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Abstract. We investigate the security of succinct arguments against
quantum adversaries. Our main result is a proof of knowledge-soundness
in the post-quantum setting for a class of multi-round interactive proto-
cols, including those based on the recursive folding technique of Bullet-
proofs. To prove this result, we devise a new quantum rewinding strategy,
the first that allows for rewinding across many rounds. This technique
applies to any protocol satisfying natural multi-round generalizations
of special soundness and collapsing. For our main result, we show that
recent Bulletproofs-like protocols based on lattices satisfy these proper-
ties, and are hence sound against quantum adversaries.
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1 Introduction

Succinct arguments [13,20] allow a prover to convince a verifier that a statement
x belongs to a language L, with communication shorter than the witness length
for the corresponding relation. Succinct arguments have become a cornerstone
of modern cryptography and fueled the development of many real-world applica-
tions, such as verifiable computation and anonymous cryptocurrencies. Recent
years have seen an explosion of new constructions of succinct arguments, based
on a variety of cryptographic assumptions.

However, the advent of quantum computation poses a significant threat to
these advancements. On the one hand, Shor’s algorithm [22] forces us to transi-
tion to cryptographic systems based on post-quantum assumptions, such as the
hardness of the learning with errors (LWE) problem [21]. On the other hand,
some known techniques to prove security of cryptographic protocols no longer
apply in the post-quantum regime, due to the fundamentally different nature of
quantum information. Most notable are rewinding techniques, which are ubiq-
uitous in security proofs for succinct arguments.
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In a rewinding proof, it is argued that an adversary that succeeds on a sin-
gle random challenge with high enough probability must succeed on multiple
challenges. This classically intuitive idea fails in the quantum setting, because
measuring the adversary’s response to one challenge causes an irreversible loss
of information which may render it useless for answering other challenges.

An important family of succinct arguments are interactive protocols based on
the recursive folding technique of [7,10], also known in the literature as Bullet-
proofs. Leveraging algebraic properties of cryptographic schemes, Bulletproofs-
like protocols can achieve much smaller proof sizes than PCP- and IOP-based
succinct arguments [6,13] while retaining the benefit of a public-coin setup.
Unlike PCP- and IOP-based arguments, however, the original Bulletproofs con-
structions are not post-quantum secure, being based on the hardness of the
discrete logarithm problem. This has motivated a line of work that aims to
design “post-quantum Bulletproofs” [2,4,8,9]. While these works do not rely on
cryptographic assumptions which are quantum-insecure, their analysis of post-
quantum security is only heuristic, in the sense that soundness is only shown
against a classical adversary. Motivated by this state of affairs, we ask the fol-
lowing question:

Can we prove post-quantum security for Bulletproofs-like protocols?

Known techniques for rewinding quantum adversaries [11,24] do not appear to
generalize to multi-round challenge-response protocols, let alone to logarithmic-
round protocols like Bulletproofs. Thus, answering the above question requires
us to develop new quantum rewinding techniques.

1.1 Our Results

In this work, we show that a class of “recursive” many-round interactive proto-
cols is knowledge-sound against quantum adversaries. As a special case, we estab-
lish that lattice-based Bulletproofs protocols are post-quantum secure, assuming
the quantum hardness of LWE. Loosely speaking, our main result can be restated
as follows.

Theorem 1 (Informal). Assuming the quantum hardness of the (Ring-)LWE
problem, lattice-based Bulletproofs protocols are knowledge-sound against quan-
tum algorithms.

Our main result is obtained by developing two technical contributions of inde-
pendent interest:

Fold-Collapsing Hash: We show that the lattice-based hash function
HashA(x) = Ax mod q, where A is sampled uniformly at random and x is
a “short” vector, satisfies a strong collapsing property1. Intuitively, we show

1 Collapsing can be thought of as the quantum analogue of collision-resistance, and
loosely speaking it requires that it is hard to determine whether a register containing
valid pre-images of a given y was measured or not.
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that HashA remains collapsing even when the key A is compressed via lin-
ear combinations of its columns with coefficients being short units in the base
ring. This fold-collapsing property can be based on a variety of computational
assumptions, including the (Ring-)LWE assumption.

Quantum Tree Rewinding: We develop a new quantum rewinding technique
that allows us to extract from multi-round interactive protocols with certain
collapsing and “recursive special soundness” properties. Our method com-
bines the state-repair procedure of [11] with a probability estimation step that
determines the success probability of the adversary on a given sub-tree. Com-
bined with the collapsing property above and the recursive special soundness
of Bulletproofs-like arguments, this establishes the post-quantum security of
these protocols.

1.2 Related Work

The witness folding technique for constructing succinct arguments was first intro-
duced by Bootle et al. [7] and later optimized by Bünz et al. [10], who called
their protocols Bulletproofs. The term “Bulletproofs” is now used to refer to a
family of succinct arguments with a certain recursive structure. The early Bul-
letproofs protocols [7,10] prove quadratic relations of exponents of elements in
prime-order cyclic groups, and their soundness relies on the discrete logarithm
assumption over these groups. Lai, Malavolta, and Ronge [14] generalized the
folding technique to prove quadratic relations over bilinear pairing groups under
a variant of the discrete logarithm assumption defined over these groups. As the
discrete logarithm problems can be solved by Shor’s algorithm [22] in quantum
polynomial time, none of these protocols are post-quantum sound.

While it is necessary to consider non-linear relations to obtain an argument
for NP, Attema and Cramer [3] showed how to linearize the non-linear relations
using secret-sharing techniques, and apply the folding technique to compress the
argument for the linearized relations. Although their protocols for proving linear
relations over groups are in fact unconditionally sound, they are trivial in the
quantum setting because the relations that they prove are in BQP.

Bootle et al. [9] adapted the Bulletproofs folding technique to the lattice set-
ting, giving a succinct argument for proving knowledge of the witness of a short
integer solution (SIS) instance, i.e. a short vector x satisfying Ax = y mod q,
over the m-th cyclotomic ring with m being a power of 2. The protocol, however,
has large “slack”: the knowledge extractor is only able to extract a short vector
x′ satisfying Ax′ = 8t · y mod q, where � = 2t is the dimension of the witness
x. Albrecht and Lai [2] revisited this protocol and reduced the slack from 8t

to 2t with a careful choice of the challenge set R. They further eliminated the
slack in the case of prime-power cyclotomic rings, i.e. when m is a power of a
polynomially-large prime. Attema, Cramer, and Kohl [4] improved the soundness
analysis of [2,9], reducing the knowledge error from O(log �/|R|) to 2 log �/|R|,
which is tight. Bootle, Chiesa, and Sotiraki [8] proposed the abstract framework
of sumcheck arguments which captures all Bulletproofs-like protocols, particu-
larly lattice-based ones, mentioned above. Although lattice-based Bulletproofs
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for proving SIS relations are shown to be unconditionally sound against classi-
cal provers, the security proofs implicitly assume that the success probability
of a prover remains unchanged after rewinding, which is generally false in the
quantum setting.

1.3 Organization

In Sect. 2 we give an overview of our technical results. In Sect. 3 we recall stan-
dard preliminaries. In Sect. 4 we recall the notion of public-coin interactive argu-
ments and introduce the notions of recursive special soundness and last-round
collapsing. In Sect. 5 we show that protocols satisfying these properties are also
knowledge-sound, even against quantum provers. In Sect. 6 we study the col-
lapsing properties of hash function families implicit in lattice-based Bulletproof
protocols. In the full version we build upon the results of Sect. 6 to show that
lattice-based Bulletproof protocols are recursive special sound and last-round
collapsing, and hence knowledge-sound, even against quantum provers.

2 Technical Overview

We give a brief overview of the main technical steps of our work. Before delving
into the details of our analysis, we summarize the main conceptual steps of our
proof:

Step I: We formalize a family of public-coin protocols Σ that satisfy two main
properties of interest, namely recursive special soundness and last-round col-
lapsing.

Step II: We describe a new quantum rewinding strategy that allows us to extract
a witness from any recursive special sound and last-round collapsing protocol
of the above defined family.

Step III: We show that the lattice-based hash function HashA(x) = Ax is fold-
collapsing, assuming that the (Ring-)LWE problem is intractable for quantum
algorithms.

Step IV: Using the result from the previous step, we show that lattice-based
Bulletproofs protocols are recursive special sound and last-round collapsing.

The remainder of the technical overview will be split into two parts, detailing
Step I–II and Step III–IV respectively.

2.1 Quantum Rewinding

We first establish some context. Consider a (2t + 1)-message public-coin inter-
active argument Σ where both the prover and the verifier input a statement x
and the prover additionally inputs a witness w. The first 2t rounds of the pro-
tocol consists of the prover sending a “commitment” zi and the verifier sending
a challenge ri for i ∈ [t]. The protocol ends with the prover sending a response
wt+1 and the verifier outputting a single bit. The protocol Σ is k-tree-special
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sound, or (k, . . . , k)-special sound, for a relation R if the following holds: There
exists an efficient extractor E which, given a statement x and complete k-ary
tree of (edge-)depth t where the nodes and edges in each root-to-leaf path are
labelled by a transcript (z1, r1, . . . , zt, rt, wt+1) of Σ which is accepting, extracts
a witness w satisfying R(x,w) = 1.

In the following, we first review how tree-special soundness classically implies
knowledge-soundness, and discuss where the classical reduction fails in the quan-
tum setting. We then overview how post-quantum knowledge-soundness can be
proven for protocols which satisfy a strengthening of tree special soundness along
with a natural “collapsing” property.

Classical Tree Rewinding. To prove that a tree-special sound argument is
knowledge-sound, the classical extraction proof (e.g. given in [9]) is based on the
tree extraction technique of [7]. This technique obtains a k-ary tree of transcripts
using a simple recursive strategy. This tree can then be provided to E in order
to obtain the witness. For i ∈ [t], [7] define subtree extractors Ti which, given a
transcript prefix, obtain a k-ary subtree rooted at that prefix:

Ti(r1, . . . , ri−1) :

1. Let τ be a graph containing a single (root) node v.
2. Query the adversary at (r1, . . . , ri−1) to obtain the i-th round commitment

zi. Label v with zi.
3. Repeat until v has k children: Choose ri ← Ri uniformly at random, and

run τ ′ ← Ti+1(r1, . . . , ri). If Ti+1 does not abort, attach τ ′ to v via an edge
labelled with ri.
If Ti+1 aborts, and this is the first loop iteration, then abort.

4. Return τ .

The base case Tt+1(r1, . . . , rt) queries the adversary at (r1, . . . , rt) to obtain a full
protocol transcript (z1, . . . , zt+1) and returns zt+1 if that transcript is accepting
(and otherwise aborts). The italicized condition above ensures that the procedure
runs in expected polynomial time. Concretely, let ε denote the probability for ri

chosen uniformly at random that Ti+1(r1, . . . , ri) does not abort. The number of
calls that Ti makes to Ti+1 is then 1 with probability 1− ε (due to the italicized
condition) and 1 + (k − 1)/ε (in expectation) with probability ε. Hence the
overall expected number of calls is k, and by induction Ti runs in expected time
O(kt−i · tA), where tA is the running time of the adversary.

Quantum Tree Rewinding. Moving now to the quantum setting, the imme-
diate problem is that Step 3 is a rewinding step: The above argument implicitly
uses the fact that a classical adversary can be rewound to ensure that the suc-
cess probability of Ti+1 in each iteration is always ε. For quantum adversaries,
the situation is more complicated, since measurements are in general irreversible
operations. Known techniques [11,24] allow one to recover this type of rewind-
ing in the quantum setting, provided the protocol satisfies a special “collapsing”
condition.
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Roughly speaking, this condition says the measurement performed by the
reduction in the rewinding loop to obtain the response (in this case τ) is indistin-
guishable (to the adversary) from a binary measurement of whether the obtained
response is valid or not (in this case, whether Ti+1 aborts). Unfortunately, for
the extractor above for general tree-special sound protocols we do not have this
guarantee. The issue is that τ contains information about the set of challenges to
which the adversary produces an accepting response. Measuring this information
can cause the adversary’s state to be disturbed in a detectable way. As a result,
we do not know how to achieve general tree extraction in the quantum setting.

Instead, we observe that Bulletproofs-like protocols satisfy additional struc-
tural properties such that extracting the full tree is not necessary. Specifically,
we can identify a family of protocols (Σi)t

i=0 associated to Σ, where Σi has 2i+1
messages, Σt = Σ and Σ0 is a noninteractive protocol where the prover sends w
and the verifier checks R(x,w).

This family has the property that, given a k-ary tree of accepting transcripts
for Σi, we can obtain a k-ary tree of accepting transcripts for Σi−1 by applying
only “local” operations at the i-th layer: specifically, we compute a new label for
each node vi at depth i by applying a function Ei to the labels of its children.
With this structural property, we can modify Ti (for all i) to directly output
a witness (label) wi instead of a tree τ . As a result, T0 will directly output a
witness w for x.

Moreover, we identify that if each Σi satisfies another property called last-
round collapsing and, crucially, Ti+1 is executed projectively by Ti, then measur-
ing the output of Ti+1 is in fact indistinguishable from a binary measurement.
It turns out that the key technical challenge here is the projectivity of Ti+1.

The Extractor. A general quantum measurement given by a circuit can be
implemented projectively in a standard way using the principle of deferred mea-
surement. Specifically, a circuit C has a corresponding unitary dilation U (given
by replacing measurement gates with controlled-NOTs); the projective imple-
mentation is obtained by applying U , measuring the output register, and then
applying U†.

Unfortunately, this method only applies to circuits, whereas in the above
template, Ti+1 is an algorithm with variable (expected polynomial) runtime. The
unitary dilation of an expected (quantum) polynomial time (EQPT) algorithm
is not generally efficiently implementable2. To avoid this problem, we design
an extractor where the recursive call is to a strict polynomial-time algorithm.
To give a sense of our construction, we will (for now) return to the classical
setting. A natural first attempt is to simply truncate Ti+1 to some strict number
of repetitions N ; applying this to all layers of the tree yields an extractor that

2 [16] proposes an extended computational model (in the context of zero knowledge
simulation) which does permit this. However, this is not sufficient for our setting:
While the model supports black-box access to unitary dilations of EQPT algorithms,
here we would require a unitary dilation of an EQPT algorithm which itself calls the
unitary dilation of an EQPT algorithm, etc.
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makes N t calls to the adversary. How large does N need to be? By Markov’s
inequality, the error incurred by truncation is O(k/N); hence to achieve any
guarantee, we require that N = Ω(k/ε). As a result, N t is superpolynomial
(since ε is an arbitrary inverse polynomial).

The key to overcoming this issue is to ensure that, no matter how many
repetitions of Step 3 we execute, we only make k recursive calls. In particular,
we must guarantee that whenever we make a call to Ti+1, it succeeds with high
probability. To do this in the classical setting, we can modify the extractor as
follows.

Ti,ε(r1, . . . , ri−1) :

1. Repeat at most N times until |W | = k:
(a) Choose ri ← Ri uniformly at random.
(b) Estimate ε′ ← Prri+1,...,rt

[A(r1, . . . , rt) convinces V ].
(c) If ε′ ≥ ε − β, compute wi ← Ti+1,ε−β(r1, . . . , ri). Add (ri, wi+1) to W .

2. Return wi ← Ei(W ).

Note that we explicitly provide T with a lower bound ε on the success probability
of A. We choose β = 1/poly (λ) to be small enough so that the adversary still
has high enough success probability at the base of the recursion. The estimation
step must be accurate to within an additive o(β) = 1/poly (λ) factor, which can
be achieved using polynomially many calls to A. By Markov’s inequality, the
probability that ε′ ≥ ε−β is at least β, and so by setting N = O(λ/β) = poly (λ)
we see k successful iterations with probability 2−λ. The running time of Ti,ε is
then k · |Ti+1,ε−β | + N · poly (λ) = O(kt−i · poly (λ)).

Instantiating the above template in the quantum setting requires some care.
The estimation step is achieved using e.g. the Marriott-Watrous algorithm [19]
as described in [11]. We facilitate the main rewinding loop using the state repair
technique of [11]. The state repair technique recovers the success probability of a
state after it is disturbed by a (binary) projective measurement. In our setting,
this measurement is “does the estimation step output ε′ ≥ ε − β?” All of these
procedures have associated error; this error must be managed to ensure that it
does not increase too much throughout the recursion. For more details, we refer
the reader to Sect. 5.

2.2 Lattice-Based Bulletproofs

In the above, we established that if a (2t + 1)-message public-coin argument
Σ induces a family (Σi)t

i=0 which is recursive special sound, and each Σi is
last-round collapsing, then Σ has post-quantum knowledge-soundness. In the
following, we consider the case where Σ is a lattice-based Bulletproofs protocol,
describe what it means for (Σi)t

i=0 to be recursive special sound and Σi to be
last-round collapsing, and outline how the properties can be achieved.

We recall the lattice-based Bulletproofs protocols from [2,4,9]. In such pro-
tocols, both the prover and the verifier receive as input a SIS instance (A,y)
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defined over a ring R3, and the prover additionally receives a short vector x
satisfying Ax = y mod q4. The interactive protocol consists of a recursive appli-
cation of a subroutine that allows the prover and the verifier to cut the size of
the relation in half at each iteration: On input a hash key A = A0‖A1 and an
image y, the verifier samples a random (short) ring element r from a challenge
set R ⊆ R. The hash key is then “folded” by taking the appropriate linear com-
bination of the columns A′ = r ·A0 +A1. Next, the prover updates the witness
x = x0‖x1 to x′ = x0+r ·x1, thus defining a new SIS instance (A′,y′) satisfying

A′x′ = (r · A0 + A1)(x0 + r · x1)

= A1x0 + r · (A0x0 + A1x1) + r2 · A0x1

= A1x0
︸ ︷︷ ︸

l

+r · y + r2 · A0x1
︸ ︷︷ ︸

r

= y′

where the terms (l, r) are sent by the prover to help the verifier compute the
new image y′. This effectively reduces the dimension of the statement by half.
Repeating this procedure t-times, where � = 2t is the dimension of the witness
x, brings the dimension down to 1, at which point the prover can simply send
the witness in the plain to the verifier.

Recursive Special Soundness. To define recursive special soundness, we first
specify the family of protocols (Σi)t

i=0 induced by a lattice-based Bulletproofs
protocol Σ. For each i, the (2i + 1)-message protocol Σi applies the folding
technique recursively on the input statement (A,y) for i times, each taking 2
messages, and the final message is simply the witness xi of the i-th folded state-
ment (Ai,yi). Note that Σ0 is the trivial 1-message protocol where the prover
simply sends the witness x of (A,y), while Σt = Σ. Recursive special soundness
requires that, for each i ∈ [t], given k accepting transcripts (for Bulletproofs
k = 3) for Σi that differ only in the last challenge-response rounds (i.e. mes-
sages 2i and 2i + 1), it is possible to efficiently recover a valid last-round (i.e.
(2i − 1)th) message for the protocol Σi−1. From this definition, we can see that
given a complete k-ary tree of accepting transcripts for Σt, it is possible to
recursively recover a valid prover message x for the trivial protocol Σ0.

With its close connection to the standard special soundness property, it is
natural that the recursive special soundness of (Σi)t

i=0 can be proven similarly:
Given an accepting transcript of Σi of the form

(A,y, (l1, r1), r1, . . . , (li−1, ri−1), ri−1, (li, ri), (r
(j)
i ,x(j)

i )j∈[k])

3 Rigorously, the matrix A is sampled uniformly at random by a setup algorithm, and
is taken as input by the prover and the verifier as a public parameter.

4 We focus only on the component of lattice-based Bulletproofs protocols where the
witness folding technique is applied, since this is the technically challenging compo-
nent in the quantum setting.
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the extractor Ei first derives (Ai,y
(j)
i )j∈[k] satisfying

Ai

(

x(1)
i x(2)

i x(3)
i

)

= yi mod q,

then extracts xi−1 satisfying Ai−1xi−1 = yi−1 mod q, provided that the chal-
lenges (r(j)i )j∈[k] are chosen from a subtractive set [2]5. The tuple

(A,y, (l1, r1), r1, . . . , (li−1, ri−1), ri−1,xi−1)

is then an accepting transcript of Σi−1. As usual, two subtleties in the lattice
setting are that the norm of the witness is slightly increased with each extraction
step, and that the extracted witness may only be a preimage of s ·yi−1 for some
short slack element s ∈ R. These soundness gap issues can be handled by making
an appropriate choice of (extraction relation) R, and choosing the challenge set
and other parameters carefully.

Fold-Collapsing. Finally, we describe what it means for Σi to be last-round
collapsing and how it is achieved. Last-round collapsing requires that, provided
an accepting transcript of Σi where all messages but the last one are measured,
it is computationally hard to tell whether the last message was also measured or
not. In the procotol Σi induced above, the last message consists of a witness xi of
the statement (Ai,yi) defined by the previous rounds of interaction. Importantly,
(Ai,yi) is fixed by the first 2i messages of the protocol. Thus, proving the above
property is equivalent to establishing that the hash function

HashAi
(xi) = Aixi mod q

is collapsing for all i ∈ {0, . . . , t}. It is known that such function satisfies the
collapsing property, if the key A is uniformly chosen [1,15]. However, recall that
Ai is obtained by progressively folding the original key A, so we need to show
that the function remains collapsing even after we perform such operations over
the hash key. We refer to this notion as fold-collapsing.

Our strategy to prove that the function is fold-collapsing proceeds in three
steps: First, we appeal to the well-known fact that collapsing is implied by the
stronger notion of somewhere statistically binding (SSB). Loosely speaking, SSB
requires that the hash function has an alternative key generation mode, which
is (i) computationally indistinguishable from the original mode, and that (ii)
makes the hash statistically binding for a chosen position (say the j-th one)
of the pre-image. Second, we show that the function HashA is SSB. This is
done by embedding ciphertexts of a linearly homomorphic encryption (with the
appropriate ciphertext space) as the columns of the key A. In the alternative
mode, the key Ãj consists of

Ãj =

⎛

⎜

⎝Enc(0) . . .Enc(0) Enc(1)
︸ ︷︷ ︸

j-th position

Enc(0) . . .Enc(0)

⎞

⎟

⎠ .

5 A subtractive set, also known as an exceptional sequence, is a set of ring elements
such that the difference between any distinct members is invertible over the ring.
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Since HashÃj
is a linear function, by the linearly-homomorphic property of the

encryption scheme, we have Ãjx = Enc(xj) mod q. Then, by the correctness of
the encryption scheme, the hash function statistically binds the j-th coordinate
of x, as desired. Finally, to show that the folded key is still SSB, it suffices to
observe that if the challenge set R consists of only units, i.e. R ⊆ R×, then
rA0 + A1 still preserves the invariant that exactly one ciphertext is not an
encryption of 0 for any r ∈ R, again invoking the linear homomorphism of the
encryption scheme. Thus, the folded key is still statistically binding on exactly
one position of the input vector. Repeating this process recursively yields the
desired statement.

Conveniently, for each of the subtractive sets R′ suggested in [2] to be used
as a challenge set, all but one element (i.e. 0) in R′ are units in R. Instantiating
R with R′ \ {0} therefore meets all our requirements.

Remark 1. We stress that all of our results concern the protocol in the interac-
tive setting. In particular, it should be noted that all lattice-based Bulletproofs
protocols have at most inverse polynomial soundness, due to the fact that the
challenge space is only polynomial size. While one can always reduce this to
negligible by sequentially repeating the protocol, parallel repetition for super-
constant round arguments is much less well-understood. In the classical setting,
this was recently solved for tree special sound protocols in [5]; we leave open
the problem of extending this to the quantum setting. Note that this required
to establish that existing lattice-based Bulletproofs protocols can be made non-
interactive in the QROM via Fiat-Shamir; importantly, sequential repetition
does not suffice.

3 Preliminaries

Let λ ∈ N be the security parameter. We write [n] := {1, 2, . . . , n} and Zn :=
{0, 1, . . . , n − 1} for n ∈ N. We write ϕ(n) for the Euler totient function, i.e. the
number of positive integers at most and coprime with n. If a is a ring element,
we write 〈a〉 for the ideal generated by a.

We make use of the following simple fact, a consequence of Markov’s inequal-
ity.

Proposition 1. Let X be a random variable supported on [0, 1]. Then for all
α ≥ 0, Pr [X ≥ α] ≥ E[X] − α.

3.1 Lattices

For m ∈ N, let ζ = ζm ∈ C be any fixed primitive m-th root of unity. We write
K = Q(ζ) for the cyclotomic field of order m ≥ 2 and degree ϕ(m), and R = Z[ζ]
for its ring of integers, called a cyclotomic ring for short. It is well-known that
R ∼= Z[x]/ 〈Φm(x)〉, where Φm(x) is the m-th cyclotomic polynomial. For q ∈ N,
write Rq := R/q · R.
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For elements x ∈ R we denote the infinity norm of its coefficient vector (with
the powerful basis

{

1, ζ, . . . , ζϕ(m)−1
}

) as ‖x‖. If x ∈ Rk we write ‖x‖ for the
infinity norm of x.

The ring expansion factor of R is defined as γR := maxa,b∈R
‖a·b‖

‖a‖·‖b‖ . By
definition, we have for any x, y ∈ R that ‖x · y‖ ≤ γR · ‖x‖ · ‖y‖.

For any ordered set T = (ri)i∈Zt
⊆ R, we write

VT :=

⎛

⎜

⎜

⎜

⎝

1 1 . . . 1
r0 r1 . . . rt−1

...
...

. . .
...

rt−1
0 rt−1

1 . . . rt−1
t−1

⎞

⎟

⎟

⎟

⎠

for the (column-style) Vandermonde matrix induced by T .

Definition 1 ((s, t)-Subtractive Sets [2]). Let s ∈ R and t ∈ [n]. A set
R ⊆ R is said to be (s, t)-subtractive if for any t-subset T = {ri}i∈Zt

⊆ R,
it holds that s ∈ 〈det(VT )〉. If R is (1, 2)-subtractive, we simply say that R is
subtractive.

Proposition 2 ([2]). If m is a power of a prime p and R is the m-th order cyclo-
tomic ring, then the set R :=

{

1, 1 + ζ, . . . ,
∑

i∈Zp−1
ζi
}

⊆p−1 R is subtractive.
Furthermore, for any ordered set T = (r0, r1, r2) ⊆ R and any x0, x1, x2 ∈ R
with ‖xj‖ ≤ β,

∥

∥

∥

∥

∥

∥

(

r0 · x0 r1 · x1 r2 · x2

x0 x1 x2

)

· V−1
T ·

⎛

⎝

0
1
0

⎞

⎠

∥

∥

∥

∥

∥

∥

≤ 24 · ϕ(m) · γR · β.

If m is a power of 2 and R is the m-th order cyclotomic ring, then the set
R :=

{

1, ζ, . . . , ζϕ(m)−1
} ⊆ϕ(m) R is (2, 3)-subtractive. Furthermore, for any

ordered set T = (r0, r1, r2) ⊆ R and any x0, x1, x2 ∈ R with ‖xj‖ ≤ β,
∥

∥

∥

∥

∥

∥

(

r0 · x0 r1 · x1 r2 · x2

x0 x1 x2

)

· s · V−1
T ·

⎛

⎝

0
1
0

⎞

⎠

∥

∥

∥

∥

∥

∥

≤ 3 · ϕ(m) · γR · β.

3.2 Quantum Information

We recall the basics of quantum information. Most of the following is taken
almost in verbatim from [11]. A (pure) quantum state is a vector |ψ〉 in a com-
plex Hilbert space H with ‖|ψ〉‖ = 1; in this work, H is finite-dimensional. We
denote by S(H) the space of Hermitian operators on H. A density matrix is a
positive semi-definite operator ρ ∈ S(H) with Tr(ρ) = 1. A density matrix rep-
resents a probabilistic mixture of pure states (a mixed state); the density matrix
corresponding to the pure state |ψ〉 is |ψ〉〈ψ|. Typically we divide a Hilbert space
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into registers, e.g. H = H1 ⊗ H2. We sometimes write, e.g., ρH1 to specify that
ρ ∈ S(H1).

A unitary operation is a complex square matrix U such that UU† = I. The
operation U transforms the pure state |ψ〉 to the pure state U |ψ〉, and the
density matrix ρ to the density matrix UρU†. We write U(H) for the set of
unitary operators on H.

A projector Π is a Hermitian operator (Π† = Π) such that Π2 = Π.
A projective measurement is a collection of projectors P = (Πi)i∈S such that
∑

i∈S Πi = I. This implies that ΠiΠj = 0 for distinct i and j in S. The applica-
tion of P to a pure state |ψ〉 yields outcome i ∈ S with probability pi = ‖Πi |ψ〉‖2;
in this case the post-measurement state is |ψi〉 = Πi |ψ〉 /

√
pi. We refer to the

post-measurement state Πi |ψ〉 /
√

pi as the result of applying P to |ψ〉 and post-
selecting (conditioning) on outcome i. A state |ψ〉 is an eigenstate of P if it is an
eigenstate of every Πi. A two-outcome projective measurement is called a binary
projective measurement, and is written as P = (Π, I−Π), where Π is associated
with the outcome 1, and I − Π with the outcome 0.

General (non-unitary) evolution of a quantum state can be represented via
a completely-positive trace-preserving (CPTP) map T : S(H) → S(H′). We omit
the precise definition of these maps in this work; we only use the facts that they
are trace-preserving (for every ρ ∈ S(H) it holds that Tr(T (ρ)) = Tr(ρ)) and
linear. For every CPTP map T : S(H) → S(H) there exists a unitary dilation U
that operates on an expanded Hilbert space H ⊗ K, so that T (ρ) = TrK(U(ρ ⊗
|0〉〈0|K)U†). This is not necessarily unique; however, if T is described as a circuit
then there is a dilation UT represented by a circuit of size O(|T |).

For Hilbert spaces A,B the partial trace over B is the unique CPTP map
TrB : S(A⊗B) → S(A) such that TrB(ρA ⊗ρB) = Tr(ρB)ρA for every ρA ∈ S(A)
and ρB ∈ S(B).

A general measurement is a CPTP map M : S(H) → S(H ⊗ O), where O is
an ancilla register holding a classical outcome. Specifically, given measurement
operators {Mi}N

i=1 such that
∑N

i=1 MiM
†
i = I and a basis {|i〉}N

i=1 for O, M(ρ) =
∑N

i=1(MiρM†
i ⊗|i〉〈i|O). We sometimes implicitly discard the outcome register. A

projective measurement is a general measurement where the Mi are projectors.
A measurement induces a probability distribution over its outcomes given by
Pr [i] = Tr

(|i〉〈i|OM(ρ)
)

; we denote sampling from this distribution by i ← M(ρ).
The trace distance between states ρ, σ, denoted d(ρ, σ), is defined as

d(ρ, σ) =
1
2

Tr
(
√

(ρ − σ)2
)

.

The trace distance is contractive under CPTP maps (for any CPTP map T ,
d(T (ρ), T (σ)) ≤ d(ρ, σ)). It follows that for any measurement M, the statistical
distance between the distributions M(ρ) and M(σ) is bounded by d(ρ, σ).

We also define a notion of quantum computational distinguishability. Specif-
ically, for states ρ, σ,

dcomp(ρ, σ)N := max
D,|D|≤N

|Pr [D(ρ) → 1] − Pr [D(σ) → 1] | ,
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where D is a quantum circuit. For sequences of states (ρλ)λ, (σλ)λ we say that
dcomp(ρλ, σλ) ≤ ε + negl (λ) if for all polynomials p, dcomp(ρλ, σλ)p(λ) ≤ ε +
negl (λ).

Clearly dcomp satisfies the triangle inequality and for all λ ∈ N,
dcomp(ρ, σ)(λ) ≤ d(ρ, σ). For bipartite states on A ⊗ B we affix a superscript
A to d and dcomp to indicate that the distance is with respect to A only, i.e.

dA(ρ, σ) = d(TrB(ρ),TrB(σ)) .

Gentle Measurement. We have the following gentle measurement lemma,
which bounds how much a state is disturbed by applying a measurement whose
outcome is almost certain.

Lemma 1 (Gentle Measurement [26]). Let ρ ∈ S(H) and P = (Π, I − Π)
be a binary projective measurement on H such that Tr(Πρ) ≥ 1 − δ. Let

ρ′=
ΠρΠ

Tr(Πρ)
and ρ′′=ΠρΠ + (I − Π)ρ(I − Π).

Then
d(ρ, ρ′) ≤ 2

√
δ and d(ρ, ρ′′) ≤ 2

√
δ.

Quantum Algorithms. In this work, a quantum adversary is a family of quan-
tum circuits {Aλ}λ∈N represented classically using some standard universal gate
set. A quantum adversary is polynomial-size if there exists a polynomial p and
λ0 ∈ N such that for all λ > λ0 it holds that |Aλ| ≤ p(λ) (i.e., quantum adver-
saries have classical non-uniform advice).

A circuit C with black-box access to a unitary U , denoted CU , is a standard
quantum circuit with special gates that act as U and U†. We also use CT to
denote black-box access to a map T , which we interpret as CUT for a unitary
dilation UT of T ; all of our results are independent of the choice of dilation. This
allows, for example, the “partial application” of a projective measurement, and
the implementation of a general measurement via a projective measurement on
a larger space.

Interactive Quantum Circuits. We introduce the definition for interactive
quantum circuits.

Definition 2. A t-round interactive quantum circuit A is a sequence of maps
(U1, . . . , Ut) where Ui : Ri → U(I ⊗ Zi). We also denote by Ui the unitary
∑

ri∈Ri
|ri〉〈ri| ⊗ Ui(ri). The size of an interactive quantum circuit is the sum

of the sizes of the circuits implementing the unitaries U1, . . . , Ut.
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Let P ∗ = (U1, . . . , Ut, |ψ〉); then EP ∗
is a quantum circuit with special gates

corresponding to the unitaries Ui and (Ui)† for i ∈ [t]. The requirement that
the Ui be unitary is without loss of generality, in the sense that any interactive
quantum adversary not of this form can be “purified” into a circuit of this form
that is only a constant factor larger with the same observable behavior. Using
this formulation, we can sample the random variable 〈P ∗(|ψ〉), V 〉 equivalently
as:

1. Initialize the register I to |ψ〉, and τ = ().
2. For i = 1 . . . t:

(a) Sample ri ← Ri.
(b) Apply unitary Ui(ri) to I ⊗ Zi.
(c) Measure Zi in the computational basis to obtain response zi. Append

(ri, zi) to τ .
3. Return the output of V (τ).

In particular, the interaction is public coin. Note again that we restrict the
operation of P ∗ in each round to be unitary except for the measurement of Zi

in the computational basis.

4 Recursive Special Sound and Last-Round Collapsing
Arguments

We recall the definitions of interactive arguments and their knowledge soundness.
We then define the new notions of recursive special soundness and last-round
collapsing.

Definition 3 (Arguments). Let i ≥ 0 be an integer. A (2i+1)-message public-
coin argument system Π = (Setup, Σ = (P, V )) consists of a PPT algorithm
Setup and a (2i + 1)-message protocol Σ = (P, V ) between an interactive PPT
prover P and an interactive PPT verifier V , is associated to a tuple of spaces
(X,W, (Zj , Rj)j∈[i],Wi+1), and has the following structural properties:

– The Setup algorithm takes as input the security parameter 1λ and outputs
some public parameters pp.

– Both P and V receive as input the public parameters pp and a statement
x ∈ X. The prover P additionally receives a witness w ∈ W .

– The public parameters, the statement x, and the 2i + 1 messages sent by
P and V in the protocol Σ, called collectively a transcript, is labelled by
(pp, x, z1, r1, . . . , zi, ri, wi+1), where zj ∈ Zj sent by P are called commit-
ments, rj ∈ Rj sent by V are called challenges, and wi+1 ∈ Wi+1 sent by P
is called a response.

– The challenges rj are sampled by V uniformly randomly from Rj
6.

6 In general, rj could be sampled from a public distribution over Rj .
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A transcript (pp, x, z1, r1, . . . , zi, ri, wi+1) is said to be accepting for Σ if it holds
that V (pp, x, z1, r1, . . . , zi, ri, wi+1) = 1. A k-branch of transcripts of Σ is a tuple
consisting of some public parameters, a statement, and a prefix of messages

(pp, x, z1, r1, . . . , zi−1, ri−1, zi)

along with k distinct i-th round challenges (r(j)i )j∈[k], and k responses
(w(j)

i+1)j∈[k]. A k-branch of transcripts is said to be accepting for Σ if

(pp, x, z1, r1, . . . , zi−1, ri−1, zi, r
(j)
i , w

(j)
i+1)

is accepting for Σ for all j ∈ [k].

Note that if i = 0 then the protocol is non-interactive: the transcript consists
only of (pp, x, w1).

For the protocols we consider, the statement to be proved depends on the
public parameters pp. As such, we will define proofs of knowledge with respect
to relations on triples (pp, x, w). Observe, in particular, that when i = 0 in
Definition 3 the verifier itself defines such a relation. Our proof of knowledge
definition is somewhat weaker than standard definitions of proof of knowledge
in that the extractor is permitted a given additive inverse polynomial loss.

Definition 4 (Proof of knowledge). We say that an argument system Π =
(Setup, Σ = (P, V )) is a (post-quantum) proof of knowledge with knowledge error
κ for a relation R if there exists a (quantum) polynomial-time extractor E and
such that for any inverse polynomial ν and any (quantum) polynomial-size adver-
sary P ∗,

Pr

[

R(pp, x, w)
∣

∣

∣

∣

pp ← Setup(1λ)
w ← ExtractP

∗
(pp, x, 11/ν)

]

≥ Pr [〈P ∗, V 〉 = 1]−κ(λ)−ν(λ) .

Definition 5 (Recursive k-Special Soundness). For i ∈ Zt+1, let Πi =
(Setup, Σi = (Pi, Vi)) be a (2i + 1)-message public-coin argument system with
a common Setup algorithm associated to the spaces (X,W, (Zj , Rj)j∈[i],Wi+1).
The family (Πi)t

i=0 is said to be recursive k-special sound if for each i ∈ [t] there
exists an efficient extractor Ei satisfying the following properties:

– The extractor Ei takes as input (r(j)i , w
(j)
i+1)j∈[k] ∈ (Ri × Wi+1)k and outputs

wi ∈ Wi.
– If

(pp, x, z1, r1, . . . , zi−1, ri−1, zi, (r
(j)
i , w

(j)
i )j∈[k])

is an accepting k-branch of transcripts for Σi, and wi = Ei((r
(j)
i , w

(j)
i+1)j∈[k]),

then
(pp, x, z1, r1, . . . , zi−1, ri−1, wi)

is an accepting transcript for Σi−1.
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Definition 6 (Last-Round Collapsing). Let Π be a (2i+1)-message public-
coin argument system associated to the spaces (X,W, (Zj , Rj)j∈[i],Wi+1). We
say that Π is last round collapsing if for any efficient (quantum) adversary A

∣

∣Pr
[

LastRoundCollapsing0Π,A(1λ) = 1
]− Pr

[

LastRoundCollapsing1Π,A(1λ) = 1
]∣

∣

≤ negl(λ),

where the experiment LastRoundCollapsingb
Π,A is defined as follows:

LastRoundCollapsingb
Π,A(1λ) :

1. The challenger generates pp ← Setup(1λ).
2. The challenger runs x ← A(pp).
3. The challenger executes the interaction (A, V (pp, x)) up until measuring the

last message of the adversary. Let τ = (pp, x, z1, r1, . . . , zt, rt) be the protocol
transcript thus far (excluding the last message) and let W be the register that
contains the state corresponding to the last message of the adversary.

4. Let Vτ be the unitary that acts on W and a fresh ancilla, and CNOTs into
the fresh ancilla the bit that determines whether the transcript is valid. Apply
Vτ , measure the ancilla, and apply V †

τ .
5. If the output of the measurement is 0, then abort the experiment. Else proceed.
6. If b = 0 do nothing.
7. If b = 1 measure the register W in the computational basis, discard the result.
8. Return to A all registers and output whichever bit A outputs.

5 Quantum Tree-Extraction

In this section we give an algorithm for extracting a witness from a recursively
k-special sound, last-round collapsing protocol. We prove the following general
theorem.

Theorem 2. Let (Πi = (Setup, Σi = (Pi, Vi)))t
i=0 be a recursively k-special

sound family where Πi is last-round collapsing for all i. Then Πt is a post-
quantum proof of knowledge for (the relation induced by) V0 with knowledge
error

t
∑

i=1

k − 1
|Ri| .

In Sect. 5.1 we give some notation which will be used in this section, and
specify the quantum algorithms we require. We also prove a new result about the
Repair algorithm of [11], which gives a better characterization of the distribution
of outcomes from repeated applications of the repair experiment; this is necessary
for our main result. In Sect. 5.2 we specify our extractor and show that it runs
in polynomial time. In Sect. 5.3 we prove that the extractor is correct.
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5.1 Notation and Quantum Algorithms

For a classical predicate f : R × Z → {0, 1}, let Πf(r,·) :=
∑

z∈Z,f(r,z)=1|z〉〈z|Z .
Given also a mapping U : r → U(A,Z), we define the Hermitian matrix EU,f :=
1

|R|
∑

r∈R U(r)†Πf(r,·)U(r). Let TU,f
≥p := (ΠU,f

≥p , I − ΠU,f
≥p ), where

ΠU,f
≥p :=

∑

j,pj≥p

|j〉〈j| ,

for
∑

j pj |j〉〈j| the spectral decomposition of EU,f . Note that 0 ≤ pj ≤ 1 for
all j.

Lemma 2 ([11,27]). For every ε, δ > 0 there is a quantum algorithm
Estimateε,δ with the following guarantees. For any classical predicate f : R×Z →
{0, 1}, mapping U : r → U(A,Z) and state ρ ∈ A ⊗ Z:

– E[p | (p, ρ′) ← EstimateU,f
ε,δ (ρ)] = Tr(EU,fρ) = 1

|R|
∑

r∈R Tr
(

Πf(r,·)UrρU†
r

)

;

– EstimateU,f
ε,δ is (ε, δ)-almost projective; and

– For any q ∈ [0, 1],

Pr

[

p ≥ q ∧ b = 0

∣

∣

∣

∣

∣

(p, ρ′) ← EstimateU,f
ε,δ (ρ)

b ← TU,f
≥q−ε(ρ

′)

]

≤ δ .

EstimateU,f
ε,δ has quantum circuit complexity O(|f | · 1

ε log 1
δ ) given oracle access to

U :=
∑

r∈R|r〉〈r| ⊗ U(r).

We denote by Thresholdγ,ε,δ the quantum algorithm which runs Estimate and
outputs 1 if its output is at least γ, and 0 otherwise.

Fig. 1. Experiments involving the Repair algorithm.
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We recall the state repair theorem of [11].

Theorem 3 (State repair, [11]). Let M be an (ε, δ)-almost projective mea-
surement on H, let P be an n-outcome projective measurement on H, and
let T be any positive integer. There is quantum procedure Repair such that
RepExptM,P

T (see Fig. 1) satisfies the following guarantee. For any state ρ on
H and (p, p′) ← RepExptM,P

T (ρ):

Pr [|p′ − p| > 2ε] ≤ n(δ + 1/T ) + 4
√

δ.

Moreover, Repair has quantum circuit complexity O(T ) given oracle access to P
and M.

Fix M to be the procedure EstimateU,f
ε,δ from Lemma 2, and for r ∈ R,

denote by Pr the binary measurement (U†
r Πf(r,·)Ur, I −U†

r Πf(r,·)Ur). In [11] it is
observed that Theorem 3 directly implies the following. If we choose a uniformly
random sequence (r1, . . . , rN ) ∈ RN and apply RepExpt

M,Pr1
T , . . . ,RepExpt

M,PrN

T

sequentially, the expected number of 1-outcomes for the Pri
is at least p−O(εN),

where p is the prover’s success probability in the protocol.
For our application we will need to strengthen this result in two ways. First,

we allow the sequence to be drawn from a more general distribution, even
depending on prior measurement outcomes. Second, we require a strong con-
centration guarantee, which we obtain by showing that the number of successes
dominates a binomial distribution of the appropriate parameters. The relevant
experiment is given as MultiExpt in Fig. 1. Note that the setting in [11] is obtained
by choosing Ds as the uniform distribution over R for all s.

Lemma 3. For each s = 1, . . . , N , let Ds be a randomized function that takes
an element of (N × {0, 1})s−1 and outputs is ∈ N. Let (Mi)i∈N be a list of
measurements.

For any state ρ ∈ S(A ⊗ Z), the following holds:

PrS←MultiExpt(ρ) [S < k] ≤ Pr

[

N
∑

i=1

Ys < k

]

+ N/T + O(
√

δ + (N/T )2) ,

where the (Ys)N
s=1 are distributed as follows:

1. Apply EstimateU,f
ε,δ to ρ, obtaining outcome p0. Let α := p0 − 2εN .

2. For each s ∈ [N ], sample Ys from a Bernoulli distribution with parameter

ζ := min
|v〉∈im(ΠU,f

≥α
)

min
i∈N

s−1

b∈{0,1}s−1

Eis←Ds(i,b)Pr [Mis
(|v〉〈v|) → 1] .

Proof. By Theorem 3, for each s ∈ [N ] it holds that

Pr [ps < ps−1 − 2ε] ≤ 2/T + O(
√

δ) .



98 R. W. F. Lai et al.

Denote by E the event that, for any s ∈ [N ], ps < ps−1 − 2ε. By a union bound,

Pr [E] ≤ 2N/T + O(N
√

δ + (N/T )2) .

Now consider the following hybrid experiment:

HybPT :
1. Apply Estimate, obtaining outcome p0.
2. For s = 1, . . . , N :

(a) Apply Estimate, obtaining outcome ps.
(b) Apply TU,f

≥ps−ε, and postselect on obtaining outcome 1.
(c) Sample (is,M) ← Ds(i1, b1, . . . , is−1, bs−1), and measure bs ← M.
(d) Run RepairT [Estimate,Mi](bs, ps).

By Lemma 2, in each iteration s, TU,f
≥ps−ε yields outcome 1 with probability

at least 1 − δ. Hence by gentle measurement, d(MultiExpt,Hyb) = O(N
√

δ).
Switching to Hyb, it holds by definition of ζ that

PrHyb [bs = 1 | ¬E, i1, b1, . . . , is−1, bs−1] ≥ ζ .

Therefore the distribution of (
∑N

s=1 bs | ¬E) induced by Hyb stochastically dom-
inates

∑N
s=1 Ys; that is, for all k,

PrHyb

[

N
∑

s=1

bs < k

∣

∣

∣

∣

∣

¬E

]

≤ Pr

[

N
∑

s=1

Ys < k

]

.

Since Pr [A] ≤ Pr [A|B]Pr [B], we have that

PrHyb

[

N
∑

s=1

bs < k

]

≤
Pr

[
∑N

s=1 Ys < k
]

PrHyb [E]

≤ Pr

[

N
∑

s=1

Ys < k

]

+ 2N/T + O(N
√

δ + (N/T )2) .

The lemma then follows by trace distance. ��

5.2 Description of the Extractor

For a measurement channel M : S(A) → S(A ⊗ O), we denote by M ∈ U(A ⊗
O ⊗B) some unitary dilation of M. We denote by M : S(A⊗B) → S(A⊗O ⊗B)
a projective dilation of M, given by

M(ρ) :=
∑

i

M
†|i〉〈i|OMρM

†|i〉〈i|OM

where {|i〉}i is a basis for O. All of our procedures and correctness analyses are
independent of the choice of dilation, and we assume that the circuit complexity
of M,M is linear in the circuit complexity of M.
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We now describe the extractor, which is a measurement channel
Extracti,ν : S(A ⊗ Z) → S(A ⊗ Z ⊗ O), where Z = (Z1, . . . ,Zt,Wt+1) are the
prover’s output registers. Recall that we model the prover as a sequence of uni-
taries U1, . . . , Ut.

For i ∈ [t], denote by U (i) : Ri × · · · × Rt → U(A ⊗ Zi+1 ⊗ · · · ⊗ Zt ⊗ Wt+1)
the map

U (i)(ri, . . . , rt) = Ut(rt) · · · Ui(ri) .

For i ∈ [t], r = (r1, . . . , ri−1) ∈ R1 × · · · × Ri−1, let f
(i)
(r) : (Ri × · · · × Rt) × (Z1 ×

· · · × Zt × Wt+1) → {0, 1} denote the function f
(i)
(r)(ri, . . . , rt, z1, . . . , zt, wt+1) :=

V (z1, r1, . . . , zt, rt, wt+1).

Extracti,ν(r1, . . . , ri−1):
1. Set N := �2t ln(1/δ)/ν2�, ε := ν/4kNt, β := ν/2kt.

2. Compute p0 ← Estimate
U(i),f(i)

r

ε,δ . If p0 < γ :=
∑t

j=i
k−1
Ri

+ ν, stop
and output ⊥.

3. For j = 1, . . . , k:
(a) Set b := 0.
(b) For s = 1, . . . , N , apply the following steps:

i. Compute ps ← Estimate
U(i),f(i)

r

ε,δ .
ii. Choose ri ← Ri \SuppW uniformly at random and apply

Ui(ri).
iii. Initalize ancilla register B (for Threshold) to |0〉.
iv. Measure b ← ThresholdU(i+1),f(i+1)

γ′,ε,δ , where γ′ :=
∑t

j=i+1
k−1
Ri

+ ν · t−i−1
t−i + ε. If b = 1, go to Step 3c.

v. Apply Ui(ri)†.

vi. Run RepairkN/2β2 [Estimate
U(i),f(i)

r

ε,δ , (Ui(ri))† ·
ThresholdU(i+1),f(i+1)

γ′,ε,δ · Ui(ri)].

(c) Apply Threshold
U(i+1),f(i+1)

γ′,ε,δ .
(d) Compute Wi+1 ← Extracti+1,ν′(r1, . . . , ri) coherently, for

ν′ := ν · t−i−1
t−i .

(e) If b = 1, measure b′ ← Vi(Z1, r1, . . . ,Zi, ri,Wi).
(f) If b = b′ = 1, measure wi+1 ← Wi+1 and add (ri �→ wi) to

W .
(g) Apply Extracti+1,ν′(r1, . . . , ri)†.

(h) Apply (Threshold
U(i+1),f(i+1)

γ′,ε,δ )†, then Ui(ri)†.

(i) Run RepairkN/2β2 [Estimate
U(i),f(i)

r

ε,δ , (Ui(ri))† ·
ThresholdU(i+1),f(i+1)

γ′,ε,δ · Ui(ri)].
4. Output wi ← Ei(W ).

Extractt,ν(r1, . . . , rt−1) is simply the [11] extractor, modified to sample rt without
replacement:
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Extractt,ν(r1, . . . , rt−1):

1. Compute p0 ← Estimate
U(i),f(i)

r

ε,δ . If p0 < γ := k−1
Rt

+ ν, stop and
output 0.

2. For j = 1, . . . , k:
(a) Set b := 0.
(b) For s = 1, . . . , N , and while b = 0, apply each of the following

steps:
i. Compute ps ← Estimate

Ut,f
(t)
r

ε,δ .
ii. Choose rt ← Rt\SuppW uniformly at random and apply

Ut(rt).
iii. Measure b ← Vt(Z1, r1, . . . ,Zt, rt,Wt+1).
iv. If b = 1, measure wt+1 ← Wt+1 and add (rt �→ wt+1) to

W .
v. Apply Ut(rt)†.

vi. Run RepairkN/2β2 [Estimate
Ut,f

(t)
r

ε,δ , (Ut(rt))† · ΠVt(r,·) ·
Ui(ri)].

3. Output Et(W ).

Lemma 4. Extracti,ν is a circuit of size P (t, k, log(1/δ), 1/ν) · (ck)t−i for some
polynomial P and constant c. In particular, if k = O(1), t = O(log n), δ = 2−λ

and ν = 1/poly (λ) then Extractν = Extract1,ν is a polynomial-size quantum
circuit.

Proof. Let P be a polynomial (with positive coefficients) such that for any i,

|Extracti,ν | ≤ P (t, k, log(1/δ), 1/β, 1/ν) + k · 2|Extracti+1,ν′ | .

Such a polynomial exists by Lemma 2 and Theorem 3. Let c be a constant
such that P (1, 1, 1, 1, 2) ≤ c · P (1, 1, 1, 1, 1). The circuit size of Extracti,ν is then
bounded by

P (t, k, log(1/δ), 1/β, 1/ν) + k · 2|Extracti+1,ν′ |
≤ P (t, k, log(1/δ), 1/β, 1/ν) + 2ct−i−1kt−i · P (t, k, log(1/δ), 1/β, 1

ν · t−i
t−i−1 )

≤ (ck)t−iP (t, k, log(1/δ), 1/β, 1/ν) ,

since t−i
t−i−1 ≤ 2 for all i ∈ {1, . . . , t − 1}. ��

5.3 Correctness

The key lemma which establishes the correctness of the extractor is the following.

Lemma 5. Let Extract′ be as Extract, except that its output is 0 if Extract out-
puts ⊥ and

Vi−1(z1, r1, . . . , zi−1, ri−1, wi−1)
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otherwise. Then for γ :=
∑t

j=i
k−1
Ri

+ ν and all r = (r1, . . . , ri−1),

dA,Z,O
comp (Extract′i,ν(r; ρ),ThresholdU(i),f(i)

r

γ,ε,δ (ρ))

≤ kt−i · (β + O(β2) + poly (λ) · 4
√

δ) + negl (λ) .

Before proving the lemma, we discuss the intuition behind it and then show
how to use it to prove Theorem 2. Extract′i,ν measures whether the extractor

succeeds at the i-th level. ThresholdU(i),f(i)
r

γ,ε,δ measures whether the prover’s success
probability in the i-th round is at least γ. The lemma bounds the computational
distinguishability of these measurements; in particular, it implies that if we first
measure ThresholdU(i),f(i)

r

γ,ε,δ and obtain an outcome b ∈ {0, 1}, then the outcome of
applying Extract′i,ν to the post-measurement state is also b with all but inverse
polynomial probability. Hence to determine whether Extract′i,ν will succeed it

suffices to measure Threshold
U(i),f(i)

r

γ,ε,δ ; the complexity of the latter does not grow
with decreasing i.

We note that it is crucial that Lemma 5 bounds the distinguishability of
these measurements and not simply the probability that they produce different
outcomes when applied in sequence. While gentle measurement allows one to
move from the latter property to the former, this incurs a square-root loss in the
bound. Compounding this loss over log n rounds would make the bound trivial.

Proof (Theorem 2). Let P ∗ = (U1, . . . , Ut, ρ) be an adversary for Πt. By
Lemma 2, E[EstimateU(1),f(1)

ε,δ (ρ)] = Pr [〈P ∗, Vt〉 → 1]. Hence by Proposition 1,

Pr
[

ThresholdU(1),f(1)

γ,ε,δ (ρ) → 1
]

≥ Pr [〈P ∗, Vt〉 → 1] − γ.

It follows by Lemma 5 that

Pr
[

Extract′1,ν/2 → 1
]

≥ Pr [〈P ∗, Vt〉 → 1] − κ − ν

for κ :=
∑t

i=1
k−1
|Ri| and since β = ν/2kt. The theorem follows by noting that, by

definition, the probability that Extract succeeds is equal to the probability that
Extract′ outputs 1. ��
Proof. We argue the inductive step. The base case follows by a similar (simpler)
argument.

Consider a hybrid extractor Hyb1 in which we replace Steps 3f and 4 with

3f’. If b′ = 1, add (ri �→ ⊥) to W .
4’. Output 1 if |W | = k, else 0.

By last-round collapsing, dA,Z,O
comp (Extract′i,γ,ε,Hyb1) = negl (λ).

Observe that after removing the measurement of Wi in Extract′, Steps 3d,3e
and 3g are equivalent to an invocation of Extract′i+1,ν′ . We can now invoke the
inductive hypothesis. Specifically, we consider another hybrid extractor Hyb2, in
which we replace Steps 3d to 3g with the following:
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– If b = 1, measure b′ ← ThresholdUr,fr

γ′−ε,ε,δ. If b′ = 1, add (ri → ⊥) to W .

By induction and the triangle inequality, d(Hyb1,Hyb2) ≤ kt−i · (ε + O(ε2) +
poly (λ) · 4

√
δ + negl (λ)).

Hyb3 is obtained from Hyb2 by replacing Step 5.3 with

5.3’ If b = 1, add (ri → ⊥) to W .

If b = 1, then by Lemma 2, Pr [b′ = 1] ≥ 1 − δ. Hence by gentle measurement,
dA,Z,O(Hyb2,Hyb3) = O(k

√
δ). We write out Hyb3 in full, simplifying where

possible.

Hyb3:

1. Compute p0 ← Estimate
U(i),f(i)

r

ε,δ . If p0 < γ, stop and output 0.
2. For j = 1, . . . , k:

(a) Set b := 0.
(b) For s = 1, . . . , N , and while b = 0, apply each of the following

steps:
i. Compute ps ← Estimate

U(i),f(i)
r

ε,δ .
ii. Choose ri ← Ri \SuppW uniformly at random and apply

Ui(ri).
iii. Initalize ancilla register B to |0〉.
iv. Measure b ← ThresholdU(i+1),f(i+1)

γ′,ε,δ , where γ′ :=
∑t

j=i+1
k−1
Ri

+ ν · t−i−1
t−i + ε.

v. If b = 1, add (ri �→ ⊥) to W .
vi. Apply Ui(ri)†.

vii. Run RepairkN/2β2 [Estimate
U(i),f(i)

r

ε,δ , (Ui(ri))† ·
ThresholdU(i+1),f(i+1)

γ′,ε,δ · Ui(ri)].
3. Output 1 if |W | = k, else 0.

Consider now the j-th iteration of the outer loop. We compute the quantity
ζ from Lemma 3. Let |v〉 ∈ im(ΠU(i),f(i)

r

≥α ). Then

Eri←Ri\SuppW [EstimateU(i+1),f(i+1)

ε,δ (Ui(ri) |v〉)]

≥ 〈v|E
U(i),f

(i)
r

|v〉 − j − 1
|Ri| ≥ α − k − 1

|Ri| .

So by Proposition 1,

Prri←Ri\SuppW

[

ThresholdU(i+1),f(i+1)

γ′,ε,δ (Ui(ri) |v〉) → 1
]

≥ α − k − 1
|Ri| − γ′.

Since we abort if p0 < γ, by our choice of ε we have that α − k−1
|Ri| ≥ γ′ + ν

2t .
Hence ζ ≥ ν/2t.
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Then by Lemma 3, the probability that b is never set to 1 is at most

(1 − ν/2t)N + O(N(1/T +
√

δ)) ≤ β2/2k + O(N
√

δ + β4/k2)

given our choice of N . Hence the probability that p0 ≥ γ and Hyb3 outputs 0 is
at most β2/2 + O(kN

√
δ + β4). By gentle measurement,

dA,Z,O(Hyb
3
,Threshold

U(i),f(i)
r

γ,ε,δ ) ≤ β + O(
√

kN
4
√

δ + β2).

The lemma then follows by the triangle inequality. ��

6 Collapsing Hash Function Families

In the following, we show that the hash functions HashA(x) = A · x mod q,
indexed by the matrix A, are collapsing and even when A is “folded” with
coefficients being small units in the base ring.

6.1 Definitions

We recall the definition of a hash function family and the desired properties.

Definition 7 (Hash Function Family). Let �, k ∈ poly (λ). A hash function
family Hash = (Setup,H) from X 
 to Yh consists of a PPT Setup algorithm
and a deterministic polynomial-time H algorithm. The Setup algorithm inputs a
security parameter 1λ and outputs the public parameters pp. The H algorithm
inputs pp and a preimage x ∈ X 
. It outputs an image y ∈ Yh. When it is clear
from the context, we omit the input pp and write y = H(x).

We define below the notion of collapsing for hash functions [25].

Definition 8 (Collapsing). Let �, k ∈ poly (λ) and W ⊆ X . Let Hash =
(Setup,H) be a hash function from X 
 to Yh. We say that Hash is collapsing
over W
 if for any efficient (quantum) adversary A

∣

∣Pr
[

Collapsing0A(1λ) = 1
]− Pr

[

Collapsing1A(1λ) = 1
]∣

∣ ≤ negl (λ),

where the experiment Collapsingb
A is defined as follows:

Collapsingb
A(1λ) :

1. Sample pp using the Setup(1λ) algorithm and send it over to A.
2. A replies with a classical bitstring y and a quantum state on a register X .
3. Let UH,y be the unitary that acts on X and a fresh ancilla, and CNOTs into

the fresh ancilla the bit that determines whether the output of H(·) equals
y and the input belongs to W
. Apply Upp,y, measure the ancilla, and apply
U†
pp,y.

4. If the output of the measurement is 0, then abort the experiment. Else proceed.
5. If b = 0 do nothing.
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6. If b = 1 measure the register X in the computational basis, discard the result.
7. Return to A all registers and output whichever bit A outputs.

Note that the security experiment Collapsingb
A in the definition of collapsing

is a quantum algorithm. It is often easier to work with the classical security
notion of somewhere-statistically binding (SSB), defined below, which is known
to imply collapsing.

Definition 9 (Somewhere-Statistically Binding). Let h, � ∈ poly (λ) and
W ⊆ X . A hash function family Hash = (Setup,H) from X 
 to Yh is said to
be somewhere-statistically binding (SSB) over W
 if there exists a PPT BSetup
algorithm such that the following hold:

– The BSetup algorithm inputs a security parameter 1λ and an index i ∈ Z
. It
outputs the public parameters pp.

– For all i ∈ Z
, the distributions Setup(1λ) and BSetup(1λ, i) are computation-
ally indistinguishable.

– For all i ∈ Z
,

Pr
[∃ x0,x1 ∈ W
 : x0,i �= x1,i ∧ H(pp,x0) = H(pp,x1)

∣

∣ pp ← BSetup(1λ, i)
]

≤ negl (λ).

Lemma 6 ([1,18]). Let Hash = (Setup,H) be a hash function family from X 


to Yh and W ⊆ X . If Hash is SSB over W
, then Hash is collapsing over W
.

6.2 Bounded Homomorphic Public-Key Encryption

We recall the notion of public-key encryption. Note that we define a variant of
public-key encryption with perfect correctness.

Definition 10 (Public-Key Encryption). A public-key encryption (Gen,Enc,
Dec) consists of a key generation algorithm Gen that takes as input the security
parameter 1λ and returns a key pair (pk, sk). The encryption algorithm Enc takes
as input pk and a message m an produces a ciphertext c. We require that for all
λ ∈ N, all (pk, sk) in the support of Gen(1λ) and all messages m, it holds that
Dec(sk,Enc(pk,m)) = m.

To prove the security of the hash function family fA we assume the existence
of a bounded linearly homomorphic encryption scheme, that we define in the
following.

Definition 11 ((�, β)-Bounded Linearly Homomorphic Encryption over
Rh

q ). Let h, q ∈ N. An encryption scheme (Gen,Enc,Dec) is (�, β)-bounded lin-
early homomorphic over Rh

q if the following hold:

– (Ciphertext Indistinguishability) For a uniformly sampled key pair (pk, sk) ←
Gen(1λ), and for all bits b ∈ {0, 1} it holds that the following distributions are
computationally indistinguishable:

c ←$Enc(pk, b) ≈ u ←$ Rh
q .
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– (Bounded Homomorphism) For all key pairs (pk, sk) in the support of Gen(1λ),
all bits (b1, . . . , b
) ∈ {0, 1}
, all ciphertexts (c1, . . . , c
) ∈ Rh×


q in the support
of (Enc(pk, b1), . . . ,Enc(pk, b
)), and all vectors x ∈ R
 where ‖x‖ ≤ β, it
holds that:

Dec(sk, (c1, . . . , c
) · x mod q) =


∑

i=1

bi · xi.

Examples of encryption schemes that satisfy the above property are NTRU [12,
23] (for h = 1) and Regev encryption based on (Ring)-LWE [17,21] (for h > 1).

6.3 A Fold-Collapsing Hash Function

Let h, t ∈ N, � = 2t, i ∈ {0, 1, . . . , t}, and (rj)j∈[i]] ∈ Ri. Define �i := �/2i = 2t−i.
For any matrix Ai ∈ Rh×
i

q , we denote by (Ai,0,Ai,1) ∈ (Rh×
i+1
q )2 an arbi-

trary fixed partitioning of the columns of A into two disjoint sets of columns
of identical cardinality. Similarly, for any vector xi ∈ R
i , we denote by
(xi,0,xi,1) ∈ (R
i+1

q )2 the partitioning of x induced by that of A. In Fig. 2 we
define a hash function family Hashi := Hash[h, �, (rj)j∈[i]] from X 
i to Yh.

Fig. 2. Construction of hash function families Hashi from X �i to Yh, where �i := �/2i =
2t−i. For i = 0, we denote the family by Hash0 = Hash[h, �].

We are now ready to show that the hash function as defined above is SSB,
generalizing a Theorem from [1]. As an immediate corollary, we obtain that the
hash function is also collapsing.

Lemma 7 (Collapsing). Let β0 ∈ R. Let W0 := {x ∈ R : ‖x‖ ≤ β0}. If
there exists an (�, β0)-bounded linearly homomorphic encryption over Rh

q , then
Hash[h, �] is SSB over W0.

Proof. Let (Gen,Enc,Dec) be an (�, β0)-bounded linearly homomorphic encryp-
tion over Rh

q . Let A be a uniformly sampled hash key. We define � hybrid dis-
tributions where we gradually substitute the columns of A with encryptions of
0. That is, in the i-th hybrid, the key of the hash function consists of

(c1, . . . , ci,Bi)
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where (ci . . . ci) ←$Enc(pk, 0) and Bi ←$ Rh×(
−i)
q . It is easy to show that the

hybrids of each neighbouring pair are computationally indistinguishable by the
ciphertext indistinguishability of the encryption scheme. Note that, in the �-th
hybrid, the hash key consists of a concatenation of encryption of 0.

We will now show that the hash function defined in the �-th hybrid is SSB,
and the lemma statement will follow. We define BSetup(1λ, i) to be identical to
the distribution above, except that we substitute the i-th column of the key with
ci ←$Enc(pk, 1). The two distributions are computationally indistinguishable by
another application of ciphertext indistinguishability. We now show that there
does not exist a pair (x0,x1) ∈ W2


0 such that H(x0) = H(x1) and x0,i �= x1,i.
Assume towards contradiction that it exists, then we have that

c̃ = (c1, . . . , c
) · x0 = (c1, . . . , c
) · x1 mod q.

By the (�, β0)-bounded linear homomorphism of the encryption scheme, it holds
that c̃ decrypts to two different x0,i and x1,i. This contradicts the correctness of
the scheme. ��

Next we show that the function remains collapsing even if we fold the hashing
key by linear combinations with short units. We refer to this property as fold-
collapsing.

Lemma 8 (Fold-Collapsing). Let βi ∈ R, i ∈ Zt, ri+1 ∈ R×

be a unit with ‖ri+1‖ = 1, Wi := {x ∈ R : ‖x‖ ≤ βi}, Wi+1 :=
{

x ∈ R : ‖x‖ ≤ γ−1
R · βi

}

, Hashi := Hash[h, �, (rj)j∈[i]] = (Setupi,Hi), and
Hashi+1 := Hash[h, �, (rj)j∈[i+1]] = (Setupi+1,Hi+1). If Hashi is SSB over W
i

i ,
then Hashi+1 is SSB over W
i+1

i+1 .

Proof. Since Hashi is SSB over W
i
i , there exists a PPT algorithm BSetupi such

that

1. BSetupi inputs 1λ and j ∈ Z
i
and outputs pp.

2. For any j ∈ Z
i
, Setupi(1λ) and BSetupi(1λ, j) are computationally indistin-

guishable.
3. For any j ∈ Z
i

,

Pr [BAD(i, j)
∣

∣ Ai ← BSetupi(1
λ, j)

] ≤ negl(λ)

where BAD(i, j) is defined as the following event:
{

∃ xi,0,xi,1 ∈ W
i
i : xi,0,j �= xi,1,j ∧ Ai · xi,0 = Ai · xi,1 mod q

}

.

We construct a PPT algorithm BSetupi+1 which, on input j′ ∈ Z
i+1 , samples
b ∈ {0, 1}, runs BSetupi on j = j′ + b · �i+1 to obtain Ai, and returns Ai+1 :=
ri+1 ·Ai,0 +Ai,1 mod q. By Property 2 above, we clearly have that Setupi+1(1λ)
and BSetupi+1(1λ, j′) are computationally indistinguishable for all j′ ∈ Z
i+1 .

Fix any j ∈ Z
i
and j′ ∈ Z
i+1 satisfying j = j′ mod �i+1, any Ai ∈

BSetupi(1λ, j), any Ai+1 = ri+1 · Ai,0 + Ai,1 mod q ∈ BSetupi+1(1λ, j′), and
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any xi+1,0,xi+1,1 ∈ W
i+1
i+1 satisfying Ai+1 · xi+1,0 = Ai+1 · xi+1,1 mod q. Define

xi,0 := (ri+1 · xi+1,0,xi+1,0) and xi,1 = (ri+1 · xi+1,1,xi+1,1).
Note that ‖xi+1,0‖ ≤ γ−1

R · βi and ‖xi+1,1‖ ≤ γ−1
R · βi. Clearly ‖xi,0‖ ≤ βi

and ‖xi,1‖ ≤ βi. In other words, we have xi,0,xi,1 ∈ W
i
i .

Since Ai+1 · xi+1,0 = Ai+1 · xi+1,1 mod q, we have

Ai+1 · xi+1,0 = Ai+1 · xi+1,1 mod q,

(ri+1 · Ai,0 + Ai,1) · xi+1,0 = (ri+1 · Ai,0 + Ai,1) · xi+1,1 mod q,

Ai · (ri+1 · xi+1,0,xi+1,0) = Ai · (ri+1 · xi+1,1,xi+1,1) mod q,

Ai · xi,0 = Ai · xi,1 mod q.

Furthermore, if xi+1,0,j′ �= xi+1,1,j′ , we have xi,0,j′ �= xi,1,j and xi,0,j′+
i+1 �=
xi,1,j′+
i+1 since ri+1 ∈ R× is a unit in R.

Suppose Hashi+1 is not SSB over W
i+1
i+1 , then there exists j′ ∈ Z
i+1 such

that

Pr [BAD(i + 1, j′)
∣

∣ Ai+1 ← BSetupi+1(1
λ, j′)

]

is non-negligible. Consequently, by the above derivation, the average

1
2

· Pr [BAD(i, j′)
∣

∣ Ai ← BSetupi(1
λ, j′)

]

+
1
2

· Pr [BAD(i, j′ + �i+1)
∣

∣ Ai ← BSetupi(1
λ, j′ + �i+1)

]

is non-negligible. We conclude that there exists j ∈ {j′, j′ + �i+1} ⊆ Z
i
such

that
Pr [BAD(i, j)

∣

∣ Ai ← BSetupi(1
λ, j)

]

is non-negligible, contradicting Property 3 above. ��
Note that the elements rj of the sets R defined in Proposition 2 satisfy the

requirements in Lemma 8.
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