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Abstract. The Kraus, Lehmann and Magidor (KLM) framework is an
extension of Propositional Logic (PL) that can perform defeasible rea-
soning. The results of defeasible reasoning using the KLM framework
are often challenging to understand. Therefore, one needs a framework
within which it is possible to provide justifications for conclusions drawn
from defeasible reasoning. This paper proposes a theoretical framework
for defeasible justification in PL and a software tool that implements the
framework. The theoretical framework is based on an existing theoret-
ical framework for Description Logic (DL). The defeasible justification
algorithm uses the statement ranking required by the KLM-style form of
defeasible entailment known as Rational Closure. Classical justifications
are computed based on materialised formulas (classical counterparts of
defeasible formulas). The resulting classical justifications are converted
to defeasible justifications, based on the input knowledge base. We pro-
vide an initial evaluation of the framework and the software tool by
testing it with a representative example.

Keywords: Knowledge representation · Propositional logic · The
KLM framework · Defeasible justification · Rational closure ·
Defeasible justification tool

1 Introduction

The conclusions produced by reasoning tools are often difficult to understand.
Justifications for such conclusions provide users with the exact statements in
the knowledge base that is used to deduce the conclusion. Currently, there exist
tools that provide explanations for classical entailments [9,10,12]. Such a tool
aids users in understanding their knowledge base and reasoning systems [4] as
well as providing assistance in debugging their systems [16].

Although there are well-established tools and algorithms to compute expla-
nations for classical reasoning, there are no such tools for defeasible reasoning.
While there are many approaches to defeasible reasoning, in this paper we focus
only on an approach to defeasible reasoning known as the Kraus, Lehmann and
Magidor (KLM) framework [14], which is an extension of Propositional Logic
(PL). Chama proposed an algorithm that computes justification for defeasible
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entailments in Description Logic (DL) [6]. This paper’s contribution is extended
Chama’s work by converting her proposed justification algorithm for DL to PL
according to the well-established notions and concepts in the KLM framework.
Furthermore, we implement our defeasible justification algorithm which has not
been done for the KLM framework. The implementation was tested with a rep-
resentative example and the result is accurate compared to manual deductions.

2 Background

In classical reasoning with PL, the notion of interpretation and entailment is
well-defined [5]. Similarly, for defeasible reasoning with the KLM framework (an
extension of PL), the notion of a ranked interpretation was defined [14] and
a form of defeasible entailment referred to as Rational Closure was described.
Based on these notions, we define an algorithm that computes justifications for
defeasible entailment.

Statements in PL are built up with a finite set P = {p, q, ...} of propositional
atoms. The binary connectives ∧,∨,→,↔ and the negation operator ¬ can be
applied recursively to form propositional formulas. An interpretation I is a func-
tion that maps a propositional atom to either true or false. An interpretation
satisfies a formula if the formula evaluates to true under the rules of satisfiability.
The ⊺ constant in PL denotes a tautology that is always interpreted to true and
the � constant is always interpreted to false.

A knowledge base is a finite set of propositional formulas. An interpretation
I satisfies a knowledge base K if I satisfies every formula in K. A knowledge
base K entails a formula α, denoted K ⊧ α, if and only if every interpretation
that satisfies K also satisfies α. Two propositional formulas α and β are logically
equivalent, denoted α ≡ β, if all interpretations that satisfies α also satisfies β
and vice versa.

Horridge defines the notion of justification to provide explanations for clas-
sical entailments [8]. A subset of formulas J is a justification for the entailment
K ⊧ α if J ⊆ K such that J ⊧ α and there are no proper subset J ′

⊂ J such
that J ′

⊧ α. Horridge defined algorithms to compute justifications for classical
entailment [8].

Given a knowledge base K and an entailed formula η, Horridge identifies all
justifications for the entailment by first identifying a single justification (Algo-
rithm 3). A justification for the entailment can be identified by first expanding
a subset S ⊆ K until S ⊧ η (Algorithm 1) then contract S without breaking the
entailment (Algorithm 2). The justification can be used as the root node in the
Hitting Set Tree [17] to identify all justification for the given entailment (Algo-
rithm 4). In this paper, the implementation of the Hitting Set Tree is based on
Reiter’s algorithm.

Note that Algorithms 1, 2, 3 and 4 are slight adjusted and renamed to suit the
context of this paper because Horridge’s work is done in the context of DL and
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Ontologies. These algorithms are used as sub-routines to construct a defeasible
justification algorithm.

Algorithm 1. ExpandFormulas
Input: Knowledge base K and query η
Output: Set S

1: if K ⊧/ η then
2: return ∅
3: else
4: S ∶= ∅
5: S′

∶= ∅

6: Σ ∶= signature(η)
7: while S′

=/ S do
8: S′

= S
9: S = S ∪ FindRelatedFormulas(Σ, K)
10: if S ⊧ η then
11: return S
12: end if
13: Σ = signature(S)
14: end while
15: end if
16: return S

There are many approaches to defeasible reasoning. One of the most explored
approaches in the literature is the KLM framework suggested by Kraus, Lehmann
and Magidor [14]. The KLM framework extends PL by an additional binary
connective known as defeasible implication, denoted by ∣∼. Defeasible implications
are expressed in the form α ∣∼ β where α and β are propositional formulas. One
reads α ∣∼ β as “α typically implies β”. Note that ∣∼ cannot be nested.

A defeasible knowledge base is a finite set of defeasible implications. It is
easily shown that a classical formula α is logically equivalent to the defeasible
implication ¬α ∣∼ � [11]. Therefore, any knowledge base that contains classical
formulas can be converted into a defeasible knowledge base. From here on we
assume knowledge bases are defeasible unless stated otherwise explicitly. The
material counter-part of a defeasible implication α ∣∼ β is the classical implication
α → β. The material counter-part of the knowledge base K, denoted

−→K, is the
knowledge base with each of the defeasible implications in K replaced with its
material count-part.
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Algorithm 2. ContractFormulas
Input: Knowledge base K and entailment η
Output: Set S

1: return ContractFormulasRecursive(∅, K, η)
2: ContractAxiomsRecusive(Ssupport, Swhole, η)
3: if |Swhole| == 1 then
4: return Swhole

5: end if
6: SL, SR ∶=Splite(Swhole)
7: if Ssupport ∪ SL ⊧ η then
8: return ContractFormulasRecursive(Ssupport, SL, η)
9: end if
10: if Ssupport ∪ SR ⊧ η then
11: return ContractFormulasRecursive(Ssupport, SR, η)
12: end if
13: S′

L := ContractFormulasRecursive(Ssupport ∪ SR, SL, η)
14: S′

R := ContractFormulasRecursive(Ssupport ∪ S′
L, SR, η)

15: return S′
L ∪ S′

R

Algorithm 3. ComputeSingleJustification
Input: Knowledge base K and entailment η
Output: Justification J

1: if η ∈K then
2: return η
3: end if
4: S := ExpandFormulas(K, η)
5: if S ==∅ then
6: return ∅
7: end if
8: J := ContractFormulas(S, η)
9: return J

Similar to classical entailment, defeasible entailment, denoted ∣≈, is a binary
relation over a defeasible knowledge base and a defeasible implication. One reads
K ∣≈ α ∣∼ β as “K defeasibly entails that α typically implies β”.
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Algorithm 4. ComputeAllJustifications
Input: Knowledge base K and entailment η
Output: Justification J

1: Sworking ∶=K
2: Xexplored ∶= ∅

3: Xresult ∶= ∅

4: Jroot ∶= ComputeSingleJustification(Sworking, η)
5: Xresult =Xresult ∪ {Jroot}
6: vroot ∶=GetFreshNode(Jroot)
7: Enqueue(vroot, Q)
8: SetRoot(Thst, vroot)
9: while Q =/ ∅ do
10: vhead =Dequeue(Q)
11: jhead =GetLabel(vhead)
12: for α ∈ jhead do
13: Spath =GetPathToRootLabelSet(vhead, Thst) ∪{α}
14: if Spath ∈/ Xexplored then
15: Xexplored =Xexplored ∪ {Spath}
16: J ′

=GetNonIntersectingJustification(Spath, Xresult)
17: if J ′

==∅ then
18: Sworking = Sworking \{Spath}
19: J ′

= ComputeSingJustification(Sworking, η)
20: Sworking = Sworking ∪ {Spath}
21: end if
22: vfresh =GetFreshNode(J ′)
23: e = GetFreshEdge(〈vfresh, vhead〉, α)
24: Thst = Thst ∪ {e}
25: if J ′

=/∅ then
26: Xresult =Xresult ∪ {J ′}
27: Enqueue(vfresh, Q)
28: end if
29: end if
30: end for
31: end while
32: return Xresult

Lehmann and Magidor suggest the notion of Rational Closure as a form of
defeasible entailment and presented an algorithm for Rational Closure [15]. We
use the Rational Closure algorithm as a sub-routine to construct a defeasible
justification algorithm. The first procedure in the rational closure algorithm is
to assign rankings to formulas in the knowledge base. Low ranks are assigned
to statements that are less exceptional. The infinite rank is assigned to classical
statements. The ranking algorithm is shown in Algorithm 5 [11].
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Algorithm 5. Base Rank
Input: A knowledge base K
Output: An ordered tuple (R0, ..., Rn−1, R∞, n)

1: i ∶= 0
2: E0 ∶=

−→K
3: repeat
4: Ei+1 ∶= {α→ β ∈Ei|Ei ⊧ ¬α}
5: Ri ∶=Ei ∖Ei+1;
6: i ∶= i + 1;
7: until Ei−1 =Ei

8: R∞ ∶=Ei−1;
9: if Ei−1 ==∅ then
10: n ∶= i − 1;
11: else
12: n ∶= i;
13: end if
14: return (R0, ..., Rn−1, R∞, n)

Based on the ranking produced by Algorithm 5, the Rational Closure algo-
rithm removed the ranking in ascending order until the remaining formulas entail
the negation of the query’s antecedent. The knowledge base defeasibly entails the
query (the query is in the Rational Closure of the knowledge base) if the (mate-
rialised versions of the) remaining formulas classically entail the materialised
query. Algorithm 6 is an algorithm for Rational Closure suggested by Kaliski
[11].

Algorithm 6. RationalClosure
Input: A knowledge base K, and a defeasible implication η = α ∣∼ β
Output:true if K ∣≈ α ∣∼ β, and false otherwise

1: (R0, ..., Rn−1, R∞, n) ∶ =BaseRank(K);
2: i := 0
3: R :=

⋃j<n
i=0 Rj ;

4: while R∞ ∪R ⊧ ¬α and R =/∅ do
5: R := R ∖Ri;
6: i := i + 1;
7: end while
8: return R∞ ∪R ⊧ α→ β;

3 Defeasible Justification Algorithm

Chama presented an algorithm that computes defeasible justification in DL [6].
Her algorithm is composed of two sub-algorithms, namely RationalClosureFor-
Justifications and ComputeAllJustifications. We construct a defeasible algorithm
for the KLM framework in a similar manner. The algorithm is composed of three
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sub-algorithms: RationalClosureForJustification, ComputeAllJustifications (for
classical entailment) and Dematerialsiation. Each sub-algorithm is discussed in
detail in this section.

We present Algorithm 7 as an algorithm that computes defeasible justifica-
tion given a knowledge base K and an entailment η =α ∣∼ β. The algorithm first
ranks the formulas as required by Rational Closure. A slightly adjusted Rational
Closure algorithm compared to Algorithm 6, which returns additional param-
eters, is used. Such parameters include an ordered tuple indicating the ranked
formulas and an integer indicating the ranks of formulas discarded to compute
the Rational Closure.

In the case where no formulas were discarded in the Rational Closure com-
putation, justifications are computed on the materialised knowledge base

−→K and
query −→η using algorithms mentioned in Sect. 2. Alternatively, in the case where
ranks of formulas were discarded in the Rational Closure computation, the dis-
carded formulas are removed from K before identifying all justifications for the
entailment.

Lastly, dematerialisation of justifications is required because results from
algorithms mentioned in Sect. 2 are classical formulas. Any formulas in the set
of justifications that is not in K needs to be dematerialised.

Algorithm 7. DefeasibleJustification
Input: Defeasible knowledge base K and query η = α ∣∼ β
Output: Justification J

1: i ∶= 0
2: J ∶= ∅
3: (R0, R1, ..., R∞), rank ∶=RationalClosureForJustification(K, η)
4: if rank == 0 then
5: J = ComputeAllJustification(

−→K,−→η)
6: J = dematerialise(J , R∞)
7: return J
8: end if
9: while i < rank do
10: K = K\Ri

11: i = i + 1
12: end while
13: J = computeAllJustifications(

−→K,−→η)
14: J = dematerialise(J , R∞)
15: return J

Algorithm 7 can be further enhanced to accept an input knowledge base
that contains both classical and defeasible implications. From here on, we refer
to a knowledge base with both classical and defeasible formulas as a “mixed
knowledge base”. As mentioned in Sect. 2, any classical formula α is logically
equivalent to the defeasible implication ¬α ∣∼ � and as a result, we can pre-process
a mixed knowledge base into a defeasible knowledge base.
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Notice that when there are formulas of the form ¬α→� in a given knowledge
base, line 5 in Algorithm 5 is Ei+1 ∶= {¬α → �|Ei ⊧ ¬(¬α)} = {¬α → �|Ei ⊧ α}.
As a result, ¬α → � is always going to be in Ei+1. Eventually, when Ei−1 = Ei

then while loop terminates with any formulas of the form ¬α → � in Ei−1 and
line 8 assigns such formulas with the infinity rank. This phenomenon allows us
to conclude that all classical formulas in a knowledge base are ranked infinity
by Algorithm 5.

Furthermore, consider the knowledge base K = {α ∣∼ β, α ∣∼ ¬ β} as input to
Algorithm 5, the variables are assigned the following values:

– E0 = {α→ β, α→ ¬β}
– E1 = {α→ β, α→ ¬β} because E0 ⊧ ¬α.
– As a result, both α→ β and α→ ¬β is ranked infinity.

Therefore, we can conclude that when there is a formula of the format α ∣∼ β
and another formula of the form α ∣∼ ¬β in the input knowledge base then both
formulas are ranked infinity by Algorithm 5.

Therefore, Algorithm 5 and consequently Algorithm 7 can be enhanced to
accept a mixed knowledge base as input. Algorithm 8 is a BaseRank algorithm
that accepts a mixed knowledge base.

Algorithm 8. BaseRankForJustification
Input: A mixed knowledge base K
Output: An ordered tuple (R0, ..., Rn−1, R∞, n)

1: C ∶= {α→ β ∈K} ∪ {α→ β, α→ ¬β|α ∣∼ β and α ∣∼ ¬ β ∈K}
2: E0 ∶=K \C
3: i = 0
4: while Ei−1 =/ Ei do

5: Ei+1 ∶= {α ∣∼ β ∈Ei|−−→Ei ∪ C ⊧ ¬α}
6: Ri ∶=Ei \Ei+1

7: i = i + 1
8: end while
9: R∞ ∶= C ∪Ei−1

10: if Ei−1 = ∅ then
11: n = i − 1
12: else
13: n = i
14: end if
15: return (R0, R1, ..., R∞, n)

The Rational Closure algorithm for justification has the same procedures as
Algorithm 6 with additional return values. Algorithm 9 is the adjusted algorithm
that returns an ordered tuple of ranked formulas from Algorithm 8 and an integer
that indicated the ranks of formulas discarded to compute Rational Closure.
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Algorithm 9. RationalClosureForJustification
Input: A mixed knowledge base K and a defeasible implication η = α ∣∼ β
Output: true if K ∣≈α ∣∼β and false otherwise, rank i and an ordered tuple

(R0, ..., R∞)

1: (R0, ..., Rn−1, R∞, n) ∶=BaseRankForJustification(K);
2: i := 0
3: R :=

⋃j<n
i=0 Rj

4: while R∞ ∪
−→

R ⊧ ¬α and R ≠ ∅ do
5: R := R ∖Ri

6: i := i + 1
7: end while
8: return R∞ ∪

−→

R ⊧ α→ β, i, (R0, ..., Rn−1, R∞)

We present an example to illustrate the intuition behind Rational Closure.
Consider the following scenario where birds typically fly, penguins are birds,
penguins typically cannot fly, robins are birds and birds typically have wings.
From the scenario, we can construct the following knowledge base K = {birds ∣
∼ fly, penguins→ birds, penguins ∣∼ ¬ fly, robins→ birds, birds ∣∼ wings}.

Firstly, we use Algorithm 8 to assign a ranking to each formula in K.

1. Line 1 of the algorithm extracts all classical formulas from K and we get the
following: C = {penguins→ birds, robins→ birds}

2. The remaining formulas in K are collected into E0. Therefore, E0 =

{birds ∣∼ fly, penguins ∣∼ ¬ fly, birds ∣∼ wings}.
3. The algorithm iterates over the while loop from lines 4 to 8 until Ei−1 = Ei.

Over the iterations, we get the following values for each variable.
(a) E1 = {α ∣∼ β|E0 ⊧ ¬α} = {penguins ∣∼ ¬ fly}
(b) R0 = {birds ∣∼ fly, birds ∣∼ wings}
(c) E2 = ∅

(d) R1 = {penguins ∣∼ ¬ fly}
(e) E3 = ∅

4. Line 9 of the algorithm assigns R∞ = C ∪ E2 = {penguins → birds, robins →
birds}.

The final rankings of the formulas are shown in Table 1.
For querying whether robins have wings, we construct the defeasible implica-

tion robins ∣∼ wings. Using the above ranking and Algorithm 9, we can compute
if K ∣≈ robins ∣∼ wings. The procedures of Algorithm 9 are as follows:

1. Line 3 of the algorithm assigns R = {penguins ∣∼ ¬ fly, birds ∣∼ fly, birds
∣∼ wings}
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Table 1. Ranking of formulas in K

Rank Formulas

∞ penguins→ birds, robins→ birds

R1 penguins ∣∼ ¬ fly

R0 birds ∣∼ fly, birds ∣∼ wings

2. Since R∞ ∪
−→

R ⊧ ¬robins does not hold, the algorithm skips over the while
loop from lines 4 to 7.

3. Since R∞ ∪
−→

R ⊧ robins→ wings, we can conclude that K ∣≈ robins ∣∼ wings.

For querying whether penguins have wings, we construct the defeasible impli-
cation penguins ∣∼ wings. The procedures of Algorithm 9 are as follows:

1. On line 3, we have R = {penguins ∣∼ ¬ fly, birds ∣∼ fly, birds ∣∼ wings}.
2. R∞ ∪

−→

R ⊧ ¬penguins and R =/∅, then R0 is removed from R and we get
R = {penguins ∣∼ ¬ fly}

3. Now, R∞ ∪

−→

R ⊧ ¬ penguins does not hold. Therefore, the while loop
terminates.

4. But R∞ ∪
−→

R ⊧/ penguins→ wings, and as a result K∣≈/ penguins ∣∼ wings.

The defeasible justification algorithm utilises the classical justification algo-
rithms mentioned in Sect. 2. As expected, the resulting justifications contain only
classical formulas and cannot be used directly as the justifications for the defea-
sible entailment. Algorithm 10 takes a set of ∞-ranked formulas and a set of
justifications as inputs. Any formulas in the justifications that are not assigned
the infinity rank need to be replaced with their material counterpart.

Algorithm 10. Dematerialise
Input: Set of justifications J and infinitely ranked formulas R∞
Output: Set of dematerialised justifications J

1: for j in J do
2: for η = (α→ β) in j do
3: if η ∈/ R∞ then
4: η = α ∣∼ β
5: end if
6: end for
7: end for
8: Return J

Again, we illustrate the intuition behind defeasible justification via a rep-
resentative example. Consider the following knowledge base K = {penguins
→ birds, robins → birds, specialpenguins → penguins, birds ∣∼ fly, birds
∣∼ wings, penguins ∣∼ ¬ fly, specialpenguins ∣∼ fly}. We use the following 3
queries to demonstrate various cases the algorithm considers:
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1. robins ∣∼ wings
2. penguins ∣∼ wings
3. specialpenguins ∣∼ fly.

Firstly, Table 2 shows the formula ranking which Algorithm 8 computes.

Table 2. Ranking of formulas in K

Rank Formulas

∞ penguins→ birds, robins→ birds, specialpenguins→ penguins

R2 specialpenguins ∣∼ fly

R1 penguins ∣∼ ¬ fly

R0 birds ∣∼ fly, birds ∣∼ wings

For query η = robins ∣∼ wings the defeasible justification algorithm executes
as follows:

1. Rational Closure:
(a)
−→

R = {specialpenguins → fly, penguins → ¬fly, birds → fly, birds →

wings} and R∞ ∪
−→

R ⊧ ¬robins does not hold. Therefore, no formulas
are discarded.

(b) Since, R∞ ∪
−→

R ⊧ robins→ wings, we have K ∣≈ robins ∣∼ wings.
2. Since no formulas were discarded in the previous step, the entire knowledge

base is used to compute the justification.
3. The classical justification for the entailment K ⊧ robins→wings is computed

using Algorithms 4 and the following Hitting Set Tree is returned:
{robin→ bird, bird→ wings}

∅ ∅

robin→ bird bird→ wings

4. The only justification for the classical entailment
−→K ⊧ robins → wings is

{robins→ birds, birds→ wings}.
5. Since the classical formula birds→wings is not in R∞, Algorithm 10 replaces

it with the defeasible implication birds ∣∼ wings.
6. The final justification for the defeasible entailment K ∣≈ robins ∣∼ wings is

{robins→ birds, birds ∣∼ wings}.

For query η = penguins ∣∼ wings the defeasible justification algorithm exe-
cutes as follows:

1. Rational Closure:
(a)
−→

R = {specialpenguins → fly, penguins → ¬fly, birds → fly, birds →

wings} and R∞ ∪
−→

R ⊧ ¬penguins. Therefore, R0 is removed from R and
R = {penguins ∣∼ ¬ fly, specialpenguins ∣∼ fly}.
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(b) Now, R∞ ∪
−→

R ⊧ ¬penguins does not hold.
(c) R∞ ∪

−→

R ⊧/ penguins→ wings and therefore K∣≈/ penguins ∣∼ wings.
2. The algorithm terminates with no justifications.

The final query specialpenguins ∣∼ fly executes as follows:

1. Rational Closure:
(a) Iterating over lines 4 to 7 of Algorithm 6, both R0 and R1 is removed

from R such that the condition R∞ ∪
−→

R ⊧ ¬α does not hold.
(b) R∞ ∪

−→

R = {penguins → birds, robins → birds, specialpenguins →
penguins, specialpenguins→ fly} ⊧ specialpenguins→ fly.

(c) Hence, the defeasible entailment K ∣≈ specialpenguins ∣∼ fly holds.
2. Classical Justification is calculated based on the remaining mate-

rialised formulas {penguins → birds, robins → birds, specialpenguins →
penguins, specialpenguins→ fly}.

3. The following Hitting Set Tree is constructed:
{specialpenguins→ fly}

∅

specialpenguins→ fly

4. The only justification for the classical entailment {penguins →
birds, robins→ birds, specialpenguins→ penguins, specialpenguins→ fly} ⊧
specialpenguins→ fly is {specialpenguins→ fly}

5. Since specialpenguins → fly ∈/R∞, Algorithm 10 replaces it with
specialpenguins ∣∼ fly.

6. Final defeasible justification for the defeasible entailment
K ∣≈ specialpenguins ∣∼ fly is {K ∣≈ specialpenguins ∣∼ fly}.

Notice for the final query, there are two possible justifications:

1. J1 = {specialpenguins ∣∼ fly}
2. J2 = {specialpenguins→ penguins, penguins→ birds, birds ∣∼ fly}.

However, the only valid justification that supports the query is J1 because for-
mulas required to make justification J2 valid are discarded by the defeasible
justification algorithm.

4 Defeasible Justification Implementation

We implemented a software tool that uses the algorithms presented in Sect. 3 to
compute the justification for a defeasible entailment given a mixed knowledge
base and a defeasible implication as a query. The tool is implemented in Java
and follows the Model View Controller (MVC) software architecture pattern [13].
The source code for the implementation can be found on GitHub [20]. The tool
uses two external packages: the Tweety Project and the SAT4J SAT solver.
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Our implementation extends the Tweety Project’s Propositional Logic mod-
els to construct models and operations required by the KLM Framework. The
Tweety Project [2] is a software framework that provides models and operations
for most First Order Logic (FOL) including PL [18,19]. Due to restrictions and
constants defined by the Tweety Project, we cannot denote the KLM framework
operations with the conventional symbols used in the literature. Instead, the
negation symbol, ¬, is replaced with ! and the binary operations ∧,∨,→,↔ and
∣∼ are replaced with &&, ||, =>, < = > and ∼>, respectively. Furthermore, we con-
structed a parser that reads Strings such as “α ∼>β” and produces an instance
of DefeasibleImplication which allows the software to perform operations such
as materialisation.

The classical justification algorithm mentioned in Sect. 2 and Algorithm 9
(RationalClosureForJustification) require a tool to compute classical entailment.
We used the SAT4J SAT solver [1] to perform classical entailment computations.

4.1 Algorithm Implementation

The implementation of the defeasible justification, Base Rank, Rational Closure
and dematerialisation follows from Algorithms 7, 5, 9 and 10, respectively. The
algorithm that identifies a single justification for classical entailment follows
Horridge’s definition mentioned in Sect. 2. Java’s Object-Oriental programming
style is leveraged to implement Reiter’s Hitting Set algorithm [17] to identify all
justifications for a classical entailment. In the Hitting Set computation, a tree
structure is constructed where each node keeps track of a knowledge base and a
justification. Each edge represents a formula in the parent node’s justification.
The child node’s knowledge base is its parent node’s knowledge base without the
formula represented by the edge between them.

4.2 Testing and Evaluation

The tool is tested with the defeasible justification example mentioned in Sect. 3.
Figure 1 shows the output of running the example with the query Robin ∣∼
Wings. The tool concludes with the correct defeasible justification {Bird ∣∼
Wings,Robin→Bird}.

Fig. 1. Program output of the implementation of defeasible justification algorithm
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5 Conclusion and Future Work

We present an algorithm that computes defeasible justification for the KLM
framework, previously only explored for classical justification. A representative
example was used to test the algorithm and the result is correct. Furthermore,
we present a software tool that implements the defeasible justification algo-
rithm. The same representative example is used to test the implementation,
corresponding with manual calculations. It is the first implementation of the
form of defeasible justification described by Chama [6]. Chama’s work was a
theoretical exercise with DL as the underlying logic. We convert Chama’s work
to the propositional case and implemented it.

Future work may extend to multiple dimensions in both theoretical and prac-
tical aspects of this paper. Several pieces of literature present a problem with
Reiter’s algorithm for Hitting Set Tree [7,21]. Further investigation is required to
determine whether the algorithms and implementations presented in this paper
need to be adjusted to account for the issue of Reiter’s Hitting Set Tree algo-
rithm.

The defeasible justification algorithm can be extended and adjusted to more
complex logics, such as Description Logics [3]. Complex test cases and scenarios
can be constructed to test the algorithm’s coverage for edge cases. One can
conduct a complexity analysis on the defeasible justification algorithm to analyse
and improve the efficiency of the algorithm. The algorithm may also incorporate
the additional feature of providing the conditionals that contribute to the level
of the exceptionality of the query. Enhancements can be made to the software
tool to improve its efficiency and accuracy. By applying improved programming
techniques and resources, one can scale up the tool’s computation by magnitudes.
Lastly, a user-friendly interface such as a Graphical User Interface (GUI) can be
added to the software tool which allows non-technical users to interact with the
tool.

References

1. SAT4J SAT solver. https://www.sat4j.org/index.php. Accessed 29 Aug 2022
2. The tweety project. https://tweetyproject.org/. Accessed 29 Aug 2022
3. Baader, F., Calvanese, D., McGuinness, D., Patel-Schneider, P., Nardi, D., et al.:

The Description Logic Handbook: Theory, Implementation and Applications. Cam-
bridge University Press, Cambridge (2003)

4. Biran, O., Cotton, C.: Explanation and justification in machine learning: a survey.
In: IJCAI-17 Workshop on Explainable AI (XAI), vol. 8, pp. 8–13 (2017)
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