
Generalizing Logical Execution Time

Edward A. Lee(B) and Marten Lohstroh

UC Berkeley, Berkeley, CA, USA
{eal,marten}@berkeley.edu

Abstract. In the Logical Execution Time (LET) principle, concur-
rent software components interact deterministically, reading their inputs
atomically at the start of a task and producing outputs atomically after a
fixed elapsed logical time. In addition to deterministic concurrency, LET
programs yield more deterministic timing when they interact with their
physical environment through sensors and actuators. This paper shows
through a series of examples that the LET principle can be realized flex-
ibly and generalized using the Lingua Franca coordination language.

Keywords: Concurrent software · Distributed systems · Logical
execution time

1 Motivation

The Logical Execution Time (LET) principle was pioneered by Tom Henzinger
and Christoph Kirsch (with, as always, significant contributions from others),
who demonstrated its efficacy and realizability for the design of cyber-physical
systems (CPSs) well before the term CPS had been coined [12]. The Giotto pro-
gramming language, introduced in the very first EMSOFT conference [11] (of
which Henzinger and Kirsch were founders), elegantly realized the LET princi-
ple in the form of a coordination language, where the business logic of programs
was realized in a conventional language (such as C), but the modal behavior,
concurrency, and timing were orchestrated by a runtime engine that closely fol-
lowed the LET principle. This work inspired quite a bit follow-up work, includ-
ing applications to distributed real-time automotive software [9] and automotive
multicore software [3,8]. The LET principle has also been applied to program-
ming time-predictable multicore processors [15], has been used to facilitate par-
allel execution of legacy software on multicore [29], and has been leveraged for
schedulability analysis [14]. Whereas in Giotto execution of components is time
driven, the language extensions in xGiotto support asynchronous events [10]. The
Timing Definition Language (TDL) applies the LET principle in the context of
Matlab/Simulink models [28].

According to Henzinger, et al., the LET principle enables “abstract, platform-
independent real-time programming,” and is an important step toward separat-
ing “reactivity from schedulability” [12,13]. They say,

c© Springer Nature Switzerland AG 2022

J.-F. Raskin and K. Chatterjee (Eds.): Principles of Systems Design, LNCS 13660, pp. 160–181, 2022.

https://doi.org/10.1007/978-3-031-22337-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22337-2_8&domain=pdf
http://orcid.org/0000-0002-5663-0584
http://orcid.org/0000-0001-8833-4117
https://doi.org/10.1007/978-3-031-22337-2_8


Generalizing Logical Execution Time 161

The term reactivity expresses what we mean by control-systems aspects:
the system’s functionality, in particular, the control laws, and the system’s
timing requirements. The term schedulability expresses what we mean by
platform-dependent aspects, such as platform performance, platform uti-
lization (scheduling), and fault tolerance. Giotto decomposes the develop-
ment process of embedded control software into high-level real-time pro-
gramming of reactivity and low-level real-time scheduling of computation
and communication. Programming in Giotto is real-time programming in
terms of the requirements of control designs, i.e., their reactivity, not their
schedulability. [12]

In this paper, we focus on this separation. Reactivity specifies what the
designer intends to achieve, whereas schedulability specifies how an execution
platform achieves that intent. We begin in Sect. 2 by interpreting this separation
as distinct uses of models. In Sect. 3, we review the LET principle. In Sect. 4,
we provide a formalism for logical and physical timelines. In Sect. 5, we briefly
introduce the Lingua Franca coordination language, and then, in Sect. 6, we
give a series of examples of Lingua Franca programs that flexibly apply the
LET principle, allowing, for example, mitigation of the data age problem [4]. We
make some concluding remarks in Sect. 7.

Models

Things

Science Engineering

Models

Abstraction Refinement
Mathematics

Fig. 1. Relations between models and between models and things.

2 Science, Engineering, and Mathematics

A Giotto program, and indeed any computer program that forms part of a
cyber-physical system, is a model for the behavior of the electronic part of the
system. A microcontroller, with electrons sloshing around inside, is a “thing-in-
itself” (to use Kant’s term), yet it is expected to behave as specified by programs
it executes.

In Plato and the Nerd, one of us (Lee) makes a distinction between an engi-
neering model, where the thing-in-itself is expected to behave like the model,



162 E. A. Lee and M. Lohstroh

and a scientific model, where the model is expected to behave like the thing-in-
itself [20]. These mirror-image relationships are depicted in Fig. 1. While science
is concerned with establishing models that capture characteristics of physical
things, the goal of engineering is to craft physical things that share properties
with models. The disciplines of science and engineering are in a symbiotic rela-
tionship with one another; designs are often evaluated through scientific experi-
mentation, and many scientific experiments are enabled by carefully engineered
tools.

Models also have utility beyond their relationship to things. Mathematics
treats the properties of models and relationships between models unhindered
by constraints of physical realizability. In mathematics, abstraction is used to
derive simpler models from more elaborate ones, and refinement is used to
elaborate simpler models by adding more specificity. The operations of abstrac-
tion and refinement are key in model-based system design, an idea that has been
codified in the theory of contracts [2].

When Henzinger, et al., say that Giotto specifies reactivity, what they mean
is that the Giotto program serves as an engineering model (as opposed to a
scientific model). It is incumbent on the compiler and the execution platform to
deliver the timing and concurrency behavior that is specified by the program.
Determining whether a particular execution platform can deliver the specified
behavior requires a certain amount of scientific modeling, for example to find
worst-case execution time (WCET) [31] bounds for tasks that are scheduled
by the Giotto runtime. When Henzinger, et al., talk about schedulability, they
are concerned with scientific modeling, building models of the behavior of the
platform, the thing-in-itself. Reactivity, therefore, is concerned with the bottom
right of Fig. 1, whereas schedulability is more concerned with the bottom left.

Once we understand this separation, it becomes natural to generalize the
LET principle by strengthening the separation. In this paper, we show how to
do that.

3 LET and Giotto

Software for cyber-physical systems is inevitably concurrent and timing sensi-
tive. The time of its interactions with its physical environment is important for
determining system behavior, and, unlike many information processing tasks,
the goal is not simply to finish as quickly as possible. Concurrency inevitably
arises because of the need to react to a multiplicity of sensors and to drive a
multiplicity of actuators, and the timing of the stimulus from the sensors and
the actuations cannot be arbitrary.

Traditional methods for handling concurrency and timing in software are
difficult to make deterministic [17]. Consider Toyota’s unintended acceleration
case, where in the early 2000s, there were a number of car accidents involving
Toyota vehicles that appeared to suffer from unintended acceleration. The US
Department of Transportation contracted NASA to study Toyota software to
determine whether software was capable of causing unintended acceleration. The



Generalizing Logical Execution Time 163

NASA study [27] was unable to find a definitive cause, but they indicted the
software architecture [16]. The software used a style of design that tolerates a
seemingly innocuous form of nondeterminism. Specifically, many state variables,
representing for example the most recent readings from a sensor, were accessed
unguarded by a variety of threads. This style of design appeals to control-system
engineers because it always uses the most recent value of a sensor or shared
variable, minimizing “data age” [4]. But the result is a very large number of
possible behaviors that manifest nondeterministically in the field.

Logical execution time (LET) is a principle that delivers both deter-
ministic concurrency and more controllable timing of the interactions with the
physical components of the system. However, these two properties, deterministic
concurrency and controllable timing, tend to be lumped together. We contend
here that interactions between a software component and another software com-
ponent should be distinguished from interactions between a software component
and a physical component. Separating these two types of interaction helps to
generalize the LET principle and expand its applicability.

In a LET design, the interaction between software components is defined by
a logical timing model, where each task behaves as if it reads its inputs instanta-
neously at the start of its execution period and writes its output instantaneously
after a prespecified amount of logical time has elapsed. If the inputs to the task
are coming from a physical component, then the logical time of the start of
execution should align reasonably precisely with some local measure of physical
time. Similarly, if the outputs from the task are driving actuators, then aligning
the logical time of the task completion with the physical time of actuation results
in much more precisely controlled timing than we would get if we simply drive
the actuator whenever the task completes.

However, if the inputs to a task are coming from another software component,
or the outputs are going to another software component, there is no need to align
these logical times with physical time as long all interactions occur in the order
specified by their logical timing. For such interactions, for example, a logical
execution time of zero becomes reasonable and realizable. Synchronous-reactive
languages [1] are based on a hypothesis of zero execution time.

In this paper, we observe that the physical timing of interactions between
software components is not an important feature of their interaction. Timing of
software only matters when interaction is with the physical environment through
sensors and actuators. For the interaction between software components, what
really matters is determinism, not timing. Controlling their timing is one way
to achieve determinism, but it is not the only way. We will give a generalization
to LET that preserves determinism but reduces the use of physical timing for
governing interactions between software components. Physical timing comes into
play only when interacting with the physical world through timers, sensors, and
actuators.



164 E. A. Lee and M. Lohstroh

4 Logical and Physical Time

In their papers, Henzinger, et al., do not go as far as they could in separating
logical and physical time. There are good reasons for this. First, every embedded
system designer has a strong intuitive understanding of time, usually governed
by the Newtonian model, where time is a continuum and “now” is a pointer into
that continuum that advances smoothly and uniformly everywhere.

Here, we will take a different stance and distinguish logical time (a semantic
property of programs) from physical time (a measurement by a physical clock).
We will insist that the only access to physical time is through imperfect mea-
surements realized by physical clocks. Newtonian time is not available to us.
Logical time and physical time will be expected to align at well-chosen points in
the execution of programs, only at those points, and only imperfectly.

We are interested in times of events and time intervals between events. A
physical time T ∈ T is an imperfect measurement of time taken from some
clock somewhere in the system. The set T contains all the possible times that
a physical clock can report. We assume that T is totally ordered and includes
two special members: ∞ ∈ T is larger than any time any clock can report, and
−∞ ∈ T is smaller than any time any clock can report. For example, T could be
the set of integers Z augmented with the two infinite members.

Given any T1, T2 ∈ T, the physical time interval (or just time interval
if there is no ambiguity) between the two times is written i = T1 − T2. Time
intervals are assumed to be members of a group I with a largest member ∞ and
smallest member −∞ and a commutative and associative addition operation.
For example, I could be the set of integers Z augmented with the two infinite
members. Addition involving the infinite members behaves in the expected way
in that for any i ∈ I \ {∞,−∞},

i + ∞ = ∞
i + (−∞) = −∞.

We also assume that addition of infinite intervals saturates, as in

∞ + ∞ = ∞
(−∞) + (−∞) = −∞

∞ + (−∞) is undefined.

Note that we use the same symbols ∞ and −∞ for the special members of both
the set of physical times T and the set of intervals I. We hope this will not create
confusion.

Intervals can be added to a physical time value, and we assume that this
addition is associative. I.e., for any T ∈ T and any i1, i2 ∈ I,

T + (i1 + i2) = (T + i1) + i2 ∈ T. (1)

Addition of infinite intervals to a time value saturates in a manner similar to
addition of infinite intervals.



Generalizing Logical Execution Time 165

These idealized requirements for physical times and time intervals can be
efficiently approximated in practical implementations. First, it is convenient to
have the set T represent a common definition of physical time, such as Coor-
dinated Universal Time (UTC) because, otherwise, comparisons between times
will not correlate with physical reality. In the Lingua Franca language that we
use in Sect. 6, T and I are both the set of 64-bit integers. A T ∈ T is a POSIX-
compliant representation of time, where T represents the number of nanoseconds
that have elapsed since midnight, January 1, 1970, Greenwich mean time. In the
Lingua Franca realization, the largest and smallest 64-bit integers represent
∞ and −∞, respectively, and addition and subtraction respect the above sat-
uration requirements. Note, however, the set of 64-bit integers is not the same
as the set Z because it is finite. As a consequence, addition can overflow. In
Lingua Franca, such overflow saturates at ∞ or −∞, and as a consequence,
addition is no longer associative. For example, T + (i1 + i2) may not overflow
while (T + i1) + i2 does overflow. As a practical matter, however, this will only
become a problem with systems that are running near the year 2270. Only then
will the behavior deviate from the ideal given by our theory.

For logical time, we use an element that we call a tag g of a totally-ordered
set G. Each event in a distributed system is associated with a tag g ∈ G. From
the perspective of any component of a distributed system, the order in which
events occur is defined by the order of their tags. If two distinct events have the
same tag, we say that they are logically simultaneous. We assume the tag set
G has an element ∞ that is larger than any other tag and another −∞ that is
smaller than any other tag.

In the Lingua Franca language, G = T × U, where U is the set of 32-bit
unsigned integers representing the microstep of a superdense time system [5,
7,25]. We use the term tag rather than timestamp to allow for such a richer
model of logical time. For the purposes of this paper, however, the microsteps
will not matter, and hence you can think of a tag as a timestamp and ignore
the microstep. We will consistently denote tags with a lower case g ∈ G and
measurements of physical time T ∈ T with upper case.

We will need operations that combine tags and physical times. To do this, we
assume a monotonically nondecreasing function T : G → T that gives a physical
time interpretation to any tag. For any tag g, we call T (g) its timestamp.
In Lingua Franca, for any tag g = (t,m) ∈ G, T (g) = t. Hence, to get a
timestamp from a tag, you just have to ignore the microstep.

The set G also includes infinite elements such that T (∞G) = ∞T and
T (−∞G) = −∞T, where the subscripts disambiguate which infinity we are refer-
ring to.

An external input from outside the system, such as a user input or query,
will be assigned a tag g such that T (g) = T , where T is a measurement of
physical time taken from the local clock where the input first enters the system.
In Lingua Franca, this tag is normally given microstep 0, g = (T, 0).

To simplify notation, we will assume a physical time origin T = 0 when
a program begins executing, and will set the logical time initially to g0, where



166 E. A. Lee and M. Lohstroh

Fig. 2. Structure of a Lingua Franca program for target language L.

T (g0) = 0. On POSIX-compliant platforms, this is not what Lingua Franca
does. Instead, physical time is the Unix epoch time, the number of nanoseconds
that have elapsed since January 1, 1970. Those numbers, however, are difficult
to read, so we will give all times relative to the start of program execution.

5 Introduction to LINGUA FRANCA

Lingua Franca (or LF, for short)1 is a coordination language developed jointly
at UC Berkeley, TU Dresden, UT Dallas, and Kiel University [24]. Applications
are defined as concurrent compositions of components called reactors [21,22].
Figure 2 outlines the structure of a Lingua Franca program. One or more
reactor classes are defined with input ports (line 3), output ports (line 5),
state variables (line 7), and timers and actions. We will elaborate on actions
later. Inputs are handled by reactions, as shown on line 11. Reactions declare
their triggers, as on line 11, which can be input ports, timers, or actions. If
a reaction lists an output port among its effects, then it can produce tagged
output messages via that output port. The routing of messages is specified by
connections, as shown on line 20. The syntax and semantics will become clearer
as we develop our specific examples.

6 LET and More in LINGUA FRANCA

In this section, we show through a series of examples how Lingua Franca can
realize concurrent programs under the LET principle, but is also more flexible.

1 https://lf-lang.org.

https://lf-lang.org


Generalizing Logical Execution Time 167

Fig. 3. Basic pipeline.

The key to this flexibility is that Lingua Franca distinguishes logical time from
physical time and enables alignment at cyber-physical interaction points [23]. As
we go through the examples, we explain in more detail how execution of Lingua
Franca programs works.

6.1 Periodic Polled Control System

Consider a pipeline of tasks between a sensor and actuator shown in Fig. 3.
One might find this example in the software portion of a feedback control sys-
tem. The figure on the bottom is automatically generated and displayed by the



168 E. A. Lee and M. Lohstroh

development tools.2 The chevrons in the figure represent reactions, and their
dependencies on inputs and their ability to produce outputs is shown using
dashed lines.

In this example, a sensor is polled with a period given by the parameter
p, which has a default value of 10 ms. By default, Lingua Franca reactions
are logically instantaneous, so this program is more like a synchronous-reactive
program than like a LET program. The timer t produces a sequence of events
with tags gi, i = 0, 1, 2, · · · , where T (gi) = 10i ms. The runtime system first
advances its current tag to g0 and executes all reactions that are triggered at
that tag with ordering constraints implied by data dependencies. In this example,
it executes the Sensor reaction, and if that reaction produces an output, then it
will execute the Task1 reaction. If Task1 produces an output, it will then execute
Task2, and finally, if Task2 produces an output, it will execute Actuator. All of
these executions will occur at tag g0, and all will complete before the runtime
advances its current tag to g1.

Note that unlike a LET program, there is no parallelism in this program.
Task2 cannot begin executing until Task1 has completed. Moreover, the logical
time T (g0) of the actuation is the same as the logical time of sensing, which
would not be the case with LET. The physical time at which the actuation
occurs will be determined by the execution times of the tasks, again a feature
one would not find in a LET design.

Fig. 4. Pipeline with logical delays, emulating LET.

In Fig. 4 we modify the last two lines of the program in Fig. 3, thereby con-
verting this program to use the LET principle. The syntax “after p” specifies
that the output produced by t1.out at tag g should be received by t2.out with
tag g′, where T (g′) = T (g) + p. This has several consequences.

2 The diagram synthesis feature was created by Alexander Schulz-Rosengarten of Kiel
University using the graphical layout tools from the KIELER Lightweight Diagrams
framework [30] (see https://rtsys.informatik.uni-kiel.de/kieler).

https://rtsys.informatik.uni-kiel.de/kieler


Generalizing Logical Execution Time 169

First, Task1 and Task2 can execute in parallel, exploiting a multicore archi-
tecture. While Task1 is handling sensor data at tag gi, for i ≥ 1, Task2 is
processing its previous result computed with the sensor data from gi−1.

Second, the latency between sensing and actuation is more constant now
and less dependent on execution time. Assuming that Task1 and Task2 each are
able to complete within time p, the runtime system will advance its current tag
to gi at physical time Ti ≥ T (gi), but Ti will be very close to T (gi) because
the system will have gone idle prior to that physical time. Hence, the physical
latency between sensing and actuation will be close to 20 ms with the default
value for the parameter p = 10 ms.

Compared to Fig. 3, the data delivered to the Actuator is based on older
sensor input, so the designer is faced with a tradeoff between data age [4] and
predictable, repeatable timing. In many safety-critical systems, repeatable tim-
ing is extremely valuable; for one, it greatly enhances the value of testing [18,26].

Assuming all reactions produce outputs, at each tag gi for i ≥ 2, there
are three computations that can proceed in parallel. The first is to invoke the
Sensor reaction followed by Task1, the second is to invoke Task2, and the third
is to invoke the Actuator. If there are at least three cores, then they can all
execute in parallel. If there are fewer than three cores, however, we may wish
to prioritize the execution the Actuator reaction so that actuation occurs as
closely as possible to 20 ms after sensing. In Lingua Franca, a simple way to
do this is to assign a deadline to the reaction of the Actuator, as shown in Fig. 5.
The Lingua Franca runtime uses an earliest-deadline-first (EDF) scheduling
policy, and hence, the mere presence of a deadline ensures that the Actuator
reaction will execute before the others.

Fig. 5. Pipeline with deadline.



170 E. A. Lee and M. Lohstroh

In addition, the deadline construct provides a fault handling mechanism.
Line 6 in Fig. 5 specifies a deadline d = 1 ms. The meaning of this specification is
that if the physical time T at which the runtime system invokes the reaction to
an input with tag g is larger than T (g) by more than d, i.e. T > T (g) + d, then
a deadline miss has occurred, and the runtime system will invoke the code on
line 7 rather than the code on line 5.

There is a subtle difference between these Lingua Franca pipelines and
the LET principle as realized in Giotto. The reactions in Lingua Franca are
still logically instantaneous even if their outputs are subjected to a logical delay
using the after keyword. In Lingua Franca, an input or output port is mod-
eled as a function P : G → V ∪{ε}, where V is a set of values (a data type) and
ε represents absent, the absence of a value. Because P is a function, at each tag
g, a port cannot have more than one value. Since reactions are logically instan-
taneous, therefore, input values do not change during their execution, exactly as
in LET. But any output values that are produced during that execution have the
same tag as the input that triggered them. This is why downstream reactions
have to be executed after completion of upstream reactions if the connection has
no logical delay, like the connection between Sensor and Task1. Only then is the
input to the downstream reaction known.

6.2 Federated Execution

When executing on a single machine, the current Lingua Franca runtime sys-
tem completes execution of all reactions at any given tag g before advancing
its current tag to some g′ > g. In effect, this imposes a barrier synchro-
nization between threads that might be executing in parallel on multiple cores
(see Sect. 6.3 for our proposed extension that relaxes this barrier synchroniza-
tion). The “after” clauses in Fig. 4 enable parallel execution by making available
multiple input events to distinct reactors at the same tag.

Another way to achieve parallel execution in Lingua Franca is to remove
the barrier synchronization and allow reactors to maintain separate and dis-
tinct current tags. This requires that messages between reactors be queued and
explicitly tagged so that each reactor can process events in tag order. This can
be accomplished by declaring the top-level reactor to be a federated reactor,
as shown in Fig. 6.3 When the top-level reactor is declared to be federated, the
Lingua Franca code generator produces a separate program for each reactor
instantiated within that top level. To get the same degree of parallelism as in
Fig. 4, Fig. 6 creates two intermediate reactors called “Bundle1” and “Bundle2.”
The code generator will produce two programs, one for each Bundle. Each of
these programs maintains its own current tag, and, as a consequence, Bundle2
can be processing an earlier tag while Bundle1 is processing a later one. A third
program, a runtime infrastructure (RTI), coordinates startup and shutdown
and possibly mediates communication and regulates advancement of the current
tag.

3 Federated execution of Lingua Franca was largely created by Soroush Bateni.



Generalizing Logical Execution Time 171

Fig. 6. Federated pipeline.

Lingua Franca provides two distinct mechanisms for coordinating the exe-
cution of federated reactors [19]. The default mechanism is centralized, where
each federate (each Bundle) consults with the RTI before advancing its current
tag. This mechanism makes use of knowledge of the interconnection topology.
In this example, there are no cycles in the communication pattern, and, con-
sequently, Bundle1 can advance its current tag with no constraints. It has no
inputs that might later see messages with earlier tags. Bundle2, however, cannot
advance to tag g until it has been assured by the RTI that it has seen all inputs
with tags less than g.

In decentralized coordination, federates rely on clock synchronization and
assumed bounds on communication latencies and advance their current tag to g
when their physical clock has advanced sufficiently that, given these assumptions,
they have seen all inputs with tags less than g. This principle has been previously
used in PTIDES [32] and Google Spanner [6]. For details, see Lee, et al. [19].

In Fig. 6, there are no “after” logical delays, so the timing of actuation relative
to sensing will depend on execution times of the task and communication latency
between bundles. The latency is bounded by a specified deadline. A single “after”
delay on the connection between Task2 and Actuator would be sufficient to get
the effect of a logical execution time. But now, this LET represents the logical
execution time of the entire pipeline from Sensor to Actuator. We have effectively



172 E. A. Lee and M. Lohstroh

Fig. 7. Variant of Fig. 5 with an additional periodic task.

decoupled the timing of interactions between the cyber and the physical parts
from the timing (and parallelism) of the interactions between the cyber parts.

6.3 Relaxing the Barrier Synchronization

Consider the variant of Fig. 5 shown in Fig. 7. The only change is the addition of
one more reaction that reacts to a timer with a period of one millisecond. When
executed on a single machine with one or more cores, the current implementa-
tion of the Lingua Franca runtime, with its barrier synchronization, has a
major difficulty with this program. In this section, we show how to use the LET
principle to eliminate this difficulty.

First, we explain the difficulty with the current runtime system. The reaction
shown at the left in the figure is triggered at intervals of one ms and has a
deadline of 500 microseconds. The reactions in the pipeline are triggered at
intervals of 10 ms, and actuation has a deadline of one ms. At the one-out-
of-ten reactions where these periodic events align, tags with 0, 10, 20, ... ms,
the unnamed reaction at the left will be given priority over any other reaction
because of its tighter deadline. So far so good. But what if the reactions in Task1
or Task2 take more than 1.5 ms to execute? What happens at tags with 1, 11, 21,
... ms? With the barrier synchronization, the execution of the Task1 and Task2
reactions will prevent the advancement of time to 1, 11, 21, ... and will thereby
cause a deadline violation in the invocation of the unnamed reaction at those
tags!

We could use federated execution to eliminate this problem, but, in practice,
a new difficulty will arise because thread priorities will now have to be coordi-
nated across processes, not just threads within a process. Moreover, federated
execution introduces additional inefficiencies because of the need to send data
across processes and the added overhead of coordinating the advancement of
tags across processes. It would be better to solve this problem within a single
multithreaded process.



Generalizing Logical Execution Time 173

We can use the LET principle to eliminate this problem within a single pro-
cess. In particular, the reactions in Task1 and Task2 have the property that
their effects (the outputs they produce) are all delayed by p = 10 ms. As a
consequence, these two reactions can be temporarily withdrawn from the bar-
rier synchronization to rejoin it only when the tag is to advance to the next
10 ms period. Hence, the tag can be advanced to 1, 11, 21, ... even though these
reactions at tags with 0, 10, 20, ... have not yet completed. In a multithreaded
execution, even if there is only a single core, the Task1 and Task2 reactions can
proceed concurrently and can be preempted by a thread that is to execute the
unnamed reaction, thereby avoiding the deadline violation. All that is required
is that the underlying thread scheduler respect priorities, and that priorities be
assigned to worker threads according to the deadlines of the reactions assigned
to them.

The general principle is simple. For any reaction that produces outputs, it
can be treated as a LET task with the LET equal to the minimum after delay
of all of its outputs. The specific treatment is that if the LET is greater than
zero, then the worker thread executing the reaction need not participate in the
barrier synchronization until the time comes to advance the tag to t + LET.
That worker thread can continue executing at logical time t while the rest of the
program advances its logical time.

With this enhancement, we claim that Lingua Franca will be capable of
everything a classical LET system can do. But it can also do more, a property
that becomes obvious when we consider less regular, aperiodic executions, as we
do next.

6.4 Event Triggered Execution

In the examples given so far, the sensor input is periodic, polled using a timer. A
more interesting scenario arises when inputs from the physical world are events
with uncontrolled timing, for example arising through an interrupt request. In
Lingua Franca, such an external event is realized with a physical action,
shown in Fig. 8, which is depicted in the diagram as a triangle with a “P”. Line
4 defines the physical action and line 5 defines a reaction that reacts to the
physical action. This reactor will also need some additional code (not shown) to
interface to some physical device and call a built-in lf schedule() function to
schedule the physical action when an external event occurs. This could be done,
for example, in a callback function or an interrupt service routine.

When an external event triggers a call to lf schedule(), the Lingua
Franca runtime system consults the local physical clock, reading from it a
time T , and creates an event with tag g such that T (g) = T . The reaction on
line 5, therefore, will be invoked at tag g, and the timestamp of the tag will
represent the physical time of the external event as measured by a local clock.



174 E. A. Lee and M. Lohstroh

Fig. 8. Event-triggered pipeline.

Notice that, now, using the “after” logical delays of Fig. 4 will not yield
parallel execution without the enhancement described in the previous section,
Sect. 6.3. This is because when a new event with tag g′ arrives, it is unlikely
to have timestamp T (g′) = T (g) + a, where g is the tag of the previous event
and a is the “after” delay. Only if that coincidence occurs can the pipelined
reactions execute in parallel (in the absence of our enhancement). Without the
enhancement, to get parallel execution, we will have to use a federated program
like that of Fig. 6. In this case, parallel execution is possible because Task2 may
be still processing the previous event when a new event arrives.

This situation, however, reveals a subtlety about the enhancement of
Sect. 6.3. Suppose Fig. 8 has after delays of 10 ms, like Fig. 4. Suppose that
Task1’s reaction has withdrawn from the barrier synchronization at tag 10 ms,
say, and a new event occurs at tag 12 ms. In this case, it will not do for the
reaction to remain withdrawn until 20 ms because this could result in Task1’s
reaction being invoked at tag 12 while it is still processing the event at tag 10
in some other thread. In Lingua Franca, any two reactions belonging to the
same reactor must have mutually exclusive invocations because they share state
and there is no assurance that users have written reentrant code. Hence, our
enhancement must be careful advancing tags while there are executing reactions
that have withdrawn from the barrier synchronization. In particular, if any event
at a tag t is about to trigger a reaction belonging to a reactor that has an exe-
cuting reaction at tag t′ < t, then that triggered reaction must be blocked until
the executing reaction at t′ completes. By blocking that reaction, we will also
block any reactions that depend on it, thereby preserving determinism.



Generalizing Logical Execution Time 175

This raises an interesting and subtle semantic property of Lingua Franca
that is not shared with any LET system. Specifically, logically, a reaction always
executes in zero time in that its local state gets updated without logical time
advancing during that updating. Hence, the term “logical execution time” is no
longer quite adequate, even though it can match the same concurrency properties
of a classical LET system. In a classical LET system, the local state takes time
to update, not just the externally visible effects, and hence, a classical LET task
cannot be interrupted with a new execution during its logical execution time. In
Lingua Franca, it can be interrupted without undermining its determinism,
which is a strict generalization over LET.

Such interruptions, however, may not be a good idea in practical applications.
An unconstrained physical action like that of Fig. 8 runs a risk of overwhelming
the software system and disrupting timing. If lf schedule() is called while
an earlier event is still being processed, the new event will simply be queued
to be handled when prior tags have been fully processed. This could result in
an unbounded buildup of queued events, for example if the physical action is
triggered by a network input and the system is under a denial-of-service attack.

Fortunately, Lingua Franca provides mechanisms to prevent such even-
tualities. First, a physical action can have a minimum spacing parameter, a
minimum logical time interval between tags assigned to events. When the envi-
ronment tries to violate this constraint by issuing requests too quickly, the pro-
grammer can specify one of three policies: drop, replace, or defer. The drop policy
simply ignores the event. The replace policy replaces any previously unhandled
event, or if the event has already been handled, defers. The defer policy assigns
a tag g to the event with timestamp T (g) that is larger than the previous event
by the specified minimum spacing.

While the minimum spacing parameter ensures that tags are sufficiently
spaced, it does not, by itself, ensure that the scheduler will prioritize execu-
tion of the reaction in the Actuator reactor. We can again specify a deadline
associated with that reaction, thereby ensuring that the Actuator reaction will
execute first, resulting in greater precision in Sensor-to-Actuator latency.

We can further combine minimum spacing, deadlines, and “after” delays to
maximize parallelism and timing precision under overload conditions, when the
physical action repeatedly triggers with the minimum spacing. The resulting
program is shown in Fig. 9. Line 4 declares the physical action to have minimum
delay of 0 and a minimum spacing of 10 ms (the minimum delay argument is
not relevant to our discussion here). Under burst conditions, this program will
experience input events every 10 ms, and after the first two such events, at each
10 ms boundary, the Actuator reaction will have top priority. If two cores are
available, then one will execute Actuator followed by Task2 while the other
executes Sensor followed by Task1. The latency from Sensor to Actuator will be
close to 20 ms, thereby realizing the goals of LET, but now in an event-triggered
system rather than a periodic one.



176 E. A. Lee and M. Lohstroh

Fig. 9. Event-triggered pipeline optimized for overload conditions.

6.5 Merging Events with Periodic Tasks

A common scenario in cyber-physical systems is that asynchronous events are
mixed with periodic actions. For example, a feedback control system may operate
with a regular sample rate, but sporadic events may result in changes in the
control laws. Lingua Franca provides mechanisms for again achieving regular,
tightly controlled timing.

Figure 10 shows an example where a logical action (depicted as a triangle
with an “L”) is used to precisely align the asynchronous events of a physical
action with the periodic events of a pipeline. Here, the source code listing gives
the details of the modified Event reactor as realized in the C target. This reactor
accepts asynchronous events via its physical action, but then delays production
of an output until the next logical time that will align with the timer driving
the Sensor reactor. Specifically, the reaction defined on line 10 calculates the
time interval to the next multiple of 10 ms and schedules a logical action b to
trigger at that next multiple of 10 ms. Line 14 calculates a waiting time that is
assured to be between 1 ns and 10 ms, where the latter value is chosen in the
(unlikely) event that the physical action triggers at exactly the time of one of
the timer triggers. That call to lf schedule() will result in an invocation of the
reaction defined on line 6 that will be precisely aligned with the next periodic
sensor data, such that the reaction in Task2 will see two simultaneous inputs.
The reaction in Task2 checks for the presence of an event on in1. This reaction is
guaranteed to be invoked every 10 ms by this program, regardless of the timing of
asynchronous inputs, thereby yielding highly deterministic timing. This design
relies on the associativity of addition of time intervals.



Generalizing Logical Execution Time 177

Fig. 10. Merging of asynchronous events with periodic ones.

6.6 Shared State

In Giotto, there is an assumption that tasks do not interact except through
their input and output ports. In Lingua Franca, in contrast, reactions within
the same reactor can share state variables. Figure 11 shows a variant of Fig. 10
that takes advantage of this feature to realize a common pattern, where an
asynchronous event changes the control law used to process periodic events.

The new version of Task2 now has two distinct reactions, one of which reacts
to the asynchronous event by changing the control law, and the other of which
reacts to the periodic inputs to apply the control law. On line 6, a state vari-
able named “control law” is defined. In Lingua Franca semantics, if the two
input ports have simultaneous input events, then the first reaction executes to
completion before the second reaction executes, so access to the state variable is
mutually exclusive and deterministically ordered. No such ordering is enforced
between reactions across different reactors, enabling parallel execution of logi-
cally simultaneously triggered reactions that do not share state.



178 E. A. Lee and M. Lohstroh

Notice in Fig. 11 that we no longer need the logical action of Fig. 10. The
effect of the new control law is guaranteed to align with the 10 ms timing of the
periodic events.

Fig. 11. Reactor with a state variable.

7 Conclusions

The LET principle accomplishes two distinct things. First it specifies the timing
of the interaction between a software component and its environment, which con-
sists of other software components and physical sensors and actuators. Second,
perhaps even more importantly, it provides a deterministic concurrency model.
That is, the interaction between software components does not depend on their
execution time (as long as WCET bounds are respected).

We have shown that these two principles can be better separated. In Lingua
Franca, the deterministic concurrency model is provided by the use of tags
that realize a logical timeline. This logical timeline is decoupled from physical
time except at points where the program interacts with its physical environment
by explicitly invoking timers, physical actions, and deadlines.

The result generalizes the LET principle, enabling combinations of logical
execution time with the zero execution time semantics of synchronous languages



Generalizing Logical Execution Time 179

while preserving the ability to precisely control the timing of interactions with
the physical environment. Lingua Franca also does not restrict the use of LET
to periodic systems.

Acknowledgments. The authors would like to acknowledge and thank the following
people for their contributions to the design and implementation of Lingua Franca:
Soroush Bateni, Peter Donovan, Clément Fournier, Hokeun Kim, Shaokai Lin, Chris-
tian Menard, Alexander Schulz-Rosengarten, Matt Weber, and Steven Wong. We also
thank Libero Nigro and anonymous reviewers for constructive suggestions. The work in
this paper was supported in part by iCyPhy (the Industrial Cyber-Physical Systems)
research center, supported by Denso, Siemens, and Toyota.

References

1. Benveniste, A., Berry, G.: The synchronous approach to reactive and real-time
systems. Proc. IEEE 79(9), 1270–1282 (1991)

2. Benveniste, A., et al.: Contracts for system design. Research Report RR-8147,
INRIA, November 2012. https://hal.inria.fr/hal-00757488

3. Biondi, A., Natale, M.D.: Achieving predictable multicore execution of automo-
tive applications using the LET paradigm. In: IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), April 2018. https://doi.org/10.
1109/RTAS.2018.00032

4. Bradatsch, C., Kluge, F., Ungerer, T.: Data age diminution in the logical execu-
tion time model. In: Hannig, F., Cardoso, J.M.P., Pionteck, T., Fey, D., Schröder-
Preikschat, W., Teich, J. (eds.) ARCS 2016. LNCS, vol. 9637, pp. 173–184.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30695-7 13

5. Cataldo, A., Lee, E.A., Liu, X., Matsikoudis, E., Zheng, H.: A constructive fixed-
point theorem and the feedback semantics of timed systems. In: Workshop on
Discrete Event Systems (WODES) (2006)

6. Corbett, J.C., et al.: Spanner: Google’s globally-distributed database. In: OSDI
(2012). https://doi.org/10.1145/2491245

7. Cremona, F., Lohstroh, M., Broman, D., Lee, E.A., Masin, M., Tripakis, S.:
Hybrid co-simulation: it’s about time. Softw. Syst. Model. 18(3), 1655–1679 (2017).
https://doi.org/10.1007/s10270-017-0633-6

8. Ernst, R., Kuntz, S., Quinton, S., Simons, M.: The logical execution time paradigm:
new perspectives for multicore systems (Dagstuhl Seminar 18092). Dagstuhl Rep.
8, 122–149 (2018). https://doi.org/10.4230/DagRep.8.2.122. https://hal.inria.fr/
hal-01956964

9. Gemlau, K.B., Köhler, L., Ernst, R., Quinton, S.: System-level logical execution
time: augmenting the logical execution time paradigm for distributed real-time
automotive software. ACM Trans. Cyber-Phys. Syst. 5(2), 1–27 (2021). https://
doi.org/10.1145/3381847

10. Ghosal, A., Henzinger, T.A., Kirsch, C.M., Sanvido, M.A.A.: Event-driven pro-
gramming with logical execution times. In: Alur, R., Pappas, G.J. (eds.) HSCC
2004. LNCS, vol. 2993, pp. 357–371. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-24743-2 24

11. Henzinger, T.A., Horowitz, B., Kirsch, C.M.: Giotto: a time-triggered language
for embedded programming. In: Henzinger, T.A., Kirsch, C.M. (eds.) EMSOFT
2001. LNCS, vol. 2211, pp. 166–184. Springer, Heidelberg (2001). https://doi.org/
10.1007/3-540-45449-7 12

https://hal.inria.fr/hal-00757488
https://doi.org/10.1109/RTAS.2018.00032
https://doi.org/10.1109/RTAS.2018.00032
https://doi.org/10.1007/978-3-319-30695-7_13
https://doi.org/10.1145/2491245
https://doi.org/10.1007/s10270-017-0633-6
https://doi.org/10.4230/DagRep.8.2.122
https://hal.inria.fr/hal-01956964
https://hal.inria.fr/hal-01956964
https://doi.org/10.1145/3381847
https://doi.org/10.1145/3381847
https://doi.org/10.1007/978-3-540-24743-2_24
https://doi.org/10.1007/978-3-540-24743-2_24
https://doi.org/10.1007/3-540-45449-7_12
https://doi.org/10.1007/3-540-45449-7_12


180 E. A. Lee and M. Lohstroh

12. Henzinger, T.A., Horowitz, B., Kirsch, C.M.: Giotto: a time-triggered language
for embedded programming. Proc. IEEE 91(1), 84–99 (2003). https://doi.org/10.
1109/JPROC.2002.805825

13. Henzinger, T.A., Kirsch, C.M., Sanvido, M.A.A., Pree, W.: From control models
to real-time code using Giotto. IEEE Control Syst. Mag. 23(1), 50–64 (2003).
https://doi.org/10.1109/MCS.2003.1172829

14. Hladik, P.E.: A brute-force schedulability analysis for formal model under logical
execution time assumption. In: ACM Symposium on Applied Computing (SAC),
pp. 609–615 (2018). https://doi.org/10.1145/3167132.3167199

15. Kluge, F., Schoeberl, M., Ungerer, T.: Support for the logical execution time
model on a time-predictable multicore processor. ACM SIGBED Rev. 13(4), 61–66
(2016). https://doi.org/10.1145/3015037.3015047

16. Koopman, P.: A case study of Toyota unintended acceleration and software
safety (2014). http://betterembsw.blogspot.com/2014/09/a-case-study-of-toyota-
unintended.html

17. Lee, E.A.: The problem with threads. Computer 39(5), 33–42 (2006)
18. Lee, E.A.: Determinism. ACM Trans. Embed. Comput. Syst. (TECS) 20(5), 1–34

(2021). https://doi.org/10.1145/3453652
19. Lee, E.A., Bateni, S., Lin, S., Lohstroh, M., Menard, C.: Quantifying and general-

izing the CAP theorem. arXiv:2109.07771 [cs.DC], 16 September 2021
20. Lee, E.A.: Plato and the Nerd - The Creative Partnership of Humans and Tech-

nology. MIT Press, Cambridge (2017)
21. Lohstroh, M.: Reactors: a deterministic model of concurrent computation for reac-

tive systems. Ph.D. thesis, EECS Department, University of California, Berke-
ley, December 2020. http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-
2020-235.html

22. Lohstroh, M., et al.: Reactors: a deterministic model for composable reactive sys-
tems. In: Chamberlain, R., Edin Grimheden, M., Taha, W. (eds.) CyPhy/WESE
2019. LNCS, vol. 11971, pp. 59–85. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-41131-2 4

23. Lohstroh, M., Lee, E.A.: A language for deterministic coordination across multiple
timelines. In: 2020 Forum for Specification and Design Languages, FDL 2020, Kiel,
Germany, pp. 1–8. IEEE, 15–17 September 2020

24. Lohstroh, M., Menard, C., Bateni, S., Lee, E.A.: Toward a Lingua Franca for
deterministic concurrent systems. ACM Trans. Embed. Comput. Syst. (TECS)
20(4), Article 36 (2021). https://doi.org/10.1145/3448128

25. Maler, O., Manna, Z., Pnueli, A.: From timed to hybrid systems. In: de Bakker,
J.W., Huizing, C., de Roever, W.P., Rozenberg, G. (eds.) REX 1991. LNCS,
vol. 600, pp. 447–484. Springer, Heidelberg (1992). https://doi.org/10.1007/
BFb0032003

26. Martinez, J., Sañudo, I., Bertogna, M.: Analytical characterization of end-to-end
communication delays with logical execution time. IEEE Trans. Comput. Aided
Des. Integr. Circuits Syst. 37(11), 2244–2254 (2018). https://doi.org/10.1109/
TCAD.2018.2857398

27. NASA Engineering and Safety Center: National highway traffic safety adminis-
tration Toyota unintended acceleration investigation. Technical assessment report,
NASA, 18 January 2011

28. Pree, W., Templ, J.: Modeling with the timing definition language (TDL). In: Broy,
M., Krüger, I.H., Meisinger, M. (eds.) ASWSD 2006. LNCS, vol. 4922, pp. 133–144.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70930-5 9

https://doi.org/10.1109/JPROC.2002.805825
https://doi.org/10.1109/JPROC.2002.805825
https://doi.org/10.1109/MCS.2003.1172829
https://doi.org/10.1145/3167132.3167199
https://doi.org/10.1145/3015037.3015047
http://betterembsw.blogspot.com/2014/09/a-case-study-of-toyota-unintended.html
http://betterembsw.blogspot.com/2014/09/a-case-study-of-toyota-unintended.html
https://doi.org/10.1145/3453652
http://arxiv.org/abs/2109.07771
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-235.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-235.html
https://doi.org/10.1007/978-3-030-41131-2_4
https://doi.org/10.1007/978-3-030-41131-2_4
https://doi.org/10.1145/3448128
https://doi.org/10.1007/BFb0032003
https://doi.org/10.1007/BFb0032003
https://doi.org/10.1109/TCAD.2018.2857398
https://doi.org/10.1109/TCAD.2018.2857398
https://doi.org/10.1007/978-3-540-70930-5_9


Generalizing Logical Execution Time 181

29. Resmerita, S., Naderlinger, A., Lukesch, S.: Efficient realization of logical execu-
tion times in legacy embedded software. In: ACM-IEEE International Conference
on Formal Methods and Models for System Design (MEMOCODE), pp. 36–45,
September 2017. https://doi.org/10.1145/3127041.3127054

30. Schneider, C., Spönemann, M., von Hanxleden, R.: Just model! - putting automatic
synthesis of node-link-diagrams into practice. In: Proceedings of the IEEE Sympo-
sium on Visual Languages and Human-Centric Computing (VL/HCC 2013), San
Jose, CA, USA, pp. 75–82, September 2013

31. Wilhelm, R., et al.: The worst-case execution-time problem-overview of methods
and survey of tools. ACM Trans. Embed. Comput. Syst.(TECS) 7(3), 1–53 (2008)

32. Zhao, Y., Lee, E.A., Liu, J.: A programming model for time-synchronized dis-
tributed real-time systems. In: Real-Time and Embedded Technology and Appli-
cations Symposium (RTAS), pp. 259–268. IEEE (2007)

https://doi.org/10.1145/3127041.3127054

	Generalizing Logical Execution Time
	1 Motivation
	2 Science, Engineering, and Mathematics
	3 LET and Giotto
	4 Logical and Physical Time
	5 Introduction to Lingua Franca
	6 LET and More in Lingua Franca
	6.1 Periodic Polled Control System
	6.2 Federated Execution
	6.3 Relaxing the Barrier Synchronization
	6.4 Event Triggered Execution
	6.5 Merging Events with Periodic Tasks
	6.6 Shared State

	7 Conclusions
	References




