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Abstract. We present a collection of advances in the algorithmic ver-
ification of hybrid automata with piecewise linear derivatives, so-called
Linear Hybrid Automata. New ways to represent and compute with poly-
hedra, in combination with heuristic algorithmic improvements, have led
to considerable speed-ups in checking safety properties through set prop-
agation. We also showcase a CEGAR-style approach that iteratively con-
structs a polyhedral abstraction. We illustrate the efficiency and scala-
bility of both approaches with two sets of benchmarks.

1 Introduction

Hybrid automata are a modeling paradigm that combines finite state machines
with differential equations in order to capture processes in which discrete, event-
based, behavior interacts with continuous, time-based behavior. They came to
rise in the beginning of the 1990s, throughout a collaboration of scientists from
various disciplines, notably computer scientists and control theorists. By that
time, formal methods such as abstract interpretation [19] and model checking
[18,44] had demonstrated their potential to increase the trustworthiness of safety
critical software and digital hardware designs. The goal was to develop similar
techniques for discrete systems that interact with processes that can be described
by differential equations, like some mechanical or biological processes, so-called
hybrid systems. In The Theory of Hybrid Automata, whose first version was
published 25 years ago in 1996, Tom Henzinger pointed out a class of hybrid
automata that hit a particular sweet spot for the purposes of symbolic (set-
based) analysis: linear hybrid automata (LHA). LHA are characterized by linear
predicates over the continuous variables and the evolution of the continuous vari-
ables is governed by differential inclusions that depend only on the discrete state,
not the continuous variables themselves. LHA readily lend themselves as sound
abstractions of complex natural and technical processes and as asymptotically
complete approximations of a large class of hybrid automata [35]. While prop-
erties like safety are not decidable for LHA, the states reachable over a given
c© Springer Nature Switzerland AG 2022
J.-F. Raskin and K. Chatterjee (Eds.): Principles of Systems Design, LNCS 13660, pp. 39–60, 2022.
https://doi.org/10.1007/978-3-031-22337-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22337-2_3&domain=pdf
http://orcid.org/0000-0002-5441-0481
http://orcid.org/0000-0001-8180-0904
http://orcid.org/0000-0001-6388-2053
https://doi.org/10.1007/978-3-031-22337-2_3


40 G. Frehse et al.

finite path can be computed exactly and symbolically, in the form of continuous
sets associated to discrete states. In a sense, the continuous time domain can be
abstracted away for LHA, so that the symbolic analysis resembles that of linear
programs. Consequently, techniques from linear program analysis, such as the
polyhedral computations in [30], could be applied. This led to symbolic analy-
sis tools such as the pioneering model checker HyTech [33]. Since then, much
research effort has been invested in making symbolic analysis more efficient, in
order to scale up to systems of practical interest.

In this paper, we present a selection of techniques that, applied to the sym-
bolic analysis of LHA, have led to performance improvements of several orders
of magnitude since the days of HyTech. We focus entirely on safety proper-
ties encoded as reachability problems, i.e., whether a state is reachable from
any state in a given set of initial states. We start with a simple fixed-point
algorithm for computing reachable sets of states, using convex polyhedra as
set representations. We then present various advances in polyhedral computa-
tions as well as efficient abstractions that serve as heuristics to speed up the
fixed-point algorithm, and illustrate the performance gains with experiments.
As an alternative approach, we also present a technique based on the CEGAR
(Counter-Example Guided Abstraction Refinement) paradigm. Starting from an
initial, coarse abstraction, the finite-path encoding of LHA is used to iteratively
refine the abstraction until either a counterexample has been found or the system
is proved safe. Our overview is far from exhaustive and limited to work by the
authors. We point the reader to the references in [1,3,40,51] for related work.
Other CEGAR approaches are implemented, e.g., in the tools HARE [46] and
HyCOMP/IC3 [13]. To take an instance of an entirely different approach, we
point to the work in [43], where LHA are encoded as linear programs, which are
then analyzed by the software model checker ARMC. Bounded model checking
for LHA has been implemented in the tool BACH [14].

The remainder of the paper is structured as follows. In Sect. 2, we define
linear hybrid automata and give a brief overview on set-based reachability. In
Sect. 3 we show how set-based reachability can be implemented efficiently, either
exactly or by resorting to overapproximations. In Sect. 4 we present a CEGAR
framework than can further enhance scalability. In Sect. 5, a series of experiments
illustrates the impact of the different approaches and techniques on performance.
Finally, we conclude in Sect. 6.

2 Symbolic Analysis of Linear Hybrid Automata

Hybrid automata describe the evolution of a set of real-valued variables over
time. In this section, we give a formal definition of hybrid automata and their
behaviors, and illustrate the concept with an example. But first, we introduce
some notation for describing real-valued variables and sets of these values in the
form of predicates and polyhedra.
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2.1 Preliminaries

Variables: Let X = {x1, . . . , xn} be a finite set of variables. A valuation over X is
written as x ∈ R

X or x : X → R. We use the primed variables X ′ = {x′
1, . . . , x

′
n}

to denote successor values and the dotted variables Ẋ = {ẋ1, . . . , ẋn} to denote
the derivatives of the variables with respect to time. Given a set of variables
Y ⊆ X, the projection y = x ↓Y is a valuation over Y that maps each variable in
Y to the same value that it has in x. We may simply use a vector x ∈ R

n if it is
clear from the context which index of the vector corresponds to which variable.
We denote the i-th element of a vector x as xi or x(i) if the former is ambiguous.
In the following, we use R

n instead of R
X except when the correspondence

between indices and variables is not obvious, e.g., when valuations over different
sets of variables are involved.

Predicates: A predicate over X is an expression that, given a valuation x over X,
can be evaluated to either true or false. A linear constraint is a predicate a1x1 +
a2x2+· · ·+anxn �� b, where a1, . . . an and b are real-valued constants, and whose
sign may be strict or nonstrict (i.e., �� ∈ {<,≤}). A linear constraint is written
in vector notation as aTx �� b, with coefficient vector a ∈ R

n and inhomogeneous
coefficient b ∈ R. A halfspace H ⊆ R

n is the set of points satisfying a linear
constraint. A predicate over X defines a continuous set, which is the subset of
R

X on which the predicate evaluates to true.

Polyhedra: A conjunction of finitely many linear constraints defines a polyhedron
in constraint form, also called H-polyhedron,

P =
{

x
∣∣∣
∧m

i=1
aT

ix ��i bi

}
, with ��i ∈ {<,≤},

with facet normals ai ∈ R
n and inhomogeneous coefficients bi ∈ R. A bounded

polyhedron is called a polytope. Note that the set of constraints defining P is
not necessarily unique. The representation of a polyhedron has a big impact on
the computational cost of different geometric operations. Other representations
for polyhedra can be more efficient for model checking, and will be discussed in
detail in Sect. 3.

2.2 Linear Hybrid Automata

We now give a formal definition of a linear hybrid automaton and its run seman-
tics.

Definition 1 (Linear Hybrid Automaton). [2,32,36] A linear hybrid
automaton H = (X, Loc,Edg, Lab, Init, Inv,Flow, Jump,Event) consists of

– a finite set of variables X = {x1, . . . , xn}, partitioned into uncontrolled vari-
ables U and controlled variables Y ;

– a finite directed multigraph (Loc,Edg), called the control graph, which consists
of a set of locations Loc = {�1, . . . , �m} that represent discrete modes, and a
set of edges Edg that represent discrete transitions between modes;
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– a finite set of synchronization labels Lab;
– a polyhedral constraint over variables Inv(�) ∈ R

X called invariant or staying
condition, which restricts the values the variables can possibly take over loca-
tion � ∈ Loc; a state of H consists of a location � and a value x ∈ Inv(�) for
the variables, and is denoted by s = (�, x);

– a polyhedral constraint Init(�) ⊆ Inv(�) called initial condition, which deter-
mines the set of initial values for the variables at location � ∈ Loc; every
behavior of H must start in one of the initial conditions;

– a polyhedral constraint over dotted variables Flow(�) ⊆ R
Ẋ called flow con-

dition, which gives for each location � ∈ Loc the set of possible derivatives a
trajectory can possibly take using a differential inclusion such as ẋ ∈ Flow(�);

– a polyhedral constraint Jump(e) ⊆ R
X ×R

X′
over unprimed and primed vari-

ables called jump relation, which defines the set of possible successors x′ of
x when transition e ∈ Edg is taken; jump relations are typically given by
a polyhedral guard constraint Ge ⊆ R

X and an affine assignment (or reset)
x′ = re(x) as Jump(e) = {(x, x′) | x ∈ Ge ∧ x′ = re(x)}; also, under cer-
tain definitions, every location � is associated with an uncontrolled transition
ē ∈ Edg from l to itself and jump relation defined as Jump(ē) = {(x, x′) |
x′ ↓Y = x ↓Y ∧x′ ∈ Inv(�)}, which represents arbitrary assignments that the
environment might perform on the uncontrolled variables U = X \ Y ;

– an event function Event(e) ∈ Lab∪{τ} that maps every edge e ∈ Edg to either
a synchronization label or the internal event τ ; uncontrolled transitions are
always mapped to τ .

We define the behavior of a hybrid automaton with a run: starting from one of
the initial states, the state evolves according to the differential equations whilst
time passes, and according to the jump relations when taking an (instantaneous)
transition.

Definition 2 (Run semantics). A run of H is a sequence

(�0, x0)
δ0−→ (�0, y0)

α1−→
e1

(�1, x1)
δ1−→ (�1, y1)

α2−→
e2

. . .
δk−→ (�k, yk),

that satisfies for the three conditions listed below.

1. Initialisation: the first state satisfies an initial condition, i.e., x0 ∈ Init(�0).
2. Continuous flow: for every i = 0, . . . , k, there exist a trajectory ξ : [0, δi] →

R
X from xi to yi and with dwell time δi ∈ R≥0 over location li, that is, ξ is

a continuously differentiable function such that ξ(0) = xi, ξ(δi) = yi, and it
holds true that ξ̇(t) ∈ Flow(�i) and ξ(t) ∈ Inv(�i) for all t ∈ [0, δi].

3. Discontinuous jumps: for every i = 1, . . . , k we have that ei ∈ Edg has source
�i−1 and destination �i, αi = Event(ei), and (yi−1, xi) ∈ Jump(ei).

A state (�, x) is reachable if there exists a run with (�i, xi) = (�, x) for some i.

The existence of a run can be reduced to satisfiability of a conjunction of linear
constraints. This has been exploited to synthesise parameters [27] and in Counter
Example Guided Abstraction Refinement (CEGAR) frameworks [38], which we
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data: lists of symbolic states W and R, initially empty

1 foreach � ∈ Loc s.t. Init(�) �= ∅ do
2 P ← postC(l, Init(�));
3 push (�, P) into the waiting list W ;

4 while W �= ∅ do
5 pop (�, P) from W ;
6 if P ⊆ P ′′ and � = �′′ for some (�′′, P ′′) ∈ R ∪ W then
7 continue;

8 foreach e ∈ Edg with source l and destination l′ do
9 P ′ ← postC(�′, postD(e, P));

10 push (�′, P ′) into W ;

11 add (�, P) to the passed list R;

Algorithm 1: Symbolic analysis procedure.

will discuss in more detail in Sect. 4. It also follows from these semantics that
with a simple model transformation,1 a LHA can be verified by model checkers
able to handle linear constraints over the rationals, see [43].

2.3 Symbolic Analysis

A standard method to compute the reachable states is to iterate the following
one-step successor operators for discrete and continuous transitions. Given a set
of variables valuations S ⊆ R

n, let postC(�, S) be the set of valuations reachable
by letting time elapse from any valuation in S over location � ∈ Loc,

postC(�, S) =
{

y
∣∣∣ ∃x ∈ S, δ ∈ R≥0 : (�, x) δ−→ (

�, y
)}

. (1)

Let postD(e, S) be the set of valuations resulting from transition e ∈ Edg from
any valuation in S

postD(e, S) =
{

x′
∣∣∣ ∃x ∈ S : (�, x) α−→

e
(�′, x′)

}
, (2)

where � and �′ are source and target locations of e and α = Event(e).
Starting from the initial states, postC and postD are applied in alternation

along the structure of the control graph. In model checkers such as HyTech
[33], PHAVer [22] and SpaceEx [28], the symbolic analysis of a linear hybrid
automaton is performed using symbolic states s = (�,P), where � ∈ Loc and
P is a polyhedron. Computing the timed successors postC of a symbolic state
s = (�,P) produces a new symbolic state s′ = (�,P ′). Computing the jump
successors postD of s = (�,P) involves iterating over all outgoing transitions of
�, and produces a set of symbolic states, each in one of the target locations.
A waiting list contains the symbolic states whose successors still need to be
explored, and a passed list contains all symbolic states computed so far. The
fixed-point computation proceeds according to the steps below.
1 It suffices to introduce a variable for the elapsed time in each location.
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1. Initialization: compute the continuous successors of the initial states, put
them on the waiting list, and proceed to step 2.

2. Containment checking: pop a symbolic state s = (�,P) from the waiting list
and check whether it has been encountered before, i.e., it is subsumed by
some symbolic state in passed or waiting list. Repeat step 2 until either the
waiting list is empty or a never encountered state is found. If the waiting list
is empty, terminate and return. If a new state is found, proceed to step 3.

3. Post computation: compute all one-step successors postC(�′, postD(e,P)) of s
along all transition e that are outgoing from � (and have destination �′) and
push them to the waiting list. Add s to the passed list and repeat step 2.

Upon termination of the procedure (which happens empirically, and is not guar-
anteed in general), the passed list R represents the whole set of reachable states.

An important aspect of the fixed point algorithm outlined above is that it
attempts to reduce redundant exploration. This is taken care of by step 2, resp.
line 6 in Algorithm 1, which implicitly performs the following operations:

2.1 it discards states that are contained in any symbolic state on the passed list,
2.2 it discards states that are contained in any remaining symbolic state on the

waiting list—this is known as waiting list filtering.

Note that filtering the waiting list is a heuristic, which may or may not lead
to an efficiency improvement with respect to a containment check over the passed
list only; however, in practice, it leads to savings in computational time which
compensates for the overhead of comparing a large number of symbolic states.

3 Implementing Symbolic Analysis Using Polyhedra

In this section we briefly describe how to implement the symbolic analysis out-
lined in Sect. 2.3 when adopting a domain of convex polyhedra for the represen-
tation of symbolic states.

The Double Description Method

Even though there exist polyhedra libraries that are exclusively based on the
constraint form,2 the classical approach [20] is based on the Double Description
(DD) method [42], where the constraint form is paired with a generator form
and conversion algorithms [16] can compute each representation from the other,
removing redundancies so as to obtain minimal descriptions, as well as keeping
them in synch after an incremental update. Polyhedra libraries based on the
DD method include PolyLib (www.irisa.fr/polylib/), ELINA [50], NewPolka in
Apron [37], PPL (Parma Polyhedra Library) [6], and PPLite [10]; the last three
also support strict linear constraints.

2 For instance, VPL (Verified Polyhedron Library) [12].

www.irisa.fr/polylib/
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Generator Form and V-Polyhedra. The classical definition of generators for closed
polyhedra has been extended in [6] to the case of NNC (not necessarily closed)
polyhedra. Namely, an H-polyhedron can be equivalently represented in gener-
ator form by three finite sets (P,C,R), where P ⊆ R

n is a set of points of P
(including its vertices), C ⊆ R

n is a set of closure points, and R ⊆ R
n is a set of

rays. The generator form defines a V -polyhedron as

P =

⎧
⎨
⎩

∑
pi∈P

πi · pi +
∑
cj∈C

γj · cj +
∑

rk∈R

ρk · rk

∣∣∣∣∣
πi ≥ 0, γj ≥ 0, ρk ≥ 0,∑

i πi +
∑

j γj = 1,
∑

i πi �= 0,

⎫
⎬
⎭

which consists of the convex hull of points and closure points, extended towards
infinity along the directions of the rays; the requirement that at least one point pi

positively contributes to the convex combination means that the closure points,
which are in the topological closure of P, are not necessarily contained in P.

Both NewPolka and PPL, following the approach outlined in [30,31] and
further developed in [5], use an additional slack variable (usually named ε) to
encode the strict constraints as nonstrict ones, obtaining closed ε-representations
of the NNC polyhedra. While allowing for a simple reuse of the classical conver-
sion algorithms, this choice easily leads to a significant computation overhead.
In contrast, the PPLite library is based on a direct representation for the strict
constraints, leveraging on enhanced versions of the Chernikova procedures [7,8]
fully supporting the use of strict constraints and closure points.

Converting Between H and V Representations. No matter if using the direct or
the slack variable representation, the core algorithmic step of the DD method
〈H,V〉 β−→ 〈H′,V ′〉 modifies a DD pair by adding a single constraint (resp., gen-
erator) β. From this, the conversion procedure computing the generator form
V = Vm for a given constraint form H = {β0, . . . , βm} is obtained by incre-
mentally processing the constraints, starting from a DD pair 〈H0,V0〉 ≡ R

n

representing the whole vector space:

〈H0,V0〉 β0−→ . . .
βk−1−−−→ 〈Hk,Vk〉 βk−→ 〈Hk+1,Vk+1〉 βk+1−−−→ . . .

βm−−→ 〈Hm,Vm〉.
The conversion from generators to constraints works similarly, starting from a
DD pair representing the empty polyhedron and incrementally adding the gen-
erators. The same approach can also be used to compute the set intersection
P1 ∩ P2 (resp., the convex polyhedral hull P1 � P2) of polyhedra P1 ≡ 〈H1,V1〉
and P2 ≡ 〈H2,V2〉: the constraints in H2 (resp., the generators in V2) are incre-
mentally added to the DD pair describing P1.

Cartesian Factoring. Converting between H and V polyhedra has a worst
case complexity that is exponential in the size of the input representation; it
is therefore essential to keep representations small, e.g., by removing redun-
dancies. Cartesian factoring [29] can greatly reduce the space needed to rep-
resent a V-polyhedron. The space dimensions X = {x1, . . . , xn} are parti-
tioned into a sequence of blocks (B1, . . . , Bk) so that each linear constraint
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x1
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Fig. 1. Incomplete decision procedures speed up the containment checks.

in the H-representation mentions the dimensions of a single block Bi; then,
the H-polyhedron P is factored into k polyhedra (P1, . . . ,Pk); if needed, these
H-polyhedra are converted to a sequence of V-polyhedra. This can be much
more efficient in time and space compared to a direct conversion. The ELINA
library [50] uses a very efficient implementation of Cartesian factoring; the tech-
nique is also implemented in PPLite.

Implementation of Containment Checks

The overall efficiency of the procedure computing the set of reachable states
is deeply affected by the efficiency of the polyhedra containment check. When
using the DD method, the inclusion test P1 ⊆ P2 is implemented by checking
that all the m1 generators of P1 satisfy all the m2 constraints of P2. In the worst
case, i.e., when the inclusion holds, this amounts to the computation of m1 · m2

scalar products, each one requiring O(n) arbitrary precision multiplications and
additions, where n is the number of variables.

As shown in [9], impressive efficiency improvements can be obtained by
exploiting the fact that each one-step successor state s′

i is checked against all
the states stored in the passed list before being added to the passed and waiting
lists. It is therefore possible to compute, and cache for reuse, simpler abstrac-
tions of the polyhedra that are enough to quickly semi-decide the containment
check. The boxed polyhedra proposal in [9] uses a two-level scheme, where each
polyhedron Pi is abstracted into its bounding box Bi, which in turn is further
abstracted in the pseudo-volume information.3

Figure 1 shows a few examples, where for each polyhedron Pi (solid blue)
we draw the corresponding bounding box Bi (dashed black). Intuitively, we
know that P1 �⊆ P2 because vol(B1) > vol(B2); we know that P3 �⊆ P1 because
num rays(B3) = 1 > 0 = num rays(B1); we know that P2 �⊆ P4 because B2 �⊆ B4

(even though vol(B2) = vol(B4) and num rays(B2) = num rays(B4)); finally,
when checking whether or not P5 ⊆ P6, since B5 ⊆ B6 no semi-decision proce-
dure applies and we need to resort to the more expensive polyhedra containment
check.

3 Roughly speaking, the volume of the box, in the case of a polytope; or the number
of rays of the box, in the case of an unbounded polyhedron.
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Fig. 2. Continuous and discrete post operators.

Implementing the Continuous Post Operator

For a fixed location �, the flow relation of an LHA is specified by a polyhedron
Q� = Flow(�) describing the possible values of the first time derivatives of the
system variables. The possible trajectories starting from the states in polyhedron
P are obtained by the time-elapse operator:

P ↗Q� = { p + t · q | p ∈ P, q ∈ Q�, t ∈ R, t ≥ 0 }. (3)

Assuming that Q� is a closed V-polyhedron described by generators (P,C,R),
where C = ∅, the set P ↗Q� is a convex polyhedron that can be computed by
(incrementally) adding to P the finite set of rays R′ = P ∪ R [30].4

An example of applying the continuous post operator to a symbolic state
(�,P) is shown on the left hand side of Fig. 2. Suppose that I� = Inv(�) and
Q� = Flow(�) are the polyhedra representing the invariant and the flow condition
for location �. Then, postC(�,P) = (P ↗Q�) ∩ I� = R,5 is computed by first
adding rays r1 and r2 to P and then computing set intersection to restore the
invariant I�.

Implementing the Discrete Post Operator

The discrete post operator can be implemented by combining several lower level
operators on the polyhedra domain.

Uncontrolled Assignments. Consider first the case of an uncontrolled assignment
to the variables in the set U ⊆ X. In order to avoid projection (which would
imply a change of space dimension), this can be implemented by the existential
quantification of the variables in U , followed by the intersection with the location
invariant. When using the DD method, existential quantification is obtained by
(incrementally) adding the set of rays RU = { eu,−eu | u ∈ U }, where each eu

is the standard basis vector for variable u.6

4 Not all polyhedra libraries directly support this operator: PPL/PPLite provide an
operator named time elapse assign; the Apron interface defines an equivalent func-
tion named add ray array ; the operator is not available in ELINA and VPL.

5 Polyhedron R is shown with a blue border; it contains both P and S.
6 Polyhedra libraries often directly support the existential quantification operator;

e.g., the unconstrain operator in PPL/PPLite and the forget operator in Apron.
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Guarded Assignments. Let e ∈ Edg be a transition composed by a polyhedral
guard G and a reset x′ = re(x) only containing affine assignments. Then, the
image of relation Jump(e) on input P can be computed as P ′ = re[P ∩Ge], where
re[X] = {re(x) : x ∈ X} denotes the image of set X ⊆ R

n though the linear
transformation re. To avoid inefficiencies, particular care has to be taken when
implementing the image of linear transformation re[·]. Most polyhedra libraries
implement a sequential assignment operator, which can be directly used when
the (parallel) reset operator re does not contain cyclic dependencies, so that the
assignments can be topologically sorted without affecting their semantics. The
sequential assignment further distinguishes between invertible and non-invertible
assignments. In the invertible case (e.g., x′

1 = 2 · x1 + x2), both the constraint
and the generator forms can be updated by simply applying r−1

e and re, respec-
tively. In the non-invertible case (e.g., x′

1 = x2 + 3), only the generator form is
updated (using re), while the constraint form has to be recomputed from scratch
using the conversion procedure. An alternative approach, better exploiting the
incrementality of the DD method, implements the non-invertible assignment by
temporarily adding a fresh variable. Letting X ′ = X\{x1}∪{x′

1}, the assignment
x′
1 = rhs can be computed as7

(
(P ↑{x′

1}) ∩ {x′
1 − rhs ≤ 0, rhs − x′

1 ≤ 0}) ↓X′ , (4)

followed by a renaming of x′
1 into x1. This approach has been extended in [9]

so as to be also applicable to parallel assignments having cyclic dependencies:
the parallel assignment is compiled into an equivalent sequence of sequential
assignments, taking care to introduce a minimal number of fresh variables (only
when breaking a dependency cycle).

An example of application of the discrete post operator is shown in the middle
of Fig. 2. Suppose that there exists a single transition e exiting from source
location � to target location �′, having the polyhedron Ge as guard component
and a reset component modeled by affine transformation re (which combines a
rotation and a translation); let also I�′ be the invariant for the target location
�′. Then, starting from R, we obtain postD(e,R) = re[R ∩ Ge] ∩ I�′ = re[S] ∩
I�′ = S ′ ∩ I�′ = P ′. On the right hand side of Fig. 2 we also show an example
where, by using the boxed polyhedra proposal of [9], it is sometimes possible
to efficiently detect disabled transitions. Namely, the cheaper (but incomplete)
check for disjointness B1 ∩ B2 = ∅ on the bounding boxes B1 and B2 for the
polyhedron state P1 and the polyhedral guard G2, when successful, is enough to
conclude that P1 and G2 are disjoint too.

Computing Overapproximations for Scalability

While some verification tasks require the exact symbolic computation of the set
of reachable states, there exists cases where an overapproximation may be good
enough (e.g., when trying to prove a safety property of the hybrid automaton).
7 We denote by P ↑Y the addition to polyhedron P of the fresh, i.e., unconstrained,

variables in Y , where X ∩ Y = ∅.



Symbolic Analysis of Linear Hybrid Automata - 25 Years Later 49

1 2 1 2 1 w 2

Fig. 3. Set union overapproximations: polyhedral hull vs. constraint hull.

One possibility is to choose a less precise symbolic domain, such as octagons [41]
or template polyhedra [48]. A less radical alternative is to maintain the full gen-
erality of the domain of convex polyhedra and give up some precision in specific
contexts or on specific operators. As a classical example, in [31] all symbolic
states (�i,Pi) for location �i are merged into a single state (�i,�{Pi}). Since the
computation of the convex polyhedral hull might still be expensive, it can be fur-
ther approximated by computing, for instance, their constraint hull (�i,�w{Pi})
(also called weak join [47]): this resembles the join operator defined on template
polyhedra, since it is restricted to only use those constraint slopes that already
occur in the arguments. Figure 3 shows a simple example of the different levels of
overapproximation obtained. At the implementation level, the constraint hull of
a set of polyhedra can be computed either by solving many Linear Programming
problems or by enumerating the generators of the arguments. The latter app-
roach is adopted in PPLite, which is the only library based on the DD method
directly supporting this operator. Some tools (e.g., PHAVer) allow for the user
to choose if and how to approximate set union by using a single polyhedron per
location.

4 Symbolic Analysis Using CEGAR

An exact reachability analysis using polyhedra provides strong soundness guar-
antees in the sense that, if a counterexample to a safety property is identified
over the symbolic representation, then corresponding a trajectory must exist
in the system. Also, if the analysis finds a fixed point without identifying any
counterexample, then the system is safe. However, an exact symbolic analysis is
computationally costly. Computing the image of a post operator amounts to a
projection of a system of linear inequalities over the output variables of the oper-
ator. Methods for computing projections include quantifier elimination methods
as, e.g., the Fourier-Motzkin algorithm [52], or double-description methods (see
Sect. 3), which suffer from exponential complexity blow-ups in the worst case.
Moreover, tight representations of the reachable states may in some cases prevent
the reachability algorithm from identifying a fixed point and, therefore, produce
an answer at all; conversely, coarser abstractions can help reaching a fixed point.
A method that tackles the above shortcomings is abstraction.
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(a) (b) (c)

Fig. 4. The wrapping effect.

Abstractions for hybrid systems come with a wide variety of flavors, which
typically depend both on the kind of systems under analysis and the safety
specifications of interest. Examples are abstractions based on interval arithmetic,
which enjoy a high generality as they can even account for system dynamics
described using polynomial and transcendental functions (that is, more general
than LHA) and also enjoy high efficiency. On the other hand, interval analysis
suffers from the wrapping effect. An example for the wrapping effect is shown
in Fig. 4. The system in this example rotates an ellipse counterclockwise by
45◦ in discrete time steps, that is, a two-dimensional systems whose dynamic
is governed by a linear difference equation. An abstraction based on interval
analysis constructs rectangles (1) whose facets are orthogonal to the axes of the
state space of interest and (2) that over-approximate the initial set of states
(the init set) and the result of every computation of the post operator. In this
instance, at the first step (Fig. 4a) the abstraction constructs a rectangle that
encloses the init but also includes states that do not belong to it, introducing
a small error. At the second step (Fig. 4b) the post operator is first applied
to the abstract set of states (depicted with dashed lines) and then abstracted
again within a larger rectangle, which introduces a further error with respect
to the original set of states (the ellipse). The process is repeated over the third
(Fig. 4c) and all successive steps, and this causes an ever increasing accumulation
of over-approximation error.

Abstract safety analysis based on over-approximation conserves soundness in
the sense that, upon termination, if the abstract reach set is disjoint from an
unsafe region then the system is safe. However, it loses the property for which
counterexamples are always genuine. An example can be constructed over Fig. 4,
considering a bad region that intersect an abstract set of states (a rectangle) but
does not intersect the concrete set of states (the ellipse). In this case, an abstract
safety analyser would produce a spurious counterexample to safety. On the other
hand, it should be clear that if a bad region is disjoint from the abstract states
then it is also disjoint from the concrete states.

Abstractions are lightweight to compute, but may produce spurious coun-
terexamples. Exact safety analysis always produces genuine counterexamples,
but relies on heavy machinery. The approach that capitalises over the advantages
of both worlds is counterexample-guided abstraction refinement (CEGAR) [17].
It consists of two phases, one that abstracts the system and another which
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Fig. 5. Template polyhedra.

refines the abstraction, which interact in a loop. The fundamental ingredient of
a CEGAR loop is an abstraction that admits refinement, that is, an abstraction
whose precision can be made tighter and tighter by changing some parameters.
One example of parameterised abstraction is that of template polyhedra, which
has been successfully applied not only to the verification of LHA [21], but also
computer programs [49], hybrid automata with linear ODEs [39,48], and more
recently neural network control [4]. Formally, template polyhedra are defined in
terms of supporting halfspaces, which are in turn defined in terms of support
functions. Given a convex set of states X ⊆ R

n, the support function of X in a
direction δ ∈ R

n is
ρX (δ) = sup{〈x, δ〉 : x ∈ X}, (5)

namely, the supremum of the inner product of δ with all elements of X [45]. This
gives the offset with respect to the origin of the tightest halfspace contaning X—
the supporting halfspace—that is orthogonal to δ. Finally, a template polyhedron
of X is a finite intersections of supporting halfspaces of X that are orthogonal
to a finite set of directions Δ ⊂ R

n. We call Δ a template and define the Δ-
polyhedron of X as the following set:

∩ {{x : 〈x, δ〉 ≤ ρX (δ)}︸ ︷︷ ︸
supporting halfspace

: δ ∈ Δ}. (6)

Rectangular and octagonal abstractions are special cases of templates polyhedra,
as Fig. 5a and b exemplify; an arbitrary template parameterizes the shape of the
polyhedron as shown in Fig. 5c.

In this section, abstract safety analysis can be seen as the procedure in Algo-
rithm 1, but where P and P ′ are over-approximated as template polyhedra at
respectively lines 2 and 9. Similarly to Sect. 3, we interpret the post operators
as operators over sets of states in R

n as follows:

postC(�,P) = ((P ∩ I�) + coni Q�) ∩ I� (7)
postD(e,R) = Ae[R ∩ Ge] + {be}, (8)

where I� = Inv(�) are invariant and Q� = Flow(�) and flow constraint of location
�, and transition e ∈ Edg is modeled as a guarded assignment with guard Ge

and affine reset function re(x) = Aex + be, with Ae ∈ R
n×n and be ∈ R

n
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Fig. 6. Architecture of a CEGAR loop.

(a post operator for general jump conditions is described in [11]). Operator
postC(�,P) in Eq. 7 represents time elapse over a mode �, and is equivalent
to ((P ∩ I�)↗ Q�) ∩ I� as defined in Eq. 3; operator postD(e,R) in Eq. 8 is a
rewriting of re[R ∩ G]. Here, post operators are defined as combinations of four
basic operations over sets:

X ∩ Y (intersection)
coni X = {t · x : x ∈ X , t ≥ 0} (conical hull)
X + Y = {x + y : x ∈ X , y ∈ Y} (Minkowski sum)
A[X ] = {Ax : x ∈ X} (linear map)

where X and Y are sets in R
n and A ∈ R

n×n. Computing template polyhedra
for our post operators consists of building the respective support function—
inductively—over these operations over sets; a method to inductively construct
support functions was introduced in [39], and later extended in [11] with exact
intersection and conical hull operations. Abstract safety analysis computes an
abstraction of the reach set by Algorithm 1 as a union of template polyhedra,
until either it terminates or a counterexample is found; in the latter case, we
refine the template polyhedra in a CEGAR loop.

Refining a template polyhedron amounts to adding directions to the tem-
plate [15,25]. Intuitively, the more the directions are, the tighter the abstraction
is. The objective of an abstraction refinement scheme for template polyhedra is
identifying a template that avoids finding any spurious counterexamples [11,26].
A CEGAR loop constructs this template incrementally. As depicted in Fig. 6,
the initial phase computes an abstraction using some initial template. If the
abstraction is determined safe then the system is also safe and then the loop
terminates and returns safe. If the abstraction identifies a counterexample then
this is passed to the refinement phase. Refinement determines whether the coun-
terexample is genuine or proposes a new template. In the earlier case the loop
terminates and returns unsafe. In the latter case, refinement computes a tem-
plate, that is, adds new directions to the existing template, which excludes the
latest spurious counterexample from the abstraction. This refined template is
passed to the abstraction phase and the loop is repeated. As a result, the loop
enumerates spurious counterexamples and adds directions to the template until
either all counterexamples are eliminated or some genuine counterexample is
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Fig. 7. Halfspace interpolants.

found. While this loop may in general not terminate, the same counterexample
can never be encountered twice; this ensures progress.

A counterexample is a finite path �0, e1, �1, . . . , ek, �k over the control graph
of the hybrid automaton for which the respective sequence of abstract template
polyhedra encounters a bad state, that is,

P0 = Δ-polyhedron of post0(X0), . . . ,Pk = Δ-polyhedron of postk(Pk−1),

and Pk∩B �= ∅, where X0 = Init(�0) denotes the initial condition, B ⊆ R
n denotes

the bad region, post0(X ) = postC(�0,X ), and posti(X ) = postC(�i, postD(ei,X ))
for i = 1, . . . , k. The region that results from this path can be seen as a con-
catenation of post operators from initial to bad state. Refining the template so
as to eliminate the counterexample amounts to identifying exactly one direction
for each step along the counterexample. In turn, this amounts to identifying a
sequence of halfspace interpolants along these steps such that the last halfspace
separates the result from the bad region. More precisely, we want to construct
a sequence of halfspaces H0, . . . ,Hk ⊆ R

n such that

post0(X0) ⊆ H0, post1(H0) ⊆ H1 . . . , postk(Hk−1) ⊆ Hk,Hk ∩ B = ∅. (9)

To compute these halfspaces we break down these post operators into combi-
nations of basic operations over sets. As indicated above, four operations are
sufficient for the symbolic analysis of LHA: intersection between sets X ∩ Y,
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Table 1. The progress on computation times for the DISC benchmarks.

Edition Tool DISC2 DISC3 DISC4 DISC5

Computation time in [s]

2017 PHAVer/SX 1.1 — — —

2018 PHAVer-lite/SX 0.1 548.0 — —

2019 PHAVerLite-0.1 0.04 0.68 77.51 —

2020 PHAVerLite-0.3.1 0.04 0.35 2.59 27.99

Minkowski sum X +Y, conical hull coniX , and linear map A[X ]. For this reason,
we can construct these halfspaces inductively over every operation. Specifically,
for any halfspace H that contains the result of an operation, i.e., X ∩ Y ⊆ H,
X + Y ⊆ H, coni X ⊆ H, or AX ⊆ H, we compute a second halfspace H′ that
includes one operand, i.e., X ⊆ H′, and abstracts it so as to preserve inclusion
of the result into H, i.e., H′ ∩ Y ⊆ H, H′ + Y ⊆ H, coni H′ ⊆ H, or A[H′] ⊆ H
respectively. The intuition behind halfspace interpolants is depicted in Fig. 7. As
it turns out, these sequences of halfspace interpolants always exists if and only
if the counterexample is spurious and can be computed efficiently by solving a
large linear program; the details of the method for LHA are described in [11],
and extended to hybrid automata with linear ODEs in [26]. The performance of
this CEGAR approach is illustrated by some experiments in the next section.

5 Experiments

We provide some experiments to illustrate the above approaches for the anal-
ysis of Linear Hybrid Automata. They are based on results collected for the
ARCH-COMP friendly verification competitions since 2017, in the category of
hybrid system with piecewise constant dynamics of the [13], where different
implementation techniques have been evaluated over the years. The following
implementations are used:

– PHAVer [22] uses the fixed-point algorithm in Sect. 2.3 and calls the Parma
Polyhedra Library [5] for the polyhedral computations in Sect. 3. PHAVer/SX
is a subset of PHAVer, included as a plugin in the tool SpaceEx [28].

– PHAVerLite is a variant of PHAVer using the polyhedra library PPLite [8],
which employs a novel representation and conversion algorithm [7] for NNC
(Not Necessarily Closed) polyhedra. PHAVer-lite is an earlier version, imple-
mented as a SpaceEx plugin.

– Lyse [24] is a tool for the reachability analysis of convex hybrid automata,
whose constraints can be linear or non-linear but are required to be convex,
as outlined in Sect. 4.
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5.1 Distributed Controller

In Table 1 we provide some evidence of the incremental efficiency improvements
that have been obtained in recent years. To this end, we consider the Distributed
Controller (DISC) benchmarks [34], which model a distributed controller for a
robot, reading data from multiple sensors and processing them according to
multiple priorities. The instances DISCn are parametric on n ∈ {2, 3, 4, 5},
which is the number of sensors: the product automaton has 1 + 4n variables
and 4× (1+n)×4n locations. The verification goal is to prove a safety property,
so that overapproximations are allowed. The rows in Table 1 are labeled by a year
corresponding to the edition of the competition; they provide the overall execu-
tion time spent by the corresponding model checking tool. In 2017 and 2018, the
tools computed the exact reachable states, so that instances with n > 3 were
timing out. The time improvement in 2018 is due to replacing the PPL library
with PPLite. In 2019, PHAVerLite-0.1 overapproximated set unions using the
constraint hull operator, thereby also solving the instance with n = 4; finally, in
2020 the adoption of Cartesian factoring solved the instance with n = 5.

In Table 2, we present a more detailed evaluation of the techniques from
in Sect. 3, focussing on the instance DISC3. The first four columns show the
tool configuration: (filter w-list) whether redundant polyhedra are removed from
the waiting list; (boxing) whether polyhedra are boxed to speed up inclusion
tests; (con-hull) whether set union is approximated using the constraint hull;
and (factoring) whether polyhedra are represented using Cartesian factoring.
For each of the considered combinations, in the next columns show: (iter) the
number of iterations of the algorithm; (p-list) the final length of the passed list
of polyhedra; (r-loc) the number of the reachable locations of the automaton;
(time) the overall time spent by the tool.

When the exact reachable set needs to be computed, the filtering and boxing
techniques are quite effective in improving efficiency. The constraint hull approx-
imation provides another significant efficiency improvement; note that precision
is degraded (78 reachable locations instead of 67 in the exact case), but the
overapproximation is precise enough to prove safety. While here the Cartesian
factoring technique only yields a marginal improvement, its effects become more
relevant when considering bigger instances, as shown in Table 1, where for n = 4
the time drops from 77.51 to 2.59 s.

The above-mentioned progress is not specific to the considered benchmark:
In the 2017 edition the corresponding tool verified 13 out of 20 tasks in 4:40 h,
the 2020 edition solved 27 out of 28 tasks in less than 3 min.

5.2 Adaptive Cruise Controller

With this next benchmark, we compare the performance of the set-propagation
approach implemented in PHAVer with the CEGAR approach implemented in
the tool Lyse. The adaptive cruise controller is a distributed system for assuring
that safety distances in a platoon of cars are satisfied [11]. For n cars, the number
of discrete states is 2n and the number of continuous variables is n. Each variable
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Table 2. The effect of implementation techniques on DISC3.

filter w-list boxing con-hull factoring iter p-list r-loc time

No No No No 63805 63805 67 1379.4

Yes No No No 9652 5506 67 93.1

Yes Yes No No 9652 5506 67 10.3

— — Yes No 189 78 78 0.7

— — Yes Yes 189 78 78 0.4

Table 3. Computation times of the adaptive cruise controller [23,24].

Edition Instance (n) 5-safe 5-unsafe 6-safe 6-unsafe 7-safe 7-unsafe 8-safe 8-unsafe

#locs. 32 32 64 64 128 128 256 256

Tool Computation time in [s]

2017 Lyse 1.08 ≈0 – – 573.35 0.233 – –

2017 PHAVer/SX 9.4 13.7 461 13430 ∞ ∞ – –

2018 PHAVer-lite 1.0 0.9 38.1 22.4 – – – –

2019 PHAVerLite 0.10 0.06 0.55 0.27 4.26 1.39 47.10 7.15

xi encodes the relative position of the i-th car and the relative velocities are
subject to drift. The specification is that the distance between adjacent cars
should be positive.

Table 3 shows the computation times for instances of different complexity.
First, we observe that the set propagation approach shows similar performance
characteristics as in the DISC benchmark: the advances associated with the
polyhedra library PPLite, as well as the heuristic improvements to the fixed-
point algorithm led to drastic gains in speed. The CEGAR approach clearly
outshines the early versions of the set propagation approach. It also has a clear
advantage in unsafe instances, where a counterexample can be found by solving
a SAT instance. Somewhat surprisingly, however, the latest generation of set
propagation tools seems to outperform CEGAR.

6 Conclusions

In this paper, we tried to draw the arc from straightforward to more sophisticated
symbolic analysis methods for linear hybrid automata (LHA). We presented two
flavors, one based on set propagation and one based on counterexample-guided
abstraction refinemend (CEGAR). The performance of the set propagation app-
roach depends on how efficiently the required operations can be realized on
the chosen set representation. A natural choice for LHA are convex polyhedra
in constraint representation. Despite the fact that convex polyhedra are used,
e.g., in program analysis, since the seventies, we remark that several advances
were made over the years that led to progressively more efficient libraries. In
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particular, a novel representation for polyhedra with strict as well as nonstrict
inequalities has led to gains on this fundamental level. Further gains have been
achieved through heuristics that use of multiple levels of abstraction: A prop-
erty like containment is decided by going progressively through different levels
of abstraction, so that the most precise and expensive checks are only carried
out when cheaper checks have failed.

The CEGAR approach constructs an abstraction in the form of polyhedra
iteratively, by checking whether the abstraction admits a path from the initial
states to a given bad set of states, and then refining the abstraction to exclude
this path if it turns out to be spurious. CEGAR easily outperformed earlier
versions of the set propagation approach and in our experiments it outperforms
for unsafe instances, quickly returning an unsafe path as a witness. Compared to
more recent implementations of set propagation that leverage efficient encodings
and a series of heuristics, CEGAR seems to lose some of the advantage.

This paper provided a small sample of implementations and benchmark
instances in order to outline some of the improvements that can be had through
clever encodings and heuristics. Further experimentation is needed to evaluate
in which application domains such gains translate to successful analysis results.
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50. Singh, G., Püschel, M., Vechev, M.T.: Fast polyhedra abstract domain. In:
Castagna, G., Gordon, A.D. (eds.) Proceedings of the 44th ACM SIGPLAN Sym-
posium on Principles of Programming Languages, POPL 2017, Paris, France, 18–20
January 2017, pp. 46–59. ACM (2017)

51. Tabuada, P.: Verification and Control of Hybrid Systems: A Symbolic Approach.
Springer, New York (2009). https://doi.org/10.1007/978-1-4419-0224-5

52. Williams, H.P.: Fourier’s method of linear programming and its dual. Am. Math.
Mon. 93(9), 681–695 (1986)

https://doi.org/10.1007/3-540-11494-7_22
https://doi.org/10.1007/3-540-11494-7_22
https://doi.org/10.1007/978-3-662-49674-9_48
https://doi.org/10.1007/978-3-662-49674-9_48
https://doi.org/10.1007/11609773_8
https://doi.org/10.1007/11609773_8
https://doi.org/10.1007/978-3-540-78800-3_14
https://doi.org/10.1007/978-3-540-78800-3_14
https://doi.org/10.1007/978-3-540-30579-8_2
https://doi.org/10.1007/978-3-540-30579-8_2
https://doi.org/10.1007/978-1-4419-0224-5

	Symbolic Analysis of Linear Hybrid Automata – 25 Years Later
	1 Introduction
	2 Symbolic Analysis of Linear Hybrid Automata
	2.1 Preliminaries
	2.2 Linear Hybrid Automata
	2.3 Symbolic Analysis

	3 Implementing Symbolic Analysis Using Polyhedra
	4 Symbolic Analysis Using CEGAR
	5 Experiments
	5.1 Distributed Controller
	5.2 Adaptive Cruise Controller

	6 Conclusions
	References




