2
2,i

denom
,

where we set denom = ||w1||22 + ||w2||22 to make the distribution well-defined.
Note that denom can be computed with Õ(1) communication.

Secure Sampling with Sublinear Communication 353

2. After sampling i from Dignore, the protocol computes a “corrective bias” for
a coin flip that is dependent on (w1,i + w2,i)2. We stress that once i is deter-
mined, computing (w1,i + w2,i)2 is easy. In particular, a coin is flipped with
the following bias:

Pr[coin|i] :=
(w1,i + w2,i)2

2 · Dignore[i] · denom
Overall, this makes sure that the probability that each trial outputs index i is

Dignore[i] · Pr[coin|i] =
(w1,i + w2,i)2

2 · denom = αD[i],

where α = ||w1+w2||22
2·denom .

To conclude that this is a valid and efficient sampling procedure, we need to
show the following:

– α must be less than 1 for the procedure to be valid. This is implied by the
fact that ‖w1 + w2‖22 ≤ 2 · denom.

– 1/α must be in Õ(1) so that the procedure is efficient. We have 2 · denom ≤
2‖w1 + w2‖22, which implies that α is at least 1/2. So, the expected number
of trials is at most 2.

We extend our techniques to the setting of Lp sampling for constant p in
Sect. 3.3.

Product Sampling. In this case, party 1 (resp. party 2) holds a normalized
vector w1 (resp. w2), indexed from 1 to n. For i ∈ [n], w1,i (resp. w2,i) corre-
sponds to the probability mass of i under distribution D1 (resp. D2).3 The goal
of the parties is to sample from the distribution D defined as follows for i ∈ [n]:

D[i] :=
w1,i · w2,i

〈w1,w2〉 .

We begin by noting (via a simple reduction from Set Disjointness) that it
is impossible to achieve sublinear product sampling when no restrictions are
placed on the inputs w1,w2. We further show (via a more complex reduction
from Set Disjointness) that for every protocol Π (parametrized by dimension n)
that correctly samples from D, there are inputs w1 := w1(n),w2 := w2(n), with
〈w1,w2〉 ∈ Ω(1/n2), that require linear communication complexity. See Sect. 4.1
for details.

This means that in order to achieve sublinear communication complexity,
we would need–at the minimum–a promise on the inputs that guarantees that
〈w1,w2〉 ∈ ω(1/n2). We then present a protocol that has the following proper-
ties:

– When 〈w1,w2〉 ∈ ω(log n/n), the protocol achieves expected communication
log n

〈w1,w2〉 .

3 Here the assumption that w are normalized is without loss of generality.

354 S. G. Choi et al.

– The execution of the protocol leaks nothing more than the sampled output,
and 〈w1,w2〉. This is formalized via an Ideal/Real paradigm simulation, in
which the simulator receives leakage of 〈w1,w2〉 in the Ideal world.

The idea for the protocol is the following. The protocol proceeds in rounds: in
round j, party 1 and 2 obliviously sample values i1, i2 from D1,D2, respectively
(as described for L1 sampling). Then the parties run a secure protocol that
checks whether i1 = i2. If yes, they output i1. Otherwise, the parties repeat the
process in the next round.

The main technical portion of our security analysis is to show that the number
of rounds (which is the only information leaked) is distributed as a geometric
distribution with success probability 〈w1,w2〉. This implies that the expected
number of rounds is 1/〈w1,w2〉, and furthermore, it implies that a simulator
who knows 〈w1,w2〉 can simulate the terminating round by making a draw from
this geometric distribution. See Sect. 4.2 for more details. There, we also describe
how we can pad the communication cost to the worst-case, which depends on
the given promise, thereby removing the leakage of 〈w1,w2〉.
Product Sampling in Constant Rounds. The protocol presented above for
product sampling required a large number of rounds stemming from the iterative
rejection sampling procedure. We now consider how to parallelize this process.
To do so, we need to compute the inner product in order to determine, a priori,
how many samples will suffice. However, computing this value requires O(n)
communication [3]!

The natural thing to do is therefore to use an approximation to the inner
product that can be computed with sublinear communication. However, when
replacing an exact computation of a function f(w1,w2) with an approxima-
tion f̃(w1,w2; r), one needs to be careful that more information is not leaked
by the output. Specifically, Ishai et al. [14,15] introduced the notion of secure
multiparty computation of approximations and, loosely speaking, their security
definition says that the approximate computation is secure if its output can be
simulated from the exactly correct output. While our result falls slightly short
of that definition, we are still able to give a rigorous guarantee on the amount of
additional information leaked by our approximate functionality. Specifically, we
present an approximate functionality f̃ and prove that the output of f̃(w1,w2; r)
can be simulated given both the exactly correct output f(w1,w2) (where f is
the inner product), as well as the L2 norms of the individual inputs.

To achieve this, we use a sublinear protocol from the Johnson-Lindenstrauss
Transform (JLT) to approximate the dot product of the input vectors. This can
be done with sublinear communication by having the parties jointly sample a
k × n JLT matrix M for k � n by choosing a short seed and expanding it
under FHE. The rest of the computation is then done by communicating vectors
Mwb, which are of length k rather than n. Based on this approximation, the
parties can obliviously pre-sample a number of inputs that is sufficient with all
but negligible probability, and then input them into a constant round secure
computation protocol.

Secure Sampling with Sublinear Communication 355

Our contribution here, is to show that this variant protocol only requires addi-
tional leakage of ||w1||22, ||w2||22, beyond what is already leaked by the original
protocol (i.e., the inner product). Our analysis may be of independent interest,
since it shows that given 〈w1,w2〉, ||w1||22, ||w2||22, the values Mw1 and Mw2

can be efficiently sampled from exactly the correct distribution, when M is a
JLT matrix, and is kept private from both parties. We prove this result by ana-
lyzing the underlying joint multivariate normal distributions corresponding to
Mw1 and Mw2, and showing that the mean and covariance (which fully deter-
mine the distribution) depend only on the values ||w1||2, ||w2||2, and 〈w1,w2〉
See Sect. 5 for more details.

Applications to Distributed Exponential Mechanism. We first briefly
describe the connection between product sampling and the exponential mecha-
nism. Ignoring many details, the joint exponential mechanism M outputs a value
i on input X = (x1, . . . , xn) with probability proportional to

wi = ec·f(xi) = ec·f(x1,i+x2,i),

where c is some constant, f is some scoring function, and the data values xi

are partitioned between the two parties (as x1,i, x2,i). If the scoring function f is
linear, it holds that f(x1,i +x2,i) = f(x1,i)+f(x2,i), and, letting wb,i = ec·f(xb,i),
we can rewrite wi as follows:

wi = w1,i · w2,i.

Therefore, using product sampling, the parties can sample each item i with
probability proportional to wi.

Based on this connection, we present an application of our constant-round,
product sampling protocol to realize a two-party exponential mechanism in
Appendix F in the full version. However, to use our sampling protocol in this
application, we must show that the leakage of our protocols preserves the dif-
ferential privacy guarantee. We indeed prove that our constant-round JLT-
based protocol can achieve differential privacy—even when the JLT matrix M is
public—by adding correctly distributed noise to 〈Mw1,Mw2〉. This allows par-
ties to execute the exponential mechanism when the cost function is additively
distributed across the two parties, with sublinear communication, in the case
that 〈w1,w2〉 ∈ ω(log n/n).

1.3 Related Work

Sampling from Streaming Data. Many prior papers (e.g. [10,16,22,27,35])
have studied the problem of sampling data from a data stream. In this setting
the goal is to achieve Lp sampling for arbitrary p without having to process or
store all the streaming data, thus requiring sublinear computation. These works
generally operate in the one-party setting and do not consider privacy.

Secure Multiparty Sampling. A few prior works [31,32] have investigated the
problem of two and multi-party private sampling in the information theoretic

356 S. G. Choi et al.

setting. These works focus on identifying the necessary setup to enable sampling
from various distributions. We instead focus on the computational setting, and
focus on reducing communication. Recently, Champion et al. [6] also considered
the computational setting, but they focus on sampling from a publicly-known
distribution whereas we sample from a private one.

Secure Multiparty Computation of Differentially Private Functionali-
ties. Starting with the work of Dwork et al. [11] there has been a good amount
of work (e.g. [1,9,13,17,29,30]) on using MPC to realize differentially private
functionalities to protect the privacy of individual inputs given the output of
the MPC. These works have focused on building efficient, private applications
in machine learning and other fields, whereas we focus on reducing the commu-
nication necessary for the specific functionalities of sampling.

Secure Sketching. A long line of work [8,12,19,26,34] has investigated building
secure sketches for securely estimating statistics of Tor usage, web traffic, and
other applications. These works focus on building sublinear communication and
computation protocols for computing specific statistics such as unique count,
median, etc.

2 Two-Party L1 Sampling

In this section, we describe a secure two-party L1 sampling protocol. Given two
n-dimensional vectors w1 = (w1,1, . . . , w1,n) and w2 = (w2,1, . . . , w2,n) as the
private inputs from parties P1 and P2 respectively, the protocol samples from
the L1 distribution according to w1 + w2.

Notation: Lp norm. Let w = (w1, . . . , wn) ∈ R
n be a non-zero vector. The

Lp norm ‖w‖p of w is defined as ‖w‖p :=
(∑

j |wj |p
)1/p

. When there is no
subscript, it means L2 norm; that is, ‖w‖ := ‖w‖2
Assumptions. Throughout the paper, we assume that the values wb,i are repre-
sented by fixed-point precision numbers, and consider the cost of communicating
such a number to be independent of n. We assume all weights in vectors w1 and
w2 are non-negative.

Ideal Functionality. We first define an ideal functionality for the two-party L1

sampling. Slightly abusing the notation, let L1(w1,w2) be a two-input sampling
procedure based on the L1 distribution of w1 + w2:

Pr[L1(w1,w2) samples i] =
w1,i + w2,i

‖w1 + w2‖1 .

We give a more formal description of the functionality FL1 in the figure below.
In Sect. 2.2, we present a protocol that securely realizes this functionality.

Secure Sampling with Sublinear Communication 357

FL1 : Ideal functionality for two-party L1 sampling

The functionality has the following parameter:

– n ∈ N. The dimension of the input weight vectors w1 and w2.

The functionality proceeds as follows:

1. Receive inputs w1 and w2 from P1 and P2 respectively.
2. Sample i ∈ [n] with probability

w1,i+w2,i
‖w1+w2‖1

3. Send i to P1 and P2.

2.1 A Toy Protocol Towards Securely Realizing FL1

We describe our first attempt, which is insecure, but provides good intuition on
how we construct a secure protocol. In fact, the attack on this broken protocol,
as well as the fix presented in the next sub-section, remain relevant when we
move to product sampling and L2 sampling as well. Since we assume that all the
weights are non-negative, we observe that letting p = ‖w1‖1

‖w1‖1+‖w2‖1
, the above

measure can be re-written as follows:

Pr[L1(w1,w2) samples i] =
w1,i

‖w1‖1 · p +
w2,i

‖w2‖1 · (1 − p). (1)

Equation (1) leads us to the following natural approach.

1. Party P1 samples i1 from the L1 distribution according to w1, such that
Pr[P1 samples i1] = w1,i1

‖w1‖1
.

2. Party P2 samples i2 from the L1 distribution according to w2, such that
Pr[P2 samples i2] = w2,i2

‖w2‖1
.

3. Then, P1 and P2 execute a secure protocol for the following procedure:
(a) Execute a coin toss protocol with bias p. Let b be the output of the

coin-flip.
(b) If b = 0 (resp., b = 1), output i1 (resp., i2).

The output of the protocol will achieve correct sampling.

Insecurity of the Protocol. However, this protocol has a subtle security issue.
For example, let i be the eventual output index of the protocol. Then, we have
the following:

– If the coin flip b is 0, which happens with probability p, it holds that i is
always the same as i1.

– On the other hand, if the coin flip b is 1, then i will be the same as i1 if and
only if i2 = i1, which happens with probability w2,i1

‖w2‖1
.

This implies that we have

Pr[i = i1|i1] = p + (1 − p) · w2,i1

‖w2‖1

358 S. G. Choi et al.

Now consider a distinguisher that corrupts P1, chooses inputs w1 and w2, and
checks the above conditional probability, which is possible since the distinguisher
can also see i1 through the corrupted P1. To prove security, we should be able to
construct a simulator for P1 that fools this distinguisher. However, a simulator
for P1 doesn’t know w2, which causes the above conditional probability to be
unsimulatable.

In a sense, by having P1 choose i1, the protocol allows P1 to measure the
conditional probability Pr[i = i1|i1], which depends on the value w2,i1 thereby
leaking information about P2’s input to P1.

2.2 Secure L1 Sampling Protocol

Oblivious Sampling. We address the insecurity of the toy protocol by having
the parties sample obliviously from w1, w2. This way, each party would not know
whether the final output index matches the sample taken from its own vector,
or the sample taken from the other party’s vector. Specifically, we will construct
our protocol under the framework described below:

1. The parties obliviously sample i1 according to L1 distribution of w1. The
output index i1 is secret shared between the two parties. Let 〈i1〉 denote the
secret share of i1. Likewise, they obliviously sample 〈i2〉 from L1 distribution
of w2.

2. Execute a secure two-party protocol to compute the following:
(a) Flip a coin b with bias p.
(b) If b = 0, output the decryption of i1; otherwise output the decryption of

i2.

Ideal Functionalities. Formally, we define an ideal functionality Fosample(L1) as
follows:

Fosample(L1): Ideal functionality for oblivious L1 sampling.

The functionality considers two participants, the sender and the receiver. The
functionality is parameterized with a number n.

Inputs: The sender has an n-dimensional weight vector w. The receiver has
no input.

The functionality proceeds as follows:

1. Receive w from the sender.
2. Sample i ∈ [n] with probability wi

‖w‖1

3. Choose a random pad π ∈ {0, 1}�, where � = �log2 n�.
4. Send π to the sender and i ⊕ π to the receiver.

We also give an ideal functionality FbiasCoin for the biased coin tossing.

Secure Sampling with Sublinear Communication 359

FbiasCoin: Ideal functionality for biased coin tossing.

The functionality considers two participants P1 and P2 and proceeds as follows:

1. Receive a number s1 as input from P1 and s2 from P2.
2. Flip a coin b with bias p = s1

s1+s2
.

3. Choose a random bit r ∈ {0, 1}.
4. Send r to P1 and r ⊕ b to the receiver.

L1 Sampling Protocol. Based on the above functionalities, we describe a pro-
tocol securely realizing FL1 in the (Fosample(L1),FbiasCoin)-hybrid.

Protocol 1. Two-party L1 sampling in the (Fosample(L1),FbiasCoin)-hybrid.
Inputs: Party Pb has input wb.

1. Execute Fosample(L1) with P1 as a sender with input w1 and P2 as a receiver. Let
〈i1〉 be the secret share of the output index.

2. Execute Fosample(L1) with P2 as a sender with input w2 and P1 as a receiver. Let
〈i2〉 be the secret share of the output index.

3. Execute FbiasCoin where P1 has input ‖w1‖1 and P2 has input ‖w2‖1. Let 〈b〉 be the
secret share of the output bit.

4. Execute F2PC for the following circuit:
(a) Input: 〈i1〉, 〈i2〉, 〈b〉.
(b) Output: i1 · (1 − b) + i2 · b.

Theorem 1. Protocol 1 securely realizes FL1 with semi-honest security in the
(Fosample(L1),FbiasCoin)-hybrid.

The proof is found in Appendix C.1 in the full version.

Securely Realizing Fosample(L1) with threshold FHE. The main idea of the
protocol is having the parties securely sample a random number r from [s], where
s := ‖w‖1. Our construction is found in Protocol 2.

Theorem 2. Assuming the existence of threshold FHE with IND-CPA security,
Protocol 2 securely realizes Fosample(L1) in the semi-honest security model.

The proof is found in Appendix C.2 in the full version.
We note that we give another construction that relies on sub-linear 1-out-of-

m oblivious transfer (OT), but requires computation that is exponential in the
bit precision in Appendix D in the full version.

Securely Realizing FbiasCoin. The secure construction for FbiasCoin is straight-
forward and can be found in Appendix B in the full version.

360 S. G. Choi et al.

Protocol 2. Oblivious sampling from threshold FHE
Inputs: The sender has input w = (w1, . . . , wn).

1. The sender computes s := ‖w‖1.
2. The sender and the receiver execute F2PC to uniformly sample r from the range

[0, s). This is possible, since s has a fixed point representation. Let r1 and r2 be
the secret share of r given to P1 and P2 respectively.

3. The sender and the receiver set up a threshold FHE scheme. The plaintext space
of the FHE is GF (2), which allows homomorphic bitwise-xor and bitwise-AND
operations. Let �m� denote an FHE encryption of plaintext m which can be a bit
or bits depending on the context.

4. The receiver sends �r2� so that the sender can compute �r� := �r1� ⊕ �r2�.
5. The sender homomorphically evaluates the following circuit:

(a) Let cnt0 = 0. For j = 1, ..., n, let cntj = cntj + wj .
(b) Output i ∈ [1, n] such that r ∈ [cnti−1, cnti].
Let �i� be the output encryption from the above homomorphic evaluation.

6. The sender chooses a random pad π, and then it sends �c� = �i� ⊕ �π� to the
receiver.

7. The two parties perform threshold decryption so that c is decrypted to the receiver.
8. The sender outputs π and the receiver outputs the decryption of c.

3 Two Party L2 Sampling

In this section we consider the two-party L2 sampling functionality. Given input
vectors w1,w2, this functionality samples from the distribution DL2(w1,w2)
with the following probability mass function:

Pr[DL2(w1,w2) samples i] =
(w1,i + w2,i)2∑
j(w1,j + w2,j)2

=
(w1,i + w2,i)2

‖w1 + w2‖22
.

We begin by presenting a non-private protocol for two-party L2 sampling
with Õ(1) communication in Sect. 3.1, the construction is found in Protocol 3.
We then show how to implement the protocol securely in Sect. 3.2.

3.1 A Non-private L2 Sampling Protocol with Õ(1) Communication

We begin by defining and showing how to sample from a helper distribution
Dignore.

Definition 1. For input vectors w1,w2, let Dignore(w1,w2) be the distribution
that “ignores” the cross term in DL2(w1,w2). I.e. Dignore(w1,w2) samples index

i ∈ [n] with probability w2
1,i+w2

2,i

||w1||22+||w2||22 .

Lemma 1. There exists a protocol Πignore for sampling from Dignore(w1,w2)
with Õ(1) communication.

Secure Sampling with Sublinear Communication 361

Proof. Let w′
b = (w2

b,1, . . . , w
2
b,n). The lemma follows by observing the following:

Dignore(w1,w2) = DL1(w
′
1,w′

2).

	

Definition 2. For i ∈ [n], let the corrective parameter function be defined as

fc(w1,w2, i) :=
w2

1,i + 2w1,iw2,i + w2
2,i

||w1||22 + ||w2||22
.

Definition 3. The constant c := c(w1,w2) is defined as

c(w1,w2) :=
||w1 + w2||22

||w1||22 + ||w2||22
This ensures that for every i, fc(w1,w2, i) = c · PrDL2 (w1,w2)[i].

The following lemma will be useful for arguing the validity of the final pro-
tocol.

Lemma 2. For all i ∈ supp(DL2(w1,w2)), PrDL2 (w1,w2)[i] ≤ 2/c ·
PrDignore(w1,w2)[i].

Proof.

Pr
DL2 (w1,w2)

[i] =
w2

1,i + 2w1,iw2,i + w2
2,i

||w1||22 + 2〈w1,w2〉 + ||w2||22
=

w2
1,i + 2w1,iw2,i + w2

2,i

c · (||w1||22 + ||w2||22)

≤ 2 · (w2
1,i + w2

2,i)
c · ||w1||22 + ||w2||22

=
2
c

· Pr
Dignore(w1,w2)

[i]

The inequality holds since

2(w2
1,i + w2

2,i) − (w2
1,i + 2w1,iw2,i + w2

2,i) = w2
1,i − 2w1,iw2,i + w2

2,i

= (w1,i − w2,i)2

≥ 0.

	

We now present the L2 sampling protocol ΠL2 , which is described in Proto-

col 3. We show the correctness and efficiency of the protocol.

Lemma 3. With all but negligible probability, on inputs w1,w2, ΠL2 samples
exactly correctly from DL2(w1,w2), and has communication Õ(1).

362 S. G. Choi et al.

Protocol 3. Protocol for exact L2 sampling (ΠL2)

Inputs: Parties P1 and P2 have inputs w1 and w2 respectively.

The protocol proceeds as follows:

1. Parties run Πignore with inputs w1,w2 that samples from Dignore(w1,w2) and obtain
output i.

2. For b ∈ {1, 2}, Pb sends wb,i, ||wb||22. Both parties compute

Pr
Dignore(w1,w2)

[i] =
w2

1,i + w2
2,i

||w1||22 + ||w2||22
and fc(w1,w2, i) =

w2
1,i + 2w1,iw2,i + w2

2,i

||w1||22 + ||w2||22
3. Parties output i with probability

fc(w1,w2, i)

2 · PrDignore(w1,w2)[i]
=

c · PrDL2 (w1,w2)[i]

2 · PrDignore(w1,w2)[i]

=
PrDL2 (w1,w2)[i]

2/c · PrDignore(w1,w2)[i]

and otherwise return to step 1.

Proof. Note that ΠL2 simply performs rejection sampling in a distributed setting
where sampling from Dignore(w1,w2) and computing the probabilities is done in
a distributed manner. It is therefore well-known that as long as for all i ∈ [n],

Pr
DL2 (w1,w2)

[i] ≤ 2/c · Pr
Dignore(w1,w2)

[i], (2)

then ΠL2 samples from the exact correct distribution, and the number of samples
required from Dignore(w1,w2) in protocol ΠL2 follows a geometric distribution
with probability c/2. Thus, if condition (2) is met, the protocol samples exactly
correctly and completes in an expected 2/c (with 2/c ≤ 2, since c ≥ 1) number
of rounds. Further, it can be immediately noted that condition (2) is met due
to Lemma 2. Finally, each round has Õ(1) communication, since Πignore has
communication Õ(1) (by Lemma 1) and since, in addition to that, only a constant
number of length Õ(1) values are exchanged in each round. Combining the above,
we have that ΠL2 has expected communication Õ(1) and worst case (with all
but negligible probability) communication Õ(1). 	

Remark 1. Note that the protocol and analysis above did not require that vectors
w1,w2 are normalized. I.e. we do not require that ||w1||1 or ||w2||1 are equal to
1 or to each other.

3.2 Secure L2 Sampling from FHE

L2 Sampling Protocol. We present our secure L2 sampling protocol in Pro-
tocol 4. For two n-dimensional vectors w1 and w2, we denote by w1 � w2 the
n-dimensional vector whose i-th entry is equal to w1,i · w2,i.

Secure Sampling with Sublinear Communication 363

Protocol 4. Two-party L2 sampling in the (FL1 , F2PC)-hybrid.
Inputs: Party Pb has input wb.

1. Let B ∈ Õ(1). The parties perform the following steps for j ∈ [B]:

(a) Sample from Dignore(w1,w2) by doing the following: Invoke ideal functionality
Fss

L1 with P1’s input set to w1
 w1 and P2’s input set to w2
 w2. Let 〈ij〉
be the secret share of the output index.

(b) Parties compute encryptions of w1,ij , w2,ij using a threshold FHE scheme as
follows.

– Parties compute an encryption of ij by exchanging encryptions of their
shares and adding them.

– Party b encrypts wb and uses FHE to locally compute an encryption of
wb,ij .

– The parties then send these ciphertexts to each other.
(c) Rejection Sampling. Compute a threshold FHE ciphertext ̂biasj that encrypts

fc(w1,w2)ij

2 · PrDignore(w1,w2)[ij]
=

w2
1,ij + 2w1,ijw2,ij + w2

2,ij

2(w2
1,ij

+ w2
2,ij

)
.

Invoke ideal functionality F2PC that takes encrypted bias ̂biasj , the threshold
decryption keys, index ij , and random bits. The functionality executes a circuit

that flips a coin with bias ̂biasj and returns a ciphertext ̂outj , which is an
encryption of ij if the coin evaluates to 1 and an encryption of 0 otherwise.

2. Execute F2PC for the following circuit:
(a) Input: (̂out1, . . . , ̂outB) and threshold decryption keys.
(b) Output: ij corresponding to the minimum j such that ̂outj decrypts to ij �= 0.

Or ⊥ if no such j ∈ [B] exists.

Our L2 sampling protocol uses ideal functionality Fss
L1

, which works essen-
tially the same as FL1 except that the output index is secret shared among
both parties. We can securely realize this functionality with semi-honest secu-
rity through a trivial change in the protocol ΠL1 ; for the sake of completeness,
we provide the details in Appendix E in the full version.

Efficiency and Correctness. It is clear that the total communication com-
plexity of the protocol is Õ(1), since each step in the loop has complexity Õ(1)
and the loop iterates B ∈ Õ(1) number of times. Correctness is also immediate,
since the protocol simply implements the ΠL2 sampling procedure, which was
proven in Sect. 3.1 to be correct, and to require at most B ∈ Õ(1) samples, with
all but negligible probability,

Security. Security of our protocol is stated through the following theorem.

Theorem 3. Assuming the existence of threshold FHE with IND-CPA security,
Protocol 4 securely realizes the L2 sampling functionality in the {Fss

L1
,F2PC}-

hybrid model with semi-honest security.

We provide the proof in Appendix C.3 in the full version.

364 S. G. Choi et al.

3.3 A Non-private Lp Sampling Protocol with Õ(1) Communication

Protocol 5. Protocol for exact Lp sampling (ΠLp
)

Inputs: Parties P1 and P2 have inputs w1 and w2 respectively.

The protocol proceeds as follows:

1. Parties run Πignore with inputs w1,w2 that samples from Dignore,p(w1,w2) and
obtain output i.

2. For b ∈ {1, 2}, Pb sends wb,i, ||wb||pp. Both parties compute

Pr
Dignore,p(w1,w2)

[i] =
wp

1,i + wp
2,i

||w1||pp + ||w2||pp and fc(w1,w2, i) =
(w1,i + w2,i)

p

||w1||pp + ||w2||pp
3. Parties output i with probability

fc(w1,w2, i)

2p−1 · PrDignore,p(w1,w2)[i]
=

c · PrDL2 (w1,w2)[i]

2p−1 · PrDignore,p(w1,w2)[i]

=
PrDL2 (w1,w2)[i]

2p−1/c · PrDignore,p(w1,w2)[i]

and otherwise return to step 1.

In this section we present a Õ(1) sampling protocol for Lp sampling for con-
stant p. We present only the insecure version, extending it to a secure sampling
protocol can be done entirely analogously to the construction for L2 sampling
given in Sect. 3.2.

Given input vectors w1,w2, Lp sampling refers to sampling from the distri-
bution DLp

(w1,w2) with the following probability mass function:

Pr[DLp
(w1,w2) samples i] =

(w1,i + w2,i)p

∑
j(w1,j + w2,j)p

=
(w1,i + w2,i)p

‖w1 + w2‖p
p

.

We begin by defining and showing how to sample from a helper distribution
Dignore,p.

Definition 4. For input vectors w1,w2, let Dignore,p(w1,w2) be the distribu-
tion that “ignores” the cross term in DLp

(w1,w2). I.e. Dignore,p(w1,w2) samples

index i ∈ [n] with probability
wp

1,i+wp
2,i

||w1||pp+||w2|pp .

Lemma 4. There exists a protocol Πignore for sampling from Dignore,p(w1,w2)
with Õ(1) communication.

Proof. Let w′
b = (wp

b,1, . . . , w
p
b,n). The lemma follows by observing the following:

Dignore(w1,w2) = DL1(w
′
1,w′

2).

	

Secure Sampling with Sublinear Communication 365

Definition 5. For i ∈ [n], let the corrective parameter function be defined as

fc(w1,w2, i) :=
(w1,i + w2,i)p

||w1||pp + ||w2||pp .

Definition 6. The constant c := c(w1,w2) is defined as

c(w1,w2) :=
||w1 + w2||pp

||w1||pp + ||w2||pp
This ensures that for every i, fc(w1,w2, i) = c · PrDLp (w1,w2)[i].

The following lemma will be useful for arguing the validity of the final pro-
tocol.

Lemma 5. For all i ∈ supp(DLp
(w1,w2)),

Pr
DLp (w1,w2)

[i] ≤ 2p−1/c · Pr
Dignore,p(w1,w2)

[i].

The proof is found in Appendix C.4 in the full version.
We now present the Lp sampling protocol ΠLp

in Protocol 5. We show the
correctness and efficiency of the protocol below.

Lemma 6. With all but negligible probability, on inputs w1 and w2, protocol
ΠLp

samples exactly correctly from DLp
(w1,w2). Further, for any constant p,

the protocol has communication Õ(1).

The proof is found in Appendix C.5 in the full version. We note that this
result strictly generalizes Lemma 3. In particular, setting p = 2 in the above
protocol yields a protocol with exactly the same parameters as the L2 sampling
protocol.

4 Two-Party Product Sampling

We next consider the problem of two-party sampling from a product distri-
bution. Specifically, given n-dimensional vectors w1 = (w1,1, . . . , w1,n) and
w2 = (w2,1, . . . , w2,n) as the private inputs from P1 and P2 respectively, we
wish to sample from the distribution Dprod defined by

Pr[Dprod(w1,w2) = i] =
w1,i · w2,i∑n

j=1 w1,j · w2,j
=

w1,i · w2,i

〈w1,w2〉
Of course, if 〈w1,w2〉 = 0, the probability space is not well-defined, and in

this case, we require the protocol to simply output ⊥.
As before, we assume that all weights in w1 and w2 are non-negative.

366 S. G. Choi et al.

Ideal Functionality. We now define an ideal functionality Fprod for two-party
product sampling. This functionality is parametrized by a function fLeak captur-
ing the leakage that the functionality gives to the adversary.

Fprod: Ideal functionality for two-party product sampling

The functionality has the following parameters:

– n ∈ N. The dimension of the input weight vectors w1 and w2.
– A function fLeak describing the leakage.

The functionality proceeds as follows:

1. Receive inputs w1 and w2 from P1 and P2 respectively.
2. Compute leak = fLeak(w1,w2)
3. If 〈w1,w2〉 = 0, send leak to the adversary and ⊥ to P1 and P2.
4. Otherwise, sample i with probability

w1,i·w2,i
〈w1,w2〉 , send leak to the adversary,

and send i to P1 and P2.

4.1 Impossibility of Sublinear Product Sampling

Our goal is to find a protocol for two-party sampling with sublinear (in n)
communication. However, unlike the case for L1 sampling, we show that this goal
is actually impossible. Roughly speaking, if parties are allowed to have arbitrary
input vectors, then a sublinear communication solution to product sampling
implies a sublinear communication solution to the disjointness problem, which
is known to be impossible.

For our impossibility result, we first define the two-party disjointness prob-
lem.

Disjointness Problem. The disjointness problem checks if two input sets S
and T are disjoint (i.e., S ∩ T = ∅). Specifically, we consider a function DISJn :
{0, 1}n × {0, 1}n → {0, 1} defined as:

DISJn(vS , vT) =
{

1 if 〈vS , vT 〉 = 0
0 otherwise

In the above, vS and vT are the characteristic vectors of S and T respectively.
The communication complexity of the solution to the disjointness problem is
known to have a linear lowerbound, as shown in the following Theorem:

Theorem 4 ([4,24,33]). For any (even non-private) two-party protocol Π where
each party holds vS and vT respectively, if Π computes DISJn(vS , vT) correctly
with probability at least 2/3, the communication complexity of Π is Θ(n).

Our Impossibility Result. We first observe that a simple reduction from
Disjointness gives us that is impossible to achieve sublinear product sampling.
Specifically, disjointness can be directly learned from whether the product sam-
pling protocol outputs ⊥ or not.

Secure Sampling with Sublinear Communication 367

Our impossibility result is stronger. We show that it is impossible to achieve
sublinear product sampling even when the product sampling protocol is executed
with input vectors w1 and w2 in which all coordinates are bounded away from
0, which in particular guarantees that 〈w1,w2〉 is bounded away from 0.

Before stating a formal theorem below, for 0 < γ < 1, we first define γ-
heaviness; we say that a vector w is γ-heavy when each coordinate of w is a
number contained in [γ, 1].

Theorem 5. Let w1 and w2 be γ-heavy vectors of length n, each respectively
held by P1 and P2. Assume there exists a two-party protocol Πprod for the product
sampling from w1 and w2, with communication at most C := C(n, γ).

Then, for any γ ≤ 1/2n, there exists a constant ρ and a probabilistic protocol
computing DISJn correctly with probability at least 2/3 that has communication
at most log(n) + 1 + ρ · (C + 1).

Proof of Theorem 5. We construct a protocol computing DISJn by taking
advantage of Πprod as follows:

The Protocol for DISJn

Parties A and B each get as input a vector ã, b̃ ∈ {0, 1}n. The goal is to output
1 if the vectors are “disjoint” and 0 otherwise.

Edge Case: If one of the parties’ inputs has Hamming weight 0, then they output
1 and send 1 to the other party. From now on, we assume that the Hamming
weight of each party’s input is at least 1.

Preamble: We call the party with the lower Hamming weight input the designated
party. To determine this, A sends to B the Hamming weight of its input
vector ã. If B’s input has higher Hamming weight, it sends back the bit 1 to
A; otherwise it sends 0.

Input Transformation: Let gγ : {0, 1} → R be a boosting function defined as
gγ(0) = γ and gγ(1) = 1. Each party A, B locally transforms their input
vector ã, b̃ to a, b by applying the boosting function in order to ensure
γ-heaviness. That is, for i ∈ [n], set ai = gγ(ãi) and bi = gγ(b̃i).

Sampling Protocol: The parties run the sampling protocol Πprod(a,b) and both
receive some output i∗.

Output Computation: The designated party checks the i∗th bit of its input by
which we denote x (i.e., x = ãi∗ or x = b̃i∗ depending on which party is the
designated party). It sends 1−x to the other party. Both parties output 1−x.

The following lemmas give the completeness and soundness of the protocol.

Lemma 7. If ã, b̃ are disjoint, then the parties both output 1 with probability
at least 1

2+n·γ .

Lemma 8. If ã, b̃ are not disjoint, then the parties both output 1 with probability
at most 1 − 1

1+n·γ .

368 S. G. Choi et al.

Before we prove the lemmas, we briefly describe how we can use these lemmas
to achieve a protocol that correctly computes DISJ with probability at least 2/3.
Note that we can get a gap by setting γ = 1

2n . In other words, parties output
1 when disjoint with probability at least 2

5 . Parties output 1 when not disjoint
with probability at most 1

3 . Since we have a constant gap between completeness
and soundness, this can be amplified to 2/3 and 1/3 by running the protocol a
constant number of times.

Remarks. We would like to characterize the sublinearity condition for product
sampling protocols using the normalized input vectors. We can do this since
without loss of generality we can assume that input vectors to the product sam-
pling protocols are normalized; in particular, for any (non-normalized) vectors
w1 and w2, we have

Pr
[
Dprod

(
w1

‖w1‖1 ,
w2

‖w2‖1

)
= i

]
=

w1,i
‖w1‖1

· w2,i
‖w2‖1

〈 w1
‖w1‖1

, w2
‖w2‖1

〉 = Pr[Dprod(w1,w2) = i].

Specifically, we show below that the impossibility theorem implies that in
order to achieve sublinear communication complexity for product sampling, we
would need, at the minimum, a promise on the inputs that guarantees that

〈w1,w2〉 ∈ Ω(1/n2),

when w1,w2 are normalized vectors.
To do this, first note that the theorem implies that sublinear communication

product sampling needs to have γ ∈ Ω(1/n). Now, in the proof, any non-disjoint
binary vectors ã, b̃ to the DISJ problem has 〈ã, b̃〉 ≥ 1, and these vectors are
transformed to gγ(ã) and gγ(b̃). Let w1 and w2 be the normalized vectors gγ(ã)
and gγ(b̃); that is, w1 := gγ(ã)/‖gγ(ã)‖1 and w2 = gγ(b̃)/‖gγ(b̃)‖1. Since each
entry of gγ(ã) and gγ(ã) is at most 1, we have ‖gγ(ã)‖1 ≤ n and ‖gγ(b̃)‖1 ≤ n.
Therefore, we have

〈w1,w2〉 ≥ 〈gγ(a), gγ(b)〉
n · n

≥ 1
n2

.

Proof (Proof of Lemma 7). Assume that ã, b̃ are disjoint, and moreover, assume
WLOG that A is the designated party, and its input vector has Hamming weight
w. Recall that ai = gγ(ãi) and bi = gγ(b̃i). Let

W0,0 :=
∑

i:ãi=0,b̃i=0

ai · bi, W1,0 :=
∑

i:ãi=1,b̃i=0

ai · bi

W0,1 :=
∑

i:ãi=0,b̃i=1

ai · bi, W1,1 :=
∑

i:ãi=1,b̃i=1

ai · bi

Note that W0,0 ≤ n · γ2. Further, W1,1 = 0, since the vectors are disjoint,
and W1,0 = w ·γ since the Hamming weight of ã is exactly w. Additionally, note

Secure Sampling with Sublinear Communication 369

that W0,1 ≥ W1,0, since A is the designated party, so the Hamming weight of ã
is less than or equal to the Hamming weight of b̃.

Note that when the designated party is A, then the output of the protocol
is 1 − ai∗ . Using the above facts, the probability of outputting 1 is

W0,0 + W0,1

W1,1 + W0,0 + W0,1 + W1,0
≥ W0,1

W0,0 + W0,1 + W1,0

≥ W0,1

nγ2 + 2W0,1

=
w · γ

nγ2 + 2w · γ

=
w

nγ + 2w

≥ 1
nγ + 2

,

where the last inequality follows since w ≥ 1, due to the Edge Case step of the
protocol. 	

Proof (Proof of Lemma 8). Assume that ã, b̃ are not disjoint. As before, consider
W0,0, W1,0, W0,1, and W1,1. Note that W1,1 ≥ 1 since the inputs are not disjoint.
We also have W0,0 + W0,1 + W1,0 ≤ n · γ, since ai or bi is γ in these cases.

Using the above facts, the probability of outputting 0 is

W1,0 + W1,1

W1,1 + W0,0 + W0,1 + W1,0
≥ W1,1

W1,1 + n · γ

≥ 1
1 + n · γ

.

	

4.2 Product Sampling While Leaking at Most the Inner Product

Assumptions. As before, we assume that all weights in w1 and w2 are non-
negative. As discussed in the previous subsection, we also assume, without loss
of generality, that

‖w1‖1 = ‖w2‖1 = 1.

Overview. We now show that the impossibility result of Sect. 4.1 can be
bypassed if we make some assumptions on the inputs. Specifically, if we restrict
ourselves to the case when 〈w1,w2〉 = ω

(
log n

n

)
, then we can achieve a sublinear

communication protocol for product sampling on inputs w1,w2
4. Of course, by

4 Regarding 〈w1,w2〉, there is a gap between the lowerbound result (i.e., Ω(1
n2)) and

our construction (i.e., ω(log n
n

)). Resolving the gap is left as an interesting open
problem.

370 S. G. Choi et al.

observing that the protocol uses sub-linear communication, due to our lower-
bound, both parties will learn that such a promise on the inputs is satisfied; the
lower bound implies that some leakage about the inputs is necessary. In our
protocol, we show that the information leaked is at most the inner product
〈w1,w2〉. (Formally, we set fLeak(w1,w2) = 〈w1,w2〉.) Interestingly, we show
that this is the case even though our protocol does not, and cannot,5 actually
compute 〈w1,w2〉.
Product Sampling Protocol. Roughly, the protocol works as follows. The
protocol proceeds in rounds where in each round P1 and P2 use the oblivious L1

sampling with a single input vector (Fosample(L1)) to produce two secret-shared
sampled indices, one from P1’s input vector, and one from P2’s input vector.
The parties then run a secure 2-PC protocol to securely compare these values,
and if they are equal, output the sampled index. If the two sampled indices are
not equal, the parties move to the next round.

We describe a private two-party protocol for product sampling leak-
ing at most the inner product (see Protocol 6). This protocol is in the
{Fosample(L1),F2PC}-hybrid model.

Protocol 6. Product sampling (ΠIP
prod) in the {Fosample(L1),F2PC}-hybrid.

Inputs: Party Pb has input wb of length n.

1. Invoke the Fosample(L1) ideal functionality with P1 as the sender with input w1 and
P2 as the receiver. Let i1,1 and i1,2 be the output from the ideal functionality to
P1 and P2 respectively.

2. Invoke the Fosample(L1) ideal functionality with P2 as the sender with input w2 and
P1 as the receiver. Let i2,1 and i2,2 be the output from the ideal functionality to
P1 and P2 respectively.

3. Invoke the F2PC ideal functionality with the following circuit:
Input: (i1,j , i2,j) for j = 1, 2.
(a) Let i1 = i1,1 ⊕ i1,2, i2 = i2,1 ⊕ i2,2.
(b) If i1 is equal to i2, output i1 to both P1 and P2. Otherwise, output ⊥.

4. If the output from the ideal functionality is ⊥, go back to Step 1. Otherwise, output
whatever F2PC outputs.

Output: Both parties output the sampled value i.

Security. We will prove the following theorem.

Theorem 6. Protocol ΠIP
prod securely realizes Fprod with leakage fLeak(w1,w2) =

〈w1,w2〉 in the {Fosample(L1),F2PC}-hybrid model with semi-honest security.

5 This can be shown by a simple modification of the lower bound proof from Sect. 4.1.

Secure Sampling with Sublinear Communication 371

Proof. We describe the simulator Sim in the {Fosample(L1),F2PC}-hybrid model
for the case that Party 1 is corrupted. The simulator and proof of security are
analogous in the case that Party 2 is corrupted.

Sim receives as input w1, the output i∗, and 〈w1,w2〉. Sim samples r∗ from
a geometric distribution with success probability p = 〈w1,w2〉.

Sim invokes Party 1 on input w1. For i ∈ [r∗ − 1], Party 1 sends its input to
the first invocation of Fosample(L1) and Sim returns to it a random value in Zn.
Party 1 sends its input to the second invocation of Fosample(L1) and Sim returns to
it a random value in Zn. Party 1 sends its input to the F2PC functionality and
Sim returns to it ⊥. For i = r∗, Party 1 sends its input to the first invocation of
Fosample(L1) and Sim returns to it a random value in Zn. Party 1 sends its input
to the second invocation of Fosample(L1) and Sim returns to it a random value in
Zn. Party 1 sends its input to the F2PC functionality and Sim returns to it i∗.

It is clear that the view of Party 1 is identical in the ideal and real world,
assuming that Sim samples the first succeeding round, r∗, from the correct dis-
tribution. In the following, we argue that this is indeed the case.

First, note that on any given round, we have

pc := Pr[collision] =
∑

i

Pr[ii = i ∧ i2 = i] =
∑

i

w1,i · w2,i = 〈w1,w2〉.

Let FirstSuccess(r) denote an event in which the protocol succeeds for the
first time on the r-th round. Now, for r ∈ N, we have

Pr[FirstSuccess(r) AND the output is i∗]
= Pr[no collision in first r − 1 rounds] · Pr[i1 = i∗ ∧ i2 = i∗ on the rth round]

= (1 − pc)r−1 · Pr[i1 = i∗ ∧ i2 = i∗]

Now, the probability that the protocol eventually outputs i∗ is:

Pr[protocol eventually outputs i∗ after some number of rounds]

=
∞∑

j=1

Pr[FirstSuccess(j) AND the output is i∗]

= Pr[i1 = i∗ ∧ i2 = i∗]
∞∑

j=1

(1 − pc)j−1 = Pr[i1 = i∗ ∧ i2 = i∗] · 1
pc

.

Thus, the probability of FirstSuccess(r) conditioned on the output being i∗ is:

Pr[FirstSuccess(r)| the output is i∗]

=
Pr[FirstSuccess(r) AND the output is i∗]

Pr[protocol eventually outputs i∗ after some number of rounds]

=
(Pr[i1 = i∗ ∧ i2 = i∗]) · (1 − pc)r−1

Pr[i1 = i∗ ∧ i2 = i∗] · 1
pc

= pc · (1 − pc)r−1.

372 S. G. Choi et al.

The above is exactly the probability of the number of Bernoulli trials (with
probability pc = 〈w1,w2〉) needed to get one success. Sampling the number of
rounds is therefore equivalent to sampling the random variable corresponding
to the number of rounds from a geometric distribution with success probability
pc = 〈w1,w2〉, which is exactly what Sim does. 	

Performance. As shown above, the number of rounds r needed by this protocol
is distributed as the number of Bernoulli trials (with probability p = 〈w1,w2〉)
needed to get one success. Thus, the expected number of rounds is r = 1

〈w1,w2〉 . In
each round, the communication consists of a secure 2-PC of equality on O(log n)-
bit inputs, which can be done in O(log n) communication and O(1) rounds. Thus,
in total, this protocol has expected communication O(log n

〈w1,w2〉) and O(1
〈w1,w2〉)

rounds. This communication is sublinear in n when 〈w1,w2〉 = ω
(

log n
n

)
.

Trading Efficiency for Privacy. In the proof above, the simulator requires
the value of 〈w1,w2〉, which is not revealed by the output. However, a slight
modification to the protocol allows us to remove this leakage at the cost of
additional, though still sub-linear, communication. Instead of terminating the
protocol the first time there is a collision in the L1 samples, we can pad the
communication cost by making O(n

log n) calls to Fosample(L1). Under the promise of
〈w1,w2〉 = ω(log n

n), this ensures a collision in the outputs (with all but negligible
probability). The parties can then use O(n

log n) communication to obliviously find
and output the collision, without revealing the index, and avoiding the leakage
of 〈w1,w2〉.

Generalizing this idea, we arrive at a set of similar protocol modifications
that support a continuous set of tradeoffs: instead of choosing between leaking
〈w1,w2〉 to the simulator, or padding to the maximum communication, we can
choose to leak some lower bound on 〈w1,w2〉, and modify the protocol to make a
proportionate number of calls to Fosample(L1), search (obliviously) for a collision,
and repeat if necessary.

Without a full proof, we provide some intuition for the fact that this tradeoff
between leakage and communication is inherent. We can do that by generalizing
the statement of Theorem 5. We first modify the definition of γ-heavy defined
previously: for any t(n) = O(n), we say that a vector w of length n is γt,n-
heavy if each of the t := t(n) coordinates of w is a number contained in [γ, 1].
In particular, we now allow t(n) = o(n). Then, with a small modification to
the reduction, we can prove that if w1 and w2 are γt,n-heavy, and if there
exists a protocol Πprod for product sampling with communication at most C :=
C(n, γ), then there exists a protocol for computing DISJt with communication
log(n)+O(C). In the modified reduction, the parties simply increase the weights
of the t input slots (as before), and append n − t entries containing 0 at the
end. Since we know that DISJt requires O(t) communication, the implication
is that we have increasingly weaker communication bounds as we are provided
increasingly strong promises on the inner product. Conversely, for a certain set of
input vectors, observing the communication of the sampling protocol gives you

Secure Sampling with Sublinear Communication 373

a bound on the inner product of the inputs. The less communication observed,
the tighter that bound, and the greater the leakage.

5 Product Sampling in Constant Rounds

Achieving Constant Rounds through Parallel Repetition. In Sects. 4, we
showed a sublinear communication protocol for product sampling when 〈w1,w2〉
is sufficiently large. Moreover, this protocol provably leaked no more information
than the inner product. However, this protocol required O(1/〈w1,w2〉) rounds
of communication. This raises the question of whether constant-round sublinear
product sampling is possible under the same restrictions on the inputs.

Our protocol to achieve this takes a relatively standard approach. Suppose
that we are given the value of 〈w1,w2〉. Then, since the expected number of
samples until a collision is a function of 〈w1,w2〉, we can just run the inner
loop of protocol Πprod in parallel sufficiently many times to guarantee that the
protocol would terminate with all but negligible probability.

How Many Times to Repeat? However, there is one catch. It is not actually
possible to compute 〈w1,w2〉 in sublinear communication! One simple solution
is to use our promise on the input: we could run the inner loop enough times to
guarantee termination for any inputs satisfying the promise (e.g. ω(n

log n) times).
However, this forces us to adopt the worst-case communication cost, which might
be undesirable. (Recall, it also offers the least leakage, which might be desirable.)
Instead, we re-establish the trade-off between leakage and efficiency as follows.
We begin by computing an approximation of the inner product in sublinear
communication (see Sect. 5.1). Using this approximation, we can then realize
our sublinear communication, constant round protocol for product sampling as
follows in the next subsection.

5.1 Secure Approximation of the Inner Product

We achieve a protocol that securely approximates the inner product with sublin-
ear communication. In particular, we take advantage of the well known Johnson-
Lindenstrauss Transform (JLT) [18,20] sketch.

Additional Assumptions About w1 and w2. We assumed that w1 and w2

are normalized and correlated such that 〈w1,w2〉 = ω(log n/n). In a similar
vein, we assume that the cosine similarity of the two vectors w1 and w2 is not
small, e.g., ω(1/ log n).

Recall the cosine similarity between the two vectors w1 and w2 is defined
as cos(w1,w2) = 〈w1,w2〉

‖w1‖2·‖w2‖2
. Since the L1 norm of each vector is equal to 1,

their L2 norms will typically much smaller than 1, which implies that the cosine
similarity is usually much larger than 〈w1,w2〉.
Approximating the Inner Product Using JLT Sketches. The JLT sketch
of x is equal to Mx, where M is a random k × n matrix with k � n. More
specifically, the inner product of the two vectors is approximated as follows:

374 S. G. Choi et al.

approxIP(w1,w2): � w1 and w1 are n dimensional vectors.

1. Choose k ×n matrix M such that each entry Mi,j is chosen from an indepen-
dent Gaussian distribution of mean 0 and variance 1.

2. Output 1
k · 〈Mw1,Mw2〉. (Here, we slightly abuse the notation and treat the

vectors w1 and w2 as column vectors.)

Lemma 9. (cf. [23, Corollary 3.1]) For all w1,w2 such that cos(w1,w2) ≥ t,
the procedure approxIP(w1,w2) approximates 〈w1,w2〉 up to a 1 ± ε approxima-
tion factor with all but negligible probability (over the choice of the JLT matrix),
using JLT dimension k = ω

(
log(n)
t2·ε2

)
.

Privacy of the Approximate Output. What is interesting is that the approx-
imate inner product doesn’t reveal anything more than the inner product itself.
In this sense, it satisfies the notion of private approximation introduced in [15].
In particular, we prove the following:

Lemma 10. The output of approxIP(w1,w2) can be simulated perfectly given
only 〈w1,w1〉, 〈w2,w2〉, and 〈w1,w2〉.

The proof is found in Appendix C.6 in the full version.

Private Protocol via JLT. Using the JLT sketch, we can design a private
protocol approximating the inner product. See Protocol 7. The protocol uses
threshold FHE (e.g., [28]).

Protocol 7. Private protocol for computing approximate inner product

Inputs: Parties P1 and P2 has inputs w1 and w2 respectively.

The protocol proceeds as follows:

1. Parties set up a threshold FHE scheme.
2. They securely sample k×n matrix M described in the above with in the threshold

FHE. In particular, they jointly generate an encrypted random seed �s�. Using
this randomness, parties homomorphically evaluates �PRG(s)�, where PRG is a
pseudorandom generator, to obtain the JLT matrix �M�.

3. Each party Pb homomorphically evaluates �w̃b� = �Mwb�.
4. Party P1 sends �w̃1� to P2.
5. Party P2 homomorphically evaluates �〈w̃1, w̃2〉� and sends it to P1.
6. Parties execute threshold decryption to obtain and output 1

k
· 〈w̃1, w̃2〉.

Security. Since every protocol message is a ciphertext, based on semantic secu-
rity of the threshold FHE, it is easy to see that the protocol securely realizes a
functionality for computing approxIP. Based on Lemma 10, the leakage profile of
the functionality is 〈w1,w1〉, 〈w2,w2〉, and 〈w1,w2〉.

Secure Sampling with Sublinear Communication 375

5.2 Constant-Round Protocol for Product Sampling

Note that the Protocol 6 has the following structure. In particular:

– The probability that Protocol 6 samples a good index and halts in a given
trial is p = 〈w1,w2〉.

We need to repeat r trials in parallel so that the probability that all r trials
fail is negligible. In other words, we should have

(1 − p)r ≤ e−p·r ≤ e−ω(log λ).

This means that we should have r > ω(log λ)
p .

Moreover, in the previous subsection, we discussed how to obtain a good
estimate p̃ = (1 ± ε)p. Therefore, we should have

r >
(1 + ε) · ω(log λ)

p̃
>

ω(log λ)
p

.

In summary, by running (1+ε)·ω(log λ)
p̃ instances in parallel, we achieve con-

stant round protocols for product sampling with negligible failure probability.
The final protocol should perform extra steps to hide from which trial the output
comes from, and these changes can made in a straightforward way.

Acknowledgments. Seung Geol Choi is supported by NSF grant #CNS-
1955319. Dana Dachman-Soled is supported in part by NSF grants #IIS-2147276,
#CNS-1933033, #CNS-1453045 (CAREER), and by financial assistance awards
70NANB15H328 and 70NANB19H126 from the U.S. Department of Commerce,
National Institute of Standards and Technology. Dov Gordon is supported by NSF grant
#CNS-1955264. Arkady Yerukhimovich is supported by NSF grant #CNS-1955620.

References

1. Acar, A., Celik, Z.B., Aksu, H., Uluagac, A.S., McDaniel, P.: Achieving secure and
differentially private computations in multiparty settings. In 2017 IEEE Sympo-
sium on Privacy-Aware Computing (PAC), pp. 49–59. IEEE (2017)

2. Andoni, A., Krauthgamer, R., Onak, K.: Streaming algorithms via precision sam-
pling. In: Ostrovsky, R., IEEE 52nd Annual Symposium on Foundations of Com-
puter Science, FOCS 2011, Palm Springs, CA, USA, 22–25 October 2011, pp.
363–372. IEEE Computer Society (2011)

3. Babai, L., Nisan, N., Szegedy, M.: Multiparty protocols and logspace-hard pseu-
dorandom sequences (extended abstract). In: 21st ACM STOC, pp. 1–11. ACM
Press (1989)

4. Bar-Yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D.: An information statistics
approach to data stream and communication complexity. J. Comput. Syst. Sci.
68(4), 702–732 (2004)

5. Braverman, V., Ostrovsky, R., Zaniolo, C.: Optimal sampling from sliding windows.
J. Comput. Syst. Sci. 78(1), 260–272 (2012)

376 S. G. Choi et al.

6. Champion, J., Shelat, A., Ullman, J.: Securely sampling biased coins with appli-
cations to differential privacy. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J.,
(eds.) ACM CCS 2019, pp. 603–614. ACM Press, (2019)

7. Choi, S.G., Dachman-Soled, D., Gordon, S.D., Liu, L., Yerukhimovich, A.:
Secure sampling with sublinear communication. Cryptology ePrint Archive, Paper
2022/660 (2022). https://eprint.iacr.org/2022/660

8. Choi, S.G., Dachman-Soled, D., Kulkarni, M., Yerukhimovich, A.: Differentially-
private multi-party sketching for large-scale statistics. PoPETs 2020(3), 153–174
(2020)

9. Clifton, C., Anandan, B.: Challenges and opportunities for security with differential
privacy. In: Bagchi, A., Ray, I. (eds.) ICISS 2013. LNCS, vol. 8303, pp. 1–13.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45204-8 1

10. Cormode, G., Jowhari, H.: L p samplers and their applications: a survey. ACM
Comput. Surv. (CSUR) 52(1), 1–31 (2019)

11. Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., Naor, M.: Our data, our-
selves: privacy via distributed noise generation. In: Vaudenay, S. (ed.) EURO-
CRYPT 2006. LNCS, vol. 4004, pp. 486–503. Springer, Heidelberg (2006). https://
doi.org/10.1007/11761679 29

12. Elahi, T., Danezis, G., Goldberg, I.: PrivEx: private collection of traffic statistics
for anonymous communication networks. In: Ahn, G.J., Yung, M., Li, N., (eds.)
ACM CCS 2014, pp. 1068–1079. ACM Press (2014)

13. Eriguchi, R., Ichikawa, A., Kunihiro, N., Nuida, K.: Efficient noise generation to
achieve differential privacy with applications to secure multiparty computation.
In: Borisov, N., Diaz, C. (eds.) FC 2021. LNCS, vol. 12674, pp. 271–290. Springer,
Heidelberg (2021). https://doi.org/10.1007/978-3-662-64322-8 13

14. Feigenbaum, J., Ishai, Y., Malkin, T., Nissim, K., Strauss, M., Wright, R.N.:
Secure multiparty computation of approximations. In: Orejas, F., Spirakis, P.G.,
van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 927–938. Springer, Hei-
delberg (2001). https://doi.org/10.1007/3-540-48224-5 75

15. Feigenbaum, J., Ishai, Y., Malkin, T., Nissim, K., Strauss, M.J., Wright, R.N.:
Secure multiparty computation of approximations. ACM Trans. Algorithms 2(3),
435–472 (2006)

16. Ganguly, S.: Counting distinct items over update streams. Theoret. Comput. Sci.
378(3), 211–222 (2007)

17. Goryczka, S., Xiong, L., Sunderam, V.: Secure multiparty aggregation with dif-
ferential privacy: a comparative study. In: Proceedings of the Joint EDBT/ICDT
2013 Workshops, pp. 155–163 (2013)

18. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the
curse of dimensionality. In: 30th ACM STOC, pp. 604–613. ACM Press (1998)

19. Jansen, R., Johnson, A.: Safely measuring tor. In: Weippl, E.R., Katzenbeisser, S.,
Kruegel, C., Myers, A.C., Halevi, S., (eds.) ACM CCS 2016, pp. 1553–1567. ACM
Press (2016)

20. Johnson, W.B. Lindenstrauss, J.: Extensions of lipschitz mappings into a hilbert
space (1984)

21. Jowhari, H., Saglam, M., Tardos, G.: Tight bounds for LP samplers, finding dupli-
cates in streams, and related problems. In: Lenzerini, M., Schwentick, T., (eds.)
Proceedings of the 30th ACM SIGMOD-SIGACT-SIGART Symposium on Prin-
ciples of Database Systems, PODS 2011, 12–16 June 2011, Athens, Greece, pp.
49–58. ACM (2011)

https://eprint.iacr.org/2022/660
https://doi.org/10.1007/978-3-642-45204-8_1
https://doi.org/10.1007/11761679_29
https://doi.org/10.1007/11761679_29
https://doi.org/10.1007/978-3-662-64322-8_13
https://doi.org/10.1007/3-540-48224-5_75

Secure Sampling with Sublinear Communication 377

22. Jowhari, H., Saglam, M., Tardos, G.: Tight bounds for LP samplers, finding dupli-
cates in streams, and related problems. In: Proceedings of the Thirtieth ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp.
49–58 (2011)

23. Kabán, A.: Improved bounds on the dot product under random projection and
random sign projection. In: Cao, L., Zhang, C., Joachims, T., Webb, G.I.B.,
Margineantu, D., Williams, G., (eds.) Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, Sydney, NSW,
Australia, 10–13 August 2015, pp. 487–496. ACM (2015)

24. Kalyanasundaram, B., Schnitger, G.: The probabilistic communication complexity
of set intersection. SIAM J. Discret. Math. 5(4), 545–557 (1992)

25. McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: 48th
FOCS, pp. 94–103. IEEE Computer Society Press (2007)

26. Melis, L., Danezis, G., De Cristofaro, E.: Efficient private statistics with succinct
sketches. In: NDSS 2016. The Internet Society (2016)

27. Monemizadeh, M., Woodruff, D.P.: 1-pass relative-error lp-sampling with applica-
tions. In: Charikar, M., ed. Proceedings of the Twenty-First Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2010, Austin, Texas, USA, 17–19 Jan-
uary 2010, pp. 1143–1160. SIAM (2010)

28. Mouchet, C., Troncoso-Pastoriza, J., Bossuat, J.P., Hubaux, J.P.: Multiparty
homomorphic encryption from ring-learning-with-errors. PoPETs 2021(4), 291–
311 (2021)

29. Pathak, M., Rane, S., Raj, B.: Multiparty differential privacy via aggregation of
locally trained classifiers. In: Advances in Neural Information Processing Systems,
vol. 23 (2010)

30. Pentyala, S., et al.: Training differentially private models with secure multiparty
computation. arXiv preprint arXiv:2202.02625 (2022)

31. Prabhakaran, M.M., Prabhakaran, V.M.: On secure multiparty sampling for more
than two parties. In 2012 IEEE Information Theory Workshop, pp. 99–103. IEEE
(2012)

32. Prabhakaran, V.M., Prabhakaran, M.M.: Assisted common information with an
application to secure two-party sampling. IEEE Trans. Inf. Theor. 60(6), 3413–
3434 (2014)

33. Razborov, A.A.: On the distributional complexity of disjointness. Theor. Comput.
Sci. 106(2), 385–390 (1992)

34. Wails, R., Johnson, A., Starin, D., Yerukhimovich, A., Gordon, S.D.: Stormy:
statistics in tor by measuring securely. In: Cavallaro, L., Kinder, J., Wang, X.,
Katz, J., (eds.) ACM CCS 2019, pp. 615–632. ACM Press (2019)

35. Woodruff, D.P., Zhong, P.: Distributed low rank approximation of implicit func-
tions of a matrix. In: 2016 IEEE 32nd International Conference on Data Engineer-
ing (ICDE), pp. 847–858. IEEE (2016)

http://arxiv.org/abs/2202.02625

Secure Non-interactive Simulation
from Arbitrary Joint Distributions

Hamidreza Amini Khorasgani, Hemanta K. Maji, and Hai H. Nguyen(B)

Department of Computer Science, Purdue University, West Lafayette, USA
{haminikh,hmaji,nguye245}@purdue.edu

Abstract. Secure non-interactive simulation (SNIS), introduced in
EUROCRYPT 2022, is the information-theoretic analog of pseudo-
correlation generators. SNIS allows parties, starting with samples of a
source correlated private randomness (correlation), to non-interactively
and securely transform them into samples from a different correlation.

This work studies SNIS of binary symmetric or erasure correlations
from any arbitrary source correlation. In this context, our work presents:
1. The characterization of all sources that facilitate such SNIS,
2. An upper and lower bound on their maximum achievable rate, and
3. Exemplar SNIS instances where non-linear reductions achieve opti-

mal efficiency; however, any linear reduction is insecure.
These results collectively yield the fascinating instances of computer-
assisted search for secure computation protocols that identify ingenious
protocols that are more efficient than all known constructions.

Our work generalizes the algebraization of the simulation-based def-
inition of SNIS as an approximate eigenvector problem. The following
technical contributions are the underpinnings of the results above.
1. Characterization of Markov and adjoint Markov operators’ effect on

the Fourier spectrum of reduction functions.
2. A new concentration phenomenon in the Fourier spectrum of reduc-

tion functions.
3. A statistical-to-perfect lemma with broad consequences for feasibility

and rate characterization of SNIS.
Our technical analysis relies on Fourier analysis over large alphabets
with arbitrary measure, the orthogonal Efron-Stein decomposition, and
junta theorems. Our technical approach motivates the new problem of
“security-preserving dimension reduction” in harmonic analysis, which
may be of independent interest.

The research effort is supported in part by an NSF CRII Award CNS–1566499, NSF
SMALL Awards CNS–1618822 and CNS–2055605, the IARPA HECTOR project,
MITRE Innovation Program Academic Cybersecurity Research Awards (2019–2020,
2020–2021), a Ross-Lynn Research Scholars Grant, a Purdue Research Foundation
(PRF) Award, and The Center for Science of Information, an NSF Science and Tech-
nology Center, Cooperative Agreement CCF–0939370.
The full version is accessible at https://eprint.iacr.org/2021/190.

c© The Author(s), under exclusive license to Springer Nature Switzerland 2022
E. Kiltz and V. Vaikuntanathan (Eds.): TCC 2022, LNCS 13748, pp. 378–407, 2022.
https://doi.org/10.1007/978-3-031-22365-5_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22365-5_14&domain=pdf
https://eprint.iacr.org/2021/190
https://doi.org/10.1007/978-3-031-22365-5_14

Secure Non-interactive Simulation from Arbitrary Joint Distributions 379

1 Introduction

Recently, Khorasgani, Maji, and Nguyen [32] introduced secure non-interactive
simulation (SNIS) as an information-theoretic analog of pseudo-correlation gen-
erator [10,11]. In the two-party setting (refer to Fig. 1), Alice and Bob start with
n independent samples of correlated private randomness (X,Y), the source distri-
bution. Non-interactively, Alice and Bob compute U = fn(Xn) and V = gn(Y n),
where fn(·) and gn(·) are reduction functions,1 and the joint distribution (U, V)
is the target distribution. This construction is a SNIS of the target distribution
(U, V) from the source distribution (X,Y) if it is simulation-secure [12–14]. Note
that SNIS security against semi-honest or malicious adversaries is identical.

(xn, yn) $←− (X, Y)⊗n

Alice

xn

U⊗m � u′ = fn(xn, rA)

rA
$←− RA Bob

yn

v′ = gn(yn, rB) ∈ V⊗m

rB
$←− RB

Fig. 1. System model for secure non-interactive simulation: SNIS.

Motivating Application for SNIS: Correlation generators [32]. Secure compu-
tation [26,52] protocols often offload most of their computationally and cryp-
tographically expensive components to an offline procedure [8,17,39,45]. This
offline procedure has high computation and communication costs, and it gen-
erates structured correlated private randomness like Beaver triples [5]. How-
ever, several inexpensive sources of correlated private randomness also facilitate
secure computation, like, correlated samples from noise sources [33]. Therefore,
a natural solution is to non-interactively and securely convert these inexpensive
correlations into ones used in secure computation protocols.

Boyle et al. [10,11] introduced pseudorandom correlation generators to
achieve this objective against computationally bounded adversaries. Recently,
Khorasgani et al. [32] introduced the information-theoretic analog of this prim-
itive, modeled by the system in Fig. 1, to study the feasibility and rate of SNIS,
which has straightforward consequences to the efficiency of secure computation.
1 The reduction functions fn(·) and gn(·) are randomized and use independent pri-

vate randomness; however, for brevity, the randomness is being excluded from the
formal representation. Strong sample-preserving derandomization results (i.e., the
derandomized reductions use an identical number of source samples and produce an
identical number of target samples) for SNIS [32] indicate the uselessness of inde-
pendent private randomness.

380 H. A. Khorasgani et al.

Security & Rate Definition of SNIS [32]. Readers should follow the system in
Fig. 1 for the discussion below. For feasibility considerations, substitute m = 1
in Fig. 1. Khorasgani et al. [32] said that a SNIS of (U, V) from (X,Y)⊗n using
reduction functions fn, gn has insecurity ν(n) if the following three conditions
are satisfied.

1. Correctness. The joint distribution of the output samples (u′, v′) is ν(n)-close
to the target distribution (U, V) in statistical (i.e., total variational) distance.

2. Security against a corrupt Alice. Fix any (u, v) in the support of the target
distribution (U, V). The distribution of xn conditioned on u′ = u and v′ = v
is ν(n)-close to being independent of v.2 In other words, Xn − U − V is an
(approximate) Markov chain.

3. Security against a corrupt Bob. Likewise, for any (u, v) in the support of the
target distribution (U, V), the conditional distribution (Y n|U ′ = u, V ′ = v)
is ν(n)-close to being independent of u. In other words, Y n − V − U is an
approximate Markov chain.

[32] presented a simulation-based security definition that unifies these three con-
ditions. We represent this definition by the notation: “(U, V) �ν(n)

fn,gn
(X,Y)⊗n”.

Fix the source (X,Y) and the target (U, V). To discuss (the single-letter char-
acterization of) rate, Khorasgani et al. [32] consider a SNIS family of (U, V)⊗m(n)

from (X,Y)⊗n using reduction function fn, gn with insecurity ν(n), parameter-
ized by n ∈ {1, 2, . . . }. The (production) rate, represented by R((U, V), (X,Y)),
is the supremum of the maximum achievable m(n)/n as n → ∞ and ν(n) → 0
over all possible families of reductions.

This reduction-based investigation facilitates characterizing the efficiency
limits of non-interactive secure computation irrespective of the origin of the
source samples. For example, the source samples can originate from noisy phys-
ical processes, trusted hardware, or the output of a protocol relying on crypto-
graphic hardness of computation assumptions.

Relation to Other Primitives and Additional Motivation. One-way secure com-
putation [2,22] uses one additional round of communication to transform the
samples from source distributions into samples from a target distribution.
Non-interactive correlation distillation [9,16,42,43,51] restricts SNIS to the
target distribution (U, V) being the independent coin distribution. SNIS is
the cryptographic extension of non-interactive simulation of joint distribu-
tion [18,21,24,25,30,31,48,50] from information theory.

This non-cryptographic simulation problem (either non-interactive or with
rate-limited communication) has diverse applications, for example, as discussed
in [31], spanning from game-theoretic coordination in a network against an adver-
sary to control a dynamical system over a distributed network. These applica-
tions naturally extend to the cryptographic context with adversarial agents,
granting additional independent motivation to study SNIS.
2 The conditional distribution (A|B = b) is ν-close to being independent of b if there

is a distribution A∗ such that the statistical distance between A∗ and the conditional
distribution (A|B = b) is at most ν for any b ∈ Supp(B).

Secure Non-interactive Simulation from Arbitrary Joint Distributions 381

Studying the cryptographic complexity [6,7,36,38,44] also motivates the
study of SNIS, as done in the independent work of [1].

Our Problem Statement. This work considers the simulation of two particular
target distributions (U, V) (refer to Fig. 2).

1. Noise from the binary symmetric channel. Alice outputs uniformly random
u ∈ {+1,−1} and Bob outputs v ∈ {+1,−1} such that, for each u, the
probability of u �= v is ε ∈ (0, 1/2). We represent this correlated private
randomness by BSS(ρ), where ρ = (1 − 2ε). For example, BSS(1/2) is a
distribution where Alice and Bob samples disagree with a probability of 1/4.

2. Noise from the binary erasure channel. Alice outputs uniformly random u ∈
{+1,−1} and Bob outputs v ∈ {u, 0} such that, for each u, the probability
of v = 0 is ε ∈ (0, 1). We represent this correlated private randomness by
BES(ρ), where ρ =

√
1 − ε. So, BES(

√
1/2) has erasure probability 1/2.

+1

−1

+1

−1

1 − ε

ε
ε

1 − ε

BSS(ρ = 1 − 2ε)

+1

−1

+1

−1

0

1 − ε

ε

ε

1 − ε

BES(ρ =
√
1 − ε)

Fig. 2. Random correlated noise generated by the binary symmetric channel (BSS)
and the binary erasure channel (BES) with maximal correlation ρ.

This work parameterizes the channels by their maximal correlation ρ for
brevity in our technical presentation (see Sect. 3.2 for formal definition). [32]
proved that a SNIS of BSS(ρ′) from BSS(ρ) exists if and only if ρ′ = ρk, for
some k ∈ {1, 2, . . . }. Furthermore, if this SNIS is feasible, it has a rate of 1/k:
each party outputs the product of k samples of their source – a linear reduction.
Similarly, a SNIS of BES(ρ′) from BES(ρ) exists if and only if ρ′ = ρk, for some
k ∈ {1, 2, . . . }. This SNIS also has a rate of 1/k, and linear reductions are rate-
achieving.

Our work considers the problem of determining the feasibility and rate of
SNIS generating BSS/BEStarget noise from arbitrary source distributions and
identifying corresponding maximum rate-achieving secure constructions. The
source distribution (X,Y) can be arbitrary; they may have arbitrary-size sample
spaces, and their marginal distributions need not be uniform or identical.

382 H. A. Khorasgani et al.

Summary of Our Results. We present an exhaustive characterization of all source
distributions that yield secure SNIS of BSS and BES target distributions. Fur-
thermore, if the insecurity of a SNIS is sufficiently small, then one can slightly
edit the reduction functions to convert them into perfectly secure SNIS. Next,
we present (positive constant) lower and upper bounds on the production rate
of such SNIS. Finally, we exhibit SNIS instances where non-linear reduction
functions achieve optimal rate (also demonstrating the tightness of our rate
estimates); however, every linear reduction is constant insecure. We efficiently
searched the space of all reductions (guided by our technical results) to identify
these fascinating non-linear reductions – even the authors were unaware of their
existence.

These cryptographic consequences rely on several foundational and technical
contributions of ours, which may be of independent and broader interest. We
generalize the [32]’s framework for algebraizing SNIS from arbitrary source dis-
tributions using the source’s Markov and the adjoint Markov operators (refer to
Sect. 3.4 for definition). This algebraization translates SNIS into an approximate
eigenvector formulation for appropriate linear operators, where the reduction
functions are their eigenvectors. Next, we quantify the impact of these linear
operators on the Fourier spectrum of the reduction functions. Our proof relies
on a critical synergy between the linear operators and the reduction functions
over the orthogonal Efron-Stein basis. Our work shows that this quantification
entails a concentration of the Fourier spectrum of the reductions on low-degree
terms. Fascinatingly, our bound on the degree depends on the maximal correla-
tions of the source and the target distributions. Finally, we apply appropriate
junta theorems (i.e., dimension reduction) to prove the closeness of SNIS reduc-
tions to juntas (a.k.a., canonical reductions).

Consequently, one obtains a technical tool: the statistical to perfect lemma.
This lemma, for instance, implies the following non-trivial phenomena for any
source and target pair.

1. One can error-correct any statistically-secure SNIS into a perfect SNIS.
2. The total number of canonical SNIS candidates is constant.
3. The rate of any feasible SNIS is a positive constant.

The presentation above is only a high-level overview of our proof strategy,
highlighting its primary landmarks. There are several subtleties to address and
technical challenges to overcome, which we further elaborate in Sect. 2.2.

Computer-Assisted Search for Optimal Secure Computation Protocols. Although
computer-assisted constructions are common while constructing error-correcting
codes and combinatorial designs [37], their role in secure protocols is novel. Our
work presents fascinating instances of computer-assisted search for finding opti-
mal secure computation protocols that are more efficient than known protocols.
[32] discovered new alternative constructions that achieve already-known effi-
ciency parameters. [15] also used computer assistance to recover known garbling
constructions. Typically idealized information-theoretic models yield hardness
of computation results; however, the SNIS model also yields non-trivial positive

Secure Non-interactive Simulation from Arbitrary Joint Distributions 383

results. This research outcome indicates that one should be open to the possi-
bility of relying on computer-assisted search to design new and more efficient
secure computation protocols.

Overview of the Paper. Section 2 presents an informal overview of our results
and technical approach. Section 3 introduces the preliminaries. Section 4 proves
our results pertaining to determining the feasibility of SNIS. Section 5 presents
our rate estimation results. Section 6 has results pertaining to 2 × 2 sources.
Section 7 presents the remaining results.

2 Overview of Our Contributions

2.1 Overview of Our Results

This section presents an informal summary of our results and a technical
overview of the proof. In the presentation below, without loss of generality, we
assume that the SNIS reductions are deterministic [32].

Feasibility Characterization of SNIS from Arbitrary Sources. We
present an efficient algorithm to determine whether a statistically secure SNIS of
BSS/BES from the source (X,Y) is feasible or not (see Corollary 1). Theorem 1
states that if the simulation error of a SNIS of BSS/BES from the source (X,Y)
is less than c/n, where c a suitable positive constant, one can edit the reduction
functions into a perfect secure SNIS. Furthermore, these perfectly-secure reduc-
tions are canonical reductions that are Boolean constant-juntas. That is, they
depend on a constant number of input variables, which entails that the total
number of such canonical candidate reductions is only a constant. Therefore,
one can exhaustively search for all such canonical reductions to determine if a
SNIS of BSS/BES from (X,Y) is possible.

This technical result entails the following consequence for cryptographic con-
texts. Efficient secure constructions in cryptography insist on achieving negl(λ)
insecurity, where λ is the security parameter, using n = poly(λ) source samples.
Therefore, given a source and target, our result proves that either (a) there is
a perfectly secure SNIS or (b) every SNIS construction is insecure (because we
show that the insecurity is at least inverse-polynomial in the security parame-
ter). In particular, our result rules out the possibility of negligibly-insecure SNIS
existing where there is no perfectly secure SNIS.

Estimating Rate of SNIS from Arbitrary Sources. We prove that if a
SNIS is feasible, it has a positive constant rate (see Corollary 2). Fix a BSS/BES
target. To lower-bound the rate of such SNIS by a positive constant, observe that
if a SNIS of BSS/BES from (X,Y) is feasible, there is a canonical SNIS, which
is perfectly secure, and the reduction functions are constant-juntas. One can
partition the samples of (X,Y)⊗n into constant-size blocks, apply the canonical
reduction to each block, and obtain one target sample from each block. This
construction has a positive constant rate. Such results are rare in cryptography
and challenging to prove for secure computation (cf., [28,29,32] for examples).

384 H. A. Khorasgani et al.

Theorem 5 upper-bounds the rate of SNIS of BSS/BES from any target dis-
tribution using the maximal correlation [3,4,27,47,48] of the target distribution
(refer to Sect. 3.2 for the definition of maximal correlation) and the eigenvalue
of the Markov operator TT (refer to Sect. 3.4) of the source distribution. We
emphasize that this upper bound is only for perfectly secure SNIS. This restric-
tion is unsurprising because, as demonstrated in [32], even estimating the rate of
simulating BSS from BSS is known only for perfectly secure SNIS. [32] present
evidence that overcoming this hurdle may require advances in harmonic analysis.

Our upper bounds for BSS and BES are tight as demonstrated by (1) the
rate of self-simulation of BSS and BES [32], and (2) the reduction of BSS(1/2)
and BES(

√
1/2) from the ROLE correlation (defined below), whose maximal

correlation is
√

1/2.
We clarify that this upper bound also extends to randomized perfectly-secure

SNIS because the sample-preserving derandomization of [32] preserves perfect
security.

Power of Non-linear Reductions and Computer-Assisted Search. The
random oblivious linear-function evaluation [49] (ROLE) source samples uni-
formly and independently random a, b, c ∈ {0, 1}, provides Alice x = (a, b), and
provides Bob y = (c, d), where d = a · c ⊕ b. The maximal correlation of ROLE
is

√
1/2 (see the full version for the proof). Recall that BSS(1/2) is a random

correlated sample from the binary symmetric channel where parties’ samples are
different with probability 1/4.

We show that there is an optimal rate-1/2 SNIS of BSS(1/2) from ROLE
using non-linear reductions (refer to the protocol in Fig. 3 and the discussion in
Sect. 7.3); however, any SNIS of BSS(1/2) from ROLE using linear reductions is
constant-insecure (refer to Lemma 4).3 The optimality of the rate follows from
the upper bound of Theorem 5. In the optimal protocol each party’s output
indicates whether their source samples form a ROLE correlation or not.

The previous best construction (as far as the authors are aware) uses three
ROLEs and one round of communication to implement a 1-out-of-4 bit-OT.
Alice feeds a random permutation of (u, u, u, 1 − u), where u

$←− {0, 1}, into
the 1-out-of-4 bit-OT. Bob chooses to receive the bit v at a random position
i ∈ {1, 2, 3, 4}. In comparison, our construction uses one less ROLE sample
and no communication, which significantly impacts the efficiency of this secure
computation.4

3 Observe that “linearity” of a reduction may depend on how the samples of the source
are “named”. We prove our impossibility result in a strong sense. For any renaming
of the samples, we show that linear constructions are constant insecure.

4 We identified all reductions realizing this SNIS at an optimal rate. All the reductions
were essentially equivalent to each other. However, we chose this particular reduction
because it admits an elegant intuitive formulation.

Secure Non-interactive Simulation from Arbitrary Joint Distributions 385

Source. Alice gets (a1, b1, a2, b2) and Bob gets (c1, d1, c2, d2) such that
a1, b1, c1, a2, b2, c2 are chosen uniformly and independently at random from the set
{0, 1} and d1 = a1 · c1 ⊕ b1 and d2 = a2 · c2 ⊕ b2.

Reductions.

1. Alice outputs u = +1, if b2 = a1 · a2 ⊕ b1; otherwise, u = −1.
2. Bob outputs v = +1, if d2 = c1 · c2 ⊕ d1; otherwise, v = −1.

Source. (In multiplicative notation.) Alice gets (A1, B1, A2, B2) and Bob gets
(C1, D2, C2, D2) such that A1, B1, C1, A2, B2, C2 are chosen uniformly and indepen-
dently at random from the set {+1, −1} and D1 = 1

2
· (1 + A1 + C1 − A1 · C1) · B1

and D2 = 1
2

· (1 + A2 + C2 − A2 · C2) · B2.

Reductions.

1. Alice outputs U = 1
2

· (1 + A1 + A2 − A1 · A2) · B1 · B2.
2. Bob outputs V = 1

2
· (1 + C1 + C2 − C1 · C2) · D1 · D2.

Fig. 3. SNIS of BSS(1/2) from ROLE achieving optimal production rate 1/2. The top
half of the figure presents the reduction using ROLE as defined for elements in {0, 1}.
The bottom half presents the equivalent reduction using the multiplicative notation
0 �→ +1 and 1 �→ −1. In the multiplicative representation, the Fourier spectrum of
each reduction function is explicit. One can verify that the (1) reduction functions
are non-linear and (2) their Fourier weights are not concentrated on terms of identical
degree.

Similarly, there is an optimal rate-1 SNIS of BES(
√

1/2) from ROLE using
non-linear reductions (refer to Sect. 7.3); however, any SNIS using linear reduc-
tions is constant-insecure (refer to Lemma 4). The optimality of this protocol
follows from Theorem 5. Furthermore, the spectrums of these reduction functions
are not concentrated on terms with an identical degree.

Additional Result: Explicit Characterization of SNIS of BSS from
2 × 2 Sources. Let the target distribution be BSS(ρ′) and (X,Y) be an arbi-
trary source such that the support size of both its marginals is two. We prove
in Theorem 6 that if the source (X,Y) �= BSS(ρ) or (X,Y) = BSS(ρ) but
ρ′ �= ρk, for all k ∈ {1, 2, . . . }, then any SNIS of BSS(ρ′) from (X,Y) is
constant insecure. If (X,Y) = BSS(ρ), ρ′ = ρk, for some k ∈ {1, 2, . . . },
and BSS(ρ′) �ν

f,g BSS(ρ) for a sufficiently small ν, then one can slightly edit
the reduction function to obtain new reduction functions f∗, g∗ that are k-
homogeneous5 and BSS(ρ′) �0

f∗,g∗ BSS(ρ) – a result already proved in [32].
The proof of Theorem 6 (additionally) depends on (1) Theorem 8: a statistical-
to-perfect lemma for BSS target from arbitrary 2 × 2 source, and (2) Theorem
9: the characterization of sources facilitating perfect SNIS of BSS target.

Remark 1. For 2 × 2 sources, our definition of “sufficiently small simulation
error” is slightly different from the arbitrary source case. In the 2 × 2 source
case, “sufficiently small simulation error” is a (global) constant. For arbitrary
5 A homogeneous function is a linear combination of terms with an identical degree.

386 H. A. Khorasgani et al.

sources, “sufficiently small simulation error” is c/n, where c is a global constant.
This variation is a consequence of the different junta theorems our analysis uses.
Typically in cryptography, the security requires that the simulation error falls
faster than any inverse polynomial. Our results even work when considering
inverse polynomial simulation error.

Additional Result: Explicit Characterization of SNIS of BESfrom 2 × 2
Sources. We show that any SNIS of BES from a 2×2 source is constant insecure
(refer to Theorem 7). This generalizes the impossibility of SNIS of BES from
BSS [32].

Additional Result: Necessary Condition for SNIS Feasibility. Theorem
11 presents easy-to-test necessary conditions for the feasibility of SNIS of BSS
or BES from eigenvalues of the Markov operator of the source. Our “eigenvalue
test” (derived independently) is identical to the test introduced in [1].

Additional Result: Incompleteness of String OT. Random samples from
the string oblivious transfer functionality, parameterized by � ∈ {1, 2, . . . },
gives Alice two random �-bit strings (x0, x1) ∈ {0, 1}2� and gives Bob (b, xb) ∈
{0, 1}�+1

, where b is a uniformly random bit (see Definition 8). Lemma 5 states
that this family (for � ∈ {1, 2, . . . }) of random samples from the string oblivious
transfer is not complete for SNIS because all of them have maximal correlation√

1/2. This family cannot yield a SNIS of any target with maximal correlation
>

√
1/2, because of Imported Theorem 2, and Imported Theorem 1.

This family is complete for one-way secure computation [22]. [1] show that a
single source cannot be complete for SNIS.

2.2 Overview of Our Technical Contributions

This section presents a high-level intuition of our technical contributions. It is
instructive to read this section with SNIS for BSS target as a representative
example.

Our Starting Point. For a source (X,Y) ∈ {BSS,BES}, Khorasgani et al. [32]
algebraically captured the simulation-based security definition of SNIS using the
Markov (T) and the adjoint-Markov (T) operators associated with (X,Y). If a
SNIS has a small simulation error, the reduction functions f and g are approxi-
mate eigenvectors of the linear operators TT and TT, respectively. We generalize
this result to an arbitrary source (X,Y) using a similar idea. Furthermore, alge-
braization of security in [32] is not scalable. We perform a normalization change
(relying on maximal-correlation-based notation) to make it scalable. For exam-
ple, compare Theorem 4 in our paper with Claim 10 in [32].

Characterization of Markov Operator’s Effect on the Fourier Spec-
trum. It is essential to accurately characterize the impact on the Fourier spec-
trum when applying the TT linear operator on the reduction f and applying the
TT linear operator on the reduction g. When the source is either BSS or BES as

Secure Non-interactive Simulation from Arbitrary Joint Distributions 387

in [32], Fourier analysis over uniform measure suffices; both operators TT and TT
are the well-behaved noise (Bonami-Beckner) operators. Therefore, the impact
of Fourier spectrum is well understood. In contrast, if the source is an arbitrary
joint distribution, the marginal distributions of the source need not be uniform
or identical to each other and the two operators need not be the Bonami-Beckner
operators, complicating this technical challenge even further. If the source is a 2-
by-2 distribution, we present an accurate characterization of Markov’s operator’s
effect on the Fourier spectrum (see Lemma 1) using biased Fourier analysis. This
result is a generalization to correlated space of the Bonami-Beckner operator’s
effect on the Fourier spectrum.

When the source is an arbitrary joint distribution, straightforward control
of the Markov operator’s effect is not evident even when using Fourier analysis
over arbitrary product measure. Instead, we take a detour and use the Efron-
Stein orthogonal decomposition for this analysis step (see Sect. 3.5). Our linear
operators synergize well with the reduction functions over this decomposition,
and one bounds the effect of these operators on the reduction functions using the
maximal correlation of the source (X,Y) (see Proposition 5 and Proposition 6).
Finally, we return to the Fourier basis and translate the bounds on the Fourier
spectrum using Proposition 7.

Fourier Concentration. The approximate eigenvector problem (a consequence
of the SNIS definition) and the characterization of the Markov and adjoint-
Markov operators’ impact on the Fourier spectrum yields new Fourier concen-
tration results. For 2 × 2 sources, we prove that the Fourier spectrum of the
solutions of the approximate eigenvector problem (in particular, the reduction
functions) are concentrated on terms of a fixed degree (see Theorem 10). [32]
proved this concentration result for the particular cases of BSS and BES sources.

For arbitrary sources, we show that the Fourier spectrum is concentrated
on low-degree terms (see Theorem 3). This relaxation in concentration is also
necessary; i.e., we show perfectly secure reductions constructing BSS(1/2) and
BES(

√
1/2) from the ROLE source whose spectrums are not concentrated on

only one degree. This Fourier concentration phenomenon is a manifestation of
“security” and distinguishes our problems from those arising in non-interactive
simulation (i.e., SNIS without security) [18,21,24,25,30,31,48,50].

Statistical to Perfect Lemma. The set of all reductions with Fourier spec-
trum concentrated on low-degree multi-linear is still potentially huge.6 Using
appropriate junta theorems, Theorem 1 shows that Boolean functions satisfying
such Fourier concentration properties are (close to) juntas. Since these juntas
depend only on a constant number of inputs, the total number of such candidate
juntas is also a constant. Therefore, this result implies that (1) SNIS is either
perfectly secure or constant-insecure, (2) The size of the set of all canonical SNIS

6 A function whose Fourier spectrum is concentrated on low-degree multi-linear terms
may depend on all the variables. So, without using any additional properties of low-
degree Boolean functions, one cannot prune down the set of candidate functions.
Therefore, their number may be exponential in the number of variables.

388 H. A. Khorasgani et al.

of (U, V) from (X,Y) is a constant, and (3) Any feasible SNIS has a positive
constant rate. Furthermore, these juntas yield perfectly-secure SNIS.

Consequently, for a particular number of source samples n and (sufficiently
small constant) insecurity budget ν(n), our analysis determines whether such a
SNIS exists or not. Furthermore, a constant-time algorithm can search for the
witness reductions. For example, an exhaustive search algorithm discovered all
SNIS of BSS(1/2) from ROLE, uncovering fascinating new reductions.

3 Preliminaries

3.1 Notation

We denote [n] as the set {1, 2, . . . , n} and N<m = {0, 1, . . . ,m − 1}. For two
functions f, g : Ω → R, the equation f = g implies that f(x) = g(x), for every
x ∈ Ω. We use Ω to denote the sample spaces, and π usually denotes a probability
distribution. (Ωx, Ωy) is a joint probability space. For x ∈ Ωn

x , we represent xi ∈
Ωx as the i-th coordinate of x. A Boolean function is a {±1}-valued function.

Correlated Spaces. We use (X,Y) to denote the joint distribution over
(Ωx, Ωy) with probability mass function π, and πx, πy to denote the marginal
probability distributions of X and Y , respectively. Sometimes we will use
(Ωx×Ωy, π) to denote the joint distribution. We sometimes use notation (X,Y)ρ

to emphasize that its maximal correlation (defined in Sect. 3.2) is ρ. We always
use the following notation for the expectation of functions f ∈ L2(Ωn

x , πx
⊗n), g ∈

L2(Ωn
y , πy

⊗n) over correlated spaces.

E[f] := E
x∼πx

⊗n
[f(x)], E[g] := E

y∼πy
⊗n

[g(y)], E[fg] := E
(x,y)∼π⊗n

[f(x) · g(y)]

Statistical Distance. The statistical distance (total variation distance)
between two distributions P and Q over a finite sample space Ω is defined as
SD (P,Q) = 1

2

∑
x∈Ω |P (x) − Q(x)| .

3.2 Maximal Correlation

We define maximal correlation and its properties in this subsection.

Definition 1 (Maximal Correlation [3,4,23,27,47,48]). The Hirschfeld-
Gebelein-Rényi maximal correlation of (X,Y) is defined as

ρ(X;Y) := max
E[f]=E[g]=0

E[f
2]=E[g

2]=1

E[f(X)g(Y)]

For example, the maximal correlation of BSS with flipping probability ε is
|1 − 2ε| for every ε ∈ [0, 1], and the maximal correlation of BES with erasure
probability ε is

√
1 − ε [53]. Note that maximal correlation of any distribution

is always between 0 and 1.

Secure Non-interactive Simulation from Arbitrary Joint Distributions 389

Imported Theorem 1 (Tensorization [48]). If (X1, Y1)ρ1 and (X2, Y2)ρ2

are independent, then the maximal correlation of (X1,X2;Y1, Y2) is equal to
max(ρ1, ρ2) and so if (X1, Y1), (X2, Y2) are i.i.d., then it is equal to ρ1 = ρ2.

Imported Theorem 2 (Data Processing [48]). Let (X,Y) be a joint distri-
bution. Then, for any pair of (even randomized) functions, we ρ(f(X), g(Y)) �
ρ(X,Y).

One can compute maximal correlation as follows.

Proposition 1 ([48]). The maximal correlation of a finite joint distribution
(X,Y) is the square root of the second largest eigenvalue of the Markov operator
TT, where T and T are Markov and adjoint Markov operator associated with
(X,Y).

3.3 Fourier Analysis Basics

We follow the notation of [46] to introduce some background in Fourier analysis
over product measure.

Fourier Analysis over Higher Alphabet

Definition 2. Let (Ω, π) be a finite probability space where |Ω| � 2 and π denote
a probability distribution over Ω. Let π⊗n denote the product probability distri-
bution on Ωn such that π⊗n(x1x2 . . . xn) =

∏n
i=1 π(xi). For n ∈ N, we write

L2(Ωn, π⊗n) to denote the real inner product space of functions f : Ωn → R

with inner product
〈f, g〉π⊗n = E

x∼π⊗n
[f(x)g(x)].

Moreover, the Lp-norm of a function f ∈ L2(Ωn, π⊗n) is defined as

‖f‖p := E
x∼π⊗n

[|f(x)|p]1/p.

We define the distance between two functions f, g ∈ L2(Ω,μ) as ‖f − g‖1. Note
that if f, g are bounded i.e. |f(x)| � α and |g(x)| � α for every x ∈ Ω,
then ‖f − g‖22 � 2α ‖f − g‖1. In particular, for Boolean valued functions f, g,
‖f − g‖22 � 2 ‖f − g‖1 = 4Prx∼μ[f(x) �= g(x)]. Therefore,

Claim 1. Suppose f ∈ L2(Ω,μ) such that |f(x)| � α for every x ∈ Ω. Then,
we have ‖f‖22 � α · ‖f‖1.
Definition 3. A Fourier basis for an inner product space L2(Ω, π) is an
orthonormal basis φ0, φ1, . . . , φm−1 with φ0 ≡ 1, where by orthonormal, we mean
that for any i �= j, 〈φi, φj〉 = 0 and for any i, 〈φi, φi〉 = 1.

It can be shown that if φ0, φ1, . . . , φm−1 is a Fourier basis for L2(Ω, π), then the
collection (φ)α∈Nn

<m
where φα(x) :=

∏n
i=1 φαi

(xi) (each αi ∈ {0, 1, . . . ,m − 1})
is a Fourier basis for L2(Ωn, π⊗n). Note that the size of the basis (φ)α∈Nn

<m
is

mn.

390 H. A. Khorasgani et al.

Definition 4. Fix a Fourier basis φ0, φ1, . . . , φm−1 for L2(Ω, π), then every f ∈
L2(Ωn, π⊗n) can be uniquely written as f =

∑
α∈Nn

<m
f̂(α)φα where f̂(α) =

〈f, φα〉. The real number f̂(α) is called the Fourier coefficient of f at α.

For α ∈ N
n
<m, we denote |α| := |{i ∈ [n] : αi �= 0}|. The Fourier weight of f

at degree k is defined as W k[f] :=
∑

α:|α|=k f̂(α)2. The Fourier weight of f at

degree strictly greater than k is defined as W>k[f] :=
∑

α:|α|>k f̂(α)2. We say
that the degree of a function f ∈ L2(Ωn, π⊗n), denoted by deg(f), is the largest
value of |α| such that f̂(α) �= 0. For every coordinate i ∈ [n], the i-th influence
of f , denoted by Infi[f], is defined as Infi[f] :=

∑
α : αi �=0 f̂(α)2. And the total

influence is defined as Inf(f) :=
∑n

i=1 Infi[f] =
∑

α |α| f̂(α)2 =
∑n

k=1 k · W k[f].

Biased Fourier Analysis over Boolean Cube. In the special case when
Ω = {±1}, we define the product Fourier basis functions φS for S ⊆ [n] as

φS(x) =
∏

i∈S

φ(xi) =
∏

i∈S

(
xi − μ

σ

)
,

where p = π(−1), μ = 1 − 2p, σ = 2
√

p
√

1 − p.

Definition 5 (Junta Function). A function f : Ωn → {±1} is called a k-
junta for k ∈ N if it depends on at most k of its inputs coordinates; in other
words, f(x) = g(xi1 , xi2 , . . . , xik), where i1, i2, . . . , ik ∈ [n]. Informally, we say
that f is a “junta” if it depends on only a constant number of coordinates. We
also say that f is ε-close to a k-junta function h if ‖f − h‖1 � ε.

3.4 Markov Operator

Definition 6 (Markov Operator [40]). The Markov operator associated with
joint distribution (X,Y), denoted by T, maps a function g ∈ Lp(Ωy, πy) to a
function Tg ∈ Lp(Ωx, πx) by the following map:

(Tg)(x) := E[g(Y) | X = x],

where (X,Y) is distributed according to π.
Furthermore, we define the adjoint operator of T, denoted as T, maps a

function f ∈ Lp(Ωx, πx) to a function Tf ∈ Lp(Ωy, πy) by the following map:

(Tf)(y) = E[f(X) | Y = y].

Note that the two operators T and T have the following property.

〈Tg, f〉πx
= 〈g,Tf〉πy

= E[f(Xn)g(Y n)].

Moreover, both Markov operators T and T are linear operators. Both TT and
TT are also Markov operators. We want to emphasize that the largest eigenvalue
of any Markov operator is always 1.

Secure Non-interactive Simulation from Arbitrary Joint Distributions 391

Proposition 2. Let T,T be respectively the Markov and adjoint operator associ-
ated with the 2-by-2 distribution (X,Y)⊗n

ρ . Let 1 = λ0 � λ1 > 0 be the eigenval-

ues of TT
(1)

(multiplication of Markov and adjoint operators for n = 1). Then,
it holds that ρ =

√
λ1. Moreover, the set of all eigenvalues of TT and TT is

{1, ρ2, ρ4, . . . , ρ2n}.
Proposition 3 [48]. Suppose (X,Y) is a finite joint distribution over (Ωx, Ωy).
Let π denote the probability mass function of (X,Y) and T and T respectively
denote the Markov operator and the adjoint Markov operator associated with
(X,Y). Let (X,X ′) be the joint distribution over (Ωx × Ωx, μ) such that the
marginal distribution μx is the same as πx and the associated Markov operator
of (X,X ′) is TT. Then, the marginal distributions of (X,X ′) are the same, in
other words, μx = μx′ . Furthermore, we have ρ(Ωx ×Ωx, μ) = ρ2, where ρ is the
maximal correlation of (X,Y).

This result shows that for f ∈ L2(Ωx, πx), we have (TT)f ∈ L2(Ωx, πx).

3.5 Efron-Stein Decomposition

We shall use the orthogonal Efron-Stein decomposition as one of the main tech-
nical tools.

Definition 7 (Chap. 8 of [46]). Let {(Ωi, μi)}�
i=1 be discrete probability spaces

and let (Ω,μ) =
∏�

i=1(Ωi, μi). The Effron-Stein decomposition of f : Ω → R is
defined as f =

∑
S⊆[n] f

=S where the functions f=S satisfy (1) f=S depends
only on xS, and (2) for all S �⊆ S′ and all xS′ , E[f=S |XS′ = xS′] = 0.

Proposition 4 ([19]). Efron-Stein decomposition exists and is unique.

The following propositions give the relation between Markov operators and
Efron-stein decompositions. The first proposition shows that the Efron-Stein
decomposition commutes with Markov Operator.

Proposition 5 ([40,41] Proposition 2.11). Let (Xn, Y n) be a joint distri-
bution over (Ωn

x × Ωn
y , π⊗n). Let T(i) be the Markov operator associated with

(Xi, Yi). Let T = ⊗n
i=1T

(i), and consider a function g ∈ L2(Ωn
y , πy

⊗n). Then,
the Efron-Stein decomposition of g satisfies (Tg)=S = T(g=S).

The next proposition shows that Tg depends on the low degree expansion of g.

Proposition 6 ([41] Proposition 2.12). Assuming the setting of Proposition
5 and let ρ be the maximal correlation of the distribution (X,Y). Then for all
g ∈ L2(Ωn

y , πy
⊗n) it holds that

∥∥Tg=S
∥∥
2

� ρ|S| ∥∥g=S
∥∥
2
.

The next proposition shows the connection between Fourier decomposition and
Efron-Stein decomposition.

392 H. A. Khorasgani et al.

Proposition 7 ([46] Proposition 8.36). Let f ∈ L2(Ωn, π⊗n) have the
orthogonal decomposition f =

∑
S⊆[n] f

=S, and let {φH}H∈Ωn be an orthonor-

mal Fourier basis for L2(Ωn, π⊗n). Then f=S =
∑

α : Supp(α)=S f̂(α)φα. In par-

ticular, when Ω = {±1} we have f=S = f̂(S)φS.

This implies that
∥∥f=S

∥∥2

2
=

∑
α : Supp(α)=S f̂(α)2. Therefore, it holds that

W k[f] =
∑

|S|=k

∥∥f=S
∥∥2

2
, and W>k[f] =

∑
|S|>k

∥∥f=S
∥∥2

2
.

3.6 Imported Theorems

Imported Theorem 3 (Kindler-Safra Junta Theorem [34,35]). Fix d �
0. There exists ε0 = ε0(d) and constant C such that for every ε < ε0, if
f : {±1}n → {±1} satisfies W>d[f] = ε then there exists a Cd-junta and degree

d function f̃ : {±1}n → {±1} such that
∥∥∥f − f̃

∥∥∥
2

2
� (ε + Cdε5/4).

Imported Theorem 4 (Friedgut’s Junta Theorem [20,46]). There exists
a global constant M such that the following holds. Let (Ω, π) be a finite probability
space such that every outcome has probability at least λ. If f ∈ L2(Ωn, πn)
has range {±1} and 0 < ε � 1, then f is ε-close to a (1/λ)M ·Inf(f)/ε-junta
h : Ωn → {±1}, i.e., Prx∼π⊗n [f(x) �= h(x)] � ε.

4 Characterization of SNIS from Arbitrary Sources

This section presents our feasibility characterization of SNIS from arbitrary joint
distributions stated below.

Corollary 1 (Feasibility Characterization). There is an algorithm that
takes as input a constant c > 0, a source (X,Y), and a target (U, V) ∈
{BSS(ρ′),BES(ρ′)}, and

1. outputs YES, if there is an infinite family of reduction functions {fn, gn}
satisfying (U, V) �νn

fn,gn
(X,Y)⊗n and νn � c/n, and

2. outputs NO, otherwise.

In the YES instance, the algorithm additionally outputs a pair of reduction func-
tions f∗ : Ωn0

x → {±1} and g∗ : Ωn0
y → {±1} that witness a perfect-SNIS con-

struction for some n0 = n0(c, ρ, ρ′) ∈ N where ρ represents the maximal corre-
lation of source (X,Y). Furthermore, the algorithm’s running time is bounded
and computable.

This theorem says that there is an algorithm that can determine whether there is
a statistically SNIS of BSS/BES from a given source. The algorithm also outputs
a canonical (perfect) SNIS construction in the YES instance. Corollary 1 follows
from the following statistical to perfect results.

Secure Non-interactive Simulation from Arbitrary Joint Distributions 393

Theorem 1 (Statistical-to-perfect). Let (X,Y) be an arbitrary joint dis-
tribution and (U, V) ∈ {BSS(ρ′),BES(ρ′)}. For any c > 0, there are positive
constants n0, d,D such that the following result holds. If (U, V) �ν

f,g (X,Y)⊗n,
for some n � n0, and ν � c/n, then f is νd-close to a D-junta reduction
function f∗, and g is νd-close to a D-junta reduction function g∗ such that
(U, V) �0

f∗,g∗ (X,Y)⊗n.

We remark that the constant D does not depend on n but might depend
on the source, the target, the constant c, and the implicit constant in the
Friedgut’s junta theorem (Imported Theorem 4). Assuming this theorem, Fig. 4
gives an algorithm for Corollary 1. We provide the proof of Theorem 1 when
(U, V) = BSS(ρ′) in Sect. 4.1, and when (U, V) = BES(ρ′) in Sect. 4.2. At a high
level, our proof strategy for BES is similar to the strategy for BSS except one
technical challenge due to Bob’s reduction function, which is not a Boolean-
valued function.

SNISFeasChar ((X, Y), (U, V), c) :
1. Let D = D(ρ′, (X, Y), c) be the constant defined in Theorem 1.
2. Consider all functions f : ΩD

x → {±1}, and g : ΩD
y → {±1}

– Return YES, if there exist f∗, g∗ such that BSS(ρ′) �0
f∗,g∗ (X, Y)⊗D.

– Return NO, otherwise.

Fig. 4. An algorithm to decide the feasibility of SNIS of BSS(ρ′) from samples of (X, Y)

4.1 Statistical to Perfect: BSS Target

Consider a SNIS of BSS(ρ′) �ν
f,g (X,Y)ρ

⊗n where (X,Y) is an arbitrary joint
distribution, f ∈ L2(Ωn

x , πx
⊗n) and g ∈ L2(Ωn

y , πy
⊗n).

Step 1: Algebraization of SNIS and approximate eigenvalue problem. Following
a similar idea as in [32], we extend the algebraization of simulation-based SNIS
to arbitrary source distribution as follows.

Theorem 2 (BSS Algebraization of Security). For any ρ′ ∈ (0, 1) and
any joint distribution (X,Y), the following statements hold.

1. If BSS(ρ′) �ν
f,g (X,Y)⊗n, then E[f] � ν, E[g] � ν,

∥∥Tf − ρ′g
∥∥
1

� 4ν, and
‖Tg − ρ′f‖1 � 4ν.

2. If E[f] � ν, E[g] � ν,
∥∥Tf − ρ′g

∥∥
1

� ν, and ‖Tg − ρ′f‖1 � ν, then
BSS(ρ′) �2ν

f,g (X,Y)⊗n.

This theorem gives a qualitative equivalence of the simulation-based definition
and the algebraized definition. Next, composing the two L1-norm constraints
yields

∥
∥∥TTf − ρ′2f

∥
∥∥
1

� 8ν and
∥
∥∥TTg − ρ′2g

∥
∥∥
1

� 8ν. This implies that f and g

are an approximate eigenvector of the two operators TT and TT, respectively.

394 H. A. Khorasgani et al.

Claim 2 (Approximate Eigenvalue Constraint). If BSS(ρ′) �ν
f,g

(X,Y)⊗n, then
∥
∥∥TTf − ρ′2f

∥
∥∥
1

� 8ν, and
∥
∥∥TTg − ρ′2g

∥
∥∥
1

� 8ν.7

Step 2: Effect of Markov operators on Fourier spectrum of reduction functions.
Let {φα} and {ψα} be some Fourier bases for L2(Ωn

x , πx
⊗n) and L2(Ωn

y , πy
⊗n),

respectively. As common in Fourier analysis, it is natural to look at the effect
of the Markov operators on the Fourier characters. However, we don’t know
how to control the behavior of TTφα and TTψα. To circumvent this bottleneck,
we take a detour and look at the effect of these operators on the orthogonal
(Efron-Stein) decomposition. Let f =

∑
S⊆[n] f

=S and g =
∑

S⊆[n] g
=S be the

orthogonal decomposition. [41] showed that the decomposition has two impor-
tant properties: (1) it commutes with the Markov operators (Proposition 5) and
(2) the higher order terms in the decomposition of TTf =

∑
S⊆[n](TTf)=S have

significantly smaller L2 norm compared to the L2 norm of the corresponding
higher order terms in the decomposition of f (Proposition 6 and similarly for
TTg and g). This help us first to rewrite

(TTf)=S = (TT)f=S = TTf=S , and (TTg)=S = TTg=S ,

and then bound them as:
∥∥TTf=S

∥∥
2

� ρ2|S| ‖f‖2 , and
∥∥TTg=S

∥∥
2

� ρ2|S| ‖g‖2
Step 3: Fourier concentration, low total influence, and junta properties of reduc-
tion functions. Those inequalities above together with the connection between
orthogonal decomposition and the Fourier decomposition (Proposition 7) yields
that Fourier spectrum of f and g are concentrated on low-degree terms.

Theorem 3. Suppose there exist reduction functions f : Ωn
x → {±1} and

g : Ωn
y → {±1} such that BSS(ρ′) �δ

f,g (X,Y)⊗n for some δ � 0.8. Let k ∈ N

such that ρk � ρ′ > ρk+1. Then, the following bounds hold.

W>k[f] :=
∑

α : |α|>k

f̂(α)2 � (1 + ρ′)2

(ρ2(k+1) − ρ′2)2
· δ, and

W>k[g] :=
∑

α : |α|>k

ĝ(α)2 � (1 + ρ′)2

(ρ2(k+1) − ρ′2)2
· δ,

Observe that if the Fourier weight of a function is mostly concentrated on low-
degree terms, then the function has small total influence (Claim 3).

Claim 3 (Concentrated on Low Degree Implies Low Influence). Let f
be a Boolean-valued function in L2(Ωn, μ⊗n). If W>k[f] � δ, then Inf[f] � k+nδ.

7 Note that in general the operator TT (or TT) is not equal to the noise operator Tρ.
8 It is possible that δ depends on n.

Secure Non-interactive Simulation from Arbitrary Joint Distributions 395

In particular, when δ is sufficiently small, the total influence of reduction func-
tions f, g are constant (not depend on n). This allows us to invoke the Friedgut’s
junta theorem (Imported Theorem 4) and conclude that reduction functions are
close to some junta functions.

Step 4: Must be Perfect. Since junta functions f̃ and g̃ depend on a constant
number of variables, so does Tf̃ and Tg̃. Observe that two distinct bounded
junta functions are always constant far (Claim 4).

Claim 4 (Distinct Bounded Junta are Far). Suppose h : Ωn
x → {±1} and

� : Ωn
y → {±1} are two D-junta Boolean functions in L2(Ωn

x , πx) and L2(Ωn
y , πy),

respectively. If Th �= ρ′�, then there exists a constant c that depends only on
ρ′,D, (X,Y) such that

∥∥Th − ρ′�
∥∥
2

� c. Similarly, if T� �= ρ′h, then there exists
a constant d that depends only on ρ′,D, (X,Y) such that ‖T� − ρ′h‖2 � d.

In particular, if Tf̃ �= ρ′g̃, then they are constant far, which implies a constant
insecurity; similarly, if Tg̃ �= ρ′f̃ , then they are constant far, which also implies
a constant insecurity. Thus, it must hold that Tf̃ = ρ′g̃ and Tg̃ = ρ′f̃ . The
three facts that f̃ is a junta, f̃ and f are close, and E[f] is small imply that
E[f̃] = 0. Similarly, it holds that E[g̃] = 0. Therefore, f̃ and g̃ witness a perfect
construction.

Proof of Theorem 3. Observe that
∣∣∣(TTf − ρ′2f)(x)

∣∣∣ � 2, and
∣∣∣(TTg −

ρ′2g)(x)
∣∣
∣ � 2 for every x by the contraction property of Markov operator and

boundedness of functions f and g. Observe that if a bounded function has small
L1 norm so does its L2 norm square. Thus, we have

∥∥∥TTf − ρ′2f
∥∥∥
2

2
� 2δ, and

∥∥∥TTg − ρ′2 g
∥∥∥
2

2
� 2δ. (1)

Let f =
∑

S⊆[n] f
=S be the orthogonal decomposition of f . Then, we have

∥∥∥TTf − ρ′2f
∥∥∥
2

2
=

∑

S⊆[n]

∥∥∥TTf=S − ρ′2f=S
∥∥∥
2

2
(Orthogonal property)

�
∑

S : |S|>k

∥
∥∥TTf=S − ρ′2f=S

∥
∥∥
2

2
(Property of norms)

�
∑

S : |S|>k

∣∣∣
∥∥TTf=S

∥∥
2

− ρ′2 ∥∥f=S
∥∥
2

∣∣∣
2

(Triangle inequality)

By Proposition 6, we have
∥∥TTf=S

∥∥
2

� ρ2|S| ∥∥f=S
∥∥
2
. This implies that, for

every S ⊆ [n] satisfying |S| > k,
∥∥TTf=S

∥∥
2

− ρ′2 ∥∥f=S
∥∥
2

� (ρ2|S| − ρ′2)
∥∥f=S

∥∥
2

� 0, (2)

396 H. A. Khorasgani et al.

where the last inequality follows from ρ2|S| − ρ′2 � ρ2(k+1) − ρ′2 � 0 for every
|S| > k, and

∥∥f=S
∥∥
2

� 0. Thus, squaring both sides of inequality 2 for each
|S| > k yields

∥∥TTf − ρ′2f
∥∥2

2
�

∑

S : |S|>k

(ρ2|S| − ρ′2)2
∥∥f=S

∥∥2

2

� min
S : |S|>k

(ρ2|S| − ρ′2)2
∑

S : |S|>k

∥
∥f=S

∥
∥2

2

= (ρ2(k+1) − ρ′2)2 W>k[f]

This together with the inequality (1) implies that W>k[f] � (1+ρ′)2

(ρ2(k+1)−ρ′2)2 · δ.

Similarly, it also holds that W>k[g] � (1+ρ′)2

(ρ2(k+1)−ρ′2)2 · δ, as desired.

4.2 Statistical to Perfect: BES Target

Consider a SNIS of BES(ρ′) �ν
f,g (X,Y)ρ

⊗n where (X,Y) is an arbitrary joint
distribution, f ∈ L2(Ωn

x , πx
⊗n) and g ∈ L2(Ωn

y , πy
⊗n). Step 2 and step 4 basi-

cally are the same as these steps in Sect. 4.1. So we shall discuss steps 1 and 3
only.

Step 1: Algebraization of SNIS and Approximate Eigenvalue Problem. We use a
similar idea as in [32] to extend the algebraization to arbitrary source.

Theorem 4 (BES Target Algebraization of Security). For any ρ′ ∈
(0, 1), and any joint distribution (X,Y), the following statements hold.

1. If BES(ρ′) �ν
f,g (X,Y)⊗n, then E[f] � ν, E[g] � ν,

∥
∥Tf − g

∥
∥
1

� 4ν, and∥∥
∥Tg − ρ′2f

∥∥
∥
1

� 4ν.

2. If E[f] � ν, E[g] � ν,
∥∥Tf − g

∥∥
1

� ν, and
∥∥∥Tg − ρ′2f

∥∥∥
1

� ν, then it holds

that BES(ρ′) �2ν
f,g (X,Y)⊗n.

Claim 5 (Approximate Eigenvalue Constraint). IfBES(ρ′) �ν
f,g (X,Y)⊗n,

then
∥∥∥TTf − ρ′2f

∥∥∥
1

� 8ν, and
∥∥∥TTg − ρ′2g

∥∥∥
1

� 8ν.

Step 3: Fourier Concentration, Low Total Influence, and Junta Properties. When
the target is a BSS both the ranges of reduction functions are Boolean, so the
junta theorems can be applied for both functions. On the other hand, when
the target is a BES, the existing junta theorem for functions with more than
two values is not good enough for us. To overcome this barrier, we first use the
same idea to show that Alice’s reduction function f is close to a junta function
f∗ : Ωn

x → {±1}, and then prove that Bob’s reduction function g is also close to
a junta function using the security constraint

∥∥Tf∗ − g
∥∥
1

� ν. More concretely,

Secure Non-interactive Simulation from Arbitrary Joint Distributions 397

since f∗ is a junta function, so is Tf∗. This together with the security constraint
imply that g is close to the junta function Tf∗ whose range is not necessarily
{±1, 0}. However, we can round each value of (Tf∗)(y) to the closest value in
{±1, 0}. The rounded function is still a junta function and close to the original
function Tf∗. Therefore, g is close to the rounded junta function by triangle
inequality. We formalize this step at follows.

Claim 6. Suppose f∗ : Ωn
x → {±1} is a junta function and g : Ωn

y → {±1, 0}
is an arbitrary function such that

∥∥Tf∗ − g
∥∥
1

� δ for some δ � 0. Then, there
exists a junta function g∗ : Ωn

y → {±1, 0} such that g is Θ(
√

δ)-close to g∗.

5 Estimation of Rate from Arbitrary Sources

As a consequence of the statistical to perfect theorem (Theorem 1), we can lower
bound the rate by a positive constant, if it is feasible.

Corollary 2 (Constant Rate Lower Bound). Fix a constant c > 0, a source
(X,Y), and a target (U, V) ∈ {BSS(ρ′),BES(ρ′)} for ρ′ ∈ (0, 1). If there exists an
infinite family of reduction functions {fn, gn} such that (U, V) �ν(n)

fn,gn
(X,Y)⊗n,

and ν(n) � c/n, then the production rate R((U, V), (X,Y)) � 1/D for some
constant D = D((X,Y), ρ′, c).

We note that the constant D is the number of input variables that perfect
reduction functions depend on. Next, we prove an upper bound the rate of perfect
SNIS.

Theorem 5 (Perfect Security Rate). Let (U, V) ∈ {BSS(ρ′),BES(ρ′)} for
ρ′ ∈ (0, 1). If (U, V)⊗m �0

f ,g (X,Y)⊗n
ρ for some m,n ∈ N, then m/n �

1/ �logσ ρ′�, where σ2 is the smallest non-zero eigenvalue of the operator TT
for the source (X,Y).

Remark 2. For the SNIS self-reduction of BSS or BES, [32] showed that ρ′ = ρk

for some k ∈ N and the rate m/n � 1/k matching our bound here since σ = ρ,
where ρ is the maximal correlation of the source (X,Y). The ROLE distribution
has maximal correlation ρ = 1/

√
2 and σ = 1/

√
2. Thus, when (X,Y) = ROLE,

the rate is upper bounded by 1/2. Our new construction realizes this bound,
demonstrating its optimality.

Proof of Theorem 5. We shall prove for the case (U, V) = BSS. The proof for
the case (U, V) = BES is almost identical. Suppose BSS(ρ′)⊗m �0

f ,g (X,Y)⊗n

for some m,n ∈ N and (deterministic) reduction functions f = (f1, · · · , fm)
and g = (g1, · · · , gm). For ρ′′ = ρ′m, there is a linear deterministic construc-
tion realizing BSS(ρ′′) �0 BSS(ρ′). By sequential composition, it holds that
BSS(ρ′′) �0 (X,Y)⊗n. Let T,T denote the Markov operator and the adjoint
Markov operator associated with (X,Y). Note that TT is non-negative definite

398 H. A. Khorasgani et al.

(see [48] for a proof). Let 1 = λ1 � λ2 � . . . � λt = σ2 > 0 be all non-zero eigen-
values of TT. Then, according to Theorem 1, we have ρ′′2 =

∏t
i=2 λki

i , where
ki ∈ N such that

∑t
i=2 ki � n. This implies that

ρ′′2 = ρ′2m =
t∏

i=2

λki
i � λk2+...+kt

t = σ2(k2+...+kt) � σ2n.

Taking the logarithm of base σ < 1 of both sides yields 2m logσ ρ′ � 2n which
implies that m/n � 1/ logσ ρ′ as desired.

6 Characterization of BSS or BES from 2-by-2
Distributions

In this section, we present a succinct characterization of BSS/BES from a 2-by-
2 source. The following theorem states that SNIS of BSS(ρ′) from (X,Y)ρ is
possible if and only if the source is a BSS(ρ) such that ρ′ = ρk for some k ∈ N.

Theorem 6 (Characterization of BSS from 2-by-2). Fix a 2-by-2 distri-
bution (X,Y)ρ, and also BSS(ρ′).

1. If (X,Y)ρ �= BSS(ρ) or ρ′ �= ρk for all k ∈ N: There is a positive constant
c = c(ρ, ρ′) such that BSS(ρ′) �ν (X,Y)⊗n, for any n ∈ N, implies that ν � c.

2. If (X,Y)ρ = BSS(ρ) and ρ′ = ρk, for some k ∈ N: There are positive con-
stants c = c(ρ, ρ′) and d = d(ρ, ρ′) such that the following result holds. If
BSS(ρ′) �ν

f,g BSS(ρ)⊗n, for any n ∈ N, and ν � c, then f is νd-close to
a reduction function f∗ and g is νd-close to a reduction function g∗ such
that BSS(ρ′) �0

f∗,g∗ BSS(ρ)⊗n. Furthermore, f∗ = g∗ is a k-homogeneous9

Boolean function.

Remark 3. It is shown in [1] that BES(ρ′) �νn

fn,gn
(X,Y)⊗n (where νn = o(1))

only if the spectrum10 of (U, V) is contained in the spectrum of the (X,Y)⊗n for
some n. Note that Theorem 6 implies that the necessary condition mentioned
in [1] is not sufficient since there exists a 2-by-2 distribution (X,Y)ρ �= BSS(ρ)
and (U, V) = BSS(ρ′) such that ρ′ = ρk, the spectrum of (U, V) is contained in
the spectrum of (X,Y)⊗n, but there is no SNIS of (U, V) from (X,Y).

Next, we show that SNIS of BES from a 2-by-2 source is impossible.

Theorem 7 (Characterization of BES from 2-by-2). Fix a 2-by-2 distri-
bution (X,Y)ρ, and also BES(ρ′). There are positive constants c = c(ρ, ρ′) such
that if BES(ρ′) �ν

f,g (X,Y)⊗n for some n ∈ N, then the simulation error ν is at
least c.
9 A function f : {±1}n → {±1} is k-homogeneous if all the terms in the multi-linear

expansion of f have degree k.
10 Spectrum of a distribution matrix M is defined in [1] as the multi-set of non-zero

singular values of the matrix Δ
−1/2

MT MΔ
−1/2
M where ΔM represents a diagonal matrix

with the vector 1T M along its diagonal.

Secure Non-interactive Simulation from Arbitrary Joint Distributions 399

We shall first prove Theorem 6, and then we provide a proof of Theorem 7 in
Sect. 6.3.

Proof Outline of Theorem 6. First, we show that if there is a statistical
SNIS of BSS(ρ′) from (X,Y)⊗n, then a perfect construction exists (Theorem 8).
Next, we characterize for which 2-by-2 distribution (X,Y) there exists a perfect-
SNIS of BSS(ρ′) from (X,Y)⊗n. Theorem 9 says that (X,Y) must be a BSS.
Finally we conclude the proof by using the characterization of SNIS between
BSS distributions in [32].

Theorem 8 (Statistical-to-Perfect of BSS from 2-by-2). Let ρ′ ∈ (0, 1)
and (X,Y)ρ be an arbitrary 2-by-2 joint distribution. There are positive constants
c = c((X,Y)ρ, ρ

′), d = d((X,Y)ρ, ρ
′), and D = D((X,Y)ρ, ρ

′) such that the
following result holds. If BSS(ρ′) �ν

f,g (X,Y)⊗n
ρ , for any n ∈ N, and ν � c, then

f is νd-close to a D-junta reduction function f∗, and g is νd-close to a D-junta
reduction function g∗ such that BSS(ε′) �0

f∗,g∗ (X,Y)⊗n
ρ . Furthermore, ρ′ = ρk,

and Wk[f∗] = Wk[g∗] = 1.

Informally, there is a statistical SNIS of BSS(ε′) from (X,Y) if and only if
(X,Y)ρ = BSS(ρ) for some ρ satisfying ρ′ = ρk for some k ∈ N. Furthermore,
any statistical reduction functions can be error-corrected to junta ones that
witness a perfect construction.

Theorem 9 (Characterization of Perfect-SNIS of BSS from 2-by-2).
Suppose there exists n ∈ N and Boolean functions f, g : {±1}n → {±1} such
that BSS(ρ′) �0

f,g (X,Y)⊗n. Then, the distribution (X,Y) must be a BSS(ρ)
such that ρ′ = ρk for some positive integer k � n.

As a consequence of Theorem 6, the rate for perfect SNIS of BSS from an
arbitrary 2-by-2 distribution is completely settled, while the rate for statistical
security (even if the source is BSS) is still open.

Corollary 3. If (X,Y) �= BSS(ρ) for all ρ ∈ (0, 1) or ρ′ �= ρk for all k ∈ N,
then the rate of BSS(ρ′) from (X,Y) is zero. Otherwise, it is shown in [32] that
the maximum achievable rate is 1/k in perfect SNIS.

6.1 Statistical to Perfect

This section presents the proof of the statistical to perfect (Theorem 8). The
high-level idea is similar to the general case. The key different is that we are able
to precisely characterize the effect of Markov operators on Fourier coefficients for
2-by-2 distribution. We remark that Fourier basis and the orthogonal Efron-Stein
basis are the same in this case.

Proof Outline of Theorem 8. Consider a SNIS of BSS(ρ′) �ν
f,g (X,Y)ρ

⊗n

where (X,Y) is a 2-by-2 distribution and f, g : {±1}n → {±1}.
Steps 1,3, and 4 are similar to these steps in Sect. 4.1 except that in step 3

(1) we prove that the Fourier spectrum of reduction functions are concentrated
on a fixed degree (Theorem 10), and (2) we use the Kindler-Safra junta theorem
[34,35] instead of the Friedgut’s junta. So we shall discuss steps 2 only.

400 H. A. Khorasgani et al.

Step 2: Effect of Markov Operators on Fourier Spectrum of Reduction Functions.
If TT and/or TT is equal to the Bonami-Beckner operator Tγ for some appro-
priate γ, which happens when (X,Y) = BSS, then the Tγ operator scales f̂(S)
proportional to γ|S|, which, in turn, solves the approximate eigenvalue problem
nicely as done in [32]. However, both TT and TT are not equal to Tρ in gen-
eral. We overcome this bottleneck by characterizing the effect of these Markov
operators on the Fourier coefficients as follows.

Lemma 1. Let {φS}S⊆[n] be a biased Fourier basis for L2(Ωn
x , πx

⊗n), and
{ψS}S⊆[n] be a biased Fourier basis for L2(Ωn

y , πy
⊗n). Then, for any S ⊆ [n], it

holds that

TTφS = ρ2|S|φS , and TTψS = ρ2|S|ψS .

Consequently, for any real-valued functions f ∈ L2(X n, πx
⊗n) and g ∈ L2(Ωn

y ,

πy
⊗n), the Fourier expansion of TTf and TTg is given by

TTf =
∑

S⊆[n]

ρ2|S|f̂(S)φS , and TTg =
∑

S⊆[n]

ρ2|S|ĝ(S)ψS .

One can view this lemma as an analog/extension of TρχS = ρ|S|χS and Tρf =
∑

S ρ|S|f̂(S)χS to correlated space. Intuitively, the TT and TT operator scales
f̂(S) and ĝ(S) proportional to ρ2|S|, respectively. Lemma 1 is crucial to prove
the concentration of Fourier spectrum of reduction functions.

Theorem 10 (Constant Insecurity or Close to Low Degree Junta).

Suppose that
∥∥
∥TTf − ρ′2f

∥∥
∥
1

= δ1,
∥∥
∥TTg − ρ′2g

∥∥
∥
1

= δ2. Then the following
statements hold.

1. If ρt+1 < ρ′ < ρt, then min(δ1, δ2) � 1
2 min((ρ′2 − ρ2t)2, (ρ′2 − ρ2(t+1))2).

2. If ρ′ = ρk for some k ∈ [n], then there exists D = D(k) such that
(a) The functions f and g are 2δ1

(1−ρ2)2ρ4k , and 2δ2
(1−ρ2)2ρ4k concentrated on

degree k, respectively.
(b) There exist Boolean degree-k D-junta functions f̃ , g̃ : {±1}n → {±1} such

that
∥∥∥f − f̃

∥∥∥
2

2
� σ1 + Dσ

5/4
1 , and ‖g − g̃‖22 � σ2 + Dσ

5/4
2 , where σ1 =

2
(1−ρ2)2ρ4k · δ1 and σ2 = 2

(1−ρ2)2ρ4k · δ2.

6.2 Perfect-SNIS Characterization

In this section, we prove Theorem 9. We need the following result for the proof.

Claim 7. Suppose f is a Boolean function in L2({±1}n, π⊗n) such that Wk[f] =
1. Then, the distribution π must be the uniform distribution over {±1}.

Secure Non-interactive Simulation from Arbitrary Joint Distributions 401

The following result is needed to prove Claim 7. First let us introduce some nota-
tion. Let f : {±1}n → {±1} be a Boolean function. For each p ∈ (0, 1), we write
a Boolean function f as f (p) when viewing f as an element of L2({±1}n), πp

⊗n),
where πp is a distribution over {±1} such that πp(−1) = p and πp(1) = 1 − p.
Observe that σ = 2

√
p
√

1 − p is the standard deviation of the distribution.

Claim 8. If W�k[f (p)] = 1, then Wk[f (1/2)] = Wk[f (p)]/σ2k where σ =
2
√

p(1 − p).

Intuitively, this claim says that the Fourier weight measured over the p-biased
distribution on a particular degree is equal to the product of the Fourier weight
measured over the uniform distribution on the same degree and a power of the
standard deviation the p-biased distribution.

Proof (Proof of Claim 7). Let p := π(−1). It follows from Claim 8 that
Wk[f (p)] � σ2kWk[f (1/2)]. Since f is Boolean it follows from Parseval identity
that Wk[f (1/2)] � 1, and so 1 = Wk[f (p)] � σ2k which implies that σ = 1 and so
p = 1/2. Therefore, the distribution π is uniform.

Now we are ready to prove Theorem 9 as follow.

Proof (of Theorem 9). Suppose there exists n ∈ N and two Boolean functions
f, g : {±1}n → {±1} such that BSS(ρ′) �0

f,g (X,Y)⊗n. Then, applying Theorem
1 for insecurity bound ν = 0 yields ρ′ = ρk for some k ∈ N, and Wk[f] = Wk[g] =
1, where ρ is the maximal correlation of (X,Y). By Claim 7, both the marginal
distributions πx and πy must be uniform distribution over {±1}. This implies
that the joint distribution (X,Y) is a BSS(ε) for some ε ∈ (0, 1/2). Using the
fact that the the maximal correlation of BSS(ε) = ρ and the result from [32],
one concludes that ρ′ = ρk.

6.3 Proof Outline of Theorem 7

The proof of Theorem 7 is similar to the proof of Theorem 6 except that here
we again use the same idea that we applied in BES from arbitrary to deal with
the non-binary range of Bob’s reduction function. Again, we have a statistical
to perfect result. Similar to Theorem 9, we can show that the source must be a
BSS. We conclude the proof by using the impossibility result of simulating BES
from BSS even in the (non-secure) NIS due to reverse hypercontractivity.

7 Additional Results and Discussions

7.1 Necessary Condition on Eigenvalues

Theorem 11. Let (X,Y) be an arbitrary joint distribution whose Markov
operator and adjoint are respectively T(1) and T

(1)
, and let (U, V) ∈

{BSS(ρ′),BES(ρ′)} for ρ′ ∈ (0, 1). For any c > 0, there are positive constants

402 H. A. Khorasgani et al.

n0 and d = d((X,Y), ρ′) such that the following result holds. If (U, V) �ν
f,g

(X,Y)⊗n, for some n � n0, and ν � c/n, then ρ′2 =
∏t

i=1 λki
i , where

1 = λ1 � λ2 � . . . � λt are all eigenvalues of (TT)(1), and ki ∈ N such that∑t
i=1 ki = n.

By the reduction of statistical to perfect (Theorem 1), without loss of gen-
erality, assume that BSS(ρ′) �0

f,g (X,Y)⊗n. Theorem 2 and Claim 2 imply that
TTf = ρ′2f . This means that ρ′2 is an eigenvalue of the Markov operator TT.
Suppose 1 = λ1 � λ2 � . . . � λt be all eigenvalues of (TT)(1), then it follows
from tensorization property of eigenvalues that ρ′2 =

∏t
i=1 λki

i for some ki ∈ N

such that k1 + k2 + · · · + kt = n, as desired. As a consequence, we have the
following result.

Corollary 4. There is no complete joint distribution in SNIS.

7.2 Decidability

Corollary 1 gives an algorithm to decide whether there is a statistical SNIS of
BSS(ρ′) from (X,Y) with insecurity bound ν(n) = O(1/n). In (non-secure) NIS,
[18,24,25] considered a different problem of decidability called gap decidability.
Given a constant δ > 0, a source (X,Y) and a target (U, V), the goal is to
distinguish between (1) there exists a n0 ∈ N such that (U, V) can be non-
interactively simulated (not necessarily secure) from (X,Y)⊗n0 with error at
most δ and (2) for any n ∈ N, any simulation of (U, V) from (X,Y)⊗n has
error at least cδ, where c is some constant. The gap decidability of BSS from an
arbitrary source in SNIS is still open. We formulate this problem as follows.

SNIS Gap Decidability Problem. Given any c > 1, δ > 0, a source (X,Y),
and a target BSS(ρ′). Distinguish between the following 2 cases:

1. There exist n0 ∈ N and functions f : Ωn0
x → {±1} and g : Ωn0

y → {±1} such
that SNIS of BSS(ρ) from (X,Y)⊗n0 has simulation error at most δ.

2. For any n ∈ N and f : Ωn
x → {±1} and g : Ωn

y → {±1}, SNIS of BSS(ρ) from
(X,Y)⊗n has simulation error at least cδ.

When the source is a 2-by-2 distribution, our characterization solves this problem
and we know for sure it is a Yes instance when the threshold δ is less than the
constant in our Theorem 8. We conjecture the following “junta theorem over
correlated space”/“dimension reduction preserving security” that would help us
solve the gap decidability problem for any δ > 0. In the following, we abuse the
notation and let T,T denote the Markov operator and adjoint Markov operator
of both (X,Y)⊗n and (X,Y)⊗n0 .

Conjecture 1. Given any δ � 0, and f : Ωn
x → {±1} and g : Ωn

y → {±1} sat-
isfying E[f] � δ,E[g] � δ,

∥∥Tf − ρ′g
∥∥
1

� δ and ‖Tg − ρ′f‖1 � δ, there exist

Secure Non-interactive Simulation from Arbitrary Joint Distributions 403

n0 = n0((X,Y), ρ′, δ), functions f∗ : Ωn0
x → {±1} and g∗ : Ωn0

y → {±1} such
that

(i) |E[f∗] − E[f]| � 2δ, (ii) |E[g∗] − E[g]| � 2δ,

(iii)
∥∥Tf∗ − ρ′g∗∥∥

1
� 2δ, and (iv) ‖Tg∗ − ρ′f∗‖1 � 2δ.

The conjecture holds true when the source is 2-by-2 and δ is a small enough
constant due to our characterization theorem.

The requirement that both f∗ and g∗ remains Boolean-valued functions is
unique to security constraint in SNIS. In contrast, the reduction functions in NIS
setting [25] only need to be bounded functions since they only need to preserve
the correlation (see Theorem 3.1 in [25]) not the security.

7.3 On Power of Non-linear Constructions

Lemma 2. There are exactly 16 perfect non linear SNIS constructions of
BSS(1/2) from two samples of ROT.

By implementing our exhaustive search algorithm, we found 16 perfect construc-
tions (see the full version for detailed constructions).

Lemma 3. There is a perfect non linear SNIS construction of BES(
√

1/2) from
one sample of ROT.

Next, we shall show that there is no SNIS construction of BSS(1/2) or BES(
√

1/2)
from n independent samples of ROT for any n ∈ N.

Lemma 4. For any naming of the samples from the ROT distribution, any n ∈
N, any SNIS of BSS(1/2) or BES(

√
1/2) from ROT⊗n with linear reductions has

a constant simulation error.

7.4 Incompleteness of String-ROT

Definition 8. The �-bit string random oblivious transfer source, represented as
ROT (�), samples uniformly and independently random x1, x2 ∈ {0, 1}� and a bit
b ∈ {0, 1}n, provides Alice (x1, x2), and provides Bob (b, xb).

In contrast to the completeness result in OWSC, we show that the family of
string-ROT is not complete in SNIS.

Lemma 5. The family of string-ROT is not complete for SNIS.

This lemma follows from the fact that the maximal correlation of ROT (�) =
1/

√
2 for every � ∈ N and the data processing inequality (Imported Theorem 2).

404 H. A. Khorasgani et al.

References

1. Agarwal, P., Narayanan, V., Pathak, S., Prabhakaran, M., Prabhakaran, V.M.,
Rehan, M.A.: Secure Non-interactive reduction and spectral analysis of correla-
tions. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022, Part III.
LNCS, vol. 13277, pp. 797–827. Springer, Cham (2022). https://doi.org/10.1007/
978-3-031-07082-2 28

2. Agrawal, S., et al.: Cryptography from one-way communication: on completeness
of finite channels. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol.
12493, pp. 653–685. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
64840-4 22

3. Ahlswede, R., Gács, P.: Spreading of sets in product spaces and hypercontraction
of the Markov operator. Ann. Probab. 925–939 (1976)

4. Anantharam, V., Gohari,A., Kamath, S., Nair, C.: On maximal correlation, hyper-
contractivity, and the data processing inequality studied by Erkip and Cover. arXiv
preprint arXiv:1304.6133 (2013)

5. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigen-
baum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-46766-1 34

6. Beimel, A., Ishai, Y., Kumaresan, R., Kushilevitz, E.: On the cryptographic com-
plexity of the worst functions. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
317–342. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-
8 14

7. Beimel, A., Malkin, T.: A quantitative approach to reductions in secure compu-
tation. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 238–257. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1 14

8. Ben-David, A., Nisan, N., Pinkas, B.: FairplayMP: a system for secure multi-party
computation. In: Ning, P., Syverson, P.F., Jha, S. (eds.) ACM CCS 2008, pp.
257–266. ACM Press (2008). https://doi.org/10.1145/1455770.1455804

9. Bogdanov, A., Mossel, E.: On extracting common random bits from correlated
sources. IEEE Trans. Inf. Theory 57(10), 6351–6355 (2011). https://doi.org/10.
1109/TIT.2011.2134067

10. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseu-
dorandom correlation generators: silent OT extension and more. In: Boldyreva,
A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 489–518.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8 16

11. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseu-
dorandom correlation generators from ring-LPN. In: Micciancio, D., Ristenpart,
T. (eds.) CRYPTO 2020, Part II. LNCS, vol. 12171, pp. 387–416. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-56880-1 14

12. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptol. 13(1), 143–202 (2000). https://doi.org/10.1007/s001459910006

13. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. Cryptology ePrint Archive, Report 2000/067 (2000). https://eprint.iacr.
org/2000/067

14. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press (2001).
https://doi.org/10.1109/SFCS.2001.959888

15. Carmer, B., Rosulek, M.: Linicrypt: a model for practical cryptography. In: Rob-
shaw, M., Katz, J. (eds.) CRYPTO 2016, Part III. LNCS, vol. 9816, pp. 416–445.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3 15

https://doi.org/10.1007/978-3-031-07082-2_28
https://doi.org/10.1007/978-3-031-07082-2_28
https://doi.org/10.1007/978-3-030-64840-4_22
https://doi.org/10.1007/978-3-030-64840-4_22
http://arxiv.org/abs/1304.6133
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/978-3-642-54242-8_14
https://doi.org/10.1007/978-3-642-54242-8_14
https://doi.org/10.1007/978-3-540-24638-1_14
https://doi.org/10.1145/1455770.1455804
https://doi.org/10.1109/TIT.2011.2134067
https://doi.org/10.1109/TIT.2011.2134067
https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/978-3-030-56880-1_14
https://doi.org/10.1007/s001459910006
https://eprint.iacr.org/2000/067
https://eprint.iacr.org/2000/067
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1007/978-3-662-53015-3_15

Secure Non-interactive Simulation from Arbitrary Joint Distributions 405

16. Chan, S.O., Mossel, E., Neeman, J.: On extracting common random bits from
correlated sources on large alphabets. IEEE Trans. Inf. Theory 60(3), 1630–1637
(2014). https://doi.org/10.1109/TIT.2014.2301155

17. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

18. De, A., Mossel, E., Neeman, J.: Non interactive simulation of correlated distribu-
tions is decidable. In: Czumaj, A. (ed.) 29th SODA, pp. 2728–2746. ACM-SIAM
(2018). https://doi.org/10.1137/1.9781611975031.174

19. Efron, B., Stein, C.: The jackknife estimate of variance. Ann. Stat. 586–596 (1981)
20. Friedgut, E.: Boolean functions with low average sensitivity depend on few coor-

dinates. Combinatorica 18(1), 27–35 (1998). https://doi.org/10.1007/PL00009809
21. Gács, P., Körner, J.: Common information is far less than mutual information.

Probl. Control Inf. Theory 2(2), 149–162 (1973)
22. Garg, S., Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography with

one-way communication. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part
II. LNCS, vol. 9216, pp. 191–208. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-48000-7 10

23. Gebelein, H.: Das statistische problem der korrelation als variations-und eigen-
wertproblem und sein zusammenhang mit der ausgleichsrechnung. ZAMM-J. Appl.
Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 21(6), 364–
379 (1941)

24. Ghazi, B., Kamath, P., Raghavendra, P.: Dimension reduction for polynomials
over gaussian space and applications. In: Servedio, R.A. (ed.) 33rd Computational
Complexity Conference, CCC 2018, 22–24 June 2018, San Diego, CA, USA. LIPIcs,
vol. 102 , pp. 28: 1–28: 37. Schloss Dagstuhl - Leibniz Center for u r Computer
Science (2018). https://doi.org/10.4230/LIPIcs.CCC.2018.28

25. Ghazi, B., Kamath, P., Sudan, M.: Decidability of non-interactive simulation of
joint distributions. In: Dinur, I. (ed.) 57th FOCS, pp. 545–554. IEEE Computer
Society Press (2016). https://doi.org/10.1109/FOCS.2016.65

26. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM
STOC, pp. 218–229. ACM Press (1987). https://doi.org/10.1145/28395.28420

27. Hirschfeld, H.O.: A connection between correlation and contingency. In: Mathe-
matical Proceedings of the Cambridge Philosophical Society, vol. 31, pp. 520–524.
Cambridge University Press (1935). https://doi.org/10.1017/S0305004100013517

28. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai, A., Wullschleger,
J.: Constant-rate oblivious transfer from noisy channels. In: Rogaway, P. (ed.)
CRYPTO 2011. LNCS, vol. 6841, pp. 667–684. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-22792-9 38

29. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
– efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5 32

30. Kamath, S., Anantharam, V.: Non-interactive simulation of joint distributions:
the hirschfeld-gebelein-rényi maximal correlation and the hypercontractivity rib-
bon. In: 2012 50th Annual Allerton Conference on Communication, Control, and
Computing (Allerton), pp. 1057–1064. IEEE (2012)

31. Kamath, S., Anantharam, V.: On non-interactive simulation of joint distributions.
IEEE Trans. Inf. Theory 62(6), 3419–3435 (2016)

https://doi.org/10.1109/TIT.2014.2301155
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1137/1.9781611975031.174
https://doi.org/10.1007/PL00009809
https://doi.org/10.1007/978-3-662-48000-7_10
https://doi.org/10.1007/978-3-662-48000-7_10
https://doi.org/10.4230/LIPIcs.CCC.2018.28
https://doi.org/10.1109/FOCS.2016.65
https://doi.org/10.1145/28395.28420
https://doi.org/10.1017/S0305004100013517
https://doi.org/10.1007/978-3-642-22792-9_38
https://doi.org/10.1007/978-3-540-85174-5_32

406 H. A. Khorasgani et al.

32. Khorasgani, H.A., Maji, H.K., Nguyen, H.H.: Secure non-interactive simulation:
feasibility and rate. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT
2022, Part III. LNCS, vol. 13277, pp. 767–796. Springer, Heidelberg (2022).
https://doi.org/10.1007/978-3-031-07082-2 27

33. Kilian, J.: More general completeness theorems for secure two-party computation.
In: 32nd ACM STOC, pp. 316–324. ACM Press (2000). https://doi.org/10.1145/
335305.335342

34. Kindler, G.: Property testing PCP. PhD thesis, Tel-Aviv University (2002)
35. Kindler, G., Safra, S.: Noise-resistant Boolean functions are juntas. Preprint (2002)
36. Kraschewski, D., Maji, H.K., Prabhakaran, M., Sahai, A.: A full characterization

of completeness for two-party randomized function evaluation. In: Nguyen, P.Q.,
Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 659–676. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 36

37. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error Correcting Codes, vol. 16.
Elsevier, Amsterdam (1977)

38. Maji, H.K., Prabhakaran, M., Rosulek, M.: Complexity of multi-party computation
functionalities. In: Prabhakaran, M., Sahai, A. (eds.) Secure Multi-Party Compu-
tation. Cryptology and Information Security Series, vol. 10, pp. 249–283. IOS Press
(2013). https://doi.org/10.3233/978-1-61499-169-4-249

39. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay - secure two-party compu-
tation system. In: Blaze, M. (ed.) USENIX Security 2004, pp. 287–302. USENIX
Association (2004)

40. Mossel, E.: Gaussian bounds for noise correlation of functions and tight analysis
of long codes. In: 49th FOCS, pp. 156–165. IEEE Computer Society Press (2008).
https://doi.org/10.1109/FOCS.2008.44

41. Mossel, E.: Gaussian bounds for noise correlation of functions. Geom. Funct. Anal.
19(6), 1713–1756 (2010)

42. Mossel, E., O’Donnell, R.: Coin flipping from a cosmic source: on error correction
of truly random bits. Random Struct. Algorithms 26(4), 418–436 (2005). https://
doi.org/10.1002/rsa.20062

43. Mossel, E., O’Donnell, R., Regev, O., Steif, J.E., Sudakov, B.: Non-interactive
correlation distillation, inhomogeneous Markov chains, and the reverse Bonami-
Beckner inequality. Israel J. Math. 154(1), 299–336 (2006)

44. Narayanan, V., Prabhakaran, M., Prabhakaran, V.M.: Zero-communication reduc-
tions. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part III. LNCS, vol. 12552, pp.
274–304. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64381-2 10

45. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practi-
cal active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 40

46. O’Donnell, R.: Analysis of Boolean Functions. Cambridge University Press, Cam-
bridge (2014)

47. Rényi, A.: On measures of dependence. Acta Math. Hung. 10(3–4), 441–451 (1959).
https://doi.org/10.1007/BF02024507

48. Witsenhausen, H.S.: On sequences of pairs of dependent random variables. SIAM
J. Appl. Math. 28(1), 100–113 (1975). https://doi.org/10.1137/0128010

49. Wolf, S., Wullschleger, J.: Oblivious transfer is symmetric. In: Vaudenay, S. (ed.)
EUROCRYPT 2006. LNCS, vol. 4004, pp. 222–232. Springer, Heidelberg (2006).
https://doi.org/10.1007/11761679 14

https://doi.org/10.1007/978-3-031-07082-2_27
https://doi.org/10.1145/335305.335342
https://doi.org/10.1145/335305.335342
https://doi.org/10.1007/978-3-642-55220-5_36
https://doi.org/10.3233/978-1-61499-169-4-249
https://doi.org/10.1109/FOCS.2008.44
https://doi.org/10.1002/rsa.20062
https://doi.org/10.1002/rsa.20062
https://doi.org/10.1007/978-3-030-64381-2_10
https://doi.org/10.1007/978-3-642-32009-5_40
https://doi.org/10.1007/BF02024507
https://doi.org/10.1137/0128010
https://doi.org/10.1007/11761679_14

Secure Non-interactive Simulation from Arbitrary Joint Distributions 407

50. Wyner, A.: The common information of two dependent random variables. IEEE
Trans. Inf. Theory 21(2), 163–179 (1975). https://doi.org/10.1109/TIT.1975.
1055346

51. Yang, K.: On the (im)possibility of non-interactive correlation distillation. In:
Farach-Colton, M. (ed.) LATIN 2004. LNCS, vol. 2976, pp. 222–231. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24698-5 26

52. Yao, A.C.-C.: Protocols for secure computations (extended abstract). In: 23rd
FOCS, pp. 160–164. IEEE Computer Society Press (1982). https://doi.org/10.
1109/SFCS.1982.38

53. Yin, Z., Park, Y.: Hypercontractivity, maximal correlation and non-interactive sim-
ulation (2014)

https://doi.org/10.1109/TIT.1975.1055346
https://doi.org/10.1109/TIT.1975.1055346
https://doi.org/10.1007/978-3-540-24698-5_26
https://doi.org/10.1109/SFCS.1982.38
https://doi.org/10.1109/SFCS.1982.38

Secure Non-interactive Reducibility
is Decidable

Kaartik Bhushan1(B), Ankit Kumar Misra1, Varun Narayanan2,
and Manoj Prabhakaran1

1 Indian Institute of Technology Bombay, Mumbai, India
{kbhushan,ankitkmisra,mp}@cse.iitb.ac.in

2 Technion, Haifa, Israel

Abstract. Secure Non-Interactive Reductions (SNIR) is a recently
introduced, but fundamental cryptographic primitive. The basic ques-
tion about SNIRs is how to determine if there is an SNIR from one
2-party correlation to another. While prior work provided answers for
several pairs of correlations, the possibility that this is an undecidable
problem in general was left open. In this work we show that the existence
of an SNIR between any pair of correlations can be determined by an
algorithm.

At a high-level, our proof follows the blueprint of a similar (but
restricted) result by Khorasgani et al. But combining the spectral anal-
ysis of SNIRs by Agrawal et al. (Eurocrypt 2022) with a new variant of
a “junta theorem” by Kindler and Safra, we obtain a complete resolution
of the decidability question for SNIRs. The new junta theorem that we
identify and prove may be of independent interest.

1 Introduction

The notion of Secure Non-Interactive Reductions (SNIR) has only recently been
formally defined [1,2,18], but it is a fundamental cryptographic primitive that
lies at the intersection of several major lines of research in information-theory
and cryptography. On the one hand, it is a model of information-theoretically
secure 2-party computation, using correlated randomness [13,14,16,19]. It is a
minimal model without any communication, pushing the limits of minimalism
in secure computation, as initiated by the influential work of Feige et al. [8].
Its non-secure counterpart, called non-interactive simulation commands a rich
literature in both information-theory and computer science literature spanning
half a century [3,7,10,11,17,26,27,29]. Another important motivation behind
SNIR is also its relevance to cryptographic complexity [4,5,22–24] – namely,
measuring the complexity of a function in terms of the number of samples of a
correlation that need to be used in an (interactive) secure 2-party computation
protocol for the function. As pointed out in [1], understanding the power of SNIR

Varun Narayanan—Supported by ERC Project NTSC (742754) and ISF Grants
1709/14 & 2774/20.
c© The Author(s), under exclusive license to Springer Nature Switzerland 2022
E. Kiltz and V. Vaikuntanathan (Eds.): TCC 2022, LNCS 13748, pp. 408–437, 2022.
https://doi.org/10.1007/978-3-031-22365-5_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22365-5_15&domain=pdf
https://doi.org/10.1007/978-3-031-22365-5_15

Secure Non-interactive Reducibility is Decidable 409

is an important part of understanding the interactive secure 2-party computation
protocol for an inputless function: such a protocol consists of an interaction phase
(with no security requirements of its own) followed by an SNIR used to securely
sample the output from the correlated views at the end of the interaction.

Finally, and significantly, studying the minimalistic model of SNIR leads us
to mathematical tools that are relatively unexploited in classical cryptography,
including tools from spectral graph theory and harmonic analysis [1,2,18]. Con-
versely, as is the case in this work, studying SNIRs can lead to contributions
back to the development of these tools and their applicability.

Decidability of SNIR. SNIR is a notion of reduction from a (2-output) tar-
get distribution D to a source distribution C. It is simply a statistically secure
2-party computation protocol for sampling from D, when the parties are given
access to samples from C, with the restriction that the parties cannot communi-
cate at all. (In this model, semi-honest security and UC security are equivalent.)

The most fundamental question about SNIRs is the decidability of the fol-
lowing problem:

SNIR Problem: Given a pair of correlations (C,D), does there exist a
statistical SNIR from D to C?

In the works that defined SNIR, this question was tackled for specific pairs of
correlations, using arguments specialized for them [1,2,18]. In [2,18], the authors
insightfully observed that in certain cases, a statistically secure SNIR implies
a perfectly secure one, which can in turn be used to design an algorithm to
decide the existence of an SNIR. In this work too, we follow the same high-level
approach. Further, [2,18] showed that Fourier analytic techniques can be used to
prove the statistical-to-perfect security result. However, the decidability results
in [2,18] were restricted to two specific target distributions, and did not cover
weak notions of security (with only “vanishing” error).

In this work, starting from the spectral analysis of [1] (involving eigenvectors,
or more precisely, the singular value decomposition of the “correlation operator”),
we apply Fourier analytic techniques to SNIRs in an alternate fashion, to obtain
a full answer to the fundamental decidability question.

Our Contributions. We summarize our contributions below:

– Our main technical result is a statistical-to-perfect security result for SNIRs,
which shows that, for a pair of correlations D and C, a statistically secure
SNIR (possibly with weak security) exists from D to C iff there is a per-
fectly secure SNIR from D to C⊗� for some finite � (that can be computed
from D and C). The formal statement, in Theorem 1, involves certain tech-
nical restrictions on D and C, which are essential (but not a barrier to the
decidability result).

• In order to prove this, we formulate and prove a new “junta theorem”
for “generalized Fourier transforms,” that may be of independent interest.
This is stated as Theorem 2 and proven in Sect. 5.

410 K. Bhushan et al.

– Based on the above, we show that the SNIR problem is decidable.1
– We also illustrate how the statistical-to-perfect security result can be used to

obtain new combinatorial necessary conditions for an SNIR to exist between
a pair of correlations; these combinatorial conditions can in turn be used to
rule out an SNIR from OT correlation to Rabin OT correlation, that was not
covered by prior results.

We remark that our decidability result subsumes that of [18] in a couple of
ways: it works for all pairs of correlations, and further works even for a very
weak notion of security. That is, when our algorithm says “No” it rules out an
SNIR with error that goes to 0 however slowly, and when we say “Yes” we obtain
an SNIR with either perfect security (in the absence of common information) or
negligible error. In contrast, the algorithm in [18] could not rule out an SNIR
with error going to 0 slower than 1/n where n denotes the number copies of the
source correlation used. More significantly, the algorithm of [18] is restricted to
two special target correlations.

Related Work. As already mentioned, several lines of work in information-
theoretically secure cryptography intersect with SNIR. Here we clarify the con-
nection with some recent works.

SNIR was defined independently in two concurrent works [1,2], and was fur-
ther developed in [18], which explicitly addressed the decidability of the SNIR
problem. The approach of employing a statistical-to-perfect security result, and
the general idea of using Fourier analysis to prove it, were both present in [18].

A similar sounding concept, called Secure Zero Communication Reduction
(SZCR) was introduced in [24]. It is instructive to compare both SNIR and
SZCR with the standard notion of (semi-honest) secure reduction (SR) to a
correlation like OT (more familiarly known as 2-PC in the OT-hybrid model).
Roughly put,

SNIR ⇒ SR ⇒ SZCR

indicating that SNIR is a “stronger” primitive than SR, which is in turn stronger
than SZCR. While every function has an SR to the OT correlation (i.e., it is
a complete correlation), that is not the case for SNIR: Indeed, there are no
complete correlations for SNIR [1]. Both SNIR and SZCR are motivated by
approaching the notoriously hard lower bound questions for SR, but they do it
in different ways.

– Lower bounds (or impossibility results) for SNIR are an “easier” target than
those for SR, and would provide a platform for nurturing new techniques; as
and when we completely settle a question for SNIR (as we do here), we can
approach SR by relaxing the model (e.g., allow one-directional communica-
tion).

1 For simplicity, we assume a computational model in which real numbers can be
represented, computed upon (w.r.t. addition, multiplication and division), and com-
pared exactly. The results would extend to all reasonable models of computing with
a subset of real numbers, that is closed under these operations.

Secure Non-interactive Reducibility is Decidable 411

– Lower bounds for SZCR are formally (but not necessarily conceptually)
harder than those for SR. Here we seek to develop new techniques by asking
simpler variants of the lower bound question: e.g., existential questions (a
la the “invertible rank conjecture” of [24]) or lower bounds for randomized
functions (as in [15])2. Also, the new perspective provided by SZCR may lead
to fresh approaches to the original hard lower bound problems of SR.

2 Technical Overview

Recap of SNIR. We start with a brief recap of SNIR, as defined in [1], largely
borrowing from the overview in that paper. As shown in [1], there are in fact
multiple perspectives of SNIR, and we profit from switching among them as
appropriate.

– An SNIR is simply a statistically secure 2-party computation protocol for an
inputless functionality (namely, sampling from a 2-output target distribution
D), in which the parties have access to a setup in the form of another inputless
functionality (namely, sampling i.i.d. samples from a source distribution C),
with the restriction that the parties cannot exchange messages.

– Equivalently, an SNIR can be specified as a pair of stochastic “protocol” matri-
ces (A,B) representing Alice and Bob’s actions (mapping a symbol from the
source to a symbol in the target), and a pair of “simulation” matrices (U, V)
such that – restricting here to the case of perfect security – they satisfy the
following correctness and privacy conditions:

Aᵀ C B = D Aᵀ C = D V C B = Uᵀ D. (1)

Here we have written C to denote C⊗n where n is the number of i.i.d. samples
from C that the protocol uses. In the general case of statistical security, there
is a family of protocols indexed by the security parameter (n is allowed to
increase with the security parameter), and the equalities above admit an
additive (matrix) error term, whose (suitably defined) norms can be bounded
by vanishing quantities.

– Finally, there is a spectral perspective of an SNIR. This is a set of necessary
conditions on a pair of matrices (̂A, ̂B) derived from an SNIR (A,B), and
which satisfy a set of conditions analogous to the original security conditions
as follows (restricting here to perfect security):

̂A = FCAF −1
D

̂B = GCBG−1
D

̂Aᵀ
̂A = I ̂Bᵀ

̂B = I

̂AᵀΣC
̂B = ΣD

̂AᵀΣC = ΣD
̂Bᵀ ΣC

̂B = ̂AΣD

(2)

2 [15] is a concurrent submission to this conference and it also includes the above
comparison between SNIR and SZCR.

412 K. Bhushan et al.

where (FC ,ΣC ,GC) and (FD,ΣD,GD) are matrices associated with C and
D, respectively, via singular value decomposition (with some careful scaling
to account for the possibly non-uniform marginal distributions of C and D).
This view uses notions from spectral graph theory to study correlations using
their singular values.

In this work we shall exploit yet another perspective of an SNIR: namely,
a Fourier analytic perspective. While closely related to the spectral perspective
above, this perspective focuses on the case when the source distribution is of the
form C⊗n, and treats the protocols as functions that take n-tuples as inputs. The
Fourier analytic perspective is crucial in investigating if protocols can actually
use an increasing number of copies of C. This perspective was already insighfully
exploited in [2] for some specific correlations which could be related to the Fourier
basis; however, starting from our spectral perspective above, we discover that
any source correlation can be related to an appropriate generalized Fourier basis.

Statistical to Perfect Security. At a high level, the plan for decidability
follows that of [2,18], namely, to show that a statistical reduction from D to C
implies a deterministic, perfect reduction, using only a constant number of copies
of C. (The number of copies of C needed should be effectively determinable from
the correlations D and C.) Then, to see if there is a reduction, it is enough to
search among a finite number of protocols. The outline of how we carry this out
is as follows:

1. Our starting point is the spectral protocol characterization from [1] shown
in (2). We focus on FC . We observe that multiplying by FC corresponds
to a “generalized Fourier transform.” Hence we can interpret the columns of
̂A as a generalized Fourier transform applied to the columns of the matrix
Å := AF −1

D . (Å could be thought of as corresponding to a “half-way spectral
protocol.”)
Å is a matrix with real entries, whose rows are indexed by symbols in Xn,
where X is the alphabet of the distribution C (on Alice’s side). So each column
of Å can be interpreted as a function a : Xn → R. A generalized Fourier
transform writes this function as a linear combination of basis functions of
the form γ : Xn → R. Nominally, each basis function takes n inputs from
X, but may depend on fewer of them (e.g., the basis contains the constant
function which depends on 0 inputs); the number of inputs it actually depends
on is called the degree of a basis function.

2. Then we use the spectral protocol conditions of [1] to obtain “approximate
degree bounds” on the columns of Å. That is, we show that under the general-
ized Fourier transform mentioned above, the contribution from higher degree
basis functions has low “energy” (Lemma 7).
There is a caveat: Each column of Å is associated with a singular value of (a
normalized version of) D; the degree bound holds only for columns for which
the singular value associated with them is non-zero. Below, we write Ǎ to
denote Å restricted to these columns with the degree bound.

Secure Non-interactive Reducibility is Decidable 413

3. Next, we appeal to a “junta theorem” to argue that each column of Ǎ (inter-
preted as a function, for which the approximate degree bound holds) can
be well-approximated by a “junta”—i.e., a function which depends only on a
constant number of its inputs. Here, the approximation guarantee given by
the junta is in the sense that it matches the original function exactly on most
inputs.

• While there are several junta theorems available in the literature, the ver-
sion we need (for generalized Fourier transforms) has not been previously
stated or proved. As such, we adapt a proof of the Kindler-Safra junta
theorem [21] by Filmus [9] for our purposes. Presenting this more general
version of the junta theorem is a contribution of ours that may be of
independent interest.

4. The next step is to translate the junta approximations of the columns of Ǎ to
such an approximation of the protocol matrix A itself. For this step, we invoke
an important insight which is evident from the cryptographic perspective: An
SNIR exists from D to C iff there is one from D′ to C, where D′ is a “non-
redundant” version of D, which merges output symbols which are “equivalent”.
This means that for the decidability question, we can w.l.o.g. restrict ourselves
to the case when D is non-redundant. This insight was already crucially used
in [1]. In our case, we further rely on it at this step: We show that if D is
non-redundant, then each row of A is fully determined by the corresponding
row of Ǎ (Lemma 5). This also relies on another assumption that [1] showed
can be made w.l.o.g.—that A is deterministic—thanks to a determinization
process that retains statistical security (with a polynomially bounded increase
in error). Then, an approximation of Ǎ (in which most rows are correct) yields
a similar approximation of A; further, since the approximations are juntas,
so is each column of the approximation of A.
The upshot of this step is that Alice’s protocol matrix A can be replaced
by one which consults only a constant number of the n copies of C that it
is given access to, without increasing the error too much. This still yields a
statistically secure protocol family.

5. The final step is to convert the protocol to one in which both Alice and Bob
consult only a constant number of copies of C (Lemma 8).
This is easiest to see from the cryptographic perspective: If we simply remove
the copies of C that Alice ignores, and require Bob to locally sample his side
of C for those copies from the marginal distribution, we obtain a protocol
that is at least as secure as the original one. Note that this transformation
results in a protocol that has only a constant number of copies of C, but
does require Bob to be randomized. We can determinize this protocol again
(increasing the error in a bounded manner) to obtain a statistically secure,
deterministic protocol using only a constant number of copies of C.
Finally, we note that there are only finitely many such protocols, and hence,
to form a statistically secure protocol family (with error that approaches 0),
at least one of those protocols should have perfect security.

414 K. Bhushan et al.

A Counterexample. Before proceeding further, we point out an apparent con-
tradiction to the above claim: Consider C to be a uniformly random bit (both Alice
and Bob get the same bit) and D to be a bit that is 0 with probability, say, 1/3.
Now, there is a statistical SNIR from D to C, by sampling more and more uniform
bits from C to sample from D with increasingly better accuracy. However, 3 not
being a power of 2 prevents a perfectly secure protocol from existing.

The reason the statistical-to-perfect security argument above breaks down
in this case is that the argument requires C to have no common information.
Common information in a correlation refers to a value that Alice and Bob can
always agree on, when each of them is given only a sample from their side of
the correlation. The restriction that C has no common information comes at the
very first step of the sequence of arguments above, where we interpreted FC as
a “generalized Fourier transform”.

Nevertheless, using a result from [1], we can handle correlations with common
information. Suppose C has common information – say, w.l.o.g., it is in the
form of sampling an index i ∈ [k] according to some fixed distribution, and
then sampling from a correlation Ci, where C1, · · · , Ck are correlations without
common information, and over disjoint alphabets (called the components of C).
Then, it is not hard to see (from the cryptographic perspective) that for the
purposes of statistically secure SNIR, C is equivalent to a correlation C ′ which
samples (k + 1)-tuples (x0, · · · , xk) for Alice and (y0, · · · , yk) for Bob, where
x0 = y0 is a single uniform random bit, and for i > 0, (xi, yi) is a sample from
Ci. That is, C ′ = Ccoin ⊗ C‖, where Ccoin is the uniform common coin, and C‖

is a correlation without any common information. Then, using a result from [1],
it follows that a correlation D has an SNIR to C ′ iff each of the components of
D has an SNIR to C‖. Since C‖ has no common information this can be tested
using the statistical-to-perfect security argument, as discussed above.

With this we obtain an algorithm that can decide the existence of SNIR for
any pair of source and target correlations. This is detailed in Sect. 4.2.

New Necessary Conditions and an Example of Interest. Despite its gen-
eral and fundamental nature, our decidability result is practically unsatisfactory,
as the underlying algorithm is hugely inefficient: it involves a brute-force search
over a finite but large space of protocols. An important focus in prior work on
SNIR has been to derive simpler necessary conditions for an SNIR to exist. In
particular, in [1] it was shown that for there to be an SNIR from D to C, the
singular values of the correlation operator corresponding to D should all appear
as singular values of that corresponding to C⊗� for some �. Such a result can be
used to “manually” infer impossibility results for examples of interest.

While the results from [1,2,18] covered several cryptographically interesting
source-target pairs, they also left out some. For instance, it was not known whether
one can reduce the correlation D corresponding to random

(

2
1

)

bit-OT to the corre-
lation C corresponding to Rabin OT – i.e., an erasure channel with erasure prob-
ability 0.5, for uniformly random input bit. The results in [1] did not cover this
example, as the non-zero singular values of the correlation operator correspond-

Secure Non-interactive Reducibility is Decidable 415

ing to D, namely 1 and 1√
2

also happen to be those associated with C3. The results
in [2,18] also do not cover the case of the target correlation being

(

2
1

)

-OT.
Our statistical-to-perfect security result for SNIR plugs this gap easily: It is

easy to see that there is no perfectly secure SNIR from D to C⊗� for any �, and
by our result, the impossibility extends to statistical security. Indeed, this readily
generalizes to a broader class of target-source correlation pairs, as captured in
Lemma 10.

Overview of the Proof of the Junta Theorem. In Sect. 5, we prove the
version of the junta theorem mentioned above. We closely follow a recent proof
of the Kindler-Safra junta theorem [20,21] by Filmus [9], making several suitable
generalizations based on results (and exercises) in [25]. Compared to the state-
ment proven in [9], the main difference is that we do not restrict it to functions
over the domain {0, 1}n.

The theorem we seek to prove (roughly) states the following: Suppose f :
Ωn → T ⊆ R is an approximately degree d function as mentioned above, with
the higher degree components f>d having only ε energy (above we defined the
degree of a function w.r.t. a generalized Fourier transform, but it is in fact
a basis-invariant quantity; it however does depend on the distribution π over
Ω w.r.t. which the fourier basis is defined). Then there is a degree d function
h : Ωn → T that is in fact a function of only O(1) of its n inputs (the hidden
constants depending on T, d and π, and not on f or n), and on all but O(ε)
fraction of the domain Ωn (as measured using the distribution π⊗n) h equals f .

Below we exposit the high-level structure of the proof.

� For each coordinate i, we will show that its influence on f≤d is either
O(ε) or Ω(1) where the constants depend on T, d, λ.

• But the degree bound on f≤d implies that the total influence can be at
most d‖f‖2 = O(1). So at most O(1) coordinates i can have Ω(1) influence
on f≤d.

� Outside of these O(1) coordinates, the function is shown to have low
variance.

• Then averaging over those coordinates gives a function g that does not
depend on those coordinates, and is a good approximation in the sense
that the function f − g has small energy.

• This is not quite in the form of the approximation we desire, since we
would like to ensure that Prx←π⊗n [f(x) �= g(x)] is small. This is ensured
by considering a function h which rounds off g to use values in the set
T. Since the variance is small, this can be done in a way that keeps the
energy of f − h still small. Now, since T is a finite set, there is an Ω(1)
lower bound on |f(x) − h(x)| whenever f(x) �= h(x).

Above, apart from the starred items, the others rely on mostly elemen-
tary arguments. The first starred step relies on a hypercontractivity result. It
3 There were additional interesting examples that the singular value condition did not

cover, but were handled in [1] using another necessary condition – called the Mirroring
Lemma. But the above example evaded those approaches as well.

416 K. Bhushan et al.

is applied to the so-called Laplacians of the function w.r.t. each coordinate, to
prove a dichotomy for each coordinate, between having very low influence and
high influence. For the second starred step, a result called the Invariance Prin-
ciple is invoked to translate the low influence of the variables to low variance.
One of our technical contributions is to flesh out an appropriately generalized
version of the invariance principle (Lemma 15), to complete this step.

3 Preliminaries

Notation. We extensively employ linear algebraic notation, carefully adapted
to allow precise expression of Fourier analytic definitions in terms of matrix
multiplications. Some of the following is borrowed from [1].

We write [n] to denote {1, · · · , n} and �n� to denote the set {0, . . . , n − 1}.
R stands for the set of real numbers. Throughout the paper, all sets defined are
finite. We typically denote such sets as X,Y, and so on, and a member of X is
denoted as x.

Vectors and matrices are indexed by elements of finite sets. For a set X, we
write v ∈ R

X to mean that v is a column vector with real numbers indexed by
the elements of X as its entries (i.e., v is, essentially, a function v : X → R); we
will often refer to v as an X dimensional vector. For an X dimensional vector
v, the entry at the position x is denoted by (v)x. Similarly, for sets X and Y,
we write H ∈ R

X×Y to mean that H is an X × Y dimensional matrix with real
numbers as entries. The row of H indexed by x and the column indexed by y are
denoted as (H)(x,·) and (H)(·,y), respectively, and the element indexed by (x, y)
is denoted as (H)(x,y). The transpose is denoted by Hᵀ. Finally, |H| denotes
the absolute value of H, i.e., (|H|)(i,j) = | (H)(i,j) |, for all i ∈ [m] and j ∈ [n].
The parentheses are removed whenever there is no scope for confusion and the
vector/matrix itself is subscripted; i.e., (v)x , (H)(·,x) and (H)(x,y) are simplified
to vx,H(·,x) and H(x,y), respectively.

A column vector over the set X with all elements being 1 (resp. 0) is denoted
by 1X (resp. 0X). For x ∈ X, ξX

x denotes the X dimensional unit vector along the
‘direction x’; i.e.,

(

ξX
x

)

x
= 1 and

(

ξX
x

)

x′ = 0 for all x′ �= x. The superscript is
dropped when there is no scope for confusion regarding the dimension of these
vectors.

We write OD(ε) to denote an upper bound of the form f(D) · ε, for some
fixed non-negative function f .

Probability. We only consider distributions over finite sets in this paper. A
distribution over X is completely described by a distribution vector π ∈ R

X
≥0 such

that
∑

x∈X πx = 1, and the probability of x ∈ X is πx. Sampling x according
to the distribution π independent of all previously defined random variables is
denoted by x ∼ π. The statistical distance or total variation distance between
two distributions π and π′ over the same set X is denoted by SD (π,π′), and is
computed as

SD (π,π′) =
1
2

∑

x∈X
|πx − π′

x|.

Secure Non-interactive Reducibility is Decidable 417

Throughout this paper, we are interested in correlations, which are joint
distributions over the product of two finite sets. A correlation over X × Y is
completely described by a joint distribution matrix H ∈ R

X×Y
≥0 such that

∑

x∈X

∑

y∈Y
H(x,y) = 1.

In the sequel, we will always refer to a correlation by its joint distribution matrix.
The left marginal of H or the marginal distribution of the first coordinate of the
joint distribution is given by the distribution vector H1; the right marginal of
H is given by the row vector 1ᵀH or equivalently the column vector Hᵀ1. We
write (X,Y) ∼ H to imply that the random variables (X,Y) are distributed
according to the distribution H; i.e., PX,Y (x, y) = H(x,y) for all (x, y) ∈ X × Y.

When we say Alice and Bob receive a correlation (X,Y), we mean Alice
and Bob receive random variables X and Y , respectively. The objective of non-
interactive secure reductions is for Alice and Bob to securely realize a desired
correlation among themselves using (potentially many copies) of the correlation
at hand without communicating with each other.

Definition 1 (Norms). For an X × Y dimensional matrix H, 1-norm of the
matrix, denoted by ‖H‖1,1, is the sum of the absolute values of all elements in
H, i.e.,

‖H‖1,1 =
∑

(x,y)∈X×Y
|H(x,y)| = (1X)ᵀ|H|1Y.

The 2-norm of an n dimensional vector v is defined as ‖v‖2 =
(

∑

i∈[n] v
2
i

) 1
2
. �

Definition 2. A matrix H ∈ R
X×Y
≥0 with non-negative entries is said to be

stochastic if H1Y = 1X. A stochastic matrix in which every entry is either 0
or 1 is called a deterministic stochastic matrix or simply a deterministic matrix.

Definition 3. For a (row or column) vector v ∈ R
X, we define diag(v) ∈ R

X×X

as the diagonal matrix given by

(diag(v))(x,x′) =

{

vx if x = x′,
0 otherwise.

For H ∈ R
X×Y, we define ΔH as the Y × Y dimensional diagonal matrix

ΔH = diag(1ᵀH). �

Tensor product. When G ∈ R
X×Y and H ∈ R

R×S, tensor (Kronecker) product
of G and H, denoted as G⊗H, is an (X×R)× (Y×S) dimensional matrix such
that, for all (x, r) ∈ X × R and (y, s) ∈ Y × S,

(G ⊗ H)((x,r),(y,s)) = G(x,y) · H(r,s).

418 K. Bhushan et al.

When G and H are joint distribution matrices, the distribution matrix of the
product distribution– independent draws from distributions G and H–is G ⊗
H. Hence, the distribution of n ∈ N i.i.d. samples drawn from a correlation
with distribution matrix G is described by the joint distribution matrix G⊗n.
We will use the following identity which follows from the definitions of matrix
multiplication and tensor product.

Claim 1. For matrices G,H,G′,H ′, (GH) ⊗ (G′H ′) = (G ⊗ G′)(H ⊗ H ′). In
particular, for t ∈ N, (GH)⊗t = G⊗tH⊗t.

Definition 4. A correlation H over X × Y is said to be redundant if there exist
distinct x, x′ ∈ X and c ∈ R≥0 such that H(x,·) = c ·H(x′,·) or there exist y, y′ ∈ Y
and c ∈ R≥0 such that H(·,y) = c · H(·,y′). �

By this definition, both the marginal distributions of a non-redundant dis-
tribution have full support since an all zero column (or row) is trivially a scalar
multiple of any other column (or row). For a redundant correlation, we define its
non-redundant core as the correlation obtained by collapsing redundant symbols
(on both sides) to their equivalence classes.

A correlation is said to have non-zero common information if two parties can
agree on a bit with non-trivial entropy using the correlation without communi-
cating. We formally define this notion below:

Definition 5. Correlation H over X×Y has common-information if there exist
functions f : X → {0, 1} and g : Y → {0, 1} such that, when (X,Y) ∼ H,

P[f(X) = g(Y)] = 1 and 0 < P[f(X) = 0] < 1.

H has non-zero common information if and only if there exist ∅ ⊂ X0 ⊂ X
and ∅ ⊂ Y0 ⊂ Y, joint distribution matrices H0 and H1 over X0 × Y0 and
(X \ X0) × (Y \ Y0), respectively, and 0 < α < 1 such that H can be written as

H =
[

αH0 0
0 (1 − α)H1

]

.

A correlation that does not admit such a decomposition is said to be common-
information free. �

3.1 Generalized Fourier Transform

Let π ∈ R
Ω
≥0 be a distribution over a finite set Ω. We consider the normed vector

space L2(Ω,π). The elements of this space are v ∈ R
Ω – i.e., real-valued vectors

indexed by Ω, or equivalently, functions v : Ω → R. The inner product between
two such vectors u,v ∈ R

Ω, denoted by 〈u,v〉π , is given by

〈u,v〉π =
∑

Ω∈Ω

πω · uω · vω.

A set of vectors {γα ∈ R
Ω : α ∈ �|Ω|�} constitute a Fourier basis of L2(Ω,π) if

Secure Non-interactive Reducibility is Decidable 419

1. γ0 is the constant function; i.e., γ0 = 1Ω.
2. For all α ∈ �|Ω|�, γα is unit norm; i.e., 〈γα,γα〉π = 1.
3. For all distinct α, α′ ∈ �|Ω|�, γα is orthogonal to γα′ ; i.e., 〈γα,γα′〉π = 0.

We shall identify the set Γ with a matrix Γ ∈ R
Ω×�|Ω|� with γα as its rows: i.e.,

Γ(α,·) = γᵀ
α.

Definition 6. The generalized Fourier transform w.r.t. a Fourier basis Γ =
{γα ∈ R

Ω : α ∈ �|Ω|�} of L2(Ω,π) is a linear operation that maps a vector
v ∈ R

Ω to v̂ ∈ R
�|Ω|� such that

v̂α = 〈γα,v〉π for all α ∈ [0, |Ω|).

The linear operator F that effects this transformation – i.e., F ∈ R
�|Ω|�×Ω such

that for all v ∈ R
Ω, Fv = v̂ – is called the Fourier transform operator for Γ in

L2(Ω,π).

Proposition 1. Suppose Γ ∈ R
Ω×�|Ω|� and its rows γα := Γ(α,·) form a Fourier

basis of L2(Ω,π). Then, the matrix F ∈ R
�|Ω|�×Ω defined as F = Γ diag(π) is

the Fourier transform operator for Γ.

Proof: For all v ∈ L2(Ω,π) and α ∈ �|Ω|�,

(Fv)α = F(α,·)v = γᵀ
α diag(π)v =

∑

ω∈Ω

πω (γα)ω vω = 〈γα,v〉π = v̂α.

Thus, Fv = v̂. ��

Energy and Degree. The energy of a vector v ∈ L2(Ω,π) is defined as

‖v‖2 = 〈v,v〉π =
∑

ω∈Ω

πω · vω · vω.

Parseval’s theorem refers to the following alternative for computing the energy
of v ∈ L2(Ω,π):

‖v‖2 =
∑

α∈�|Ω|�
v̂α · v̂α.

For any Fourier basis Γ = {γα | α ∈ �|Ω|�} over L2(Ω,π) and for any n ∈ N, the
following is a generalized Fourier basis over L2(Ωn,π⊗n):

{γα1 ⊗ γα2 ⊗ . . . ⊗ γαn
: αi ∈ �|Ω|� for all i ∈ [n]}.

For any α = (α1, . . . , αn) ∈ �|Ω|�n, degree of α denoted by deg(α) is given by

deg(α) = |{i ∈ [n] : αi �= 0}|.

420 K. Bhushan et al.

We can project a vector to its low-degree and high-degree components. For a
vector v ∈ L2(Ωn,π⊗n) and d ∈ [0, n],

v≤d =
∑

α∈�|Ω|�n:deg(α)≤d

v̂α · γα

and v>d =
∑

α∈�|Ω|�n:deg(α)>d

v̂α · γα

Even though we have written the low-degree component v≤d in terms of the
basis vectors, it should be noted that this is actually the same for all bases [25].
Furthermore, we say that a vector v has degree d when v = v≤d.

3.2 Secure Non-interactive Reduction

In this section, we formally define SNIR and import a set of statements estab-
lished in [1] that we will need to prove our main result. The definitions and
statement of theorem have been adapted to the current notations, but are oth-
erwise imported verbatim from the older work.

Definition 7. Let C and D be correlations over X × Y and R × S, respectively.
For any ε ≥ 0, an ε-secure non-interactive reduction (ε-SNIR) from D to C is
a pair of probabilistic algorithms A : X → R and B : Y → S such that, when
(X,Y) ∼ C and (R,S) ∼ D,

ε-Correctness:

SD ((A(X),B(Y)), (R,S)) ≤ ε. (3)

ε-Security: There exist a pair of probabilistic algorithms, SimA : R → X and
SimB : S → Y such that,

SD ((X,B(Y)), (SimA(R), S)) ≤ ε, (4)
SD ((A(X), Y), (R,SimB(S))) ≤ ε. (5)

0-SNIR is alternatively called a perfect SNIR. �

Definition 8. Let C and D be correlations over X × Y and R × S, respectively.
D is said to have a statistical SNIR to C if, for all ε > 0, there exists a sufficiently
large n for which, D has an ε-SNIR to C⊗n. �

Suppose (A,B) is an SNIR from correlation D distributed over U × V to
C distributed over X × Y. The probabilistic algorithm A employed by Alice
can be equivalently thought of as a X × Y dimensional stochastic matrix A
with A(x,u) = PA(u|x) for each x, u. Similarly, probabilistic algorithm B can be
thought of as a Y × U dimensional stochastic matrix B. The simulators SimA

and SimB can also be equivalently thought of as stochastic matrices U and V of
dimensions U × X and V × Y, respectively. The following proposition shows how
the correctness and security conditions of SNIR translates to linear algebraic
constraints in terms of these stochastic matrices.

Secure Non-interactive Reducibility is Decidable 421

Proposition 2 ([1, Theorem 2]). A correlation D over U×V has an ε-SNIR to
a correlation C over X × Y if and only if there exist stochastic matrices A, B,
U , and V of dimensions X × U, Y × V, U × X, and V × Y, respectively, such that

‖AᵀCB − D‖1,1 ≤ ε (6) ‖AᵀC − DV ‖1,1 ≤ ε (7) ‖CB − UᵀD‖1,1 ≤ ε. (8)

Identifying the stochastic matrices with the probabilistic algorithms as dis-
cussed above, conditions (6), (7), and (8) can be seen to correspond to the
correctness condition (3) and security conditions (4), and (5), respectively.

A (redundant) correlation has a perfect SNIR to its core and vice-versa
(Lemma 5 of [1]). This leads to the following observation in [1]:

Proposition 3. A redundant correlation D has a statistical SNIR to a correla-
tion C iff the core of D has a statistical SNIR to C.

Keeping this in mind, we focus on SNIR of non-redundant target correlations
throughout this work.

Given a purported perfect SNIR (A,B) from D to C, one can verify it easily,
thanks to the following result [1, Lemma 8]:

Proposition 4. Let C and D be non-redundant correlations over X × Y and
U×V, respectively. If deterministic matrices A, B and stochastic matrices U and
V satisfy (1); i.e., (A,B) is a perfect SNIR with U and V being the simulators
for Alice and Bob, respectively, then

V = Δ−1
D BᵀΔC U = Δ−1

DᵀAᵀΔCᵀ . (9)

In [1], the authors observed that the algorithms employed by Alice and Bob
in a perfect SNIR (to a non-redundant target) is determinsitic. Furthermore,
given a probabilistic statistical SNIR, one can construct a deterministic SNIR
with a slightly worse correctness and security error. This observation is crucially
used in proving our main result.

Lemma 1 ([1, Lemma 7]). Let D be non-redundant correlation over U × V and
C be a correlation over X × Y. For any ε ≥ 0, if there exist stochastic matrices
A,B,U and V such that

‖AᵀCB − D‖1,1 ≤ ε ‖AᵀC − DV ‖1,1 ≤ ε ‖CB − UᵀD‖1,1 ≤ ε

then there exist deterministic stochastic matrices Ā, B̄ such that,

‖ĀᵀCB̄ − D‖1,1 ≤ OD

(√
ε
)

,

‖ĀᵀC − DV ‖1,1 ≤ OD

(√
ε
)

,

‖CB̄ − UᵀD‖1,1 ≤ OD

(√
ε
)

.

We recall the definitions coined in [1] relating to spectral protocols:

422 K. Bhushan et al.

Definition 9 (Spectral decomposition of a correlation). For a correlation H

distributed over X × Y, its spectral decomposition ˜H is a X × Y dimensional
matrix

˜H = Δ− 1
2

Hᵀ HΔ− 1
2

H .

Define ΣH , ΨH and ΦH to be given by a canonical singular value decom-
position of ˜H, so that ΣH is an �|X|� × �|Y|� dimensional non-negative diagonal
matrix with the diagonal sorted in descending order, ΨH and ΦH are unitary
matrices of dimensions �|X|� × X and �|Y|� × Y, respectively, and

˜H = Ψᵀ
HΣHΦH .

Finally, define FH = ΨH Δ
1/2
Hᵀ . �

The following properties of the spectral decomposition of a correlation were
observed in [1].

Lemma 2 ([1, Lemma 9]). Let |X| ≤ |Y| and H be a correlation over X × Y.
Then,

(i) 1 = (ΣH)(0,0) ≥ (ΣH)(1,1) ≥ . . . ≥ (ΣH)(|X|−1,|X|−1) ≥ 0. Furthermore, if
H is common information free, then (ΣH)(1,1) < 1.

(ii) For all λ ∈ (0, 1), there exists δ > 0 such that for all n ∈ N and for all
α ∈ �|X|�, either λ = (ΣH)(α,α) or |λ − (ΣH)(α,α) | > δ.

Similar to the correlations, the SNIR protocol also allows a spectral decom-
position, which we now define.

Definition 10 (Spectral Image of SNIR). Let D be a non-redundant correla-
tion over U × V, and C be a correlation over X × Y. The spectral image of an
SNIR (A,B) from D to C is (̂A, ̂B), where ̂A and ̂B are matrices of dimensions
�|X|� × �|U|� and �|Y|� × �|V|�, respectively, defined as

̂A = FCAF −1
D

̂B = GCBG−1
D . �

A crucial observation we make in this paper is that the columns of ̂A can
be interpreted as a generalized Fourier Transform applied to the columns of a
matrix derived from A. Loosely speaking, the following lemma in [1] shows that
this Fourier spectrum is mostly concentrated on specific coefficients.

Lemma 3 ([1, Lemma 11]). Suppose a non-redundant correlation D over U × V
has a deterministic ε-SNIR (A,B) to C over X × Y. Then, for all β ∈ �|U|�,

∑

α∈�|X|�
(ΣC)(α,α) �=(ΣD)(β,β)

(

(ΣCΣᵀ
C)(α,α) − (ΣDΣᵀ

D)(β,β)

)2 (
̂A(α,β)

)2

= OD(ε) .

Secure Non-interactive Reducibility is Decidable 423

Finally, we import a lemma that shows that presence of common randomness
does not help in SNIR.

Lemma 4 ([1, Theorem 6]). Let Cw =
[

1/2 0
0 1/2

]

be the 1-bit common random-

ness correlation. If a non-redundant common-information free correlation D has
a statistical SNIR to Cw ⊗ C for a correlation C, then D also has a statistical
SNIR to C.

4 Decidability of SNIR

4.1 Statistical to Perfect Security

The crucial observation we make to show the decidability of SNIR is that a
statistical reduction from D to C implies a deterministic perfect reduction from
D to a constant number of copies of C. This is the main result of this section.

Theorem 1. A non-redundant correlation D over U × V has a statistical SNIR
to a common information free correlation C over X × Y if and only if, for a
constant � ∈ N that depends only on D and C, D has a perfect SNIR to C⊗�.

The proof of the theorem follows the outline presented in the technical
overview. Without loss of generality, we assume that |U| ≤ |V| and focus on
an ε-SNIR (for an arbitrary ε ≥ 0) implied by the assumption that D has a
statistical SNIR to C. We make several observations about the spectral image
of such an ε-SNIR (A,B) from D to (say) C = C⊗n as defined in Definition 10.
Since |U| ≤ |V|, it is sufficient to focus on Alice’s spectral protocol ̂A = FC AF −1

D .
In Lemma 6, we establish that FC is a Fourier transform operator for the normed
vector space L2(Xn,π), where π = C1 is the marginal of C at Alice. This makes
̂A the Fourier transform of the “half-way spectral protocol” AF −1

D with respect to
this operator. In Lemma 7, we use the properties of spectral protocols established
in [1]–restated here as Lemma 3–to show that the columns of AF −1

D associated
with non-zero singular values of D concentrate most of their energy in the lower
degree coefficients. We focus on this sub-matrix of AF −1

D given by AF̌D. Lemma
5 shows that each column of A is completely determined by the corresponding
row of this sub-matrix. At this point, we appeal to a “generalized junta theorem”
stated as Theorem 2 to argue that each column of AF̌D can be approximated
by a junta–a vector in Xn that depends only on a constant number of coordi-
nates of Xn. Since A is determined by AF̌D which itself is close to a junta, A
itself is close to a junta. Finally, in Lemma 8, we show that if Alice’s protocol A
‘almost entirely’ depends only on a small subset of copies of the correlations in a
sequence of SNIR protocols with progressively better security error, then there
is a perfectly secure SNIR, concluding the proof.

We state the lemmas mentioned above which imply the theorem.

424 K. Bhushan et al.

Lemma 5. Let D be a non-degenerate correlation over U × V, and let
(ΣD)(β,β) > 0 if and only if β < k ≤ |U|. Define F̌D ∈ R

U×�k� such that

(F̌D)(·,β) =
(

F −1
D

)

(·,β)
∀β ∈ �k�. (10)

There exists a function φ : R
�k� → {0, 1}U such that, for any R and R × U

dimensional deterministic matrix A,

A(r,·) = φ
(

A(r,·)F̌D

)

∀r ∈ R. (11)

Proof: For any r ∈ R, the row A(r,·) is a basis vector since A is a determin-
istic stochastic matrix. Fix r ∈ R and let A(r,·) = ξᵀ

u for some fixed u. Then,
A(r,·)F̌D = ξᵀ

uF̌D = (F̌D)(u,·). Suppose all the rows of F̌D are distinct, i.e.,
(F̌D)(u1,·) �= (F̌D)(u2,·) whenever u1 �= u2. Consider the map φ : (F̌D)(u,·) �→ ξu

for all u (and is otherwise defined arbitrarily). Then, φ
(

A(r,·)F̌D

)

= A(r,·) for
all r. Thus, there exists φ as required in the lemma whenever all the rows of F̌D

are distinct.
The proof is completed by showing that D is degenerate if there exist u1, u2 ∈

U such that (F̌D)(u1,·) = (F̌D)(u2,·).

Δ−1
DᵀD = Δ−1

Dᵀ

(

Δ1/2
Dᵀ ˜DΔ1/2

Dᵀ

)

= Δ−1/2
Dᵀ Ψᵀ

DΣDΦDΔ1/2
Dᵀ

=
∑

β:(ΣD)(β,β)>0

(ΣD)(β,β)

(

F −1
D

)

(·,β)
·
(

ΦDΔ1/2
Dᵀ

)

(β,·)
.

The last equality used the outer product expansion of Δ−1/2
Dᵀ Ψᵀ

DΣDΦDΔ1/2
Dᵀ

with respect to the diagonal matrix ΣD. Since (F̌D)(u1,·) = (F̌D)(u2,·), substi-
tuting F̌D = F −1

D in the above equation,
(

Δ−1
DᵀD

)

(u1,·) =
∑

β:(ΣD)(β,β)>0

(ΣD)(β,β)

(

F̌D

)

(u1,β)
·
(

ΦDΔ1/2
Dᵀ

)

(β,·)

=
∑

β:(ΣD)(β,β)>0

(ΣD)(β,β)

(

F̌D

)

(u2,β)
·
(

ΦDΔ1/2
Dᵀ

)

(β,·)

=
(

Δ−1
DᵀD

)

(u2,·) .

But then,

D(u1,·) =
(ΔDᵀ)(u1,u1)

(ΔDᵀ)(u2,u2)

D(u2,·);

hence, D is degenerate. ��

Lemma 6. Let C be the n-wise product of a correlation C over X × Y for some
n ∈ N; i.e., C = C⊗n. Rows of Γ =

(

ΨC Δ−1/2
C ᵀ

)

form a generalized Fourier
basis of the normed vector space L2(Xn,π), where π = C1.

Secure Non-interactive Reducibility is Decidable 425

Proof: For any α,α′ ∈ �|X|�n,
〈

Γ(α ,·),Γ(α ′,·)
〉

π
=
∑

x∈Xn

πx Γ(α ,x) Γ(α ′,x) = Γ(α ,·) ΔC ᵀ (Γᵀ)(·,α ′)

=
(

ΨC Δ−1/2
C ᵀ

)

(α ,·)
ΔC ᵀ

(

Δ−1/2
C ᵀ Ψᵀ

C

)

(·,α ′)

=
((

ΨC Δ−1/2
C ᵀ

)

ΔC ᵀ
(

Δ−1/2
C ᵀ Ψᵀ

C

))

(α,α′)

=

{

1 if α = α′,
0 if α �= α′.

We now show that Γ(0,·) = 1ᵀ. In the context of Lemma 1 in [1] and its
proof, we observe that L(GC) has an eigenvalue 0 corresponding to eigenvector
[(1ᵀ · Cᵀ)1/2, (1ᵀ · C)1/2]ᵀ, and thus

(

(1ᵀ · Cᵀ)1/2
)ᵀ

= (C · 1)1/2 is a left sin-
gular vector of ˜C corresponding to singular value 1. Assuming C has a single
connected component, we get that the multiplicity of 1 in ΛC is only one, and
this is the maximum singular value as well, implying (Ψᵀ

C)(·,0) = (C · 1)1/2, i.e.,

(ΨC)(0,·) = (1ᵀ · Cᵀ)1/2. We then have

Γ(0,·) =
(

ΨC Δ−1/2
C ᵀ

)

(0,·)
= (ΨC)(0,·) Δ

−1/2
C ᵀ = (1ᵀ · Cᵀ)1/2Δ−1/2

C ᵀ = 1ᵀ.

Thus, the rows of Γ form a generalized Fourier basis of L2(Xn,π). Finally,
by Proposition 1, Γ diag(π) =

(

ΨC Δ−1/2
C ᵀ

)

ΔC ᵀ = FC is a Fourier transform
operator for Γ in L2(Xn,π). ��

Lemma 7. Let D be a non-redundant correlation over U × V and C = C⊗n

be the n-wise product of a common information free correlation C over X × Y.
If (A,B) is a deterministic ε-SNIR from D to C, then there exists a number
d ∈ N that depends only on C and D (and not on n) such that, for each β such
that (ΣD)(β,β) > 0, the vector aβ =

(

AF −1
D

)

(·,β)
∈ L2(Xn,π), where π = C1,

satisfies ‖a>d
β ‖2 ≤ OD(

√
ε).

Proof: Consider the Fourier basis Γ of L2(Xn,π) described in Lemma 6 and its
Fourier transform operator FC = ΨC Δ

1/2
C ᵀ . By Definition 10, Fourier transform

of aβ for any β w.r.t. Γ is given by

âβ = FC aβ = FC

(

AF −1
D

)

(·,β)
= ̂A(·,β). (12)

By Lemma 3, for α ∈ �|X|�n,

∑

α∈�|X|�n

(ΣC)(α ,α) �=(ΣD)(β,β)

(

(ΣC Σᵀ
C)(α ,α) − (ΣDΣᵀ

D)(β,β)

)2 (
̂A(α ,β)

)2

= OD(ε) . (13)

426 K. Bhushan et al.

By Lemma 2 (ii), ∃δ > 0 such that, for any α, β, s.t. (ΣC)(α ,α) �= (ΣD)(β,β)

and (ΣD)(β,β) > 0,

(ΣC)(α ,α) + (ΣD)(β,β) ≥
∣

∣

∣ (ΣC)(α ,α) − (ΣD)(β,β)

∣

∣

∣ ≥ δ.

Using this in (13), for any β s.t. (ΣD)(β,β) > 0,

OD(ε) =
∑

α :(ΣC)(α ,α) �=(ΣD)(β,β)

(

(ΣC)2(α ,α) − (ΣD)2(β,β)

)2 (
̂A(α ,β)

)2

≥
∑

α :(ΣC)(α ,α) �=(ΣD)(β,β)

δ2
(

̂A(α ,β)

)2

.

If there exists d ∈ N that depends only on C and D (and not on n) such that
(ΣC)(α ,α) �= (ΣD)(β,β) whenever deg(α) > d, by the above bound and (12),

∑

α :deg(α)>d

(âβ)2α =
1
δ2

∑

α :deg(α)>d

δ2
(

̂A(α ,β)

)2

= OD(ε) .

Hence, it is sufficient to show that such a d ∈ N exists. By Lemma 2, when C
is common-information free, there exists λ < 1 such that (ΣC)(α,α) ≤ λ for all
1 ≤ α < |X|. Hence, for α ∈ �|X|�[n], (recalling ΣC = ΣC⊗n = Σ⊗n

C),

(ΣC)(α ,α) =
∏

i∈[n]

(ΣC)(αi,αi)
≤
∏

i∈[n]
αi �=0

λ ≤ λdeg(α).

Choose d such that (ΣD)(β,β) ≥ λd for all β s.t. (ΣD)(β,β) > 0. Then,
(ΣC)(α ,α) �= (ΣD)(β,β) whenever deg(α) > d. This concludes the proof. ��

Theorem 2 (Generalized Junta Theorem). Let (Ω,π) be a finite probabil-
ity space, |Ω| = m ≥ 2, in which every outcome has probability at least λ. Let T
be a finite set and let d ≥ 1. If f ∈ L2(Ωn,π⊗n) is a T-valued function such that
‖f>d‖2 = ε, then there exists a T-valued degree d function h ∈ L2(Ωn,π⊗n),
such that Pr[f �= h] = O(ε), and h depends on O(1) coordinates.

Lemma 8. Let D be a non-redundant correlation over U × V and C be a cor-
relation over X × Y. Suppose, for each i ∈ N, there is an εi-SNIR (Ai, Bi)
from D to C⊗ni such that εi → 0 as i → ∞. For each i, suppose there exists
Si ⊂ [ni], |Si| = � and a deterministic matrix Ãi such that

(Ãi)(x,·) = (Ãi)(x′,·) for all x,x′ s.t. xj = x′
j for all j ∈ Si,

and, when πi = C⊗ni1, it holds that

Px∼πi

[

(Ãi)(x,·) �= (Ai)(x,·)
]

≤ εi. (14)

Then, D has a perfect SNIR to C⊗�.

Secure Non-interactive Reducibility is Decidable 427

Proof: Fix i ∈ N. By Proposition 2, there are stochastic matrices Ui and Vi such
that

‖Aᵀ
i C⊗n − DVi‖1,1 ≤ εi ‖C⊗nBi − Uᵀ

i D‖1,1 ≤ εi.

Since i is fixed, we will drop the subscript i and denote ni,πi, Ai, Ãi by n,π, A, Ã,
and so on. Also, we will denote C⊗n by C. We have,

‖AᵀC − ÃᵀC‖1,1 = 1ᵀ|(A − Ã)ᵀC|1
≤ 1ᵀ|(A − Ã)ᵀ|C1 = 1ᵀ|(A − Ã)ᵀ|π.

The final equality used the definition πi = C⊗ni1.

1ᵀ|(A − Ã)ᵀ|π =
∑

x:A(x ,·) �=Ã(x ,·)

1ᵀ
(

|A − Ã|(x,·)
)ᵀ

πx

(a)

≤ 2
∑

x:A(x ,·) �=Ã(x ,·)

πx

= 2Px∼π

[

(Ãi)(x,·) �= (Ai)(x,·)
] (b)

≤ 2εi.

Here, (a) used the fact 1ᵀ
(

|A − Ã|(x,·)
)ᵀ

= 2 whenever A(x,·) �= Ã(x,·) since

A and Ã are stochastic matrices; (b) used (14). Thus, we have argued that
‖AᵀC − ÃᵀC‖1,1 ≤ 2εi. Since B1 = 1, this further implies that ‖AᵀCB −
ÃᵀCB‖1,1 ≤ 2εi. But then,

‖ÃᵀCB − D‖1,1 ≤ ‖ÃᵀCB − AᵀCB‖1,1 + ‖AᵀCB − D‖1,1 ≤ 3εi,

‖ÃᵀC − DV ‖1,1 ≤ ‖ÃᵀC − AᵀC‖1,1 + ‖AᵀC − D‖1,1 ≤ 3εi,

‖CB − UᵀD‖1,1 ≤ εi.

Thus, (Ã, B) is a 3εi-SNIR from D to C.
From (Ã, B), we derive an SNIR that uses only � copies C but retains the

same security guarantees as the original reduction. We argue this part from a
cryptographic perspective: Consider the protocols Ã : Xn → U and B : Yn → V
corresponding to the stochastic matrices Ã and B, respectively. If x,x′ ∈ Xn

are such that xi = x′
i for all i ∈ S, then Ã(x,·) = Ã(x′,·). Equivalently, Ã(x) and

Ã(x′) are identically distributed for such x,x′. In other words, Ã depends only
on XS. If we remove the copies of C that are ignored by A and have B sample its
side of C for these copies from the marginal distribution, we obtain a protocol
that depends only on |S| = � many copies of C and is at least as secure as the
original SNIR. Let the deterministic protocol obtained by restricting Ã to XS be
called A′, and the stochastic (not necessarily deterministic) protocol obtained by
restricting B to YS be called B′. Then, (A′, B′) is a 3εi-SNIR from D to C⊗�.

428 K. Bhushan et al.

For each i ∈ N, we constructed 3εi-SNIR (A′
i, B

′
i) from D to C⊗�. But then,

for each i ∈ N, by Lemma 1, there exist deterministic matrices Āi ∈ {0, 1}X�×U

and B̄i ∈ {0, 1}Y�×V such that (Āi, B̄i) is a OD

(√
εi

)

-SNIR from D to C⊗�. Since
� is a constant, there exist only a finite number of choices of Āi ∈ {0, 1}X�×U and
B̄i ∈ {0, 1}Y�×V, and hence there exist deterministic matrices A∗ and B∗ such
that (A∗, B∗) is a perfect SNIR from D to C⊗�. ��

Proof of Theorem 1. If D has a statistical SNIR to C, there is a sequence of
protocols (Ai, Bi)i∈N such that, for each i ∈ N, (Ai, Bi) is an εi-SNIR from D to
C⊗ni and εi → 0 as i → ∞.

Fix i ∈ N; we drop the subscript from ni, Ai, Bi, εi and simply use n,A,B, ε
instead. We denote C⊗ni by C and C1 by π. Consider the normed vector space
L2(Xn,π). Suppose (ΣD)(β,β) > 0 if and only if β ∈ �k� ⊆ �|U|�. Define

TD =
{

(

F −1
D

)

(u,β)
: u ∈ U, β ∈ �k�

}

.

For each β ∈ �k�, define aβ ∈ TXn

D as

aβ =
(

AF −1
D

)

(·,β)
∈ L2(Xn,π).

By Lemma 7, there exists d that depends only on D and C (and not on n) such
that ‖a>d

u ‖2 ≤ OD(ε). By Theorem 2, for each β ∈ �k�, there exists ãβ ∈ TXn

D

and Sβ ⊂ [n], |Sβ | = l where l depends only on d, C and TD such that, (ãβ)x =
(ãβ)x′ , for all x,x′ ∈ Xn such that xi = x′

i for all i ∈ S, and

Px∼π

[

(aβ)x �= (ãβ)x

]

= OD(ε) . (15)

Since D is non-redundant, by Lemma 5, there exists φ : T�k�
D → R

U such that for
all x ∈ Xn,

A(x,·) = φ ((a0)x , (a1)x , . . . , (ak)x) (16)

Hence,

Px∼π

[

A(x,·) �= φ((â0)x , . . . , (âk)x)
]

≤ Px∼π

[

∃β : (ãβ)x �= (aβ)x

]

≤
∑

β∈�k�

Px∼π

[

(ãβ)x �= (aβ)x

]

(a)
= OD(ε) ,

where (a) follows from (15). Define the deterministic matrix Ã ∈ {0, 1}Xn×U such
that, for an arbitrary u∗ ∈ U and for all x ∈ Xn,

Ã(x,·) =

{

φ ((a0)x , . . . , (ak)x) if φ ((a0)x , . . . , (ak)x) ∈ {ξu : u ∈ U},

ξu∗ otherwise.

Secure Non-interactive Reducibility is Decidable 429

Since A is a deterministic matrix, i.e., each row of A belongs to {ξu : u ∈ U},

Px∼π

[

A(x,·) �= Ã(x,·)
]

≤ Px∼π

[

A(x,·) �= φ((â0)x , . . . , (âk)x)
]

= OD(ε) .

Finally, since ãβ depends only on XSβ for each β ∈ �k�, Ã depends only on
X∪β∈�k�Sβ .

We have shown that, for each i ∈ N, there exists a deterministic matrix
Ãi ∈ R

Xni×U such that

(Ãi)(x,·) =(Ãi)(x′,·) ∀x,x′ ∈ Xn s.t. xj = x′
j for all j ∈

⋃

β∈�k�

Si,β ,

and Px∼πi

[

(Ãi)(x,·) �= (Ai)(x,·)
]

≤ εi,

where Si,β corresponds to Sβ considered for a fixed i in the above discussion.
Since ∪β∈�k�Si,β ≤ (k + 1)l = � for all i ∈ N, the statement of the theorem
follows from Lemma 8. ��

4.2 An Algorithm for the SNIR Problem

In this section, we show that the SNIR problem is decidable. Theorem 1 showed
that existence of a statistical SNIR implies that of a perfect SNIR when the
source correlation is common information free and the target correlation is non-
redundant. As previously observed, it is sufficient to study SNIR between non-
redundant correlations. Next, we tackle source correlations with non-zero com-
mon information.

Dealing with Common Information. An early work [28] on non-secure non-
interactive reduction by Witsenhausen characterized correlations with non-zero
common information to be the complete correlations—correlations that can be
used to derive any desired target correlation—for non-secure reductions. How-
ever, as intuition suggests, common information does not help when security
is required. This was formally established in [1] and restated in this paper as
Lemma 4. Using this result, we will show that decidability of SNIR between gen-
eral correlations reduces to SNIR between common information free correlations.

Definition 11. For positive numbers 0 < α1 ≤ . . . ≤ αk < 1 that add up to 1,
and common information free correlations H1, . . . , Hk, consider the correlation

H =

⎡

⎢

⎢

⎢

⎣

α1H1 0 . . . 0
0 α2H2 . . . 0
...

. . .
...

0 0 . . . αkHk

⎤

⎥

⎥

⎥

⎦

.

The parallelization of H, denoted by H‖ is defined as

H‖ = H1 ⊗ H2 ⊗ . . . ⊗ Hk.

�

430 K. Bhushan et al.

H‖ is a common information free correlation, and when H is non-redundant, H‖

is also non-redundant.

Lemma 9. Let C be a correlation with non-zero common information. A non-
redundant correlation D (with or without common information) has a statistical
SNIR to C if and only if D‖ has a statistical SNIR to C‖.

Proof: Let Ccoin =
[

1/2 0
0 1/2

]

be the 1-bit common randomness correlation.

We will later show that, since C has non-zero common information, C has a
statistical SNIR to Ccoin ⊗ C‖ and vice-versa. By the composability of SNIR
protocols, this implies that D has a statistical SNIR to C if and only if it has a
statistical SNIR to Ccoin ⊗ C‖. If D is common information free, then D‖ = D,
and if D has non-zero common information, then D has a statistical SNIR to
Ccoin ⊗ D‖ and vice-versa, as in the case of C. Since common randomness can
be (securely) sampled using common randomness, Ccoin ⊗ D‖ has a statistical
SNIR to Ccoin ⊗ C‖ if and only if D‖ has a statistical SNIR to Ccoin ⊗ C‖. But,
by Lemma 4, D‖ has a statistical SNIR to Ccoin ⊗C‖ only if D‖ has a statistical
SNIR to C‖. Since the other direction is trivially true, we have established the
statement of the lemma.

It remains to show that C has a statistical SNIR to Ccoin⊗C‖ and vice-versa.
Observe that Alice and Bob can agree on the distribution π over [k] such that
(π)i = αi for all i with arbitrarily small error using sufficiently many copies of
Ccoin. But then, by sampling i according to π and then sampling according to
Ci, Alice and Bob have essentially sampled according to C.

To sample Ccoin ⊗ C using C, Alice and Bob approximate (with arbitrarily
small error) the 1-bit common randomness correlation Ccoin using the sufficiently
many copies of π distribution that they (implicitly) share. Furthermore, with
probability

∏k
i=1 αi, the distribution C⊗l is distributed according to C1⊗. . .⊗Ck.

Hence, Alice and Bob can approximately sample (with arbitrarily small error)
from Ccoin ⊗C using sufficiently many copies of C. It is easily verified that both
the above mentioned sampling schemes are secure, concluding the proof. ��

Putting Things Together. Now we can put together our results so far into
an algorithm for the SNIR problem.

1. Given a pair of correlations (C,D) as input, proceed as follows.
2. First replace D by its core and proceed (see Proposition 3). In the following

we assume D is non-redundant.
3. If C has non-zero common information, then replace C by C‖ and D by D‖

(see Lemma 9). (Else retain both C and D unchanged.) In the following we
assume C has no common information.

4. Compute � ∈ N associated with C and D, as stated in Theorem 1. Let C =
C⊗�.

5. For every pair of (deterministic) matrices A ∈ {0, 1}X�×U and B ∈ {0, 1}Y�×V,
check if (A,B) is a perfect SNIR from D to C, using Proposition 4. That is,

Secure Non-interactive Reducibility is Decidable 431

compute V = Δ−1
D BᵀΔC and U = Δ−1

DᵀAᵀΔC ᵀ , and check if A,B,U , and
V satisfy the conditions in (1). If any pair is a perfect SNIR, accept the input
and halt.

6. Else, reject the input and halt.

Steps 2 and 3 are justified by Proposition 3 and Lemma 9 respectively. Then,
at the end of Step 3, given a non-redundant D and C with no common informa-
tion, and the rest of the algorithm is justified by Theorem 1. This leads us to
the main result of this paper:

Theorem 3. The SNIR problem is decidable.

4.3 More Necessary Conditions

As mentioned in Sect. 2, even given an algorithm for the SNIR problem, there
is value in simple necessary conditions for an SNIR to exist. Here we present a
new condition, exploiting Theorem 1.

A Concrete Example. The motivation for our new condition is the question of
whether there is a statistical SNIR of the OT correlation (or more generally, any
Oblivious Linear-Function Evaluation (OLE) correlation) to the (string) erasure
correlation. We formally define these correlations before formally stating our
resolution of the above question (in the negative).

(String) Erasure Correlation. An n-bit string erasure correlation with era-
sure probability p ∈ (0, 1), denoted by SECp

l , is a correlation over {0, 1}l ×
({0, 1}l ∪ {⊥}) such that, for all x ∈ {0, 1}l,

(SECp
l)(x,y)

=

{

1−p
2l if y = x,

p
2l if y = ⊥.

OLE Correlation.The OLE correlation (or Oblivious Linear-Function Evalua-
tion) over a finite field or ring F is the correlation OLEF over the domain F

2 ×F
2

such that, for all a, b, x, y ∈ F,

(OLEF)((a,b),(x,y)) =

{

1
|F|3 if a · b = x + y,

0 otherwise .

A New Impossibility Criterion. We state the following combinatorial crite-
rion to rule out a SNIR.

Lemma 10. Let C be a correlation over X×Y such that, for some x, C(x,y) > 0
for all y. Let D be a non-redundant correlation over U × V such that, for each
u, there exists v such that D(u,v) = 0. Then, D does not have a statistical SNIR
to C.

432 K. Bhushan et al.

Proof: By Theorem 1, D has a statistical SNIR to C only if there is a perfect
SNIR (A,B) from D to C⊗� for some � ∈ N. By our assumption, there exists
x ∈ X� such that

(

C⊗�
)

(x,y)
> 0 for all y ∈ C⊗�. Consider any u such that

P[A(x) = u] > 0 (indeed A is a deterministic protocol, but we do not need this
property). It is easy to see that, for all v in the image of B,

P(X,Y)∼C⊗� [A(X) = u,B(Y) = v] > 0.

This contradicts our assumption about D. ��

The above lemma implies that statistical SNIR of OLEF to SECp
l is impossible

for all p ∈ (0, 1), l ∈ N and ring F. This follows from the fact that, when (X,Y)
is distributed according to the n-bit string erasure correlation, P(X,Y)[x,⊥] > 0
for all x ∈ {0, 1}n. Whereas, when (U, V) is distributed according to SECp

l , for
any (a, b) such that a · b �= x + y, P(U,V)[U = (a, b), V = (x, y)] = 0.

5 Generalized Junta Theorem

Kindler and Safra showed that if the energy of a function above degree d is small,
then it is close to a junta that only depends on O(d) many variables [20,21]. We
need a generalized version of this result, Theorem 2, which we will prove in this
section. The generalization is in terms of using a generalized Fourier transform
to define degree and energy for functions over a domain Ωn rather than {0, 1}n

(see Sect. 3). Our statement and proof closely follow the treatment by Filmus
[9], which itself gives a generalization of the original result in [20,21] (which was
restricted to functions with boolean outputs as well as inputs). The proofs of the
lemmas are provided in the full version of the paper [6].

5.1 Tools: Influence, Hypercontractivity and Invariance Principle

We will first present some definitions that will be used later in this section. Let
(Ω,π) be a finite probability space, |Ω| = m ≥ 2, in which every outcome has
probability at least λ.

Definition 12. For a function f ∈ L2(Ωn,π⊗n), and a position i ∈ [n], we
define the following:

E[f] = E
x∼π⊗n

[f(x)], Var[f] = ‖f − E[f]‖2,

Eif = E
x′∼π

[f(x[n]\i||x′)] Lif = f − Eif ,

Infi[f] = ‖Lif‖2 TotInf[f] =
n
∑

i=1

Infi[f]

where x[n]\i||x′ denotes replacing xi by x′ in x. �

Secure Non-interactive Reducibility is Decidable 433

Note that Lif is a function associated with f , called its Laplacian, and
it captures the contribution of a particular coordinate i for each point in the
domain of f . Its energy Infi[f], called the influence of a position i, is a quantity
that measures this contribution. The total influence TotInf[ff] simply sums up
the influence from all coordinates. We also note that the expectation E (and
variance Var) for a function f w.r.t. a distribution over its domain are defined
as the expectation (and variance) of the random variable corresponding to the
output of f when evaluated on an input drawn from the given distribution; these
definitions extend to continuous domains as well.

Hypercontractivity. We will need a generalization of the Bonami Lemma in
the hypercontractivity type of results. The following version is obtained by sub-
stituting q = 4 in Theorem 10.21 in [25]. Here we state this lemma restricted
to the case when all the variables are coming from the same domain Ω and are
distributed identically according to π.

Lemma 11 (Hypercontractivity [25]). Let (Ω,π) be a finite probability space,
|Ω| = m ≥ 2, in which every outcome has probability at least λ. Let f ∈
L2(Ωn,π⊗n) be a function of degree at most d, then

‖f2‖2 ≤ (9/λ)d ‖f‖4.

We will use the above lemma to prove a result that is a dichotomy (given
below), which will be used as a tool in the main proof. This has been taken
verbatim from [9], the only difference being that now we use the generalized
version of the Bonami lemma given above. Also, the expectations and probability
calculations will now be with respect to the probability distribution given by π⊗n

instead of the uniform distribution.

Lemma 12. Let S be a finite set and let d ≥ 1. If f ∈ L2(Ωn,π⊗n) is a S-valued
function satisfying ‖f>d‖2 = ε then either ‖f‖2 = O(ε) or ‖f≤d‖2 = Ω(1).

Invariance Principle. Given a function in f ∈ L2(Ωn,π⊗n), we define a poly-
nomial Pf with n(|Ω|−1) variables, obtained by replacing the generalized Fourier
basis with a polynomial basis. More precisely, the polynomial Pf with formal
variables {Xi,α}i∈[n],α∈[|Ω|−1] is defined as

Pf(X1,1, . . . , Xn,|Ω|−1) =
∑

α∈�|Ω|�n

̂fα

∏

i∈[n]:αi �=0

Xi,αi
.

We will be using the following variant of the invariance principle to complete
our proof of the generalized junta theorem, that is implicit in [25] (obtained from
Exercise 11.49(b) followed by an application of the technique used in the proof
of Corollary 11.67):

Lemma 13 (Invariance Principle [25]). Let (Ω,π) be a finite probability space,
|Ω| = m ≥ 2, in which every outcome has probability at least λ. Suppose f ∈

434 K. Bhushan et al.

L2(Ωn,π⊗n) has degree at most d, with Var[f] = 1,4 and Inft[f] ≤ ε, for every
t ∈ [n]. Then for any ψ : R → R that has a continuous third derivative and
satisfies ‖ψ′′′‖∞ ≤ c, we have

∣

∣

∣

∣

E[ψ ◦ f] − E
w∼N(0,1)(m−1)n

[ψ(Pf(w))]
∣

∣

∣

∣

≤ 2c

3
(2
√

2/λ)dd
√

ε.

Following [25], we will use the above lemma along with Proposition 5 below
to get the desired version of the invariance principle, that compares probabilities
of the functions taking values less than some threshold.

Proposition 5 (Carbery-Wright Theorem.). Let p : R(m−1)n → R be a poly-
nomial of degree at most d, let w ∼ N(0, 1)(m−1)n, and assume E[p(w)2] = 1.
Then, for all ε > 0,

Pr[|p(w)| ≤ ε] ≤ O(dε1/d),

where the O(·) hides a universal constant.

The lemma given below will also be used in our proof of the invariance prin-
cipal. Its proof has been completed after following exercises 11.40 and 11.41(b)
from [25].

Lemma 14. Fix u ∈ R, let ψ(s) = 1s≤u, and 0 < η < 1/2. Then there exists a
smooth approximation ˜ψη of ψ that satisfies the following properties:

– ˜ψη is a non-increasing function which agrees with the indicator function
ψ(s) = 1s≤u on the intervals (−∞, u − η] and [u + η,∞).

– ˜ψη is smooth and satisfies ‖ ˜ψ(k)
η ‖∞ ≤ ck/ηk for each k ∈ N, where ck only

depends on k.

We prove the below lemma by following a line of reasoning in [25], similar
to the way this version is proved for the Berry-Esseen theorem (which consid-
ers sums of random variables instead of multilinear polynomials). The smooth
approximation function ˜ψη for the desired indicator function ψ(s) = 1s≤u has
been taken from Lemma 14. We first apply the basic invariance principle Lemma
13 to this approximation and then use its properties to derive some basic inequal-
ities, concluding in the desired result.

Lemma 15. Let (Ω,π) be a finite probability space, |Ω| = m ≥ 2, in which every
outcome has probability at least λ. Suppose f ∈ L2(Ωn,π⊗n) has degree at most
d, with Var[f] = 1, and Inft[f] ≤ ε, for every t ∈ [n]. Then, for all u ∈ R,

∣

∣

∣

∣

Pr
x∼π⊗n

[f(x) ≤ u] − Pr
w∼N(0,1)(m−1)n

[Pf(w) ≤ u]
∣

∣

∣

∣

≤ O(dε
1

3d+1 λ
−1
3).

4 Actually, this lemma holds even when Var[f] ≤ 1, but the unit variance case is
sufficient for us to be able to apply the Carbery-Wright theorem later.

Secure Non-interactive Reducibility is Decidable 435

5.2 Main Proof

In this section, we give our proof for the junta theorem. Lemma 16 states that
for every function whose high-degree energy is small, there is a set J of small
number of co-ordinates s.t. all other positions have low influence on the function
fz obtained by fixing these co-ordinates to the value z ∈ ΩJ . The remaining
lemmas then basically try to show that low influence implies low variance. To
this end, the invariance principle is used inside Lemma 18 to claim that the
function fz has low probability on every value in the domain. Lemma 19 then
shows that if we consider a restriction of the function f to J and average out the
rest, we get a good approximation g for f . From there, one only needs to round
g to the nearest values in the set T to get the final approximation h. Most of the
following description has been taken verbatim from [9], with the expectations
and probabilities now being calculated w.r.t. the general distribution given by
products of π instead of a uniform distribution. Whenever not mentioned, the
variable α is coming from �|Ω|�n.

There are some updates to the proof of the following lemma in the generalized
setting as compared to [9]. First, the Laplacian functions Lif , for i ∈ [n], have a
different range defined with respect to π, whereas it is a much simpler description
in the uniform setting. Secondly, the constant 2|J| in an inequality comparing
the conditional expectation of (Lif)2 when the input at positions J has been
set to z and the normal expectation of (Lif)2, must be replaced by (1/λ)|J|.

Lemma 16. Let T be a finite set and let d ≥ 1. If f ∈ L2(Ωn,π⊗n) is a T-valued
function such that ‖f>d‖2 = ε then we can find a set J of O(1) coordinates such
that for each z ∈ ΩJ , the function [fz] on ΩJ̄ obtained by substituting x|J = z
satisfies

Infi[fz] = O(ε) for every i ∈ J̄ .

There is a similar difference to the following lemma from the version in [9],
that the constant in an inequality comparing norms of fz and f must be replaced
from 2|J| to (1/λ)|J|.

Lemma 17. Assuming the setting of Lemma 16, then for every z ∈ ΩJ , either
Var[fz] = O(ε) or Var[fz] = Ω(1).

The following lemma finally concludes that variance of fz is small, for every
z ∈ ΩJ . The key ingredient used here is our variant of the generalized invariance
principle (Lemma 15) that we have proved earlier. This is used to first show that
the difference in the (appropriately-defined) probabilities that the functions g
and Pg take values in the set (u−γ, u] (for any u) is small, where g = fz/Var[fz].
Since the variable obtained by substituting a Gaussian distribution to Pg is
continuous, this probability goes to 0 as we take the limit γ going to 0.

Lemma 18. Assuming the setting of Lemma 16, for every z ∈ ΩJ , we have
Var[fz] = O(ε).

Lemma 19. Assuming the setting of Lemma 16, there is a function g ∈
L2(Ωn,π⊗n), depending only on the co-ordinates in J, such that ‖f−g‖2 = O(ε).

436 K. Bhushan et al.

We will now finish the proof of the generalized junta theorem.

Proof of Theorem 2: Lemma 19 gives a function g, depending on O(1) co-
ordinates, such that ‖f −g‖2 = O(ε). Let h(x) be obtained by rounding g(x) to
the closest element of T. For every x we have |h(x) − g(x)| ≤ |f(x) − g(x)| and
so |h(x) − f(x)| ≤ |h(x) − g(x)| + |g(x) − f(x)| ≤ 2|f(x) − g(x)|. Consequently,
‖h − f‖2 ≤ 4‖g − f‖2 = O(ε).

Since f and h are both T-valued, for all x either f(x) = h(x) or |h(x) −
f(x)| = Ω(1). Consequently, Ex∼π⊗n [(h − f)2] = Ω(Pr[h �= f]), and so Pr[h �=
f] = O(‖h − f‖2) = O(ε).

Finally, suppose that h does not have degree d. Then ̂hα �= 0 for some
|α| > d. Since h depends on M = O(1) coordinates, ̂hα = E[h ·γα] is a non-zero
value which is the average of mM elements, and consequently (̂hα)2 = Ω(1),
implying that ‖h>d‖2 = Ω(1). On the other hand,

‖h>d‖2 ≤ 2‖f>d‖2+2‖h>d−f>d‖2 = 2ε+2‖(h−f)>d‖2 ≤ 2ε+‖h−f‖2 = O(ε).

This shows that ε = Ω(1). In such a setting, we can just ignore all the above
analysis and pick some constant function h as the approximation. This function
has degree 0, it depends on no co-ordinates, while the probability that it differs
from f is still less than 1, and hence O(ε). ��

References

1. Agarwal, P., et al.: Secure non-interactive reduction and spectral analysis of cor-
relations. In: Dunkelman, O., Dziembowski, S. (eds) Advances in Cryptology
EUROCRYPT 2022. Lecture Notes in Computer Science, vol. 13277, pp. 797–827.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07082-2_28

2. Amini Khorasgani, H., Maji, H.K., Nguyen, H.H.: Secure non-interactive simula-
tion: feasibility and rate. In: Dunkelman, O., Dziembowski, S. (eds) Advances in
Cryptology - EUROCRYPT 2022. EUROCRYPT 2022. Lecture Notes in Com-
puter Science, vol. 13277, pp 767–796. Springer, Cham (2022). https://doi.org/10.
1007/978-3-031-07082-2_27

3. Anantharam, V., Gohari, A., Kamath, S., Nair, C.: On maximal correlation, hyper-
contractivity, and the data processing inequality studied by Erkip and cover. CoRR,
abs/1304.6133 (2013)

4. Beimel, A., Ishai, Y., Kumaresan, R., Kushilevitz, E.: On the cryptographic com-
plexity of the worst functions. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
317–342. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-
8_14

5. Beimel, A., Malkin, T.: A quantitative approach to reductions in secure compu-
tation. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 238–257. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1_14

6. Bhushan, K., Misra, A.K., Narayanan, V., Prabhakaran, M.: Secure non-interactive
reducibility is decidable. Cryptol. ePrint Arch. (2022)

7. De, A., Mossel, E., Neeman, J.: Non interactive simulation of correlated distri-
butions is decidable. In: Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2018, USA, pp. 2728–2746. Society for
Industrial and Applied Mathematics (2018)

https://doi.org/10.1007/978-3-031-07082-2_28
https://doi.org/10.1007/978-3-031-07082-2_27
https://doi.org/10.1007/978-3-031-07082-2_27
https://doi.org/10.1007/978-3-642-54242-8_14
https://doi.org/10.1007/978-3-642-54242-8_14
https://doi.org/10.1007/978-3-540-24638-1_14

Secure Non-interactive Reducibility is Decidable 437

8. Feige, U., Kilian, J., Naor, M.: A minimal model for secure computation (extended
abstract). In: STOC, pp. 554–563 (1994)

9. Filmus, Y.: A simple proof of the Kindler-Safra theorem. https://yuvalfilmus.cs.
technion.ac.il/Manuscripts/KindlerSafra.pdf (2022)

10. Gács, P., Körner, J.: Common information is far less than mutual information.
Prob. Control Inf. Theory 2(2), 149–162 (1973)

11. Ghazi, B., Kamath, P., Sudan, M.: Decidability of non-interactive simulation of
joint distributions. In: FOCS, pp. 545–554. IEEE (2016)

12. Goldreich, O.: Foundations of Cryptography: Basic Applications. Cambridge Uni-
versity Press, Cambridge (2004)

13. Micali, S., Goldreich, O., Wigderson, A.: How to play any mental game. In: STOC,
pp. 218–229 (1987). See [12, Chap. 7] for more details

14. Goldrcich, O., Vainish, R.: How to solve any protocol problem - an efficiency
improvement (extended abstract). In: Pomerance, C. (ed.) CRYPTO 1987. LNCS,
vol. 293, pp. 73–86. Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-
48184-2_6

15. Goyal, S., Narayanan, V., Prabhakaran, M.: Oblivious-transfer complexity of noisy
coin-toss via secure zero communication reductions. In: these proceedings (2022)

16. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
– efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_32

17. Kamath, S., Anantharam, V.: On non-interactive simulation of joint distributions.
IEEE Trans. Inf. Theory 62(6), 3419–3435 (2016)

18. Khorasgani, H.A., Maji, H.K., Nguyen, H.H.: Decidability of secure non-interactive
simulation of doubly symmetric binary source. Cryptology ePrint Archive, Report
2021/190 (2021). https://eprint.iacr.org/2021/190

19. Kilian, J.: Founding cryptography on oblivious transfer. In: STOC, pp. 20–31
(1988)

20. Kindler, G.: Property Testing, PCP, and juntas. PhD thesis, Tel Aviv University
(2002)

21. Kindler, G., Safra, S.: Noise-resistant Boolean functions are juntas. Manuscript
available from http://www.math.tau.ac.il/~safra/PapersAndTalks/nibfj.ps (2002)

22. Kraschewski, D., Maji, H.K., Prabhakaran, M., Sahai, A.: A full characterization
of completeness for two-party randomized function evaluation. In: Nguyen, P.Q.,
Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 659–676. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_36

23. Maji, H.K., Prabhakaran, M., Rosulek, M.: Complexity of multi-party computation
functionalities. In: Cryptology and Information Security Series, vol. 10, pp. 249–
283. IOS Press, Amsterdam (2013)

24. Narayanan, V., Prabhakaran, M., Prabhakaran, V.M.: Zero-communication reduc-
tions. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12552, pp. 274–304.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64381-2_10

25. O’Donnell, R.: Analysis of Boolean Functions. CoRR, abs/2105.10386 (2021)
26. Sudan, M., Tyagi, H., Watanabe, S.: Communication for generating correlation: a

unifying survey. IEEE Trans. Inf. Theory 66(1), 5–37 (2020)
27. Witsenhausen, H.S.: On sequences of pairs of dependent random variables. SIAM

J. Appl. Math. 28(1), 100–113 (1975)
28. Witsenhausen, H.: The zero-error side information problem and chromatic numbers

(corresp.). IEEE Trans. Inf. Theory 22(5), 592–593 (1976)
29. Wyner, A.D.: The common information of two dependent random variables. IEEE

Trans. Inf. Theory 21(2), 163–179 (1975)

https://yuvalfilmus.cs.technion.ac.il/Manuscripts/KindlerSafra.pdf
https://yuvalfilmus.cs.technion.ac.il/Manuscripts/KindlerSafra.pdf
https://doi.org/10.1007/3-540-48184-2_6
https://doi.org/10.1007/3-540-48184-2_6
https://doi.org/10.1007/978-3-540-85174-5_32
https://eprint.iacr.org/2021/190
http://www.math.tau.ac.il/~safra/PapersAndTalks/nibfj.ps
https://doi.org/10.1007/978-3-642-55220-5_36
https://doi.org/10.1007/978-3-030-64381-2_10

Multi-party Computation II

Round-Optimal Black-Box Secure
Computation from Two-Round Malicious

OT

Yuval Ishai1, Dakshita Khurana2, Amit Sahai3,
and Akshayaram Srinivasan4(B)

1 Technion, Haifa, Israel
yuvali@cs.technion.il

2 UIUC, Champaign, USA
dakshita@illinois.edu

3 UCLA, Los Angeles, USA
sahai@cs.ucla.edu

4 Tata Institute of Fundamental Research, Mumbai, India
akshayaram.srinivasan@tifr.res.in

Abstract. We give round-optimal black-box constructions of two-party
and multiparty protocols in the common random/reference string (CRS)
model, with security against malicious adversaries, based on any two-
round oblivious transfer (OT) protocol in the same model. Specifically,
we obtain two types of results.

1. Two-party protocol. We give a (two-round) two-sided NISC proto-
col that makes black-box use of two-round (malicious-secure) OT in
the CRS model. In contrast to the standard setting of non-interactive
secure computation (NISC), two-sided NISC allows communication
from both parties in each round and delivers the output to both
parties at the end of the protocol. Prior black-box constructions of
two-sided NISC relied on idealized setup assumptions such as OT
correlations, or were proven secure in the random oracle model.

2. Multiparty protocol. We give a three-round secure multiparty
computation protocol for an arbitrary number of parties making
black-box use of a two-round OT in the CRS model. The round
optimality of this construction follows from a black-box impossi-
bility proof of Applebaum et al. (ITCS 2020). Prior constructions
either required the use of random oracles, or were based on two-
round malicious-secure OT protocols that satisfied additional secu-
rity properties.

1 Introduction

The round complexity of secure multiparty computation (MPC) has been the
subject of intensive research. In this work, we continue this study, focusing on
the case of computationally secure MPC protocols without an honest majority.
We start with some relevant background.

c© The Author(s), under exclusive license to Springer Nature Switzerland 2022
E. Kiltz and V. Vaikuntanathan (Eds.): TCC 2022, LNCS 13748, pp. 441–469, 2022.
https://doi.org/10.1007/978-3-031-22365-5_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22365-5_16&domain=pdf
https://doi.org/10.1007/978-3-031-22365-5_16

442 Y. Ishai et al.

The Semi-honest Model. Consider first the simpler setting of semi-honest
adversaries, who may passively corrupt an arbitrary subset of the parties. In
the two-party case, Yao’s protocol [Yao86] is a two-round protocol that can
rely on any two-round oblivious transfer (OT) protocol. The latter primitive
is not only simple and minimal (as a special case of the general result), but
also one that pragmatically serves as a useful basis for protocol design. Indeed,
two-round OT can be implemented at a low amortized cost with interactive
preprocessing [Bea95,IKNP03] and even from scratch [BCG+19]. The question
of generalizing Yao’s two-round protocol to the multiparty setting remained open
for many years. This question was settled by Garg and Srinivasan [GS18] and
Benhamouda and Lin [BL18], who showed that two-round OT indeed suffices
also for two-round MPC with an arbitrary number of parties.

Black-Box vs. Non-black-box Constructions. A major distinction between
Yao’s two-party protocol and the recent MPC protocols from [GS18,BL18] is the
way in which the OT primitive is used. While the former makes a black-box1 use of
OT, in the sense that the construction uses the next-message function of the OT
protocol as an oracle, the latter MPC protocols cannot use the OT protocol as
an oracle and need to depend on its implementation. This qualitative difference
results in a big efficiency gap between the two types of protocols, raising a
question about the possibility of a black-box alternative for the multiparty case.
Unfortunately, Applebaum et al. [ABG+20] obtained a negative answer: for any
n ≥ 3, general two-round n-party MPC protocols cannot make a black-box use of
two-round OT. More recently, Patra and Srinivasan [PS21] closed the remaining
gap, presenting a black-box construction of three-round MPC protocols from two-
round OT (improving over a previous four-round protocol from [ACJ17]). This
gives us a full understanding of the round complexity of black-box semi-honest
MPC based on two-round OT.

From Semi-honest to Malicious. The case of security against malicious
adversaries is far less understood. Targeting the goal of matching the round
complexity of semi-honest protocols, one needs to rely on a setup assumption.
(See Sect. 1.2 for discussion of results in the plain model.) A minimal form of
setup, originating from non-interactive zero knowledge (NIZK) proofs [BFM88],
assumes the availability of a common random string or, more generally, a (struc-
tured) common reference string. Our results will apply to both kinds of setup, to
which we collectively refer as a CRS setup. Given a CRS setup, NIZK can serve
as a general round-preserving tool for enforcing an honest behavior by malicious
parties. However, general NIZK-based protocols are inherently non-black-box.
This raises the following natural question about the round complexity of black-
box MPC in the CRS model:

1 A bit more precisely, we refer here to the usual notion of a fully black-box reduc-
tion [IR90,RTV04], where not only the construction makes a black-box use of OT
but also the security reduction makes a black-box use of the adversary.

Round-Optimal Black-Box Secure Computation 443

Can we make a black-box use of two-round OT to obtain two-round (resp.,
three-round) two-party (resp., multiparty) MPC protocols with security
against malicious adversaries?

To make this question more precise, we need to specify which kind of two-
round OT we consider. Ideally, one would have liked to use semi-honest two-
round OT as a basis for round-optimal malicious-secure MPC. However, even if
we restrict our attention to realizing the OT functionality, it is not known how
to construct two-round malicious-secure OT in the CRS model from two-round
semi-honest OT, let alone in a black-box way.2 Indeed, while semi-honest two-
round OT protocols are quite easy to construct from essentially every concrete
assumption known to imply public-key encryption, obtaining similar protocols
with malicious security required ingenious new ideas [PVW08,DGH+20,BF22].
Given this state of affairs, we use malicious-secure two-round OT in the CRS
model as our basic building block.

Known Results. In the case of two-party “sender-receiver” functionalities,
which take inputs from both parties but only deliver the output to the desig-
nated receiver, the above question was answered in the affirmative in [IKO+11].
Such two-party protocols, known as non-interactive secure computation (NISC)
protocols, provide a black-box extension of Yao’s protocol that offers security
against malicious parties while still requiring only two rounds. However, for gen-
eral two-party functionalities that deliver outputs to both parties, no analogous
result is known. Note that such a “two-sided NISC” protocol cannot be obtained
by simply running two instances of standard (one-sided) NISC in parallel, since
there is nothing preventing a malicious party from using different inputs in the
two executions. The question is similarly open for three-round MPC with n ≥ 3
parties. Partial progress was made in [PS21], where black-box protocols were
constructed from a stronger variant of two-round OT that required some form
of adaptive security. However, this extra requirement not only makes the OT
primitive qualitatively stronger, but also excludes some existing protocols from
the literature (such as CDH- and LPN-based protocols from [DGH+20]). A dif-
ferent kind of progress was recently made in [IKSS21,IKSS22], where positive
answers were given using two distinct kinds of idealized setups: either the ran-
dom oracle model or a random OT correlations setup. To conclude, without
strong idealized setups and without strengthening the OT primitive, the above
question remained open in both the two-party and the multiparty case.

1.1 Our Contribution

We settle the above question by presenting the first round-optimal black-box
constructions of MPC protocols from two-round (malicious-secure) OT in the
CRS model. In the two-party case, we obtain the first extension of the black-box
NISC protocol from [IKO+11] to general functionalities that deliver outputs to
both parties.
2 The same is true even for the plain-model variant of OT with unbounded receiver

simulation [NP01,AIR01]. Here we only consider OT and MPC with efficient simu-
lation in the CRS model.

444 Y. Ishai et al.

Informal Theorem 1. There is a (two-round, malicious-secure) two-sided
NISC protocol in the CRS model that makes a black-box use of two-round
malicious-secure OT in the CRS model.

See Theorem 1 for a formal version. From a concrete efficiency perspective,
this compiler may be better than the recent random-oracle based compiler
from [IKSS22] in that it replaces a computational security parameter by a sta-
tistical one.3 We also obtain an arithmetic variant of this result that makes
a black-box use of the underlying field as well as a two-round malicious-secure
OLE protocol over the same field [CDI+19,BDM22]. (See Theorem 2 for a formal
statement.) This variant leverages another advantage of black-box constructions,
namely respecting the arithmetic nature of an underlying semi-honest protocol.

Informal Theorem 2. There is a three-round malicious-secure MPC protocol
in the CRS model that makes a black-box use of two-round malicious-secure OT
in the CRS model.

See Theorem 3 for a formal statement. The optimality of three rounds follows
from the proof of the black-box separation in [ABG+20]. While the main theorem
statement of [ABG+20] only refers to a separation between two-round MPC and
two-round semi-honest OT, the oracle used for the separation actually implies
malicious-secure two-round OT.

Open Questions. Our results leave several avenues for future work.

– Is two-round semi-honest OT sufficient? As discussed above, the non-triviality
of realizing malicious-secure two-round OT from concrete assumptions sug-
gests that even a non-black-box round-preserving compiler from semi-honest
to malicious OT would be difficult to obtain. Moreover, the existence of black-
box constructions in the random oracle model [MR19,IKSS22] makes a poten-
tial black-box separation more challenging.

– Does three-round OT suffice in the multiparty case? We conjecture that the
black-box separation from [ABG+20] can be extended to rule out this possi-
bility, and leave formalizing this to future work.

– Can similar results be obtained in the OT-hybrid model, namely using calls
to an ideal OT oracle rather an OT protocol? For standard (one-side) NISC,
this is achieved by the construction from [IKO+11]. In the multiparty case,
this question is open even in the semi-honest model, where evidence for the
difficulty of settling it in the negative is given in [ABG+20]. Our protocols,
similarly to the ones from [PS21], inherently make use of the messages gener-
ated by the OT protocol, and thus cannot replace the protocol by an oracle.

3 Jumping ahead, both compilers use a virtual honest-majority MPC protocol in which
the number of parties serves as a security parameter. The use of the Fiat-Shamir
paradigm in [IKSS22] requires the use of a computational security parameter instead
of a statistical one.

Round-Optimal Black-Box Secure Computation 445

1.2 Related Work

A long line of work [KOS03,KO04,Wee10,Goy11,ORS15,GMPP16,ACJ17,
BHP17,BGJ+18,HHPV18,CCG+20] studied the question of minimizing the
round complexity of MPC with security against any number of malicious par-
ties in the plain model. In this setting, one cannot hope to match the round
complexity of our protocols in the CRS model regardless of the underlying
assumptions. Indeed, protocols with black-box simulators must use at least four
rounds [KO04,GMPP16]. Even if one allows a non-black-box (polynomial-time)
simulation, two-round two-party protocols are unlikely to exist even for the spe-
cial case of zero knowledge functionalities [BLV03]. We note that there is an
interesting line of work [GGJS12,KMO14,GKP17,BGJ+17,BGI+17,ABG+21,
FJK21,AMR21] that aims to get around this lower bound by considering a
weaker notion of security, namely, security with super-polynomial time simula-
tion (SPS) security.

The quest for minimizing the round complexity of MPC in the plain model,
with a standard notion of simulation-based security, culminated in the work
of Choudhuri et al. [CCG+20], who obtained a four-round protocol making a
non-black-box use of four-round malicious-secure OT. The round complexity of
this protocol is optimal for protocols with black-box simulation. Additionally
requiring the construction to be black-box, as in this work, a five-round protocol
in the plain model making use of strong flavors of two-round semi-honest OT
was given in [IKSS21]. See [CCG+20,IKSS21] and references therein for a more
comprehensive survey of this line of work.

2 Technical Overview

In this section, we describe the key technical ideas behind our construction of
black-box two-sided NISC (in Sect. 2.1) and our black-box three-round secure
multiparty computation protocol (in Sect. 2.2).

2.1 Black-Box Two-Sided NISC

Challenges. The main challenge in constructing a two-sided NISC protocol
is to design a “black-box” mechanism wherein the adversarial party is some-
how forced to use the same input when it plays the role of the sender and the
receiver respectively. This is the reason why a natural attempt of constructing
a two-sided NISC by running two versions of one-sided NISC in opposite direc-
tions fails. The prior works of Ishai et al. [IKSS21,IKSS22] constructed such a
“black-box” mechanism by making use of the IPS compiler [IPS08]. However,
both these works resorted to idealized setups such as OT correlations, or made
use of random oracles in order to implement the watchlist mechanism, one of
the key building blocks in this compiler. As we explain later, we encounter sig-
nificant barriers while trying to remove these idealized setups from the above
works. To circumvent these barriers, we develop new techniques to implement

446 Y. Ishai et al.

this mechanism and prove the security of the protocols based only on a two-
message malicious OT. In the rest of the subsection, we elaborate on this in
much more detail. As our work also builds on the IPS compiler, we recall the
main ideas behind this compiler below.

IPS Compiler. At a high level, the IPS compiler constructs a malicious-secure
MPC in the dishonest majority setting via a combination of: (1) a malicious-
secure honest-majority client-server MPC (called the outer protocol)4, and (2)
a semi-honest secure protocol in the dishonest majority setting (called the inner
protocol). In more detail, each party in the compiled protocol plays the role
of a client in the outer protocol. The parties then invoke the inner protocol
to emulate the computation done by the servers. Since the outer protocol can
be information-theoretic, the computations done by the servers avoid any cryp-
tographic operations. This feature enables the compiled protocol to be black-
box. However, as such, this compilation results in an insecure protocol. This is
because an adversary can cheat in all the executions of the inner protocol and
break their security (as they are only secure against semi-honest adversaries).
Since the outer protocol is only guaranteed to be secure as long as a constant
(< 1/2) fraction of the servers are corrupted, by corrupting all the servers, the
adversary has effectively broken the security of the outer protocol and could
extract non-trivial information about the honest party inputs. To prevent such
an attack, the IPS compiler uses a novel cut-and-choose mechanism referred to
as the watchlist protocol. In this protocol, each party chooses a random subset of
the servers as part of its private “watchlist”. The watchlist protocol provides the
input and the randomness used by every other party for those server executions
that are being watched by this party. The input and randomness of the other
server executions are hidden. Every party then checks if the server executions
in its watchlist are emulated correctly and aborts if it detects any inconsistency.
This guarantees that if the adversary cheats in many server executions, then
all the honest parties will detect this and abort, preventing the adversary from
learning any useful information about the inputs of the honest parties. On the
other hand, if the adversary only cheats in a small number of server executions,
then we can rely on the security of the outer MPC protocol to show that the
adversary only learns the output of the functionality.

Prior Works. For two-sided NISC, recent black-box protocols from [IKSS21,
IKSS22] used the watchlist mechanism to catch a cheating adversary that is using
different inputs while playing the role of the sender and the receiver respectively.
Specifically, if the adversary is using inconsistent inputs in many server execu-
tions, then the honest party detects this via the watchlist mechanism and aborts
the execution. On the other hand, if the adversary is using inconsistent inputs
in a small number of executions, then the servers that are emulated by these
executions can be considered as corrupted in the outer protocol. Since the outer
protocol is secure as long as a constant fraction of the servers are corrupted, this

4 By an honest-majority client-server MPC, we mean a setting where a malicious
adversary can corrupt any subset of the clients and a constant fraction of the servers.

Round-Optimal Black-Box Secure Computation 447

prevents the adversary from breaking the privacy of the honest party’s inputs.
This was the main intuition behind both works. However, these works differed
in their choice of the outer protocol, the inner protocol, and the implementation
of the watchlist mechanism. We tabulate these choices in Table 1. A common
limitation of these two works is their reliance on idealized setups, such as OT
correlations [IKSS21] or a random oracle [IKSS22] to implement the watchlist
mechanism. We now explain the challenges in trying to remove the idealized
setups from these works.

Table 1. Choice of outer protocol, inner protocol, and idealized model for watchlist
implementation in prior works.

Citation Outer protocol Inner protocol Watchlist

implementation

[IKSS21] 2-round client-server MPC

with selective abort

Two-round semi-malicious

protocol with first-message

equivocality

1-out-of-2 OT

correlations model

[IKSS22] 2-round pairwise

verifiable MPC

Two-round semi-honest

protocol

Random Oracle Model

Need for Idealized Models. The key reason why the prior works needed to
resort to idealized models is due to a subtle technical difficulty in implementing
the IPS compiler. Specifically, the simulator in the IPS compiler needs to know
the set of executions that are watched by the corrupted party before it sends its
first-round message on behalf of the honest party. Note that in the real world, the
honest party’s input and randomness corresponding to the adversarial watched
executions pass the consistency check and hence, we need to make sure that
these checks pass even in the ideal world. Hence, the simulator needs to produce
a consistent input and randomness that explains the inner protocol messages
in all the executions that are watched by the corrupted party. This is further
complicated in the rushing adversarial model where the adversary expects to see
the first-round message from the honest party before it sends its own first-round
message. Hence, if the set of watched executions are known to the simulator
only after it sends the first-round message, then the simulator needs produce
randomness that consistently explains the “simulated” first-round inner protocol
message w.r.t. some input. In other words, the simulator needs to equivocate the
first-round message of the inner protocol. This requires stronger assumptions.
However, if we use idealized setups, then the simulator can learn the watched
executions of the corrupted party before it sends the first-round message. In
particular, this is done by allowing the simulator to implement the dealer while
setting up the OT correlations in [IKSS21], or program the output of the random
oracle in [IKSS22]. The above issue also precludes a natural attempt of trying to
implement the watchlist functionality using a two-round k-out-of-m OT protocol.
Indeed, the first-round message that encodes the set of watched executions is sent
by the adversary only after it receives the first-round message from the honest
party and hence, this approach too requires the first-round message of the inner
protocol to be equivocal.

448 Y. Ishai et al.

Our Solution. To overcome this difficulty, we need a watchlist protocol imple-
mentation where the simulator can bias the watched executions of the corrupted
parties whereas the corrupted parties cannot bias the watched executions of the
honest parties. These two conflicting features are obtained simultaneously via a
coin-tossing protocol. Specifically, the watched executions of each party is sam-
pled randomly where the randomness is contributed by both the parties and
not just by the receiver party. This ensures that the simulator can set the ran-
domness on behalf of the honest party in such a way that the corrupted party
receives a randomly sampled set of executions that was chosen prior to sending
the first-round message. At the same time, since the receiver party also pro-
vides a part of the randomness, this ensures that the corrupted party cannot
bias the set of watched executions of the honest party. This helps in overcoming
the above mentioned technical difficulty in implementing the IPS compiler. The
next question is can we construct such a watchlist protocol? Indeed, the work
of Ishai et al. [IKO+11] provides an instantiation that makes black-box use of a
two-round malicious-secure OT. However, such a watchlist protocol alone does
not solve all the issues and we elaborate more on this below.

Need for Watchlist Output at the End of the First Round. While the
above watchlist protocol ensures that the simulator has the power to bias the
watched executions of the corrupted parties, it leads to new incompatibility
issues with the prior techniques. Specifically, the prior works crucially relied
on the output of the watchlist protocol to be delivered to the honest parties
at the end of the first round. This is indeed possible if we rely on idealized
setups. However, in the above described approach, the honest party learns the
output of the watchlist protocol only after the corrupted party sends its second-
round message. Hence, it can only perform all the watchlist checks after it has
sent its final round message in the protocol (since we are dealing with rushing
adversaries). This leads to new problems and let us explain them in a bit more
detail.

Firstly, the work of Ishai et al. [IKSS21] considered a two-round semi-honest
inner protocol where the first-round message could be equivocated (see Table 1).
However, a malicious party can also equivocate its first-round message and
thereby, break the security of the inner protocol. This was not a problem in
their setting since the output of the watchlist protocol is made available to the
honest parties at the end of the first round (this is possible in the OT correlations
model). Hence, the honest party can detect if the first-round message is equivo-
cated in many inner protocol executions and abort if it is the case. However, in
our watchlist protocol, the output is delivered to the honest party only at the
end of the second round. By this time, the honest party would have sent the
second-round message in the inner protocol and the adversary could potentially
recover the entire input of the uncorrupted party.

In a more recent work, Ishai et al. [IKSS22] removed the need for an inner
protocol with first message equivocality by considering a “stronger” outer proto-
col. This outer protocol which they termed as pairwise verifiable MPC protocol is
a two-round client-server MPC protocol that additionally satisfies a special error

Round-Optimal Black-Box Secure Computation 449

correction property. Specifically, for any choice of second-round message from the
corrupted servers, the error correction property requires that the output of the
honest client remains the same. Unfortunately, obtaining such a protocol against
standard malicious adversaries is hard due to the known barriers [GIKR02]. To
overcome this, Ishai et al. considered security against weaker adversaries called
pairwise verifiable adversaries. Roughly speaking, pairwise verifiable adversar-
ial clients are restricted to send a first-round message such that the messages
received by all the honest servers pass some consistency check. However, this
restriction of only considering pairwise verifiable adversaries also seems incom-
patible with our watchlist protocol. Specifically, before we send the second-round
message, we need to make sure that the first-round message in the outer protocol
pass the pairwise consistency check and we must proceed only if these checks
pass. In the work of Ishai et al. [IKSS22], this was made possible by making
use of a random oracle. But in our setting, since the output of the watchlist
functionality is only delivered after the honest party sends the second-round
message, we cannot perform this check before sending the final message. Thus,
an adversarial party can use first-round messages in the outer protocol that do
not pass the pairwise consistency check and completely break the privacy of the
honest party’s inputs.

Our Approach. We note that the above mentioned incompatibility issue could
be alleviated if we use a two-round malicious secure oblivious transfer protocol
that has equivocal first-round message [GS18,PS21]. Specifically, such an OT
protocol forces a corrupt receiver to send a valid first-round message but enables
the simulator to equivocate the first-round message to both bits 0 and 1. Indeed,
a malicious party is forced to send a valid first-round message whereas the sim-
ulator could equivocate the first-round message as in [IKSS21]. However, we do
not know of a black-box construction of this primitive from any two-round mali-
cious secure OT protocol.5 Moreover, recent protocols from the literature (such
as ones based on CDH and LPN [DGH+20]) do not satisfy this property. Our
goal here is to overcome this issue by only making black-box use of a two-round
malicious secure OT.

Instead of relying on a pairwise verifiable MPC protocol, our solution to
this problem is to rely on a standard outer protocol satisfying security with
abort, say for instance, the one given by Ishai, Kushilevitz, and Paskin [IKP10,
Pas12]. To make this outer protocol compatible with the IPS compiler, Ishai
et al. [IKSS21] observed that the inner protocol needed to additionally satisfy
first-round equivocality (see Table 1). The key insight behind our solution is that
first-round equivocality of the inner protocol is actually on overkill and we could
instead use a far weaker security property. We now explain this in detail.

Recall that the watchlist mechanism is guaranteed to catch a malicious party
that cheats in a large number of inner protocol executions. However, a malicious
party can cheat in a small number of executions such that it goes undetected
by the watchlist of the honest party with some non-negligible probability. In
this case, we should be able to rely on the security of the outer protocol as the
5 We note that [GS18] gave a non-black-box construction.

450 Y. Ishai et al.

number of malicious server corruptions is “small”. However, in order to invoke
this security property, we need to compute the inner protocol output received
by the honest party in each of the executions where the adversary has cheated.
This corresponds to the second-round message sent by the corrupted servers
to the honest client and we need to provide this information to the simulator
of the outer protocol. [IKSS21] argued that if the inner protocol satisfies first-
round equivocality then it is possible for the simulator to compute this output.
In particular, the simulator can equivocate the first-round message as per the
honest party’s input and then use the corresponding randomness to compute
the output of this inner protocol execution. In this work, we observe that this
property can be weakened, specifically, to what we call as output equivocality.
This property requires that if the adversary cheated in generating the second-
round message, then the simulator (that is additionally provided the input of the
honest party) must produce an output that is computationally indistinguishable
from the honest party’s output in the real execution. Specifically, instead of
requiring the entire first-round message to be equivocable, we only need the
output computation to be equivocable. This property is implied by first message
equivocality and could be potentially be realized under weaker assumptions.
Further, since the output of our watchlist protocol is only delivered after we
send the second-round message, we need our inner protocol to also be secure
against malicious receivers. Hence, it is sufficient to construct an inner protocol
that is secure against malicious receivers and also satisfies output equivocality.

Somewhat surprisingly, both of these properties can be obtained simultane-
ously if we simply replace the two-round semi-honest OT in the Yao’s protocol
with a two-round malicious secure OT. Specifically, the security against mali-
cious receivers follows from the folklore observation about Yao’s protocol when
instantiated with a two-round malicious secure OT protocol. The output equiv-
ocality property is argued using the security of the oblivious transfer against
malicious senders. In particular, the simulator could use the extractor for the
OT protocol and extract the set of both labels for each input wire of the gar-
bled circuit that was generated. Now, given the honest party’s input, the output
equivocal simulator can just evaluate the received garbled circuit on the chosen
set of labels according to the honest receiver’s input and output the result of the
evaluation. From the sender security of the OT protocol, we infer that the output
of this evaluation is computationally indistinguishable from the honest evalua-
tion. This allows us to construct an inner protocol with the desired properties
and thereby instantiate the IPS compiler.

The full description of the inner protocol along with the security properties
it needs to satisfy is given in Sect. 3. The construction and the security analysis
of our two-sided black-box NISC protocol can be found in Sect. 4.

Further Remarks. We observe that there is no need to rely on a special inner
protocol that was constructed based on Yao’s garbled circuits. Instead, we can
start with any one-sided OT-based NISC protocol. This follows from the fact that
security against malicious receivers comes for free, and the output equivocality
follows from security of the one-sided NISC against malicious senders. Thus, our

Round-Optimal Black-Box Secure Computation 451

work can be viewed as a black-box construction of two-sided NISC from any one-
sided NISC. This allows us to directly transfer any efficiency improvements in the
one-sided NISC setting to the more challenging two-sided NISC. Furthermore,
this allows us to upgrade known one-sided NISC protocols in the arithmetic
setting [CDI+19,DIO21] (making a black-box use of the underlying field) to
similar two-sided NISC protocols.

2.2 Black-Box Three-Round MPC

To construct a black-box three-round MPC protocol, we again rely on the IPS
compiler. Specifically, we start with an outer protocol that supports an arbitrary
number of clients and satisfying security with selective abort (such a protocol
was constructed in [IKP10,Pas12]). As in the black-box two-sided NISC case, we
implement the watchlist protocol via a coin-tossing based approach. This enables
the simulator to bias the watched executions of the corrupted parties before it
sends its first-round message on behalf of the honest parties. The only difference
from the two-sided NISC case is that we need to rely on an inner protocol that
runs in three rounds (due to the black-box impossiblity of [ABG+20]). To make
the inner protocol compatible with the above outer protocol, we need it to satisfy
the following two additional properties:

– Robustness: Even if the adversary cheats in generating the messages in the
first two rounds of the protocol, it cannot break the privacy of the honest
party inputs. This is needed since the output of the watchlist is delivered
only at the end of the second round and any cheating in the first two rounds
should not enable the corrupted party to break the privacy of the honest
parties.

– Last Round Equivocality: If the adversary has cheated in the first two
rounds, then the simulator when provided with the inputs of all the honest
parties must produce a last round message which is computationally indistin-
guishable from the real execution. This is needed to generate the last round
message in the inner protocol executions where the adversary has cheated in
the first two rounds.

We note that robustness and last round equivocality was also needed in the
inner protocol used in [IKSS21]. However, their inner protocols could either run
in two rounds (in the presence of OT correlations), or four rounds in the plain
model. Here, our focus is on constructing such an inner protocol in three rounds
in the CRS model.

Constructing Multiparty Inner Protocol. Our first observation is that to
construct such an inner protocol for computing arbitrary functionalities, it is
sufficient to construct an inner protocol that computes the 3MULTPlus func-
tionality. 3MULTPlus is a special multiparty functionality that takes (x1, y1)
from the first party, (x2, y2) from the second party, and (x3, y3) from the third
party where xi, yi are bits and delivers x1 · x2 · x3 + y1 + y2 + y3 to all the
parties. Indeed, the standard bootstrapping results from 3MULTPlus to general

452 Y. Ishai et al.

functions [BGI+18,GIS18,ABG+20] for the case of semi-honest adversaries also
extends to the above security definition. Thus, it is sufficient to construct an
inner protocol for 3MULTPlus functionality that satisfies both robustness and
last round equivocality.

The starting point of our construction of such a protocol is the work of Patra
and Srinivasan [PS21] who gave a construction in the semi-honest setting based
on any two-round semi-honest OT protocol. The main result that we prove is
that if we replace the two-round semi-honest OT protocol in their construc-
tion with a two-round malicious-secure version, then the resultant protocol is
robust. However, proving this is not straightforward and requires a careful secu-
rity analysis (this appears in Proposition 2). To prove last round equivocality, we
observe that the last round message sent by each party in the protocol of [PS21]
is obtained by decrypting some sender OT message. As in the case of two-sided
NISC setting, we show that this message can be equivocated if the two-round
OT protocol is secure against malicious senders. This allows us to construct a
three-round inner protocol that satisfies robustness and equivocality by making
black-box use of a two-round malicious-secure OT.

The formal description of the security properties along with the construction
and the proof of security of the multiparty inner protocol appears in Sect. 5.

Putting Things Together. As mentioned before, our three-round black-box
multiparty protocol is obtained by combining the two-round coin-tossing based
watchlist protocol along with a three-round inner protocol satisfying both robust-
ness and last round equivocality. At the end of the second round, the output of
the watchlist protocol is delivered to all the parties. If the adversary cheats
in many inner protocol executions, then this is detected by the honest parties
who abort before sending the final round message. In this case, we rely on the
robustness property of the inner protocol to show that the adversary learns no
information about the private inputs of the honest parties. On the other hand, if
the adversary only cheats in a small number of executions, then we corrupt the
corresponding servers in the outer protocol. We use the last round equivocality to
generate the final message in the inner protocol for these executions. We finally
rely on the security of the outer protocol to argue that only the output of the
functionality is leaked to the adversary since the number of server corruptions
is “small”.

The construction of the three-round black-box MPC protocol and the proof
of security can be found in Sect. 6.

2.3 Another Perspective

A different way to view our techniques is as follows. Let us start with the simplest,
round-optimal semi-honest protocols for 2PC and MPC that make black-box
use of two-round semi-honest OT. For the case of two parties, we consider Yao’s
protocol and for the case of multiple parties, we consider the protocol from the
work of Patra and Srinivasan [PS21]. In both these protocols, we replace the
underlying semi-honest OT protocol with a malicious secure OT protocol and

Round-Optimal Black-Box Secure Computation 453

ask what security properties are satisfied by this modification. In this work,
we show that the properties satisfied correspond to that of the inner protocols.
Later, we use the IPS compiler to bootstrap this “weaker” security notion to the
standard malicious security. However, this runs into several technical hurdles (as
explained earlier) and we develop new techniques to overcome them.

Organization. We assume basic familiarity with the definitions of the standard
building blocks used in our construction. We provide the formal definitions in the
full version. We give the description of the two-party inner protocol in Sect. 3. In
Sect. 4, we give our construction of black-box two-sided NISC protocol. We give
the construction of our multiparty inner protocol in Sect. 5. In Sect. 6, we give
our construction of black-box multiparty protocol that runs in three rounds.

3 Two-Party Inner Protocol

In this section, we give a definition of a two-party protocol that satisfies some
special properties (known as two-party inner protocol). We give a construction of
such a two-party inner protocol making black-box use of a two-round malicious-
secure OT. In the next section, we use this protocol to construct a two-sided
NISC.

3.1 Definition

A two-round two-party protocol for computing a two-party function f is given by
a tuple of PPT algorithms (Setup,Π1,Π2, outΠ). Setup algorithm takes in the
security parameter 1λ (encoded in unary) and outputs the common reference
string crs. Π1 is run by the receiver and takes in crs and the receiver input x0

and outputs π1. Π2 is run by the sender and takes in crs, π1, the sender input
x1 and outputs π2. outΠ takes in crs, π2, x0 and the random tape of Π1 and
outputs f(x0, x1).

Definition 1. A two-party protocol (Setup,Π1,Π2, outΠ) for computing a func-
tionality f that delivers the output to the receiver is said to be a two-party inner
protocol if there exists a (stateful) PPT simulator-extractor pair (SimΠ ,ExtΠ)
such that the following properties hold:

– Security Against Malicious Receivers: For any (stateful) non-uniform
PPT adversary A corrupting the receiver and for any sender input x1, we
have:

RealR(1λ,A, x1) ≈c IdealR(1λ,A, x1, (SimΠ ,ExtΠ))

where RealR and IdealR are described in Fig. 1.
– Correctness of Extraction. For any non-uniform PPT adversary A cor-

rupting the receiver, we have

Pr
[
ExtΠ(R, td,Π1(crs, x0; r0)) �= x0

∣∣

(crs, td) ← SimΠ(1λ, R), (x0, r0) ← A(crs)
]

≤ negl(λ)

454 Y. Ishai et al.

– Robust Security Against Semi-Malicious Senders (a.k.a., output
equivocality): Informally, this property requires that if a malicious sender
sends a second round message that is not explainable (by providing a valid
(input, randomness) pair), then we require an equivocal simulator that when
given the private input of the honest receiver computes an output such that
the joint distribution of the view of A and the output of the honest receiver
in the real execution is indistinguishable to the ideal execution using this spe-
cial simulator. Formally, for any (stateful) non-uniform PPT adversary A
corrupting the sender and for any receiver input x0, we have:

RealS(1λ,A, x1) ≈c IdealS(1λ,A, x0, (SimΠ ,ExtΠ))

where RealS and IdealS are described in Fig. 2.

RealR(1λ, A, x1)

1. crs ← Setup(1λ).
2. π1 ← A(crs).
3. π2 ← Π2(crs, π1, x1).
4. Output A(π2).

IdealR(1λ, A, x1, (SimΠ ,ExtΠ))

1. (crs, td) ← SimΠ(1λ, R).
2. π1 ← A(crs).
3. x0 ← ExtΠ(R, td, π1).
4. π2 ← Sim(crs, x0, f(x0, x1)).
5. Output A(π2).

Fig. 1. Descriptions of RealR and IdealR experiments.

Remark 1. We note that correctness of extraction is implicitly implied by secu-
rity against malicious receivers. However, for the ease of usage in the next section,
we state it as a separate property.

We defer the proof of the following proposition to the full version.

RealS(1λ, A, x0)

1. crs ← Setup(1λ).
2. π1 ← Π1(crs, x0; r0) where r0 ←

{0, 1}λ.
3. (π2, (x1, r1)) ← A(crs, π1).
4. Output

(crs, π1, outΠ(crs, π2, (x0, r0))).

IdealS(1λ, A, x0, (SimΠ ,ExtΠ))

1. (crs, td, π1) ← SimΠ(1λ, S).
2. (π2, (x1, r1)) ← A(crs, π1).
3. st ← ExtΠ(S, td, π2).
4. If π2 = Π2(crs, π1, x1; r1) then:

(a) Output (crs, π1, f(x0, x1)).
5. If π2 �= Π2(crs, π1, x1; r1) then:

(a) Output
(crs, π1, SimΠ(st, π2, x0)).

Fig. 2. Descriptions of RealS and IdealS experiments.

Round-Optimal Black-Box Secure Computation 455

Proposition 1. Assume black-box access to a two-round oblivious transfer pro-
tocol secure against malicious adversaries in the common random/reference
string model. There exists a two-party inner protocol for computing any two-party
functionality f satisfying Definition 1. The computational and communication
complexity of the protocol is poly(λ, |f |) where |f | denotes the circuit-size of f .

3.2 Construction from One-Sided NISC

We note that any one-sided NISC protocol gives rise to a two-party protocol
satisfying Definition 1. This is because security against malicious receivers is
implied by the security of one-sided NISC against malicious receivers. Robust
security against semi-malicious senders is implied by security of one-sided NISC
against malicious senders. Thus, we get the following corollary.

Corollary 1. Let f be an arbitrary two-party functionality. Assume black-box
access to an one-sided NISC protocol that securely computes f . Then, there exists
a two-party inner protocol for computing f satisfying Definition 1. The compu-
tational and communication complexity of the protocol are the same as that of
the NISC protocol.

4 Two-Sided Black-Box NISC

In this section, we give our construction of black-box two-sided NISC protocol.
We prove the following theorems.

Theorem 1 (Black-box two-sided NISC). Assume black-box access to a
two-round oblivious transfer protocol secure against malicious adversaries in the
common random/reference string model. Then, there exists a two-round protocol
for securely computing any two-party functionality f against malicious adver-
saries in the common random/reference string model where both parties get the
output of f at the end of the protocol. The computational and communication
complexity of the protocol is poly(λ, |f |) where |f | denotes the circuit-size of f .

Theorem 2 (Black-box arithmetic two-sided NISC). Let F be a finite
field and let f be a two-party functionality that is computable by an arithmetic
branching program over F. Assume black-box access to a two-round oblivious
linear evaluation (OLE) protocol over F and an oblivious transfer protocol that
is secure against malicious adversaries in the common random/reference string
model. Then, there exists a two-round protocol for securely computing f against
malicious adversaries in the common random/reference string model where both
parties get the output of f at the end of the protocol. The computational and
communication complexity of the protocol is poly(λ, |f |) where |f | denotes the
size of the branching program computing f and the protocol makes black-box use
of F.

456 Y. Ishai et al.

4.1 Building Blocks

The construction makes use of the following building blocks:

1. A two-round, two client, m server outer MPC protocol Ψ = (Share,Eval,Dec)
for computing the function f that satisfies security with abort against t server
corruptions. We set t = 2λ and m = 3t + 1. Based on [IKP10,Pas12], we give
a construction of such a protocol making black-box use of a PRG in the full
version where Eval does not involve cryptographic operations.

2. A two-round, two-party inner protocol (see Definition 1) (SetupΠj
,Πj,1,Πj,2,

outΠj
) that delivers output to the receiver and computes Eval(j, ·) for each j ∈

[m]. From Proposition 1 and Corollary 1, such a protocol can be constructed
making black-box use of a two-round malicious secure OT protocol or an
one-sided NISC protocol.

3. A two-round malicious-secure two-party computation protocol (CRSGen, Φ1,
Φ2, outΦ) for computing the Selλ,m functionality. The Selλ,m functionality
takes in a string ρ1 from the receiver, (ρ2, (s1, . . . , sm)) from the sender. It
computes ρ1 ⊕ ρ2 and uses it as random tape to select a random multiset
(with replacement) K of [m] of size λ. It then outputs (K, {si}i∈K) to the
receiver. [IKO+11] gave a two-round black-box protocol for computing Selλ,m

based on two-round malicious-secure OT protocol.

The key lemma that we will prove in this section is the following.

Lemma 1. Assume black-box access to a PRG and the protocols {Πj}j∈[m] and
Φ as described above. Then, there exists a two-round protocol for securely com-
puting any two-party functionality f against malicious adversaries where both
parties get the output of f at the end of the protocol.

Theorem 1 is obtained by instantiating {Πj}j∈[m] from Proposition 1. To
obtain Theorem 2, we observe that in the protocols of [IKP10,Pas12], if f is
computable by an arithmetic branching program then Eval(j, ·) is computable by
a log-depth arithmetic circuit and does not involve any cryptographic operations.
Thus, we can instantiate Πj for each j ∈ [m] using the one-sided NISC protocol
for computing log-depth arithmetic circuits based on two-round malicious secure
OLE [IKO+11,CDI+19,DIO21] using Corollary 1.

We give the construction of the protocol in Sect. 4.2 and the proof of security
in Sect. 4.3

4.2 Construction

Let P0 and P1 be the two parties with private inputs x0 and x1 respectively. The
parties additionally have as a common input the description of the function f .
We give the formal description of the construction in Fig. 3.

Round-Optimal Black-Box Secure Computation 457

4.3 Proof of Security

We give the description of the simulator below and show that the real and
the ideal executions are computationally indistinguishable. Since the protocol is
symmetric w.r.t. both P0 and P1, we assume without loss of generality that P1

is corrupted by A.

Description of Sim.

– CRSGen(1λ): Sim does the following:
1. It chooses (crs0, td0, φ0

1) ← SimΦ(1λ, S) and (crs1, td1) ← SimΦ(1λ, R).
2. It samples a uniform multiset K1 of [m] of size λ.
3. For each j ∈ K1, it samples crs0j , crs

1
j ← SetupΠj

(1λ).
4. For each j �∈ K1, it samples (crs0j , td

0
j , π

0
j,1) ← SimΠj

(1λ, S) and
(crs1j , td

1
j) ← SimΠj

(1λ, R).
5. It outputs ({crs0j , crs1j}j∈[m], crs

0, crs1) as the CRS of the overall protocol.
– Round-1: To generate the first round message, Sim does the following:

1. It runs the simulator SimΨ for the outer protocol by corrupting the client
P1 and the set of servers given by K1. SimΨ provides with {x0

j}j∈K1 .
2. For each j ∈ K1, it computes πj,1 ← Πj,1(crs0j , x

0
j ; r

0
j) for uniformly

chosen r0j .
3. It sends φ0

1 and {π0
j,1}j∈[m] to A.

4. It receives the first round message from A. For each j �∈ K1, it computes
x1

j ← Extπj
(td1j , π

1
j,1). It computes ρ11 ← ExtΦ(R,φ1

1, td
1).

– Round-2: To generate the second round message, Sim does the following:
1. It sends {x1

j}j �∈K1 to SimΨ as the first round message from the corrupted
client to the honest servers. SimΨ queries the ideal functionality on input
x1 and Sim forwards this query to its own ideal functionality. It for-
wards the response from the ideal functionality back to SimΨ . SimΨ sends
{z1j }j �∈K1 as the second round message from the honest servers to the
corrupted client.

2. For each j �∈ K1, it generates π1
j,2 ← SimΠj

(R, crs1j , z
1
j , x1

j). For each
j ∈ K1, it generates π1

j,2 as Πj,1(crs1j , π
1
j,1, x

0
j ; t

1
j) for uniformly chosen t1j .

3. It generates φ1
2 ← SimΦ(R, {K1, {x0

j , r
0
j , t1j}j∈K1}).

4. It sends φ1
2 and {π1

j,2}j∈[m] to A.
5. It receives the second round message from A. For each j �∈ K1, it com-

putes stj ← ExtΠj
(S, td0j , π

0
j,2).

6. It also computes (ρ02, s
1
1, . . . , s

1
m) ← ExtΦ(S, φ0

2, td
0).

– Output Computation: To compute the output, Sim does the following:
1. It chooses a uniform multiset K0 of [m] size λ and uses it to perform the

same checks as done by honest P0 using {s1j}j∈K0 . If any of the checks
fail, it instructs the ideal functionality to deliver ⊥ to P0.

2. Otherwise, it initializes an empty set C1.
3. For each j �∈ K1,

(a) It parses s1j as (x1
j , r

1
j , t0j).

458 Y. Ishai et al.

– CRS Generation: To generate the CRS,
1. Sample crs0j , crs

1
j ← SetupΠj

(1λ) for each j ∈ [m].
2. Sample crs0, crs1 ← CRSGen(1λ).
3. Output ({crs0j , crs1j}j∈[m], crs

0, crs1).
– Round-1: In the first round, each party Pi for i ∈ {0, 1} does the following:

1. It computes (xi
1, . . . , x

i
m) ← Share(1λ, i, xi; ri) for uniformly chosen ri ←

{0, 1}λ.
2. For each j ∈ [m], it samples a uniform random string ri

j and computes
πi

j,1 ← Πj,1(crsij , i, x
i
j ; r

i
j).

3. It samples a uniform random string ρi
1 ← {0, 1}∗ and computes φi

1 ←
Φ1(crsi, i, ρi

1).
4. It sends {πi

j,1}j∈[m] and φi
1 to the other party.

– Round-2: In the second round, each party Pi for i ∈ {0, 1} does the following:
1. For each j ∈ [m], it samples a uniform random string t1−i

j and computes
π1−i

j,2 ← Πj,2(crs1−i
j , i, π1−i

j,1 , xi
j ; t

1−i
j).

2. For each j ∈ [m], it sets si
j = (xi

j , r
i
j , t

1−i
j).

3. It samples a uniform random string ρ1−i
2 ← {0, 1}∗ and computes φ1−i

2 ←
Φ2(crs1−i, i, φ1−i

1 , (ρ1−i
2 , (si

1, . . . , s
i
m))).

4. It sends {π1−i
j,2 }j∈[m] and φ1−i

2 to the other party.
– Output Computation: To compute the output Pi for i ∈ {0, 1} does the

following:
1. It computes (Ki, {s1−i

j }j∈Ki) using outΦ on crsi, φi
2 and the random tape

used to generate φi
1.

2. For each j ∈ Ki, it:
(a) Parses s1−i

j as (x1−i
j , r1−i

j , ti
j).

(b) Checks if (x1−i
j , r1−i

j) is a consistent input, randomness pair that ex-
plains the message π1−i

j,1 and if (x1−i
j , ti

j) is a consistent input, ran-
domness pair that explains the message πi

j,2.
3. If any of the above checks fail, then Pi aborts and outputs ⊥.
4. Else, for each j ∈ [m], it computes zi

j := outΠj (crs
i
j , π

i
j,2, (x

i
j , r

i
j)).

5. It outputs Dec(zi
1, . . . , z

i
m, ri).

Fig. 3. Black-Box Two-Sided NISC Protocol

(b) If either (x1
j , r

1
j) is not a consistent input, randomness pair that

explains the message π1
j,1 or if (x1

j , t
0
j) is not a consistent input, ran-

domness pair that explains the message π1
j,2, then we add j to C1.

4. If |C1| ≥ λ, then it instructs the ideal functionality to output ⊥ to
P1. Otherwise, it instructs SimΨ to adaptively corrupt the set of servers
indexed by C1 and obtains {x0

j}j∈C1 .
5. For each j ∈ C1, it computes z0j as SimΠj

(S, stj , π
0
j,2, x

0
j). For each j ∈ K1,

it computes z0j as outΠj
(crs0j , π

0
j,2, (x

0
j , r

0
j)).

6. It sends {z0j }j∈C1∪K1 to SimΨ as the second round message from the
corrupted servers to the honest client. If SimΨ instructs the P0 to abort,

Round-Optimal Black-Box Secure Computation 459

then Sim instructs the ideal functionality to deliver ⊥ to P0. Otherwise,
it instructs it to deliver the output of f to P0.

Proof of Indistinguishability.

– Hyb1 : This corresponds to the output of the real experiment which comprises
of the view of A corrupting P1 and the output of honest P0.

– Hyb2 : In this hybrid, we make the following changes:
1. Sample (crs0, td0, φ0

1) ← SimΦ(1λ, S).
2. Obtain φ0

2 from A.
3. Compute (ρ02, (s

1
1, . . . , s

1
m)) ← ExtΦ(S, φ0

2, td
0).

4. Sample ρ01 uniformly from {0, 1}∗ and sample a multiset K0 of size λ from
[m] using ρ01 ⊕ ρ02 as the random tape.

5. Use (K0, {s1j}j∈K0) to perform the same checks described in output com-
putation.

In Lemma 2, we show from the simulation security of Φ against corrupted
senders that Hyb1 ≈c Hyb2.

– Hyb3 : In this hybrid, we make the following changes:
1. Sample (crs1, td1) ← SimΦ(1λ, R).
2. Obtain φ1

1 from A.
3. Compute ρ11 ← ExtΦ(R,φ1

1, td
1).

4. Sample a multiset K1 of size λ from [m] using a random tape ρ1.
5. Generate φ1

2 ← SimΦ(R, {K1, {s0j}j∈K1}).
6. Use φ1

2 to generate the final round message in the protocol.
In Lemma 3, we use the simulation security of Φ against corrupted receivers
to show that Hyb2 ≈c Hyb3.

– Hyb4 : In this hybrid, we make the following changes:
1. For each j ∈ [m], we parse s1j as (x1

j , r
1
j , t0j).

2. We initialize an empty set C1.
3. For each j �∈ K1,

(a) If either (x1
j , r

1
j) is not a consistent input, randomness pair that

explains the message π1
j,1, or if (x1

j , t
0
j) is not a consistent input, ran-

domness pair that explains the message π1
j,2, then we add j to C1.

4. If |C1| ≥ λ, then we abort and use ⊥ as the output of honest P0.
In Lemma 4, we show that Hyb3 ≈s Hyb4.

– Hyb5 : In this hybrid, we make the following changes:
1. Before generating the CRS, we sample a uniform multiset K1 of [m] with

size λ.
2. We sample (crs0j , td

0
j , π

0
j,1) ← SimΠj

(1λ, S) for each j �∈ K1. We use
{crs0j}j �∈K1 as part of the CRS and use {π0

j,1}j �∈K1 to generate the first
round message from P0.

3. We receive the second round message from A (that includes π0
j,2 for each

j ∈ [m]) and extract {(x1
j , r

1
j , t0j)}j∈[m] as before.

4. For each j �∈ K1, we compute stj ← ExtΠj
(S, td0j , π

0
j,2).

5. We compute the set C1 as before.

460 Y. Ishai et al.

6. For each j ∈ C1, we set z0j = SimΠj
(S, stj , π

0
j,2, x

0
j).

7. For each j ∈ K1, we compute z0j as before.
8. For each j �∈ C1 ∪ K1, we set z0j = Eval(j, x0

j , x
1
j).

In Lemma 5, we rely on the robust security of Πj against semi-malicious
senders to show that Hyb4 ≈c Hyb5.

– Hyb6 : In this hybrid, we make the following changes:
1. We generate (crs1j , td

1
j) ← SimΠj

(1λ, R) for each j �∈ K1.
2. On receiving {π1

j,1}j∈[m] from A, we run ExtΠj
(td1j , π

1
j,1) to obtain x1

j for
each j �∈ K1.

3. For each j �∈ K1, we generate π1
j,2 ← SimΠj

(R, crs1j , z
1
j =

Eval(j, x0
j , x

1
j), x

1
j). We use this to generate the second round message

from P0.
In Lemma 6, we use the security of Πj against malicious senders for each
j ∈ [m] to show that Hyb5 ≈c Hyb6.

– Hyb7 : In this hybrid, for each j �∈ K1∪C1, we use z1j instead of z0j to compute
the output of honest P0. It follows from the correctness of extraction property
of {Πj}j �∈K1∪C1 that z0j = z1j for each j �∈ K1 ∪ C1 except with negligible
probability and hence, Hyb6 ≈s Hyb7.

– Hyb8 : In this hybrid, we make the following changes:
1. We start running the simulator SimΨ by corrupting the client P1 and the

set of servers indexed by K1. We receive {x1
j}j∈K1 from the simulator

and use this to generate the first round message from P0.
2. On receiving {π1

j,1}j∈[m] from A, we run ExtΠj
(td1j , π

1
j,1) to obtain x1

j for
each j �∈ K1. We send {x1

j}j �∈K1 to SimΨ as the first round message from
the adversarial client P1 to the honest servers.

3. SimΨ queries its ideal functionality on an input x1 and we forward this
to our ideal functionality and respond with f(x0, x1).

4. SimΨ provides {z1j }j �∈K1 . We use this to generate π1
j,2 ← SimΠj

(z1j , x1
j)

for each j �∈ K1.
5. We receive the second round message from A and use this to extract

{s1j}j∈[m] as before. We compute the set C1 and abort if |C1| ≥ λ.
6. For each j �∈ K1, we compute stj ← ExtΠj

(S, td0j , π
0
j,2).

7. We now instruct SimΨ to adaptively corrupt the set of servers correspond-
ing to C1 and obtain {x0

j}j∈C1 . We then compute z0j = SimΠj
(stj , π0

j,2, x
0
j)

for each j ∈ C1. We compute z0j for each j ∈ K1 as before.
8. We send {z0j }j∈C1∪K1 as the second round message from the corrupted

servers to the honest client to SimΨ . If SimΨ instructs the client to abort,
we instruct P0 to do the same. Otherwise, we instruct P0 to output
f(x0, x1).

In Lemma 7, we use the security of the outer protocol to argue that Hyb7 ≈c

Hyb8. Notice that Hyb8 is identically distributed to the ideal world using Sim.

Lemma 2. Assuming the simulation security of the protocol Φ against corrupted
senders, we have Hyb1 ≈c Hyb2.

Round-Optimal Black-Box Secure Computation 461

Proof. Assume for the sake of contradiction that Hyb1 and Hyb2 are computa-
tionally distinguishable with non-negligible advantage. We show that this con-
tradicts the simulation security of the protocol Φ against corrupted senders.

We start interacting with the external challenger and provide a uniformly
chosen random string ρ01 as the challenge receiver input. The challenger responds
with crs0. We use this to generate the CRS in the overall protocol. The challenger
also sends φ0

1. We use this to generate the first round message in the protocol by
sampling the other components of the first round message as in Hyb1. We gen-
erate the second round message as before and obtain the second round message
from A. We forward φ0

2 from the second round message received from A to the
external challenger. The external challenger provides with K0, {s1j}j∈K0 as the
output of the honest P0. We use this to perform the same checks as described in
the output computation. We finally output the view of A and the output of P0.

If the messages in the protocol Φ and the CRS and the output of honest P0

are generated as in the real experiment, then the output of the above reduction
is identically distributed to Hyb1. Else, it is identically distributed to Hyb2.
Thus, if Hyb2 and Hyb1 are computationally distinguishable with non-negligible
advantage then this breaks the simulation security of Φ against corrupted senders
and this is a contradiction.

Lemma 3. Assuming the simulation security of SimΦ against corrupted senders,
we have Hyb2 ≈c Hyb3.

Proof. Assume for the sake of contradiction that Hyb2 and Hyb3 are computa-
tionally distinguishable with non-negligible advantage. We show that this con-
tradicts the simulation security of Φ against corrupted receivers.

We interact with the external challenger and provide a uniformly chosen ρ12
and (s01, . . . , s

0
m) as the challenge sender input. The external challenger provides

with crs1 and we use this to generate the CRS of the overall protocol. We start
interacting with the adversary and obtain the first round message φ1

1 from it.
We forward this to the external challenger. The external challenger provides
with the second round message φ1

2 and we use this to generate the second round
message in the overall protocol. We compute the output of honest P0 as before
and finally output the view of A and the output of the honest P0.

Note that if the messages in the protocol Φ and the CRS are generated
by the external challenger as in the real experiment then the output of the
above reduction is distributed identically to Hyb2. Else, it is distributed identi-
cally to Hyb3. Thus, if Hyb3 and Hyb2 are computationally distinguishable with
non-negligible advantage then this breaks the simulation security of Φ against
corrupted receivers and this is a contradiction.

Lemma 4. Hyb3 ≈s Hyb4.

Proof. Note that the only difference between Hyb3 and Hyb4 is that in Hyb4 we
abort if |C1| ≥ λ To show that Hyb3 and Hyb4 are statistically close, we prove
that if the above condition holds, then in Hyb3, the checks done by the honest
P0 fails with overwhelming probability.

462 Y. Ishai et al.

Note that K0 is distributed as a random multiset of [m] of size λ. If C1∩K0 �=
∅, then the the honest P0 in Hyb3 also aborts. We show that this event happens
with overwhelming probability.

Pr[|K0 ∩ C1| = 0] = (1 − |C1|
m

)λ

≤ e−|C1|λ/m

≤ e−λ2/m

≤ e−O(λ)

where the last inequality follows since m = O(λ). This completes the proof of
the lemma.

Lemma 5. Assuming the robust security of Πj against semi-malicious senders
for each j ∈ [m], we have Hyb4 ≈c Hyb5.

Proof. Assume for the sake of contradiction that Hyb4 and Hyb5 are distinguish-
able with non-negligible advantage. We sample a uniform multiset K1 of [m] of
size λ. We now show that if Hyb4 and Hyb5 are computationally distinguishable
then this contradicts the robust security of Πj against semi-malicious senders
for some j �∈ K1.

Let ≺ be a total order on the set [m] \ K1. If Hyb4 and Hyb5 are distin-
guishable with non-negligible advantage, then by a standard averaging argument
there exists Hyb4,j and Hyb′

4,j (described below) that are distinguishable with
non-negligible advantage. In both the hybrids, for each j∗ ≺ j, (crs0j∗ , π0

j∗,1) is
generated as in Hyb5 whereas for each j ≺ j∗, (crs0j∗ , π0

j∗,1) is generated as in
Hyb4. The only difference is that in Hyb4,j , (crs0j , π

0
j,1) is generated as in Hyb5

whereas it is generated as in Hyb4 in Hyb′
4,j . We use this to construct an attacker

that breaks the robust security of Πj against semi-malicious senders.
We interact with the external challenger and provide x0

j as the challenge
receiver message. The challenger provides (crs0j , π

0
j,1). We use this to generate the

CRS and the first round message of the overall protocol. We receive the second
round message from the adversary and use it to extract {(x1

j , r
1
j , t0j)}j∈[m]. We

compute the set C1 as before and abort if |C1| ≥ λ. For each j ∈ C1, we send
x1

j and an arbitrary t0j (that does not explain the messages correctly) along with
π0

j,2 to the external challenger. If j �∈ C1 ∪ K1, we send (x1
j , t

0
j) along with π0

j,2

to the external challenger. We receive the output z0j and use this to compute the
output of the overall protocol as before.

We note that if (crs0j , π
0
j,1, z

0
j) was generated by the external challenger as

in the RealS experiment then the output of the above reduction is identically
distributed to Hyb′

4,j . Else, it is distributed identically to Hyb4,j . Thus, if Hyb4,j

and Hyb′
4,j are distinguishable with non-negligible advantage, then the above

reduction breaks the robust security of Πj against semi-malicious senders with
non-negligible advantage and this is a contradiction.

Round-Optimal Black-Box Secure Computation 463

Lemma 6. Assuming the security of Πj against malicious receivers for each
j ∈ [m], we have Hyb6 ≈c Hyb5.

Proof. Assume for the sake of contradiction that Hyb5 and Hyb6 are distinguish-
able with non-negligible advantage. We sample a uniform multiset K1 of [m] of
size λ. We now show that this contradicts the security of Πj against malicious
receiver for some j �∈ K1.

Let ≺ be a total order on the set [m] \ K1. If Hyb5 and Hyb6 are distin-
guishable with non-negligible advantage then by a standard averaging argument,
there exists Hyb5,j and Hyb′

5,j (described below) that are distinguishable with
non-negligible advantage. In both the hybrids, for each j∗ ≺ j, (π1

j∗,2, crs
1
j∗) is

generated as in Hyb6 whereas for each j ≺ j∗, (π1
j∗,2, crs

1
j∗) is generated as in

Hyb5. The only difference is that in Hyb5,j , (crs1j , π
1
j,2) is generated as in Hyb6

whereas it is generated as in Hyb5 in Hyb′
5,j . We use this to construct an attacker

that breaks the security of Πj against malicious receivers.
We interact with the external challenger and provide x0

j as the challenge
sender input. We obtain crs1j from the external challenger. We receive π1

j,1 from
the adversary and forward this to the challenger. The challenger responds with
π1

j,2 and we use these to generate the view of the adversary A and compute the
output of P0 as in Hyb′

5,j .
We note that if (π1

j,2, crs
1
j) was generated by the external challenger as in

RealR then the output of the above reduction is identically distributed to Hyb′
5,j .

Else, it is distributed identically to Hyb5,j . Thus, if Hyb5,j and Hyb′
5,j are dis-

tinguishable with non-negligible advantage, then the above reduction breaks the
security of Πj against malicious receivers with non-negligible advantage and this
is a contradiction.

Lemma 7. Assuming the security of the outer MPC protocol Ψ =
(Share,Eval,Dec), we have that Hyb7 ≈c Hyb8.

Proof. Assume for the sake of contradiction that Hyb7 and Hyb8 are computa-
tionally distinguishable with non-negligible advantage. We show that this con-
tradicts the security of outer protocol Ψ .

We start interacting with the outer protocol challenger and provide x0 as the
honest client input. We instruct the challenger to corrupt P1 and the set of servers
indexed by K1. The challenger provides {x0

j}j∈K1 as the first round message from
the honest client to the corrupted servers and we use this to generate the first
round message in the protocol. On receiving the first round message from A,
we obtain x1

j ← ExtΠj
(td1j , π

1
j,1) for each j �∈ K1 and send {x1

j}j �∈K1 as the first
round message from the adversarial client to the honest servers. The challenger
replies with {z1j }j �∈K1 . We use this to generate π1

j,2 ← SimΠj
(z1j , x1

j) for each
j �∈ K1 and compute the second round message of the overall protocol. We receive
the second round message from the adversary. We use this to extract {s1j}j∈[m]

as before. We compute the set C1 and abort if |C1| ≥ λ. Additionally, for each
j ∈ C1, we compute stj ← ExtΠj

(S, td0j , π
0
j,2). We now instruct the challenger to

adaptively corrupt the set of servers corresponding to C1 and obtain {x0
j}j∈C1 .

464 Y. Ishai et al.

We then compute z0j = SimΠj
(stj , π0

j,2, x
0
j) for each j ∈ C1. We compute z0j for

each j ∈ K1 as before. We send {z0j }j∈C1∪K1 as the second round message from
the corrupted servers to the honest client to the challenger. If the challenger
instructs the client to abort, we instruct P0 to do the same. Otherwise, we
instruct P0 to output whatever is provided by the challenger as the output. We
output the view of A and the output of P0.

Note that if the messages received from the challenger are computed as in
the real execution of the protocol Ψ , then the output of the above reduction is
identically to Hyb7. Else, it is distributed identically to Hyb8. Hence, if Hyb7 and
Hyb8 are distinguishable with non-negligible advantage, then the above reduction
breaks the security of the outer protocol Ψ with non-negligible advantage and
this is a contradiction.

5 Multiparty Inner Protocol

In this section, we give the definition of a three-round multiparty protocol that
satisfies some special properties (known as multiparty inner protocol) and give
a construction based on two-round malicious secure oblivious transfer. In the
next section, we will use this multiparty inner protocol as the key ingredient to
construct a three-round malicious secure protocol for general functionalities.

5.1 Definition

A three-round n-party protocol for computing a function f is given by a tuple of
PPT algorithms (Setup,Π1,Π2,Π3, outΠ) and has the following syntax. Setup
algorithm takes in the security parameter 1λ (encoded in unary) and outputs
the common reference string crs. For each r ∈ [3], Πr is the r-th round message
function that takes in crs, index i of the party, the transcript seen so far (denoted
by π(r − 1)), the i-th party’s private input xi, its random tape ri and outputs
πi

r. outΠ is the public decoder (see [ABG+20] for the definition of a publicly
decodable MPC) that takes in the transcript of the three rounds π(3) and outputs
f(x1, . . . , xn).

Definition 2. A three-round n-party protocol (Setup,Π1,Π2,Π3, outΠ) for
computing a function f is said to be a multiparty inner protocol with publicly
decodable transcript if it satisfies:

– Correctness: For any choice of inputs x1, . . . , xn, we have:

Pr[outΠ(π(3)) = f(x1, . . . , xn)] = 1

where π(3) is the transcript generated in the first three rounds of the protocol.
– Security: For any subset M ⊂ [n] of the parties, there exists a (stateful) PPT

simulator SimΠ such that for any (stateful) non-uniform PPT adversary A

Round-Optimal Black-Box Secure Computation 465

corrupting the set of parties given by M and for any set {xi}i∈[n]\M of the
honest party inputs, we have:

∣∣∣Pr[Real(1λ,M,A, {xi}i∈[n]\M) = 1]

−Pr[Ideal(1λ,M,A, {xi}i∈[n]\M ,SimΠ) = 1]
∣∣∣ ≤ negl(n)

where Real and Ideal experiments are described in Fig. 4.

In this section, we state the following proposition and defer the proof to the
full version.

Proposition 2. Assume black-box access to a two-round oblivious transfer
protocol that is secure against malicious adversaries in the common ran-
dom/reference string model. Then, there exists a three-round inner protocol for
computing any n-party functionality f satisfying Definition 2. The computational
and communication complexity of this protocol is poly(λ, n, |f |) where |f | is the
circuit-size of f .

6 Round-Optimal Black-Box MPC

In this section, we give a construction of a three-round MPC protocol that
makes black-box use of two-round malicious secure oblivious transfer. The round-

Real(1λ, M, A, {xi}i∈[n]\M)

1. crs ← Setup(1λ).
2. Compute πi

1 ← Π1(crs, xi; ri) for
each i ∈ [n] \ M where ri ← {0, 1}∗.

3. {πi
1}i∈M ← A(crs{πi

t}i∈[n]\M).
4. Set π(1) = {πi

1}i∈[n].
5. Compute πi

2 ← Π2(crs, π(1), xi; ri)
for each i ∈ [n] \ M .

6. {πi
2, (xi, ri)}i∈M ← A({πi

2}i∈[n]\M).
7. Set π(2) = π(1) ∪ {πi

2}i∈[n].
8. Compute πi

3 ← Π3(crs, π(2), xi; ri)
for each i ∈ [n] \ M .

9. {πi
3}i∈M ← A({πi

3}i∈[n]\M).
10. Set π(3) = π(2) ∪ {πi

3}i∈[n]

11. Output A(crs, π(3)).

Ideal(1λ, M, A, {xi}i∈[n]\M , SimΠ)

1. (crs, td, {πi
1}i∈[n]\M) ← SimΠ(1λ,

M).

2. {πi
1}i∈M ← A(crs, {πi

1}i∈[n]\M).
3. Set π(1) = {πi

1}i∈[n].
4. {πi

2}i∈[n]\M ← SimΠ(π(1), td).

5. {πi
2, (xi, ri)}i∈M ← A({πi

2}i∈[n]\M).
6. Set π(2) = π(1) ∪ {πi

2}i∈[n].
7. For each i ∈ M , if (xi, ri) is a valid

input/randomness pair w.r.t. π(2):
(a) {πi

3}i∈[n]\M ←
SimΠ(π(2), f(x1, . . . , xn)).

8. Else,
(a) {πi

3}i∈[n]\M ←
SimΠ(π(2), td, {xi}i∈[n]\M).

9. {πi
3}i∈M ← A({πi

3}i∈[n]\M).
10. Set π(3) = π(2) ∪ {πi

3}i∈[n].
11. Output A(crs, π(3)).

Fig. 4. Descriptions of Real and Ideal experiments.

466 Y. Ishai et al.

optimality of this construction follows from [ABG+20]. We prove the following
theorem.

Theorem 3 (Black-box three-round MPC). Assume black-box access to
a two-round oblivious transfer protocol that is secure against malicious adver-
saries in the common random/reference string model. Then, there exists a three-
round protocol for computing any n-party functionality f in the common ran-
dom/reference string model that satisfies security with unanimous abort against
malicious adversaries corrupting an arbitrary subset of the parties. The pro-
tocol works over broadcast channels and its computational and communication
complexity is poly(λ, n, |f |) where |f | is the circuit-size of f .

The proof of this theorem is deferred to the full version of the paper.

Acknowledgments. Y. Ishai was supported in part by ERC Project NTSC (742754),
BSF grant 2018393, and ISF grant 2774/20. D. Khurana was supported in part by
DARPA SIEVE award, a gift from Visa Research, and a C3AI DTI award. A. Sahai
was supported in part from a Simons Investigator Award, DARPA SIEVE award, NTT
Research, NSF Frontier Award 1413955, BSF grant 2012378, a Xerox Faculty Research
Award, a Google Faculty Research Award, and an Okawa Foundation Research Grant.
This material is based upon work supported by the Defense Advanced Research
Projects Agency through Award HR00112020024. A. Srinivasan was supported in part
by a SERB startup grant.

References

[ABG+20] Applebaum, B., Brakerski, Z., Garg, S., Ishai, Y., Srinivasan, A.: Separat-
ing two-round secure computation from oblivious transfer. In: ITCS 2020,
vol. 151 of LIPIcs, pp. 71:1–71:18. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2020)

[ABG+21] Agarwal, A., Bartusek, J., Goyal, V., Khurana, D., Malavolta, G.: Two-
round maliciously secure computation with super-polynomial simulation.
In: Nissim, K., Waters, B. (eds.) TCC 2021. LNCS, vol. 13042, pp. 654–685.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90459-3 22

[ACJ17] Ananth, P., Choudhuri, A.R., Jain, A.: A new approach to round-optimal
secure multiparty computation. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017. LNCS, vol. 10401, pp. 468–499. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-63688-7 16

[AIR01] Aiello, B., Ishai, Y., Reingold, O.: Priced oblivious transfer: how to sell
digital goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045,
pp. 119–135. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44987-6 8

[AMR21] Abdolmaleki, B., Malavolta, G., Rahimi, A.: Two-round concurrently
secure two-party computation. IACR Cryptol. ePrint Arch., pp. 1357
(2021)

[BCG+19] Boyle, E., et al.: Efficient two-round OT extension and silent non-
interactive secure computation. In: CCS 2019, pp. 291–308. ACM (2019)

[BDM22] Branco, P., Döttling, N., Mateus, P.: Two-round oblivious linear evaluation
from learning with errors. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds.)
PKC 2022. LNCS, vol. 13177, pp. 379–408. Springer, Cham (2022). https://
doi.org/10.1007/978-3-030-97121-2 14

https://doi.org/10.1007/978-3-030-90459-3_22
https://doi.org/10.1007/978-3-319-63688-7_16
https://doi.org/10.1007/978-3-319-63688-7_16
https://doi.org/10.1007/3-540-44987-6_8
https://doi.org/10.1007/3-540-44987-6_8
https://doi.org/10.1007/978-3-030-97121-2_14
https://doi.org/10.1007/978-3-030-97121-2_14

Round-Optimal Black-Box Secure Computation 467

[Bea95] Beaver, D.: Precomputing oblivious transfer. In: Coppersmith, D. (ed.)
CRYPTO 1995. LNCS, vol. 963, pp. 97–109. Springer, Heidelberg (1995).
https://doi.org/10.1007/3-540-44750-4 8

[BF22] Bitansky, N., Freizeit, S.: Statistically sender-private OT from LPN and
derandomization. In: Crypto 2022 (2022)

[BFM88] Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its
applications. In: STOC, vol. 1988, pp. 103–112 (1988)

[BGI+17] Badrinarayanan, S., Garg, S., Ishai, Y., Sahai, A., Wadia, A.: Two-message
witness indistinguishability and secure computation in the plain model
from new assumptions. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017.
LNCS, vol. 10626, pp. 275–303. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-70700-6 10

[BGI+18] Boyle, E., Gilboa, N., Ishai, Y., Lin, H., Tessaro, S.: Foundations of homo-
morphic secret sharing. In: ITCS 2018, pp. 21:1–21:21 (2018)

[BGJ+17] Badrinarayanan, S., Goyal, V., Jain, A., Khurana, D., Sahai, A.: Round
optimal concurrent MPC via strong simulation. In: Kalai, Y., Reyzin, L.
(eds.) TCC 2017. LNCS, vol. 10677, pp. 743–775. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70500-2 25

[BGJ+18] Badrinarayanan, S., Goyal, V., Jain, A., Kalai, Y.T., Khurana, D., Sahai,
A.: Promise zero knowledge and its applications to round optimal MPC.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992,
pp. 459–487. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96881-0 16

[BHP17] Brakerski, Z., Halevi, S., Polychroniadou, A.: Four round secure computa-
tion without setup. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol.
10677, pp. 645–677. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-70500-2 22

[BL18] Fabrice Benhamouda and Huijia Lin. k-round MPC from k-round OT via
garbled interactive circuits. EUROCRYPT, 2018

[BLV03] Barak, B., Lindell, Y., Vadhan, S.P.: Lower bounds for non-black-box zero
knowledge. In: FOCS, vol. 2003, pp. 384–393 (2003)

[CCG+20] Rai Choudhuri, A., Ciampi, M., Goyal, V., Jain, A., Ostrovsky, R.: Round
optimal secure multiparty computation from minimal assumptions. In:
Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12551, pp. 291–319.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64378-2 11

[CDI+19] Chase, M., Dodis, Y., Ishai, Y., Kraschewski, D., Liu, T., Ostrovsky,
R., Vaikuntanathan, V.: Reusable non-interactive secure computation. In:
Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694,
pp. 462–488. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26954-8 15

[DGH+20] Döttling, N., Garg, S., Hajiabadi, M., Masny, D., Wichs, D.: Two-round
oblivious transfer from CDH or LPN. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020. LNCS, vol. 12106, pp. 768–797. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-45724-2 26

[DIO21] Dittmer, S., Ishai, Y., Ostrovsky, R.: Line-point zero knowledge and its
applications. In: ITC 2021, pp. 5:1–5:24 (2021)

[FJK21] Fernando, R., Jain, A., Komargodski, I.: Maliciously-secure mrnisc in the
plain model. In: IACR Cryptol. ePrint Arch., pp. 1319 (2021)

https://doi.org/10.1007/3-540-44750-4_8
https://doi.org/10.1007/978-3-319-70700-6_10
https://doi.org/10.1007/978-3-319-70700-6_10
https://doi.org/10.1007/978-3-319-70500-2_25
https://doi.org/10.1007/978-3-319-96881-0_16
https://doi.org/10.1007/978-3-319-96881-0_16
https://doi.org/10.1007/978-3-319-70500-2_22
https://doi.org/10.1007/978-3-319-70500-2_22
https://doi.org/10.1007/978-3-030-64378-2_11
https://doi.org/10.1007/978-3-030-26954-8_15
https://doi.org/10.1007/978-3-030-26954-8_15
https://doi.org/10.1007/978-3-030-45724-2_26

468 Y. Ishai et al.

[GGJS12] Garg, S., Goyal, V., Jain, A., Sahai, A.: Concurrently secure computation
in constant rounds. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 99–116. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-29011-4 8

[GIKR02] Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: On 2-round secure mul-
tiparty computation. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442,
pp. 178–193. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45708-9 12

[GIS18] Garg, S., Ishai, Y., Srinivasan, A.: Two-round MPC: information-theoretic
and black-box. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS,
vol. 11239, pp. 123–151. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-03807-6 5

[GKP17] Garg, S., Kiyoshima, S., Pandey, O.: On the exact round complexity of
self-composable two-party computation. In: Coron, J.-S., Nielsen, J.B.
(eds.) EUROCRYPT 2017. LNCS, vol. 10211, pp. 194–224. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-56614-6 7

[GMPP16] Garg, S., Mukherjee, P., Pandey, O., Polychroniadou, A.: The exact round
complexity of secure computation. In: Fischlin, M., Coron, J.-S. (eds.)
EUROCRYPT 2016. LNCS, vol. 9666, pp. 448–476. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49896-5 16

[Goy11] Goyal, V.: Constant round non-malleable protocols using one way func-
tions. In: Fortnow, L., Vadhan, S.P. (eds) 43rd ACM STOC, pp. 695–704,
San Jose, CA, USA, 6–8 June 2011. ACM Press

[GS18] Garg, S., Srinivasan, A.: Two-round multiparty secure computation from
minimal assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT
2018. LNCS, vol. 10821, pp. 468–499. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78375-8 16

[HHPV18] Halevi, S., Hazay, C., Polychroniadou, A., Venkitasubramaniam, M.:
Round-optimal secure multi-party computation. Journal of Cryptology
34(3), 1–63 (2021). https://doi.org/10.1007/s00145-021-09382-3

[IKNP03] Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious trans-
fers efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp.
145–161. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-
45146-4 9

[IKO+11] Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai, A.: Effi-
cient non-interactive secure computation. In: Paterson, K.G. (ed.) EURO-
CRYPT 2011. LNCS, vol. 6632, pp. 406–425. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-20465-4 23

[IKP10] Ishai, Y., Kushilevitz, E., Paskin, A.: Secure multiparty computation with
minimal interaction. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223,
pp. 577–594. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14623-7 31

[IKSS21] Ishai, Y., Khurana, D., Sahai, A., Srinivasan, A.: On the round complexity
of black-box secure MPC. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021.
LNCS, vol. 12826, pp. 214–243. Springer, Cham (2021). https://doi.org/
10.1007/978-3-030-84245-1 8

[IKSS22] Ishai, Y., Khurana, D., Sahai, A., Srinivasan, A.: Round-optimal black-box
protocol compilers. In: Dunkelman, O., Dziembowski, S. (eds.) EURO-
CRYPT 2022. LNCS, vol. 13275, pp. 210–240. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-06944-4 8

https://doi.org/10.1007/978-3-642-29011-4_8
https://doi.org/10.1007/978-3-642-29011-4_8
https://doi.org/10.1007/3-540-45708-9_12
https://doi.org/10.1007/3-540-45708-9_12
https://doi.org/10.1007/978-3-030-03807-6_5
https://doi.org/10.1007/978-3-030-03807-6_5
https://doi.org/10.1007/978-3-319-56614-6_7
https://doi.org/10.1007/978-3-662-49896-5_16
https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1007/s00145-021-09382-3
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-642-20465-4_23
https://doi.org/10.1007/978-3-642-14623-7_31
https://doi.org/10.1007/978-3-642-14623-7_31
https://doi.org/10.1007/978-3-030-84245-1_8
https://doi.org/10.1007/978-3-030-84245-1_8
https://doi.org/10.1007/978-3-031-06944-4_8

Round-Optimal Black-Box Secure Computation 469

[IPS08] Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious
transfer – efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 572–591. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-85174-5 32

[IR90] Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-
way permutations. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol.
403, pp. 8–26. Springer, New York (1990). https://doi.org/10.1007/0-387-
34799-2 2

[KMO14] Kiyoshima, S., Manabe, Y., Okamoto, T.: Constant-round black-box con-
struction of composable multi-party computation protocol. In: Lindell,
Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 343–367. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-54242-8 15

[KO04] Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8 21

[KOS03] Katz, J., Ostrovsky, R., Smith, A.: Round efficiency of multi-party compu-
tation with a dishonest majority. In: Biham, E. (ed.) EUROCRYPT 2003.
LNCS, vol. 2656, pp. 578–595. Springer, Heidelberg (2003). https://doi.
org/10.1007/3-540-39200-9 36

[MR19] Masny, D., Rindal, P.: Endemic oblivious transfer. In: CCS 2019, pp. 309–
326. ACM (2019)

[NP01] Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In Rao
Kosaraju, S. (ed.), Proceedings of the Twelfth Annual Symposium on Dis-
crete Algorithms, 7–9 January 2001, Washington, DC, USA., pp. 448–457.
ACM/SIAM (2001)

[ORS15] Ostrovsky, R., Richelson, S., Scafuro, A.: Round-optimal black-box two-
party computation. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9216, pp. 339–358. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-48000-7 17

[Pas12] Paskin-Cherniavsky, A.: Secure Computation with minimal interaction.
Ph.D. thesis, Technion (2012). http://www.cs.technion.ac.il/users/wwwb/
cgi-bin/tr-get.cgi/2012/PHD/PHD-2012-16.pdf

[PS21] Patra, A., Srinivasan, A.: Three-round secure multiparty computation from
black-box two-round oblivious transfer. In: Malkin, T., Peikert, C. (eds.)
CRYPTO 2021. LNCS, vol. 12826, pp. 185–213. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-84245-1 7

[PVW08] Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and
composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS,
vol. 5157, pp. 554–571. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-85174-5 31

[RTV04] Reingold, O., Trevisan, L., Vadhan, S.: Notions of reducibility between
cryptographic primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951,
pp. 1–20. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
24638-1 1

[Wee10] Wee, H.: Black-box, round-efficient secure computation via non-
malleability amplification. In: 51st FOCS, pp. 531–540, Las Vegas, NV,
USA, 23–26 October 2010. IEEE Computer Society Press

[Yao86] Yao, A.C.C.: How to generate and exchange secrets. In: 27th Annual Sym-
posium on Foundations of Computer Science, Toronto, Canada, October
27–29 1986, pp. 162–167. IEEE Computer Society (1986)

https://doi.org/10.1007/978-3-540-85174-5_32
https://doi.org/10.1007/978-3-540-85174-5_32
https://doi.org/10.1007/0-387-34799-2_2
https://doi.org/10.1007/0-387-34799-2_2
https://doi.org/10.1007/978-3-642-54242-8_15
https://doi.org/10.1007/978-3-540-28628-8_21
https://doi.org/10.1007/3-540-39200-9_36
https://doi.org/10.1007/3-540-39200-9_36
https://doi.org/10.1007/978-3-662-48000-7_17
https://doi.org/10.1007/978-3-662-48000-7_17
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/2012/PHD/PHD-2012-16.pdf
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/2012/PHD/PHD-2012-16.pdf
https://doi.org/10.1007/978-3-030-84245-1_7
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-540-24638-1_1
https://doi.org/10.1007/978-3-540-24638-1_1

Fully-Secure MPC with Minimal Trust

Yuval Ishai1, Arpita Patra2, Sikhar Patranabis3, Divya Ravi4(B),
and Akshayaram Srinivasan5

1 Technion, Haifa, Israel
yuvali@cs.technion.ac.il

2 Indian Institute of Science, Bangalore, India
arpita@iisc.ac.in

3 IBM Research India, Bangalore, India
sikhar.patranabis@ibm.com

4 Aarhus University, Aarhus, Denmark
divya@cs.au.dk

5 Tata Institute of Fundamental Research, Mumbai, India

akshayaram.srinivasan@tifr.res.in

Abstract. The task of achieving full security (with guaranteed out-
put delivery) in secure multiparty computation (MPC) is a long-studied
problem. Known impossibility results (Cleve, STOC 86) rule out general
solutions in the dishonest majority setting. In this work, we consider
solutions that use an external trusted party (TP) to bypass the impos-
sibility results, and study the minimal requirements needed from this
trusted party. In particular, we restrict ourselves to the extreme setting
where the size of the TP is independent of the size of the functionality
to be computed (called “small” TP) and this TP is invoked only once
during the protocol execution. We present several positive and negative
results for fully-secure MPC in this setting.

– For a natural class of protocols, specifically, those with a universal
output decoder, we show that the size of the TP must necessarily be
exponential in the number of parties. This result holds irrespective
of the computational assumptions used in the protocol. The class
of protocols to which our lower bound applies is broad enough to
capture prior results in the area, implying that the prior techniques
necessitate the use of an exponential-sized TP. We additionally rule
out the possibility of achieving information-theoretic full security
(without the restriction of using a universal output decoder) using
a “small” TP in the plain model (i.e., without any setup).

– In order to get around the above negative result, we consider pro-
tocols without a universal output decoder. The main positive result
in our work is a construction of such a fully-secure MPC protocol
assuming the existence of a succinct Functional Encryption scheme.
We also give evidence that such an assumption is likely to be neces-
sary for fully-secure MPC in certain restricted settings.

S. Patranabis—Most of the work was done while the author was affiliated with ETH
Zürich, Switzerland and Visa Research USA.

c© The Author(s), under exclusive license to Springer Nature Switzerland 2022
E. Kiltz and V. Vaikuntanathan (Eds.): TCC 2022, LNCS 13748, pp. 470–501, 2022.
https://doi.org/10.1007/978-3-031-22365-5_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22365-5_17&domain=pdf
https://doi.org/10.1007/978-3-031-22365-5_17

Fully-Secure MPC with Minimal Trust 471

– Finally, we explore the possibility of achieving full-security with
a semi-honest TP that could collude with other malicious parties
(which form a dishonest majority). In this setting, we show that
even fairness is impossible to achieve regardless of the “small TP”
requirement.

1 Introduction

Secure Multiparty Computation (MPC) allows a set of mutually distrusting
parties to compute a joint function of their private inputs such that only the
output of the function is revealed. Security of MPC protocols is required to
hold even if the participating parties are controlled by a centralized malicious
adversary, who may instruct them to deviate from the protocol specification.

Two desired properties for MPC protocols are fairness and full security (a.k.a
guaranteed output delivery). Fairness requires that if the adversary learns the
output of the functionality, then all the honest parties also learn this output.
Full security strengthens fairness by requiring that the adversary cannot prevent
the honest parties from learning the output of the functionality. Unfortunately,
a classical impossibility result of Cleve [Cle86] shows that many functions can-
not be fairly computed in the presence of an adversary corrupting a majority
of the parties. Two ways to bypass this impossibility result are to restrict the
adversary to corrupt only a minority of the parties, or to make use of some
external help. In this work, we focus on the second approach, referring to the
external help as a trusted party (TP).1 A trusted party can be realized via dif-
ferent standard mechanisms, such as trusted execution environments, hardware
tokens, blockchain based approaches, or cloud service providers.

Size of the TP. TPs are useful in circumventing the above impossibility result
as they can be used as an ideal functionality that takes inputs from the parties
and provides them outputs. A simple way to obtain protocols that satisfy full
security in the TP model is for the TP to perform the entire computation on the
private inputs of the parties and provide them outputs. However, this approach
is less desirable as the size of the TP grows with the size of the function to
be computed. Fitzi et al. [FGMO01] showed how to make the TP in the above
solution universal, in the sense that it is independent of the function being
computed. They also showed that to achieve full security, it is necessary to use
TPs that take inputs from all the parties. However, this negative result does not
rule out a TP which is independent of circuit size of the functionality. Thus, an
interesting line of inquiry is to construct protocols where the size of the TP is
independent of the circuit size of the functionality to be computed.

Apart from being a theoretically interesting question, it is also motivated by
the practical goal of minimizing the use of trustworthy resources. For instance,
if a trusted party service is implemented by a cloud service provider who charges

1 This notion differs from the line of work on token-based cryptography initiated by
Katz [Kat07], where the tamper-proof tokens are generated locally, and the main
challenge is to guarantee security even when tokens can be maliciously generated.

472 Y. Ishai et al.

fees for the use of its computational resources, it is obviously desirable (for the
clients) to minimize the fees. The same holds if the TP is emulated via the use
of a large-scale honest-majority MPC protocol. We refer to a setting of a trusted
party whose size is independent of the circuit size of the function as the small-TP
model. This problem is not new to our work and has already been considered
in the works of Gordon et al. [GIM+10] and Ishai et al. [IOS12] for the case of
fairness and full security respectively. The state of the art result from [IOS12]
gave a protocol that achieves guaranteed output delivery with statistical security
(in the OT-hybrid model) with a small TP, where the parties make n sequential
calls to this TP. In the same work, the authors gave a protocol where the parties
make a single call to the TP but where the size of the TP grows exponentially in
the number of parties (and is otherwise independent of the size of the function
to be computed).

Number of Calls to TP. In this work, in addition to considering a small-TP
model, we are interested in designing fully-secure protocols that make a single
call to the TP. Theoretically, one call is the minimal requirement to circumvent
the impossibility of [Cle86] for fair and fully-secure MPC. It further opens up the
possibility of protocols in a minimal model, reminiscent of private simultaneous
message (PSM) [FKN94] model, where given a common randomness, the parties
communicate one-shot message to the TP and compute the output on receiving
the reply from the TP. One call as opposed to many calls is also likely to generate
more practical solution in the real world settings where, for instance, the TP is
replaced with a cloud service provider, or a blockchain based approach.
The question which is the main focus to our work is:

Can we construct efficient protocols that make a single call to a “small” TP
and achieve full security?

1.1 Our Results

We obtain both positive and negative results on the existence of fully-secure
MPC protocols using a small TP. We first discuss the negative results below.

Impossibility with a Universal Output Decoder. We give evidence that
the prior approaches to this problem necessarily require a TP whose size is
exponential in the number of parties. To show this, we abstract out the key
features of prior protocols and show that any protocol having these features
requires an exponential-sized TP (irrespective of the computational assumptions
used in the protocol). More concretely, we consider the class of protocols where
the parties could interact with each other (in an arbitrary number of rounds),
then they make a single call to the trusted party, get a reply from TP, and
then apply a universal decoder on this reply and their state to compute the
output. By universal decoder, we mean that the size of the decoder is independent
of the size of the functionality to be computed (considering single bit output
functionalities). This model is interesting because it is quite natural and, more
importantly, it captures prior approaches of realizing TP-aided MPC protocols

Fully-Secure MPC with Minimal Trust 473

[IOS12]. We show that for such protocols, the size of the TP necessarily grows
exponentially with the number of parties. Our result holds irrespective of the
computational assumptions used by the protocol. Additionally, our result holds
even if the size of the TP is allowed to grow with the size of the function output.

Theorem 1 (Informal). For any fully-secure MPC protocol with a universal
output decoder, the size of the TP must necessarily be exponential in the number
of parties.

Necessity of Setup or Computational Assumptions. The above result nat-
urally leads to the question of whether we can have small TP-aided fully secure
MPC protocols once the restriction of using a universal decoder is relaxed. In
this regard, we prove that any statistically secure protocol (without any trusted
setup or correlated randomness) that makes a single call to a small TP cannot
be even semi-honest secure. This impossibility holds even against protocols that
may not have a universal output decoder. This shows that to achieve full security
it is necessary to resort to computational assumptions, or assume some sort of
setup (such a correlated randomness).

Theorem 2 (Informal). There exists no MPC protocol that achieves
information-theoretic security against semi-honest adversaries in the plain model
with a TP whose size is a fixed polynomial in the input size of the functionality.

Positive Results. We now focus on the problem of achieving fully-secure MPC
protocols using a small TP based on computational assumptions. Our main
positive result is captured by the following theorem:

Theorem 3 (Informal). Assuming a single-key succinct Functional Encryp-
tion (FE) scheme, there exists a fully secure efficient MPC protocol that makes
a single call to the small TP.

A single-key succinct Functional Encryption is an FE scheme [SW05,O’N10,
BSW11] where the size of the encryption algorithm does not grow with size of the
function for which a secret key is released. Using known instantiations of these
primitives from various assumptions, we get the following corollary (building
on [GKP+13,GGSW13,Wat15]).

Corollary 1 (Informal). There exists a fully secure efficient MPC protocol
that makes a single call to a TP, assuming:

1. Learning with Errors (with sub-exponential modulus-to-noise ratio)
[GKP+13] if the size of the TP is allowed to only grow with the depth and
the output length of the functionality.

2. Witness Encryption scheme [GGSW13] and FHE if the size of the TP is
allowed to only grow with the output length of the functionality.

3. Indistinguishability Obfuscation (iO) [BGI+01,GGH+13,JLS21] and one-
way functions, where the size of the TP is independent of the depth and the
output length.

474 Y. Ishai et al.

We also give evidence that this assumption might be necessary in certain
restricted settings. Specifically, consider a restricted model of computation where
the parties do not interact with each other, but make a single-call to the TP
and could compute the output of the functionality based on the reply from
the TP. This model is reminiscent of the Private Simulataneous Messages set-
ting [FKN94]. It is not too hard to see that this restricted model is equivalent
to an MPC protocol with a succinct online phase. Specifically, the computation
done by the parties before the TP call can be thought of as the pre-processing
phase and this could grow with the circuit-size of the functionality. The mes-
sages sent to the TP and the computation performed by the TP correspond to
the online phase of the protocol. Since we restrict the size of the TP to be small,
it follows that the computation and the communication cost of the online phase
is independent of the size of the functionality (i.e., the protocol has succinct
online phase). The post-processing phase could grow with the size of the func-
tionality to be computed (this is in fact necessary considering our impossibility
with a universal output decoder).

Currently, the only known constructions of an MPC protocol with a suc-
cinct online phase are based on Laconic Functional Evaluation [QWW18] (LFE),
which is known to imply succinct FE. This suggests that such assumptions are
likely to be necessary in the restricted setting outlined above. In fact, an MPC
protocol with a succinct online phase implies a weaker flavor of LFE with the
following property: unlike standard LFE where the size of the encryption algo-
rithm only grows with the input size, the encryption algorithm in this weaker
notion of LFE has two components: (i) a pre-processing algorithm which takes
the input and the size of the functionality and produces a hint that only grows
with the input size, and (ii) a second algorithm that takes the input and the
hint and outputs a ciphertext (the size of the second algorithm only grows with
the input size). Finally, in this restricted model, we give a positive result by
constructing a fully-secure MPC protocol with a single call to a small TP based
on LFE.

(Im)Possibility of Reducing the Trust in TP. Finally, we explore the pos-
sibility of weakening the security requirements from the TP. Interestingly, our
above solutions maintain privacy against the TP, which is an additional desirable
feature. More specifically, our constructions are secure if the adversary corrupts
the TP in a semi-honest manner (but does not corrupt any of the parties). This
led us to explore what happens if we allow the semi-honest TP to collude with
the other malicious parties. We showed that irrespective of the size of the TP,
such a model would not be enough to circumvent Cleve’s impossibility of fairness.
This impossibility holds even if we restrict the malicious parties to be fail-stop.2

Our results are summarized in Table 1.

2 The notion of fail-stop corruption lies between semi-honest and malicious corruption,
where eavesdropping like semi-honest corruption is allowed and the only possible
malicious corruption is stopping the execution of the protocol.

Fully-Secure MPC with Minimal Trust 475

Table 1. Results on fully-secure MPC in dishonest majority using small TP
under different kinds of setup (plain model i.e. no setup/C.R. i.e. correlated ran-
domness setup/CRS i.e. common random string), security guarantees (statisti-
cal/computational) and different TP computation models (with/without the restric-
tions on pre-TP call interaction and universal output decoder).

Security No. of calls Setup Pre-TP call
interaction

Universal
Output
Decoder

Possible? Reference

Statistical 1 Plain Yes No No Theorem 7

Computational 1 C.R Yes Yes No Theorem 6

Computational 1 CRS No No Yes (based on
LFE)

Theorem 4

Computational 1 Plain Yes No Yes (based on
succinct FE)

Theorem 5

Statistical n C.R Yes Yes Yes [IOS12]

Computational n Plain Yes Yes Yes (based on
OT)

[IOS12]

Statistical 1 C.R Yes No Open

1.2 Open Directions

Our work opens up several interesting research directions. We highlight some of
them below.

– Showing Necessity of Succinct FE. In this work, we argued that any
protocol in the restricted model (where the parties do not communicate with
each other before and after the TP invocation) is equivalent to an MPC
protocol with a succinct online phase. However, we are unable to extend this
to the setting where the parties could potentially communicate with each
other before making the TP call. Can we show that such a weaker model also
implies some weakening of an MPC protocol with a succinct online phase?
This would justify the necessity of a succinct FE assumption.

– Making more than a Single Call to TP. As our goal was to minimize the
requirements from the TP as much as possible, we considered the extreme
setting where a single call is made to the TP. A fascinating direction is
to explore the possibility of constructing fully-secure MPC protocols from
weaker assumptions which could make more than one call but less than n
calls. The key challenge here is to design protocols using a stateless TP. If we
allow the TP to be stateful, we can realize a construction based on FHE that
makes two calls to a stateful TP.

– Characterization of Fair Computation in the Colluding TP model.
As mentioned previously, in this work we show that it is impossible to achieve
fairness in the colluding TP model (where the adversary can corrupt the TP
in a semi-honest manner, in addition to corrupting majority of the parties
maliciously) for general functions. However, it is still possible to achieve fair-
ness for restricted classes of (non-trivial) functions such as coin-tossing (by

476 Y. Ishai et al.

using the TP to directly compute the desired function). It is an interesting
open question to give a complete characterization of which function classes
can be fairly computed in the colluding TP model.

1.3 Technical Highlights and Discussion

In this section, we present a high-level technical overview of our results.

1.3.1 Positive Results
We present two protocols based on LFE [QWW18] and single-key succinct FE
[SW05,BSW11] respectively utilizing a single call to a stateless “small” TP. We
start off with their trade-offs below.

LFE-Based Construction. LFE’s 2-round minimal communication pattern
leads to an MPC in a minimal communication setting that is reminiscent of
PSM-style [FKN94] communication. Here, the parties start off with a common
randomness. Based on the respective inputs and this randomness, the parties
communicate a single message to the TP, which performs certain computation
and returns a message to each party. In the end, each party recovers the output
receiving the message from the TP. Further, the encryption algorithm of LFE
enjoys computation that is only dependent on the depth and the output length
(and not size) of the function to be computed. This allows our TP to be “small”.
Here with the best known realizations of LFE, we can achieve a TP of size
poly(n, κ, d,m), where d denotes depth of the circuit and m denotes input and
output size of the circuit, n denotes the number of parties and κ denotes the
security parameter. Removing m from the complexity of the TP seems hard,
intuitively because the parties never communicate with each other and they
communicate only once via the TP. Achieving depth and input-size independence
in this minimal communication setting is left as an interesting open question
which can possibly contribute back to the LFE regime. In particular, a solution
in our setting where TP is of size poly(n, κ,m) will lead to a LFE where the
encryption scheme and size of the ciphertext are completely independent of the
depth of the function under consideration.

FE-Based Construction. Unlike the LFE-based construction, our FE-based
construction requires communication amongst the parties before making the
TP call. While it loses on this front, there are two positive features that it
brings to the table: (a) possibly weaker assumption (b) the TP’s computation
can be independent of d,m. Elaborating further, LFE is seemingly a stronger
assumption than FE, since it is known to imply FE, while the other way is not
known [QWW18]. Based on the realization of FE under various assumptions,
we achieve multiple variants of the protocol where the TP’s computation ranges
from being completely independent of input, output and function to linearly
dependent on output size (yet independent of the function) to linearly dependent
on the output size and the depth of the function. To be specific, under iO and
OWFs, our FE based construction leads to a TP of size poly(n, κ), completely
independent of the function to be computed.

Fully-Secure MPC with Minimal Trust 477

Construction Overview. Our constructions follow a three-phase structure as
follows: (a) phase 1: here the parties, on holding a common randomness and
respective inputs, prepare a (message, state) pair, where the message is sent to
the TP and the state is saved; (b) phase 2: the TP, on receiving messages from
the parties, performs some computation and returns a message to every party;
and (c) phase 3: the parties, on receiving the message from the TP, uses its state
to recover the output. Phase 1 involves communication amongst the parties in
the FE-based construction. We provide an informal overview behind the idea for
each construction below.

Overview of LFE-Based Solution. We present here a simplified version of our
LFE-based construction of fully-secure MPC for ease of exposition. The actual
construction, detailed in Sect. 3.3, is significantly more nuanced and uses several
techniques to achieve full security against malicious corruptions of parties. In
the simplified treatment presented here, we focus on the case of semi-honest
corruption, with the aim of highlighting how we manage to keep the TP size
small (i.e., independent of the function size). Note that throughout this paper,
we assume that each party communicates with the TP via a separate secure
channel, and hence an adversary (corrupting a subset of the parties) cannot
eavesdrop on the communication between the TP and any honest party.

Given this model, a simplified version of our LFE-based protocol works as
follows. Each party first uses a common randomness to (locally) derive a CRS
for the LFE scheme and a digest corresponding to the function f . Each party
then sends the LFE CRS and the function digest to the TP, along with its own
input. The TP uses the CRS and the digest to compute an LFE ciphertext
encapsulating the inputs of all of the parties, and sends this ciphertext back to
the parties. Finally, each party uses the LFE CRS and its local randomness of
digest generation to recover the function output. Observe that the size of the
messages to the TP and the computation done by the TP are independent of the
size of the function f ; this follows immediately from the succinctness properties
of the underlying LFE scheme. Finally, we can invoke the privacy guarantees of
LFE to argue that the parties learn no more information than the output of the
MPC protocol, as desired.

As mentioned earlier, our actual LFE-based protocol uses additional tech-
niques to guarantee full security in the presence of malicious corruptions. This
includes techniques that enable the TP to “partition” the parties into various sets
depending on their messages to the TP, and to substitute default input values for
(malicious) parties not in the partition when preparing partition-specific LFE
ciphertexts. Further, we augment the construction to achieve privacy against
the TP. We refer to Sect. 3.3 for the detailed description and analysis of our
construction.

Overview of FE-Based Solution. We now present a simplified version of our FE-
based construction of fully-secure MPC. Once again, our actual protocol, detailed
in Sect. 3.3 uses additional techniques to achieve full security against malicious
corruptions of parties; we avoid detailing all of these in the simplified treatment

478 Y. Ishai et al.

for ease of exposition and focus on the setting of semi-honest corruptions. As in
the LFE-base solution, we again assume that each party communicates with the
TP via a separate secure channel, and hence an adversary (corrupting a subset
of the parties) cannot eavesdrop on the communication between the TP and any
honest party.

Given this model, the simplified version of our FE-based protocol works as
follows. The parties initially engage in an MPC protocol (with identifiable abort
security) to decide on a common set of public parameters and a common master
public key for the FE scheme. The MPC protocol additionally outputs to each
party a functional secret key for the function f to be evaluated. Each party then
simply sends the master public key and its own input to the TP. The TP uses
the master public key to compute an FE ciphertext encapsulating the inputs of
all of the parties, and sends this ciphertext back to the parties. Finally, each
party uses the functional secret key to recover the function output. Observe that
the size of the messages to the TP and the computation done by the TP are
independent of the size of the function f as long as the FE scheme is succinct.
Finally, we can invoke the privacy guarantees of FE to argue that the parties
learn no more information than the output of the MPC protocol, as desired.

Note that in the above simplified exposition, the TP incurs an overhead that
grows with the size of the inputs and output of the function f to be evaluated. In
our actual protocol, we use additional techniques to get rid of this dependence. In
particular, we use a carefully designed indirection mechanism that allows the TP
to simply partition the set of parties (depending on their messages to the TP) and
encapsulate this partition information into the FE ciphertext, while delegating
all computation dependent on the input/function size entirely to the parties.
These techniques serve two purposes: (a) making the TP size independent of
the function input/output size (and thereby asymptotically smaller than the TP
size for our LFE-based solution) and (b) achieving full security against malicious
corruptions of parties. Interestingly, this solution also achieves privacy against
the TP. We refer to Sect. 3.4 for the detailed description and analysis of our
construction.

1.3.2 Negative Results
We present two impossibility results for fully-secure MPC that utilizes a small
TP. Our two results are as follows: (1) First, we show that it is impossible to
achieve a fully secure TP-aided MPC utilizing a single call to a small TP, for
a class of protocols that have an universal output decoder. This result holds
irrespective of computational assumptions used in the protocol. The universal
output decoder is independent of the function to be computed and only performs
poly(n, κ) computation. (2) Second, we show an impossibility in the plain model,
for any statistically-secure MPC even in the semi-honest setting. This result does
not assume that the protocol uses an universal output decoder. We present the
high-level intuition of both the impossibility arguments.

Fully-Secure MPC with Minimal Trust 479

Impossibility of Fully-Secure MPC Protocols with Universal Output
Decoder in the Correlated Randomness Model. We now present a sim-
plified argument of our impossibility result and refer to Sect. 4.1 for the details.
Consider an execution of an MPC protocol with full security, where the adversary
behaves honestly until the TP call. During the TP call, he can choose to make any
subset of corrupt parties, say S, abort; where the number of such subsets is expo-
nential in the number of parties. Since the protocol achieves full security, it must be
the case that the TP is able to enable output computation by the parties, no matter
which subset S the adversary chooses. Further, the output must be such that it is
computed on the default input of the corrupt parties in S and the honest inputs of
others (i.e. the input used until and including the TP call). Intuitively, this means
that the information given to the TP is such that it can be used to recover 2n out-
put values (one for each possible subset). Since the TP is small, this information
must be ‘short’ and can therefore be perceived as a ‘compression’ of the 2n out-
put values. Building on the above intuition, we show that a fully secure protocol
with universal output decoder would imply an (encoding, decoding) scheme which
can produce an encoding that is smaller than the size of the message domain of the
encoding scheme. This breaches the known incompressibility argument. Precisely,
weuse a result ofDe et al. [DTT10],which formalizes the notion that it is impossible
to compress every element in a set X to a string less than log |X| bits long.

Impossibility of Statistical MPC in the Plain Model. At a high-level,
we show this impossibility by demonstrating that such a protocol would imply
a semi-honest information-theoretic oblivious transfer (OT) extension, which is
known to be impossible [Bea96]. Here, OT extension refers to a protocol that
allows a sender and a receiver to extend a relatively small number of base OTs
(say k) to a larger number of OTs (say k+1) using only symmetric-key primitives.

The main idea of the proof is to construct an OT extension protocol using
the semi-honest statistically-secure protocol, say Π, as follows. We choose the
functionality computed by Π as computing (k + 1) oblivious transfer instances.
Since the TP is small, its size must be strictly less than the circuit computing
(k + 1) oblivious transfer instances. Roughly speaking, Π can thus be viewed as
a protocol that enables the parties to generate (k + 1) OTs, by having access to
the TP whose functionality can be realized by strictly less than (k+1) OTs (say
k OTs). We build on this idea to construct an information-theoretic semi-honest
OT extension protocol where the parties begin with k base OTs and use Π to
generate (k + 1) OTs.

1.3.3 Impossibility of Fair MPC with Colluding TP
Our results show that small TP is sufficient for positive results in the computa-
tional security regime. But what happens when the TP is no longer a stand-alone
entity, but behaves as another party that can not only eavesdrop but also col-
lude with the corrupt parties (while remaining semi-honest by itself)? This is
a model where the adversary controls a majority of the parties maliciously (or
even fail-stop fashion) and simultaneously corrupts the TP semi-honestly. For
this model, we ask the questions: Can such a TP circumvent Cleve’s [Cle86]
impossibility result?

480 Y. Ishai et al.

We show a negative result for the above question even for fail-stop adversaries
(i.e., the malicious parties still follow the protocol specification but may choose
to stop arbitrarily). At a high level, we take the following route. Note that
the colluding adversarial model can be viewed more generally, in terms of the
general mixed adversarial model that has been studied in works such as [HMZ08,
FHM99,BFH+08]. We then use the characterization proposed in [HMZ08] for
fair and fully-secure MPC tolerating mixed adversaries to rule out a fair protocol
in the colluding model even when malicious corruption is replaced with fail-
stop corruption. In particular, we define an adversarial structure complying with
the colluding security model and show that this structure is ruled out by the
characterization provided in [HMZ08].

In light of this generic negative result, we also explore whether a TP can
be used in the colluding model to realize fair MPC protocols for certain specific
classes of non-trivial functions such as randomized functions without inputs (e.g.
coin-tossing). A näıve solution uses the TP to directly compute the desired
function; however, such a TP can no longer be small. We give evidence that a
better solution using a small TP is unlikely to exist.

1.4 Related Work

There are several fascinating works in the MPC literature that attempt to bypass
fundamental feasibility results using external aid. Impossibility of fair MPC
in dishonest majority [Cle86] is one such classic impossibility result that has
received noteworthy attention. We focus on three broad categories of related
works. First is the most closely related line of work to ours which studies the
‘minimal help’ required to compute all functions fairly, where the helper is char-
acterized as a ‘complete’ primitive. Second, we outline the line of works that
circumvent the impossibility of [Cle86] by considering non-standard notions of
fairness. Lastly, we outline the works that circumvent yet another classical impos-
sibility, namely, impossibility of secure computation of general functionalities
within the universal composability (UC) framework in presence of dishonest
majority in the plain model [CF01] by using hardware tokens and physically
unclonable functions (PUFs).

The work of [FGMO01] initiated the study of minimal complete primitives for
secure computation, focusing on the minimal cardinality of complete primitives
for various thresholds. In particular, they showed that cardinality n is necessary
for any complete primitive in dishonest majority and proposed Universal Black
Box (UBB) as one such primitive. Subsequently, the work of [GIM+10] proposed
a simpler complete primitive for fairness in dishonest majority, namely ‘fair
reconstruction’. While [GIM+10] focused on the computational setting, [IOS12]
presented the first unconditional construction of a complete primitive for full
security, whose complexity does not grow with the complexity of the function
being evaluated (in contrast to the UBB solution of [FGMO01]). However, this
unconditional construction of [IOS12] utilizes number of calls that scales with
the circuit size. To improve the number of calls, [IOS12] also proposes another
construction where the number of calls depends only on the number of parties

Fully-Secure MPC with Minimal Trust 481

(n) and the output size of the circuit but settles for computational security in
the plain model. Finally, they also have a variant where the number of calls is
reduced to 1 at the price of increasing the complexity of the computation done
by the complete primitive exponentially in n.

As mentioned earlier, an interesting feature that our constructions satisfy is
to maintain privacy against the TP. We note that the unconditional variant of
[IOS12] (that utilizes number of calls scaling with circuit size) leaks the inputs
of the parties to the TP. With respect to the computational variants in [IOS12]
that only leak the output of the computation to the TP, we note that it can
be tweaked to maintain privacy of the output by adopting the technique of
[GIM+10].

Other works related to breaking barriers imposed by the impossibility of
[Cle86] include the works of [GK09,GHKL11,ABMO15] that achieve fairness
in dishonest majority for restricted functionalities. Some other works explore
non-standard notions of fairness such as [GK12,BOO15,BLOO20] that consid-
ers partial fairness, [BK14,KB14,ADMM14] that enforce fairness by imposing
penalties, [CGJ+17] that use bulletin boards and [EGL85,GMPY11,PST17] that
explore resource-fairness.

The sequence of works of [Kat07,CKS+14,DMRV13,CGS08,CCOV19,
HPV16] study UC-security with tamper-proof hardware token, both in the
stateful and stateless variants. Another interesting utility of hardware tokens
is reflected in designing Non-Interactive Secure Computation (NISC) proto-
cols using minimal assumptions. The work of [BJOV18] proposes a UC-secure
NISC protocol based on the minimal assumption of one-way functions using
hardware token. Lastly, the works of [BFSK11,OSVW13,BKOV17] explore UC-
secure computation assuming access to PUFs.

Paper Outline. We formally define TP-aided MPC protocols in Sect. 2. Our
positive results appear in Sect. 3. Our negative results for TP-aided MPC appear
in Sect. 4. Our negative result for fair MPC in the colluding TP model is briefly
summarized in Sect. 5. Due to lack of space, we defer certain proof details and
extensions of the above results to the full version of our paper.

2 Security Model

In this section, we present our definitions in the UC-framework [Can01]. We
denote by [p] the set {1, . . . , p}, for a positive integer p.

The Real World. An n-party protocol Π with n parties P = (P1, . . . , Pn) is
an n-tuple of probabilistic polynomial-time (PPT) interactive Turing machines
(ITMs), where each party Pi is initialized with input xi ∈ {0, 1}∗ and random
coins ri ∈ {0, 1}∗. These parties interact in synchronous rounds. In every round
parties can communicate either over a broadcast channel or a fully connected
point-to-point (P2P) network, where we additionally assume all communication
to be private and ideally authenticated. Further, we assume that there exists a
special party P ∗ called a “trusted party” (abbreviated henceforth as TP) such
that each party Pi can interact with P ∗ via private and authenticated point-to-
point channels. The TP P ∗ does not typically hold any inputs, and also does

482 Y. Ishai et al.

not obtain any output at the end of the protocol. Further, the TP is stateless in
the sense that it does not keep any state between calls.

We let A denote a special ITM that represents the adversary. A is coordinated
by another special non-uniform ITM environment Z = Zκ. At setup, Z gives
input (1κ, xi) to each party Pi. At the same time, Z provides to A the tuple
(C, {xi}i∈C , aux), where C ⊂ [n]∪{P ∗} denotes the set of all corrupt parties, and
aux denotes some auxiliary input.

During the execution of the protocol, the maliciously corrupt parties (some-
times referred to as ‘active’) receive arbitrary instructions from the adversary A,
while the honest parties and the semi-honestly corrupt (sometimes referred to as
‘passive’) parties faithfully follow the instructions of the protocol. We consider
the adversary A to be rushing, i.e., during every round the adversary can see
the messages the honest parties sent before producing messages from corrupt
parties.

At the conclusion of the protocol, A gives to the environment Z an output
which is an arbitrary function of A’s view throughout the protocol. Z is addi-
tionally given the outputs of the honest parties. Finally, Z outputs a bit. We let
realπ,A,Z(κ) be a random variable denoting the value of this bit.

Definition 1 (Real-world execution). Let Π be an n-party protocol amongst
(P1, . . . , Pn) computing an n-party function f : ({0, 1}∗)n → ({0, 1}∗)n and let
C ⊆ [n]∪{P ∗} denote the set of indices of the corrupted parties. The execution of
Π under (Z,S, C) in the real world, on input vector �x = (x1, . . . , xn), auxiliary
input aux and security parameter κ, denoted realΠ,C,A(aux)(�x, κ), is defined as the
output of Z resulting from the protocol interaction.

The Ideal World. We describe ideal world executions with unanimous abort
(un-abort), identifiable abort (id-abort), fairness (fairness) and full security aka.
guaranteed output delivery (full).

Definition 2 (Ideal Computation). Consider type ∈ {un-abort,
id-abort, fairness, full}. Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-party function.
Once again, we have a non-uniform environment Z = Zκ that gives (at setup)
input (1κ, xi) to each party Pi, while also providing to the simulator S the tuple
(C, {xi}i∈C , aux), where C ⊂ [n]∪{P ∗} denotes the set of all corrupt parties, and
aux denote some auxiliary input. Then, the ideal execution of f under (Z,S, C)
on input vector �x = (x1, . . . , xn), auxiliary input aux to S and security parameter
κ, denoted idealtypef,C,S,(aux)(�x, κ), is defined as the output bit of Z resulting from
the following ideal process.

1. Parties send inputs to trusted party: An honest party Pi sends its input xi

to the trusted party. The simulator S may send to the trusted party arbitrary
inputs for the corrupt parties. Let x′

i be the value actually sent as the input
of party xi.

2. Trusted party speaks to simulator: The trusted party computes (y1, . . . , yn) =
f(x′

1, . . . , x
′
n). If there are no corrupt parties or type = full, proceed to step 4.

(a) If type ∈ {un-abort, id-abort}: The trusted party sends {yi}i∈C to S.

Fully-Secure MPC with Minimal Trust 483

(b) If type = fairness: The trusted party sends ready to S.
3. Simulator S responds to trusted party:

(a) If type ∈ {un-abort, fairness}: The simulator can send abort to the trusted
party.

(b) If type = id-abort: If it chooses to abort, the simulator S can select a
corrupt party i∗ ∈ C who will be blamed, and send (abort, i∗) to the
trusted party.

4. Trusted party answers parties:
(a) If the trusted party got abort from the simulator S,

i. It sets the abort message abortmsg, as follows:
– if type ∈ {un-abort, fairness}, we let abortmsg = ⊥.
– if type = id-abort, we let abortmsg = (⊥, i∗).

ii. The trusted party then sends abortmsg to every party Pj, j ∈ [n] \ C.
Note that, if type = full, we will never be in this setting, since S was not
allowed to ask for an abort.

(b) Otherwise, it sends yj to every Pj, j ∈ [n].
5. Outputs: Honest parties always output the message received from the trusted

party while the corrupt parties output nothing. At the conclusion of the above
execution, S provides Z with an output which is an arbitrary function of S’s
view throughout the protocol. Z is additionally given the outputs of the honest
parties. Finally, Z outputs a bit. We let idealtypef,S,Z(κ) be a random variable
denoting the value of this bit.

Security Definitions. We now define the security notions used in this paper.

Definition 3 (Colluding and Non-colluding Security). Consider type ∈
{un-abort, id-abort, fairness, full}. Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-party
function. A protocol Π securely computes the function f in the colluding model
with type security if for any adversary A, there exists a simulator S such that
for any security parameter κ and any circuit family Z = {Zκ} corrupting any
C ⊂ [n] maliciously and the TP P ∗ semi-honestly simultaneously, we have

{
realΠ,C,A(aux)(�x, κ)

}
�x∈({0,1}∗)n,κ∈N

≡
{
idealtypef,C,S(aux)(�x, κ)

}

�x∈({0,1}∗)n,κ∈N

.

When the corruption is non-simultaneous i.e. either any subset of [n] are
maliciously corrupt or the TP P ∗ is semi-honestly corrupt, we denote the security
by non-colluding. Therefore we need the above indistinguishability to hold in two
corruption cases: (a) C ⊂ [n] malicious corruption (b) C = P ∗ semi-honest
corruption.

A protocol achieves computational security, if the above distributions are com-
putationally close in the presence of the parties, A, S, Z that are PPT. A proto-
col achieves statistical (resp. perfect) security if the distributions are statistically
close (resp. identical).

3 Fully-Secure MPC with Single Call to Small TP

Here, we present TP-aided MPC protocols that make a single call to a small TP
and achieve full security in the non-colluding setting against malicious corruption

484 Y. Ishai et al.

of majority of parties and semi-honest corruption of the TP. We present two fla-
vors of protocols– one based on laconic function evaluation (LFE) [QWW18] and
the other based on succinct single-key functional encryption (FE) [GKP+13]. We
begin by recalling the definitions for these primitives.

3.1 Laconic Function Evaluation (LFE)

We recall the definition of LFE – a primitive introduced in [QWW18].

Definition 4 (Laconic Function Evaluation). An LFE scheme for a class
of circuits H = {Hm}m∈N (represented as Boolean circuits with m-bit inputs) is
a tuple (LFE.Setup, LFE.Compress, LFE.Enc, LFE.Dec) defined below.

– LFE.Setup(1κ) → LFE.crs: On input the security parameter 1κ, the generation
algorithm returns a common random string LFE.crs.

– LFE.Compress(LFE.crs, h) → (digest, r): On input LFE.crs and a circuit h, the
compression algorithm returns a digest digest and a decoding information r.

– LFE.Enc(LFE.crs, digest, x) → ct: On input LFE.crs, a digest digest, and a
message x, the encryption algorithm returns a ciphertext ct.

– LFE.Dec(LFE.crs, ct, r) → y: On input LFE.crs, a ciphertext ct, and a decoding
string r, the decoding algorithms returns a message y.

In this work, we use LFE schemes that satisfy correctness, simulation-security
and function-hiding security, as defined formally below.

Definition 5 (Correctness). Let LFE = (LFE.Setup, LFE.Compress, LFE.Enc,
LFE.Dec) be an LFE scheme for a class of functions H = {Hm}m∈N. We say
that LFE is a correct LFE scheme if for any m = poly(κ), for all h ∈ Hm, and
for all x ∈ {0, 1}m, letting LFE.crs ← LFE.Setup(1κ), and letting

(digest, r) ← LFE.Compress(LFE.crs, h), ct ← LFE.Enc(LFE.crs, digest, x),

the following holds:

Pr[LFE.Dec(LFE.crs, ct, r) = h(x)] = 1 − negl(κ),

where the probability is taken over the random coins of LFE.Setup, LFE.Compress,
and LFE.Enc.

Definition 6 (Simulation-Security). Let LFE = (LFE.Setup, LFE.Compress,
LFE.Enc, LFE.Dec) be an LFE scheme for a class of functions H = {Hm}m∈N.
For every non-uniform PPT adversary A = (A1,A2) and every PPT simulator
S, consider the following two experiments (κ being the security parameter):

Fully-Secure MPC with Minimal Trust 485

Experiment ExptrealLFE,A(1κ):

LFE.crs ← LFE.Setup(1κ)

(x, h, s, stA) ← A1(1κ, LFE.crs)

(digest, r) ← LFE.Compress(LFE.crs, h; s)

ct ← LFE.Enc(LFE.crs, digest, x)

Output b ← A2(stA, ct)

Experiment ExptidealLFE,A,S(1κ):

LFE.crs ← LFE.Setup(1κ)

(x, h, s, stA) ← A1(1κ, LFE.crs)

(digest, r) ← LFE.Compress(LFE.crs, h; s)

c̃t ← S(LFE.crs, digest, h, h(x))

Output b ← A2(stA, c̃t)

The LFE scheme LFE is said to satisfy (semi-malicious)-simulation-security if
for any security parameter κ ∈ N, there exists a PPT simulator S such that for
every non-uniform PPT adversary A = (A1,A2), the outcomes of the real and
ideal experiments are computationally indistinguishable, i.e., we have

∣
∣
∣Pr[ExptrealLFE,A(1κ) = 1] − Pr[ExptidealLFE,A,S(1κ) = 1]

∣
∣
∣ ≤ negl(κ),

where A is admissible if h ∈ Hm for some m = poly(κ), and the probability is
taken over the random coins of LFE.Setup, LFE.Compress, LFE.Enc, A1, and S.

Definition 7 (Function-Hiding Security). Let LFE = (LFE.Setup,
LFE.Compress, LFE.Enc, LFE.Dec) be an LFE scheme for a class of functions
H = {Hm}m∈N. For every non-uniform PPT adversary A = (A1,A2) and every
PPT simulator S, consider the following two experiments (κ being the security
parameter):

Experiment Exptreal,FHLFE,A (1κ):

LFE.crs ← LFE.Setup(1κ)
(h, stA) ← A1(1κ,mpk)
(digest, r) ← LFE.Compress(LFE.crs, h)
Output b ← A2(stA, digest)

Experiment Exptideal,FHLFE,A,S(1κ):

LFE.crs ← LFE.Setup(1κ)
(hstA) ← A1(1κ, LFE.crs)
d̃igest ← S(LFE.crs,F)
Output b ← A2(stA, d̃igest)

The LFE scheme LFE is said to satisfy function-hiding simulation-security if for
any security parameter κ ∈ N, there exists a PPT simulator S such that for
every non-uniform PPT adversary A = (A1,A2), the outcomes of the real and
ideal experiments are computationally indistinguishable, i.e., we have

∣
∣
∣Pr[Exptreal,FHLFE,A (1κ) = 1] − Pr[Exptideal,FHLFE,A,S(1κ) = 1]

∣
∣
∣ ≤ negl(κ),

where A is admissible if h ∈ Hm for some m = poly(κ), and the probability is
taken over the random coins of LFE.Setup, LFE.Compress, A1, and S.

486 Y. Ishai et al.

3.2 Succinct Single-Key Functional Encryption

We now recall the definition of succinct single-key functional encryption (FE).

Definition 8 (Functional Encryption). A functional encryption scheme
FE for a class of functions H = {Hm}m∈N (represented as Boolean circuits
with m-bit inputs), is a tuple of four PPT algorithms (FE.Setup,FE.KeyGen,
FE.Enc,FE.Dec) such that:

– FE.Setup(1κ) → (mpk,msk): On input the security parameter κ, the setup
algorithm outputs a master public key mpk and a master secret key msk.

– FE.KeyGen(msk, h) → skh: On input the master secret key msk and a function
h ∈ H, the key generation algorithm outputs a key skh.

– FE.Enc(mpk, x) → ct: On input the master public key mpk and an input x ∈
{0, 1}m for some m = poly(κ), the encryption algorithm outputs a ciphertext
ct.

– FE.Dec(skh, ct) → y: On input a key skh and a ciphertext ct, the decryption
algorithm outputs a value y.

In this work, we use single-key FE schemes that satisfy correctness, single-key
full-simulation-security and succinctness, as defined formally below.

Definition 9 (Correctness). Let FE = (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec)
be a single-key FE scheme for a class of functions H = {Hm}m∈N. We say that
FE is a correct single-key FE scheme if for any m = poly(κ), for all h ∈ Hm,
and for all x ∈ {0, 1}m, letting

(mpk,msk) ← FE.Setup(1κ), skh ← FE.KeyGen(msk, h), ct ← FE.Enc(mpk, x),

the following holds:

Pr[FE.Dec(skh, ct) = h(x)] = 1 − negl(κ),

where the probability is taken over the random coins of FE.Setup, FE.KeyGen,
and FE.Enc.

Definition 10 (Full-Simulation Security). Let FE = (FE.Setup,FE.KeyGen,
FE.Enc,FE.Dec) be a single-key FE scheme for a class of functions H =
{Hm}m∈N. For every non-uniform PPT adversary A = (A1,A2) and every PPT
simulator S, consider the following two experiments (κ being the security param-
eter):

Experiment ExptrealFE,A(1κ):

(mpk,msk) ← FE.Setup(1κ)
(h, stA) ← A1(1κ,mpk)
skh ← FE.KeyGen(msk, h)
(x, st′

A) ← A2(stA, skh)
ct ← FE.Enc(mpk, x)
Output (st′

A, ct)

Experiment ExptidealFE,A,S(1κ):

(mpk,msk) ← FE.Setup(1κ)
(h, stA) ← A1(1κ,mpk)
skh ← FE.KeyGen(msk, h).
(x, st′

A) ← A2(stA, skh)
c̃t ← S(mpk, skh, h(x), 1|x|)
Output (st′

A, c̃t)

Fully-Secure MPC with Minimal Trust 487

The FE scheme FE is said to satisfy (single-key) full-simulation-security if for
any security parameter κ ∈ N, there exists a PPT simulator S such that for
every non-uniform PPT adversary A = (A1,A2), the outcomes of the real and
ideal experiments are computationally indistinguishable, i.e., we have

ExptrealFE,A(1κ) ≈c ExptidealFE,A,S(1κ).

Definition 11 (Succinctness). Let FE = (FE.Setup,FE.KeyGen,FE.Enc,
FE.Dec) be a single-key FE scheme for a class of functions H = {Hm}m∈N.
We say that FE is succinct if for any m = poly(κ), for all h ∈ Hm, and for all
x ∈ {0, 1}m, letting

(mpk,msk) ← FE.Setup(1κ), ct ← FE.Enc(mpk, x),

the size of the ciphertext ct (i.e., |ct|) does not grow with the size of the circuit
for h, but only with its depth.

3.3 Fully-secure MPC from Laconic Cryptography

In this subsection, we present our construction of TP-aided MPC from LFE.

Construction Overview. The high-level description of the construct, following
the three-phase structure (as discussed in Sect. 1.3), is presented in two steps. In
the first step, we assume an honest TP and allow the parties to hand out the inputs
to the TP in the clear. In the second step, input privacy against the TP is put in
place via function-hiding LFE. Throughout, we assume an LFE with a common
random string (CRS), as is the case for the construction of LFE in [QWW18].

In the first phase, every party uses the common randomness to derive a CRS for
the LFE and subsequently computes a digest of f (the function to be computed)
using the CRS. It sends the CRS, the digest and its input to the TP. The TP needs
to compute an encryption of the collective inputs under the correct digest andCRS.
However, a malicious party may send a incorrect digest, say for a function that
leaks an honest party’s input. The TP can verify the correctness of the digest, since
the compress function of the LFE scheme is deterministic. But this amounts to a
computation that is dependent on the circuit size, breaking the promise of small
TP. To tackle this issue without recomputing the function digest, the TP partitions
the set of parties based on the CRS and digest. For every set that sends the same
copy of both, gets an encryption under the digest, of the message that consists of
the real inputs received from that set and default inputs for those outside that set.
This trick ensures that a corrupt party does not get encryption of the inputs of the
honest parties under its ill-formed digest. Lastly, on receiving the encryption from
the TP, a party simply uses the CRS to learn the function output.

To additionally ensure input privacy against the TP, the function f for LFE
is replaced with a related function g that hard-codes n random masks and takes
as input n masked inputs of the parties. It first unmasks the masked inputs and
then performs the f -computation. The masks are derived from common random-
ness and thus are known to all. We can use one-time pad for masking. This implies
every party has the knowledge of g and can generate a digest that is supposed to be

488 Y. Ishai et al.

the same. Now, every party uses its respective mask to mask its input before send-
ing to the TP. The TP performs the same computation as before, but now on the
received masked inputs, digest for g and CRS. To hide the random masks that are
hard-coded inside g from the TP who will learn the digest, we switch to function-
hiding LFE. This makes sure the TP learns neither about the inputs, not about
the output. The LFE security ensures the parties learn nothing but the output of
g. The detailed construction is as described below.

Primitive: The following building blocks are used
– An LFE scheme LFE = (LFE.Setup, LFE.Compress, LFE.Enc, LFE.Dec).
Phase 1 (Pre-TP Call): Each party Pi does the following:
– Set LFE.crs := r , where r is obtained from the common randomness r r .
– Derive n random pads {rj}j∈[n], where |rj | = |xj |, using r obtained from the

common randomness r r .
– Compute (digestg, rg) ← LFE.Compress g, LFE.crs , where function g is as fol-

lows and send (LFE.crs, digestg, zi = xi ⊕ ri) to the TP.
• g hard-codes the n pads {rj}j∈[n]

• it takes n inputs z1, . . . , zn

• it computes f on input {zj ⊕ rj}j∈[n].
We note that (LFE.crs, digestg, rg) is supposed to be the same for all parties, since
they use the common randomness r and f .

Phase 2(TP Call): The TP carries out the following computation:
– Initialize the set Z = ∅. Add Pj to Z if nothing (or syntactically incorrect

message) is received from Pj .
– Partition the set P \ Z into subsets S1, S2 . . . S according to the values of (

LFE.crs, digestg) received from the parties i.e. all parties in a subset have sent the
same (LFE.crs, digestg).

– For each Sα for α ∈ {1 }
• Let LFE.crsα, digestgα denote the common values submitted by parties in Sα.
• For each j ∈ {1, . . . , n}, set z̄j = zj if j ∈ Sα, and z̄j = zj otherwise, where zj

is received from Pj and {zj}j∈{1,...,n} are the default (masked) inputs sampled
randomly by the TP.

• Send ctα, Sα to every party in Sα, where ctα ← LFE.Enc digestgα, z̄1, . . . , z̄n .

Phase 3 (Post-TP Call): A party Pi, on receiving ct, computes output y as

y ← LFE.Dec LFE.crs, ct, rg ,

using LFE.crs, rg from Phase 1.

Inputs: Each party Pi has input xi. All parties share a common randomness of the
form r r .
Output: f(x1, . . . xn)

Protocol ΠLFE

Fig. 1. Fully-secure MPC with single TP call based on LFE

Our result can be summarized via the following theorem.

Fully-Secure MPC with Minimal Trust 489

Theorem 4 (TP-Aided MPC from LFE). Assuming the existence of a
laconic function evaluation (LFE) scheme that satisfies correctness, simulation-
security and function-hiding security, there exists a TP-aided MPC protocol ΠLFE

for any functionality f that:

– utilizes a single call to a stateless TP of size poly(n, κ,m, α, β) (where n
is the number of parties, κ is the security parameter, m is the size of each
party’s input to f , and α and β denote the sizes of a single digest and a single
ciphertext, respectively, in the LFE scheme), and

– achieves full security against malicious corruption of up to (n − 1) parties
and semi-honest corruption of the TP in the non-colluding model (see Defi-
nition 3).

We defer the formal proof of this theorem to the full version of our paper.

3.4 Fully-Secure MPC from Single-Key Succinct FE

In this subsection, we show how to construct TP-aided MPC from single-key
succinct FE.

Construction Overview. The high-level description of the construct, following
the three-phase structure (as discussed in Sect. 1.3), is presented in two steps.
In the first step, we assume an honest TP and allow the parties to hand out the
inputs to the TP. In the second step, input privacy is put in place via a SKE.

For our construction, in the first phase, the parties execute an MPC protocol
with identifiable abort3 amongst the n parties that establishes the setup of the
FE and gives the parties skf (corresponding to the function f desired to be
computed) to aid in output computation. Since this execution may result in
abort (where only corrupt parties may get the output), we cannot allow the
MPC to output the FE ciphertext corresponding to the parties’ inputs directly.
Instead, the ciphertext is computed by the TP to whom the parties submit their
inputs when Phase 1 is successful (which may need repeated run of the MPC with
identifiable abort). To enable the TP to do so, the parties additionally submit
mpk (obtained in Phase 1) to the TP. In order to ensure that privacy of honest
parties’ inputs is maintained against a corrupt party who sends mpk distinct

3 Some of the protocols in the literature realizing this functionality for general func-
tions are [GS18].

490 Y. Ishai et al.

from the one obtained in Phase 1, the TP does the following: partition the set
of parties based on the value of mpk they submitted. For each partition, the
TP returns ciphertext based on actual inputs of parties within the partition and
default otherwise. This ensures that a corrupt party who submits an incorrect
mpk (say mpk′ which is distinct from the one obtained from Phase 1) never
get access to a ciphertext computed using mpk′ that involves an honest party’s
input. Lastly, the parties use the ciphertext obtained from the TP and skf to
obtain the output.

Note that the above protocol is not secure in the non-colluding model as it
does not achieve input privacy against a semi-honest TP. Further, the compu-
tation done by the TP grows with the size of the parties’ inputs. In order to
achieve security against a semi-honest TP and make the computation of the TP
independent of the size of the parties’ inputs, we make the following modifica-
tions. First, the input of each party is hidden in a ciphertext of a SKE. The MPC
with identifiable abort now takes as input the inputs of the parties, computes
distinct ciphertexts for the inputs, each under a distinct secret key, and delivers
only the ith secret key to Pi. Instead of the inputs, these keys are sent to the
TP, who performs similar computation as before, but with respect to these keys.
To make the both ends meet, the function to be computed by FE is changed to
a related function g (instead of the function to be computed f) that hard-codes
the ciphertexts of the inputs and takes the n keys as inputs. The function g
first decrypts the ciphertexts and then compute f on the decrypted messages.
The MPC with identifiable abort now prepares and gives out the secret key of
FE corresponding to g. To prevent the parties from tampering the secret keys
for SKE while sending to the TP, we use a signature scheme. The MPC sam-
ples a (public, secret) key pair for a digital signature scheme and delivers signed
messages meant for TP (SKE key and mpk in this case) and the public key for
verification to a party. The parties forward this to the TP, who now discards the
parties whose verification fails, partitions the parties based on the verification
key and proceeds as before. The detailed construction is as described below.

Fully-Secure MPC with Minimal Trust 491

Inputs: Each Pi participates with input xi.
Output: f(x1, . . . xn)
Primitive: The following building blocks are used
– An MPC protocol Πidua

– A succinct single-key simulation-secure FE scheme FE = (FE.Setup,FE.KeyGen,
FE.Enc,FE.Dec).

– An IND-CPA secure symmetric-key encryption scheme SKE = (SKE.Gen, SKE.Enc,
SKE.Dec).

– A digital signature scheme (Sign,Vrfy).

Phase 1 (Pre-TP Call): Each Pi invokes an instance of Πidua with input xi to
compute a function that does the following:
– Generate a default input xi for every Pi.
– Generate a secret key ki ← SKE.Gen(1κ) for every party Pi.
– Generate (msk,mpk) ← FE.Setup(1κ).
– Generate ei ← SKE.Enc(ki, xi) for every Pi.
– Generate skg = FE.KeyGen(msk, g), where g

• g embeds the ciphertexts {ej}j∈[n] and default inputs {xj}j∈[n].
• g takes as input a set of keys {kj}j∈[n] and an n-length bit vector {bj}j∈[n].
• g outputs f(x̄1, . . . , x̄n) where for each j ∈ [n], x̄j = SKE.Dec(ki, ej) if bi = 1

and x̄j = xj otherwise.
– Generate (sk, vk) for the digital signature scheme.
– For each i ∈ [n], output (vk,mpk, ki, σi, skg) to Pi where σi = Sign(sk, (i,mpk, ki)).
If Πidua outputs (⊥, C), re-run Phase 1 among the set of parties P \C (the inputs of
parties in C are substituted using default inputs). Else, continue to the next phase.
Each Pi invokes the TP with ini = (vk,mpk, ki, σi).

Phase 2 (TP Call): The TP carries out the following computation:
– Initialize Z = ∅. Add Pj to Z if nothing is received or Vrfy(vk, (j,mpk, kj , σj) = 0,

for a tuple (vk,mpk, kj , σj) received from Pj .
– Partition the set P \ Z into subsets S1, S2 . . . S according to the values of vk

received from the parties i.e. all parties in a subset have sent the same vk.
– For each Sα for α ∈ {1 }

• Let mpkα denote the common mpk submitted by parties in Sα.
• For each j ∈ [n], set kα,j = kj and bα,j = 1 if j ∈ Sα, and kα,j = ⊥ and

bα,j = 0 otherwise.

ProtocolΠFE

• Compute and return ctα to every party in Sα, where

ctα ← FE.Enc mpkα, {kα,j}j∈[n], {bα,j}j∈[n] .

Phase 3 (Post-TP Call): A party computes output y = FE.Dec skg, ctα using
skg obtained from Phase 1 and ctα obtained from Phase 2.

Fig. 2. Fully-secure MPC with single TP call based on Succinct Single-Key FE

492 Y. Ishai et al.

Our result can be summarized via the following theorem:

Theorem 5 (TP-Aided MPC from Single-Key Succinct FE). Assuming
the existence of an FE scheme that satisfies correctness, (single-key) simulation-
security and succinctness, there exists a TP-aided MPC protocol ΠFE for any
functionality f that:

– utilizes a single call to a stateless TP of size poly(n, κ, β) (where n is the
number of parties, κ is the security parameter, and β denotes the size of a
single ciphertext in the FE scheme), and

– achieves full security against malicious corruption of up to (n − 1) parties
and semi-honest corruption of the TP in the non-colluding model (see Defi-
nition 3).

We defer the formal proof of this theorem to the full version of our paper.

4 Impossibilities in the Non-colluding Model

In this section, we present our negative results for small-TP aided MPC.

4.1 Impossibility in the Correlated Randomness Model
for Protocols with Universal Output Decoder

Here, we make following assumptions– (a) small TP: the TP performs poly(n, κ)
computation, (b) small output decoder: the parties, on receiving the message
from the TP, perform poly(n, κ) computation to compute the output. We show
that in this model, it is impossible to design a fully secure MPC, even if parties
have access to correlated randomness and irrespective of computational assump-
tions used in the protocol. This holds even if the parties are corrupted in fail-stop
fashion in the non-colluding model. Before we begin, we formalize the class of
protocols for which the impossibility holds.

Notation. A fully-secure n-party protocol Π in the correlated randomness
model that utilizes a single call to a small stateless TP comprises of the fol-
lowing phases.

– Correlated Randomness Setup. The setup computes correlated random-
ness (cr1, cr2, . . . , crn) and outputs cri to Pi (i ∈ [n).

– Pre-TP Computation. In this phase, the parties may interact with each
other (before the TP call), where each Pi participates with input xi and
randomness ri. Let sti denotes the state of Pi at the end of this phase,
where sti comprises of its input xi, randomness ri, correlated randomness
cri (received as part of the setup) and in addition, the messages sent/received
during this phase, if this phase was interactive. Lastly, each Pi computes
algorithm (ini, st

′
i) ← preTPi(sti) and invokes TP with ini.

Fully-Secure MPC with Minimal Trust 493

– TP Computation. For each i ∈ [n], the TP computes its response as outi ←
TPi(in1, . . . , inn; rTP), where rTP denotes the internal randomness of the TP
and TPi denotes the algorithm used by the TP to compute its response to
Pi.

– Post-TP Computation. Each Pi (i ∈ [n]) computes its output as y ←
postTPi(st′i, outi), where postTPi denotes the algorithm used by Pi to com-
pute its output. We refer to this algorithm as output decoder occasionally.4

In our model, (a) each TPi for i ∈ [n] is poly(n, κ)-time (b) each postTPi for
i ∈ [n] is poly(n, κ)-time.

To show the impossibility, we show that a fully secure protocol would imply a
statistically-correct (encoding, decoding) scheme which can produce an encoding
that is smaller than the size of the message domain of the encoding scheme. This
breaches the known incompressibility argument. Precisely, we use the following
proposition of De et al. [DTT10], which formalizes the notion that it is impossible
to compress every element in a set X to a string less than log |X| bits long.

Proposition 1. [Incompressibility Argument [DTT10]] Let E : X × {0, 1}ρ →
{0, 1}m and D : {0, 1}m × {0, 1}ρ → X be randomized encoding and decoding
procedures such that, for every x ∈ X, Prr∈{0,1}ρ [D(E(x, r), r) = x] ≥ δ. Then
m ≥ log(|X|) − log(1/δ).

Theorem 6. A general fully secure MPC protocol is impossible in the non-
colluding model (see Definition 3), where the parties have access to arbitrary
correlated randomness, a single call to a TP of size poly(n, κ), and are allowed
to use an output decoder of size poly(n, κ), even when malicious corruption of
parties in P is restricted to fail-stop corruption.

Proof. Towards a contradiction, assume such a protocol Π computing an arbi-
trary function f exists (f is defined later) that achieves full security in the corre-
lated randomness model, satisfying correctness with overwhelming probability.
Without loss of generality, Π comprises of the phases (Correlated randomness
setup, pre-TP computation, TP computation, post-TP computation) described
previously.

Below, we show that Π leads to a statistically-correct randomized (encoding,
decoding) scheme (E,D) (as defined in Proposition 1).

4 We believe that a non-interactive post-TP computation phase is essentially without
loss of generality. In other words, any fully secure MPC protocol (having access to one
TP call) with interaction amongst the parties can be transformed to one where the
parties do not communicate at all amongst themselves after receiving TP’s response.
We give a proof in the full version of our paper.

494 Y. Ishai et al.

E : {0, 1}2n−1 × {0, 1}ρ → {0, 1}m: This algorithm takes as input 2n−1 bits, say
(b1, b2, . . . , b2n−1), an randomness r ∈ {0, 1}ρ and computes its encoding as follows:
1. For each i ∈ [n], choose a pair of inputs (xi, x

∗
i) using r.

2. Consider a set S containing tuples of the form (x1, x2, . . . , xn) where xi ∈ {xi, x
∗
i }

for i ∈ {2, . . . , n}. Note that x1 |S| = 2n−1.
3. Consider a lexicographic ordering of the elements in S generated as follows. For

each i ∈ [n], map xi to bit 0 and x∗
i to bit 1. Now each tuple in S can be viewed as

an n bit string and the elements in S can be lexicographically ordered. Let us de-
note the jth element as Sj . Let M be a mapping between S and (b1, b2, . . . , b2n−1),
where Sj is mapped to bj for j ∈ [2n−1].

4. Construct an n-input function f(X1, . . . , Xn) that outputs M X1, . . . , Xn , when
(X1, . . . , Xn) ∈ S and ⊥ otherwise.

5. Suppose Π computes f on input Xi from Pi. Consider an execution of Π where
parties {P1, . . . , Pn} participate using inputs {xi}i∈[n], randomness {ri}i∈[n] and
correlated randomness {cri}i∈[n] (the latter two picked using r). Further, Π uses
x∗

i as the default input of Pi (i ∈ [n]). Emulate the steps of this execution until
the pre-TP computation to obtain {sti, ini}i∈[n]. Let s̄t1 denote the subset of st1
used in postTP1; with size restricted to poly(n, κ), as dictated by Π (recall that
postTP function is allowed to do only poly(n, κ) computation).

6. The encoding of input (b1, b2, . . . , b2n−1) { ¯st1, in1, . . . , inn}, TP1 (the
algorithm used by the TP to compute its response to P1) and postTP1 (the output
computation algorithm of P1).

D : {0, 1}m × {0, 1}ρ → {0, 1}2n−1
: It takes as input the encoding { ¯st1, in1, . . . , inn}

and the r ∈ {0, 1}ρ used by E. For each subset S ⊆ {2, . . . , n} in lexicographic
order (starting from S = ∅ to S = {2, . . . , n}), do the following (below we abuse
the notation and use S to denote the decimal value corresponding to the binary
representation):
1. Compute out

(S)
1 ← TP1(in1, in2, . . . , inn; rTP), where ini = ini for i /∈ S a and

ini = ⊥ for i ∈ S . Here, rTP is derived from r as per the distribution corresponding
to the internal randomness of the TP in Π.

2. Compute b(S) ← postTP1(¯st1, out
(S)
1).

Output (b1, b2, . . . , b2n−1).

a Note in1 = in1 is S {2, . . . , n}.

Algorithm(E, D)

Fig. 3. A randomized encoding and decoding scheme

Lemma 1. (E,D) is a statistically-correct encoding and decoding scheme.

Proof. We now claim that the above pair (E,D) is statistically correct.
That is the following holds good: for every (b1, . . . , b2n−1) ∈ {0, 1}2n−1

,
Prr∈{0,1}ρ [D(E((b1, . . . , b2n−1), r), r) = (b1, . . . , b2n−1)] ≥ δ. This is because Π
computes f that, for every input in S, as defined in E, maps to one distinct bit
in the sequence (b1, . . . , b2n−1) (recall that the jth element of S, Sj is mapped
to bj). Further, Π computes f and achieves full security (guaranteed output

Fully-Secure MPC with Minimal Trust 495

delivery) and satisfies correctness with overwhelming probability. Specifically, if
a subset of parties Pi such that i ∈ S′ do not invoke the TP during Π, then the
TP receives {ini} only from the other parties Pi where i /∈ S′ and sets ini = ⊥
for parties in S′. The output computed by the TP is on the default input x∗

i for
each party Pi with i ∈ S′ and xi for each party Pi with i /∈ S′.

Since S′ is defined as subsets of {2, . . . , n} and never includes the index 1,
the above captures executions of Π where P1 is honest, participated honestly
with input x1 and invoked the TP with in′

1 = in1. This allows us to rely on the
correctness of the output computed by postTP1. We can thus infer that the 2n−1

bits computed during decoding indeed correspond to the set of outputs of f for
each subset S′, namely (b1, b2, . . . , b2n−1).

Notice that the above argument holds good even if Π satisfies full security
tolerating fail-stop corruption where the parties do not send their message to
the TP. Furthermore, Π satisfying fairness is not enough to claim that (E,D)
is (statistically) correct, because D may fail to recover (b1, . . . , b2n−1) always.

By the incompressibility argument of [DTT10] (which is formally stated above),
it must hold that | ¯st′1| + |in1| + . . . |inn| + |out1| + |postTP1| ≥ 2n−1. We can
thus infer that at least one of the terms ≥ 2n−1

n+3 . Recall that by our assumption
on small output decoder, the terms | ¯st′1| and |postTP1| are bounded by size
poly(n, κ). Therefore, it must be the case that one of the terms in1, . . . , inn, out1
must be of size ≥ 2n−1

n+3 . However, this contradicts our assumption that the TP
has size poly(n, κ) as in1, . . . , inn comprises of the input to the TP and out1
is the algorithm run by the TP to compute its response to P1. We have thus
arrived at a contradiction; completing the proof.

4.2 Impossibility in the Plain Model

In this section, we show that in the plain model (without correlated random-
ness), it is impossible to design statistically secure MPC with the non-colluding
security, even when the parties are only semi-honestly corrupt. That is, we prove
that a protocol is impossible when the adversary in the non-colluding TP model
can either (a) corrupt majority of the parties {P1, . . . , Pn} semi-honestly or (b)
control the TP semi-honestly). We state the formal theorem below.

Theorem 7. A general statistically-secure MPC protocol is impossible in the
plain and the non-colluding TP model (see Definition 3), where the parties have
access to a single call to a small TP of size poly(n, κ), even when malicious
corruption of parties in P is restricted to semi-honest corruption.

Proof. Towards a contradiction, assume that there exists a statistically-secure
2-party protocol Π securely computing f against a semi-honest adversary in the
non-colluding TP model. Let f be defined as the functionality computing (k+1)
oblivious transfer (OT) instances i.e.

f
(

x1 = (m0
i ,m

1
i)i∈[k+1], x2 = (b1, . . . , bk, bk+1)

)

= (mb1
1 ,mb2

2 . . . ,m
bk+1
k+1)

496 Y. Ishai et al.

Here, the input of P1 (who acts as the sender) consists of (k + 1) pairs of bits
and the input of P2 (who acts as the receiver) consists of (k + 1) bits.

Suppose CTP denotes the circuit describing the function {TP}i∈[n] computed
by the TP during Π. Based on our assumption that the TP is ‘small’, it must hold
that |CTP| ≤ poly(n, κ) which is independent of the function f being computed.
Specifically, this means that the computation done by the TP must be strictly
less than computing (k + 1) OTs.

We claim that Π computing f can be used to build a semi-honest OT exten-
sion protocol Π ′. Assume a semi-honest setting where the parties are given k
OT correlations generated as the base OTs of the OT extension protocol Π ′. Π ′

proceeds as follows:

1. The parties execute the steps of Π in the pre-TP computation phase.
2. Next, the parties emulate the TP computation phase of Π by executing the

perfectly-secure semi-honest GMW protocol [GMW87] to compute the func-
tion described by CTP. For this, the parties use the k OT correlations (given
as base OTs). Note that these OT correlations must suffice as computing CTP

must involve computing fewer than (k + 1) OTs (based on our assumption).
3. Finally, the parties use the output of the execution of the GMW protocol

(which computes the TP response of Π) to carry out the steps of output
computation as per Π. This will result in the parties obtaining the output of
f .

We note that Π ′ does not involve any calls to the stateless TP. Since Π ′

computes (k + 1) OTs starting with k base OTs and involves execution of steps
in Π and the GMW protocol, which are both information-theoretically secure; we
can conclude that Π ′ is indeed a semi-honest information-theoretic OT extension
protocol. However, this is a contradiction as information-theoretically secure OT
extension does not exist in the plain model [Bea96]. This completes the proof.

5 Impossibility of Fair MPC in the Colluding Model

In this section, we briefly summarize our negative results for fair MPC in the
colluding security model (see Definition 3). Recall that, in this model, we assume
that the adversary controls a majority of the parties among {P1, . . . , Pn} mali-
ciously and simultaneously corrupt the TP semi-honestly. Our impossibility
holds good even when malicious corruption is weakened to fail-stop corruption
and the requirement of full security is relaxed to fairness. Our result is summa-
rized by the following theorem.

Theorem 8. There exists a function f such that it is impossible to design a
fair MPC protocol securely computing f in the computational colluding model
(see Definition 3) even when malicious corruption of parties in P is restricted
to fail-stop corruption.

We defer the detailed proof of this theorem to the full version of our paper. At
a high level, we follow the following route. We note that the colluding adversarial

Fully-Secure MPC with Minimal Trust 497

model can be viewed more generally, in terms of the general mixed adversarial
model that has been studied in works such as [HMZ08,FHM99,BFH+08]. Recall
that a general mixed adversary is characterized by an adversary structure Z =
{(A1, E1, F1), . . . , (Am, Em, Fm)} (for some m), which is a monotone set of triples
of party sets. At the beginning of the protocol, the adversary chooses one of these
triples Z

∗ = (A∗, E∗, F ∗) ∈ Z and actively corrupts parties in A∗, semi-honestly
corrupts the parties in E∗ and fail-corrupts the parties in F ∗.

Viewing the TP as an additional party Pn+1 (who can be semi-honestly
corrupted) and the party set P = {P1, . . . , Pn, Pn+1}, the adversarial structure
for the colluding TP model can be expressed as: Z =

{{Z1, . . . , Zn

}

, where for
each i ∈ [n], we have

Zi =
(

Ai = P \ {Pi, Pn+1}, Ei = P \ {Pi}, Fi = P \ {Pi, Pn+1}
)

.

Specifically, the above denotes the maximal class of the adversarial structure
of the colluding TP model, since these subsume all other possible corruption
scenarios indicated by subsets of the triples in each Zi, i.e. the adversary can
choose to corrupt (A∗, E∗, F ∗), such that there exists (Ā, Ē, F̄) ∈ Z : A∗ ⊆
Ā, E∗ ⊆ Ē, F ∗ ⊆ F̄ . Now restricting the malicious adversaries to behave in a fail-
stop manner, we refine the maximal adversarial structure as Z

′ =
{

Z
′
1, . . . , Z

′
n

}

,
where for each i ∈ [n],

Z
′
i =

(

Ai = ∅, Ei = P \ {Pi}, Fi = P \ {Pi, Pn+1}
)

.

Given this adversarial structure, we show that our desired impossibility result
is implied by the impossibility of fair (non-reactive) MPC shown in [HMZ08].
The proof requires a careful mapping between the maximal adversarial struc-
tures between our model of TP-aided MPC and the general mixed adversarial
model considered in [HMZ08] (see the full version of our paper for details). Note
that in above analysis, we consider the TP to be just another party that can
communicate freely with the other parties while maintaining states across the
communication. This implies that our impossibility holds even for stateful TPs.

Acknowledgments. We thank the anonymous reviewers of TCC 2022 for their help-
ful comments and suggestions. Y. Ishai was supported in part by ERC Project NTSC
(742754), BSF grant 2018393, and ISF grant 2774/20. A. Patra would like to acknowl-
edge financial support from DST National Mission on Interdisciplinary Cyber-Physical
Systems (NM-ICPS) 2020–2025. D. Ravi was funded by the European Research Council
(ERC) under the European Unions’s Horizon 2020 research and innovation programme
under grant agreement No 803096 (SPEC). A. Srinivasan was supported in part by a
SERB startup grant.

498 Y. Ishai et al.

References

[ABMO15] Asharov, G., Beimel, A., Makriyannis, N., Omri, E.: Complete charac-
terization of fairness in secure two-party computation of boolean func-
tions. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp.
199–228. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-
46494-6 10

[ADMM14] Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure
multiparty computations on bitcoin. In: IEEE SP 2014, pp. 443–458. IEEE
Computer Society (2014)

[Bea96] Beaver, D.: Correlated pseudorandomness and the complexity of private
computations. In: ACM STOC 1996, pp. 479–488. ACM (1996)

[BFH+08] Beerliová-Trub́ıniová, Z., Fitzi, M., Hirt, M., Maurer, U., Zikas, V.: MPC
vs. SFE: perfect security in a unified corruption model. In: Canetti, R. (ed.)
TCC 2008. LNCS, vol. 4948, pp. 231–250. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-78524-8 14

[BFSK11] Brzuska, C., Fischlin, M., Schröder, H., Katzenbeisser, S.: Physically
uncloneable functions in the universal composition framework. In: Rog-
away, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 51–70. Springer, Hei-
delberg (2011). https://doi.org/10.1007/978-3-642-22792-9 4

[BGI+01] Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan,
S., Yang, K.: On the (Im)possibility of obfuscating programs. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44647-8 1

[BJOV18] Badrinarayanan, S., Jain, A., Ostrovsky, R., Visconti, I.: Non-interactive
secure computation from one-way functions. In: Peyrin, T., Galbraith, S.
(eds.) ASIACRYPT 2018. LNCS, vol. 11274, pp. 118–138. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03332-3 5

[BK14] Bentov, I., Kumaresan, R.: How to use bitcoin to design fair protocols.
In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp.
421–439. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-
44381-1 24

[BKOV17] Badrinarayanan, S., Khurana, D., Ostrovsky, R., Visconti, I.: Uncondi-
tional UC-secure computation with (stronger-malicious) PUFs. In: Coron,
J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 382–
411. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-
7 14

[BLOO20] Beimel, A., Lindell, Y., Omri, E., Orlov, I.: 1/p-secure multiparty compu-
tation without an honest majority and the best of both worlds. J. Cryptol.
33(4), 1659–1731 (2020)

[BOO15] Beimel, A., Omri, E., Orlov, I.: Protocols for multiparty coin toss with a
dishonest majority. J. Cryptol. 28(3), 551–600 (2015)

[BSW11] Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions
and challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp.
253–273. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
19571-6 16

[Can01] Canetti, R.: Universally composable security: a new paradigm for crypto-
graphic protocols. In: FOCS (2001)

https://doi.org/10.1007/978-3-662-46494-6_10
https://doi.org/10.1007/978-3-662-46494-6_10
https://doi.org/10.1007/978-3-540-78524-8_14
https://doi.org/10.1007/978-3-642-22792-9_4
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/978-3-030-03332-3_5
https://doi.org/10.1007/978-3-662-44381-1_24
https://doi.org/10.1007/978-3-662-44381-1_24
https://doi.org/10.1007/978-3-319-56620-7_14
https://doi.org/10.1007/978-3-319-56620-7_14
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-642-19571-6_16

Fully-Secure MPC with Minimal Trust 499

[CCOV19] Chandran, N., Chongchitmate, W., Ostrovsky, R., Visconti, I.: Univer-
sally composable secure computation with corrupted tokens. In: Boldyreva,
A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 432–461.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8 14

[CF01] Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44647-8 2

[CGJ+17] Choudhuri, A.R., Green, M., Jain, A., Kaptchuk, G., Miers, I.: Fairness in
an unfair world: fair multiparty computation from public bulletin boards.
In: ACM CCS 2017, pp. 719–728. ACM (2017)

[CGS08] Chandran, N., Goyal, V., Sahai, A.: New constructions for UC secure com-
putation using tamper-proof hardware. In: Smart, N. (ed.) EUROCRYPT
2008. LNCS, vol. 4965, pp. 545–562. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-78967-3 31

[CKS+14] Choi, S.G., Katz, J., Schröder, D., Yerukhimovich, A., Zhou, H.-S.: (Effi-
cient) universally composable oblivious transfer using a minimal number
of stateless tokens. In: TCC 2014, pp. 638–662 (2014)

[Cle86] Cleve, R.: Limits on the security of coin flips when half the processors are
faulty (extended abstract). In: ACM STOC (1986)

[DMRV13] Dachman-Soled, D., Malkin, T., Raykova, M., Venkitasubramaniam, M.:
Adaptive and concurrent secure computation from new adaptive, non-
malleable commitments. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013.
LNCS, vol. 8269, pp. 316–336. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-42033-7 17

[DTT10] De, A., Trevisan, L., Tulsiani, M.: Time space tradeoffs for attacks against
one-way functions and PRGs. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 649–665. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14623-7 35

[EGL85] Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing
contracts. Commun. ACM 28(6), 637–647 (1985)

[FGMO01] Fitzi, M., Garay, J.A., Maurer, U., Ostrovsky, R.: Minimal complete prim-
itives for secure multi-party computation. In: Kilian, J. (ed.) CRYPTO
2001. LNCS, vol. 2139, pp. 80–100. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8 5

[FHM99] Fitzi, M., Hirt, M., Maurer, U.: General Adversaries in Unconditional
Multi-party Computation. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.)
ASIACRYPT 1999. LNCS, vol. 1716, pp. 232–246. Springer, Heidelberg
(1999). https://doi.org/10.1007/978-3-540-48000-6 19

[FKN94] Feige, U., Kilian, J., Naor, M.: A minimal model for secure computation
(extended abstract). In: ACM STOC 1994, pp. 554–563 (1994)

[GGH+13] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Can-
didate indistinguishability obfuscation and functional encryption for all
circuits. In: IEEE FOCS 2013, pp. 40–49. IEEE Computer Society (2013)

[GGSW13] Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its
applications. In: ACM STOC 2013, pp. 467–476. ACM (2013)

[GHKL11] Dov Gordon, S., Hazay, C., Katz, J., Lindell, Y.: Complete fairness in
secure two-party computation. J. ACM 58(6), 24:1–24:37 (2011)

[GIM+10] Dov Gordon, S., Ishai, Y., Moran, T., Ostrovsky, R., Sahai, A.: On com-
plete primitives for fairness. In: TCC 2010, pp. 91–108 (2010)

https://doi.org/10.1007/978-3-030-26954-8_14
https://doi.org/10.1007/3-540-44647-8_2
https://doi.org/10.1007/978-3-540-78967-3_31
https://doi.org/10.1007/978-3-540-78967-3_31
https://doi.org/10.1007/978-3-642-42033-7_17
https://doi.org/10.1007/978-3-642-42033-7_17
https://doi.org/10.1007/978-3-642-14623-7_35
https://doi.org/10.1007/978-3-642-14623-7_35
https://doi.org/10.1007/3-540-44647-8_5
https://doi.org/10.1007/3-540-44647-8_5
https://doi.org/10.1007/978-3-540-48000-6_19

500 Y. Ishai et al.

[GK09] Gordon, S.D., Katz, J.: Complete fairness in multi-party computation
without an honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 19–35. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-00457-5 2

[GK12] Dov Gordon, S., Katz, J.: Partial fairness in secure two-party computation.
J. Cryptol. 25(1), 14–40 (2012)

[GKP+13] Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich,
N.: Reusable garbled circuits and succinct functional encryption. In: STOC
2013, pp. 555–564 (2013)

[GMPY11] Garay, J.A., MacKenzie, P.D., Prabhakaran, M., Yang, K.: Resource fair-
ness and composability of cryptographic protocols. J. Cryptol. 24(4), 615–
658 (2011)

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game
or A completeness theorem for protocols with honest majority. In: ACM
STOC (1987)

[GS18] Garg, S., Srinivasan, A.: Two-round multiparty secure computation from
minimal assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT
2018. LNCS, vol. 10821, pp. 468–499. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78375-8 16

[HMZ08] Hirt, M., Maurer, U., Zikas, V.: MPC vs. SFE: unconditional and com-
putational security. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol.
5350, pp. 1–18. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-89255-7 1

[HPV16] Hazay, C., Polychroniadou, A., Venkitasubramaniam, M.: Composable
security in the tamper-proof hardware model under minimal complex-
ity. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9985, pp.
367–399. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
53641-4 15

[IOS12] Ishai, Y., Ostrovsky, R., Seyalioglu, H.: Identifying cheaters without an
honest majority. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp.
21–38. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
28914-9 2

[JLS21] Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-
founded assumptions. In: STOC 2021, pp. 60–73 (2021)

[Kat07] Katz, J.: Universally composable multi-party computation using tamper-
proof hardware. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515,
pp. 115–128. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-72540-4 7

[KB14] Kumaresan, R., Bentov, I.: How to use bitcoin to incentivize correct com-
putations. In: Ahn, G.-J., Yung, M., Li, N. (eds.) ACM CCS 2014, pp.
30–41. ACM (2014)

[O’N10] O’Neill, A.: Definitional issues in functional encryption. IACR Cryptol.
ePrint Arch., p. 556 (2010)

[OSVW13] Ostrovsky, R., Scafuro, A., Visconti, I., Wadia, A.: Universally composable
secure computation with (malicious) physically uncloneable functions. In:
Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881,
pp. 702–718. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38348-9 41

https://doi.org/10.1007/978-3-642-00457-5_2
https://doi.org/10.1007/978-3-642-00457-5_2
https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1007/978-3-540-89255-7_1
https://doi.org/10.1007/978-3-540-89255-7_1
https://doi.org/10.1007/978-3-662-53641-4_15
https://doi.org/10.1007/978-3-662-53641-4_15
https://doi.org/10.1007/978-3-642-28914-9_2
https://doi.org/10.1007/978-3-642-28914-9_2
https://doi.org/10.1007/978-3-540-72540-4_7
https://doi.org/10.1007/978-3-540-72540-4_7
https://doi.org/10.1007/978-3-642-38348-9_41
https://doi.org/10.1007/978-3-642-38348-9_41

Fully-Secure MPC with Minimal Trust 501

[PST17] Pass, R., Shi, E., Tramèr, F.: Formal abstractions for attested execution
secure processors. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT
2017. LNCS, vol. 10210, pp. 260–289. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-56620-7 10

[QWW18] Quach, W., Wee, H., Wichs, D.: Laconic function evaluation and applica-
tions. In: Thorup, M. (ed.) IEEE FOCS 2018, pp. 859–870. IEEE Com-
puter Society (2018)

[SW05] Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11426639 27

[Wat15] Waters, B.: A punctured programming approach to adaptively secure func-
tional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9216, pp. 678–697. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-48000-7 33

https://doi.org/10.1007/978-3-319-56620-7_10
https://doi.org/10.1007/978-3-319-56620-7_10
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/978-3-662-48000-7_33
https://doi.org/10.1007/978-3-662-48000-7_33

SCALES
MPC with Small Clients and Larger Ephemeral Servers

Anasuya Acharya1(B) , Carmit Hazay1 , Vladimir Kolesnikov2 ,
and Manoj Prabhakaran3

1 Bar-Ilan University, Ramat Gan, Israel
{acharya,carmit.hazay}@biu.ac.il

2 Georgia Institute of Technology, Atlanta, USA
kolesnikov@gatech.edu

3 Indian Institute of Technology Bombay, Mumbai, India
mp@cse.iitb.ac.in

Abstract. The recently proposed YOSO model is a groundbreaking
approach to MPC, executable on a public blockchain, circumventing
adaptive player corruption by hiding the corruption targets until they are
worthless. Players are selected unpredictably from a large pool to per-
form MPC subtasks, in which each selected player sends a single message
(and reveals their identity). While YOSO MPC has attractive asymptotic
complexity, unfortunately, it is concretely prohibitively expensive due to
the cost of its building blocks.

We propose a modification to the YOSO model that preserves
resilience to adaptive server corruption, but allows for much more
efficient protocols. In SCALES (Small Clients And Larger Ephemeral
Servers) only the servers facilitating the MPC computation are
ephemeral (unpredictably selected and “speak once”). Input providers
(clients) publish problem instance and collect the output, but do not
otherwise participate in computation SCALES offers attractive features,
and improves over YOSO in outsourcing MPC to a large pool of servers
under adaptive corruption.

We build SCALES from Rerandomizable Garbling Schemes (RGS).
RGS is a contribution of independent interest with additional
applications.

1 Introduction

A recent line of research, motivated by platforms such as blockchains, studies
multi-party computation (MPC) with specialized communication and computa-
tion patterns [BGG+20,GHK+21,CGG+21,GMPS21]. While the specifics dif-
fer, these models leverage a dynamic pool of workers, unavailable throughout the
protocol. Most excitingly, [BGG+20,GHK+21] show it is possible to only depend
on ephemeral workers, who carry out some local computation, publish a single
message on a bulletin board, and then vanish from the system. This is pithily
captured in the name YOSO (You Only Speak Once) [GHK+21]. An attractive
model for leveraging short-term workers, crucially, YOSO eliminates or drasti-
cally reduces the window for adaptive corruption of these workers. In particular,
c© The Author(s), under exclusive license to Springer Nature Switzerland 2022
E. Kiltz and V. Vaikuntanathan (Eds.): TCC 2022, LNCS 13748, pp. 502–531, 2022.
https://doi.org/10.1007/978-3-031-22365-5_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22365-5_18&domain=pdf
http://orcid.org/0000-0002-9111-5641
http://orcid.org/0000-0002-8951-5099
http://orcid.org/0000-0002-0211-1244
https://doi.org/10.1007/978-3-031-22365-5_18

SCALES 503

this for the first time enables efficient massive-scale MPC with adaptive corrup-
tion, achieved simply by delegating the computation to a small unpredictably
selected YOSO subcommittee.

Even as the YOSO results [BGG+20,GHK+21] are powerful, they do leave
room for improvement: they rely on strong honest-majority assumptions and
expensive target-anonymous channels. Similarly, non-YOSO work requires hon-
est majority [CGG+21] or complex setups, such as Conditional Storage and
Retrieval in [GMPS21].

We propose an alternate model, where light-weight input parties participate
in the initial and final stages of the protocol and do retain some state in between;
but the bulk of the computation is carried out by ephemeral servers that are
capable of performing computationally demanding tasks. Here, by ‘light-weight’,
we mean that the complexity of each input does not depend on the function’s
complexity or inputs of other parties, but only on the size of its own inputs, and
the number of participating ephemeral servers. There is no setup other than a
bulletin board, and the corruption model allows all-but-one server participating
in the computation to be corrupt, allowing for even very small numbers of servers.
Moreover, by requiring the input parties to send a second message, we let them
control when the computation finishes—arguably a desirable feature, especially
when the number of servers used can be dynamic. Crucially, our ephemeral
servers send a single message each, maintaining YOSO-like resilience to adaptive
corruptions.

Note that a bulletin board is much simpler than target-anonymous channels
in many ways. In particular, in a semi-honest setting, a bulletin board can be
implemented by a single party, without requiring any honest majority assump-
tions, as there are no secrets to hide. But a target-anonymous channel would
need more than a single honest party, and further if an efficient implementation
involving a small committee is resorted to and the adversary can corrupt par-
ties adaptively, a large honest majority is needed: > 50% [GHM+21] or > 71%
[BGG+20].

We seek a protocol without complex setup and based only on standard cryp-
tographic assumptions. Our solution builds on rerandomizable Garbled Circuits,
formalized as Rerandomizable Garbling Schemes (RGS). In this work we shall
focus on security against passive corruption.

1.1 Summary of Our Contributions

Before going further, we summarize the contributions in this work:

• MPC with Small Clients and Larger Ephemeral Servers (SCALES). Our main
high-level contribution is the introduction of an attractive setting for MPC
with ephemeral servers and limited interaction in Sect. 3. SCALES preserves
YOSO-like resilience to adaptive server corruptions, and hence also allows
outsourcing secure computation to blockchain (Sect. 1.2). We construct an
efficient semi-honest SCALES protocol, where each server does work pro-
portional to the circuit size, and each client proportional to its input size
(Sect. 6).

504 A. Acharya et al.

SCALES

Definition 5

incremental
Decomposable
Randomized
Encoding
(iDRE)

Definition 11

Rerandomizable
Garbling
Schemes
(RGS)

Definition 6

strong Key
and Message
Homomorphic
Encryption

(strong KMHE)

Definition 9

[BHHO08]
instantiation

Outsourced
Re-Garbling

Definition 12

OT-efficient
MPC

Algorithm 3

Theorem 3Theorem 2Theorem 1

Implicit in
[GHV10]

Theorem 4

Theorem 5

Fig. 1. Our contributions

• Defining basic cryptographic primitives. We formalize the following notions
used in constructing a SCALES protocol, which we believe to be of indepen-
dent interest, and investigate their relationship: 1) Rerandomizable Garbling
Scheme (RGS) (Sect. 4), a generalization of Garbling Schemes (GS) to the
setting of multiple garblers, each is sequentially involved in garbling, 2) Strong
Key-and-Message Homomorphic Encryption (strong KMHE), and 3) A new
multi-party notion of a randomized encoding, incremental Decomposable Ran-
domized Encoding (iDRE) (Sect. 5).

• Corresponding constructions. We show that a construction of Boneh et al.
[BHHO08], following the analysis in [NS09,GHV10], yields strong KMHE for
a useful class of key and message transformations. Next, we show that such
a strong KMHE scheme, when used as the encryption scheme in a version of
garbled circuit (GC) yields an RGS. We then combine this RGS with a (weak)
KMHE scheme, to obtain an iDRE scheme, which can be directly used for
SCALES.

• Further Applications. Beyond being building blocks for protocols in the
SCALES setting, RGS and iDRE are highly useful for other MPC settings as
well.

– Outsourced Regarbling. We show that an RGS directly yields an “Out-
sourced Regarbling” scheme. In a secure 2-party computation (2PC) set-
ting, when Alice’s (secret) function is to be securely evaluated on many
inputs held by Bob, an outsourced re-garbling scheme allows Alice to
outsource much of her work to a semi-honest server.

– Efficient MPC with optimal OT complexity. An iDRE can be used
to implement general n-party MPC protocols secure against a semi-honest
corruption of (n − 1) parties. For an input size m, such a protocol takes
O(n×m) string-OT calls, meeting the lower bound on OT complexity for
this setting, as proven in [HIK07]. While [HIK07] also presents a protocol
that meets this bound, their protocol requires OT strings to be of the size
of the truth-table of the function being computed. In contrast, an iDRE-
based protocol (Sect. 7.2) runs OT of constant-size strings. Unlike [HIK07]
which is in the information-theoretic OT-hybrid model, we do allow a

SCALES 505

single black-box invocation of iDRE. However, we note that invoking iDRE
with each party carrying out at most one (re-)encoding step does not
trivialize OTs: thanks to the sequential communication pattern, such an
invocation of iDRE by itself would not provide a means to implement
MPC without OTs or further computational assumptions.

• Closing an analysis gap in previous work. Rerandomizing GCs has previously
been explored in the context of multi-hop homomorphic encryption by Gentry
et al. [GHV10]. They define rerandomizable SFE (Secure Function Evalua-
tion) and instantiate it using the encryption scheme of [BHHO08], though
the specific security guarantees of strong KMHE were not identified there.
Although their construction does satisfy their definition of rerandomizable
SFE, their proof has a gap, which we point out. We also clarify that although
[GHV10] uses similar building blocks, its multi-hop homomorphic encryption
setting is inherently different from SCALES.

1.2 Our Main Contribution: SCALES MPC

The motivation for SCALES follows that of the recently proposed YOSO MPC.
The YOSO (You Only Speak Once) property and model of MPC, introduced by
Gentry et al. [GHK+21], requires that protocol participants each send a single
message during the execution. Combined with known techniques for players to
self-select at random for a task (cf. Bitcoin miners who self-select for propos-
ing a block by finding a hash preimage of a special form), YOSO finally offers
hope for efficient large-scale MPC in the setting with adaptive player corruption.
Indeed, standard adaptively secure n-party MPC protocols have costs quadratic
in n. In large-scale MPC, electing a small committee who will then evaluate
the function on behalf of all n players is far more efficient, asymptotically and
practically. Unfortunately, with adaptive corruptions, this breaks down, as adap-
tive adversary will simply corrupt all members of the committee (its corruption
budget is a fraction of n, which is greater than the committee size). This is
where YOSO saves the day: committee members are unidentifiable since they
are self-selected and are removed from the committee as soon as they post a
message, or “speak”. Thus, an adaptive adversary does not know whom to cor-
rupt until it is too late, and the committee executing the YOSO MPC is secure
against adaptive corruptions. A particular application of interest of YOSO MPC
is MPC over a blockchain, where blockchain nodes form the pool of MPC play-
ers, and inputs may come from participants such as accounts or wallets. Quite
surprisingly, YOSO is achievable [GHK+21], despite numerous technical obsta-
cles, such as the need for players executing i-th MPC round to send encrypted
messages (e.g. containing internal state) to unidentified future round-(i+1) com-
mittee members. Unfortunately, however, this protocol’s costs are prohibitive for
practice.

SCALES MPC Motivation. Motivated by practically efficient YOSO-style
large-scale MPC, and with a particular eye on outsourced MPC and blockchain
MPC, we introduce our SCALES (Small Clients And Larger Ephemeral Servers)
MPC model. We keep the crucial YOSO property that servers speak once (and

506 A. Acharya et al.

hence committee is protected against full dynamic corruption). Our clients (input
providers) speak twice, to publish a problem instance and to collect the answer.
This weakening of the model allows us to have a much more efficient instantiation
than YOSO. We compare the two models in more detail in Sect. 1.4.

Syntactically, this is more permissive than YOSO; this is consistent with the
goals of blockchain and outsourced MPC, and YOSO. Indeed, dynamic corrup-
tion of individual clients only threatens their security, and not of the compu-
tation and other clients. Essentially, YOSO’s main advantage over SCALES is
the ability to hide client identities, a less appealing feature that can still be
added to SCALES by clients sending their state to future decoding players using
expensive YOSO technique once. In return, we get a much higher performance
as discussed in Sects. 1.3 and 1.4 and several additional features. Note, we do
not reduce computation per server, but rather total servers’ work.

SCALES Model. A set of lightweight input providers wish to securely compute
a function of all their inputs. The bulk of the computation itself is outsourced
to a pool of servers. We assume broadcast through a public bulletin board and
that every message to be sent is posted onto it. In the computation, the set of
input providers first post encoding of their inputs. Next, one by one, a server
from the pool, upon turning online, reads the state of the bulletin board, per-
forms specified computation, erases its state, posts its outcome, and goes offline.
Once sufficiently many servers have been involved in the computation, the input
providers post a second message based on the state of the bulletin board, and the
decoding procedure can take place publicly using all the information posted1.

SCALES Features.

1. As in YOSO, the servers are speak-once and dynamically self-selected. Their
identities are unknown until they have completed their part of the computa-
tion and erased their internal state. Hence they are not vulnerable to dynamic
corruption.

2. The number of participating servers need not be fixed ahead of time. For
instance, it can be based on a function of the (unpredictable) server identities.

3. The input parties need not interact with, or even be aware of, each other.
Their complexity is independent of the number of other input players.

4. A SCALES protocol is also useful in settings with very few – say, two – non-
colluding servers. We remark that while similar non-interactive outsourcing
using GC has been considered [MRZ15], without rerandomization they require
that the GC evaluator does not collude with either of the two servers.

5. An input provider could ensure that it is happy with the set of servers who
have taken part in the protocol, before allowing the final decoding to proceed
(by holding off from posting its second message).

6. In the case that more than one server posts a message in the same round,
creating a fork in the computation, the input providers can choose which

1 The final output of the protocol can easily be made private - known only to the
clients. This is done by computing a function that gives an encryption of the desired
output under the client’s key.

SCALES 507

chain of server computations they want to recognize (by posting a second
message only for that set of servers).

Further, one could add a requirement that the first message from the input par-
ties be “reusable,” in the spirit of recent two-round MPC protocols [BJKL21,
BGSZ21]. We omit this from our definition for simplicity. However, this is satis-
fied by our construction that is based on a 2-round OT protocol with a reusable
first message.

1.3 Other Contributions in More Detail

Rerandomizable Garbling Schemes. We formalize RGS as a powerful generaliza-
tion of Garbling Schemes (GS) to the setting of multiple garblers. This deviates
from the multi-party garbling of [BMR90] where all garblers symmetrically con-
tribute to the final garbling. An RGS retains the standard garbling procedure
Gb, and supplements it with an additional function Rerand. Given a garbling
(without its input encoding function), Rerand rerandomizes it, producing a new
garbling that is indistinguishable from a fresh garbling. Rerand also supplies a
transformation that, when applied to the encoding function of the original gar-
bling, will yield the encoding function of the regarbling.

The RGS approach allows the garblers to be ephemeral. Further, the number
of garblers can be dynamically selected, if desired. The computation and com-
munication complexity of garblers remain constant with the number of garblers,
vs quadratic in the traditional approach.

Constructing a Rerandomizable Garbling Scheme. We provide an RGS construc-
tion based on GC [Yao86] that we endow with a secure regarbling procedure. To
rerandomize GC, we follow [GHV10], where each output label is additively secret-
shared into two shares, and each share is encrypted (with strong KMHE) under
a single input label as key. This garbling variant is rerandomization-friendlier
than the double-key encryption schemes used in standard versions of garbled
circuits (e.g., [LP09]).

Our strong KMHE abstraction supports both key and message homomor-
phism, a property that is crucial for achieving private garbling rerandomization.
In essence, rerandomization follows by transforming every garbled row into a
fresh ciphertext, encrypting a new label share. To maintain consistency across
garbled gates, we apply a corresponding transformation to wire labels.

RGS security requires that a fresh garbling is indistinguishable from a reran-
domized one, even given randomness used in the initial GC. Somewhat informally,
this property boils down to indistinguishability between a ciphertext that is either
encrypted under a transformed key or a fresh independent key, even given the orig-
inal key. This is the property needed to close the gap in the [GHV10] proof. We
further prove that the scheme of [BHHO08] meets our security definition.

A SCALES Scheme. In a SCALES scheme, all servers must garble jointly to
prevent a successful server-evaluator collusion. Our model requires that this is

508 A. Acharya et al.

done in a sequential manner. We build SCALES protocol from RGS by letting
the ephemeral servers play the role of the (re-)garblers, and output is obtained
by evaluating the resulting GC. We must also securely apply the input encod-
ing transformations generated by RGS. Regarblers can do this because we use
KMHE as our encryption scheme. Finally, active input keys are obtained by
clients by running OT with each of the garblers. This can be done to fit with
our communication pattern. Our resulting protocol is secure against all-but-one
corruption of the ephemeral garblers and, given an OT that is secure against
adaptive corruption of receivers, our protocol also withstands adaptive corrup-
tion of a subset of the clients.

Performance. As SCALES approximates YOSO both in motivation and formal-
ization, we focus on the YOSO comparison (simplified to the semi-honest setting,
without considering their use of NIZKs). In SCALES, per client’s input bit, his
work to generate the first message (of total two) is constant; to generate the sec-
ond message, client’s work is proportional to the number of ephemeral servers.
Unlike all previous YOSO work, the number of ephemeral servers required for
SCALES, is arbitrary (as long as at least one of them is honest), and is inde-
pendent of the computed functionality, allowing small client, as well as small
total server cost. Further, unlike YOSO protocols, we do not require the use of
expensive target-anonymous channels or even a PKI.

Our message and round complexity is significantly lower than in prior YOSO
work. This is crucial for performance in the blockchain setting, as blockchain
latency dominates the overall turn around time. We have a small number of
messages posted, grouped into a smaller number of rounds (the clients post in
parallel, and the number of servers can be as low as 2, depending on the trust
assumptions – each server posting one message), while other works (YOSO and
non-YOSO such as fluid MPC, [RS21], and others) are based on GMW/Beaver
triples and have a number of rounds linear in the circuit depth, each one with a
committee (whose size depends on the trust assumptions).

1.4 Related Work

Alternate MPC Models. Several recent works, many inspired by a blockchain-
like setting, have considered MPC with specialized communication patterns.
These models are generally incomparable with each other, and with SCALES.
However, they do share some of the motivations and features of SCALES, and
we briefly discuss them below. Table 1 summarizes some of the features discussed
below.

You Only Speak Once (YOSO). As discussed in Sect. 1.2, our work is motivated
by the YOSO model of MPC [BGG+20,GHK+21], which aims to eliminate the
threat of adaptive corruptions by ensuring that the adversary does not know who
the committee members are among many possible players, and hence cannot take
advantage of its adaptive corruption power.

We consider a complementary MPC model that admits potentially more effi-
cient solutions. We eliminate the need for expensive target-anonymous channels

SCALES 509

by requiring that each server accesses a bulletin board and sends a single mes-
sage to it. Further, we permit a corrupted majority over all participating servers,
whereas YOSO requires minority of corruptions in each committee, with thresh-
old close to t = 1/4. At the same time, we keep the main attraction of YOSO:
ephemeral servers that may securely self-select, and thus facilitate, MPC service
in the presence of an adaptive adversary.

Table 1. Related MPC committee-based protocols and a summary of their features.

Construction Adversary
type

Corruption
threshold

Adaptive
corruption

Ephemeral-
servers

Setup

YOSO
[BGG+20]
[GHK+21]

Malicious Minority Yes Yes Target-
Anonymous
Channels

Fluid MPC
[CGG+21]

Unbounded
malicious

Minority in
each
committee

No No Broadcast,
private
channels

Le Mans
[RS21]

Malicious All-but-one in
each
committee

No No Broadcast,
private
channels

MPC on the
Blockchain
[GMPS21]

Malicious As in the
underlying
protocol

No No CSaR

SCALES
Definition 5

Semi-honest All-but one
server

Yes Yes Bulletin
board

As a trade off for better efficiency and larger corruption threshold, SCALES
relies on a less constrained communication model than YOSO’s: our input players
speak twice. However, corrupting input player only results in compromise of that
player’s input. We believe this does not significantly weaken the applicability of
the model: in practice, MPC input providers may be known to the adversary
anyway. We outline conceptual performance improvements over prior YOSO
protocols in Sect. 1.3.

We remark that while in this work we have limited ourselves to semi-honest
SCALES, full security can be readily achieved using generic NIZK proofs, match-
ing YOSO in this aspect. However, given the specific nature of our protocol using
RGS, it is plausible that cheaper cut-and-choose techniques can be used instead
of generic NIZK. We leave this for future work.

Blockchain-Enabled Non-Interactive MPC. Goyal et al. [GMPS21] explores
blockchain-assisted MPC. Here input providers enjoy least-possible participa-
tion: they deposit input and garblings of an MPC protocol’s next-message func-
tion into so-called conditional storage and retrieval systems (CSaRs). CSaRs’
correct and secure operation is delegated to the blockchain. Then the blockchain

510 A. Acharya et al.

executes the MPC protocol at its leisure by processing the garbled next-message
functions. In contrast, our motivating application is MPC computation on the
blockchain performed by a committee of servers, which the adversary is unable
to adaptively corrupt. While our communication model is more constrained,
our solution is far more practical and only requires a bulletin board; [GMPS21]
should be viewed as a fundamental feasibility result.
Fluid-MPC. Fluid MPC [CGG+21] allows parties to dynamically join and leave
the computation. These parties are designated by a computing committee, whose
membership itself evolves. It keeps and evolves the state of an MPC instance,
eventually obtaining the output. Fluid MPC is a practical protocol, which relies
on a strong corruption assumption: the adversary can corrupt only a minority
of the servers in each committee. In contrast, in our motivating application, we
aim to frustrate adaptive corruption of committee members by ensuring they
only speak once.

A recent work [RS21] extends Fluid MPC to the dishonest majority setting.
Crucially, [RS21] still does not meet the YOSO speak-once requirement. We
note other costs of [RS21] (e.g., the number of epochs proportional to the size
of the function) that we avoid.

Distributed Garbling Schemes. The RGS-based protocol for SCALES can
be viewed as distributed garbling with crucial special properties needed for our
application: (1) each garbler posts one message, and (2) unidirectional commu-
nication among garblers. We achieve this without preprocessing or correlated
randomness. Previous distributed garbling protocols do not offer these proper-
ties, even given correlated randomness, e.g., authenticated triples.

Two-Round MPC. It is also instructive to compare SCALES with 2-round
MPC [GGHR14,GS18,BL18,BJKL21,BGSZ21]. The latter also involves input
parties posting two rounds of messages to a bulletin board, based on which the
output can be publicly computed. However, there the input parties incur com-
munication and computation costs proportional to the entire circuit size of the
function (in fact, the circuit size of an MPC protocol for the function). SCALES
could be thought of as allowing ephemeral servers to process the bulletin board
between the two rounds, so that the computational costs of the input parties
becomes only proportional to the size of their own inputs.

Further, while not part of our formal definition, the SCALES setting can be
extended to require the first message from the input players to be “reusable,”
a feature explored in the recent works on 2-round MPC [BJKL21,BGSZ21].
Our RGS-based construction already meets this additional requirement, at no
additional cost.

Where efficiency of our protocols is concerned, note that we require security
in the dishonest majority setting and so the concrete efficiency of our SCALES
protocol is incomparable to that of previous work in the honest majority setting
(YOSO, Fluid-MPC, etc.). Additionaly, note that although the servers sequen-
tially perform computation only after the previous server has posted a message,
the local actions of each server during rerandomizing are highly parallelizable:

SCALES 511

the server chooses a homomorphic function for each circuit wire independently,
and each garbled gate can be rerandomized independently.

Randomized Encodings. The abstraction of randomized encodings was intro-
duced in [IK00], and has found a host of applications. A garbled circuit (GC)
is a randomized encoding with desirable properties that were exploited in works
such as [BMR90]. We mention the following constructions that are somewhat
similar to iDRE introduced in this work.

– Multi-party randomized encodings. A notion of randomized encoding
generated by multiple parties has been considered in the literature: [ABT18]
proposed Multi-Party Randomized Encoding (MPRE). As in the case of iDRE,
MPRE considers a distributed encoding of f(x1, . . . , xn). It uses many ran-
dom strings, with the property that revealing a subset of these random strings
will keep the other inputs hidden. A crucial distinction between iDRE and
MPRE is that there is a protected part of the randomness in MPRE that
must not be revealed at all. This is adequate for honest majority MPC, the
main application in [ABT18], as this protected randomness remains secret-
shared. In iDRE, there is no protected randomness, and all-but-one party
could be corrupt. The two primitives also differ in several other ways, as their
goals are quite different (reducing rounds in honest majority-MPC, in the
case of MPRE, versus reducing the number of OTs in MPC with unrestricted
collusion, in the case of iDRE).

– Multi-hop homomorphic encryption. Gentry et al. in [GHV10] intro-
duced multi-hop homomorphic encryption. Setting aside the formulation as
an encryption (which requires a rerandomizable 2-round OT protocol to be
interpreted as an encryption process), their construction involved a set of
servers jointly creating a garbled circuit. A crucial difference from the MPC
setting is that an adversary who corrupts a subset of the players including
the final evaluator would be able to learn much more about the individual
inputs than just the final output. Nevertheless, a key tool used in this work –
rerandomizable garbled circuits – turns out to be useful in our work. Though
the specific manner in which garbled circuit rerandomization is defined and
used by [GHV10] is not adequate for our purposes, we follow their approach
of using a key-and-message-homomorphic encryption to implement it.

1.5 Technical Overview

We define and realize a new notion of randomized encodings [IK00] (Definition
3), the iDRE. This is the key construction underlying our SCALES protocol. For
concreteness and simplicity, we first discuss our approach in the terminology of
garbling schemes [BHR12], before casting it in terms of randomized encodings.

To be cast as a SCALES protocol, informally, our goal is minimally inter-
active multi-party circuit garbling. Therefore, we do not follow the constant-
round BMR approach [BMR90], but instead explore GC rerandomization. This
is a mechanism where an initial garbler generates a GC and each subsequent

512 A. Acharya et al.

re-garbler re-randomizes the previous circuit and the labels. Breaking the con-
nection between the labels of the garbled circuit and its regarbling, will allow
for security in the presence of all-but-one corruption: indeed, even a single hon-
est rerandomization will (if done right - we pay careful attention to precisely
defining security requirements here) result in a GC where none of the generators
knows the secrets completely (we get GC correctness “for free” in the semi-honest
model).

Informally, a re-randomized garbled circuit Ĉ should allow the evaluation
of a circuit C, where neither the garbler nor regarbler individually knows the
correspondence between the labels and the actual wire values; the wire labels
of the resulting garbled circuit Ĉ are effectively secret shared between them. To
evaluate Ĉ, each party P with an input bit (aka, an input party) picks up the
shares of its input wire labels from the garblers (e.g., via OT), reconstructs them,
and uses them for the evaluation. To violate input privacy, the evaluator would
need to collude with all the garblers.

Rerandomizable Garbled Circuits from Strong KMHE. Our main technical chal-
lenge was to design a garbling scheme that supports garbling rerandomization.
We demonstrate how this can be achieved based on a strong key-and-message-
homomorphic encryption (strong KMHE) scheme. We formalize a strong KMHE
scheme as an encryption scheme 2 that permits transforming the key and/or the
message in a ciphertext to obtain fresh-looking ciphertexts. Even a party who
knows the original ciphertext’s key should not be able to distinguish the result
of randomly transforming the key from a fresh ciphertext using a fresh key. This
is required to hold, even when given some leakage on the key transformation, in
the form of a different input-output pair of the transformation. For our purposes,
the message and key spaces would be the same, and the space of transformations
supported for the two will be the same as well; these transformations will be lin-
ear. The specific instantiation of a strong KMHE scheme we use was constructed
by Boneh et al. for a different purpose [BHHO08], and was shown to be leakage
resilient by Naor and Segev [NS09]; further this scheme was used in [GHV10] for
constructing a somewhat related task, rerandomizable secure function evaluation
(or SFE), but without abstracting out the security properties we need.

We briefly sketch our construction of rerandomizable garbling schemes given
a strong KMHE scheme. We view a garbled circuit as a collection of garbled
gates where each gate consists of four ciphertexts, each requires a pair of keys
to decrypt. However, instead of implementing a double-encryption scheme, as
in standard garbling schemes, we additively share the plaintexts and encrypt
each share using a single key. Therefore, each garbled row contains a pair of
ciphertexts, encrypted under a single input key. (see Sect. 4).

To rerandomize a gate, the re-garbler R homomorphically alters each cipher-
text, such that the result is a (new share of the) new output label encrypted

2 We define this notion as a symmetric key primitive which suffices for our pur-
poses. Nevertheless, the instantiation we give uses a public key encryption scheme
[BHHO08].

SCALES 513

under a new input key label. At a high level, we achieve this as follows. For
each wire wi, R first chooses a transformation σi that maps the space of the
wire labels to itself. R’s goal is to re-randomize each gate to enable correct
evaluation. We do this by applying a sequence of homomorphic operations to
(each element of) each garbled row, encrypted using strong KMHE: (1) update
the plaintext using a transformation σg for the output wire of gate g and (2)
update the key using a transformation σi for the input wire wi. Furthermore, the
homomorphic operations we use are linear. This ensures that applying the above
to the ciphertexts encrypting secret shares of the output label will allow for the
reconstruction of the new rerandomized label: σg applied to the old output label.
To prevent a colluding G and E learning extra information, we require that the
rerandomized garbled circuit Ĉ together with active input wire labels reveals no
additional information. As a final step for rerandomization, the new 4-tuple of
garbled rows is permuted.

Depending on how strong KMHE is instantiated, there are different tweaks
that let the evaluator know which row of the garbled gate, when decrypted, gives
a correct label. One such way would be to append a known prefix to the message
labels that are encrypted. Care should be taken that during rerandomizing, the
message domain operations do not affect this message prefix. The [BHHO08]
instantiation for strong KMHE, explained next, supports such operations.

Strong KMHE Instantiation. The encryption scheme of [BHHO08] can be used
to instantiate strong KMHE in the computational setting under the Decisional
Diffie-Hellman (DDH) hardness assumption. It allows homomorphic operations
in both the key and plaintext domains and has the property that a transformed
ciphertext is indistinguishable from a freshly encrypted ciphertext. For our pur-
poses, and similarly in [GHV10], the key and plaintext domains are identical
and amount to the set of balanced binary strings. Similarly, the key and plain-
text domains are identical and correspond to the set of permutations. In order
to differentiate a correct decryption during evaluation, this construction allows
padding the plaintext label shares with an all-zero string. During rerandomizing,
this prefix is always mapped onto itself. During evaluation, each garbled row is
decrypted and the row yielding plaintexts padded with all-zero strings indicates
the correct output label shares. We point the reader to the full version [AHKP22]
for more details.

Casting as a Randomized Encoding. For generality, we use this approach to
describe a variant of a randomized encoding (Sect. 5). W.l.o.g., consider par-
ties providing a single input bit each. We separate the role of parties P =
(P1, · · · , Pm) providing input bits x1, · · · , xm from the role of encoders E =
(E1, · · · , Ed) creating the randomized encoding. A garbled circuit presented
above can be cast as a decomposable randomized encoding (DRE) f̂(x, r) =
(f̂0(r), f̂1(x1, r), · · · , f̂m(xm, r)), where part of the encoding f̂0(r) is independent
of the input (and corresponds to the garbled circuit itself), and each f̂i(xi, r)
depends on a bit xi of the input (corresponding to the input labels).

514 A. Acharya et al.

Let r = (r1, · · · , rd) be the total randomness where encoder Ej possesses rj .
Each Ej creates values that act as shares of f̂i(xi, r) for both possible values
of each xi ∈ {0, 1}. Then each input party Pi ∈ P upon concluding an OT
with each encoder, receives all these shares of f̂i(xi, r). E1 uses r1 to initiate
the creation of f̂0(r) similarly to G above. E1 also incorporates encodings of
the shares of each f̂i(xi, r) that it created, hence initiating the creation of a
final share si. E1 passes its initial f̂0(r) and all such si to E2. In turn, E2 uses
r2 ∈ r to rerandomize the initial f̂0(r) it received, augments each si, and passes
it on. This incremental process continues and the last encoder Ed hands the
completed f̂0(r) to the decoder D. Each value si is given to the corresponding
input party Pi ∈ P. These final shares are such that si, when combined with all
the initial shares from the OT phase, gives f̂i(xi, r). This is reconstructed and
sent to D. D decodes the complete DRE and receives the output. We denote
our abstracted object by incremental Decomposable Randomized Encoding to
highlight the incremental nature in which the DRE is created. A construction
for this object directly implies a SCALES protocol.

2 Preliminaries

Circuit Notation. For a function f : {0, 1}m → {0, 1}l, a boolean circuit that
computes it is denoted by C = (W, I, O,G). W is the set of all wires and I ⊂ W
and O ⊂ W are the set of input and output wires respectively. Within W, I =
(w1, · · · , wm) are the m input wires, wm+1, · · · , wm+p are the p internal wires,
and O = (wm+p+1, · · · , wm+p+l) are the l output wires. These make v = m+p+l
total wires. G = (gm+1, ..., gm+q) is the set of gates. Each gi = (w�, wr, wi, op) is
a binary gate where w� and wr are the left and right input wires respectively, wi

is the output wire (uniquely defined by the gate index), and op represents the
gate functionality (AND, XOR, etc.).

2.1 Garbled Circuits

Garbling Schemes. We recall the notion of a garbling scheme abstracted
in [BHR12] and simplify it for our use. That is, a garbling scheme is a tuple
of algorithms GS = (Gb,En,Ev) where the probabilistic garbling algorithm Gb
takes the function description f and outputs a garbled representation F and an
input encoding function e. The deterministic input encoding algorithm En gets e
and the function input x; and returns a garbled input representation X. Finally,
the deterministic evaluation algorithm Ev takes F and X and outputs f(x) by
evaluating the garbling.

For simplicity, we limit the security properties of a garbling scheme to just
correctness and privacy (and correspondingly, omit the separation between eval-
uation and “decoding” in [BHR12]). More formally,

Definition 1. A Garbling Scheme for a function family F with input domain
X , and a leakage function φ : F → {0, 1}∗, is a tuple GS = (Gb,En,Ev) of PPT
algorithms, satisfying the following properties:

SCALES 515

– Correctness: For every f ∈ F and input x ∈ X ,

Pr[y = f(x) : (F, e) ← Gb(f), X = En(e, x), y = Ev(F,X)] = 1

– Privacy: For all functions f0, f1 ∈ F such that φ(f0) = φ(f1), and every
x0, x1 ∈ X such that f0(x0) = f1(x1),

{F0,X0}(F0,e0)←Gb(f0),X0=En(e0,x0)
c≈ {F1,X1}(F1,e1)←Gb(f1),X1=En(e1,x1)

The above distribution ensembles are indexed by a security parameter κ that
is an implicit input to Gb. When we need to make the randomness used by Gb
explicit, we write it as an additional input, namely as Gb(f ; r).

A special case of the above, a projective garbling scheme [BHR12] is a variant
of garbling schemes whose input encoding function En is projective.

Definition 2. A Projective Garbling Scheme for a function family F with
input domain {0, 1}m, is a tuple GS = (Gb,En,Ev) of PPT algorithms, such
that GS is a garbling scheme (Definition 1) for F and the encoding function
En : {0, 1}m × E → Zm is such that ∀x, x′ ∈ {0, 1}m and ∀e ∈ E, En(x, e) =
(L1, · · · , Lm) and En(x′, e) = (L

′
1, · · · , L

′
m) such that ∀i ∈ [m], if xi = x′

i then
Li = L

′
i.

Our construction employs projective garbling schemes. Looking ahead, we
extend Definition 1 to a Rerandomizable Garbling Scheme (RGS) and instantiate
it with rerandomizable GCs.

2.2 Randomized Encodings

A Randomized Encoding, defined in [IK00], is as follows:

Definition 3. Let X,Y, Ŷ , R be finite sets and let f : X → Y . A function
f̂ : X × R → Ŷ is a Randomized Encoding of f , if it satisfies:

– Correctness: There exists a function Dec, a decoder, ∀x ∈ X, r ∈ R,

Dec(f̂(x; r)) = f(x)

– Privacy: There exists a randomized function Sim, a simulator, ∀x ∈ X,

{Sim(f(x))} c≈ {f̂(x; r)}r∈R

We require that f̂ is efficiently derivable from f using the function Enc, and
that Dec and Sim are PPT. A variant of the above, a Decomposable Randomized
Encoding (DRE), is defined as follows:

Definition 4. For f : X1 × · · · × Xm → Y , where ∀i ∈ [m],Xi = {0, 1}, a
Decomposable Randomized Encoding is a Randomized Encoding (Definition
3) of f with the form:

f̂((x1, · · · , xm); r) = (f̂0(r), f̂1(x1; r), · · · , f̂m(xm; r))

516 A. Acharya et al.

In a decomposable randomized encoding, each part of the encoding can
depend on at most one input bit. It is well known that a projective garbling
scheme (Definition 2) is a DRE. Looking ahead, we extend Definition 4 to
an incremental Decomposable Randomized Encoding (iDRE) and instantiate
it using a projective RGS.

2.3 Oblivious Transfer

Oblivious Transfer (OT) is a two party functionality between a sender S
and a receiver R defined by (eb,⊥) ← OT(b, (e0, e1)). Our protocol in the
SCALES model (Sect. 6), requires a 2-round OT protocol (with semi-honest,
adaptive-receiver security). We denote this by the set of algorithms ΠOT =
(OT1,OT2,OTout). The protocol starts by R computing (m1,Aux) ← OT1(b)
and sending the first OT message m1 to S. Next, S computes the second OT
message m2 ← OT2(m1, (e0, e1)) that is sent to R. Finally, R computes its out-
put via eb ← OTout(Aux,m2). We require that ΠOT be secure in the presence of
a semi-honest adversary that statically corrupts S and adaptively corrupts R. A
more detailed discussion can be found in the full version [AHKP22].

3 MPC with Small Clients and Larger Ephemeral Servers

We define a model, MPC with Small Clients and Larger Ephemeral Servers
(SCALES), that is inspired by considerations that also underlie recent models
like YOSO [BGG+20,GHK+21] and MPC on a blockchain [GMPS21]. Our goal
is to achieve secure MPC in a setting where a set of light-weight input providers
take the help of a dynamic set of stateless workers or ephemeral servers. The
entire process involves communication only over a public bulletin board, and
takes this form:

1. Initially, each input player posts a message on the bulletin board.
2. For as many iterations as desired, an ephemeral server is dynamically acti-

vated, which reads the bulletin board, carries out some local computation,
erases its state, and posts a message back on the bulletin board. This com-
putation may be proportional to size of the computed functionality.

3. Each input player reads the bulletin board (in parallel), and posts back
another message on the bulletin board. These light weight parties’ work is
proportional to their input size times the number of ephemeral servers.

4. The output can be computed publicly based on the information in the bulletin
board, implemented by another ephemeral server.

We shall require that the amount of computation and communication by each
input player is proportional to its number of input bits, independent of the size of
the overall computation, or even the size of the overall input. The communication
constraints apart, we require the above to meet a standard security definition
for MPC, against an adversary who can corrupt any subset of input players
(possibly adaptively) and all but one server. As each server posts a single message

SCALES 517

before being erased, we shall consider only security against static corruption of
servers (since a server’s state is erased before it has started posting its message
on the bulletin board). In this work, we focus on security against semi-honest
corruption.

Definition 5. A scheme for MPC with Small Clients and Larger
Ephemeral Servers (SCALES) for a function family F over {0, 1}m is a tuple
of PPT algorithms (InpEnc,FEnc,Aggregate,Decode) such that the following ran-
dom variables are defined as a function of f ∈ F and x ∈ {0, 1}m (where R and
T denote random-tape spaces for FEnc and InpEnc respectively):

rj ← R, ti ← T ∀j ∈ [d], i ∈ [m]
(zi, wi) ← InpEnc(xi; ti) ∀i ∈ [m]

Bj ←
{
(f, {zi}i∈m) for j = 1
(Bj−1,FEnc(Bj−1; rj)) for 1 < j ≤ d

yi ← Aggregate(Bd, wi) ∀i ∈ [m].

Then the following properties hold:

– Correctness: ∀x = (x1, · · · , xm) ∈ {0, 1}m and d ∈ N,

Pr[Decode(Bd, {yi}i∈[m]) = f(x)] = 1

where ∀j ∈ [d],Bj = ({zi}i∈[m], {αk}k∈[j]).

– Privacy: There exists a 2-stage PPT simulator Sim = (Sim1,Sim2) such that,
∀f ∈ F , x ∈ {0, 1}m, j∗ ∈ [d], and A1,A2 ⊆ [m],

(α,Aux) ← Sim1(f, f(x), j∗, {xi}i∈A1)
β ← Sim2(Aux, {xi}i∈A2).

It holds that,

{α} c≈ {Bd, {yi}i∈[m], {rj}j∈[d]\{j∗}, {ti}i∈A1}
{α, β} c≈ {Bd, {yi}i∈[m], {rj}j∈[d]\{j∗}, {ti}i∈A1 , {ti}i∈A2}

Complexity. For simplicity, we have stated the definition without including any
complexity requirements. To formalize the complexity requirement, we consider
the functions in F as parameterized by a size parameter k, as fk : {0, 1}m(k) →
{0, 1}q(k), so that fk has a circuit of size polynomial in k. Then, the algorithms
InpEnc and Aggregate are required to be independent of k (but may depend on
the security parameter κ)3. This requirement on the complexity of InpEnc and
Aggregate is an important aspect of a SCALES protocol.
3 Note that Bd has been specified as an input to Aggregate, but Aggregate is required

to only use a part of Bd which is independent of k.

518 A. Acharya et al.

In a SCALES protocol, first, each input player runs the algorithm InpEnc and
posts zi on the bulletin board B (Step 1). Next, for each round j, each ephemeral
server (as in Step 2) runs FEnc in the present state of the bulletin board Bj−1 and
posts a message αj on the board. After enough number of such iterations, each
input player run Aggregate (Step 3) and post a message yi. Finally, the function
output is publicly derived using Decode (Step 4). The privacy guarantee requires
that an adversary can corrupt all but the server indexed j∗ ∈ [d]. It may corrupt
an initial subset A1 ∈ [m] of clients and between the first and the second time the
clients speak, it can adaptively corrupt an additional set of A2 ∈ [m] clients. Even
in such a scenario, the view of the adversary needs to be simulatable. Building
towards a protocol in the SCALES setting, we now define and construct our key
building blocks.

4 Rerandomizable Garbling Schemes

In this section we define Rerandomizable Garbling Schemes (RGS) and con-
struct such a scheme (Sect. 4.3) using a strong Key and Message Homomorphic
Encryption scheme (strong KMHE - Sect. 4.1). Loosely speaking, a rerandomiz-
able garbling scheme allows us to take a garbled representation F of a function
and transform it into another garbled representation F ′ for the same function.
This is done in such a way that it is impossible for a PPT distinguisher, given
all the randomness used for garbling F , to distinguish F ′ from a fresh garbling
of the function.

Formally, an RGS is a GS with an additional PPT algorithm (F ′, πEn) ←
Rerand(F) that outputs a rerandomized garbling F ′ and a transformation πEn

to be applied on e such that the new encoding X ′, derived from applying En to
πEn(e), when used with F ′, decodes correctly to f(x). The security of RGS is
captured by an additional property denoted by Rerand -privacy that is formalized
as follows:

Definition 6. A Rerandomizable Garbling Scheme for a function family
F is a tuple of PPT algorithms GS′ = (Gb,Rerand,En,Ev) where, (Gb,En,Ev)
is a garbling scheme (Definition 1) for F , and Rerand is a PPT algorithm such
that the following is satisfied:

– Rerand -Privacy: For every f ∈ F , x ∈ X ,

{r, F0,X0} r←R, (F,e)←Gb(f ;r),
(F0,πEn)←Rerand(F), X0=En(πEn(e),x)

c≈ {r, F1,X1}r←R,(F1,e1)←Gb(f),
X1=En(e1,x)

where R is the space of random tapes for Gb. (Note that (F1, e1) is generated
using fresh randomness independent of r.)

Note that Rerand-privacy and correctness of garbling schemes together imply
that the rerandomized garbling F0 produced by Rerand is correct – i.e., for any
input x, and (F, e) produced by Gb(f), for (F0, πEn) ← Rerand(F), it must
be the case that Ev(F0,En(πEn(e), x)) = f(x) (except possibly with negligible

SCALES 519

probability). Indeed, otherwise it would be easy to distinguish this from a fresh
garbling based on the outputs of garbled evaluation. Note also that Rerand does
not get f as input. Therefore, it cannot operate by ignoring the prior garbling
F and simply generating a fresh garbling as F ′.

Definition 6 can be applied to a projective encoding as well by simply requir-
ing that the input encoding X ′ = (L

′
1, · · · , L

′
m) = En(πEn(e), x) is projective.

Formally,

Definition 7. A Projective Rerandomizable Garbling Scheme is a tuple
GS′ = (Gb,Rerand,En,Ev) where, (Gb,En,Ev) is a projective garbling scheme
(Definition 2) for a family F of functions with input domain {0, 1}m, and Rerand
is a PPT algorithm as in Definition 6 that satisfies the following:

πEn produced by Rerand is in the form of encoding transformations {σi}i∈[m]

such that ∀x ∈ {0, 1}m, ∀e ∈ E, En(e, x) = (L1, · · · , Lm) and En(πEn(e), x) =
(L

′
1, · · · , L

′
m), such that σi(Li) = L

′
i.

Looking ahead, we point out that for the construction of the SCALES pro-
tocol, a slightly relaxed notion of projective RGS suffices. In this relaxed version
we allow for encoding transformations of the form {σb

i }i∈[m],b∈{0,1} where a dif-
ferent transformation may be applied to the labels L0

i and L1
i to obtain their

rerandomized counterparts. But we omit this for the sake of simplicity.

4.1 Strong Key and Message Homomorphic Encryption

Homomorphic encryption schemes allow the execution of mathematical oper-
ations over the plaintexts within the encrypted domain. In this work we are
interested in schemes that support transformations on both the secret key and
the plaintext domains within a ciphertext, resulting in a ciphertext that looks
“fresh”. We refer to such a scheme as a Key-and-Message Homomorphic Encryp-
tion scheme (KMHE). We abstract KMHE as a private key encryption primi-
tive (Gen,Enc,Dec),4 that is amplified with an additional Eval algorithm. This
algorithm applies two homomorphic (potentially distinct and private) transfor-
mations on a ciphertext, one on the secret key and one on the plaintext.

Definition 8. A key-and-message homomorphic encryption scheme is
a set of PPT algorithms KMH = (Gen,Enc,Dec,Eval) defined on domains of
(private) keys, messages and ciphertexts K,M, C, a key transformation family
Fkey, and a message transformation family Fmsg (all indexed by an implicit
security parameter κ) such that the following conditions hold:

– Correctness: ∀m ∈ M, k ∈ K,

Pr[k ← Gen(1κ);Dec(k,Enc(k,m)) = m] = 1

4 For simplicity we define KMHE as a private key primitive (where encryption is car-
ried out using the secret key). Nevertheless, the definition can be naturally extended
to a public key setting as well.

520 A. Acharya et al.

– KMH Correctness: ∀m ∈ M, k ∈ K, f ∈ Fkey, g ∈ Fmsg, r1, r2 ∈ R,
∃r′ ∈ R,

Eval(Enc(k,m; r1), f, g; r2) = Enc(f(k), g(m); r′)

where R is the space of random tapes for Enc and Eval.
– CPA Security: ∀ PPT adversary A, the advantage Pr[b′ = b] ≤ 1

2 +ν(κ) for
a negligible function ν in the following experiment (κ being an implicit input
to C and A):
1. C samples a uniform random bit b ← {0, 1}.
2. For as many times as A wants:

• A produces arbitrary m0,m1 ∈ M and sends them to C.
• C samples a key k ← Gen(1κ) and sends cb = Enc(k,mb) to A.

3. A outputs b′.
– Key Privacy: ∀k, k′ ← Gen(1κ), f ∈ Fkey,

{k, f(k)} s≈ {k, k′}

Looking ahead, we use KMHE as a primitive along with RGS in the construction
for incremental Decomposable Randomized Encodings in Sect. 5.

Next, we define a new object, a strong Key-and-Message Homomorphic
Encryption scheme (strong KMHE), that has an additional security property,
KMH privacy, that is required for rerandomizable garbling. We use strong
KMHE as a building block in our construction for rerandomizable garbled cir-
cuits (Sect. 4.3).

Definition 9. A strong key-and-message homomorphic encryption
scheme (strong KMHE) is the set of PPT algorithms KMH = (Gen,Enc,
Dec,Eval) defined on domains of (private) keys, messages and ciphertexts
K,M, C, a key transformation family Fkey, and a message transformation fam-
ily Fmsg (all indexed by an implicit security parameter κ) such that KMH is a
KMHE scheme as in Definition 8 and the following additional condition holds:

– KMH Privacy: ∀ PPT adversary A, the advantage Pr[b′ = b] ≤ 1
2 + ν(κ)

for a negligible function ν in the following experiment (κ being an implicit
input to C and A):
1. C samples a uniform random bit b ← {0, 1}, keys k0, k1, k

′ ← Gen(1κ),
and f ← Fkey. It sends (k0, k1, f(k1)) to A.

2. For as many times as A wants:
• A produces arbitrary m,m′ ∈ M and g ∈ Fmsg, and computes c ←

Enc(k0,m). It sends (c, g,m′) to C.
• C sends cb to A, where c0 ← Eval(c, f, g) and c1 ← Enc(k′,m′).

3. A outputs b′.

We would like to stress here that we do not require the scheme to be fully
homomorphic, but only homomorphic with respect to certain (affine) function
families. We prove that the [BHHO08] scheme satisfies strong KMHE. The details
can be found in the full version [AHKP22]. The [BHHO08] encryption scheme is

SCALES 521

based on the DDH hardness assumption. We follow the construction in [GHV10]
and restrict the key space K to all binary strings of length κ with κ

2 0’s and the
rest 1’s. In order to use this scheme for garbling, we require that M = K, and so
we restrict the message space accordingly as well. The function family Fkey for
key domain transformations contains all permutations over κ-bit positions: σ :
{0, 1}κ → {0, 1}κ over the sub-domain of balanced strings. Therefore, key privacy
is maintained since ∀k, k′ ← Gen(1κ), f ∈ Fkey, the distributions {k, f(k)} and
{k, k′} are exactly identical. [BHHO08] also supports homomorphic operations
on the key and message domains in a way that KMH privacy is preserved.

Since a scheme satisfying Definition 9 also satisfies Definition 8, to avoid
overloaded notations, we instantiate both strong KMHE and KMHE in the same
way.

4.2 A Gap in the Proof of [GHV10]

Strong KMHE is implicit in the rerandomizable SFE protocol of [GHV10]. We
outline a gap in the proof (but not the protocol!) of [GHV10] in the full version
[AHKP22].

Informally, secure rerandomizing requires that any PPT distinguisher, given
all the randomness used for a prior garbling M , cannot distinguish between
a garbling that is rerandomized from M and a freshly created garbling M ′.
[GHV10] instantiated rerandomizable garbled circuits using the encryption
scheme from [BHHO08] and argues that it is rerandomizable by reductions to
the semantic security and key leakage resilience properties of this scheme (the
latter property has been proven in [NS09]). This latter property allows semantic
security even when the distinguisher is given some information about the secret
key. (This is required for showing that privacy is preserved in a rerandomized
GC even given leakage in the form of the two labels (k0, k1) of the prior GC and
a transformed active label f(kb) of the RGC.)

However, such a security argument applies only to indistinguishability of two
ciphertexts both encrypted under the same (transformed) key. In particular, it
does not rule out adversary’s ability to identify if a ciphertext was encrypted
using a key obtained by transforming a known key, or from a fresh key. This
allows distinguishing between a freshly garbled and a rerandomized GC.

We handle this security gap by strengthening the security definition of the
underlying encryption scheme. Specifically, in our abstraction of strong KMHE,
a KMH privacy property explicitly requires that a ciphertext computed under
a fresh key be indistinguishable from a ciphertext acquired after homomorphic
transformations that corresponds to a transformed key. Another security prop-
erty, denoted by key privacy, requires that the distribution of transformed keys
in the clear is indistinguishable from that of freshly sampled keys.

4.3 Constructing Rerandomizable Garbled Circuits

In this section we present a construction for rerandomizable garbled circuits.
By GC rerandomization we mean a procedure that takes only the GC for a

522 A. Acharya et al.

circuit C and generates another GC for the same circuit, so that the latter is
indistinguishable from a freshly garbled circuit, even given input labels for one
set of inputs, and all the randomness used to generate the original GC that the
rerandomized GC was derived from.

We describe a GC rerandomization procedure that is implicit in the construc-
tion of [GHV10] with the difference that the underlying encryption scheme is a
strong KMHE scheme KMH = (Gen,Enc,Dec,Eval), as specified in Definition 9.
We consider a special case of KMH with an additional structural property:

Definition 10. A sharable key-and-message homomorphic encryption
scheme is a set of PPT algorithms (Gen,Enc,Dec,Eval,Share,Recon) where
KMH = (Gen,Enc,Dec,Eval) is a strong KMHE scheme as in Definition 9 for
domains of (private) keys, messages and ciphertexts K,M, C, a key transforma-
tion family Fkey, and a message transformation family Fmsg with the additional
property that K = M and Fkey = Fmsg.

The scheme has two additional functions (1) ([k]0, [k]1) ← Share(k) that
outputs two random shares of a key k ∈ K. (2) k ← Recon([k]0, [k]1) that recon-
structs the label k from its shares. These functions are such that the following
property holds ∀σ ∈ Fkey and ∀k ∈ K,

Share(σ(k)) ≡ {(σ([k]0), σ([k]1)}([k]0,[k]1)←Share(k)

We denote by GS = (GbKMH,EnKMH,EvKMH,RerandKMH) a rerandomized gar-
bling scheme where all the garbling scheme algorithms are instantiated with a
sharable KMHE scheme KMH as the underlying encryption scheme. We next
provide an overview of this garbling scheme:

The garbling algorithm GbKMH(C, 1κ) works as follows:
– For every wire wi ∈ W − O, sample labels L0

wi
, L1

wi
← Gen(1κ).

– For every output wire wi ∈ O, use the same labels L0, L1 ∈ K across all output
wires. These are publicly known.

– For every gate gi = (w�, wr, wi, op) ∈ G, let ([Lb
wi
]0, [Lb

wi
]1) be the shares of

gi’s output labels for b ∈ {0, 1} and π be a permutation on four positions.
Then the garbling of gate gi can be defined as:

Gi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(Enc(L0
w�

, [Lop(0,0)
wi]0),Enc(L0

wr
, [Lop(0,0)

wi]1))
(Enc(L0

w�
, [Lop(0,1)

wi]0),Enc(L1
wr

, [Lop(0,1)
wi]1))

(Enc(L1
w�

, [Lop(1,0)
wi]0),Enc(L0

wr
, [Lop(1,0)

wi]1))
(Enc(L1

w�
, [Lop(1,1)

wi]0),Enc(L1
wr

, [Lop(1,1)
wi]1))

these four rows are then permuted according to π.
– Output Ĉ = ((G1, · · · , Gq), (L0, L1)) and L = {L0

wi
, L1

wi
}wi∈I .

An encoding algorithm EnKMH(L, x) gets a set of input labels L and the
function input x = (x1, · · · , xm) and outputs I = {Lxi

wi
}wi∈I .

The evaluation algorithm EvKMH(Ĉ, I) works gate by gate, by decrypting each
row in the garbled gate.5 The resulting plaintexts are combined to the output
5 We assume that the evaluator identifies the valid output label by adding a fixed

suffix to the plaintext as suggested originally in [LP09].

SCALES 523

label using Recon. Evaluating a gate lets us derive one label for a wire in the
circuit. Following the terminology of [LP09], this label is termed the active label
of that wire. Such a label is also derived for each output wire of the circuit and
this belongs in the set (L0, L1) and can be mapped to output values 0 or 1. This
set of labels yields the function’s output f(x).

The rerandomizing algorithm (Ĉ′,Π) ← RerandKMH(Ĉ) works as follows:

– For all wires wi ∈ W − O, sample σi ∈ Fkey.
– For all output wires wi ∈ O, let σi be the identity function.
– For all gates gi ∈ G, let (σ�, σr, σi) correspond to the wires (w�, wr, wi). Let

πi be a permutation on four elements. In order to rerandomize Gi into G′
i,

the following is carried out:

G′
i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(Eval(c0,0, σ�, σi),Eval(c0,1, σr, σi))
(Eval(c1,0, σ�, σi),Eval(c1,1, σr, σi))
(Eval(c2,0, σ�, σi),Eval(c2,1, σr, σi))
(Eval(c3,0, σ�, σi),Eval(c3,1, σr, σi))

where Gi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(c0,0, c0,1)
(c1,0, c1,1)
(c2,0, c2,1)
(c3,0, c3,1)

the rows in G′
i are permuted using πi.

– Output Ĉ′ = ((G′
1, · · · , G′

q), (L0, L1)) and Π = {σi}wi∈I .

The function Rerand(·) has computational complexity O(|C|) and the size of
its output is O(|C| · κ) where κ is a security parameter.

Theorem 1. Let KMH be a sharable KMHE scheme (Definition 10). Then
GS = (GbKMH, RerandKMH,EnKMH,EvKMH) is an RGS with projective encoding
(Definition 7).

The detailed proof for this can be found in the full version [AHKP22].

5 Incremental Decomposable Randomized Encodings

In this section, we introduce a variant of Decomposable Randomized Encod-
ings (DRE - Definition 4): an incremental Decomposable Randomized Encoding
(iDRE). We also present a construction for an iDRE scheme based on an RGS,
and a KMHE scheme (Definition 8). An iDRE is a key ingredient in realizing a
secure protocol in the SCALES setting.

The goal of iDRE is to allow multiple encoders to collaborate in an encoding
process while using minimal interaction. Specifically, our abstraction allows a
chain of encoders to incrementally carry out the encoding, with each one receiv-
ing the output of the previous one. Informally, for a function f with m-bit inputs
x, a chain of d encoders first each locally prepare {e0ij , e

1
ij}i∈[m] during an ini-

tial encoding phase (which prepares the labels and may work offline). Then, in
the incremental encoding phase, the first encoder runs En to prepare an initial
encoding B1. Each subsequent encoder runs En∗ which prepares Bj from Bj−1.
Next, each input bit xi is encoded as Zi = Combine({exi

ij }j∈[d], Bd). The final

524 A. Acharya et al.

encoding for f(x) consists of (Y, {Zi}i∈[m]) where Y ∈ Bd. The formal definition
below separates the encoding into PreEn and En∗ to allow for better efficiency
and flexibility; also Combine does not take all of Bd as input, but only a part of it,
si. A basic privacy condition would require that only f(x) is revealed by the final
encoding; but as detailed below, we shall require a stronger privacy condition
corresponding to when a subset of the encoders and input parties (combiners)
are passively corrupt, privacy continues to hold.

Definition 11. An incremental Decomposable Randomized Encoding
(iDRE) scheme defined for a function family F , where each f ∈ F
has domain {0, 1}m, is a tuple of polynomial time algorithms iDRE =
(PreEn,En,En∗,Combine,Dec) for
 polynomial in m. Defining the following ran-
dom variables as a function of x ∈ {0, 1}m:

rj ← {0, 1}� ∀j ∈ [d],

{e0ij , e
1
ij}i∈[m] ← PreEn(j; rj) ∀j ∈ [d],

Bj ←
{
En(f ; r1) for j = 1
En∗(Bj−1; rj) for 1 < j ≤ d(

Y, {si}i∈[m]

) ← Bd

Zi ← Combine({exi
ij }j∈[d], si) ∀i ∈ [m]

Then the following properties need to be satisfied:

– Correctness: ∀x ∈ {0, 1}m, with probability 1 (over the choice of {rj}j∈[d]),

Dec(Y, {Zi}i∈[m]) = f(x).

– Privacy: There exists a simulator Sim such that ∀x ∈ {0, 1}m, j∗ ∈ [d] and
A ⊆ [m],

{
Sim(f, f(x), j∗, {xi}i∈A)

}
c≈

{
{rj}j �=j∗ , Bj∗ , {exi

ij∗}i∈A, {Zi}i�∈A

}

The privacy condition above corresponds to a semi-honest adversary who cor-
rupts all encoders other than the one with index j∗ – i.e., it learns rj for all
j = j∗, as well as the output Bj∗ ; further, for a set A ⊆ [m] it learns the input
bits xi as well as the label exi

ij∗ , for each i ∈ A. Note that this provides the
adversary with enough information to decode f(x). We require that such an
adversary learns nothing more about the input bits {xi}i�∈A beyond what f(x)
and {xi}i∈A reveals.

5.1 Realizing iDRE Using RGS

In this section we outline our construction of iDRE based on a projective RGS
(Definition 6) and KMHE scheme (Definition 8) which has the following design:

SCALES 525

En generates a projective garbling as well as a set of encrypted labels. The lat-
ter is a set of ciphertexts encrypting both labels for every input bit position
within the garbling. Next, each instance of En∗ takes both a garbling and its
encrypted labels as inputs, and outputs a rerandomized garbling and a matching
set of encrypted labels. This is achieved by modifying the encrypted plaintexts
to match the labels of the new garbling by applying consistent transformations
to the encrypted labels by exploiting the homomorphic properties.

Additionally, the keys under which the labels are encrypted are homomor-
phically refreshed by each encoder using new randomness.6 This set of transfor-
mations is generated by the different instances of algorithm PreEn. At last, the
Combine algorithm takes the final encrypted label for each input bit and all the
randomness used to create the encryption key, and creates the final key that is
used to decrypt the label. This label corresponds to an input label for the last
GS, all given as inputs to the decoding algorithm Dec.

Notation. Let the input to the function f be x = {xi}i∈[m]. Moreover, let
F1 be the GS created by En and Fj be the rerandomized GS output by the jth

instance of En∗. We denote by Lj the set containing all the labels (corresponding
to both the 0 and 1 value) for all input bit positions of Fj . Namely, Lj =
{Lb

ij}i∈[m],b∈{0,1}, where Lb
ij ∈ {0, 1}κ denotes the label used in Fj for the ith

input bit whose vale is b ∈ {0, 1}. Finally, we denote the subset of active labels
within Fj by Xj = {Lxi

ij }i∈[m] for the input x = {xi}i∈[m] ∈ {0, 1}m.
The encrypted labels set that corresponds to Fj is denoted by ELj where

ELj = {Enc(Kb
ij , L

b
ij)}i∈[m],b∈{0,1}. Starting with F1, each label Lb

i1 ∈ L1 is
encrypted using a key Kb

i1 that is chosen from a KMHE scheme. We represent
by ΠK1 = {Kb

i1}i∈[m],b∈{0,1} the set of these keys. Each subsequent ELj is
created from ELj−1. Namely, let ρb

ij ∈ Fkey denote a transformation chosen to
randomize the key ρb

ij−1, yielding a new transformed key ρb
ij in the key domain.

Then ΠKj = {ρb
ij}i∈[m],b∈{0,1} denote this set of transformations for all j > 1.

Another set of transformations denoted by πEn = {σi ∈ Fkey}i∈[m] plays a
different role in our construction. Namely, these transformations are applied on
the plaintexts within ELj−1 with the aim of rerandomizing the input labels to
match the garbling Fj . Figure 2 contains the details of the algorithms for this
instantiation using a KMHE and a projective RGS. The circuit C that represents
the function f is publicly available to all involved parties.

Theorem 2. Let KMH = (Gen,Enc,Dec,Eval) be a KMHE scheme (Definition
8) and let GS = (Gb,Rerand,En,Ev) be a projective RGS (Definition 7), then
Fig. 2 is an iDRE (Definition 11).

The detailed proof for this theorem can be found in the full version [AHKP22].

6 As different transformations are applied to the keys used for encrypting the different
input labels, and only on the key domain, it suffices to use KMHE.

526 A. Acharya et al.

Fig. 2. Instantiating an iDRE using a projective RGS and KMHE

6 Realizing SCALES

In Construction 1, we show how one can obtain a SCALES scheme from an iDRE
scheme, combined with a 2-message OT protocol (with semi-honest, adaptive-
receiver security), ΠOT = (OT1,OT2,OTout) (corresponding to computing the
receiver’s message and state, the sender’s message, and the receiver computing
its output) as described in Sect. 2.3. The construction is quite simple: Each Pi

encodes xi as (zi, wi) = OT1(xi) and posts zi. The ephemeral servers play the
role of the encoders in iDRE: Ej will post the encoding Bj and also, for each

SCALES 527

input party Pi, it will post OT2(zi, e
0
ij , e

1
ij) on the bulletin board. Afterwards,

each input party Pi reads the OT messages posted by each Ej , and using wi,
recovers exi

ij ; then it runs Combine and posts the result back on the bulletin
board. The final output computation is done using iDRE’s Dec algorithm.

Construction 1. Let f be the function for input x = (x1, · · · , xm) where xi is
Pi’s private input. Let iDRE = (PreEn,En,En∗,Combine) be the iDRE (Definition
11) for f and ΠOT = (OT1,OT2,OTout) be the OT protocol as above. Then the
algorithms in SCALES are instantiated as:

– ∀i ∈ [m], (zi, wi) ← InpEnc(i, xi; ti) -
• output (zi, wi) ← OT1(xi; ti) where zi is the OT first message

– ∀j ∈ [d], αj ← FEnc(Bj−1; rj) -
• if j = 1, compute B1 = iDRE.En(f ; r1)
• if j = 1, compute Bj = iDRE.En∗(j, Bj−1; rj) using Bj−1 ∈ Bj−1

• compute {e0ij , e
1
ij}i∈[m] = iDRE.PreEn(j; rj)

• compute ∀i ∈ [m],mi,j
2 ← OT2(zi, (e0ij , e

1
ij))

• output αj = {Bj , {mi,j
2 }i∈[m]}

– ∀i ∈ [m], yi ← Aggregate(Bd, wi) -
• compute ∀j ∈ [d], exi

ij ← OTout(wi,m
i,j
2) using mi,j

2 ∈ Bd

• output yi = iDRE.Combine({exi
ij }j∈[n], si) using si ∈ Bd

– y ← Decode(Bd, {yi}i∈[m]) -
• output f(x) = iDRE.Dec(f̂0(r), {yi}i∈[m]) using f̂0(r) ∈ Bd

Complexity. We note that in this construction, each ephemeral server carries
out one execution of PreEn and En∗ (or En) and m executions of OT2 (reading
their inputs from the bulletin board, and posting the outputs back there); when
instantiated using our iDRE construction, this translates to O(κ|f |) computa-
tional and communication complexity for each server. More importantly, note
that each input party carries out a single execution of OT1, d instances of OTout,
and a single instance of Combine, all of which are independent of the complexity
of f .

Theorem 3. Let iDRE = (PreEn,En,En∗,Combine) be an iDRE (Definition
11) for the function family F where each f ∈ F has domain {0, 1}m and let
ΠOT = (OT1,OT2,OTout) be a 2-message OT protocol (Sect. 2.3) that semi-
honest securely computes the 2-party OT functionality OT in the presence of a
static-corrupted sender and an adaptively corrupted receiver. Then the protocol
described in Construction 1 is a secure SCALES scheme (Definition 5).

The detailed proof for this can be found in the full version [AHKP22].

7 Applications of RGS and iDRE

We outline certain other applications for the cryptographic objects we define.

528 A. Acharya et al.

7.1 RGS for Outsourced Re-Garbling

Consider a setting where a party Pfun holding a private function f would like to
let a client Peval securely evaluate f(x) on various inputs x of its choice, using
a GC-based protocol. Because of the one-time nature of GCs, this requires Pfun

to carry out garbling once for each evaluation. This motivates the problem of
outsourced re-garbling – i.e., out-sourcing the task of creating many copies of
a garbled circuit for a private function to a semi-honest server (say, a cloud
service).

Outsourced Re-Garbling presents an immediate application of RGS. The
following definition of the Outsourced Re-Garbling task captures the security
requirement that the parties Pfun and Peval learn nothing more than in the orig-
inal two-party setting, while a regarbling server Sgb that Pfun interacts with
(before Peval arrives) would learn nothing about the function f (except a per-
mitted leakage φ(f)). The security guarantees below assume that the server Sgb

does not collude with Peval.

Definition 12. An Outsourced Re-Garbling scheme for a function family F
with input domain X and a leakage function φ : F → {0, 1}∗, is a tuple of PPT
algorithms (InitGb,ReGb,En,Ev) that satisfy the following properties:

– Correctness: ∀f ∈ F , ∀x ∈ X ,

Pr[Ev(F,X) = f(x) : (F0, e) ← InitGb(f),
(F, π) ← ReGb(F0),X ← En(x, π(e))] = 1

– Privacy against Sgb: ∀f ∈ F , there exists a PPT simulator Simgb such that

{Simgb(φ(f))} c≈ {F0}(F0,e)←InitGb(f)

– Privacy against Peval: ∀f ∈ F , ∀n ∈ N,∀i ∈ [n] and ∀xi ∈ X , there exists
a PPT simulator Simeval such that

{Simeval({f(xi), xi}i∈[n], φ(f))} c≈ {{Fi,Xi}i∈[n]} (F0,e)←InitGb(f),
{(Fi,πi)←ReGb(F0),

Xi←En(xi,πi(e))}i∈[n]

These algorithms can be employed by the parties Pfun, Peval and Sgb as fol-
lows. Pfun first executes (F0, e) ← InitGb(f) and sends F0 to Sgb. Then Sgb runs
multiple instances of (Fi, πi) ← ReGb(F0) and sends all πi back to Pfun. When
Peval comes online with an input xi to f , it first gets Fi directly from Sgb (so Pfun

does not incur the corresponding communication overhead). It then participates
in a protocol with Pfun to obtain Xi ← En(xi, πi(e)); this can be implemented
directly using parallel OTs. Following that, Peval computes f(xi) ← Ev(Fi,Xi).

Note that the computational and communication complexity of Pfun involves
a single instance of InitGb, followed by n instances of computing πi(e) and n
instances of carrying out En. There is an implicit efficiency requirement that the
latter two steps (which are repeated n times each) depend linearly on the input

SCALES 529

size m and are independent of its circuit size |f |, reducing the computational
complexity of Pfun from O(|f |n) to O(|f | + mn) (ignoring factors involving the
security parameter). This is a significant saving when |f | and n are both large
(e.g., evaluating a large machine learning model on inputs from the user-base of
a popular app).

Theorem 4. An RGS GS = (Gb,Rerand,En,Ev) (Definition 6) is an Outsourced
Re-Garbling scheme (InitGb,ReGb,En,Ev) (Definition 12).

The detailed proof for this can be found in the full version [AHKP22].

7.2 iDRE for MPC

An iDRE can be used to implement a general n-party protocol under static semi-
honest corruption of up to n − 1 parties. Let P1, · · · , Pn be the parties, f be the
public function and x ∈ {0, 1}m be its input out of which each Pi possesses
xi ⊂ x. The iDRE-based protocol can compute f(x) using O(n × m) string-OT

Fig. 3. Semi-honest MPC protocol based on iDRE

530 A. Acharya et al.

calls, meeting the lower bound on OT complexity for this setting, as proven in
[HIK07]. This is achieved by letting each Pi act as one of the encoders in the
sequential process along with playing the role of an input party. All the parties
first employ PreEn and then every pair of parties engages in an OT for every
input bit. Next, starting from P1, the incremental chain of encoding follows with
each Pi creating Bi and passing it on to Pi+1. Finally, Pn passes {si}i∈[m] to all
other parties. Each party runs Combine for each of their input bits. These results
are passed back to Pn that decodes and broadcasts the output.

Theorem 5. Let (PreEn,En,En∗,Combine,Dec) be an iDRE (Definition 11) for
the function family F where f ∈ F has domain {0, 1}m. Figure 3 is an n-
party semi-honest protocol computing f in the (string) OT-hybrid under (n−1)-
corruption using ((n − 1) × m) OT calls and the iDRE in a black-box way.

The proof for this theorem can be found in the full version [AHKP22]. The
communication complexity for this protocol is O(nκ|f |+κn2). While there exist
other MPC protocols with better communication complexity, our protocol meets
the lower-bound in the number of required OT calls (see discussion in Sect. 1.1).
Further, our protocol is black-box in its use of the iDRE.

Acknowledgments. We thank Shai Halevi for discussions including feedback regard-
ing the gap in [GHV10]. Anasuya Acharya and Carmit Hazay are supported by the BIU
Center for Research in Applied Cryptography and Cyber Security in conjunction with
the Israel National Cyber Bureau in the Prime Minister’s Office, and by ISF grant
No. 1316/18. Vladimir Kolesnikov was supported in part by NSF award #1909769,
by a Facebook research award, a Cisco research award, and by Georgia TechâĂŹs
IISP cybersecurity seed funding (CSF) award. Manoj Prabhakaran is supported by
a Ramanujan Fellowship of the Department of Science and Technology, India. Car-
mit Hazay and Manoj Prabhakaran are also supported by the Algorand Centres of
Excellence programme managed by Algorand Foundation. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of Algorand Foundation.

References

[ABT18] Applebaum, B., Brakerski, Z., Tsabary, R.: Perfect secure computation in
two rounds. In: TCC, pp. 152–174 (2018)

[AHKP22] Acharya, A., Hazay, C., Kolesnikov, V., Prabhakaran, M.: Scales: Mpc with
small clients and larger ephemeral servers. IACR Cryptol. ePrint Arch., p.
751 (2022)

[BGG+20] Benhamouda, F., et al.: Can a public blockchain keep a secret? In: TCC,
pp. 260–290 (2020)

[BGSZ21] Bartusek, J., Garg, S., Srinivasan, A., Zhang, Y.: Reusable two-round MPC
from LPN. IACR Cryptol. ePrint Arch., p. 316 (2021)

[BHHO08] Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryp-
tion from decision diffie-hellman. In: CRYPTO, pp. 108–125 (2008)

[BHR12] Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In:
CCS, pp. 784–796 (2012)

SCALES 531

[BJKL21] Benhamouda, F., Jain, A., Komargodski, I., Lin, H.: Multiparty reusable
non-interactive secure computation from LWE. In: Canteaut, A., Stan-
daert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12697, pp. 724–753.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77886-6_25

[BL18] Benhamouda, F., Lin, H.: k -round multiparty computation from k -round
oblivious transfer via garbled interactive circuits. In: Nielsen, J.B., Rijmen,
V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 500–532. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_17

[BMR90] Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure pro-
tocols (extended abstract). In: STOC, pp. 503–513 (1990)

[CGG+21] Choudhuri, A.R., Goel, A., Green, M., Jain, A., Kaptchuk, G.: Fluid MPC:
secure multiparty computation with dynamic participants. In: CRYPTO,
pp. 94–123 (2021)

[GGHR14] Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from
indistinguishability obfuscation. In: TCC, pp. 74–94 (2014)

[GHK+21] Gentry, C., Halevi, S., Krawczyk, H., Magri, B., Nielsen, J.B., Rabin, T.,
Yakoubov, S.: YOSO: You Only Speak Once. In: Malkin, T., Peikert,
C. (eds.) CRYPTO 2021. LNCS, vol. 12826, pp. 64–93. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-84245-1_3

[GHM+21] Gentry, C., Halevi, S., Magri, B., Nielsen, J.B., Yakoubov, S.: Random-
index PIR and applications. In: TCC, pp. 32–61 (2021)

[GHV10] Gentry, C., Halevi, S., Vaikuntanathan, V.: i-Hop homomorphic encryption
and rerandomizable yao circuits. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 155–172. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14623-7_9

[GMPS21] Goyal, V., Masserova, E., Parno, B., Song, Y.: Blockchains enable non-
interactive MPC. IACR Cryptol. ePrint Arch., pp. 1233 (2021)

[GS18] Garg, S., Srinivasan, A.: Two-round multiparty secure computation from
minimal assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT
2018. LNCS, vol. 10821, pp. 468–499. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78375-8_16

[HIK07] Harnik, D., Ishai, Y., Kushilevitz, E.: How many oblivious transfers are
needed for secure multiparty computation? In: Menezes, A. (ed.) CRYPTO
2007. LNCS, vol. 4622, pp. 284–302. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-74143-5_16

[IK00] Ishai, Y., Kushilevitz, E.: Randomizing polynomials: A new representation
with applications to round-efficient secure computation. In: FPCS, pp.
294–304 (2000)

[LP09] Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party
computation. J. Cryptol. 22(2), 161–188 (2009)

[MRZ15] Mohassel, P., Rosulek, M., Zhang, Y.: Fast and secure three-party compu-
tation: The garbled circuit approach. In: SIGSAC, pp. 591–602 (2015)

[NS09] Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage.
In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_2

[RS21] Rachuri, R., Scholl, P.: Le mans: Dynamic and fluid MPC for dishonest
majority. IACR Cryptol. ePrint Arch., p. 1579 (2021)

[Yao86] Yao, A.C.-C.: How to generate and exchange secrets (extended abstract).
In: FOCS, pp. 162–167 (1986)

https://doi.org/10.1007/978-3-030-77886-6_25
https://doi.org/10.1007/978-3-319-78375-8_17
https://doi.org/10.1007/978-3-030-84245-1_3
https://doi.org/10.1007/978-3-642-14623-7_9
https://doi.org/10.1007/978-3-642-14623-7_9
https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1007/978-3-540-74143-5_16
https://doi.org/10.1007/978-3-540-74143-5_16
https://doi.org/10.1007/978-3-642-03356-8_2

On Perfectly Secure Two-Party
Computation for Symmetric

Functionalities with Correlated
Randomness

Bar Alon1(B), Olga Nissenbaum1, Eran Omri1, Anat Paskin-Cherniavsky1,
and Arpita Patra2

1 Department of Computer Science, Ariel University, Ariel Cyber Innovation Center
(ACIC), Ari’el, Israel

alonbar08@gmail.com,olga@nissenbaum.ru,omrier@gmail.com,anps83@gmail.com
2 Indian Institute of Science, Bangalore, India

arpita@iisc.ac.in

Abstract. A multiparty computation protocol is perfectly secure for
some function f if it perfectly emulates an ideal computation of f . Thus,
perfect security is the strongest and most desirable notion of security,
as it guarantees security in the face of any adversary and eliminates the
dependency on any security parameter. Ben-Or et al. [2] [STOC ’88] and
Chaum et al. [5] [STOC ’88] showed that any function can be computed
with perfect security if strictly less than one-third of the parties can be
corrupted. For two-party sender-receiver functionalities (where only one
party receives an output), Ishai et al. [9] [TCC ’13] showed that any
function can be computed with perfect security in the correlated ran-
domness model. Unfortunately, they also showed that perfect security
cannot be achieved in general for two-party functions that give outputs
to both parties (even in the correlated randomness model).

We study the feasibility of obtaining perfect security for determinis-
tic symmetric two-party functionalities (i.e., where both parties obtain
the same output) in the face of malicious adversaries. We explore both
the plain model as well as the correlated randomness model. We provide
positive results in the plain model, and negative results in the correlated
randomness model. As a corollary, we obtain the following results.

1. We provide a characterization of symmetric functionalities with (up
to) four possible outputs that can be computed with perfect secu-
rity. The characterization is further refined when restricted to three
possible outputs and to Boolean functions. All characterizations are
the same for both the plain model and the correlated randomness
model.

2. We show that if a functionality contains an embedded XOR or an
embedded AND, then it cannot be computed with perfect security
(even in the correlated randomness model).

Keywords: Perfect security · Two-party computation · Correlated
randomness

c© The Author(s), under exclusive license to Springer Nature Switzerland 2022
E. Kiltz and V. Vaikuntanathan (Eds.): TCC 2022, LNCS 13748, pp. 532–561, 2022.
https://doi.org/10.1007/978-3-031-22365-5_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22365-5_19&domain=pdf
https://doi.org/10.1007/978-3-031-22365-5_19

On Perfectly Secure Two-Party Computation 533

1 Introduction

Secure Multiparty Computation (MPC) protocols allow a set of mutually dis-
trusting parties to compute a joint function of their private inputs. The two
main security properties that are desirable for protocols are correctness of the
computation and privacy (i.e., the adversary should not learn anything about
the inputs or outputs of the honest parties except what is leaked from the output
of the function). There are two main types of adversaries that are considered.
These are semi-honest (passive) adversaries and malicious (active) adversaries.
A semi-honest adversary always follows the prescribed protocol, but may try to
infer additional information from the joint view of the corrupted parties in the
protocol. A malicious adversary may instruct the corrupted parties to deviate
from the prescribed protocol in any manner it chooses.

A general paradigm for defining the desired security of protocols is known
as the ideal vs real paradigm. This paradigm avoids the need to specify a list of
desired properties. Rather, security is defined by describing an ideal functionality,
where parties interact via a trusted party to compute the task at hand. A real-
world protocol is then deemed secure, if no adversary can do more harm than
an adversary in the ideal-world. In a bit more detail, the definition requires
that the view of the adversary in a real-world execution, can be simulated by an
adversary (corrupting the same parties) in the ideal-world. There are three types
of measurements for the strength of security that may be considered. These are
called computational, statistical, and perfect security. Computational security
requires that the distribution of the view in the real-world is indistinguishable
from the distribution of the view in the ideal-world to a computationally bounded
machine. Statistical security requires these distributions to be statistically close
(indistinguishable even for unbounded machines). Finally, perfect security means
that the views in both worlds are identically distributed.

In this paper we consider perfect security for two-party computation (i.e.,
with no honest majority), in the face of malicious adversaries (when consider-
ing perfect security, we naturally assume the adversary to be computationally
unbounded). Apart from being a natural research goal, perfect security provides
important and useful security advantages over protocols that offer computational
security and even over those that have a negligible probability of failure (i.e.,
offer statistical security). Because of the stringent requirement, perfectly secure
constructions tend to have a simple structure. More importantly, perfect security
completely eliminates the need for a security parameter, making protocols that
are perfectly secure highly scalable.

Perfect Security in the Plain Model

In the basic setting of secure computation, parties communicate with each other
over some communication network. It is generally assumed that the channels are
secure, but no other setup assumption is made. In this setting, Ben-Or et al. [2],
Chaum et al. [5] showed the feasibility of computing any function with perfect

534 B. Alon et al.

security in the face of malicious adversaries that can corrupt strictly less than
one-third of the parties.1

In the two party setting, Kushilevitz [10] characterized the set of functions
that can be computed with perfect security in the face of semi-honest adver-
saries. Cleve [7] showed that full-security (where honest parties always receive
an output) is impossible in general, even for computationally bounded malicious
adversaries. For the setting of two-party plain-model protocols with perfect secu-
rity in the face of malicious adversaries, very little was known prior to our work.

Perfect Security with Correlated Randomness

It is natural to ask whether the impossibilities of obtaining prefect security can
be circumvented by making some reasonable assumption. This brings to the
table the correlated-randomness model that is both theoretically and practically
motivated. In this model, parties are given strings sampled from some fixed
joint distribution at the onset of the protocol. These strings are independent
of their inputs, and are then used alongside the inputs of the parties to run a
secure computation protocol. Interestingly, Cleve’s [7] impossibility result does
not apply to this setting.

In the correlated randomness setting, Ishai et al. [9] showed that it is possible
to construct perfectly and maliciously secure protocols in the sender-receiver
model, i.e., where both parties have an input, but only one receives an output.
On the negative side, [9] showed that, in general, perfect security is impossible to
achieve for two-party functionalities that deliver outputs to both the parties. In
particular, they show that it is impossible to compute the XOR function in this
setting. In fact, the negative implication carries forward even to security with
abort, where the adversary may itself get the output, but can deprive the honest
parties from the output. Other than this result, very little was known prior to
our work regarding perfect security in the correlated randomness setting where
both parties receive an output.

In light of the above, the main question studied in this paper is.

Characterize the set of two-party functionalities that can be computed with
perfect (full) security in the face of malicious adversaries.

We make substantial progress in this direction and leave open several chal-
lenging followup questions. We summarize our results below.

1.1 Our Contribution

In this work, we consider the model of two-party computation of deterministic
symmetric functionalities (i.e., where both parties have the same output in the
computation). We are interested in perfect security and consider computation
both in the plain model and in the correlated randomness model. We provide

1 For semi-honest adversaries, they showed that an honest majority is sufficient.

On Perfectly Secure Two-Party Computation 535

both positive results in the plain model, and negative results in the correlated
randomness model. In particular, our results form a full characterization for four-
output functionalities, showing that there are only two families of functionalities
that can be computed with perfect security.

Before giving the results in more details, let us first define the two families of
functionalities mentioned above. In the following, for any symmetric determin-
istic functionality f : X × Y �→ Z, we associate with it a matrix Mf ∈ Z |X |×|Y|

defined as Mf (x, y) = f(x, y), for all x ∈ X and y ∈ Y.

Definition 1 (Spiral functionality, informal). A symmetric deterministic
functionality f : X × Y �→ Z is called spiral, if Mf is either constant, or, up
to permuting the rows and columns, and transposing the matrix, is of the form
(M||M′) where M is constant-column, M′ is spiral, and where the set of entries
in the two matrices are disjoint.

As an example, consider the following spiral matrix.
⎛
⎜⎜⎜⎜⎝

7 7 7 7 7
6 6 6 6 6
5 4 4 1 2
5 4 4 0 2
5 4 4 3 3

⎞
⎟⎟⎟⎟⎠

Definition 2 (Transparent transfer functionality, informal). A symmet-
ric deterministic functionality f : X×Y �→ {0, 1, 2, 3} is called transparent trans-
fer if, up to permuting and duplicating the rows and columns, and transposing
the matrix, Mf is of the form

⎛
⎜⎜⎝

a c
a d
b c
b d

⎞
⎟⎟⎠ (1)

where {a, b, c, d} = {0, 1, 2, 3}.
We refer the reader to Remark 2 for the reasoning behind the name. We are
now ready to state our main result, providing a full characterization for the
four-output functionalities that can be computed with perfect security.

Theorem 1 (Characterization of four-output functionalities, infor-
mal). Let f : X ×Y �→ {0, 1, 2, 3} be a symmetric deterministic four-output two-
party functionality. If f can be computed with perfect security in the correlated
randomness model, then f is either spiral or transparent transfer. Conversely,
any spiral and transparent transfer functionality can be computed with perfect
security in the plain model.

536 B. Alon et al.

A few notes are in place. First, observe that, in particular, we obtain a charac-
terization for symmetric ternary-output and Boolean functionalities. Specifically,
since transparent transfer functionalities require four outputs, for the ternary-
output case, it follows that the only functionalities that can be computed with
perfect security are spiral. Thus, we have the following.

Corollary 1. Let f : X × Y �→ {0, 1, 2} be a symmetric deterministic ternary-
output two-party functionality. If f can be computed with perfect security in the
correlated randomness model, then f is spiral. Conversely, any spiral function-
ality can be computed with perfect security in the plain model.

As for the Boolean case, observe that a Boolean functionality is spiral if
and only if it is independent of one of its inputs, which we refer to as trivial
functionalities. Therefore, we obtain the following result.

Corollary 2. Let f : X ×Y �→ {0, 1} be a Boolean symmetric deterministic two-
party functionality. If f can be computed with perfect security in the correlated
randomness model, then f is trivial. Conversely, any trivial functionality can be
computed with perfect security in the plain model.

Second, although our main results consider only four-output functionalities,
we stress that both our positive and negative results can be extended to the
more general case. However, it is currently unknown if these results provide a
characterization for even five-output functionalities.

Third, observe that Theorem 1 implies that for four-output functionalities,
the plain model and the correlated randomness model are equivalent.

Finally, our techniques for the negative direction provide an impossibility
result for a larger class of functionalities, including those with more than four
outputs. An interesting corollary of this general result, is that if a functionality
has an embedded XOR or an embedded AND,2 then the functionality cannot be
computed with perfect securit.

1.2 Our Techniques

We now turn to describe our techniques. To warm-up for our techniques, we
first briefly explain the impossibility result for the symmetric XOR functionality
XOR(x, y) = x ⊕ y due to Ishai et al. [9]. We then show where it falls short even
for the AND functionality AND(x, y) = x ∧ y. Then, we show how to overcome
this shortcoming and prove a general impossibility result. Finally, we show how
to compute spiral and transparent transfer functionalities with perfect security.

2 A functionality f is said to have an embedded XOR if there exists x1, x2 ∈ X and
y1, y2 ∈ Y such that f(x1, y1) = f(x2, y2) �= f(x1, y2) = f(x2, y1). The functionality
is said to have an embedded AND if f(x2, y2) �= f(x1, y1) = f(x1, y2) = f(x2, y1).

On Perfectly Secure Two-Party Computation 537

Impossibility of XOR. Let us start with recalling the proof that XOR(x, y) =
x⊕ y cannot be computed with perfect security, even when the parties are given
correlated randomness. Assume towards contradiction that there is a protocol
Π for computing f with perfect security in the correlated randomness model.

Consider an execution of Π on inputs (x, y) ← {0, 1}2 chosen uniformly
at random. Since the protocol is perfectly correct, there exists a round where
the output of party A is fixed (e.g., the last round). That is, regardless of the
correlated randomness generated for the parties, any continuation of the protocol
results in A outputting x ⊕ y. Let i be the first such round. Similarly, let j be
the first round, where the output of B is fixed to x ⊕ y. Since the parties send
message one after the other, it holds that i �= j. Assume without loss of generality
that i < j. Then at round i, party A “knows” the output, while party B does not.
In more details, there exists correlated randomness (r1, r2) for which at round
i, there exists messages that A can send causing party B to output 1 ⊕ x ⊕ yy
(Table 1).

Table 1. The table below shows the functionalities that can be computed with perfect
security with correlated randomness (for presentation, we do not include constant func-
tions). As stated in Theorem 1, up to transposing the matrix, re-encoding the output,
and permuting and duplicating the rows and columns, these are the only functionalities
that can be computed with perfect security.

Functionality Trivial Spiral Transparent transfer

Boolean

(
0 1

0 1

)
– –

Ternary

(
0 1 2

0 1 2

) (
0 1

0 2

)
–

Four-output

(
0 1 2 3

0 1 2 3

) (
0 1 2

0 1 3

)
;

(
0 1 1

0 3 2

)
;

(
0 0 0

1 2 3

) (
0 0 1 1

2 3 2 3

)

Consider the following adversary A corrupting A, that aims to “bias” the
output of B towards 0. It instructs A to behave honestly until round i. At this
point, A can locally compute the output z = x ⊕ y. If z = 0, then it instructs A
to continue honestly until the termination of the protocol. Otherwise, it sends
random messages sampled independently and uniformly random.

Observe that the probability the adversary sees z = 0 is 1/2, where the prob-
ability is taken over the sampling of the inputs and the correlated randomness.
In this case, by the definition of A, the honest party will output 0. On the other
hand, if z = 1, then as the output of B is not fixed, there is a non-zero proba-
bility that both the correlated randomness is (r1, r2), and A sends the “correct
messages” to B, causing it to output 0. Overall, it follows that the probability
that B outputs 0 is strictly greater than 1/2. On the other hand, in the ideal
world, the output of B is 0 with probability exactly 1/2 regardless of the input

538 B. Alon et al.

of corrupted A to the trusted party, since B’s input y is chosen uniformly at
random.

Impossibility of AND. Before generalizing the impossibility result of [9] let
us first explain where their argument fails even for the AND functionality
AND(x, y) = x ∧ y. Consider the adversary A defined previously, that aims to
bias the output of B towards 0. Note that if y = 1, then a simulator can simulate
the attack by sending x = 0 with the “correct” probability (i.e., the probability
that the correlated randomness and the messages that A sends cause B to output
0). On the other hand, if y = 0, then regardless of what A does in the real world,
B already “knows” that the output is 0, thus A cannot introduce any bias. A
similar argument shows that biasing towards 1 might also be simulatable.

To overcome this issue, instead of just biasing the output of the honest party
towards a certain value, we let the adversary also guess uniformly at random the
input of the honest party. To see why it works, let us first analyze the probability
that A biases the output of B towards 0 and guesses its input correctly. Let Succ
be the event where the adversary succeeds. First, consider the case where x = 0.
Here, A will guess y correctly with probability 1/2, and always cause B to output
0. Therefore, Pr [Succ | x = 0] = 1/2. Next, consider the case where x = 1. In
this case, A always learns y from the output. Additionally, if y = 0 then B will
always output 0. If y = 1, then A will send random messages starting at round
i, hence with non-zero probability, B will output 0. Therefore,

Pr [Succ | x = 1] = Pr [y = 0] · Pr [Succ | x = 1 ∧ y = 0]
+ Pr [y = 1] · Pr [Succ | x = 1 ∧ y = 1]

=
1
2

+
1
2

· Pr [Succ | x = 1 ∧ y = 1]

>
1
2
.

Overall, we conclude that the adversary succeeds with probability Pr [Succ] >
1/2.

To see why no simulator exists for A, observe that if a simulator sends x = 0
to the trusted party, then it does not obtain any information on y, and if it
sends x = 1, then B will output 0 only if y = 0, which occurs with probability
1/2. Overall, the simulator can succeed with probability at most 1/2, hence no
simulator can perfectly simulate A.

Generalizing the Impossibility Result. We now explain how to generalize the
above argument to a more general, possibly non-Boolean, class of functionalities.
Our argument applies for a class of functionalities that are not captured by
Theorem 1. We next describe this set of functionalities, and claim they cannot
be computed with perfect security with correlated randomness.

Lemma 1 (Informal). Let f : X × Y �→ Z be symmetric deterministic two-
party functionality. Suppose there exists X ′ ⊆ X , Y ′ ⊆ Y, and Z ′ ⊂ Z such that
the submatrix M′ of matrix Mf induced by X ′ and Y ′ satisfies the following.

On Perfectly Secure Two-Party Computation 539

1. M′ contains an element from Z\Z ′.
2. There is a natural h ≥ 1, such that every row in M′ contains exactly h distinct

elements from Z ′, and every other row in the matrix Mf associated with f
contains at most h distinct elements from Z ′, within the columns of Y ′.

3. There is a natural h′ ≥ 1, such that every column in M′ contains exactly h′

distinct elements from Z ′, and every other column in the matrix Mf contains
at most h′ distinct elements from Z ′, within the rows of X ′.

Then f cannot be computed with perfect security in the correlated randomness
model.

The negative direction of Theorem 1 follows from Lemma 1 via a combinato-
rial argument, showing that if such a submatrix does not exist, then f is either
spiral or transparent transfer. The proof is somewhat technical and is therefore
omitted from the introduction. We refer the reader to Sect. 5 for the proof.

Let us first describe the attacker. Roughly speaking, the attack follows similar
ideas to the attacker for AND, however, instead of biasing towards a specific
value, A will bias the output of the honest party towards the set Z ′ ⊂ Z. In
more details, if A sees that the output z is inside Z ′ then it will continue honestly.
Otherwise, it will send random messages. Additionally, A outputs a guess for y
that is consistent with the output it saw, i.e., it outputs a uniform y∗ conditioned
on f(x, y∗) = z.

We next show that A cannot be simulated for x ← X ′ and y ← Y ′. We
first analyze the success probability of the adversary in the real world. Let Succ
denote the event that A both guesses y correctly, and causes B to output a value
from Z ′. We denote by zB the output of B. First, observe that for any fixed
x ∈ X ′ it holds that

Pr [zB ∈ Z ′ ∧ y∗ = y] =
∑
z∈Z′

Pr [zB = z] · Pr [y∗ = y | zB = z]

=
∑
z∈Z′

|{y′ ∈ Y ′ : f(x, y′) = z}|
|Y ′| · 1

|{y′ ∈ Y ′ : f(x, y′) = z}|

=
h

|Y ′| ,

where the last equality follows from Item 2, asserting there are exactly h distinct
element from Z ′ in the xth row of M′. Therefore

Pr [Succ] =
h

|Y ′| + Pr [z /∈ Z ′] · Pr [Succ | z /∈ Z ′]

for every fixed x ∈ X ′. Now, since we assume that M′ contains an element
outside of Z ′, it follows that there exists a choice of x, for which Pr [z /∈ Z ′] > 0.
Furthermore, since the output of B is not fixed, there is a non-zero chance that
the random messages that A sends to it will cause it to output a value from Z ′.
Therefore Pr [Succ | z /∈ Z ′] > 0. We conclude that Pr [Succ] > h/|Y ′|.

To show that A cannot be simulated, we prove that any simulator can both
guess y correctly and cause B to output a value from Z ′, with probability at

540 B. Alon et al.

most h/|Y ′|. We show that this is true for any input x the simulator sends to
the trusted party. Indeed, the probability that B outputs a fixed value z ∈ Z ′ is

exactly |{y′∈Y′:f(x,y′)=z}|
|Y′| . Given this output z, the simulator can guess y with

probability 1
|{y′∈Y′:f(x,y′)=z}| . However, among all the appearances of values from

Z ′, at most h of them are distinct. Thus, the simulator successfully guesses y
correctly and force B to output a value from Z ′, with probability at most h/|Y ′|.

Impossibility of Embedded XOR or Embedded AND. To show the usefulness of
Lemma 1, we next show that if f contains an embedded XOR or an embed-
ded AND, then f cannot be computed with perfect security in the correlated
randomness model. In fact, we show that if there exists inputs x1, x2 ∈ X and
y1, y2 ∈ Y, and there exists a �= b ∈ Z such that the 2 × 2 submatrix M induced
by those inputs is of the form

(
a b
b ∗

)
or

(
b a
∗ b

)
, where ∗ is any element from Z,

then f cannot be computed with perfect security in the correlated randomness
model. We show that the constraints from Lemma 1 hold for X ′ = {x1, x2},
Y ′ = {y1, y2}, and Z ′ = {b}. Indeed, M contains the element a /∈ Z ′, and every
row and column in M contains exactly one (distinct) element from Z ′. Finally,
any other row or column in the matrix Mf associated with f , will contain at
most one (distinct) element from Z ′.

The Positive Direction. We now turn to prove our positive results. Let us start
with describing a protocol for (non-constant) spiral functionalities. Recall that
f is said to be spiral, if its associated matrix Mf or its transpose is, up to
permuting the rows and columns, of the form (M||M′) where the entries of M
and M′ are disjoint, M is constant, and M′ is spiral. Assume without loss of
generality that Mf is of the form (M||M′). The idea is to let party B (which is
associated with the columns) to send to A the output in case the input y belongs
to the columns of M. Otherwise, it sends ⊥ and the parties inductively compute
M′. The security of the protocol stems from the fact that the entries of M and
M′ are disjoint. Thus, the output reveals to A whether y belongs to the columns
of M.

We next show that any transparent transfer functionality f can be computed
with perfect security. We assume without loss of generality that the associated
matrix is

Mf =

⎛
⎜⎜⎝

0 2
0 3
1 2
1 3

⎞
⎟⎟⎠ .

Consider the protocol, where B sends its input y to A, and then A sends f(x, y)
back to B. Clearly the protocol is correct and secure against any corrupt B.
We argue that the protocol is secure against any adversary A corrupting A as
well. First, as we are concerned with perfect security if there is no simulator
for A, then there exists a fixed choice of the randomness of A for which no
simulator exists. Therefore, we may assume without loss of generality that A is
deterministic.

On Perfectly Secure Two-Party Computation 541

Let Y = {y1, y2} be the domain of B. The idea is to let the simulator query
A on both possible inputs y1 and y2, rewinding it each time. This provides the
simulator with two outputs z1 ∈ {0, 1} and z2 ∈ {2, 3}. Since Mf contains
all possible rows from {0, 1} × {2, 3}, the simulator can find an input x∗ whose
corresponding row is (z1, z2). Finally, the simulator sends x∗ to the trusted party,
and outputs as the view y1 if the output it received is from {0, 1}, and outputs
y2 otherwise.

1.3 Additional Related Work

In the semi-honest setting, [2] showed that AND is impossible to compute with
statistical security, let alone perfect security in the dishonest-majority setting.
The work of [6] characterizes the Boolean functionalities that can be computed
with dishonest majority.

One of the commonly-known correlated randomness is that of oblivious trans-
fer (OT) which is a pair-wise correlation. In this, the first party gets a pair of
inputs (x0, x1) and the second party gets (b, xb). Brassard et al. [3] showed that
given sufficiently many invocations of the above OT correlation, the 1-out-of-n
string OT functionality can be computed with perfect security against malicious
adversaries. Wolf and Wullschleger [11] showed how to compute 1-out-of-2 bit
TO perfectly, which is the same as OT where the roles of the parties are reversed.
Finally, [1] showed that given access to sufficiently many parallel ideal computa-
tions of OT, most sender-receiver functionalities, where the sender’s domain size
is strictly larger than the receiver’s domain size, can be computed with perfect
security.

1.4 Organization

The preliminaries and definition of the model of computation appear in Sect. 2.
The statements of our main results are provided in Sect. 3. The negative direc-
tion is proved in Sects. 4 and 5. Specifically, in Sect. 4 we prove the more general
impossibility result, and in Sect. 5 we deduce the result for four-output function-
alities. Finally, we prove the positive direction in Sect. 6.

2 Preliminaries

2.1 Notations

For n ∈ N we let [n] = {1, 2 . . . n}. For a set S we write s ← S to indicate
that s is selected uniformly at random from S. Given a random variable (or a
distribution) X, we write x ← X to indicate that x is selected according to X.

Given a matrix M whose rows and columns are indexed by X and Y, respec-
tively, we let M(x, ·) = (M(x, y))y∈Y be the xth row, where x ∈ X . Similarly, we
let M(·, y) = (M(x, y))x∈X be the yth column, where y ∈ Y. We call a matrix
M constant-row if for all x ∈ X it holds that M(x, ·) is a constant vector. Simi-
larly, we call M constant-column if M(·, y) is constant for all y ∈ Y. Given two

542 B. Alon et al.

matrices M1 and M2 with the same number of rows, we let (M1||M2) denote
the matrix obtained from concatenating M1 and M2.

The following notion captures when two matrices are the same up to per-
muting the rows and columns, and transposing either of the matrices.

Definition 3. Let M1 ∈ Zn1×m1 and M2 ∈ Zn2×m2 be two matrices. We say
that M1 ∼ M2 if one of the following holds.

– n1 = n2, m1 = m2, and there exists a permutation π over the rows of M1

and a permutation σ over the columns of M1, such that

M1(π(x), σ(y)) = M2(x, y)

for all x and y.
– n1 = m2, m1 = n2, and there exists a permutation π over the rows of M1

and a permutation σ of M1 over the columns, such that

M1(π(x), σ(y)) = MT
2 (y, x)

for all x and y.

We next define the reduced form of matrix, which removes all duplicated
rows and columns.

Definition 4 (Reduced form of a matrix). For a matrix M, its reduced
form, denoted red(M), is the matrix obtained by repeatedly removing all dupli-
cated rows and columns from M (note that this is well-defined).

The next definition associates a matrix with any 2-ary function f .

Definition 5 (The matrix associated with a function). Let f : X ×Y �→ Z
be a 2-ary function. The matrix associated with f , denoted Mf ∈ Z |X |×|Y|, is
defined as Mf (x, y) = f(x, y) for all x ∈ X and y ∈ Y.

We next define a combinatorial rectangle.

Definition 6 (Combinatorial rectangles). Given two sets X and Y, a com-
binatorial rectangle (in short, a rectangle) over X ×Y, is a subset R = XR×YR,
where XR ⊆ X and YR ⊆ Y.

Given a matrix and combinatorial rectangle over its rows and columns, we
can define the submatrix induced by the rectangle.

Definition 7 (The submatrix induced by a rectangle). Let X , Y, and Z
be three sets, and let M ∈ Z |X |×|Y| be a matrix, whose rows and columns are
indexed with elements from X and Y, respectively. For a combinatorial rectangle
R = XR × YR over X × Y, we denote by MR ∈ Z |XR|×|YR| the submatrix of M
induced by R, i.e., MR(x, y) = M(x, y) for all x ∈ XR and y ∈ YR.

On Perfectly Secure Two-Party Computation 543

2.2 Security Model

We provide the basic definitions for secure multiparty computation according
to the real/ideal paradigm, for further details see [8]. Intuitively, a protocol is
considered secure if whatever an adversary can do in the real execution of the
protocol, can be done also in an ideal computation, in which an uncorrupted
trusted party assists the computation. For concreteness, we present the model
and the security definition of perfect two-party computation with an adversary
corrupting a single party, as this is the main focus of this work. We refer to [8]
for the general definition.

In this paper we focus on deterministic symmetric two-party functionalities
f : X × Y �→ Z, i.e., both parties receive the same output.3

The Real Model

A two-party protocol Π is defined by a set of two interactive Turing machines
A and B. Each Turing machine (party) holds at the beginning of the execution
a private input, and random coins. The adversary A is an interactive Turing
machine describing the behavior of a corrupted party P ∈ {A,B}. It starts the
execution with input that contains the identity of the corrupted party and its
input. We assume the protocol proceeds in round, where every odd round party
A sends a message, and every even round party B sends a message.

Throughout the execution of the protocol, all the honest parties follow the
instructions of the prescribed protocol, whereas the corrupted party receive its
instructions from the adversary. The adversary is considered to be malicious,
meaning that it can instruct the corrupted party to deviate from the protocol in
any arbitrary way. Additionally, the adversary has full-access to the view of the
corrupted party, which consists of its input, its random coins, and the messages
it sees throughout this execution. At the conclusion of the execution, the honest
parties output their prescribed output from the protocol, the corrupted party
outputs nothing, and the adversary outputs a function of its view (containing
the views of the corrupted party).

We denote by REALΠ,A (x, y) the joint output of the adversary A (that may
corrupt one of the parties) and of the honest parties in a random execution of
Π, on input x ∈ X for A and input y ∈ Y for B.

Remark 1 (On the absence of a security parameter). Typically, the parties are
also given a security parameter 1κ, which is also used to bound the computa-
tional complexity of the parties. However, we are concerned with perfect secu-
rity and functionalities of constant domain, thus having a security parameter is
redundant.

3 The typical convention in secure computation is to let f : {0, 1}∗ ×{0, 1}∗ �→ {0, 1}∗.
However, we consider only functionalities with a constant domain, which is why we
introduce this notation.

544 B. Alon et al.

Additionally, the adversary is usually said to be non-uniform, and holds an
auxiliary input. However, as there is no security parameter in our setting, the
auxiliary input does not provide A any additional power.

The Correlated Randomness Hybrid Model. For some of our result, we
consider an augmentation of the real world where the parties are provided with a
trusted setup for generating correlated randomness. Formally, we let CR denote
the randomized functionality that receives no input, and outputs random values
r1 and r2 to A and B, respectively. Here, (r1, r2) ← D where D is a fixed
distribution known in advance. At the start of the protocol (before the parties
receive their inputs), the parties call the functionality CR exactly once to obtain
r1 and r2. The parties then continue in a real execution as described previously.
We call this model the CR-hybrid world.

We denote by REAL
CR
Π,A (x, y) the joint output of the adversary A (that may

corrupt one of the parties) and of the honest parties in a random execution of
Π in the CR-hybrid world, on input x ∈ X for A and input y ∈ Y for B.

The Ideal Model

We consider an ideal computation with guaranteed output delivery (also referred
to as full security), where a trusted party performs the computation on behalf
of the parties, and the ideal-world adversary cannot abort the computation.
An ideal computation of a deterministic symmetric two-party functionality f :
X × Y → Z, on inputs x ∈ X and y ∈ Y, with an ideal-world adversary A
corrupting a single party P ∈ {A,B} proceeds as follows:

Parties send inputs to the trusted party: Each honest party sends its input
to the trusted party. The adversary A sends a value w from the corrupted
party’s domain as the input for the corrupted party. Let (x′, y′) denote the
inputs received by the trusted party.

The trusted party performs computation: The trusted party computes
z = f (x′, y′) and sends z to both A and B.

Outputs: Each honest party outputs whatever output it received from the
trusted party, and the corrupted party outputs nothing. The adversary A
outputs some function of its view (i.e., the input and output of the corrupted
party).

We denote by IDEALf,A (x, y) the joint output of the adversary A (that may
corrupt one of the parties) and the honest parties in a random execution of the
ideal-world computation of f on input x for A and input y for B.

The Security Definition

Having defined the real and ideal models, we can now define security of protocols
according to the real/ideal paradigm.

On Perfectly Secure Two-Party Computation 545

Definition 8 (Security). Let f : X × Y → Z be a deterministic symmetric
two-party functionality, and let Π be a two-party protocol. We say that Π com-
putes f with perfect security, if for every adversary A, controlling at most one
party in the real world, there exists an adversary Sim, controlling the same party
(if there is any) in the ideal world such that for every x ∈ X and every y ∈ Y it
holds that

IDEALf,Sim (x, y) ≡ REALΠ,A (x, y) .

To remove possible confusion, we will explicitly write that Π computes f with
perfect security in the plain model.

We say that Π computes f with perfect security in the CR-hybrid model if

IDEALf,Sim (x, y) ≡ REAL
CR
Π,A (x, y)

for all x ∈ X and y ∈ Y.

The Hybrid Model

The hybrid model is a model that extends the real model with a trusted party
that provides ideal computation for specific functionalities. The parties commu-
nicate with this trusted party in exactly the same way as in the ideal model
described above.

Let f be a functionality. Then, an execution of a protocol Π computing
a functionality g in the f -hybrid model involves the parties sending normal
messages to each other (as in the real model) and, in addition, having access
to a trusted party computing f . It is essential that the invocations of f are
done sequentially, meaning that before an invocation of f begins, the preceding
invocation of f must finish. In particular, there is at most a single call to f per
round, and no other messages are sent during any round in which f is called.
Note that the CR-hybrid is a special case, where the parties call CR once at the
onset of the protocol.

Let A be an adversary controlling a single party P ∈ {A,B}. We denote by
HYBRID

f
Π,A(x, y) the random variable consisting of the output of the adversary

and the output of the honest parties, following an execution of Π with ideal calls
to a trusted party computing f , on input x given to A and input y given to B.

Similarly to Definition 8, we say that Π computes g with perfect security in
the f -hybrid model if for any adversary A there exists a simulator Sim such that
HYBRID

f
π,A(x, y) and IDEALg,Sim(x, y) are identically distributed.

The sequential composition theorem of Canetti [4] states the following. Let
ρ be a protocol that computes f with perfect security. Then, if a protocol Π
computes g in the f -hybrid model, then the protocol Πρ, that is obtained from
Π by replacing all ideal calls to the trusted party computing f with the protocol
ρ, computes g in the real model with perfect security.

Theorem 2 ([4]). Let f be a two-party functionality, let ρ be a protocol that
computes f with perfect security, and let Π be a protocol that computes g with
perfect security in the f-hybrid model. Then, protocol Πρ computes g with perfect
security in the real model.

546 B. Alon et al.

3 Analyzing Symmetric Functionalities

In this section, we state our results. Our main results is a characterization of
the symmetric deterministic two-party functionalities with four-outputs that can
be computed with perfect security. Furthermore, the impossibility result can be
extended to functionalities with more than four outputs. Interestingly, although
the impossibility result holds in the CR-hybrid world, for any choice of CR, the
positive results are stated in the plain model, where the parties do not receive
correlated randomness.

Before stating our results, we first describe three families of symmetric deter-
ministic two-party functionalities. We then assert that among the four-output
functionalities, these are the only ones that can be computed with perfect secu-
rity in the CR-hybrid world.

We first define trivial functionalities, for which the output depends on only
one of the inputs.

Definition 9 (Trivial functionalities). Let f : X ×Y �→ Z be a deterministic
symmetric two-party functionality. We say that f is trivial if it is independent of
one of its inputs, i.e., either f(x, y) = g(x) or f(x, y) = g(y) for some function
g.

Note that for the matrix Mf of a trivial functionality f , either all rows are
constant or all columns are constant.

We next define the family of spiral functionalities, which is an extension
of the family of trivial functionalities. The definition is recursive. Roughly, a
functionality f is spiral, if it’s trivial or if by removing constant columns or
constant rows (containing a single value α) from the associated matrix Mf ,
results in a matrix associated with a spiral functionality, and contains no α
values.

Definition 10 (The spiral functionality and matrix). We call a matrix
M a spiral matrix if one of the following holds.

– M is a constant matrix.
– There exist a constant-column matrix M1 ∈ Zn1×m1

1 , and there a spiral
matrix M2 ∈ Zn2×m2

2 , where Z1 ∩ Z2 = ∅, such that M ∼ (M1||M2), i.e.,
equality holds up to permutation of the rows and columns and transposing the
matrix.

We call a deterministic symmetric two-party functionality f a spiral func-
tionality, if its associated matrix Mf is a spiral matrix.

Definition 11. Let f : X × Y �→ {0, 1, 2, 3} be a deterministic symmetric two-
party functionality. We call it a transparent transfer if the reduced form of its
associated matrix satisfies

red (Mf) ∼

⎛
⎜⎜⎝

a c
a d
b c
b d

⎞
⎟⎟⎠

where {a, b, c, d} = {0, 1, 2, 3}.

On Perfectly Secure Two-Party Computation 547

Remark 2 (On the naming of the function). Let us provide the reasoning behind
the naming of transparent transfer functions. Consider the symmetric functional-
ity f ′ : {0, 1}2×{0, 1} �→ {0, 1}2 defined as f ′((x0, x1), i) = (xi, i). Observe that,
up to the encoding of the output, it is the same as the transparent transfer func-
tionality defined in Definition 11. Indeed, mapping the output (xi, i) �→ xi + 2i
results in a matrix of the form ⎛

⎜⎜⎝
0 2
0 3
1 2
1 3

⎞
⎟⎟⎠ .

Since the mapping is bijective, we conclude the functions to be the equivalent.

3.1 Characterization of Four-Output Functionalities

We are now ready to state our main result, providing a characterization of the
symmetric deterministic four-output two-party functionalities that can be com-
puted with perfect security in the CR-hybrid model.

Theorem 3 (Characterization of four-output functionalities). Let f :
X × Y �→ {0, 1, 2, 3} be a deterministic symmetric two-party four-output func-
tionality. Then, f can be computed with perfect security in the CR-hybrid model
if and only if it is either a spiral function or a transparent transfer function.

The proof of Theorem 3 follows from the combination of the following two
lemmas. For the negative direction, we prove the following.

Lemma 2 (Lower bound for four-output functionalities). Let f : X ×
Y �→ {0, 1, 2, 3} be a deterministic symmetric two-party four-output functional-
ity. Assume that f can be computed with perfect security in the CR-hybrid model.
Then, f is either a spiral function or a transparent transfer function.

Lemma 2 is proved in Sect. 5. Towards proving it, in Sect. 4, we prove a
more general impossibility result, Lemma 4, which holds for functionalities that
are not necessarily four-output. When restricting the discussion to four-output
functionalities, our general impossibility result yields the lower bound for four-
output functionalities, see Sect. 5 for the full details.

For the positive direction of Theorem 3, we prove the following lemma stating
that every spiral functionality, and that the transparent transfer functionality
can be computed with perfect security. Furthermore, this can be done using
deterministic protocols in the plain model, and it holds regardless of the number
of outputs.

Lemma 3 (Upper bound for four-output functionalities). Let f : X ×
Y �→ Z be a deterministic symmetric two-party functionality. If f is a spiral or
a transparent transfer functionality, then f can be computed with perfect security
in the plain model.

Lemma 3 is proved in Sect. 6.

548 B. Alon et al.

3.2 Characterization of Boolean and Ternary-Output Functionalities

When restricting the discussion to functions with range of size two and of size
three, Theorem 3 yields more refined characterizations. First, note that Defi-
nition 11 requires at least four distinct output values. It hence follows that a
ternary-output functionality can be computed with perfect security if and only
if the functionality is a spiral.

Corollary 3 (Characterization of ternary-output functionalities). Let
f : X ×Y �→ {0, 1, 2} be a deterministic symmetric two-party ternary functional-
ity. Then f can be computed with perfect security in the CR-hybrid model if and
only if it is spiral.

Second, observe that any spiral Boolean functionality must be trivial. Thus,
we obtain the following characterization for Boolean functionalities.

Corollary 4 (Characterization of Boolean functionalities). Let f : X ×
Y �→ {0, 1} be a deterministic symmetric two-party Boolean functionality. Then,
f can be computed with perfect security in the CR-hybrid model if and only if it
is trivial.

3.3 Impossibility of Embedded XOR and Embedded AND

In this section we show that any functionality that contains an embedded XOR
or an embedded AND cannot be computed with perfect security in the CR-
hybrid model. Recall that a functionality f is said to have an embedded XOR,
if there exists x1, x2 ∈ X and y1, y2 ∈ Y such that f(x1, y1) = f(x2, y2) �=
f(x1, y2) = f(x2, y1). The functionality is said to have an embedded AND if
f(x2, y2) �= f(x1, y1) = f(x1, y2) = f(x2, y1). In fact, we are able to prove
a stronger result. To formalize this, we first define the notion of a forbidden
submatrix.

Definition 12 (Forbidden 2×2 submatrices and rectangles). Let M be a
matrix with entries from some set Z. We call a 2 × 2 rectangle R forbidden if
its induced submatrix MR satisfies

MR ∼
(

a b
b ∗

)
(2)

where a and b denote distinct elements of Z, and ∗ denotes an arbitrary element
of Z. We also say that M is forbidden if it contains a forbidden combinatorial
rectangle.

Theorem 4. Let f : X × Y �→ Z be a deterministic symmetric two-party func-
tionality. Assume there exists a 2 × 2 rectangle R such that its corresponding
induced submatrix is forbidden. Then f cannot be computed with perfect security
in the CR-hybrid model.

On Perfectly Secure Two-Party Computation 549

The proof is given in Sect. 5 and is derived from the general impossibility result
proven in Sect. 4. We get the following corollary.

Corollary 5. Let f : X × Y �→ Z be a deterministic symmetric two-party func-
tionality. Assume that Mf contains an embedded XOR or an embedded AND.
Then f cannot be computed with perfect security in the CR-hybrid model.

4 A General Impossibility Result for Perfect Security

In this section, we prove a general impossibility result for perfectly secure two-
party protocols for a large class of functionalities. Roughly speaking, we identify
several properties that cannot coincide for any sub-matrix, and show that if
the matrix associated with the functionality f contains a sub-matrix that has
all these properties, then f cannot be computed with perfect security in the
CR-hybrid model.

Lemma 4. Let f : X × Y �→ Z be a deterministic symmetric two-party func-
tionality. Assume there exists a combinatorial rectangle R = XR × YR, where
XR ⊆ X and where YR ⊆ Y, and assume there exists a strict subset of the
outputs ZR ⊂ Z such that the following hold.

1. At least one entry of MR
f (recall that MR

f is the sub-matrix induced by R)
contains an element from Z\ZR.

2. There exists h ∈ N
+ such that for all x ∈ XR it holds that

∣∣{MR
f (x, y) : y ∈ YR

} ∩ ZR

∣∣ = h.

In other words, every row in MR
f contains exactly h distinct elements from

ZR.
Additionally, for all x ∈ X\XR it holds that

|{Mf (x, y) : y ∈ YR} ∩ ZR| ≤ h,

namely, every row x /∈ XR of Mf contains at most h elements from ZR,
within the columns of YR.

3. There exists h′ ∈ N
+ such that for all y ∈ YR it holds

∣∣{MR
f (x, y) : x ∈ XR

} ∩ ZR

∣∣ = h′.

Additionally, for all y ∈ Y\YR it holds that

|{Mf (x, y) : x ∈ XR} ∩ ZR| ≤ h′.

Then f cannot be computed in CR-hybrid model with perfect security.

Example 1. To illustrate the requirements of Lemma 4, consider the ternary-
output functionality f whose associated matrix is defined as

550 B. Alon et al.

Mf =

⎛
⎝

0 1 2 2
2 1 0 2
0 1 2 1

⎞
⎠ .

For R = {x1, x2} × {y1, y2, y3}, ZR = {0, 1} the condition is satisfied with
h = 2, h′ = 1. Thus, the precondition of Lemma 4 is satisfied, hence f cannot
be computed with perfect security in the CR-hybrid model. It also, for example,
satisfies the precondition with R = {x1, x2}×{y1, y3}, ZR = {0}, and h = h′ = 1
(indeed, there is no uniqueness requirement on R).

Before formally proving Lemma 4, let us provide some intuition. First, simi-
larly to the impossibility of XOR due to Ishai et al. [9], we use the fact that any
protocol for computing f has a first round i in which (in any honest execution
of the protocol) one of the parties, say A, “fully knows” the output, while the
other does not. That is, any continuation from round i would result in A out-
putting the correct output. Conversely, there exists a continuation (and a choice
of correlated randomness) forcing B to output a different value.

Recall that the attack of [9] used the existence of such a round to present
an attacker that “biases” the output of the honest party. We extend this attack
strategy to one, where the adversary, corrupting A, tries to both bias the output
of the honest B towards the subset of outputs ZR, and at the same time, guess the
input of the honest party. Additionally, we are more lenient with the knowledge
of the adversary, requiring it only to “wait” until it knows whether the output is
in ZR or not. We show that if the inputs of the parties are chosen independently
and uniformly at random from the rectangle R, then the attacker can both guess
the input of the honest party correctly, and force it to output a value from ZR,
with probability higher than what any simulator can do in the ideal world. We
now provide the formal argument.

Proof (of Lemma 4). Assume towards contradiction that there exists a protocol
Π in the CR-hybrid model computing f with perfect security. Consider an honest
execution of Π, where the inputs of A and B are x̃ ← XR and ỹ ← YR, respec-
tively, and are sampled independently. The next claim asserts the existence of
a round, in which one of the parties always “knows” if the output is in ZR or
not, regardless of the choice of the correlated randomness, while the other party
does not necessarily “know” this.

Claim 5. There exists a round i > 0, and a party P ∈ {A,B}, such that the
following hold.

1. For all inputs x ∈ XR and y ∈ YR, and for every possible correlated random-
ness (r1, r2) ∈ Supp(D), there exists a set Z ′ ∈ {ZR,Z\ZR}, such that the
following holds. In any execution of Π, where up to (and including) round i,
party A acts honestly (according to x, r1) and party B acts honestly (according
to y, r2), the output of an honest P must be a value from Z ′, regardless of the
messages it receives in the following rounds (i.e., regardless of the behavior
of the other party).

On Perfectly Secure Two-Party Computation 551

2. There exist inputs x ∈ XR and y ∈ YR, with f(x, y) ∈ Z\ZR, and there exists
correlated randomness (r1, r2) ∈ Supp(D), such that the following holds. Con-
sider an execution of Π, where up to (and including) round i, party A acts
honestly (according to x, r1) and party B acts honestly (according to y, r2).
Then, there exists a continuation of Π, in which the remaining party P′ �= P
continues to behave honestly, such that, the output of P′ is a value from ZR.
Specifically, there exists a sequence of messages that P can send in the follow-
ing rounds to cause this effect.

The proof of the claim is given below. We first use it to conclude the proof
of Lemma 4. We fix the round i as given by Claim 5, and assume without loss of
generality that P = A. The case where P = B is handled analogously. We next
construct an attacker corrupting A and show that it cannot be simulated in the
ideal world.

Define the adversary A that corrupts A as follows.

1. Given the input x̃ of party A and the randomness r1 it obtains from CR, the
adversary A emulates A honestly up to and including round i.

2. Consider the lexicographically first honest continuation of the protocol, and
let z′ denote the resulting output of A in such an execution.

3. If z′ ∈ ZR, then A continues to emulate A honestly until the termination of
the protocol.

4. Otherwise, if z′ �∈ ZR, then in the remaining rounds A sends (on behalf of A)
random messages chosen independently and uniformly at random.

5. The adversary outputs a guess for the input of B (one that is consistent with
the output). That is, A samples

y∗ ← {y ∈ YR : f(x̃, y) = z′},

and outputs y∗.

We next prove that A cannot be simulated, and hence the protocol is not secure.
It follows that f cannot be realized with perfect security. We analyze the proba-
bility that A successfully, both guesses the input ỹ of B, and causes B to output
a value from ZR. We then compare this to an arbitrary simulator in the ideal
world, showing that no simulator can do the same with exactly the same proba-
bility. Formally, we prove the following two claims. In the following, let SuccREAL

denote the event in the real-world that the output of the adversary is y∗ = ỹ
and B outputs an element from ZR. Similarly, let SuccIDEAL denote the event in
the ideal-world that the output of the simulator implies y∗ = ỹ and B outputs
an element from ZR.

The proof (of Lemma 4) is concluded from the following two Claims (6 and
7) that show that Pr [SuccREAL] > Pr [SuccIDEAL], and hence, that A cannot be
simulated for random (x̃, ỹ) ← R. Thus, there exists inputs x ∈ XR and y ∈ YR

for which A cannot be simulated. Therefore, f cannot be computed with perfect
security in the CR-hybrid model.

552 B. Alon et al.

We introduce some notations that will be useful for the following two claims.
For every x ∈ X and for every z ∈ ZR let

wx(z) := |{y ∈ YR : f(x, y) = z}|

denote the number of appearances of z in the xth row of Mf and the columns
corresponding to YR. Finally, let

Wx :=
∑

z∈ZR

wx(z) = |{y ∈ YR : f(x, y) ∈ ZR}|

denote the number of entries from ZR in the xth row of Mf and the columns
corresponding to YR.

Claim 6. In the real world, it holds that

Pr [SuccREAL] >
h

|YR| .

Proof. We next analyze the probability that SuccREAL occurs in the real world.
Recall that x̃ denotes the input given to A, that z′ denotes the prescribed output
before the attack, and that y∗ is the adversary’s guess for the input ỹ held by
B. Observe that

Pr[SuccREAL] =
∑

x∈XR

Pr [x̃ = x] · Pr [SuccREAL | x̃ = x]

=
∑

x∈XR

Pr [x̃ = x] · Pr [z′ ∈ ZR | x̃ = x] · Pr [SuccREAL | z′ ∈ ZR ∧ x̃ = x]

+
∑

x∈XR:
Wx<|YR|

Pr [x̃ = x] · Pr [z′ �∈ ZR | x̃ = x] · Pr [SuccREAL | z′ �∈ ZR ∧ x̃ = x]

=
1

|XR| ·
∑

x∈XR

Pr [z′ ∈ ZR | x̃ = x] · Pr [y∗ = y | z′ ∈ ZR ∧ x̃ = x]

+
1

|XR| ·
∑

x∈XR:
Wx<|YR|

Pr [z′ �∈ ZR | x̃ = x] · Pr [SuccREAL | z′ �∈ ZR ∧ x̃ = x] , (3)

where the probabilities are taken over the sampling of the inputs x̃ and ỹ, the
sampling of the correlated randomness, and the sampling of y∗. The second
equality follows from fact that if Wx < |YR|, then there exists y ∈ YR such that
f(x, y) /∈ ZR. We now analyze each term in the summation. Observe that for
every x ∈ XR it holds that

Pr [z′ ∈ ZR | x̃ = x] = Pr [f(x̃, ỹ) ∈ ZR | x̃ = x] =
Wx

|YR| .

On Perfectly Secure Two-Party Computation 553

Additionally, for every x ∈ XR it holds that

Pr [y∗ = ỹ|z′ ∈ ZR ∧ x̃ = x] =
∑

z∈ZR:
wx(z)>0

Pr [z′ = z | z′ ∈ ZR ∧ x̃ = x]

· Pr [y∗ = ỹ|z′ = z ∧ x̃ = x]

=
∑

z∈ZR:
wx(z)>0

wx(z)
Wx

· 1
wx(z)

=
h

Wx
.

Substituting this into the first summation in Eq. (3) for Wx

|YR| · h
Wx

, we obtain

Pr [SuccREAL] =
h

|YR| +
1

|XR| ·
∑

x∈XR:
Wx<|YR|

Pr [z′ �∈ ZR | x̃ = x]

· Pr [SuccREAL | z′ �∈ ZR ∧ x̃ = x] .

(4)

To conclude the proof, it suffices to show that there exists x ∈ XR where
Wx < |YR|, such that

Pr [z′ �∈ ZR | x̃ = x] · Pr [SuccREAL | z′ �∈ ZR ∧ x̃ = x] �= 0.

Now, for every x ∈ XR where Wx < |YR|, let

εx := Pr [SuccREAL | z′ �∈ ZR ∧ x̃ = x] ,

where the probability is taken over the sampling of the input ỹ, the guess y∗ of
the adversary, and the sampling of the correlated randomness. Then

Pr [z′ �∈ ZR | x̃ = x] · Pr [SuccREAL | z′ �∈ ZR ∧ x̃ = x] =
(

1 − Wx

|YR|
)

· εx.

We now show that there exists x ∈ XR such that εx > 0 and that Wx <
|YR|. By Claim 5, there exists inputs x ∈ XR and y ∈ YR, and correlated
randomness (r1, r2) ∈ Supp(D), such that f(x, y) ∈ Z\ZR, and for which there
is a continuation of Π after round i causing B to output a value from ZR. Observe
that since f(x, y) ∈ Z\ZR, the adversary A sends messages sampled uniformly
at random and independently starting from round i. Therefore, conditioned on
x̃ = x, the probability it causes B to output a value from ZR, is the probability
that ỹ = y, the correlated randomness is (r1, r2), and A sampled the correct
messages and guessed y∗ = ỹ correctly. By Claim 5, this event occurs with
non-zero probability, i.e., εx > 0.

Claim 7. For any simulator SimA in the ideal world, it holds that

Pr [SuccIDEAL] ≤ h

|YR| .

554 B. Alon et al.

Intuitively, by Item 2, regardless of the input the simulator sends to the
trusted party, any distinct output z ∈ ZR contributes 1/|YR| to the probability
the simulator both guesses the input of the honest party, and forces the honest
party to output z. Due to lack of space, the proof is given in the full-version.

It is left to prove Claim 5, roughly asserting that there exists a round where
the output of one party is fixed, while the output of the other is not.

Proof (of Claim 5). For any certain inputs (x, y) ∈ R and correlated randomness
(r1, r2) ∈ Supp(D), denote as iA(x, y, r1, r2) the first round for which given an
honest execution of Π up to and including round iA(x, y, r1, r2), the following
holds. There exists a set Z ′ ∈ {ZR,Z\ZR} such that any continuation of Π
when A continues to behave honestly results in A outputting a value from Z ′

(regardless of the behavior of B). Note that such a round exists, since perfect cor-
rectness implies that at the end of the protocol, if both parties behave honestly,
then for any fixed (x, y, r1, r2) party A outputs f(x, y).

Similarly, denote by iB(x, y, r1, r2) the first round for which given an honest
execution of Π up to and including round iB(x, y, r1, r2), any continuation of
Π when B continues to behave honestly results in it outputting a value from
Z ′′ ∈ {ZR,Z\ZR} (regardless of the behavior of A).

Next, we let iA be the first round, for which for all inputs (x, y) ∈ R and for
all possible correlated randomness (r1, r2) ∈ Supp(D), the output of A is defined
to be either in ZR or in Z\ZR. In the same way, we define iB for B. Formally,

iA := max
(x,y)∈R

(r1,r2)∈Supp(D)

iA(x, y, r1, r2), iB := max
(x,y)∈R

(r1,r2)∈Supp(D)

iB(x, y, r1, r2).

Observe that there exists a row x ∈ XR and a column y ∈ YR, such that
MR

f (x, ·) and MR
f (·, y) contain both values from ZR and from Z\ZR. Indeed,

by Item 1 (in the statement of Lemma 4), there exists a cell (x, y) ∈ R where
MR

f (x, y) ∈ Z\ZR. By Item 2 and Item 3 it follows that MR
f (x, ·) and MR

f (·, y)
contain at least one element from ZR each. This implies that iA, iB > 0, because
there exist (x, y) ∈ R where the possible output for both parties before the
first round can be from ZR and from Z\ZR. Furthermore, as the parties send
messages one after another, it follows that iA �= iB. If iA < iB then assign P := A
and i := iA, else we set P := B and i := iB.

The claim follows from the definition of iA and iB. Indeed, assume that iA <
iB, then for all inputs (x, y) ∈ R and correlated randomness (r1, r2) ∈ Supp(D),
given an honest execution of Π up to and including round iA, there exists a set
Z ′ ∈ {ZR,Z\ZR} such that any continuation of iA when A behaves honestly,
results in A outputting a value from Z ′. On the other hand, as iB > iA, by
the definition of iB, there exist inputs (x, y) ∈ R and correlated randomness
(r1, r2) ∈ Supp(D) such that iB(x, y, r1, r2) > iA. Hence, for such (x, y, r1, r2)
there are possible continuations of Π resulting in honest B outputting a value
from ZR, and continuations resulting in honest B outputting a value from Z\ZR.
Furthermore, there exists such (x, y) ∈ R satisfying f(x, y) ∈ Z\ZR as well.
Indeed, observe that since there exists a malicious continuation making B output

On Perfectly Secure Two-Party Computation 555

a value from Z\ZR (regardless of the value of the real output f(x, y)), then
there must exist an input x′ ∈ XR and randomness r′

1 for A that are consistent
with the transcript up to round iA, and that cause B to output a value from
Z\ZR. Notice that it must be the case that f(x′, y) ∈ Z\ZR (in addition to
iB(x′, y, r′

1, r2) > iA), thus (x′, y) ∈ R is the desired pair of inputs. The case
where iA > iB follows an analogous argument.

Remark 3 (On proving impossibility of security-with-abort). Similarly to [9], we
can prove that the class of functionality captured by Lemma 4 cannot be com-
puted with perfect security-with-abort. To see this, observe that the real world
adversary still has a non-zero chance of increasing the probability that the hon-
est party outputs a value from ZR, while in the ideal world, giving the simulator
the ability to cause the honest party to output ⊥ will not increase its success
probability.

5 An Impossibility Result for Perfect Security
for Four-Output Functionalities

In this section, we prove Lemma 2. Our starting point is the general impossibility
result stated in Lemma 4, which appears in Sect. 4. Let us first restate the lemma.

Lemma 5 (Restatement of Lemma 2). Let f : X × Y �→ {0, 1, 2, 3} be a
deterministic symmetric two-party four-output functionality. Assume that f can
be computed with perfect security in the CR-hybrid model. Then, f is either a
spiral function or a transparent transfer function.

Towards proving the lemma, we first derive Theorem 4 as a corollary from
Lemma 4.

Corollary 6 (Restatement of Theorem 4). Let f : X × Y �→ Z be a deter-
ministic symmetric two-party functionality. Assume there exists a 2×2 rectangle
R such that its corresponding submatrix MR

f is forbidden (see Definition 12).
Then f cannot be computed with perfect security in the CR-hybrid model.

Proof. We show that for ZR = {b} and h = h′ = 1, the constraints from Lemma
4 hold. Indeed, since MR

f contains the element a �= b, Item 1 holds. As for Items
2 and 3, note that |ZR| = h = h′ = 1, and each row and column in Mf cannot
contain more than one distinct elements from ZR.

As a corollary, any 2 × 2 rectangle of a functionality that can be computed
with perfect security in the CR-hybrid model, must be one of the remaining
forms. That is, we have the following result.

Corollary 7. Let f : X × Y �→ Z be a deterministic symmetric two-party func-
tionality. Suppose that f can be computed with perfect security in the CR-hybrid

556 B. Alon et al.

model. Then any 2 × 2 rectangle R ⊆ X × Y induces one of the following sub-
matrices:

MR
f ∼

(
a a
a a

)
; MR

f ∼
(

a a
b b

)
; MR

f ∼
(

a a
b c

)
; MR

f ∼
(

a b
c d

)
, (5)

where a, b, c and d denote distinct elements of Z.

We are now ready to prove Lemma 2, which gives necessary conditions for
a two-party four-output symmetric deterministic functionality f : X × Y �→
{a, b, c, d}, to be computable with perfect security in the CR-hybrid model. Recall
that Lemma 2 asserts that for such functionalities to be computable with perfect
security, they must be one of two types: either a spiral or a transparent transfer
functionality. The proof follows from the following two claims, that give the
conditions for when a four-output functionalities is a spiral, and when it is a
transparent transfer.

Claim 8. Let f : X × Y �→ {0, 1, 2, 3} be a deterministic symmetric four-output
two-party functionality. Assume that f can be computed with perfect security in
the CR-hybrid model. Further, assume that Mf contains a 2×2 submatrix of the
form (

a b
c d

)
,

where {a, b, c, d} = {0, 1, 2, 3}. Then f is a transparent transfer functionality.

Claim 9. Let f : X × Y �→ {0, 1, 2, 3} be a deterministic symmetric four-output
two-party functionality. Assume that in Mf there is no forbidden 2×2 submatrix
and no 2 × 2 submatrix of the form

(
a b
c d

)
,

where {a, b, c, d} = {0, 1, 2, 3}. Then f is a spiral functionality.

Claim 8 is proven below. Due to lack of space, we defer the proof of Claim 9
to the full version. We next use the above two claims to prove Lemma 2.

Proof (of Lemma 2). Fix a symmetric deterministic functionality f : X × Y �→
{0, 1, 2, 3}, and assume it can be computed with perfect security in the CR-hybrid
model. By Corollary 7, every 2 × 2 submatrix of Mf is of one of the following
forms (up to permuting the rows and columns, and transposing the matrix).

(
a a
a a

)
;

(
a a
b b

)
;

(
a a
b c

)
; or

(
a b
c d

)
.

If Mf contains the last submatrix, then by Claim 8 the functionality f is the
transparent transfer functionality. Otherwise, by Claim 9 it is spiral.

It is left to prove Claim 8.

On Perfectly Secure Two-Party Computation 557

Proof (of Claim 8). Suppose there exists a 2×2 rectangle R = {x1, x2}×{y1, y2}
such that

MR
f =

(
a b
c d

)
.

Using the notation of Lemma 4, consider taking ZR = {a, d}. As each row and
each column in MR

f contains exactly 1 element from ZR, and the submatrix
contains an element from Z\ZR, Item 1 from Lemma 4 holds. As we assume
that f can be computed with perfect security in the CR-hybrid model, by Lemma
4, at least one of the following must hold.

– There exists a row x3 ∈ X\{x1, x2} such that

{Mf (x3, y1),Mf (x3, y2)} = {a, d} .

Observe that if Mf (x3, y1) = d and Mf (x3, y2) = a, then the submatrix
induced by {x1, x3} × {y1, y2} is

(
a b
d a

)
. As this is a forbidden submatrix, by

Corollary 6 this contradicts the assumption that f can be computed with
perfect security in the CR-hybrid model. Thus,

(Mf (x3, y1),Mf (x3, y2)) = (a, d) .

– There exists a column y3 ∈ Y\{y1, y2} such that

{Mf (x1, y3),Mf (x2, y3)} = {a, d} .

Similarly to the previous case, it must be the case where

(Mf (x1, y3),Mf (x2, y3)) = (a, d) .

Taking ZR = {b, c} and using an analogous argument, it follows that at least
one of the following holds.

– There exists a row x4 ∈ X\{x1, x2} such that

(Mf (x4, y1),Mf (x4, y2)) = (c, b) .

– There exists a column y3 ∈ Y\{y1, y2} such that

(Mf (x1, y4),Mf (x2, y4)) = (b, c) .

We conclude that one of the following must be a submatrix of Mf .
⎛
⎜⎜⎝

a b
c d
a d
c b

⎞
⎟⎟⎠ ;

(
a b a b
c d d c

)
;

⎛
⎝

a b b
c d c
a d ∗

⎞
⎠ ;

⎛
⎝

a b a
c d d
c b ∗

⎞
⎠ , (6)

where ∗ is an arbitrary element of {a, b, c, d}. Next, observe that the latter two
cases are impossible. This is true since for any assignment for value of ∗ (out of
the four possible values), yields a 2 × 2 forbidden submatrix (in particular, an

558 B. Alon et al.

embedded AND). Hence, by Corollary 6 these two submatrices are forbidden.
We assume without loss of generality that the first submatrix from Equation (6)
appears in Mf . It is left to show that any other row and column in Mf is a
duplication.

Consider x5 ∈ X\{x1, x2, x3, x4} (assuming such exists). Observe that
Mf (x5, y1) �= b as otherwise, the submatrix induced by {x1, x5}×{y1, y2} is the
forbidden submatrix

(
a b
b ∗

)
where ∗ is an arbitrary value. By Corollary 6, this con-

tradicts the assumption that f can be computed with perfect security in the CR-
hybrid model. Similarly, it holds that Mf (x5, y1) �= d and Mf (x5, y2) /∈ {a, c}, as
otherwise this induces a forbidden submatrix. Therefore, Mf (x5, y1) ∈ {a, c} and
Mf (x5, y2) ∈ {b, d}. All possible rows satisfying those conditions are Mf (x1, ·),
Mf (x2, ·), Mf (x3, ·), and Mf (x4, ·). Therefore, any possible row Mf (x5, ·) must
be a duplication.

Next, consider a column y3 ∈ X\{y1, y2}. Observe that Mf (x1, y3) �= c,
as otherwise the submatrix induced by the rectangle {x1, x2} × {y1, y3} is the
forbidden submatrix (a c

c ∗) . Similarly, it holds that Mf (x1, y3) �= d. We next
consider two cases.

We assume that Mf (x1, y3) = a, as the case where Mf (x1, y3) = b can
be handled using an analogous argument. Then Mf (x3, y3) = a, as otherwise
the submatrix induced by a rectangle {x1, x3} × {y1, y3} is forbidden. Similarly,
note that if Mf (x2, y3) �= c then Mf contains an induced forbidden submatrix.
Finally, Mf (x4, y3) = c, as otherwise the submatrix induced by a rectangle
{x2, x4} × {y1, y3} is forbidden. Thus,

(Mf (x1, y3),Mf (x2, y3),Mf (x3, y3),Mf (x4, y3)) = (a, c, a, c),

which is a duplication of the first column.

6 Positive Results for Perfect Security

In this section, we prove Lemma 3, serving as the positive direction of Theroem 3.
Specifically, we prove that every spiral functionality and the transparent transfer
functionality can be computed with perfect security. In fact, we show that these
functionalities can be computed by deterministic protocols in the plain model,
i.e., where the parties do not receive correlated randomness. We first restate the
lemma.

Lemma 6 (Restatement of Lemma 3) Let f : X × Y �→ Z be a determinis-
tic symmetric two-party functionality. If f is a spiral or a transparent transfer
functionality, then f can be computed with perfect security in the plain model.

We prove that spiral functionalities can be computed with perfect security
in Sect. 6.1. We handle transparent transfer functionalities in Sect. 6.2.

On Perfectly Secure Two-Party Computation 559

6.1 Computing Spiral Functionalities

In this section, we prove that any spiral functionality can be computed with
perfect security. This result follows from the following two propositions, asserting
the status of a functionality that is obtained from another by adding certain new
rows or columns to the associated matrix.

The first proposition states an intuitive observation that for a symmetric
functionality f , duplicating rows and columns in Mf does not affect the existence
of a perfectly secure protocol.

Proposition 1. Let f : X × Y �→ Z be a deterministic symmetric two-party
functionality, and let f ′ : X ′ × Y �→ Z be such that red(Mf) ∼ red(Mf ′). Then
f ′ can be computed with perfect security in the f-hybrid model (and vice versa).
Similarly, for f ′′ : X ×Y ′′ �→ Z such that red(Mf) ∼ red(Mf ′′), it holds that f ′′

can be computed with perfect security in the f-hybrid model (and vice versa).

Due to lack of space, the proof of Proposition 2 is given in the full version.
We next state the second proposition, which asserts that given a functionality f
that can be computed with perfect security, adding a constant row or column to
Mf with new values, results in a functionality that can still be computed with
perfect security.

Proposition 2. Let f : X × Y �→ Z be a deterministic symmetric two-party
functionality, and let x+ /∈ X and z+ /∈ Z. Consider the functionality f+ :
(X ∪ {x+}) × Y �→ Z ∪ {z+} defined as

f+(x, y) =

{
f(x, y) if x ∈ X
z+ otherwise

Then f+ can be computed with perfect security in the f-hybrid model.

Due to lack of space, the proof of Proposition 2 is given in the full version.
We first observe that, combined with the composition theorem and the fact that
any constant functionality can be computed with perfect security in the plain
model, it follows that any spiral functionality can also be computed with perfect
security in the plain model.

Corollary 8. Let f : X × Y �→ Z be a deterministic symmetric two-party func-
tionality. Assume that f is spiral. Then f can be computed with perfect security
in the plain model.

6.2 Computing Transparent Transfer Functionalities

In this section we show that the transparent transfer functionality defined in Def-
inition 11 can be computed with perfect security (in the plain model). In fact, we
show a family of functionalities, extending the transparent transfer functionality
and show that they can be computed with perfect security. Let us first define
this family.

560 B. Alon et al.

Definition 13 (Generalized transparent transfer functionality) Let
k, n ∈ N and let Σ = {0, . . . , k −1}. We define the symmetric (k, n)-transparent
transfer functionality TTk,n : Σn × [n] �→ Σ × [n] as

TTk,n ((x1, . . . , xn) , i) = (xi, i) .

Note that TT2,2 is equivalent to the transparent transfer functionality from Defi-
nition 11 (i.e., by applying the mapping (xi, i) �→ (xi +(i−1) ·k) to the output).

We next show that any (k, n)-transparent transfer functionality can be com-
puted with perfect security in the plain model.

Claim 10. For every k, n ∈ N the (k, n)-transparent transfer functionality
TTk,n can be computed with perfect security in the plain model.

Proof. We define a protocol Π for TTk,n as follows:

. .
Protocol 11
Inputs: Party A holds input (x1, . . . , xn) ∈ Σn and party B holds input i ∈ [n].

1. B sends its input i to A.
2. A sends xi to B, and outputs (xi, i).
3. If B received a value xi /∈ Σ, then it outputs (0, i).
. .

Clearly, the protocol admits perfect correctness. We next show that it is
secure. Consider an adversary A corrupting A. We may assume without loss
of generality that A is deterministic (by an averaging argument). We define its
simulator SimA as follows.

1. Query A on every possible j ∈ [n] (rewinding each time). Let (x∗
1, . . . , x

∗
n) be

the corresponding messages sent by A to B for every such j. For any j ∈ [n],
if x∗

j /∈ Σ then change it to 0. Let (x′
1, . . . , x

′
n) be the resulting vector.

2. Send (x′
1, . . . , x

′
n) to the trusted party T, and let (x′

i, i) denote the output it
sends.

3. Rewind A to the beginning, send it i, output whatever it outputs, and halt.

We now analyze the simulator. Since A is deterministic, the input x∗
i it sends

upon receiving i, is the same after rewinding. Thus, the simulator will send the
same input to the trusted party (changing to 0 in case x∗

i /∈ Σ).
We now consider the case where B is corrupted by an adversary B. Its simu-

lator SimB proceeds as follows.

1. Query B to obtain the message i it sends to A in the first round.
2. Send i to the trusted party T, and obtain a value x.
3. Send x to B, output whatever B outputs, and halt.

Clearly, the output of A is i in both worlds, and the view of B is xi. Therefore,
the real and ideal worlds are identical.

On Perfectly Secure Two-Party Computation 561

Acknowledgements. The work of B. Alon, O. Nissenbaum, E. Omri, and A. Paskin-
Cherniavsky was supported in part by the Ariel Cyber Innovation Center in conjunction
with the Israel National Cyber directorate in the Prime Minister’s Office. The work of
B. Alon, O. Nissenbaum, and E. Omri was also supported in part by grants from the
Israel Science Foundation (no.152/17). This work was done while E. Omri was visiting
Georgetown University, supported by the Robert L. McDevitt, K.S.G., K.C.H.S. and
Catherine H. McDevitt L.C.H.S. endowment at Georgetown University. The work of
A. Patra was supported by DST National Mission on Interdisciplinary Cyber-Physical
Systems (NM-ICPS) 2020–2025 and SERB MATRICS (Theoretical Sciences) Grant
2020–2023.

References

1. Alon, B., Paskin-Cherniavsky, A.: On perfectly secure 2PC in the OT-hybrid
model. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11891, pp. 561–
595. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36030-6 22

2. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computing. In: Proceedings of the 20th
STOC, pp. 1–10 (1988). https://doi.org/10.1145/3335741.3335756

3. Brassard, G., Crépeau, C., Santha, M.: Oblivious transfers and intersecting codes.
IACR Cryptology ePrint Archive, vol. 1996, p. 10 (1996). http://eprint.iacr.org/
1996/010

4. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptol. 13(1), 143–202 (2000). https://doi.org/10.1007/s001459910006

5. Chaum, D., Crépeau, C., Damgard, I.: Multiparty unconditionally secure proto-
cols. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of
Computing, pp. 11–19 (1988). https://doi.org/10.1145/62212.62214

6. Chor, B., Kushilevitz, E.: A zero-one law for Boolean privacy. SIAM J. Discret.
Math. 4(1), 36–47 (1991)

7. Cleve, R.: Limits on the security of coin flips when half the processors are faulty. In:
Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing,
pp. 364–369 (1986)

8. Goldreich, O.: Foundations of Cryptography - VOLUME 2: Basic Applications.
Cambridge University Press, Cambridge (2004)

9. Ishai, Y., Kushilevitz, E., Meldgaard, S., Orlandi, C., Paskin-Cherniavsky, A.: On
the power of correlated randomness in secure computation. In: Sahai, A. (ed.) TCC
2013. LNCS, vol. 7785, pp. 600–620. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-36594-2 34

10. Kushilevitz, E.: Privacy and communication complexity. SIAM J. Discret. Math.
5(2), 273–284 (1992)

11. Wolf, S., Wullschleger, J.: Oblivious transfer is symmetric. In: Vaudenay, S. (ed.)
EUROCRYPT 2006. LNCS, vol. 4004, pp. 222–232. Springer, Heidelberg (2006).
https://doi.org/10.1007/11761679 14

https://doi.org/10.1007/978-3-030-36030-6_22
https://doi.org/10.1145/3335741.3335756
http://eprint.iacr.org/1996/010
http://eprint.iacr.org/1996/010
https://doi.org/10.1007/s001459910006
https://doi.org/10.1145/62212.62214
https://doi.org/10.1007/978-3-642-36594-2_34
https://doi.org/10.1007/978-3-642-36594-2_34
https://doi.org/10.1007/11761679_14

Lattices

Public-Key Encryption
from Homogeneous CLWE

Andrej Bogdanov1 , Miguel Cueto Noval2(B) , Charlotte Hoffmann2 ,
and Alon Rosen3,4

1 Chinese University of Hong Kong, Hong Kong, China
andrejb@cse.cuhk.edu.hk

2 Institute of Science and Technology Austria, Klosterneuburg, Austria
{miguel.cuetonoval,charlotte.hoffmann}@ist.ac.at

3 Bocconi University, Milan, Italy
alon.rosen@unibocconi.it

4 Reichman University, Herzliya, Israel

Abstract. The homogeneous continuous LWE (hCLWE) problem is to
distinguish samples of a specific high-dimensional Gaussian mixture from
standard normal samples. It was shown to be at least as hard as Learning
with Errors, but no reduction in the other direction is currently known.

We present four new public-key encryption schemes based on the hard-
ness of hCLWE, with varying tradeoffs between decryption and secu-
rity errors, and different discretization techniques. Our schemes yield a
polynomial-time algorithm for solving hCLWE using a Statistical Zero-
Knowledge oracle.

Keywords: Public-key encryption · Continuous Learning with
Errors · Statistical Zero-Knowledge · Hypercontractivity ·
Statistical-computational gaps · Discrete Gaussian Sampling

1 Introduction

Existing public-key encryption schemes are based on relatively few hard com-
putational problems, all from the domains of number theory [RSA78,Rab79,
EG85], coding theory [McE78], lattices [AD97,Reg05], and noisy linear alge-
bra [Ale03,ABW10]. Each of these domains yields to different tradeoffs between
functionality, security, and efficiency.

In this work we explore public-key encryption based on a new type of assump-
tion: computational hardness in statistical inference. The input of a statistical
inference problem is a sequence of independent samples coming from some distri-
bution with unknown parameters. The search (or estimation) task is to identify
the parameters; the easier distinguishing (or hypothesis testing) task is to dis-
tinguish the samples from ones coming from a fixed null distribution.

Our statistical inference problem of interest is one that has attracted much
algorithmic attention: learning Gaussian mixtures in high dimension. A mix-
ture is a convex combination of k Gaussians with different means and possi-
bly different covariance matrices. When k is constant polynomial-time learning
c© The Author(s), under exclusive license to Springer Nature Switzerland 2022
E. Kiltz and V. Vaikuntanathan (Eds.): TCC 2022, LNCS 13748, pp. 565–592, 2022.
https://doi.org/10.1007/978-3-031-22365-5_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22365-5_20&domain=pdf
http://orcid.org/0000-0002-0338-6151
http://orcid.org/0000-0002-2505-4246
http://orcid.org/0000-0003-2027-5549
http://orcid.org/0000-0002-3021-7150
https://doi.org/10.1007/978-3-031-22365-5_20

566 A. Bogdanov et al.

algorithms are known [HP15,BS15] assuming sufficiently many samples are avail-
able. Diakonikolas et al. [DKS17] showed that in general the learning problem is
intractable for statistical query algorithms. Bruna et al. [BRST21] proved that
even the task of distinguishing mixtures of Gaussians from standard normal
samples is intractable assuming the hardness of short vectors and short bases in
lattices (the GapSVP and GapSIVP problems). Gupte et al. [GVV22] recently
showed the stronger claim that the hardness can be based on the Learning with
Errors (LWE) problem.

The hard Gaussian mixture of [BRST21,GVV22], called the homogeneous
Continuous Learning with Errors (hCLWE) distribution, consists of samples in
R

n that have a standard normal distribution in every direction perpendicular
to a secret direction w ∈ R

n. The distribution in direction w is a noisy dis-
crete Gaussian, i.e. a mixture of “Gaussian pancakes” of standard deviation
β/

√
β2 + γ2 ≈ β/γ and spacing γ/(β2 + γ2) ≈ 1/γ (Fig. 1.a). The (decision)

hCLWE problem is to distinguish hCLWE samples from purely normal ones.
The full version of this paper [BNHR22] contains all the missing proofs.

1.1 Our Contributions

In this work we construct public-key encryption that is at least as hard to break
as hCLWE. The hCLWE problem not only inherits advantages of LWE (such
as reduction to worst-case hardness and resistance to known quantum attacks),
but is potentially more secure: hCLWE is certainly no easier than LWE and can
be potentially harder.

Our constructions imply limits on the hardness of hCLWE: just as LWE,
hCLWE is tractable in Statistical Zero-Knowledge. It follows that hCLWE is
unlikely to be helpful for constructing encryption as secure as NP (unless NP is
contained in coAM).

Four Public-Key Encryption Schemes: We present four public-key encryp-
tion schemes that offer varying tradeoffs between decryption and security errors,
and use different techniques when discretizing continuous values.

The third cryptosystem of Ajtai and Dwork [AD97] already contains essen-
tially all the ingredients needed to obtain hCLWE-based public-key encryption.
Our most efficient scheme—discretized encryption—is largely based on it. We
believe that our other schemes are simpler to describe, more intuitive to analyze,
and offer the potential of wider applicability to other Gaussian mixtures.

Some of our schemes are based on a variant of hCLWE called (0, 1/2)-
hCLWE. In the 1/2-hCLWE distribution, the mode in the hidden direction w
is shifted by a relative phase of 1/2 (Fig. 1.b). The hidden direction in (0, 1/2)-
hCLWE is a labeled mixture of hCLWE and 1/2-hCLWE (Fig. 1.c). Technically,
(0, 1/2)-hCLWE is at least as hard as LWE and no harder than hCLWE.

Our first scheme (“pancake”) is based on hCLWE. It has inverse polyno-
mial decryption and constant security errors. These parameters, along with the
specifics of the scheme, already suffice to prove that hCLWE can be solved in

Public-Key Encryption from Homogeneous CLWE 567

−3 0 3 −3 0 3

−3 0 3

Fig. 1. Probability density function of the hidden direction in the (a) hCLWE, (b) 1/2-
hCLWE, and (c) (0, 1/2)-hCLWE distributions with parameters β = 0.05 and γ = 2

Statistical Zero-Knowledge (SZK), and therefore is in coAM.1 The discretization
step in the scheme can be performed during encryption, and so the public key is
continuous. Arguing security then necessitates proving an analog of the leftover
hash lemma for Gaussian matrices, which may be of independent interest.

One could in principle rely on standard techniques to reduce decryption and
security errors in the first scheme [HR05] , albeit at the price of a significant
loss in efficiency. Instead, we present three different ideas to reduce the errors
directly.

In the second scheme (“bimodal”), we achieve perfect decryption error by
publishing (0, 1/2)-hCLWE samples as the public key. To encrypt a 0, Bob uses
samples with z = 0 and to encrypt a 1, he uses samples with z = 1/2. This
eliminates the probability that a random normal ciphertext of 1 is of the form
of an hCLWE sample and thus makes decryption perfect.

The third scheme (“discretized”) achieves negligible security error by map-
ping the samples into a parallelpiped spanned by hCLWE samples; a technique
due to Ajtai and Dwork [AD97]. Here the discretization step takes place already
in public-key generation, allowing for the use of the standard leftover hash lemma
and yielding favorable security error in comparison with the other schemes.

In the fourth scheme (“baguette”) we achieve negligible decryption error
assuming only hCLWE. Instead of publishing samples that have a “pancake”
distribution in one direction, we sample vectors that have a pancake distribution
in � hidden directions. In [BRST21] the authors give a reduction from hCLWE
to this hCLWE(�) distribution.

The parallelepiped technique can also be applied to the fourth scheme, yield-
ing an hCLWE-based scheme with negligible decryption and security error. We
omit a formal analysis of this step as it is similar to the discretized scheme
(Table 1 and Fig. 2).

1 A distinguishing problem is in class C if there is an algorithm in C that accepts at
least 2/3 of the yes instances and rejects at least 2/3 of the no instances.

568 A. Bogdanov et al.

Table 1. Comparison of our encryption schemes. If the assumption holds against
time t(n) + nO(1) and advantage Ω(ε(n)) adversaries then the corresponding scheme is
resilient against time t(n) and advantage (security error + ε(n)) adversaries.

Scheme Assumption Decryption error Security error PK size SK size

Pancake hCLWE O(1/n) 1/4 Õ(n3) n

Bimodal (0, 1/2)-hCLWE 0 1/2 Õ(n3) n

Discretized (0, 1/2)-hCLWE 0 2−n+2 Õ(n2) n

Baguette hCLWE(�) O(1/n�) 1/4 Õ(n3) n�

GapSVP GapSIVP

DGS

LWE CLWE

(0, 1/2)-hCLWE

hCLWE

SZK

dual Regev

Regev

Bimodal

Pancake

Discretized

Baguette

[Reg05] [BRST21]
[GVV22]

[G
G
98
]

[GPV08]

[Reg05]

[B
R
ST

21
]

Fig. 2. Reductions between problems and encryption schemes (new results are in bold).

1.2 Related Work

Bruna et al. [BRST21] show a worst-case to average-case reduction from Dis-
crete Gaussian Sampling (DGS) to hCLWE. Their reduction factors through an
intermediate problem called Continuous LWE (CLWE).

A sample from the CLWE distribution [BRST21] is of the form (a, z), where
a ∈ R

n is a vector with individual entries sampled independently from the
standard normal distribution N (0, 1), and z := γ〈a,w〉+e mod 1. Here e is the
noise drawn from a Gaussian distribution with mean 0 and variance β2 for some
β > 0, γ > 0 is a fixed parameter and w ∈ R

n is a secret unit vector. CLWE is
the problem of distinguishing multiple CLWE samples from an equal number of
samples of the form (a, u), where u is uniform over [0, 1) and independent of a.

An hCLWE sample is a CLWE sample conditioned on z = 0; Bruna et
al.’s reduction from CLWE to hCLWE is based on this property. We obtain an
analogous reduction from CLWE to (0, 1/2)-hCLWE by modifying the condition
on z. It is not known if there is a reduction in the opposite direction.

Public-Key Encryption from Homogeneous CLWE 569

The CLWE problem can be viewed as a continuous analog of Regev’s LWE
problem [Reg05] and is at least as (quantumly) hard as the same worst-case lat-
tice problems underlying LWE [BRST21]. Gupte et al. [GVV22] recently showed
a reduction from LWE to CLWE. They in fact showed that LWE is equivalent
in hardness to a variant of CLWE with a different distribution over the secrets
that is supported on a discrete subset of the unit sphere. CLWE is at least as
hard as this variant.

1.3 CLWE, SZK, and Statistical-Computational Gaps

Several works [BR13,HWX15,BB20] uncover that hypothesis testing tasks in
statistical inference tend to exhibit statistical-computational gaps: There is a
range of sample complexities m ∈ [mstat,mcomp] for which hypothesis testing is
possible, but no efficient (in terms of the length of a single sample) algorithm is
known.

A striking feature of the hCLWE problem is that it is potentially intractable
even when the sample complexity is unbounded, i.e., mcomp is infinite. Our
Theorem 9.2 shows that when m ≥ Õ(n2) samples are available hCLWE becomes
solvable in SZK. Thus, in a world in which SZK = BPP, the computational
threshold mcomp for hCLWE is at most Õ(n2).

In contrast, the statistical threshold for CLWE is mstat = O(n). It is an
intriguing open question whether a statistical-computational gap for hCLWE
exists assuming SZK = BPP. One approach for ruling out this possibility is to
design a more efficient hCLWE-based PKE scheme.

Applying the reduction from CLWE to hCLWE of Bruna et al., our result
also implies that CLWE is in SZK. As their reduction does not preserve sample
complexity, the resulting SZK algorithm for CLWE requires a larger number of
samples.

2 Technical Overview

The messages in our encryption schemes are single bits. The distributions of
encryptions of zero and one, respectively, are efficiently distinguishable with
the secret key but not without it. The public keys are independent samples of
the hCLWE or (0, 1/2)-hCLWE distributions and the secret key is the hidden
direction w of the corresponding yes instances.

As can be seen in Fig. 1, the hCLWE samples used to generate the public-
key have a periodic discrete structure along the secret direction w. Encryption
is designed to retain this discrete structure in the ciphertext even though the
sender is oblivious to it. Decryption calculates the correlation between the secret
key w and the ciphertext. This correlation is close to an integer multiple of the
period for encryptions of zero and (typically) far from it for encryptions of one.

570 A. Bogdanov et al.

2.1 “Pancake” Encryption

The first scheme (Sect. 4) is based on the hCLWE problem. The secret key is a
random unit vector w and the public key is an n × m matrix A that consists
of m hCLWE samples conditioned on the secret direction w. To encrypt a 0,
sample a uniform vector t ← {1/

√
m,−1/

√
m}m and compute At. To encrypt

a 1, sample a standard normal vector. The ciphertext c is a discretization of
the resulting vector using a rounding function that divides the real line into
intervals (“buckets”) of equal Gaussian measure.2 To decrypt a ciphertext c,
compute γ

√
m〈w, c〉 and output 0 if the result is close to an integer. Otherwise

output 1.
The scheme has inverse polynomial decryption error since the probability of

γ
√

m〈w, c〉 being close to an integer is inverse polynomial for a random choice
of c. The main technical contribution in this scheme is the security proof, in
particular Proposition 4.3. This result is an analog of the leftover hash lemma
for the multiplication of Gaussian matrices with vectors with uniform vectors
t ← {1/

√
m,−1/

√
m}m which shows that the security error is 1/2 for our choice

of parameters.

2.2 “Bimodal” Encryption

In the second scheme (Sect. 6) we introduce the following changes: We base the
scheme on the (0, 1/2)-hCLWE problem and publish two matrices (A0,A1) as
the public key. The matrix A0 consists of hCLWE samples conditioned on w
and A1 consists of 1/2-hCLWE samples conditioned on w. To encrypt a 0, do
the same as in the pancake scheme with the matrix A0. To encrypt a 1, do
exactly the same with A1. To decrypt, check if γ

√
m〈w, c〉 mod 1 is closer to 0

or to 1/2. Replacing one hCLWE matrix by two (0, 1/2)-hCLWE matrices yields
perfect decryption error for all but negligibly many choices of the public key.
The security error however remains constant.

2.3 “Discretized” Encryption

The third scheme (Sect. 7) has perfect decryption for all but an inverse poly-
nomial fraction of public keys and negligible security error. To achieve this we
make use of the parallelepiped technique due to Ataj and Dwork [AD97] to
obtain uniform matrices from (0, 1/2)-hCLWE samples.

We change the secret key to BTw, where B is a square matrix whose columns
are hCLWE samples. The public key (A0,A1) again consists of 2 matrices: A
matrix A0 that is obtained by mapping hCLWE samples into the parallelepiped
P(B) spanned by the columns of B, and a matrix A1 that is obtained in the
same way but with 1/2-hCLWE samples mapped to P(B). This mapping into the

2 In the body of the paper we use the notation 1/γ′ = γ/(β2 + γ2) for the period of
the hCLWE hidden direction. As the difference between 1/γ′ and 1/γ is small we
make no distinction between the two in this overview.

Public-Key Encryption from Homogeneous CLWE 571

parallelepiped transforms Gaussian vectors in R into uniform vectors in P(B),
while preserving the pancakes in the secret direction. An additional rounding
step discretizes the matrices A0,A1.

To encrypt a bit b, sample a vector t with uniform entries in {−1, 1} and set
c := Abt mod q. To decrypt, check if γ〈BT w, c/q〉 mod 1 is closer to 0 or to
1/2. For all but an inverse polynomial fraction of choices of the matrix B this
scheme has perfect correctness. Security follows from the classical leftover hash
lemma [IZ89] since the matrices A0 and A1 are uniform and discrete.

2.4 “Baguette” Encryption

The fourth scheme (Sect. 8) is based on the hCLWE(�) problem, which is poten-
tially harder than (0, 1/2)-hCLWE. We achieve negligible decryption error by
modifying our first scheme as follows: Instead of publishing samples that have
a pancake distribution in only one hidden direction, we publish a matrix A of
samples that have a pancake distribution in log n many hidden directions, i.e. we
replace the Gaussian pancakes with “Gaussian Baguettes”. To encrypt 0, sample
a uniform t ← {1/

√
m,−1/

√
m}m and compute At, and to encrypt 1, sample a

standard normal vector. Discretization is identical to the first scheme.
To decrypt, multiply the ciphertext with a matrix that consists of all hidden

directions. If all of the entries in the resulting vectors are close to an integer,
output 0, otherwise output 1. While the probability that the inner product of
the ciphertext of 1 with one secret direction is close to an integer is polynomial,
the probability that this happens for all of the log n directions is negligible. The
security error of this scheme remains constant but could be amplified either by
a standard approach or by the above parallelepiped method.

2.5 SZK Membership

Our SZK membership proof of hCLWE is established by reduction to the com-
plete problem statistical distance: hCLWE samples are mapped to a distribution
that is far from uniform over some discrete set, while standard normal samples
are mapped to a distribution that is close to uniform. The two distributions are
obtained by pancake encrypting a zero under an actual public key and a random
placebo. Completeness and soundness then follow from the functionality and
security of pancake encryption.3

We find it instructive to directly describe the distributions resulting from
this reduction. Our Proposition 4.3 can be interpreted as saying that random
±1/

√
m linear combinations of m = Θ̃(n2) standard Gaussian samples fill up

space evenly: For every set of sufficiently large Gaussian measure, the fraction of
linear combinations that lands in the set is approximately equal to its measure.
Thus if Rn is partitioned into suitably many regions of equal Gaussian measure,

3 By relying on discretized encryption instead we can prove the stronger claim of
coNISZK membership [GSV99] and improve the sample complexity. Details will be
spelled out in the final version.

572 A. Bogdanov et al.

the induced distribution on the regions is close to uniform. In contrast, if there
are periodic gaps in some (unknown) direction like in the hCLWE distribution,
the linear combinations of samples are concentrated on few regions and the
induced distribution is far from uniform.

An intriguing question left open by our work is if SZK membership also holds
for aperiodic mixtures of Gaussians such as the ones underlying the statistical
query lower bound of Diakonikolas et al. [DKS17].

3 The (homogeneous) CLWE Distribution

Definition 3.1 (CLWE Distribution). Given a dimension n and parameters
β, γ > 0, and a unit vector w ∈ R

n, samples (y, z) ∈ R
n × [0, 1) from the CLWE

distribution Aw,β,γ,n are generated as follows:

1. Sample y ← Nn(0, 1).
2. Sample e ← N (0, β2).
3. Output (y, γ〈w,y〉 + e mod 1).

Definition 3.2 (CLWE Distinguishing Problem). For real numbers β, γ >
0 and n ∈ N, the (average-case) distinguishing problem CLWEβ,γ,n asks to dis-
tinguish between Aw,β,γ,n for a uniform vector w ∈ R

n and Nn(0, 1) × U , where
U is the uniform distribution on [0, 1).

Definition 3.3 (hCLWE Distribution). Given a dimension n, parameters
β, γ > 0, and a unit vector w ∈ R

n, samples y ∈ R
n from the hCLWE dis-

tribution Hw,β,γ,n are generated as follows:

1. The pancake: Sample k ∈ Z with probability proportional to exp(−k2/(2γ2 +
2β2)).

2. The noise: Sample e from N (0, β′2), where β′2 = β2/(γ2 + β2).
3. The rest: Sample w⊥ as Nn−1(0, 1) on the subspace orthogonal to w.
4. Output w⊥ + (k/γ′ + e)w, where 1/γ′ = γ/(γ2 + β2).

Definition 3.4 (hCLWE Distinguishing Problem). For real numbers
β, γ > 0 and n ∈ N, the (average-case) distinguishing problem hCLWEβ,γ,n

asks to distinguish between Hw,β,γ,n for a uniform vector w ∈ R
n and Nn(0, 1).

The (s, ε) homogeneous CLWE (hCLWE(s, ε)) assumption [BRST21] postu-
lates that for a random w, a hCLWE oracle cannot be distinguished in size s
from an oracle that outputs N (0, 1) samples on R

n with advantage ε. As evi-
dence Bruna, Regev, Song, and Tang show a polynomial-time quantum reduction
from the problem of sampling a discrete gaussian of width O(

√
n/β) times the

smoothing parameter assuming γ ≥ 2
√

n. Specifically, if γ and β are polynomial
in n then it is plausible that hCLWE holds with s and 1/ε exponential in n.
Note that they define the standard normal distribution as N (0, 1/(2π)) instead
of N (0, 1).

It can be shown that all hCLWE versions with different variances are equiva-
lent by rescaling the samples and the problem parameters γ and β. In particular

Public-Key Encryption from Homogeneous CLWE 573

hCLWE with normal distribution N (0, 1/(2π)) and problem parameters γ and
β is equivalent to hCLWE with normal distribution N (0, 1) and problem param-
eters γ/

√
2π and β/

√
2π. We will always work with the N (0, 1) distribution for

which γ ≥ √
n is sufficient.

4 Scheme 1: Pancake Encryption

The first encryption scheme relies on the hCLWE assumption and has poly-
nomial decryption- and constant security error. It is the basis for all of the
following encryption schemes that achieve better error bounds but either rely
on an assumption that is potentially easier to break and/or incur a blow-up in
the key size. Furthermore, this scheme enables us to prove that hCLWE is in
the complexity class SZK. Before presenting the scheme, we define a rounding
function that we will need to discretize the ciphertexts of the scheme.

4.1 Rounding into Buckets of Equal Measure

We use of the following Gaussian rounding function roundr : R → {1, . . . , r}
given by

roundr(x) =
r · μ((−∞, x))�,
where μ is the standard Gaussian measure on the line. In words, partition R

into r intervals (“buckets”) J1, J2, . . . , Jr of equal Gaussian measure, and set
roundr(x) to be the unique i such that x ∈ Ji. We extend the definition over Rn

coordinate-wise, i.e. roundr(x1, . . . , xn) = (roundr(x1), . . . , roundr(xn)).
Some of the buckets are very wide (at least two of them are infinite!) so the

rounding will cause encryption errors with some probability. We will argue that
this is an unlikely event using the following regularity property of roundr. The
width of an interval J = (a, b) is b − a.

Proposition 4.1. For every 0 < α < 1 and all r such that r1−α ≥ 19, the
number of i for which the width of Ji = round−1

r (i) exceeds r−α is at most
2rα/

√
ln r1−α + 2.

The k widest intervals capture a k/r fraction of the probability mass μ at the
tails of the normal distribution. If t is chosen so that μ((−∞, t) ∪ (t,∞)) = k/r
then the next widest interval is of the form (t′, t) and t′ is uniquely determined
by the constraint μ((t′, t)) = 1/r. Using suitable analytic approximations for the
normal CDF the maximum width t−t′ of all remaining intervals can be bounded
by r−α when k = �2rα/

√
ln r1−α + 2�.

4.2 The Encryption Scheme

The scheme is parametrized by γ > 0; β > 0; r > 0 and n,m ∈ Z.

– The secret key is a uniformly random unit vector w ∈ R
n.

574 A. Bogdanov et al.

– The public key is a matrix A ∈ R
n×m whose columns are independent

hCLWE samples from Hw,β,γ,n.
– To encrypt a 0, sample a vector t ∈ {−1/

√
m,+1/

√
m}m uniformly at ran-

dom and output c := roundr(At).
– To encrypt a 1, sample c ← {1, 2, . . . , r}n at random and output c.
– To decrypt a ciphertext c, take any z such that roundr(z) = c, compute

γ′√m〈w, z〉 mod 1 and check if it is in the interval (−1/2n, 1/2n). If yes,
output 0, else output 1.

Theorem 4.2. Let γ =
√

n,β = (40000n3/2 log(n))−1,r = (40000n3 log(n))5/3

and m = 108 log(n)2n2. Assuming hCLWE(s, ε), the scheme has decryption error
O(1/n) + ε and security error at most 1/4 + 2ε.

We prove correctness and security of the scheme separately. We will assume
that w and A have infinite precision. In Sect. 4.5 we argue that O(log n) bits of
precision are sufficient.

4.3 Correctness

There are two sources of error in this encryption scheme: key generation error
and encryption error. While the key generation error is negligible, the encryption
error may be noticeable.

We will call a public key A good if in all its column samples the noise e has
magnitude at most

√
nβ. By hCLWE(s, ε) and a union bound, a public key is

good except with probability m/en + ε.
The following two claims show that the scheme is correct.

Claim. Assuming hCLWE(s, ε) where s is the complexity of rounding, the prob-
ability that Dec(w,Enc(A, 0)) �= 0 is at most 1/2n + ε for all but a fraction of
m/en + ε choices of A.

Claim. The probability that Dec(w,Enc(A, 1)) �= 1 is at most 3/2n.

4.4 Security

We show that the above scheme has constant security error by the following
argument:

1. Under the hCLWE(s, ε) assumption, (A,Enc(A, b)) is ε-indistinguishable
from (N,Enc(N, b)) for both b = 0 and b = 1, where N is a n × m matrix
with i.i.d. entries sampled from N (0, 1).

2. The distributions (N,Enc(N, 0)) and (N,Enc(N, 1)) are 1/4-statistically
close.

3. It follows that the distributions (A,Enc(A, 0)) and (A,Enc(A, 1)) are at most
(1/4 + 2ε)-indistinguishable.

Public-Key Encryption from Homogeneous CLWE 575

The first claim follows directly from the hCLWE assumption using the fact
that the encryption is an efficiently computable function of the public-key. To
prove the second claim (Proposition 4.5) we will argue that for each possible set
(bucket) S that is the of the form round−1

r (c), the random variable Pr[Nt ∈ S|N]
is unlikely to deviate from its mean E [Pr[Nt ∈ S|N]] = Pr[g ∈ S] by much,
where g is a standard normal vector. Then by a union bound over all the buckets
we can say that with high probability over the choice of N the statistical distance
between the two distributions is small (given N). Recall that μ(S) = Pr[g ∈ S]
is the standard Gaussian measure over R

n.

Proposition 4.3. Let N be an n × m matrix of independent N (0, 1) random
variables, t a random m-dimensional {−1/

√
m,+1/

√
m} vector, and S be any

event in R
n. Assuming μ(S) ≥ exp(−√

m/4e), we have

Var [Pr[Nt ∈ S|N]] ≤ 4eμ(S)2 ln(1/μ(S))/
√

m.

Proof. Using the definition Var[Z] = E[Z2] − E[Z]2 for any random variable Z
we get:

Var
[
Pr[Nt ∈ S|N]

]
= Pr[Nt ∈ S and Nt′ ∈ S] − Pr[Nt ∈ S] Pr[Nt′ ∈ S], (1)

where t, t′ are two independent copies of a random ±1/
√

m-valued m-
dimensional vector. Let X = (X1, . . . , Xn) = Nt and X = (X ′

1, . . . , X
′
n) = Nt′.

Conditioned on t and t′, each pair (Xi,X
′
i) is a correlated Gaussian pair (inde-

pendent of the others) with covariance matrix E[X2
i] = E[X ′2

i] = 1, E[XiX
′
i] = ρ,

where ρ = 〈t, t′〉 is the inner product of the vectors t and t′. By contractivity
we get

Pr[Nt ∈ S and Nt′ ∈ S] ≤ Pr[Nt ∈ S]1/(1+|ρ|) Pr[Nt′ ∈ S]1/(1+|ρ|)

for fixed choices of t and t′. The quantities Pr[Nt ∈ S] and Pr[Nt′ ∈ S] are
simply the Gaussian measure μ(S) of the bucket S, so (1) gives

Var
[
Pr[Nt ∈ S|N]

] ≤ E[μ(S)2/(1+|ρ|) − μ(S)2] = E
[
μ(S)−2|ρ|/(1+|ρ|) − 1

]
μ(S)2.

(2)
The expectation here is taken over the choice of ρ = 〈t, t′〉 = (Z1 + · · ·+Zm)/m,
where Zi are i.i.d. ±1. If we further use μ(S) ≤ 1 and |ρ| ≥ 0, we get that

E
[
μ(S)−2|ρ|/(1+|ρ|) − 1

] ≤ E[μ(S)−2|ρ|] − 1.

We further bound this expression by using the following claim:

Claim. E[μ−2|ρ|] ≤ ∑∞
k=0(es)

k, where s = (2 ln 1/μ)/
√

m.

By our assumption μ(S) ≥ exp(−√
m/4e), we have 0 ≤ es ≤ 1/2 so we get∑

k(es)k = 1/(1 − es) ≤ 1 + 2es. Plugging into (2) we get the proposition.
Using Proposition 4.3 we can now bound the statistical distance between

(N, roundr(Nt)) and (N, roundr(g)) which are basically encryptions of 0 and 1
with a standard normal matrix instead of a public key. Security of the scheme
then follows from the fact that under the hCLWE assumption N is indistinguish-
able from a public key.

576 A. Bogdanov et al.

Corollary 4.4. Let round be any discrete-valued function on R
n such that the

value μ(round−1(c)) ≥ α for all c in the range of round. Then the statistical dis-
tance between (N, round(Nt)) and (N, round(g)) is at most

√
4e ln(1/α)/

√
m.

Proof. We will assume α ≥ exp(−√
m/4e) for otherwise

√
4e ln(1/α)/

√
m ≥ 1

and the claim is true. Fix c and let S = round−1(c). Applying the Cauchy-
Schwarz inequality to Proposition 4.3 we have

E
∣
∣Pr[Nt ∈ S|N] − μ(S)

∣
∣ ≤

√
4e ln(1/μ(S))√

m
· μ(S).

In particular, if μ(round−1(c)) ≥ α ≥ exp(−√
m/4e) for every c, then

Δ((N, round(Nt)); (N, round(g)))

=
1
2
E

[
∑

c

∣∣Pr[round(Nt) = c|N] − Pr[round(g) = c|N]
∣∣
]

≤ 1
2

∑

c

√
4e ln(1/μ(round−1(c)))√

m
· μ(round−1(c))

≤
√

e ln(1/α)√
m

∑

c

μ(round−1(c)),

which is at most the desired expression as the summation equals μ(Rn) = 1.

Proposition 4.5. The distributions (N,Enc(N, 0)) and (N,Enc(N, 1)) are
1/4-statistically close for a matrix N of independent standard Gaussians.

Proof. By construction, μ(round−1
r (b)) = r−n for all b. By Corollary 4.4 the

statistical distance between encryptions is then at most
√

4e ln rn/
√

m which is
at most 1/4 by our choice of parameters.

Corollary 4.6. Assuming hCLWE(s, ε), (A,Enc(A, 0)) and (A,Enc(A, 1)) are
(s − poly(n), 1/4 + 2ε)-indistinguishable where A is the public key matrix.

Proof. Let N be a random normal matrix. By hCLWE(s, ε), (A,Enc(A, b))
and (N,Enc(N, b)) are (s − poly(n), ε)-indistinguishable for both b = 0 and
b = 1. By Proposition 4.5, (N,Enc(N, 0)) and (N,Enc(N, 1)) are (∞, 1/4)-
indistinguishable. The corollary follows from the triangle inequality.

4.5 Precision

As we are working with real numbers it is also necessary to discuss how precision
can affect the scheme. We denote by ρ the positive integer that determines the
precision and for ρ = ω(log n) the distance between the real value and the one
obtained as a result of the approximation errors is negligible. This guarantees
that decryption is not affected (up to a negligible fraction).

Public-Key Encryption from Homogeneous CLWE 577

5 The s-hCLWE and (0, 1/2)-hCLWE Distributions

In this section we introduce two distributions that are indistinguishable from
Nn(0, 1) (i.e. n-dimensional vectors with i.i.d. entries from N (0, 1)) by the
CLWE assumption: the s-hCLWE and the (0, 1/2)-hCLWE distributions. Sam-
ples from the s-hCLWE distribution are CLWE samples (yi, zi) with zi = s.
Note that by definition the 0-hCLWE distribution is just the hCLWE distribu-
tion. Samples from the (0, 1/2)-hCLWE distribution are CLWE samples (yi, zi)
with zi ∈ {0, 1/2}. We obtain them by flipping a coin and, depending on the
outcome, generating either an hCLWE sample or a 1/2-hCLWE sample. In the
next two encryption schemes (“bimodal” in Sect. 6 and “discretized” in Sect. 7)
we use samples from the (0, 1/2)-hCLWE distribution to construct the public
key.

To argue that these two distributions are indistinguishable from Nn(0, 1),
we give a reduction from CLWE to both distributions. We also give a reduction
from 1/2-hCLWE to hCLWE for completeness even though it is not needed in
the rest of the paper.

5.1 The s-hCLWE Distribution

We begin by formally defining the distribution and then we show that there
exists a reduction from CLWE.

Definition 5.1 (s-hCLWE Distribution). For a unit vector w ∈ R
n, real

numbers β, γ > 0, n ∈ N and s ∈ [0, 1], samples y ∈ R
n for the s-hCLWE

distribution Hs
w,β,γ,n are generated as follows:

1. Sample k ∈ Z + s with probability proportional to exp(−k2/(2γ2 + 2β2)).
2. Sample e ← N (0, β′2), where β′2 := β2/(γ2 + β2).
3. Sample v as Nn−1(0, 1) from the subspace orthogonal to w.
4. Output y := v + (k/γ′ + e)w, where γ′ := (γ2 + β2)/γ.

It follows from the definition that hCLWE corresponds to the case s = 0.
When s = 0, we write Hw,β,γ,n instead of H0

w,β,γ,n. The s-hCLWE distinguishing
problem is to distinguish between s-hCLWE samples and standard normal ones.

Definition 5.2 (s-hCLWE Distinguishing Problem). For real numbers
β, γ > 0, n ∈ N and s ∈ [0, 1], the (average-case) distinguishing problem
s-hCLWEβ,γ,n asks to distinguish between Hs

w,β,γ,n for a uniform unit vector
w ∈ R

n and Nn(0, 1).

We do not consider the worst-case formulation of this problem as it is equiv-
alent to the average-case one. The proof is analogous to [BRST21, Claim 2.22]
for hCLWE and CLWE.

We now proceed to compare s-hCLWE to hCLWE and CLWE. First of all,
using rejection sampling it is possible to obtain s-hCLWE samples from CLWE
samples. This result follows from [BRST21, Lemma 4.1], which shows this for
the case s = 0. Let Aw,β,γ,n denote the distribution of CLWE samples.

578 A. Bogdanov et al.

Lemma 5.3. For a unit vector w ∈ R
n, real numbers β, γ > 0, n ∈ N and

s ∈ [0, 1], there exists a probabilistic algorithm that runs in time poly(n, 1/δ)
and that on input δ ∈ (0, 1) and samples from Aw,β,γ,n, outputs samples from
Hs

w,
√

β2+δ2,γ,n
.

Proof. The same proof as the one of Lemma 4.1 in [BRST21] with g0(z) :=∑
k∈Z

ρδ(z + s + k).

If we take δ = β/
√

2, we obtain as a corollary the following reduction:

Proposition 5.4. For s ∈ [0, 1], n ∈ N and real numbers β = β(n), γ = γ(n) >
0 such that β is the inverse of a polynomial in n, there exists a polynomial-time
reduction from CLWEβ/

√
2,γ,n to s-hCLWEβ,γ,n.

Now that we have given a reduction from CLWE to s-hCLWE it is a natural
question to ask whether there is a reduction from s-hCLWE to CLWE. However,
we do not know if this is possible for any value of s.

5.2 The (0, 1/2)-hCLWE Distribution

We now define the (0, 1/2)-hCLWE distribution, which is the distribution on
which the following two encryptions schemes are based. Afterwards we show
that there is a reduction from CLWE to (0, 1/2)-hCLWE.

Definition 5.5 ((0, 1/2)-hCLWE Distribution). For a unit vector w ∈ R
n

and real numbers β, γ > 0, n ∈ N , samples (y, z) ∈ R
n × {0, 1/2} for the

(0, 1/2)vhCLWE distribution H(0,1/2)
w,β,γ,n are generated as follows:

1. Sample z ← {0, 1/2}.
2. Sample y ← Hz

w,β,γ,n.
3. Output (y, z).

Definition 5.6 ((0, 1/2)-hCLWE Distinguishing Problem). For real num-
bers β, γ > 0 and n ∈ N, the (average-case) problem (0, 1/2)-hCLWEβ,γ,n

asks to distinguish between H(0,1/2)
w,β,γ,n for a uniform unit vector w ∈ R

n and
Nn(0, 1) × U({0, 1/2}).

Lemma 5.7. For a unit vector w ∈ R
n, n ∈ N and real numbers β, γ > 0 , there

exists a probabilistic algorithm that runs in time poly(n, 1/δ) and that on input
δ ∈ (0, 1) and samples from Aw,β,γ,n, outputs samples from H(0,1/2)

w,
√

β2+δ2,γ,n
.

Proof. We first sample z ← {0, 1/2} uniformly at random. By Lemma5.3 we
can obtain a sample y from Hz

w,
√

β2+δ2,γ,n
using samples from Aw,β,γ,n in time

poly(n, 1/δ) and (y, z) is a sample from H(0,1/2)

w,
√

β2+δ2,γ,n
.

If we take δ = β/
√

2, we obtain as a corollary the following result:

Proposition 5.8. For n ∈ N and real numbers β = β(n), γ = γ(n) > 0 such
that β is the inverse of a polynomial in n, there exists a polynomial-time reduc-
tion from CLWEβ/

√
2,γ,n to (0, 1/2)-hCLWEβ,γ,n.

Public-Key Encryption from Homogeneous CLWE 579

5.3 A Reduction from 1/2-hCLWE to hCLWE

Finally, we show that there exists a reduction from 1/2-hCLWE to hCLWE (with
slightly different parameters) to get a finer understanding of the relative hardness
of these phased hCLWE problems. We obtain the reduction by constructing
samples from Hw,

√
2β,

√
2γ,n using samples from H1/2

w,β,γ,n.

Lemma 5.9. For a unit vector w ∈ R
n, n ∈ N, real numbers β, γ > 0 such that

γ >
√

n, and independent random variables Y1, Y2 with distribution H1/2
w,β,γ,n,

the distribution of (Y1 − Y2)/
√

2 is e1−n-statistically close to Hw,
√
2β,

√
2γ,n.

This gives the following result:

Proposition 5.10. For n ∈ N and real numbers β = β(n), γ = γ(n) > 0, there
exists a polynomial-time reduction from 1/2-hCLWEβ/

√
2,γ/

√
2,n to hCLWEβ,γ,n.

6 Scheme 2: Bimodal Encryption

In this section we modify the “pancake” scheme from Sect. 4 to achieve per-
fect correctness. Note that the decryption error in this scheme can be at least
polynomial since the pancakes have polynomial width in the secret direction.
This is due to the fact that the hCLWE assumption can be broken whenever
the error distribution has exponentially small width as was shown in [BRST21].
A random normal vector therefore “hits” a pancake with probability 1/poly(n).
If we encrypt a 1 with such a vector, decryption fails. A standard approach to
amplify the decryption error is sending multiple independent ciphertexts of the
same message [DNR04]. This amplification increases the size of the ciphertext
and the security error since a potential adversary only needs to be successful in
decrypting one of the ciphertexts. Instead, we modify the encryption process of
the bit 1. We introduce the following two changes:

– The public key consists of two matrices. A matrix A0 whose columns are inde-
pendent hCLWE samples and a matrix A1 whose columns are independent
1/2-hCLWE samples. The samples from both matrices are obtained from the
same secret direction w.

– To encrypt a 0, take the matrix A0 and perform the same encryption as in
the first scheme. To encrypt a 1, do exactly the same but with the matrix
A1.

In Sect. 4 we have already seen that the decryption of Enc(0) is 1/poly(n)-
close to 0 mod 1. We show that in our modified scheme the decryption of Enc(1)
is 1/poly(n) to 1/2 so the scheme has perfect correctness. Security of the scheme
follows by Proposition 4.5 and the triangle inequality.

580 A. Bogdanov et al.

6.1 The Encryption Scheme

The scheme is parametrized by γ > 0, β > 0, n ∈ Z,r > 0 and m ∈ Z \ 2Z an
odd integer.

– The secret key is a uniformly random unit vector w ∈ R
n.

– The public key is a pair of matrices (A0,A1) ∈ R
n×m×R

n×m. The columns of
A0 are independent hCLWE samples and the columns of A1 are independent
1/2-hCLWE samples.

– To encrypt a bit b ∈ {0, 1}, compute c := roundr(Abt), where t ←
{−1/

√
m, 1/

√
m}m is sampled uniformly at random. Check if all of the entries

of c correspond to a bucket of width less than 1/(5
√

nmγ′). If yes, output c.
If no, output b.

– To decrypt a ciphertext c, take any z such that roundr(z) = c, compute
γ′√m · 〈w, z〉 mod 1 and check if it is closer to 0 or closer to 1/2. In the
former case output 0 in the latter case output 1.

The continuous quantities w,A0,A1 are represented with O(log n) bits of
precision. As the precision analysis is analogous to the one for pancake encryption
we omit it.

Theorem 6.1. Let γ =
√

n, β = (40000n5/2 log(n)2)−1 , r =
(40000n3 log(n))5/3 and m = 108n2 log(n)2. Assuming (0, 1/2)-hCLWE(s, ε) we
have that for all but a fraction of 2−Ω(n) choices of the public key the scheme
has perfect correctness and security error at most 1/2 + 1/n2 + 3ε.

We prove correctness and security of the scheme separately.

6.2 Correctness

We call a public key good if the norm of the noise vector is less than mβ′ in both
matrices. This holds except with probability 2−Ω(n). During the construction of
the public key it can be efficiently tested if a public key is good by checking if
the absolute value of the generated noise value is small enough.

Claim. If the public key is good, the scheme has perfect correctness.

6.3 Security

There are two sources of security error in this scheme:

1. If at least one of the entries of the ciphertext corresponds to a bucket of width
larger than 1/(5

√
nmγ′), the encryption algorithm outputs the plaintext in

the clear.
2. If the above event does not happen, the ciphertexts of 0 and of 1 are 1/2+2ε-

indistinguishable.

Public-Key Encryption from Homogeneous CLWE 581

Claim. Let Ab ∈ R
n×m be a matrix whose columns consist either of inde-

pendent hCLWE-samples or of independent 1/2-hCLWE samples. Let t ←
{−1/

√
m, 1/

√
m}m be sampled uniformly at random. Assuming hCLWE(s, ε)

and 1/2-hCLWE(s, ε), where s is the complexity of rounding, the probability
that any entry of the vector c := roundr(Abt) corresponds to a bucket of width
larger than 1/(5

√
mγ′) is at most 1/n2 + ε.

Proof. First consider a matrix A with i.i.d. entries from N (0, 1). Since ‖t‖ = 1
we get that At is a vector with i.i.d. entries in N (0, 1). By Proposition 4.1 we
know that the number of intervals of length larger than 1/(5

√
nmγ′) is at most

10
√

nmγ′/
√

ln(r/(5
√

nmγ′))+2, so the probability that any entry lands in such
a bucket is at most

10n
√

nmγ′

r
√

ln(r/(5
√

nmγ′))
+

2n

r
≤ γ′n

√
nm + 2n

r
≤ 1

n2
.

The claim follows from the fact that the matrices A0 and A1 are ε-
indistinguishable from A and the rounding function being efficiently computable.

Remark 6.2. Note that we can avoid the above event by rejection sampling the
public key. Since t is a unit vector, the absolute value of the inner product of any
vector a with t is bounded by the norm of a. This means that we can avoid the
event that an entry of the ciphertext c corresponds to a wide bucket by rejection
sampling the matrices A0,A1: As long as the rows of these matrices have small
enough norm, the entries of the vector Abt will not land in a wide bucket for
both b ∈ {0, 1}. We omit a formal analysis of this optimization because the main
security issue is not the rounding error but the probability of distinguishing
ciphertexts of 0 and 1 as is shown by the next claim.

Claim. The distributions (N0,N1,Enc(N0, 0)) and (N0,N1,Enc(N1, 1)) are
1/2-statistically close for matrices N0,N1 of independent standard Gaussians.

Proof. By Proposition 4.5 we have

Δ((N0,N1,Enc(Nb, b)), (N0,N1,g)) ≤ 1/4,

where g is a vector with i.i.d. entries sampled uniformly from {1, 2, . . . , r} and
b ∈ {0, 1}. By the triangle inequality we follow that

Δ((N0,N1,Enc(N0, 0)), (N0,N1,Enc(N1, 1))) ≤ 1/2.

Corollary 6.3. Assuming (0, 1/2)-hCLWE(s, ε), the distributions (A0,A1,
Enc(A0, 0)) and (A0,A1,Enc(A1, 1)) are (s−poly(n), 1/2+2ε)-indistinguishable
where A0,A1 are the public key matrices.

Proof. Let N0,N1 be standard normal matrices. By (0, 1/2)-hCLWE(s, ε), the
distributions (A0,A1Enc(Ab, b)) and (N0,N1,Enc(Nb, b)) are (s − poly(n), ε)-
indistinguishable for both b = 0 and b = 1. By Claim 6.3, (N0,N1,Enc(N0, 0))
and (N0,N1,Enc(N1, 1)) are (∞, 1/2)-indistinguishable. The corollary follows
from the triangle inequality.

582 A. Bogdanov et al.

7 Scheme 3: Discretized Encryption

In this section we describe an encryption scheme based on CLWE that has neg-
ligible soundness error and perfect correctness for all but a fraction of 1/poly(n)
many public keys. The scheme is inspired by the encryption scheme in [AD97]
which also achieves negligible soundness error but only polynomial decryption
error. We reduce this decryption error by applying their techniques to the
bimodal encryption scheme from Sect. 6 which is based on (0, 1/2)-hCLWE.
Alternatively, it could be applied to the baguette encryption scheme presented
in Sect. 8 which would yield a scheme based on hCLWE. An important con-
cept from [AD97] is the parallelepiped technique which enables us to transform
continuous Gaussian samples into uniform ones. We first describe the technique
before we present the encryption scheme and prove its correctness and security.

7.1 The Parallelepiped Technique and Zq

We will make use of the parallelepiped technique introduced by Ataj and Dwork
in [AD97]. Let B = (b1, . . . ,bn) ∈ R

n×n be an arbitrary matrix of rank n. We
denote by P(B) the n-dimensional parallelepiped that is defined by the columns
of B, i.e.

P(B) :=

⎧
⎨

⎩

∑

i∈[n]

λibi : 0 ≤ λi < 1 for all i ∈ [n]

⎫
⎬

⎭
.

We denote by Pq(B) the set we obtain by partitioning P(B) into qn smaller
parallelpipeds of equal volume, labelling them by vectors with entries from 0 to
q − 1 and then identifying each vector with the corresponding label, i.e.

Pq(B) :=
{�qB−1c� : c ∈ P(B)

}
.

We will later need the following fact:

Fact 7.1. Let B = (b1, . . . ,bn) ∈ R
n×n be an arbitrary matrix of rank n. Then

(Pq(B),+) is a group isomorphic to Z
n
q .

This can be seen by the following argument: We obtain Pq(B) by partitioning
each vector bi into q equal parts. Labelling the parts by {0, 1, 2, . . . , q − 1} in
the natural way gives an isomorphism between the q parts of bi and Zq for any
i ∈ [n]. Fact 7.1 follows by taking the direct product of the labellings of the bi.

In the construction of our public key we essentially map continuous Gaussian
vectors into P(B). We will need the next lemma to show that this mapping trans-
forms them into uniformly random vectors. We denote by ηε(B) the smoothing
parameter of the lattice with basis B.

Lemma 7.1 ([MR07, Lemma 4.1]). Let B ∈ R
n×n be a square matrix of rank

n. For any ε > 0 and any s > ηε(B) the statistical distance between Nn(0, s2)
mod B and the uniform distribution over P(B) is at most ε/2.

Public-Key Encryption from Homogeneous CLWE 583

The following lemma is a special case of [MR07, Lemma 3.2].

Lemma 7.2. For any n-dimensional lattice L with basis B = {b1, b2, . . . , bn}
we have η2−n(B) ≤ √

n maxi‖bi‖.

7.2 The Encryption Scheme

The scheme is parametrized by γ > 0; β > 0; n,m, q ∈ Z \ 2Z odd integers. We
set n to be an odd integer only to clarify the description and the analysis, m
and q however are always required to be odd.

– The secret key is a vector BTw, where w ∈ R
n is a uniformly random unit

vector and B is a matrix whose columns consist of hCLWE samples, such
that the smallest singular value of B is larger than 1/m.

– The public key is a pair of matrices (A0,A1) ∈ Z
n×m
q × Z

n×m
q . The columns

of A0 and A1 are of the form

B-round(nai mod B),

where B-round = B-roundq : Rn → Z
n
q is defined as B-roundq(a) = �qB−1a�.

In the case of A0 the vectors ai are samples from the hCLWE distribution
Hw.β,γ,n and in the case of A1 they are 1/2-hCLWE samples from H1/2

w,β,γ,n.
– To encrypt a bit b ∈ {0, 1}, compute

c := Abt mod q,

where t ← {−1, 1}m is sampled uniformly at random.
– To decrypt a ciphertext c, compute

γ′〈BTw, c/q〉 mod 1

and check if it is closer to 0 or closer to 1/2. In the former case output 0 in
the latter case output 1.

Remark 7.3. In the next section we will see that we require n to be an odd
integer only because we need that the inner product of w with 1/2-hCLWE
samples scaled by a factor n is approximately 1/2 mod 1 and not 0. One can
slightly change the scheme for even values of n: Scale the samples by a factor
n+1 instead of n. In the rest of the section we will assume that n is odd without
loss of generality.

Theorem 7.4. Set the parameters of the scheme to γ =
√

n,m = 8n log(n), β =
1/n10, q = n7. Assuming (0, 1/2)-hCLWE(s, ε) we get that for all but a fraction
of 1/(8n1/2 log(n)) + O(ε) choices of the public key the scheme has perfect cor-
rectness and negligible soundness error.

We prove correctness and soundness of the scheme separately in the next two
subsections.

584 A. Bogdanov et al.

7.3 Correctness

We show that for all but a fraction of at most 1/(8n1/2 log(n)) + ε choices
of the key pair decryption is always correct. We denote by {b1, . . . ,bn} the
columns of B, by {a01, . . . ,a0m} the hCLWE samples used to construct A0 and
by {a11, . . . ,a1m} the 1/2-hCLWE samples used to construct A1. We define e :=
γ′wTB mod 1 which is the noise vector of the hCLWE samples bi. For b ∈ {0, 1}
we define

eT
b := γ′wT

(
nab

1, na
b
2, . . . , na

b
m

) − b · (1/2, 1/2, . . . , 1/2) mod 1.

If b = 0 this is the vector where each entry is the noise value corresponding to
the hCLWE sample scaled by n during the construction of A0. If b = 1 this
is the noise vector we get during the construction of A1. We call a key pair
(BTw, (A0,A1)) good if the following holds:

1. ‖e0‖, ‖e1‖ ≤ mnβ′;
2. ‖e‖ ≤ nβ′;
3. For all i ∈ [m] the entries of a0i ,a

1
i lie in the interval

[−n3/2, n3/2
]
;

4. For all i ∈ [n] the entries of bi lie in the interval [−n, n];
5. the smallest singular value of B is larger than 1/m.

Note that all of these conditions can be efficiently tested during the key
generation.

Claim.
If the (0, 1/2)-hCLWE(s, ε) assumption holds, a key pair (BTw, (A0,A1)) is
good except with probability 1/(8n1/2 log(n)) + O(ε).

For a proof of this result see the full version.

Claim. If the key-pair (BTw, (A0,A1)) is good, decryption is correct with prob-
ability 1.

For a proof of this result see the full version.

7.4 Security

We show that encryptions of 0 and 1 are indistinguishable under the (0, 1/2)-
hCLWE assumption by showing that the following distributions are indistin-
guishable for b ∈ {0, 1}:

1. Realb: (A0,A1,Abt mod q) is a public key of the encryption scheme together
with an encryption of b.

2. Hybridb: (A0,A1,Abt mod q) is a tuple where the columns of A0 and A1

are uniformly random vectors in Z
n×m
q .

3. Ideal: (A0,A1, r) is the same as above but with r a uniformly random vector
in Z

n
q .

Public-Key Encryption from Homogeneous CLWE 585

Realb and Hybridb are computationally indistinguishable under the (0, 1/2)-
hCLWE assumption. Hybridb and Ideal are statistically indistinguishable by the
leftover hash lemma. In the rest of the section we formally prove the above
statements. We start by showing the first claim.

Claim. Under the (0, 1/2)-hCLWE(s, ε) assumption the distributions Realb and
Hybridb are (s − poly(n), 2−n+1 + ε)-indistinguishable.

Proof. Assume that there is a distinguisher D that decides if (A0,A1,Abt
mod q) is from Realb or from Hybridb with probability δ. We construct an
algorithm D′ that distinguishes between (0, 1/2)-hCLWE samples and random
samples with probability δ − 2−n+1 as follows:

1. Given poly(n) many (0, 1/2)-hCLWE samples {(yi, zi)}i∈[poly(n)], define a
matrix B by choosing n samples with zi = 0 such that the corresponding
vectors yi are linearly independent. These vectors are the columns of B.

2. Choose m samples of the form {(ŷi, 0)}i∈[m] and compute

y0
i = B-round (nŷi mod B)

and choose m samples of the form {(ỹi, 1/2)}i∈[m] and compute

y1
i = B-round (nỹi mod B) ,

where B-round = B-roundq : Rn → Z
n
q is defined as -roundq(a) = B�qB−1a�.

3. Let A0 be the matrix with columns y0
i and A1 be the matrix with columns

y1
i . Give (A0,A1,Abt mod q) to the distinguisher D.

Note that in the case where the samples {(yi, zi)}i∈[poly(n)] are (0, 1/2)-
hCLWE samples, (A0,A1) is a public key of our scheme. It remains to prove
that given samples {(yi, zi)}i∈[poly(n)], where the yi are normal random vectors
and the zi are uniform in {0, 1/2}, the resulting matrices A0,A1 are statistically
close to uniform matrices in Zn×m

q . Lemma 7.1 says that if we sample a vector
from a Gaussian distribution with standard deviation larger than η2−n(B) and
map it into Pq(B), the resulting vector is statistically close to uniform in Pq(B)
and hence in Z

n
q .

Now we only need an upper bound on the smoothing parameter in order
to prove that the columns of A0 and A1 are sampled from a Gaussian with
sufficiently large variance. The length of a vector with entries independently
sampled from N (0, 1) is at most n except with probability

√
ne−n. Hence, the

smoothing parameter of B is at most n3/2 by Lemma 7.2 except with probability√
ne−n. The entries of A0 and A1 are sampled from N (0, n2). Since n2 > n3/2 we

follow from Lemma 7.1 that A0 and A1 are 2−n+1-statistically close to uniformly
random matrices in Zn×m

q .

Next we show that Hybridb is statistically close to Ideal, which completes
the proof of soundness. This can be done using the classical leftover hash lemma
[IZ89]. To this end we need to show that multiplication of a {−1, 1}m vector by
a uniform matrix H ∈ Z

m×n
q is a universal family of hash functions, i.e.:

586 A. Bogdanov et al.

Claim. For q odd, x,y ∈ {−1, 1}m such that x �= y we have

Pr
H←Z

m×n
q

[Hx = Hy mod q] = q−n.

See the full version for a proof. The following is a special case of the leftover
hash lemma [IZ89,Reg05]:

Lemma 7.5. Let q be an odd integer. Let H ∈ Z
n×m
q be with columns chosen

uniformly at random from Z
n
q and t ← {−1, 1}m a uniformly random vector.

Then the statistical distance of the uniform distribution on Z
n
q and the distribu-

tion given by multiplying H with t is at most (qn/2m)1/4 w.p. 1 − (qn/2m)1/4.

By our choice of parameters we have m = 8n log(n) and q = n7. We follow
that the statistical distance of Hybrid0 and Hybrid1 to Ideal is (n7n/2n2

)1/4 ≤
2−n for large enough values of n. Hence, Hybrid0 is at least 2−n+1-close to
Hybrid1. Together with Claim 7.4 this yields that an encryption of 0 is 2−n+2 +
2ε-indistinguishable from an encryption of 1.

7.5 Precision

A precision value of ρ = O(log n) guarantees that decryption is unaffected as a
result of the approximations. The matrix entries of the public key are integer
values.

Correctness of decryption remains unaffected and the proof is analogous to
the one given for the pancake scheme in Sect. 4.5.

8 Scheme 4: Baguette Encryption

We now present a second approach that reduces the decryption error of the
pancake scheme. The security error remains constant but could be reduced by
the parallelepiped technique presented in Sect. 7. Instead of publishing samples
that have a pancake distribution in only one secret direction, we publish samples
that have a pancake distribution in multiple secret directions, i.e. samples from
the hCLWE(�) distribution. This is a distribution defined in [BRST21] to which
the authors give a reduction from hCLWE. To decrypt we take the inner products
of the ciphertext with all secret directions. If the ciphertext is an encryption of
0 all of the results are polynomially close to an integer. If the ciphertext is
an encryption of 1, at least one of the results is not close to an integer with
high probability since taken modulo 1 they are uniformly random values in
[0, 1). Before presenting the encryption scheme we formally define the hCLWE(�)
distribution.

8.1 The hCLWE(�) Distribution

Both the hCLWE(�), distribution and the corresponding decision problem were
introduced in [BRST21]. This problem is the extension of hCLWE to the case
of � hidden orthogonal directions.

Public-Key Encryption from Homogeneous CLWE 587

Definition 8.1 (hCLWE(�) Distribution). For a matrix W = (w1| . . . |w) ∈
R

n×	 such that WTW = I	, real numbers β, γ > 0, n ∈ N and � ∈ N with
0 ≤ � ≤ n, samples y ∈ R

n for the hCLWE(�) distribution HW,β,γ,n,	 are
generated as follows:

1. Sample k1, . . . , k	 ∈ Z independently with distribution DZ,γ2+β2 .
2. Sample e1, . . . , e	 ← N (0, β′2) independently where β′2 := β2/(γ2 + β2).
3. Sample v as Nn−	(0, 1) from the subspace orthogonal to W.
4. Output y := v +

∑	
i=1(ki/γ′ + ei)wi where γ′ := (γ2 + β2)/γ.

For � = 0 we get the normal distribution with covariance matrix In and for
� = 1 we recover the hCLWE distribution. We refer to the columns of W as the
hidden directions. Note that they are orthonormal vectors.

Definition 8.2 (hCLWE(�) Distinguishing Problem). For real numbers
β, γ > 0, n ∈ N and � ∈ N with 0 ≤ � ≤ n, the (average-case) distinguishing
problem hCLWEβ,γ,n(�) asks to distinguish between HW,β,γ,n,	 for a uniform
matrix W ∈ R

n×	 such that WTW = I	, and Nn(0, 1).

The hCLWE(�)(s, ε) assumption postulates that the hCLWE(�) distinguish-
ing problem cannot be solved in size s with advantage ε. As shown in [BRST21]
(Lemma 9.3.), if n − � = Ω(nk) for some constant k > 0, there is an efficient
reduction from hCLWEβ,γ,n−	+1 to hCLWEβ,γ,n(�).

8.2 Encryption Scheme

We now give an encryption scheme that builds on the pancake scheme from
Sect. 4. It achieves negligible decryption error using more hidden directions
instead of the (0, 1/2)-hCLWE distribution.

The scheme is parametrized by γ > 0; β > 0; r > 0, n, �,m ∈ N and a
parameter a > 0 for which we will only consider two possible values, namely,
a = n and a = 100.

– The secret key is a uniformly random matrix W ∈ R
n×	 such that WTW =

I	.
– The public key is a matrix A ∈ R

n×m whose columns are independently
sampled from HW,β,γ,n,	.

– To encrypt 0, choose a vector t ∈ {−1/
√

m,+1/
√

m}m uniformly at random
and output

c := roundr(At).

Check if all entries of c correspond to buckets of width less than
1/(4a

√
n
√

mγ′). If yes, output c. Otherwise, output 0.
– To encrypt 1, choose a vector c ← {1, 2, . . . , r}n uniformly at random. Check

if all entries of c correspond to buckets of width less than 1/(4a
√

n
√

mγ′). If
yes, output c. Otherwise, output 1.

588 A. Bogdanov et al.

– To decrypt a ciphertext c, take any z such that roundr(z) = c, compute

γ′√mWT z mod 1

and check if all � entries are in (−1/2a, 1/2a). If yes, output 0, else output 1.

The real matrices and vectors W,A, t are represented with O(log n) bits of
precision. The precision analysis is analogous to the one done in Sect. 4.5 for
pancake encryption, so we omit it.

Theorem 8.3. Set the parameters of the scheme to γ =
√

n, β = (16 ·
104n3 log(n))−1, � = log n, m = 108n2 log(n)2, r = (40001n3 log(n))5/3 and
a = n. Assuming hCLWE(s, ε), the scheme has negligible decryption error and
security error at most 1/4 + 4ε.

We prove correctness and security of the scheme separately in the next two
subsections.

We are also interested in using this scheme to prove that hCLWE and
hCLWE(�) are in SZK (statistical zero knowledge), what is shown in Sect. 9
for the following choice of parameters:

a = 100

β′γ′ ln γ′ < 1/(4 · 104 Kn log n)
γ′ > 1

m = (Kn log n ln γ′)2

r = m10(γ′)5/3

(3)

where K = 4 · 9 · 10 · e · 2 · 5.

8.3 Correctness

The following two claims assert that the scheme is correct.

Claim. The probability that Dec(W,Enc(A, 0)) = 0 over the joint choice of the
public key and encryption randomness is at least

1 − �

√
2β′2γ′2m

π

e
− (1/4a)2

2β′2γ′2m

1/4a
.

In particular,
– for the choice of parameters made in Theorem 8.3, it is at least 1 − e−n, i.e.,

the error is a negligible function.
– for the choice of parameters suggested in Eq. 3, the probability is at least

1 − e−5000.

Claim. If n ≥ 4, the probability that Dec(w,Enc(A, 1)) = 1 is at least 1 −
(3/2a)	 − exp(−γ′2m). In particular,
– for the choice of parameters made in Theorem 8.3, the probability is at least

1 − (3/2n)log n − exp(−n3), i.e., the error is negligible.
– for the choice of parameters suggested in Eq. 3, the probability is at least

1 − (3/200)	 − exp(−n2).

Public-Key Encryption from Homogeneous CLWE 589

8.4 Security

In order to analyze the security of the scheme we have to take into account
the possibility that at least one of the entries of the ciphertext corresponds to a
bucket of width larger than 1/(4a

√
n
√

mγ′) as the encryption algorithm outputs
the plaintext in the clear in that case.

Claim. Let r be such that the following inequalities are satisfied

r−3/5 ≤ 1
4a

√
n
√

mγ′ (4)

2nr−2/5

√
ln r2/5

+
2n

r
≤ δ(n). (5)

Let A ∈ R
n×m be a matrix whose columns consist of independent hCLWE(�)

samples and assume hCLWE(�)(s, ε) where s is the complexity of rounding and ε
is a function of n. Let t ← {−1/

√
m, 1/

√
m}m be sampled uniformly at random.

The probability that any entry of the vector c := roundr(At) corresponds to a
bucket of width larger than 1/(4a

√
n
√

mγ′) is at most δ(n) + ε. For the choice
of parameters made in Theorem 8.3 and in Eq. 3 both conditions are satisfied for
δ(n) = 1

24 .

The next claim follows directly from Proposition 4.5.

Claim. If the ciphertexts are not the messages, the distributions (N,Enc(N, 0))
and (N,Enc(N, 1)) are

√
4e ln rn/

√
m-statistically close for a matrix N of inde-

pendent standard Gaussians. In particular,

– for the choice of parameters made in Theorem 8.3, the distance is at most
1/

√
50 < 1/4.

– for the choice of parameters suggested in Eq. 3, the distance is at most 1/3.

Corollary 8.4. If hCLWE(�)(s, ε) holds, then the distributions (A,Enc(A, 0))
and (A,Enc(A, 1)) are (s−poly(n),

√
4e ln rn/

√
m+4ε)-indistinguishable where

A is the public key matrix. In particular,

– for the choice of parameters made in Theorem8.3, and ε = 1/24, we get
1/4 + 4/24 < 1/2.

– for the choice of parameters suggested in Eq. 3 and ε = 1/24, we get 1/3 +
4/24 = 1/2.

9 hCLWE and hCLWE(�) are in SZK

In this section we prove that hCLWE and hCLWE(�) are in SZK, which is
the class of decision problems that admit a statistical zero-knowledge proof
[GMR89]. Zero-knowledge is defined with respect to honest verifiers.

We say that a sampling problem is in SZK if there is a polynomial-time
honest-verifier statistical zero-knowledge protocol that accepts at least 2/3 of

590 A. Bogdanov et al.

the YES instances and rejects at least 2/3 of the NO instances. The choice of
threshold 2/3 is operational.

Our proof consists in a reduction from hCLWE to the statistical difference
problem (SD). Sahai and Vadhan proved in [SV03] that SD is complete for SZK.

Definition 9.1 (SD Problem). The YES instances of the Statistical Difference
(SD) problem are pairs of circuits (C0, C1) such that Δ(C0, C1) > 2/3 and the
NO instances are pairs of circuits (C0, C1) such that Δ(C0, C1) < 1/3.

Here Δ is the statistical (total variation) distance between the output dis-
tributions sampled by the circuits when instantiated with a uniformly random
seed. That is, if the output space of C0 and C1 is some finite set Ω,

Δ(C0, C1) = sup
A⊆Ω

|Pr[C0 ∈ A] − Pr[C1 ∈ A]| =
1
2

∑

ω∈Ω

|Pr[C0 = ω] − Pr[C1 = ω]|

Since SD is a complete problem for the SZK class and SZK is a class closed
under reductions (see [SV03]), we can study the SZK class by considering reduc-
tions to SD instead of interactive proof systems. This approach also removes any
reference to zero-knowledge.

In order to show that hCLWE is in SZK, it suffices to define two circuits that
satisfy the conditions of Definition 9.1.

Theorem 9.2. Let K,K ′ be sufficiently large constants. If γ′ > 1, β′γ′ ln γ′ <
1/(K ′n log n) and γ′ is polynomially bounded, the hCLWEβ,γ,n problem with
m = (Kn log n ln γ′)2 samples is in SZK.

Proof. Take K and r as in Eq. 3, that is, K = 4 · 9 · 10 · e · 2 · 5 and r =
m10(γ′)5/3. Let K ′ = 4 · 104K. Let X be either a valid public key A ∈ R

n×m

or a matrix N ∈ R
n×m with i.i.d. entries sampled from N (0, 1). We define two

circuits C0, C1 that take as input the pair (t,u) where t ∈ {−1/
√

m, 1/
√

m}m

and u ∈ {1, 2, . . . , r}n. C0 outputs roundr(Xt), i.e., an encryption of 0 using
randomness t, while C1 outputs u, i.e., an encryption of 1 with randomness u.

If X = A, by Claim 8.3 and Claim 8.3 and Claim 8.4 for ε(n) = 1/24 = δ(n),
the decryption error is at most e−5000 + 3/200 + exp(−n2) + 1/24 + 1/24. It
follows that Δ(C0, C1) > 2/3.

If X = N, then the statistical distance between C0 and C1 is at most 1/3 by
Proposition 4.5.

We also have an analogous statement for hCLWE(�).

Theorem 9.3. Let K,K ′ be sufficiently large constants. If γ′ > 1, β′γ′ ln γ′ <
1/(K ′n log n), γ′ is polynomially bounded and 1 ≤ � ≤ n, hCLWEβ,γ,n(�) with
m = (Kn log n ln γ′)2 samples is in SZK.

Acknowledgements. We are grateful to Devika Sharma and Luca Trevisan for their
insight and advice and to an anonymous reviewer for helpful comments.

Public-Key Encryption from Homogeneous CLWE 591

This work was supported by the European Research Council (ERC) under the Euro-
pean Union’s Horizon 2020 research and innovation programme (Grant agreement No.
101019547). The first author was additionally supported by RGC GRF CUHK14209920
and the fourth author was additionally supported by ISF grant No. 1399/17, project
PROMETHEUS (Grant 780701), and Cariplo CRYPTONOMEX grant.

References

[ABW10] Applebaum, B., Barak, B., Wigderson, A.: Public-key cryptography from
different assumptions. In: Proceedings of the Forty-Second ACM Sympo-
sium on Theory of Computing, STOC 2010, pp. 171–180. Association for
Computing Machinery, New York (2010)

[AD97] Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-
case equivalence. In: Proceedings of the Twenty-Ninth Annual ACM Sym-
posium on Theory of Computing, STOC 1997, pp. 284–293. Association for
Computing Machinery, New York (1997)

[Ale03] Alekhnovich, M.: More on average case vs approximation complexity. In:
44th Annual IEEE Symposium on Foundations of Computer Science, Pro-
ceedings, pp. 298–307 (2003)

[BB20] Brennan, M.S., Bresler, G.: Reducibility and statistical-computational gaps
from secret leakage. In: Abernethy, J.D., Agarwal, S. (eds.) Conference on
Learning Theory, COLT 2020, 9–12 July 2020, Virtual Event [Graz, Aus-
tria], Proceedings of Machine Learning Research, , vol. 125, pp. 648–847.
PMLR (2020)

[BNHR22] Bogdanov, A., Noval, M.C., Hoffmann, C., Rosen, A.: Public-key encryption
from continuous LWE. Cryptology ePrint Archive, Paper 2022/093 (2022).
https://eprint.iacr.org/2022/093

[BR13] Berthet, Q., Rigollet, P.: Complexity theoretic lower bounds for sparse prin-
cipal component detection. In: Shalev-Shwartz, S., Steinwart, I. (eds.) Pro-
ceedings of the 26th Annual Conference on Learning Theory, Proceedings
of Machine Learning Research, vol. 30, pp. 1046–1066. PMLR, Princeton,
12–14 June 2013

[BRST21] Bruna, J., Regev, O., Song, M.J., Tang, Y.: Continuous LWE. In: Proceed-
ings of the 53rd Annual ACM SIGACT Symposium on Theory of Comput-
ing, STOC 2021, pp. 694–707. Association for Computing Machinery, New
York (2021)

[BS15] Belkin, M., Sinha, K.: Polynomial learning of distribution families. SIAM
J. Comput. 44(4), 889–911 (2015)

[DKS17] Diakonikolas, I., Kane, D.M., Stewart, A.: Statistical query lower bounds for
robust estimation of high-dimensional gaussians and gaussian mixtures. In:
2017 IEEE 58th Annual Symposium on Foundations of Computer Science
(FOCS), pp. 73–84 (2017)

[DNR04] Dwork, C., Naor, M., Reingold, O.: Immunizing encryption schemes from
decryption errors. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 342–360. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-24676-3 21

[EG85] ElGamal, T.: A public key cryptosystem and a signature scheme based on
discrete logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984.
LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985). https://doi.org/10.
1007/3-540-39568-7 2

https://eprint.iacr.org/2022/093
https://doi.org/10.1007/978-3-540-24676-3_21
https://doi.org/10.1007/978-3-540-24676-3_21
https://doi.org/10.1007/3-540-39568-7_2
https://doi.org/10.1007/3-540-39568-7_2

592 A. Bogdanov et al.

[GG98] Goldreich, O., Goldwasser, S.: On the limits of non-approximability of lattice
problems. In: Proceedings of the Thirtieth Annual ACM Symposium on
Theory of Computing, STOC 1998, pp. 1–9. Association for Computing
Machinery, New York (1998)

[GMR89] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of inter-
active proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

[GPV08] Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and
new cryptographic constructions. In: Dwork, C. (ed.) Proceedings of the
40th Annual ACM Symposium on Theory of Computing, Victoria, British
Columbia, Canada, 17–20 May 2008, pp. 197–206. ACM (2008)

[GSV99] Goldreich, O., Sahai, A., Vadhan, S.: Can statistical zero knowledge be made
non-interactive? or on the relationship of SZK and NISZK. In: Wiener, M.
(ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 467–484. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-48405-1 30

[GVV22] Gupte, A., Vafa, N., Vaikuntanathan, V.: Continuous LWE is as hard
as LWE & applications to learning gaussian mixtures. Cryptology ePrint
Archive, Report 2022/437 (2022). https://ia.cr/2022/437

[HP15] Hardt, M., Price, E.: Tight bounds for learning a mixture of two gaussians.
In: Proceedings of the Forty-Seventh Annual ACM on Symposium on The-
ory of Computing, STOC 2015, Portland, OR, USA, 14–17 June 2015, pp.
753–760 (2015)

[HR05] Holenstein, T., Renner, R.: One-way secret-key agreement and applica-
tions to circuit polarization and immunization of public-key encryption. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 478–493. Springer,
Heidelberg (2005). https://doi.org/10.1007/11535218 29

[HWX15] Hajek, B., Wu, Y., Xu, J.: Computational lower bounds for community
detection on random graphs. In: Proceedings of The 28th Conference on
Learning Theory, Proceedings of Machine Learning Research, vol. 40, pp.
899–928. PMLR, Paris, 03–06 Jul 2015

[IZ89] Impagliazzo, R., Zuckerman, D.: How to recycle random bits,pp. 248–253.
IEEE (1989)

[McE78] McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory.
Deep Space Netw. Progr. Rep. 44, 114–116 (1978)

[MR07] Micciancio, D., Regev, O.: Worst-case to average-case reductions based on
gaussian measures. SIAM J. Comput. 37, 267–302 (2007)

[Rab79] Rabin, M.O.: Digitalized signatures and public-key functions as intractable
as factorization. MIT Laboratory for Computer Science (1979)

[Reg05] Regev, O.: On lattices, learning with errors, random linear codes, and cryp-
tography. In: STOC, pp. 84–93 (2005). Full version in [Reg09]

[Reg09] Regev, O.: On lattices, learning with errors, random linear codes, and cryp-
tography. J. ACM 56(6) (2009)

[RSA78] Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signa-
tures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

[SV03] Sahai, A., Vadhan, S.: A complete problem for statistical zero knowledge.
J. ACM 50(2), 196–249 (2003)

https://doi.org/10.1007/3-540-48405-1_30
https://ia.cr/2022/437
https://doi.org/10.1007/11535218_29

PPAD is as Hard as LWE and Iterated
Squaring

Nir Bitansky1(B), Arka Rai Choudhuri2, Justin Holmgren3, Chethan Kamath1,
Alex Lombardi4, Omer Paneth1, and Ron D. Rothblum5

1 Tel Aviv University, Tel Aviv, Israel
nirbitan@tau.ac.il, ckamath@protonmail.com, omerpa@tauex.tau.ac.il

2 UC Berkeley, Berkeley, USA
arkarc@berkeley.edu

3 NTT Research, Palo Alto, USA
justin.holmgren@ntt-research.com

4 MIT, Cambridge, USA
alexlombardi@alum.mit.edu

5 Technion, Haifa, Israel

rothblum@cs.technion.ac.il

Abstract. One of the most fundamental results in game theory is that
every finite strategic game has a Nash equilibrium, an assignment of
(randomized) strategies to players with the stability property that no
individual player can benefit from deviating from the assigned strategy.
It is not known how to efficiently compute such a Nash equilibrium—
the computational complexity of this task is characterized by the class
PPAD, but the relation of PPAD to other problems and well-known
complexity classes is not precisely understood. In recent years there has
been mounting evidence, based on cryptographic tools and techniques,
showing the hardness of PPAD.

We continue this line of research by showing that PPAD is as hard
as learning with errors (LWE) and the iterated squaring (IS) problem,
two standard problems in cryptography. Our work improves over prior
hardness results that relied either on (1) sub-exponential assumptions,
or (2) relied on “obfustopia,” which can currently be based on a par-
ticular combination of three assumptions. Our work additionally estab-
lishes public-coin hardness for PPAD (computational hardness for a
publicly sampleable distribution of instances) that seems out of reach of
the obfustopia approach.

Following the work of Choudhuri et al. (STOC 2019) and subsequent
works, our hardness result is obtained by constructing an unambiguous
and incrementally-updateable succinct non-interactive argument for IS,
whose soundness relies on polynomial hardness of LWE. The result also
implies a verifiable delay function with unique proofs, which may be of
independent interest.

1 Introduction

The concept of a Nash equilibrium is fundamental to the modern understand-
ing of games: given a description of payoffs as a function of k player strategies
c© The Author(s), under exclusive license to Springer Nature Switzerland 2022
E. Kiltz and V. Vaikuntanathan (Eds.): TCC 2022, LNCS 13748, pp. 593–622, 2022.
https://doi.org/10.1007/978-3-031-22365-5_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22365-5_21&domain=pdf
https://doi.org/10.1007/978-3-031-22365-5_21

594 N. Bitansky et al.

(which take value in a finite domain), what are a collection of strategy distribu-
tions that cannot be locally improved? It is not a priori clear that such mixed
strategies should exist, but the seminal work of Nash [46] shows that they do. In
the language of modern computational complexity, this implies that Nash equi-
librium is a total search problem, a search problem such that every instance of
the problem is guaranteed to have a solution. It turns out that computing (arbi-
trarily good approximate) solutions to this problem is in fact in the complexity
class TFNP [45], the class of total search problems with efficient verification.
In fact, it is complete for its subclass called PPAD [14,21,48], for which the
existence of solution is guaranteed via “polynomial parity argument on d irected
graphs”. Thus, understanding the computational complexity of PPAD exactly
corresponds to understanding the complexity of computing a Nash equilibrium.

Despite many decades of attention, we do not currently have polynomial-time
algorithms for Nash (or any PPAD-complete problem); indeed, it is widely
believed that PPAD is computationally intractable. Understanding to what
extent this is the case, and why, has been a major line of research at the inter-
section of game theory, computational complexity, and (perhaps surprisingly)
cryptography. In our work, we further explore this connection to cryptography
and prove new hardness results for PPAD under cryptographic assumptions.

Prior Work. Before describing our results, we summarize the state of affairs
prior to our work. The goal of this line of work is to prove theorems of the
form “if PPAD can be solved in polynomial-time, then standard cryptography
is broken.” The usual notion of “cryptography is broken” is that there is a
probabilistic polynomial-time (PPT) algorithm solving a problem fundamental
to cryptography with non-negligible advantage or success probability. As we will
see, prior work, which fall into the two categories described below, falls somewhat
short of achieving this ideal.

– Specialized Proof Systems: Starting from [15], there has been a sequence
of works obtaining hardness in PPAD by building unambiguous, incremental,
succinct non-interactive arguments [15,16,23,39,41,43], which in turn implies
the hardness of PPAD. These works build such proof systems (and thereby
establish hardness of PPAD) based on (1) the hardness of breaking the Fiat-
Shamir heuristic [15,16,23], (2) the subexponential hardness of both iterated
squaring (IS) and learning with errors (LWE) [43], (3) the subexponential
hardness only of LWE [39], or (4) the superpolynomial hardness of a problem
about bilinear groups [41] along with the exponential-time hypothesis (ETH).
Unfortunately, none of these results achieve what we required above: a
polynomial-time reduction from breaking cryptography (in polynomial time)
to PPAD. In particular, these results leave open the possibility that there
is a polynomial-time algorithm for PPAD and yet all of these problems are
hard in the standard cryptographic sense.

– Obfustopia: Another sequence of works [4,29,34] show that PPAD is hard
in “obfustopia”, which is a world where indistinguishability obfuscation [3,28]
and functional encryption [7,47] exist. Unlike the previous approach, this

PPAD is as Hard as LWE and Iterated Squaring 595

line of work is capable of relying on polynomial hardness: in particular, [29]
showed that if PPAD is easy, then functional encryption cannot exist. Com-
bined with the groundbreaking results of [36,37], this in turn would imply
that one of three seemingly hard problems1 in cryptography must be easy.
While the results of [36,37] are based on well-founded assumptions, they
have received less scrutiny than other cryptographic assumptions. Even more
fundamentally, we do not want to base the hardness of such a central com-
plexity class such as PPAD only on the conjunction of three specific hardness
assumptions.

In our work, we ask whether it is possible for the first line of work – bas-
ing PPAD-hardness on unambiguous proof systems – to rely on standard,
polynomial-time hardness assumptions.

1.1 Our Results

Our first result shows that (average-case) PPAD hardness follows from the
polynomial-time hardness of iterated squaring in RSA groups and LWE. In fact,
as showed in [34], the same techniques imply hardness in the sub-class CLS ⊆
PPAD introduced in [22]. We further strengthen these hardness results to the
subclass UEOPL ⊆ CLS, which is one of the lowest known sub-classes of
TFNP [24].

Theorem 1 (Following Theorem 3 and Corollary 3, informally stated).
If there exists a PPT algorithm that solves PPAD with non-negligible probability,
then there exists a PPT algorithm that breaks either IS in RSA groups or LWE
with non-negligible probability.

Slightly more formally, for a complete problem P in PPAD, we construct a
distribution D on instances of P with the following property: if there is a
polynomial-time algorithm A such that A(x) is a solution to P (x) with non-
negligible probability when sampling x ← D, then there is a polynomial-time
algorithm B that solves IS or solves LWE with non-negligible probability.

Public-Coin PPAD Hardness. Our hardness result is actually slightly stronger
than what is achieved by the obfustopia reductions. We show public-coin hard-
ness of P : there is a sampling algorithm for D such that the existence of such a
B is guaranteed even if A is given the random coins used in sampling x. To our
knowledge, this is the first hardness result for publicly sampleable distributions
in PPAD. Moreover, previous hardness results that were based on polynomially
falsifiable assumptions [4,29,34] seem inherently limited to secret-coin hardness
because their instance distributions contain obfuscated circuits (or functional
encryption ciphertexts that simulate the functionality of an obfuscated circuit).
We remark that our public-coin hardness result may be somewhat surprising
because the IS problem in an RSA modulus does not itself have a public-coin
sampler.
1 The problems, roughly, are to break an SXDH assumption, to break a large-field

LPN assumption, and to break a low-depth PRG.

596 N. Bitansky et al.

Unique VDFs from Standard Assumptions. Our techniques also yield new results
for verifiable delay functions (VDFs) [6]. We construct VDFs with unique proofs,
which we call unique VDFs, based on the standard LWE assumption and the
standard sequential hardness assumption regarding IS.

Theorem 2 (informally stated). If IS in RSA group is sequentially-hard and
LWE is polynomially-hard, then there exists a unique VDF.

Ours is the first construction of unique VDFs that is based on a polynomial
hardness assumption. Recently, Freitag, Pass and Sirkin [27], constructed VDFs
from polynomial hardness of LWE and any sequentially-hard function, but it
does not satisfy uniqueness. We view it as an interesting question whether such
VDFs have applications in cryptography.

The Building Block. Along the way (as in previous work) we construct an unam-
biguous, incremental, succinct non-interactive argument system for IS. This
serves as the building block for all our results stated above. The soundness of
our argument system is based on LWE, and is established by instantiating the
Fiat-Shamir heuristic applied to a variant of Pietrzak’s interactive proof system
for IS. We also formulate an abstract protocol template (that we call “outline-
and-batch” protocols) that generically implies PPAD-hardness and captures
essentially all existing results as well as our new protocol.

1.2 Technical Overview

Toward the construction of hard PPAD instances, we resort to a common
paradigm in the literature, that of constructing mergeable and unambiguous
proofs [15,16,23,39,41,43]. In this paradigm, we consider some underlying com-
putation:

x1 → x2 → · · · → xT ,

where each step xt → xt+1, 1 ≤ t < T , is computable in fixed polynomial time,
but computing the last state xT cannot be done efficiently for large (super-
polynomial) T . For concreteness, the reader may think of iterated squaring over
the RSA group Z

×
N where, for a (randomly sampled) g ∈ Z

×
N , xt := g2t

mod N ;
note that computing xt → xt+1 can be carried out by one modular squaring, but
computing xT for a large T is believed to be infeasible [53]. For 1 ≤ t < t′ ≤ T ,
the corresponding proof system should allow computing (non-interactive) proofs
πt→t′ for statements of the form xt → xt′ (i.e., the state xt′ is reachable from
state xt) and should satisfy the following requirements:

1. Soundness: it should be computationally hard to prove false statements.
2. Unambiguity: for any (true) statement xt → xt′ , it should be computation-

ally hard to find any accepting proof π∗
t→t′ other than the “prescribed” proof

πt→t′ computed by the efficient merging process.
3. Recursive proof-merging: given d proofs π1→t, πt→2t, . . . , π(d−1)t→dt, for

statements
x1 → xt, xt → x2t, . . . , x(d−1)t → xdt,

PPAD is as Hard as LWE and Iterated Squaring 597

computing a proof π1→dt for the statement x1 → xdt, where d ∈ N is some
fixed merging parameter, can be efficiently reduced to computing a single
proof π′

1→t for some related statement x′
1 → x′

t. In other words, the d proofs
for statements of “size” t can be merged into a proof for a statement of “size”
dt via a recursive call to compute an additional (related) proof of size t. In the
concrete example of iterated squaring, the “size” of the statement corresponds
to the number of modular squaring operations required to go from xt := g2t

to xt′ := g2t′
.

Mergeable, Unambigous Proofs from Iterated Squaring and Fiat-Shamir. As men-
tioned, the mergeable unambiguous proofs paradigm has by now several instan-
tiations in the literature. Focusing on obtaining a polynomial reduction, we con-
sider one particular instantiation, based on Pietrzak’s protocol for the iterated
squaring (IS) problem [51]. The protocol is a public-coin interactive proof for
statements of the form “g2T

equals h modulo N”, where N is a public modulus
whose factorization is known to neither the prover nor the verifier – we denote
such a statement by g

T−→ h. At the heart of Pietrzak’s protocol is a technique
for reducing a statement g

T−→ h to a related, new statement g′ T/2−−→ h′ that is
half the size.2 This is done by having the (honest) prover specify an integer μ

such that the intermediate statements g
T/2−−→ μ and μ

T/2−−→ h hold (i.e., μ is the
“midpoint”), and then having the verifier reduce these two statements into one,
using its random challenge r as follows:

g′ := grμ mod N and h′ := μrh mod N.

The above, “halving sub-protocol” is repeated for log(T) rounds, at the end of
which the verifier ends up with a statement of the form g′′ 2−→ h′′, which it can,
itself, check by modular squaring. To make this proof system non-interactive,
previous works turn to the Fiat-Shamir paradigm [25] of applying an appropriate
hash function to the statement to derive the verifier’s challenge.

Instantiating Fiat-Shamir. Since Pietrzak’s protocol has statistical soundness,
the above approach already yields hard PPAD instances in the random oracle
model [16,23]. Our focus is of course on obtaining a construction without random
oracles. Indeed, a recent surge of results has successfully instantiated Fiat-Shamir
without random oracles in various scenarios [8,11,12,17–20,32,33,35,38,39,42,
43,50]. This has, in fact, also yielded hard PPAD instances, but so far none
based on polynomial hardness assumptions. Especially relevant to us is the work
of Lombardi and Vaikuntanathan [43] who instantiate the Fiat-Shamir transform
for Pietrzak’s protocol, based on sub-exponential hardness of LWE. At a high
level, the sub-exponential loss in [43] comes from the difficulty of computing (or
successfully guessing) the so called bad verifier challenges in the protocol—the

2 Throughout this section, we assume for simplicity that the time parameter T is a
power of 2.

598 N. Bitansky et al.

precise quantitative complexity of this task turns out to crucially affect Fiat-
Shamir instantiability. For the particular case of Pietrzak’s protocol, a verifier
challenge is bad if either of the intermediate statements g

T/2−−→ μ or μ
T/2−−→ h

is false, but the new randomized statement g′ T/2−−→ h′ happens to be true. As
a part of the soundness argument, it was demonstrated in [51] that the set
of bad verifier challenges consists of at most a few elements, but it turns out
that computing them (even given the factorization of N) requires solving an
intractable discrete-log problem (see, e.g., [43] for a discussion).

Reduced Challenge Space and Soundness Amplification. A first observation
toward eliminating the subexponential loss is that bad challenges in Pietrzak’s
protocol are efficiently verifiable given the factorization of N . In particular,
there is a straight-forward modification of Pietrzak’s protocol that uses a poly-
nomial size challenge space, which makes it trivial to find the bad challenges by
enumerating and testing every possibility (which can be done efficiently given
the above observation). However, this modification causes the protocol to have
inverse polynomial soundness error, so the resulting protocol cannot be made
interactive via Fiat-Shamir.

A natural attempt to resolve this is to repeat the small-challenge protocol
many times in parallel to reduce the soundness error. Indeed parallel repetition
reduces the soundness error and importantly, using a recent work of Holmgren,
Lombardi and Rothblum [33], we can even instantiate Fiat-Shamir for such a
protocol based on (polynomially secure) LWE.3 Their instantiation essentially
works for any parallel-repeated three-message proof, as long as the bad challenges
in each individual copy of the protocol are efficiently verifiable. (It also works
for protocols with more rounds provided a certain round-by-round soundness
requirement that is satisfied by Pietrzak’s protocol, further discussed below).
It turns out, however, that this approach falls short of our goal. The issue is
that the resulting proofs are not unambiguous. As noted in [52], while parallel
repetition amplifies soundness, it does not amplify unambiguity. The reason is
that a cheating prover that breaks unambiguity in a single copy of the base
protocol (out of many), can in particular obtain two accepting proofs for the
same statement, breaking the unambiguity of the whole protocol.

Amplifying Unambiguity. As described above, while parallel repetition has the
desired effect on soundness, unambiguity suffers from a single point of failure:
that is, it suffices to cheat in a single copy of the base protocol without affecting
the other copies. Instead we would like to start with a protocol that morally still
works with many copies (as in parallel repetition) but mixes these together so
that any deviations propagate across the entire protocol. Indeed such a protocol
was constructed by Block et al. [5], who construct an interactive proof system

3 In fact, this yields a (non-unique) VDF based on the standard hardness of IS and
LWE. However, this is subsumed by the result from [27] mentioned in Sect. 1.1. In
Sect. 1.2, we will construct unique VDF from same assumptions.

PPAD is as Hard as LWE and Iterated Squaring 599

for IS for a completely different purpose than considered here.4 Specifically, for
an arbitrary group G, they consider λ (possibly-identical) statements

(
g1

T−→ h1, · · · , gλ
T−→ hλ

)
, (1)

where (in the honest case) hi = g2T

i over G for all i ∈ [1, λ]. As in Pietrzak’s
protocol, the prover sends over a tuple of midpoints (μ1, · · · , μλ), for claimed
values μi = g2T/2

i . This results in 2λ intermediate statements of the form
(
g1

T/2−−→ μ1, μ1
T/2−−→ h1, · · · , gλ

T/2−−→ μλ, μλ
T/2−−→ hλ

)
,

which we rewrite as
(
g̃1

T/2−−→ h̃1, · · · , g̃2λ
T/2−−→ h̃2λ

)
. (2)

To recurse, λ new statements are derived by a 2λ-to-λ (batch) reduction, where
the i-th new statement g′

i
T/2−−→ h′

i is constructed by choosing a random subset Si

of the 2λ statements as follows:

g′
i =

∏
j∈Si

g̃j and h′
i =

∏
j∈Si

h̃j . (3)

Even if a single original statement in Eq. (1) is false, it was shown in [5] that each
new statement in Eq. (3) is true with probability at most 1/2 (over the choice
of Si): intuitively, in the (worst) case that the j∗-th statement is the only false
statement in Eq. (1), then it is included in Eq. (4) with probability 1/2, rendering
the new statement false. Since there are λ new statements, constructed using
independent random subsets, the soundness of the resulting protocol is 1/2λ.
Unambiguity amplifies in an identical manner: a cheating prover deviating from
the prescribed honest prover strategy affects each new statement with probability
roughly 1/2, “propagating” false statements and, as a result, circumventing the
issue of a single point of failure we had previously discussed. By recursing, as
above, log(T) times, the statement reduces to a statement which can be efficiently
checked by the verifier.

Applying [33]. Now that we have solved the issues with unambiguity in the
interactive protocol, we would like to make it non-interactive in the common
reference string (CRS) model by applying the Fiat-Shamir transform. Briefly,
the Fiat-Shamir transform for any public-coin interactive proof is defined with
respect to some hash function family H, where a single hash function H sampled
from this family is set to be the CRS. The round-collapse is due to the fact that
the verifier’s message for each round is simply computed to be the output of H

4 The goal in [5] (also see [30]) was to construct a statistically-sound protocol that
works for IS in arbitrary groups. In comparison, Pietrzak’s protocol is statistically-
sound only in groups that are guaranteed to have no low-order elements, e.g., in the
group of signed quadratic residues [26,31].

600 N. Bitansky et al.

applied to the transcript of the protocol up to that point. The security of the
instantiated transform relies on correlation intractability of hash functions for
bad challenges [13]. This is, in particular, true for random oracles when the bad
challenges are “sparse”.

As already stated, the Fiat-Shamir transform has been successfully instanti-
ated based on standard assumptions for several protocols. Of particular interest
to our work is a recent work of Holmgren, Lombardi and Rothblum [33]. We
illustrate their idea directly for the [5] protocol. Consider the 2λ intermediate
statements from Eq. (2) and let j∗ ∈ [1, 2λ] be an index such that g̃2T/2

j∗ �= h̃j∗ .
This can occur either due to the fact that one of the initial λ statements was
incorrect, or a cheating prover deviated from the prescribed prover strategy.
Then, the i-th new statement g′

i
T/2−−→ h′

i is true if and only if
∏
j∈Si

(g̃j)2
T/2

=
∏
j∈Si

h̃j . (4)

Recall that the above only happens with probability at most 1/2 and, conse-
quently, the probability that at least one of the λ new statements is false is
1 − 1/2λ. We can now define the set of bad challenges, i.e., the bad set B, that
results in all λ new statements to be true. To be precise,

B = B(g̃1,··· ,g̃2λ),(h̃1,··· ,h̃2λ),T/2 :=
{

S1, · · · , Sλ ⊆ [1, 2λ]
∣∣∣

∏
j∈Si

(g̃j)
2T/2

=
∏

j∈Si

h̃j for all i ∈ [1, λ]
}

.

Note that B5 can be represented as the product of λ sets, i.e.

B = B1 × · · · × Bλ, (5)

where each
Bi := {Si ⊆ [1, 2λ] |

∏
j∈Si

(g̃j)2
T/2

=
∏
j∈Si

h̃j}. (6)

This product structure of B shown in Eq. (5) is crucial for us to invoke [33] who
show, assuming polynomial hardness of LWE, that there exists a hash func-
tion family H such that the Fiat-Shamir transform is sound whenever B is a
product set such that each Bi is efficiently verifiable.6 Here the set Bi is said
to be efficiently verifiable if there is a polynomial-sized circuit C that on input
((g̃1, · · · , g̃2λ), (h̃1, · · · , h̃2λ), i, Si) that decides whether Si ∈ Bi. In our setting,
C needs to check whether Eq. (4) holds, which can be done efficiently if C could
compute the product

∏
j∈Si

(g̃j)2
T/2

in Eq. (6), even for super-polynomial T . This
is possible, for instance, in any group of the form Z

×
N (including RSA groups)

if C has a trapdoor, viz., the factorization of the modulus N , hardcoded in its
5 We drop the subscript for the B set for clarity when the subscript is clear from the

context.
6 We refer the reader to the technical section for full details on invoking [33].

PPAD is as Hard as LWE and Iterated Squaring 601

description: C can first compute the intermediate value e := 2T/2 mod φ(N)
using the trapdoor and then compute ge mod N by a single modular exponenti-
ation. Thus, as long as we work in groups where one can efficiently verify each
Bi (with the help of a trapdoor), the Fiat-Shamir transform applied to the [5]
protocol is a secure non-interactive argument in the CRS model.

Additionally, in order for the resulting non-interactive argument to preserve
properties of the multi-round unambiguous interactive proof, the protocol needs
to satisfy the stronger property [10,43] of unambiguous round-by-round sound-
ness. In the technical section, we show that the soundness and unambiguity
discussion of [5] earlier easily extend to satisfy this property.

Application to Unique VDFs. Having constructed an unambiguous (suc-
cinct) non-interactive argument system for IS, we essentially immediately obtain
a VDF family with unique proofs based on (1) the polynomial hardness of LWE,
and (2) the assumption that IS is an inherently sequential function. The only
detail that needs to be verified is that the computational complexity of the prover
is T · (1+o(1)) for T sequential squarings. This can be proved following an anal-
ogous argument in [51]: after applying T + 1 sequential squaring operations

g0 = g, g1 = g2, . . . , gT = g2T

,

it is possible to compute all prover messages with poly(λ) · √T additional group
operations as follows.

– Compute all prover messages from round 1
2 log(T) onwards with the naive

prover algorithm, incurring an additive computational overhead of poly(λ) ·√
T , and

– Compute all prover messages in the first 1
2 log(T) rounds by storing

√
T

of the computed gis, where each prover message is computed a product-
combinations of a (pre-determined) subset of these stored values. This incurs
a total additive overhead of poly(λ) · √T .

Remark 1 (Comparison to the [43] VDF). The [43] VDF uses complexity lever-
aging in a way so that the honest prover is only efficient (relative to the squaring
computation) when the squaring parameter T is subexponentially large in the
description of the RSA modulus. Relatedly, the protocol then only achieves a
slightly superpolynomial gap between the complexity of the honest prover and
the complexity of the cheating provers ruled out by soundness. In contrast, our
construction does not require complexity leveraging, resulting in a VDF with far
more standard efficiency parameters.

Applications to PPAD-Hardness. For establishing hardness of PPAD, we
have to show that the non-interactive argument obtained above satisfies the
third requirement, i.e., recursive proof-merging. The two sets of intermediate
statements from Eq. (2) can be succinctly denoted as

(g1, · · · , gλ) T/2−−→ (μ1, · · · , μλ) and (μ1, · · · , μλ) T/2−−→ (h1, · · · , hλ) (7)

602 N. Bitansky et al.

with corresponding [5] proofs

π((g1, · · · , gλ) T/2−−→ (μ1, · · · , μλ)) and π((μ1, · · · , μλ) T/2−−→ (h1, · · · , hλ)).

The proof for (g1, · · · , gλ) T−→ (h1, · · · , hλ) can be computed as

π((g1, · · · , gλ)
T−→ (h1, · · · , hλ)) :=

(
(μ1, · · · , μλ), π((g′

1, · · · , g′
λ)

T/2−−→ (h′
1, · · · , h′

λ))
)

where (g′
1, · · · , g′

λ) T/2−−→ (h′
1, · · · , h′

λ) is derived via the 2λ-to-λ (batch) reduction
from the statements in Eq. (7). Furthermore, the proof

π((g′
1, · · · , g′

λ) T/2−−→ (h′
1, · · · , h′

λ))

is generated by recursing on the statement (g′
1, · · · , g′

λ) T/2−−→ (h′
1, · · · , h′

λ) to
compute its proof. Since the reduction is efficient, the non-interactive argument
satisfies recursive proof merging as desired. As shown in [15], this actually implies
hardness of the sub-class CLS ⊆ PPAD. We strengthen this result further to
show hardness in UEOPL ⊆ CLS, one of the lowest-lying sub-classes of TFNP
[24].

Remark 2 (Abstract protocol). While we have limited our discussion specifically
to the case of IS, in the technical sections (Sects. 3 and 5) we describe an abstract
protocol template that we call “outline and batch.” We show that any problem
family admitting a downward self-reduction and a (randomized) batching reduc-
tion (reducing k′ instances of the problem to sufficiently fewer k < k′ instances)
admits an unambiguous and incremental non-interactive argument system that
suffices for our hardness results. We refer the reader to the technical sections for
details.

Obtaining Public-Coin Hardness in PPAD. Finally, we discuss how to obtain
hard distributions of PPAD instances that are publicly samplable under the
same computational assumptions as before: the polynomial hardness of LWE
and IS over RSA group. It is a priori unclear why one should expect to obtain
public-coin hardness under these assumptions, since we don’t know a public-coin
algorithm for sampling an RSA modulus! Nevertheless, we obtain the result via
the following two ideas.

First, we observe that our Fiat-Shamir hash function H can be sampled
from a public-coin distribution. In [33], the hash functions have a computation-
ally pseudorandom (and private-coin) description, but they can be switched to
uniformly random because even the adaptive unambiguous soundness of the pro-
tocol considered in our work is an efficiently verifiable property (given the group
order as a trapdoor). Put another way, the adaptive soundness of the protocol
follows from an efficiently falsifiable form of correlation intractability, which is
thus preserved under computational indistinguishability.

The more serious issue is how to handle the group (and group element)
description. We handle this by working over Z×

N for a different value of N (rather

PPAD is as Hard as LWE and Iterated Squaring 603

than an RSA modulus). A naive idea would be to work over a uniformly random
modulus N ; unfortunately, the squaring problem mod a uniformly random N is
not hard, because N will be prime with inverse polynomial probability (by the
prime number theorem), in which case the group order φ(N) = N−1 is efficiently
computable. Our actual solution is as follows: consider N = N1 · . . . ·Npoly(λ) for a
sufficiently large poly(λ), where all integers Ni are public and uniformly random
in the range [1, 2λ]. First of all, we note that our techniques for constructing hard
PPAD instances from iterated squaring apply to this choice of modulus as well:
all that is required is that there is a way to efficiently sample (necessarily using
secret coins) the squaring problem description along with a trapdoor containing
the group order |Z×

N | = φ(N) (this is captured by our generic construction).
This is possible using efficient algorithms for generating random factored integers
[2,40].

This tells us that public-coin hardness in PPAD follows from the hardness
of LWE along with the polynomial hardness of IS modulo N (given the coins for
sampling the IS instance). To complete the proof, we show that this follows from
the polynomial hardness of (secret-coin) IS in an RSA modulus. We prove this
by a direct reduction that embeds an RSA modulus IS problem instance into a
public-coin instance of this new IS problem; crucially, we use the fact that with
all but negligible probability over N1, . . . , Npoly(λ), at least one Ni is an RSA
modulus.

1.3 Organisation

We state definitions and provide background relevant to the paper in Sect. 2. In
Sect. 3, we describe the abstract ‘outline-and-batch’ protocol, prove its unam-
biguous soundness and explain how existing protocols fit this abstraction. In
Sect. 4, we describe the unambiguous non-interactive argument for IS that forms
the basis of the results in this work. Hardness of the class PPAD is shown in
Sect. 5 by constructing hard instances of RSVL using the results from Sect. 4.
Due to a lack of space, we defer some details to the full version of the paper.

2 Preliminaries

Notation. First, we list the notation that will be used throughout this paper.

1. For a, b ∈ N, a < b, by [a, b] we denote the sequence of integers {a, a+1, · · · , b}.
2. For an alphabet Σ and n ∈ N, we write Σn, Σ<n and Σ≤n to denote, respec-

tively, strings over Σ with length equal to, less than, and less than or equal
to n. We use ε to denote the empty string. For strings a and b we use ab to
denote string concatenation.

3. Vectors and tuples are in bold face. We parse a vector or a tuple x ∈ X k as
x =: (x01 = , · · · 1 = ,xk−1); x is said to be a k-vector. A subscripted vector
xv ∈ X k is parsed as xv =: (xv,01 = , · · · 1 = ,xv,k−1).

604 N. Bitansky et al.

4. For x ∈ X , y ∈ Y and a function f : X → Y, we write x
f−→ y to denote

the (true or false) statement “y equals f(x)”. Sometimes, when the context
is clear, we will simplify the notation: e.g., for h := g2T

mod N , we simply
write g

T−→ h to denote

g
(·)2T

mod N−−−−−−−→ h.

We extend this notation to vectors: for x ∈ X k and y ∈ Yk, we define
f = fk : X k → Yk as (f(x0)1 = , · · · 1 = ,f(xk−1)) and therefore x

f−→ y

denotes statement that xi
f−→ yi for all i ∈ [0, k − 1].

5. For a statement x, we denote π(x) to denote a non-interactive proof for x.
For example, for x, y and f as in Item 4, we write π(x f−→ y) to denote a
non-interactive proof for the statement x

f−→ y.
6. For x ∈ X and y ∈ Y, we write y := A(x) (resp., y ← A(x)) to denote the

execution of a deterministic (resp., randomised) algorithm A on input x to
output y. For k ∈ N, vectors x ∈ X k and y ∈ Yk, we denote repeated parallel
execution of A by y := A(x), i.e., yi := A(xi) for all i ∈ [0, k − 1].

2.1 Search Problems, TFNP, and Reductions

We define below search problems, and the relevant complexity classes needed for
our work. We start by defining search problems.

Definition 1 (Search Problems [1]). A search problem is a relation R ⊆
{0, 1}∗ × {0, 1}∗. Let R(x) denote {y : (x, y) ∈ R}. A function f : {0, 1}∗ →
{0, 1}∗ ∪ {⊥} is said to solve R if for every x ∈ {0, 1}∗ satisfying R(x) �= ∅, it
holds that f(x) ∈ R(x); and for all other x, f(x) = ⊥.

Definition 2 (Total Relations). A relation R is said to be total if for all
x ∈ {0, 1}∗, there exists y such that (x, y) ∈ R.

Definition 3 (Polynomially Balanced). A relation R is said to be polyno-
mially balanced if there is a polynomial p such that for any strings x, y ∈ {0, 1}∗,
if (x, y) ∈ R then |y| ≤ p

(|x|).
Definition 4 (FNP). The complexity class FNP consists of all polynomially
balanced search problems R for which there is a polynomial-time algorithm that
on input (x, y) outputs whether or not (x, y) ∈ R.

Definition 5 (TFNP). The complexity class TFNP consists of all total search
problems in FNP.

For further discussion of relevant sub-classes of TFNP, we refer the reader
to the full version of this work.

Definition 6 (Reductions). If P and Q are search problems, a randomized
Karp reduction from P to Q with error ε(·) is a pair of p.p.t. machines (M,N) such

PPAD is as Hard as LWE and Iterated Squaring 605

that if f is a function that solves Q, then for any x ∈ {0, 1}n with P (x) �= ∅, we
have

Pr
[
(x, y) ∈ P

] ≥ 1 − ε(n)

when sampling x′ ← M(x), y ← N (f(x′)).

Next, we consider the search problem RelaxedSinkOfVerifiableLine
(RSVL), which is relevant to the main result of this paper. We point out that
RSVL not a total problem since, looking ahead, there is no way to syntac-
tically guarantee that the successor and verifier circuits are well-behaved (see
Remark 3).

Definition 7 [15]. RelaxedSinkOfVerifiableLine (RSVL)

– Instance.
1. Boolean circuit S : {0, 1}m → {0, 1}m
2. Boolean circuit V : {0, 1}m × [0, 2m − 1] → {accept, reject}
3. Integer L ∈ [0, 2m − 1]
4. String v0 ∈ {0, 1}m

– Promise. For every v ∈ {0, 1}m and i ∈ [0, 2m − 1], V(v, i) = 1 if i ≤ L and
v = Si(v0).

– Solution. One of the following:
1. The sink: a vertex v ∈ {0, 1}m such that V(v, L) = 1; or
2. False positive: a pair (v, i) ∈ {0, 1}m × [0, 2m − 1] such that v �= Si(v0)

and V(v, i) = 1.

Remark 3. It seems likely that RSVL is not in FNP, let alone in PPAD. Specif-
ically, checking that a pair (v, i) constitutes a false positive is difficult because i
may be super-polynomial in the instance size.

Nevertheless, [15] constructed a (randomized) reduction from RSVL to
EOML (which is a search problem complete for CLS ⊆ PPAD) with error
that is inversely polynomially bounded away from 1. This error is somewhat
large, and allows for the possibility EOML is “slightly” easier than RSVL.

Still, the reduction suffices for establishing the standard cryptographic hard-
ness of EOML (i.e. that no polynomially bounded algorithm can succeed with
any non-negligible probability) based on analogous hardness for RSVL. In turn,
we establish the latter hardness based on LWE (Assumption 4) and the iterated
squaring assumption (Assumption 9).

Theorem 3 [15]. There is a randomized Karp reduction from RSVL to EOML
with error probability ε(n) = 1 − n−O(1).

2.2 Learning with Errors

The following standard preliminaries about the Learning with Errors (LWE)
problem are based on [43,49].

606 N. Bitansky et al.

Definition 8 (LWE Distribution). For any s ∈ Z
n
q and any distribution χ ⊆

Zq, the LWE distribution As,χ ∈ Z
n
q ×Zq is sampled by choosing a ∈ Z

n
q uniformly

at random, sampling e ← χ, and outputting (a, b = 〈s,a〉 + e).

Assumption 4 (Decision LWE). Let m = m(n) ≥ 1, q = q(n) ≥ 2 be integers,
and let χ(n) be a probability distribution on Zq(n). The LWEn,m,q,χ problem,
parameterized by n, is to distinguish whether m(n) independent samples are
drawn from As,χ (for s that is sampled uniformly at random) or are drawn from
the uniform distribution. The hardness assumption is that is hard for poly(n)-
sized adversaries to decide the LWEn,m,q,χ problem.

2.3 Correlation-Intractable Hash Families

The following preliminaries are partially taken from [33,43].

Definition 9 (Hash family). For a pair of efficiently-computable functions
(n(·),m(·)), a hash family with input length n and output length m is a collection
H = {Hλ : {0, 1}s(λ)×{0, 1}n(λ) → {0, 1}m(λ)}λ∈N of keyed hash functions, along
with a pair of p.p.t. algorithms:

– H.Gen(1λ) outputs a hash key k ∈ {0, 1}s(λ).
– H.Hash(k, x) computes the function Hλ(k, x). We may use the notation

H(k, x) to denote hash evaluation when the hash family is clear from con-
text.

As in prior works [11,50] we consider the security notion of correlation
intractability [13] for single-input relations and its restriction to (single-input)
functions.

Definition 10 (Correlation Intractability). For a given relation ensemble
R = {Rλ ⊆ {0, 1}n(λ) × {0, 1}m(λ)}, a hash family H = {Hλ : {0, 1}s(λ) ×
{0, 1}n(λ) → {0, 1}m(λ)} is said to be R-correlation intractable with security (s, δ)
if for every s-size A = {Aλ},

Pr
k←H.Gen(1λ)

x←A(k)

[(
x,H(k, x)

) ∈ R
]

= O(δ(λ)).

We say that H is R-correlation intractable with security δ if it is (λc, δ)-correlation
intractable for all c > 1. Finally, we say that H is R-correlation intractable if it
is (λc, 1/λc)-correlation intractable for all c > 1.

We will use the recent result of [33] on correlation intractability for product
relations.

Definition 11 (Product Relation). We say that R ⊆ X × Yt is a product
relation if for every x ∈ X , the set R(x) = {y : (x, y) ∈ R} ⊆ Yt has a
decomposition

R(x) := B1(x) × B2(x) × . . . Bt(x)

PPAD is as Hard as LWE and Iterated Squaring 607

(where each Bi(x) is a subset of Y). We say that such an R is efficiently product
verifiable if for some such choice of Bi, there is a poly-size circuit C(x, i, yi) that
decides whether yi ∈ Bi(x).

Theorem 5 ([33]). Assume the hardness of LWE. Then, for every size bound
S(λ) = poly(λ), input length n(λ), and output length m(λ) · t(λ) such that t(λ) ≥
λΩ(1), there exists a correlation intractable hash family H for product relations R
that are (1) product verifiable by size S(λ) circuits, and (2) sparse in the sense
that for every x, i, we have that |Bi(x)| ≤ 1

2 · 2m(λ).

Remark 4. In [33], hash function keys have a computationally pseudorandom
distribution. However, for the purposes of Theorem5, hash function keys may
be taken to be uniformly random strings (by invoking the pseudorandomness
property), because the security property in Theorem5 is efficiently falsifiable.

2.4 Interactive Proofs and the Fiat-Shamir Heuristic

The following preliminaries are partially taken from [33,43]. We begin by recall-
ing the definitions of interactive proofs and arguments.

Definition 12 (Interactive proof and argument system). An interactive
proof (resp., interactive argument) for a promise problem L = (LYES,LNO) is a
pair (P,V) of interactive algorithms satisfying:

– Completeness. For any x ∈ LYES, when P and V interact on common input
x, the verifier V outputs 1 with probability 1.

– Soundness. For any x ∈ LNO ∩ {0, 1}n and any unbounded (resp.,
polynomial-time) interactive P∗, when P∗ and V(x) interact, the probability
that V outputs 1 is a negligible function of n.

The protocol is public-coin if each of V’s messages is an independent uniformly
random string of some length (and the verifier’s decision to accept or reject does
not use any secret state). In this setting, we will denote prover messages by
(α1, . . . , α�) and verifier messages by (β1, . . . , β�−1) in a 2� − 1-round protocol.

Definition 13 (Non-interactive argument system). A non-interactive
argument scheme (in the CRS model) for a promise problem L = (LYES,LNO) is
a triple (Setup,P,V) of non-interactive algorithms with the following properties:

– Setup(1n) outputs a common reference string CRS.
– P(CRS, x) outputs a proof π.
– V(CRS, x, π) outputs a bit b ∈ {0, 1}

It satisfies the notions of completeness and (computational) soundness as
above.

We next define the notion of unambiguous soundness [52]. For non-interactive
arguments, the soundness notion we consider is adaptive in that we allow the
prover P∗ to adaptively choose the statement x after seeing the CRS.

608 N. Bitansky et al.

Definition 14. (Unambiguous Soundness [15,52]). A public-coin interac-
tive proof system Π is unambiguously sound if (1) it is sound, and (2) for every
x ∈ L and every (complete) collection of verifier messages (β1, . . . , β�−1), there
exists a distinguished proof π∗(x, β1, . . . , β�−1) such that the following sound-
ness condition holds: For all x ∈ L and all cheating provers P∗, the probability
that the transcript 〈P∗(x),V(x)〉 contains a proof π such that V(x, π) = 1 and
π �= π∗(x, β1, . . . , β�−1) is negligible.

Definition 15 (Adaptive Unambiguous Soundness). A non-interactive
argument system Π = (Setup,P,V) is adaptively unambiguously sound against
(uniform or non-uniform) time T adversaries if for all instances x ∈ L and all
common reference strings CRS, there exists a “distinguished proof” π∗(CRS, x)
such that the following soundness condition holds: For all time T cheating provers
P∗, the probability that P∗(CRS) = (x, π) where V(x, π) = 1 and either x �∈ L or
π �= π∗(CRS, x) is negligible.

Our results proceed by constructing (unambiguously sound) interactive proof
systems and compiling them into non-interactive argument systems using the
Fiat-Shamir transform, which we describe next.

Definition 16 (Fiat-Shamir Transform). Let Π denote a public coin inter-
active proof (or argument) system Π that has � prover messages and �−1 verifier
messages of length m = m(λ). Then, for a hash family

H =
{{

Hk : {0, 1}∗ → {0, 1}m(λ)
}

k∈{0,1}λ

}

λ

,

we define the Fiat-Shamir non-interactive protocol ΠFS,H = (Setup,PFS,VFS) as
follows:

– Setup(1λ): sample a hash key k ← H.Gen(1λ).
– PFS(x): for i ∈ {1, . . . , �}, recursively compute the following pairs (αi, βi):

• Compute αi = P(τi) for τi = (x, α1, β1, . . . , αi−1, βi−1).
• Compute βi = Hk(τi−1, αi).

Then, PFS(x) outputs π = (α1, β1, . . . , α�).
– VFS(CRS, x, π) parses π = (α1, β1, . . . , α�) and verifies that:

• βi = Hk(τi−1, αi) for all 1 ≤ i ≤ � − 1, and
• V(x, π) = 1.

We note the following facts about ΠFS,H

1. The honest prover complexity of ΠFS,H is equal to the honest prover complex-
ity of Π with an additive overhead of computing � − 1 hash values.

2. The verifier complexity of ΠFS,H is equal to the verifier complexity of Π with
the same hashing additive overhead.

3. The protocol ΠFS,H is not necessarily sound, even if Π is sound and H is
a “strong cryptographic hash function”. As we will discuss later, soundness
is guaranteed when Π satisfies what is called “round-by-round soundness”,
defined next.

PPAD is as Hard as LWE and Iterated Squaring 609

Round-by-Round (Unambiguous) Soundness and Fiat-Shamir. Following [10,
11,15,43], we consider the notion of round-by-round (unambiguous) soundness
to capture a particular kind of soundness analysis for super-constant round
interactive proofs. For these proof systems, it has been shown that correlation
intractability for an appropriate relation suffices for a hash family to instantiate
the Fiat-Shamir heuristic for unambiguously round-by-round sound interactive
proofs.

Definition 17 (Unambiguous Round-by-Round Soundness [10,15,43]).
Let Π = (P,V) be a 2� − 1-message public coin interactive proof system for a
language L.

We say that Π has unambiguous round-by-round soundness error ε(·) if there
exist functions (State,NextMsg) with the following syntax.

– State is a deterministic (not necessarily efficiently computable) function that
takes as input an instance x and a transcript prefix τ and outputs either
accept or reject.

– NextMsg is a deterministic (not necessarily efficiently computable) function
that takes as input an instance x and a transcript prefix τ and outputs a
(possibly aborting) prover message α ∈ {0, 1}∗ ∪ {⊥}.
We additionally require that the following properties hold.

1. If x �∈ L, then State(x, ∅) = reject, where ∅ denotes the empty transcript.
2. If State(x, τ) = reject for a transcript prefix τ , then NextMsg(x, τ) = ⊥. That

is, NextMsg(x, τ) is only defined on accepting states.
3. For every input x and partial transcript τ = τi, then for every potential prover

message αi+1 �= NextMsg(x, τ), it holds that

Pr
βi+1

[
State

(
x, τ |αi+1|βi+1

)
= accept

]
≤ ε(n)

4. For any full7 transcript τ , if State(x, τ) = reject then V(x, τ) = 0.

We say that Π is unambiguously round-by-round sound if it has unambiguous
round-by-round soundness error ε for some ε(n) = negl(n).

Next, we restate the result that specific forms of correlation intractability
suffice to instantiate the Fiat-Shamir transform for protocols satisfying unam-
biguous round-by-round soundness.

Theorem 6 [10,43]. Suppose that Π = (P,V) is a 2� − 1-message public-coin
interactive proof for a language L with perfect completeness and unambiguous
round-by-round soundness with corresponding functions (State,NextMsg). Let Xn

denote the set of partial transcripts (including the input and all messages sent)
and let Yn denote the set of verifier messages when Π is executed on an input
of length n.
7 By a full transcript, we mean a transcript for which the verifier halts.

610 N. Bitansky et al.

Finally, define the relation ensemble R = RState,NextMsg as follows:

R(n)
State,NextMsg :=

⎧
⎪⎪⎨
⎪⎪⎩

((
x, τ |α)

, β
)

:

x ∈ {0, 1}n,
α �= NextMsg(x, τ)

and
State(x, τ |α|β) = accept

⎫
⎪⎪⎬
⎪⎪⎭

.

If a hash family H = {Hn : Xn → Yn} is correlation intractable for R, then the
round-reduced protocol ΠFS,H is an adaptively unambiguously sound argument
system for L.

3 The Outline-and-Batch Protocol

For X ,Y ⊆ {0, 1}∗, let f : X → Y be a function and ‖ · ‖ : X → N denote a “size
measure” for inputs to f . Let Xn denote {x ∈ X : ‖x‖ = n}, and let fn : Xn → Y
denote the restriction of f to Xn. Recall from Sect. 2 that fk

n : X k
n → Yk denotes

the function mapping (x1, . . . , xk) to (fn(x1), . . . , fn(xk)).

Definition 18 (Downwards self-reduction). A downwards self-reduction for
f is a deterministic oracle algorithm D such that for any n and x ∈ Xn,
Dfn−1(x) = f(x). If on input x, D queries q1, . . . , qd, then we say that D is a
d-query downwards self-reduction and we refer to ((q1, f(q1)) , . . . , (qk, f(qd))) as
an outline of the evaluation of f on x.

Definition 19 (Batching reduction). A k′-to-k batching reduction for
f with soundness error ε is a probabilistic algorithm B that on input
{(x′

i, y
′
i) ∈ Xn × Y}i∈[1,k′] outputs {(xi, yi) ∈ Xn × Y}i∈[1,k] such that:

– (Completeness) If y′
i = f(x′

i) for all i ∈ [1, k′], then with probability 1, yi =
f(xi) for all i ∈ [1, k].

– (Soundness) If y′
i �= f(x′

i) for some i ∈ [1, k′], then with all but ε probability
over the randomness of B, yi �= f(xi) for some i ∈ [1, k].

We remark that it may be useful to consider batching reductions that are
interactive, but for our purposes, non-interactive batching reductions suffice for
our instantiations. We leave discussion of abstract interactive batching reduc-
tions to future work.

Theorem 7. If f has a d-query downwards self reduction D and a dk-to-k-
batching reduction B with error ε, then there is a public-coin interactive proof
for the language

Lk
fn

:= {((x1, · · · , xn), (y1, , · · · , yn)) ∈ X k × Yk : fn(xi) = yi for all i ∈ [1, k]}

with n−1 rounds of interaction and with unambiguous round-by-round soundness
error ε.

PPAD is as Hard as LWE and Iterated Squaring 611

Remark 5. We remark that the hypotheses of Theorem 7 can be relaxed to
only require completeness and soundness for B when applied to inputs that
correspond to the queries of an evaluation of D. This relaxation captures the
classical sumcheck protocol [44] as a special case.

Proof of Theorem 7. The prover P and verifier V both take as input a statement
((x1, . . . , xk), (y1, . . . , yk)) ∈ X k

n × Yk
n, and the protocol is defined recursively.

Base Case: If n = 1, then no messages are sent (P does nothing), and V accepts
only if f1(xi) = yi for all i ∈ [1, k].

Recursive Case: If n > 1, then:

1. P computes Dfn−1(xi) for each i ∈ [1, k], recording the queries made by D
and answering queries according to fn−1. Then P sends all k corresponding
d-tuples of query-answer pairs to V. Let ((x̃′

1, ỹ
′
1), . . . , (x̃

′
dk, ỹ′

dk)) denote the
concatenation of all k d-tuples of query-answer pairs received by V.

2. When V receives k d-tuples of query-answer pairs, V checks for each i that
the i-th tuple is consistent with an execution of D8 on input xi (if not, then
V rejects). V then samples randomness r for B and sends it to P.

3. Let ((x̃′′
1 , ỹ′′

1), . . . , (x̃′′
k , ỹ′′

k)) denote B ((x̃′
1, ỹ

′
1), . . . , (x̃

′
dk, ỹ

′
dk); r). P and V recur-

sively invoke the interactive proof for fk on ((x̃′
1, . . . , x̃

′
k), (ỹ′

1, . . . , ỹ
′
k)).

We next describe how to give Π the structure of an unambiguous round-by-round
sound protocol.

– At any step in the recursion, we have “current inputs” x1, . . . , xk as well as
outputs y1, . . . , yk claimed in the previous recursive step. At this execution
point, we define State to be accept if and only if f(xi) = yi for all i.

– After Step 1 in a recursive call, we define State to be accept iff V has not
rejected and f(x̃′) = ỹ′ for every pair (x̃′, ỹ′) in the lists sent by the prover.

We define NextMsg(τ) to be the output of the honest prover algorithm in the
description of the recursion above, which means to:

– Compute B on its previous message and the verifier’s challenge r, and
– Compute the downwards self-reduction on the resulting tuple of inputs.

Given this description of (State,NextMsg), unambiguous round-by-round sound-
ness follows from the correctness of the downwards self-reduction and the sound-
ness of the batching reduction. ��

Finally, we discuss instantiating the Fiat-Shamir transform for the protocol
Π in Theorem 7 by appealing to Theorem6. Since the round-by-round State
function is fairly simple for our protocol Π (in that it does not depend on the
entire protocol history), we can rely on correlation intractability for relations
with a fairly simple description. By invoking Theorem6, we obtain the following
corollary.
8 That is, V emulates an execution of D on each xi, checking that for every j, the jth

oracle call in the sequence of k executions is to x̃′
j ; it then uses ỹ′

j as the oracle’s
output in its emulation.

612 N. Bitansky et al.

Corollary 1. Under the hypotheses of Theorem 7 and additionally assuming
the existence of a hash family H that is correlation intractable for the following
relation R:

R(n)
State,NextMsg :=

⎧⎨
⎩

(
α = (n, x̃′

1, ỹ
′
1, . . . , x̃

′
dk, ỹ′

dk), r
)

:
ỹ′

j �= fn−1(x̃
′
j) for some j

and
ỹ′′

i = fn−1(x̃
′′
i) for all i

⎫⎬
⎭ ,

where {(x̃′′
i , ỹ′′

i)}i∈[1,k] is the output of B on input {(x̃′
j , ỹ

′
j)}j∈[1,dk] and random

coins r, there is a non-interactive argument system for Lk
fn

with adaptive unam-
biguous soundness.

3.1 Instantiations of Outline-and-Batch

Appropriate instantiations of our outline-and-batch protocol (Theorem7, Corol-
lary 1) can recover the interactive proof systems or non-interactive argument
systems constructed in the following works:

1. The [44] interactive proof system for #SAT and its Fiat-Shamir instantiations
[15,39]. The sumcheck protocol can be viewed as a composition of
(a) a (d + 1)-query downward self-reduction that reduces a statement about

the sum
∑

x1,...,xn∈{0,1} p(x1, . . . , xn) of a d-degree, n-variate polynomial
p (over some finite field) to d + 1 statements of the form

∑
x2,...,xn

p(α,
x2, . . . , xn) (for hard-coded values of α); and

(b) a (d + 1)-to-1 batching reduction reducing these (d + 1) statements to a
single statement about

∑
x2,...,xn

p(r, x2, . . . , xn) for a uniformly random
r.

2. The [16,51] interactive proof system for IS over the signed quadratic residue
group QR

+
N and its Fiat-Shamir instantiation in the standard model [43]. Let

x
T−→ y (now) denote the statement “x2T

equals y over QR
+
N”. These protocols

consist of a 2-query downward self-reduction from a statement x
T−→ y to

two statements of the form xi
T/2−−→ yi and a 2-to-1 batching reduction that

combines these two statements to a single such statement using a random
linear combination.

3. The [23] continuous VDF adapted to QR
+
N . This protocol consists of a d-query

downward self-reduction from a statement x
T−→ y to d statements of the form

xi
T/d−−→ yi and a d-to-1 batching reduction from these d statements to a single

such statement using, again, a random linear combination. The parameter d
is set in their construction to O(λ), for the security parameter λ.

4. The [5] interactive proof system for IS. In Sect. 4.3, we describe how this pro-
tocol fits the “outline-and-batch” framework and then show how to instantiate
Fiat-Shamir for this protocol in the standard model.

PPAD is as Hard as LWE and Iterated Squaring 613

4 Non-interactive Argument for Iterated Squaring
in a Trapdoor Group of Unknown Order

We first recall the iterated squaring (IS) problem modulo an integer N and
discuss the hardness of IS. This includes a new hardness reduction showing that
certain public-coin variants of IS are as hard as the “traditional” IS problem in
the RSA group. Next, we consider a general IS problem over an arbitrary group
of unknown order and construct our unambiguous “outline-and-batch” argument
system in this setting.

4.1 Iterated Squaring Modulo N

We first define IS and then recall the assumption of [53] on its sequential hardness
that our VDF is based on. Our hardness assumption on IS required for PPAD
hardness is a relaxation of this assumption.

Definition 20 ([9,53]). IteratedSquaring (IS)

– Instance.
1. Integers N,T ∈ N

2. Group element g ∈ Z
∗
N

– Solution. f(N, g, T) := g2T

mod N

Assumption 8 (Sequential hardness of IS [53]). For a security parameter λ ∈
N, let λRSA ∈ λO(1) denote the size of RSA modulus that corresponds to λ bits
of security. Sample N = pq as the product of two random λRSA/2-bit primes and
g ← Z

∗
N . Consider any time parameter T = 2o(λ). Any A that uses 2o(λ) amount

of parallelism and computes f(N, g, T) with a probability that is non-negligible
in λ requires sequential time T (1 − o(1)) group operations.

Assumption 9 (Standard hardness of IS [16]). For a security parameter λ ∈
N, let N and g be sampled as in Assumption 8. There exists an efficiently
computable function T (1λ), such that no λO(1)-time algorithm can compute
f(N, g, T) with a non-negligible probability.

Remark 6 (Assumption 9 vs. assumption in [16,51]). The hardness assumption
in [16,51] is slightly different from Assumption 9. Firstly, the modulus N in [16,
51] is sampled a product of two random λRSA/2-bit safe primes – the statistical
soundness of Pietrzak’s proof-of-exponentiation (PoE) is guaranteed only in such
moduli. Secondly, to attain unambiguity, [16,51] switch to the algebraic setting
of signed quadratic residues [26,31]. In comparison, our assumption is made on
the conventional RSA modulus and this suffices since we rely the PoE from [5]
which achieves statistical soundness and (as we show) unambiguity for arbitrary
groups.

614 N. Bitansky et al.

4.2 Trapdoor Groups with Unknown Order

Definition 21 (Group of unknown order) A group sampler for a group of
unknown order consists of the following two functionalities:

– A setup algorithm Setup(1λ) that samples the description of a group Gλ of
order at most 2λ. For our purposes, a group description consists of a distin-
guished identity element idG and efficient membership testing algorithm that
takes as input an arbitrary string and decides whether the string is a valid
element of Gλ.

– Efficient poly(λ)-time algorithms, given a description of Gλ, for:
• Sampling a uniformly random group element,
• Computing the group law (g, h) �→ gh ∈ Gλ, and
• Computing the inverse map g �→ g−1 ∈ Gλ.

These efficient group operations generically imply that one can compute expo-
nentiations g �→ gx in time poly(λ) · log(x) by repeated squaring. For example,
this implies that g �→ g2T

can be computed in time T · poly(λ) (or T group
operations).

Note that if the order of Gλ is known, then the map g2T

can actually be
computed in time poly(λ, log T) by first reducing 2T modulo the order of the
group. However, when the order of the group is unknown, it is plausible that
this map requires time roughly T group operations, as originally proposed by
[53]. We formulate two flavors of this assumption, matching Assumptions 8 and
9 in the case of RSA groups.

Assumption 10 ((T, p)-Sequential Hardness). Given the description of Gλ and
a random group element g, any algorithm running in sequential time T (1−o(1))
with p(λ) parallelism outputs g2T

with only negligible probability.

Assumption 11 (Polynomial Hardness of Iterated Squaring). There exists an
efficiently computable function T (1λ) such that, given the description of Gλ and
a random group element g, no algorithm running in time λO(1) can output g2T

with non-negligible probability.

In order to prove the unambiguous soundness of our non-interactive argument
system for IS, we will make use of groups satisfying Assumption 11 that have
trapdoors allowing for efficient iterated squaring. We formalize this by requiring
that the group distribution Gλ could be sampled along with its order (using
secret coins).

Definition 22 (Trapdoor group with unknown order) A trapdoor group
with unknown order is a group with unknown order (Definition 21) equipped with
an additional setup algorithm TrapSetup(1λ) that outputs the description of a
group Gλ along with its order M . We require that the distribution of groups out-
put by Setup(1λ) is statistically indistinguishable from the distribution of groups
output by TrapSetup(1λ) (where the order information is dropped).

RSA groups Z×
pq are naturally equipped with the required trapdoor structure,

because if N = pq is sampled as the product of two known primes, then the order
of Z×

N is equal to φ(pq) = (p − 1)(q − 1).

PPAD is as Hard as LWE and Iterated Squaring 615

4.3 Interactive Iterated Squaring Protocol

In this section, we recall the interactive proof system Π of [5] for IS and ana-
lyze the Fiat-Shamir heuristic applied to Π using an appropriate correlation-
intractable hash family. Since the groups output by Setup(1λ) and TrapSetup(1λ)
are statistically indistinguishable, we assume that TrapSetup(1λ) is used for the
purposes of both the construction and its analysis.

Let Gλ ← Setup(1λ) denote a group (distribution) with unknown order and
associated generator g. For simplicity, we only consider T of the form T = 2t.9

For T of this form, we construct an interactive proof system for IS by having
the prover invoke the “outline and batch” protocol (Theorem7) on λ identical
computations of g2T

, i.e., ((g, · · · , g), (g2T

, · · · , g2T

)). By Theorem 7, it suffices
to show that the function f : g �→ g2T

has a 2-query downwards self reduction
(Definition 18) and a 2λ-to-λ batching reduction (Definition 19).

– 2-Downwards Self-Reduction: Given an instance of the T -IS problem
f(g, T), we can query f(g, T/2) to obtain an intermediate group element
μ, and then call f(μ, T/2) to obtain μ2T/2

= g2T

.
– 2λ-to-λ Batching Reduction: Given 2λ instances g1, . . . , g2λ for f(·, T)

and 2λ candidate outputs h1, . . . , h2λ, the batching reduction samples λ i.i.d.
vectors r1, . . . , rλ ← {0, 1}2λ. The reduction then outputs λ statements about
f(·, T): ⎛

⎝
2λ∏

j=1

g
r1,j

j
T−→

2λ∏
j=1

h
r1,j

j , . . . ,
2λ∏

j=1

g
rλ,j

j
T−→

2λ∏
j=1

h
rλ,j

j

⎞
⎠ .

Completeness of the batching reduction is immediate by group axioms. For
soundness, suppose that g2T

j �= hj for some j. The i-th statement output by
the reduction is true if and only if

2λ∏
j=1

(g2T

j)ri,j =
2λ∏

j=1

h
ri,j

j ,

which is equivalent to the equation

2λ∏
j=1

(g2T

j h−1
j)ri,j = idGλ

.

For ri ← {0, 1}2λ, i ∈ [1, λ], this event occurs with probability at most
1/2 (see [5, Fact 8.1]). Thus, at least one of the λ resulting statements is
false except with probability 2−λ. In fact, this analysis gives a product set
description for the “bad challenges” of the batching reduction. For a fixed

9 A protocol for general T can be obtained by dividing T by computing a binary
decomposition of the resulting integer, and sequentially composing squaring proto-
cols for integers of the form 2t.

616 N. Bitansky et al.

α = ((g1, h1), . . . , (g2λ, h2λ)), the bad set Rα = B(1)
α ×. . .×B(λ)

α ⊂ ({0, 1}2λ)λ,
where

B(i)
α =

⎧
⎨
⎩r ∈ {0, 1}2λ :

2λ∏
j=1

(g2T

j)rj =
2λ∏

j=1

h
rj

j

⎫
⎬
⎭

(in fact, we have that each B(i)
α = Bα for a fixed set Bα). As mentioned

above, we have that |B(i)
α | ≤ 22λ/2 for every j and every false α. Thus, the

bad-challenge relation R is a product relation with the appropriate sparsity,
where R is defined as the set of pairs

(
α, β = (r1, . . . , rλ)

)
for which at least

one of the 2λ statements defined by α is false but all of the λ statements
output by the reduction are true.
Finally, we observe that for (Gλ,M) ← TrapSetup(1λ), the relation R is also
efficiently product verifiable: to verify that v ∈ B(i)

α , it suffices to check the
equation

2λ∏
j=1

(g2T

j)rj =
2λ∏

j=1

h
rj

j .

This can be checked in time poly(λ, log T) given the order M of Gλ, by first
computing 2T modulo M and then checking the equation above using the
group law and repeated squaring.

Thus, by Theorem 7 we conclude that there is a t = log(T)-round unambigu-
ous interactive proof system for the T -IS problem with poly(λ) communication.
Moreover, by Corollary 1 this protocol can be round-collapsed to a computation-
ally unambiguous non-interactive argument system using a hash function family
that is correlation-intractable for the relation R above (where we consider T as
part of the input to the relation). Finally, by Theorem5, such hash functions
can be built under the learning with errors assumption. This is captured by the
following corollary.

Corollary 2. For a security parameter λ ∈ N, let Gλ be a trapdoor group
of unknown defined in Definition 22. Assuming polynomial hardness of LWE
(Assumption 4), ΠFS,H is an adaptively unambiguously-sound non-interactive
argument for the language

Lλ
Gλ

:= {((g1, · · · , gλ), (h1, · · · , hλ), T) ∈ G
λ
λ × G

λ
λ × N : hi = g2T

for all i ∈ [1, λ]}.

5 PPAD Hardness

In this section, we construct a hard distribution of RSVL from any hard f that
is downward self-reducible and batch-reducible, additionally assuming the unam-
biguous soundness of ΠFS,H, the non-interactive “outline-and-batch” argument
system for Lk

fn
(Corollary 1). By Theorem 3, this implies hardness of EOML,

which is complete for CLS; since CLS ⊆ PPAD, PPAD-hardness follows.

PPAD is as Hard as LWE and Iterated Squaring 617

Our construction follow the blueprint from [15,16]. Further, since our con-
struction works with any f that is downward self-reducible and batch-reducible,
it generalises the constructions of RSVL instance in [15,16] and the continuous
VDF in [23]. Indeed, as we saw in Sect. 3, both iterated squaring and the sum-
check problem satisfy downward self-reducibility and batch-reducibility. Due to
a lack of space, we only state below the relevant theorems and refer the reader
to the full version of the paper for the details.

Assumption 12 (Hardness of f). Let f : X → Y be a function as defined in
Sect. 3 and let X denote a sampler for X . The function f is (s(λ), ε(λ))-hard with
respect to X if for every s(λ)-sized adversary A = {Aλ}λ∈N

Pr
x←X(1λ)
y←A(x)

[y = f(x)] = O(ε(λ)).

Theorem 13 (Hardness of RSVL from f and ΠFS,H). Let k, d ∈ N be
parameters and λ ∈ N be a security parameter. Let

– f : X → Y be a d-query downwards self-reducible and dk-to-k batch-reducible
function with sampler X; and

– ΠFS,H = (Setup,P,V) denote the non-interactive outline-and-batch protocol
for Lk

fn
from Corollary 1.

Furthermore, for H ← ΠFS,H.Setup(1λ) and x ← X(1λ), with n := |x|, define

m = m(d, k, |x|) ∈ poly(d, k, |x|) and L = L(d, k) := (d + 1)n, (8)

there exists

S : {0, 1}m → {0, 1}m and V : {0, 1}m × [0, 2m − 1] → {accept, reject}, (9)

hardwired with (f,H,D, B̃, x,ΠFS,H.V). Such that if f is hard with respect to
X and ΠFS,H is (adaptively) unambiguously sound argument, then RSVL :=
(S,V, L, s0n) constitutes a hard distribution of RSVL.

On instantiating f with IS as sampled in Assumption 9 and ΠFS,H with non-
interactive argument from Corollary 2, we get the following corollary to Theorem
13.

Corollary 3 (Hardness of RSVL from ISand LWE). For a security param-
eter λ ∈ N, let (Gλ, g, T) be sampled as in Assumption 11, which defines
fn(g, T) := g2T

for n := log(T). Also, let ΠFS,H = (Setup,P,V) denote the
non-interactive protocol for Lk

Gλ
from Corollary 2, which implies k ∈ λO(1) and

d = 2. Furthermore, for H ← ΠFS,H.Setup(1λ), define

m = m(n, k, λ) := n2k · poly(λ) and L = L(n) = 3n, (10)

there exists

S : {0, 1}m → {0, 1}m and V : {0, 1}m × [0, 2m − 1] → {accept, reject}, (11)

hardwired with ((Gλ, g, T),H,D, B̃,ΠFS,H.V). Such that if Assumption 11 and
Assumption 4 hold then RSVL := (S,V, L, s0n) constitutes a hard distribution of
RSVL.

618 N. Bitansky et al.

6 Conclusion and Open Problems

In this work, we demonstrated hardness in the class PPAD assuming the polyno-
mial hardness of iterated squaring and LWE. Moreover, in the full version of this
paper, we (1) strengthened this result to show hardness in UEOPL ⊆ PPAD
(which is first cryptographic hardness shown for that class) and (2) constructed
a unique VDF based on similar assumptions.

We briefly mention two interesting open questions that are closely related to
this work:

– Can the iterated squaring hardness assumption be replaced by a weaker
assumption such as the hardness of factoring? This seems plausible since to
achieve PPAD hardness, it suffices for iterated squaring to be polynomially
hard for some efficiently computable iteration parameter. This question was
also posed in [16].

– Can we show PPAD-hardness solely from polynomial hardness of LWE, and
thus establish a (polynomially) tight hardness result for quantum algorithms?
Currently, only [39] demonstrates post-quantum hardness of PPAD (under
sub-exponential LWE).

Acknowledgements. Nir Bitansky is a member of the checkpoint institute of infor-
mation security and is supported by the European Research Council (ERC) under the
European Union’s Horizon Europe research and innovation programme (grant agree-
ment No. 101042417, acronym SPP), and by Len Blavatnik and the Blavatnik Family
Foundation.

Arka Rai Choudhuri is supported in part by DARPA under Agreement No.
HR00112020026, AFOSR Award FA9550-19-1-0200, NSF CNS Award 1936826, and
research grants by the Sloan Foundation, and Visa Inc. Any opinions, findings and
conclusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the United States Government or DARPA.

Chethan Kamath is supported by Azrieli International Postdoctoral Fellowship and
ISF grants 484/18 and 1789/19. He thanks Alexandros Hollender and Ninad Rajagopal
for discussions on the class UEOPL and Krzysztof Pietrzak for clarifications about
unique VDFs.

Alex Lombardi is supported in part by DARPA under Agreement No.
HR00112020023, a grant from MIT-IBM Watson AI, a grant from Analog Devices,
a Microsoft Trustworthy AI grant, the Thornton Family Faculty Research Innovation
Fellowship and a Charles M. Vest fellowship. Any opinions, findings and conclusions
or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the United States Government or DARPA.

Omer Paneth is a member of the checkpoint institute of information security and
is supported by an Azrieli Faculty Fellowship, Len Blavatnik and the Blavatnik Foun-
dation, the Blavatnik Interdisciplinary Cyber Research Center at Tel Aviv University,
and ISF grant 1789/19.

Ron Rothblum was funded by the European Union. Views and opinions expressed
are however those of the author(s) only and do not necessarily reflect those of the
European Union or the European Research Council. Neither the European Union nor
the granting authority can be held responsible for them.

PPAD is as Hard as LWE and Iterated Squaring 619

References

1. Arora, S., Barak, B.: Computational Complexity - A Modern Approach. Cambridge
University Press, Cambridge (2009)

2. Bach, E.: How to generate factored random numbers. SIAM J. Comput. 17(2),
179–193 (1988)

3. Barak, B., et al.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8 1

4. Bitansky, N., Paneth, O., Rosen, A.: On the cryptographic hardness of finding
a Nash equilibrium. In: Guruswami, V. (ed.) 56th FOCS, pp. 1480–1498. IEEE
Computer Society Press, October 2015. https://doi.org/10.1109/FOCS.2015.94

5. Block, A.R., Holmgren, J., Rosen, A., Rothblum, R.D., Soni, P.: Time- and space-
efficient arguments from groups of unknown order. In: Malkin, T., Peikert, C. (eds.)
CRYPTO 2021. LNCS, vol. 12828, pp. 123–152. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-84259-8 5

6. Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 757–
788. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 25

7. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19571-6 16

8. Brakerski, Z., Koppula, V., Mour, T.: NIZK from LPN and trapdoor hash via
correlation intractability for approximable relations. In: Micciancio, D., Ristenpart,
T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp. 738–767. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-56877-1 26

9. Cai, J.Y., Lipton, R.J., Sedgewick, R., Yao, A.C.: Towards uncheatable bench-
marks. In: [1993] Proceedings of the Eighth Annual Structure in Complexity The-
ory Conference, pp. 2–11, May 1993. https://doi.org/10.1109/SCT.1993.336546

10. Canetti, R., Chen, Y., Holmgren, J., Lombardi, A., Rothblum, G.N., Rothblum,
R.D.: Fiat-Shamir from simpler assumptions. Cryptology ePrint Archive, Report
2018/1004 (2018). https://eprint.iacr.org/2018/1004

11. Canetti, R., et al.: Fiat-Shamir: from practice to theory. In: Charikar, M., Cohen,
E. (eds.) 51st ACM STOC, pp. 1082–1090. ACM Press, June 2019. https://doi.
org/10.1145/3313276.3316380

12. Canetti, R., Chen, Y., Reyzin, L., Rothblum, R.D.: Fiat-Shamir and correlation
intractability from strong KDM-secure encryption. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 91–122. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78381-9 4

13. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited
(preliminary version). In: 30th ACM STOC, pp. 209–218. ACM Press, May 1998.
https://doi.org/10.1145/276698.276741

14. Chen, X., Deng, X., Teng, S.H.: Settling the complexity of computing two-player
Nash equilibria. J. ACM (JACM) 56(3), 1–57 (2009)

15. Choudhuri, A.R., Hubácek, P., Kamath, C., Pietrzak, K., Rosen, A., Rothblum,
G.N.: Finding a Nash equilibrium is no easier than breaking Fiat-Shamir. In:
Charikar, M., Cohen, E. (eds.) 51st ACM STOC, pp. 1103–1114. ACM Press,
June 2019. https://doi.org/10.1145/3313276.3316400

16. Choudhuri, A.R., Hubacek, P., Kamath, C., Pietrzak, K., Rosen, A., Rothblum,
G.N.: PPAD-hardness via iterated squaring modulo a composite. Cryptology ePrint
Archive, Report 2019/667 (2019). https://eprint.iacr.org/2019/667

https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1109/FOCS.2015.94
https://doi.org/10.1007/978-3-030-84259-8_5
https://doi.org/10.1007/978-3-030-84259-8_5
https://doi.org/10.1007/978-3-319-96884-1_25
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-030-56877-1_26
https://doi.org/10.1109/SCT.1993.336546
https://eprint.iacr.org/2018/1004
https://doi.org/10.1145/3313276.3316380
https://doi.org/10.1145/3313276.3316380
https://doi.org/10.1007/978-3-319-78381-9_4
https://doi.org/10.1145/276698.276741
https://doi.org/10.1145/3313276.3316400
https://eprint.iacr.org/2019/667

620 N. Bitansky et al.

17. Choudhuri, A.R., Jain, A., Jin, Z.: Non-interactive batch arguments for NP from
standard assumptions. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS,
vol. 12828, pp. 394–423. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-84259-8 14

18. Choudhuri, A.R., Jain, A., Jin, Z.: SNARGs for P from LWE. In: FOCS, pp. 68–79.
IEEE (2021)

19. Ciampi, M., Parisella, R., Venturi, D.: On adaptive security of delayed-input sigma
protocols and Fiat-Shamir NIZKs. In: Galdi, C., Kolesnikov, V. (eds.) SCN 2020.
LNCS, vol. 12238, pp. 670–690. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-57990-6 33

20. Couteau, G., Katsumata, S., Ursu, B.: Non-interactive zero-knowledge in pairing-
free groups from weaker assumptions. In: Canteaut, A., Ishai, Y. (eds.) EURO-
CRYPT 2020. LNCS, vol. 12107, pp. 442–471. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-45727-3 15

21. Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing
a Nash equilibrium. SIAM J. Comput. 39(1), 195–259 (2009)

22. Daskalakis, C., Papadimitriou, C.H.: Continuous local search. In: Randall, D. (ed.)
22nd SODA, pp. 790–804. ACM-SIAM, January 2011. https://doi.org/10.1137/1.
9781611973082.62

23. Ephraim, N., Freitag, C., Komargodski, I., Pass, R.: Continuous Verifiable Delay
Functions. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107,
pp. 125–154. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3 5

24. Fearnley, J., Gordon, S., Mehta, R., Savani, R.: Unique end of potential line.
In: Baier, C., Chatzigiannakis, I., Flocchini, P., Leonardi, S. (eds.) ICALP 2019.
LIPIcs, vol. 132, pp. 56:1–56:15. Schloss Dagstuhl, July 2019. https://doi.org/10.
4230/LIPIcs.ICALP.2019.56

25. Fiat, A., Shamir, A.: How To prove yourself: practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-
7 12

26. Fischlin, R., Schnorr, C.P.: Stronger security proofs for RSA and Rabin bits. J.
Cryptol. 13(2), 221–244 (2000). https://doi.org/10.1007/s001459910008

27. Freitag, C., Pass, R., Sirkin, N.: Parallelizable delegation from LWE. Cryptology
ePrint Archive, Report 2022/1025 (2022). https://eprint.iacr.org/2022/1025

28. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
FOCS, pp. 40–49. IEEE Computer Society Press, October 2013. https://doi.org/
10.1109/FOCS.2013.13

29. Garg, S., Pandey, O., Srinivasan, A.: Revisiting the cryptographic hardness of
finding a Nash equilibrium. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9815, pp. 579–604. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53008-5 20

30. Hoffmann, C., Hubáček, P., Kamath, C., Klein, K., Pietrzak, K.: Practical
statistically-sound proofs of exponentiation in any group. Cryptology ePrint
Archive, Report 2022/1021 (2022). https://eprint.iacr.org/2022/1021

31. Hofheinz, D., Kiltz, E.: The group of signed quadratic residues and applications. In:
Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 637–653. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03356-8 37

32. Holmgren, J., Lombardi, A.: Cryptographic hashing from strong one-way functions
(or: one-way product functions and their applications). In: Thorup, M. (ed.) 59th

https://doi.org/10.1007/978-3-030-84259-8_14
https://doi.org/10.1007/978-3-030-84259-8_14
https://doi.org/10.1007/978-3-030-57990-6_33
https://doi.org/10.1007/978-3-030-57990-6_33
https://doi.org/10.1007/978-3-030-45727-3_15
https://doi.org/10.1007/978-3-030-45727-3_15
https://doi.org/10.1137/1.9781611973082.62
https://doi.org/10.1137/1.9781611973082.62
https://doi.org/10.1007/978-3-030-45727-3_5
https://doi.org/10.4230/LIPIcs.ICALP.2019.56
https://doi.org/10.4230/LIPIcs.ICALP.2019.56
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/s001459910008
https://eprint.iacr.org/2022/1025
https://doi.org/10.1109/FOCS.2013.13
https://doi.org/10.1109/FOCS.2013.13
https://doi.org/10.1007/978-3-662-53008-5_20
https://doi.org/10.1007/978-3-662-53008-5_20
https://eprint.iacr.org/2022/1021
https://doi.org/10.1007/978-3-642-03356-8_37

PPAD is as Hard as LWE and Iterated Squaring 621

FOCS, pp. 850–858. IEEE Computer Society Press, October 2018. https://doi.
org/10.1109/FOCS.2018.00085

33. Holmgren, J., Lombardi, A., Rothblum, R.D.: Fiat-Shamir via list-recoverable
codes (or: parallel repetition of GMW is not zero-knowledge). In: STOC, pp. 750–
760. ACM (2021)

34. Hubácek, P., Yogev, E.: Hardness of continuous local search: query complexity
and cryptographic lower bounds. In: Klein, P.N. (ed.) 28th SODA, pp. 1352–1371.
ACM-SIAM, January 2017. https://doi.org/10.1137/1.9781611974782.88

35. Hulett, J., Jawale, R., Khurana, D., Srinivasan, A.: SNARGs for P from sub-
exponential DDH and QR. In: Dunkelman, O., Dziembowski, S. (eds.) EURO-
CRYPT 2022, Part II. LNCS, vol. 13276. pp. 520–549. Springer, Heidelberg (2022).
https://doi.org/10.1007/978-3-031-07085-3 18

36. Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from LPN over Fp,
DLIN, and PRGs in NC0. Cryptology ePrint Archive, Report 2021/1334 (2021).
https://eprint.iacr.org/2021/1334

37. Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-founded
assumptions. In: Proceedings of the 53rd Annual ACM SIGACT Symposium on
Theory of Computing, pp. 60–73 (2021)

38. Jain, A., Jin, Z.: Non-interactive zero knowledge from sub-exponential DDH. In:
Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp.
3–32. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5 1

39. Jawale, R., Kalai, Y.T., Khurana, D., Zhang, R.Y.: Snargs for bounded depth
computations and PPAD hardness from sub-exponential LWE. In: STOC, pp. 708–
721. ACM (2021)

40. Kalai, A.: Generating random factored numbers, easily. J. Cryptol. 16(4), 287–289
(2003). https://doi.org/10.1007/s00145-003-0051-5

41. Kalai, Y.T., Paneth, O., Yang, L.: Delegation with updatable unambiguous proofs
and PPAD-hardness. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part
III. LNCS, vol. 12172, pp. 652–673. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-56877-1 23

42. Kalai, Y.T., Rothblum, G.N., Rothblum, R.D.: From obfuscation to the security
of Fiat-Shamir for proofs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10402, pp. 224–251. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63715-0 8

43. Lombardi, A., Vaikuntanathan, V.: Fiat-Shamir for repeated squaring with appli-
cations to PPAD-hardness and VDFs. In: Micciancio, D., Ristenpart, T. (eds.)
CRYPTO 2020. LNCS, vol. 12172, pp. 632–651. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-56877-1 22

44. Lund, C., Fortnow, L., Karloff, H.J., Nisan, N.: Algebraic methods for interactive
proof systems. In: 31st FOCS, pp. 2–10. IEEE Computer Society Press, October
1990. https://doi.org/10.1109/FSCS.1990.89518

45. Megiddo, N., Papadimitriou, C.H.: On total functions, existence theorems and
computational complexity. Theoret. Comput. Sci. 81(2), 317–324 (1991)

46. Nash, J.: Non-cooperative games. Ann. Math. 286–295 (1951)
47. O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint Archive,

Report 2010/556 (2010). https://eprint.iacr.org/2010/556
48. Papadimitriou, C.H.: On the complexity of the parity argument and other ineffi-

cient proofs of existence. J. Comput. Syst. Sci. 48(3), 498–532 (1994)
49. Peikert, C.: A decade of lattice cryptography. Found. Trends R© Theor. Comput.

Science 10(4), 283–424 (2016)

https://doi.org/10.1109/FOCS.2018.00085
https://doi.org/10.1109/FOCS.2018.00085
https://doi.org/10.1137/1.9781611974782.88
https://doi.org/10.1007/978-3-031-07085-3_18
https://eprint.iacr.org/2021/1334
https://doi.org/10.1007/978-3-030-77870-5_1
https://doi.org/10.1007/s00145-003-0051-5
https://doi.org/10.1007/978-3-030-56877-1_23
https://doi.org/10.1007/978-3-030-56877-1_23
https://doi.org/10.1007/978-3-319-63715-0_8
https://doi.org/10.1007/978-3-319-63715-0_8
https://doi.org/10.1007/978-3-030-56877-1_22
https://doi.org/10.1007/978-3-030-56877-1_22
https://doi.org/10.1109/FSCS.1990.89518
https://eprint.iacr.org/2010/556

622 N. Bitansky et al.

50. Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from (plain) learn-
ing with errors. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11692, pp. 89–114. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26948-7 4

51. Pietrzak, K.: Simple verifiable delay functions. In: Blum, A. (ed.) ITCS 2019, vol.
124, pp. 60:1–60:15. LIPIcs, Janurary 2019. https://doi.org/10.4230/LIPIcs.ITCS.
2019.60

52. Reingold, O., Rothblum, G.N., Rothblum, R.D.: Constant-round interactive proofs
for delegating computation. In: Wichs, D., Mansour, Y. (eds.) 48th ACM STOC,
pp. 49–62. ACM Press, June 2016. https://doi.org/10.1145/2897518.2897652

53. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release
crypto. Technical report, Cambridge, MA, USA (1996)

https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.4230/LIPIcs.ITCS.2019.60
https://doi.org/10.4230/LIPIcs.ITCS.2019.60
https://doi.org/10.1145/2897518.2897652

Parallelizable Delegation from LWE

Cody Freitag1(B) , Rafael Pass1,2, and Naomi Sirkin1

1 Cornell Tech, New York, NY 10044, USA
{cfreitag,rafael,nephraim}@cs.cornell.edu

2 Tel Aviv University, Tel Aviv, Israel

Abstract. We present the first non-interactive delegation scheme for
P with time-tight parallel prover efficiency based on standard hardness
assumptions. More precisely, in a time-tight delegation scheme—which
we refer to as a SPARG (succinct parallelizable argument)—the prover’s
parallel running time is t + polylog(t), while using only polylog(t) pro-
cessors and where t is the length of the computation. (In other words,
the proof is computed essentially in parallel with the computation, with
only some minimal additive overhead in terms of time).

Our main results show the existence of a publicly-verifiable, non-
interactive, SPARG for P assuming polynomial hardness of LWE. Our
SPARG construction relies on the elegant recent delegation construction
of Choudhuri, Jain, and Jin (FOCS’21) and combines it with techniques
from Ephraim et al. (EuroCrypt’20).

We next demonstrate how to make our SPARG time-independent—
where the prover and verifier do not need to known the running-time t
in advance; as far as we know, this yields the first construction of a time-
tight delegation scheme with time-independence based on any hardness
assumption.

We finally present applications of SPARGs to the constructions of
VDFs (Boneh et al., Crypto’18), resulting in the first VDF construction
from standard polynomial hardness assumptions (namely LWE and the
minimal assumption of a sequentially hard function).

1 Introduction

In an interactive proof system, a prover interacts with a verifier in order to prove
the validity of a computational statement, with the guarantee that the verifier
will be convinced if and only if the statement is true. Since their introduction
by Goldwasser, Micali, and Rackoff [34], proof systems have become one of the
most fundamental concepts in cryptography and more generally in theoretical
computer science.

In this work, we focus on the application of proof systems to computational
delegation, where a weak verifier outsources a potentially expensive computation
to a powerful yet untrusted prover, who performs the computation and returns
the output as well as a proof certifying its validity. We focus on delegating deter-
ministic polynomial-time computation with the non-trivial requirement that the

c© The Author(s), under exclusive license to Springer Nature Switzerland 2022
E. Kiltz and V. Vaikuntanathan (Eds.): TCC 2022, LNCS 13748, pp. 623–652, 2022.
https://doi.org/10.1007/978-3-031-22365-5_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22365-5_22&domain=pdf
http://orcid.org/0000-0002-6307-204X
http://orcid.org/0000-0003-3469-6002
https://doi.org/10.1007/978-3-031-22365-5_22

624 C. Freitag et al.

proof system is succinct [40,42], meaning that the verifier’s running time and
the length of the communication between the prover and verifier is essentially
independent of the running time of the delegated computation.

Interest in succinct delegation has exploded in recent years due to its
many applications in internet-scale, distributed protocols like blockchains and
cryptocurrencies. Two key features for enabling these applications are non-
interactivity and public verifiability. Non-interactivity stipulates that a proof
consists of just a single message to the verifier, and public verifiability means
that any third party can trust the validity of the proof. Such delegation schemes
are known as publicly-verifiable SNARGs (succinct, non-interactive, arguments),
and have seen immense effort in recent years from both the applied and theo-
retical communities in cryptography (see, e.g., [8,10,15,22,43]).

On the theory side, constructing publicly verifiable SNARGs from standard
assumptions was previously elusive for many years, partially because of inher-
ent bottlenecks for constructing SNARGs for all of NP from falsifiable assump-
tions [32]. However, the beautiful recent works of Kalai, Paneth, and Yang [38]
and Choudhuri, Jain, Jin [22] have shown that when restricting to languages
in P, SNARGs can be constructed from falsifiable assumptions, including most
recently from the polynomial hardness of LWE [22].

On Parallel Prover Efficiency. Aside from improving the underlying
assumptions, a major bottleneck for the adoption of SNARGs has been prover
efficiency. There have been many works (e.g., [16–18,23,35,48] to name a few)
focused on improving the asymptotic efficiency of the prover as much as possi-
ble under various assumptions. In the setting of delegation, this means that the
running time of the prover should ideally be as close as possible to the time t
of the delegated computation, which is inherent for the prover to even compute
the output itself. To date, the best asymptotic constructions achieve quasi-linear
overhead by the prover, with running time t·poly(λ, log t) where λ is the security
parameter.

Recently, the work of Ephraim, Freitag, Komargodski, and Pass [29] showed
how to construct parallelizable delegation schemes (which they call SPARKs)
where the prover has parallel running time t + poly(λ, log t) (i.e., with only
additive overhead and no multiplicative overhead) using only a modest number,
poly(λ, log t), of processors. Their protocols even work for NP, but at the cost
of either assuming SNARKs (succinct non-interactive arguments of knowledge)
for NP—that are only known to exist from non-standard and non-falsifiable
assumptions—or only achieving an interactive protocol (assuming just standard
collision-resistant hash functions). Thus, the state-of-the art leaves open the
question of whether we can get a non-interactive delegation scheme, even just
for P, with tight prover efficiency from standard (falsifiable) assumptions:

Can we construct publicly verifiable, succinct, parallelizable delegation
schemes for P from standard, falsifiable, assumptions?

Parallelizable Delegation from LWE 625

We refer to such publicly verifiable, succinct, parallelizable delegation schemes
as SPARGs (succinct parallelizable arguments) for P, following the notation of
SPARKs from [29].

In this work, we resolve the above-mentioned problem, constructing the first
non-interactive delegation schemes where the prover has t + poly(λ, log t) paral-
lel running time using poly(λ, log t) processors based on standard assumptions.
More precisely, our construction only relies on the polynomial hardness of the
LWE assumption.

Theorem 1.1 (SPARGs for P from LWE; Informal (see Corollary 2)).
Assuming hardness of LWE, there exists a non-interactive SPARG for P.

We additionally present strengthenings of the above theorem—including a
SPARG for computations that are themselves parallelized, and obtaining so-
called time-independent SPARGs, where the prover and verifier need not know
the length t of the computation in advance—and present corollaries of these
results, including the first construction of a Verifiable Delay Function (VDF)
[19] from standard (polynomial) hardness assumptions.

1.1 Our Results in More Detail

Let us present our results in more detail. As a starting point for our work, we
observe that SPARGs for P can be constructed based on the notion of RAM
delegation, following the framework of the SPARK construction due to [29], so
long as the RAM delegation scheme satisfies quasi-linear prover efficiency. RAM
delegation is known under various assumptions, and most recently was shown
secure under LWE [22]. Unfortunately, known RAM delegation schemes do not
satisfy the quasi-linear prover efficiency that we desire. Therefore, our main
result is to show how to adapt existing schemes to satisfy a notion of efficiency
that will suffice for our construction.

Updatable RAM Delegation. We start by defining the notion of an updatable
RAM delegation scheme with quasi-linear efficiency. From an efficiency perspec-
tive, this is weaker than a (non-updatable) RAM delegation scheme satisfying
quasi-linear efficiency. Nevertheless, we show that it suffices for our purposes,
and can be constructed by relying on the RAM delegation scheme of [22].

At a high level, an updatable RAM delegation scheme is a delegation scheme
for RAM computations that allows for incremental updates and proofs for inter-
mediate pieces of the overall computation. Specifically, a prover can perform part
of a computation and obtain the resulting state as well as some additional aux-
iliary information aux corresponding to this section of the computation. Given
aux, it can then continue to update the computation to a new state, producing
a new piece of auxiliary information aux′. The auxiliary information aux for any
sub-computation can be used as a “witness” to efficiently compute a proof for
the corresponding piece of the computation. (We note that the proof is for a
deterministic computation, but the auxiliary input/ witness is provided for effi-
ciency purposes.) This enables a large computation to be updated and proved

626 C. Freitag et al.

in different pieces, and in particular allows for taking advantage of the prover’s
knowledge of aux, from running the computation, in order to generate a proof
with significantly less overhead.

In more detail, we require an updatable delegation scheme with the following
efficiency properties:

– Efficiency of computing aux: Given a RAM configuration cf, auxiliary
information auxcf , and time t, the new configuration cf ′ and its associated
auxiliary information auxcf′ that results after t steps of computation starting
from cf can be computed in time t+poly(λ) using poly(λ) parallel processors.

– Efficiency of generating proofs given aux: Given auxiliary information
aux corresponding to a t step transition from initial configuration cf to final
configuration cf ′, a proof of correctness for this transition can be generated in
time t ·poly(λ, log t). For an updatable scheme, we refer to this as quasi-linear
prover efficiency. (Note that this is a stronger efficiency requirement than the
one used in [22], where the prover running-time would grow with |cf|.)

Let us highlight that any RAM delegation scheme is also an updatable one
(by simply letting aux be empty), but does not necessarily satisfy quasi-linear
overhead when generating proofs given aux. Using the auxiliary information, aux,
is helpful for us in achieving this prover efficiency. In particular, we show how to
combine the ideas behind the SNARG construction of [22] with the updatable
hash tree from [29] to get an updatable RAM delegation from LWE with the
desired efficiency.

Theorem 1.2 (Efficient Updatable RAM Delegation; Informal (see
Theorem 4.2)). Assuming hardness of LWE, there exists a succinct, publicly
verifiable, updatable RAM delegation scheme with quasi-linear prover efficiency.

SPARGs from Updatable RAM Delegation. Next, we show how to adapt
the SPARK construction of [29] to rely on any updatable RAM delegation
scheme with quasi-linear prover efficiency, rather than relying on SNARKs with
quasi-linear prover efficiency. We highlight that the construction in [29] relied on
the proof of knowledge property of the underlying delegation scheme (i.e., the
SNARK in use) and it is not known how to replace it with just a SNARG. This
is why we resort to using the more complicated object of an updatable RAM
delegation scheme with quasi-linear prover efficiency.

Theorem 1.3 (SPARGs from Updatable RAM Delegation; Informal
(see Theorem 5.1)). Assume the existence of a succinct, publicly verifiable,
updatable RAM delegation scheme with quasi-linear efficiency. Then there exists
a non-interactive SPARG for P.

Theorem 1.1 then follows as a direct corollary of Theorems 1.2 and 1.3.
We also extend this result to the setting of parallel computations. Specifically,

given a computation that can be done in time t with p processors, we show a
SPARG that preserves depth by running in time t+poly(λ, log(t ·p)), while only

Parallelizable Delegation from LWE 627

using p ·poly(λ, log(t ·p)) processors. This is in contrast to the naive approach of
using the above SPARG for sequential computations, which would naively result
in parallel time that depends on the total work t · p rather than the depth t. We
obtain this result by extending the updatable RAM delegation scheme above to
be depth preserving for parallel computations—that is, both the parallel time
and processors used by the delegation scheme scale quasi-linearly with that of
the computation.

Theorem 1.4 (SPARGs for Parallel Computations; Informal). Assume
the existence of a succinct, publicly verifiable, updatable RAM delegation scheme
for parallel computations that is depth-preserving. Then there exists a non-
interactive SPARG for polynomial-time, parallel computations.

Time-Independent SPARGs. SPARKs [29] were initially defined such that
in order to prove a t-time computation, the prover was provided the time bound
t as input. It is perhaps natural to assume that this might be necessary in order
to “fit the computation of the proof” in during the computation itself. However,
in many scenarios, the time bound t may not be a priori known. To circumvent
this issue, we define the notion of a time-independent SPARG, which satisfies
the same properties as a SPARG except that the prover and verifier no longer
get t as input. We additionally show how to extend the above construction to
achieve a time-independent SPARG from LWE:

Theorem 1.5 (Time-independent SPARGs from LWE; Informal).
Assuming hardness of LWE, there exists a non-interactive, time-independent
SPARG for P.

As far as we know, this yields the first construction of a SPARG with time-
independence based on any hardness assumption (that is, a similar result was
not known from the stronger notion of SPARKs).

To prove Theorem 1.5, we define the notion of a time-tight, updatable RAM
delegation. Essentially, this is a RAM delegation as above, but with the prover
efficiency properties of a SPARG, where the final configuration is not known at
the start of proof generation. We emphasize that the prover for such a scheme
is given the time bound t as input in order to compute the proof in time t +
poly(λ, log(t)). We then give a generic transformation that starts with any time-
tight, updatable RAM delegation scheme (that is given the time bound t as
input) and constructs a non-interactive, time-independent SPARG.

Theorem 1.6 (Time-independent SPARG transformation; Informal).
Given any time-tight, updatable RAM delegation scheme, there exists a non-
interactive, time-independent SPARG for P.

Furthermore, a minor adaptation of our construction of a SPARG for P from
LWE (Theorem 1.1 above) satisfies the notion of a time-tight, updatable RAM
delegation scheme, which gives Theorem 1.5 above.

628 C. Freitag et al.

Applications: Verifiable Delay Functions from Standard Assumptions.
Finally, we observe that one of the main applications of non-interactive SPARKs
for P from [29] was to constructing verifiable delay functions [19]. Roughly
speaking, a VDF is publicly-verifiable function that can be computed in time
t, but cannot be noticeably sped up with poly(t) processors. VDFs have impor-
tant applications in generating trusted randomness in distributed applications
(see [19,21,30] for more details).

[29] showed that any function f can be made verifiable essentially “for free””,
by computing the output of the f and a proof certifying its correctness using a
SPARK for f , and that a VDF can be obtained by simply computing any sequen-
tial function—that is, a function that can be computed in time t, but cannot be
noticeably sped up with poly(t) processors—with a SPARK. But given that non-
interactive SPARKs are only known based on non-falsifiable assumptions, this
only gave new VDF constructions assuming non-falsifiable assumptions (namely,
the existence of SNARKs for NP).

We note, however, that the transformation in [29] actually does not rely on
the argument of knowledge property of the underlying SPARK and a SPARG for
parallel P computations suffices. Consequently, we can achieve the same results
but replacing the SNARK assumptions from [29] with just polynomial hardness
of LWE.

Theorem 1.7 (VDFs from LWE and any sequential function; Infor-
mal (see Corollary 3)). Assuming the (polynomial) hardness of LWE and the
existence of a sequential function, there exists a verifiable delay function.

Let us highlight that the assumption that sequential functions exist is necessary
for the construction of a VDF—any VDF trivially is a sequential function. On
top of this minimal assumption, our construction only assume the hardness of
LWE. As far as we know, before our work, it was not known how to get VDF
(in the plain model, without random oracles) based on any standard polynomial
hardness + the assumption that sequential functions exist. In particular, pre-
viously, VDFs were known based on either (a) iteratively-sequential functions1

and SNARGs [19], (b) sequential functions and SNARKs for NP [29], or (c)
sub-exponential LWE assumption and the sequentiality of repeated squaring in
a group of unknown order [41], or various construction in the random oracle
model [28,44,47]. We emphasize that in terms of practical efficiency, our con-
struction does not compete with constructions in the ROM (such as [44,47]),
but our goal here is simply to show that VDFs as a primitive can be based on
standard hardness assumptions.

As pointed out in [29], since a SPARG makes any deterministic computation
verifiable, our transformation applies to sequential functions that may satisfy
other properties like memory-hardness. We note that memory-hardness is use-
ful for ASIC-resistance in VDFs, making so attackers cannot easily invest in

1 An iteratively sequential function f has the property that the t-wise composition
f (t) of f cannot be computed faster than computing f sequentially t times, even
with poly(t) processors.

Parallelizable Delegation from LWE 629

special-purpose hardware and gain an advantage in computing the VDF quicker.
Informally, a memory-hard sequential function is a sequential function that addi-
tionally requires a large memory footprint throughout the computation (for a
more formal treatment, see, e.g., [1–4,25–27] for examples of different defini-
tions and constructions of candidate memory-hard functions). It follows that
our techniques can be used to achieve a memory-hard VDF based on the hard-
ness of LWE and the existence of any memory-hard sequential function (and
our result is not tailored to any specific definition of memory-hardness). Previ-
ously, the only known construction of a memory-hard VDF was the construction
in [29] which relied on the existence of a memory-hard sequential function and
SNARKs for NP.

1.2 Related Work

We first focus on the computational assumptions needed for SNARGs and RAM
delegation. In the setting of information-theoretic security, the celebrated pro-
tocols of Goldwasser, Kalai, and Rothblum [33] and Reingold, Rothblum, and
Rothblum [45] first showed how to construct interactive delegation protocols
for bounded depth and bounded space computations, respectively. Shifting our
attention to simple 2-round protocols or non-interactive protocols in the CRS
model with only computational security, Kalai, Raz, and Rothblum [39] con-
struct privately verifiable delegation for any time and space Turing machines
based on the quasi-polynomial hardness of LWE. Kalai and Paneth [37] extend
this to the setting of privately verifiable RAM delegation, and it was shown
how to implement this approach based on polynomial-hardness assumptions by
Brakerski, Holmgren, and Kalai [20]. Holmgren and Rothblum [35] show how to
implement the approach of [39] for RAM delegation with a specific no-signaling
MIP with quasi-linear overhead in both time and space, based on the subexpo-
nential hardness of LWE. Kalai, Paneth, and Yang [38] achieved the first publicly
verifiable RAM delegation scheme based on a new falsfiable decisional assump-
tion on groups with bilinear maps. Jawale, Kalai, Khurana, and Zhang [36] show
how to achieve publicly verifiable delegation for bounded depth computation
from subexponential hardness of LWE. Finally, Choudhuri, Jain, and Jin [22]
construct publicly verifable RAM delegation from polynomial hardness of LWE.

We note that implicit in the works of [20,22,37,38], building off the techniques
of [39], is the notion of a quasi-argument for a class of restricted NP statements.
This is an argument system that has a special “no-signaling” extractor for certain
NP languages that is used to prove soundness of RAM delegation statements
relative to an associated hash tree.

Efficient PCPs. We note that many SNARGs and delegation protocols are
based on probabilistically checkable proofs (PCPs) building off the protocols of
Kilian [40] (in the interactive setting) and Micali [42] (in the random oracle model
using the Fiat-Shamir heuristic [31]). Originally PCP constructions required

630 C. Freitag et al.

polynomial length and prover running time [5,6]. Ben-Sasson and Sudan [14]
gave the first construction of a PCP with quasi-linear overhead, meaning that
a PCP for a t-time (possibly non-deterministic) computation had overall size
t · polylog(t). Subsequent work by [11] give a highly parallelizable PCP that can
be computed in parallel time polylog(t) with t processors, after computing the
computation tableau. Interactive oracle proofs (IOPs) are a multi-round general-
ization of PCPs, introduced in [45] and [13], that are also useful for delegation
protocols. There is a fruitful line of work [9,12,46] resulting in linear-size IOPs
useful for delegation, although the prover still runs in at least quasi-linear time.

Parallelism in Proofs. The works of [19] and [24] first introduced the tech-
nique of computing a proof in parallel to a computation in order to improve the
prover’s parallel efficiency. They first applied this technique to iteratively sequen-
tial functions, which necessarily have low space, in the context of verifiable delay
functions. The work of [29] shows how to apply this technique generically to any,
not necessarily space bounded, computation. However, their generic transforma-
tion requires interaction or relies on SNARKs in the non-interactive setting.

1.3 Organization

In Sect. 2, we give an overview of our SPARG constructions. Then, in Sect. 3, we
give preliminaries. Next, in Sect. 4, we give our construction of updatable RAM
delegation with quasilinear overhead from LWE. Then, in Sect. 5, we give our
construction of SPARGs from updatable delegation. Our VDF construction is
given in Sect. 6. Our construction of time-tight SPARGs, and that of SPARGs
for parallel computations, are deferred to the full version.

2 Techniques

In this section, we give an overview of our SPARG constructions. Our construc-
tions will be for RAM computations, so we start with a brief overview of our
model. Recall that a RAM machine M is an algorithm with random access to a
(possibly long) string D in memory, and keeps a small local state state. At each
step of computation, M reads or writes to a location in memory and updates its
local state. We say that M(x) outputs y in t steps if, when the initial memory of
M contains x, after t steps the local state has a special halting symbol and y is
written to memory. The configuration cf of a RAM machine at any step of the
computation consists of its memory and local state, and hence fully describes
the computation at that point.

2.1 SPARGs from LWE

In this section, we overview our construction of SPARGs for P. Our starting
point is the non-interactive SPARK construction for NP due to [29]. Recall that

Parallelizable Delegation from LWE 631

to construct SPARGs, we are only concerned with proving soundness for deter-
ministic, polynomial-time computations, whereas the SPARK construction is an
argument of knowledge, which is a stronger notion that in turn relies on assump-
tions that are too strong for our setting. We start by giving an overview of the
SPARK construction, and then discuss how we modify it to achieve SPARGs
from weaker assumptions.

SPARK Construction. We start by overviewing the SPARK construction
of [29], henceforth the EFKP construction, which relies on a SNARK for NP.
To prove that a M(x) = y in t steps, recall that the goal is for the SPARK
prover to run in time at most t + polylog t. The high-level approach of EFKP
is to split the computation into sub-computations, and give a SNARK proof for
each sub-computation in parallel to computing and proving subsequent steps of
the computation.

To illustrate this, suppose that the underlying SNARK requires time 2k to
prove k steps of RAM computation. Then, the largest portion of computation
that can be computed and proven by time t is k = t/3, as one can spend time
t/3 computing these steps of the computation, and then spend time 2t/3 proving
that it was done correctly, thus obtaining a proof π1 of the first t/3 steps by time
t. The observation of EFKP (following prior works [19,24]) is that this idea can
be applied recursively. Specifically, while π1 is being proven, they continue by
computing and proving 1/3 of the remaining computation in parallel to proving
π1. Overall, they show that this results in roughly O(log t) “threads”, where
each thread computes 1/3 of the remaining computation, and then begins a
SNARK proof while the next parallel thread starts computing. Thus, the full
SPARK proof consists of O(log t) SNARK proofs, all completing by time t. More
generally, if the underlying SNARK could prove k steps of computation in time
α� · k, then this would result in having roughly α� · log t proofs (and parallel
processors).

While this approach seems promising, it only gives a SPARK for computa-
tions with bounded memory size. In particular, it requires giving proofs about
intermediate states of the RAM computation. Since the intermediate state of a
RAM computation is its configuration cf, the above approach requires using the
SNARK to prove statements of the form (M, cf, cf ′, k) stating the M transitions
from configuration cf to configuration cf ′ in time k. However, the size of each
configuration scales with the memory size of M , and thus giving SNARK proofs
for these statements will depend on the memory size as well.

To remedy this, rather than proving that M transitions from cf to cf′ in k
steps, EFKP show that the prover can maintain an updatable digest rt to the
configuration at any given time step, and prove that there exists a sequence of
k updates to rt, according to M , that result in rt′. At a high level, the digest
corresponds to a Merkle tree of the memory at each time step based on a collision-
resistant hash function, and each time M reads or writes to memory, the corre-
sponding update is done to the Merkle tree. At the end of the computation, the
prover can simply open the bits of the output y with respect to the final digest,
which the verifier can then check efficiently.

632 C. Freitag et al.

Crucially, each update to the digest can be certified with a very short proof
(corresponding to its authentication path in the Merkle tree). Therefore, they
rely on a SNARK for the NP language Lupd that where an instance (M, rt, rt′, k)
has a witness consisting of the k updates to the Merkle tree. The relation for this
language has complexity roughly k ·poly(λ), as it only requires running M for k
steps and checking that each update was done correctly. It is therefore feasible
to have a SNARK where the prover overhead for proving Lupd statements is
independent of t. Specifically, EFKP instantiate this framework with a SNARK
with quasilinear overhead, where an instance corresponding to k updates can be
proven in time roughly k · poly(λ, log k).

Relaxing SPARKs to SPARGs. Given that the EFKP construction relies
on an underlying argument of knowledge, a natural approach to constructing a
SPARG is to replace the underlying SNARK with a SNARG, and try to prove
soundness for computations in P.

Consider the following straightforward attempt to prove soundness with
this approach. Suppose for contradiction that there exists an adversary A
who succeeds at convincing the verifier of a false statement (M,x, t, y) where
M(x) �= y. Following the EFKP construction, this means that A outputs sub-
proofs π1, . . . , πm, where the ith sub-proof certifies that M transitions from
digest rti−1 to digest rti in some number of steps. Ideally, we would like to say
that if the statement itself is false, then there must be a sub-proof corresponding
to a false statement, hence breaking soundness of the underlying SNARG. How-
ever, we cannot claim that this is the case—all the sub-proofs could correspond
to true statements if one of them contains a collision in the hash function.

Specifically, it could be the case that for some i, the sequence of updates used
by A to prove that rti−1 transitions to rti corresponds to a “divergent” path of
computation, and in reality M makes a different sequence of updates after the
step corresponding to rti−1.

The proof of [29] relied on the extractability of the SNARK to show that if
all sub-statements were true, then A must be able to produce a hash collision at
the point where the computation diverged, in contradiction. However, if we are
only relying on a SNARG, we have no way to extract the collision and reach a
contradiction.

Nevertheless, we have one advantage over the EFKP approach which we have
not yet used—we are only trying to prove soundness for deterministic computa-
tions, whereas their proof had to hold even for non-deterministic ones. In par-
ticular, this means that given M,x, we can actually compute the true sequence
of updates in polynomial time, and thus determine exactly in which sub-proof
the computation diverged.

This does not quite solve the problem, because we still have no way to extract
a collision between rti−1 and rti. However, it does capture an important sound-
ness property, which will turn out to be the key component of our construc-
tion. Observe that the above proof of soundness would succeed if the underlying
SNARG satisfied the following:

Parallelizable Delegation from LWE 633

No PPT adversary A can produce a proof π, a transcript of the computa-
tion of M as well as digests rt, rt′ and some number of steps k such that
(a) the verifier accepts π as a proof for (M, rt, rt′, k), (b) rt is the correct
digest at the beginning of the computation, but (c) rt′ is not the correct
resulting digest after k steps.

This definition morally captures the fact that A should not be able to find a
collision in the hash function, but does not require extractability to actually
produce that collision. In particular, it can be viewed as a notion of soundness
relative to a CRH, where the verifier only sees a digest of the statement, yet
cannot be convinced on digests of false statements.

From RAM Delegation to SPARGs. We observe that this property stated
above is in fact the notion of soundness for RAM delegation schemes. In par-
ticular, prior work (such as [22,37,38]) adopted this as a meaningful notion of
soundness for RAM delegation to capture the setting where a weak verifier, who
may have pre-computed a digest of a large database, delegates a computation
on that database and can verify the updated digest after the computation to
enable future outsourcing on the updated database.

Putting everything together, to prove soundness of the EFKP construction
for deterministic computations, it suffices to rely on a RAM delegation scheme
with the above soundness notion, rather than a SNARK. By relying on the recent
RAM delegation scheme due to [22], we obtain a sound scheme based only on
LWE.

Updatable Delegation. There is one remaining caveat to the construction,
which is that by replacing the SNARK with a delegation scheme, we have to
ensure that each sub-proof computed using the delegation scheme can be done
with low prover overhead so that the resulting construction satisfies the tight
efficiency requirements of a SPARG.

Looking at the delegation scheme due to [22], in order to delegate the com-
putation of M starting at configuration cf, the scheme first computes a Merkle
tree of cf (analogously to the Merkle tree approach in [29]), and then proceeds to
compute the updates to the Merkle, and prove their correctness using underlying
building blocks. We observe that other than computing this initial Merkle tree,
the delegation prover has quasilinear overhead. Specifically, we show that when
delegating a statement corresponding to k steps of computation, everything other
than computing the initial Merkle tree can be done in time k · poly(λ, log k).

To put this into context in our scheme, recall that we will be breaking
up the computation of M into sub-computations, indexed by configurations
cf0, cf1, . . . , cfm, for which we will then use the delegation scheme to prove that
cfi−1 transitions to cfi for each sub-computation i. However, if the delegation
prover then hashes down each cfi at the beginning of each sub-proof, the run-
ning time of our SPARG will then rely on the memory size, which as mentioned
above, does not suffices for us.

We resolve this by using another piece of the EFKP construction, specifically
their Merkle tree instantiation. Recall that they gave a construction, termed a

634 C. Freitag et al.

concurrently updatable hash function, which enabled updating the Merkle tree
in parallel to the computation with very little overhead. We observe that if the
Merkle tree in the RAM delegation scheme is instantiated with a concurrently
updatable hash function, then when computing each configuration cfi, we can
compute in parallel the Merkle tree digest of cfi, and give this to the delegation
prover as auxiliary input.

At a high level, this captures a notion which we call updatability for RAM
delegation schemes, since while running the computation from computing a proof
that cfi−1 transitions to cfi, the Merkle tree for cfi computed during the proof
can be given to the next prover.

We show that the [22] scheme satisfies this notion of upatability when instan-
tiated with the hash tree due to [29], and that this notion of updatability suffices
to achieve the required prover efficiency from the delegation scheme in order to
instantiate the EFKP framework and obtain a SPARG for P.

2.2 SPARGs for Parallel Computations

The above framework gives a SPARG for sequential computations—namely, a
proof system that runs in time t + poly(λ, log t) for t-time computations. How-
ever, it is very natural to consider the setting where the computation itself can
be parallelized. In this setting, we show that our SPARG construction can be
extended to prove parallel computations while preserving the depth of the com-
putation. Specifically, for computations that take time t with p processors, our
SPARG will run in time t+poly(λ, log(t ·p)) with p ·poly(λ, log(t ·p)) processors.

To achieve this, recall that the prover in our SPARG construction above splits
the computation into many sub-computations. For each sub-computation, the
prover runs the computation in parallel to updating a hash tree to its memory.
It then uses an updatable RAM delegation scheme to prove correctness of this
sub-computation. Efficiency of the resulting construction relies on the fact that
(1) computing M(x) and updating the hash tree can be done in parallel in time
essentially t, and (2) the delegation scheme has quasi-linear overhead, so proving
any sequence of k steps takes time k · poly(λ, log k).

To extend this to the setting of parallel computations, we observe that the
prover can run the computation in time t with p processors. Moreover, the hash
tree due to [29] allows for concurrent updates, and so the updates can be done in
parallel to the computation. However, a challenge arises when using the updat-
able RAM delegation scheme in this setting, as we have to prove correctness
of concurrent updates. Specifically, for a sub-computation corresponding to k
steps, the concurrent updates to the hash tree result in k updates each to p
locations in memory (as opposed to a single location each, as in the sequen-
tial case). The efficiency of our updatable RAM delegation scheme depends, in
particular, polynomially on the time to verify a single update, which is poly(p)
when considering concurrent updates. Therefore, this would not result in a dele-
gation scheme with quasilinear prover efficiency—instead, the prover time would
depend polynomially on p, which is undesirable when p is large.

Parallelizable Delegation from LWE 635

The dependence on the time to verify a single update is inherent to our updat-
able RAM delegation construction, and in particular stems from the underlying
building blocks used in [22]. Therefore, it is not immediately clear how to move
forward—in order to avoid any delays with running the main computation, we
have to perform concurrent updates, but the delegation scheme is incompatible
with these updates.

To solve this, we observe that we can transform concurrent updates to sequen-
tial ones—namely, k concurrent updates on p locations each can be turned into
k · p updates, each to a single location. We call a hash tree with this property
sequentializable. At a high level, we do so by taking advantage of the Merkle tree
structure, and the fact that an authentication path for an individual location
� can be derived from the updates to a set of locations containing �. We form
the authentication paths corresponding to the sequential updates level by level,
resulting in time poly(λ, log p) to sequentialize a concurrent update when using
p processors. Therefore, for a sub-computation with k steps, we can sequential-
ize the updates in parallel time k · poly(λ, log p). Crucially, sequentializing the
updates does not delay the main computation of M(x)—instead, the sequen-
tialization can be seen as part of the “proof” phase, before calling the RAM
delegation prover.

After sequentializing the updates, a k-time sub-computation results in k · p
individual updates. We are not quite done, because applying our updatable RAM
delegation scheme to prove correctness of these updates would result in time
quasilinear in the total work k · p, rather than simply k. As the final step in
our construction, we observe that the computation of the RAM delegation proof
can be parallelized as well. Specifically, recall that our RAM delegation scheme
is given the updates as a witness to the computation, and is only required to
compute the proof. When given T = t · p sequentialized updates, it runs in
quasilinear time T · poly(λ, log T). As a final observation, we show that for any
number of processors p, the RAM delegation prover can be made to run in time
T/p ·poly(λ, log T) with p processors, when given these updates. At a high level,
this follows due to the fact that the underlying updatable delegation scheme
treats the T updates as a batch of T individual statements for which it proves
correctness. In particular, we show that the proofs of these statements (and the
information tying them together) can be computed in parallel, thus giving the
desired efficiency.

Putting everything together, the combination of sequentializing the updates
and running the parallelized delegation prover gives the desired quasilinear effi-
ciency for our RAM delegation scheme, which in turn suffices to get a SPARG
for parallel computations.

2.3 Time-Independent SPARGs

We consider the application of SPARGs to time-tight RAM delegation, where
by time-tight we mean a delegation protocol that satisfies the same efficiency
properties as a SPARG. So far, we have assumed that the time bound t for the
computation is provided as input. This seems like the a natural requirement

636 C. Freitag et al.

as we have to compute the proof of the computation completely during the
computation itself. We show that this is actually not necessary, at least in the
case of non-interactive delegation. In particular, we show how to construct a
non-interactive SPARG for any t-time computation M(x) where t does not need
to be provided as input—we refer to this as a time-independent SPARG—given
a non-interactive SPARG that does take as input the time bound t. (In fact,
we actually use a time-tight RAM delegation scheme in order to break up the
computation into different parts, which we will discuss more below.)

As a first attempt, what if the prover computed a SPARG for all possible
time bounds T? The prover could run the computation on the side, see when
it halts, and use the proof corresponding to the actual time bound t, ignor-
ing all other proofs. If we compute all the SPARG proofs in parallel, then the
prover will compute a proof in the desired parallel time, but this requires using
more than t processors! Even worse, we don’t necessarily know a priori a bound
on what the running time will be, so we would even need to use potentially
super-polynomially many processors to handle all polynomial-time computa-
tions. Instead, we want to compute the time-independent SPARG using only a
modest, say fixed polynomial poly(λ) in the security parameter, overhead in the
number of processors required.

In an effort to reduce the number of processors used, the prover could instead
compute proofs only for the time bounds T = 20, 21, 22, 24, . . . , 2λ, assuming that
the polynomial time bound t is at most 2λ for large enough security parameters
λ. Now we only have a λ + 1 overhead in the number of processors required.
However, if in computing M(x) we find out that the true time bound t is not
close to a power of 2, then we may have a factor of 2 over head in the time
to compute the next largest proof that encapsulates the full computation. Even
a small multiplicative overhead is not allowed for SPARGs, so this approach
unfortunately does not achieve what we want.

In order to maintain optimal parallel time with only a small overhead in
the number of processors used, we leverage the techniques described in Sect. 2.1
to break down the proof of the entire computation into proofs of various sub-
computations while still guaranteeing soundness. This is why we actually need to
start with RAM delegation for our underlying scheme so that breaking the proofs
into many parts does not scale with the space of the underlying computation
(Fig. 1).

The idea of the full construction is to compute proofs for the time bounds
T = 20, 21, . . . , 2λ, but after each proof of size 2i finishes, to continue to compute
proofs in regular intervals of size 2i that continue that computation (using the
same associated memory). So, for every size 2i and every j ≥ 1, we will have a
proof corresponding to the interval of the computation between steps (j − 1) ·
2i and j · 2i. For any such starting point a and ending point b, we let π(a,b)

denote the associated proof. Ignoring efficiency for now, this means that after
the machine M(x) halts at time t, we can simply collect m proofs π(0,a1), π(a1,a2),
. . . , π(am−1,t) that cover the entire interval from 0 to t via intervals of powers of
2. These intervals will then simply correspond to the binary representation of t,
so there will be m ≤ λ proofs in total.

Parallelizable Delegation from LWE 637

Time to compute M(x), t = 11 Proof Overhead β

.π(0,1) .π(2,3) .π(4,5) .π(6,7) .π(8,9) .π(10,11) .π(12,13) .π(14,15)

.π(0,2) .π(4,6) .π(8,10) .π(12,14)

.π(0,4) .π(8,12)

.π(0,8)

Fig. 1. An example of the time-independent SPARG prover for a computation M(x)
that takes t = 11 steps. A proof π(a,b) corresponds to a RAM delegation proof that M
on input x starts at configuration cfa and ends at configuration cfb. The horizontal axis
represents parallel time, and the prover is computing all proofs along a given vertical
slice in parallel. Each separate thread corresponds to a memory block that is being
updated and outputting proofs for the corresponding intervals at the same time. The
additive overhead per interval is indicated in red, but can be computed separately
while the subsequent update continues. The final proof output by the prover consists
of the sub-proofs corresponding to the 1’s in the binary representation of the actual
time t. For t = 11 shown in the picture, this corresponds to the 8, 2, and 1 digits, so
the prover eventually outputs the proofs π(0,8), π(8,10), and π(10,11). All other proofs
are discarded, and are thus greyed out in the picture above.

In order to make this approach work, we need a specific, extremely efficient,
underlying RAM delegation scheme. Concretely, we need it to be the case that
we can have a thread of computation that computes proofs for all size 1 inter-
vals (0, 1), (1, 2), (2, 3), . . . , (t − 1, t) without blowing up the complexity of the
protocol. Fortunately, our main SPARG construction actually gives us an updat-
able delegation scheme that is also time-tight. Essentially, this is an updatable
delegation scheme where an update of any sequence of k steps also outputs a
proof of correctness for those k steps. Furthermore, these updates and proofs can
be pipelined together efficiently, ensuring that computing a proof for all size 1
intervals in a row as above does not blow up the overall complexity nor delay the
output of later proofs in the sequence (namely the proof for the interval (i, i+1)
still finishes at time i + 1 + poly(λ), where the delay is independent of i or t).

We finish by arguing why the protocol is succinct and satisfies the optimal
parallel time requirement of a SPARG while using only a fixed poly(λ) number of
processors. For succinctness, recall the number of proofs that the prover needs to
output is simply the number of 1s in the binary representation of the actual time
bound t. Assuming t < 2λ, this implies that the number of delegation proofs m
that need to be sent at most λ, so there is at most a λ overhead in the size of the

638 C. Freitag et al.

proofs for the time-independent SPARG over the underlying RAM delegation
scheme.

Analyzing the running time of the prover, we note that by assumption, the
underlying updatable delegation scheme has only an additive overhead of some
polynomial β(λ) to compute proofs with its updates, using at most β(λ) proces-
sors for each update procedure. All of the required proofs finish by time t+β(λ),
so the prover satisfies the required runtime efficiency, we just need to bound the
number of processors used. As each update/proof computation uses β(λ) pro-
cessors, we just need to bound the number of update procedures happening at
any given time. To do so, consider any T steps into the computation. All proofs
π(a,b) for a final configuration cfb where b < T − λ · β(λ) have already been
completed, as described above, so there are most λ · β(λ) proofs in progress for
ending configurations at or before cfT . Also, for each size 2i, there is at most
one proof of size 2i that could have been started and ends after cfT . This implies
that are at most λ + λ · β(λ) updates computed at any given time, so the prover
requires only a poly(λ) number of processors in total.

We emphasize that this transformation fundamentally relies on the fact that
the underlying delegation scheme is “time-tight” like a SPARG. Otherwise the
overlap among all of the proofs would be too great, and the protocol would
require too many processors.

3 Preliminaries

In this section, we include the relevant preliminaries. Additional preliminaries,
including definitions of verifiable delay functions, concurrently updatable hash
functions, and succinct arguments for parallel computations are deferred to the
full version.

3.1 RAM Model

RAM computation consists of a machine M which keeps some local state state
and has read/write access to memory D ∈ ({0, 1}λ)∗ (equivalent to the tape
of a Turing machine). Here, λ is the security parameter and length of a word,
and we let n ≤ 2λ be the number of words in memory required to run M (see
below). When we write M(x) to denote running M on input x, this means
that M expects its initial memory D to consist of x followed by zeros. The
computation of M(x) is defined in steps, where at each step the machine either
reads or writes to a location in memory and updates its local state. We assume
that when M writes to a memory location �, it receives the word previously at
�. Without loss of generality, we assume that the state can hold O(log n) bits, or
a constant number of words, and that the local state at each time step includes
the word read in the previous step. We also assume that n words in memory can
be allocated and initialized to zeros for free.

The computation halts when the local state consists of a special halting value
with the output y of M(x) written at the start of the memory. We define the

Parallelizable Delegation from LWE 639

running time of a RAM machine M as the number of accesses it makes to its
working memory, which corresponds to the number of steps.

We define the configuration cf at any step of the computation to include the
local state and full memory at that step. This representation allows us to refer
to RAM machines that transition from a configuration cf to configuration cf ′

in some number of steps, as the configuration has all information required to
perform a step.

In order to measure the complexity of RAM computation, we note that on a
fixed CPU architecture, RAM computation can be modeled where the program
M and input x are both given in memory and executed using a fixed machine
U . We therefore fix any universal RAM machine U and define the complexity of
running M(x) to be the number of steps required to run U(M,x). As all of our
RAM computation will be in this model, for simplicity we say that M(x) requires
access to n words of memory if U(M,x) uses a total of n words in memory to
write M , x, and all the memory used by the computation. Henceforth, we say
that M(x) halts in time t if running U on memory M ||x||0n−|M,x| for t steps
results in a halting state.

3.2 Universal Languages

In this section we define a universal language for deterministic RAM computation
with long output, following the universal relation introduced by [7].

Definition 1. The universal language LU is the set of instances (M,x, y, L, t)
where M is a deterministic RAM machine such that M(x) outputs y within t
steps, and additionally |y| ≤ L.

Additionally, we will be considering intermediate portions of RAM compu-
tation, where the universal RAM machine U (see Sect. 3.1) transitions from
configuration cf to cf ′ in t steps.

Definition 2. The universal RAM delegation language Ldel is the set of
instances (cf, cf ′, t) such that the universal RAM machine U transitions from
configuration cf to configuration cf ′ in t steps.

3.3 RAM Delegation

In this section, we define RAM delegation, which will be the main building
block for our SPARG construction. Following [20,22,37,38], we define RAM
delegation to capture the following scenario: A verifier wishes to delegate a RAM
computation M with some initial configuration cf, such that running M for t
steps starting with cf results in configuration cf ′. As M may potentially use a
large amount of memory, these configurations could be very long, and thus the
approach in recent works has been to consider a verifier that only receives digests
rt, rt′ of the configurations cf, cf ′.

Recently, [22,38] showed delegation schemes for RAM where soundness holds
when the verifier only receives these digests, and moreover suffice to delegate
general computation with Turing machines. We adopt this notion for this work.

640 C. Freitag et al.

As discussed in Sect. 3.1, we will assume that the machine M is already
part of the memory in cf and thus give a definition for a fixed universal RAM
computation with the universal machine U .

Definition 3 (RAM Delegation). A publicly verifiable, succinct RAM del-
egation scheme for Ldel is a tuple of probabilistic algorithms (Del.S,Del.D,Del.P,
Del.V) with the following syntax:

• (crs, dk) ← Del.S(1λ): A PPT algorithm that on input a security parameter
λ outputs a common reference string crs and a digest key dk. We assume
without loss of generality that crs contains dk.

• rt = Del.D(dk, cf): A deterministic algorithm that on input a digest key dk
and a RAM configuration cf outputs a digest rt.

• π ← Del.P(crs, (cf, cf ′, t)): A probabilistic algorithm that on input a common
reference string crs, and a statement (cf, cf ′, t), outputs a proof π.

• b ← Del.V(crs, (rt, rt′, t), π): A PPT algorithm that on input a a common
reference string crs, common reference string crs, statement (rt, rt′, t), and a
proof π, outputs a bit b indicating whether to accept or reject.

We require the following properties:

• Completeness: For every λ ∈ N and (cf, cf ′, t) ∈ Ldel with t, n ≤ 2λ where
n is the memory size of the configurations, it holds

Pr

⎡
⎢⎢⎣

(crs, dk) ← Del.S(1λ)
rt = Del.D(dk, cf)
rt′ = Del.D(dk, cf ′)
π ← Del.P(crs, (cf, cf ′, t))

: V(crs, (rt, rt′, t), π) = 1

⎤
⎥⎥⎦ = 1.

• Soundness: For any non-uniform polynomial-time algorithm A = {Aλ}λ∈N
,

polynomial-time computable function T , and polynomial T such that T (λ) ≤
T (λ) for all λ ∈ N, there exists a negligible function negl such that for every
λ ∈ N, it holds that

Pr

⎡
⎢⎢⎣

(crs, dk) ← Del.S(1λ)
(cf, cf ′, rt, rt′, π) ← Aλ(crs, dk) :

V(crs, (rt, rt′, t), π) = 1
∧ (cf, cf ′, t) ∈ Ldel

∧ rt = Del.D(dk, cf)
∧ rt′ �= Del.D(dk, cf ′)

⎤
⎥⎥⎦ ≤ negl(λ),

where t = T (λ).
• Collision resistance: For any non-uniform polynomial-time algorithm A =

{Aλ}λ∈N
, there exists a negligible function negl such that for every λ ∈ N, it

holds that

Pr
[

(crs, dk) ← Del.S(1λ)
(cf, cf ′) ← Aλ(crs, dk) :

cf �= cf ′

∧ Del.D(dk, cf) = Del.D(dk, cf ′)

]
≤ negl(λ).

• Succinctness: There exist polynomials q1, q2, q3 such that for any λ ∈ N,
(crs, dk) in the support of Del.S(1λ), (cf, cf ′, t) ∈ Ldel, and proof π in the
support of P(crs, (cf, cf ′, t)), it holds that

Parallelizable Delegation from LWE 641

– |Del.V(crs, (rt, rt′, t), π)| ≤ q1(λ, log t) and
– |π| ≤ q2(λ, log t).
– Del.D(dk, cf) is computable in time |cf| · q3(λ) and has output length λ.

3.4 SPARGs

In this section, we define SPARGs for P based on the notion of SPARKs intro-
duced in [29]. We note that while they do not restrict to computations with
t ≤ 2λ steps, we require this as it is standard in related notions (e.g., RAM
delegation) and required for our construction.

Definition 4 (Non-interactive SPARGs for P). A Non-interactive Succinct
Parallelizable Argument for a language L ⊆ LU is a tuple of probabilistic algo-
rithms (G,P,V) with the following syntax:

• crs ← G(1λ): A PPT algorithm that on input a security parameter λ outputs
a common reference string crs.

• (y, π) ← P(crs, (M,x,L, t)): A probabilistic algorithm that on input a common
reference string crs, and a statement (M,x,L, t), outputs a value y and a proof
π.

• b ← V(crs, (M,x, y, L, t), π): A PPT algorithm that on input a common ref-
erence string crs, a statement (M,x, y, L, t), and a proof π, outputs a bit b
indicating whether to accept or reject.

We require the following properties:

• Completeness: For every λ ∈ N and (M,x, y, L, t) ∈ L where M has access
to n ≤ 2λ words in memory and t ≤ 2λ,

Pr

⎡
⎣
crs ← G(1λ)
(y, π) ← P(crs, (M,x,L, t))
b ← V(crs, (M,x, y, L, t), π)

: b = 1

⎤
⎦ = 1.

• Soundness for P: For all non-uniform polynomial-time provers P� =
{P�

λ}λ∈N and every polynomial T , there is a negligible function negl such
that for every λ ∈ N, it holds that

Pr
[
crs ← G(1λ)
((M,x, y, L), π) ← P�

λ(crs) :
V(crs, (M,x, y, L, t), π) = 1
∧ (M,x, y, L, t) �∈ L

]
≤ negl(λ),

where t = T (λ).
• Succinctness: There exist polynomials q1, q2 such that for any λ ∈ N, crs in

the support of G(1λ), (M,x,L, t) ∈ L where M uses n ≤ 2λ words in memory,
t ≤ 2λ, and (y, π) in the support of P(crs, (M,x,L, t)), it holds that

• workV(crs, (M,x, y, L, t), π) ≤ q1(λ, |(M,x)|, L, log t),
• |y| ≤ L, and
• |π| ≤ q2(λ,L, log t).

642 C. Freitag et al.

• Optimal prover depth: There exists polynomials q1 and q2 such that for
all λ ∈ N and (M,x, t, L, y) ∈ L where M has access to n ≤ 2λ words in
memory and t ≤ 2λ, it holds that

depthP(crs, (M,x,L, t)) = t + q1(λ, |(M,x)|, L, log t)

and the total number of processors used by P is in q2(λ, log t).

If the above holds for L = LU , we say that (G,P,V) is a non-interactive SPARG
for polynomial-time RAM computation.

4 Updatable RAM Delegation

In this section, we discuss the main building block for our construction—
updatable RAM delegation with quasilinear overhead and local opening.

4.1 The CJJ Delegation Scheme

Our starting point will be the recent delegation scheme due to Choudhuri, Jain,
and Jin [22], henceforth referred to as the CJJ construction. We start by giving
an overview. We note that they present their construction for a specific RAM
machine M , but we simply treat this as the universal RAM machine U .

The CJJ construction relies on the following building blocks:

– A hash tree that supports local reads and writes. This can be instantiated
from collision-resistant hash functions.

– A no-signalling somewhere-extractable commitment scheme, with a locality
parameter � corresponding to the size of extracted sets, which in particular
determines the efficiency of the commitment.

– A non-interactive batch argument (BARG) for NP. This is an argument where
k instances of a language can certified with a proof that only depends sub-
linearly on k.

At a high level, their construction follows an approach in recent works (see,
e.g., [29,37,38]) which uses a locally updatable hash tree (based on Merkle
trees) to succinctly prove that each step of RAM computation was done cor-
rectly. Specifically, to prove that a RAM machine transitions from configuration
cf to configuration cf ′ in t steps, they run the computation while simultaneously
maintaining a hash tree of the memory at each step. Each step can then be ver-
ified succinctly (in particular in time independent of |cf|) by verifying succinct
local openings to the hash tree. To turn this approach into a full-fledged dele-
gation scheme, previous works have employed a combination of succinct proof
systems with various extractability properties to show soundness.

In the CJJ construction, they follow this framework. After running the com-
putation along with computing a short opening to the hash tree at each step,
they give a no-signalling commitment c to the sequence of t updates to the
hash tree. They then prove, using a BARG, that each step of the computation

Parallelizable Delegation from LWE 643

was done correctly and consistently. Specifically, the BARG is for the relation
computed by the circuit Cstep that on input an index i and openings to c cor-
responding to the ith step of computation, checks that (1) these openings are
consistent with c, (2) correspond to a valid step of computation, and (3) are
valid openings to the hash tree. To show that this construction is sound, they
rely on a combination of BARG soundness, the no-signalling extraction of the
commitment scheme, and collision resistance. They show that this results in a
scheme for (deterministic) RAM delegation which can be based solely on LWE.

In the full version, we discuss the differences between the notion of RAM
delegation satisfied by this construction, and Definition 3, and show that the
CJJ scheme satisfies our notion of RAM delegation. As their scheme is based on
LWE, the following holds.

Theorem 4.1 [22]. Assuming the hardness of LWE, there exists a publicly ver-
ifiable, succinct RAM delegation scheme for Ldel.

4.2 Updatable Delegation with Quasilinear Overhead

For our SPARG construction, we will be concerned with delegation schemes
with tight prover efficiency. In this section, we analyze the prover efficiency of
the CJJ construction, and then show that it can be made quasilinear in t when
the prover is additionally given a witness for the RAM computation. Along the
way, we introduce the notion of Updatable Delegation, which enables the desired
prover efficiency and may be of independent interest.

We start by looking at the efficiency of each building block in the CJJ scheme
individually.

– Hash tree: The hash tree used in [22] is effectively a Merkle tree based on a
collision resistant hash function. Computing the hash tree of a given config-
uration cf can be done in time |cf| · poly(λ), but when given the hash tree
already in memory, updating a word in the tree can be done in time logarith-
mic in the size of the memory of the RAM program, and so can be done in
time poly(λ).

– BARG: Recall that the BARG enables proving k instances of an NP rela-
tion computable by a circuit C. At a high level, the BARG prover in the
construction due to [22] does the following:
1. For each i ∈ [k], it first computes a PCP πi for the i’th statement. This

takes time k · poly(λ, |C|). Let L ∈ poly(λ, |C|) denote the length of a
single PCP.

2. It then commits columnwise to the PCPs. Creating L commitments to k
bits each takes time L ·k ·poly(λ) (similar to below, the commitment is a
variation on a Merkle tree, where committing can be done in time linear
in the committed message).

3. It then applies a correlation-intractable hash to the circuit C and com-
mitment. As shown in [22], the hash can be evaluated in time poly(λ,
log k, |C|).

644 C. Freitag et al.

4. Next, it samples PCP queries for a single PCP using randomness
derived from the correlation-intractable hash. They use a PCP requir-
ing poly(λ, log |C|) queries that can be sampled in time poly(λ, |C|).

5. For each PCP, it then opens the query locations in the commitments.
For each PCP, this corresponds to opening a bit in poly(λ, log |C|) com-
mitments. As each value can be opened in time poly(λ, log k) due to the
Merkle-tree structure of the commitment, putting everything together
this takes time k · poly(λ, log k, log |C|).

6. Finally, it recurses by running a BARG for k/2 instances, where they
show that the circuit for the smaller BARG has size poly(λ, log k, log |C|).
Overall, there are log k recursions.

Putting everything together, the BARG prover runs in time k · poly(λ, |C| ,
log k).

– No-signalling somewhere-extractable commitment: The no-signalling commit-
ment construction is parameterized by an integer �, which determines the
number of bits extractable from the commitment scheme. For a fixed param-
eter �, the construction consists of � independent Merkle trees. Each Merkle
tree consists of an FHE encryption of the committed message at the leaves,
and uses FHE evaluation to compute the value of each node based on the
values of its child nodes. Thus, computing the commitment to a message of
length N can be done in time � · N · poly(λ), because it requires computing �
Merkle trees, which each require encrypting N bits and performing N FHE
evaluations. Moreover, local openings to a single bit in this commitment can
be computed and verified in time � · poly(λ, log N), as openings consist of an
authentication path in each of the � Merkle trees.

Putting everything together, to delegate a t-time computation using the CJJ
scheme, the prover (a) creates a hash tree of the starting configuration, (b) runs
the computation while simultaneously updating the hash tree, (c) commits to the
sequence of updates to the hash tree, where each update additionally contains
some efficiently computable auxiliary information, (d) creates local openings
in the commitment as a witness to each step of computation, and (e) proves
that the computation is correct using a BARG for the circuit Cstep. From the
above analysis, (a) takes the time to run Del.D(dk, cf) when cf is the starting
configuration, (b) takes time t · poly(λ), (c) takes time � · N · poly(λ) where �
is the length of a single update and N is the length of the committed message,
(d) takes time (t · �) · � · poly(λ, log N) to open � bits for each of the t steps, and
(e) takes time t · poly(λ, |Cstep| , log t). It remains to discuss the specific values
|Cstep|, �, and N used in the protocol. The parameter � corresponds to the length
of the values needed verify a single step of computation, by computing that step
and verifying the openings in the hash tree, and so � ∈ poly(λ) (for a fixed
polynomial that depends on the size of the universal RAM machine U). The
committed message consists of these values for each of the t steps, and thus
N = t · �. Finally, the circuit Cstep consists of computing a single step of the
RAM program and verifying the openings to the hash tree and commitment,

Parallelizable Delegation from LWE 645

which together takes time � · poly(λ, log N) ∈ poly(λ, log t). All together, this
shows that the prover runs in time

Time
(
Del.P(1λ, (cf, cf ′, t))

)

≤ Time (Del.D(dk, cf)) + t · poly(λ) + � · N · poly(λ) + t · �2 · poly(λ, log N)
+ t · poly(λ, |Cstep| , log t)

≤ |cf| · poly(λ) + t · poly(λ) + t · poly(λ) + t · poly(λ, log t) + t · poly(λ, log t)
∈ |cf| · poly(λ) + t · poly(λ, log t).

Achieving Quasilinear Efficiency. For our SPARG construction, it will be
crucial that the running time of the delegation prover Del.P does not depend on
n, the memory size of the RAM program. Therefore, the CJJ prover efficiency
does not suffice for us, since the running time of the prover on (cf, cf ′, t) depends
linearly on |cf|.

We observe that this dependence on |cf| is due to the fact that the prover
is given an arbitrary starting configuration cf, and must compute a Merkle tree
on the memory given in cf. For our SPARG construction, we are not concerned
with RAM computation from an arbitrary starting point cf. Instead, we will
start from an initial (short) configuration cf0, for which we can afford to run in
time proportional to |cf0| to generating the initial hash tree.

However, this does not entirely solve the problem, because rather than prov-
ing that cf0 results in the final configuration cf ′ after t steps of computation, we
will instead determine “midpoints”—namely, configurations cf1, . . . , cfm, where
cfm = cf ′. We will then rely on the delegation scheme to prove statements of
the form (cf0, cf1, k1), (cf1, cf2, k2), . . . , (cfm−1, cfm, km), that is, that starting
at cfi−1 and running for some number of steps ki results in configuration cfi.
The main idea below is that when we prove each statement (cfi−1, cfi, ki), we
will already have information about cfi−1 from proving the previous statement.
In particular, we will show that we can already have the Merkle tree for cfi−1 in
memory when we start the ith statement, rather than creating it from scratch.

This exact setting was addressed in [29], where they showed that the hash
tree can be instantiated with collision-resistant hash functions to achieve the
following guarantees:

1. Computing the hash tree for the initial configuration can be done in time
|cf0| · poly(λ).

2. Given a hash tree in memory corresponding to any configuration cf, it holds
that the computation can be run for any number of steps k while updating
the hash tree with only poly(λ) additive overhead. This implies that if cf
results in cf ′ after k steps of computation, and we have already computed a
hash tree for cf, then we can compute the hash tree for cf ′ in time k+poly(λ).

The requirements for the hash tree of [22] (which is based on [37]) are satisfied
by that of [29] (see [29] for a more in-depth discussion and comparison between
various definitions). Therefore, we observe that the CJJ construction satisfies
the following notion.

646 C. Freitag et al.

Definition 5. Consider a RAM delegation scheme (Del.S,Del.D,Del.P,Del.V)
with the following syntax modifications and additional algorithm Del.Update:

– (rt, tree) = Del.D(dk, cf): The digest algorithm additionally outputs a value
tree.

– (rt′, tree′, w) = Del.Update(dk, t, tree): The update algorithm takes as input a
digest key dk, integer t, and a value tree, and outputs a digest rt′, a value
tree′ and a witness w.

– π ← Del.P(crs, (cf, cf ′, t), w): The prover additionally takes as input a witness
w. We require that completeness is preserved when Del.P receives the witness
w computed by Del.Update.

We note that tree and w can be communicated as pointers to memory. In par-
ticular, this implies that Del.D(dk, cf) still runs in time |cf| · poly(λ).

We say that the scheme is β-updatable if for any λ ∈ N, statement
(cf, cf ′, t) ∈ Ldel, keys (crs, dk) in the support of Del.S(1λ), (rt, tree) =
Del.D(dk, cf), and (rt′, tree′, w) = Del.Update(dk, t, tree),

(rt′, tree′) = Del.D(dk, cf ′)

and Del.Update runs in t+β(λ) steps with β(λ) processors. Furthermore, for any
two consecutive updates of length t1 and t2 starting at initial state (rt0, tree0), let
(rt1, tree1, w1) = Del.Update(dk, t1, tree0) and (rt2, tree2, w2) = Del.Update(dk, t2,
tree1). Then, the output (rt2, tree2, w2) can be computed in time t1 + t2 + β(λ).
When β(λ) ∈ poly(λ), we say the scheme is updatable.

We emphasize that Del.P no longer has access to the hash tree in memory,
as this would create memory conflicts between Del.P and Del.Update. Instead,
we can view Del.Update as the algorithm that runs the computation on the hash
tree, and collects all of the information needed to prove correctness—namely,
the hash tree updates, which make up the witness w. The prover Del.P can then
use this witness to form the proof. In the following definition, we quantify the
prover efficiency in an updatable delegation scheme.

Definition 6. An updatable RAM delegation scheme satisfies α-prover effi-
ciency if for all λ ∈ N, (crs, dk) in the support of Del.S(1λ), statement
(cf, cf ′, t) ∈ Ldel using n ≤ 2λ memory with t ≤ 2λ, (rt, tree) = Del.D(dk, cf),
and (rt′, tree′, w) = Del.Update(dk, t, tree), it holds that

Time
(
Del.P(crs, (cf, cf ′, t), w)

)
= α(λ, t).

Based on the above discussion, the CJJ scheme can be made to satisfy
updatability and quasi-linear prover efficiency. Specifically, we will instantiate
the hash tree in the CJJ construction with that of [29], and modify the delega-
tion scheme as follows:

– Del.D(1λ, cf) will output rt as before, as the root of the hash tree, and set tree
to be the full hash tree.

Parallelizable Delegation from LWE 647

– Del.Update(dk, t, tree) will start with the hash tree in tree, run the computa-
tion for t steps while updating the hash tree, and then output (rt′, tree′, w)
where rt′ is the resulting root, tree′ is the updated tree, and w is the list of
all authentication paths for the t updates.

– Del.P(crs, (cf, cf ′, t), w) will use the updates in w to run the prover algorithm,
rather than computing them from scratch.

By combining the above discussion with Theorem 4.1, we get the following.

Theorem 4.2. Assuming the hardness of LWE, there exists a publicly verifi-
able, succinct, and updatable RAM delegation scheme (Del.S,Del.D,Del.P,Del.V,
Del.Update) for Ldel with α-prover efficiency for α(λ, t) ≤ t · poly(λ, log t).

The proof of Theorem4.2 is deferred to the full version.

4.3 Local Opening

Given a RAM delegation scheme in which the verifier receives digests of the full
configuration, we will also require a scheme with a very natural local opening
property: a set of locations can be locally opened with respect to a digest, pro-
viding a short proof of the opening. As most RAM delegation schemes employ an
underlying Merkle tree, these are amenable to efficient local openings whenever
the Merkle tree is already in memory. In this full version, we formally define the
local opening property by giving additional algorithms (Del.Open,Del.VerOpen)
to the updatable delegation scheme to capture this notion. We also show that
our updatable RAM delegation scheme satisfies local opening (by relying on the
local opening property of the [29] hash tree), and therefore get the following
corollary to Theorem 4.2.

Corollary 1. Assuming the hardness of LWE, there exists a publicly verifiable,
succinct, and updatable RAM delegation scheme for Ldel with local opening and
α-updatable prover efficiency for α(λ, t) ≤ t · poly(λ, log t).

5 SPARGs for P

In this section, we give our construction of SPARGs for (sequential) RAM com-
putations. Our construction relies on a β-updatable RAM delegation scheme
Del = (Del.S,Del.D,Del.P,Del.V,Del.Update,Del.Open,Del.VerOpen) for Ldel

with local opening and α-prover efficiency (see Sect. 3.3). We use the following
parameters when proving a statement (M,x,L, t).

– n ≤ 2λ is the memory used by M .
– α is the function denoting the prover efficiency of Del. We let α� � α(λ, t)/t

be the multiplicative overhead, with respect to t, of running Del.P.
– β is the function denoting the efficiency of Del.Update.
– γ � α� + 1 is the fraction of remaining steps done in each chunk of the

computation.

648 C. Freitag et al.

Fig. 2. SPARG for LU .

Theorem 5.1. Let Del be a publicly verifiable, succinct, and updatable delega-
tion scheme for Ldel with local opening and α-prover efficiency. Then, (G,P,V),
given in Fig. 2, is a SPARG for LU . Specifically, for all λ ∈ N and (M,x, y,
L, t) ∈ LU where M has access to n ≤ 2λ words in memory and t ≤ 2λ, the
following hold. Let α� be the multiplicative overhead of Del.P with respect to the
number of steps of computation. Then:

Parallelizable Delegation from LWE 649

– The depth of the prover is bounded by t+L+(α�)2 ·poly(λ, |M,x|, log t) when
using poly(λ) + α� log t processors.

– The proof size is bounded by α� · poly(λ, log t).
– The work of the verifier is bounded by α� · L · poly(λ, |M,x|, log t).

By Corollary 1, it holds that there exists an updatable RAM delegation
scheme with local opening based on LWE where α� ∈ poly(λ, log t). Therefore,
by combining Theorem 5.1 with Corollary 1, we get the following corollary.

Corollary 2. Assuming the hardness of LWE, there exists a SPARG for LU .

The proof of Theorem5.1 is deferred to the full version.

6 Application to Verifiable Delay Functions

In this section, we show that SPARGs for P and any sequential function imply
a VDF. We note that a sequential function is a minimal assumption as VDFs
directly imply sequential functions. We use the following building blocks and
parameters.

• A sequential function SF = (SF.Gen,SF.Sample,SF.Eval). Let pSF, qSF be the
polynomials from the honest evaluation property of SF such that SF.Eval(1λ,
·, ·, t) runs in time t+ pSF(λ, log t) with qSF(λ, log t) processors. Let �SF be the
polynomial such that the output length is bounded by �SF(λ, log t).

• A SPARG (G,P,V) for any L ∈ LU
par containing SF.Eval.

Construction. Our VDF construction VDF = (VDF.Gen,VDF.Sample,VDF.
Eval,VDF.Verify) is as follows.

• pp ← VDF.Gen(1λ):
1. Sample crs ← G(1λ) and k ← SF.Gen(1λ).
2. Output pp = (crs, k).

• x ← VDF.Sample(1λ, pp):
1. Sample and output x ← SF.Sample(1λ, k).

• (y, π) ← VDF.Eval(1λ, pp, x, t):
1. Recall that pSF, qSF, �SF are the polynomials denoting the efficiency

of VDF.Eval. Let statement = (SF.Eval, (1λ, k, x, t), �SF(λ, log t), t +
pSF(λ, log t), qSF(λ, log t)).

2. Compute and output (y, π) ← P(1λ, crs, statement).
• b ← VDF.Verify(1λ, pp, x, t, (y, π)):

1. Let statement′ = (SF.Eval, (1λ, k, x, t), y, �SF(λ, log t), t + pSF(λ, log t),
qSF(λ, log t)) (note that statement′ differs from statement used by
VDF.Eval as it contains the output y).

2. Output b ← V(1λ, crs, statement′, π).

Theorem 6.1. Assuming the existence of a SPARG for LU
par and a sequential

function, there exists a VDF.

Here, LU
par is the notion of LU extended to parallel computations (this is defined

formally in the full version). In the full version, we show that a SPARG for LU
par

can be based on LWE, which gives the following.

650 C. Freitag et al.

Corollary 3. Assuming the hardness of LWE and a sequential function, there
exists a VDF.

The proof of Theorem6.1 is deferred to the full version.

Acknowledgements. This work was supported in part by NSF CNS-2149305, CNS-
2128519, NSF Award SATC-1704788, NSF Award RI-1703846, AFOSR Award FA9550-
18-1-0267, DARPA Award HR00110C0086, and a JP Morgan Faculty Award. Rafael
Pass’s work was done partially while visiting Tel-Aviv University. Cody Freitag’s work
was done partially during an internship at NTT Research, and he is also supported in
part by the National Science Foundation Graduate Research Fellowship under Grant
No. DGE-2139899. Naomi Sirkin was also supported in part by a JP Morgan AI
Research PhD Fellowship. The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily representing the official poli-
cies, either expressed or implied, of NSF, DARPA or the U.S. Government. The U.S.
Government is authorized to reproduce and distribute reprints for governmental pur-
poses notwithstanding any copyright annotation therein.

References

1. Alwen, J., Blocki, J., Pietrzak, K.: Depth-robust graphs and their cumulative mem-
ory complexity. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10212, pp. 3–32. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
56617-7 1

2. Alwen, J., Blocki, J., Pietrzak, K.: Sustained space complexity. In: Nielsen, J.B.,
Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 99–130. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-78375-8 4

3. Alwen, J., Chen, B., Kamath, C., Kolmogorov, V., Pietrzak, K., Tessaro, S.: On
the complexity of scrypt and proofs of space in the parallel random oracle model.
In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp.
358–387. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-
5 13

4. Alwen, J., Serbinenko, V.: High parallel complexity graphs and memory-hard func-
tions. In: STOC, pp. 595–603. ACM (2015)

5. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and
the hardness of approximation problems. J. ACM 45(3), 501–555 (1998)

6. Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations in poly-
logarithmic time. In: STOC, pp. 21–31. ACM (1991)

7. Barak, B., Goldreich, O.: Universal arguments and their applications. SIAM J.
Comput. 38(5), 1661–1694 (2008)

8. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable zero knowledge with
no trusted setup. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11694, pp. 701–732. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-26954-8 23

9. Ben-Sasson, E., Chiesa, A., Gabizon, A., Riabzev, M., Spooner, N.: Interactive
oracle proofs with constant rate and query complexity. In: ICALP. LIPIcs, vol. 80,
pp. 40:1–40:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)

10. Ben-Sasson, E., et al.: Zerocash: decentralized anonymous payments from bitcoin.
In: IEEE Symposium on Security and Privacy, pp. 459–474. IEEE Computer Soci-
ety (2014)

https://doi.org/10.1007/978-3-319-56617-7_1
https://doi.org/10.1007/978-3-319-56617-7_1
https://doi.org/10.1007/978-3-319-78375-8_4
https://doi.org/10.1007/978-3-662-49896-5_13
https://doi.org/10.1007/978-3-662-49896-5_13
https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1007/978-3-030-26954-8_23

Parallelizable Delegation from LWE 651

11. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E.: On the concrete efficiency of
probabilistically-checkable proofs. In: STOC, pp. 585–594. ACM (2013)

12. Ben-Sasson, E., Chiesa, A., Goldberg, L., Gur, T., Riabzev, M., Spooner, N.:
Linear-size constant-query IOPs for delegating computation. In: Hofheinz, D.,
Rosen, A. (eds.) TCC 2019. LNCS, vol. 11892, pp. 494–521. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-36033-7 19

13. Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt, M.,
Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 31–60. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53644-5 2

14. Ben-Sasson, E., Sudan, M.: Short PCPS with polylog query complexity. SIAM J.
Comput. 38(2), 551–607 (2008)

15. Bitansky, N., et al.: The hunting of the SNARK. J. Cryptol. 30(4), 989–1066 (2017)
16. Bitansky, N., Chiesa, A.: Succinct arguments from multi-prover interactive proofs

and their efficiency benefits. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO
2012. LNCS, vol. 7417, pp. 255–272. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-32009-5 16

17. Block, A.R., Holmgren, J., Rosen, A., Rothblum, R.D., Soni, P.: Public-coin zero-
knowledge arguments with (almost) minimal time and space overheads. In: Pass,
R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12551, pp. 168–197. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-64378-2 7

18. Block, A.R., Holmgren, J., Rosen, A., Rothblum, R.D., Soni, P.: Time- and space-
efficient arguments from groups of unknown order. In: Malkin, T., Peikert, C. (eds.)
CRYPTO 2021. LNCS, vol. 12828, pp. 123–152. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-84259-8 5

19. Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 757–
788. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 25

20. Brakerski, Z., Holmgren, J., Kalai, Y.T.: Non-interactive delegation and batch NP
verification from standard computational assumptions. In: STOC, pp. 474–482.
ACM (2017)

21. Chia network. https://chia.net/. Accessed 17 May 2019
22. Choudhuri, A.R., Jain, A., Jin, Z.: Snargs for P from LWE. In: FOCS, pp. 68–79.

IEEE (2021)
23. Costello, C., et al.: Geppetto: versatile verifiable computation. In: IEEE Sympo-

sium on Security and Privacy, pp. 253–270. IEEE Computer Society (2015)
24. Döttling, N., Garg, S., Malavolta, G., Vasudevan, P.N.: Tight verifiable delay func-

tions. In: Galdi, C., Kolesnikov, V. (eds.) SCN 2020. LNCS, vol. 12238, pp. 65–84.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57990-6 4

25. Dryja, T., Liu, Q.C., Park, S.: Static-memory-hard functions, and modeling the
cost of space vs. time. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS,
vol. 11239, pp. 33–66. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03807-6 2

26. Dwork, C., Goldberg, A., Naor, M.: On memory-bound functions for fighting spam.
In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 426–444. Springer, Hei-
delberg (2003). https://doi.org/10.1007/978-3-540-45146-4 25

27. Dwork, C., Naor, M., Wee, H.: Pebbling and proofs of work. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 37–54. Springer, Heidelberg (2005). https://
doi.org/10.1007/11535218 3

28. Ephraim, N., Freitag, C., Komargodski, I., Pass, R.: Continuous verifiable delay
functions. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107,
pp. 125–154. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3 5

https://doi.org/10.1007/978-3-030-36033-7_19
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/978-3-642-32009-5_16
https://doi.org/10.1007/978-3-642-32009-5_16
https://doi.org/10.1007/978-3-030-64378-2_7
https://doi.org/10.1007/978-3-030-84259-8_5
https://doi.org/10.1007/978-3-030-84259-8_5
https://doi.org/10.1007/978-3-319-96884-1_25
https://chia.net/
https://doi.org/10.1007/978-3-030-57990-6_4
https://doi.org/10.1007/978-3-030-03807-6_2
https://doi.org/10.1007/978-3-030-03807-6_2
https://doi.org/10.1007/978-3-540-45146-4_25
https://doi.org/10.1007/11535218_3
https://doi.org/10.1007/11535218_3
https://doi.org/10.1007/978-3-030-45727-3_5

652 C. Freitag et al.

29. Ephraim, N., Freitag, C., Komargodski, I., Pass, R.: SPARKs: succinct paralleliz-
able arguments of knowledge. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT
2020. LNCS, vol. 12105, pp. 707–737. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-45721-1 25

30. Ethereum foundation. https://www.ethereum.org/. Accessed 17 May 2019
31. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and

signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

32. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: STOC, pp. 99–108. ACM (2011)

33. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive
proofs for muggles. J. ACM 62(4), 27:1–27:64 (2015)

34. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

35. Holmgren, J., Rothblum, R.: Delegating computations with (almost) minimal time
and space overhead. In: FOCS, pp. 124–135. IEEE Computer Society (2018)

36. Jawale, R., Kalai, Y.T., Khurana, D., Zhang, R.: Snargs for bounded depth com-
putations and PPAD hardness from sub-exponential LWE. In: STOC, pp. 708–721.
ACM (2021)

37. Kalai, Y., Paneth, O.: Delegating RAM computations. In: Hirt, M., Smith, A. (eds.)
TCC 2016. LNCS, vol. 9986, pp. 91–118. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53644-5 4

38. Kalai, Y.T., Paneth, O., Yang, L.: How to delegate computations publicly. In:
STOC, pp. 1115–1124. ACM (2019)

39. Kalai, Y.T., Raz, R., Rothblum, R.D.: How to delegate computations: the power
of no-signaling proofs. In: STOC, pp. 485–494. ACM (2014)

40. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended
abstract). In: STOC, pp. 723–732. ACM (1992)

41. Lombardi, A., Vaikuntanathan, V.: Fiat-Shamir for repeated squaring with appli-
cations to PPAD-hardness and VDFs. In: Micciancio, D., Ristenpart, T. (eds.)
CRYPTO 2020. LNCS, vol. 12172, pp. 632–651. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-56877-1 22

42. Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–1298
(2000)

43. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical veri-
fiable computation. In: IEEE Symposium on Security and Privacy, pp. 238–252.
IEEE Computer Society (2013)

44. Pietrzak, K.: Simple verifiable delay functions. In: ITCS. LIPIcs, vol. 124, pp.
60:1–60:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)

45. Reingold, O., Rothblum, G.N., Rothblum, R.D.: Constant-round interactive proofs
for delegating computation. SIAM J. Comput. 50(3) (2021)

46. Ron-Zewi, N., Rothblum, R.D.: Local proofs approaching the witness length
[extended abstract]. In: FOCS, pp. 846–857. IEEE (2020)

47. Wesolowski, B.: Efficient verifiable delay functions. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019. LNCS, vol. 11478, pp. 379–407. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17659-4 13

48. Wu, H., Zheng, W., Chiesa, A., Popa, R.A., Stoica, I.: DIZK: a distributed zero
knowledge proof system. In: USENIX Security Symposium, pp. 675–692. USENIX
Association (2018)

https://doi.org/10.1007/978-3-030-45721-1_25
https://doi.org/10.1007/978-3-030-45721-1_25
https://www.ethereum.org/
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-662-53644-5_4
https://doi.org/10.1007/978-3-662-53644-5_4
https://doi.org/10.1007/978-3-030-56877-1_22
https://doi.org/10.1007/978-3-030-56877-1_22
https://doi.org/10.1007/978-3-030-17659-4_13

How to Sample a Discrete Gaussian
(and more) from a Random Oracle

George Lu1(B) and Brent Waters1,2

1 University of Texas at Austin, Austin, USA
{gclu,bwaters}@cs.utexas.edu
2 NTT Research, Austin, USA

Abstract. The random oracle methodology is central to the design of
many practical cryptosystems. A common challenge faced in several sys-
tems is the need to have a random oracle that outputs from a struc-
tured distribution D, even though most heuristic implementations such
as SHA-3 are best suited for outputting bitstrings.

Our work explores the problem of sampling from discrete Gaussian
(and related) distributions in a manner that they can be programmed
into random oracles. We make the following contributions:

– We provide a definitional framework for our results. We say that a
sampling algorithm Sample for a distribution is explainable if there
exists an algorithm Explain which, when given an x in the support
of D, outputs an r ∈ {0, 1}n such that Sample(r) = x. Moreover,
if x is sampled from D the explained distribution is statistically
close to choosing r uniformly at random. We consider a variant of
this definition that allows the statistical closeness to be a “precision
parameter” given to the Explain algorithm. We show that sampling
algorithms which satisfy our ‘explainability’ property can be pro-
grammed as a random oracle.

– We provide a simple algorithm for explaining any sampling algo-
rithm that works over distributions with polynomial sized ranges.
This includes discrete Gaussians with small standard deviations.

– We show how to transform a (not necessarily explainable) sam-
pling algorithm Sample for a distribution into a new Sample′ that
is explainable. The requirements for doing this is that (1) the prob-
ability density function is efficiently computable (2) it is possible
to efficiently uniformly sample from all elements that have a proba-
bility density above a given threshold p, showing the equivalence of
random oracles to these distributions and random oracles to uniform
bitstrings. This includes a large class of distributions, including all
discrete Gaussians.

– A potential drawback of the previous approach is that the transfor-
mation requires an additional computation of the density function.
We provide a more customized approach that shows the Miccancio-
Walter discrete Gaussian sampler is explainable as is. This suggests
that other discrete Gaussian samplers in a similar vein might also
be explainable as is.

B. Waters—Supported by NSF CNS-1908611, CNS-1414082, Packard Foundation Fel-
lowship, and Simons Investigator Award.

c© The Author(s), under exclusive license to Springer Nature Switzerland 2022
E. Kiltz and V. Vaikuntanathan (Eds.): TCC 2022, LNCS 13748, pp. 653–682, 2022.
https://doi.org/10.1007/978-3-031-22365-5_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22365-5_23&domain=pdf
https://doi.org/10.1007/978-3-031-22365-5_23

654 G. Lu and B. Waters

1 Introduction

The random oracle methodology proposed by Bellare and Rogaway [5] allows
one to develop a cryptosystem under the premise that all users have access to
an oracle that outputs a random string for each queried input. In practice, when
deploying said systems, the calls to the oracle are heuristically replaced with
calls to an appropriate hash function, such as SHA-3. While the use of such a
heuristic comes with some controversy [13], the methodology has been leveraged
for a broad spectrum of problems such as chosen-ciphertext security [17] and
non-interactive zero knowledge proofs [16], to name just a few. In addition, it
has been key to the development of many practical and deployed cryptosystems.

Although the heuristic of replacing a random oracle with a hash function
such as SHA-3 is naturally aligned with oracles that output random bitstrings,
there are many examples of cryptosystems that require random oracles to out-
put from other distributions. For instance, the seminal identity-based encryption
(IBE) scheme of Boneh-Franklin [7] uses a random oracle that outputs a bilin-
ear group element, as does the Boneh-Lynn-Shacham signature scheme [8] and
the multi-authority Attribute-Based Encryption (ABE) systems of [26]. Other
examples include the GPV IBE scheme [19], which needs a random oracle to
output a vector over Zp for some prime p as well as RSA-based full domain hash
signatures [6], which need an element over ZN for a composite N . Other works
explored constructing random oracles which hash into elliptic curves [20,23].

If one delves deeper into the deployment of such cryptosystems, we can see
that there is no specialized hash function for each of these different domains.
Instead, to create a random oracle scheme for a certain distribution D (e.g.
random elements over a particular bilinear group), one will utilize a sampling
function Sample. The function Sample will take in a string r and outputs some-
thing in the desired domain. The distribution of calling Sample on a random
string should be statistically close to that of a given distribution D.

While achieving statistical (or computational) closeness to a given distribu-
tion is a necessary property of a sampling function, it is not sufficient, as the
sampling function may not allow for the “programmability” of a random oracle
necessary in a security proof. For example, suppose we ran the BLS signature
scheme over a bilinear group G of prime order p with generator g, public key
ga and secret key a ∈ Zp. In the scheme, a signature on a message m is cre-
ated as H(m)a where H(·) is an oracle function that outputs a bilinear group
element. Suppose we implement H by employing a random oracle H ′ that out-
puts bitstrings alongside a Sample algorithm that computes gr (interpreting r
as an integer) so that H(m) = gH′(m). Such an instantiation will indeed output
elements statistically close to random bilinear group elements so long as r is
sufficiently long. However, this results in a completely broken cryptosystem. To
see this, observe that if an attacker can obtain a signature σ on message m, the
attacker can then create a signature σ̃ on any other message m̃ by computing
σ̃ = σH′(m̃)/H′(m). Similar counterexamples exist for the other cryptosystems
mentioned.

How to Sample a Discrete Gaussian (and more) from a Random Oracle 655

The more general goal of defining sufficient conditions of replacing crypto-
graphic functionalities with each other has been explored in the line of work on
indifferentiability initiated in [29], and further expanded on in papers such as
[32]. Indeed, the application of the indifferentiability framework with regard to
sampling from particular elliptic curve groups was explored in [11].

We define an important property for any sampler to also have a property we
call explainability. This can be viewed as a relaxation of indifferentiability spe-
cific to sampling functionalities. Roughly, given an element x in the domain, it
should be possible to efficiently “reverse sample” an r such that Sample(r) = x.
Moreover, the distribution of receiving an x from D and then outputting r from
reverse sampling should be close to just choosing r uniformly at random. Prior
works dealt with this issue with various levels of formality. For many of the afore-
mentioned works, ‘ad-hoc’ workarounds often invoking specific cryptographic
assumptions are used to obtain a proof from the plain random oracle model. In
bilinear groups, one often calls this a “hash-to-point” function which is present
for many bilinear groups, but not necessarily guaranteed. In general there can
exist distributions where sampling cannot be explained; consider if the function
Sample were a one way function.

Sampling and Explaining Discrete Gaussian Distributions
In this work we explore the problem of sampling and explaining discrete Gaus-
sian distributions. And consequentially, the problem of programming discrete
Gaussian distributions into random oracles. Discrete Gaussian distributions are
heavily utilized in the design and analysis of lattice-based cryptosystems, a
flourishing area of research over the last several years. The problem of sam-
pling discrete Gaussians has been well studied. While it is possible to sam-
ple such distributions using a very basic form of rejection sampling [19], fur-
ther works have both improved on the efficiency of the rejection sampling
method [10,12,25], as well as explore other techniques to sample from discrete
Gaussians [2,4,15,18,22,24,30,31,33,34] such as computing the cumulative den-
sity function, or taking convolutions of smaller standard deviation discrete Gaus-
sians. The goal of most of these works focus on making these samplers more
secure and usable, allowing for features such as being constant time, providing
better memory-time tradeoffs, or supporting a greater deal of offline precompu-
tation.

To the best of our knowledge, however, the problem of explaining and pro-
gramming random oracles with discrete Gaussian distributions has received lit-
tle attention to date, with a few exceptions. One exception is the universal
sampler work of Hofheinz et al. [21] that implicitly shows how indistinguisha-
bility obfuscation can be used to obtain a computational form of explainability
for any efficiently sampleable distribution from a random oracle. However, all
current indistinguishability obfuscation candidates are highly impractical and
at best invoke further computational assumptions that go beyond those typ-
ically used in lattice-based cryptosytems. Our solutions will be both statisti-
cal and significantly more efficient. In a more recent work [1], Agrawal, Wichs
and Yamada sketch how the rejection sampling algorithm of Gentry-Peikert and
Vaikuntanathan [19] is explainable.

656 G. Lu and B. Waters

Interestingly, the problem of explaining such distributions has come up in
multiple contexts. Brakerski, Cash, Tsabary, and Wee [9] gave a homomorphic
ABE scheme provably secure from the LWE assumption in the random ora-
cle model. At one point, their construction required a random oracle that out-
puts a discrete Gaussian. Since no such solution were available, the authors
worked around this by using a specialized sampler due to Lyubashevsky and
Wichs [28] which is a blend of a standard discrete Gaussian and a binary string.
Another example is in a recent multi-authority scheme of Datta, Komargodski
and Waters [14] where the need for a random oracle that outputs discrete Gaus-
sians arises. In this case the authors compensate by using a random oracle that
outputs an integer over a subexponentially large integer range that can hide a
smaller discrete Gaussian by smudging [3]. In this case the workaround resulted
in a subexponentially large modulus. (It should be noted that smudging was
used elsewhere in their analysis as well).

Finally, we want to emphasize that the need to explainably sample distri-
butions also arises outside of the random oracle model. An interesting example
comes up in the aforementioned work of [1], which requires public parameters
that can generate discrete Gaussians, but should look like uniform bitstrings. To
prove security the authors require the distribution to be explainable.

We advocate for this importance of studying the problem of explaining and
programming discrete Gaussian distributions. Ideally, such solutions will match
the performance of the prior works on discrete Gaussian sampling (e.g. [2,4,15,
18,22,24,30,31,33,34]) that were focused on performance, but not explainability.
Pursuing this goal is a natural and fundamental property given the important
role of discrete Gaussians in lattice-based cryptography.

1.1 Our Contributions

Our work consists of the following contributions.

Definitional
We begin by providing a definitional framework for describing our results. We
define an explainable sampling system for distribution {Dλ}λ to have two effi-
ciently computable algorithms. The first is a Sample(1λ; r) algorithm which is
parameterized by a security parameter and takes in random coins r. This algo-
rithm should output a distribution statistically close (in λ) to Dλ when r is cho-
sen randomly. The second algorithm is a randomized algorithm Explain(1λ, 1κ, x)
that takes as input the security parameter, a “precision” parameters κ and an
element x ∈ Dλ. Its job is to output an r such that Sample(1λ; r) = x. In addi-
tion, calling Explain on an x sampled from D should have a statistically close
distribution to that of simply choosing r at random.

A particular feature of our definition is the use of a tunable precision param-
eter κ where we only require a statistical distance of 1

κ , as opposed to requiring
the statistical distance (or computational advantage) to be negligibly close like
in indifferentiability. We show that this is sufficient to allow for proofs to go
through in programming a random oracle. Intuitively, the parameter κ will in a
reduction will be tuned to an attacker’s advantage. We note that the parameter

How to Sample a Discrete Gaussian (and more) from a Random Oracle 657

κ is only used in the Explain algorithm and is not a priori set in the Sample algo-
rithm used in a construction. Thus it can be adjusted to fit a particular attacker
with a particular advantage in a reduction. This relaxation allows us to prove
explainability, and hence show equivalence of random oracles, to a broader range
of distributions than otherwise.

We note that our use of a tunable precision parameter is the main defini-
tional difference between our framework and other works that explored reverse
sampling.

Sampling over Small Ranges
We next show a simple algorithm for explainable sampling over small ranges.
Suppose that Rλ is the range of distribution Dλ where |Rλ| grows polynomially
in λ. We show that any sampling algorithm Sample for {Dλ}λ is explainable.
One simply calls Sample repeatedly until it outputs a desired x or until |Rλ| · κ
attempts occur without success. This simple process illustrates the flexibility
given by the precision parameter in our framework.

A basic corollary extends this lemma to any distribution which is statisti-
cally close to a distribution with polynomial support. This implies sampling for
discrete Gaussians with poly-sized standard deviations.

Generic Sampling over Conforming Distributions
A drawback of the previous approach is that it is only applicable when the distri-
bution range is small, and thus cannot be used to explain, say, a discrete Gaus-
sian with a super-polynomial sized standard deviation. We show an approach
to generically sample from a broad class of distributions that includes discrete
Gaussians with large standard deviations. Unlike the prior solution we will not
be able to use a Sample algorithm as is and explain it. Instead we will transform
it into a new Sample′ algorithm that is explainable. For our transformation we
will require a distribution with:

1. A (not necessarily explainable) Sample algorithm for the distribution.
2. A probability density function PDens where PDens(1λ, x) returns a value pro-

portional to the probability x occurs for distribution Dλ.
3. A “heavy element sampler” SampleUniform where SampleUniform(1λ, p; r) is

an explainable sampling algorithm that samples uniformly from all elements
in the range of Dλ that have a probability density above p.

Given these we can build an explainable Sample′ algorithm that operates
by first sampling x′ from Sample. Then computing the probability density p′ of
x′. Next, it randomly “scales” p′ by choosing a random s0 ∈ [0, 1] and letting
p = s0p

′. Finally, it outputs x ← SampleUniform(1λ, p; r). We go on to show that
this distribution is explainable.

We additionally give an explicit heavy element sampler for the case of discrete
Gaussians, and in general observe that this primitive can be computed from
the probability density function for many natural distributions. This gives us
an explainable sampler for all discrete Gaussians with exponentially bounded
centers and standard deviations.

658 G. Lu and B. Waters

Finally, we show that something akin to the heavy element sampler is needed
for a truly generic transformation. We describe oracles which describe a distri-
bution which has the first two properties above, but not the third and show that
it is impossible to create an explainable sampler.

Explaining the Miccancio-Walter ’17 [30] Sampling Algorithm
While the previous technique can create a sampler for discrete Gaussians with
large standard deviations, it requires creating a new sampler rather than using
one as is. If such a sampler is in a critical path, the additional introduced over-
head of a high precision computation of the probability distribution function
may be undesirable.

As our final contribution, we provide a tailored explain algorithm to the MW
sampler. With any sampler, proving its explainability is vital to enabling its use
in random oracle based applications, and allows us to securely instantiate such
cryptosystems while carrying over the performance benefits of the sampler in
question. While we focus on the MW sampler in particular, we believe that the
ideas we demonstrate can extend to similar works [31] and provide techniques
for showing explainability of other classes of discrete Gaussian samplers.

2 Preliminaries

We say a function negl(x) is negligible if for all polynomials p(x), there exists
some N such that ∀x > N, negl(x) < 1

p(x) . A function is noticeable if it is not
negligible. The notation poly(x) will be used to refer to a polynomial function
in x, and EXP(x) will refer to a function ≤ 2poly(x). We will indicate sampling
an element from a probability distribution D as x

R←− D. Similarly, we will use
x

R←− S to indicate sampling over the uniform distribution on a set S. We will use
[a, b] and (a, b) to denote the closed and open interval from a to b respectively
on R. We will subscript the brackets with Z to denote the same interval on
Z. We will use range(D) to refer to the set of elements in D which occur with
probability > 0.

We will use log as logarithms base 2 if no base is explicitly specified. We use
�x�, �x	 to refer to the usual floor and ceiling rounding operations to the integers,
and �x	 to mean a randomized rounding to �x	 with probability x mod 1 and
otherwise �x�. We subscript rounding operations (e.g. �x�k) to round to Z/2k

instead of Z.
We use statistical distance between two probability distributions D1 and D2

to refer to

max
A ⊆ range(D1) ∪ range(D2)

∣
∣
∣Pr[x1

R←− D1, x1 ∈ A] − Pr[x2
R←− D2, x2 ∈ A]

∣
∣
∣

We will denote a family of distributions indexed by λ as {Dλ}λ. We say two
distribution families {D1

λ}λ, {D2
λ}λ are statistically close if exists some negligible

function negl(λ) such that the statistical distance between D1
λ and D2

λ is <
negl(λ).

How to Sample a Discrete Gaussian (and more) from a Random Oracle 659

We notate a randomized function f which takes as input x and random-
ness r by f(x; r). For brevity, the function may be written as f(x) when fresh
randomness r is used but does not need to be referenced.

Definition 1. We say a function PDens(1λ, x) with domain x ∈ Dλ computes
the probability density of a distribution family {Dλ}λ if it runs in poly(λ) time,
returns a nonnegative integer, and the distribution where element x′ is selected
with probability

PDens(1λ, x′)
∑

x∈Dλ
PDens(1λ, x)

is statistically close to Dλ
1.

Since PDens runs in poly(λ), it’s output length is at most polynomial, so we
can bound the maximum value with some PDFmax = PDFmax (λ) ≤ EXP(λ).2

The discrete Gaussian distribution on a set S ⊆ R with center c and standard
deviation σ is defined as the distribution where an element i ∈ S is picked with
probability

e− (i−c)2

2σ2

∑

x∈S e− (x−c)2

2σ2

When the set S is not specified, assume S = Z. This distribution is of particular
interest to cryptography due to its presence in the learning with errors assump-
tion and other lattice-based cryptosystems. For simplicity, we will mostly con-
sider univariate discrete gaussians, as, much like their continuous counterparts,
discrete gaussians over arbitrary multivariate lattices can be generated via a lin-
ear transformation on a set of independent univariate discrete gaussians, where
the linear transformation is derived from the covariance of the target discrete
gaussian.

3 Explainable Sampling

In this section we define our notion of explainable sampling. Intuitively a distri-
bution {Dλ}λ can be sampled by a function Sample(1λ; r) if Sample(1λ; r) gives
a distribution that is statistically close (in λ) to {Dλ}λ for when the string r is
chosen uniformly at random. We will further say that such a sampling algorithm
is explainable if given an element x in the domain of the distribution there is a
function Explain(1λ, x) → r′ that will output an r′ such that Sample(1λ; r′) → x.
Moreover, the process of picking random coins to sample an element compared to

1 While this definition is not the most general for probability distributions over infinite
sets, it will suffice for the cases we consider.

2 Note that we only require the probability density to be proportional to the probabil-
ity of an element being sampled, rather than equal to. As such, any PDens function
which outputs fixed precision reals can be converted to one which outputs integers
as above by simply multiplying a sufficiently large constant. We choose to define our
output to be integers to give a convenient fixed granularity.

660 G. Lu and B. Waters

first sampling a random element and then calculating the coins should be statisti-
cally close. This final property is what allows one to program in a random oracle.

Below we give our formal definitions of a distribution being sampleable and
a Sample algorithm being explainable. Then we sketch how a pair of algorithms
meeting this criteria can be used in a cryptographic game to sample from a
random oracle.

Definition 2. We say an algorithm Sample(1λ; r ∈ {0, 1}n) is a sampler for
probability distribution family {Dλ}λ if Sample runs in poly(λ) time and the
output of Sample(1λ; r) is statistically close to {Dλ}λ.

Definition 3. We say a Sample algorithm using n = n(λ) bits of randomness
is explainable if there exists a (likely randomized) algorithm Explain(1λ, 1κ, x)
such that Explain runs in poly(λ, κ) time, and there exists a negligible function
negl(λ) such that the statistical distance between the following two distributions
is at most 1

κ + negl(λ)3.

Distribution A

– r
R←− {0, 1}n.

– x ← Sample(1λ; r).
– Return r, x.

Distribution B

– r′ R←− {0, 1}n

– x ← Sample(1λ; r′).
– r ← Explain(1λ, 1κ, x).
– Return r, x.

We make a few brief remarks on our definition. First, notice that a call to
Explain(1λ, 1κ, x) algorithm is not explicitly required to even return an r such
that Sample(1λ; r) = x. However, the definition implies that if it does not do so
with sufficiently high probability, it will not meet our requirements.

Next, our Explain definition takes in a “fidelity” parameter κ in unary. Here
we only require that the explain algorithm is within 1/κ statistical difference
in the above game. While also requiring the explain algorithm to run in time
polynomial in κ and λ.

Our motivation is to allow for greater flexibility in the case where it might be
difficult to design a polytime explain algorithm where the statistical difference
is negligibly close, but that there is a natural running time versus precision
tradeoff in the explain algorithm. As we will see below, the latter is sufficient for
proving security in a game which uses said sampler to programs a random oracle.
Suppose there exists an attacker that wins with non-negligible probability ε in
a cryptographic game that samples using a random oracle. In proving security
we will “tune” κ, so we can switch from sampling from the random oracle to
‘reverse sampling’ using explain such that the statistical distance between these
two games is still some nonnegligible fraction (say ε/2). We again remark that

3 One could consider a computational analogue of this definition.

How to Sample a Discrete Gaussian (and more) from a Random Oracle 661

this relaxation to a tunable precision parameter is the main definitional difference
between our framework and other works that explored reverse sampling.

Finally, we note that it will often be convenient to interpret the random-
ness r as being drawn from the uniform distribution on an interval of Z or an
exponentially precise element of R rather than over uniformly random bits. It is
easy to see we can interpret a bitstring as a binary representation either of the
aforementioned domains of values, and so we will directly show that r is uniform
on said domain rather than on the underlying bit representation.

3.1 Explainability in Cryptographic Games

We will use GameR(·)(1λ,A) to refer to a series of cryptographic game parame-
terized by λ where parties are permitted oracle access to some R(·) against an
adversary A consisting of one or more algorithms (also with access to R(·). We
say GameR(·)(1λ, ·) is secure, if for all adversaries A which run in poly(λ) time,
Pr[GameR(·)(1λ,A) = 1] = negl(λ). We will refer to the event of Game returning
1 as ‘winning’.

Theorem 1. Suppose Sample is an explainable sampler for {Dλ}λ with corre-
sponding Explain algorithm. Let R(·) be a random oracle to distribution {Dλ}λ,
and R′(·) be a random oracle to (r, x) where r

R←− {0, 1}n and x = Sample(1λ; r).
Then if GameR(1λ, ·) is secure, then so is GameR

′
(1λ, ·).

Proof.
Lemma 1. Suppose Sample is an explainable sampler for {Dλ}λ with cor-
responding Explain algorithm. Let R(·) be a random oracle to distribution
{Dλ}λ, and Rκ(·) be a random oracle to (r, x) where x

R←− {Dλ}λ and r ←
Explain(1λ, 1κ, x). Then if GameR(1λ, ·) is secure, then GameRκ(1λ, ·) is secure
for all κ ∈ poly(λ).

Proof. Assume there is some PPT adversary ARκ for which there exists κ′(λ)
such that A wins GameRκ(1λ, ·) with noticeable probability. Then define A′ to
be an adversary for GameR(1λ, ·) which runs ARκ and simulates oracle calls to
Rκ by taking calling oracle R and running Explain(1λ, 1κ, ·) on the output. Since
this is exactly the same game, we conclude A′ has a noticeable probability of
winning GameR(1λ, ·). Since κ ∈ poly(λ), this is efficient. �

Lemma 2. Let Rκ(·) be a random oracle to (r, x) where x
R←− {Dλ}λ and r ←

Explain(1λ, 1κ, x). and R′(·) be a random oracle to (r, x) where r
R←− {0, 1}n and

x = Sample(1λ; r). Suppose GameRκ(1λ, ·) is secure for all κ ∈ poly(λ), then
GameR

′(·)(1λ, ·) is secure.

Proof. Again, assume for sake of contradiction there is some adversary PPT AR′

which wins GameR
′
(1λ, ·) with noticeable probability. Specifically, since it is poly

time, let’s suppose there exists constants a, b such that AR′
wins GameR

′
(1λ, ·)

makes at most λa queries and wins with probability > λ−b infinitely often.

662 G. Lu and B. Waters

However, notice that by Definition 3, the statistical distance between queries to
a query to R′ and a query to Rκ is 1

κ . Thus, if we set κ = 2λa+b, we can union
bound the total statistical difference of all queries with 1

2λb + negl(λ). Observe
that this means we can bound

∣
∣
∣Pr[GameR

′
(1λ,A) = 1] − Pr[GameR2λa+b (1λ,A) = 1]

∣
∣
∣ ≤ 1

2λb
+ negl(λ)

However, Since A wins GameR2λa+b (1λ,A) with probability 1
λb infinitely often,

that means it wins GameR2λa+b (1λ,A) with probability ≥ 1
2λb infinitely often,

contradicting the assumption that GameRκ(1λ, ·) is secure for all κ ∈ poly(λ). �
Taking Lemma 1 and Lemma 2 together gives us the theorem statement.

�

4 Explaining Sampling over Small Ranges with Respect
to Discrete Gaussian Samplers

We begin by showing that any efficient Sample algorithm over a polynomial
sized range, {Rλ}λ, is explainable. The core idea is rather simple. A call to
Explain(1λ, 1κ, x) will simply call the Sample algorithm up to κ · |Rλ| times until
x is output.

We show an immediate corollary to the theorem where if a distribution family
has a super-polynomial size range {Rλ}λ, but there exists subsets of the range
{Sλ}λ where Sλ ⊆ Rλ and {Sλ}λ are polynomially sized, then our sampling
algorithm also works for these distribution. In particular, this covers a discrete
Gaussian where the standard deviation σ grows polynomially with λ. We will
see that this simple procedure can serve for explaining the “base case” for the
Micciancio-Walter algorithm. Below we formally give our theorem and proof.

Theorem 2. Let Sample be an sampler for some distribution family {Dλ}λ on
range {Rλ}λ. If |Rλ| ≤ poly(λ), then Sample is explainable.

Proof. The idea here is to simply brute force the sampler output to find a valid
randomness to a given element x. We use the fact that the range is polynomial
to bound the amount of probability mass which can be contained by ‘infrequent’
elements. Consider the algorithm below:

Explain(1λ, 1κ, x)
– Repeat κ · |Rλ| times

• Select fresh randomness r
• x′ ← Sample(1λ; r)
• If x′ = x, stop and return r.

– Return ⊥
Claim 3. Explain runs in poly(λ, κ) time

How to Sample a Discrete Gaussian (and more) from a Random Oracle 663

Proof. First, by the efficiency requirement of Definition 2 κ · |Rλ|, Sample(1λ; r)
has runtime poly(λ). Explain simply calls Sample(1λ; r) up to κ · |Rλ| many times
(along with some other minor efficient computation). Thus, we can bound the
runtime with κ · |Rλ| · poly(λ). Since |Rλ| ≤ poly(λ) by assumption, this bounds
the runtime with κ · poly(λ) ∈ poly(λ, κ). �
Claim 4. Explain returns ⊥ in Game B with probability ≤ 1

κ

Proof. Observe that over the course of Game B, Sample is called on independent
randomness up to κ·|Rλ|+1 times (once directly from the Game and κ·|Rλ| times
in the execution of Game B). Let us call these outputs x0 and x1, x2, . . . , xκ·|Rλ|
respectively. Let the set X = {xi : ∀j �= i xj �= xi} By pigeonhole, we know that
|X | ≤ |Rλ| − 1. Thus, since the calls are independent, the probability that the
single call directly from Game B (x0) is in this set X is |X |

κ|Rλ|+1 ≤ |Rλ|−1
κ|Rλ|+1 < 1

κ .
On the other hand, if this call is not unique, we can see Explain finds j > 0 :
xj = x0 and so does not return ⊥. �
Claim 5. The statistical distance of Game A and Game B in Definition 3 using
Explain is ≤ 1

κ

Proof. We first note that if Explain(1λ, 1κ, x) returned r �= ⊥, then x = x′ =
Sample(1λ; r). Thus, since x is the same function of r in both games, it suffices
to show that r in Game B has statistical distance ≤ 1

κ to uniform.
Consider an alternate Explain′ which, rather than sampling x′ at most κ · |Rλ|

times, samples x′ until it finds an appropriate r. Here, we can compute the
probability that any particular r is chosen as the probability the x chosen for
Explain is equal to Sample(1λ; r) multiplied by the probability that r is chosen
conditional on x′ ← Sample(1λ; r). This is equal to

Pr[Sample(1λ) = x] · 2−n

Pr[Sample(1λ) = x′]
= 2−n

so r is uniform on {0, 1}n. Now note that Explain′ only differs from Explain
when Explain returns ⊥ before finding such an r. By Claim 4, this happens with
probability < 1

κ , bounding the statistical distance. �
Corollary 6. Let Sample be a sampler for some distribution family {Dλ}λ with
range {Rλ}λ. If there exists sets {Sλ}λ where Sλ ⊆ Rλ, |Sλ| ≤ poly(λ), and

Pr

[

x
R←− Dλ

x /∈ Sλ

]

< negl(λ),

then Sample is explainable.

Proof. Let {D′
λ}λ be the distribution {Dλ}λ conditional on the output being ∈

{Sλ}λ. It is easy to see that {D′
λ}λ satisfies the conditions for Theorem 2, and so

any sampler for {D′
λ}λ is explainable. Since {D′

λ}λ is statistically close to {Dλ}λ,
any sampler for {Dλ}λ is a sampler for {D′

λ}λ, and so is explainable. �

664 G. Lu and B. Waters

5 Sampling and Explaining Conforming Distributions

The previous section showed how one could explain arbitrary sampler so long as
the corresponding distributions grew polynomially in the security parameter. In
this section we explore a class of distributions for which we can build explain-
able samplers. This includes distributions with superpolynomial sized ranges. To
perform this we require the distribution family to have:

1. A Sample algorithm for the distribution. (It is not necessarily explainable).
2. A probability density function PDens where PDens(1λ, x) returns the proba-

bility density function of x for distribution Dλ.
3. An “heavy element sampler” algorithm SampleUniform which explainably

samples from the uniform distribution over elements in the support of Dλ

that have probability density above p.

We show that if a distribution has all three elements, then there exists another
pair of algorithms Sample′,Explain′ that comprise an explainable sampler for the
family {Dλ}λ.

We argue for the utility of this transformation by observing that many nat-
ural distributions, including the discrete Gaussian, have an easily computable
heavy element sampler. If we consider the discrete Gaussian in particular, then
a heavy element sampler simply needs to calculate the values x0, x1 such that
PDens(1λ, x0) = PDens(1λ, x1) = p, which can be done by explicitly solving for

p using the probability density function of e− (x−c)2

2σ2 = p. We can then choose
integers uniformly at random in the interval [x0, x1].

In fact, in general for monotonic distributions (or distributions which can be
partitioned into a polynomial number of monotone segments) on ordered sets,
we can easily compute an explainable heavy element sampler by binary searching
for the endpoints of the ranges of heavy element with only polynomially many
calls to the probability density function, then uniformly sampling on the interval
found. As long as the underlying domain has an explainable representation (such
as Z or R), this sampler too is explainable. This condition alone encompasses
almost all frequently seen distributions such as (discrete) Gaussians, binomial,
geometric, Poisson, etc.

We conclude by arguing that having such a heavy element sampler is nec-
essary for a generic transformation. To do this we provide a distribution for
which oracle access to the first two properties is not sufficient to construct an
explainable sampler to said distribution.

5.1 Explainable Sampling Through Heavy Element Samplers

Definition 4. We say a function SampleUniform(1λ, p; r) is a heavy element
sampler for a distribution family {Dλ}λ with probability density function
PDens if it runs in poly(λ) time, and for all p ∈ [0,PDFmax), Sp(1λ; r) =
SampleUniform(1λ, p; r) is a sampler for the uniform distribution on elements
x ∈ Rλ with PDens(1λ, x) ≥ p (we will notate said set as Rp

λ. We say a

How to Sample a Discrete Gaussian (and more) from a Random Oracle 665

heavy element sampler is explainable if there exists a poly(1λ, 1κ) algorithm
ExplainUniform(1λ, 1κ, p, x) such that for all p = p(λ) ∈ EXP(λ), Ep(1λ, 1κ, x) =
ExplainUniform(1λ, 1κ, p, x) is an explainer for Sp.

Theorem 7. Let Sample, PDens, SampleUniform be a sampler, probability den-
sity function, and explainable heavy element sampler for the probability distri-
bution family {Dλ}λ on range {Rλ}λ. Then there exists a Sample′ which is an
explainable sampler for {Dλ}λ.

Proof. The underlying idea of the construction of this Sample′,Explain′ is very
similar to the generic Explain algorithm in Theorem 2 - we can use a brute force
approach to polynomially approximate {Dλ}λ. However, because the domain can
now be superpolynomial, we can no longer hope polynomially approximate the
exact elements of {Dλ}λ itself. Instead, we categorize elements into ‘buckets’ of
similar approximate probability density. However, ordinarily, finding an element
of a similar probability density would not suffice to satisfy the ‘correctness’ of an
Explain algorithm. Here, we modify our sampler Sample′ so that it uses Sample
to produce an initial sample in the range, but this is then ‘smudged’ to an
element of the range with similar probability density which is the actual output
of Sample′.

By increasing the precision parameter κ, we decrease the size of each bucket,
decreasing the statistical distance of Explain′ but simultaneously increasing the
expected number of tries to find an element in the same bucket.

Let Sample′ be as follows:

Sample′(1λ; r = r0 ∈ {0, 1}n, s0 ∈ [0, 1], t0 ∈ {0, 1}n)
– x′ ← Sample(1λ; r0)
– p′ ← PDens(1λ, x′)
– p ← p′ · s0
– x ← SampleUniform(1λ, p; t0)
– Return x

As noted in Sect. 3, we can interpret a uniform bitstring as the binary expan-
sion of a real number ∈ [0, 1]. Since randomness s0 is only used to compute the
probability density on SampleUniform, which is integral, it suffices to use only
log(PDFmax) ∈ log(EXP(λ)) = poly(λ) bits of randomness.

Proof of Sampleability. We first prove that Sample′ is a good sampler per
Definition 2.

Definition 5. We define the distribution {PDF(Dλ)}λ be defined as the joint dis-
tribution on two variables (a, b) such that the distribution of a is Dλ and b is uniform
from [0,PDens(1λ, a)) where PDens is a probability density function of Dλ.

Lemma 3. The following distributions are statistically close

666 G. Lu and B. Waters

Distribution 1 = D1

– (a, b)
R←− PDF(Dλ)

– Output (a, b)

Distribution 2 = D2

– (a′, b) R←− PDF(Dλ)

– a
R←− SampleUniform(1λ, b)

– Output (a, b)

Proof. Consider some fixed (a∗, b∗) in the support of PDF(Dλ). We can compute
the explicit probability this element is picked in distribution 1 as the probability
a∗ is picked - which is PDens(a∗)∑

a∈Rλ
PDens(a) , multiplied by the probability that b∗ is

picked given that a∗ - which is 1
PDens(a∗) , as this is a uniform distribution of size

PDens(a∗). Together, we get

Pr[(a∗, b∗) ← D1] =
PDens(a∗)

∑

a∈Rλ
PDens(a)

· 1
PDens(a∗)

=
1

∑

a∈Rλ
PDens(a)

In distribution 2, we can write the probability (a∗, b∗) occurs as

Pr[(, b∗) ← PDF(Dλ)] · Pr[a∗ = SampleUniform(1λ, b∗)|(, b∗) ← PDF(Dλ)]

Note that since SampleUniform and PDF(Dλ) are invoked independently, we
can ignore the conditional. Using our analysis from distribution 1, we can com-
pute the first probability as

Pr[(, b∗) ← PDF(Dλ)] =
∑

a:PDens(a)>b∗
Pr[(a, b∗) ← PDF(Dλ)]

=
∑

a:PDens(a)>b∗

1
∑

a∈Rλ
PDens(a)

Meanwhile, since by definition SampleUniform outputs a uniform element of
sufficiently high probability density, we have that

Pr[SampleUniform(1λ, b∗) = a∗] =
1

|{a : PDens(a) > b∗}|
Which brings the total probability of (a∗, b∗) ← D2 as

∑

a:PDens(a)>b∗

1
∑

a∈Rλ
PDens(a)

· 1
|{a : PDens(a) > b∗}| =

1
∑

a∈Rλ
PDens(a)

the same as in D1 �
Lemma 4. Sample′ is an sampler for {Dλ}λ.

Proof.
Claim 8. Sample′ produces a distribution statistically close to {Dλ}λ.

How to Sample a Discrete Gaussian (and more) from a Random Oracle 667

Proof. Since Sample is a sampler to {Dλ}λ, the distribution of (x′, p) as defined
in Sample′ is statistically close to {PDF(Dλ)}λ. By Lemma 3, the distribution
of (x, p) must also be statistically close to {PDF(Dλ)}λ. By Definition 5, the
distribution of x must be statistically close to {Dλ}λ. �
Claim 9. Sample′ runs in poly(λ) time.

Proof. Sample′ makes a single call to each of Sample,PDens,SampleUniform,
which, by assumption, are poly(λ) time algorithms along with a single multi-
plication, and so is also poly(λ) time. �

By Claim 8 and Claim 9, Sample′ fulfills the definition of a sampler for
{Dλ}λ �

Proof of Explainability. We next prove that Sample′ is explainable per Def-
inition 3. The general idea here is that because x is chosen randomly using the
value p generated by PDens rather than directly from Sample, elements x′ with
similar PDens values are similarly likely to be explanation for x. We can then
use our precision parameter κ to define intervals of PDens(1λ, x′) and sample
an interval of ‘acceptable’ p values relative to the correct conditional density.
By restricting the number and size of such intervals, we can guarantee that a
polynomial number of calls to Sample finds an x′ in the chosen interval while
still ensuring the p is approximated fairly closely.

Lemma 5. Sample′ is explainable.

Proof. Consider the following Explain′ algorithm for Sample′.

PIdx(x, ρ)
– Let b = 1 + 1

ρ

– If PDens(x) = 0,
return ⊥

– Return
�logb(PDens(x))�

Explain′(1λ, 1κ, x)

– p
R←− [0,PDens(x)]

– x0 ← SampleUniform(1λ, p)
– Run 9 ln(PDFmax) · κ2 · λ times:

• Generate fresh randomness r′.
• x′ ← Sample(1λ; r′).
• If PIdx(x0, 3κ) = PIdx(x′, 3κ).

* Set r0 = r′

* Set s0 = p
PDens(x′)

* Set t0 = ExplainUniform(1λ, 13κ, p, x)
* Return r = (r0, s0, t0)

– Return ⊥.

Claim 10. Explain′ runs in poly(λ, κ) time.

Proof. Explain′ utilizes some efficient (polynomial time) subprocedures in
Sample,SampleUniform,PDens, and PIdx. Moreover, since PDFmax ∈ EXP(λ),
log(PDFmax) ∈ poly(λ), so the algorithm loops only a poly(λ, κ) amount of
times. �

668 G. Lu and B. Waters

Claim 11. The statistical distance of Game A and Game B in Definition 3
using Explain′ is < 1

κ + negl(λ)

Proof. We will proceed with a sequence of games argument, where Game 0 is
an execution of Game A using Sample′ and Game 11 is an execution of Game B
using Sample′, Explain′.

Game 0

– r = (r0, s0, t0)
R←− {0, 1}n × {0, 1} ×

{0, 1}n

– x ← Sample′(x; r)
– Return r, x.

Game 0 (Sample′ Expanded)

– r0
R←− {0, 1}n, s0

R←− [0, 1], t0
R←−

{0, 1}n

– x′ ← Sample(1λ; r0)
– p′ ← PDens(1λ, x′)
– p = p′ · s0
– x ← SampleUniform(1λ, p; t0)
– Return r0, s0, t0, x.

Game 1

– r0
R←− {0, 1}n, s0

R←− [0, 1], t0
R←− {0, 1}n

– x′′ R←− Dλ

– Run until break4

• Generate fresh randomness r′

• x′ ← Sample(1λ, r′)
• If x′ = x′′

* Set r0 = r′ and break
– p′ ← PDens(1λ, x′′)
– p = p′ · s0
– x ← SampleUniform(1λ, p; t0)
– Return r0, s0, t0, x.

Game 2

– s0
R←− [0, 1], t0

R←− {0, 1}n

– x′′ R←− Dλ

– Run until break
• Generate fresh randomness r′

• x′ ← Sample(1λ, r′)
• If x′′ = x′

* Set r0 = r′ and break

– p′′ R←− [0,PDens(1λ, x′′)]
– Set s0 = p′′

PDens(1λ,x′′)
– x ← SampleUniform(1λ, p′′; t0)
– Return r0, s0, t0, x.

4 This process could potentially take unbounded time, but simply act as ‘bridging’
steps to make the change in distribution easier to see. The final game will be efficient.

How to Sample a Discrete Gaussian (and more) from a Random Oracle 669

Game 3

– t0
R←− {0, 1}n

– (x′′, p′′) R←− PDF(Dλ)
– Run until break

• Generate fresh randomness r′

• x′ ← Sample(1λ, r′)
• If x′ = x′′

* Set r0 = r′ and break
– Set s0 = p′′

PDens(1λ,x0)

– x ← SampleUniform(1λ, p′′; t0)
– Return r0, s0, t0, x.

Game 4

– t0
R←− {0, 1}n

– (x′′, p′′) R←− PDF(Dλ)
– Run until break

• Generate fresh randomness r′

• x′ ← Sample(1λ, r′)
• If x′ = x′′

* Set r0 = r′ and break
– Set s0 = p′′

PDens(1λ,x′′)
– x ← SampleUniform(1λ, p′′)
– Set t0 = ExplainUniform(1λ, 13κ, p′′, x)
– Return r0, s0, t0, x.

Game 5

– (x′′, p′′) R←− PDF(Dλ)
– x ← SampleUniform(1λ, p′′)
– Run until break

• Generate fresh randomness r′

• x′ ← Sample(1λ, r′)
• If x′ = x′′

* Set r0 = r′

* Set s0 = p′′
PDens(1λ,x′)

* Set t0 = ExplainUniform(1λ, 13κ, p′′, x)
* Break

– Return r0, s0, t0, x.

Game 6

– (x′′, p′′) R←− PDF(Dλ)
– Set x0 = x′′

– p
R←− [0,PDens(1λ, x0)]

– x ← SampleUniform(1λ, p)

670 G. Lu and B. Waters

– Run until break
• Generate fresh randomness r′

• x′ ← Sample(1λ, r′)
• If x′ = x′′

* Set r0 = r′

* Set s0 = p

PDens(1λ,x′)
* Set t0 = ExplainUniform(1λ, 13κ, p, x)
* Break

– Return r0, s0, t0, x.

Game 7

– (x′′, p′′) R←− PDF(Dλ)

– Sample x0
R←− Dλ conditional on PIdx(x0, 3κ) = PIdx(x′′, 3κ)

– p
R←− [0,PDens(1λ, x0)]

– x ← SampleUniform(1λ, p)
– Run until break

• Generate fresh randomness r′

• x′ ← Sample(1λ, r′)
• If x′ = x′′

* Set r0 = r′

* Set s0 = p
PDens(1λ,x′)

* Set t0 = ExplainUniform(1λ, 13κ, p, x)
* Break

– Return r0, s0, t0, x.

Game 8

– (x0, p)
R←− PDF(Dλ)

– Sample x′′ R←− Dλ conditional on PIdx(x0, 3κ) = PIdx(x′′, 3κ)
– x ← SampleUniform(1λ, p)
– Run until break

• Generate fresh randomness r′

• x′ ← Sample(1λ, r′)
• If x′ = x′′

* Set r0 = r′

* Set s0 = p
PDens(1λ,x′)

* Set t0 = ExplainUniform(1λ, 13κ, p, x)
* Break

– Return r0, s0, t0, x.

Game 9

– (x0, p)
R←− PDF(Dλ)

– x ← SampleUniform(1λ, p)
– Run 9 ln(PDFmax) · κ2 · λ times

• Generate fresh randomness r′

How to Sample a Discrete Gaussian (and more) from a Random Oracle 671

• x′ ← Sample(1λ, r′)
• If PIdx(x0, 3κ) = PIdx(x′, 3κ)

* Set r0 = r′

* Set s0 = p

PDens(1λ,x′)
* Set t0 = ExplainUniform(1λ, 13κ, p, x)
* Break

– Return r0, s0, t0, x.

Game 10

– (x, p)
R←− PDF(Dλ)

– x0 ← SampleUniform(1λ, p)
– Run 9 ln(PDFmax) · κ2 · λ times

• Generate fresh randomness r′

• x′ ← Sample(1λ, r′)
• If PIdx(x0, 3κ) = PIdx(x′, 3κ)

* Set r0 = r′

* Set s0 = p

PDens(1λ,x′)
* Set t0 = ExplainUniform(1λ, 13κ, p, x)
* Break

– Return r0, s0, t0, x.

Game 11

– x ← Sample′(1λ)

– p
R←− [0,PDens(x)]

– x0 ← SampleUniform(1λ, p)
– Run 9 ln(PDFmax) · κ2 · λ times

• Generate fresh randomness r′

• x′ ← Sample(1λ, r′)
• If PIdx(x0, 3κ) = PIdx(x′, 3κ)

* Set r0 = r′

* Set s0 = p
PDens(1λ,x′)

* Set t0 = ExplainUniform(1λ, 13κ, p, x)
* Break

– Return r0, s0, t0, x.

Game 11 (Shortened)

– x ← Sample′(1λ)
– r = (r0, s0, t0) ← Explain(1λ, 1κ, x)
– Return r, x.

Claim 12. The distributions output by Game 0 and Game 1 have statistical
distance negl(λ).

672 G. Lu and B. Waters

Proof. By Definition 2, the distribution of x′ in Game 0 (from Sample) and Game
1 (from Dλ) are statistically close. Now since r0 is uniform, the conditional prob-
ability of r0 on any fixed x′ is still uniform on all r0 such that Sample(1λ; r0) = x′

in both games. The only other changes are notational between x′ and x′′, which
are equal in this game. �
Claim 13. The distributions output by Game 1 and Game 2 have statistical
distance 0.

Proof. This game only changes the way s0 is generated. In Game 1, the distribu-
tion of s0 is uniform on [0, 1]. In Game 2, it is the quotient of p′′ which is uniform
on [0,PDens(1λ, x′′)] and PDens(1λ, x′′), which is simply uniform on [0, 1]. �
Claim 14. The distributions output by Game 2 and Game 3 have statistical
distance 0.

Proof. By definition, (x′′, p′′) R←− PDF(Dλ) is defined to be x′′ R←− Dλ and p′′ R←−
[0,PDens(1λ, x′′)], which is exactly how it is generated in Game 3. �
Claim 15. The distributions output by Game 3 and Game 4 have statistical
distance 1

3κ + negl(λ).

Proof. By Definition 3, the distributions

Game A

– t0
R←− {0, 1}n.

– x ← SampleUniform(1λ, p; t0).
– Return t0, x.

Game B

– x ← SampleUniform(1λ, p).
– r ← ExplainUniform(1λ, 13κ, p, x).
– Return t0, x.

have statistical distance 1
3κ + negl(λ). Note this corresponds exactly to how

t0, x are generated in Games 3 and 4 respectively. �
Claim 16. The distributions output by Game 4 and Game 5 have statistical
distance 0.

Proof. The changes in Game 5 only change the order some variables are gener-
ated, but not the way they are generated. �
Claim 17. The distributions output by Game 5 and Game 6 have statistical
distance 0.

How to Sample a Discrete Gaussian (and more) from a Random Oracle 673

Proof. In this game, we substitute all uses of p′′ with p. By Definition 1,
x′′ R←− Dλ, so (x′′, p) is distributed according to PDF(Dλ), so are statistically
identical. �
Claim 18. The distributions output by Game 6 and Game 7 have statistical
distance 1

3κ .

Proof. In this game, rather than setting x0 = x′′, we set x0 to be an element with
the same PIdx as x′′. Observe that x0 is only used to sample p, and by definition
of PIdx, |PDens(1λ,x0)−PDens(1λ,x′′)|

PDens(1λ,x′′) is at most 1
3κ , and so we can conclude that the

uniform distribution on [0,PDens(1λ, x0)] and [0,PDens(1λ, x′′)] have statistical
distance at most 1

3κ . �
Claim 19. The distributions output by Game 7 and Game 8 have statistical
distance 0.

Proof. By this game, note that p′′ is unused, so we can examine the difference
in how the joint distribution on x0, x

′′, p is generated. Let x0
∗, x′′∗, p∗ be some

set of values taken by x0, x
′′, p. We can see the probability density of this is in

Game 7 proportional to

Pr
x′′ R←−Dλ

[x′′∗ = x′′]· Pr
x0

R←−Dλ

[x0
∗ = x0|PIdx(x′′∗, 3κ) = PIdx(x0, 3κ)]· 1

PDens(1λ, x0)

= Pr
x′′ R←−Dλ

[x′′∗ = x′′] ·
Pr

x0
R←−Dλ

[x0
∗ = x0]

Pr
x0

R←−Dλ

[PIdx(x′′∗, 3κ) = PIdx(x0, 3κ)]
· 1
PDens(1λ, x0)

by definition of conditional probability

=
Pr

x′′ R←−Dλ

[x′′∗ = x′′]

Pr
x0

R←−Dλ

[PIdx(x′′∗, 3κ) = PIdx(x0, 3κ)]
· Pr

x0
R←−Dλ

[x0
∗ = x0] · 1

PDens(1λ, x0)

via simple algebraic manipulation

=
Pr

x′′ R←−Dλ

[x′′∗ = x′′]

Pr
x′′ R←−Dλ

[PIdx(x′′∗, 3κ) = PIdx(x′′, 3κ)]
· Pr

x0
R←−Dλ

[x0
∗ = x0] · 1

PDens(1λ, x0)

by simply renaming x0 to x′′

= Pr
x′′ R←−Dλ

[x′′∗ = x′′|PIdx(x′′∗, 3κ) = PIdx(x′′, 3κ)] · Pr
x0

R←−Dλ

[x0
∗ = x0] · 1

PDens(1λ, x0)

again by definition of conditional probability. We can see the final line is the
probability density of x0

∗, x′′∗, p∗ in Game 8. �
Claim 20. The distributions output by Game 8 and Game 9 have statistical
distance 1

3κ + negl(λ).

674 G. Lu and B. Waters

Proof. Game 9 contains 2 changes. One is purely notational, where x′′ is elim-
inated and we directly test if PIdx(x0, 3κ) = PIdx(x′, 3κ). Since x′′ was drawn
from Dλ and x′ is drawn from Sample(1λ), the distribution of x′ is statisti-
cally close from this change. The other change made here is that we restrict
the loop to 9 ln(PDFmax) · κ2 · λ iterations rather than an unbounded number.
Note that the loop terminating is entirely dependent on sampling x′ such that
PIdx(x0, 3κ) = PIdx(x′, 3κ). So we will show that in Game 8, such an x′ is found
in the first 9 ln(PDFmax) · κ2 · λ iterations with probability ≤ 1

3κ + negl(λ).
To see this, we first want to observe that the total number of possible values

of PIdx is bounded by

log1+ 1
3κ

(PDFmax) = ln(PDFmax)/ ln(((1 +
1
3κ

)3κ· 1
3κ))

= ln(PDFmax) · 3κ/ ln((1 +
1
3κ

)3κ) ≈ 3 ln(PDFmax) · κ

as the PDens function is nonnegative and integral, so PIdx returns ⊥ or an integer
in the range [0, ln(PDFmax) ·κ)]. Let the set A = {a1, a2, . . . aq} denote the range
of values PIdx can take.

We partition A into sets A0 and A1 such that

a ∈ A0 ⇔ Pr
[

x0 ← Dλ

PIdx(x0, 3κ) = a

]

≤ 1
9 ln(PDFmax) · κ2

and similarly

a ∈ A1 ⇔ Pr
[

x0 ← Sample(1λ)
PIdx(x0, 3κ) = a

]

>
1

9 ln(PDFmax) · κ2

Since A has 3 ln(PDFmax) · κ elements, we can bound

Pr
[
x0 ← DλPIdx(x0, 3κ) ∈ A0

] ≤ 3 ln(PDFmax) · κ

9 ln(PDFmax) · κ2
=

1
3κ

If we suppose PIdx(x0, 3κ) ∈ A1, then we can see the probability that
9 ln(PDFmax) · κ2 · λ fail to find an x’ is lower bounded by

(

1 − 1
9 ln(PDFmax) · κ2

)9 ln(PDFmax)·κ2·λ
≈ e−λ ∈ negl(λ)

Since we know PIdx(x0, 3κ) ∈ A1 with probability at least 1 − 1
3κ , we can

lower bound the probability that this loop terminates within 9 ln(PDFmax) ·κ2 ·λ
iterations as 1 − 1

3κ − negl(λ), which bounds the statistical distance between
Games 8 and 9 with 1

3κ + negl(λ). �
Claim 21. The distributions output by Game 9 and Game 10 have statistical
distance negl(λ).

How to Sample a Discrete Gaussian (and more) from a Random Oracle 675

Proof. In Game 10, we alter the way which we generate the variables x, p, x0.
From Lemma 3, the distributions of x0, p below are statistically close

(x0, p)
R←− PDF(Dλ) (, p)

R←− PDF(Dλ)

x0 ← SampleUniform(1λ, p)

Using this, we can see that the following distributions of x0, x, p are statisti-
cally close as well (note that the lefthand side is the distribution generated by
Game 9)

(x0, p)
R←− PDF(Dλ)

x ← SampleUniform(1λ, p)

(, p)
R←− PDF(Dλ)

x0 ← SampleUniform(1λ, p)

x ← SampleUniform(1λ, p)

However, note in the latter distribution, x0 and x are generated indepen-
dently, so this is the same as the left side distribution below

(, p)
R←− PDF(Dλ)

x ← SampleUniform(1λ, p)

x0 ← SampleUniform(1λ, p).

(x, p)
R←− PDF(Dλ)

x0 ← SampleUniform(1λ, p).

Applying Lemma 3 again, we can see the above 2 distributions are statisti-
cally close. We can see the final distribution above is the distribution of x0, x, p
in Game 10. �
Claim 22. The distributions output by Game 10 and Game 11 have statistical
distance negl(λ).

D1

(x, p)
R←− PDF(Dλ)

D2

x
R←− Dλ

p
R←− [0,PDens(1λ, x)].

D3

x ← Sample′(1λ)

p
R←− [0,PDens(1λ, x)].

Proof. By Definition 5, the distribution of (x, p) in D1 and D2 are identical.
From Lemma 4, D2 is statistically close to D3. Note D1 is the distribution of
(x, p) in Game 10 and D3 is the distribution of (x, p) in Game 11. �

676 G. Lu and B. Waters

Combining Claim 12 through Claim 22, we get the total statistical distance
of Game 0 and 11 is ≤ 1

κ + negl(λ)
�

Combining Claim 11 and Claim 10, we get the explainability of Sample′.
�

Combining Lemma 4 and Lemma 5, we get that Sample′ is an explainable
sampler for {Dλ}λ.

�

5.2 Instantiation on Discrete Gaussians

As an example, we can observe that the above gives us an explainable sampler
for discrete Gaussians centered at c(λ) with standard deviation σ(λ). For the
Sample algorithm, we can use any of the discrete Gaussian samplers present in

literature. We can use PDens(1λ, x) = e− (x−c)2

2σ2 , which is efficienty computable,
and we can let SampleUniform(1λ, p) simply sample uniformly from integers on
the interval

[⌈

c − σ
√−2 ln(p)

⌉

,
⌊

c + σ
√−2 ln(p)

⌋]

. Since the only randomness
here is sampling uniform integers on a fixed interval, this is easily explainable.

5.3 Impossibility of Generic Sampling Without Heavy Element
Samplers

We give some evidence on the tightness of the above result by showing an impos-
sibility of a black box construction of an explainable sampler from only a sampler
and probability density function to some distribution. This also highlights the
inherent need of non-black-box techniques such as indistinguishability obfusca-
tion used to construct universal samplers in [21].

Theorem 23. There exists a distribution family {Dλ}λ such that there does not
exist an efficient explainable sampler for {Dλ}λ given oracle access to a sampler
Sample and probability density function PDens.

We defer the proof of this theorem to the full version of the paper [27].

6 Explaining Discrete Gaussian Samplers

In this section we show an explanation algorithm for the Miccancio-Walter [30]
Gaussian Sampling algorithm. This algorithm follows a series of works improving
the practicality of discrete Gaussian sampling [2,4,10,12,15,22,24,25,31,33,34].
This usually comes in the form of some combination of decreased runtime (in
either an offline or online phase), decreased memory usage, and decreased entropy
usage. While we could simply apply our transformation of Sect. 5 to the MW
sampler to get explainability, this may not in general preserve special properties
of many samplers that could be leveraged, and would add an additional overhead

How to Sample a Discrete Gaussian (and more) from a Random Oracle 677

for computing the probability density function. In this section we will show a
tailored approach to make it explainable as is.

We begin by giving an adapted definition for explainable discrete Gaussian
samplers that explicitly allows for the standard deviation and center of the distri-
bution to be given as parameters. The syntax from the previous sections restricts
these to be functions of the security parameter λ. We then describe the explain-
ability algorithm for the Miccancio-Walter discrete Gaussian sampler.

Discrete Gaussians
To talk specifically about discrete Gaussians, we will modify need to expand the
definition of distribution samplers to accomodate parameterization. The theo-
rems and their proofs shown in the previous sections translate analogously to the
definitions here. For completeness, the proofs will be available in the appendices.

Definition 6. We say an algorithm SampleDG(1λ, c, σ; r) is an fσ(λ)-discrete
Gaussian sampler for a discrete Gaussians if for all c ∈ [0, 1] and σ ≤ fσ(λ),
Sample runs in poly(λ) time and the output of SampleDG(1λ, c, σ; r) is statisti-
cally close to the discrete Gaussian on Z+c centered at 0 with standard deviation
σ. Note that this is equivalent to producing discrete Gaussians samples on Z cen-
tered at any c′ ∈ exp(λ), as we can simply generate a sample on Z+(−c mod 1)
centered at 0 and add c.

Definition 7. Analogously, we say a SampleDG algorithm is explainable if
there exists a (possibly randomized) algorithm ExplainDG(1λ, 1κ, x, c, σ) such that
ExplainDG runs in poly(λ, κ) time, and there exists a negligible function negl(λ)
such that for all c ∈ [0, 1], σ ≤ fσ(λ), the statistical distance between the follow-
ing 2 distributions is at most 1

κ + negl(λ).

Game A

– r
R←− {0, 1}n.

– x ← SampleDG(1λ, c, σ; r).
– Return r, x.

Game B

– x ← SampleDG(1λ, c, σ).
– r ← ExplainDG(1λ, 1κ, x, c, σ).
– Return r, x.

While Theorem 7 does imply the existence of an explainable discrete Gaus-
sian sampler, oftentimes, it may be of interest whether existing implementations
using particular sampling algorithms are explainable. We’ll use this MW17 as
an example of a practical discrete Gaussian sampler and prove its explainabil-
ity, along the way hopefully demonstrating some techniques useful for proving
explainability of other sampling algorithms.

6.1 Miccancio-Walter ’17

Here, we look at a fairly recent method of sampling discrete Gaussians pre-
sented in [30]. Informally, this is done by taking a sampler SampleBase to discrete

678 G. Lu and B. Waters

Gaussians with small standard deviation, for which there are easier and more
efficient to compute, then taking particular linear combinations to create discrete
Gaussian samples with large standard deviation in SampleI, before employing a
randomized rounding technique in SampleC to sample from a specific coset of Z.

In comparison to previous works, this has the advantage of better perfor-
mance, as well as taking time independent of the sample value. In addition,
much of the computation can be done offline, without knowing the standard
deviation or center an algorithm which calls the sampler may request.

SampleI(1λ, i)
– If i = 0

• x ← SampleBase(1λ, 0, s0)
• Return x

– x1 ← SampleI(1λ, i − 1)
– x2 ← SampleI(1λ, i − 1)
– y = zix1 +max(1, zi − 1)x2

– Return y

SampleC(1λ, c, k)
– If k = 0

• Return 0.
– g ← 2−k+1 · SampleBase(1λ, 2k−1c, s0)
– Return g + SampleC(1λ, c − g, k − 1)

SampleDG(1λ, c, s)a

– x ← SampleI(m)

– K ←
√

s2 − s̄2k/sm

– c′ ← �c+Kx�k

– y ← SampleC(1λ, c′, k)
– Return y

aThis was referred to as SampleZ in [30]

We remark that the notation of the above algorithms has been slightly altered
to better fit with our definition of a discrete Gaussian sampler. To align with
our definition of statistical closeness, we consider k ∈ Θ(λ). As in the original
construction, we let si denote the exact standard deviation of SampleI, zi denote
the multipliers used in SampleI, and s̄k to be the standard deviation ‘added’
by SampleC, whose explicit values are determined recursively by the equations
below. The exact formula is given as a function of the smoothing parameter
ηε(Z) of the discrete Gaussian, which, for our purposes, we will only bound as a
value ∈ O(log(λ)). Similarly, m = m(λ) is a parameter controlling the precision
controlling the maximum standard deviation SampleDG can generate, which we
can think of as a value bounded by log(λ) + O(1). Readers of [30] may notice
the lack of a base parameter b which controls the ‘base’ for (e.g. binary, decimal)
which randomized rounding occurs. This has been fixed to 2 for simplicity.

s0 =
√

2ηε(Z), zi =
⌊

si−1√
2ηε(Z)

⌋

s2i =
(

z2i + max((zi − 1)2, 1)
)

s2i−1, s̄k = s0 ·
⎛

⎝

√
√
√
√

k−1∑

i=0

2−2i

⎞

⎠

How to Sample a Discrete Gaussian (and more) from a Random Oracle 679

Theorem 24. Suppose SampleBase(1λ, c) is an O(log(λ))-discrete Gaussian
sampler. Then SampleDG(1λ, c, s; r) is an explainable exp(λ)-discrete Gaus-
sian sampler for the family of discrete Gaussians centered at c with standard
deviation s.

Proof.
Lemma 6. Suppose SampleBase(1λ, c) is an O(log(λ))-discrete Gaussian sam-
pler. Then for i ≤ log(λ) + O(1), SampleI(1λ, i) is a sampler for the family of
discrete Gaussians centered at 0 with standard deviation ω(22

i

).

See [30] for proof.

Lemma 7. Suppose SampleBase(1λ, c) is an O(log(λ))-discrete Gaussian sam-
pler. Then y = SampleC(1λ, c, k) is a sampler for the distribution of discrete
Gaussians on c + Z with standard deviation s̄k.

See [30] for proof.

Corollary 25. Suppose SampleBase(1λ, c) is an O(log(λ))-discrete Gaussian
sampler. Let c′ be a sample from a discrete Gaussians on Z/2k with standard
deviation

√

σ2 − s̄2k and center c. Then for k ∈ Θ(λ), in SampleC(1λ, c′, k), the
output to the recursive call to SampleC(1λ, c′′, i) is statistically close to the dis-
crete Gaussian on Z + c′′ with standard deviation

√

σ2 − s̄2i .

Proof. This follows from a straightforward induction argument on i. �
Lemma 8. Suppose SampleBase(1λ, c) is an O(log(λ))-discrete Gaussian sam-
pler. Then SampleDG(1λ, c, σ) is a exp(λ)-discrete Gaussian sampler.

See [30] for proof.

Lemma 9. Any O(log(λ))-discrete Gaussian sampler is explainable.

Proof. Note that we can bound the probability a sample is outside log(λ) stan-
dard deviations with 2 · ∑∞

i=log(λ)σ e− i2
2σ Since this decays exponentially, this is

≤ O(e− log(λ)2) ∈ O(λ− log(λ)). Thus, we can take the set Sλ to be the set of
elements within log(λ) standard deviations of the center. By Corollary 6 from
Sect. 4, this is explainable. �
Lemma 10. Suppose SampleBase(1λ, c) is an O(log(λ))-discrete Gaussian sam-
pler. Then SampleI(1λ, i) is an explainable sampler for the family of discrete
Gaussians centered at 0 with standard deviation ω(22

i

).

We defer the proof of this lemma to the full version of the paper [27].

Lemma 11. Suppose SampleBase(1λ, c) is an O(log(λ))-discrete Gaussian sam-
pler. Let SampleDG2k(1λ, c, σ) be an explainable sampler for discrete Gaus-
sians on Z/2k with standard deviation σ and center c. Then for k ∈ O(λ),
SampleC′(1λ, c, σ) = SampleC(1λ,SampleDG2k(1λ, c,

√

σ2 − s̄2k), k) is an explain-
able discrete Gaussian sampler.

680 G. Lu and B. Waters

We defer the proof of this lemma to the full version of the paper [27].
Using Lemma 10, we know the SampleI algorithm is an explainable sampler

for discrete Gaussians centered at 0 with standard deviation sm. We know from
this that c′ is a sample from a discrete Gaussian on Z/2k centered at c with stan-
dard deviation

√

s2 − s̄2k. Moreover, this is explainable (the only non-reversible
step is the rounding to the nearest 2−k, but since k ∈ Θ(λ), we can pick a
uniform preimage to the rounding and still be statistically close). Thus, using
Lemma 11, taking SampleDG to be the first 3 lines of SampleDG, we can conclude
SampleDG is explainable. Combined with Lemma 8, this gives us the statement
of Theorem 24. �

References

1. Agrawal, S., Wichs, D., Yamada, S.: Optimal broadcast encryption from LWE and
pairings in the standard model. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS,
vol. 12550, pp. 149–178. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-64375-1 6

2. Aguilar-Melchor, C., Albrecht, M.R., Ricosset, T.: Sampling from arbitrary cen-
tered discrete Gaussians for lattice-based cryptography. In: Gollmann, D., Miyaji,
A., Kikuchi, H. (eds.) ACNS 2017. LNCS, vol. 10355, pp. 3–19. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-61204-1 1

3. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.:
Multiparty computation with low communication, computation and interaction
via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29011-4 29

4. Barthe, G., Beläıd, S., Espitau, T., Fouque, P.-A., Rossi, M., Tibouchi, M.:
GALACTICS: Gaussian sampling for lattice-based constant-time implementation
of cryptographic signatures, revisited, pp. 2147–2164, November 2019

5. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) CCS 1993: Proceedings of the 1st ACM Conference on Computer and
Communications Security, Fairfax, Virginia, USA, 3–5 November 1993, pp. 62–73.
ACM (1993)

6. Bellare, M., Rogaway, P.: The exact security of digital signatures-how to sign with
RSA and Rabin. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp.
399–416. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9 34

7. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44647-8 13

8. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In:
Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Hei-
delberg (2001). https://doi.org/10.1007/3-540-45682-1 30

9. Brakerski, Z., Cash, D., Tsabary, R., Wee, H.: Targeted homomorphic attribute-
based encryption. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp.
330–360. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-
5 13

https://doi.org/10.1007/978-3-030-64375-1_6
https://doi.org/10.1007/978-3-030-64375-1_6
https://doi.org/10.1007/978-3-319-61204-1_1
https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/3-540-68339-9_34
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1007/978-3-662-53644-5_13
https://doi.org/10.1007/978-3-662-53644-5_13

How to Sample a Discrete Gaussian (and more) from a Random Oracle 681

10. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of
learning with errors. In: Proceedings of the Forty-Fifth Annual ACM Symposium
on Theory of Computing, STOC 2013, pp. 575–584. Association for Computing
Machinery, New York (2013)

11. Brier, E., Coron, J.-S., Icart, T., Madore, D., Randriam, H., Tibouchi, M.: Efficient
indifferentiable hashing into ordinary elliptic curves. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 237–254. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-14623-7 13

12. Buchmann, J., Cabarcas, D., Göpfert, F., Hülsing, A., Weiden, P.: Discrete Zig-
gurat: a time-memory trade-off for sampling from a Gaussian distribution over
the integers. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol.
8282, pp. 402–417. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-43414-7 20

13. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited
(preliminary version). In: Vitter, J.S. (ed.) Proceedings of the Thirtieth Annual
ACM Symposium on the Theory of Computing, Dallas, Texas, USA, 23–26 May
1998, pp. 209–218. ACM (1998)

14. Datta, P., Komargodski, I., Waters, B.: Decentralized multi-authority ABE for
DNFs from LWE. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021.
LNCS, vol. 12696, pp. 177–209. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-77870-5 7

15. Dwarakanath, N.C., Galbraith, S.D.: Sampling from discrete Gaussians for lattice-
based cryptography on a constrained device. Appl. Algebra Eng. Commun. Com-
put. 25(3), 159–180 (2014). https://doi.org/10.1007/s00200-014-0218-3

16. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

17. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 34

18. Genise, N., Micciancio, D.: Faster Gaussian sampling for trapdoor lattices with
arbitrary modulus. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS,
vol. 10820, pp. 174–203. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-78381-9 7

19. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Proceedings of the Fortieth Annual ACM Sympo-
sium on Theory of Computing, pp. 197–206 (2008)

20. Goh, E.-J., Jarecki, S., Katz, J., Wang, N.: Efficient signature schemes with tight
reductions to the Diffie-Hellman problems. J. Cryptol. 20(4), 493–514 (2007).
https://doi.org/10.1007/s00145-007-0549-3

21. Hofheinz, D., Jager, T., Khurana, D., Sahai, A., Waters, B., Zhandry, M.: How
to generate and use universal samplers. In: Cheon, J.H., Takagi, T. (eds.) ASI-
ACRYPT 2016. LNCS, vol. 10032, pp. 715–744. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53890-6 24

22. Howe, J., Prest, T., Ricosset, T., Rossi, M.: Isochronous Gaussian sampling:
from inception to implementation. In: Ding, J., Tillich, J.-P. (eds.) PQCrypto
2020. LNCS, vol. 12100, pp. 53–71. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-44223-1 4

23. Icart, T.: How to hash into elliptic curves. In: Halevi, S. (ed.) CRYPTO 2009.
LNCS, vol. 5677, pp. 303–316. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-03356-8 18

https://doi.org/10.1007/978-3-642-14623-7_13
https://doi.org/10.1007/978-3-642-14623-7_13
https://doi.org/10.1007/978-3-662-43414-7_20
https://doi.org/10.1007/978-3-662-43414-7_20
https://doi.org/10.1007/978-3-030-77870-5_7
https://doi.org/10.1007/978-3-030-77870-5_7
https://doi.org/10.1007/s00200-014-0218-3
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/978-3-319-78381-9_7
https://doi.org/10.1007/978-3-319-78381-9_7
https://doi.org/10.1007/s00145-007-0549-3
https://doi.org/10.1007/978-3-662-53890-6_24
https://doi.org/10.1007/978-3-030-44223-1_4
https://doi.org/10.1007/978-3-030-44223-1_4
https://doi.org/10.1007/978-3-642-03356-8_18
https://doi.org/10.1007/978-3-642-03356-8_18

682 G. Lu and B. Waters

24. Karmakar, A., Roy, S.S., Reparaz, O., Vercauteren, F., Verbauwhede, I.: Constant-
time discrete Gaussian sampling. IEEE Trans. Comput. 67(11), 1561–1571 (2018)

25. Karney, C.F.F.: Sampling exactly from the normal distribution. ACM Trans. Math.
Softw. 42(1), 1–14 (2016)

26. Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-20465-4 31

27. Lu, G., Waters, B.: How to sample a discrete Gaussian (and more) from a random
oracle. Cryptology ePrint Archive, Paper 2022/1227 (2022). https://eprint.iacr.
org/2022/1227

28. Lyubashevsky, V., Wichs, D.: Simple lattice trapdoor sampling from a broad class
of distributions. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 716–730.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 32

29. Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on
reductions, and applications to the random oracle methodology. In: Naor, M. (ed.)
TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-540-24638-1 2

30. Micciancio, D., Walter, M.: Gaussian sampling over the integers: efficient, generic,
constant-time. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10402,
pp. 455–485. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-
0 16

31. Pöppelmann, T., Ducas, L., Güneysu, T.: Enhanced lattice-based signatures on
reconfigurable hardware. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS,
vol. 8731, pp. 353–370. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44709-3 20

32. Ristenpart, T., Shacham, H., Shrimpton, T.: Careful with composition: limitations
of the indifferentiability framework. In: Paterson, K.G. (ed.) EUROCRYPT 2011.
LNCS, vol. 6632, pp. 487–506. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-20465-4 27

33. Zhao, R.K., Steinfeld, R., Sakzad, A.: COSAC: compact and scalable arbitrary-
centered discrete Gaussian sampling over integers. In: Ding, J., Tillich, J.-P. (eds.)
PQCrypto 2020. LNCS, vol. 12100, pp. 284–303. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-44223-1 16

34. Zhao, R.K., Steinfeld, R., Sakzad, A.: FACCT: fast, compact, and constant-time
discrete Gaussian sampler over integers. IEEE Trans. Comput. 69(1), 126–137
(2020)

https://doi.org/10.1007/978-3-642-20465-4_31
https://eprint.iacr.org/2022/1227
https://eprint.iacr.org/2022/1227
https://doi.org/10.1007/978-3-662-46447-2_32
https://doi.org/10.1007/978-3-540-24638-1_2
https://doi.org/10.1007/978-3-540-24638-1_2
https://doi.org/10.1007/978-3-319-63715-0_16
https://doi.org/10.1007/978-3-319-63715-0_16
https://doi.org/10.1007/978-3-662-44709-3_20
https://doi.org/10.1007/978-3-662-44709-3_20
https://doi.org/10.1007/978-3-642-20465-4_27
https://doi.org/10.1007/978-3-642-20465-4_27
https://doi.org/10.1007/978-3-030-44223-1_16
https://doi.org/10.1007/978-3-030-44223-1_16

Anonymity, Verifiability and Robustness

Anonymous Whistleblowing
over Authenticated Channels

Thomas Agrikola2(B), Geoffroy Couteau1, and Sven Maier2

1 CNRS, IRIF, Université de Paris, Paris, France
geoffroy.couteau@irif.fr

2 Karlsruhe Institute of Technology, Karlsruhe, Germany
{thomas.agrikola,sven.maier}@kit.edu

Abstract. The goal of anonymous whistleblowing is to publicly disclose
a message while at the same time hiding the identity of the sender in a
way that even if suspected of being the sender, this cannot be proven.
While many solutions to this problem have been proposed over the years,
they all require some form of interaction with trusted or non-colluding
parties. In this work, we ask whether this is fundamentally inherent. We
put forth the notion of anonymous transfer as a primitive allowing to
solve this problem without relying on any participating trusted parties.

We initiate the theoretical study of this question, and derive negative
and positive results on the existence of such a protocol. We refute the fea-
sibility of asymptotically secure anonymous transfer, where the message
will be received with overwhelming probability while at the same time
the identity of the sender remains hidden with overwhelming probability.
On the other hand, resorting to fine-grained cryptography, we provide
a heuristic instantiation (assuming ideal obfuscation) which guarantees
that the message will be correctly received with overwhelming proba-
bility and the identity of the sender leaks with vanishing probability.
Our results provide strong foundations for the study of the possibility of
anonymous communications through authenticated channels, an intrigu-
ing goal which we believe to be of fundamental interest.

1 Introduction

The term whistleblowing denotes “the disclosure by a person, usually an
employee in a government agency or private enterprise, to the public or to those
in authority, of mismanagement, corruption, illegality, or some other wrongdo-
ing” [Whi]. Consider the following scenario. You are happily employed by some
government agency. However, one day, you learn that your employer violates
human rights. You strongly disagree with this breach of trust and law but you
are bound by law to keep internal information secret. Consequently, you are
faced with a dilemma: either you ignore the human rights violation, or you

T. Agrikola and S. Maier—Supported by funding from the topic Engineering Secure
Systems of the Helmholtz Association (HGF) and by KASTEL Security Research Labs.
G. Couteau—Supported by ANR SCENE.
c© The Author(s), under exclusive license to Springer Nature Switzerland 2022
E. Kiltz and V. Vaikuntanathan (Eds.): TCC 2022, LNCS 13748, pp. 685–714, 2022.
https://doi.org/10.1007/978-3-031-22365-5_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22365-5_24&domain=pdf
https://doi.org/10.1007/978-3-031-22365-5_24

686 T. Agrikola et al.

face dishonorable discharge or even jail. In fact, whistleblowers often take an
immense personal risk, and face sentences ranging from exile [BEA14] to incar-
ceration [Phi18] or worse. Whistleblowing is crucial for democracy to educate
the public of misdeeds and to call those in power to account. Therefore, it is
desirable to cryptographically protect the identity of the whistleblower to allow
a low-risk disclosure of wrongdoing.

The importance of this question is well recognized in cryptography and secu-
rity. It has been the subject of several influential works (e.g. DC-nets [Cha88],
Riposte [CBM15] or Blinder [APY20]). Concrete solutions include the use of
secure messaging apps [CGCDGS20,Ber16], mix-nets [Cha03], onion routing sys-
tems such as the Tor network [DMS04], or solutions built on top of DC-nets and
secure computation techniques [CBM15,APY20] (see also [ECZB21,NSSD21]).

Yet, all current approaches to anonymous whistleblowing rely on trusted par-
ties (or non-colluding partially trusted servers), which either receive privately
the communication, or implement a distributed protocol to emulate an anony-
mous network. Therefore, however ingenious and scalable some of these solutions
are, whistleblowers must ultimately trust that they will interact with parties or
servers which will (at least for some of them) remain honest and refuse to collude
throughout the transmission.

In this work, we ask whether this is fundamentally inherent, or whether
anonymous whistleblowing is possible in theory without having to privately com-
municate with trusted parties. In its most basic form, the question we ask is the
following:

Is it possible for a whistleblower (who is communicating solely through
authenticated point-to-point or broadcast channels)

to publicly reveal some message m while remaining anonymous
without assuming trusted participating parties?

We do allow a Common Reference String (CRS) for technical reasons, and
stress that while it is technically also a trust assumption, it is much weaker;
instead of trusting a set of parties every time to follow the exact protocol and
to not cheat in any way, we only require a CRS to be set up once: A CRS that
was successfully sampled just once can be used for all future interactions.

The above is, of course, trivially impossible if the whistleblower is the only
communicating party. However, it becomes meaningful in a multiparty setting,
where a number of parties (unaware of the intent of the whistleblower) exchange
innocent-looking messages (think of a group of people having a conversation, or
using some public messaging service like Twitter or Facebook to broadcast infor-
mation). In this context, the question translates as follows: could the whistle-
blower somehow disguise its communication as an innocent-looking conversation
with the other parties, such that the message m can be publicly extracted (by
anyone) from the entire conversation, yet the identity of which party was indeed
the whistleblower remains hidden? To our knowledge, this intriguing question
has never been studied in the past. Our main contributions are threefold:

Anonymous Whistleblowing over Authenticated Channels 687

1. A definitional framework. We put forth a formal definition for a crypto-
graphic primitive that realizes the above goal, which we call an Anonymous
Transfer. We study the relation between variants of the notion.

2. Impossibility results. We prove a strong impossibility result: we show that
Anonymous Transfer with overwhelming correctness and anonymity cannot
be realized in any polynomial number of rounds, by exhibiting a general
attack against any such protocol. This non-trivial result demonstrates that
anonymously communicating over authenticated channels is impossible with
standard cryptographic security levels, even assuming strong cryptographic
primitives such as ideal obfuscation.

3. Feasibility result. We complement our impossibility result by an intriguing
feasibility result: we show that fine-grained Anonymous Transfer is possi-
ble assuming ideal obfuscation. The term fine-grained refers to cryptographic
constructions which are only guaranteed secure against adversaries whose
computational power is a fixed polynomial in the computing power of the
honest parties (in our case, the gap is quadratic). Our instantiation is a plau-
sible heuristic candidate when instantiating the ideal obfuscation by candidate
indistinguishability obfuscation schemes.

Both our negative and positive results are highly non-trivial and require
a very careful analysis. We view our work as addressing a fundamental ques-
tion regarding the a priori possibility of secure whistleblowing without interact-
ing with trusted parties, through the lens of anonymous communications over
authenticated channels. Nevertheless, our study is of a purely theoretical nature,
and does not have immediate practical relevance. In particular, we do not com-
pare our results to the practical real-world methods which whistleblowers can
employ.

Anonymous Transfer and Plausible Deniability. The fundamental goal of
an Anonymous Transfer protocol is to achieve plausible deniability: the whistle-
blower should be able to hide its identity among a group of parties, such that
even if it is strongly suspected that he is the whistleblower, this cannot be proven
– any party could equally be the whistleblower. Importantly, the involved parties
are never required to be aware that a message is being transmitted: their consent
or collaboration is not needed for the Anonymous Transfer to take place, and
they themselves have no advantage in finding out who the whistleblower was.

1.1 Undetectable Secure Computation

Secure Multiparty Computation (MPC) allows a set of parties to jointly evaluate
a function on their inputs without revealing these inputs. In certain scenarios,
however, the standard guarantees of MPC become insufficient: the mere fact
that a party is participating to a certain protocol already reveals information
about that party. Consider for example the following scenario: your company
was hacked, but you do not have enough forensic data to trace the attackers. If
several companies fell victim to the same hacker, a joint effort may yield enough

688 T. Agrikola et al.

information to successfully trace the hacker. However, the very fact that you are
initiating such a protocol reveals that your company has been hacked.

The notion of Covert Multiparty Computation (CMPC) [vHL05,CGOS07]
was introduced to cope with situations in which even revealing one’s participa-
tion to the protocol is undesirable. CMPC allows a set of parties to securely
compute a protocol among n parties with the following two guarantees: (1) If
all parties are actually willing to participate in the protocol (and are not simply
having innocent conversations), and if the output of the protocol was acceptable
(which is specified by some function g of the joint input), then everyone learns
the result of the protocol. (2) Otherwise (if at least one party was not partic-
ipating, or the output was not acceptable), no one learns anything about who
were the participating parties (or even whether there was any).

CMPC is a powerful strengthening of secure computation. However, it still
has two important downsides: a single non-participating party is sufficient to
make the entire protocol fail (no one gets any output), and when all parties par-
ticipate, they all learn that they participated (hence, no one can deny anymore
having participated in the protocol). One of the primary motivations behind
the study of Anonymous Transfer, which we put forth in this work, is to open
the avenue to the study of a significantly more powerful form of secure computa-
tion that provides the strongest deniability guarantees one can hope for: a secure
computation protocol where, even after the successful protocol execution, no one
learns who the participants were. Specifically, we consider the following setting:
N individuals are interacting. Among them, k players are willing to jointly com-
pute a public function f on their private inputs (x1, . . . , xk), while the remaining
(N − k) are not interested in taking part to the protocol (nor are even aware of
the fact that a secure computation might be taking place). At the end of the
protocol, the k participants should all receive the output, but no party should
be able to find out which of the parties were actually participating. We call this
strengthening of secure computation undetectable secure computation.

Since undetectable secure computation is stronger than Anonymous Transfer
(which it implies), our impossibility results for Anonymous Transfer also trans-
late to impossibility results for undetectable secure computation1. Furthermore,
building on our positive result, we show how to construct anonymous oblivious
transfer (in the fine-grained security setting), a core building block for construct-
ing undetectable secure computation for more general functionalities.

1.2 Defining Anonymous Transfer

An Anonymous Transfer (AT) protocol describes the interaction between a
sender, a receiver and a non-participant. We assume all parties to interact in
the synchronous model over a public broadcast channel, i.e., in each round each

1 This follows directly from the fact that given undetectable secure computation for
any function f, we can directly construct AT by computing a function that lets two
potential senders insert either a bitstring for transfer or ⊥ and outputs one of them
(i.e. the one input that is not ⊥) to the receiver.

Anonymous Whistleblowing over Authenticated Channels 689

participant broadcasts a message which only depends on messages from previ-
ous rounds. The non-participant is not aware that a protocol takes place, and is
only having an innocent conversation (we call them the “dummy player”, or the
“dummy friend”). We follow [vHL05,CGOS07] and model non-participating par-
ties as parties that only broadcast uniform randomness in each round, since any
ordinary communication pattern can be viewed as an embedding of the uniform
distribution due to standard techniques [vHL05,HLv02,vH04]. The sender aims
to transmit a message to the receiver in a way that does not leak its identity
(the notion easily generalizes to more non-participating parties). We say that an
AT protocol is ε-correct if the probability that the receiver successfully receives
the message is at least ε. Further, we say that an AT protocol is δ-anonymous if
no adversary is able to determine the identity of the sender (given the transcript
and the receiver’s random tape) with advantage more than (1− δ)/2 over guess-
ing. These are the core properties which shape an AT protocol. If the protocol
allows the receiver to remain silent throughout the protocol execution, sending
a message corresponds to publicly revealing the message (i.e., whistleblowing).
Eventually, we call fine-grained AT an Anonymous Transfer, where anonymity
is only required to hold against adversaries from a restricted complexity class
(typically, adversaries whose runtime is bounded by a fixed polynomial in the
runtime of the honest parties).

1.3 Impossibility Result

Our first main result shows that AT is impossible in a strong sense.

Theorem 1 (Impossibility of AT, informal). There is no Anonymous
Transfer protocol with overwhelming correctness and anonymity, with any poly-
nomial number of rounds and any number n ≥ 1 of non-participating parties,
even for transmitting a single bit message.

Our proof proceeds in several steps. First, we show that any Anonymous
Transfer for transmitting a single bit with n non-participants, with overwhelm-
ing correctness and anonymity implies (in a black-box way) a silent-receiver
Anonymous Transfer (where the receiver never speaks) for transmitting κ bits
(where κ is some security parameter) with a single non-participating party. This
reduction uses a relatively standard indistinguishability-based hybrid argument.

Then, the core of the proof rules out the existence of κ-bit silent-receiver
1-non-participant Anonymous Transfer with overwhelming correctness and
anonymity. The key intuition is the following: let P0,P1 be the two parties inter-
acting with the receiver, where Pb is the sender, and P1−b is the non-participant.
Let Πκ

AT be the protocol which these two parties execute, and assume that it sat-
isfies ε-correctness and δ-anonymity. Suppose that during their interaction, the
parties produce a transcript π. We consider an adversary A which replaces the
last message of P0 by a random value, before running the receiver algorithm to
reconstruct the transmitted message. Then if b = 1, the adversary just replaced
the last (random) message of the non-participating party by another random

690 T. Agrikola et al.

message, and the transcript is still a perfectly valid transcript for Πκ
AT , hence

the reconstruction algorithm must still output the right string Σ with overall
probability ε. On the other hand, if b = 0, then the transcript is a valid transcript
for a “round-reduced” version of Πκ

AT , where the last round is replaced by two
random messages. By the δ-anonymity, A should not distinguish between the two
situations with advantage better than (1 − δ)/2. This implies that the correct-
ness of the round-reduced protocol cannot be much lower than ε, hence that we
constructed a δ-anonymous (c − 1)-round protocol with non-trivial correctness
guarantees. Then, A keeps repeating this procedure until we reach a 0-round
protocol, which cannot possibly have any non-trivial correctness guarantee.

While the above provides an intuition of the approach, the real strategy is
much more involved. In particular, using A to distinguish between a random
transcript of Πκ

AT and a random round-reduced transcript does not suffice to
rule out arbitrary polynomial-round protocols (more precisely, it would only
rule out logarithmic-round protocols, since the correctness guarantees would
decrease roughly by a factor two at each step of round reduction). Instead, A will
replace independently the last message of each party by a random value, getting
two distinct transcripts (π0, π1). Then, A attempts to distinguish whether π0

is a transcript of Πκ
AT and π1 is a round-reduced transcript, or the other way

around. While this is the proper way to attack the protocol, the analysis is more
involved, since now π0, π1 are not independent random variables anymore, as
they share a common prefix (the transcript of the first c−1 rounds). Nevertheless,
a more careful analysis shows that this dependency cannot significantly lower
the distinguishing probability of A.

In the full version [ACM21] we further prove that no AT protocol for N > 3
parties with overwhelming correctness and anonymity can exist unless a N =
3-party protocol exists with overwhelming correctness and anonymity—which
cannot exist. It suffices to prove that any N-party Silent Receiver AT for N > 3
implies a (N)-party “normal” (i.e. with an actively participating receiver) AT,
without losing the overwhelming correctness and anonymity in the process.

Intuitively, the receiver does not broadcast any messages in the N-party pro-
tocol; all communication comes from the (N−1) potential senders. We construct
an (N − 1)-party protocol by letting the receiver play one non-participant, with
the one difference being that this party is known not to be the sender (since
it is the receiver); the sender can only be one of the (N − 2) other parties.
While the correctness remains unaffected, the anonymity decreases due to the
fact that guessing with one party less yields better results; yet we show that
the anonymity still remains overwhelming in the security parameter. We then
transform any N-party AT to an N-party SR-AT as described above and that to
a (N−1)-party AT, until we have a 3-party AT that, assuming that the N-party
AT has overwhelming anonymity and correctness, maintains these properties.

On a high level, this process lets the actual participants simulate non-
participants behavior in their head; one-by-one their random tape is moved to the
CRS until only three parties are left: a sender, a receiver, and a non-participant.

Anonymous Whistleblowing over Authenticated Channels 691

Our negative result applies to a weak model. In particular, non-participants
are modeled to be semi-honest. Hence, our negative result does not leave much
room for positive results.

1.4 A Candidate Fine-Grained Anonymous Transfer

To circumvent the above impossibility result, we need to give up asymptotic
security and resort to the fine-grained setting: We only require anonymity
against adversaries which require polynomially— quadratically, in our case—
more resources than an honest protocol execution.

That is, our second main result shows that (perhaps surprisingly) non-trivial
AT is indeed possible in a weaker setting:

Theorem 2 (Feasibility of AT, informal). Let N = 3 be the number of
individuals. Assuming ideal obfuscation, for any anonymity δ, there is a c-round
Anonymous Transfer protocol Π1

AT (for � bit messages) that has overwhelming
correctness, where anonymity δ holds against any adversary A with runtime
� c2.

That is, for our second main contribution we propose a protocol which—
assuming ideal obfuscation—allows to reduce the problem of de-anonymizing
the sender to a distribution testing problem. More precisely, we show that deter-
mining the real sender in a c-round protocol given only a transcript of the AT
protocol is as hard as differentiating between two Bernoulli oracles, where one
returns 1 with probability p and the other returns 1 with p + 1/(2c). For this
distribution testing problem, strong lower bounds on the number of required
samples and thus the adversarial runtime are known.

The protocol proceeds in rounds, where each honest message from the sender
gradually increases the probability that the transmitted bit is correctly received.
The sender first encrypts a verification key that is to-be-used be the obfuscated
circuit, and in each successive round the sender encrypts the bit and a signature
on both messages from the previous round to limit the ability of the adversary to
manipulate the transcript when attacking anonymity. The non-participant only
broadcasts random bits in each round. The Common Reference String contains
an obfuscated program with hard-coded keys for the pseudorandom encryption
scheme. The circuit checks the validity of the signatures of each round. Each
consecutive valid round increases the confidence in the transmitted bit. Finally,
the circuit outputs random bit according to the confidence gained. If all rounds
are valid, the correct bit will be output with probability 1, if no round is valid,
the correct bit will be output with probability 0.5.

While the high level intuition of the protocol is relatively clear, its exact
instantiation is particularly delicate – any small variant in the design seems to
open the avenue to devastating attacks. Furthermore, its analysis relies on long
and complex hybrid arguments that progressively reduce the advantage of the
adversary to contradictions with respect to known distribution testing bounds
with a limited number of samples. The majority of our proof can be found in
our full version [ACM21].

692 T. Agrikola et al.

Our proof can be split in two parts. The first part exploits properties of
the encryption schemes, the signature scheme, and ideal obfuscation to prove
indistinguishability (against even PPT adversaries) between the actual protocol
and a hybrid, where all reported messages are truly random and independent
from the sender and the transferred bit, and the obfuscated circuit only counts
how many input messages are identical to those from the challenge transcript.

This game still contains information on the sending party as it treats those
messages differently. To remove this dependency, we resort to distribution testing
and view the obfuscated circuit as a Bernoulli oracle which follows one of two
(known) distributions, and where the goal is to determine which one.

1.5 Discussions and Implications

In this section, we further discuss some implications and relations of our results
to the literature.

‘Philosophical Implications:’ Between Obfustopia and Impossibili-
topia. There is a small remaining gap between our negative and positive results:
the possibility of building anonymous transfer secure against arbitrary polytime
adversaries, but with non-negligible (e.g. inverse polynomial) anonymity error
remains open. Closing this gap would have an intriguing philosophical conse-
quence: stretching the terminology of Impagliazzo on the “worlds” of cryptogra-
phy, it would establish the existence of a cryptographic primitive that plausibly
exists in obfustopia (the world where indistinguishability obfuscation is possible)
in the fine-grained setting, yet does not exist (“reside in impossibilitopia”) with
standard hardness gaps. Interestingly, there are several known examples where
fine-grained constructions of a “higher world” primitive reside in a lower world;
for example, (exponentially secure) one-way functions (a Minicrypt assumption)
imply fine-grained public-key encryption (a Cryptomania assumption). Our work
seems to provide a new example of this behavior, at the highest possible level
of the hierarchy, showing that impossible primitives might end up existing if we
weaken their security to the fine-grained setting.

Relation to the Anonymous Whistleblowing Literature. We clarify how
our (positive and negative) results relate to the literature on anonymous broad-
cast and secure whistleblowing. In general, a whistleblower willing to reveal
something anonymously has two alternative choices: (1) the whistleblower has
access to an anonymous communication channel, for example by putting their
message (say, encrypted with the receiver public key) on some public website that
somehow cannot be traced to them. However, access to an anonymous channel is
typically a ’physical’ assumption, and one which is very hard to guarantee. This
issue is developed in great detail in the literature: see for example the discussion
in Spectrum [NSSD21] about how metadata have been used by federal judges to
trace and prosecute people who leaked data through secure messaging apps, or

Anonymous Whistleblowing over Authenticated Channels 693

the discussion in Riposte [CBM15] and Express [ECZB21] on how traffic anal-
ysis can be used to trace whistleblowers on the Tor network or the SecureDrop
service. Hence, most of the literature focuses on scenario (2): the individuals
interact over a communication network, and we do not assume that this net-
work guarantees anonymity in itself. In this case, what we want is to emulate
this anonymity, by developing a strategy to help the whistleblower transmit a
message anonymously to the receiver.

The literature on this subject is incredibly vast, but this emulated anonymity
is always achieved using the same template in all solutions we are aware of
(including Spectrum, Blinder, Riposte, Express, Talek, P3, Pung, Riffle, Atom,
XRD, Vuvuzela, Alpenhorn, Stadium (or any other Mixnet-based solution),
Karaoke, Dissent, Verdict, and many more): when the whistleblower wants to
anonymously transmit a message, either to everyone (anonymous broadcast) or
to a target receiver, other users generate ‘honest’ traffic in which communications
can be hidden. To do so, the users interact with a set of non-colluding servers
(sometimes two servers, sometimes more, some with honest majority, some with-
out). This is never even discussed or remarked: it is taken as an obvious fact that
this is the structure of an anonymous broadcast (or messaging) protocol. And
indeed, the need to generate honest traffic feels clear – if the whistleblower is the
sole sender, observing traffic directly leaks their identity. That the use of non-
colluding servers was never challenged or even discussed probably means that it
also feels clear – but this assumption is precisely what we challenge in our work:
we do assume that some users generate honest traffic, but we ask whether the
assumption of non-colluding participating servers is avoidable. Of course, any
scientific treatment of a broad question (‘are non-colluding helpful participants
required for anonymous broadcast?’) is bound to move from the broad question
to a formal model, in which (feasibility or impossibility) results can be achieved.
Nevertheless, we believe that our impossibility result demonstrates that the use
of non-colluding servers in all previous works was indeed unavoidable, at least
insofar as their aim was to achieve anonymity against arbitrary polynomial-time
adversaries.

Non-participating Parties Versus Malicious Parties. Our choice of for-
malism, with the notion of anonymous transfer, allows to study whether the
assumption of honest, non-colluding, participating servers can be replaced by
a considerably weaker trust assumption: that of non-participating parties, not
trying to take part to the protocol in any way (and not even required to be
aware of the execution of the protocol) beyond generating traffic. As we show,
this weaker assumption does not suffice against arbitrary polynomial-time adver-
saries, but possibly suffices against bounded polynomial-time adversaries (where
the bound is sub-quadratic). As a natural next step, one could push the question
even further and ask: what if some of the non-participating parties were in fact
planted by a malicious adversary, and now play maliciously during the proto-
col? It seems plausible, that our general strategy can be extended to deal with
malicious non-participants. However, we expect the analysis to require different
techniques than the ones we used. We leave a formal proof of this to future work.

694 T. Agrikola et al.

1.6 Further Results and Open Questions

In the full version [ACM21] we extend our fine-grained AT such that it transfers
�-bit messages directly, which achieves the same level of security as the single-
bit AT but requires twice as many rounds. We instantiate asymptotically secure
AT in the designated-sender setting with non-trivial (but not useful) parameters
for ε and δ. We define an extension of AT called Strong AT which we require
for Undetectable Computation. We define undetectable versions of both OT
(called Undetectable Oblivious Transfer (UOT)) and MPC (called Undetectable
Multiparty Computation (UMPC)), where k parties hide the respective execution
in a group of N individuals. We provide an instantiation of UOT based on strong
AT and use that to instantiate UMPC for k = 3.

Our work leaves open two exciting questions:

(1) Can our impossibility result for asymptotically secure AT with overwhelming
correctness and anonymity be extended to rule out asymptotically secure AT
with anonymity 1 − 1/poly(κ)?

(2) Is it possible to instantiate AT in the fine-grained setting from “Obfustopia”
standard assumptions achieving similar parameter as our instantiation?

Given that both our open questions can be answered affirmatively, this would
separate the realm of asymptotic security from the realm of fine-grained security.

2 Preliminaries

2.1 Notations

For any party P we denote by TP the random tape of P.
For events (A,B), Ā denotes the complementary even of A, Pr[A | B] denotes

the probability of A happening conditioned on B happening. For values (a, b), the
notation �a = b� denote the bit value of the corresponding predicate. We let κ be
a security parameter; we write negl(κ) to denote any function negligible in κ and
owhl(κ) to denote a function overwhelming in κ (that is, 1 − owhl(κ) = negl(κ)).
For any probability distribution D, we denote by R(D) the support of D, and by
x

$← D we denote that x is uniformly sampled from D.
For probability distributions p and q we write p⊗t as the distribution arising

from taking t sample from p, and p ◦ q as the distribution obtained by sampling
one time from p and one time from q. We write ‖p‖1 to denote the L1 norm of
p.

For two bitstrings A,B ∈ {0, 1}m, A ⊕ B denotes the bitwise XOR of A and
B. We write by [n] for n ∈ N the set of numbers {1, . . . , n}.

Anonymous Whistleblowing over Authenticated Channels 695

2.2 Distribution Testing

In this section, we introduce preliminaries for probability testing. We start by
describing the Total Variational Distance between two distributions.

Definition 1 (Total Variational Distance). Let p and q be two probability
distributions over the countable set of possible outcomes Ω. The total variational
distance between p and q is defined as:

dTV(p, q) :=
1
2

∑

ω∈Ω

|p(ω) − q(ω)| =
1
2
‖p − q‖1 (1)

An important property of the total variational distance is that it acts sublinear
when taking many samples. When taking t samples from a Bernoulli distribution
the corresponding distribution can be described by taking a single sample from a
t-bit Binomial distribution. The sub-additivity then bounds the total variational
distance of the corresponding binomial distribution:

Lemma 1 (Total variational distance of a t-fold probability distribu-
tion, folklore). Let p and q be two Bernoulli distributions with total variational
distance dTV(p, q). Then it holds for the binomial distributions p⊗t and q⊗t that
result from sampling t times from the respective distributions:

dTV(p⊗t, q⊗t) ≤ t · dTV(p, q) (2)

Thus we can bound the distinguishing advantage of any distinguisher who
has taken t samples form the same oracle using the total variational distance of
the respective distributions directly.

A similar rule also holds for two different distributions, where the distin-
guisher has to distinguish whether two samples originate from p⊗r or from q⊗s
for known values of p, q, r and s. In this case the rule states that:

Lemma 2 (Sub-Additivity of the Total Variational Distance for Prod-
uct Distributions, folklore). Let p and q be a probability distribution over
{0, 1}m with total variational distance dTV(p, q). Let r and s be two Bernoulli
distributions with total variational distance dTV(r, s). Then it holds for the dis-
tribution derived from sampling from each distribution once and concatenating
the outputs (which yields a sample from {0, 1}m+1 originating either from p ◦ r
or q ◦ s) that

dTV(p ◦ r, q ◦ s) ≤ dTV(p, q) + dTV(r, s)

The following lemma limits the distinguishing advantage of any distinguisher
that tries to distinguish two distributions p and q based on a single sample.

Lemma 3 (Distinguishing distributions based on the Total Variational
Distance). Let p and q be two distributions with total variational distance
dTV(p, q). If dTV(p, q) < 1

3 , then no algorithm can exist that distinguishes p and
q with probability ≥ 2

3 based on a single sample.

696 T. Agrikola et al.

Using Lemmas 1 and 3 we can provide lower bounds on the sampling com-
plexity of distinguishing two distributions p and q with advantage α/2.

Corollary 1 (Distinguishing two Bernoulli-Distributions with t sam-
ples). Any distinguisher D that distinguishes between p and q with probability
≥ 1

2 + α
2 requires t ∈ Ω

(
α

dTV(p,q)

)
samples.

We refer the reader to [ACM21] for proofs of Lemma 3 and Corollary 1.

3 Anonymous Transfer

We consider the following situation: some secret agent Pb is willing to transfer a
message Σ to a receiver R, while hiding his identity b among two individuals. We
call Anonymous Transfer (AT) an interactive protocol that achieves this goal.

3.1 Network Model and Non-participating Parties

The goal of an anonymous transfer protocol is to hide the transferred message
among innocent conversations by individuals, which are not taking part in the
protocol. By a well-established folklore result in steganography, this task can be
reduced to the simpler task of hiding the transferred message among uniformly
random beacons, broadcast by the other individuals: the uniform channel, where
all protocol messages look uniformly random, can be compiled into any other
ordinary communication pattern [vHL05,HLv02,vH04]. Therefore, as in previ-
ous works (see von Ahn, Hopper, and Langford [vHL05] and Chandran, Goyal,
Ostrovsky, and Sahai [CGOS07]), we consider a set of k parties who interact with
each other via broadcast channels and focus, without loss of generality, on proto-
cols for the uniform channel. Consequently, we will model the non-participating
parties as “dummy parties” that only broadcast uniformly random messages of
a fixed length at each round.

3.2 The Model

Let b ∈ {1, · · · ,N − 1} denote the index of the sender and let Σ ∈ {0, 1}� be
the message that Pb wants to transfer to the receiver. We consider an interac-
tive protocol in the Common Reference String (CRS) model between N play-
ers (P1, · · · ,PN−1,R), where R and Pb participate in the protocol, and Pi for
i �= b are non-participating but present players that only broadcast random
strings. The receiver R gets the CRS as input and the sender Pb gets the CRS
and the message Σ as input. For any player P, let TP denote the random tape
from which P draws his random coins. The players interact through authenti-
cated broadcast channels in the synchronous model: the protocol proceeds in
rounds, and each player broadcasts a message at each round. We denote by
〈R,P1, · · · ,PN−1〉(crs, b, Σ) the distribution of the possible transcripts of the
protocol in this setting (i.e., the sequence of all messages broadcasted by the
players during an execution of the protocol), where the probabilities are taken
over the random coins TP of the players P ∈ {R,P1, · · · ,PN−1} and the random
choice of the CRS crs.

Anonymous Whistleblowing over Authenticated Channels 697

Definition 2 ((ε, δ, c, �)-Anonymous Transfer). An N-party (ε, δ, c, �)-
Anonymous Transfer (AT) for ε, δ ∈ R[0,1] and N, c, � ∈ N (all possibly functions
in κ) is a tuple containing three PPT algorithms (Setup,Transfer,Reconstruct).
The number of rounds in the Transfer protocol is given as c and the bitlength �
defines the length of the transferred message Σ. The algorithms are defined as
follows:

Setup(1κ) takes as input the security parameter 1κ in unary encoding and outputs
a Common Reference String crs.

Transfer(crs, b, Σ) defines a c-round protocol2 that takes as input the Common
Reference String crs, an index b ≤ N − 1 specifying the sender, and the mes-
sage Σ ∈ {0, 1}� from the sender and outputs a transcript π. The non-sender
sends independent uniformly distributed noise in each round. All protocol mes-
sages sent by the receiver, the sender and the non-participating parties at each
round are bitstrings of length m = m(κ), where m is implicitly specified by the
Transfer protocol.

Reconstruct(crs, π, TR) is a local algorithm executed by the receiver that takes as
input the CRS crs, the protocol transcript π and the receiver’s random tape
TR and outputs a message Σ′.

The algorithms additionally satisfy the ε-correctness and the δ-anonymity
properties defined in Definitions 3 and 4.

Definition 3 (ε-Correctness). For any sufficiently large security parameter
κ, for any number of individuals N ∈ poly(κ), for any participant b ∈ [N − 1],
for any message length � ∈ poly(κ), for any message Σ ∈ {0, 1}�, and for any
CRS crs ← Setup(1κ), an Anonymous Transfer protocol Π�

AT between players
(P1, . . . ,PN−1,R) is ε-correct if the following holds:

Pr
[

π
$← Transfer〈R,P1,...,PN −1〉(crs, b, Σ)

Σ′ ← Reconstruct(crs, π, TR)
: Σ = Σ′

]
≥ ε (3)

Note that ε can take on any value between 0 and 1. The naive algorithm that
lets the receiver sample a uniformly random �-bit string has ε = 1/2�.

Definition 4 (δ-Anonymity). For any PPT algorithm A = (A0,A1), for all
sufficiently large security parameters κ, for any number of individuals N ∈
poly(κ), and for any message length � ∈ poly(κ), an Anonymous Transfer proto-
col Π�

AT between players (P1, . . . ,PN−1,R) is δ-anonymous if it holds that
∣∣∣∣∣ Pr
b $←[N−1]

[
ExpanonΠ�

AT ,A,b(κ) = b
]

− 1
N − 1

∣∣∣∣∣ ≤ (1 − δ) · N − 2
N − 1

(4)

where ExpanonΠ�
AT ,A,b(κ) is defined in Fig. 1.

2 A c-round protocol corresponds to a synchronous model, where each message is
broadcasted and the messages in each round only depend on messages from previous
rounds, see [ACM21] for a formal definition.

698 T. Agrikola et al.

Fig. 1. Definition of the game Expanon
Π�

AT
,A,b(κ).

The value δ can take any value between 0 and 1. The higher δ the stronger the
provided anonymity guarantees. If a protocol is δ = 1-anonymous, the advantage
over guessing at random equals 0, and if a protocol is δ = 0-anonymous, the
advantage over guessing at random equals 1. The right-hand-side of Definition
4 contains a scaling factor of (N − 1)/(N − 2). This is due to the fact that even
under perfect anonymity (δ = 1), the receiver can still guess the sender. Knowing
that one of the N parties—namely itself—is not the sender, there are (N − 1)
potential senders, of which (N−2) are just dummy friends. Thus, the probability
of guessing wrong is given by the aforementioned factor.

Note that we require anonymity to hold, in particular, against the receiver.
Therefore, the adversary in the anonymity game may know the receiver’s random
tape TR from the beginning.

The guessing algorithm is split between A0 who is given the CRS and the
random tape TR the receiver is going to use during the protocol, and outputs
the target message Σ that should be transferred and a state st. In the second
phase, the algorithm A1 which is given the inputs π and the state.

Unless stated otherwise, we consider the case N = 3, i.e., one non-participant.

3.3 Fine-Grained Anonymous Transfer

Fine-grained cryptographic primitives are only secure against adversaries with
an a-priori bounded runtime which is greater than the runtime of the honest
algorithms, [Mer78,DVV16]. We use the notion of [DVV16]. In the following, C1

and C2 are function classes.

Definition 5 (C1-fine-grained (ε, δ, c, �)-Anonymous Transfer against
C2). The tuple (Setup,Transfer,Reconstruct) (as defined in Definition 2) is a C1-
fine-grained (ε, δ, c, �)-Anonymous Transfer for ε, δ ∈ R[0,1] and c, � ∈ N against
C2 if the following two conditions hold:

Efficiency. The algorithms (Setup,Transfer,Reconstruct) are in C1.
Security. Anonymity (Definition 4) is only required to hold against adversaries

in C2.

The definition of correctness remains as in Definition 3.

Anonymous Whistleblowing over Authenticated Channels 699

Example 1 (Merkle-Puzzles). Merkle-Puzzles [Mer78] are a fine-grained protocol
to exchange a shared key from symmetric encryptions where successful encryp-
tions can be efficiently distinguished from false ones. The sender S creates nmer
many ciphertexts, each under a different (relatively short) key, containing a
unique identifier and a symmetric key. The receiver R then randomly picks one
of the ciphertexts and runs a brute-force attack (which we assume to cost mmer
many steps) to recover the key and to send the identifier back to the sender.

Here C1 := O(nmer + mmer) as the sender has to create nmer puzzles and the
receiver must use mmer steps to break one of them, and C2 := O(nmer · mmer) as
an adversary has to break at worst all the nmer ciphertexts to recover the key.

3.4 Trivial Anonymous Transfers

For simplicity, we focus on 3-party anonymous transfer in the following discus-
sions, with two players P0,P1 and a receiver R.

Remark 1 (Perfect correctness.). A perfectly correct (i.e. ε = 1) protocol is
impossible. Given a player Pb with input Σ, there is always a probability that
the non-participating player P1−b behaves exactly as a participating player with
input Σ′ �= Σ, in which case R cannot obtain the correct output for sure.

Therefore, the best one can hope for is a correctness statistically close to 1. In
the following, we demonstrate ATs with trivial parameters.

Example 2 (Trivial single-bit AT). Consider the following trivial single-round
AT to transfer a single bit σ: Pb broadcasts his input σ (and P1−b broadcasts
a random bit). Upon receiving (σ0, σ1) from P0 and P1, if σ0 = σ1, R outputs
σ0; otherwise, R outputs a uniformly random bit. As P1−b broadcasts a random
bit, it holds that σ0 = σ1 with probability 1/2, in which case R obtains the
correct output σ = σb; else, R obtains the correct output with probability 1/2.
Overall, R obtains the correct output with probability 3/4. The protocol is 1/2-
anonymous since the adversary knows the message to be transmitted and can
hence determine the sender whenever the transmitted bits are distinct and guess
with probability 1/2 otherwise. Hence, the above protocol is a (3/4, 1/2, 1, 1)-AT.

Example 3 (Trivial �-bit AT). One can also construct a trivial �-bit AT. To
transmit a message Σ ∈ {0, 1}�: Pb simply sends Σ repeated κ times. Clearly,
(not only) R finds out both Σ and b with overwhelming probability. Hence, the
above protocol is a (1 − negl(κ), negl(κ), κ · �, �)-AT.

In this work, we study whether ATs with non-trivial parameters can exist.

3.5 Reductions Among AT Protocols

In this section, we show that several simplified variants of anonymous transfer
are equivalent to the original definition.

700 T. Agrikola et al.

AT Implies Silent-Receiver AT. We say that an anonymous transfer has
silent receiver if the receiver never sends messages during the Transfer protocol,
and Reconstruct is a deterministic function of the CRS and the transcript π. Any
AT directly implies a silent-receiver AT with the same parameters for correctness
and anonymity, but at the cost of secrecy: Any (non-)participant is able to
reconstruct the message given only the transcript of broadcasted messages, not
just the receiving party of the protocol, which might be undesirable for practical
applications. Let Π�

AT be a (ε, δ, c, �)-Anonymous Transfer. Define the silent-
receiver AT Π�

SR as follows:

Π�
SR.Setup(1κ) runs crs ← Π�

AT .Setup(1κ) and samples a uniform random tape
TR for R. It outputs (crs, TR).

Π�
SR.Transfer(crs, b, Σ) proceeds exactly as Π�

AT .Transfer(crs, b, Σ), except that
the receiver R does not broadcast any message. At each round χ = 1 to
χ = c, the sender Pb locally appends the χ-th receiver message xχ in
Π�

AT .Transfer(crs, b, Σ;TR, ·, ·) to the current transcript π[χ] (note that xχ

can be computed deterministically from π[χ] and TR), and compute its next
message as in Π�

AT .Transfer using the transcript π[χ]‖xχ.
Π�

SR.Reconstruct(crs, π, TR) is defined exactly as Π�
AT .Reconstruct(crs, π, TR),

except that it first expands the transcript π by recomputing (determinis-
tically) the messages of R in Π�

AT .Transfer(crs, b, Σ;TR, ·, ·) and appending
them to π at each round.

The notion of silent receiver AT captures the notion of an anonymous transfer
whose aim is to publicly reveal a message (i.e., whistleblowing) rather than send-
ing it to a single receiver. An other way to look at it is to consider that the silent
receiver transformation can be seen as passive to active security transformation
for the receiver: If there is a secure AT protocol against a passive receiver, then
there is a secure silent receiver AT against an active receiver, simply because
the receiver has no option to cheat as no messages are sent.

Lemma 4. Π�
SR is an (ε, δ, c, �)-Anonymous Transfer.

Proof (sketch). Correctness and number of rounds follow directly from the
description of Π�

SR, which simply mimics Π�
AT , except that the random tape

of the receiver is made public, and its messages are computed on the fly locally
by the sender and during the reconstruction. Anonymity follows also immedi-
ately by observing that TR is given to the adversary in the anonymity game,
hence making it public cannot harm anonymity. ��
Since the converse direction is straightforward, AT and silent receiver AT are
therefore equivalent.

Single-bit AT Implies Many-bit AT. In this section, we analyze how a
single-bit AT can be generically transformed into an AT which allows to transmit
bitstrings. We construct an �-bit AT by executing the single-bit AT � times

Anonymous Whistleblowing over Authenticated Channels 701

(sequentially) to transmit the message bit-by-bit. Let Π1
AT be a C1-fine-grained-

(ε, δ, c, 1)-Anonymous Transfer against C2. Further, let Π�
AT be the protocol

which uses � instances of Π1
AT to transmit �-bit messages bit-by-bit.

We analyze Π�
AT using the fine-grained definition. The results directly apply

using asymptotic security.

Lemma 5. Let Π1
AT be a C1-fine-grained (ε, δ, c, 1)-Anonymous Transfer

against C2. Then, the protocol Π�
AT is a C′

1 := C1 · �-fine-grained (ε′, δ′, c · �, �)-
AT against C′

2 := C2 − � · C1, where ε′ = ε� and δ′ = (δ� − � − δ + 2).3

Proof. For Σ ∈ {0, 1}�, we have ε′ = Prcrs,π,Σ′ [Σ = Σ′] = ε�.
For the purpose of avoiding notational overhead, we prove anonymity for N =

3 parties, i.e., for one non-participant. The general case follows by generalizing
notation. Let A be an adversary against the anonymity of Π�

AT . We define a
sequence of hybrid games H1, . . . ,H� between Expanon

Π�
AT ,A,0(κ) and Expanon

Π�
AT ,A,1(κ)

in Fig. 2. H1 is identical to Expanon
Π�

AT ,A,1(κ) and H� is identical to Expanon
Π�

AT ,A,0(κ).
We construct an adversary B against the anonymity of Π1

AT in Fig. 2. If
B plays Expanon

Π1
AT ,B,0(κ), then B simulates Hi+1 for A. Otherwise, if B plays

Expanon
Π1

AT ,B,1(κ), then B simulates Hi for A.

Fig. 2. Hybrid games for the expansion of single-bit AT to multi-bit AT (left) and the
adversary (middle and right).

Provided that B is in C2, we have

1 − δ ≥ |Pr[Expanon
Π�

AT
,B,0(κ)] − Pr[Expanon

Π�
AT

,B,1(κ)]|

=
1

� − 1
(Pr[H�] − Pr[H1]) =

1

� − 1

(
Pr[Expanon

Π�
AT

,A,0(κ)] − Pr[Expanon
Π�

AT
,A,1(κ)]

)

We have that T(B) = T(A) + (� − 1) · C1 = T(A) + � · C1. Hence, given that
T(A) = T(B)−C1 ∈ C2 − � ·C1, the anonymity advantage of A is (1− δ)(�−1)/2,
yielding anonymity of δ′ = δ� − � − δ + 2. ��

3 We slightly abuse notation but we believe the meaning to be clear.

702 T. Agrikola et al.

4 Impossibility of Anonymous Transfer

In this section, we prove that no anonymous transfer protocol, with an arbitrary
polynomial number of rounds, can simultaneously enjoy overwhelming correct-
ness (ε = 1 − negl(κ)) and overwhelming anonymity (δ = 1 − negl(κ)), even for
transmitting single bit messages.

Theorem 3 (Impossibility of AT). Let μ : N �→ R be any negligible function
and p be any polynomial. There is no (1 − μ(κ), 1 − μ(κ), p(κ), 1)-Anonymous
Transfer, for any number of parties.

Theorem 3 will follow as a corollary from a more general result bounding the
relation between ε and δ in any c-round protocol. Throughout this section we
will focus on N = 3, that is, the case with one dummy player. This is without loss
of generality as we will show in the full version [ACM21] that any N-party anony-
mous transfer with N > 3 implies in particular a 3-party anonymous transfer,
for which we will show here that it can not exist.

4.1 The Attacker

From now on, we focus on building a generic attack against 3-party silent-receiver
anonymous transfer for κ-bit messages. The theorem will follow from the reduc-
tions from 1-bit anonymous transfer to multibit silent-receiver anonymous trans-
fer described in Sect. 3.5.

Let Πκ
AT be a silent-receiver (ε, δ, c, κ)-Anonymous Transfer. Let m = m(κ)

be the bitlength of the message from the non-participating party. Let Rand
denote the following procedure: on input a transcript π of Πκ

AT , Rand(π) trun-
cates π to c − 1 rounds of the AT protocol, and replaces the messages of
the last round by two uniformly random length-m bitstrings4. It outputs the
new rerandomized transcript π′. For every Σ ∈ {0, 1}κ and b ∈ {0, 1}, we let
Db,Σ ,D′

b,Σ ,DR denote the following distribution:

Db,Σ = {Σ′ : crs ← Setup(1κ), π ← Transfer(b, Σ), Σ′ ← Reconstruct(crs, π)}
D′

b,Σ = DR =
⎧
⎨

⎩Σ′ :
crs ← Setup(1κ),
π′ ← Rand(Transfer(b, Σ)),
Σ′ ← Reconstruct(crs, π′)

⎫
⎬

⎭ ,

⎧
⎨

⎩Σ′ :
crs ← Setup(1κ),
π′ $← ({0, 1}m × {0, 1}m)c,
Σ′ ← Reconstruct(crs, π′)

⎫
⎬

⎭

Fix an arbitrary polynomial t. We define an attacker At = (At
0,A

t
1) against

the anonymity of Πκ
AT , parameterized by the polynomial t, on Fig. 3. In the

following, we will not use At directly to attack the full c-round protocol: rather,
we will use At as a distinguisher between the c-round protocol Πκ

AT , and the

4 Since the protocol is silent-receiver, there is no message from the receiver; further-
more, assuming that the sender message is m-bit is without loss of generality, since
otherwise the protocol is trivially not anonymous.

Anonymous Whistleblowing over Authenticated Channels 703

Fig. 3. Attacker At against the δ-anonymity of the silent-receiver κ-bit AT protocol
Πκ

AT , parameterized by a polynomial t = t(κ).

(c−1)-round protocol obtained by running Πκ
AT for (c−1) rounds, and replacing

the messages of the last round by uniformly random m-bit strings. From there,
the proof of impossibility will proceed by induction; we refer the reader to the
introduction for a high-level intuition of our proof.

Base Case: Advantage of At when c = 1. We start the induction by bound-
ing the advantage of At in the anonymity game when Πκ

AT is non-interactive
(i.e., Transfer consists of a single message from each of P0,P1 to the receiver).
Before proceeding, we make two key observations:

(1) When c = 1, D′
b,Σ = DR for any (b, Σ). In particular, this means that D′

b,Σ

is independent of (b, Σ).
(2) When c = 1 and b = 0, the distribution of the values (Σ′

0, Σ
′
1) constructed

by At
1 given as input a random transcript π ← Transfer(0, Σt) is exactly the dis-

tribution D0,Σt × DR. This is because x0 is a random message from the sender
with input b = 0 and value Σt, and (x1, x′

0, x′
1) are three uniformly random

elements of {0, 1}m, hence (x0, x′
1) is exactly a random transcript of Πκ

AT with
(b, Σt), while (x′

0, x1) is just a pair of random messages. Similarly, if b = 1, the
distribution of the values (Σ′

0, Σ
′
1) constructed by At

1 given as input a random
transcript π ← Transfer(1, Σt) is exactly the distribution DR × D1,Σt .

Both observations follow directly from the definitions of Db,Σ ,D′
b,Σ ,DR and

of At
1. Building on the above observations, we show that for an appropriate choice

of t, the advantage of At in the anonymity game can be made arbitrarily close
to (ε − 1)/2:

704 T. Agrikola et al.

Claim. For any polynomial n, there is a polynomial t such that
∣∣∣∣∣ Pr
b $←{0,1}

[
Expanon

Πκ
AT ,At,b(κ) = b

]
− 1/2

∣∣∣∣∣ ≥ ε

2
− 1

n
, (5)

which implies that any silent-receiver (ε, δ, 1, κ)-Anonymous Transfer must sat-
isfy δ ≤ 1−ε+2/n for any polynomial n; equivalently, δ ≤ 1−ε+negl(κ). In par-
ticular, this means that if the AT has overwhelming correctness (ε = 1−negl(κ)),
then δ must be negligible.

The proof for this claim can be found in the full version [ACM21].

4.2 Putting the Pieces Together

With the above analysis, we showed that for any silent-receiver (ε, δ, c, κ)-
Anonymous Transfer, it must necessarily hold that (1 − δ)/2 ≥ ε/2c − negl(κ).
Since any (ε, δ, c, κ)-Anonymous Transfer implies a silent-receiver (ε, δ, c, κ)-
Anonymous Transfer (with the exact same parameters, see Sect. 3.5), we obtain:

Corollary 2. Any (ε, δ, c, κ)-Anonymous Transfer must satisfy

1 − δ

2
≥ ε

2c
− negl(κ).

In particular, this implies that there exists no κ-bit AT with overwhelming cor-
rectness and anonymity, for any polynomial number of rounds.

Furthermore, as shown in Sect. 3.5, any single-bit c-round AT with cor-
rectness ε = 1 − negl(κ) and anonymity δ = 1 − negl(κ) implies a κ-bit AT
with correctness ε′ = εκ = (1 − negl(κ))κ = 1 − negl(κ), and anonymity
δ′ = (δ − 1) · κ − δ + 2 = 1 − negl(κ). Combining this reduction with Corol-
lary 2 concludes the proof of Theorem 3.

4.3 Extensions and Limitations

The adversary in our impossibility result makes a black-box use of an arbitrary
3-party silent receiver multibit anonymous transfer; the reduction to N-party
single-bit anonymous transfer is black-box as well. In particular, this means that
our impossibility result relativizes: it remains true relative to any oracle, where
access to the oracle is granted to all participants and all algorithms (including
the adversary).

In the next section, we will provide a heuristic construction of fine-grained
anonymous transfer. The aim of this construction is to complement our impos-
sibility result, and to draw an interesting and surprising picture: anonymous
transfer appears to be impossible to realize with the standard superpolynomial
cryptographic hardness gaps, but becomes feasible if one settles for a small

Anonymous Whistleblowing over Authenticated Channels 705

polynomial hardness gap. Our fine-grained construction is described and for-
mally proven secure using an ideal obfuscation scheme; instantiating the scheme
with candidate indistinguishability obfuscation schemes gives a plausible heuris-
tic construction (the same way that instantiating the random oracle model with
standard hash functions gives plausible heuristic constructions of various cryp-
tographic primitives, when the construction is not pathological). Because our
impossibility result relativizes, in contrast, standard anonymous transfer remains
provably impossible relative to an ideal obfuscation oracle (while fine-grained
anonymous transfer, as we will see, provably exist relative to such an oracle).

Impossibility of Fine-Grained Multibit AT with Overwhelming Cor-
rectness and Anonymity. In the multibit setting, where the sender wants to
transmit ω(log κ) bits to the receiver, our result further demonstrates that there
exists no fine-grained anonymous transfer with overwhelming correctness and
anonymity 1−negl(κ), even with an arbitrary small polynomial gap between the
runtime of the honest parties and that of the adversary. Indeed, let r = O(c ·m)
be a lower bound on the runtime of the honest parties (r is the total number
of bits sent by the sender, hence it is a clear lower bound on its running time),
and consider an adversary At with t = κ · cg, where g > 0 is an arbitrarily small
constant. Then by construction, the runtime of At is O(κ · r · cg) ≤ O(κ · r1+g)
(as it is dominated by the cost of sampling t random transcripts for At

0). Then
this adversary satisfies

1 − δ

2
≥

∣∣∣∣Pr[Expanon
Πκ

AT ,At,b(κ) = b] − 1
2

∣∣∣∣ ≥ 1
c

·
(

ε

2
− 1

cg

)
, (6)

which implies that δ and ε cannot be simultaneously equal to 1 − negl(κ) (since
1/(2c) − 1/c1+g cannot be a negligible function for any polynomial c and any
constant g > 0).

Limitations of the Impossibility Result. Even putting aside the heuristic
security guarantee of our fine-grained construction (or its security in an ideal-
ized model), a gap remains between our impossibility result and our construc-
tion: our impossibility result does not rule out the possibility of having, say, a
(1 − negl(κ), 1 − 1/c, c, κ)-Anonymous Transfer – that is, an anonymous transfer
with overwhelming correctness, and vanishing anonymity error 1/c in c rounds,
with standard (superpolynomial) security. In contrast, our heuristic construction
only achieves overwhelming correctness and anonymity arbitrarily close to 1/c
against fine-grained adversaries. It is an interesting open question to close this
gap. We conjecture that the true answer is negative:

Conjecture 1. There exists no (1 − negl(κ), 1 − 1/c, c, κ)-Anonymous Transfer.

What follows assumes that the reader is familiar with standard philosoph-
ical considerations on the worlds of Impagliazzo. Proving the above conjecture
would have a very interesting (theoretical) consequence: it would demonstrate

706 T. Agrikola et al.

Fig. 4. The protocol Π1
AT for fine-grained Anonymous Transfer. The circuit PAT is

defined in Fig. 5.

the existence of a natural cryptographic primitive that plausibly exists within
the realm of fine-grained cryptography, yet is impossible with standard hardness
gap. It is known that fine-grained constructions sometimes allow building “high-
end” cryptographic primitives in “low-end” cryptographic realms. For example,
Merkle puzzles, which can be instantiated under exponentially strong one-way
functions [BGI08], provide a fine-grained key exchange; borrowing Impagliazzo’s
terminology [Imp95], this places “fine-grained Cryptomania” inside (a strong
form of) Minicrypt. Proving the conjecture would induce a comparable result,
but at the highest level of the hierarchy: it would, in a sense, place fine-grained
Impossibilitopia (a world of cryptographic primitives so powerful that they sim-
ply cannot exist) inside Obfustopia.

5 Fine-Grained AT from Ideal Obfuscation

In this section, we focus on realizing Anonymous Transfer with fine-grained secu-
rity according to Definition 5. More precisely, we construct a c-round protocol
which achieves anonymity δ, where the honest parties have runtime in C1 := O(c)
against adversaries in C2 := o(c2(1 − δ)), where c = c(κ) is a polynomial in κ.
For the sake of simplicity we introduce the protocol with N = 3, implying a
single dummy friend. However, expanding this protocol to an arbitrary N ∈ N is
straightforward as the behavior of all dummy friends is the same by definition
and instead of two messages, each round now contains N − 1 messages.

We exploit the limited runtime of the adversary and provide a protocol in
Fig. 4 with c rounds. In each new round (or with each valid sender message) the
probability that the correct bit is eventually returned increases, i.e., each valid
round increases the receiver’s confidence in the message. Each round lets the

Anonymous Whistleblowing over Authenticated Channels 707

Fig. 5. Obfuscated program PAT for the fine-grained setting with c rounds.

sender compute a signature μ using a sEUF-CMA secure signature scheme5 for
the transcript of the previous round. The transferred bit σ and the signature μ
are then sent. The verification key for the signature scheme is transmitted by
the sender in the first round. In order to make the sent messages look random
the message is not sent directly. Instead, the sender encrypts the message using
an IND$-CCA secure encryption scheme (See footnote 5), [Rog04]. Since not
every length m bitstring is a valid ciphertext, we use a special function Dec∗

instead of the normal function Dec, which is defined as follows: If Dec on input
ct returns ⊥ then Dec∗ returns F(ct), otherwise Dec∗ returns Dec(ct). Hence,
every possible input allows an interpretation as a cleartext. We use those for
both the asymmetric and symmetric schemes.

In order to make the output unusable for any other party, the receiver draws
a One-Time-Pad as first message which eventually masks the final output, and
a verification key of a signature scheme. The latter is used to ensure that the
receiver approves with the transcript; after the two potential senders provided
all messages, the receiver signs the entire transcript and only if this signature
verifies the entire previous transcript, the circuit continues. The first message of
the receiver is broadcast, while the signature is only used locally.

The receiver obtains its output by computing the signature as described
above and feeding the final transcript alongside the signature into an obfuscated
circuit which is supplied in a common reference string. The circuit is obfus-
cated using ideal obfuscation(See footnote 5). It hides a PRF key and a secret
decryption key skP for the IND$-CCA secure PKE. The corresponding encryp-
tion key pkP is also part of the CRS and, hence, known to all parties. This

5 See [ACM21] for a definition of sEUF-CMA, IND$-CCA and ideal obfuscation.

708 T. Agrikola et al.

encryption scheme is used by the sender and the receiver to hide their respective
first message. This uniquely determines the symmetric key used to decrypt the
remaining messages of each potential sender. The message also contains a verifi-
cation key used to sign the previous messages in future rounds, the bit that the
sender wants to transfer, and the initial signature on the receivers message. The
remaining rounds of the sender are encrypted using a symmetric scheme, namely
the IND$-CCA secure SKE scheme, using the key transferred to the circuit in
the first round.

The circuit is shown in Fig. 5. It starts by extracting the verification keys and
symmetric encryption keys (one per potential sender) alongside the bits that the
respective party wants to transfer and the initial signatures on the first receiver
messages from the respective initial messages of both parties, and the receivers
OTP and verification key from the receiver message. Then the circuit starts by
verifying the signature of the receiver on the entire transcript, and if that does not
match, returns a uniformly random bit6. Otherwise, if the receiver’s signature is
valid, the circuit searches for the first faulty round of each potential sender. That
is, the first round of each potential sender where the signature on the previous
round fails to verify or where the encoded bit differs from the bit extracted from
the initial message. The party who sent the most consecutive valid rounds is
selected as the sending party. The circuit outputs the bit transmitted by that
party with probability depending on the ratio between valid sender messages and
the total number of rounds, which ranges between 1/2 (i.e., a uniformly random
bit) if no round was valid for any party and 1 (i.e., deterministically returning
the correct bit) if all rounds were correct. However, as stated before, the circuit
does not output that bit directly, but instead masks it using the OTP extracted
from the receiver’s first message. This ensures secrecy7, as other parties only get
a masked output which information-theoretically hides the actual bit.

5.1 Security Analysis

Theorem 4 (Correctness). If the protocol from Fig. 4 is instantiated with an
Ideally Obfuscated version of the circuit from Fig. 5 the protocol is ε-correct with
ε = (1 − negl(κ)).

At the end of an honest protocol execution, the maximum round in which
a valid signature has been provided equals the number of rounds c. With over-
whelming probability, the sending parties’ input is the only one that contains c
many valid rounds. Hence, the correctly masked bit is returned. Since the mask

6 This is denoted in the figure by the CointossS
(π)

(p)(σ, σ) function, which returns σ, i.e.
the first argument, with probability p, and σ, i.e. the second argument, with the
complementary probability (1 − p), where the randomness for p is extracted from
the argument provided by π.

7 Secrecy is an additional property we require for Strong AT. Secrecy means that no
third party can extract the transferred bit from the transcript (see the full version
[ACM21] for the formal definition). This property will be relevant for applications
that use AT as a building block.

Anonymous Whistleblowing over Authenticated Channels 709

is input by the receiver and later applied to the output, the receiver obtains the
correctly masked bit. We refer the reader to [ACM21] for a formal proof.

Theorem 5 (Anonymity). Let Pke be an IND$-CCA secure asymmet-
ric encryption scheme, let Ske be a tightly secure multi-challenge IND$-CCA
secure symmetric encryption scheme, let Sig be an sEUF-CMA secure signature
scheme, let O be an ideal obfuscator, let F be a secure PRF, and let κ be the secu-
rity parameter. Then the c-round protocol Π1

AT for N = 3 satisfies δ-anonymity
for all adversaries in C2 := o(c2(1 − δ)).

Proof (sketch). An outline of the entire proof is given in the full version [ACM21].
On a high level, the proof is structured into two parts. In the first part, we suc-
cessively modify the anonymity game Expanon

Π1
AT ,A,b(κ) and the obfuscated circuit

oracle PAT to remove as much computationally hidden information about b as
possible. More precisely, we exploit the non-malleability of Pke and sEUF-CMA
security of Sig to unnoticeably alter the oracle to determine the number of valid
rounds by counting how many rounds of the input transcript are identical to
the challenge transcript provided by Expanon

Π1
AT ,A,b(κ). The first round which is

not entirely identical to the challenge transcript (i.e. either the sender message
or the non-sender message differ) increases the valid rounds count only if the
input sender message is identical to the challenge sender message or if the input
sender message decrypts to the same content as the challenge sender message.
The following round will be counted as invalid since the signature verification
will fail. After this step, the decryption keys of Ske and Pke are not necessary
for chosen-ciphertext simulation anymore. Then, we first replace the sender mes-
sages which are encrypted using Ske and then the first round sender message
which is encrypted using Pke with uniform randomness exploiting the IND$-
CCA security of both encryption schemes.

The only information about the bit b that is left in the present game is due
to the oracle which counts valid sender messages by comparing the input sender
message with the challenge sender message. Clearly, the final modification of the
game must be the removal of this dependency on b. However, this removal will
noticeably alter the output distribution of the oracle. Hence, an adversary with
arbitrary polynomial runtime will be able to distinguish this hop with constant
probability [CDVV14]. However, if we can limit the runtime of the adversary
to be sub-quadratic in the runtime of the honest protocol execution, we are
able to apply results from distribution testing to achieve a good bound for this
distinguishing advantage. We will elaborate on this final game hop in more detail
below and will refer to the second last game as Gameσ

7 (κ) and to the last game
(i.e. the game, where no information about b remains) as Gameσ

8 (κ). For detailed
descriptions of all game hops, we refer the reader to the full version [ACM21].

For the sake of reducing complexity of the problem of proving indistinguisha-
bility between Gameσ

7 (κ) and Gameσ
8 (κ) we describe an intermediate game in

Fig. 6 that is provably as hard to solve as distinguishing the two games.
The key idea is the following: The challenger C creates c oracles where the

probability to return 1 is equally distributed between 1/2 and 1 in c steps.

710 T. Agrikola et al.

Fig. 6. Game to distinguish whether Bernoulli oracles follow a given distribution p or
q = p − 1/2c.

On β = 0 the oracles are distributed equally between [1/2, 1). On β = 1 the
oracles are distributed equally between (1/2, 1]. That is, on β = 0 the oracle
χ returns 1 with probability (c + χ − 1)/(2c) and on β = 1 it returns 1 with
probability (c + χ)/(2c).

We now stress that this game is as hard as the problem of distinguishing the
two games from Gameσ

7 (κ) and Gameσ
8 (κ): ��

Lemma 6. Let D be a distinguisher distinguishing Gameσ
7 (κ) and Gameσ

8 (κ)
with advantage α over guessing. Let t be the number of queries that D sends to
the obfuscated circuit. There is a reduction adversary A that uses D which has
advantage α over guessing in winning Fig. 6.

Proof (sketch). To create the transcript, the adversary samples bits σ and b for
the transferred bit and the sending party, respectively. It then creates πC by
sampling 2c random bitstrings of length m and assigns them to the two parties.

The oracle is simulated by letting A follow the behavor of the oracle: If the
input is the challenge transcript, output the bit directly; if it is a completely
new transcript, follow the honest protocol; otherwise, if the first-round messages
of both parties are the same, A searches χ∗ as the first round where the input
differs from the challenge transcript.

If the message from the sending party in round (χ∗ +1) is from the challenge
trascript, then A sends χ∗ to the oracle Oχ∗ provided by the challenger and
obtains a bit σ∗, and returns σ∗ ⊕ σ̄ (i.e. the return gets flipped if it should go
towards 0). Otherwise, A returns σ with probability proportional to χ∗/c.

It follows (we elaborate on that in [ACM21]) that the result can be trans-
lated; if the distinguisher guesses Gameσ

8 (κ) then A reports that the χ-th oracle
returns 1 with probability (χ+ c− 1)/2c. Otherwise, if the distinguisher guesses
Gameσ

7 (κ), A reports that the probabilities were given as (χ + c)/2.
The simulation is such that the challenge oracles are only queried if the

input transcript contains the first χ∗ messages of the challenge transcript from
both parties and then in round χ∗ + 1 only the message of the sending party.
In that case, the difference induced by the game hop states that in Gameσ

7 (κ)
the sending parties message still increases the probability by 1/(2c), whereas in
Gameσ

8 (κ) the message is ignored; which correspond exactly to the case we have

Anonymous Whistleblowing over Authenticated Channels 711

to distinguish in our challenge. The full proof can be found in the full version
[ACM21]. ��

Proving indistinguishability has thus been reduced to showing that no fine-
grained adversary can win the game from Fig. 6 with non-negligible advantage.
The interface of an adversary in this game is given as a set of 2c oracles. Each
oracle follows a Bernoulli distribution that returns the correct bit σC with prob-
ability p. For each round χ < c any distinguisher D is given access to two oracles.
Each oracle can be queried by copying the first χ messages of both parties, but
then using (exactly) one new message for round (χ + 1)—which replaces either
the sending parties message or that of the dummy friend. Any upper bound on
winning the game from Fig. 6 translates to the underlying problem of distin-
guishing the final two games.

Analyzing the game from Fig. 6 comes down to probability theory. Recall
from Corollary 1 that in order to distinguish two Bernoulli distributions p and
q with advantage α/2 we require Ω(α/dTV(p, q)) many samples. Applying this
corollary to Fig. 6 implies that we have c instances where the χ-th instance is
to distinguish p = χ+c

2c from q = χ+c−1
2c . This implies the following L1-norm

between p and q in round χ:

dTV(p, q) =
1
2
(|Pr[p = 1] − Pr[q = 1]| + |Pr[p = 0] − Pr[q = 0]|)

=
1
2

(∣∣∣∣
c + χ

2c
− c + χ − 1

2c

∣∣∣∣ +
∣∣∣∣
c − χ

2c
− c − χ + 1

2c

∣∣∣∣

)
=

1
2c

(7)

Note here that the total variational distance in round χ is independent from
the round χ and the same for all c oracles. Combining this information with
Lemma 2 means that any distribution p and q resulting from sampling t times
from arbitrary oracles results in a total variational distance ≤ t 1

2c .
8

We now merge this insight with the result of Eq. (7) and the bound of Corol-
lary 1. This leads a lower bound of:

t ∈ Ω
(

α

dTV(p, q)

)
= Ω(αc) (8)

We thus have:

Corollary 3. Let D be a distinguisher in Fig. 6 that uses t samples and has
runtime in C2 := o(c2/α). Let the cost of acquiring a single sample be O(c).
Then the distinguisher D is correct with probability at most 1/2 + α/2.

Proof. The bound from Eq. (8) covers any adversary trying to win Fig. 6 regard-
less of how the t samples are distributed between the c oracles. This follows from

8 This is in contrast to the Hellinger-distance H which yields tighter bounds but
where the amount of information from a single query really depends on the oracle Oχ

which is queried. This makes it harder to provide meaningful bounds for adversaries
querying different oracles with their t samples.

712 T. Agrikola et al.

the subadditional property of the total variational distance shown in Lemma 2
and the computation in Eq. (7) showing that the total variational distance is
the same between all oracles; thus the bound from Lemma 1 still is valid and
the total variational distance between any pair of t-fold distributions is at most
t · 1

2c .
Thus Lemma 3 maintains its validity. Hence the lower bound of Eq. (8)

matches our setting. The bound is linear in c with the linear cost of querying a
single sample (as the adversary has to evaluate the entire circuit for each sample,
which requires O(c) runtime) this limits the distinguisher in such a way that only
strictly less samples can be drawn than required according to Eq. (8). ��

Putting everything together, we have that for all PPT distinguishers D,
|Pr[out0,D = 1] − Pr[out8,D = 1]| is negligible in κ. In particular, |Pr[out0,D =
1] − Pr[out8,D = 1]| is negligible for distinguishers D in C2. Additionally, the
employed reductions are in C1 = O(c). Furthermore, for all adversaries A,
|Pr[out8,A = 1|b = 0] − Pr[out8,A = 1|b = 1]| ≤ α, where the runtime of the
game also is in C1. Hence, we may conclude that for all adversaries A in C2,
|Pr

b $←{0,1}[Expanon
Π1

AT ,A,b(κ) = b] − 1/2| ≤ α/2.

On the Need for Stronger Obfuscation. Due to [CLTV15], indistinguishability
obfuscation (or more precisely, its probabilistic variant) can only guarantee indis-
tinguishability if the distance between the output distributions of two circuits is
statistically close to zero. This is not the case in our final game hop. Therefore,
we crucially require a stronger form of obfuscation such as virtual black-box
obfuscation or ideal obfuscation. Due to [JLLW22], employing ideal obfuscation
yields a heuristic candidate proven secure in an idealized model. Hence, our
result constitutes a first step towards instantiating anonymous transfer.

Stronger Anonymity Notions. Our positive result demonstrates that despite our
strong negative result, some non-trivial anonymity is achievable. Note, however,
that our positive result is still weak in many regards. Strengthening the achieved
notion to, for instance, achieve anonymity against malicious non-participants,
seems highly non-trivial. In particular, malicious non-participants may easily
nullify any correctness guarantee by behaving exactly like a sender. Straightfor-
ward attempts to address this problem, e.g. letting the obfuscated circuit output
all messages with equal confidence, open the gates for new attacks. For instance,
in the above setup, replacing the last message of half of all possible senders causes
the circuit to output either both the sender message and the injected message
or only the injected message, depending on whether the real sender is part of
the parties whose messages are replaced. This strategy allows to de-anonymize
the sender in runtime O(c log c).

5.2 Final Result

Let c = c(κ) be a polynomial in κ. Let C1 := O(c) and let C2 := o(c2(1 − δ)) for
some δ ∈ R[0,1]. Putting Theorems 4 and 5 together, we have:

Anonymous Whistleblowing over Authenticated Channels 713

Corollary 4. The protocol Π1
AT is a strong C1-fine-grained (1−negl(κ), δ, c, 1)-

AT against C2.

Applying Lemma 5 to transform our single-bit AT into an �-bit AT yields:

Corollary 5. The protocol Π�
AT is a strong C′

1-fine-grained (1 − negl(κ), (δ� −
� − δ + 2), c · �, �)-AT against C′

2, where C′
1 = � · C1 and C′

2 = C2 − � · C1.

Using δ = 1 − 1√
c and c = Ω(�2) for the single-bit AT Π1

AT we get that
δ′ := 1− �−1

c and C′
1 = O(�·c) and C′

2 = o(c2(1−δ)−�·c) = o(c2(1−δ)) = o(c1.5).
A non-black-box change to the protocol Π1

AT from Figs. 4 and 5 leads to
better overall parameters. We introduce the necessary changes to the protocol
alongside a security analysis in the full version [ACM21].

Acknowledgements. We thank Rafael Pass for insightful comments and contribu-
tions to early stages of this work.

References

[ACM21] Agrikola, T., Couteau, G., Maier, S.: Anonymous whistleblowing over
authenticated channels. Cryptology ePrint Archive, Report 2021/1341
(2021). https://eprint.iacr.org/2021/1341

[APY20] Abraham, I., Pinkas, B., Yanai, A.: Blinder - scalable, robust anonymous
committed broadcast. In: Ligatti, J., Ou, X., Katz, J., Vigna, G., (eds.)
ACM CCS 2020, pp. 1233–1252. ACM Press, Nov 2020

[BEA14] Burrough, B., Ellison, E., Andrews, S.: The snowden saga: a shadowland of
secrets and light. Vanity Fair 23 (2014)

[Ber16] Berret, C.: Guide to securedrop (2016)
[BGI08] Biham, E., Goren, Y.J., Ishai, Y.: Basing weak public-key cryptography on

strong one-way functions. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948,
pp. 55–72. Springer, Heidelberg (2008)

[CBM15] Corrigan-Gibbs, H., Boneh, D., Mazières, D.: Riposte: an anonymous messag-
ing system handling millions of users. In: 2015 IEEE Symposium on Security
and Privacy, pp. 321–338. IEEE Computer Society Press, May 2015

[CDVV14] Chan, S., Diakonikolas, I., Valiant, P., Valiant, G.: Optimal algorithms for
testing closeness of discrete distributions. In: 25th SODA, pp. 1193–1203
(2014)

[CGCDGS20] Cohn-Gordon, K., Cremers, C., Dowling, B., Garratt, L., Stebila, D.: A
formal security analysis of the signal messaging protocol. J. Cryptol. 33(4),
1914–1983 (2020)

[CGOS07] Chandran, N., Goyal, V., Ostrovsky, R., Sahai, A.: Covert multi-party com-
putation. In: 48th FOCS, pp. 238–248. IEEE Computer Society Press, Oct
2007

[Cha03] Chaum, D.: Untraceable electronic mail, return addresses and digital
pseudonyms. In: Gritzalis, D., (ed.) Secure Electronic Voting, vol. 7.
Advances in Information Security, pp. 211–219. Springer, (2003). https://
doi.org/10.1007/978-1-4615-0239-5_14

[Cha88] Chaum, D.: The dining cryptographers problem: Unconditional sender and
recipient untraceability. J. Cryptol. 1(1), 65–75 (1988)

https://eprint.iacr.org/2021/1341
https://doi.org/10.1007/978-1-4615-0239-5_14
https://doi.org/10.1007/978-1-4615-0239-5_14

714 T. Agrikola et al.

[CLTV15] Canetti, R., Lin, H., Tessaro, S., Vaikuntanathan, V.: Obfuscation of proba-
bilistic circuits and applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015.
Part II, volume 9015 of LNCS, pp. 468–497. Springer, Heidelberg (2015)

[DMS04] Dingledine, R., Mathewson, N., Syverson, P.F.: Tor: the second-generation
onion router. In: Blaze, M., (ed.) USENIX Security 2004, pp. 303–320.
USENIX Association, Aug 2004

[DVV16] Degwekar, A., Vaikuntanathan, V., Vasudevan, P.N.: Finegrained cryptogra-
phy. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. Part III, volume 9816
of LNCS, pp. 533–562. Springer, Heidelberg (2016)

[ECZB21] Eskandarian, S., Corrigan-Gibbs, H., Zaharia, M., Boneh, D.: Express: low-
ering the cost of metadata-hiding communication with cryptographic privacy.
In Bailey, M., Greenstadt, R., (eds.) USENIX Security 2021, pp. 1775–1792.
USENIX Association, Aug 2021

[HLv02] Hopper, N.J., Langford, J., von Ahn, L.: Provably secure steganography.
In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 77–92. Springer,
Heidelberg (2002)

[Imp95] Impagliazzo, R.: A personal view of average-case complexity. In: . Tenth
Annual IEEE Conference on Proceedings of Structure in Complexity Theory,
pp. 134–147. IEEE (1995)

[JLLW22] Jain, A., Lin, H., Luo, J., Wichs, D.: The pseudorandom oracle model
and ideal obfuscation. Cryptology ePrint Archive, Report 2022/1204 (2022).
https://eprint.iacr.org/2022/1204

[Mer78] Merkle, R.C.: Secure communications over insecure channels. Commun.
ACM 21(4), 294–299 (1978)

[NSSD21] Newman, Z., Servan-Schreiber, S., Devadas, S.: Spectrum: high-bandwidth
anonymous broadcast with malicious security. Cryptology ePrint Archive,
Report 2021/325 (2021). https://eprint.iacr.org/2021/325

[Phi18] Philipps, D.: Reality winner, former nsa translator, gets more than 5 years
in leak of russian hacking report. New York Times, 23 (2018)

[Rog04] Rogaway, P.: Nonce-based symmetric encryption. In: Roy, B.K., Meier, W.
(eds.) FSE 2004. LNCS, vol. 3017, pp. 348–359. Springer, Heidelberg (2004)

[vH04] von Ahn, L., Hopper, N.J.: Public-key steganography. In: Cachin, C.,
Camenisch, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 323–341.
Springer, Heidelberg (2004)

[vHL05] von Ahn, L., Hopper, N.J., Langford, J.: Covert two-party computation. In
Gabow, H.N., Fagin, R., (eds.) 37th ACM STOC, pp. 513–522. ACM Press,
May 2005

[Whi] Whistleblowing (2008). https://legal-dictionary.thefreedictionary.com/
Whistleblowing. Accessed: 2021-09-29 from West’s Encyclopedia of Ameri-
can Law, edition 2

https://eprint.iacr.org/2022/1204
https://eprint.iacr.org/2021/325
https://legal-dictionary.thefreedictionary.com/

Poly Onions: Achieving Anonymity
in the Presence of Churn

Megumi Ando1, Miranda Christ2(B), Anna Lysyanskaya3, and Tal Malkin2

1 MITRE, Massachusetts, USA
2 Columbia University, New York, USA

mchrist@cs.columbia.edu
3 Brown University, Providence, USA

Abstract. Onion routing is a popular approach towards anonymous
communication. Practical implementations are widely used (for example,
Tor has millions of users daily), but are vulnerable to various traffic cor-
relation attacks, and the theoretical foundations, despite recent progress,
still lag behind. In particular, all works that model onion routing proto-
cols and prove their security only address a single run, where each party
sends and receives a single message of fixed length, once. Moreover, they
all assume a static network setting, where the parties are stable through-
out the lifetime of the protocol. In contrast, real networks have a high
rate of churn (nodes joining and exiting the network), real users want to
send multiple messages, and realistic adversaries may observe multiple
runs of the protocol.

We initiate a formal treatment of onion routing in a setting with mul-
tiple runs over a dynamic network with churn. We provide definitions of
both security and anonymity in this setting, and constructions that sat-
isfy them. In particular, we define a new cryptographic primitive called
Poly Onions and show that it can be used to realize our definitions.

1 Introduction

Anonymous Communication. Privacy is a fundamental human right, and it is
increasingly under threat. We need to be able to connect to our desired websites
and communicate with each other privately without being subject to scrutiny
and interference, and, in some cases – such as when dissidents are trying to help
each other in an oppressive regime – physical threats. While encryption provides
confidentiality of message content, much information can still be gleaned from
observed traffic patterns in a network, revealing such information as who is
communicating with whom, when, and for how long.

Our goal is to implement anonymous channels over a point-to-point network,
such as the Internet. Specifically, we want every user to be able to send a message
to another user so that an adversary monitoring the network and controlling
(passively or actively) a fraction of its nodes, possibly including the recipient of
the message, should not be able to tell who is communicating with whom. That
is, the scenario in which Alice sends a message to Bob should be indistinguishable
from the one in which she sends one to Carol, instead.
c© The Author(s), under exclusive license to Springer Nature Switzerland 2022
E. Kiltz and V. Vaikuntanathan (Eds.): TCC 2022, LNCS 13748, pp. 715–746, 2022.
https://doi.org/10.1007/978-3-031-22365-5_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22365-5_25&domain=pdf
https://doi.org/10.1007/978-3-031-22365-5_25

716 M. Ando et al.

How can we achieve such anonymous communication? A trivial solution is to
use a secure computation protocol among all parties, where each party inputs
their message and destination, and the functionality delivers the messages (where
the output of each party is the set of all messages sent to that party, in lexico-
graphic order). This solution is clearly not adequate: it is extremely inefficient
and involves massive communication among the parties, all of whom should
be available and interact back and forth throughout the protocol run. A few
other approaches towards achieving anonymity have been proposed, but the gap
between what is needed and the existing solutions remains large. In this paper,
we focus on bridging this gap, working within the onion routing framework.

Onion Routing. Onion routing [10,15,19] is a popular approach towards achiev-
ing anonymity. The basic idea is that when Alice wants to send a message to
Bob, she chooses random intermediate nodes constituting a path from her to
Bob. She then prepares a cryptographic object called an “onion,” which consists
of layered ciphertexts, with one layer per node on the path. Alice then sends
the onion through the path, with each intermediate party “peeling” a layer of
the onion to discover the next node on the path until the onion reaches its des-
tination. When several onions are peeled by the same honest intermediary in
the same round, the adversary cannot correlate the incoming onions with the
outgoing ones; we refer to this as “mixing.” Thanks to mixing, it is possible
to expect anonymity with onion routing. Tor (“The onion router”) is the most
widely used anonymity network, consisting of thousands of routers and used by
millions of users daily [19]. While clearly practical, it is also vulnerable to traffic
correlation attacks [27,29,31].

Starting with [9], in recent years there have been several works attempting to
put onion routing on a solid theoretical foundation. For example, we know that
sufficiently shuffling the onions provides anonymity from the passive adversary [3]
and that a polylog (in the security parameter) number of rounds is both necessary
(e.g., [12,17,18]) and sufficient (e.g., [3,28]) for this. Providing anonymity from
the active adversary is significantly more challenging than shuffling. Surprisingly,
a polylog number of rounds is still sufficient for achieving anonymity in the
active adversary setting with fault tolerance [3]. Exciting recent work considers
a relaxed notion of anonymity called differential obliviousness, shows that it
is useful in the shuffle model of differential privacy, and constructs an efficient
differentially oblivious onion routing protocol [21]. Several other works address
only onion construction without analyzing the onion routing protocol (e.g., [2,
23]).

However, the theoretical modeling, while solving important challenges, is still
quite far from what we need in practice. Perhaps the most glaring issue is the fact
that all the works that model and analyze onion routing protocols only address a
single instance of message routing for a restricted set of communication patterns.
Specifically, each party is instructed to send a (fixed length) message to another
party such that everyone sends a message and everyone receives a message, and
the protocol for communicating all messages only occurs once. This is in contrast
to real-world scenarios where parties send messages of varying lengths and many

Poly Onions: Achieving Anonymity in the Presence of Churn 717

times without coordinating with other parties. An additional challenge for a
system that supports ongoing traffic is network churn: the nodes on the network
may go offline or join back. Realistic networks have high rates of churn, but this
has not been addressed by the above works. Other recent protocols addressing
anonymity [25,32,33] also operate only in the static network setting (without
any nodes joining or exiting the network).

Network Churn. Onion routing schemes rely on communication through interme-
diate nodes, which should be known at the time the onion is created. However,
practical networks are dynamic, allowing for significant node churn. For exam-
ple, measurement studies of real-world P2P networks [20,30] show that the churn
rate is quite high: nearly 50% of peers in real-world networks can be replaced
within an hour.

Churn poses significant challenges for anonymous routing, even at the def-
initional level. One obvious issue is that in standard onion routing, the entire
route of an onion is chosen in advance when the onion is created. Thus, if only
just one of the parties on the route churns out and goes offline, the onion is lost.
We note that this is a problem not only with correctness and reliability, but also
with security/anonymity. Indeed, if an adversary observes an onion originating
with Alice and going to an offline node (hence dropped), and then sees that Bob
ended up receiving fewer onions than other parties, the adversary may conclude
that the dropped onion from Alice was likely intended for Bob.

Our Contributions. In this work we initiate the formal treatment of onion
routing in a setting with multiple runs over a dynamic network with churn.

A natural idea towards overcoming churn is to construct an onion in a way
that allows for more than one option for each hop on the route. This way the
onion will not be dropped if one intermediate node is offline, and can instead
be routed to a backup intermediary. This idea was put forward by Iwanik,
Klonowski, and Kuty�lowski [22], who suggested “duo onion” encryption as a
way to improve onion delivery rates when there is network churn. A duo onion
has two candidate intermediary servers for each onion layer. If the first candi-
date is offline, the onion can be sent to the second candidate. While Iwanik et al.
proposed a duo onion construction and did a back-of-the-envelope analysis of its
efficiency, they did not formalize duo onion routing nor prove the security of this
scheme. In fact, as we show in Sect. 6.1, duo onions are less secure than regular
onion routing because the adversary corrupting at least one candidate in each
hop (which is more likely with more candidates) can trace the onion through the
network.

Poly Onion Encryption Definition. Our first contribution (Definitions 1 and 2)
is a formal definition of poly onion encryption. Poly onion encryption is inspired
by duo onion encryption described above, but it does not suffer from the same
security flaw.

Our definition introduces auxiliary parties, called helpers, for each hop in the
routing path. The helpers can ensure that an onion is routed to its backup inter-
mediary for the next hop only if the preferred one is offline. This fixes the flaw

718 M. Ando et al.

in duo onions: a corrupted backup party must enlist the help of the committee
in order to peel an onion, so an adversary corrupting only one candidate can
no longer necessarily peel the onion to trace its next hop. It also makes onion
encryption more complicated: processing a poly onion is an interactive proto-
col involving the current intermediate node, the candidates for where to send it
next, and the helpers. However, this complication seems necessary; we show in
Sect. 6.1 that natural simpler solutions are insufficient.

In part because of this interactivity, defining correctness and security for a
poly onion requires some care. Intuitively, correctness (Definition 1) captures the
requirement that the onion will reach its intended destination, and the intended
message will be recovered, as long as some condition holds (for standard onion
routing, the condition is that every intermediate party on the path behaves hon-
estly). Security (Definition 2) captures the requirement that the adversary will
not be able to correlate an input onion with one of several output onions coming
out of a processing party, as long as some condition holds (for standard onion
routing, the condition is that the processing party is honest). These conditions
can be complex, since they depend on who is online, and each hop involves many
potential parties (candidates and helpers). We capture these conditions through
correctness and security predicates. (Note that different poly onion encryption
schemes may be correct/secure with respect to different predicates.)

Poly Onion Encryption Construction. Our second contribution is a construction
of poly onions from standard cryptographic primitives: CCA secure public-key
encryption with tags [13,14], PRP, MAC, and secret sharing. Our construction,
Poly Onion Encryption (Sect. 4), is parameterized in terms of the number of
candidates κ, the size ν of the helper committee, and the secret sharing recon-
struction threshold α.

In our construction, the committee members are responsible for ensuring
that a processing party indeed sends its onion to the first online candidate in its
list. At a high level, an onion is valid only if it comes with a key header used
for processing it. An onion typically comes with a key header encrypted for the
first candidate in its next hop. If the first candidate is offline, the processing
party must enlist the help of the committee to construct this key header for
an alternate candidate. For this purpose, each onion comes with inputs for the
onion processing protocol. The processing party distributes these inputs to the
committee members, who check that the first candidate is indeed offline and
select the next online candidate in the list. The committee members return
secret shares; given at least α · ν shares the processing party reconstructs the
header for the alternate candidate.

We prove that our construction is correct and secure against an active adver-
sary, with respect to corresponding predicates that we define. The correctness
predicate for each step roughly requires that the processing party is honest and
online, and that at most α · ν members of the committee are corrupted. The
security predicate roughly requires that there are no corrupted parties appear-
ing before the first honest and online party in the list of next candidates, and
that fewer than α ·ν members of the committee are corrupted. This is analogous

Poly Onions: Achieving Anonymity in the Presence of Churn 719

to the condition for standard onions (where the processing party is required to
be honest), so our predicate is only minimally stronger than that of standard
onion encryption. As long as enough parties overall are honest, and committees
are chosen randomly, we can increase the committee size to boost the probability
that fewer than α · ν committee members are corrupted. These parameters can
be instantiated so that the predicates are satisfied with high enough probability
to achieve anonymity in the overall onion routing protocol, discussed below.

Anonymity Definitions. Let us revisit why achieving anonymity in the presence
of churn is difficult. As an illustrative example, consider the simple onion routing
protocol Πp [3]. In Πp, each sender routes an onion randomly through a network
of server nodes such that the onion mixes with a polylog number of onions, a
polylog number of times. It was shown that Πp is anonymous from the passive
adversary who corrupts up to a constant fraction of the servers (in the static
setting) just by shuffling the onions in this way. However, it is not necessarily
anonymous when we add churn to the equation: if the adversary observes that
Alice’s onion churns out before it gets a chance to mix with too many onions, then
she may be able to infer who Alice’s recipient is by observing who doesn’t receive
an onion at the end of the protocol. Intuitively, Iwanik et al.’s duo onion idea [22]
is a partial solution to this problem; it is more difficult for Alice’s onion to churn
out if, at each hop, it can route to an alternative random server if the preferred
one is offline. However, duo onions (without helper parties) don’t necessarily mix
at honest servers. This is, in part, because an adversarial intermediary Pi may
behave honestly and route Alice’s onion to the honest preferred next server P+

i+1

but still learn what the peeled onion looks like if the alternative next server P−
i+1

is adversarial: in this case, Pi knows what the alternative onion O−
i+1 for P−

i+1

looks like, and P−
i+1 knows how to peel it. A similar, slightly more complicated

attack works even for the passive adversary and is described in Sect. 6.1. Naive
solutions, such as adding more candidates, somewhat mitigate the risk but have
drawbacks, as we show in Sect. 6.1. However, helper parties, which we introduce
in poly onions, do prevent this attack. Thus, a natural question is: can we make
Πp anonymous in the setting with churn by using poly onions?

Before we could answer this question, it was necessary to first define what
it means for an onion routing protocol to be anonymous in the presence of
churn. Prior definitions of anonymity are defined only for a single protocol run
in the static setting, whereas most applications operate over multiple runs over
a long period of time, and so we should model them as operating (concurrently
with other runs) in a dynamic setting. For our third contribution, we present a
definition of anonymity for the multi-run setting with churn.

Our definition of anonymity (Definition 3) is roughly as follows. An onion
routing protocol is anonymous if the adversary cannot tell whether it is inter-
acting with the challenger over L runs on input vectors σ0

1 , . . . , σ
0
L or on input

vectors σ1
1 , . . . , σ

1
L. It is strongly anonymous if the adversary can query the chal-

lenger to peel onions before and after the L challenge runs. It is adaptively
anonymous if the adversary chooses the inputs and who is online/offline for the
ith run based on the prior i − 1 runs. The strongest definition that is most

720 M. Ando et al.

helpful in an operational setting is the strong multi-run adaptive version of the
definition, and that’s the one we aim to achieve.

From Single-run to Multi-run Anonymity. Our fourth contribution is to show
(Theorem 2) that for a large class of onion routing protocols, which we call
simulatable, multi-run (strong, adaptive) anonymity is equivalent to single-run
(strong, adaptive) anonymity. This holds both for the static setting (no churn)
and dynamic setting (with churn), whether the adversary is passive or active.
Informally, a simulatable onion routing protocol (Definition 4) is one where the
adversary cannot tell whether it is interacting in the real setting in which the
challenger runs the protocol on behalf of honest parties using the honest parties’
secret keys, or in the ideal setting in which the challenger fakes the run without
knowledge of the honest parties’ secret keys. Since most onion routing protocols
are simulatable, including Πp, an immediate consequence is that practical onion
routing protocols that satisfy multi-run anonymity exist – albeit in the static
setting without churn.

Achieving Anonymity in the Presence of Churn. Armed with a definition of
anonymity for the dynamic setting and Theorem 2, we answer our question about
Πp in the affirmative. For our final contribution, we present a new onion routing
protocol, Poly Πp, that uses Poly Onion Encryption instead of standard onion
encryption and prove that it satisfies (strong,adaptive) multi-run anonymity
when fewer than half of the parties can be offline or passively corrupted.

Open Problems. Our work makes significant progress towards bridging the gap
between theoretical foundations of onion routing, and required anonymity in
realistic settings. Still, some important problems remain open.

First, can we achieve anonymous routing with churn against active adver-
saries? Note that Poly Πp already provides protection against some types of
active malicious behavior: poly onion encryption is secure against active adver-
saries, and Poly Πp is also secure against an adversary that decides the churn
schedule. However, anonymity breaks when an active adversary can selectively
drop onions in a more “adaptive” way, namely in the middle of a run. We
also note that in the static setting, the protocol Π�� of Ando, Lysyanskaya and
Upfal [4] achieves anonymity even against active adversaries. However, simply
replacing their onions with our poly onions would still not yield a scheme that
is anonymous in the setting with churn, because used as is, their protocol would
equate churn with malicious activity and simply not work; an added complication
is that Π�� is not simulatable.

A second open problem is to address more general communication patterns.
As in prior work [3,4,32,33], a single run of our protocol is also restricted to the
so called “Simple I/O” setting, where each party sends and receives exactly one
message of a fixed length. The fact that we address the multi-run case partially
mitigates the issue, as it provides a way to handle longer messages, by break-
ing them to several runs. Nonetheless, the assumption that the communication
pattern in each run is a permutation is still limiting. Defining what anonymity
should mean for more general communication patterns, which patterns can be

Poly Onions: Achieving Anonymity in the Presence of Churn 721

efficiently supported anonymously, and how to construct such protocols, is a
challenging and interesting topic for future work.

Related Work. To the best of our knowledge, all existing onion routing works
either (i) do not have any theoretical modeling or provable security, or deviate
from standard notions of indistinguishability [6–8,11,16,22,23]; (ii) address only
onion construction, without discussing or analyzing the routing algorithm [2,9,
22–24]; (iii) consider routing only in the single run static network setting [3,4,
25,28,32,33]; or (iv) focus on lower bounds [4,12,17,18].

2 Modeling the problem

Here, we introduce the setting used for our formal definitions in Sect. 3 and Sect.
5. Because our setting involves network churn, our model is more involved than
previous models used for analogous definitions in the static setting. We base our
treatment of churn on practical onion routing, namely Tor [19], which consists
of thousands of routers and is used by millions of users. Tor relies on five to ten
semi-trusted directory authorities to maintain up-to-date information on relay
nodes and their availabilities and capabilities including network capacity. In the
latest version (version 3) of Tor, routers periodically upload “router descriptors”
that list their keys, capabilities, etc. to the directory authorities [1]. From these
descriptors, the directory authorities update their view of the routers every 12 to
18 hours. Tor users and routers download “diffs” of the updated views from mul-
tiple directory authorities; these contain information on the currently available
routers. The bulletins in our model are loosely modeled on this; like in Tor, at
the start of every run, the parties obtain a global view of who’s currently online.
During a run, some parties may churn out; we allow the adversary to control
who these parties are and when the churn happens since this corresponds to the
most pessimistic scenario. Within a run, a party can Pj check whether a party P ′

j

is currently online by sending a message and waiting for a response. An actively
corrupted P ′

j may pretend to be offline.
Let λ be the security parameter and N be the number of parties.

Notation. For a natural number n, [n] is the set {1, . . . , n}. For a set Set, we
denote the cardinality of Set by |Set|, and item ←$ Set is an item from Set chosen
uniformly at random. If Dist is a probability distribution over Set, item ← Dist
is an item sampled from Set according to Dist. For an algorithm Algo, output ←
Algo(input) is the (possibly probabilistic) output from running Algo on input. A
function f(λ) of the security parameter λ is said to be negligible if it decays faster
than any inverse polynomial in λ. An event occurs with overwhelming probability
if its complement occurs with negligible probability.

Time. We assume the synchronous setting and model time as passing in rounds,
with some fixed number of rounds making up each larger run. Let R1, ..., RL be
a series of runs. Assume that L is bounded above by a polynomial in λ.

Parties. Let P1, ..., PN be the N parties in our universe. Assume that N is
bounded above by a polynomial in λ. We assume that each party has a public

722 M. Ando et al.

key accessible to all. Let Bad ⊆ {P1, ..., PN} be the set of corrupted parties.
Corrupted parties are those that can be observed or controlled by the adversary,
depending on the adversary’s abilities, which we define later.

Churn Bulletins. Let B1, ..., BL be the bulletins, which accurately indicate which
parties are online at the beginning of each run. More precisely, Bi ⊆ {P1, ..., PN},
and party Pj is online at the beginning of run Ri if and only if Pj ∈ Bi.

Churn Schedule. Let C1, ..., CL be the churn schedule for the runs. For each i, Ci

is a set of party-round pairs: Ci = {(Pi1 , r1), (Pi2 , r2), ...}, where a pair (Pij , rj)
indicates that in run Ri, party Pij goes offline at the beginning of round rj of
that run. All parties in the list Ci must be online at the start of the run according
to Bi. As a simplification, we allow parties to come online at the start of a run
but not during a run. Thus the churn schedule specifies only which parties go
offline and when. Since parties come online only at the start of a run, this will
be specified in the bulletins rather than in the churn schedule.

Churn Limit. Let c(N), a function of N (e.g., N
2), be the churn limit [5]; that

is, at most c(N) parties can be offline at any point in time. We require that the
number of offline parties specified by the bulletins and churn schedule does not
exceed the churn limit c(N). More precisely, for every i, N − |Bi| + |Ci| ≤ c(N)
since N −|Bi| parties are offline at the start of run Ri, and |Ci| additional parties
go offline during Ri.

Inputs. We represent an input for a run Ri as a vector σi = (σi,1, σi,2, ..., σi,N)
where σi,j is the input for party Pj . Each party’s input is either a recipient-
message pair (Pk,m) specifying that that party sends message m to party Pk,
or it is ⊥. An input of ⊥ indicates that that party sends no information in that
run (although that party can still send dummy messages in a protocol).

For run i, we say an input vector σi is valid if there exists some permutation
f : [Bi] → [Bi] such that for each party Pj ∈ Bi, the input to Pj is (f(Pj),mj)
for some message mj . Furthermore, the input for each party Pj /∈ Bi is ⊥. Our
allowed inputs here are analogous to the “Simple I/O” setting in prior work
(e.g., [3,4,32,33]), adapted for churn.

For defining anonymity using a game-based approach, we allow the adversary
to choose a pair of inputs for an onion routing protocol, and its goal is to deter-
mine, by running the protocol, which of these inputs the challenger chose. If the
adversary can choose any two inputs without any constraints on its choices, then
it can trivially win, for example, by choosing two inputs that differ on a cor-
rupted party’s input. Thus, the adversary is constrained to choose the two inputs
from the same equivalence class [4]. We say two input vectors σ = (σ1, ..., σN)
and σ′ = (σ′

1, ..., σ
′
N) are equivalent w.r.t. the set of corrupted parties Bad if for

all Pj ∈ Bad, σj = σ′
j , and the content of the honest messages for which Pj is

the recipient is the same in σ and σ′. We denote this equivalence σ ≡Bad σ′.
We note that that the input specifies the messages that the parties would like

to send. However, a protocol might result in some parties receiving additional
dummy messages, or some parties receiving no messages (perhaps due to churn).

Poly Onions: Achieving Anonymity in the Presence of Churn 723

Adversary Model. The adversary can control the churn, observe the network
traffic, and choose which parties to corrupt (if any). We assume authenticated
communication, and we assume that the adversary can only drop messages sent
by corrupted parties or offline parties. In particular, the adversary cannot inter-
fere with communication between two honest and online parties. We define three
classes of adversaries of varying capabilities: the network adversary, the passive
adversary, and the active adversary. An adversary in any of these classes can
observe all of the network traffic. In particular, it can observe the traffic on all
communication links. The network adversary can control the churn, make these
observations, and no more. The passive adversary can additionally corrupt a con-
stant fraction of the parties and observe the computations and states of these
parties. It cannot control these parties to deviate from the protocol. The active
adversary can do all of the above and can also control the corrupted parties to
do anything, including deviating from the protocol.

3 Onion Encryption for Churn

In this section, we formalize a generalization of duo onion encryption [22], where
each onion has two candidate intermediary servers for each layer. As mentioned
by Iwanik et al. [22] if the processing party can choose which candidate to send to
next, then whenever possible, a corrupted party processing an onion can send to
a corrupted candidate. If a fraction c of the parties are corrupted, the probability
that at least one of a given list of k candidates is corrupted is 1 − (1 − c)k.

As discussed in the introduction, we address this issue by introducing aux-
iliary parties, called helpers. The helpers for an onion O in a hop i are parties
that are involved in some way in sending the peeled onion of O to its next inter-
mediary server. This prevents a corrupted party from choosing any candidate it
wishes for the next hop.

3.1 I/O syntax

Poly onion encryption is parameterized by the security parameter λ, the num-
ber of candidates κ, and the number of helpers ν and consists of algorithms
(KeyGen,FormOnion) and protocol ProcOnion, as follows:

– KeyGen takes as input the security parameter 1λ, and a party name Pi. It
outputs the public key pkPi

and the secret key skPi
for Pi.

– FormOnion takes as input a message m; a run number R (recall that a run
consists of a number of rounds; see Sect. 2); two ordered lists,
P1, . . . ,P�,P�+1 and Q1, . . . ,Q� such that for all i, |Pi| = κ and |Qi| = ν,
and the public keys for all the parties on these lists. Pi is the ordered list
of parties who are candidates for intermediaries for hop i. Qi is the list of
parties who will serve as helpers for hop i. The first party P�+1,1 in P�+1 is
the recipient.
The output is the list of lists of onions O1, . . . ,O�+1. Each Oi corresponds
to the ith layer of this onion; each Oi consists of κ onions Oi,1, . . . Oi,κ. An
onion Oi,j corresponds to the representation of the ith layer of the onion that
is suitable for processing by candidate Pi,j .

724 M. Ando et al.

– ProcOnion is a protocol that Pi,j ∈ Pi can initiate on input Oi,j and its secret
key; the other participants in the protocol (if any) is the set of helpers Qi,
each helper takes its own secret key as input. As a result of the protocol, Pi,j

obtains output Oi+1,j′ ∈ Oi+1 and its intended recipient Pi+1,j′ ∈ Pi+1; the
helpers receive no output.

Remark 1. We fix κ and ν for convenience; while in practice they may vary,
fixing them does not lose much generality.

Remark 2. The list Pi = (Pi,1, . . . , Pi,κ) is ordered. For j > 1, Pi,j is not sup-
posed to serve as the intermediary for processing the onion unless for all u < j,
Pi,u is unavailable.

Remark 3. The candidate list P�+1 may seem superfluous: only the recipient
P�+1,1 is important. As we will see, requiring it as part of the input is helpful for
preventing adversarial helpers from learning whether the onion to be processed
has reached the end of the routing path, or not.

Remark 4. The recipient P�+1,1 of the onion, upon receiving the onion O�+1,1

should be able to process it, infer that he is the recipient, and obtain the origi-
nal message m. An alternate candidate P�+1,j , upon receiving the onion O�+1,j

should be able to process it, infer that he is not the recipient, and output ⊥.
Correctness, defined in the next section, will ensure that this is the case.

3.2 Correctness

A standard onion encryption [2,9,23] is correct if having each intermediary peel it
using the algorithm ProcOnion will get it to its destination and yield the original
message. In poly onions, we have a set of candidates for each layer rather than
a specific intermediary, and a set of helpers with which an intermediary can run
ProcOnion in order to peel the onion; that alone makes correctness somewhat
harder to pin down since now it is a protocol rather than an algorithm.

What makes it really complicated, however, is churn. A processing party may
change its behavior based on whether the candidates for the next hop are online.
In other words, processing an onion correctly depends on factors that cannot be
accounted for at the time that the onion was formed.

We introduce a correctness predicate φB,C that corresponds to the bulletin B
and churn schedule C. It takes as input the onion’s candidate lists P, the helper
lists Q, the pair of indices (i, j) where i is a hop in the routing path and j is
the index of the jth party Pi,j in Pi, a round r, and a number of rounds Δ.
Δ should be an upper bound on the number of rounds required to process an
onion. The correctness predicate φB,C(P,Q, (i, j), r,Δ) accepts if Pi,j and (a
sufficient number of) helpers in Qi are online at round r according to B and C.
The definition of correctness is given with respect to this predicate (which, in
turn, dictates how many helpers are sufficient).

In poly onion encryption, there is a set of onions rather than a single onion
corresponding to each hop in the evolution. The path the onion will take through

Poly Onions: Achieving Anonymity in the Presence of Churn 725

the network (i.e. which candidate will be picked for each hop) depends on which
parties are online and which are corrupted. Recalling that Pi+1 is a list of can-
didates in order of preference, Oi should not peel to an onion Oi+1,j for party
Pi+1,j ∈ Pi+1 if there is an honest and online party Pi+1,k ∈ Pi+1 where k < j.
Note that if Pi+1,k is online but corrupted, it may pretend to be offline, in which
case we can allow Oi to peel to Oi+1,j . More formally:

Definition 1 (Correctness with respect to predicate φ). Let Σ =
(KeyGen,FormOnion,ProcOnion) be a poly onion encryption scheme, with
ProcOnion taking at most Δ rounds to run. Let Bad be the set of corrupted
parties. Let B be any bulletin. Let C be any churn schedule. Let m be any
message. Let R be the current run number. Let P = (P1, . . . ,P�+1) =
((P1,1, . . . , P1,κ), . . . , (P�+1,1, . . . , P�+1,κ)) be any list of � + 1 lists of κ candi-
dates. Let Q = (Q1, . . . ,Q�) = ((Q1,1, . . . , Q1,ν), . . . , (Q�,1, . . . , Q�,ν)) be any list
of � lists of ν helpers. Let pkP∪Q denote the public keys of the parties in P ∪ Q.

Let O = ((O1,1, . . . , O1,κ), . . . , (O�+1,1, . . . , O�+1,κ)) ← FormOnion(m,R,P,
Q, pkP∪Q) be an evolution of onions obtained from running FormOnion on the
above parameters.

Σ is correct w.r.t. the predicate φB,C if for any candidate location (i, j),
round r, and number of rounds Δ such that φB,C(P,Q, (i, j), r,Δ) = 1, the
following items are satisfied:

i. Let S ⊆ Pi+1 be the following set of parties. If Pi+1 contains an honest
party that is online in rounds r through r + Δ, S includes the first honest
and online party P ′ in Pi+1, along with any corrupted parties preceding P ′

in Pi+1.
ii. When ProcOnion is initiated by an intermediary party Pi,j ∈ Pi in round r,

and Pi,j follows the protocol (i.e., if it is adversarial, then it can only be
honest-but-curious), Pi,j’s output is (Pnext, Onext) where Pnext ∈ S ∪ {⊥}.
(The presence of ⊥ on this list of parties means that it is possible that after
the participants have processed the ith layer of the onion, the adversary can
drop this onion.)

iii. Onext = ⊥ if Pnext = ⊥. Otherwise, Onext = Oi+1,k is the onion layer for
party Pnext = Pi+1,k output by FormOnion.

iv. When ProcOnion is initiated by P�+1,1 on input O�+1,1, the output is (m,⊥).
When ProcOnion is initiated by P�+1,j on input O�+1,j, j > 1, the output is
(⊥,⊥).

Remark 5. The evolution of an onion includes a representation of every layer of
the onion, which is explicitly output by FormOnion. Implicitly, it also includes the
innermost layer, i.e., the message that will ultimately be output by the recipient.
Thus, we will sometimes think of an onion evolution with � intermediaries as
consisting of � + 2 onion layers. For 1 ≤ i ≤ �, an honest intermediary Pi,j

receives a representation Oi,j of the ith layer of O and, upon processing it, sends
Oi+1,j′ to Pi+1,j′ . If the recipient P�+1,1 is online, it will receive the onion O�+1,1

and, upon processing it, will output (m,⊥). Sometimes, by O�+2,j we will denote
(m,⊥).

726 M. Ando et al.

3.3 Security

On a high level, an onion scheme is secure if an adversary cannot correlate an
honest participant’s incoming onions with its outgoing onions. For poly onions,
this is captured via a security game, POSecurityGame described below.

One reason that this game is more complicated than the security game for
regular onions is that the adversary controlling the helpers obtains additional
information; what the adversary may learn also depends on the network churn.
We introduce a security predicate ψ to capture whether or not a particular set of
circumstances — who is processing an onion, at what round, with what helpers
— dictates whether the adversary should not be able to determine a correlation.

More precisely, the security predicate ψB,C is parameterized by a bulletin B
and churn schedule C. Let P = (P1, . . . ,P�+1) = ((P1,1, . . . , P1,κ), . . . , (P�+1,1,
. . . , P�+1,κ)) be any list of � + 1 lists of κ candidates. Let Q = (Q1, . . . ,Q�) =
((Q1,1, . . . , Q1,κ), . . . , (Q�,1, . . . , Q�,κ)) be any list of � lists of ν helpers. ψB,C

takes as input P, Q, a hop number h, a round r, and a number of rounds Δ.
For example, for regular onion routing, we would define ψ to be 1 if and only

if the (only) candidate in hop h, Ph, is honest. Here, we don’t need to refer to
the bulletin or churn, since with regular onion routing, the adversary should not
be able to peel an onion for honest Ph, regardless of whether or not Ph is online.

Consider another example, the original duo onion encryption [22] without
helpers. Here, a processing party Ph−1 in hop h−1 can choose which destination
in Ph to send the onion to; there are no helpers verifying that this destination
is the first candidate on the list Ph that is online. Here, we can define ψ to
be 1 if and only if all parties in Ph are honest. If all parties in Ph are honest,
the adversary should not be able to peel the onion since it does not know these
honest parties’ secret keys. On the other hand, if any party in Ph is corrupted,
a corrupted Ph−1 can choose to send to the corrupted party in Ph, allowing
the adversary to peel the onion in the following hop h. So the hop number h
corresponds to the onion layer that shouldn’t be “peelable” by the adversary.

POSecurityGame. The following game is between an adversary A and a chal-
lenger. It is parameterized by a security predicate ψB,C(P,Q, h, r,Δ), where B
is a bulletin, C is a churn schedule, P = (P1, . . . ,P�+1) is a list of � + 1 lists of
candidates, Q = (Q1, . . . ,Q�) is a list of � lists of helpers, h is an index of a hop
in the path, r is a round, and Δ is an upper bound on the number of rounds
that ProcOnion takes to complete.

i. A receives the public keys for all parties.
ii. A chooses the set of corrupted parties Bad, the bulletin B, the churn sched-

ule C restricted to the honest parties, and the public keys for Bad. A sends
all of these to the challenger.

iii. A can invoke the protocol ProcOnion in two ways, as follows.

Poly Onions: Achieving Anonymity in the Presence of Churn 727

Honestly initiated A sends to the challenger an onion O to be processed,
an honest processing party P , and a round rO in which the processing of
O should begin. Next, the challenger acts on behalf of P as well as the
honest helpers in the protocol ProcOnion initiated by P on input O, while
A acts on behalf of the participants in Bad. Upon completing ProcOnion,
the challenger reveals P ’s output (O′, P ′) (if any) to A.

Adversarially initiated A initiates ProcOnion on behalf of a partici-
pant P ∈ Bad. Next, the challenger acts on behalf of the honest helpers
in the protocol ProcOnion initiated by P on input O, while A acts on
behalf of the participants in Bad (including P).

iv. A chooses the parameters for the challenge onion. It chooses a routing path
length �, a message m, a routing position 1 ≤ h ≤ � + 1, a round r, a series
of helper parties for each hop (Q1, . . . ,Q�), and a path consisting of a series
of alternate destinations for each hop (P1, . . . ,P�+1). For the adversary’s
choices, it must hold that ψB,C(P,Q, h, r,Δ) = 1.

v. The challenger samples a bit b ←$ {0, 1}. If b = 0, the challenger uses
FormOnion to create an onion O0 exactly as specified by the routing path
and helper parties. Let O0

1 be the list of outermost onion layers of this onion.
If b = 1, the challenger creates two lists of lists of onions. The chal-
lenger creates the first list of lists of onions O1 = (O1

1, . . . ,O1
h+1) by

running FormOnion with message ⊥, candidates (P1, . . . ,Ph+1), helpers
(Q1, . . . ,Qh), and those parties’ public keys. The challenger creates the
second list of lists of onions O′ = (O′

h+1, . . . ,O′
�+2) by running FormOnion

with message m, candidates (Ph+1, . . . ,P�+1), helpers (Qh+1, . . . ,Q�), and
those parties’ public keys. Let O1

1 = O1 as formed above. (Recall that O1
�+2

consists of entries O�+2,j = (m,⊥) as explained in Remark 5.)
The challenger sends Ob

1 to A.
vi. A can again invoke the ProcOnion in two ways, with a slight modification

if honestly initiated.
Honestly initiated A can direct honest participants to invoke ProcOnion as

described in step 3.3 but with the following modification: onions Oj ∈ Ob
h

can only be queried in round r. If b = 0 was chosen, the challenger follows
the protocol ProcOnion.
If b = 1, and A directed Pj ∈ Ph to invoke ProcOnion on input Oj ∈ O1

h,
the challenger begins by faithfully following the protocol on behalf of
honest helpers and the honest Pj . Suppose that doing so produces output
Oh+1,j′ ∈ O1

h+1 and candidate Ph+1,j′ ∈ Ph+1. If h ≤ � (i.e., Pj = Ph+1,j

is an intermediary) or (h, j) = (� + 1, 1) (i.e., Pj = Ph,j is the onion’s
recipient), then instead of returning these to A, the challenger switches
the onion and returns Oh+1,j′ ∈ O′

h+1, Ph+1,j′ to A.
Adversarially initiated Behavior is the same as defined in step 3.3

vii. A submits a guess b′ of b. See Fig. 1 for a schematic of the poly onion
security game.

728 M. Ando et al.

Fig. 1. Schematic of the poly onion security game.

We say A wins POSecurityGame if b′ = b. A poly onion encryption scheme
is secure if no efficient adversary can win POSecurityGame with non-negligible
advantage; more formally:

Definition 2 (Poly Onion Security with respect to predicate ψ).
We say a poly onion encryption scheme Σ is poly onion secure with respect
to ψ against the class of adversaries A if for every adversary A ∈ A,
∣
∣Pr[A wins POSecurityGame(A, Σ, λ, κ, ν, ψ·,·)] − 1

2

∣
∣ = negl(λ).

Remark 6. During the ProcOnion protocol, the adversary may see additional
information other than the oracle’s output, depending on the adversary’s capa-
bilities. For example, the network, passive, and active adversaries can see the
traffic across all links during the protocol.

4 Our Poly Onion Encryption Scheme

In this section, we construct an instance of poly onion encryption, define its
correctness and security predicates, and prove its correctness and security.

Poly Onions: Achieving Anonymity in the Presence of Churn 729

Our construction, Poly Onion Encryption, has parameters κ (the number
of candidates per hop), ν (the number of helpers per hop), α (the fraction of
helpers needed to process an onion), and d (for bounding the length of the
routing path). We construct Poly Onion Encryption using the following crypto-
graphic primitives: CCA secure public-key encryption with tags [13,14], pseudo-
random permutations (or block ciphers), a message authentication code (MAC)
(Gen,Tag,Ver), and a (α · ν, ν) Secret Sharing scheme (Share,Recon). We denote
public-key encryption and decryption as Encpk(·) and Decsk(·) where pk and sk
are the public key and secret key, respectively. Following the work by Camenisch
and Lysyanskaya [9] and Ando and Lysyanskaya [2], we will continue the tradi-
tion of using “{·}k” to denote evaluating a PRP in the forward direction under
the symmetric key k, and “} · {k” to denote evaluating a PRP in the backward
direction.

Throughout this section, we describe our construction for κ = 2 candidates
per hop for ease of readability, although our construction generalizes to any
κ ∈ N. We explain how it generalizes in the full version of this paper.

For every hop of the routing path, let P+
i denote the preferred candidate for

the ith hop (this is the sender’s first choice), and let P−
i denote the alternate

candidate for the ith hop (the second choice). The idea is that (at the ith hop)
the onion should be routed to P+

i , unless P+
i is offline, in which case the onion

can be routed to P−
i instead. We sometimes refer to the party Pi for the ith hop

without specifying whether it is the preferred candidate or the alternate.
Forming an onion on input the message m, the candidate parties P =

((P+
i , P−

i))i∈[d], the helpers (committee members) Q = (Qi)i∈[d], and the pub-
lic keys pkP∪Q of the candidates and helpers, produces a list of lists of onions,
((O+

1 , O−
1), . . . , (O+

d , O−
d)) ← FormOnion(m,P,Q, pkP∪Q), where each O+

i is the
onion to be processed by party P+

i , and each O−
i is the onion to be processed by

P−
i . If it is possible for the processing party Pi of an onion Oi to send an onion

to the preferred next candidate P+
i+1, Pi will produce an onion O+

i+1 and send it
to P+

i+1; otherwise, Pi enlists the help of the committee members Qi to produce
the alternate onion O−

i+1 to send to the alternate candidate P−
i+1 instead. The

point of this committee is to ensure that P−
i+1 can only process the onion if the

preferred candidate P+
i+1 is truly offline. Otherwise, a corrupted Pi could always

choose to send to the corrupted party among P+
i+1 and P−

i+1 if such a party
exists, thereby significantly increasing the effective corruption rate.

4.1 Overview of Poly Onion Encryption

Anatomy of an Onion. We describe at a high level the pertinent information
contained in each onion Oi = (Ki,Hi, Ui), where the index i denotes the hop
number in which this onion is processed. Oi contains many blocks containing
information for each hop in the routing path; we use the variable j to index the
blocks. A detailed description of how Oi is constructed is given in the full version
of this paper.

730 M. Ando et al.

Fig. 2. The structure of an onion Oi received by a processing party Pi.

– Ki contains d blocks, including a block for each hop j in the routing path.
The first block K1

i is a ciphertext under the processing party’s public key. It
contains a key ki, which will be used to decrypt the rest of the onion. K1

i also
contains the role of the party (whether it is an intermediary or a recipient),
and the identity P+

i+1 of the preferred candidate for the next hop. The rest of
the onion Oi (denoted Oi \K1

i), as well as the run/round number R, serves as
the tag for this ciphertext; in other words, the ciphertext K1

i will not decrypt
correctly unless the decryption occurs within the context of the correct onion
Oi in run/round R:

(ki, role(Pi), P+
i+1) ← DecskPi

(K1
i ;Oi \ K1

i , R).

– Hi contains d blocks, including a block for each hop j in the routing path. Each
Hj

i is encrypted using a block cipher with key ki. The first block H1
i contains

the identities of the committee Qi and the set of inputs Ii = {Ii,j}j∈[ν] for
the committee to run the protocol.

(Qi, Ii) ←}H1
i {ki

.

– The input Ii,j for the jth committee member Qi,j ∈ Qi is
EncpkQi,j

(P+
i+1, P

−
i+1, σi,j , Ti,j , R), where P+

i+1 is the preferred candidate for

the next hop, P−
i+1 is the alternate candidate for the next hop, σi,j is Qi,j ’s

share for reconstructing the alternate candidate’s version of the onion, Ti,j

is the authentication tag for σi,j , and R is the run/round number when the
ProcOnion protocol should take place. σi,j verifies under the MAC with the
tag Ti,j and key ki; that is, Verki

(σi,j , Ti,j) = “accept.”
– Ui contains the contents of the onion and is similar to the content in regular

onion encryption. Ui is encrypted using a block cipher with key ki.

Overview of Processing an Onion. Let Pi be the processing party for onion
Oi = (Ki,Hi, Ui). Note that Pi can decrypt K1

i only if the onion wasn’t modified
en route; this is the purpose of using encryption with tags. Pi first decrypts K1

i

with its secret key skPi
, to obtain the symmetric key ki, learn its role role(Pi)

Poly Onions: Achieving Anonymity in the Presence of Churn 731

(whether it is an intermediary for the onion or the recipient), and learn the
identity of the preferred next destination P+

i+1. The symmetric key ki will allow
Pi to decrypt the rest of the onion.

If the preferred next candidate P+
i+1 is online, then Pi forms the “peeled”

onion O+
i+1 by decrypting the remaining blocks K2

i , . . . , Kd
i ,H1

i , . . . , Hd
i , Ui with

ki. Pi then shifts these blocks down so that, for example, K1
i+1 =}K2

i {ki
. The

last blocks of Ki+1 and Hi+1 are Kd
i+1 =}11 . . . 1{ki+1 and Hd

i+1 =}00 . . . 0{ki+1 .
This shifted, decrypted onion is O+

i+1 = (K+
i+1,Hi+1, Ui+1), the onion for P+

i+1.
If the preferred next candidate P+

i+1 is offline, Pi enlists the help of the
committee Qi to help peel the onion. It first decrypts H1

i with ki to obtain Qi

(the set of committee members) and Ii (the set of inputs for Qi). Pi initiates
the protocol by sending each share Ii,j to its corresponding committee member
Qi,j in Qi. Each committee member Qi,j decrypts its input Ii,j to obtain P+

i+1,
P−

i+1, σi,j (a sharing of the key block necessary to construct O−
i+1), Ti,j (the

authentication tag for σi,j), and R (a run/round number). If R is not the current
run/round, Qi,j aborts and outputs ⊥. If Qi,j determines that P+

i+1 is offline and
P−

i+1 is online, it sends EncpkPi
(P−

i+1, σi,j , Ti,j) to Pi. Thus, if at least α fraction
of the committee members are honest and online, and P+

i+1 is offline and P−
i+1

is online, Pi will receive from the committee members, the identity of P−
i+1 and

at least α|Qi| shares that verify using the set of tags Ti and the key ki. Pi

uses these shares to reconstruct the alternate first key block (K1
i+1)

−. Pi now
processes the rest of the onion as in the case where P+

i+1 is online, decrypting the
other blocks with ki and shifting them down, then again forming Kd

i+1 and Hd
i+1

as encryptions of 00 . . . 0 and 11 . . . 1 respectively. It then replaces the first key
block (K1

i+1)
+ of K+

i+1 with the reconstructed key block (K1
i+1)

− to obtain K−
i+1.

The resulting peeled onion is the alternate onion O−
i+1 = (K−

i+1,Hi+1, Ui+1). We
give a more detailed description of processing an onion in the full version of this
paper.

4.2 Analysis of Poly Onion Encrypion

Here, we analyze Poly Onion Encryption for κ = 2.
Correctness. We define the predicate function φpoly

B,C,α(P,Q, (i, j), r,Δ) to be
1 when Pi,j is honest and online in rounds r through r +Δ, and fewer than α · ν
of the parties in Qi are corrupted.

Poly Onion Encryption is correct with respect to φpoly
B,C,α(P,Q, (i, j), r,Δ).

Suppose Pi,j is honest and initiates the ProcOnion protocol on an onion Oi,j

in round r. We break the scenario into the following cases and show that they
satisfy Definition 1:

P+
i+1 honest and online. Pi,j does not need the committee to process Oi,j .

Since Pi,j is honest, it will output (P+
i+1, O

+
i+1) as prescribed by correctness.

P+
i+1 honest and offline. Pi,j will see that P+

i+1 is offline and will enlist the
help of the committee. The committee protocol returns either ⊥ or the key
block for O−

i+1. Thus, Pi,j will either output (P−
i+1, O

−
i+1) or ⊥.

732 M. Ando et al.

P+
i+1 corrupted. Depending on whether P+

i+1 behaves as if it is online, Pi,j may
output (P+

i+1, O
+
i+1), (P

−
i+1, O

−
i+1), or ⊥.

Security. Let ψpoly
B,C,α(P,Q, h, r,Δ) be the predicate function that returns 1 if

and only if the following both hold: (i) no corrupted party precedes the first
honest party in Ph that is online in all rounds r through r + Δ; and (ii) fewer
than α · ν parties in Qh−1 are corrupted.

Recall that ν is the committee size and α is the number of committee mem-
bers’ shares required to reconstruct the onion for the alternate candidate. By the
above definition of ψpoly

B,C,α, if the first candidate in Ph+1 is honest and online,
and fewer than α · ν members in Qh are corrupted, the adversary cannot win
the security game with non-negligible advantage, i.e., the onion mixes in hop
h + 1. As long as enough parties in our universe are honest, and committees are
chosen randomly, we can increase the committee size to boost the probability
that fewer than α · ν members in Qh are corrupted; we discuss this further in
Sect. 6. Given that fewer than α · ν members of Qh are corrupted, the onion
mixes in hop h + 1 if the first party in Ph+1 is honest and online. We show later
in Sect. 6 that ψpoly

B,C,α is indeed satisfied with high enough probability to provide
anonymity.

Theorem 1 (Security of construction). Poly Onion Encryption is poly
onion secure with respect to the security predicate ψpoly

B,C,α for 0 < α ≤ 1 and
ν ≥ 1

α assuming that all of the underlying standard primitives exist.

We prove that the scheme is secure using a hybrid argument that is similar
to the security proof of shallot encryption by Ando and Lysyanskaya [2]. We give
a proof sketch below and provide thee full proof in the full version of this paper.

Proof sketch. Let Experiment0 be the same as running the security game with
b = 0; this is when the challenger creates the challenge onion as usual. Let
Experiment1 be the same as running the security game with b = 1; this is when
the challenger creates two unrelated sets of onion layers O and O′, and the onion
O ∈ O peels to O′ ∈ O′ at the chosen server.

We construct the following hybrids that act as stepping stones from
Experiment0 to Experiment1. Let i = h − 1. The hybrids involve changing the
onion layers Oi+1. In all of the hybrids, the ProcOnion oracle behaves as if b = 1
in POSecurityGame. That is, when an onion Oj ∈ Oi+1 is queried, it returns
the onion in Oi+2 corresponding to the appropriate candidate. This behavior
is consistent with b = 0 in POSecurityGame for Experiment0 and with b = 1 in
POSecurityGame for Experiment1:

Experiment0: security game with b = 0.
� These are identically distributed.

Hybrid1: since onions are layered encryption objects, we form challenge onion by
first forming O+

i+2 and then “wrapping” it in more layers of encryption to get
O1. We formally define wrapping in the full version of this paper.

Poly Onions: Achieving Anonymity in the Presence of Churn 733

� Indistinguishable by security of public key encryption.
Hybrid2: same as Hybrid1, except change the oracle so that in step 6 of
POSecurityGame, if it is queried with (O−

i+1)
′ to be processed by P−

i+1, it instead
runs ProcOnion with O−

i+1.
� Indistinguishable by security of secret sharing/public key encryption.

Hybrid3: same as Hybrid2, except in block H1
i of Oi, change the share of

every member of committee Qi to a share of Encpk
P

−
i+1

(00 . . . 0) instead of

Encpk
P

−
i+1

(ki+1, role(P−
i+1), P

+
i+2).

� Indistinguishable by security of public key encryption.
Hybrid4: same as Hybrid3, except in the key block K1

i+1 of Oi+1, change ki+1 to
00 . . . 0.

� Indistinguishable by security of the block cipher.
Hybrid5: same as Hybrid4, except change Oi+1 from a wrapping of O+

i+2 to the
output for hop (i + 1) of FormOnion on the first segment of the routing path, up
to Pi+1.

� Indistinguishable by security of public key encryption.
Hybrid6: same as Hybrid5, except in the key block K1

i+1 of Oi+1, change the key
back from 00 . . . 0 to ki+1, and change the role of Pi+1 from intermediary to
recipient.

� Indistinguishable by security of secret sharing/public key encryption.
Hybrid7: same as Hybrid6, except in block H1

i of Oi, change all commit-
tee members’ shares back from shares of Encpk

P
−
i+1

(00 . . . 0) to shares of

Encpk
P

−
i+1

(ki+1, role(P−
i+1), P

+
i+2)

� Indistinguishable by security of public key encryption.
Hybrid8: same as Hybrid7, except change the oracle so that it no longer treats
(O−

i+1)
′ specially.

� These are identically distributed.
Experiment1: security game with b = 1. �
Remark 7. We remark that this construction can be generalized for any number
of candidates κ. That is, every onion has κ candidate processing parties per
hop. We can do so by modifying the committee members’ inputs so that each
input Ii,j contains the full list of candidates rather than just P+

i+1 and P−
i+1. We

also include κ − 1 shares σ2
i,j , . . . , σ

κ
i,j in Ii,j instead of just σi,j . Each share σc

i,j

is used to construct the version of the onion for candidate Pi+1,c ∈ Pi+1. The
processing party knows from the committee members’ responses which candidate
each committee member votes for. If enough committee members vote for one of
the candidates, the processing party can reconstruct that candidate’s version of
the onion. Correctness and security still hold with respect to the same predicates
φpoly

B,C,α and ψpoly
B,C,α defined in Sect. 4.2. The proofs of correctness and security

are given in the full version of this paper.

734 M. Ando et al.

5 Anonymity in the Setting with Churn

So far we have explored new onion encryption techniques for handling network
churn, defining poly onion encryption, and constructing a scheme that satisfies
poly onion security. In this section, we turn our attention to the problem of
how to route onions such as those constructed using Poly Onion Encryption
through a dynamic network to achieve anonymity. To begin with, we must first
formally define what it means for an onion routing protocol to be anonymous
in a setting with network churn. Our new definitions of anonymity, including
multi-run anonymity, are provided in Sect. 5.1.

To establish that our proposed multi-run anonymity definition is a usable
notion, we must also show that it is achievable. In Sect. 5.3, we prove a general
theorem (Theorem 2) that states that for a class of onion routing protocols, which
we call “simulatable” protocols, single-run anonymity is equivalent to multi-
run anonymity. An implication of this is that all previously known simulatable
protocols that are single-run anonymous are also multi-run anonymous. These
include Πp [3]. However, these new multi-run results are for the static setting,
without network churn. In Sect. 6, we prove (again relying on Theorem 2) that Πp

can achieve multi-run anonymity in the presence of churn. Our formal definition
of the class of simulatable onion routing protocols is provided in Sect. 5.2.

5.1 Definitions of Anonymity

Here, we define what it means for an onion routing protocol to achieve multi-
run anonymity. First, we define an anonymity game, StrongAnonGame, which we
then use in the formal definition of multi-run anonymity (Definition 3).

StrongAnonGame(A,Π, L, λ) is parameterized by the adversary A, the onion
routing protocol Π, the number of runs L, and the security parameter λ. The
game proceeds in three phases: (i) the setup phase where A has access to the
oracle for responding to queries for processing onions on behalf of honest parties,
(ii) the challenge phase where A and the challenger run the protocol Π, and
(iii) the final phase where A again has access to the oracle.

During setup, the adversary A first picks the set of corrupted parties Bad and
sends Bad to the challenger. The challenger generates the keys for the honest
parties according to Π and sends only the public portion of these keys to A.
A sends the corrupt parties’ public keys to the challenger. A can now submit
ProcOnion queries to the the challenger. For each ProcOnion query, A submits a
bulletin B and a churn schedule C such that the number of parties ever offline
is bounded above by the churn limit c(N), an onion O, an honest processing
party P for peeling O, and a round number r. The challenger receives only the
restriction of C to the honest parties. The challenger interacts with A to run
the ProcOnion protocol on O starting in round r, with the challenger acting on
behalf of the honest parties following the protocol and A controlling the behavior
of the corrupted parties.

In the challenge phase, A and the challenger run the protocol L times. To
begin with, the challenger picks the challenge bit b ∈ {0, 1}. For each of the

Poly Onions: Achieving Anonymity in the Presence of Churn 735

L runs, A and the challenger repeat the same procedure. In run i, A picks a
bulletin Bi and a churn schedule Ci with at most c(N) parties offline during
that run. A also picks input vectors σi

0 and σi
1 that are both valid with respect

to Bi, i.e., σi
0 ≡Bad σi

1. A sends Bi, the restriction of Ci to the honest parties,
σi
0, and σi

1 to the challenger. A and the challenger interact in a protocol run of
σi

b with online parties specified by bulletin Bi and churn schedule Ci, and with
the challenger acting as the honest parties, and A acting as the corrupt parties.

After the challenge phase, in the final phase, A can again interact with the
challenger by submitting ProcOnion queries, with the additional restriction that
A cannot ask about onions formed by honest parties during the challenge phase.
That is, A picks a bulletin B and churn schedule C (such that the number of
offline parties is at most c(N)), an onion O (not observed during the challenge
phase), and a processing party P . A again sends C restricted to the honest
parties. Finally, A outputs a guess b′ of the challenge bit b. We say A wins
StrongAnonGame(A,Π, L, λ) if its guess b′ is equal to b. See Fig. 3 for a schematic
of the strong anonymity game.

We now define several variants of strong anonymity using StrongAnonGame.

Definition 3 (Strong Anonymity). An onion routing protocol Π with secu-
rity parameter λ is L-strongly anonymous against the class of adversaries A

if for every adversary A ∈ A,
∣
∣Pr[A wins StrongAnonGame(A,Π, L, λ)] − 1

2

∣
∣ =

negl(λ).

Note that when c(N) = 0, this is the static setting; when c(N) > 0, this is
the dynamic setting with network churn.

Multi-run vs. Single-run. We say a protocol Π is multi-run anonymous if it is
anonymous for polynomially bounded L > 1 in the above definition. A protocol
Π is single-run anonymous if it is anonymous for L = 1.

Strong vs. Weak. We say a protocol Π is weakly anonymous if it satisfies the
analogous definition for a modified anonymity game, where the adversary does
not have oracle access to the ProcOnion queries. We say a protocol Π is strongly
anonymous if it satisfies the definition using StrongAnonGame.

Adaptive vs. Non-Adaptive. In StrongAnonGame, the adversary is adaptive in
that it can choose the bulletin, the schedule, and the inputs before each run based
on prior history. We also define a weaker non-adaptive anonymity definition,
in which the adversary must choose all inputs, churn schedules, and bulletins
before observing any protocol runs. Using our terminology above, the standard
anonymity definition in prior papers (e.g., [2,3,25,32,33]) is weak single-run
non-adaptive anonymity in our new terms.

5.2 Simulatable Onion Routing Protocols

Here, we formally define the class of simulatable onion routing protocols. As
we will show in Sect. 5.3, simulatability is a property that can reduce multi-
run anonymity to single-run anonymity. The idea is that if a simulatable onion

736 M. Ando et al.

Fig. 3. Schematic of the strong anonymity game.

routing protocol is single-run anonymous, then we can prove that it is also multi-
run anonymous via a sequence of reductions that “simulate” extraneous runs for
an adversary that expects to interact in multiple runs. (See our proof of Theorem
2 in Sect. 5.3.)

Thus, what we mean by “simulatable” is that the reduction should be able
to recreate what the honest parties do in a run, using only information that
it has access to – namely, the public keys of all the parties, the bulletin, the
churn schedule, the run number, and the inputs for the honest parties. Consider
the following two settings: (i) the real setting, in which the challenger interacts
with the adversary by following the protocol and (ii) the ideal setting, in which
the challenger interacts with the adversary by using the algorithm GenOnions
that generates (from just the public parameters and the honest parties’ inputs)
all possible onions that the honest parties might send out during the run and
the algorithm ScheduleProcOnions that determines (from just the honest parties’
message buffers) if/when these onions are processed. An onion routing protocol
is simulatable if no (efficient) adversary can tell whether it is interacting in the

Poly Onions: Achieving Anonymity in the Presence of Churn 737

real setting or the ideal one except with negligible advantage. We define these
concepts more concretely below.

The Real Setting. RealGame(A,Π, λ) is parametrized by the adversary A, the
onion routing protocol Π with onion encryption scheme (KeyGen,FormOnion,
ProcOnion), and the security parameter λ.

The game proceeds as follows. First, the adversary A chooses the adversarial
parties Bad, the bulletin B, the churn schedule C, the run number R, and the
keys for the parties in Bad. The public portions of these keys are relayed to the
challenger. The challenger generates the keys for the honest parties by running
KeyGen and relays the public portion of these keys to A. A picks the input
vector σ, and the inputs for the honest parties are relayed to the challenger.

The challenger and A interact in a run of Π on input σ, with the challenger
running Π on behalf of the honest parties, and A controlling the adversarial
parties. At the end of the run, A outputs a bit b.

The Ideal Setting. This setting is defined with respect to two algorithms:

– An onion generation algorithm GenOnions takes as input the security param-
eter 1λ, the public keys {pkPj

}N
j=1 of all the parties, the bulletin B, the

churn schedule C, the run number R, the identity Pi of an honest party,
and the input σi for Pi; and outputs a set O(1)

i of onions for Pi, i.e.,
O(1)

i ← GenOnions(1λ, {pkPj
}N

j=1, B,C,R, Pi, σi).
– A scheduling algorithm ScheduleProcOnions takes as input the security param-

eter 1λ, the round number r, the identity Pi of an honest party, and the
state OnionBuffer

(r)
i of Pi at round r; and outputs a set O(r)

i of onions to
be processed starting at round r and an updated state OnionBuffer

(r+1)
i , i.e.,

(O(r)
i ,OnionBuffer

(r+1)
i) ← ScheduleProcOnions(1λ, r, Pi,OnionBuffer

(r)
i).

IdealGame(A,GenOnions,ScheduleProcOnions, λ) is parametrized by the adver-
sary A, the onion generation algorithm GenOnions, the scheduling algorithm
ScheduleProcOnions, and the security parameter λ.

The game proceeds as follows. Like in the real setting, the adversary first picks
Bad, B, C, R, and the keys {pkPj

}j∈Bad for the adversarial parties, while the
challenger runs KeyGen to generate the keys {pkPj

}j∈[N]\Bad for honest parties;
and A determines the input vector σ = (σ1, . . . , σN) for the run.

The challenger and A interact in a run of Π on input σ, with the challenger
acting as the honest parties, and A controlling the rest. In contrast to the real
setting, the challenger doesn’t run the protocol Π.

Instead, in the first round, for each honest party Pi, the challenger runs
GenOnions(1λ, {pkPj

}N
j=1, B,C,R, Pi, σi) and sets Pi’s initial state OnionBuffer

(1)
i

to the output O(1)
i ← GenOnions(1λ, {pkPj

}N
j=1, B,C,R, Pi, σi). Then, still

within the first round, for each honest party Pi, the challenger runs
ScheduleProcOnions(1λ, 1, Pi,OnionBuffer

(1)
i) to obtain a set O(1)

i ⊆
OnionBuffer

(1)
i of onions to be processed and an updated state OnionBuffer

(2)
i .

738 M. Ando et al.

The challenger updates Pi’s state to OnionBuffer
(2)
i . For each onion O ∈ O(1)

i ,
the challenger initiates ProcOnion with Pi as the processing party and O as
the onion to be processed and sends out the peeled onion O1,i→j to its next
destination P1,i→j (whenever ProcOnion terminates).

In each subsequent round r, and for each honest party Pi, the challenger first
adds the onions that Pi received in the previous round to OnionBuffer

(r)
i . Then,

the challenger runs ScheduleProcOnions(1λ, r, Pi,OnionBuffer
(r)
i) to obtain O(r)

i

and OnionBuffer
(r+1)
i . The challenger updates Pi’s state to OnionBuffer

(r+1)
i . For

each O ∈ O(r)
i , the challenger initiates ProcOnion with Pi as the processing party

and O as the onion to be processed and sends out the peeled onion Or,i→j to its
next destination Pr,i→j (whenever ProcOnion terminates).

At the end of the run, A outputs a bit b.

Definition 4 (Simulatablity). An onion routing protocol Π is sim-
ulatable if for every p.p.t. adversary A there exist p.p.t. algorithms
(GenOnions,ScheduleProcOnions) such that A can distinguish between RealGame
and IdealGame with only negligible advantage, i.e.,

|Pr[1 ← RealGame(A,Π, λ)]
− Pr[1 ← IdealGame(A,Π,GenOnions,ScheduleProcOnions, λ)] | = negl(λ).

5.3 From Single-Run to Multi-run Anonymity

Theorem 2. Let Π be a simulatable onion routing protocol with security param-
eter λ. For any L = poly(λ), Π is L-strongly anonymous from the active (resp.
passive) adversary A with churn limit c(N) if and only if it is single-run strongly
anonymous from A.

Proof. It is evident that multi-run anonymity implies single-run anonymity since
the former holds for any (polynomially bounded) number of runs, including one.
Thus, to prove the theorem, it suffices to show that single-run anonymity implies
multi-run anonymity. We do this using a hybrid argument.

Let Π be an onion routing protocol with security parameter λ that is single-
run strongly anonymous against the active (resp. passive) adversary. Let A be
any p.p.t. adversary from the class of active (resp. passive) adversaries.

Let Experiment0 be the anonymity game StrongAnonGame(A,Π, L, λ) condi-
tioned on the challenge bit b equaling zero, i.e., b = 0. Let σ0 = (σ1

0 , . . . , σ
L
0)

denote the sequence of input vectors that A chooses for the L runs in
Experiment0; that is, σi

0 is the input vector for the ith run.
Likewise, let Experiment1 be StrongAnonGame(A,Π, L, λ) when b = 1. Let

σ1 = (σ1
1 , . . . , σ

L
1) be the L input vectors in Experiment1.

We define a sequence of hybrids as follows. For all 1 ≤ i ≤ L + 1, let Hybridi

be the experiment where the input vector for run j is σj
0 if j < i, and otherwise,

it is σj
1. Clearly, Experiment0 is the same as HybridL+1, and Experiment1 is the

same as Hybrid1.

Poly Onions: Achieving Anonymity in the Presence of Churn 739

To complete the hybrid argument that Π is multi-run anonymous, we show
that any two consecutive hybrids are distinguishable. To do so, we define another
anonymity game, FlipAnonGame(A,Π, λ, L, i), that we use only in this proof.
This game is essentially the same as StrongAnonGame with the same parameters,
except the challenger runs Π on σ0 up to (but not necessarily including) run i
and runs Π on σ1 for the remaining runs when b = 1. The index i specifies where
this switch from σ0 to σ1 happens. The challenger chooses b ∈ {0, 1} uniformly
at random. If b = 0, the first run with input σ0 is run i. If b = 1, the first run
with input σ0 is run i + 1. The adversary A makes a guess b′ of whether the
challenger switched in run i or in run i + 1 and wins if b′ = b.

To prove that consecutive hybrids are indistinguishable, we prove that
A wins FlipAnonGame(A,Π, λ, L, i) with only negligible advantage. Suppose
there exists an index i such that A wins FlipAnonGame(A,Π, λ, L, i) with non-
negligible advantage. Then, we can construct a reduction B that uses A to
“break” single-run strong anonymity. B goes between A and the challenger C
in StrongAnonGame(B,Π, λ, 1). We describe the interactions between A, B, and
C in terms of the phases in StrongAnonGame.

The Setup Phase. During setup, the reduction B serves as a channel between the
adversary A (of FlipAnonGame) and the challenger (of the single-run anonymity
game). A sends the set of adversarial parties to the reduction B; B relays this
to C. C sends the honest parties’ public keys to B; B relays them to A. A sends
the adversarial parties’ public keys to B; B relays them to C. During the first
query phase, A can send ProcOnion queries to B. Whenever A sends a ProcOnion
query with a bulletin B and a churn schedule C (such that the number of offline
parties is at most c(N)), an onion O, a processing party P , and a round number
r, B relays the query to C and replies to A with C’s response.

The Challenge Phase. Since (from the hypothesis) Π is simulatable, it follows
that there exist efficient algorithms (GenOnions,ScheduleProcOnions) such that
no efficient algorithm can tell whether B is running the protocol Π, or simu-
lating the run by running GenOnions and ScheduleProcOnions and submitting
ProcOnion queries to the challenger, instead.

For each run j of the challenge phase, A sends the run parameters
(Bj , Cj , σ

j
0, σ

j
1) to B. If j < i, B simulates a run of Π with parameters Bj ,

Cj , and σ0. If j > i, B simulates the run with parameters Bj , Cj , and σ1

instead. The ith run is the challenge run in FlipAnonGame. In this run, B uses
these parameters in its challenge run, relaying them all to C and serving as a
channel between A and C in running Π on either σj=i

0 or σj=i
1 , depending on

the challenge bit b chosen by C.

The Final Phase. During the second query phase, A is again allowed to submit
ProcOnion queries. Whenever A sends a ProcOnion query with a bulletin B and
a churn schedule C (such that the number of offline parties is at most c(N)), an
onion O (where O was not produced by an honest party during the challenge
phase), a processing party P , and a round number r, B relays the query to C and
replies to A with C’s response. Finally, A makes its guess b′ for FlipAnonGame

740 M. Ando et al.

and passes b′ to B. If A guesses b′ = 0, this means that A suspects that the
first run with input σ1 is run i. Thus if A’s guess is correct, the input in the
challenge run i for StrongAnonGame was likely σ1, and B should output 1. Thus,
B outputs the opposite of b′ (i.e., 1 if b′ = 0 and 0 if b′ = 1).

Since B essentially wins whenever A wins, we conclude that no efficient adver-
sary can win FlipAnonGame with non-negligible advantage.

Corollary 1. If Π is a simulatable onion routing protocol, then, in the static
setting (i.e. for c(N) = 0), Π is multi-run strongly anonymous from the active
(resp. passive) adversary iff it is single-run strongly anonymous from the active
(resp. passive) adversary.

6 Multi-run Strongly Anonymous Onion Routing with
Churn

Note that we can turn any weakly anonymous onion routing protocol strongly
anonymous by using a sufficiently secure onion encryption scheme (e.g., any
scheme that realizes Camenisch and Lysyanskaya’s onion ideal functionality [9]).
Thus from Corollary 1, in the static setting, any simulatable onion routing proto-
col shown to be single-run anonymous is also anonymous over multiple runs. For
example, Ando, et al. [3] proved that their protocol Πp is anonymous from the
passive adversary in the static setting; we show that Πp is simulatable (Lemma
2), implying that running Πp multiple times is still anonymous.

However, as we show below, Πp does not work in the dynamic setting; e.g.,
when the churn limit is linear in the number of participants, Πp either fails to
deliver any messages or is not anonymous (Theorem 3). Furthermore, Duo Onion
Encryption and naive modifications of it fail in the same way. In this section,
after demonstrating these problems with previous solutions, we show that we
can make Πp multi-run anonymous from the passive adversary with a linear
churn limit (a minority of churned or corrupted parties) if we use poly onion
encryption instead of regular onion encryption (Theorem 4).

The Protocol Πp. Ando, Lysyanskaya, and Upfal [3] showed that the simple
protocol Πp is weakly anonymous from the passive adversary in the (simple I/O)
static setting. For this protocol, there are N users that send and receive messages:
P = P1, . . . , PN ; and n < N mix-servers that serve as intermediaries on routing
paths: S = S1, . . . , Sn. During the onion-forming phase of a protocol execution,
each user Pi forms an onion to carry the message mi→j to his recipient Pj .
Specifically, Pi first picks a random sample T1, . . . , T� from the set S of mix-
servers (with replacement), i.e., T1, . . . , T� ←$ S, then generates an onion using
the message mi→j , the path (T1, . . . , T�, Pj), and the public keys for all the
parties on the path. During the first round of the execution phase, the users
send the generated onions to their first locations (i.e., first parties on the paths).
During all subsequent rounds, each party peels the onions from the previous
round and sends the peeled onions to their next locations or outputs the received
messages for the final round.

Poly Onions: Achieving Anonymity in the Presence of Churn 741

Ando et al. [3] proved that Πp is anonymous from the passive adversary that
corrupts up to a constant 0 ≤ β1 < 1 fraction of the servers when both the server
load (the average number of onions per server per round) N

n and the number �
of rounds are at least polylog in the security parameter λ. This result holds in
the static setting without any churn.

6.1 Insufficiencies of Previous Solutions

We show both that Πp fails in terms of either delivery rate or anonymity, and
duo onion encryption or natural modifications thereof do little to help. For all
the results below, let λ denote the security parameter and let polylog(λ) denote
any polylog function in λ. Additionally, we say a server is online when it is online
throughout the entire protocol run; otherwise, the server is offline.

Theorem 3. When the churn limit is c(N) = β2N where 0 < β2 ≤ 1 is any
positive constant, a single run of Πp either fails to deliver any message with
overwhelming probability, or else it is not (single-run weakly) anonymous.

Proof. Case 1: when the length of the routing path � ≥ polylog(λ). Let Pi be
any sender. Let Ei be the event that the onion generated by Pi makes it to the
recipient of Pi. This is the event that all of the intermediaries T1, . . . , T� that
Pi picks are online. Since each Tj is online with probability (1 − β2), Pr[Ei] =
(1−β2)� ≤ (1−β2)polylog(λ). In other words, Ei occurs with negligible probability.
By a union bound, the probability that any of the � = poly(λ) messages gets
through is also negligibly small. Thus, in this case, Πp fails to route any message.

Case 2: when the length of the routing path � < polylog(λ). We know from
previous work [12,17,18] that with a passive adversary corrupting a constant
fraction of the parties, no onion routing protocol with fewer than polylog rounds
of mixing is anonymous.

We just demonstrated that the protocol Πp, using standard onion encryption,
doesn’t work when the churn limit is linear in the number of participants. Before
using Poly Onion Encryption, with its more complicated committee protocol, one
might hope to replace standard onion encryption with Duo Onion Encryption
instead. However, Duo Onion Encryption with two candidates yields only a small
improvement in effective churn rate: the probability that an onion is dropped in
a given round is now β2

2 , which is still a positive constant, and Theorem 3 still
holds. The same is true for any constant number of candidates.

At the other extreme, when the number of candidates is “large,” with
polylog(λ) candidates, the probability that an onion is dropped in a given hop
becomes β

polylog(λ)
2 , which is negligible if β2 is a constant. However, anonymity

becomes an issue here. Consider the following attack, where the adversary traces
an onion O back to its honest sender Pi.

Suppose that the passive adversary manages to corrupt some candidate in
every hop in the routing path of O. In Duo Onion Encryption, like in Poly Onion
Encryption, each onion layer Oi is encrypted with a symmetric key ki. Unlike

742 M. Ando et al.

Poly Onion Encryption, which requires running the committee protocol to obtain
ki in the event that the first candidate is offline, Duo Onion Encryption includes
in Oi an encryption of ki under each candidate’s public key. This allows the
adversary A to trace O through the network as follows. A observes Pi send O1

to its first intermediary P1. O1 contains EncpkP ′
1
(k1) for some corrupted party P ′

1,
since some candidate in every hop is corrupted. A silently decrypts this to obtain
k1, which it uses to peel the onion to get O2. A then sees the outgoing traffic from
P1, which includes P1 sending O2 to what A now knows is the next intermediary
P2. In this way, A continues peeling O in parallel with the network, observing
the network traffic and knowing in each round exactly where O is. A does this
until O reaches its recipient, allowing A to discover who Pi is communicating
with. Thus, mixing only occurs in a hop where all candidates are honest.

If a constant fraction β1 of the parties are corrupted and chosen uniformly
at random, the probability that all candidates are honest in a given hop is at
most (1 − β1)polylog(λ), which is negligible. By a union bound, given � hops, the
probability that any of them has all honest candidates is at most � ·negl(λ). That
is, with overwhelming probability, every hop has at least one corrupted candi-
date. Thus, for any polynomial length routing path, this shadow routing attack
succeeds with non-negligible probability, and the protocol is not anonymous.

While it may be possible to set κ between the two extremes and balance the
effective delivery and corruption rates, doing so is nontrivial. Furthermore, even
if such a value exists, previous proofs of anonymity such as that of Πp no longer
necessarily hold. We can instead achieve anonymous message delivery even with
a constant churn limit by modifying Πp so that it uses Poly Onion Encryption.

6.2 Poly Πp is Multi-run Anonymous in the Presence of Churn

Πp with Poly Onion Encryption. To generate a poly onion, each sender Pi

first randomly chooses κ candidates Ph = (Ph,1, . . . , Ph,κ) for each interme-
diary hop h of the path and κ − 1 candidates (P�+1,2, . . . , P�+1,κ) for the final
(�+1)st hop. Pi then randomly chooses ν helpers Qh = (Qh,1, . . . , Qh,ν) for each
hop h of the path, i.e., P1,1, . . . , P1,κ, . . . , P�+1,2, . . . , P�+1,κ, Q1,1, . . . , Q1,ν , . . . ,
Q�,1, . . . , Q�,ν ←$ S. Pi then forms an onion using the message m to her recip-
ient P�+1,1, the candidates (P1, . . . ,P�, (P�+1,1, P�+1,2, . . . , P�+1,κ)), the helpers
(Q1, . . . ,Q�), and all the required public keys.

For the analysis below, we will make the simplifying assumption that
ProcOnion runs within a single round since making this assumption doesn’t
change the results. We use the committee threshold parameter α = 1

2 . By the
security of Poly Onion Encryption (Theorem 1), onions formed by honest parties
“mix” in hop h when the first online candidate in Ph is honest (event E3 in the
proof), and fewer than 1

2 of the members of Qh−1 are corrupted (event E4 in
the proof). Note that these conditions are stronger than what is required for
security to hold.

For all the results below, let Poly Πp be the protocol Πp modified to use Poly
Onion Encryption instead of regular onion encryption with the following param-
eter settings: security parameter λ, length of the routing path � ≥ polylog(λ),

Poly Onions: Achieving Anonymity in the Presence of Churn 743

and number of candidates per hop κ ≥ polylog(λ), and number of helpers per
hop ν ≥ polylog(λ).

Towards showing that Poly Πp is multi-run anonymous when the churn limit
is linear in the number of mix-servers, we now prove that Poly Πp is both
single-run anonymous in the setting with churn (Definition 3) and simulatable
(Definition 4).

Lemma 1. Poly Πp is single-run (strongly) anonymous from the passive adver-
sary who corrupts up to a constant 0 ≤ β1 < 1 fraction of the mix-servers, when
the churn limit is c(N) = β2N and 0 ≤ β1 + β2 < 1

2 is a constant. Moreover, it
delivers all messages with overwhelming probability.

Proof. An onion is dropped at an intermediary Ph,j ∈ Ph due to churn only if all
of the candidates Ph are offline (event E1), or at least ν

2 of the helpers Qh−1 are
offline (event E2). The probability of E1 is negligibly small since the probability
that each randomly chosen candidate is offline is bounded above by 1

2 . We can
show that the probability of E2 is also negligibly small by using a Chernoff
bound for Poisson trials [26, Corollary 4.6]; with overwhelming probability, the
fraction of offline parties in the committee is arbitrarily close to the expected
value, which is strictly less than ν

2 . Since E1 and E2 occur with only negligible
probabilities, this onion (layer) at Pi,j is not dropped. Since the total number
of onion layers is polynomially bounded in the security parameter, by a union
bound, it follows that with overwhelming probability, no onion is dropped.

Since no onions are dropped, we can apply the proof of weak anonymity of Πp

from Ando et al. [3], with a slight modification. In that proof, mixing occurs at an
intermediary server as long as that server is honest. This happens with constant
probability in Ando et al.’s construction. With Poly Onion Encryption, mixing
occurs when the first online candidate in Ph is honest (event E3), and fewer than
1
2 of the members of Qh−1 are corrupted (event E4). The probability that any
random party is both honest and online is at least 1 − β1 − β2 > 1

2 since, in the
most pessimistic scenario, the adversary chooses the set of corrupted servers to
be disjoint from the set of offline servers. Thus, E3 happens with probability at
least 1

2 . Similar to the analysis of Ē2, from a Chernoff bound, E4 also occurs with
overwhelming probability. Thus, the proof of weak anonymity of Πp still holds
for Poly Πp, and all onions will be untraceable to their senders by the time they
reach their last intermediaries. An onion may be dropped in its final relay to its
recipient with non-negligible probability; however, it is already untraceable to its
sender at this point. This proves that Poly Πp is single-run weakly anonymous.
The protocol is also single-run strongly anonymous since it is constructed with
a sufficiently strong encryption scheme that is poly-onion secure.

Lemma 2. Poly Πp is simulatable.

Proof. We describe algorithms GenOnions and ScheduleProcOnions for which
Poly Πp is simulatable.

Defining GenOnions. Recall that GenOnions takes as input the security
parameter 1λ, the public keys {pkPk

}N
k=1 of all the parties, the bulletin B,

744 M. Ando et al.

the churn schedule C, the run number R, the identity Pi of an honest party,
and the input σi for Pi; and outputs a set O(1)

i of onions for Pi, i.e., O(1)
i ←

GenOnions(1λ, {pkPk
}N

k=1, B,C,R, Pi, σi). Let Pj denote the recipient and let
m denote the message for that recipient included in σi. GenOnions first gener-
ates a list of candidate lists P1, . . . ,P�,P�+1, where P�,1 = Pj , and all other
candidates is chosen independently and uniformly at random. GenOnions then
generates a list of committees Q1, . . . ,Q�, where each party in each list is
chosen independently and uniformly at random. Let {pkPk

}k∈P∪Q denote the
set of public keys of all parties in some candidate list Pj or some commit-
tee Qj . Each candidate list has length κ, and each committee has size ν,
where κ and ν are our chosen Poly Onion Encryption parameters. GenOnions
then runs FormOnion to obtain ((O1,1, . . . ,O1,κ), . . . , (O�,1, . . . ,O�,κ) ←
FormOnion(m,R, (P1, . . . ,P�+1), (Q1, . . . ,Q�+1), {pkPk

}k∈P∪Q).
The output O(1)

i of GenOnions should be the singleton containing an onion O0

such that processing it right away has the same effect as the sender Pi sending the
first onion O1,u to the first available candidate P1,u ∈ P1 for the first hop. We can
construct O0 from the onion O1,1 for the preferred candidate P1,1 by “wrapping”
it with an extra layer of encryption using as parameters, the candidate lists
P0 = (Pi, . . . , Pi) and P1 and the helper list Q0 = P0 = (Pi, . . . , Pi).

Defining ScheduleProcOnions. Recall that ScheduleProcOnions takes as input
the security parameter 1λ, the round number r, the identity Pi of an honest party,
and the state OnionBuffer

(r)
i of Pi at round r; and outputs a set of onions O(r)

i to
be processed and sent out during round r and an updated state OnionBuffer

(r+1)
i .

We define ScheduleProcOnions for Πp to return all onions on OnionBuffer
(r)
i to

be processed immediately, and to return an empty buffer OnionBuffer
(r+1)
i for

the next round.
Simulatability. Πp is simulatable using GenOnions and ScheduleProcOnions as

defined here because they are defined identically to the honest parties’ behav-
ior in the actual protocol. In Πp, each party sends its onion on the first round,
processes onions immediately when it receives them, and forwards onions imme-
diately when processed. Thus, RealGame is identical to IdealGame.

We just proved that Poly Πp is single-run (strongly) anonymous (Lemma 1)
and simulatable (Lemma 2). Thus, from Theorem 2, it follows that:

Theorem 4. Poly Πp is multi-run (strongly) anonymous from the passive
adversary who corrupts up to a constant 0 ≤ β1 < 1 fraction of the mix-servers,
when the churn limit is c(N) = β2N and 0 ≤ β1 + β2 < 1

2 is a constant. More-
over, it delivers all messages with overwhelming probability.

Acknowledgments. We thank Eli Upfal for helpful discussions. This research was
supported in part by NSF grants CCF-2107187 and CNS-2154170, the U.S.DOE award
DE-SC-0001234, the Columbia-IBM center for Blockchain and Data Transparency,
JPMorgan Chase & Co., LexisNexis, and Meta. Any views or opinions expressed herein
are solely those of the authors listed.

Poly Onions: Achieving Anonymity in the Presence of Churn 745

References

1. Tor directory protocol, version 3. http://gittweb.torproject.org/torspec.git/plain/
dir-spec.txt

2. Ando, M., Lysyanskaya, A.: Cryptographic shallots: A formal treatment of repliable
onion encryption. In: TCC (2021)

3. Ando, M., Lysyanskaya, A., Upfal, E.: Practical and provably secure onion routing.
In: ICALP (2018)

4. Ando, M., Lysyanskaya, A., Upfal, E.: On the complexity of anonymous commu-
nication through public networks. In: ITC (2021)

5. Augustine, J., Pandurangan, G., Robinson, P., Roche, S.T., Upfal, E.: Enabling
robust and efficient distributed computation in dynamic peer-to-peer networks. In:
56th FOCS

6. Backes, M., Goldberg, I., Kate, A., Mohammadi, E.: Provably secure and practical
onion routing. In: 2012 IEEE 25th Computer Security Foundations Symposium

7. Backes, M., Kate, A., Manoharan, P., Meiser, S., Mohammadi, E.: Anoa: A frame-
work for analyzing anonymous communication protocols. In: 2013 IEEE 26th Com-
puter Security Foundations Symposium

8. Blaze, M., Ioannidis, J., Angelos, D., Keromytis, T.M., Rubin, A.D.: Anonymity
in wireless broadcast networks, IJ Network Security (2009)

9. Camenisch, J., Lysyanskaya, A.: A formal treatment of onion routing. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 169–187. Springer, Heidelberg (2005).
https://doi.org/10.1007/11535218 11

10. Chaum, D.L.: Untraceable electronic mail, return addresses, and digital
pseudonyms. In: Communications of the ACM (1981)

11. Chen, C., Asoni, D.E., Barrera, D., Danezis, G., Perrig, A.: High-speed onion
routing at the network layer. In: ACM CCS, HORNET (2015)

12. Christ, M.: New lower bounds on the complexity of provably anonymous onion
routing. Undergraduate honors thesis, Brown University (2020)

13. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0055717

14. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46035-7 4

15. Danezis, G., Dingledine, R., Mathewson, N.: Mixminion: Design of a type III anony-
mous remailer protocol. In: 2003 IEEE Symposium on Security and Privacy

16. Danezis, G., Goldberg, I.: Sphinx: A compact and provably secure mix format. In:
2009 IEEE Symposium on Security and Privacy

17. Das, D., Meiser, S., Mohammadi, E., Kate, A.: Anonymity trilemma: Strong
anonymity, low bandwidth overhead, low latency-choose two. In: 2018 IEEE Sym-
posium on Security and Privacy

18. Das, D., Meiser, S., Mohammadi, E., Kate, A.: Comprehensive anonymity
trilemma: User coordination is not enough. In: Proceedings on Privacy Enhancing
Technologies (2020)

19. Dingledine, R., Mathewson, N., Syverson, P.F.: Tor: the second-generation onion
router. In: USENIX Security Symposium (2004)

http://gittweb.torproject.org/torspec.git/plain/dir-spec.txt
http://gittweb.torproject.org/torspec.git/plain/dir-spec.txt
https://doi.org/10.1007/11535218_11
https://doi.org/10.1007/BFb0055717
https://doi.org/10.1007/BFb0055717
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/3-540-46035-7_4

746 M. Ando et al.

20. Falkner, J., Piatek, M., John, J.P., Krishnamurthy, A., Anderson, T.: Profiling a
million user dht. In: IMC 2007

21. Dov Gordon, S., Katz, J., Liang, M., Xu, J.: Spreading the privacy blanket: -
differentially oblivious shuffling for differential privacy. In: ACNS 2022

22. Iwanik, J., Klonowski, M., Kuty�lowski, M.: Duo-onions and hydra-onions-failure
and adversary resistant onion protocols. In: Communications and Multimedia Secu-
rity 2005

23. Kuhn, C., Beck, M., Strufe, T.: Breaking and (partially) fixing provably secure
onion routing. In: 2020 IEEE Symposium on Security and Privacy

24. Kuhn, C., Hofheinz, D., Rupp, A., Strufe, T.: Onion routing with replies. In:
ASISACRYPT 2021

25. Kwon, A., Corrigan-Gibbs, H., Devadas, S., Ford, B.: Atom: Horizontally scaling
strong anonymity. In: 26th ACM SOSP

26. Mitzenmacher, M., Upfal, E.: Probability and computing: Randomized algorithms
and probabilistic analysis. Cambridge University Press

27. Murdoch, S.J., Danezis, G.: Low-cost traffic analysis of tor. In: 2005 IEEE Sym-
posium on Security and Privacy

28. Rackoff, C., Simon, D.R.: Cryptographic defense against traffic analysis. In: 25th
ACM STOC

29. Ropek, L.: Someone is running hundreds of malicious servers on the Tor network
and might be de-anonymizing users. https://tinyurl.com/2p999e8e

30. Stutzbach, D., Rejaie, R.: Understanding churn in peer-to-peer networks. In: IMC
2006

31. Sun, Y., et al.: Routing Attacks on Privacy in Tor. In: USENIX Security Sympo-
sium, RAPTOR (2015)

32. Tyagi, N., Gilad, Y., Leung, D., Zaharia, M., Zeldovich, N.: A distributed
metadata-private messaging system. In: Symposium on Operating Systems Prin-
ciples, Stadium (2017)

33. van den Hooff, J., Lazar, D., Zaharia, M., Zeldovich, N.: Vuvuzela: Scalable private
messaging resistant to traffic analysis. In: Proceedings of the 25th Symposium on
Operating Systems Principles 2015

https://tinyurl.com/2p999e8e

The Price of Verifiability: Lower Bounds
for Verifiable Random Functions

Nicholas Brandt(B) , Dennis Hofheinz, Julia Kastner , and Akin Ünal

Department of Computer Science, ETH Zurich, Zurich, Switzerland
{nicholas.brandt,hofheinz,julia.kastner,akin.uenal}@inf.ethz.ch

Abstract. Verifiable random functions (VRFs) are a useful extension
of pseudorandom functions for which it is possible to generate a proof
that a certain image is indeed the correct function value (relative to a
public verification key). Due to their strong soundness requirements on
such proofs, VRFs are notoriously hard to construct, and existing con-
structions suffer either from complex proofs (for function images), or rely
on complex and non-standard assumptions.

In this work, we attempt to explain this phenomenon. We first pro-
pose a framework that captures a large class of pairing-based VRFs. We
proceed to show that in our framework, it is not possible to obtain short
proofs and a reduction to a simple assumption simultaneously. Since the
class of “consecutively verifiable” VRFs we consider contains in partic-
ular the VRF of Lysyanskaya and that of Dodis-Yampolskiy, our results
explain the large proof size, resp. the complex assumption of these VRFs.

1 Introduction

Verifiable Random Functions. Pseudorandomness, and in particular pseudoran-
dom generators [6,47] and pseudorandom functions (PRFs, [21]) have proven to
be immensely useful and universal cryptographic building blocks. A PRF takes
as input a short seed (or key) sk, and an input x, and outputs a function value
y = prfsk(x). The distinguishing feature of a PRF is that for a fixed but random
sk, oracle access to prfsk(·) cannot be distinguished from oracle access to a truly
random function. This allows to use prf as a compact drop-in replacement for a
truly random function.

In this work, we focus on a special class of PRFs whose image can be proven
to be correct (relative to a public key vk that fixes prf’s behavior). Indeed,
a verifiable random function (VRF [38]) vrf is a PRF for which it is possible
to generate proofs π (from a given sk and x) that show that a given y really
satisfies y = vrfsk(x). We want such proofs to be sound in a very strong sense: We
require that for any vk and x, no two y �= y′ can both be proven to be vrfsk(x).
This property, dubbed “unique provability”, is crucial for most applications of
VRFs, and is the main reason why constructing VRFs is difficult. For instance,
unique provability cannot be achieved by using non-interactive zero-knowledge

A. Ünal—Work done while all authors were supported by ERC Project PREP-
CRYPTO 724307.

c© The Author(s), under exclusive license to Springer Nature Switzerland 2022
E. Kiltz and V. Vaikuntanathan (Eds.): TCC 2022, LNCS 13748, pp. 747–776, 2022.
https://doi.org/10.1007/978-3-031-22365-5_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22365-5_26&domain=pdf
http://orcid.org/0000-0002-5120-6346
http://orcid.org/0000-0002-8879-8226
http://orcid.org/0000-0002-8929-0221
https://doi.org/10.1007/978-3-031-22365-5_26

748 N. Brandt et al.

proofs on a given PRF. (This would require a trusted common reference string,
which we cannot assume in the VRF setting.) We do note, however, that (non-
straightforward) solutions with non-interactive witness-indistinguishable (NIWI)
proofs are possible [5,23].

VRFs have a number of interesting applications. These include signa-
tures with very strong verifiability guarantees [22], resettable zero-knowledge
proofs [36], lottery systems [37], transaction escrow schemes [27], updatable zero-
knowledge databases [33], and e-cash systems [2,4].

Existing Constructions of VRFs. There are a variety of constructions of
VRFs already [1,5,9,15,16,23–26,30–32,34,38,41,43,46]. These constructions
are diverse in the used techniques and the resulting features: For instance, some
constructions (such as Lysyanskaya’s VRF [34] and its variants [9,24–26,43]) are
based on the specific algebraic properties of the Naor-Reingold PRF [39], while
others (such as [5,23]) are based on more generic primitives such as NIWI proofs.
However, none of the above VRF constructions achieves all of the following useful
features simultaneously:

– its input space is large (i.e., exponential in the security parameter),
– its proofs π are short (i.e., comprise a constant number of group elements),
– its security proof is based on a “simple” (i.e., non-interactive and compact1)

assumption.

We do note that some of the constructions come close: e.g., Kohl’s VRF [30]
achieves all of the above properties, except that proofs π comprise ω(1) group
elements. Conversely, the VRF of Dodis and Yampolskiy [16] enjoys very com-
pact proofs, but relies on a complex hardness assumption (with challenges as
large as the input space). While there exists work on the difficulty of achieving
VRFs (e.g., from trapdoor one-way functions [17], cf. [11], or in a tightly secure
way [41]), the proof size and necessary assumptions for VRFs are generally not
well-understood.

Our Contribution. In this work, we are concerned with the reason why it is
difficult, even after a plethora of different approaches and 20 years of research,
to construct useful and compact VRFs from standard assumptions. In order to
give a meaningful answer, we put forward a framework of VRF restrictions that
however covers many existing constructions. We proceed to show lower bounds
within this framework.

Specifically, we restrict ourselves to VRFs vrf in the standard model (i.e.,
that do not use random oracles or generic groups) that are algebraic over a
group, such that secret keys sk are comprised of exponents, and public keys vk,

1 With a non-interactive and compact assumption, we mean one in which the adversary
gets a constant number of group elements as challenge and is then supposed to output
a solution (e.g., a decision bit).

The Price of Verifiability 749

images y, and proofs π are all comprised of group elements. We do allow pairings,
however, such that in particular images may be elements of a target group.

Furthermore, we require that verification (of a proof π for an image y) oper-
ates in a specific and “consecutive” way. We give more details on the condi-
tions on verification below in the technical overview. We stress, however, that
we believe that this way to verify is natural, and in fact many existing VRFs
support consecutive verification, including Lysyanskaya’s VRF [34], the VRF of
Dodis and Yampolskiy [16], and many more (see Fig. 1). A convenient conse-
quence of this type of consecutive verification is that the function image y has
a specific form: We can deduce that y = vrfsk(x) is of the form gσx(

−→v)/ρx(
−→v),

where

– g is a fixed group generator,
– σx and ρx are multivariate polynomials (that depend in any efficiently com-

putable way on the preimage), and
– −→v is the vector of discrete logarithms of the verification key vk.

We finally assume a large (i.e., superpolynomial in the security parameter) input
space. Again, while this of course severely restricts the VRFs we consider, many
previous constructions fall into this class.2

For such algebraic VRFs with consecutive verification, we show necessary
relations between the size of proofs π and the “size” of the underlying assumption
(i.e., the size of the challenge in group elements in a non-interactive hardness
assumption). To develop and express these relations, it is useful to consider
what we call the evaluation degree of the VRF. Formally, this degree is simply
the maximum of the degrees of the (multivariate) polynomials σx and ρx from
the image y = gσx(

−→v)/ρx(
−→v) above (and for this exposition, we assume that these

degrees do not depend on x).
We show that for any VRF vrf that matches all of our formal requirements,

(a) if the size of π (in group elements) is small, then so is the degree of vrf,
(b) if vrf’s degree is small, then vrf cannot be proven secure with a generic

reduction to a constant-size non-interactive hardness assumption. (We note
that almost all existing cryptographic reductions are generic.)

As an example, our results show that the VRF of Dodis and Yampolskiy can-
not be proven secure (at least not generically) from more traditional hardness
assumptions. Our results also show that the (comparatively large) proofs in
Lysyanskaya’s VRF are inherent, at least when relying on standard hardness
assumptions. Figure 1 lists more VRFs that fulfill our requirements (and whose
proof sizes and/or assumptions can hence be justified with our results).

2 A prominent verifiable unpredictable function (VUF, a weaker form of VRF) that
does not fall into this class is the one by Brakerski et al. [11]. This VUF takes group
elements as input, and hence does not quite fit our framework. We will discuss this
particular construction in Sect. 2.1, and argue that this approach is unlikely to yield
purely group-based VRFs.

750 N. Brandt et al.

While our result (a) is a direct consequence of our requirement on consecutive
verifiability, we in fact give two versions of statement (b) that differ in exact
requirements and formalization. For instance, one version of (b) even excludes
algebraic reductions (i.e., is formalized within the algebraic group model [19])
from non-interactive assumptions of any polynomial size, but only applies to
VRFs whose verification keys depend on a single variable or from non-interactive
computational assumptions that depend on a single variable. This allows to
model Dodis and Yampolskiy’s VRF, but not Lysyanskaya’s. The other version
of (b) allows more general verification keys, but only excludes generic reductions
(i.e., is formalized within the generic group model [35,40,45]). In the next section,
we give a more technical overview over our results.

Discussion. While the formal requirements for our lower bounds seem restrictive,
their preconditions are met by most existing VRFs (see Fig. 1). In that sense,
they justify the limitations of existing constructions, resp. proofs. An obvious
question is thus: How can one circumvent our lower bounds (in order to construct
VRFs with short proofs from standard assumptions)?

First of all, one could of course circumvent our results by not (or at least
not completely) working over cyclic groups. However, while there are a few more
generic VRF constructions (e.g., [5,23]) that do not rely on groups, it seems that
generic VRF constructions are less well-investigated than constructions based on
cyclic groups.

Second, one could try to circumvent the more specific requirements of our
lower bounds. In particular, our “consecutive verifiability” requirement seems
like a very specific requirement. An “interesting” (as opposed to a purely mechan-
ical) way to circumvent consecutive verifiability would be the following. Recall
that consecutive verifiability implies that VRF images consist of rational func-
tions, i.e., are of the form y = gσx(

−→v)/ρx(
−→v). Jumping ahead, we will be interested

in small-degree polynomials σx, ρx. The following VRF candidate does not have
this property:

vk = e(g,g)s, y = g
3√s+x π = g(3√s+x)2 .

Verification checks that e(y,y) = e(g, π) and e(π,y) = vk ·e(g,g)x. The security
of this VRF candidate seems unclear, but observe that we require 3 � | (ord(g)−1)
both for uniqueness, and to be able to compute 3

√
s + x mod ord(g).

More generally, our results do not exclude VRFs in which the image is an
active ingredient in intermediate verification computations, and not only consid-
ered in a final verification step (that involves previously computed and/or verified
proof elements). Of course, for constructions that use, e.g., roots of exponents
(like the above candidate), it may be challenging to prove their security from
Diffie-Hellman-like assumptions.

1.1 High-Level Technical Overview

The Evaluation Degree of a VRF. Our technical results rely on the “evaluation
degree” of a VRF vrf as a helpful technical notion that connects vrf’s proof sizes

The Price of Verifiability 751

Reference CV degree |vk| |π| assumption remark
MRV99 [38] x — large large RSA tree-based
Lys02 [34] � λ 2λ λ q-type
Dod03 [15] � O(λ) O(λ) O(λ) ad-hoc
DY05 [16] � 1 2 1 q-type small inputs
ACF09 [1] � λ + 2 2λ + 2 λ + 1 q-type
BCKL09 [4] x 1 3 O(1) q-type small inputs
BGRV09 [11] x — 1 1 gap-CDH weak security
BMR10 [9] � λ + 1 (λ + 2) λ q-type small inputs
HW10 [25] � λ + 1 λ + 3 λ + 1 q-type
Jag15 [26] � O(λ) O(λ) O(λ) q-type
LLC15 [32] � λ + 1 2λ + 1 1 q-type multilinear maps
HJ16 [24] � O(λ) O(λ) O(λ) DLIN
Bit17 [5] x — depends large depends generic/NIWI-based
GHKW17 [23] x — depends large depends generic/NIWI-based
Kat17 [28] � ω(log(λ)2) ω(

√
λ log(λ)) ω(

√
λ) q-type

Yam17 [46] � O(log(λ)2) O(λ log(λ)2) O(log(λ)2) q-type
Ros18 [43] � O(λ) O(λ) O(λ) DLIN smaller π than [24]
Koh19 [30] � κ poly(λ) κ DLIN κ ∈ ω(1) parameter
Nie21 [41] � O(λ) ω(log(λ)) O(λ) q-type

Fig. 1. Existing VRF constructions. The “CV” column indicates whether the construc-
tion is consecutively verifiable in our sense. “Degree” denotes its evaluation degree
(where applicable), and |vk| and |π| denote its verification key size, resp. proof size in
group elements. When possible, we have chosen parameters such that the input size
is {0, 1}λ. For comparability, we classify assumptions with polynomially many chal-
lenge elements as “q-type”, and other nonstandard assumptions as “ad-hoc”. “Small
inputs” (as a remark) means that the VRF only supports polynomially-small input
spaces. Theorem 1 applies to [11,16], Theorem 2 applies to [16], Theorem 3 applies to
[9,11,16] in the sense that these VUF/VRFs cannot have constant size proofs based
on standard assumptions.

and vrf’s underlying hardness assumption. Hence, let us first take a closer look
at this notion of degree.

First, we recall one of our restrictions on the VRFs we consider. We assume
that vk and π consist of group elements, and that verification operates in a
“consecutive” way, in the following sense: Assume that verification wants to
verify a proof π (which consists of, say, κ group elements π1, . . . , πκ) for an
alleged image πκ+1 := y (which is a single group element). Then, we require
that verification proceeds in κ + 1 steps, and in the i-th step checks an a priori
fixed system of pairing product equations in variables π1, . . . , πi and vk. We
also require that in the equations for the check for πi, this element only occurs
linearly (but not quadratically, i.e., in both arguments of a pairing).

Verification succeeds if all these systems of equations hold. In other words,
proof elements (and eventually image y) are verified one at a time, each time
checking a quadratic equation in the corresponding exponents of this and all
previous elements and vk.

752 N. Brandt et al.

This notion of consecutive verification sounds natural in a pairing setting,
and indeed many existing vrf constructions (including the ones from [16,34]) have
a consecutive verification procedure in the above sense. Intuitively, consecutive
verification requires that “higher-degree” exponents in proof elements or image
must be verified using intermediate group elements with intermediate degrees.
Fortunately, as already outlined, consecutive verification also implies that images
y are of the form

vrfsk(x) = y = gσx(
−→v)/ρx(

−→v)

for multivariate polynomials σx and ρx (which both are efficiently computable
from x), and the component-wise discrete logarithm −→v of vk. Now we say that
the evaluation degree of vrf (or y) is simply the maximum of the polynomial
degrees of σx and ρx. The evaluation degree of the VRF is then simply the
maximal degree over all inputs x.

First Result: Proof Size Bounds Degree for VRFs with Consecutive Verification.
Our first result ((a) above, described in more detail in Sect. 2.1, and in full detail
in Sect. 4) shows that for VRFs vrf with consecutive verification (as above), the
size of proofs π imposes a limit on the vrf’s evaluation degree. Concretely, we
show that the evaluation degree of vrf is at most exponential in the proof size
κ. Hence, if its proof size is constant, then so is the evaluation degree of vrf.

This result is not too surprising, since intuitively, each additional proof ele-
ment only raises the degree of computed exponents (as algebraic fractions in −→v)
by a factor of 2. In fact, our proof largely consists in keeping track of expressions
of all intermediate proof elements (and finally of y) as expressions in −→v . The
main technical work consists in maintaining a suitable canonical form of these
(rational) expressions at all times.

Interlude: The Case of Trivial Denominators. If function images are of the form
y = gσx(

−→v) for a constant-degree (but multivariate) polynomial σx, already a
very simple linear algebra attack breaks the pseudorandomness of the given VRF.
In fact, for sufficiently many preimages xi, the polynomials σxi

must eventually
become linearly dependent (because the set of their monomials is polynomially
small). Hence, it is possible to linearly combine sufficiently many given images
to form the image of a fresh preimage. This breaks pseudorandomness, and we
detail this attack in the full version [12] for completeness. The case of rational
function images y = gσx(

−→v)/ρx(
−→v) (with deg(ρx) ≥ 1) is hence not only more

general (and covers, e.g., the Dodis-Yampolskiy VRF), but also technically much
more interesting.

Second Result: Security of Polynomial-Degree VRFs Requires Complex Assump-
tions (for Univariate Verification Keys and in the Algebraic Group Model). Our
second result (first variant of (b) above, described in Sect. 2.2 more extensively,
and in Sect. 5 in full detail) shows that for any polynomial-degree VRF vrf,
we can rule out the existence of an “algebraic black-box” reduction to a class
of non-interactive group-based computational assumptions. Here, an “algebraic
black-box” reduction B fulfills the following requirements:

The Price of Verifiability 753

– It is algebraic (in the sense of [19]): That means that whenever B outputs a
group element g∗, it also outputs (on a special channel) an explanation as to
how g∗ is computed from previously seen group elements.

– It uses the VRF adversary A only in a black-box way (i.e., it gets oracle
access to polynomially many instances of A).

Most existing reductions (in particular for VRFs) are simple in the above sense.
A non-interactive (group-based) computational assumption (NICA) states

that it is hard for any efficient adversary B to win the following game: B gets a
challenge (that is a vector of s group elements), and is then supposed to output
a solution to that challenge (which is an exponent related to s). The size of such
a NICA is simply the length (i.e., number of entries) of s.

We are now ready to state our result a bit more formally: Assume we are given
a polynomial-degree VRF vrf with verification key vk = gv. Furthermore, assume
that vrf enjoys a simple reduction B to a NICA. Then, we construct a meta-
reduction [13] that wins the NICA game without any external help. Our meta-
reduction M interacts with B (which gets a NICA challenge), and then attempts
to take the role of a successful VRF adversary A. In order to do this, M can query
many VRF images yi, and use the algebraicity of B to obtain representations of
these yi in terms of the NICA challenge elements. Hence, eventually B will find
linear dependencies between the queried VRF images by making sufficiently
(but still polynomially) many queries. These linear dependencies can then be
used to compute the verification key’s exponent v. Using v, the meta-reduction
can predict any challenge image as gσx(v)/ρx(v). This allows A to win the VRF
security game, and hence M can use B to solve the NICA.

This intuition neglects a number of technical obstacles: For instance, the lin-
ear dependencies among the algebraic representations of VRF images linearly
connect the algebraic fractions σxi

(v)/ρxi
(v) of the corresponding images. To

construct a new image gσx∗ (v)/ρx∗ (v) from these, we need to distinguish the
cases when the polynomial fraction σx∗(X)/ρx∗(X) of the challenge can be
expressed as a linear combination of the polynomial fractions σxi

(X)/ρxi
(X)

of the queries, and when this is not the case. In the first case, the corresponding
linear dependence immediately allows to compute gσx∗ (v)/ρx∗ (v). Note that this
is also possible for an adversary that does not get to see the algebraic represen-
tations because the linear dependence holds for the fractions, not only for the
representations.

In the second case, we have to develop a linear dependence among the alge-
braic representations (in the NICA challenge elements) of the σxi

(v)/ρxi
(v). In

this case, in fact the linear independence of the fractions σxi
(X)/ρxi

(X) guar-
antees that these linearly dependent algebraic representations allow to extract
the secret v.

In these observations, we crucially use that we deal with univariate polyno-
mials σxi

and ρxi
of small degree (which can be represented by short coefficient

vectors). In a separate result, we generalize this approach to multivariate σxi

and ρxi
where the underlying assumption only depends on a single variable with

polynomial degree.

754 N. Brandt et al.

Third Result: Security of Low-Degree VRFs Requires Complex Assumptions
(in the Generic Group Model). Our last result (second variant of (b) above,
explained more extensively in Sect. 2.3, and in full detail in the full version [12]
is similar in spirit to our second result, but features different requirements on the
considered VRFs and reductions. Specifically, we prove that no generic reduction
(i.e., that treats the underlying group as generic in the sense of [45]) that is alge-
braic black-box (as outlined above) is able to show security of a constant-degree
VRF based on any “Uber-assumption” [8,10] of arbitrary polynomial degree but
constant challenge size.

An “Uber-assumption” is a special class of a NICA in which an adversary
B is given a number of group elements gfi(

−→z), where the fi are multivariate
polynomials specific to the concrete assumption, and −→z is a vector of secret
(and uniformly randomly chosen) exponents. Typically, the task of B is then
to compute a group element not in the linear span of the given group elements
(or to distinguish such an element from random). Here, we restrict ourselves to
Uber-assumptions in which the degree of the fi is at most polynomial in the
security parameter.

We again give a meta-reduction M that shows the following: Any simple
generic reduction B that shows the security of a constant-degree VRF under such
an Uber-assumption can be transformed into a successful Uber-solver. Again, M
takes the role of a VRF adversary that interacts with B. In the following, we
outline our technique for the specific case of the Dodis-Yampolskiy VRF, in which
vk = (vk1, vk2) = (h,hs), y = e(h,h)1/(s+x) (for a pairing e), and π = h1/(s+x).

Our meta-reduction M, when interacting with a reduction B in the role of a
VRF adversary A, first of all gets to see vk and an algebraic representation of vk
in terms of the NICA challenge. (In this work, we call an algorithm generic iff
it is generic in the sense of Shoup’s GGM and algebraic, cf. Definition 5.) This
representation of vk = (vk1, vk2) allows M to write vki = ggi(

−→z) for polynomials
gi in the Uber-assumption secrets −→z .

Now we distinguish two cases: First, if the polynomial g2 is a scalar multiple
of g1, (i.e., if g2 = s′ · g1 for a scalar s′), then we have found the VRF secret
key s = s′. This s can directly be used to break VRF security and allows M
to imitate a successful adversary for B (which in turn breaks the underlying
Uber-assumption). But in case g2 is not a scalar multiple of g1, such a simple
extraction of s is not possible.

The main technical work in our proof consists in showing that this second
case cannot, in fact, occur with non-negligible probability. Essentially, we do
so by observing that the representations of VRF proofs πi = h1/(s+xi) (i.e., of
(s+xi)-th roots of h = vk1) imply polynomial factors of g1. We prove that if g2 is
not a scalar multiple of g1, then these factors are coprime for different xi. Hence,
querying sufficiently many VRF proofs (for different xi) yields many non-trivial
coprime factors of g1. Since we assumed that the degree of g1 is polynomial (since
the Uber-assumption polynomials fi are of polynomial degree), this eventually
yields a contradiction. Hence, g2 must be a scalar multiple of g1, and our meta-
reduction M can proceed as described above.

The Price of Verifiability 755

In the full version [12], we also show how to generalize this argument to a
broader class of constant-degree VRFs which we call parameterized rational.

Omitted Details. All the above explanations have omitted or simplified a few
details. For instance, we did not discuss the role of group parameters (that fix the
concrete group and pairing setting). For VRFs, such group parameters should
be certified [24] (i.e., reliably defining an actual group), and they can be an
additional part of vk or any public parameters. Since generic groups can be
viewed as “implicitly trusted”, we omit this certification in the generic group
model.

Furthermore, we have treated the VRF image always as a target group ele-
ment. However, since we are in a pairing setting, this image can also (and in fact
without loss of generality) be an element of the source group of the pairing. (This
does not change any of the arguments above.) Finally, we mostly consider verifi-
able unpredictable functions (VUFs), a relaxation of verifiable random functions.
Since we present lower bounds, this only makes our results stronger.

2 Detailed Technical Overview

2.1 First Result: Connecting the Proof Size with the Evaluation
Degree

Consecutively Verifiable VUFs/VRFs. To make the connection between the
number of group elements in the proof and the evaluation degree, we first define
a class of VUFs/VRFs that have a very straightforward verification algorithm.
We assume that the VUFs/VRFs in question operate over a symmetric3 pairing
group with pairing e : G × G → GT :

– The verification key vk consists of group elements v1, . . . ,vn ∈ G ∪ GT

– For each input x, the proof consist of group elements π1, . . . , πκ ∈ G ∪ GT

– For each input x, the evaluation value is a group element y ∈ GT

Each possible input element x of the VUF/VRF defines a set of pairing equations
Ex that can be efficiently derived4 from the input x. By pairing equations we
mean a set of polynomial equations of degree 2 in the input variables. We make
the additional restriction that variables that represent elements from the target
group may appear only in monomials of degree 1. We require that the pairing
equations can be verified consecutively, that is, there is an ordering of the group
elements in the proof and subsets Ei,x of the sets of pairing equations such that
the following hold:

3 We note that our results can easily be transferred to asymmetric pairings, but for
simplicity we restrict ourselves to symmetric pairings.

4 We note that the weak VRF by Brakerski et al. [11] does not have this efficiency
property, as the inputs are group elements and the pairing equations can only be
derived from the discrete logarithm of the inputs.

756 N. Brandt et al.

– in the pairing equation set Ei,x for the i-th proof element, only the veri-
fication key elements and proof elements up to the i-th occur, i.e., Ei,x ⊂
Zp[V1, . . . , Vn, P1, . . . Pi]

– in the pairing equation set Ei,x for the i-th proof element, there is at least one
equation where the i-th proof element occurs only linearly, i.e., there exist
polynomials ai ∈ Zp[V1, . . . , Vn, P1, . . . , Pi−1], bi ∈ Zp[V1, . . . , Vn, P1, . . . Pi]
such that ai · Pi + bi = 0 is an equation that occurs in Ei,x.

We further make a more technical requirement that the coefficient ai of the i-th
proof element in the equation where it occurs linearly cannot become zero. Let
the proof have κ many elements, then we consider the evaluation value to be the
κ + 1st proof element, i.e., it is the last group element to be “verified” in this
way.

This consecutive verification property on the one hand yields an efficient
pairing-based verification algorithm (for input x, first efficiently derive the pair-
ing equation sets Ei,x, then consecutively check them). On the other hand, the
linearity requirement actually implies that given the verification key and the
previous proof elements, each proof element is uniquely defined. As the evalua-
tion value is the last element to be verified, i.e., the κ + 1st “proof element”, it
is therefore also uniquely provable.

We note that this consecutive verification property applies to many known
VRFs, see Fig. 1 for a detailed overview.

We briefly sketch how the pairing equations look for the VRF of Dodis &
Yampolskiy [16]: Recall that the evaluation key is sk = s ∈ Zp and the verifica-
tion key is vk = hs for a publicly known group generator h of G. Evaluation at
value x computes y = e(h,h)

1
s+x as well as the proof π = h

1
s+x . We can consec-

utively verify this as follows: First verify the proof via E1,x = {(V + x) · P = 1}
where V represents the verification key, and P represents the group element.
That is, the verification algorithm checks e(vk ·hx, π) = e(h,h). Then, we verify
E2,x = {P · 1 = Y } where P is as before and Y represents the evaluation value,
that is the verification algorithm checks e(π,h) = y.

Remark 1 (Consecutive Verifiability of the VUF of Brakerski et al. [11]). As
we pointed out above, the weak VUF of Brakerski et al. [11], where evaluation
works by Evalvuf(sk,h) = hsk for sk ∈ Zp and vk = gsk and an input h ∈ G, and
verification accepts if e(h, vk) = e(y,g), is not consecutively verifiable in the
sense of this work. In fact, we would need to know the discrete logarithm of the
input h to efficiently compute a pairing equation for it. Therefore, the results of
this paper are not applicable to this VUF.

However, while this might seem to limit the class of VUFs we consider in this
work, we claim that weak VUFs that have group elements as inputs are – for the
pursuit of strong VRFs – not relevant, anyway. In fact, images of the weak VUF
of Brakerski et al. [11] can easily be predicted for adversially chosen inputs.
This observation can be extended to other weak VRF/VUF candidates that
operate in a similar algebraic manner, i.e., that take group elements as inputs
and interpret them as group elements only and use the group operations and

The Price of Verifiability 757

pairing operations on them to compute the output. We show in the full version
[12] that these VRFs/VUFs become insecure by as their evaluation degree is at
most 2 in the inputs if the discrete logarithms of the input group elements are
known to the adversary.

Rational VUFs/VRFs. We want to show that the formerly mentioned class of
consecutively verifiable VUFs/VRFs has a particularly straightforward way to
describe their evaluation algorithm. To this end, we define rational VUFs. These
are VUFs whose evaluation value consists of a (publicly known) group generator
raised to a rational function evaluated on the exponents of the verification key.
More formally, for each input value x, there are polynomials ρx and σx such that
the output y evaluated at x is

y = g
σx(v1,...,vn)
ρx(v1,...,vn)

T

where v1, . . . , vn are the exponents of the group elements in the verification key
vk. We say that the total degree of the polynomials σx and ρx is the evaluation
degree of the VUF/VRF.

From Consecutive Verifiability to Rationality with Bounded Degree. We show,
using an inductive argument, that (a) consecutively verifiable pairing based
VUFs/VRFs are also rational VUFs/VRFs, and (b) that the evaluation degree
is at most exponential in the proof size – this implies that the proof size needs
to be at least logarithmic in the evaluation degree for consecutively verifiable
VUFs/VRFs. The proof uses induction to show that in fact all proof elements
can be expressed through rational functions in the exponent, i.e., there exist
σx,πi

and ρx,πi
, and that the degree of the i-th proof element is at most 4i. The

base case is easy to see: To obtain σx,π1 and ρx,π1 from the first set of pairing
equations, we use the pairing equation that contains P1 as a linear factor. This
equation can be expressed as a · P1 + b = 0 where a, b are polynomials (a has
degree at most 1 and b degree at most 2). We can therefore express P1 = b/− a.

For the inductive step it is again crucial that the i-th proof element occurs
only linearly in at least one pairing equation, as it can then be viewed as a
zero of a linear equation and expressed as a rational function of the previous
proof elements and the verification key. We replace the previous proof element
Pi−1 by its rational expression

σx,πi−1
ρx,πi−1

in the pairing equation set Ei,x to obtain

Pi · a′
i + b′

i = 0 where the a′
i and b′

i are rational functions in the verification key
elements. We then derive the rational expression for Pi = b′

i/ − a′
i = σx,πi

/ρx,πi

where σx,πi
and ρx,πi

are polynomials. It remains to show that the resulting
polynomials have the degrees required by our statement which can be done
using some simple arguments.

Inductively replacing all proof elements by such rational expressions in the
verification key elements yields the result for the last element to be verified –
the evaluation value.

758 N. Brandt et al.

2.2 Second Result: Security of Univariate Polynomial-Degree VRFs
Requires Complex Assumptions

In current pairing-based constructions of VRFs there seems to be a tradeoff
between the size/complexity of the underlying assumption and the size of the
proofs. Some constructions, like [16], achieve constant-sized proofs but require
a q-type assumption, while others [30] achieve proofs of any superconstant
size under a constant-sized assumption. Here, we consider VRF constructions
based on non-interactive (group-based) computational assumptions (NICA), i.e.,
search problems as opposed to a decisional assumptions. These NICAs state that
any “efficient” algorithm only has a negligible probability of solving the corre-
sponding computational problem, e.g. finding some “secret” exponent. In partic-
ular, we consider NICAs where the challenge elements’ exponents only depend on
a single variable with polynomial degree. These include for example the q-DLog-
assumption and the q-DHI-assumption. There the challenge is g,gα,gα2

, . . . ,gαq

and the secret exponent is α. We give two meta-reductions [14] (for slightly differ-
ent settings) that break the resp. underlying assumption if there is an algebraic
reduction from the assumption to the unpredictability (resp. pseudorandomness)
of the VUF (resp. VRF).

Theorem 1 (Informal Lower Bound for Univariate VUFs). Let vuf be
a rational VUF whose verification key exponents depend — with polynomial
degree— on a single common variable. Let NICA be any NICA of polynomial
size. If there exists an algebraic reduction that transforms an adversary for the
weak selective unpredictability of vuf into a solver for NICA, then NICA can be
solved in polynomial time with some noticable advantage.

Theorem 2 (Informal Lower Bound for Univariate NICAs). Let vrf
be a rational VRF. Let NICA be any NICA of polynomial size whose exponents
depend— with polynomial degree— on a single common variable (e.g. q-DLog or
q-DHI). If there exists an algebraic reduction that transforms an adversary for
the weak selective pseudorandomness into a solver for NICA, then NICA can be
solved in polynomial time with some noticable advantage.

Remark 2 (Separation between Decisional and Computational Assumptions). As
a theoretical sidenote, we observe that on the one hand non-interactive decisional
assumptions, like q-DDH, suffice for constructing VRFs [46], while on the other
hand (univariate) non-interactive computational assumptions, like the q-DLog or
q-DHI assumption, do not suffice via algebraic reductions. This yields in partic-
ular an algebraic separation between the q-DDH and the q-DLog assumption.

Remark 3 (No Algebraic GL Construction). One can transform a VUF (e.g. the
VUF of Dodis & Yampolskiy [16] based on the q-DHI assumption) into a VRF via
the construction of Goldreich & Levin [20]. While this seems like a contradiction
(because it gives a VRF based on the q-DHI assumption), it is actually consistent
with our results because the GL hardcore bit is not an algebraic technique5,
5 The GL construction uses the bits of the representation of the group elements.

The Price of Verifiability 759

hence the reduction from the q-DHI assumption to the pseudorandomness of the
resulting VRF is not an algebraic reduction. By contraposition, our results show
that there cannot be an algebraic analogue of the GL construction.

Our Technique. Both meta-reductions share the same core idea. In a nutshell, the
meta-reduction— when simulating an adversary towards the reduction— uses
the representation vectors6 of the received group elements to either (a) predict
the challenge image, e.g. as a linear combination of received representations, or
(b) construct a polynomial function over the exponent field Zp which has the
NICA’s secret exponent as a zero. Thus, in case (a) the meta-reduction could
successfully answer the reduction’s challenge while in case (b) the meta-reduction
can leverage the fact that polynomials over some finite field can be efficiently
factorized and solve its own challenge directly using the NICA’s secret exponent.
In both cases the meta-reduction relies on the facts that the VUF (resp. VRF)
has correctness and unique provability, and that the VUF (resp. VRF) is of
rational form, i.e., vrfsk(x) =>σx(

−→v)/ρx(
−→v) where σx, ρx are of polynomial degree

and −→v is the vector of verification key exponents. Because the reduction is
algebraic, whenever it outputs a group element y ∈ GT it must also provide a
representation −→z ∈ Z

L
p w.r.t. the NICA challenge elements s.t.

gT
σx(

−→v)/ρx(
−→v) = y = gT

f1(s)z1+...+fL(s)zL (1)
⇐⇒ σx(−→v) − (f1(s)z1 + . . . + fL(s)zL)ρx(−→v) = 0 (2)

where g(f1(s),...,fL(s)) ∈ G
L is the NICA challenge and s $← Zp is the secret

exponent. Equation (2) is the basis for both meta-reductions. For Theorem 1 the
meta-reduction queries many preimages x1, . . . , xQ and challenge x0 uniformly
at random. We consider two cases (for simple exposition we assume that the
verification key only has one group element gv):

In the first case (a) the rational functions σxi
(V)/ρxi

(V) are linearly depen-
dent. With this linear dependence the meta-reduction can predict the challenge
image by combining the representations of the queried images.7

In the second case (b) although the rational functions σxi
(V)/ρxi

(V) are lin-
early independent, by a counting argument there must exist a linear dependence
α ∈ Z

Q
p among the representations of the queried preimages. The meta-reduction

computes the polynomial ψ(V) := ρx1(V) · · · ρxQ
(V) · ∑Q

�=1 α�σ�(V)/ρ�(V).
Because σxi

(V)/ρxi
(V) are linearly independent, the polynomial is non-zero yet

it contains the vk’s exponent v as a zero (due to
∑Q

�=1 α�σ�(v)/ρ�(v) = 0). Thus
the meta-reduction can factor the polynomial ψ to obtain the secret exponent
and predict the challenge image as >σx0 (v)/ρx0 (v).

For Theorem 2 we consider pseudorandomness, hence the meta-reduction
obtains a representation for each verification key element and a representation
6 Recall that we consider algebraic reductions here, so they have to output a vector

of representations with each group element.
7 If all σxi(V)/ρxi(V) are linearly dependent, then with noticable probability the

challenge’s function σx0(V)/ρx0(V) will be linearly dependent on the other rational
functions because all xi are independent and identitically distributed.

760 N. Brandt et al.

−→z ∗ for the challenge image y∗. That is, the meta-reduction knows a function8

ξ : Zp → Z
L
p that maps the NICA challenge’s secret key to the verification key

exponents −→v = ξ(s). Plugging ξ into Eq. (2) gives

σx(ξ(s)) − (f1(s)z1 + . . . + fL(s)zL)ρx(ξ(s)) = 0 . (3)

Now, for any representation −→z of the real challenge image the univariate
polynomial ψ−→z (S) := σx(ξ(S))− (f1(S)z1 + . . .+ fL(S)zL)ρx(ξ(S)) must vanish
on the secret exponent s due to Eq. (3).

If ψ−→z (S) �≡ 0 is non-zero for all −→z , then the meta-reduction can factorize
ψ−→z ∗(S) and find a list of polynomially many candidates for the NICA’s secret
exponent. If no candidate matches the NICA’s secret exponent, then the chal-
lenge image y∗ must be random, otherwise the meta-reduction has trivially found
the NICA’s secret exponent.

On the other hand, if ψ−→z (S) ≡ 0 is zero for some −→z , then the meta-reduction
can efficiently find such a representation −→z . Due to Eq. (3) such a −→z must corre-
spond to the correct challenge image, hence the meta-reduction can distinguish
the given element from random.

2.3 Third Result: Security of Low-Degree VRFs Requires Complex
Assumptions

As explained before, Theorem 1 states that there is no algebraic reduction that
transforms an adversary for the unpredictability of a rational VUF with poly-
nomial evaluation degree to a solver for a hard polynomial size assumption.
However, this result has the caveat that the VUF in question needs to have uni-
variate verification keys, i.e., the verification key needs to be fully determined
by one secret variable.

In the remaining part of this work, we will circumvent this problem and show
lower bounds for another class of VUFs – the class of rational parametrized VUFs
(see the full version [12]) – which imposes no restrictions on the verification keys
of its VUFs. This class contains the candidates of Dodis & Yampolskiy [16] and
of Belenkiy et al. [4] and all other DY-inspired candidates.

However, this result comes at a cost: It only shows the impossibility of generic
reductions that transform adversaries for the unpredictability of parametrized
VUFs into solvers of extremely small – yet superconstant – Uber-assumptions.

Informally, our result states the following:

Theorem 3 (Informal Lower Bound for Rational Parametrized
VUFs). Let vuf be a parametrized rational VUF of constant evaluation degree,
i.e., it is rational and the numerators and denominators for evaluation depend
polynomially on the input x ∈ Zp. Let NICA be an Uber-assumption of size√

log log poly(λ).
Then, there is no generic reduction that transforms an adversary for the weak

selective unpredictability of vuf to a NICA solver.
8 For simplicity assume that all fi and hence ξ are polynomials.

The Price of Verifiability 761

We want to emphasize the significance of Theorem 3 for the pursuit of pairing-
based VRFs with proofs of constant size. Theorem 3 shows that the security of
each VUF in the style of [16] with constant proofs cannot be generically based
on a constant-size Uber-assumption.

Now, we want to explain some details that appear in the statement of The-
orem 3 before we jump to a proof:

Uber-Assumptions. We demand that NICA is an Uber-assumption [10],
i.e., its challenges consist of group elements g,gf1(

−→z), . . . ,gfq1 (
−→z), gT

g1(
−→z),

. . . ,gT
gq2 (

−→z) where −→z $← Z
t
p has been sampled secretly and uniformly at ran-

dom by the challenger and f1, . . . , fq1 , g1, . . . , gq2 ∈ Zp[Z1, . . . , Zt] are publicly
known polynomials.

Parametrized Rational VUFs. It is required that vuf is parametrized rational
of constant evaluation degree. Formally, this means there are constant-degree
polynomials σ, ρ ∈ Zp[V1, . . . , Vn,X] s.t. we have for each input x ∈ Zp and each
verification key vk and corresponding secret key sk

Evalvuf(sk, x) = gT

σ(x,−→v)
ρ(x,−→v)

where −→v denotes the vector of exponents of the group elements of vk.
We are now able to sketch a proof for Theorem 3:

Sketch of Proof, Part 1. Assume that Theorem 3 is false for some parametrized
VUF vuf and let R be a reduction that solves instances of some Uber-assumption
NICA when given access to an adversary for the unpredictability of vuf. To show a
contradiction we construct a meta-reduction M that takes the role of a successful
adversary in the weak selective unpredictability game with R.

R is given a challenge g,gf1(
−→z), . . . ,gfq1 (

−→z),gT
g1(

−→z), . . . ,gT
gq2 (

−→z) by the
NICA challenger and has to compute some solution from this tuple of group
elements while having oracle access to M. Since R is a generic algorithm, we can
apply a hybrid step and change the groups G,GT which encode elements of Zp

to groups GZ ,GZ
T that encode polynomials of Zp[Z1, . . . , Zt] without R noticing

the internal change of groups. Additionally, the NICA challenger will now give
the group elements g,gf1(

−→
Z), . . . ,gfq1 (

−→
Z),gT

g1(
−→
Z), . . . ,gT

gq2 (
−→
Z) as challenge to

R. Further, because of the genericness of R, the exponent of each target group
element it outputs must be a polynomial of the form

α +
q1∑

i=1

βi · fi(
−→
Z) +

∑

i,j=1

γi,j · fi(
−→
Z) · fj(

−→
Z) +

q2∑

i=1

δi · gi(
−→
Z) (4)

for scalars α, βi, γi,j , δi ∈ Zp. Let W denote the vector space of all polyno-
mials that can be expressed in the above way, i.e., W = spanZp

{1, (fi)i, (fi ·
fj)i,j , (gi)i} ⊂ Zp[Z]. The space W contains the exponents of all target group
elements that can be constructed by generic group operations and pairings from

762 N. Brandt et al.

the elements of the NICA challenge. In particular, the exponent of each group
element outputted by R must lie in W .

Now, when R accesses M it sends a verification key vk, random inputs
x0, . . . , xQ, image values y1, . . . ,yQ and proofs π1, . . . , πQ to M. To win the
unpredictability game, M needs to return the evaluation y0 of vuf at x0 to R.
As stated above, the exponents of each group element of vk and of the image
values y1, . . . ,yQ must lie in W . Let v1(

−→
Z), . . . , vn(

−→
Z), y1(

−→
Z), . . . , yQ(

−→
Z) ∈ W

be exponents of these group elements. Since R is generic, M can extract those
polynomials from R while playing the unpredictability game with R (we assume
in this work that genericness always implies algebraicity, cf. Definition 5). With
the help of π1, . . . , πQ the meta-reduction M can ensure that for each i ∈ [Q]
the equation

σ(xi, v1(
−→
Z), . . . , vn(

−→
Z))

ρ(xi, v1(
−→
Z), . . . , vn(

−→
Z))

= yi(
−→
Z) (5)

holds.

Sketch of Proof, Part 2. In the first part of the proof, we showed that the

fractions σ(xi,
−→v (

−→
Z))

ρ(xi,
−→v (

−→
Z))

, i ∈ [Q], are not only polynomials, but additionally lie in

W . This is the point where we can spring our mathematical trap: we can show

if all fractions σ(x1,−→v (
−→
Z))

ρ(x1,−→v (
−→
Z))

, . . . ,
σ(xQ,−→v (

−→
Z))

ρ(xQ,−→v (
−→
Z))

lie in W for a large enough number Q

then, in fact, the fraction σ(x,−→v (
−→
Z))

ρ(x,−→v (
−→
Z))

must be an element of W for each x ∈ Zp.

In particular, the exponent σ(x0,−→v (
−→
Z))

ρ(x0,−→v (
−→
Z))

of y0 must be of this form and therefore

M can compute the element y0 =>
σ(x0,−→v (

−→
Z))

ρ(x0,−→v (
−→
Z)) from the group elements of the

NICA challenge on its own. Ergo, M can successfully answer the queries of R
for a large enough number of queries Q which gives rise to a generic PPT NICA
solver. A contradiction to the hardness of NICA!

2.4 Organization of This Work

In Sect. 3, we introduce notations and preliminaries. In Sect. 4, we define con-
secutive verifiable and rational VUFs and show our first result: a consecutive
verifiable VUF is rational and its evaluation degree is exponentially bounded
by the size of its proofs. In Sect. 5, we show our second result: Theorem 1 and
Theorem 2, which state that the security of rational VUFs cannot be based by
an algebraic reduction on the hardness of a NICA, if either the verification key of
the VUF or the NICA is univariate. Finally, in Sect. 6, we introduce the notion
of parametrized rational VUFs and Uber-assumptions, state the formal version
of Theorem 3 and give a very high-level idea of its proof.

The Price of Verifiability 763

3 Preliminaries

3.1 Notation

We denote the security parameter by λ. We denote vectors by −→x and group
elements by g. For a matrix M we denote by mi,j the entry in the i-th row
and the j-th column. For a finite set X we denote by x $← X that x is sampled
uniformly at random from X.

For a probabilistic algorithm Alg we denote by y $← Alg(x) that y is computed
by Alg on input x with a uniform random tape. Set further poly(λ) := {f : N →
N | ∃a, b ∈ N,∀n ∈ N : f(n) ≤ a + nb} and negl(λ) := {ε : N → R | ∀c ∈
N : limn→∞ nc · ε(n) = 0}. For any n ∈ N we set [n] := {1, . . . , n}. We call an
algorithm PPT iff it is probabilistic, and its time complexity lies in poly(λ).

3.2 Mathematical Foundations

Definition 1 (Rational Functions). For a prime p we define the field of
rational functions over Zp in variables X1, . . . , Xn by

Zp(X1, . . . , Xn) :=
{

σ(X1, . . . , Xn)
ρ(X1, . . . , Xn)

∣
∣
∣
∣σ, ρ ∈ Zp[X1, . . . , Xn], ρ �= 0

}

.

Given a rational function f ∈ Zp(X1, . . . , Xn), the degree of f is defined as

deg(f) := min{max(deg(σ),deg(ρ)) | σ, ρ ∈ Zp[X1, . . . , Xn], ρ �= 0, ρ · f = σ}
where deg(σ),deg(ρ) denote the total degrees of the polynomials σ, ρ.

We recall the following helpful lemma:

Lemma 1 (Schwartz-Zippel-Lemma, [44]). Let f ∈ Zp[X1, . . . , Xn] be a
non-zero polynomial over Zp. Denote by deg(f) the total degree of f . Then

Pr
r1,...,rn

$←Zp

[f(r1, . . . , rn) = 0] ≤ deg(f)
p

.

3.3 Cryptographic Groups

Definition 2 (Bilinear Group Generator, [24]). A bilinear group gener-
ator is a probabilistic polynomial-time algorithm GrpGen that takes as input a
security parameter λ (in unary) and outputs Π = (p, ppG, ppGT

, ◦, ◦T, e, φ(1)) $←
GrpGen(1λ) such that the following requirements are satisfied.

1. The parameter p is prime and log(p) ∈ Ω(λ).
2. G and GT as described by ppG and ppGT

are subsets of {0, 1}∗, defined by
algorithmic descriptions of maps φ : Zp → G and φT : Zp → GT .

3. ◦ and ◦T are algorithmic descriptions of efficiently computable (in λ) maps
◦ : G × G → G and ◦T : GT × GT → GT , such that

764 N. Brandt et al.

(a) (G, ◦) and (GT , ◦T) form abstract groups and
(b) φ is a group isomorphism from (Zp,+) to (G, ◦) and
(c) φT is a group isomorphism from (Zp,+) to (GT , ◦T).

4. e is an algorithmic description of an efficiently computable (in λ) bilinear
map e : G × G → GT . We require that e is non-degenerate, i.e., x �= 0 =⇒
e(φ(x), φ(x)) �= φT(0).

Remark 4. For simplicity, we only consider symmetric pairings. However, while
our upcoming formulation of “consecutive verifiability” is easier to state with
symmetric pairings, our results do not depend on symmetry of the pairing.

Definition 3 (Certified Generator, [24]). We say a bilinear group generator
GrpGen is certified, if there exists a deterministic polynomial-time algorithm
GrpVfy with the following properties:

Parameter Validation. Given a string Π (which may not necessarily be gen-
erated by GrpGen), algorithm GrpVfy(Π) outputs 1 if and only if Π has the form
Π = (p, ppG, ppGT

, ◦, ◦T, e, φ(1)) and all requirements from Definition 2 are sat-
isfied.

Recognition and Unique Representation of Elements of G (GT). Fur-
thermore, we require that each element in G (GT) has a unique representa-
tion, which can be efficiently recognized. That is, on input two strings Π and s,
GrpVfy(Π, s) outputs 1 if and only if GrpVfy(Π) = 1 and it holds that s = φ(x)
(s = φT(x)) for some x ∈ Zp. Here φ : Zp → G (φT : Zp → GT) denotes the fixed
group isomorphism contained in Π to specify the representation of elements of
G (of GT) (see Definition 2).

We recall the definition of algebraic algorithms which was first used by [7,42]
in the context of meta-reductions. Our definition of algebraic algorithms is closer
to that of [3,19].

Definition 4 (Algebraic Algorithms [3,19]). Let ppG = (p, ppG, ppGT
,

◦G, ◦GT
, e, φG, φGT

) be as in Definition 2. Let A be an algorithm that receives as
input source group elements g1, . . . ,gs ∈ G, target group elements h1, . . . ,ht ∈
GT and some non-group-element input x.

We say that A is algebraic if, whenever A outputs a group element y, it
also outputs one of the following representations: If y ∈ G, a vector

−→z ∈ Z
s
p s.t. y =

s∏

i=1

gzi
i

and if y ∈ GT , a vector and a matrix

−→z ∈ Z
t
p,M = (mij)s

i,j=1 ∈ Z
s×s
p s.t. y =

t∏

i=1

hzi
i ·

⎛

⎝
s∏

i,j=1

e(gi,gj)mij

⎞

⎠

The Price of Verifiability 765

Definition 5 (The Generic Group Model [40,45]). An algorithm interact-
ing with a group (or pairing group) is called generic if it is algebraic in the sense
of Definition 4 and it suffices that the algorithm accesses the group only through
an oracle. More concretely, all group elements gi that the algorithm receives as
input are represented by random strings σ(gi), called handles, and whenever
the algorithm wants to compute the product gi ·gj resp. the exponentiation gx, it
passes (σ(gi), σ(gj)) resp. (σ(gi), x) to the corresponding group operation oracle,
and the oracle returns σ(gi ·gj) resp. σ(gx

i). In a pairing setting the algorithm is
given access to a second such group oracle for the target group, as well as a pair-
ing oracle that takes as input two handles σ(gi), σ(gj) and outputs σ(e(gi,gj))
if both elements gi,gj are elements of the source group.

Remark 5. It has been shown recently – despite popular belief – that an algo-
rithm that only interacts with a group by oracles in Shoup’s GGM does not need
to be algebraic [29,48]. To circumvent this problem, we require in the definition
of generic algorithms explicitly that a generic algorithm is algebraic.

Remark 6. It is not clear how to adapt the notion of a certified group generator
(Definition 3) to generic groups. Indeed, in the generic group model, there are
no group descriptions as in Definition 2, and instead all algorithms have access
to a group via group operation oracles. However, these oracles can be viewed as
“implicitly trusted”, in the sense that the properties from Definition 2 are always
guaranteed. Hence, we will not consider certified (bilinear) group generators in
the context of generic groups.

Definition 6 (Non-interactive Computational Assumptions, NICAs
[18]). A non-interactive computational assumption NICA is defined by the
following two oracles available to the adversary:

Setup. Generates a challenge c $← D(1λ) from a challenge distribution D(1λ)
parameterized over the security parameter λ. Saves an internal state st.

Finalize. On input of a candidate solution s and the internal state st, outputs
either 1 (indicating that s is a correct solution) or 0 (indicating that s is not
a correct solution).

We say that an adversary A (t, ε)-breaks the assumption if the adversary outputs
a correct solution with probability at least ε(λ) in time at most t(λ). We further
say the assumption is (t, ε)-hard if there exists no adversary A that (t, ε)-breaks
the assumption. If NICA is (t, 1

r)-hard for all t, r ∈ poly(λ), r > 0, we call NICA
hard.

For a NICA in a group where the challenge consists of m group elements, we
call m the size of the NICA. If m is linear in a parameter q, we call NICA a
q-type assumption. If m is constant we call NICA a constant-size assump-
tion.

Definition 7 (Univariate Polynomial-Degree Assumptions). Let p =
p(λ) be a superpolynomial group order. Let l1, l2, dNICA ∈ poly(λ), let r1, . . . , rl1 ,
t1, . . . , tl2 ∈ Zp[S] be non-zero polynomials of degree at most dNICA. We say

766 N. Brandt et al.

NICA is a univariate polynomial-degree assumption, iff it is an (l1 + l2)-type
NICA according to Definition 6 and if its challenge distribution9 is D(1λ) →
c = (Π,gr1(s), . . . ,grl1 (s),g1/t1(s), . . . ,g1/tl2 (s)) where s $← Zp is the secret expo-
nent and Π = (p, ppG, ppGT

, ◦, ◦T, e, φ(1)) $← GrpGen(1λ) is a certified group
description.

Definition 8 (DLog-Hard Assumptions). Let l1, l2, dNICA ∈ poly(λ), let
r1, . . . , rl1 , t1, . . . , tl2 ∈ Zp[S] be non-zero polynomials of degree at most dNICA.
We say NICA is a DLog-hard assumption, iff it is an (l1 + l2)-type assump-
tion according to Definition 7 and if no polynomial-time algorithm has noticable
probability of solving the corresponding DLog problem, i.e., outputting the secret
exponent s ∈ Zp.

Remark 7. In particular the computational q-DHI assumption (Diffie-Hellman
inversion assumption) is a univariate polynomial-degree assumption for q ∈
poly(λ). The decisional variant is not univariate because of the last challenge
element.

3.4 Verifiable Unpredictable Functions

Definition 9 (Verifiable Unpredictable Functions, VUFs [38]). Let vuf =
(Genvuf ,Evalvuf ,Verifyvuf) be a tuple of algorithms of the following form:

– Genvuf(1λ) outputs a secret key sk and a verification key vk.
– Evalvuf(sk, x) on input a secret key sk and x ∈ X = (Xλ)λ outputs an image

y ∈ Y = (Yλ)λ and a proof π. We assume that the input space Xλ has a
superpolynomial cardinality in the security parameter λ.

– Verifyvuf(vk, x, y, π) on input a verification key vk, a preimage x, an image y
and a proof π outputs a bit b ∈ {0, 1}.

We say that vuf is a (t,Q, ε)-verifiable unpredictable function (VUF) if the
following holds:

Statistical Correctness. There exists a negligible function μ ∈ negl(λ) s.t. for
all λ ∈ N and for all inputs x ∈ Xλ it holds that

Pr
(sk,vk)

$←Genvuf(1λ)

[Verifyvuf(vk, x, y, π) = 1 | (y, π) ← Evalvuf(sk, x)] ≥ 1 − μ(λ) .

Unique Provability. For all λ ∈ N and all possible vk (not necessarily generated
by Genvuf), all x ∈ Xλ, all y1, y2 ∈ Yλ and all possible proofs π1, π2 it holds that

Verifyvuf(vk, x, y1, π1) = 1 ∧ Verifyvuf(vk, x, y2, π2) = 1 =⇒ y1 = y2

9 For exposition, we assume all group element to be in the source group. Our technique
applies as well for assumptions with target group elements.

The Price of Verifiability 767

Weak Q-Selective Unpredictability [11]. For any adversary A running in
time at most t(λ), we have

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎢
⎢
⎢
⎢
⎣

A(vk,−→x ,−→y ,−→π) = y0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

−→x = (x0, . . . , xQ) $← X Q+1
λ

(sk, vk) $← Genvrf(1λ)
(yi, πi) ← Evalvrf(sk, xi)−→y = (y1, . . . ,yQ)−→π = (π1, . . . , πQ)

⎤

⎥
⎥
⎥
⎥
⎦

− 1
|Yλ|

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

≤ ε(λ) .

Remark 8. Our notion of weak selective unpredicability is even weaker than
the eponymous notion used by Niehues [41] with a loss of 1/Q by guessing the
adversary’s challenge index and reordering the preimages. However, our notion
has the advantage that it is a non-interactive game, in particular, no state has
to be transmitted between parts of the adversary (A1,A2) as in [41].

Remark 9. We note that we do not require perfect correctness as for some of
the VUFs we consider in this work this property does not hold perfectly (e.g. in
the case where Evalvuf(sk, x) is undefined for a small number of x ∈ X for some
secret key sk).

Remark 10. We consider pairing-based VUFs where y ∈ (G ∪ GT) and π ∈
(G ∪ GT)∗. W.l.o.g. we assume that a VUF’s image is an element of the target
group, i.e., Y = GT . Otherwise, we can modify the VUF by appending the
original (source group) image yS ∈ G to the proof elements, and set the new
image as yT := e(gS,yS) where gS is a designated generator of the source group
in the verification key. Obviously, the unpredictability of the former VUF can
be reduced to the unpredictability of latter, without any loss.

Definition 10 (Verifiable Random Functions, VRFs [38]). Let vrf =
(Genvrf ,Evalvrf ,Verifyvrf) be a VUF according to Definition 9. We say that vrf
is a (t, ε)-verifiable random function (VRF) if the following10 holds:

Weak Q-Selective Pseudorandomness. For any adversary A running in
time at most t(λ), we have

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A(vk,−→x ,−→y b,−→π) = b

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

−→x = (x0, . . . , xQ) $← X Q+1
λ

(sk, vk) $← Genvrf(1λ)
(yi, πi) ← Evalvrf(sk, xi)
y′
0 ← GT−→y 0 = (y0,y1, . . . ,yQ)−→y 1 = (y′

0,y1, . . . ,yQ)−→π = (π1, . . . , πQ)
b ← {0, 1}

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

− 1
2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

≤ ε(λ) .

10 To keep the definitions minimal, we choose to only present the 0-selective pseudo-
randomness property since it is the security notion considered in our results.

768 N. Brandt et al.

3.5 Reductions

Definition 11. For a VUF vuf and a NICA NICA, we say a Turing machine B is
a (tB, εB, r,Q, εA)-reduction from breaking NICA to breaking the weak selective
unpredictability of vuf, if for any A that (tA, Q, εA)-breaks the weak selective
unpredicability of vuf, the TM BA (tB + rtA, εB)-breaks NICA making at most r
oracle queries11 to A.

4 Proof Size

4.1 Classes of VUFs over Pairing-Friendly Groups

In the following, we introduce the class of VUFs that we want to discuss. Infor-
mally speaking, we consider VUFs whose verification algorithm only verifies
group membership and pairing equations over the proof, evaluation value, and
verification key. We further require that the verification algorithm is consecutive,
i.e., it first verifies the first element of the proof, then the second, then the third,
and so on and at the end of its execution it verifies that the evaluation value is
correct. This class of VUFs covers many existing VUFs, we refer to Fig. 1 for an
overview of which VUFs are consecutively verifiable.

In this section, we want to show that the evaluation function of VUFs that
have such a natural verification algorithm can be expressed as a target group
element where the exponent is a rational function in the discrete logarithms
of the verification key element and that, informally speaking, the degree of the
rational function can be bounded as exponential in the size of the proof. We begin
by giving a formal definition of what we consider a set of pairing equations.

Definition 12 (Pairing Equations). Let E ⊂ Zp[X1, . . . , Xm]. We call E a
set of pairing equations for a pairing group G with public parameters Π =
(p, ppG, ppGT

, ◦, ◦T, e, φ(1)) $← GrpGen(1λ) over variables
−→
X = X1, . . . , Xm with

target indicator12 set T ⊂ {1, . . . , m} if the following hold:

1. maxf∈E(deg f) ≤ 2,
2. for all i ∈ T and f ∈ E it holds that if Xi appears in a monomial m of f ,

then m = c · Xi for some c ∈ Zp.

We describe the evaluation of a finite set of pairing equations E on input x1, . . . ,
xm as follows:

– We check that the input is a set of group elements (x1, . . .xm), i.e., xi ∈ G

or xi ∈ GT for all i, and output ⊥ if otherwise.
– For each i ∈ [m], we check if i ∈ T ⇐⇒ xi ∈ GT and output ⊥ if otherwise.

11 Because our weak selective unpredictability is a non-interactive game, there are no
concurrency issues.

12 This set indicates which verification key elements are in the target group. Hence,
their exponents should only occur linearly, while source group exponents can occur
quadratically.

The Price of Verifiability 769

– For f =
(∑

m∈Mf
m

)
∈ E where Mf is the set of monomials of f , we

compute f(−→x) :=
∏

m∈Mf
m(−→x) where m(−→x) are computed as follows:

• if m = c · Xi · Xj for some i, j /∈ T and c ∈ Zp, compute m(−→x) :=
e(xi,xj)c,

• if m = c · Xi for some i /∈ T and some c ∈ Zp and if xi ∈ G, compute
m(−→x) := e(xi,g)c where g = φ(1) is the fixed generator of G as given in
the group parameters Π. If i ∈ T and xi ∈ GT compute m(−→x) := xc

i ,
• if m = c for c ∈ Zp, compute m(−→x) := e(g,g)c.

– We denote by E(−→x) the function that outputs 1 if for all f ∈ E it holds that
f(−→x) = e(g,g)0 (if E = ∅ this always holds) and otherwise outputs 0.

In the following we describe our class of VUFs that have a consecutive verification
algorithm.

Definition 13 (Consecutively Verifiable Pairing-Based VUFs). We say
a VUF vuf = (Genvuf ,Evalvuf ,Verifyvuf) with input space X is a consecutively
verifiable pairing-based VUF if the following hold:

1. Genvuf takes as input 1λ. It samples group parameters Π = (p, ppG, ppGT
,

◦, ◦T, e,g := φ(1)) $← GrpGen(1λ) and outputs a verification key vk = (Π,−→v)
such that −→v consists of elements of G and GT (plus a secret key sk for which
we make no further constraints).

2. All function values y consist of values in GT .
3. All proofs consist of κ values in G ∪ GT .
4. For all x ∈ X and all i ∈ [κ + 1], there exists a set Ei,x of pairing equations

that can be efficiently derived from x and the description of vuf. We require
that Ei,x ⊂ Zp[V1, . . . , Vn, P1, . . . , Pi] such that there is at least one polynomial
of the form ai,x ·Pi +bi,x ∈ Ei,x where ai,x, bi,x ∈ Zp[V1, . . . , Vn, P1, . . . , Pi−1].
(We note that since the set Ei,x consists of pairing equations it holds that ai,x

has degree at most 1 and bi,x has degree at most 2.)
5. We require that Verifyvuf on input (vk = (Π,−→v), x,y =: πκ+1,

−→π) outputs 1 if
and only if the following hold: GrpVfy(Π) = 1, all vi, for i ∈ [n], and all πi,
for i ∈ [κ + 1], are valid group elements w.r.t. Π, and for all i ∈ [κ + 1] we
have Ei,x(−→v , π1, . . . , πi) = 1.

6. We further require that the ideal (E1,x, . . . , Eκ+1,x, a1,x · . . . · aκ+1,x) (which
is generated by the elements of E1,x, . . . , Eκ+1,x and the polynomial a1,x · . . .
· aκ+1,x) contains the constant polynomial 1 (i.e., (E1,x, . . . , Eκ+1,x, a1,x · . . .
· aκ+1,x) = Zp[V1, . . . , Vk, P1, . . . , Pκ+1]).

Requirement 4 will be useful in Lemma 2, as it basically means there needs to be
at least one equation that contains the current proof element as a linear factor
only. This yields in particular that the proof element in question is not a (non-
unique) square root of other elements. The last requirement on a consecutively
verifiable pairing-based VUF might seem odd, however, as we will see later, it
makes sure that there is no tuple (vk, x,y, π) s.t. any of the ai can evaluate to
zero on the exponents of (vk, x,y, π).

770 N. Brandt et al.

Remark 11 (On VRFs with multiple output group elements.). We restrict our
framework to VRFs with a single group element in the output. For VRFs with
δ elements in the output, we propose the following adaption of the definition
of consecutive verifiability: For each output element, we add a formal variable
Pi1 , . . . , Piδ

to the polynomial ring. For consecutivity, we require a partial order-
ing of all κ + δ variables Pi, where the last element is required to be an output
value. We further require that the conditions of Definition 13 hold w.r.t. the
partial ordering. Such a consecutively verifiable multi-output VRF implies a
consecutively verifiable single-output VRF that uses the last output element as
its output and puts all other elements into the proof.

As our results apply to VRFs with a single output element, they also apply
to VRFs that are obtained from multi-output VRFs through the transformation
described above with the proof size adapted accordingly.

We now define the class of VUFs that evaluate a rational function in the expo-
nent. We will show later that a VUF that fulfills Definition 13 and where the
number of group elements in the proof is in O(log(λ)) also fulfills Definition 14.

Definition 14 (Rational VUFs). Let d, n ∈ poly(λ). We say that a VUF
vuf = (Genvuf ,Evalvuf ,Verifyvuf) is rational of evaluation degree d with
n = nS + nT verification key elements, if the verification key is of the form
vk = (Π,−→v) where Π := (p, ppG, ppGT

, ◦, ◦T, e,g = φ(1)) $← GrpGen(1λ) is a
certified group description according to Definition 3, and −→v := (gvS,1 , . . . ,gvS,nS ,
e(g,g)vT,1 , . . . , e(g,g)vT,nT) ∈ G

nS × G
nT

T .
Further, we require for a rational VUF of evaluation degree d that for each

x ∈ X there are coprime polynomials σx, ρx ∈ Zp[V1, . . . , Vn] of total degree at
most d s.t. we have for all vk, all π and all y ∈ GT

Verifyvuf(vk, x,y, π) = 1 =⇒ ρx(v1, . . . , vn) �= 0 and y = e(g,g)
σx(v1,...,vn)
ρx(v1,...,vn) (6)

where (v1, . . . , vn) = (vS,1, . . . , vS,nS
, vT,1, . . . , vT,nT

) are the exponents of vk.
We require that – given x and a description of vuf – one can efficiently

compute descriptions of σx and ρx, e.g. as coefficient vectors.

Definition 15 (Rational Univariate VUFs). Let d, n, df ∈ poly(λ) and let
f1, . . . , fn : Zp → Zp be n efficiently computable polynomials of degree at most df .
Let vuf = (Genvuf ,Evalvuf ,Verifyvuf) be a rational VUF evaluation degree d with
n = nS+nT verification key elements as in Definition 14. We say vuf is a rational
univariate VUF of internal degree df relative to f1, . . . , fn, iff for all vk, all
x ∈ X , all π and all y ∈ GT a successful verification Verifyvuf(vk, x,y, π) = 1
implies the existence of an “effective secret key” s, i.e.,

∃s ∈ Zp s.t. −→v = (gf1(s), . . . ,gfnS
(s), e(g,g)fnS+1(s), . . . , e(g,g)fn(s)) , (7)

thus y = e(g,g)
σx(f1(s),...,fn(s))
ρx(f1(s),...,fn(s)) = gσ̃x(s)/ρ̃x(s) where σx and ρx are defined in Def-

inition 14, and σ̃x(s) = σx(f1(s), . . . , fn(s)) and ρ̃x(s) = ρx(f1(s), . . . , fn(s)).
Note that deg(σ̃x),deg(ρ̃x) ≤ d · df .

The Price of Verifiability 771

Remark 12. In particular, the popular VRF of Dodis & Yampolskiy [16] is a
rational univariate VUF with n = d = df = 1 (if extended by a certified group
description).

4.2 From Consecutively Verifiable Pairing-Based VUFs to Rational
VUFs

We now turn to proving that the evaluation outputs of consecutively verifiable
pairing-based VUFs can be expressed through rational functions in the expo-
nents.

Lemma 2. Let vuf = (Genvuf ,Evalvuf ,Verifyvuf) be a pairing-based consecutively
verifiable VUF with proofs of size κ and a verification key of size n.

Then, vuf is a rational VUF of evaluation degree at most 4κ+1 over n vari-
ables.

We refer the reader to the full version [12] for the proof.

5 Algebraic Attacks on Rational VUFs

In this section we prove that the unpredictability of rational univariate VUFs
cannot be based algebraically on some non-interactive computational assump-
tions. To this end, for any algebraic reduction from the NICA to the unpre-
dictability of the VUF, we give a meta-reduction that internally runs the reduc-
tion and supplies it with an adversary for the unpredictability of the VUF. This
meta-reduction finds a non-zero, low-degree, univariate target polynomial that
contains the reduction’s effective secret key as a root. Because the target polyno-
mial has low (polynomial) degree and is non-zero, the meta-reduction can simply
factor it and test each of its polynomially many roots against the reduction’s
verification key. Using the previously obtained secret key the meta-reduction can
predict the reduction’s challenge image.

Theorem 1. Let p be a superpolynomial group order. Let NICA be a non-
interactive computational assumption of size q ∈ poly(λ). Let n, d, df ∈ poly(λ)
and let f1, . . . , fn ∈ Zp[S] be some polynomials of degree at most df . Let vuf be
a rational univariate VUF of evaluation degree d and internal degree df over n
variables relative to the polynomials f1, . . . , fn.

If there exists an algebraic (tB, εB, r,Q, 1/(Q + 1))-reduction B from NICA to
the weak Q-selective unpredictability of vuf s.t. Q ≥ q2 +1 and r ∈ poly(λ), then
there exists an adversary M that (tM, εM)-breaks NICA with εM ≥ εB −2−λ and
tM ≤ tB + poly(λ).

We refer the reader to the full version [12] for the proof.

Remark 13. Indeed, Theorem 1 can be applied if the input space X is only of
polynomial size for a suitable definition of weak selective unpredictiability. Here,
one has to make sure that the challenge preimage is not contained in the Q many
query preimages, otherwise the adversary could predict trivially.

772 N. Brandt et al.

Corollary 1. If the reduction in Theorem 1 is efficient, then NICA is efficiently
solvable. In other words, tB/εB ∈ poly(λ) =⇒ tM/εM ∈ poly(λ).

We move on to our next result.

Theorem 2. Let p = p(λ) be a superpolynomial group order. Let NICA be some
univariate DLog-hard assumption according to Definition 7 with l1, l2, dNICA ∈
poly(λ), and polynomials r1, . . . , rl1 , t1, . . . , tl2 ∈ Zp[S] of degree at most dNICA.
Let n, d, r ∈ poly(λ). Let vrf be a rational VRF of evaluation degree d with n

verification key elements s.t. ∀x ∈ X : σx(
−→
V) = V1.13

If there exists an algebraic (tB, εB, r, 0, 1)-reduction B (that forwards its group
description as part of the verification key) from NICA to the 0-selective pseudo-
randomness of vrf, then there exists an adversary M that (tM, εM)-breaks NICA
with εM ≥ εB − 2−λ and tM ≤ tB + poly(l2, dNICA, d, log p, r) = tB + poly(λ).

We refer the reader to the full version [12] for the proof.

6 Generic Attacks on Parametrized Rational VUFs

Finally, we show the impossibility of algebraic and generic black-box reductions
of the hardness of Uber-assumptions to the security of parametrized rational
VUFs. Rational VUFs can be seen as a strong generalization of the VUFs of
Dodis & Yampolskiy [16].

Definition 16. A VUF vuf = (Genvuf ,Evalvuf ,Verifyvuf) is called parametrized
rational of evaluation degree dvuf = dvuf(λ), if there are polynomials σ, ρ ∈
Zp[VS,1, . . . , VS,n1 , VT,1, . . . , VT,n2 ,X] of total degree dvuf s.t. the following things
hold:

1. The set of possible inputs of vuf is X = Zp.
2. For each generator h ∈ G and each tuple (vk, x,y, π) accepted by Verifyvuf we

have

ρ(−→vS ,−→vT , x) �= 0 and y = gσ(−→vS ,−→vT ,x)/ρ(−→vS ,−→vT ,x)
T .

where −→vS resp. −→vT denote the exponents of the elements vkS,1, . . . , vkS,n1 resp.
vkT,1, . . . , vkT,n2 relative to the basis h resp. e(h,h).

We will now introduce our notion of Uber-assumptions, which is a generalization
of the notion of Boyen [10].

Definition 17 (Computational Uber-Assumptions). We call a non-
interactive computational assumption NICA an Uber-assumption if there
is a polynomial bound t = t(λ) and a set of sparse polynomials
fA1 , . . . , fAq1

, fB1 , . . . , fBq2
∈ Zp[Z1, . . . , Zt] that can be computed efficiently s.t.

the distributions of challenge samples of NICA is identical to the output of the
following algorithm:

13 Essentially, the first verification key element h := v1 is the new generator relative
to which the VRF is evaluated.

The Price of Verifiability 773

1. draw a generator g of G
2. draw (z1, . . . , zt) $← Z

t
p

3. set a1 := fA1(z1, . . . , zt), . . . , aq1 := fAq1
(z1, . . . , zt)

4. set b1 := fB1(z1, . . . , zt), . . . , bq2 := fBq2
(z1, . . . , zt)

5. return (g,ga1 , . . . ,gaq1 , e(g,g)b1 , . . . , e(g,g)bq2)

Let dNICA = max{deg fA1 , . . . ,deg fAq1
,deg fB1 , . . . ,deg fBq2

}. We call dNICA the
degree of NICA and q = 1 + q1 + q2 the size of NICA.

We can now state the formal version of Theorem 3.

Theorem 3. Let vuf be a parametrized rational VUF of evaluation degree dvuf ∈
O(1). Let NICA be an Uber-assumption of degree dNICA ∈ poly(λ) and of size
q ≤ √

log log(w) for some w ∈ poly(λ).
If NICA is hard and Q > 2·(1+log log w)·w2 log(dvuf+1), then there is no generic

reduction that can transform an adversary for the weak Q-selective unpredictabil-
ity of vuf to a NICA solver.

A full and exhaustive proof of Theorem 3 is given in the full version of this paper
[12, Section 6].

In a nutshell, the idea of the proof is to see that, since the reduction is
algebraic and generic, the algebraic explanations of each group element give a
ring morphism that maps representations of group elements to polynomials in the
variables Z1, . . . , Zt of the Uber-Assumption NICA. For each x ∈ Zp queried by
the adversary, this ring morphism must be chosen in such a way by the reduction
s.t. a system Sx of polynomial equalities is fulfilled. Since vuf is parametrized of
constant degree, we have that Sx depends itself polynomially on x. Therefore, if
Sx is satisfiable for too many x ∈ Zp it must be satisfiable for each x ∈ Zp and a
solution for Sx0 can be computed by the meta-reduction by mere linear algebra.
Therefore, the meta-reduction can predict the image to the challenge query x0

on its own if it can ask for too many queries.

References

1. Abdalla, M., Catalano, D., Fiore, D.: Verifiable random functions from identity-
based key encapsulation. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol.
5479, pp. 554–571. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-01001-9 32

2. Au, M.H., Susilo, W., Mu, Y.: Practical compact e-cash. In: Pieprzyk, J., Gho-
dosi, H., Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586, pp. 431–445. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-73458-1 31

3. Bauer, B., Fuchsbauer, G., Loss, J.: A classification of computational assumptions
in the algebraic group model. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO
2020. LNCS, vol. 12171, pp. 121–151. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-56880-1 5

https://doi.org/10.1007/978-3-642-01001-9_32
https://doi.org/10.1007/978-3-642-01001-9_32
https://doi.org/10.1007/978-3-540-73458-1_31
https://doi.org/10.1007/978-3-030-56880-1_5
https://doi.org/10.1007/978-3-030-56880-1_5

774 N. Brandt et al.

4. Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: Compact e-cash and sim-
ulatable VRFs revisited. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS,
vol. 5671, pp. 114–131. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-03298-1 9

5. Bitansky, N.: Verifiable random functions from non-interactive witness-
indistinguishable proofs. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol.
10678, pp. 567–594. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70503-3 19

6. Blum, M., Micali, S.: How to generate cryptographically strong sequences of pseudo
random bits. In: 23rd FOCS, pp. 112–117. IEEE Computer Society Press (1982).
https://doi.org/10.1109/SFCS.1982.72

7. Boneh, D., Venkatesan, R.: Breaking RSA may not be equivalent to factoring.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 59–71. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054117

8. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with con-
stant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 440–456. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639 26

9. Boneh, D., Montgomery, H.W., Raghunathan, A.: Algebraic pseudorandom func-
tions with improved efficiency from the augmented cascade. In: Al-Shaer, E.,
Keromytis, A.D., Shmatikov, V. (eds.) ACM CCS 2010, pp. 131–140. ACM Press
(2010). https://doi.org/10.1145/1866307.1866323

10. Boyen, X.: The uber-assumption family. In: Galbraith, S.D., Paterson, K.G. (eds.)
Pairing 2008. LNCS, vol. 5209, pp. 39–56. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-85538-5 3

11. Brakerski, Z., Goldwasser, S., Rothblum, G.N., Vaikuntanathan, V.: Weak veri-
fiable random functions. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp.
558–576. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-
5 33

12. Brandt, N., Hofheinz, D., Kastner, J., Ünal, A.: The price of verifiability: Lower
bounds for verifiable random functions. Cryptology ePrint Archive, Paper 2022/762
(2022). https://eprint.iacr.org/2022/762

13. Coron, J.-S.: On the exact security of full domain hash. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 229–235. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44598-6 14

14. Coron, J.-S.: Optimal security proofs for PSS and other signature schemes. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 272–287. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7 18

15. Dodis, Y.: Efficient construction of (distributed) verifiable random functions. In:
Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 1–17. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36288-6 1

16. Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and
keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30580-4 28

17. Fiore, D., Schröder, D.: Uniqueness is a different story: impossibility of verifiable
random functions from trapdoor permutations. In: Cramer, R. (ed.) TCC 2012.
LNCS, vol. 7194, pp. 636–653. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-28914-9 36

18. Fleischhacker, N., Jager, T., Schröder, D.: On tight security proofs for Schnorr
signatures. J. Cryptol. 32(2), 566–599 (2019). https://doi.org/10.1007/s00145-019-
09311-5

https://doi.org/10.1007/978-3-642-03298-1_9
https://doi.org/10.1007/978-3-642-03298-1_9
https://doi.org/10.1007/978-3-319-70503-3_19
https://doi.org/10.1007/978-3-319-70503-3_19
https://doi.org/10.1109/SFCS.1982.72
https://doi.org/10.1007/BFb0054117
https://doi.org/10.1007/11426639_26
https://doi.org/10.1145/1866307.1866323
https://doi.org/10.1007/978-3-540-85538-5_3
https://doi.org/10.1007/978-3-540-85538-5_3
https://doi.org/10.1007/978-3-642-00457-5_33
https://doi.org/10.1007/978-3-642-00457-5_33
https://eprint.iacr.org/2022/762
https://doi.org/10.1007/3-540-44598-6_14
https://doi.org/10.1007/3-540-46035-7_18
https://doi.org/10.1007/3-540-36288-6_1
https://doi.org/10.1007/978-3-540-30580-4_28
https://doi.org/10.1007/978-3-642-28914-9_36
https://doi.org/10.1007/978-3-642-28914-9_36
https://doi.org/10.1007/s00145-019-09311-5
https://doi.org/10.1007/s00145-019-09311-5

The Price of Verifiability 775

19. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 33–62.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 2

20. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In:
21st ACM STOC, pp. 25–32. ACM Press (1989). https://doi.org/10.1145/73007.
73010

21. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions
(extended abstract). In: 25th FOCS, pp. 464–479. IEEE Computer Society Press
(1984). https://doi.org/10.1109/SFCS.1984.715949

22. Goldwasser, S., Ostrovsky, R.: Invariant signatures and non-interactive zero-
knowledge proofs are equivalent. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS,
vol. 740, pp. 228–245. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-
48071-4 16

23. Goyal, R., Hohenberger, S., Koppula, V., Waters, B.: A generic approach to con-
structing and proving verifiable random functions. In: Kalai, Y., Reyzin, L. (eds.)
TCC 2017. LNCS, vol. 10678, pp. 537–566. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-70503-3 18

24. Hofheinz, D., Jager, T.: Verifiable random functions from standard assumptions.
In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 336–362.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49096-9 14

25. Hohenberger, S., Waters, B.: Constructing verifiable random functions with large
input spaces. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 656–
672. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 33

26. Jager, T.: Verifiable random functions from weaker assumptions. In: Dodis, Y.,
Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 121–143. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46497-7 5

27. Jarecki, S., Shmatikov, V.: Handcuffing big brother: an abuse-resilient transaction
escrow scheme. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 590–608. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24676-3 35

28. Katsumata, S.: On the untapped potential of encoding predicates by arithmetic
circuits and their applications. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017.
LNCS, vol. 10626, pp. 95–125. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-70700-6 4

29. Katz, J., Zhang, C., Zhou, H.-S.: An analysis of the algebraic group model. Cryp-
tology ePrint Archive, Report 2022/210 (2022). http://eprint.iacr.org/2022/210

30. Kohl, L.: Hunting and gathering – verifiable random functions from standard
assumptions with short proofs. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS,
vol. 11443, pp. 408–437. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-17259-6 14

31. Kurosawa, K., Nojima, R., Phong, L.T.: Relation between verifiable random func-
tions and convertible undeniable signatures, and new constructions. In: Susilo, W.,
Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS, vol. 7372, pp. 235–246. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31448-3 18

32. Liang, B., Li, H., Chang, J.: Verifiable random functions from (leveled) multilinear
maps. In: Reiter, M., Naccache, D. (eds.) CANS 2015. LNCS, vol. 9476, pp. 129–
143. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26823-1 10

33. Liskov, M.: Updatable zero-knowledge databases. In: Roy, B. (ed.) ASIACRYPT
2005. LNCS, vol. 3788, pp. 174–198. Springer, Heidelberg (2005). https://doi.org/
10.1007/11593447 10

https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1145/73007.73010
https://doi.org/10.1145/73007.73010
https://doi.org/10.1109/SFCS.1984.715949
https://doi.org/10.1007/3-540-48071-4_16
https://doi.org/10.1007/3-540-48071-4_16
https://doi.org/10.1007/978-3-319-70503-3_18
https://doi.org/10.1007/978-3-319-70503-3_18
https://doi.org/10.1007/978-3-662-49096-9_14
https://doi.org/10.1007/978-3-642-13190-5_33
https://doi.org/10.1007/978-3-662-46497-7_5
https://doi.org/10.1007/978-3-540-24676-3_35
https://doi.org/10.1007/978-3-540-24676-3_35
https://doi.org/10.1007/978-3-319-70700-6_4
https://doi.org/10.1007/978-3-319-70700-6_4
http://eprint.iacr.org/2022/210
https://doi.org/10.1007/978-3-030-17259-6_14
https://doi.org/10.1007/978-3-030-17259-6_14
https://doi.org/10.1007/978-3-642-31448-3_18
https://doi.org/10.1007/978-3-319-26823-1_10
https://doi.org/10.1007/11593447_10
https://doi.org/10.1007/11593447_10

776 N. Brandt et al.

34. Lysyanskaya, A.: Unique signatures and verifiable random functions from the DH-
DDH separation. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 597–612.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9 38

35. Maurer, U.: Abstract models of computation in cryptography. In: Smart, N.P. (ed.)
Cryptography and Coding 2005. LNCS, vol. 3796, pp. 1–12. Springer, Heidelberg
(2005). https://doi.org/10.1007/11586821 1

36. Micali, S., Reyzin, L.: Soundness in the public-key model. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 542–565. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44647-8 32

37. Micali, S., Rivest, R.L.: Micropayments revisited. In: Preneel, B. (ed.) CT-RSA
2002. LNCS, vol. 2271, pp. 149–163. Springer, Heidelberg (2002). https://doi.org/
10.1007/3-540-45760-7 11

38. Micali, S., Rabin, M.O., Vadhan, S.P.: Verifiable random functions. In: 40th
FOCS, pp. 120–130. IEEE Computer Society Press (1999). https://doi.org/10.
1109/SFFCS.1999.814584

39. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. In: 38th FOCS, pp. 458–467. IEEE Computer Society Press (1997).
https://doi.org/10.1109/SFCS.1997.646134

40. Nechaev, V.I.: Complexity of a determinate algorithm for the discrete logarithm.
Math. Notes 55(2), 165–172 (1994)

41. Niehues, D.: Verifiable random functions with optimal tightness. In: Garay, J.A.
(ed.) PKC 2021. LNCS, vol. 12711, pp. 61–91. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-75248-4 3

42. Paillier, P., Vergnaud, D.: Discrete-log-based signatures may not be equiva-
lent to discrete log. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp.
1–20. Springer, Heidelberg (2005). https://doi.org/10.1007/11593447 1

43. Roşie, R.: Adaptive-secure VRFs with shorter keys from static assumptions. In:
Camenisch, J., Papadimitratos, P. (eds.) CANS 2018. LNCS, vol. 11124, pp. 440–
459. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00434-7 22

44. Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial iden-
tities. J. ACM 27(4), 701–717 (1980). ISSN 0004–5411. https://doi.org/10.1145/
322217.322225.

45. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-69053-0 18

46. Yamada, S.: Asymptotically compact adaptively secure lattice IBEs and verifiable
random functions via generalized partitioning techniques. In: Katz, J., Shacham,
H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 161–193. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63697-9 6

47. Yao, A.C.C.: Theory and applications of trapdoor functions (extended abstract).
In: 23rd FOCS, pp. 80–91. IEEE Computer Society Press (1982). https://doi.org/
10.1109/SFCS.1982.45

48. Zhandry, M.: To label, or not to label (in generic groups). Cryptology ePrint
Archive, Report 2022/226 (2022). http://eprint.iacr.org/2022/226

https://doi.org/10.1007/3-540-45708-9_38
https://doi.org/10.1007/11586821_1
https://doi.org/10.1007/3-540-44647-8_32
https://doi.org/10.1007/3-540-45760-7_11
https://doi.org/10.1007/3-540-45760-7_11
https://doi.org/10.1109/SFFCS.1999.814584
https://doi.org/10.1109/SFFCS.1999.814584
https://doi.org/10.1109/SFCS.1997.646134
https://doi.org/10.1007/978-3-030-75248-4_3
https://doi.org/10.1007/978-3-030-75248-4_3
https://doi.org/10.1007/11593447_1
https://doi.org/10.1007/978-3-030-00434-7_22
https://doi.org/10.1145/322217.322225.
https://doi.org/10.1145/322217.322225.
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/978-3-319-63697-9_6
https://doi.org/10.1109/SFCS.1982.45
https://doi.org/10.1109/SFCS.1982.45
http://eprint.iacr.org/2022/226

Bet-or-Pass: Adversarially Robust Bloom
Filters

Moni Naor(B) and Noa Oved

Department of Computer Science and Applied Mathematics,
Weizmann Institute of Science, Rehovot, Israel

{moni.naor,noa.oved}@weizmann.ac.il

Abstract. A Bloom filter is a data structure that maintains a succinct
and probabilistic representation of a set S ⊆ U of elements from a uni-
verse U . It supports approximate membership queries. The price of the
succinctness is allowing some error, namely false positives: for any x /∈ S,
it might answer ‘Yes’ but with a small (non-negligible) probability.

When dealing with such data structures in adversarial settings, we
need to define the correctness guarantee and formalize the requirement
that bad events happen infrequently and those false positives are appro-
priately distributed. Recently, several papers investigated this topic, sug-
gesting different robustness definitions.

In this work we unify this line of research and propose several robust-
ness notions for Bloom filters that allow the adaptivity of queries. The
goal is that a robust Bloom filter should behave like a random biased
coin even against an adaptive adversary. The robustness definitions are
expressed by the type of test that the Bloom filter should withstand.
We explore the relationships between these notions and highlight the
notion of Bet-or-Pass as capturing the desired properties of such a data
structure.

1 Introduction

A Bloom filter is a data structure that maintains a succinct representation of a
set S ⊆ U of elements from a universe U . It supports an approximate version
of membership queries: for any x ∈ S, the Bloom filter must answer ‘Yes’ while
for any x ∈ U \ S, it should answer ‘No’, but is allowed to have a small error
probability1 (at most ε), and answer ‘Yes’. That is, it admits false positives but
not false negatives.

The small memory required by the construction of Bloom filters (as opposed
to storing S precisely) and the fast query time make Bloom filters extremely
attractive in various applications. This comes at the price of a certain rate of
false positive - elements not in the set declared as being in the set. False positives
1 The precise meaning of this probability is the subject of this paper.

Research supported in part by grants from the Israel Science Foundation (no.2686/20),
by the Simons Foundation Collaboration on the Theory of Algorithmic Fairness. Moni
Naor is the incumbent of the Judith Kleeman Professorial Chair.

c© The Author(s), under exclusive license to Springer Nature Switzerland 2022
E. Kiltz and V. Vaikuntanathan (Eds.): TCC 2022, LNCS 13748, pp. 777–808, 2022.
https://doi.org/10.1007/978-3-031-22365-5_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22365-5_27&domain=pdf
https://doi.org/10.1007/978-3-031-22365-5_27

778 M. Naor and N. Oved

can affect performance, e.g., they can incur unnecessary disk access, lead to spam
emails that are not marked as spam, and allow misspelled words. Therefore, the
false positive rate is the main correctness metric that interests us. It is important
to note that the false positive rate cannot be negligible if we wish to save space2.

When we are dealing with a data structure such as Bloom filters, with a non-
negligible false-positive rate the question is how should we define the correctness
guarantee: what does it mean to see bad events infrequently, i.e., how can we
claim the data structure behaves “nicely”. (In contrast, in most of cryptography
a “bad” event happens with only negligible probability and the definition of
security is that we aren’t likely to see it at all). One way to define the correctness
is by first fixing a sequence of inputs (equivalently, the queries) and then show
an upper bound on the false positive rate. However, this is not sufficient in many
scenarios, especially when the queries are chosen adaptively, based on previous
queries’ responses.

This work proposes several robustness notions for Bloom filters that allow
adaptivity and capture adversaries with different goals, using different evaluation
metrics. The robustness definitions are formalized as tests to the Bloom filter.
We investigate the relationships between these notions and propose one notion
as the most desirable one to define robust Bloom filters.

There are many variants of Bloom filters, for instance, where the Bloom filter
is initially empty and the set S is defined via insert queries, or where some extra
information is attached to each element and we wish to retrieve this information
in case the element is in the set. In this work we concentrate on the case where the
set S is fixed and the queries are adaptively chosen. Our definitions are relevant
to the other variants as well, and as far as we can see, so are the relationships
we found. In addition, the question of defining the resiliency of a data structure
with non-negligible failure faced with an adaptive adversary is relevant to other
data structures, and our results may apply to them as well.

Robust Bloom Filters. The correctness of Bloom filters was mainly analyzed
under the assumption that we first fix a query x and then compute the error
probability over the internal randomness. We refer to this as the static analysis.
One might ask what happens when an adversary chooses the next query based
on the response of previous ones? Does the error probability remain the same?
Those questions motivated the analysis of Bloom filters in adversarial settings,
where an adversary chooses her queries adaptively.

We refer to a Bloom filter as robust if it satisfies some correctness guaran-
tee under adaptive adversarial settings. Our wishful thinking is that a “robust”
Bloom filter should behave like a truly unpredictable biased coin; that is, each
query is false positive with probability at most ε regardless of the result of previ-
ous queries. Indeed, this is the case in the static settings. However, it is not true
and more complex to formalize when considering a sequence of (mostly adap-
tively) chosen queries. One reason this is not true is that seeing the response on

2 The lower bound on memory requirements of a Bloom filter is n log 1/ε where n is
the size of the set S and ε is the error probability.

Bet-or-Pass: Adversarially Robust Bloom Filters 779

previous inputs might leak some information about the internal state of the data
structure or the random bits used. This, in turn, can be used by an adversary
that, for example, wants to increase the false-positive rate.

An example to demonstrate an adaptive attack is when using Bloom filters
in Web cache sharing (see [12]). When a proxy gets a request for a web page, it
first checks if the page is available in its cache, and only then does it search for
the web page on another proxy cache. As a final resort, it requests the web page
from the Web. Therefore, proxies must know the cache’s content of other proxies.
For such a scheme to be effective, proxies do not transfer the exact contents of
their caches but instead periodically broadcast Bloom filters that represent it.
If a proxy wants to know if another proxy has a page in its cache, it checks
the corresponding Bloom filter. In case of false positives, a proxy may request a
page from another proxy, only to find that this proxy does not have that page. In
this case, a delay is caused. In the static analysis, one would set the error to be
small such that cache misses rarely happen. However, an adversary requesting
for web pages can time the result of the proxy, and learn the responses of the
Bloom filters. In turn, this might enable her to find false positives and cause
unsuccessful cache access, which leads to an overload. Note that the adversary
cannot repeat a false positive since the proxy will save it in its cache once a web
page is requested. A similar example was presented in [23].

1.1 Our Contributions

We explore old and new notions of robustness for Bloom filters and study the
relationships between them. The precise definitions are given in Sect. 3. Our
definitions aim to capture the idea that a robust Bloom filter should behave like
a random biased coin even for an adaptive adversary. We highlight the notion of
Bet-or-Pass as capturing the desired properties of such a data structure. First,
as we shall see, it gives us the strongest guarantee we can (currently) imagine.
Second, it is not too strong: there is a Bloom filter satisfying this notion (one
based on a construction in [23]). Finally, it is relatively convenient to check
whether a suggested construction of a Bloom filter satisfies the definition.

Following the work of Naor and Yogev [23] we define robustness tests in
the form of a game with an adversary. The adversary chooses the set S and
adaptively queries the Bloom filter. The goal of the adversary differs between
tests. Naor and Yogev defined that following the adaptive queries, the adversary
must output a never-queried before element x∗, which she thinks is a false
positive. They said that an adversary wins if x∗ is a false positive. They wanted
the probability of an adversary to win (equivalently- make the Bloom filter fail
the test) to be at most ε. We refer to the security notion of Naor and Yogev as
the Always-Bet (AB) test.

We define a new test, extending the AB test. First, we allow the adversary
to pass, meaning she does not have to provide any output. This gives the adver-
sary more flexibility and defines a more robust test. In addition, we define an
adversary’s profit: if she outputs (bets on) an element x∗ which is indeed a false
positive, she is rewarded; otherwise, she “pays”. If she chooses to pass, her profit

780 M. Naor and N. Oved

is zero. Our profit definition gives rise to a new metric to evaluate Bloom filters:
we set the payments so that a random guess with probability ε has an expected
profit of 0. We say that an adversary makes the Bloom filter fail in the Bet-or-
Pass (BP) test if her expected profit is noticeably larger than 0. In this case,
the Bloom filter is not BP test resilient, (not robust under the BP test).

The AB and the BP tests consider a one-time challenge, x∗. We also consider
tests with a “continuous” flavor; those tests examine the false positive rate in
the entire sequence of adaptive queries and look for “anomalies”. We propose a
new family of tests following our original desire to require a robust Bloom filter
to behave like a truly unpredictable biased coin. Informally, it tests whether a
sequence generated by the output of a Bloom filter on adaptively selected queries
“looks like” a biased random coin to any efficient observer (that examines some
property of the sequence). Since there can be elements that are always true
negatives and we are only interested in cases where an adversary increases the
false positive rate, we consider monotone observers only - observers that test a
monotone property of the sequence. In other words, observers that are sensitive
to the addition of false positives and not the reduction of ones. If a Bloom filter
does not fail in all monotone tests, we say it is monotone test resilient. We then
analyze a special case of the monotone test: we look at the expected number of
false positives. We say that a Bloom filter is expected count test resilient if for
all adversaries the expected number of false positive in t queries is at most the
expected number of ones in a sequence of t independent biased coin tosses.

Finally, we emphasize why adaptive queries are interesting by introducing a
test we call the semi-adaptive prediction test. In this test, the adversary com-
mits to a set of queries Q (non-adaptive) before getting access to query the
Bloom filter. The adversary aims to find a false positive element from Q that
was not queried yet (the adaptive part). A Bloom filter is a semi-adaptive pre-
diction resilient if no adversary can find a false positive element from Q with a
probability of at least ε.

Relationships. We explore the relationships between the different definitions
(see Fig. 1). We prove that a Bloom filter that is BP test resilient is also AB test
resilient. On the other hand, we show that a Bloom filter that is AB test resilient
is not necessarily BP test resilient. This suggests that the BP test is a more robust
notion than the AB test. We support this idea by showing that BP test resilience
implies monotone test resilience3 while a Bloom filter that is AB test resilient is
not necessarily monotone test resilient. However, we show that AB test resilience,
in turn, implies expected count test and semi-adaptive prediction resilience. We
also demonstrate that the expected count test and semi-adaptive prediction are
weak notions: we construct Bloom filters that satisfy those notions and fail the
AB test. Finally, we show that monotone test resilience implies expected count
test resilience, supporting that the expected count is indeed a special case of
monotone test. We conclude that being resilient to the BP test guarantees the

3 This is reminiscent of the fact that in pseudorandomness the next-bit-test implies
all efficient tests.

Bet-or-Pass: Adversarially Robust Bloom Filters 781

desired robust properties and suggests it is the correct way to define a robust
Bloom filter.

BP Test Resilience Monotone Test Resilience

AB Test Resilience

Semi-Adaptive Prediction Resilience Expected Count Test Resilience

2

1

5
/6 /

7

4

3

/10 /
9

/
8

Fig. 1. The relationships between the different definitions.

BP as a Natural Notion of Robustness. Does the BP test capture the desired
behavior of a Bloom filter as a random (biased) coin? At first glance, the skeptical
reader might think that the option of passing is strange4. However, given that
BP test resilience implies monotone test resilience, we can get some intuition
why this is indeed the case. The idea is that when a Bloom filter fails in the
monotone test, we can use the monotone distinguisher to know when to bet.
This means that when a Bloom filter’s behavior is distinguishable from a random
coin, an adversary can exploit that to guess a false positive element with a high
probability (higher than a random guess).

Our work explores what it means to be a robust Bloom filter. When trying to
suggest a definition, we aim to achieve three requirements: First, the definition is
sufficient, i.e., it captures the idea that a robust Bloom filter should behave like a
random biased coin. Second, it’s not too strong, i.e., there exists a construction
of a Bloom filter satisfying this property. Lastly, it is easy to use, i.e., it is
formalized as a simple test for a Bloom filter. The BP test resilience definition
satisfies all these requirements, suggesting it is a natural notion of robustness.

Finally, we give an example to directly motivate the BP definition. Consider a
system containing k different components, each using a Bloom filter to store some
set (e.g., k web proxies with a Bloom filter holding their cache content). Further,
assume that the system as a whole can withstand a certain false positive rate,
denoted by epsilon. Suppose that there exists an adversary that, with noticeable
probability, can find a false positive element with high probability (greater than
epsilon) and knows to indicate when it happens. We can use this adversary in all
the k components simultaneously in the following way: we locate k′ components
with a corresponding false positive element. We then query all those k′ elements
at about the same time. This results in a short period with a high false positive
rate in the system, which can cause a denial of service. Note that the other
notions fail to capture this attack.
4 An analogy is situation in the casino game of blackjack, where at a certain point in

the game the participants may have a small advantage over the house, as more cards
are exposed (followed via “card counting”), and may choose to start betting then or
to increase their bets.

782 M. Naor and N. Oved

The Surprise Exam and the AB and BP Notions. We can demonstrate the
difference between the AB and BP notions by thinking of these variants wrt the
famous surprise exam (or unexpected hanging) paradox [11]. Suppose a teacher
announces that a “surprise exam” will occur sometime in the next six days
and choose the date at random. On the evening of each day, a student can bet
whether the exam will happen the next day. If the student is correct, then she
wins 5 dollars; if she is wrong, she loses a Dollar. In both settings the student
can bet only once. In the AB setting, she must bet in at least one day, and in
the BP setting, she can decide not to bet at all. The expected value in the AB
setting is 0 (against a random day). In contrast, in the BP setting, the student
can wait until the last day and bet only if the exam did not take place before.
In this case, she knows the exam is on the last day and has a strictly positive
expectation (5/6). If the teacher does not chooses a day at random, but with
some other distribution, then we need a more sophisticated strategy, but it is
doable.

Computational Assumptions and One-Way Functions. Naor and Yogev [23]
proved existential equivalence between Bloom filters that are AB test resilient
(against a computationally bounded adversary) and one-way functions5. We refer
to it as the equivalence result. We ask whether this equivalence still holds given
a Bloom filter that is BP test resilient. The simpler direction shows that a Bloom
filter that is BP test resilient implies the existence of one way function (we get
it immediately by the implication of the BP test on the AB test). Showing the
other direction is a little bit more challenging. We show a modification of the
construction of Bloom filter from [23] that is based on the existence of one-
way functions and prove it is BP test resilient. This, in turn, show the desired
equivalence.

In the full version of this paper, we also ask whether weaker notions of robust-
ness imply one-way functions. We show that if one-way functions do not exist,
then any non-trivial6 Bloom filter fails the expected count test the semi-adaptive
prediction test.

1.2 Related Work

The first work to consider adaptive adversaries that choose queries based on the
response of the Bloom filter is by Naor and Yogev [23]. They defined an adversar-
ial model for Bloom filters through a game with an adversary. The adversary has
only oracle access to the Bloom filter and cannot see its internal randomness.
She can adaptively query the filter, and her goal is to find a never-queried-
before false-positive element. We continue this line of research by introducing

5 One-way functions are functions that, informally speaking, are easy to compute but
hard to invert.

6 Non-trivial Bloom filters are Bloom filters that require less space than the amount
of space required to explicitly store the set.

Bet-or-Pass: Adversarially Robust Bloom Filters 783

new adversarial models, suggesting new ways to evaluate the Bloom filter perfor-
mance. Naor and Yogev also presented a tight connection between Bloom filters
in their model and one-way functions, which we extend to our settings.

Following [23], Clayton, Patton, and Shrimpton [8] analyzed Bloom filters,
as well as other data structures such as counting Bloom filters and count-min
sketches, in adversarial settings. They analyzed the probability of getting some
predefined number of false-positive elements in a sequence of adaptive queries
(as opposed to the probability of finding one never-queried before false-positive
element). This type of analysis is similar to our expected count test.

Another move towards adaptivity was made by Bender et al. [2]. Similarly
to [23], they indicated that the bound of false-positive probability only applies
to a single fixed query, and a sequence of queries can have a much larger false
positive rate (simply by repeating a false positive query). Their main concern
was when an adversary repeats a false positive query (unlike Naor and Yogev,
which did not allow repeating queries). To deal with this type of attack, they
defined an adaptive filter : a filter that adapts to false positives, which means that
even for an element that was queried and returned as a false positive, repeating
it results in a false positive rate of at most ε. Their analysis assumes that the
adversary could not find a never-queried-before element that is a false positive
with probability greater than ε when using the result of previous queries. Their
assumption can be achieved using the constructions in [23]. Therefore, their work
is orthogonal to Naor and Yogev (and ours), since their concern is dealing with
repeated queries and does not handle the issue of using adaptivity to find never-
queried false positives. Repeated queries were also discussed by Mitzenmacher
et al. [21] (adaptive cuckoo filter), and by Lee et al. [18] (telescoping adaptive
filter (TAF)).

The problem of defining correctness in adaptive settings was also investi-
gated in the streaming algorithms literature, where there is a growing interest
in adversarial streaming algorithms. These algorithms preserve their efficiency
and correctness even if the stream is chosen adaptively by an adversary that
observes the algorithm’s output (and therefore can depend on the internal ran-
domness of the algorithm). Hardt and Woodruff [15] showed that linear sketches
are inherently non-robust to adaptively chosen inputs and cannot be used to
compute the Euclidean norm of its input (while they are primarily used for this
reason in the static setting). Kaplan et al. [17] introduced a streaming problem
that shows a gap between adversarial and oblivious streaming in the space com-
plexity requirement. On the positive side, Ben-Eliezer et al. [1] presented generic
compilers that transform a non-robust streaming algorithm into a robust one in
various scenarios. Hassidim et al. [16] and Woodruff and Zhou [28] continued
their work suggesting better overhead.

1.3 Open Problems

Our work leaves open several interesting directions. The direct one is whether
Monotone Test Resilience implies BP Test Resilience (recall that we show the
other direction), or whether the two notions are separable. Are the techniques of

784 M. Naor and N. Oved

Bender et al. [2] compatible with our results? Namely, can we have a robust BP
secure Bloom filter against repetition? Another interesting avenue concerns the
idea of allowing to output “don’t know” (pass). To better capture the bit-security
of decision games, Micciancio and Walter permitted an adversary to output a
bot and redefined the advantage of the adversary conditioning on not outputting
a bot (Def. 9 in [20]). Outputting a bot is very similar to pass in the BP test, and
allowing pass and redefining the advantage gives a better notion. One wonders
if there is a connection between these two definitions and if our definition can
be applied in a more general setting (e.g., defining better bit-security for general
decision games). It seems that knowing you don’t know is significant in both
cases. The definitions are related but not identical. For instance, in our case, the
probability of the “secret bit” being 0 or 1 does not equal 1/2 (the probability of
it being 1, a false positive element, is ε). In addition, our game is asymmetrical:
there is a difference between the bits 0 and 1 (we are only interested in the
adversary outputting 1). We believe that it can be applied in a more general
setting, but more work needs to be done to determine that.

2 Model and Problem Definition

For a universe U = [u] we are given a subset S ⊂ U of n elements. The set can
either be fixed throughout the lifetime of the Bloom filter or can be formed via
insert queries. As mentioned, we consider in this work the case where the set S
is fixed; however, our results can be extended to other settings.

Following the work of [23], we model a Bloom filter B = (B1,B2) as a data
structure consisting of two parts: a setup algorithm B1 and a query algorithm
B2. The setup algorithm is randomized, gets a set S as input, and outputs a
compressed representation of S, denoted by M . The query algorithm B2, can
be randomized, is given a compressed representation of a set S, and answers
membership queries. It gets an element x ∈ U and outputs 0 or 1, indicating
whether x belongs to S or not (and may be wrong for x /∈ S). For simplicity of
notation, we consider a probabilistic query algorithm that cannot change the set
representation. However, our results also apply to Bloom filters that can change
the set representation.

If x /∈ S and B2(B1(S), x) = 1 we say that x is a false positive. The main
evaluation metric of a Bloom filter is the false positive rate.

Definition 1 (Bloom Filter). Let B = (B1,B2) be a pair of probabilistic
polynomial time algorithms such that B1 gets as input a set S and outputs a
representation M , and B2 gets as input a representation M and a query element
x ∈ U and outputs a response to the query. We say that B is an (n, ε)-Bloom
filter if for all sets S of size n in a suitable universe U it holds that:
1. Completeness: For any x ∈ S we have that Pr[B2(B1(S, x)) = 1] = 1
2. Soundness: For any x /∈ S we have that Pr[B2(B1(S, x)) = 1] ≤ ε,

where the probabilities are over the setup algorithm B1 and query algorithm B2.

From here on, we always assume that B has this format and sometimes write
B(S, x) instead of B2(B1(S), x).

Bet-or-Pass: Adversarially Robust Bloom Filters 785

The Adaptive Game. Definition 1 considers a single fixed input element x, and
the probability is taken over the randomness of the Bloom filter (and not over the
choice of x, for example). This is a weak guarantee that we want to strengthen.
We consider a sequence of t inputs x1, . . . , xt that is not fixed but chosen adap-
tively by an adversary.

Defining adaptivity requires specifying what information is made available
to the adversary to adapt. Here, we allow the adversary to see the responses of
previous queries before choosing the next one. We formalize this by defining a
game AdaptiveGameA,t(λ) where λ is a security parameter (see below). In this
game, we consider a polynomial-time adversary A = (A1,A2) that consists of
two parts: A1 chooses the set S, and A2 gets as input the set S and oracle access
to the query algorithm (initialized with M) and perform adaptive queries. A2

aims to achieve a different goal in each robustness definition in order to make the
Bloom filter fail the game (equivalently, the test). We measure the ability of A to
make the Bloom filter fail with respect to her and the Bloom filter randomness.

To handle a computationally bounded adversary, we add a security parameter
λ, which is given to the setup phase of the Bloom filter and the adversary as an
input (acts as a key length). We now view the running time of the adversary, as
well as her probability to make the Bloom filter fail, as functions of λ. Moreover,
it enables the running time of the Bloom filter to be polynomial in λ and hence
the false positive probability ε can be a function of λ.

We use the notation negl for any function negl : N → R
+ satisfying that for

every positive polynomial p(·) there is an N such that for all integers n > N it
holds that negl(n) < 1

p(n) . Such functions are called negligible.

Definition 2. The Adaptive Game AdaptiveGameA,t(λ):

1. The adversary A1 is given input 1λ+n log u and outputs a set S ⊂ U of size n.
2. B1 is given input

(
1λ+n log u, S

)
and builds a representation M .

3. The adversary A2 is given input
(
1λ+n log u, S

)
and oracle access to B2(M, ·)

and performs at most t adaptive queries x1, . . . , xt to B2(M, ·).
We assume wlog that xi /∈ S for all i ∈ [t], since Bloom filters admit false

positives, but not false negatives, and also, A2 is given as input the set S.
Therefore a queried element can be either false positive or true negative.

Definition 3 (A Test for Bloom Filters). Let B be an (n, ε)-Bloom filter.
For a security parameter λ, an (n, t, ε)-Test(λ)A,t start with an adaptive game
AdaptiveGameA,t(λ) with an adversary A. The test is defined by a function that
given the transcript of the game (including the set S) decides ‘succeed’ or ‘fail’.

We say that a Bloom filter is resilient for some test (or family of tests) if the
probability that any adversary makes it fail the test is upper bounded by some
value. This term is formalized for each test in Sect. 3.

786 M. Naor and N. Oved

The Role of t. The parameter t indicates the number of queries the adversary
performs. When t is not known in advance and unbounded, the adversaries must
be computationally bounded given the equivalence result of [23] (see Sect. 1.1).
However, when t is known in advance, the adversary does not have to be compu-
tationally bounded: Naor and Yogev presented a construction of a Bloom filter
that is AB test resilient against computationally unbounded adversary using
O

(
n log 1

ε + t
)

bits of memory.
Inspired by Def. 2.5 in [23] we say that if B is resilient for any polynomial

number of queries, it is strongly resilient.

Definition 4 (Strongly Resilient). For a security parameter λ, we say that B
is an (n, ε)-strongly Test(λ)A,t resilient, if for any polynomial p(·) and t ≤ p(λ, n)
it holds that B is an (n, t, ε)-Test(λ)A,t resilient.

An essential property of a Bloom filter is its memory size. Bloom filters
are used because their memory size is smaller than an explicit representation
of the set. We say that a Bloom filter uses m bits of memory if the largest
representation for all sets S of size n is at most m. Carter et al. [7] showed that
in order to construct a Bloom filter for sets of size n and error rate ε one must
use (roughly) m ≥ n log 1

ε bits of memory (as opposed to n log u bits needed to
answer exact membership queries). We can write this as ε ≥ 2− m

n which leads
us to the following definition:

Definition 5 (Minimal Error (Def. 2.7 in [23])). Let B be an (n, ε)-Bloom
filter that uses m bits of memory. We say that ε0 = 2− m

n is the minimal error
of B.

A simple construction of a robust Bloom filter can be achieved by storing
S precisely, and then there are no false positives for an adversary to find. The
disadvantage of this solution is that it requires a large memory, while Bloom
filters aim to reduce the memory size. Similarly, a Bloom filter with a substan-
tially low false-positives rate is robust. We are interested in a robust non-trivial
Bloom filter. Roughly speaking, a non-trivial Bloom filter is a Bloom filter with
ε substantially far from 0 and 1 and a large universe (compared to the memory
size, so it will not be possible to store the set explicitly). For convenience, we
use the definition of [23].

Definition 6 (Non-trivial Bloom Filter (Def. 2.8 in [23])). Let B be an
(n, ε)-Bloom filter that uses m bits of memory and let ε0 be the minimal error of
B. We say that B is non-trivial if for all constants a > 0 it holds that u > a·m

ε2
0

and there exists polynomials p1(·), p2(·) such that 1
p1(n)

< ε0 ≤ ε < 1 − 1
p2(n)

.7

7 If ε is negligible in n, then any polynomial-time adversary has only a negligible chance
of finding any false positive. In that case, we can transform any adaptive adversary
into a non-adaptive adversary since it knows the answers already. The same argument
appears in [6] as Lemma 4. A similar claim applies to the requirement that ε will be
substantially far from 1.

Bet-or-Pass: Adversarially Robust Bloom Filters 787

Let λ be the security parameter. It holds that n = poly(λ).8 Therefore we
get that ε0 cannot be too small and ε cannot be too large. I.e.

1
q1(λ)

≤ ε0 ≤ ε ≤ 1 − 1
q2(λ)

, (1)

for some polynomials q1(·) and q2(·).

2.1 Prediction and Pseudorandomness

Pseudorandomness captures the idea that an object can “look” completely ran-
dom even though it is far from random, since it was generated from a much
shorter seed. One approach to defining it formally is via indistinguishability: Let
Dist be a distribution on t-bit strings. We say that Dist is pseudorandom if it is
infeasible for any polynomial-time algorithm to distinguish (in a non negligibly
better way than guessing) whether it is given a string sampled according to Dist
or whether it is given a uniform t-bit string. This means that pseudorandomness
is a computational relaxation of true randomness.

The definition above introduces many tests: each polynomial-time algorithm
(distinguisher) serves as a single test. An example of such a test is an algorithm
D that returns ‘1’ if the input string’s first bit is 0. Therefore, the first bit of
a string sampled from Dist should be equal to 0 with probability very close to
1/2, since the first bit of a string sampled from a uniform distribution equals
0 with probability exactly 1/2. Otherwise, D can distinguish between the two
distributions.

An alternative approach to defining pseudorandomness is having a single
type of test, the next bit test. In this test, a probabilistic polynomial-time algo-
rithm is given a prefix of bits. It aims to predict the next bit of the source with
a probability of success significantly greater than 1/2 (this is the Blum-Micali
definition [5]).

As Yao [29] showed, these two definitions are equivalent and the infeasability
of predicting some bit of a given source can serve as a test for randomness.
We show something of a similar nature. Consider a Bloom filter, an attacker
and the sequence of bits representing whether a false positive occurred or not
on a sequence of queries. Since the probability of a false positive is at most ε,
we deal with a non-uniform output distribution. We want this distribution to
be indistinguishable from a random independent biased sequence. This means
that the false positive events are random independent events even in the case of
adaptive queries. We formalize it in the monotone test.

Similar to the result in pseudorandomness, we want to define a prediction
test that implies the monotone test. Our starting point is the natural extension
of the next bit test for biased bits. This test requires that no observer succeeds
in predicting the bits of the source with a probability greater than the bias.
However, Schrift and Shamir [27] showed that the natural extension is no longer

8 Since we want the adversary to run in polynomial time in the security parameter.

788 M. Naor and N. Oved

a universal test for independence. Therefore, we choose a different approach that
draws inspiration from the world of gambling.

There are tight connections between gambling and knowledge of a sequence.
Cover and Thomas ([9] Chap. 6) used gambling to express the ability to predict.
They investigated the relationship between information theory and gambling.
They looked at a horse race and presented two equivalent ways to describe the
odds. We show one of them, which is referred to as b−to−1: the gambler will pay
1 dollar after the race if his horse loses, and pick up b dollars after the race if his
horse wins. They looked at the gambler’s wealth, which he wishes to maximize.
We use their gambling methodology to define a robust Bloom filter. We let an
adversary bet on a false positive: she outputs an element that she believes is a
false positive. She gets rewarded if her output element is a false positive, while
she is penalized if she outputs a true negative. We allow the adversary to pass,
meaning she does not have to bet. In this case, she does not gain or lose any value.
She wishes to maximize her wealth as well. We formalize it in the Bet-or-Pass
Test and show it implies the monotone test.

3 Defining Robust Bloom Filters

3.1 Background

We have a data structure, Bloom filter, with a non-negligible rate of false pos-
itives, denoted by ε. We want to claim it performs well. We can think of the
Bloom filter response to a sequence of queries as a sequence of independently
biased coin tosses (with bias ε to 1). This is mostly the case when an adver-
sary performs non-adaptive queries; she chooses her queries without seeing the
response of the Bloom filter on previous queries. In that case, she gets a false pos-
itive (equivalently, one as a response) with probability at most ε in each query.
Our wishful thinking is that a Bloom filter behaves like a truly unpredictable
biased coin even when an adversary sees the response of the Bloom filter on
previous queries. Meaning it performs well (robust) even in adaptive settings.
However, this wish is a bit complex to formalize. Still, we suggest robustness
definitions that try to capture this idea.

Our definition of robust Bloom filter comes in several flavors, depending on
whether the adversary aims to find a never-queried-before false-positive element
or increase the false-positive rate; what the evaluation metric is, and depending
on the information available to the adversary. We discuss each of these choices
in turn.

Adaptive vs. Non-adaptive Queries. When discussing adaptivity, we refer to the
settings where an adversary can choose the next query based on the response of
the Bloom filter on previous ones.

Our wish that a robust Bloom filter behaves like a truly unpredictable biased
coin can be hard to meet, even in the non-adaptive case. False-positive elements
are not necessarily random independent events, e.g., if the universe is divided
into pairs, and both the elements in each pair are either positive or negatives.

Bet-or-Pass: Adversarially Robust Bloom Filters 789

However, the problem is more serious when discussing the adaptive case. In the
above example, an adversary can query one element in each pair and query the
other only if the first one is positive, resulting in a higher false-positive rate.

Therefore, we consider adaptive settings when defining robust Bloom filters:
the adversary can adaptively query the filter. Nevertheless, we also analyze the
non-adaptive settings and, more precisely, the ability of an adversary to predict
a false positive element in the case of non-adaptive queries. We analyze the non-
adaptive settings to understand the significance of seeing the responses of the
Bloom filter.

One-Time Challenge vs. “Continuous” Challenge. We consider both a one-time
challenge and a continuous challenge; By one-time challenge, we refer to tests
in which an adversary performs t adaptive queries, and her goal is to find one
never-queried-before false positive.

Some Bloom filter applications are sensitive to clusters of false positives, e.g.
when Bloom filters are used to hold the content of a cache. An adversary that
finds many false positives can cause unsuccessful cache access for almost every
query, resulting in a Denial of Service (DoS) attack. Motivated by this, we also
consider “continuous” tests, which examine the false-positive rate in a sequence
of t adaptive queries.

3.2 Robustness in All Shapes and Forms

We will describe five definitions of robustness for Bloom filters capturing various
aspects of robustness. For each definition we outline a test for the Bloom filter.
If the Bloom filter is resilient wrt the test against all adversaries, then we say
that it is robust under the corresponding definition. In each of these tests, the
adversary performs t queries with a different challenge to achieve, which gives rise
to a different type of robust Bloom filter. The difference between the definitions
is the goal of the adversary and what she has access to, summarized in Table 1.

The conclusion of this investigation into the various notions of robustness is
that the most desired notion is Bet-or-Pass.

The Always-Bet (AB) Test. Our starting point is the definition of [23]:
the adversary participates in an adaptive game AdaptiveGameA,t(λ) and then
outputs an element x∗ that was not queried before (and does not belong to S),
which she believes is a false positive. The robustness is defined by the probability
that the element is indeed a false positive.

The AB Test ABTestA,t(λ)

1. A participate in AdaptiveGameA,t(λ) (Definition 2).
2. A outputs x∗.
3. The result of the test is 1 if x∗ /∈ S ∪ {x1, . . . , xt} and B2(M,x∗) = 1, and 0

otherwise. If ABTestA,t(λ) = 1, we say that A made the Bloom filter fail.

790 M. Naor and N. Oved

Table 1. A table comparing the settings and the adversary goal within different robust-
ness definitions.

Test name Queries Adversary goal

Always-Bet Adaptive Find a never-queried-before false positive
element

Bet-or-Pass Adaptive Bet on a never-queried-before false positive
element or pass

Monotone Adaptive Find an event that happens more frequently
(non-negligibly) than a truly random coin
tosses

Expected Count Adaptive Find more than ε · t false positive in
expectation

Semi-Adaptive
Prediction

Non-Adaptive Find a false positive among the queries
chosen beforehand

Definition 7 (Always-Bet (AB) Test). Let B = (B1,B2) be an (n, ε)-Bloom
filter. We say that B is an (n, t, ε)-Always-Bet (AB) test resilient if for any
probabilistic polynomial-time adversary A = (A1,A2) there exists a negligible
function negl such that9:

Pr[ABTestA,t(λ) = 1] ≤ ε + negl(λ),

where the probabilities are taken over the internal randomness of B and A.

The Bet-or-Pass (BP) Test. The adversary in the AB-test (Definition 7)
must output a challenge element x∗. We suggest a definition that allows the
adversary to pass; the adversary does not have to output an element. We define
an adversary’s profit: she gets rewarded if her output element is a false positive,
while she is penalized if she outputs a true negative. She does not gain or lose any
value when she chooses to pass. We use the expected profit to define the robust-
ness: we want the expected profit to be 0. More formally, the adversary partici-
pate in an AdaptiveGameA,t(λ). She outputs (b, x∗) where x∗ /∈ S ∪ {x1, . . . , xt}
is the challenge and b ∈ {0, 1} indicates whether she chooses to bet (b = 1) or
to pass (b = 0). If she passes, x∗ is ignored and can be a random element.

The BP Test BPTestA,t(λ)

1. A participate in AdaptiveGameA,t(λ) (Definition 2).
2. A outputs (b, x∗).
3. A’s profit CA is defined as:

CA =

⎧
⎪⎨

⎪⎩

1
ε , if x∗ is a false positive and b = 1,

− 1
1−ε , if x∗ isnot a false positive and b = 1,

0, if b = 0.

9 In [23] resilience to this test is simply referred to as adversarial resilient Bloom filter.

Bet-or-Pass: Adversarially Robust Bloom Filters 791

Definition 8 (Bet-or-Pass (BP) Test). Let B = (B1,B2) be an (n, ε)-
Bloom filter. We say that B is an (n, t, ε)-Bet-or-Pass (BP) test resilient if
for every probabilistic polynomial-time adversary A = (A1,A2) participating in
BPTestA,t(λ), there exits a negligible function negl such that:

E[CA] ≤ negl(λ).

The expectation is taken over the internal randomness of B and A.

Note that the expected profit of an adversary outputting a random guess
with probability at most ε to be a false positive is at most 0:

E[CA] = Pr[x∗ is FP ∧ b = 1]
︸ ︷︷ ︸

≤ε

·1
ε

− Pr[x∗ isnotFP ∧ b = 1]
︸ ︷︷ ︸

≥1−ε

· 1
1 − ε

≤ 0

The BP test allows an adversary to pass (although if she wants any chance to
make the Bloom filter fail, the probability she passes must be noticeably far from
1). Adding the pass option suggests that the BP test is a stronger requirement
and more robust notion than the AB test: consider a Bloom filter that behaves
“nicely” in most cases except for a few bad cases. The probability of occurrence
of the bad cases is negligible. Then this Bloom filter is AB test resilient. However,
it is not BP test resilient. For the BP test, an adversary can become “active”
(bets) only when she observes the occurrence of some bad cases. Given such bad
cases, her success probability is not negligible.

We support this intuition by showing that BP test resilience implies AB test
resilience, while the other direction does not necessarily hold. In addition, we
consider another family of tests: the monotone tests, which resilience to them
is implied by the BP test but not by the AB test.

One may note two differences between the AB and BP tests: the adversary
must always provide a candidate false positive in the AB test, while it is optional
in the BP test. In addition, they differ in the robustness metric: the probability
of outputting a false positive vs. the expected profit. However, for the adversaries
that always output an element with b = 1 we show that the robustness metric is
equivalent (in Claim 1 below), meaning that allowing the adversary the option
to pass is the actual difference between the two.

Let A be an adversary performing ABTestA,t(λ) (Definition 7). We can think
of it as an adversary performing BPTestA,t(λ) (Definition 8) with b = 1 always.
Therefore her expected profit is:

E[CA] = Pr[x∗ is FP] · 1
ε

− Pr[x∗ isnotFP] · 1
1 − ε

Claim 1. Let A be an adversary in BPTestA,t(λ) game that always sets b = 1.
Then there exists a negligible function negl1 such that Pr[x∗ is FP] ≤ ε+negl1(λ)
iff there exists a negligible function negl2 such that E[CA] ≤ 0 + negl2(λ).

792 M. Naor and N. Oved

Proof. Let A be an adversary in the BPTestA,t(λ) game that always sets b = 1.
Assume that there exists a negligible function negl1 such that

Pr[x∗ is FP] ≤ ε + negl1(λ).

Then,

E[CA] = Pr[x∗ is FP] · 1
ε

− Pr[x∗ isnotFP] · 1
1 − ε

≤ (ε + negl1(λ)) · 1
ε(1 − ε)

− 1
1 − ε

=
negl1(λ)
ε(1 − ε)

≤ negl2(λ),

for some negligible function negl2. The last inequality follows from Inequality (1).
Now, assume that there exists a negligible function negl2 such that

E[CA] ≤ negl2(λ).

Therefore,

E[CA] = Pr[x∗ is FP] · 1
ε

− Pr[x∗ is not FP] · 1
1 − ε

≤ negl2(λ)

Pr[x∗ is FP] · 1
ε(1 − ε)

≤ 1
1 − ε

+ negl2(λ)

Pr[x∗ is FP] ≤ ε + ε(1 − ε)
︸ ︷︷ ︸

≤0.5

·negl2(λ) ≤ ε + negl1(λ) ,

for some negligible function negl1, as desired.

Monotone Efficient Tests. Recall our desire (“wishful thinking”) that a
“robust” Bloom filter should behave like a truly unpredictable biased coin; It
is not clear for both the AB and BP tests whether they satisfy this wish. To
treat it more formally we consider monotone tests. A monotone test consists
of AdaptiveGameA,t(λ) as before, but now we are not interested in any specific
output element. The test examines the response of the Bloom filter on t adaptive
queries performed by an adversary A. Continuing the idea of biased coin tosses,
we would like to think of false positives as random independent events with a
probability smaller or equal to ε. We compare the Bloom filter response on a
sequence of t adaptive queries to a sequence of independent biased bits of length
t with bias ε (probability of 1 is ε).

In this test, we consider monotone functions. Informally, a monotone function
is a function that can only increase when we flip a 0 in the input string to 1:

Bet-or-Pass: Adversarially Robust Bloom Filters 793

Definition 9 (Monotone Function). Let t ∈ N. We say that a function
f : {0, 1}t → {0, 1} is monotone if for every pair of neighboring strings x, x′ ∈
{0, 1}t that are equal in all locations except in one index 1 ≤ i ≤ t, i.e. xj = x′

j

for all j
= i and xi = 0 and x′
i = 1, we have that f(x) = 1 implies that f(x′) = 1.

The probability of a false positive can be less than ε, though this is hardly dam-
aging. We are interested in clusters of false positives. This is what the monotone
property aims to model.

Let f : {0, 1}t → {0, 1} be a monotone function and Df a polynomial time
algorithm computing f . We consider distinguishers of the form Df .

We now present the formal definition. The fundamental realization is that
a robust Bloom filter should be resilient to all (efficient) monotone tests. That
is, for any efficient monotone test (or distinguisher) D, the probability that D
returns 1, when given the Bloom filter responses on a sequence of adaptively
selected queries, should be close (from below) to the probability that D returns
1 when given an independent biased sequence of the same length and with bias
ε.

Definition 10 (Monotone Test Resilient). Let B = (B1,B2) be an (n, ε)-
Bloom filter. We say that B is (n, t, ε)-monotone test resilient if for every mono-
tone probabilistic polynomial-time algorithm (distinguisher) D : {0, 1}t → {0, 1}
and every probabilistic polynomial-time adversary A = (A1,A2) participating in
an AdaptiveGameA,t(λ) there exits a negligible function negl such that:

Pr
S∈GA

[D(S) = 1] − Pr
Sε∈Bε

[D(Sε) = 1] ≤ negl(λ)

where GA is the distribution of the Bloom filter outcomes on A’s t queries and
Bε is a distribution of independent biased sequence of length t with bias ε.

Note the similarity and differences with the notion of cryptographic pseudo-
randomness (see Goldreich [13]). In our setting we consider only monotone
polynomial-time tests (whereas in the notion of cryptographic pseudorandom-
ness all polynomial-time tests are considered) and we look at the difference
between the probabilities without an absolute value (whereas there the absolute
value should be negligible).

We give examples for relevant monotone tests. The first one is the FP’s
count distinguisher, denoted by Dw for some w < t. Let s ∈ {0, 1}t. We
define,

Dw(s) =

{
1, if #1 in s is greater than w,

0, otherwise.

Dw outputs 1 iff the number of ones (equivalently, false-positive elements) is
greater than w. D is monotone. Another example is a Cluster distinguisher
that outputs 1 iff the sequence contains w consecutive ones. Indeed, this defi-
nition captures if a cluster of false positives is found in a Bloom filter response
since the probability of finding a cluster of “1” is negligible in a bias coin tosses.

794 M. Naor and N. Oved

The Expected Count Test. We use AdaptiveGameA,t(λ). Similar to the mono-
tone test, we are not interested in any output. Inspired by Clayton et al. [8], and
as a special case of the monotone test, we look at the number of false positive ele-
ments that an adversary finds during her t adaptive queries. Let A be an adver-
sary participating in AdaptiveGameA,t(λ) (Definition 2). Let Q = {x1, . . . , xt}
be the queries performed by A. Denote the number of false positive queries by
#FPt := |{xi | B2(M,xi) = 1 and xi ∈ Q \ S}|.10 We want to upper bound the
expected number of false positives queries. Formally,

Definition 11 (Expected Count Test). Let B = (B1,B2) be an (n, ε)-
Bloom filter. We say that B is (n, t, ε)-expected count test resilient if for
any probabilistic polynomial-time adversary A = (A1,A2) participating in
AdaptiveGameA,t(λ) there exists a negligible function negl such that:

E[#FPt] ≤ ε · t + negl(λ),

where the expectation is taken over the internal randomness of B and A.

The Semi-Adaptive Prediction Test. Finally, we define a semi-adaptive
test: the adversary chooses the queries in advance (non-adaptively) and needs to
find a false positive element using oracle access to the Bloom filter (adaptively).
This test allows us to evaluate the “power” of adaptive queries.

We formalize this by defining a game, SemiAdaptiveGameA,t(λ). This is done
in a fashion similar to AdaptiveGameA,t(λ): we consider a polynomial-time adver-
sary A = (A1,A2) that consists of two parts: A1 chooses the set S and commits
to t distinct queries x1, . . . , xt, and A2 gets as input the set S, the queries
x1, . . . , xt and oracle access to the query algorithm (initialized with M). A2

aims to find a false positive element among the t queries without querying this
element explicitly.

The semi-adaptive game SemiAdaptiveGameA,t(λ):

1. The adversary A1 is given input 1λ+n log u and outputs a set S ⊂ U of size n
and t distinct queries x1, . . . , xt .11

2. B1 is given input
(
1λ+n log u, S

)
and builds a representation M .

3. The adversary A2 is given input
(
1λ+n log u, S, (x1, . . . , xt)

)
and oracle access

to B2(M, ·). For i ∈ [t]:
(a) A2 chooses one of the following: bet on xi to be a false positive or query

B2(M,xi). If A2 choose to bet, then x∗ ← xi and the game is stopped.
Else, she continues.

4. x∗ ← xt

5. The result of the game is 1 if x∗ /∈ S and B2(M,x∗) = 1, and 0 otherwise.
If SemiAdaptiveGameA,t(λ) = 1, we say that A made the Bloom filter fail.

10 Note that we count the number of false positives without duplicates to not over-credit
the adversary.

11 For convenience, we treat the set of queries as an ordered set. The order can be
determined by the adversary when she queries B2.

Bet-or-Pass: Adversarially Robust Bloom Filters 795

Definition 12 (Semi-Adaptive Prediction Resilient). Let B = (B1,B2)
be an (n, ε)-Bloom filter. We say that B is an (n, t, ε)-semi adaptive prediction
resilient Bloom filter if for every probabilistic polynomial-time adversary A =
(A1,A2) there exits a negligible function negl such that:

Pr
[
SemiAdaptiveGameA,t(λ) = 1

] ≤ ε + negl(λ).

Note that we allow the adversary to repeat queries in all the mentioned above
definitions, though repeated queries are not counted. We are only interested in
its ability to find “fresh” false positive elements, as opposed to [2] where the
Bloom filter false-positive rate has to be at most ε even if an adversary repeat
the same query t times. The latter guarantee forces the Bloom filter to update its
internal state after each query, while in our case, it is unnecessary but allowed.

4 Relationships Between the Various Notions
of Robustness

In Sect. 3 we defined five different robustness tests. This section shows the rela-
tionships between them: which test gives us the most robust Bloom filter and
which are the weakest tests. As we shall see, the most desirable notion for a
robust Bloom filter is that of Bet-or-Pass. This notion satisfies our desired three
requirements: first, it is sufficient, meaning it satisfies the security requirements.
Second, it is not too strong: we present a construction of a Bloom filter satisfying
the Bet-or-Pass definition. Finally, it is easy to use: it is formalized as a simple
test for a Bloom filter.

4.1 Implications

We begin by showing which definition implies which (see Fig. 2). All the impli-
cations are true in the strong way; that is if Test1 implies Test2 then a Bloom
filter is strongly Test1 resilient is also strongly Test2 resilient. We present
our results considering a polynomial-time adversary; however, they also apply
against unbounded adversaries if t is known in advance.

BP Test Resilience Monotone Test Resilience

AB Test Resilience

Semi-Adaptive Prediction Resilience Expected Count Test Resilience

2

1

5

4

3

Fig. 2. Tests’ implications

796 M. Naor and N. Oved

The BP Test

Theorem 1. Let 0 < ε < 1 and n ∈ N. Let B be an (n, ε)-strongly BP test
resilient Bloom filter. Then B is an (n, ε)-strongly AB test resilient Bloom filter.

Proof. Appears in the proof of Claim 1.

Theorem 2. Let 0 < ε < 1 and n ∈ N. Let B be an (n, ε)-strongly BP test
resilient Bloom filter. Then B is also (n, ε)-strongly monotone test resilient.

Proof. Suppose, towards contradiction, that B is not an (n, ε)-strongly monotone
test resilient Bloom filter. There exists a monotone probabilistic polynomial-time
test D and probabilistic polynomial-time adversary A performing t ≤ poly(λ, n)
queries such that D distinguish GA, the vector indicating whether a false positive
occurred or not, from the biased independent sequence Bε; that is, for some
polynomial p and infinitely many λ’s,

Pr
S∈GA

[D(S) = 1] − Pr
Sε∈Bε

[D(Sε) = 1] ≥ 1
p(λ)

(2)

For each λ satisfying Eq. (2), recall that t ≤ q(λ) for some polynomial q. We
define t+1 hybrids. The i-th hybrid (i = 0, 1, . . . , t), denoted Hi

λ, consists of the
i-bit long prefix of GA followed by the (t − i)-bit long suffix of Bε.

Claim 2. There exists i∗ ∈ {1, . . . , t} such that

Pr
S∈Hi∗

λ

[D(S) = 1] − Pr
S∈Hi∗−1

λ

[D(S) = 1] ≥ 1
p(λ) · t

. (3)

Proof. The proof is immediate by Eq. (2), the pigeonhole principle and the
definition of the hybrids. In particular, we use the fact that Ht

λ = GA and
H0

λ = Bε.

We now define an adversary ABP for the BP test. For simplicity of the analysis,
we assume that ABP knows i∗. The idea is that monotonicity implies that an
adversary can know when to bet. ABP produce a (i∗ − 1)-bit long prefix using
A’s queries and a (t − i∗ − 1)-bit long suffix that contains random biased bits.
Then, she gives the distinguisher the concatenated sequence twice: one time when
there is 0 in the i∗-th index and one time where there is 1. If the distinguisher is
sensitive to this change, then ABP chooses to bet on xi∗ . Otherwise, she passes.

Adversary ABP

1. Set i = i∗

2. Run A for i − 1 queries x1, . . . , xi−1. For each j ∈ [i − 1] let yj = B(S, xj).
3. Select ri+1, . . . , rt independently with bias ε in {0, 1} (Pr[rj = 1] = ε).
4. If D(y1, . . . , yi−1, 1, ri+1, . . . , rt)
= D(y1, . . . , yi−1, 0, ri+1, . . . , rt), then bet

b = 1 and output A’s ith query xi.
5. Else, pass: b = 0 (meaning, the adversary does not bet in any round)

Bet-or-Pass: Adversarially Robust Bloom Filters 797

To analyze the success of ABP define two sets of sequences from {0, 1}t−1.
The first one is BETi which is defined as

{y1, . . . , yi−1, ri+1, . . . , rt|D(y1, . . . , yi−1, 1, ri+1, . . . , rt) �= D(y1, . . . , yi−1, 0, ri+1, . . . , rt)}

and the second one is ONEi which is defined as

{y1, . . . , yi−1, ri+1, . . . , rt|D(y1, . . . , yi−1, 1, ri+1, . . . , rt) = D(y1, . . . , yi−1, 0, ri+1, . . . , rt) = 1}.

By the monotonicity of D we have that if

D(y1, . . . , yi−1, 1, ri+1, . . . , rt)
= D(y1, . . . , yi−1, 0, ri+1, . . . , rt),

then D(y1, . . . , yi−1, 1, ri+1, . . . , rt) = 1 and D(y1, . . . , yi−1, 0, ri+1, . . . , rt) = 0.
Using this notation we have:

Pr
S∈Hi∗

λ

[D(S) = 1] = Pr[y1, . . . , yi∗−1, ri∗+1, . . . , rt ∈ BETi∗ ∧ xi∗ is FP]

+ Pr[y1, . . . , yi∗−1, ri∗+1, . . . , rt ∈ ONEi∗]

and,

Pr
S∈Hi∗−1

λ

[D(S) = 1] = ε · Pr[y1, . . . , yi∗−1, ri∗+1, . . . , rt ∈ BETi∗]

+ Pr[y1, . . . , yi∗−1, ri∗+1, . . . , rt ∈ ONEi∗],

where the probabilities are over the internal randomness of B and A and the
biased coin flips. Combining the above with Eq. (3) we get:

1
p(λ) · t

≤ Pr
S∈Hi∗

λ

[D(S) = 1] − Pr
S∈Hi∗−1

λ

[D(S) = 1]

= Pr[y1, . . . , yi∗−1, ri∗+1, . . . , rt ∈ BETi∗ ∧ xi∗ is FP]
− ε · Pr[y1, . . . , yi∗−1, ri∗+1, . . . , rt ∈ BETi∗].

Hence we get that the probability that ABP bets is non-negligible:

Pr[b = 1] = Pr[y1, . . . , yi∗−1, ri∗+1, . . . , rt ∈ BETi∗] ≥ 1
p(λ) · t · (1 − ε)

,

and the probability that ABP outputs a false positive element, when she bets,
is noticeably greater than ε:

Pr[xi∗ is FP | b = 1] = Pr[xi∗ is FP | y1, . . . , yi∗−1, ri∗+1, . . . , rt ∈ BETi∗]

=
Pr[xi∗ is FP ∧ y1, . . . , yi∗−1, ri∗+1, . . . , rt ∈ BETi∗]

Pr[y1, . . . , yi∗−1, ri∗+1, . . . , rt ∈ BETi∗]

≥ 1
p(λ) · t

+ ε.

Therefore the expected profit of ABP is noticeably greater then 0, as desired.

798 M. Naor and N. Oved

The AB Test

Theorem 3. Let 0 < ε < 1 and n ∈ N. Let B be an (n, ε)-strongly AB test
resilient Bloom filter. Then B is also (n, ε)-expected count test resilient.

Proof. Let 0 < ε < 1, n ∈ N and let B be an (n, ε)-strongly AB test resilient
Bloom filter. Assume, for contradiction, that B is not an (n, ε)-strongly expected
count test resilient. Meaning there exists a PPT adversary A that makes at most
t ≤ poly(λ, n) queries, a polynomial p(·) such that for infinitely many λ’s

E[#FPt] ≥ ε · t +
1

p(λ)
.

For convenience we assume that the queries were distinct. We use A to build an
adversary A′ that causes B to fail in the (n, t, ε)-AB test.

Adversary A′

1. Choose a random number j ∈ [t].
2. Runs A for j − 1 queries using oracle access to B.
3. Output xj .

Observe that

E[#FPt] = E

[
t∑

i=1

1{xi is FP}

]

=
t∑

i=1

Pr[xi is FP].

Then,

Pr[ABTestA′,t(λ) = 1] =
∑t

i=1 Pr[xi is FP]
t

≥ ε +
1

p(λ)t
≥ ε +

1
q(λ)

,

for some polynomial q(·), where in the last inequality we used the fact that
t ≤ poly(λ, n).

Theorem 4. Let 0 < ε < 1 and n ∈ N. Let B be an (n, ε)-strongly AB
test resilient Bloom filter. Then B is an (n, ε)-strongly semi-adaptive prediction
resilient.

Proof. Immediate by definition: semi-adaptive prediction resilience is a special
case of the AB test with non-adaptive queries.

Monotone Tests

Theorem 5. Let 0 < ε < 1 and n ∈ N. Let B be an (n, ε)-strongly mono-
tone test resilient Bloom filter. Then B is an (n, ε)-strongly expected count test
resilient.

Bet-or-Pass: Adversarially Robust Bloom Filters 799

Proof. Let 0 < ε < 1, n ∈ N and let B be an (n, ε)-strongly monotone test
resilient Bloom filter. Assume, for contradiction, that B is not an (n, ε)-strongly
expected count test resilient. Meaning there exists a PPT adversary A that
makes at most t ≤ poly(λ, n) queries , a polynomial p(·) such that for infinitely
many λ’s

E[#FPt] ≥ ε · t +
1

p(λ)
.

Therefore, there must exist 1 ≤ j ≤ t s.t. for infinitely many λ’s

Pr[xj is FP] ≥ ε +
1

p(λ)t
≥ ε +

1
q(λ)

.

where in the right inequality we used the fact that t ≤ poly(λ, n). For every
j ∈ [t], we define a monotone test,

Dj =

{
1, if the j-th index in the sequence is 1,
0, else.

We show that B fails the test Dj , meaning it is not an (n, ε)-strongly monotone
test resilient Bloom filter. Indeed,

Pr
S∈GA

[Dj(S) = 1] − Pr
Sε∈Bε

[Dj(Sε) = 1] ≥ ε +
1

q(λ)
− ε =

1
q(λ)

,

as desired.

4.2 Separations

BP Test Resilience Monotone Test Resilience

AB Test Resilience

Semi-Adaptive Prediction Resilience Expected Count Test Resilience

/6 /
7

/10 /
9

/
8

Fig. 3. Tests’ separations

We now show the separations between the various notions, as described in Fig. 3;
that is, to show a separation between Test1 and Test2 we present a construction
of a Bloom filter that is strongly Test1 resilient but is not strongly Test2 resilient.

800 M. Naor and N. Oved

AB Test

Theorem 6. Let 0 < ε < 1 and n ∈ N, then for any 0 < δ < 1 and for large
enough u:

1. Assuming the existence of one-way functions, then there exists a non-trivial
Bloom filter B that is an (n, ε)-strongly AB test resilient and is not an (n, δ)-
strongly BP test resilient.

2. If t is known in advance, then there exists a non-trivial Bloom filter B that
is an (n, t, ε)-AB test resilient and is not an (n, t, δ)-BP test resilient.

Proof. Let 0 < ε < 1, 0 < ε1 < ε, n ∈ N. First, assume that t is unknown and
unbounded. To have an (n, ε1)-strongly AB test resilient Bloom filter, we need to
use Naor and Yogev construction that uses one-way functions-using that, and we
have a Bloom filter B that is an (n, ε1)-strongly AB test resilient. Let ε2 = ε−ε1

1−ε1
.

We consider the following Bloom filter B′:

B′(S, ·) ≡
{

1, w.p. ε2,

B(S, ·), w.p. 1 − ε2.

That is, in the setup phase B′ flips a coin with bias ε2 to decide whether it
always answers 1 (regardless of the input) or always answers as B. We use the
notation “≡” to denote the result of that coin toss. Let ε = ε2 + (1 − ε2) · ε1.
The probability of false positive in B′ equals ε; meaning B′ is an (n, ε)-Bloom
filter. Moreover, for all t ≤ poly(λ, n), B′ is resilient to the (n, t, ε)-AB test:

Pr[ABTestA,t(λ) = 1] = Pr[x∗ is false positive]

= Pr
[
B′(S, ·) ≡ 1 ∨ B′(S, x∗) ≡ B(S, x∗) = 1

]

≤ ε2 + ε1 · (1 − ε2) = ε,

where in the inequality we used the fact that B is an (n, ε1)-strongly AB test
resilient. We show that B is not an (n, δ)-strongly BP test resilient for any
0 < δ < 1. Let t ≤ poly(λ, n) and 0 < δ < 1. We describe an adversary A that
causes B′ to fail in the (n, t, δ)-BP test. A queries random elements in U \ S to
check whether we are in the “all 1” case where all the elements are false positive.
If all the queries are indeed false positives, then with high probability, we are
in the “all 1” case and A bets on a random element. Otherwise, she passes.
Formally,

Adversary A
1. Choose a random set S ⊂ U of size n.
2. For i ∈ [t]:

(a) Query independent random elements xi ∈ U \ S.
3. If for all i ∈ [t]: B′(S, xi) = 1 (i.e., all the queried elements are false positive),

choose a random element x∗ and output (b = 1, x∗) (bet).
4. Otherwise, set b = 0 (pass).

Bet-or-Pass: Adversarially Robust Bloom Filters 801

First, note that the probability that A bets is non-negligible:

Pr[A bets] ≥ Pr
[A bets | B′ ≡ 1

] · Pr
[
B′ ≡ 1

] ≥ 1 · ε2.

Now, assume that A chooses to bet (i.e., all the queries in step 2 are false-
positive elements). Consider the following three cases:

1. We are in the “all 1” case. In this case, the profit is 1/δ.
2. We are not in the “all 1” case, and the false positive rate is greater or equal

to δ. In this case, the profit is non-negative.
3. Otherwise, the profit is negative, but this happens with probability at most

δt (which is a very small probability for sufficiently large t)12.

Summing up the above cases, we get that the expected profit of A is noticeably
greater than zero13, meaning B is not an (n, δ)-strongly BP test resilient.

If t is known in advance, we use Naor and Yogev construction of Bloom
filter that is resilient to the (n, t, ε1)-AB test against unbounded adversaries.
The above proof holds for this specific t.

Theorem 7. Let 0 < ε < 1 and n ∈ N, then for any 0 < δ < 1 and for large
enough u:

1. Assuming the existence of one-way functions, then there exists a non-trivial
Bloom filter B that is an (n, ε)-strongly AB test resilient and is not an (n, δ)-
strongly monotone test resilient.

2. If t is known in advance, then there exists a non-trivial Bloom filter B that
is an (n, t, ε)-AB test resilient and is not an (n, t, δ)-monotone test resilient.

Proof. Let 0 < ε < 1, 0 < ε1 < ε and n ∈ N. We use the Bloom filter B′ defined
in the proof of Theorem 6. We show that B′ is not monotone test resilient for
any 0 < δ < 1 by proving it fails the FP’s count distinguisher, denoted by
Dw (for some w < t). Recall,

Dw =

{
1, if #1 in the input sequence is greater thanw,

0, otherwise.

We define the adversary A as follow:

Adversary A
1. Choose a random set S ⊂ U of size n.
2. For i ∈ [t]:

12 Any (n, ε) Bloom filter is robust when the number of queries is small: if t is much
less than 1/ε then we do not expect the adversary to see any false positives, and
hence we can consider the queries as chosen in advance. Therefore, if t is not large
enough, it is not interesting.

13 We want δt < ε2 leading to u > t > logδ ε2.

802 M. Naor and N. Oved

(a) Query independent random elements xi ∈ U \ S.

Observe that with probability at least ε2 A can achieve as many false positives
as she wants (w.p. ε2 all the queries are false positives). Meaning for any t ≤
poly(λ, n) we have

Pr
S∈GA

[Dt−1(S) = 1] = Pr[#FPt > t − 1] ≥ ε2.

On the other hand, for any 0 < δ < 1:

Pr
Sδ∈Bδ

[Dt−1(Sδ) = 1] = δt

Therefore,

Pr
S∈GA

[Dt−1(S) = 1] − Pr
Sδ∈Bδ

[Dt−1(Sδ) = 1] ≥ ε2 − δt ≥ 1
p(λ)

,

for some polynomial p(·) and sufficiently large t.

Expected Count Test

Theorem 8. Let 0 < ε < 1 and n ∈ N, then for any 0 < δ < 1 and for large
enough u: There exists a Bloom filter B that is an (n, ε)-strongly expected count
test resilient, and is not an (n, δ)-strongly semi-adaptive prediction resilient.

Proof. Let 0 < ε < 1, n ∈ N and a set S of size n. Let ε1 ≤ ε
2−ε s.t. 1

ε1
∈ N. We

partition the universe into disjoint blocks of size b := 1
ε1

. Let B be a Bloom filter
that stores the set S explicitly (we can modify the construction to work for non-
trivial Bloom filters as well). We add “synthetic” false-positive elements to B in
the following way: each block has exactly one false positive element (resulting
in a false positive probability of ε1 for random queries). In order to determine
which element is positive in each set, we use a pseudorandom function14 PRF.
The PRF gets as input the block name and outputs the positive element in the
block.

As we shall see, the resulting Bloom filter B is an (n, ε)-strongly expected
count test resilient. We first claim that the best strategy for an adversary in
order to increase the expected number of false positives is querying each block
until she finds the false positive. Consider an adversary A following this strategy
and focus on one block. The expected number of queried elements until finding
the false positive is b+1

2 . Assume A queries t′ blocks (where t′ � b). The false
positive rate in this sequence is (with high probability):

t′

t′ · b+1
2

=
2

b + 1
=

2ε1
1 + ε1

= ε.

14 A pseudorandom function (PRF) is a keyed function F such that Fk (for key k chosen
uniformly at random) is indistinguishable from a truly random function given only
oracle access to the function. See Goldreich [13].

Bet-or-Pass: Adversarially Robust Bloom Filters 803

Now, consider an adversary A′ that uses a different strategy, i.e., she queries
blocks and might move on to another block before finding the false positive. Let
A′′ be an adversary that follows A′’s strategy with a slight change: every time
A′ moves on to another block before finding the false-positive, A′′ continues
querying this block until she finds the false positive. Intuitively, it is better to
keep querying an “open” block since we are left with fewer elements. Formally,
let us look at all the queries A′′ added when continuing querying a block. They
are divided into blocks of size at most b − 1. Hence, the false-positive rate in
these added queries, similarly to the above computation, is at least 2ε1 > ε.
Now, consider the rest of A′’s queries. They either contain blocks that a false
positive was found in them or blocks with no false positive. As shown above,
the expected number of queried elements before finding a false positive is b+1

2 .
Assume that there are t1 blocks that a false positive was found in them and t2
blocks with no false positive. In each block, we query at least one element hence
the false positive rate in these queries is at most

t1

t1 · b+1
2 + t2

<
t1

t1 · b+1
2

= ε.

Since 2ε1 > ε, we get that A can only improve the expected number of false
positives of A′, as desired.

We conclude that the expected number of false positives in t queries is at
most εt, as desired.

On the other hand, B is not an (n, ε)-strongly semi-adaptive prediction
resilient. Let A be an adversary querying p(λ) blocks, for some polynomial p(·);
that is, she performs t = p(λ) · 1

ε1
queries. She acts as follows: she queries each

block separately. When she gets the response of the Bloom filter on an entire
block except for one element and does not see any false positive, she bets on the
remaining element. Therefore,

Pr
[
SemiAdaptiveGameA,t(λ) = 1

]
= 1 − (1 − ε1)

t ≥ 1 − 1
q(λ)

≥ δ +
1

s(λ)
,

for any 0 < δ < 1, sufficiently large λ and some polynomials q(·), s(·).
Theorem 9. Let 0 < ε < 1 and n ∈ N, then for any 0 < δ < 1 and for large
enough u: There exists a Bloom filter B that is an (n, ε)-strongly expected count
test resilient , and is not an (n, δ)-strongly AB test resilient.

Proof. Follows from the proof of Theorem 8.

Semi-adaptive Prediction Resilient

Theorem 10. Let 0 < ε < 1 and n ∈ N, then for any 0 < δ < 1 and for large
enough u:

1. Assuming the existence of one-way functions, there exists a non-trivial Bloom
filter B that is an (n, ε)-strongly semi-adaptive prediction resilient and is not
an (n, δ)-strongly AB test resilient.

804 M. Naor and N. Oved

2. If t is known in advance and sufficiently large, there exists a non-trivial Bloom
filter B that is an (n, t, ε)-semi-adaptive prediction resilient and is not an
(n, t, δ)-AB test resilient.

The proof appears in the full version and is omitted due to space limitations.

4.3 Conclusions

We showed that if a Bloom filter is resilient to the BP test, it is resilient to all
monotone tests. At the same time, this does not necessarily hold for a Bloom
filter that is resilient to the AB test, demonstrating that the AB test can miss
“bad” events such as clusters of false positives. We also proved that the BP
test implies the AB test. Altogether we highlight the notion of Bet-or-Pass as
capturing the desired properties of a robust Bloom filter.

5 Computational Assumptions and One-Way Functions

5.1 Constructions of BP Resilient Filters Using One-Way Functions

What we know so far:

The black arrows are existential equivalence and the blue arrows are definition
implication (with the same parameters) or separation. Therefore, if one-way
functions do not exist, any non-trivial Bloom filter fails the BP test. We show
that the existence of one-way functions also implies BP test resilient Bloom
filters. For that, we show a construction of a Bloom filter that is strongly BP
test resilient using one-way functions.

Pseudorandom Functions. A pseudorandom function (PRF) is an efficiently com-
putable, keyed function F that is indistinguishable from a truly random function
(given only oracle access to the function). A pseudorandom permutation (PRP)
is a pseudorandom function such that F is a permutation and can be both effi-
ciently computable and efficiently invertible.

We can construct pseudorandom function from any (length-doubling) pseu-
dorandom generators [14], which in turn can be based on one-way functions.
In addition, we can obtain a pseudorandom permutations from pseudorandom
functions (i.e., using Luby-Rackoff construction [19,22]).

Constructing BP Test Resilient Bloom Filters. Our starting point is the trans-
formation presented by Naor and Yogev. Assuming the existence of one-way
functions they showed that any Bloom filter could be efficiently transformed
into an (n, ε)-strongly AB test resilient Bloom filter using approximately the
same amount of memory. The idea is simple: adding a layer of a pseudorandom

Bet-or-Pass: Adversarially Robust Bloom Filters 805

permutation. That is, on input x, we compute a pseudorandom permutation of
x and send it to the original Bloom filter. The main idea is that we make the
queries look random by applying a pseudorandom permutation. Therefore an
adversary has no significant advantage in choosing the queries adaptively. Note
that the correctness properties remain when using the permutation. We ask if
the above transformation also yields an (n, ε)-strongly BP test resilient Bloom
filter. However, unlike the AB test, the BP test allows an adversary to pass. This
gives rise to two potential attacks:

1. Assume that with some non-negligible probability, all the elements in the uni-
verse (excluding the set S) are false positives (e.g., the Bloom filter presented
in separation Theorem 6). Applying a pseudorandom permutation, in that
case, will make no difference; the adversary presented in separation Theorem
6 can still make this Bloom filter to fail the BP test even after adding the
PRP layer.

2. The universe is of polynomial size, i.e., |u| = poly(λ) and there exists an
attacker that knows the exact number of false positives in the universe (this
is not an unreasonable property of some constructions). In this case, the
attack includes the adversary querying the entire universe U except for one
element x∗. Based on the number of false positives she has seen so far, she
knows with high probability if x∗ is a false positive or not and chooses to bet
or pass accordingly.

Therefore, we cannot use the transformation of Naor and Yogev when construct-
ing a BP test resilient Bloom filter.15

Apart from the above mentioned transformation, Naor and Yogev presented
a construction of a Bloom filter B that is an (n, t, ε)-AB test resilient against
an unbounded adversary and a given number t of queries, for any n, t ∈ N and
0 < ε < 1/2. As we shall see, this construction is actually also good for the
BP-test (when the adversary is limited to t queries), i.e. B is also an (n, t, ε)-BP
test resilient for any n, t ∈ N and 0 < ε < 1/2.

We use this construction with a slight change to yield a Bloom filter B′

against a computationally bounded adversary when t is not necessarily known
and can be unbounded.

We start by presenting Naor and Yogev’s construction (which in turn builds
on Carter et al. [7]). They suggested to use a Cuckoo Hashing implementation of
dictionary [25,26] to store the set. Roughly speaking, Cuckoo Hashing consists of
two tables T1 and T2 and two hash functions h1 and h2. Each element x is stored
in either T1[h1(x)] or T2[h2(x)]. Instead of storing x in those locations, the value
of an unpredictable (in the sense described below) function g at point x (i.e.
g(x)) is stored at either T1[h1(x)] or T2[h2(x)] (see Fig. 4). When doing a lookup
of x the values stored in T1[h1(x)] and T2[h2(x)] are retrieved and compared to
g(x) and a yes is returned iff at least one of them is equal to g(x). The range of
g should be about 2

ε .
15 It may be possible to modify the transformation to yield a BP test resilient Bloom

filter; for instance, we can test if we are in case 1 and reselect the random bits or
combat case 2 by adding as noise false positives. We will explore it in future work.

806 M. Naor and N. Oved

Fig. 4. Bloom filter via cuckoo hashing

For the function g : U �→ V , they used a very high independence function.
More formally, they used a family G of hash functions satisfying that on any
set of k inputs, it behaves like a truly random function with high probability
(based on the work of [24], and [10]). Note that the guarantee of the function still
holds even when the set of queries is chosen adaptively, as shown by Berman
et al. [3]. To reduce the memory size further, they use the family G slightly
differently. Let � = O

(
log 1

ε

)
, and set k = O

(
t
�

)
. They chose a family G of

functions gi that outputs a single bit (i.e., V = {0, 1}) and defined g to be the
concatenation of � independent gi functions. Given a query x, they compare
g(x) to the appropriate entries, bit by bit. If the first two bits are equal, they
continue to the next bit in a cyclic order. Consider an adversary performing
t queries. Naor and Yogev showed that even though the adversary performs t
queries, each of the � different functions gi takes part in at most O(t/�) = k
queries (with high probability). Hence, each function gi still “looks” random on
the queried elements. Therefore, we get a Bloom filter B that is AB test resilient
for t queries and uses O

(
n log 1

ε + t
)

bits of memory.
The security of the scheme is based on the randomness properties of g. Even

if all the values in the tables that have ever been used are known to the adversary
(including the functions h1 and h2), the value of g(x) is unknown and is uniform
in its range. Therefore the probability that it is equal to the value stored in
T1[h1(x)] or T2[h2(x)] is at most 2 · (1/2)� ≤ ε/2. Transforming from exact k-
wise independence to almost k-wise independence adds an error probability of
ε/2. Thus, the probability that x is a false positive is at most ε. This proves that
the construction is AB test resilient.

But this also means that there is no hint that a success is coming, i.e. that for
the queried x the value g(x) is going to be equal to the values stored in locations
h1(x) and h2(x). The only possible problem could be that more than O(t/�) = k
queries involve some gi, but this happens with probability exponentially small
in k. So we conclude that we can use this for the BP-test as well. Therefore, we
get the following corollary:

Bet-or-Pass: Adversarially Robust Bloom Filters 807

Corollary 1. For any n, t ∈ N, universe of size u ∈ N and 0 < ε < 1/2 there
exists an (n, t, ε)-BP test resilient Bloom filter (against unbounded adversaries
and t known in advance) that uses O

(
n log 1

ε + t
)

bits of memory. In fact, let
B be a Bloom filter as described above. Then for any constant 0 < ε < 1/2, B
is an (n, t, ε)-BP test resilient Bloom filter against unbounded adversaries, that
uses m bits of memory where m = O

(
n log 1

ε + t
)
.

Note that t needs to be known in advance in this construction (to set k and
choose appropriate G).

To get a Bloom filter B′ that is an (n, ε)-strongly BP test resilient, we will
modify this construction a bit. The idea is simple: for the function g, we use a
family of pseudorandom functions. Now, we do not need to set k and the view
of g remains random and unpredictable on any set of queried elements (of any
size). If the resulting Bloom filter is not a BP-test resilient, then this test can be
used to distinguish the PRF from a truly random function. We conclude with
the following theorem that we have just proved:

Theorem 11. Assuming the existence of one-way functions, then for any n ∈
N, universe of size n < u ∈ N, and 0 < ε < 1/2 there exists a Bloom filter that
is an (n, ε)-strongly BP test resilient and uses O

(
n log 1

ε + λ
)

bits of memory.
In fact, let B′ be a Bloom filter as constructed above. Then for any constant
0 < ε < 1/2, B′ is an (n, ε)-strongly BP test resilient and uses O

(
n log 1

ε + λ
)

bits of memory.

Note that it is not known whether replacing the hash functions with a PRF
in the standard construction of Bloom filters (i.e. the one in the style of Bloom’s
original one [4]) results in a Bloom filter that is BP test resilient.

Acknowledgment. We would like to thank the anonymous reviewers for their insight-
ful comments and suggestions.

References

1. Ben-Eliezer, O., Jayaram, R., Woodruff, D.P., Yogev, E.: A framework for adver-
sarially robust streaming algorithms. SIGMOD Rec. 50(1), 6–13 (2021)

2. Bender, M.A., Farach-Colton, M., Goswami, M., Johnson, R., McCauley, S., Singh,
S.: Bloom filters, adaptivity, and the dictionary problem. In: FOCS, pp. 182–193.
IEEE Computer Society (2018)

3. Berman, I., Haitner, I., Komargodski, I., Naor, M.: Hardness-preserving reductions
via cuckoo hashing. J. Cryptol. 32(2), 361–392 (2019)

4. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970)

5. Blum, M., Micali, S.: How to generate cryptographically strong sequences of
pseudo-random bits. SIAM J. Comput. 13(4), 850–864 (1984)

6. Boyle, E., LaVigne, R., Vaikuntanathan, V.: Adversarially robust property-
preserving hash functions. In: ITCS. LIPIcs, vol. 124, pp. 16:1–16:20. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2019)

808 M. Naor and N. Oved

7. Carter, L., Floyd, R.W., Gill, J., Markowsky, G., Wegman, M.N.: Exact and
approximate membership testers. In: STOC, pp. 59–65. ACM (1978)

8. Clayton, D., Patton, C., Shrimpton, T.: Probabilistic data structures in adversarial
environments. In: CCS, pp. 1317–1334. ACM (2019)

9. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley,
Hoboken (2006)

10. Dietzfelbinger, M., Woelfel, P.: Almost random graphs with simple hash functions.
In: STOC, pp. 629–638. ACM (2003)

11. Earman, J.: A user’s guide to the surprise exam paradoxes, July 2021. http://
philsci-archive.pitt.edu/19303/

12. Fan, L., Cao, P., Almeida, J.M., Broder, A.Z.: Summary cache: a scalable wide-area
web cache sharing protocol. IEEE/ACM Trans. Netw. 8(3), 281–293 (2000)

13. Goldreich, O.: The Foundations of Cryptography - Volume 1: Basic Techniques.
Cambridge University Press, Cambridge (2001)

14. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986)

15. Hardt, M., Woodruff, D.P.: How robust are linear sketches to adaptive inputs? In:
STOC, pp. 121–130. ACM (2013)

16. Hassidim, A., Kaplan, H., Mansour, Y., Matias, Y., Stemmer, U.: Adversarially
robust streaming algorithms via differential privacy. In: NeurIPS (2020)

17. Kaplan, H., Mansour, Y., Nissim, K., Stemmer, U.: Separating adaptive streaming
from oblivious streaming using the bounded storage model. In: Malkin, T., Peikert,
C. (eds.) CRYPTO 2021. LNCS, vol. 12827, pp. 94–121. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-84252-9 4

18. Lee, D.J., McCauley, S., Singh, S., Stein, M.: Telescoping filter: a practical adaptive
filter. In: ESA. LIPIcs, vol. 204, pp. 60:1–60:18. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2021)

19. Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseu-
dorandom functions. SIAM J. Comput. 17(2), 373–386 (1988)

20. Micciancio, D., Walter, M.: On the bit security of cryptographic primitives. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part I. LNCS, vol. 10820, pp.
3–28. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9 1

21. Mitzenmacher, M., Pontarelli, S., Reviriego, P.: Adaptive cuckoo filters. ACM J.
Exp. Algorithmics 25, 1–20 (2020)

22. Naor, M., Reingold, O.: On the construction of pseudorandom permutations: Luby-
Rackoff revisited. J. Cryptol. 12(1), 29–66 (1999)

23. Naor, M., Yogev, E.: Bloom filters in adversarial environments. ACM Trans. Algo-
rithms 15(3), 35:1–35:30 (2019). (prelim version Crpyto 2015)

24. Pagh, A., Pagh, R.: Uniform hashing in constant time and optimal space. SIAM
J. Comput. 38(1), 85–96 (2008)

25. Pagh, R.: Cuckoo hashing. In: Kao, M.-Y. (ed.) Encyclopedia of Algorithms, pp.
212–215. Springer, Boston (2008). https://doi.org/10.1007/978-0-387-30162-4 97

26. Pagh, R., Rodler, F.F.: Cuckoo hashing. J. Algorithms 51(2), 122–144 (2004)
27. Schrift, A.W., Shamir, A.: On the universality of the next bit test. In: Menezes,

A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 394–408. Springer,
Heidelberg (1991). https://doi.org/10.1007/3-540-38424-3 29

28. Woodruff, D.P., Zhou, S.: Tight bounds for adversarially robust streams and sliding
windows via difference estimators. CoRR abs/2011.07471 (2020)

29. Yao, A.C.: Theory and applications of trapdoor functions (extended abstract). In:
FOCS, pp. 80–91. IEEE Computer Society (1982)

http://philsci-archive.pitt.edu/19303/
http://philsci-archive.pitt.edu/19303/
https://doi.org/10.1007/978-3-030-84252-9_4
https://doi.org/10.1007/978-3-319-78381-9_1
https://doi.org/10.1007/978-0-387-30162-4_97
https://doi.org/10.1007/3-540-38424-3_29

Author Index

Abdolmaleki, Behzad I-143
Abraham, Ittai I-384
Acharya, Anasuya II-502
Aggarwal, Divesh I-327
Agrawal, Shweta I-618, I-711
Agrikola, Thomas II-685
Akavia, Adi II-70
Alamati, Navid I-266
Alon, Bar II-532
Ananth, Prabhanjan I-237
Ando, Megumi II-715
Applebaum, Benny II-103
Arnon, Gal I-447
Asharov, Gilad I-384
Attema, Thomas I-113, I-173

Badrinarayanan, Saikrishna II-181
Bangalore, Laasya I-417
Bauer, Balthazar III-212
Ben-David, Shany III-3
Ben–Sasson, Eli I-467
Bhadauria, Rishabh I-417
Bhangale, Amey I-447
Bhushan, Kaartik II-408
Bienstock, Alexander II-213
Bitansky, Nir II-593
Blocki, Jeremiah I-52
Bogdanov, Andrej II-565
Boyle, Elette II-121
Branco, Pedro II-33
Brandt, Nicholas II-747

Carmon, Dan I-467
Cascudo, Ignacio I-173
Catalano, Dario II-274
Chan, Benjamin III-151
Chiesa, Alessandro I-447
Choi, Seung Geol II-348
Choudhuri, Arka Rai II-593
Christ, Miranda II-715
Chung, Eldon I-327
Ciampi, Michele II-300

Couteau, Geoffroy II-121, II-685
Cramer, Ronald I-173
Cueto Noval, Miguel II-565

Dachman-Soled, Dana II-348
Damgård, Ivan I-173
Dodis, Yevgeniy II-3, II-213
Don, Jelle I-33
Döttling, Nico I-588, II-33
Dujmović, Jesko II-33

Eldridge, Harry III-121
Eriguchi, Reo III-60
Escudero, Daniel I-173

Farshim, Pooya III-212
Fehr, Serge I-33, I-113
Fiore, Dario II-274
Fleischhacker, Nils I-143
Freitag, Cody II-623, III-151

Garay, Juan III-181
Garg, Rachit I-526
Garg, Sanjam I-588, II-213
Geier, Nathan II-333
Gennaro, Rosario II-274
Gentry, Craig II-70
Giunta, Emanuele II-274
Goel, Aarushi III-121
Gordon, S. Dov II-348
Goyal, Rishab I-711
Goyal, Saumya III-89
Goyal, Vipul I-143
Green, Matthew III-121
Grogan, Garrison II-213
Gulati, Aditya I-237

Hajiabadi, Mohammad II-213
Halevi, Shai II-70, III-33
Harasser, Patrick III-212
Hazay, Carmit I-417, II-502
Hoffmann, Charlotte II-565
Hofheinz, Dennis II-747

810 Author Index

Holman, Blake I-52
Holmgren, Justin II-593
Huang, Yu-Hsuan I-33

Ishai, Yuval II-441, II-470

Jain, Abhishek I-143, III-121
Jost, Daniel II-3

Kachlon, Eliran II-103
Kalai, Yael Tauman III-3
Kamath, Chethan II-593
Karthikeyan, Harish II-3
Kastner, Julia II-747
Khorasgani, Hamidreza Amini II-378
Khurana, Dakshita II-441
Kiayias, Aggelos III-181
Kitagawa, Fuyuki I-618
Klooß, Michael I-113
Kolesnikov, Vladimir II-502
Kopparty, Swastik I-467
Koppula, Venkata II-244
Kurosawa, Kaoru III-60
Kushilevitz, Eyal III-33

Lai, Russell W. F. I-80
Lee, Seunghoon I-52
Levit, David I-467
Li, Hanjun I-680
Lin, Huijia I-680
Liu, Jiahui I-294
Liu, Linsheng II-348
Liu, Qipeng I-294
Lombardi, Alex I-3, II-593
Lu, George II-653
Luo, Ji I-680
Lysyanskaya, Anna I-203, II-715

Mahmoody, Mohammad I-559
Maier, Sven II-685
Maji, Hemanta K. I-355, II-378
Malavolta, Giulio I-80, I-143, I-266
Malkin, Tal II-715
McQuoid, Ian II-151
Meyer, Pierre II-121
Misra, Ankit Kumar II-408
Modi, Anuja I-618
Mook, Ethan I-3

Naor, Moni II-777
Narayanan, Varun II-408, III-89
Nguyen, Hai H. I-355, II-378
Nishimaki, Ryo I-618
Nissenbaum, Olga II-532
Nuida, Koji III-60

O’Neill, Adam III-212
Obremski, Maciej I-327
Omri, Eran II-532
Orsini, Emmanuela II-300
Oved, Noa II-777

Paneth, Omer II-593, III-3
Paskin-Cherniavsky, Anat I-355, II-532
Pass, Rafael II-623, III-151
Patil, Shravani I-384
Patra, Arpita I-384, II-103, II-470, II-532
Patranabis, Sikhar II-181, II-470
Prabhakaran, Manoj II-408, II-502, III-89

Qi, Wei I-559
Qian, Luowen I-237, I-294
Quach, Willy I-3

Rahimi, Ahmadreza I-266, I-559
Ravi, Divya II-470
Ribeiro, João I-327
Rosen, Alon II-565
Rosenbloom, Leah Namisa I-203
Rösler, Paul II-213
Rosulek, Mike II-151
Rothblum, Ron D. II-593

Sahai, Amit II-441
Sarkar, Pratik II-181
Sekar, Sruthi I-588
Shen, Yu III-181
Sheridan, Kristin I-526
Siniscalchi, Luisa II-300
Sirkin, Naomi II-623
Soria-Vazquez, Eduardo I-497
Spooner, Nicholas I-80
Srinivasan, Akshayaram II-441, II-470
Suad, Tom I-355

Tomida, Junichi I-711

Ünal, Akin II-747

Author Index 811

Vald, Margarita II-70
Venkitasubramaniam, Muthuramakrishnan

I-417

Wang, Mingyuan I-355, I-588
Waters, Brent I-526, I-651, II-244, II-653
Wee, Hoeteck I-651
Wichs, Daniel I-3
Wu, David J. I-526, I-651

Xu, Jiayu II-151

Yamada, Shota I-618
Yamakawa, Takashi I-618
Ye, Xiuyu I-355
Yerukhimovich, Arkady II-348
Yogev, Eylon I-447
Yu, Albert I-355
Yuen, Henry I-237

Zhandry, Mark I-294, II-244
Zinkus, Maximilian III-121

	 Preface
	 Organization
	 Contents – Part II
	Encryption
	Forward-Secure Encryption with Fast Forwarding
	1 Introduction
	1.1 Basic Solutions and a New Dimension
	1.2 Our Contributions
	1.3 Related Work

	2 Preliminaries
	3 Fast-Forwarding in the Bulletin Board Model
	3.1 Bulletin Board
	3.2 Fast-Forwardable Stream Ciphers
	3.3 Fast-Forwardable Updatable Public-Key Encryption

	4 Constructing a Fast-Forwardable PRNG
	4.1 The Basic Construction
	4.2 Supporting an Unbounded Number of Epochs

	5 Fast-Forwardable Updatable Public-Key Encryption
	5.1 Update-Homomorphic UPKE
	5.2 Update Graphs
	5.3 A Generic Construction

	6 Conclusions and Open Problems
	References

	Rate-1 Incompressible Encryption from Standard Assumptions
	1 Introduction
	1.1 Our Results
	1.2 Comparison with Previous Work

	2 Technical Overview
	2.1 The Scheme of GWZ
	2.2 The Big Picture
	2.3 Rate-1 Incompressible Symmetric-Key Encryption
	2.4 From Symmetric-Key to Public-Key Incompressible Encryption via Hash Proof Systems
	2.5 Extension to CCA Security

	3 Preliminaries
	3.1 Decisional Diffie-Hellman Assumption
	3.2 Public-Key Encryption
	3.3 HILL-Entropic Encodings

	4 Incompressible Symmetric-Key Encryption
	4.1 Definition
	4.2 Construction

	5 Programmable Hash Proof Systems
	5.1 Definitions
	5.2 Programmable Hash Proof System from DDH
	5.3 2-Smooth Hash Proof System from DDH

	6 Incompressible PKE from Incompressible SKE and HPS
	6.1 CCA Incompressible Encryption
	6.2 Construction

	References

	Achievable CCA2 Relaxation for Homomorphic Encryption
	1 Introduction
	2 Preliminaries
	3 A Sufficient and Achievable Relaxation of CCA2
	3.1 funcCPA-Security: A Sufficient Relaxation of CCA2
	3.2 Sanitized HE Schemes are funcCPA-Secure
	3.3 funcCPA Security of leveled HE Schemes
	3.4 Barriers on Proving funcCPA for Existing HE Schemes

	4 CPA Insufficiency Against Malicious Adversaries
	5 CPA Implies Privacy Against Semi-honest Adversaries
	6 Conclusions
	A Proof of Lemma 2
	References

	Multi-party Computation I
	Round-Optimal Honest-Majority MPC in Minicrypt and with Everlasting Security
	1 Introduction
	1.1 Our Contribution

	2 Technical Overview
	2.1 Main Theorem
	2.2 Strong Honest-Majority MPC with Everlasting Security from OWF

	References

	Sublinear Secure Computation from New Assumptions
	1 Introduction
	1.1 Our Results

	2 Technical Overview
	2.1 Sublinear 2PC for Layered Circuits from Decomposable Batch OT
	2.2 Polylogarithmic PIR from CDH

	3 Sublinear Computation for loglog-Depth Circuits
	3.1 Decomposable Two-Round Batch Oblivious Transfer
	3.2 Instantiation Under QR +LPN, Adapted from ch5EC:BBDP22
	3.3 Bounded Query Repetitions
	3.4 Two-Round Batch SPIR with Correlated Queries
	3.5 Sublinear Computation of loglog-Depth Circuits from corrSPIR
	3.6 Extension to Layered Circuits

	4 Polylogarithmic PIR from CDH
	4.1 Laconic Private Set Intersection
	4.2 From Laconic PSI to Half-PIR
	4.3 From Polylogarithmic Half-PIR to Polylogarithmic PIR

	References

	How to Obfuscate MPC Inputs
	1 Introduction
	1.1 Overview of Our Results
	1.2 Related Work

	2 Preliminaries
	2.1 Idealized Models
	2.2 Obfuscation

	3 Defining io2PC
	3.1 Simulation Rate
	3.2 Server Compromise and Offline Evaluation
	3.3 Preventing Precomputation

	4 io2PC for Random-Oracle-Model Obfuscation
	4.1 Oblivious PRF
	4.2 io2PC Protocol

	5 io2PC for Generic-Group Obfuscations
	5.1 Generic Groups
	5.2 Personalized Generic Group
	5.3 Protocol for Personalized Generic Groups
	5.4 io2PC Protocol for Generic-Group Obfuscation

	6 Compatible Obfuscations
	6.1 Point Functions
	6.2 Hyperplane Membership

	References

	Statistical Security in Two-Party Computation Revisited
	1 Introduction
	1.1 Our Contributions

	2 Technical Overview
	2.1 One-Sided Statistical Two-Party Computation Protocol
	2.2 Constructing Our Ingredients from eOT

	3 Preliminaries
	3.1 Notations
	3.2 Oblivious Transfer Protocols
	3.3 Additional Preliminaries

	4 Three Round Oblivious Transfer Protocols
	4.1 Statistically Receiver Private Indistinguishability-Based OT
	4.2 Three Round Statistically Sender Private OT

	5 One-Sided Statistically Secure 2PC Against Explainable Parties
	5.1 Protocol exp
	5.2 Two Round Statistically Hiding Commitment

	6 One-Sided Statistically Secure 2PC Against Malicious Corruptions
	6.1 Conditional Disclosure of Secrets in the Preprocessing Model
	6.2 Protocol mal

	7 Instantiations of eOT
	References

	Protocols: Key Agreement and Commitments
	On the Worst-Case Inefficiency of CGKA
	1 Introduction
	1.1 Our Results
	1.2 Compact Key Exchange
	1.3 Standard Security of Continuous Group Key Agreement
	1.4 Equivalence of CKE and CGKA Worst-Case Communication Complexity
	1.5 Black-Box Compact Key Exchange Lower Bound
	1.6 No Single Optimal CGKA Protocol Exists
	1.7 Lessons Learned for Practice

	2 Definitions
	2.1 Continuous Group Key Agreement
	2.2 Compact Key Exchange

	3 From CGKA to CKE Tightly
	3.1 Embedding CGKA Ciphertexts in CKE Ciphertexts

	4 CKE Lower Bound from PKE
	4.1 Proof Outline
	4.2 Attack for (CRSGeng, Initg, Comme, Derived)

	5 No Single Optimal CGKA Protocol Exists
	5.1 Bad Sequences of Operations
	5.2 Suboptimality of All CGKA Protocols

	References

	Adaptive Multiparty NIKE
	1 Introduction
	1.1 Prior Work and Motivation
	1.2 Technical Challenges
	1.3 Result Summary
	1.4 Technical Overview
	1.5 Organization

	2 Preliminaries
	2.1 Multiparty NIKE
	2.2 Constrained PRFs

	3 Enhancing Multi-party NIKE
	3.1 Achieving Adversarial Correctness
	3.2 Removing the CRS
	3.3 Adding Shared Key Queries
	3.4 Putting It All Together

	4 The Equivalence of Multiparty NIKE and 1-SF-PRF
	4.1 From 1-SF-PRF to Special Constrained PRF
	4.2 From Special Constrained PRF to Multiparty NIKE with Setup

	5 Construction of 1-SF-PRFs
	5.1 Construction
	5.2 Security Proof

	References

	On the Impossibility of Algebraic Vector Commitments in Pairing-Free Groups
	1 Introduction
	1.1 Our Results
	1.2 Our Techniques
	1.3 Interpretation of Our Impossibility and Further Implications
	1.4 Related Work
	1.5 Organization of the Paper

	2 Preliminaries
	2.1 Vector Commitments
	2.2 Digital Signatures

	3 Algebraic Vector Commitments
	3.1 Generic Transformation from VCs to Signatures
	3.2 -Unforgeability

	4 Algebraic Signatures
	4.1 Attack to Schemes with Strictly Linear Verification
	4.2 Attack to Schemes with Generic Verification

	5 Conclusions
	5.1 Impossibility of Algebraic Vector Commitments
	5.2 Impossibility of Algebraic Signatures

	References

	Four-Round Black-Box Non-malleable Schemes from One-Way Permutations
	1 Introduction
	1.1 Our Contributions

	2 Overview of Techniques
	2.1 Our NMZKC Protocol and New Commitment Schemes
	2.2 4-Round Non-malleable Commitment nmc

	3 Preliminaries
	3.1 Commitment Schemes
	3.2 Non-malleable Commitments
	3.3 -Commitments
	3.4 Adaptive-Input SHVZK
	3.5 One-of-Two Binding Commitments
	3.6 MPC Definitions
	3.7 Verifiable Secret Sharing (VSS)

	4 Non-malleable HVZK with Respect to Commitment
	5 Our Delayed-Input MPC-in-the-Head Protocol AI
	6 The Building Blocks of the 4-Round Black-Box Non-malleable Commitment Scheme
	6.1 Commitment from Verifiable Secret Sharing
	6.2 Commit-and-Prove
	6.3 The 4-Round Non-malleable Commitment Scheme of ch11FOCS:GRRV14

	7 Our 4-Round Black-Box Non-malleable Commitment Scheme
	7.1 Formal Description of nmc = ((Snmc , Rnmc), Decnmc)

	8 Comparison with Previous Non-black-box Approaches to Four-Round Non-malleable Commitments
	References

	Theory I: Sampling and Friends
	A Tight Computational Indistinguishability Bound for Product Distributions
	1 Introduction
	1.1 Related Work
	1.2 Organization

	2 Definitions
	2.1 Notation

	3 The Non-uniform Bounds and Tightness
	3.1 The N-Fold Case
	3.2 Tightness

	4 The Uniform Variant
	5 Applications
	6 Open Questions
	References

	Secure Sampling with Sublinear Communication
	1 Introduction
	1.1 Our Work
	1.2 Technical Overview
	1.3 Related Work

	2 Two-Party L1 Sampling
	2.1 A Toy Protocol Towards Securely Realizing FL1
	2.2 Secure L1 Sampling Protocol

	3 Two Party L2 Sampling
	3.1 A Non-private L2 Sampling Protocol with (1) Communication
	3.2 Secure L2 Sampling from FHE
	3.3 A Non-private Lp Sampling Protocol with (1) Communication

	4 Two-Party Product Sampling
	4.1 Impossibility of Sublinear Product Sampling
	4.2 Product Sampling While Leaking at Most the Inner Product

	5 Product Sampling in Constant Rounds
	5.1 Secure Approximation of the Inner Product
	5.2 Constant-Round Protocol for Product Sampling

	References

	Secure Non-interactive Simulation from Arbitrary Joint Distributions
	1 Introduction
	2 Overview of Our Contributions
	2.1 Overview of Our Results
	2.2 Overview of Our Technical Contributions

	3 Preliminaries
	3.1 Notation
	3.2 Maximal Correlation
	3.3 Fourier Analysis Basics
	3.4 Markov Operator
	3.5 Efron-Stein Decomposition
	3.6 Imported Theorems

	4 Characterization of SNIS from Arbitrary Sources
	4.1 Statistical to Perfect: BSS Target
	4.2 Statistical to Perfect: BES Target

	5 Estimation of Rate from Arbitrary Sources
	6 Characterization of BSS or BES from 2-by-2 Distributions
	6.1 Statistical to Perfect
	6.2 Perfect-SNIS Characterization
	6.3 Proof Outline of Theorem 7

	7 Additional Results and Discussions
	7.1 Necessary Condition on Eigenvalues
	7.2 Decidability
	7.3 On Power of Non-linear Constructions
	7.4 Incompleteness of String-ROT

	References

	Secure Non-interactive Reducibility is Decidable
	1 Introduction
	2 Technical Overview
	3 Preliminaries
	3.1 Generalized Fourier Transform
	3.2 Secure Non-interactive Reduction

	4 Decidability of SNIR
	4.1 Statistical to Perfect Security
	4.2 An Algorithm for the SNIR Problem
	4.3 More Necessary Conditions

	5 Generalized Junta Theorem
	5.1 Tools: Influence, Hypercontractivity and Invariance Principle
	5.2 Main Proof

	References

	Multi-party Computation II
	Round-Optimal Black-Box Secure Computation from Two-Round Malicious OT
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 Technical Overview
	2.1 Black-Box Two-Sided NISC
	2.2 Black-Box Three-Round MPC
	2.3 Another Perspective

	3 Two-Party Inner Protocol
	3.1 Definition
	3.2 Construction from One-Sided NISC

	4 Two-Sided Black-Box NISC
	4.1 Building Blocks
	4.2 Construction
	4.3 Proof of Security

	5 Multiparty Inner Protocol
	5.1 Definition

	6 Round-Optimal Black-Box MPC
	References

	Fully-Secure MPC with Minimal Trust
	1 Introduction
	1.1 Our Results
	1.2 Open Directions
	1.3 Technical Highlights and Discussion
	1.4 Related Work

	2 Security Model
	3 Fully-Secure MPC with Single Call to Small TP
	3.1 Laconic Function Evaluation (LFE)
	3.2 Succinct Single-Key Functional Encryption
	3.3 Fully-secure MPC from Laconic Cryptography
	3.4 Fully-Secure MPC from Single-Key Succinct FE

	4 Impossibilities in the Non-colluding Model
	4.1 Impossibility in the Correlated Randomness Model for Protocols with Universal Output Decoder
	4.2 Impossibility in the Plain Model

	5 Impossibility of Fair MPC in the Colluding Model
	References

	SCALES
	1 Introduction
	1.1 Summary of Our Contributions
	1.2 Our Main Contribution: SCALES MPC
	1.3 Other Contributions in More Detail
	1.4 Related Work
	1.5 Technical Overview

	2 Preliminaries
	2.1 Garbled Circuits
	2.2 Randomized Encodings
	2.3 Oblivious Transfer

	3 MPC with Small Clients and Larger Ephemeral Servers
	4 Rerandomizable Garbling Schemes
	4.1 Strong Key and Message Homomorphic Encryption
	4.2 A Gap in the Proof of ch18GentryHV10
	4.3 Constructing Rerandomizable Garbled Circuits

	5 Incremental Decomposable Randomized Encodings
	5.1 Realizing iDRE Using RGS

	6 Realizing SCALES
	7 Applications of RGS and iDRE
	7.1 RGS for Outsourced Re-Garbling
	7.2 iDRE for MPC

	References

	On Perfectly Secure Two-Party Computation for Symmetric Functionalities with Correlated Randomness
	1 Introduction
	1.1 Our Contribution
	1.2 Our Techniques
	1.3 Additional Related Work
	1.4 Organization

	2 Preliminaries
	2.1 Notations
	2.2 Security Model

	3 Analyzing Symmetric Functionalities
	3.1 Characterization of Four-Output Functionalities
	3.2 Characterization of Boolean and Ternary-Output Functionalities
	3.3 Impossibility of Embedded XOR and Embedded AND

	4 A General Impossibility Result for Perfect Security
	5 An Impossibility Result for Perfect Security for Four-Output Functionalities
	6 Positive Results for Perfect Security
	6.1 Computing Spiral Functionalities
	6.2 Computing Transparent Transfer Functionalities

	References

	Lattices
	Public-Key Encryption from Homogeneous CLWE
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work
	1.3 CLWE, SZK, and Statistical-Computational Gaps

	2 Technical Overview
	2.1 ``Pancake'' Encryption
	2.2 ``Bimodal'' Encryption
	2.3 ``Discretized'' Encryption
	2.4 ``Baguette'' Encryption
	2.5 SZK Membership

	3 The (homogeneous) CLWE Distribution
	4 Scheme 1: Pancake Encryption
	4.1 Rounding into Buckets of Equal Measure
	4.2 The Encryption Scheme
	4.3 Correctness
	4.4 Security
	4.5 Precision

	5 The s-hCLWE and (0,1/2)-hCLWE Distributions
	5.1 The s-hCLWE Distribution
	5.2 The (0,1/2)-hCLWE Distribution
	5.3 A Reduction from 1/2-hCLWE to hCLWE

	6 Scheme 2: Bimodal Encryption
	6.1 The Encryption Scheme
	6.2 Correctness
	6.3 Security

	7 Scheme 3: Discretized Encryption
	7.1 The Parallelepiped Technique and Zq
	7.2 The Encryption Scheme
	7.3 Correctness
	7.4 Security
	7.5 Precision

	8 Scheme 4: Baguette Encryption
	8.1 The hCLWE() Distribution
	8.2 Encryption Scheme
	8.3 Correctness
	8.4 Security

	9 hCLWE and hCLWE() are in SZK
	References

	PPAD is as Hard as LWE and Iterated Squaring
	1 Introduction
	1.1 Our Results
	1.2 Technical Overview
	1.3 Organisation

	2 Preliminaries
	2.1 Search Problems, TFNP, and Reductions
	2.2 Learning with Errors
	2.3 Correlation-Intractable Hash Families
	2.4 Interactive Proofs and the Fiat-Shamir Heuristic

	3 The Outline-and-Batch Protocol
	3.1 Instantiations of Outline-and-Batch

	4 Non-interactive Argument for Iterated Squaring in a Trapdoor Group of Unknown Order
	4.1 Iterated Squaring Modulo N
	4.2 Trapdoor Groups with Unknown Order
	4.3 Interactive Iterated Squaring Protocol

	5 PPAD Hardness
	6 Conclusion and Open Problems
	References

	Parallelizable Delegation from LWE
	1 Introduction
	1.1 Our Results in More Detail
	1.2 Related Work
	1.3 Organization

	2 Techniques
	2.1 SPARGs from LWE
	2.2 SPARGs for Parallel Computations
	2.3 Time-Independent SPARGs

	3 Preliminaries
	3.1 RAM Model
	3.2 Universal Languages
	3.3 RAM Delegation
	3.4 SPARGs

	4 Updatable RAM Delegation
	4.1 The CJJ Delegation Scheme
	4.2 Updatable Delegation with Quasilinear Overhead
	4.3 Local Opening

	5 SPARGs for P
	6 Application to Verifiable Delay Functions
	References

	How to Sample a Discrete Gaussian (and more) from a Random Oracle
	1 Introduction
	1.1 Our Contributions

	2 Preliminaries
	3 Explainable Sampling
	3.1 Explainability in Cryptographic Games

	4 Explaining Sampling over Small Ranges with Respect to Discrete Gaussian Samplers
	5 Sampling and Explaining Conforming Distributions
	5.1 Explainable Sampling Through Heavy Element Samplers
	5.2 Instantiation on Discrete Gaussians
	5.3 Impossibility of Generic Sampling Without Heavy Element Samplers

	6 Explaining Discrete Gaussian Samplers
	6.1 Miccancio-Walter '17

	References

	Anonymity, Verifiability and Robustness
	Anonymous Whistleblowing over Authenticated Channels
	1 Introduction
	1.1 Undetectable Secure Computation
	1.2 Defining Anonymous Transfer
	1.3 Impossibility Result
	1.4 A Candidate Fine-Grained Anonymous Transfer
	1.5 Discussions and Implications
	1.6 Further Results and Open Questions

	2 Preliminaries
	2.1 Notations
	2.2 Distribution Testing

	3 Anonymous Transfer
	3.1 Network Model and Non-participating Parties
	3.2 The Model
	3.3 Fine-Grained Anonymous Transfer
	3.4 Trivial Anonymous Transfers
	3.5 Reductions Among AT Protocols

	4 Impossibility of Anonymous Transfer
	4.1 The Attacker
	4.2 Putting the Pieces Together
	4.3 Extensions and Limitations

	5 Fine-Grained AT from Ideal Obfuscation
	5.1 Security Analysis
	5.2 Final Result

	References

	Poly Onions: Achieving Anonymity in the Presence of Churn
	1 Introduction
	2 Modeling the problem
	3 Onion Encryption for Churn
	3.1 I/O syntax
	3.2 Correctness
	3.3 Security

	4 Our Poly Onion Encryption Scheme
	4.1 Overview of Poly Onion Encryption
	4.2 Analysis of Poly Onion Encrypion

	5 Anonymity in the Setting with Churn
	5.1 Definitions of Anonymity
	5.2 Simulatable Onion Routing Protocols
	5.3 From Single-Run to Multi-run Anonymity

	6 Multi-run Strongly Anonymous Onion Routing with Churn
	6.1 Insufficiencies of Previous Solutions
	6.2 Poly p is Multi-run Anonymous in the Presence of Churn

	References

	The Price of Verifiability: Lower Bounds for Verifiable Random Functions
	1 Introduction
	1.1 High-Level Technical Overview

	2 Detailed Technical Overview
	2.1 First Result: Connecting the Proof Size with the Evaluation Degree
	2.2 Second Result: Security of Univariate Polynomial-Degree VRFs Requires Complex Assumptions
	2.3 Third Result: Security of Low-Degree VRFs Requires Complex Assumptions
	2.4 Organization of This Work

	3 Preliminaries
	3.1 Notation
	3.2 Mathematical Foundations
	3.3 Cryptographic Groups
	3.4 Verifiable Unpredictable Functions
	3.5 Reductions

	4 Proof Size
	4.1 Classes of VUFs over Pairing-Friendly Groups
	4.2 From Consecutively Verifiable Pairing-Based VUFs to Rational VUFs

	5 Algebraic Attacks on Rational VUFs
	6 Generic Attacks on Parametrized Rational VUFs
	References

	Bet-or-Pass: Adversarially Robust Bloom Filters
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work
	1.3 Open Problems

	2 Model and Problem Definition
	2.1 Prediction and Pseudorandomness

	3 Defining Robust Bloom Filters
	3.1 Background
	3.2 Robustness in All Shapes and Forms

	4 Relationships Between the Various Notions of Robustness
	4.1 Implications
	4.2 Separations
	4.3 Conclusions

	5 Computational Assumptions and One-Way Functions
	5.1 Constructions of BP Resilient Filters Using One-Way Functions

	References

	Author Index

