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Abstract. Multi-input functional encryption, MIFE, is a powerful
generalization of functional encryption that allows computation on
encrypted data coming from multiple different data sources. In a recent
work, Agrawal, Goyal, and Tomida (CRYPTO 2021) constructed MIFE
for the class of quadratic functions. This was the first MIFE construc-
tion from bilinear maps that went beyond inner product computation.
We advance the state-of-the-art in MIFE, and propose new constructions
with stronger security and broader functionality.

– Stronger Security: In the typical formulation of MIFE security, an
attacker is allowed to either corrupt all or none of the users who can
encrypt the data. In this work, we study MIFE security in a stronger
and more natural model where we allow an attacker to corrupt any
subset of the users, instead of only permitting all-or-nothing cor-
ruption. We formalize the model by providing each user a unique
encryption key, and letting the attacker corrupt all non-trivial sub-
sets of the encryption keys, while still maintaining the MIFE security
for ciphertexts generated using honest keys. We construct a secure
MIFE system for quadratic functions in this fine-grained corruption
model from bilinear maps. Our construction departs significantly
from the existing MIFE schemes as we need to tackle a more general
class of attackers.

– Broader Functionality: The notion of multi-client functional encryp-
tion, MCFE, is a useful extension of MIFE. In MCFE, each encryp-
tor can additionally tag each ciphertext with appropriate metadata
such that ciphertexts with only matching metadata can be decrypted
together. In more detail, each ciphertext is now annotated with a
unique label such that ciphertexts encrypted for different slots can
now only be combined together during decryption as long as the
associated labels are an exact match for all individual ciphertexts.
In this work, we upgrade our MIFE scheme to also support cipher-
text labelling. While the functionality of our scheme matches that of
MCFE for quadratic functions, our security guarantee falls short of
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the general corruption model studied for MCFE. In our model, all
encryptors share a secret key, therefore this yields a secret-key ver-
sion of quadratic MCFE, which we denote by SK-MCFE. We leave
the problem of proving security in the general corruption model as
an important open problem.

1 Introduction

Functional encryption (FE) [18,19,31] is a generalization of public key encryp-
tion that enables fine grained control over access to encrypted data. In FE, the
secret key is associated with a function f , the ciphertext is associated with an
input x from the domain of f , and decryption enables recovery of f(x) and
nothing else. Importantly, no information about x is revealed beyond what is
revealed by {fi(x)}i for any set of secret decryption keys corresponding to func-
tions {fi}i in possession of the adversary. This collusion resistance property
of FE makes it very suitable for computing on encrypted data – a ciphertext
encrypting the genomic data of hundreds of individuals can now be decrypted
using function keys corresponding to various statistical functionalities study-
ing correlations between genomic sequences and disease, while guaranteeing pri-
vacy of individual genomic sequences. Motivated by several important applica-
tions, including the construction of the powerful notion of indistinguishability
obfuscation (iO) [12,16], FE has received an enormous amount of attention in
the community, with scores of elegant constructions from diverse assumptions,
achieving various useful functionalities and satisfying assorted notions of secu-
rity [3,6,14,15,20,24,25,34].

Multi-Input Functional Encryption. Functional encryption was first gen-
eralized to support aggregated computation over multiple input sources by the
celebrated work of Goldwasser et al. [26]. The premise of multi-input FE, denoted
by MIFE, is that in many natural applications of FE it is essential to support
generalized functionalities where arity is greater than one. For instance, in the
above example of genome wide association studies, the ciphertext must encrypt
genomic data of multiple individuals for it to be useful for the statistical stud-
ies in question, but this suggests that this data must be encrypted all at once
by a single entity, which is an unreasonable assumption in practice. Genomic
data is highly sensitive information and it is much more meaningful to allow
every individual to encrypt their own data locally and generalize the construc-
tion to support functions of large arity that can process several ciphertexts at a
time. This constraint is organically captured by MIFE, where n independent
encryptors may individually generate ciphertexts for vectors {xj

i}i∈[n],j∈[poly]

and a secret key for function f allows to compute f(xj1
1 ,xj2

2 , . . . ,xjn
n ) for any

j1, . . . , jn ∈ [poly].
Since its inception, MIFE received substantial attention which quickly bifur-

cated into two parallel branches – (i) the first builds on top of powerful primitives
such as iO or compact single-input FE for general models of computation, like
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circuits or Turing machines and uses these to construct MIFE for circuits or Tur-
ing machines [11,12,16], (ii) the second focuses on efficient direct constructions
for restricted functionalities from simple assumptions such as pairings or learn-
ing with errors [1,2,4,5,9,21,23,29,32]. In this work, we continue development
of the second branch by making advances to the recently proposed construction
of MIFE for quadratic functions by Agrawal, Goyal, and Tomida [9].

Modelling Security. Given the tension between functionality and security,
where functionality seeks to reveal partial information about the input, while
security seeks to protect privacy of the input, the question of modelling security
in functional encryption has turned out to be subtle, and has been examined in
multiple works [7,8,18,30]. For the setting of unbounded collusion, namely where
the adversary can obtain any polynomial number of function keys, in the security
game, the indistinguishability based definition of security has emerged as the gold
standard (due to impossibilities that plague the alternative simulation-based
security [7,8,18]). In the single-input setting, both symmetric and public key FE
have been studied and are relevant for different applications. In the multi-input
setting, it was observed by Goldwasser et al. [26] that the symmetric key setting,
where the encryptor requires a secret key to compute a ciphertext, is much
more relevant for applications. This is to prevent the primitive from becoming
meaningless due to excessive leakage occurring by virtue of functionality. In more
detail, let us consider a two input scheme where a given first slot ciphertext hides
a challenge bit b. Now, in the public key setting, an adversary can compute an
unbounded encryptions for slot 2 herself and match these with the challenge
ciphertext of slot 1 to learn a potentially unbounded amount of information. This
unrestricted information leakage can be prevented by requiring the encryption
algorithm to require a secret key.

However, in the symmetric key multi-input setting, an additional subtlety
emerges related to the uniqueness of each user’s encryption key. For instance,
if we consider the application of encrypting genomic data discussed above, it
quickly becomes apparent that having all users share the same encryption key is
problematic – if the genomic data is encrypted and stored in a central repository,
then any malicious insider, who has contributed data and is hence in possession
of the master encryption key, can download and decrypt data belonging to any
other user! As data is supposed to span hundreds of users, the master encryption
key will become widely distributed and the privacy of honest user data can very
quickly and easily get compromised. Hence, it is crucial for security that encryp-
tion keys be unique to users, and the adversary gaining control of a particular
user’s key does not compromise the security of other users’ data.

Multi-Input FE for Quadratic Functions. Recently, Agrawal, Goyal, and
Tomida (AGT) [9] provided the first construction of multi-input functional
encryption for quadratic functions. In more detail, they construct an n-input
MIFE scheme for the function class Fm,n, which is defined as follows. Each func-
tion f ∈ Fm,n is represented by a vector c ∈ Z

(mn)2 . For inputs x1, . . . ,xn ∈ Z
m,

f is defined as f(x1, . . . ,xn) = 〈c,x ⊗ x〉 where x = (x1|| · · · ||xn) and ⊗ denotes
the Kronecker product. In their quadratic MIFE scheme for Fm,n, a user can
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encrypt xi ∈ Z
m to CTi for slot i ∈ [n], a key generator can compute a secret

key SK for c ∈ Z
(mn)2 , and decryption of CT1, . . . ,CTn with SK reveals only

〈c,x ⊗ x〉 and nothing else.
However, while this result makes exciting progress in the domain of direct

constructions for MIFE by providing the first candidate supporting quadratic
functions, it suffers from the severe drawback that all the encryptors must share
the same master key for encryption. As described above, this limits the applica-
bility of the construction for many meaningful practical applications, e.g. when
the system is susceptible to insider attacks. Moreover, having a single master key
for all users creates a single point of failure which makes the system vulnerable
to not only attack but also inadvertent leakage/misuse. Decentralizing trust is an
overarching goal in cryptography, and this motivates to design a scheme where
users have unique encryption keys and the adversarial model is strong enough
to capture corruption of some subset of these.

Multi-Client Functional Encryption. A generalization of multi-input func-
tional encryption is the notion of multi-client functional encryption (MCFE)
where the ciphertext is additionally associated with a label. In more detail,
encryptor i now encrypts not only the input xi but also a public label �i to
obtain CT(i,xi, �i). A functional key SKf for any n-ary function f can be used
to decrypt {CT(i,xi, �i)}i∈[n] if and only if all the labels match, i.e. �i = � for
all i ∈ [n]. Note that setting all labels to a single value (say “TRUE”) recov-
ers the notion of MIFE, which allows unrestricted combinations of ciphertexts
across slots. The more expressive MCFE provides additional control over allow-
able combinations of ciphertexts, which is very useful for several applications –
for instance, in the example of computing on encrypted genomic data discussed
above, being able to filter records based on some label such as ethnicity = African
may help to substantially reduce the number of inputs that participate in the
study, making the process more efficient.

We emphasize that regardless of the security model (all-or-nothing or fine-
grained), the motivation of labelling functionality is to better control the decryp-
tion pattern to reduce the information that a decrypter can learn. In the plain
n input MIFE setting, where Q ciphertexts per slot are available, the decrypter
can potentially compute Qn function values, which reveal a large amount of
information about the underlying plaintexts. However, using Q distinct labels to
label every ciphertext in each slot, we can reduce the number of function values
revealed to as little as Q. Thus, the labelling functionality is quite useful for
controlling the amount of information that a decrypter learns.

It is worth noting that for an MIFE construction supporting general circuits,
MCFE can easily be captured by adding an additional check in the function
key to verify that all the labels are equal, but for restricted function classes
like linear or quadratic functions, MCFE is more powerful than MIFE. In the
arena of direct constructions from simple assumptions, the notion of MCFE has
been studied for the case of linear functions [1,2,21,26,29] but not for quadratic
functions, to the best of our knowledge.
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Our Results. We advance the state-of-the-art in MIFE, and propose new
constructions with stronger security and broader functionality.

– Stronger Security: Typically, in the MIFE security game, an attacker is
allowed to either corrupt all or none1 of the users who can encrypt the data.
Here we study MIFE security in a “fine-grained” corruption model where an
attacker can corrupt even non-trivial subset of the users, instead of only the
trivial subsets.

We formalize such a fine-grained corruption model by providing each user
a unique encryption key, and letting the attacker corrupt any subset of the
encryption keys. We require that, even after corruption of any non-trivial sub-
set of encryption keys, the scheme still satisfies the MIFE-style security for all
ciphertexts generated using honest encryption keys. We give a construction
for a MIFE system whose security can be proven in this fine-grained cor-
ruption model, instead of the standard all-or-nothing corruption model. Our
construction departs significantly from the existing AGT quadratic MIFE
scheme [9] as we need to tackle a more general class of attackers.

We observe that while several inner product MIFE schemes already have
stronger security in the context of MCFE [1,10,22], achieving it in quadratic
MIFE is much more difficult. Intuitively, a decrypter in a quadratic MIFE
system is allowed to learn a function value on cross terms derived from dif-
ferent slots, and achieving this without heavy machinery such as obfuscation
seems to require the encryption keys to be correlated with each other (this is
also the case for the AGT scheme). Due to the correlation, the corruption of
even a single encryption key affects the security of ciphertexts for all the other
slots. This is in contrast to inner product MIFE, which is basically obtained
by running independent single-input inner product FE instances in parallel.

– Broader Functionality: In MCFE, each encryptor can specify a special label,
to tag each ciphertext with appropriate metadata, such that ciphertexts with
only exactly matching metadata/labels can be decrypted together. Here we
upgrade our MIFE scheme to additionally support ciphertext labelling. While
the functionality of our upgraded MIFE scheme matches that of MCFE for
quadratic functions, our security guarantee falls short of the general corrup-
tion model studied for MCFE. In our model, all encryptors share a secret
key, therefore this yields a secret-key version of quadratic MCFE, which we
denote by SK-MCFE. We leave the problem of proving security in the general
corruption model as an important open problem.

1.1 Technical Overview

The starting point for both of our MIFE and SK-MCFE schemes for quadratic
functions is the recent AGT scheme [9]. The AGT construction necessitates that

1 An MIFE scheme where corruption of all encrypting users is allowed is more com-
monly regarded as public-key MIFE, while disallowing corruption of any encrypting
user is regarded as secret-key MIFE.
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all encryptors share the same master secret key, thus throughout the sequel we
will refer to it as the “SK-MIFE” scheme.

A Simplified Overview of the AGT SK-MIFE Scheme. The AGT scheme
uses three building blocks – (i) SK-FE for inner product (IPFE), (ii) SK-FE
for predicate inner product (pIPFE), and (iii) SK-MIFE for mixed-group inner
product. The mixed-group property of (iii) is necessary for a technical reason
in the security proof, but for now we can consider it as SK-MIFE for inner
product (IP-MIFE). And, for security, all of the underlying schemes are required
to satisfy the corresponding function-hiding security property. Concretely, the
required MIFE schemes are summarized in Table 1.2

Table 1. Description of input and function classes for IPFE, pIPFE, IP-MIFE.

Scheme type No. of
inputs

Input class(es) Function class Description of functions

IPFE 1 X = Z
m
p F = Z

m
p fy(x) = 〈x,y〉

pIPFE 1 X = Z
m1
p × Z

m2
p F = Z

m1
p × Z

m2
p fy1,y2(x1,x2) =

{
〈x2,y2〉 if 〈x1,y1〉 = 0,

⊥ otherwise.

IP-MIFE n X1 = · · · Xn = Z
m
p F = Z

mn
p fy(x1, . . . ,xn) = 〈(x1|| . . . ||xn),y〉

Notation. We denote IPFE ciphertexts of v by iCT[v], pIPFE ciphertexts of
(v1,v2) by pCT[(v1,v2)] and IP-MIFE ciphertexts of v for slot i by miCTi[v]
under some master secret keys iMSK, pMSK, miMSK, respectively. Similarly
we denote IPFE secret keys of v by iSK[v], pIPFE secret keys of (v1,v2) by
pSK[(v1,v2)] and IP-MIFE secret keys for v by miSK[v] under the same master
secret keys iMSK, pMSK, miMSK, respectively.

AGT Scheme Description. Let us start by recalling the structure of ciphertexts
and secret keys in the AGT SK-MIFE scheme. At a high level, an AGT ciphertext
CTi of x ∈ Z

m and SK for c ∈ Z
(mn)2

p are of the following form:

CTi =
({

pCT[(h,bj)], pSK[(h̃, b̃j)]
}

j∈[m]
, iCT[d], iSK[d̃], miCTi[f ]

)
(1)

SK =
(
{σi,k}i,k∈[n] ,miSK[̃f ]

)
(2)

for some Zp vectors bj , b̃j ,d, d̃, f , f̃ ,h, h̃ and Zp elements σi,k.
Now a message vector x is encoded in the vectors bj , b̃j , and the remaining

vectors in the ciphertext are only added to either tie together separate com-
ponents of different AGT ciphertexts, or randomize a portion of a single AGT
ciphertext. We refer the reader to [9] for a more detailed overview, but for our
purposes, it is enough to understand how the decryption algorithm works.
2 Formally, the inner product functionalities defined need to involve group elements as

it is necessary for the proof. However, for simplicity of the overview, we use directly
define them over Zp.
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Consider a sequence of n AGT ciphertexts CT1, . . . ,CTn and a corresponding
secret key SK. The decryptor first runs the decryption algorithm for the pIPFE
scheme for all possible input combinations. That is, for all i, k ∈ [n] and j, � ∈ [m],
it computes

zi,j,k,� = pDec(pCT[(hi,bi,j)], pSK[(h̃k, b̃k,�)]). (3)

As it turns out, the underlying encoding procedure used in AGT ensures that
each such term is of the form zi,j,k,� = xi[j]xk[�] + ui,j,k,�, where ui,j,k,� is a
pseudorandom masking term such that

∑
c[(i, j, k, �)]ui,j,k,� = 〈c,u〉 can be

computed by combining the remaining portions of the ciphertexts and secret
key. That is, the decryptor first computes

∑
c[(i, j, k, �)]zi,j,k,� =

∑
c[(i, j, k, �)]xi[j]xk[�] +

∑
c[(i, j, k, �)]ui,j,k,�

where
∑

c[(i, j, k, �)]xi[j]xk[�] is the desired output, and then it computes∑
c[(i, j, k, �)]ui,j,k,� = 〈c,u〉 by combining the (iCT[d], iSK[d̃],miCTi[f ]) por-

tion of each ciphertext amongst themselves and also with the secret key
({σi,k}i,k∈[n] ,miSK[̃f ]).

Achieving Strong Fine-Grained Security. Recall that in the stronger fine-
grained corruption model, each encryptor has a unique encryption key, and the
adversary is allowed to corrupt any subset of encryption keys in the security
game. Throughout the sequel, we refer to such a scheme as plain MIFE in con-
trast to SK-MIFE.

Before describing our main ideas, we highlight the reason as to why AGT is
not already secure in this stronger corruption model. Observe that each compo-
nent of the AGT ciphertext CTi is generated under the same master secret key
of the corresponding scheme over all slots. In other words, it is essential that
all encryption keys include the same IPFE, pIPFE, and IP-MIFE master secret
keys. As it turns out, this is one of the main barriers to proving the SK-MIFE
construction of AGT to be strongly secure. This is because the scheme ends up
being completely insecure if encryption keys for any slot are revealed! Basically,
revealing only the underlying pIPFE master secret key allows one to completely
decrypt any ciphertexts of the AGT scheme.

While this seems like a major technical barrier at first, we observe that there
is a very elegant way to get around this problem by relying on the underlying
homomorphic properties satisfied by the SK-MIFE scheme. Although, the AGT
SK-MIFE construction can not be used as is since the usage of the pIPFE scheme
prevents any useful type of ciphertext homomorphism, we are able to simplify
the underlying SK-MIFE construction that not only avoids the usage of pIPFE
completely, but also leads to an interesting homomorphism property that we
show is very useful in upgrading any weakly secure SK-MIFE into a strongly
secure MIFE scheme.
The Special Property. Let us start by describing the special homomorphism prop-
erty P that we crucially rely on. It states that there exists an explicit and efficient
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algorithm Ẽnc, and a sequence of public elementary messages ei,1, . . . , ei,d ∈ Xi

(∀i ∈ [n]) such that – for every slot i ∈ [n] and message xi ∈ Xi, the following
two distributions are statistically indistinguishable:

{(
PP, {CTi,j}j∈[d],CTi

)
: CTi ← Enc(MSK, i, xi)

}
,{(

PP, {CTi,j}j∈[d],CTi

)
: CTi ← Ẽnc({CTi,j}j , xi)

}

where (PP,MSK) ← Setup(1λ) and CTi,j ← Enc(MSK, i, ei,j) for j ∈ [d].
Property P to MIFE. Assuming there exists an SK-MIFE scheme satisfy-

ing property P, our main observation is that there exists a generic compiler to
upgrade it to a MIFE for the same function class in which an attacker can cor-
rupt any arbitrary set of encryption keys. That is, consider any SK-MIFE scheme
(Setup′,Enc′,KeyGen′,Dec′) for some function class F satisfying property P, our
compiler upgrades it to an MIFE scheme (Setup,Enc,KeyGen′,Dec′) for F as
follows:

Setup(1λ, 1n): It computes PP,MSK ← Setup′(1λ) and CTi,j ← Enc′(MSK, i, ei,j)
for all i ∈ [n], j ∈ [d], and sets EKi = {CTi,j}j for all i ∈ [n]. Then, it outputs
the parameters as PP, {EKi}i,MSK.

Enc(EKi, x): It computes CTi ← Ẽnc({CTi,j}j , x) and outputs CTi.

The correctness follows directly from the correctness of the underlying SK-MIFE
scheme and the statistical closeness of the output distributions between Enc

and Ẽnc. And, the proof of security also follows via a hybrid argument. The
main idea is to first switch how each challenge ciphertext is generated. That is,
instead of computing it as Ẽnc({CTi,j}j , xβ), the challenger computes it directly
as Enc(MSK, i, xβ) (where β ∈ {0, 1} and x0, x1 are the challenge messages).
Note that this readily follows from the statistical closeness, and thus, by relying
on the regular security of the underlying SK-MIFE scheme, we can prove the
stronger security for our MIFE scheme. This is because the reduction algorithm
can simulate a corrupted encryption key EKi = {CTi,j}j∈[d] by querying its own
oracle on the elementary messages ei,1, . . . , ei,d. For more details, we refer the
reader to the main body.

Building SK-MIFE with Property P. In order to obtain our final result, we need to
instantiate the above generic compiler with an SK-MIFE scheme for quadratic
functions with property P. As mentioned earlier, our core idea in this part is
to rely on the homomorphic structure of the AGT SK-MIFE scheme. Recall
that a ciphertext in the AGT scheme consists of bilinear source group elements.
Thus, we can define a group operation over the AGT ciphertexts by element-wise
multiplication of group elements (and we use addition for the group operation
in what follows). Let CTi[x] be a slot-i encryption of x in the AGT scheme. Our
observation is that if for any a1, a2 ∈ Zp, we have

a1CTi[x1] + a2CTi[x2] = CTi[a1x1 + a2x2], (4)
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then we can achieve P by simply setting the elementary messages to be e1, . . . , en,
where ej is the one-hot vector with the j-th element being one, and defining Ẽnc
using the appropriate group operations. Unfortunately, this is not the case!

Insufficiency of AGT. To better understand the reason for failure, we need to
open up the encryption abstractions used in AGT to their underlying bilin-
ear form. Informally, an AGT ciphertext CTi for x ∈ Z

m
p looks like CTi =

([vMi]1, [wNi]2). Here [·]1, [·]2 denote element-wise group exponentiation in
bilinear groups G1, G2, and Mi,Ni are common matrices shared among all
ciphertexts for slot i. Also, each element of v,w depends on x and the ran-
dom tape used in encryption. Concretely, each element of v,w is one of the
following four types — (i) 1; (ii) x[j] for some j ∈ [m]; (iii) a fresh random Zp

element; or (iv) an element of the tuple (b, c, b�, c�) where b, c, � are fresh random
Zp elements.

From the viewpoint of well-formedness of a homomorphically operated
ciphertext, it is not hard to see that the elements (ii) and (iii) will stay con-
sistent with the homomorphism Eq. (4), while the elements (i) and (iv) will
no longer be well-formed after the group operations. This is because, after the
homomorphic addition as Eq. (4), the element (i) becomes a1 + a2, while the
element (iv) become an elements of the tuple (a1b1 + a2b2, a1c1 + a2c2, a1b1�1 +
a2b2�2, a1c1�1 + a2c2�2). While an element (i) can still be well-formed as long as
a1 + a2 = 1, an element (iv) will never be well-formed (unless �1 = �2, which
occurs with only negligible probability).

Stripping Away pIPFE from AGT. Diving a bit further into the structure and
semantics of the AGT SK-MIFE scheme, we find out that the elements (iv)
are derived from the pIPFE scheme. So, a natural thought is if we can remove
the pIPFE scheme from AGT, then we can eliminate the elements (iv) thereby
solving the above problem. However, the usage of the pIPFE scheme in the AGT
template was crucial as replacing it with a (non-predicate) IPFE scheme enabled
a mix-and-match attack wherein an attacker can illegally combine portions of two
different ciphertexts for the same slot. Concretely, for two ciphertexts CT1

i ,CT
2
i

in the same slot, pIPFE prevents decryptor from computing pDec(pCT1
i,j , pCT

2
i,�)

in the decryption process as in Eq. (3) (meaning that 〈h1, h̃2〉 �= 0 if h1 and h̃2

are vectors derived from two different ciphertexts for the same slot i).
Although this seems to be a major bottleneck at first, we make an important

observation that if each encryptor computes and encrypts all possible quadratic
terms between its own message vector at the time of encryption, then a decryptor
does not need to generate the quadratic terms derived from the same slot via the
pIPFE decryption. Therefore, the mix-and-match problem can be rather easily
solved by replacing pIPFE with a plain (non-predicate) IPFE scheme. And,
since this new encryption method only increases the length of the underlying
encrypted vector from m to m2, thus it is still efficient. We refer to Definition
2.6 and 2.7 for more details.

Final Rerandomization Trick. While it seems that we are done at this point,
unfortunately this is still not sufficient. And, the reason is the fact that even after
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removing elements (iv), we cannot achieve the property P by using e1, . . . , en as
the public elementary messages from two reasons. First,

∑
j x[j] is not necessarily

1, and thus elements (i) may not be 1 after the homomorphic addition. Second,
elements (iii) depend on x and the random tape used to generate the ciphertexts
of ei, and thus not independently random after the homomorphic addition. The
second reason can be visualized as the resulting ciphertext containing far less
entropy than a freshly sampled ciphertext.

However, we solve these issues by the following rerandomization trick. Our
idea is to additionally include a large sequence of 0 vectors to the list of ele-
mentary messages, and sample a fresh sequence of random elements which will
be used to homomorphically add each encryption of 0 to the underlying homo-
morphically computed ciphertext such that the resulting ciphertext has suf-
ficient entropy. That is, for a sufficiently large D, we define Ẽnc as follows:
Ẽnc

(
({CTi[ej ]}j∈[m], {CTi,j [0]}j∈[D]),x

)
computes CTi[x] as

CTi[x] = CTi,1[0] +
∑

j∈[m]

xi[j]
(
CTi[ej ] − CTi,1[0]

)
+

∑

j∈[ D−1
2 ]

γj(CTi,2j [0] − CTi,2j+1[0]),

where γ1, . . . , γ(D−1)/2 ← Zp.
This solves the second problem as now the elements (iii) are distributed

randomly if D is sufficiently large due to the fresh entropy introduced by
γ1, . . . , γ(D−1)/2. And, since we have

∑
j∈[m](xi[j] − xi[j]) +

∑
j∈[(D−1)/2](γj −

γj) = 0, thus element (i) is also equal to 1 in CTi[x]. Hence, the above rerandom-
ization trick combined with the pIPFE removal strategy gives us our SK-MIFE
scheme for quadratic functions with property P, which in turn gives us our
quadratic MIFE scheme secure in the stronger fine-grained corruption model.

Supporting the Ciphertext Labelling Functionality. Finally, we provide
a rather simple yet incredibly useful mechanism to annotate labels with SK-
MIFE ciphertexts. This adds the feature of multi-client style encryption to the
quadratic SK-MIFE scheme. To this end, we look back at the existing techniques
to achieve desired labelling for IP-MIFE schemes (that is, the ideas used to
obtain IP-MCFE, or in other words, MCFE for inner product), but find that
all techniques are rather specific to inner product. The prior works basically use
the following blueprint [1,10,21,22]. The MCFE schemes use a (single-input)
IPFE scheme as a building block, and a ciphertext of the MCFE for the i-th
slot message xi with a label lab is simply a ciphertext of the IPFE scheme for
some vector x̃i related to xi and lab. A secret key of the MCFE scheme for
c = (c1|| . . . ||cn) contains IPFE secret keys for some vector c̃i related to c for
i ∈ [n], and decryption for slot-i reveals

〈x̃i, c̃i〉 = 〈xi, ci〉 + ui

where ui is a masking term such that
∑

i∈[n] ui is equal to 0 (or a computable
value by the decryptor) only when x̃i is associated with the same label for all i.
Hence, the decryptor can learn only

∑
i〈xi, ci〉 as desired. However, the structure

of the only known MIFE scheme for quadratic functions by AGT, as observed,
is quite different from this blueprint, and thus we need a new approach.
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Our starting point is again the AGT MIFE scheme where recall the ciphertext
has the form as described in Eq. (1). A natural first thought is to try to replace
all the three underlying IPFE, pIPFE, and IP-MIFE schemes with their labelled
counterparts. After a quick glance, it appears that this would be a viable strategy
since if we could annotate each component in the AGT ciphertext with a label,
then the entire AGT ciphertext will be labelled as well.

As we elaborated during the description of our MIFE construction, the appli-
cation of pIPFE in the AGT template can be replaced with any IPFE scheme
(ignoring the quadratic increase in the overall ciphertext size). Concretely, we
showed that the ciphertext CT of the modified AGT scheme can be written as

CTi =
({

iCT(1)[bj ], iSK(1)[b̃j ]
}

j∈[m]
, iCT(2)[d], iSK(2)[d̃], miCTi[f ]

)
,

where (iCT(1), iSK(1)) and (iCT(2), iSK(2)) are generated by two separate master
secret keys iMSK(1) and iMSK(2), respectively. Thus, it seems like if we can
annotate both, the IPFE and the IP-MIFE, components of the modified AGT
scheme with the same label, then the resulting quadratic MIFE scheme will also
support ciphertext labelling functionality.

Now to annotate the IP-MIFE component of the ciphertext, we need a
labelled version of the SK-MIFE scheme for mixed-group inner products with
function-hiding security as a counterpart. Although such a scheme for inner
product is not already known, we were able to construct a new scheme with
the desired properties by combining ideas from the SK-MIFE scheme for mixed-
group inner product in [9] and the MCFE scheme for inner product in [10]. We
refer the reader to Sect. 3 for the exact details.

Finally, to get the desired result, we simply need a mechanism to annotate the
IPFE component of the AGT ciphertexts with labels such that ciphertexts with
different labels can no longer be combined. Our idea is to simply keep a PRF key
K as part of the overall system master key, and use the PRF key K to sample a
label-dependent IPFE key at the time of encryption. That is, the setup no longer
samples the IPFE keys used during the encryption, but instead the encryptor
first samples the IPFE keys using PRF(K, lab) as the randomness where lab is the
specified label, and then uses those keys to compute the appropriate ciphertext
components. Clearly, ciphertexts encrypted w.r.t. different labels can no longer
be combined since the underlying ciphertext components are now incompatible
(as they are sampled using independent IPFE keys). And, basically by iterating
the hybrid sequence of the SK-MIFE scheme for quadratic functions in [9] per
queried label, we can also prove security in the secret-key MCFE setting.

Open Problems. We conclude the introduction by discussing some open prob-
lems. To the best of our knowledge, this is the first work proposing a technique to
convert SK-MIFE to MIFE with stronger security. Since our technique is appli-
cable to all SK-MIFE schemes with property P, exploring other classes of MIFE
to which our technique is applicable is an interesting open problem. We observe
that this conversion does seem applicable to group-based SK-MIFE schemes for
inner product in [4,5] since they enjoy a nice homomorphic property. However,
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MIFE schemes for inner product with the stronger security are already known
so this does not yield a new result. Nevertheless it does give a new pathway
to obtaining these results since known MCFE schemes for inner product are
constructed without going through SK-MIFE.

The second open question is the construction of a (public-key) MCFE scheme
for quadratic functions. Interestingly, while the above ideas are sufficient for SK-
MCFE for quadratic functions, we were unable to prove security in the public-key
setting. First, in the above abstraction, the usage of PRFs to annotate the IPFE
portion of the modified AGT ciphertext requires the encryption key for each slot
to contain the secret PRF key K. Thus, corruption of even one encryption key
completely breaks down the scheme. An approach is to sample a separate PRF
key for each pair of encryption slots, however, even that does not seem to suffice
as corrupting even a single secret key for a particular encryption slot seems
to provide an attacker a mechanism to maul the labels from honest ciphertexts,
thereby breaking security. Other natural approaches run into similar roadblocks.
We leave the question full fledged MCFE as an exciting open problem.

We remark that the approach of providing generic compilers to “upgrade”
security notions of primitives can be very useful in enabling new constructions
since it simplifies the minimum building block that must be instantiated. For
the case of restricted functionalities like linear [1] or quadratic functions (this),
such compilers have required the underlying scheme to satisfy “nice” algebraic
properties. Can this requirement be removed? Given current techniques, it seems
difficult to remove such requirements without relying on strong tools like obfusca-
tion. However, exploring this question more fully is a promising line of research.

Finally, it is evidently a fascinating question whether we can “lift” the degree
of the underlying function class beyond 2 without relying on strong tools like
compact functional encryption or obfuscation. Currently, we have results from
single assumptions in the arena of degree ≤ 2 [1,2,4,5,9,21,23,29,32] and results
from combinations of assumptions for classes like NC1 and beyond [27,28] even in
the single input setting. While compact functional encryption can be generalized
to the multi-input setting [13,17], can we have constructions of MIFE and MCFE
for bigger classes of functions without relying on obfustopia primitives?

2 Preliminaries

Notation. We begin by defining the notation that we will use throughout the
paper. We use bold letters to denote vectors and the notation [a, b] to denote the
set of integers {k ∈ N | a ≤ k ≤ b}. We use [n] to denote the set [1, n]. For vector
v, v[i] denotes the i-th element of v. For (in, . . . , i1) ∈ [Nn] × · · · × [N1] ⊂ N

n,
we sometimes identify (in, . . . , i1) as

∑
j∈[2,n]

(
(ij − 1)

∏
�∈[j−1] N�

)
+ i1, which

is an element in [N1N2 · · · Nn]. This identification is used to introduce an order
in the elements in [N1] × · · · × [Nn]. For a matrix A = (aj,�)j,� over Zp, [A]i
denotes a matrix over Gi whose (j, �)-th entry is g

aj,�

i , and we use this notation
for vectors and scalars similarly. Throughout the paper, we use λ to denote the
security parameter.
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We will use a pseudorandom function (PRF) and standard cryptographic
bilinear groups where the matrix decisional Diffie-Hellman (MDDH) assumption
holds.

2.1 Multi-Input Functional Encryption

Syntax. Let n be the number of encryption slots, and F = {Fn}n∈N be a function
family such that, for all f ∈ Fn, f : X1×· · ·×Xn → Y. Here Xi and Y be the input
and output spaces (respectively). A multi-input functional encryption (MIFE)3

scheme for function family F consists of following algorithms.

Setup(1λ, 1n) → (PP, {EKi}i,MSK). It takes a security parameter 1λ, number
of slots 1n, and outputs public parameters PP, n encryption keys {EKi}i∈[n],
a master secret key MSK. (The remaining algorithms implicitly take PP as
input.)

Enc(EKi, x) → CTi. It takes the i-th encryption key EKi and an input x ∈ Xi,
and outputs a ciphertext CTi.

KeyGen(MSK, f) → SK. It takes the master key MSK and a function f ∈ F as
inputs, and outputs a decryption key SK.

Dec(CT1, . . . ,CTn,SK) → y. It takes n ciphertexts CT1, . . . ,CTn and decryption
key SK, and outputs a decryption value y ∈ Y or a special abort symbol ⊥.

Correctness. An MIFE scheme for function family F is correct if for all λ, n ∈
N, (x1, . . . , xn) ∈ X1 × · · · × Xn, f ∈ Fn, we have

Pr

⎡
⎢⎢⎣y = f(x1, . . . , xn) :

(PP, {EKi}i,MSK) ← Setup(1λ, 1n)
{CTi ← Enc(i,EKi, xi)}i

SK ← KeyGen(MSK, f)
y = Dec(CT1, . . . ,CTn,SK)

⎤
⎥⎥⎦ = 1.

Definition 2.1. For security, we define two indistinguishability-based security
definitions: message-hiding security and function-hiding security. An MIFE
scheme is sel-XX-YY-IND-secure (XX ∈ {pos, any},YY ∈ {mh, fh})4 if for any
stateful admissible PPT adversary A, there exists a negligible function negl(n)(·)
such that for all λ, n ∈ N, the following probability is negligibly close to 1/2 in
λ:

3 When n = 1, we call MIFE just functional encryption (FE).
4 “sel” stands for “selective” meaning that the adversary has to select the challenge

elements at the beginning of the security game. The opposite notion is “adaptive”.
“pos” stands for “positive”. In MCFE, a user can decrypt ciphertexts only when
it has ciphertexts for all slots with the same label, and a portion of them is use-
less for decryption. “pos” prohibits the adversary from querying the oracle on such
useless challenge elements. “mh” and “fh” stand for “message-hiding” and “function-
hiding”, respectively.



724 S. Agrawal et al.

Pr

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A({EKi}i∈CS , {CTμ}μ, {SKν}ν) = β :

β ← {0, 1}
PP, {EKi}i∈[n],MSK ← Setup(1λ, 1n)

(CS, MS, FS) ← A(1λ,PP) s.t.
CS ⊆ [n]
MS = {iμ, xμ,0, xμ,1}μ∈[qc]

FS = {fν,0, fν,1}ν∈[qk]

{CTμ ← Enc(iμ,EKiμ , xμ,β)}μ

{SKν ← KeyGen(MSK, fν,β)}ν

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where the adversary A is said to be admissible if and only if:

1. f0(x0
1, . . . , x

0
n) = f1(x1

1, . . . , x
1
n) for all sequences (x0

1, . . . , x
0
n, x1

1, . . . , x
1
n,

f0, f1) such that:
– For all i ∈ [n], [(i, x0

i , x
1
i ) ∈ MS] or [i ∈ CS and x0

i = x1
i ],

– (f0, f1) ∈ FS.
2. When XX = pos, qc[i] > 0 for all i ∈ [n], where qc[i] denotes the number of

elements of the form (i, ∗, ∗) in MS.
3. When YY = mh, fν,0 = fν,1 for all ν ∈ [qk].

MIFE security in secret-key setting. We say an MIFE scheme is secret-key MIFE
(SK-MIFE) scheme if all the n encryption keys EKi are basically the master
secret key MSK. The security of an SK-MIFE scheme is defined the same way
as an MIFE scheme except that the adversary has to set CS = ∅.

2.2 Multi-Client Functional Encryption

A multi-client functional encryption (MCFE) scheme is an extension of MIFE
where each ciphertext is now annotated with a unique label such that cipher-
texts encrypted for different slots can now only be combined together during
decryption as long as the associated labels match for all individual ciphertext
pieces. We first define its syntax where we highlight in terms of changes, how
MCFE compares with MIFE.

Syntax. An MCFE system is associated with a label space L, in addition to
the number of encryption slots n and function class F as in MIFE. A multi-
client functional encryption scheme for function family F consists of following
algorithms.

Setup,KeyGen,Dec have the same syntax as in MIFE.
Enc(EKi, lab, x) → CT. The encryption algorithm takes the i-th encryption key

EKi, a label lab, and an input x ∈ Xi, and outputs a ciphertext CTi.

Correctness. An MCFE scheme for function family F is correct if for all λ, n ∈
N, (x1, . . . , xn) ∈ X1 × · · · × Xn, f ∈ F , and label lab ∈ L, we have

Pr

⎡
⎢⎢⎣y = f(x1, . . . , xn) :

(PP, {EKi}i,MSK) ← Setup(1λ, 1n)
{CTi ← Enc(i,EKi, lab, xi)}i

SK ← KeyGen(MSK, f)
y = Dec(CT1, . . . ,CTn,SK)

⎤
⎥⎥⎦ = 1.

That is, if all the ciphertexts are encrypted for the same label, then the decryp-
tion works as in MIFE.
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MCFE Security in Secret-key Setting. In this work we are mostly interested
in the secret-key setting. The intuition behind security for secret-key MCFE is
similar to that for secret-key MIFE, with the difference that the admissibility
constraint for ciphertexts is defined for each label individually. Below we define
it formally.

Definition 2.2. An SK-MCFE scheme is sel-XX-YY-IND-secure (XX ∈ {pos,
any}],YY ∈ {mh, fh}) if for any stateful admissible PPT adversary A, there
exists a negligible function negl(n)(·) such that for all λ, n ∈ N, the following
probability is negligibly close to 1/2 in λ:

Pr

⎡
⎢⎢⎢⎢⎢⎢⎣

A({CTμ}μ, {SKν}ν) = β :

(PP,MSK) ← Setup(1λ, 1n), β ← {0, 1}
(MS,FS) ← A(1λ,PP) s.t.

MS = {iμ, labμ, xμ,0, xμ,1}μ∈[qc]

FS = {fν,0, fν,1}ν∈[qk]

{CTμ ← Enc(MSK, iμ, labμ, xμ,β)}μ

{SKν ← KeyGen(MSK, fν,β)}ν

⎤
⎥⎥⎥⎥⎥⎥⎦

where the adversary A is said to be admissible if and only if:

1. f0(x0
1, . . . , x

0
n) = f1(x1

1, . . . , x
1
n) for all sequences (x0

1, . . . , x
0
n, x1

1, . . . , x
1
n,

f0, f1, lab) such that:
– For all i ∈ [n], (i, lab, x0

i , x
1
i ) ∈ MS,

– (f0, f1) ∈ FS.
2. When XX = pos, for any label lab queried by the adversary, qc[i, lab] > 0

for all i ∈ [n], where qc[i, lab] denotes the number of elements of the form
(i, lab, ∗, ∗) in MS.

3. When YY = mh, fν,0 = fν,1 for all ν ∈ [qk].

Remark 2.3. In this paper, we only consider pos-security since a sel-pos-YY-
secure MIFE/MCFE scheme can be generically transformed into a sel-any-YY-
secure MIFE/MCFE scheme [1,2,5,23].

2.3 Functionalities

In this section, we define basic function classes for MIFE/SK-MCFE that is used
in this paper.

Definition 2.4 (Inner Product over Bilinear Groups). Let G = (p,G1,
G2, GT , g1, g2, e) be bilinear groups. A function family F IP

m,n,G for inner products
over bilinear groups consists of functions f : (Gm

1 )n → GT . Each f ∈ F IP
m,n,G is

specified by [(y1, . . . ,yn)]2 where yi ∈ Z
m
p and defined as f([x1]1, . . . , [xn]1) =

[
∑

i∈[n]〈xi,yi〉]T . We call MIFE/SK-MCFE for F IP
m,n,G MIFE/SK-MCFE for

inner product. Especially, we sometimes call FE for F IP
m,1,G inner product func-

tional encryption (IPFE).

Note that constructions of IPFE and SK-MCFE for inner product with
function-hiding (sel-any-fh) security are already known [10,33].
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Definition 2.5 (Mixed-Group Inner Products). Let G = (p,G1, G2, GT ,
g1, g2, e) be bilinear groups. A function family FMG

m1,m2,n,G for mixed-group inner
products consists of functions f : (Gm1

1 × Gm2
2 )n → GT . Each f ∈ FMG

m1,m2,n,G is
specified by ([y1,1]2, [y1,2]1, . . . , [yn,1]2, [yn,2]1) where yi,1 ∈ Z

m1
p and yi,2 ∈ Z

m2
p

and defined as f(([x1,1]1, [x1,2]2), . . . , ([xn,1]1, [xn,2]2)) = [〈x,y〉]T where x =
(x1,1,x1,2, . . . ,xn,1,xn,2) and y = (y1,1,y1,2, . . . ,yn,1,yn,2). We call MIFE/SK-
MCFE for FMG

m1,m2,n,G MIFE/SK-MCFE for mixed-group inner product.

Definition 2.6 (Bounded-Norm Quadratic functions over Z). A func-
tion family FQF

m,n,X,C for bounded-norm multi-input quadratic functions consist
of functions f : (X m)n → Z where X = {i ∈ Z | |i| ≤ X}. Each f ∈ FQF

m,n,X,C

is specified by c ∈ Z
(mn)2 s.t. ||c||∞ ≤ C and c[(i, j, k, �)] = 0 if i ≥ k. Then, f

specified by c is defined as f(x1, . . . ,xn) =
∑

i,k∈[n],j,�∈[m] c[(i, j, k, �)]xi[j]xk[�].
We call MIFE/SK-MCFE for FQF

m,n,X,C MIFE/SK-MCFE for quadratic func-
tions.

Remark 2.7. The original definition of quadratic functions in [9] provides that
c is a vector s.t. c[(i, j, k, �)] = 0 if (i, j) > (k, �) instead of i ≥ k. Actually,
the functionality in Definition 2.6 implies the original functionality by defining
g(x1, . . . ,xn) = f(x′

1, . . . ,x
′
n) where x′

i = (xi ⊗ xi,xi, 1) and f ∈ FQF
m,n,X,C .

Formally, our contribution in this paper is the constructions of MIFE and
SK-MCFE for quadratic functions from pairings. Note that only an SK-MIFE
scheme for quadratic functions based on pairings [9] is know prior to our work.

3 SK-MCFE for Mixed-Group Inner Product

In this section, we provide our construction for function-hiding SK-MCFE for
mixed-group inner-product (Definition 2.5), which is used as a building block of
our MIFE and SK-MCFE schemes for quadratic functions. The construction is
similar to the function-hiding SK-MIFE for mixed-group inner-product in [9] by
Agrawal, Goyal, and Tomida (AGT). Recall that the AGT SK-MIFE for mixed-
group inner-product is obtained by combining a function-hiding SK-MIFE for
inner-product and a function-hiding SK-FE for inner product. Our SK-MCFE
for mixed-group inner-product is obtained by replacing a function-hiding SK-
MIFE for inner-product in the AGT scheme with a function-hiding SK-MCFE
for inner-product. Note that a function-hiding SK-MCFE for inner product can
be obtained from a function-hiding MCFE scheme for inner product in [10] since
SK-MCFE is the special case of MCFE. Additionally, while the MCFE scheme
in [10] uses a hash function modeled as a random oracle in encryption, we can
replace it with a PRF in the secret-key setting. The function-hiding SK-MCFE
scheme for inner product without a random oracle is presented in Fig. 2.

Formally, we construct a function-hiding SK-MCFE scheme for FMG
m1,m2,n,G

with label space L from a function-hiding SK-MCFE scheme for F IP
m,n,G with the

same label space L and a function-hiding FE scheme for F IP
m,1,G in a generic way.
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Let icFE = (icSetup, icEnc, icKeyGen, icDec) be a function-hiding SK-MCFE for
F IP

m,n,G, and iFE = (iSetup, iEnc, iKeyGen, iDec) be a function-hiding IPFE scheme
(SK-FE for F IP

m,1,G). Then, our function-hiding SK-MCFE for mixed-group inner
product FMG

m1,m2,n,G is constructed as shown in Fig. 1.

Fig. 1. Our mixed-group IP-MIFE scheme.

Due to the limit of the space, we present the correctness and the security
proof in the full version.

4 SK-MCFE for Quadratic Functions

As explained in the technical overview, i) our MIFE scheme for quadratic func-
tions can be generically obtained from the modified AGT SK-MIFE scheme for
quadratic functions, which does not use a SK-FE scheme for predicate inner
product; ii) the modified SK-MIFE scheme can be seen as the special case of our
SK-MCFE scheme, where the label space consists of one element. Considering
the above two facts, we first present our SK-MCFE scheme for quadratic func-
tions to save the effort of presenting the security proof of the modified SK-MIFE
scheme in the construction of our MIFE scheme.

4.1 Construction

Let mgFE = (mgSetup,mgEnc,mgKeyGen,mgDec) be an SK-MCFE scheme
for mixed-group inner product (Sect. 3) with label space L, and iFE =
(iSetup, iEnc, iKeyGen, iDec) be a function-hiding IPFE scheme. Also, let PRF =
{PRFλ}λ∈N

be a PRF family where PRFλ : {0, 1}λ ×L → {0, 1}λ and G be bilin-
ear groups. Below we provide an SK-MCFE scheme for function class FQF

m,n,X,C
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with the same label space L. Similarly to [9], we can construct our SK-MCFE
scheme from MDDHk, while it makes the construction and security proof far
more complicated as we can see in [9]. Thus, we present the construction based
on MDDH1 for better readability in this paper.

Setup(1λ, 1n) samples a random PRF key K ← {0, 1}λ and the master keys
for the underlying IPFE and SK-MCFE scheme as (iPP(2), iMSK(2)) ←
iSetup(1λ), (mgPP,mgMSK) ← mgSetup(1λ, 1n) where the vector length of
iFE is set as 2, and the vector length of mgFE is set as m2n + 2 and 1. Note
that iPP(2) = mgPP = G. It also samples a sequence of randomization terms
as:

∀ i, k ∈ [n], j, � ∈ [m], w(i,j,k,�) ← Zp

∀ i ∈ [n], j ∈ [m], ui,j , ũi,j , vi,j , ṽi,j ← Zp

It outputs the public parameters and master key as

PP = G, MSK =
(
K, iMSK(2),mgMSK, {w(i,j,k,�)}i,j,k,�, {ui,j , ũi,j , vi,j , ṽi,j}i,j

)
.

Enc(MSK, i, lab,x) parses MSK as above, and using the PRF key K, it samples
a IPFE master key of vector length mn + 3m + 4 as (iPP(1), iMSK(1)) ←
iSetup(1λ;PRF(K, lab)). Here we assume (w.l.o.g.) that the MIFE setup
algorithm takes λ bits as random coins. It then samples random elements
s, s̃, r, t ← Zp. And, it sets vectors bj , b̃j for j ∈ [m] as follows:

bj = (x[j], 0, se(i,j), rui,j , vi,j ,03m), b̃j = (x[j], 0, s̃w(∗,∗,i,j), ũi,j , tṽi,j ,03m).

where e(i,j) is the mn-dimensional one-hot vector with the (i, j)-th element
being 1, and vector w(∗,∗,i,j) ∈ Z

mn
p is defined as follows:

∀ j ∈ [m], w(∗,∗,i,j) = (w(1,1,i,j), w(1,2,i,j), . . . , w(n,m,i,j))

The encryptor encodes the vectors bj , b̃j under MIFE as follows:

∀ j ∈ [m], iCTj ← iEnc(iMSK(1), [bj ]1), iSKj ← iKeyGen(iMSK(1), [b̃j ]2).

It also encodes the random elements s, s̃ as follows:

iCT ← iEnc(iMSK(2), [(s, 0)]1), iSK ← iKeyGen(iMSK(2), [(s̃, 0)]2).

Lastly, it sets f = (r, t,0m2n), h = 0, and encrypts elements f , h as

mgCT ← mgEnc(mgMSK, i, lab, ([f ]1, [h]2)).

And the resulting ciphertext is set as below:

CT = ({iCTj}j , {iSKj}j , iCT, iSK,mgCT) .



Multi-Input Quadratic Functional Encryption 729

KeyGen(MSK, c) parses MSK as above, and the key vector c lies in the space
Z

(mn)2 . Let the vector f̃i ∈ Z
(2+m2n)
p be the following vector: for all i ∈ [n],

f̃i[1] =
∑

j,�∈[m],k∈[n]

c[(i, j, k, �)]ui,j ũk,�, f̃i[2] =
∑

j,�∈[m],k∈[n]

c[(k, �, i, j)]vk,�ṽi,j

and f̃i is zeros at all other places. It also sets h̃i = 0 for all i ∈ [n]. The key
generator samples a SK-MCFE secret key corresponding to vectors {f̃i, h̃i}i as
mgSK ← mgKeyGen(mgMSK, {[̃fi]2, [h̃i]1}i∈[n]), and partial derandomization
terms:

∀ i, k ∈ [n], σi,k =
∑

j,�∈[m]

c[(i, j, k, �)]w(i,j,k,�)

And, it outputs the secret key as

SK = (c,mgSK, {σi,k}i,k) .

Dec(CT1, . . . ,CTn,SK) parses the ciphertexts and secret key as:

CTi = ({iCTi,j}i,j , {iSKi,j}i,j , iCTi, iSKi,mgCTi) , SK = (c,mgSK, {σi,k}i,k) .

It runs the MIFE decryption algorithm as:

[z1]T =
∏

i,k∈[n]
j,�∈[m]

iDec(iCTi,j , iSKk,�)c[(i,j,k,�)], [z2]T =
∏

i,k∈[n]

iDec(iCTi, iSKk)σi,k

It also runs the SK-MCFE decryption algorithm as:

[z3]T = mgDec(mgCT1, . . . ,mgCTn,mgSK)

Finally it outputs z where [z]T = [z1 − z2 − z3]T by searching for z within the
range of z ≤ |m2n2CX2|.

Correctness. Let si, s̃i, ri, ti for i ∈ [n] be random elements used to generate
CTi. Due to the correctness of iFE,mgFE, in decryption, we have

z1 =
∑

i,k∈[n],j,�∈[m]

c[(i, j, k, �)](xi[j]xk[�] + sis̃kw(i,j,k,�) + riui,j ũk,� + tkvi,j ṽk,�)

z2 =
∑

i,k∈[n],j,�∈[m]

c[(i, j, k, �)]sis̃kw(i,j,k,�)

z3 =
∑

i,k∈[n],j,�∈[m]

c[(i, j, k, �)](riui,j ũk,� + tkvi,j ṽk,�).

Therefore, we have z =
∑

i,k∈[n],j,�∈[m] c[(i, j, k, �)]xi[j]xk[�].
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4.2 Security

For security, we have the following theorem.

Theorem 4.1. If iFE and mgFE are sel-pos-fh-IND-secure, and the MDDH1

assumption holds in G, then the proposed SK-MCFE for quadratic functions is
sel-pos-mh-IND-secure.

Due to the limit of the space, we present the security proof in the full version.

5 MIFE for Quadratic Functions

In this section, we provide our construction for MIFE for quadratic functions.

5.1 Homomorphism in Underlying Schemes

For the construction of our MIFE for quadratic functions, we use the same
building blocks as SK-MCFE for quadratic functions Sect. 4, namely, a function-
hiding SK-MCFE scheme mgFE for mixed-group inner product and a function-
hiding IPFE scheme iFE. Additionally, we require them to have homomorphism
for the construction of MIFE for quadratic functions. Precisely iFE needs to
have homomorphism for both encryption and key generation while mgFE needs
to have homomorphism for only encryption.

Homomorphism of iFE. We use function-hiding IPFE in [33] for iFE with homo-
morphism. In their construction from MDDH1, the setup algorithm chooses a
bilinear group G and a random matrix B in Z

(m+3)×(m+3)
p , and sets PP =

G,MSK = (B,B∗) where B∗ = (B−1)�. Encryption of [x]1 ∈ Gm
1 chooses

r ← Zp and outputs iCT = [(x, r, 0, 0)B]1. Similarly, key generation of [y]2 ∈ Gm
2

chooses s ← Zp and outputs iSK = [(y, 0, s, 0)B∗]2. Thus, the random-tape space
of iEnc and iKeyGen can be seen as Zp and, for all x1,x2,y1,y2 ∈ Z

m
p , a1, a2, r1,

r2, s1, s2 ∈ Zp we have the following homomorphism of Zp-module with respect
to encryption and key generation:

a1iEnc(iMSK, [x1]1; r1) + a2iEnc(iMSK, [x2]1; r2)
= iEnc(iMSK, [a1x1 + a2x2]1; a1r1 + a2r2)

a1iKeyGen(iMSK, [y1]2; s1) + a2iKeyGen(iMSK, [y2]2; s2)
= iKeyGen(iMSK, [a1y1 + a2y2]2; a1s1 + a2s2)

We can confirm this as follows:

a1[(x1, r1, 0, 0)B]1 + a2[(x2, r2, 0, 0)B]1 = [(a1x1 + a2x2, a1r1 + a2r2, 0, 0)B]1

a1[(y1, 0, s1, 0)B∗]2 + a2[(y2, 0, s2, 0)B∗]2 = [(a1y1 + a2y2, 0, a1s1 + a2s2, 0)B∗]2.
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Homomorphism of mgFE. As shown in Sect. 3, our SK-MCFE scheme mgFE
for mixed-group inner product uses a function-hiding SK-MCFE scheme icFE
for inner product and function-hiding FE scheme iFE for inner product as a
building block. For a function-hiding SK-MCFE scheme for inner product, we
use a slightly modified function-hiding MCFE scheme for inner product proposed
in [10], which is described in Fig. 2. The modification lies in the way of generating
t in encryption, which is generated via a random oracle in the MCFE scheme in
[10], but PRF suffices in the secret-key setting. Since an icFE ciphertext consists
of a iFE ciphertext, a mgFE ciphertext of ([x1]1, [x2]2) ∈ Gm1

1 × Gm2
2 can be

generated as

r1, r2 ← Zp, z ← Z
k
p, t = PRF(K, lab)

iEnc(iMSK(1), ([(x1, 0m2 , z, 0, 0m1+m2+k+1, t, 0)]1); r1)

iKeyGen(iMSK(2), ([(x2,−z, 0, )]2); r2)

for some master secret keys iMSK(1), iMSK(2) and PRF key K. Thus, the random-
tape space of mgEnc can be set as Z

k+2
p , and by using the homomorphism of

iFE, we can obtain the following homomorphism of ciphertexts in mgFE. For all
N ∈ N, i ∈ [n], lab ∈ L, a1, . . . , aN ∈ Zp s.t.

∑
j∈[N ] aj = 1, x1,1, . . . ,xN,1 ∈

Z
m1
p , x1,2, . . . ,xN,2 ∈ Z

m2
p , r1, . . . , rN ∈ Z

k+2
p , we have

∑
j∈[N ]

ajmgEnc(mgMSK, i, lab, ([xj,1]1, [xj,2]2); rj)

= mgEnc(mgMSK, i, lab, ([
∑

j∈[N ]

ajxj,1]1, [
∑

j∈[N ]

ajxj,2]2);
∑

j∈[N ]

ajrj)

5.2 Construction

Let mgFE = (mgSetup,mgEnc,mgKeyGen,mgDec) be an SK-MCFE scheme
for mixed-group inner product (Sect. 3) with label space L, and iFE =
(iSetup, iEnc, iKeyGen, iDec) be a function-hiding IPFE scheme. Also, let PRF =
{PRFλ}λ∈N

be a PRF family where PRFλ : {0, 1}λ × L → {0, 1}λ. Let lab0 be
a fixed label in L and D = 4m + 2k + 17 where k is the parameter for the
bilateral MDDH assumption used for mgFE. Below we provide an MIFE scheme
for function class FQF

m,n,X,C . Note that MstEnc is a subroutine algorithm used in

Setup, which corresponds to Ẽnc of property P in the technical overview.
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Fig. 2. Function-Hiding SK-MCFE for inner product

Setup(1λ, 1n) samples a random PRF key K ← {0, 1}λ and the master keys
for the underlying IPFE and SK-MCFE scheme as (iPP(2), iMSK(2)) ←
iSetup(1λ), (mgPP,mgMSK) ← mgSetup(1λ, 1n) where the vector length of
iFE is set as 2, and the vector length of mgFE is set as m2n + 2 and 1. Note
that iPP(2) = mgPP = G. It also samples a sequence of randomization terms
as:

∀ i, k ∈ [n], j, � ∈ [m], w(i,j,k,�) ← Zp

∀ i ∈ [n], j ∈ [m], ui,j , ũi,j , vi,j , ṽi,j ← Zp

It sets the public parameters and master key as

PP = G, MSK =
(
K, iMSK(2),mgMSK, {w(i,j,k,�)}i,j,k,�, {ui,j , ũi,j , vi,j , ṽi,j}i,j

)
.

It runs MstEnc described below to generate master ciphertexts, which forms
encryption keys, as

∀ i ∈ [n], j ∈ [m], MCT1,i,j ← MstEnc(MSK, i, ej)
∀ i ∈ [n], j ∈ [D], MCT0,i,j ← MstEnc(MSK, i,0m).
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Finally it output encryption keys together with the public key and master
secret key as

∀ i ∈ [n], EKi = ({MCT1,i,j}j∈[n], {MCT0,i,j}j∈[D]).

MstEnc(MSK, i,x) parses MSK as above, and using the PRF key K, it samples
a IPFE master key of vector length mn + 3m + 4 as:

(iPP(1), iMSK(1)) ← iSetup(1λ;PRF(K, lab0))

It then samples random elements s, s̃, r, t ← Zp. And, it sets vectors bj , b̃j

for j ∈ [m] as follows:

bj = (x[j], 0, se(i,j), rui,j , vi,j ,03m), b̃j = (x[j], 0, s̃w(∗,∗,i,j), ũi,j , tṽi,j ,03m).

where where e(i,j) is the mn-dimensional one-hot vector with the (i, j)-th
element being 1, and vector w(∗,∗,i,j) ∈ Z

mn
p is defined as follows:

∀ j ∈ [m], w(∗,∗,i,j) = (w(1,1,i,j), w(1,2,i,j), . . . , w(n,m,i,j))

The encryptor encodes the vectors bj , b̃j under MIFE as follows:

∀ j ∈ [m], iCTj ← iEnc(iMSK(1), [bj ]1), iSKj ← iKeyGen(iMSK(1), [b̃j ]2).

It also encodes the random elements s, s̃ as follows:

iCT ← iEnc(iMSK(2), [(s, 0)]1), iSK ← iKeyGen(iMSK(2), [(s̃, 0)]2).

Lastly, it sets f = (r, t,0m2n), h = 0, and encrypts elements f , h with respect
to label lab0 as

mgCT ← mgEnc(mgMSK, i, lab0, ([f ]1, [h]2)).

The resulting ciphertext is set as MCT = ({iCTj}j , {iSKj}j , iCT, iSK,mgCT) .
Enc(EKi,x) parses EKi as above. It then samples random elements

γ1, . . . , γ(D−1)/2 ← Zp. And, it encrypts x to CT by homomorphic addition
of master ciphertexts as follows:

CT =
∑

j∈[m]

x[j]MCT1,i,j −
⎛
⎝∑

j∈[m]

x[j] − 1

⎞
⎠MCT0,i,1

+
∑

j∈[(D−1)/2]

γj(MCT0,i,2j − MCT0,i,2j+1)

where the above is the component-wise homomorphic addition with respect
to ciphertexts of iFE and mgFE. Then, it outputs CT.
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KeyGen(MSK, c) parses MSK as above, and the key vector c lies in the space
Z

(mn)2

p . Let the vector f̃i ∈ Z
(2+m2n)
p be the following vector: for all i ∈ [n]

f̃i[1] =
∑

j,�∈[m],k∈[n]

c[(i, j, k, �)]ui,j ũk,�, f̃i[2] =
∑

j,�∈[m],k∈[n]

c[(k, �, i, j)]vk,�ṽi,j

and f̃i is zeros at all other places. It also sets h̃i = 0 for all i ∈ [n]. The key
generator samples a SK-MCFE secret key corresponding to vectors {f̃i, h̃i}i as
mgSK ← mgKeyGen(mgMSK, {[̃fi]2, [h̃i]1}i∈[n]), and partial derandomization
terms:

∀ i, k ∈ [n], σi,k =
∑

j,�∈[m]

c[(i, j, k, �)]w(i,j,k,�)

And, it outputs the secret key as SK = (c,mgSK, {σi,k}i,k) .
Dec(CT1, . . . ,CTn,SK) parses the ciphertexts and secret key as:

CTi = ({iCTi,j}i,j , {iSKi,j}i,j , iCTi, iSKi,mgCTi) ,

SK = (c,mgSK, {σi,k}i,k) .

It runs the MIFE decryption algorithm as:

[z1]T =
∏

i,k∈[n],
j,�∈[m]

iDec(iCTi,j , iSKk,�)c[(i,j,k,�)], [z2]T =
∏

i,k∈[n]

iDec(iCTi, iSKk)σi,k

It also runs the SK-MCFE decryption algorithm as:

[z3]T = mgDec(mgCT1, . . . ,mgCTn,mgSK)

Finally it outputs z where [z]T = [z1 − z2 − z3]T by searching for z within the
range of z ≤ |m2n2CX2|.

Correctness. Let sb,i,j , s̃b,i,j , rb,i,j , tb,i,j for b ∈ {0, 1}, i ∈ [n], j ∈ [D] be random
elements used to generate MCTb,i,j in EKi. Thanks to the homomorphism of iFE
and mgFE, Enc(EKi,x) outputs CTi = ({iCTi,j}j , {iSKi,j}j , iCTi, iSKi,mgCTi),
which are encryption of

[b]1 = [(xi[j], 0, sie(i,j), riui,j , vi,j ,03m)]1

[b̃]2 = [(xi[j], 0, s̃iw(∗,∗,i,j), ũi,j , tiṽi,j ,03m)]2
[(si, 0)]1, [(s̃i, 0)]2, ([f ]1, [h]2) = ([(ri, ti,0m2n)]1, [0]2) for label lab0

(5)
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respectively, where

si =
∑

j∈[m]

xi[j]s1,i,j −
⎛
⎝∑

j∈[m]

xi[j] − 1

⎞
⎠ s0,i,1 +

∑
j∈[(D−1)/2]

γj(s0,i,2j − s0,i,2j+1)

s̃i =
∑

j∈[m]

xi[j]s̃1,i,j −
⎛
⎝∑

j∈[m]

xi[j] − 1

⎞
⎠ s̃0,i,1 +

∑
j∈[(D−1)/2]

γj(s̃0,i,2j − s̃0,i,2j+1)

ri =
∑

j∈[m]

xi[j]r1,i,j −
⎛
⎝∑

j∈[m]

xi[j] − 1

⎞
⎠ r0,i,1 +

∑
j∈[(D−1)/2]

γj(r0,i,2j − r0,i,2j+1)

ti =
∑

j∈[m]

xi[j]t1,i,j −
⎛
⎝∑

j∈[m]

xi[j] − 1

⎞
⎠ t0,i,1 +

∑
j∈[(D−1)/2]

γj(t0,i,2j − t0,i,2j+1).

(6)

Hence, similarly to the correctness of our SK-MCFE for quadratic functions
(Sect. 4), in decryption, we have

z1 =
∑

i,k∈[n],j,�∈[m]

c[(i, j, k, �)](xi[j]xk[�] + sis̃kw(i,j,k,�) + riui,j ũk,� + tkvi,j ṽk,�)

z2 =
∑

i,k∈[n],j,�∈[m]

c[(i, j, k, �)]sis̃kw(i,j,k,�)

z3 =
∑

i,k∈[n],j,�∈[m]

c[(i, j, k, �)](riui,j ũk,� + tkvi,j ṽk,�).

Since c[(i, j, k, �)] = 0 for i ≥ k, we have z =
∑

i,k∈[n],j,�∈[m] c[(i, j, k, �)]
xi[j]xk[�].

5.3 Security

For security, we have the following theorem. Let qcFE be SK-MCFE scheme for
quadratic functions in Sect. 4.

Theorem 5.1. If qcFE are sel-pos-mh-IND-secure, then the proposed MIFE for
quadratic functions is sel-pos-mh-IND-secure.

Proof. Wlog, in the pos setting, we can denote challenge messages by {i,
xμ,0

i ,xμ,1
i }i∈[n],μ∈[qc] for some qc instead of {iμ,xμ,0

iμ ,xμ,1
iμ }μ∈[q′

c]
. For notational

convenience, we use the former notation in this proof. We prove Theorem 5.1
via a series of hybrids Hβ

1 ,Hβ
f . We show that Hβ

0 ≈c Hβ
1 ≈c Hβ

f , where Hβ
0 is the

original security game for MIFE defined in Definition 2.1. Each hybrid is defined
as described in Fig. 3, where the reply for the ciphertext query is computed by
MstEnc instead of Enc. We denote the probability that A outputs β in hybrid
Hβ by P(A,Hβ) in what follows.

Theorem 5.1 directly follows from Lemma 5.2 and Lemma 5.3 since A does
not obtain the information on β in Hβ

f . �
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Fig. 3. Description of hybrids

Lemma 5.2. For all PPT adversaries A, we have |P(A,Hβ
0 ) − P(A,Hβ

1 )| ≤
2−Ω(λ).

Proof. The difference between Hβ
0 and Hβ

1 lies in the way of generating chal-
lenge ciphertexts. That is, the challenge ciphertexts are generated by Enc in
Hβ

0 while they are generated by MstEnc in Hβ
1 . Recall that the random ele-

ments used in MstEnc are s, s̃, r, t ∈ Zp and the random tapes used to generate({iCT�}�∈[m], {iSK�∈[m]}�, iCT, iSK,mgCT
)
. Since iEnc, iKeyGen can use a random

element in Zp, and mgEnc can use a random element in Z
k+2
p as a random tape,

we can use a random element in Z
2m+k+8
p as a random tape of MstEnc. Due

to the homomorphism of iFE and mgFE, for all N ∈ N, i ∈ [n], a1, . . . , aN ∈
Zp s.t.

∑
j∈[N ] aj = 1, x1, . . . ,xN ∈ Z

m
p , r1, . . . , rN ∈ Z

2m+k+8
p , we have the

following homomorphism of MstEnc:
∑

j∈[N ]

ajMstEnc(MSK, i,x; rj) = MstEnc(MSK, i,
∑

j∈[N ]

ajxj ;
∑

j∈[N ]

ajrj).

Parse EKi = ({MCT1,i,j}i∈[n],j∈[m], {MCT0,i,j}i∈[n],j∈[D]) and let rb,i,j ∈
Z

2m+k+8
p be the random tape used to generate MCTb,i,j for b ∈ {0, 1}, i ∈

[n], j ∈ [D]. In other words,

MCTb,i,j =

{
MstEnc(MSK, i, ej); rb,i,j) b = 1
MstEnc(MSK, i,0m); rb,i,j) b = 0

From the homomorphism of MstEnc and the fact that Enc can use γ =
(γ1, . . . , γ(D−1)/2) ∈ Z

(D−1)/2
p for a random tape, we have

Enc(EKi,x : γ) = MstEnc(MSK, i,
∑

j∈[m]

x[j]ej ; r)
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where

r =
∑

j∈[m]

xi[j]r1,i,j −
⎛
⎝∑

j∈[m]

xi[j] − 1

⎞
⎠ r0,i,1 +

∑
j∈[(D−1)/2]

γj(r0,i,2j − r0,i,2j+1).

(7)

Here, we use the equality:
∑

j∈[m] xi[j]−
(∑

j∈[m] xi[j] − 1
)

+
∑

j∈[(D−1)/2](γj −
γj) = 1. Hence, to prove the lemma, it suffices to show that the following distri-
butions are statistically close for all i ∈ [n]:{

(r, {r1,i,j}j∈[m], {r0,i,j}j∈[D]) : ∀(b, i, j), rb,i,j ← Z
2m+k+8
p , γ ← Z

(D−1)/2
p

r is defined as Eq. (7)

}

and{
(r, {r1,i,j}j∈[m], {r0,i,j}j∈[D]) : ∀(b, i, j), rb,i,j ← Zp, r ← Z

2m+k+8
p

}
This can be shown as follows. For all j ∈ [(D − 1)/2], r̃j = r0,i,2j −
r0,i,2j+1 is uniformly distributed in Z

2m+k+8
p , and thus r̃1, . . . , r̃(D−1)/2 span

Z
2m+k+8
p with overwhelming probability if (D − 1)/2 ≥ 2m + k + 8. Hence,∑
j∈[(D−1)/2] γj(r0,i,2j − r0,i,2j+1) =

∑
j∈[(D−1)/2] γj r̃j is randomly distributed

even given ({r1,i,j}j∈[m], {r0,i,j}j∈[D]). This concludes the proof.

Lemma 5.3. For all PPT adversaries A, there exists a PPT adversary B
against qcFE in Sect. 4 such that |P(A,Hβ

1 ) − P(A,Hβ
f )| ≤ AdvqcFEB (λ).

Proof. The difference of these hybrids is whether CTμ
i is encryption of xμ,β

i or
xμ,0

i . We can construct B as follows.

1. B is given qcPP and gives it to A.
2. A outputs (CS, {i,xμ,0

i ,xμ,1
i }i∈[n],μ∈[qc],FS = {cν}ν∈[qk]), and B chooses β ←

{0, 1} and queries its own oracle on MS,FS where

MS =

( {i, lab0, ej , ej}i∈CS,j∈[m], {(i, lab0,0m,0m) × D}i∈CS

{i, lab0,x
μ,β
i ,xμ,0

i }i∈[n],μ∈[qc]

)
.

3. B is given({cCT1,i,j}i∈CS,j∈[m], {cCT0,i,j}i∈CS,j∈[D], {cCTμ
i }i∈[n],μ∈[qc], {cSKν}ν∈[qk]

)
where cCT1,i,j , cCT0,i,j , cCT

μ
i are ciphertexts of qcFE for (i, lab0, ej),

(i, lab0,0m), (i, lab0,x
μ,β/0
i ), respectively, and gives it to A by setting EKi =

({cCT1,i,j}j∈[m], {cCT0,i,j}j∈[D]).
4. A outputs β′, and B outputs β′ as it is.

We can confirm the above simulation of B is valid from the three observations.
First, B’s query satisfies the game condition (recall that the adversary can query
any pair of the same messages for corrupted slot). Second, qcPP = iPP(1) =
G where qcPP is the public parameter of qcFE. Third, MstEnc(MSK, ·, ·) and
qcEnc(cMSK, ·, lab0, ·) (the encryption algorithm of qcFE) are the exactly the
same.
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