
Fully Succinct Batch Arguments for NP
from Indistinguishability Obfuscation

Rachit Garg1(B), Kristin Sheridan1, Brent Waters1,2, and David J. Wu1

1 University of Texas at Austin, Austin, TX, USA
{rachg96,kristin,bwaters,dwu4}@cs.utexas.edu

2 NTT Research, Sunnyvale, CA, USA

Abstract. Non-interactive batch arguments for NP provide a way to
amortize the cost of NP verification across multiple instances. In partic-
ular, they allow a prover to convince a verifier of multiple NP statements
with communication that scales sublinearly in the number of instances.

In this work, we study fully succinct batch arguments for NP in
the common reference string (CRS) model where the length of the
proof scales not only sublinearly in the number of instances T , but
also sublinearly with the size of the NP relation. Batch arguments with
these properties are special cases of succinct non-interactive arguments
(SNARGs); however, existing constructions of SNARGs either rely on
idealized models or strong non-falsifiable assumptions. The one excep-
tion is the Sahai-Waters SNARG based on indistinguishability obfusca-
tion. However, when applied to the setting of batch arguments, we must
impose an a priori bound on the number of instances. Moreover, the
size of the common reference string scales linearly with the number of
instances.

In this work, we give a direct construction of a fully succinct batch
argument for NP that supports an unbounded number of statements from
indistinguishability obfuscation and one-way functions. Then, by addi-
tionally relying on a somewhere statistically-binding (SSB) hash func-
tion, we show how to extend our construction to obtain a fully succinct
and updatable batch argument. In the updatable setting, a prover can
take a proof π on T statements (x1, . . . , xT) and “update” it to obtain
a proof π′ on (x1, . . . , xT , xT+1). Notably, the update procedure only
requires knowledge of a (short) proof for (x1, . . . , xT) along with a single
witness wT+1 for the new instance xT+1. Importantly, the update does
not require knowledge of witnesses for x1, . . . , xT .

1 Introduction

Non-interactive batch arguments (BARGs) provide a way to amortize the cost
of NP verification across multiple instances. Specifically, in a batch argument,
the prover has a collection of NP statements x1, . . . , xT and their goal is to
convince the verifier that xi ∈ L for all i, where L is the associated NP language.
The trivial solution is to have the prover send over the associated NP witnesses

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
E. Kiltz and V. Vaikuntanathan (Eds.): TCC 2022, LNCS 13747, pp. 526–555, 2022.
https://doi.org/10.1007/978-3-031-22318-1_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22318-1_19&domain=pdf
https://doi.org/10.1007/978-3-031-22318-1_19

Fully Succinct Batch Arguments for NP from iO 527

w1, . . . , wT and have the verifier check each one individually. The goal in a batch
argument is to obtain shorter proofs—namely, proofs whose size scales sublinearly
in T .

In this work, we operate in the common reference string (CRS) model where
we assume that there is a one-time (trusted) sampling of a structured reference
string. Within this model, we focus on the setting where where the proof is non-
interactive (i.e., the proof consists of a single message from the prover to the
verifier) and publicly-verifiable (i.e., verifying the proof only requires knowledge
of the associated statements and the CRS). Finally, we require soundness to hold
against computationally-bounded provers; namely, our goal is to construct batch
argument systems. Recently, there has been a flurry of work constructing batch
arguments for NP satisfying these requirements from standard lattice assump-
tions [CJJ21b,DGKV22], assumptions on groups with bilinear maps [WW22],
and from a combination of subexponential hardness of the DDH assumption
together with the QR assumption [CJJ21a].

This work: fully succinct batch arguments. The size of the proof in the aforemen-
tioned BARG constructions all scale linearly with the size of the NP relation.
In other words, to check T statements for an NP relation that is computable
by a circuit of size s, the proof sizes scale with poly(λ, s) · o(T), where λ is the
security parameter. In this work, we study the setting where the proof π scales
sublinearly in both the number of instances T and the size s of the NP relation.
More precisely, we require that |π| = poly(λ, log s, log T), and we refer to batch
arguments satisfying this property to be “fully succinct.” Our primary goal in
this work is to minimize the communication cost (and in conjunction, the verifier
cost) of batch NP verification.

We note that this level of succinctness is typically characteristic of
succinct non-interactive arguments (SNARGs), and indeed any SNARG
directly implies a fully succinct batch argument. However, existing con-
structions of SNARGs either rely on random oracles [Mic95,BBHR18,
COS20,CHM+20,Set20], the generic group model [Gro16], or strong
non-falsifiable assumptions [Gro10,BCCT12,DFH12,Lip13,PHGR13,GGPR13,
BCI+13,BCPR14,BISW17,BCC+17,BISW18,ACL+22]. Indeed, Gentry and
Wichs [GW11] showed that no construction of an (adaptively-sound) SNARG
for NP can be proven secure via a black-box reduction to a falsifiable assump-
tion [Nao03].

The only construction of (non-adaptively sound) SNARGs from falsifiable
assumptions is the construction by Sahai and Waters based on indistinguishabil-
ity obfuscation (iO) [SW14] in conjunction with the recent breakthrough works
of Jain et al. [JLS21,JLS22] that base indistinguishability obfuscation on falsi-
fiable assumptions. However, the Sahai-Waters SNARG from iO imposes an a
priori bound on the number of statements that can be proven, and in particular,
the size of the CRS grows with the total length of the statement and witness (i.e.,
the CRS consists of an obfuscated program that reads in the statement and the
witness and outputs a signature on the statements if the input is well-formed).
When applied to the setting of batch verification, this limitation means that we

528 R. Garg et al.

need to impose an a priori bound of the number of instances that can be proved,
and the size of the CRS necessarily scales with this bound. Our goal in this work
is to construct a fully succinct batch argument for NP that supports an arbitrary
number of instances from indistinguishability obfuscation and one-way functions
(i.e., the same assumption as the construction of Sahai and Waters).

An approach using recursive composition. A natural approach to constructing a
fully succinct batch argument that supports an arbitrary polynomial number of
statements is to compose a SNARG with polylogarithmic verification cost (for a
single statement) with a batch argument that supports an unbounded number
of statements. Namely, to prove that (x1, . . . , xT) are true, the prover would
proceed as follows:

1. First, for each statement xi ∈ {0, 1}�, the prover constructs a SNARG proof
πi. If the SNARG has a polylogarithmic verification procedure, then the
size of the SNARG verification circuit for checking (xi, πi) is bounded by
poly(λ, �, log s), where s is the size of the circuit for checking the underlying
NP relation.

2. Next, the prover uses a batch argument to demonstrate that it knows
(π1, . . . , πT) where πi is an accepting SNARG proof on instance xi ∈ {0, 1}�.
This is a batch argument for checking T instances of the SNARG verification
circuit, which has size poly(λ, �, log s). If the size of the batch argument scales
polylogarithmically with the number of instances, then the overall proof has
size poly(λ, �, log s, log T).

Moreover, using a somewhere extractable commitment scheme [HW15,CJJ21b],
it is possible to remove the dependence on the instance size �.1 This yields
a fully succinct batch argument with proof size poly(λ, log s, log T). To argue
(non-adaptive) soundness of this approach, we rely on soundness of the under-
lying SNARG and somewhere extractability of the underlying batch argument
(i.e., a BARG where the CRS can be programmed to a specific (hidden) index
i∗ such that there exists an efficient extractor that takes any accepting proof π
for a tuple (x1, . . . , xT) and outputs a valid witness wi∗ for instance xi∗). We
can now instantiate the SNARG with polylogarithmic verification cost using the
Sahai-Waters construction based on iO and one-way functions, and the some-
where extractable BARG for an unbounded number of instances with the recent
lattice-based scheme of Choudhuri et al. [CJJ21b]. This result provides a basic
feasibility result for the existence of fully succinct batch arguments for NP. How-
ever, instantiating this compiler requires two sets of assumptions: iO and one-
way functions for the underlying SNARG, and lattice-based assumptions for the
BARG.

1 One way to do this is to observe that the above approach already gives a fully
succinct batch argument for index languages (i.e., a batch language where the T ≤ 2λ

instances are defined to be (x1, x2, . . . , xT) = (1, 2, . . . , T)). Then, we can apply the
index BARG to BARG transformation from Choudhuri et al. [CJJ21b], which relies
on somewhere extractable commitments.

Fully Succinct Batch Arguments for NP from iO 529

This work. In this work, we provide a direct route for constructing fully suc-
cinct BARGs that support an unbounded number of statements from iO and
one-way functions. Notably, combined with the breakthrough work of Jain, Lin,
and Sahai [JLS22], this provides an instantiation of fully succinct BARGs with-
out lattice assumptions (in contrast to the generic approach above). Using our
construction, proving T statements for an NP relation of size s requires a proof
of length poly(λ). This is independent of both the number of statements T and
the size s of the associated NP relation. Like the scheme of Sahai and Waters,
our construction satisfies non-adaptive soundness (and perfect zero-knowledge).
We summarize this instantiation in the informal theorem below:

Theorem 1.1 (Fully Succinct BARG (Informal)). Assuming the existence
of indistinguishability obfuscation and one-way functions, there exists a fully suc-
cinct, non-adaptively sound batch argument for NP. The batch argument satisfies
perfect zero knowledge.

Updatable batch arguments. We also show how to extend our construction to
obtain an updatable BARG through the use of somewhere statistically binding
(SSB) hash functions [HW15,OPWW15]. In an updatable BARG, a prover is
able to take an existing proof πT on statements (x1, . . . , xT) along with a new
statement xT+1 with associated NP witness wT+1 and update π to a new proof π′

on instances (x1, . . . , xT , xT+1). Notably, the update algorithm does not require
the prover to have a witness for any statement other than xT+1. This is useful
in settings where the full set of statements/witnesses are not fixed in advance
(e.g., in a streaming setting). For example, a prover might want to compute a
summary of all transactions that occur in a given day and then provide a proof
that the summary reflects the complete set of transactions from the day. An
updatable BARG would allow the prover to maintain just a single proof that
authenticates all of the summary reports from different days, and moreover, the
prover does not have to maintain the full list of transactions from earlier days to
perform the update. We show how to obtain a fully succinct updatable BARG
in Sect. 5, and we summarize this instantiation in the following theorem.

Theorem 1.2 (Updatable BARG (Informal)). Assuming the existence of
indistinguishability obfuscation scheme and somewhere statistical binding hash
functions, there exists a fully succinct, non-adaptively sound updatable batch
argument for NP. The batch argument satisfies perfect zero knowledge.

1.1 Technical Overview

In this section, we provide an informal overview of the techniques that we use to
construct fully succinct BARGs. Throughout this section, we consider the batch
NP language of Boolean circuit satisfiability. Namely, the prover has a Boolean
circuit C and a collection of instances x1, . . . , xT , and its goal is to convince
the verifier that there exist witnesses w1, . . . , wT such that C(xi, wi) = 1 for all
i ∈ [T].

530 R. Garg et al.

The Sahai-Waters SNARG. As a warmup, we recall the Sahai-Waters [SW14]
construction of SNARGs from iO for a single instance (i.e., the case where
T = 1). In this construction, the common reference string (CRS) consists of two
obfuscated programs: Prove and Verify. The Prove program takes in the circuit C,
the statement x, and the witness w, and outputs a signature σx on x if C(x,w) =
1 and ⊥ otherwise. The proof is simply the signature π = σx. The Verify program
takes in the description of the circuit C, the statement x, and the proof π = σx

and checks whether σx is a valid signature on x or not. The signature in this
case just corresponds to the evaluation of a pseudorandom function (PRF) on
the input x. The key to the PRF is hard-coded in the obfuscated proving and
verification programs. Security in turn, relies on the Sahai-Waters “punctured
programming” technique.

Batch arguments for index languages. To construct fully succinct batch argu-
ments, we start by considering the special case of an index language (similar to
the starting point in the lattice-based construction of Choudhuri et al. [CJJ21b]).
In a BARG for an index language, the statements are simply the indices
(1, 2, . . . , T). The prover’s goal is to convince the verifier that there exists wi

such that C(i, wi) = 1 for all i ∈ [T]. We start by showing how to construct a
fully succinct BARG for index languages with an unbounded number of instances
(i.e., an index language for arbitrary polynomial T). Our construction proceeds
iteratively as follows. Like the Sahai-Waters construction, the CRS in our scheme
consists of the obfuscation of the following two programs:

– The proving program takes in a circuit C, an index i, a witness wi for instance
i and a proof π for the first i−1 statements. The program checks if C(i, wi) = 1
and that the proof on the first i − 1 statements is valid. When i = 1, then we
ignore the latter check. If both conditions are satisfied, the program outputs
a signature on statement (C, i). Notably, the size of the prover program only
scales with the size of the circuit and the bit-length of the number of instances
(instead of linearly with the number of instances).

Similar to the construction of Sahai and Waters, we define the “signature”
on the statement (C, i) to be π = F(k, (C, i)), where F is a puncturable
PRF [BW13,KPTZ13,BGI14],2 and k is a PRF key that is hard-coded in
the proving program.

– To verify a proof on T statements (i.e., the instances 1, . . . , T), the verification
program simply checks that the proof π is a valid signature on the pair (C, T).
Based on how we defined the proving program above, this corresponds to
checking that π = F(k, (C, T)). Now, to argue soundness using the Sahai-
Waters punctured programming paradigm, we modify this check and replace
it with the check

2 A puncturable PRF is a PRF where the holder of the master secret key can “punc-
ture” the key on an input x∗. The resulting punctured key k′ can be used to evaluate
the PRF on all inputs except x∗. The value of the PRF at x∗ remains pseudorandom
(i.e., computationally indistinguishable from random) even given the punctured key
k′. We provide the formal definition in Definition 2.2.

Fully Succinct Batch Arguments for NP from iO 531

G(π) ?= G(F(k, (C, T))),

where G is a length-doubling pseudorandom generator. This will be critical
for arguing soundness.

Soundness of the index BARG. To argue non-adaptive soundness of the above
approach (i.e., the setting where the statement is chosen independently of
the CRS), we apply the punctured programming techniques of Sahai and
Waters [SW14]. Take any circuit C∗ and suppose there is an index i∗ where
for all witnesses w, we have that C∗(i∗, w) = 0. Our soundness analysis proceeds
in two steps:

– We first show that no efficient prover can compute an accepting proof π on
instances (1, . . . , i∗) for circuit C∗.

– Then, we show how to “propagate” the inability to construct a valid proof
on index i∗ to all indices i ≥ i∗. This in turn suffices to argue non-adaptive
soundness for an arbitrary polynomial number of statements.

We now sketch the argument for the first step. In the following overview, suppose
the output space of F is {0, 1}λ and suppose that G : {0, 1}λ → {0, 1}2λ is length-
doubling.

– The real CRS consists of obfuscations of the following proving and verification
programs:

Prove(C, i, wi, π):

• If C(i, wi) = 0, output ⊥.
• If i = 1, output F(k, (C, i)).
• If G(π) = G(F(k, (C, i − 1))), output

F(k, (C, i)).
• Output ⊥.

Verify(C, i, π):

• If G(π) = G(F(k, (C, i))), output 1
• Output 0.

– First, instead of embedding the real PRF key k in the proving and verification
programs, we embed a punctured PRF key k′ that is punctured on the input
(C∗, i∗). Whenever the proving and verification program needs to evaluate F
on the punctured point (C∗, i∗), we hard-code the value z = F(k, (C∗, i∗)):

Prove(C, i, wi, π):

• If C(i, wi) = 0, output ⊥.
• If C = C∗ and i = i∗, output ⊥.
• If i = 1, output F(k′, (C, i)).
• If C = C∗ and i − 1 = i∗:

∗ If G(π) = G(z), output F(k′, (C, i)).
∗ Otherwise, output ⊥.

• If G(π) = G(F(k′, (C, i − 1))), output
F(k′, (C, i)).

• Output ⊥.

Verify(C, i, π):

• If C = C∗ and i = i∗, output 1 if G(π) =
G(z) and 0 otherwise.

• If G(π) = G(F(k′, (C, i))), output 1.
• Output 0.

Since the punctured PRF is functionality-preserving, on all inputs (C, i) �=
(C∗, i∗), we have that F(k, (C, i)) = F(k′, (C, i)). Since z = F(k, (C∗, i∗)),
the input/output behavior of the verification program is unchanged. Next,
C(i∗, w) = 0 for all w, so the input/output behavior of the proving program
is also unchanged. Security of iO then ensures that the obfuscated proving

532 R. Garg et al.

and verification programs are computationally indistinguishable from those
in the real scheme.

– Observe that both the proving and verification programs can be constructed
given just the value of G(z) without necessarily knowing z itself. We now
replace the target value G(z) with a uniform random string t r← {0, 1}2λ.
This follows by (1) puncturing security of F which says that the value of
z = F(k, (C∗, i∗)) is computationally indistinguishable from a uniform string
z r← {0, 1}λ; and (2) by PRG security since the distribution of G(z) where z r←
{0, 1}λ is computationally indistinguishable from sampling a uniform random
string t r← {0, 1}2λ. With these modifications, the proving and verification
programs behave as follows:
Prove(C, i, wi, π):

• If C(i, wi) = 0, output ⊥.
• If C = C∗ and i = i∗, output ⊥.
• If i = 1, output F(k′, (C, i)).
• If C = C∗ and i − 1 = i∗:

∗ If G(π) = t, output F(k′, (C, i)).
∗ Otherwise, output ⊥.

• If G(π) = G(F(k′, (C, i − 1))), output
F(k′, (C, i)).

• Output ⊥.

Verify(C, i, π):

• If C = C∗ and i = i∗, output 1 if G(π) = t
and 0 otherwise.

• If G(π) = G(F(k′, (C, i))), output 1.
• Output 0.

– Since t is uniform in {0, 1}2λ, the probability that t is even in the image of
G is at most 2−λ. Thus, in this experiment, with probability 1 − 2−λ, there
does not exist any accepting proof π for input (C∗, i∗). This means that we
can now revert to using the PRF key k in both the proving and verification
programs and simply reject all proofs on instance (C∗, i∗). In other words, we
can replace the proving and verification programs with obfuscations of the
following programs by appealing to the security of iO:
Prove(C, i, wi, π):

• If C(i, wi) = 0, output ⊥.
• If C = C∗ and i = i∗, output ⊥.
• If i = 1, output F(k, (C, i)).
• If C = C∗ and i − 1 = i∗, output ⊥.
• If G(π) = G(F(k, (C, i − 1))), output

F(k′, (C, i)).
• Output ⊥.

Verify(C, i, π):

• If C = C∗ and i = i∗, output 0.
• If G(π) = G(F(k, (C, i))), output 1.
• Output 0.

In this final experiment, there no longer exists an accepting proof π on instances
(1, . . . , i∗) for circuit C∗. Next, we show how to extend this argument to addi-
tionally remove accepting proofs on the batch of instances (1, . . . , i∗, i∗ +1). We
leverage a similar strategy as before:

– We replace the PRF key k with a punctured key k′ that is punctured at
(C∗, i∗ + 1) in both the proving and verification programs. Again, whenever
the programs need to compute F(k, (C∗, i∗ + 1)), we substitute a hard-coded
value z = F(k, (C∗, i∗ + 1)):

Fully Succinct Batch Arguments for NP from iO 533

Prove(C, i, wi, π):

• If C(i, wi) = 0, output ⊥.
• If C = C∗ and i∗ ≤ i ≤ i∗ + 1, output ⊥.
• If i = 1, output F(k′, (C, i)).
• If C = C∗ and i − 1 = i∗ + 1:

∗ If G(π) = G(z), output F(k′, (C, i)).
∗ Otherwise, output ⊥.

• If G(π) = G(F(k′, (C, i − 1))), output
F(k′, (C, i)).

• Output ⊥.

Verify(C, i, π):

• If C = C∗, and i = i∗, output 0.
• If C = C∗, i = i∗ +1, output 1 if G(π) =

G(z) and 0 otherwise.
• If G(π) = G(F(k′, (C, i))), output 1.
• Output 0.

Note that to simplify the notation, we merged the individual checks (C = C∗

and i = i∗) and (C = C∗ and i− 1 = i∗) in the proving program into a single
check that outputs ⊥ if satisfied.

– Observe once again that the description of the proving and verification pro-
grams only depends on G(z) (and not z itself). By the same sequence of steps
as above, we can appeal to puncturing security of F, pseudorandomness of
G, and security of iO to show that the obfuscated proving and verification
programs are computationally indistinguishable from the following programs:
Prove(C, i, wi, π):

• If C(i, wi) = 0, output ⊥.
• If C = C∗ and i∗ ≤ i ≤ i∗ + 2, output ⊥.
• If i = 1, output F(k, (C, i)).
• If G(π) = G(F(k, (C, i − 1))), output

F(k, (C, i)).
• Output ⊥.

Verify(C, i, π):

• If C = C∗ and i∗ ≤ i ≤ i∗ +1, output 0.
• If G(π) = G(F(k, (C, i))), output 1.
• Output 0.

We can repeat the above strategy any polynomial number of times. In particular,
for any T = poly(λ), we can replace the obfuscated programs in the CRS with
the following programs:

Prove(C, i, wi, π):

• If C(i, wi) = 0, output ⊥.
• If C = C∗ and i∗ ≤ i ≤ T + 1, output ⊥.
• If i = 1, output F(k, (C, i)).
• If G(π) = G(F(k, (C, i − 1))), output

F(k, (C, i)).
• Output ⊥.

Verify(C, i, π):

• If C = C∗ and i∗ ≤ i ≤ T , output 0.
• If G(π) = G(F(k, (C, i))), output 1.
• Output 0.

By security of iO, the puncturable PRF, and the PRG, this modified CRS is
computationally indistinguishable from the real CRS. However, when the ver-
ification program is implemented as above, there are no accepting proofs on
input (C∗, i) for any i∗ ≤ i ≤ T . Moreover, the size of the obfuscated programs
only depends on log T (and not T). As such, the scheme supports an arbitrary
polynomial number of statements. We give the full analysis in Sect. 3.

Adaptive soundness and zero knowledge. Using standard complexity leveraging
techniques, we show how to extend our BARG for index languages with non-
adaptive soundness into one with adaptive soundness in the full version of this
paper. We note that due to the reliance on complexity leveraging, the resulting
BARGs we obtain are no longer fully succinct; the proof size now scales with
the size of the NP relation, but critically, still sublinearly in the number of
instances. We also note that much like the construction of Sahai and Waters,

534 R. Garg et al.

both our fully succinct non-adaptive BARG and our adaptive BARG satisfy
perfect zero-knowledge.

From index languages to general NP languages. Next, we show how to bootstrap
our fully succinct BARG for index languages to obtain a fully succinct BARG
for NP that supports an arbitrary polynomial number of statements. In this
setting, the prover has a Boolean circuit C and arbitrary instances x1, . . . , xT ;
the prover’s goal is to convince the verifier that for all i ∈ [T], there exists wi

such that C(xi, wi) = 1.
The key difference between general NP languages and index languages is that

the tuple of statements (x1, . . . , xT) no longer has a succinct description. This
property was critical in our soundness analysis above. The soundness argument
we described above works by embedding the instances xi∗ , xi∗+1, . . . , xT into
the proving and verification programs (where xi∗ denotes a false instance) and
have the programs always reject proofs on these statements (with respect to the
target circuit C∗). For index languages, these instances just correspond to the
interval [i∗ + 1, T], which can be described succinctly with O(log T) bits. When
xi∗ , xi∗+1, . . . , xT are arbitrary instances, they do not have a short description,
and we cannot embed these instances into the proving and verification programs
without imposing an a priori bound on the number of instances.

Instead of modifying the above construction, we instead adopt the approach
of Choudhuri et al. [CJJ21b] who previously showed how to generically upgrade
any BARG for index languages to a BARG for NP by relying on somewhere
extractable commitment schemes. If the underlying BARG for index languages
supports an unbounded number of instances, then the transformed scheme also
does. In our setting, we observe that if we only require (non-adaptive) sound-
ness (as opposed to “somewhere extraction”), we can use a positional accumu-
lator [KLW15] in place of the somewhere extractable commitment scheme. The
advantage of basing the transformation on positional accumulators is that we can
construct positional accumulators directly from indistinguishability obfuscation
and one-way functions. Applied to the above index BARG construction (see also
Sect. 3), we obtain a fully succinct batch argument for NP from the same set of
assumptions. In contrast, if we invoke the compiler of Choudhuri et al., we would
need to additionally assume the existence of a somewhere extractable commit-
ment scheme which cannot be based solely on indistinguishability obfuscation
together with one-way functions in a fully black-box way [AS15].

Very briefly, in the Choudhuri et al. approach, to construct a batch argument
on the tuple (C, x1, . . . , xT), the prover first computes a succinct hash y of the
statements (x1, . . . , xT). Using y, they define an index relation where instance i
is satisfied if there exists an opening (xi, πi) to y at index i, and moreover, there
exists a satisfying witness wi where C(xi, wi) = 1. The proof then consists of
the hash y and a proof for the index relation. In this work, we show that using
a positional accumulator to instantiate the hash function suffices to obtain a
BARG with non-adaptive soundness. We provide the full details in Sect. 4.

Updatable BARGs for NP . Our techniques also readily generalize to obtain an
updatable batch argument (for general NP) from the same underlying set of

Fully Succinct Batch Arguments for NP from iO 535

assumptions. Recall that in an updatable BARG, a prover can take an existing
proof π on a tuple (C, x1, . . . , xT) together with a new statement xT+1 and wit-
ness wT+1 and extend π to a new proof π′ on the tuple (C, x1, . . . , xT , xT+1).
One way to construct an updatable BARG is to recursive compose a suc-
cinct non-interactive argument of knowledge [BCCT13] or a rate-1 batch argu-
ment [DGKV22].3 Here, we opt for a more direct approach based on the above
techniques, which does not rely on recursive composition.

First, our index BARG construction described above is already updatable.
However, if we apply the Choudhuri et al. [CJJ21b] transformation to obtain a
BARG for NP, the resulting scheme is no longer updatable. This is because the
transformation requires the prover to commit to the complete set of statements
and then argue that the statement associated with each index is true (which in
turn requires knowledge of all of the associated witnesses).

Instead, we take a different and more direct tree-based approach. For ease
of exposition, suppose first that T = 2k for some integer k. Our construction
will rely on a hash function H. Given a tuple of T statements (x1, . . . , xT), we
construct a binary Merkle hash tree [Mer87] of depth k as follows: the leaves
of the tree are labeled x1, . . . , xT , and the value of each internal node v is the
hash H(v1, v2) of its two children v1 and v2. The output h of the hash tree is the
value at the root node, and we denote this by writing h = HMerkle(x1, . . . , xT).
A proof on the tuple of instances (x1, . . . , xT) is simply a signature on the root
node HMerkle(x1, . . . , xT). Now, instead of providing an obfuscated program that
takes a proof on index i and extends it into a proof on index i + 1, we define
our obfuscated proving program to take in two signatures on hash values h1 =
HMerkle(x1, . . . , xT) and h2 = HMerkle(y1, . . . , yT) and output a signature on the
hash value h = H(h1, h2) = HMerkle(x1, . . . , xT , y1, . . . , yT). This new “two-to-
one” obfuscated program allows us to merge two proofs on T instances into a
single proof on 2T instances. More generally, the (obfuscated) proving program
in the CRS now supports the following operations:

– Signing a single instance: Given a circuit C, a statement x, and a witness
w, output a signature on (C, x, 1) if C(x,w) = 1 and ⊥ otherwise. This can
be viewed as a signature on a hash tree of depth 1.

– Merge trees: Given a circuit C, hashes h1, h2 associated with two trees of
depth k, along with signatures σ1, σ2, check that σ1 is a valid signature on
(C, h1, k), and σ2 is a valid signature on (C, h2, k). If both checks pass, output
a signature on (C,H(h1, h2), k+1). This is a signature on a hash tree of depth
k + 1.

To construct a proof on instances (x1, . . . , xT) using witnesses (w1, . . . , wT) for
arbitrary T , we now proceed as follows:

– Run the (obfuscated) proving algorithm on (C, x1, w1) to obtain a signature
σ on (C, x1, 1). The initial proof π is simply the set {(1, x1, σ)}.

3 If the underlying BARG is not rate-1, then we can only compose a bounded number
of times.

536 R. Garg et al.

– Suppose π = {(i, hi, σi)} is a proof on the first T −1 statements. To update the
proof π to a proof on the first T statements, first run the proving algorithm on
(C, xT , wT) to obtain a signature σ on (C, xT , 1). Now, we apply the following
merging procedure:

• Initialize (k, h′, σ′) ← (1, xT , σ) and π′ ← π.
• While there exists (i, hi, σi) ∈ π′ where i = k, run the (obfus-

cated) merge program on (C, hi, h
′, k, σi, σ

′) to obtain a signature σ′′ on
(C,H(hi, h

′), k + 1). Remove (i, hi, σi) from π′ and update (k, h′, σ′) ←
(k + 1,H(hi, h

′), σ′′).
• Add the tuple (k, h′, σ′′) to π′ at the conclusion of the merging process.

Observe that the update procedure only requires knowledge of the new state-
ment xT , its witness wT , and the proof on the previous statements π; it does
not require knowledge of the witnesses to the previous statements. Moreover,
observe that the number of hash-signature tuples in π is always bounded by
log T .

To verify a proof π = {(i, hi, σi)} with respect to a Boolean circuit C, the
verifier checks that σi is a valid signature on (C, hi, i) for all tuples in π, and
moreover, that each of the intermediate hash values hi are correctly computed
from (x1, . . . , xT). Non-adaptive soundness of the above construction follows by
a similar argument as that for our index BARG. Notably, we show that if an
instance xi∗ is false, then the proving program will never output a signature
on input (C, xi∗ , 1). Using the same punctured programming technique sketched
above, we can again “propagate” the inability to compute a signature on the
leaf node i∗ to argue that any efficient prover cannot compute a signature on
any node that is an ancestor of xi∗ in the hash tree. Here, we will need to rely
on the underlying hash function being somewhere statistically binding [HW15,
OPWW15]. By a hybrid argument, we can eventually move to an experiment
where there are no accepting proofs on tuples that contain xi∗ , and soundness
follows. We provide the formal description in Sect. 5.

2 Preliminaries

Throughout this work, we write λ to denote the security parameter. We say a
function f is negligible in the security parameter λ if f = o(λ−c) for all c ∈ N.
We denote this by writing f(λ) = negl(λ). We write poly(λ) to denote a function
that is bounded by a fixed polynomial in λ. We say an algorithm is PPT if
it runs in probabilistic polynomial time in the length of its input. By default,
we consider non-uniform adversaries (indexed by λ) where the algorithm may
additionally take in an advice string (of poly(λ) length).

For a positive integer n ∈ N, we write [n] to denote the set {1, . . . , n} and
[0, n] to denote the set {0, . . . , n}. For a finite set S, we write x r← S to denote
that x is sampled uniformly at random from S. For a distribution D, we write
x ← D to denote that x is sampled from D. We say an event E occurs with
overwhelming probability if its complement occurs with negligible probability.

Fully Succinct Batch Arguments for NP from iO 537

Some of our constructions in this work will rely on hardness against adver-
saries running in sub-exponential time or achieving sub-exponential advantage
(i.e., success probability). To make this explicit, we formulate our security defi-
nitions in the language of (τ, ε)-security, where τ = τ(λ) and ε = ε(λ). Here, we
say a primitive is (τ, ε)-secure if for all (non-uniform) polynomial time adver-
saries running in time τ(λ) and all sufficiently large λ, the adversary’s advantage
is bounded by ε(λ). For ease of exposition, we will also write that a primitive
is “secure” (without an explicit (τ, ε) characterization) if for every polynomial
τ = poly(λ), there exists a negligible function ε(λ) = negl(λ) such that the prim-
itive is (τ, ε)-secure. We now review the main cryptographic primitives we use
in this work.

Definition 2.1 (Indistinguishability Obfuscation [BGI+01]). An indis-
tinguishability obfuscator for a circuit class C = {Cλ}λ∈N is a PPT algorithm
iO(·, ·) with the following properties:

– Correctness: For all security parameters λ ∈ N, all circuits C ∈ Cλ, and all
inputs x,

Pr[C ′(x) = C(x) : C ′ ← iO(1λ, C)] = 1.

– Security: We say that iO is (τ, ε)-secure if for all adversaries A running in
time at most τ(λ), there exists λA ∈ N, such that for all security parameters
λ > λA, all pairs of circuits C0, C1 ∈ Cλ where C0(x) = C1(x) for all inputs
x, we have,

AdviO
A :=

∣
∣Pr[A(iO(1λ, C0)) = 1] − Pr[A(iO(1λ, C1)) = 1]

∣
∣ ≤ ε(λ).

Definition 2.2 (Puncturable PRF [BW13,KPTZ13,BGI14]). A punc-
turable pseudorandom function family on key space K = {Kλ}λ∈N, domain
X = {Xλ}λ∈N and range Y = {Yλ}λ∈N consists of a tuple of PPT algorithms
ΠPPRF = (KeyGen,Eval,Puncture) with the following properties:

– KeyGen(1λ) → K: On input the security parameter λ, the key-generation
algorithm outputs a key K ∈ Kλ.

– Puncture(K,S) → K{S}: On input the PRF key K ∈ Kλ and a set S ⊆ Xλ,
the puncturing algorithm outputs a punctured key K{S} ∈ Kλ.

– Eval(K,x) → y: On input a key K ∈ Kλ and an input x ∈ Xλ, the evaluation
algorithm outputs a value y ∈ Yλ.

In addition, ΠPPRF should satisfy the following properties:

– Functionality-Preserving: For every polynomial s = s(λ), every security
parameter λ ∈ N, every subset S ⊆ Xλ of size at most s, and every x ∈ Xλ\S,

Pr[Eval(K, x) = Eval(K{S}, x) : K ← KeyGen(1λ), K{S} ← Puncture(K, S)] = 1.

– Punctured Pseudorandomness: For a bit b ∈ {0, 1} and a security param-
eter λ, we define the (selective) punctured pseudorandomness game ΠPPRF,
between an adversary A and a challenger as follows:

538 R. Garg et al.

• At the beginning of the game, the adversary commits to a set S ⊆ Xλ.
• The challenger then samples a key K ← KeyGen(1λ), constructs the punc-

tured key K{S} ← Puncture(K,S), and gives K{S} to A.
• If b = 0, the challenger gives the set {(xi,Eval(K,xi))}xi∈S to A. If b = 1,

the challenger gives the set {(xi, yi)}xi∈S where each yi
r← Yλ.

• At the end of the game, the adversary outputs a bit b′ ∈ {0, 1}, which is
the output of the experiment.

We say that ΠPPRF satisfies (τ, ε)-punctured security if for all adversaries
A running in time at most τ(λ), there exists λA such that for all security
parameters λ > λA,

|Pr[b′ = 1 : b = 0] − Pr[b′ = 1 : b = 1]| ≤ ε(λ)

in the punctured pseudorandomness security game.

For ease of notation, we will often write F (K,x) to represent Eval(K,x).

Definition 2.3 (Pseudorandom Generator). A pseudorandom generator
(PRG) on domain X = {Xλ}λ∈N and range Y = {Yλ}λ∈N is a deterministic
polynomial-time algorithm PRG : X → Y. We say that the PRG is (τ, ε)-secure
if for all adversaries A running in time at most τ(λ), there exists λA ∈ N, such
that for all security parameters λ > λA, we have,

AdvPRGA := |Pr[A(PRG(x)) = 1 : x ← Xλ] − Pr[A(y) = 1 : y ← Yλ]| ≤ ε(λ).

2.1 Batch Arguments for NP

We now introduce the notion of a non-interactive batch argument (BARG) for
NP. We focus specifically on the language of Boolean circuit satisfiability.

Definition 2.4 (Circuit Satisfiability). For a Boolean circuit C : {0, 1}� ×
{0, 1}m → {0, 1}, and a statement x ∈ {0, 1}n, we define the language of Boolean
circuit satisfiability LCSAT as follows:

LCSAT = {(C, x) | ∃w ∈ {0, 1}m : C(x,w) = 1}.

Definition 2.5 (Batch Circuit Satisfiability). For a Boolean circuit
C : {0, 1}� ×{0, 1}m → {0, 1}, positive integer t ∈ N, and statements x1, . . . , xt ∈
{0, 1}n, we define the batch circuit satisfiability language as follows:

LBatchCSAT,t = {(C, x1, . . . , xt) | ∀i ∈ [t],∃wi ∈ {0, 1}m : C(xi, wi) = 1}.

Definition 2.6 (Batch Argument for NP). A batch argument (BARG) for
the language of Boolean circuit satisfiability consists of a tuple of PPT algorithms
ΠBARG = (Gen,P,V) with the following properties:

– Gen(1λ, 1�, 1T , 1s) → crs: On input the security parameter λ, a bound on the
instance size �, a bound on the number of statements T , and a bound on the
circuit size s, the generator algorithm outputs a common reference string crs.

Fully Succinct Batch Arguments for NP from iO 539

– P(crs, C, (x1, . . . , xt), (w1, . . . , wt)) → π: On input the common reference
string crs, a Boolean circuit C : {0, 1}�×{0, 1}m → {0, 1}, a list of statements
x1, . . . , xt ∈ {0, 1}�, and a list of witnesses w1, . . . , wt ∈ {0, 1}m, the prove
algorithm outputs a proof π.

– V(crs, C, (x1, . . . , xt), π) → {0, 1}: On input the common reference string
crs, a Boolean circuit C : {0, 1}� × {0, 1}m → {0, 1}, a list of statements
x1, . . . , xt ∈ {0, 1}�, and a proof π, the verification algorithm outputs a bit
b ∈ {0, 1}.

Moreover, the BARG scheme should satisfy the following properties:

– Completeness: For all security parameters λ ∈ N and bounds � ∈ N, s ∈ N,
T ∈ N, t ≤ T , Boolean circuits C : {0, 1}� × {0, 1}m → {0, 1} of size at
most s, all statements x1, . . . , xt ∈ {0, 1}n and all witnesses w1, . . . , wt where
C(xi, wi) = 1 for all i ∈ [t], it holds that

Pr

[
V(crs, C, (x1, . . . , xt), π) = 1 :

crs ← Gen(1λ, 1�, 1T , 1s)
π ← P(crs, C, (x1, . . . , xt), (w1, . . . , wt))

]
= 1.

– Succinctness: We require ΠBARG satisfy two notions of succinctness:
• Succinct proof size: For all t ≤ T , it holds that |π| = poly(λ, log t, s)

in the completeness experiment defined above. Moreover, we say the proof
is fully succinct if |π| = poly(λ, log t, log s).

• Succinct verification time: For all t ≤ T , the running time of the veri-
fication algorithm V(crs, C, (x1, . . . , xt), π) is poly(λ, t, �)+poly(λ, log t, s)
in the completeness experiment defined above.

– Soundness: We require two succinctness properties:
• Non-adaptive soundness: For all polynomials T = T (λ), s = s(λ), � =

�(λ), t = t(λ) where t ≤ T , and all PPT adversaries A, there exists a
negligible function negl(·) such that for all λ ∈ N, all circuit families
C = {Cλ}λ∈N where Cλ : {0, 1}�(λ) × {0, 1}m(λ) → {0, 1} is a Boolean
circuit of size at most s(λ), and all statements x1, . . . , xt ∈ {0, 1}�(λ)

where (Cλ, (x1, . . . , xt)) �∈ LBatchCSAT,t,

Pr V(crs, Cλ, (x1, . . . , xt), π) = 1 :
crs ← Gen(1λ, 1�, 1T , 1s);

π ← A(1λ, crs, Cλ, (x1, . . . , xt))
= negl(λ).

• Adaptive soundness: For a security parameters λ and bounds T, �, s,
we define the adaptive soundness experiment between a challenger and an
adversary A as follows:
* The challenger samples crs ← Gen(1λ, 1�, 1T , 1s) and sends crs to A.
* Algorithm A outputs a Boolean circuit C : {0, 1}� × {0, 1}m → {0, 1}

of size at most s(λ), statements x1, . . . , xt ∈ {0, 1}�(λ), and a proof π.
Here, we require that t ≤ T .

* The experiment outputs b = 1 if V(crs, C, (x1, . . . , xt), π) = 1 and
(C, (x1, . . . , xt)) �∈ LBatchCSAT,T . Otherwise it outputs b = 0.

540 R. Garg et al.

The scheme satisfies adaptive soundness if for every non-uniform poly-
nomial time adversary A, every polynomial T = T (λ),� = �(λ), and
s = s(λ), there exists a negligible function negl(·) such that, Pr[b = 1] =
negl(λ) in the adaptive soundness experiment.

– Perfect zero knowledge: The scheme satisfies perfect zero knowledge if
there exists a PPT simulator S such that for all λ ∈ N, all bounds � ∈ N, T ∈
N, s ∈ N, all t ≤ T , all tuples (C, x1, . . . , xt) ∈ LBatchCSAT,t, and all witnesses
(w1, . . . , wt) where C(xi, wi) = 1 for all i ∈ [t], the following distributions are
identically distributed:

• Real distribution: Sample crs ← Gen(1λ, 1�, 1T , 1s) and a proof π ←
P(crs, C, (x1, . . . , xt), (w1, . . . , wt)). Output (crs, π).

• Simulated distribution: Output (crs∗, π∗) ← S(1λ, 1�, 1T , 1s,
C, (x1, . . . , xt)).

Definition 2.7 (BARGs for Unbounded Statements). We say that
a BARG scheme ΠBARG = (Gen,P,V) supports an unbounded polynomial
of statements if the algorithm Gen in Definition 2.6 runs in time that is
poly(λ, �, s, log T), and correspondingly, output a CRS of size poly(λ, �, s, log T).
Notably, the dependence on the bound T is polylogarithmic. In this case, we
implicitly set T = 2λ as the input to the Gen algorithm. Observe that in this
case, the P and V algorithms can now take any arbitrary polynomial number
t = t(λ) of instances as input where t ≤ 2λ.

Batch arguments for index languages. Similar to [CJJ21b], we also consider
the special case of batch arguments for index languages. We recall the relevant
definitions here.

Definition 2.8 (Batch Circuit Satisfiability for Index Languages). For
a positive integer t ≤ 2λ, we define the batch circuit satisfiability problem for
index languages LBatchCSATindex,t = {(C, t) | ∀i ∈ [t],∃wi ∈ {0, 1}m : C(i, wi) = 1}
where C : {0, 1}λ × {0, 1}m → {0, 1} is a Boolean circuit.4

Definition 2.9 (Batch Arguments for Index Languages). A BARG for
index languages is a tuple of PPT algorithms ΠIndexBARG = (Gen,P,V) that satisfy
Definition 2.7 for the index language LBatchCSATindex,t. Since we are considering
index languages, the statements always consist of the indices (1, . . . , t). As such,
we can modify the P and V algorithms in Definition 2.6 to take as input the
single index t (of length λ bits) rather than the tuple of statements (x1, . . . , xt).
Specifically, we modify the syntax as follows:

– P(crs, C, t, (w1, . . . , wt)) → π: The prove algorithm takes as input the common
reference string crs, a Boolean circuit C : {0, 1}λ×{0, 1}m → {0, 1}, the index
t ∈ N, and a list of witnesses w1, . . . , wt ∈ {0, 1}m, and outputs a proof π.

4 Here, and throughout the exposition, we associate elements of the set [2λ] with their
binary representation in {0, 1}λ, and the value 2λ with the all-zeroes string 0λ.

Fully Succinct Batch Arguments for NP from iO 541

– V(crs, C, t, π) → {0, 1}: The verification algorithm takes as input the common
reference string crs, a Boolean circuit C : {0, 1}λ×{0, 1}m → {0, 1}, the index
t ∈ N, and a proof π, and outputs a bit b ∈ {0, 1}.

The completeness and zero-knowledge properties are the same as those in Def-
inition 2.6(adapted to the unbounded case where T = 2λ). We define sound-
ness analogously, but require that the adversary outputs the statement index t
in unary. Namely, the adversary is still restricted to choosing a polynomially-
bounded number of instances t = poly(λ) even if the upper bound on t is T = 2λ.
For succinctness, we require the following stronger property on the verification
time:

– Succinct verification time: For all t ≤ 2λ, the verification algorithm
V(crs, C, t, π) runs in time poly(λ, s) in the completeness experiment.

3 Non-Adaptive Batch Arguments for Index Languages

In this section, we show how to construct a batch argument for index languages
that can support an arbitrary polynomial number of statements. We show how
to obtain a construction with non-adaptive soundness. As described in Sect. 1.1,
we include two obfuscated programs in the CRS to enable sequential proving
and batch verification:

– The proving program takes as input a Boolean circuit C : {0, 1}λ ×{0, 1}m →
{0, 1}, an instance number i ∈ [2λ], a witness w ∈ {0, 1}m for instance i as
well as a proof π for the first i−1 instances. The program validates the proof
on the first i−1 instances and that C(i, w) = 1. If both checks pass, then the
program outputs a proof for instance i. Otherwise, it outputs ⊥.

– The verification program takes as input the circuit C, the final instance num-
ber t ∈ [2λ], and a proof π. It outputs a bit indicating whether the proof is
valid or not. In this case, outputting 1 indicates that π is a valid proof on
instances (1, . . . , t).

Construction 3.1 (Batch Argument for Index Languages). Let λ be a
security parameter and s = s(λ) be a bound on the size of the Boolean cir-
cuit. We construct a BARG scheme that supports index languages with up to
T = 2λ instances (i.e., which suffices to support an arbitrary polynomial num-
ber of instances) and circuits of size at most s. The instance indices will be
taken from the set [2λ]. For ease of notation, we use the set [2λ] and the set
{0, 1}λ interchangably in the following description. Our construction relies on
the following primitives:

– Let PRF be a puncturable PRF with key space {0, 1}λ, domain {0, 1}s ×
{0, 1}λ and range {0, 1}λ.

– Let iO be an indistinguishability obfuscator.
– Let PRG be a pseudorandom generator with domain {0, 1}λ and range

{0, 1}2λ.

542 R. Garg et al.

We define our batch argument ΠBARG = (Gen,P,V) for index languages as fol-
lows:

– Gen(1λ, 1s): On input the security parameter λ, and a bound on the circuit
size s, the setup algorithm starts by sampling a PRF key K ← PRF.Setup(1λ).
The setup algorithm then defines the proving program Prove[K] and the ver-
ification program Verify[K] as follows:
The setup algorithm constructs ObfProve ← iO(1λ,Prove[K]) and
ObfVerify ← iO(1λ,Verify[K]). Note that both the proving circuit Prove[K]
and Verify[K] are padded to the maximum size of any circuit that appears
in the proof of Theorem 3.3. Finally, it outputs the common reference string
crs = (ObfProve,ObfVerify).

– P(crs, C, (w1, . . . , wt)): On input crs = (ObfProve,ObfVerify), a Boolean cir-
cuit C : {0, 1}λ × {0, 1}m → {0, 1}, and a collection of witnesses w1, . . . , wt ∈
{0, 1}m, the prover algorithm does the following:

• Compute π1 ← ObfProve(C, 1, w1,⊥).
• For i = 2, . . . , t, compute πi ← ObfProve(C, i, wi, πi−1).
• Output πt.

– V(crs, C, t, π): On input crs = (ObfProve,ObfVerify), a Boolean circuit
C : {0, 1}λ × {0, 1}m → {0, 1}, the instance count t ∈ [2λ], and a proof
π ∈ {0, 1}λ, the verification algorithm outputs ObfVerify(C, t, π).

Completeness and security analysis. We now state the completeness and security
properties of Construction 3.1, but defer their proofs to the full version of this
paper.
Theorem 3.2 (Completeness). If iO is correct, then Construction 3.1 is
complete.

Theorem 3.3 (Soundness). If PRF is functionality preserving and a secure
puncturable PRF, PRG is a secure PRG, and iO is secure, then Construction
3.1 satisfies non-adaptive soundness.

Theorem 3.4 (Succinctness). Construction 3.1 is fully succinct.

Theorem 3.5 (Zero Knowledge). Construction 3.1 satisfies perfect zero
knowledge.

Fig. 1. Program Prove[K]

Fully Succinct Batch Arguments for NP from iO 543

Fig. 2. Program Verify[K]

4 Non-Adaptive BARGs for NP from BARGs for Index
Languages

In this section, we describe an adaptation of the compiler of Choud-
huri et al. [CJJ21b] for upgrading a batch argument for index language to
a batch argument for NP. The transformation of Choudhuri et al. relied on
somewhere extractable commitments, which can be based on standard lattice
assumptions [HW15,CJJ21b] or pairing-based assumptions [WW22]. Here, we
show that the same transformation is possible using the positional accumulators
introduced by Koppula et al. [KLW15]. The advantage of basing the transforma-
tion on positional accumulators is that we can construct positional accumulators
directly from indistinguishability obfuscation and one-way functions, so we can
apply the transformation to Construction 3.1 from Sect. 3 to obtain a fully suc-
cinct batch argument for NP from the same set of assumptions. A drawback of
using positional accumulators in place of somewhere extractable commitments is
that our transformation can only provide non-adaptive soundness, whereas the
Choudhuri et al. transformation satisfies the stronger notion of semi-adaptive
somewhere extractability.

Positional accumulators. Like a somewhere statistically binding (SSB) hash
function [HW15], a positional accumulator allows a user to compute a short
“digest” or “hash” y of a long input (x1, . . . , xt). The scheme supports local
openings where the user can open y to the value xi at any index i with a short
opening πi. The security property is that the hash value y is statistically bind-
ing at a certain (hidden) index i∗. An important difference between positional
accumulators and somewhere statistically binding hash functions is that posi-
tional accumulators are statistically binding for the hash y of a specific tuple of
inputs (x1, . . . , xt) while SSB hash functions are binding for all hash values. We
give the definition below. Our definition is a simplification of the corresponding
definition of Koppula et al. [KLW15, §4] and we summarize the main differences
in Remark 4.3.

Definition 4.1 (Positional Accumulators [KLW15, adapted]). Let � ∈ N

be an input length. A positional accumulator scheme for inputs of length � is
a tuple of PPT algorithms ΠPA = (Setup,SetupEnforce,Hash,Open,Verify) with
the following properties:

544 R. Garg et al.

– Setup(1λ, 1�) → pp: On input the security parameter λ and the input length
�, the setup algorithm outputs a set of public parameters pp.

– SetupEnforce(1λ, 1�, (x1, . . . , xt), i∗) → pp: On input the security parameter λ,
an input length �, a tuple of inputs x1, . . . , xt ∈ {0, 1}�, and an index i∗ ∈ [t],
the enforcing setup algorithm outputs a set of public parameters pp.

– Hash(pp, (x1, . . . , xt)) → y: On input the public parameters pp, a tuple of
inputs x1 ∈ {0, 1}�, . . . , xt ∈ {0, 1}�, the hash algorithm outputs a value y.
This algorithm is deterministic.

– Open(pp, (x1, . . . , xt), i) → π: On input the public parameters pp, a tuple
of inputs x1 ∈ {0, 1}�, . . . , xt ∈ {0, 1}� and an index i ∈ [t], the opening
algorithm outputs an opening π.

– Verify(pp, y, x, i, π) → {0, 1}: On input the public parameters pp, a hash value
y, an input x ∈ {0, 1}�, an index i ∈ {0, 1}λ, and an opening π, the verification
algorithm outputs a bit {0, 1}.

Moreover, the positional accumulator ΠPA should satisfy the following properties:

– Correctness: For all security parameters λ ∈ N and input lengths � ∈ N, all
polynomials t = t(λ), indices i ∈ [t], and inputs x1, . . . , xt ∈ {0, 1}�, it holds
that

Pr

⎡

⎣Verify(pp, y, xi, i, π) = 1 :
pp ← Setup(1λ, 1�),

y ← Hash(pp, (x1, . . . , xt)),
π ← Open(pp, (x1, . . . , xt), i)

⎤

⎦ = 1.

– Succinctness: The length of the hash value y output by Hash and the length
of the proof π output by Open in the completeness experiment satisfy |y| =
poly(λ, �) and |π| = poly(λ, �).

– Setup indistinguishability: For a security parameter λ, a bit b ∈ {0, 1},
and an adversary A, we define the setup-indistinguishability experiment as
follows:

• Algorithm A starts by choosing inputs x1, . . . , xt ∈ {0, 1}�, and an index
i ∈ [t].

• If b = 0, the challenger samples pp ← Setup(1λ, 1�). Otherwise, if b = 1,
the challenger samples pp ← SetupEnforce(1λ, 1�, (x1, . . . , xt), i). It gives
pp to A.

• Algorithm A outputs a bit b′ ∈ {0, 1}, which is the output of the experi-
ment.

We say that ΠPA satisfies (τ, ε)-setup-indistinguishability if for all adversaries
running in time τ = τ(λ), there exists λA ∈ N such that for all λ > λA

|Pr[b′ = 1 | b = 0] − Pr[b′ = 1 | b = 1]| ≤ ε(λ).

in the setup-indistinguishability experiment.
– Enforcing: Fix a security parameter λ ∈ N, block size � ∈ N, a polynomial

t = t(λ), an index i∗ ∈ [t], and a set of inputs x1, . . . , xt. We say that a
set of public parameters pp are “enforcing” for a tuple (x1, . . . , xt, i

∗) if there
does not exist a pair (x, π) where x �= xi∗ , Verify(pp, y, x, i∗, π) = 1, and

Fully Succinct Batch Arguments for NP from iO 545

y ← Hash(pp, (x1, . . . , xt)). We say that the positional accumulator is enforc-
ing if for every polynomial � = �(λ), t = t(λ), index i∗ ∈ [t] and inputs
x1, . . . , xt ∈ {0, 1}�, there exists a negligible function negl(·) such that for all
λ ∈ N,

Pr[pp is “enforcing” for (x1, . . . , xT , i∗) :
pp ← SetupEnforce(1λ, 1�, (x1, . . . , xt), i∗)] ≥ 1 − negl(λ),

where the probability is taken over the random coins of SetupEnforce.

Theorem 4.2 (Positional Accumulators [KLW15]). Assuming the existence
of an indistinguishability obfuscation scheme and one-way functions, there exists
a positional accumulator for arbitrary polynomial input lengths � = �(λ).

Remark 4.3 (Comparison with [KLW15]). Definition 4.1 describes a simplified
variant of the positional accumulator from Koppula et al. [KLW15, §4]. Specif-
ically, we instantiate their construction with an (implicit) bound of T = 2λ for
the number of values that can be accumulated. The positional accumulators
from Koppula et al. also supports insertions (i.e., “writes”) to the accumulator
structure, whereas in our setting, all of the inputs are provided upfront (as an
input to Hash).

Construction 4.4 (Batch Argument for NP Languages). Let λ be a secu-
rity parameter and s = s(λ) be a bound on the size of the Boolean circuit. We
construct a BARG scheme that supports arbitrary NP languages with up to
T = 2λ instances (i.e., which suffices to support an arbitrary polynomial num-
ber of instances) and Boolean circuits of size at most s. For ease of notation, we
use the set [2λ] and the set {0, 1}λ interchangably in the following description.
Our construction relies on the following primitives:

– Let ΠPA = (PA.Setup,PA.SetupEnforce,PA.Hash,PA.Open,PA.Verify) be a
positional accumulator for inputs of length �.

– Let ΠIndexBARG = (IndexBARG.Gen, IndexBARG.P, IndexBARG.V) be a BARG
for index languages (that supports up to T = 2λ instances).5

We define our batch argument ΠBARG = (Gen,P,V) for batch circuit satisfiability
languages as follows:

– Gen(1λ, 1�, 1s): On input the security parameter λ, the statement length �,
and a bound on the circuit size s, sample pp ← PA.Setup(1λ, 1�). Let s′ be a
bound on the size of the following circuit:
Then, sample IndexBARG.crs ← IndexBARG.Gen(1λ, 1s′

). Output the common
reference string crs = (pp, IndexBARG.crs).

5 Our transformation also applies in the setting where the number of instances is
bounded and the transformed scheme inherits the same bound. For simplicity of
exposition, we just describe the transformation for the unbounded case.

546 R. Garg et al.

Fig. 3. The Boolean circuit C′[pp, h, C] for an index relation

– P(crs, C, (x1, . . . , xt), (w1, . . . , wt)): On input the common reference string
crs = (pp, IndexBARG.crs), a Boolean circuit C : {0, 1}� × {0, 1}m →
{0, 1}, statements x1, . . . , xt ∈ {0, 1}�, and witnesses w1, . . . , wt ∈ {0, 1}m,
compute h ← PA.Hash(pp, (x1, . . . , xt)). Then, for each i ∈ [t], let
σi ← PA.Open(pp, (x1, . . . , xt), i) and let w′

i = (xi, σi, wi). Output π ←
IndexBARG.P(IndexBARG.crs, C ′[pp, h, C], t, (w′

1, . . . , w
′
t)), where C ′[pp, h, C]

is the circuit for the index relation from Fig. 3.
– V(crs, C, (x1, . . . , xt), π): On input the common reference

string crs = (pp, IndexBARG.crs), the Boolean circuit C : {0, 1}� × {0, 1}m →
{0, 1}, instances x1, . . . , xt ∈ {0, 1}�, and a proof π, the verifica-
tion algorithm computes h ← PA.Hash(pp, (x1, . . . , xt)) and outputs
IndexBARG.V(IndexBARG.crs, C ′[pp, h, C], t, π), where C ′[pp, h, C] is the cir-
cuit for the index relation from Fig. 3.

Completeness and security analysis. We now state the completeness and security
properties of Construction 4.4, but defer their formal analysis to the full version
of this paper.

Theorem 4.5 (Completeness). If ΠIndexBARG is complete and ΠPA is correct,
then Construction 4.4 is complete.

Theorem 4.6 (Soundness). Suppose ΠIndexBARG satisfies non-adaptive sound-
ness, ΠPA satisfies setup-indistinguishability and is enforcing. Then, Construc-
tion 4.4 satisfies non-adaptive soundness.

Theorem 4.7 (Succinctness). If ΠIndexBARG is succinct (resp., fully succinct),
ΠPA is efficient, then Construction 4.4 is succinct (resp., fully succinct).

Theorem 4.8 (Zero Knowledge). If ΠIndexBARG is perfect zero-knowledge,
then Construction 4.4 is perfect zero-knowledge.

Remark 4.9 (Weaker Notions of Zero Knowledge). If ΠIndexBARG satisfies compu-
tational (resp., statistical) zero-knowledge, then Construction 4.4 satisfies com-
putational (resp., statistical) zero-knowledge. In other words, Construction 4.4
preserves the zero-knowledge property on the underlying index BARG.

Fully Succinct Batch Arguments for NP from iO 547

5 Updatable Batch Argument for NP

We say that a BARG scheme is updatable if it supports an a priori unbounded
number of statements (see Definition 2.7) and the prover algorithm is updatable.
Formally, we replace the prover algorithm P in the BARG with an UpdateP
algorithm. The UpdateP algorithm takes in statements (x1, . . . , xt), a proof πt on
these t statements, a new statement xt+1, along with an associated witness wt+1,
and outputs an “updated” proof πt+1 on the new set of statements (x1, . . . , xt+1).
The updated proof should continue to satisfy the same succinctness requirements
as before. We give the formal definition below:
Definition 5.1 (Updatable BARGs). An updatable batch argument (BARG)
for the language of Boolean circuit satisfiability consists of a tuple of PPT algo-
rithms ΠBARG = (Gen,UpdateP,V) with the following properties:
– Gen(1λ, 1�, 1s) → crs: On input the security parameter λ ∈ N, a bound on the

instance size � ∈ N, and a bound on the maximum circuit size s ∈ N, the
generator algorithm outputs a common reference string crs.

– UpdateP(crs, C, (x1, . . . , xt), πt, xt+1, wt+1) → πt+1: On input the common
reference string crs, a Boolean circuit C : {0, 1}� × {0, 1}m → {0, 1}, a list
of statements x1, . . . , xt ∈ {0, 1}�, a proof πt, a new statement xt+1 ∈ {0, 1}�

and witness wt+1 ∈ {0, 1}m, the update algorithm outputs an updated proof
πt+1. Note that the list of statements (x1, . . . , xt) is allowed to be empty. We
will write ⊥ to denote an empty list of statements.

– V(crs, C, (x1, . . . , xt), π) → b: On input the common reference string crs, a
Boolean circuit C : {0, 1}�×{0, 1}m → {0, 1}, a list of statements x1, . . . , xt ∈
{0, 1}�, and a proof π, the verification algorithm outputs a bit b ∈ {0, 1}.

An updatable BARG scheme should satisfy the following properties:
– Completeness: For every security parameter λ ∈ N and bounds t ∈ N,

� ∈ N, and s ∈ N, Boolean circuits C : {0, 1}� × {0, 1}m → {0, 1} of size
at most s, any collection of statements x1, . . . , xt ∈ {0, 1}� and associated
witnesses w1, . . . , wt ∈ {0, 1}m where C(xi, wi) = 1 for all i ∈ [t], we have
that

Pr ∀i ∈ [t] : V(crs, C, (x1, . . . , xi), πi) = 1 :

crs ← Gen(1λ, 1�, 1s) , π0 ← ⊥,

πi ← UpdateP(crs, C, (x1, . . . , xi−1), πi−1, xi, wi)

for all i ∈ [t]

= 1.

– Succinctness: Similar to Definition 2.6, we require two succinctness prop-
erties:

• Succinct proof size: There exists a universal polynomial poly(·, ·, ·),
such that for every i ∈ [t], |πi| = poly(λ, log i, s) in the completeness
experiment above.

• Succinct verification time: There exists a universal polynomial
poly(·, ·, ·) such that for all i ∈ [t], the verification algorithm
V(crs, C, (x1, . . . , xi), πi) runs in time poly(λ, i, �) + poly(λ, log i, s) in the
completeness experiment above.

– Soundness: The soundness definition is defined exactly as in Definition 2.6.
– Perfect zero knowledge: The zero-knowledge definition is defined exactly

as in Definition 2.6.

548 R. Garg et al.

5.1 Updatable BARGs for NP from Indistinguishability Obfuscation

We now give a direct construction of an updatable batch argument for NP lan-
guages from indistinguishability obfuscation together with somewhere statisti-
cally binding (SSB) hash functions [HW15]. We start with a construction that
provides non-adaptive soundness. We then show to use complexity leveraging to
obtain a construction with adaptive soundness.

Two-to-one somewhere statistically binding hash functions. Our construction
will rely on a two-to-one somewhere statistically binding (SSB) hash func-
tion [OPWW15]. Informally, a two-to-one SSB hash function hashes two input
blocks to an output whose size is comparable to the size of a single block. We
recall the definition below:

Definition 5.2 (Two-to-One Somewhere Statistically Binding Hash
Function [OPWW15]). Let λ be a security parameter. A two-to-one some-
where statistically binding (SSB) hash function with block size �blk = �blk(λ)
and output size �out = �out(λ, �blk) is a tuple of efficient algorithms ΠSSB =
(Gen,GenTD, LocalHash) with the following properties:

– Gen(1λ, 1�blk) → hk: On input the security parameter λ and the block size �blk,
the generator algorithm outputs a hash key hk.

– GenTD(1λ, 1�blk , i∗) → hk: On input a security parameter λ, a block size �blk,
and an index i∗ ∈ {0, 1}, the trapdoor generator algorithm outputs a hash key
hk.

– LocalHash(hk, x0, x1) → y: On input a hash key hk and two inputs x0, x1 ∈
{0, 1}�blk , the hash algorithm outputs a hash y ∈ {0, 1}�out .

Moreover, ΠSSB should satisfy the following requirements:

– Succinctness: The output length �out satisfies �out(λ, �blk) = �blk · (1 +
1/Ω(λ)) + poly(λ).

– Index hiding: For a security parameter λ, a bit b ∈ {0, 1}, and an adversary
A, we define the index-hiding experiment as follows:

• Algorithm A starts by choosing a block size �blk, and an index i ∈ {0, 1}.
• If b = 0, the challenger samples hk0 ← Gen(1λ, 1�blk). Otherwise, if b = 1,

the challenger samples hk1 ← GenTD(1λ, 1�blk , i). It gives hkb to A.
• Algorithm A outputs a bit b′ ∈ {0, 1}, which is the output of the experi-

ment.
We say that ΠSSB satisfies (τ, ε)-index-hiding, if for all adversaries running
in time τ = τ(λ), there exists λA ∈ N such that for all λ > λA, |Pr[b′ = 1 |
b = 0] − Pr[b′ = 1 | b = 1]| ≤ ε(λ) in the index-hiding experiment.

– Somewhere statistically binding: Let λ ∈ N be a security parameter and
� ∈ N be an input length. We say a hash key hk is"statistically binding"
at index i ∈ {0, 1}, if there does not exist two inputs (x0, x1) and (x∗

0, x
∗
1)

such that x∗
i �= xi and Hash(hk, (x0, x1)) = Hash(hk, (x∗

0, x
∗
1)). We then say

that the hash function is somewhere statistically binding if for all polynomials
�blk = �blk(λ), there exists a negligible function negl(·) such that for all indices
i∗ ∈ {0, 1} and all λ ∈ N,

Pr[hk is statistically binding at index i : hk ← GenTD(1λ, 1�blk , i)] ≥ 1 − negl(λ).

Fully Succinct Batch Arguments for NP from iO 549

Theorem 5.3 (Somewhere Statistically-Binding Hash Functions
[OPWW15]). Under standard number-theoretic assumptions (e.g., DDH, DCR,
LWE, or φ-Hiding), there exists a two-to-one somewhere statistically binding
hash function for arbitrary polynomial block size �blk = �blk(λ).

Notation. Our updatable BARG construction uses a tree-based construction.
Before describing the construction, we introduce some notation. First, for an
integer t < 2d, we write bind(t) ∈ {0, 1}d to denote the d-bit binary representa-
tion of t. For two strings ind ∈ {0, 1}∗, ind′ ∈ {0, 1}∗, let pad(ind) and pad(ind′)
be the respective strings padded with zeros to the length max{|ind|, |ind′|}. We
say ind ≤ ind′ if pad(ind) comes before pad(ind′) lexicographically. For strings
s1, s2 ∈ {0, 1}∗, we write s1‖s2 to denote their concatenation. We say that a
string x ∈ {0, 1}∗ is a prefix of a string y ∈ {0, 1}∗ if there exists a string
z ∈ {0, 1}∗ such that y = x‖z.

Binary trees. A binary tree Γ of height d consists of nodes where each node
is indexed by a binary string of length at most d. We now define a recursive
labeling scheme for the nodes of the tree; subsequently, we will refer to nodes by
their labels.

– Root node: The root node is labeled with the empty string ε.
– Child nodes: The left child of node ind has label ind‖0 and the right child

has label ind‖1. We also say that node ind‖0 is the “left sibling” of the node
ind‖1.

We define the level of a node ind by level(ind) = d − |ind|. In particular, the
root node is at level d while the leaf nodes are at level 0. We write {0, 1}≤d

to denote the set of node labels associated in the binary tree (i.e., the set of
all binary strings of length at most d). Finally, we can also associate each node
in the binary tree with a value; formally, for a binary tree Γ we write val(ind)
to denote the value associated with the node ind. When we write (Γ, val(·)), we
imply our binary tree has been initialized with the corresponding value function.
Finally, we define the notion of a “path” and a “frontier” of a node in a binary
tree Γ :

– Path of a node: We define the path associated with a node ind ∈ {0, 1}≤d

as
path(ind) = {ind′ | ind′ ∈ {0, 1}≤d and ind′ is a prefix of ind}.

Namely, path(ind) consists of the nodes along the path from the root to ind.
– Frontier of a node: For any ind ∈ {0, 1}≤d, we define

frontier(ind) = {ind}∪{ind′ ∈ {0, 1}≤d | ind′ is a left sibling of a node in path(ind)}.

Construction 5.4 (Non-Adaptive Updatable Batch Argument for NP).
Let λ be a security parameter, � = �(λ) be the statement size, and s = s(λ) be

a bound on the size of the Boolean circuit. We construct an updatable BARG

550 R. Garg et al.

Fig. 4. Program Prove[K, hk]

scheme that supports NP languages with up to T = 2λ instances of length �
and circuit size at most s. Note that setting T = 2λ means the construction
support an arbitrary polynomial number of instances. Our construction relies on
the following primitives:

– Let ΠSSB = (SSB.Gen,SSB.GenTD,SSB.LocalHash) be a two-to-one some-
where statistically binding hash function with output length �out =
�out(λ, �blk), where �blk denotes the block length. Our construction will con-
sider a binary tree of depth d = λ, and we define a sequence of block
lengths �0, . . . , �d where �0 = � and for j ∈ [d], let �j = �out(λ, �j−1).6 Let
�max = max(�0, . . . , �j).

– Let ΠPRF = (PRF.Setup,PRF.Puncture,PRF.Eval) be a puncturable PRF with
key space {0, 1}λ, domain {0, 1}≤s × {0, 1}≤�max × {0, 1}d and range {0, 1}λ.

– Let iO be an indistinguishability obfuscator for general circuits.
– Let PRG be a pseudorandom generator with domain {0, 1}λ and range

{0, 1}2λ.

We define our updatable batch argument ΠBARG = (Gen,UpdateP,Verify) for NP
languages as follows:

– Gen(1λ, 1�, 1s): On input the security parameter λ, the statement size �, and
a bound on the circuit size s, the setup algorithm starts by sampling a PRF
key K ← PRF.Setup(1λ). For j ∈ [d], sample hkj ← SSB.Gen(1λ, 1�j−1), Let
hk ← (hk1, . . . , hkd) and define the proving program Prove[K, hk] and the

6 Formally, our hash function will take inputs in {0, 1}�j−1∪{⊥}. For ease of exposition,
we drop the special input symbol ⊥ in our block length description.

Fully Succinct Batch Arguments for NP from iO 551

Fig. 5. Program Verify[K]

verification program Verify[K] as follows:
The setup algorithm obfuscates the above programs to obtain ObfProve ←
iO(1λ,Prove[K, hk]) and ObfVerify ← iO(1λ,Verify[K]). Note that both the
proving circuit Prove[K, hk] and Verify[K] are padded to the maximum size
of any circuit that appears in the proof of Theorem 5.6. Finally, it outputs
the common reference string crs = (ObfProve,ObfVerify, hk).

– UpdateP(crs, C, (x1, . . . , xt), πt, xt+1, wt+1): On input a common reference
string crs = (ObfProve,ObfVerify, hk), a Boolean circuit C : {0, 1}�×{0, 1}m →
{0, 1}, a set of statements x1, . . . , xt, xt+1 ∈ {0, 1}�, a proof πt =
{(ind, πind)}ind∈I on the first t statements where I ⊂ {0, 1}≤d, and a wit-
ness wt+1 ∈ {0, 1}m, the update algorithm proceeds as follows:
1. If t = 0, let ind(1) = bind(0) = 0d. Let

π ← ObfProve(C, x1,⊥, ind(1), w1,⊥) and output {(ind(1), π)}.
2. Otherwise, if t �= 0, the update algorithm computes ind(t) = bind(t − 1)

and checks that frontier(ind(t)) = I. If the check fails, then the update
algorithm outputs ⊥.

3. Next, the update algorithm constructs a binary tree (Γhash, valhash) ←
Hash[hk](x1, . . . , xt) of depth d whose values correspond to the statements
(x1, . . . , xt) and their hashes. Specifically, we define the Hash[hk] function
as follows:
Essentially, Hash[hk] computes a Merkle tree on the statements
(x1, . . . , xt).

4. The update algorithm then defines a binary tree Γproof of depth d with
the following value function valproof :

• For each index ind ∈ I, let valproof(ind) = πind.
• Let ind(t+1) = bind(t). Let
valproof(ind(t+1)) = ObfProve(C, xt+1,⊥, ind(t+1), wt+1,⊥).

• For all other nodes ind /∈ I, let valproof(ind) = ⊥.
The invariant will be that the nodes ind associated with the frontier of
leaf node t (with index bind(t − 1)) are associated with a proof πind.

5. Let ind′ be the longest common prefix to ind(t) and ind(t+1). Write ind(t) =
b1 · · · bd and ind′ = b1 · · · bρ, where ρ = |ind′| denotes the length of the
common prefix. If ρ < d − 1, then we apply the following procedure for
k = d − 1, . . . , ρ + 1 to merge proofs:

552 R. Garg et al.

• Let ind = b1 · · · bK and compute

valproof(ind) ← ObfProve (C, h1, h2, ind, valproof(ind‖0), valproof(ind‖1)) ,

where h1 ← valhash(ind‖0) and h2 ← valhash(ind‖1).
6. Output the updated proof, πt+1 = {(ind, valproof(ind))}ind∈frontier(ind(t+1)).

– V(crs, C, (x1, . . . , xt), π): On input crs = (ObfProve,ObfVerify, hk), a Boolean
circuit C : {0, 1}� × {0, 1}m → {0, 1}, statements x1, . . . , xt ∈ {0, 1}� and a
proof π = {(ind, πind)}ind∈I , the verification algorithm proceeds as follows:
1. The algorithm constructs a

binary tree (Γhash, valhash) ← Hash[hk](x1, . . . , xt) (defined in Fig. 6) of
depth d whose values correspond to the statements (x1, . . . , xt) and their
hashes.

2. Let ind(t) = bind(t − 1). If I �= frontier(ind(t)), output ⊥.
3. Finally, the verification algorithm checks

that ObfVerify(C, valhash(ind), ind, πind) = 1 for all ind ∈ frontier(ind(t)).
If any checks fail, output 0. Otherwise output 1.

Completeness and security analysis. We now state the completeness and security
properties of Construction 5.4, but defer their proofs to the full version of this
paper.

Theorem 5.5 (Completeness). If iO is correct, then Construction 5.4 is
complete.

Theorem 5.6 (Soundness). If ΠPRF is correct and a secure puncturable PRF,
PRG is a secure PRG, ΠSSB is a secure statistically binding two-to-one SSB hash
and iO is secure, then Construction 5.4 satisfies non-adaptive soundness.

Theorem 5.7 (Succinctness). If ΠSSB is succinct, then, Construction 5.4 is
fully succinct.

Theorem 5.8 (Zero-knowledge). Construction 5.4 satisfies perfect zero-
knowledge.

Combining Theorems 5.5 to 5.8, we obtain the following corollary:

Corollary 5.9 (Non-Adaptive Updatable BARGs). Assuming the exis-
tence of a secure indistinguishability obfuscation scheme and of somewhere
extractable hash functions, there exists an updatable batch argument for NP.

Acknowledgments. We thank the anonymous TCC reviewers for helpful feedback on
this work. B. Waters is supported by NSF CNS-1908611, a Simons Investigator award,
and the Packard Foundation Fellowship. D. J. Wu is supported by NSF CNS-2151131,
CNS-2140975, a Microsoft Research Faculty Fellowship, and a Google Research Scholar
award.

Fully Succinct Batch Arguments for NP from iO 553

Fig. 6. The function Hash[hk](x1, . . . , xt)

References

[ACL+22] Albrecht, M.R., Cini, V., Lai, R.W.F., Malavolta, G., Thyagarajan, S.:
Lattice-based SNARKs: publicly verifiable, preprocessing, and recursively
composable. In: CRYPTO (2022)

[AS15] Asharov, G., Segev, G.: Limits on the power of indistinguishability obfus-
cation and functional encryption. In: FOCS, pp. 191–209 (2015)

[BBHR18] Eli, B.-S., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and
post-quantum secure computational integrity. IACR Cryptol. ePrint Arch.
(2018)

[BCC+17] Bitansky, N., et al.: The Hunting of the SNARK. J. Cryptology 30(4),
989–1066 (2016). https://doi.org/10.1007/s00145-016-9241-9

[BCCT12] Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable col-
lision resistance to succinct non-interactive arguments of knowledge, and
back again. In: ITCS (2012)

[BCCT13] Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition
and bootstrapping for SNARKS and proof-carrying data. In: STOC, pp.
111–120 (2013)

https://doi.org/10.1007/s00145-016-9241-9

554 R. Garg et al.

[BCI+13] Bitansky, N., Canetti, R., Ishai, Y., Ostrovsky, R., Paneth, O.: Succinct
non-interactive arguments via linear interactive proofs. In: TCC (2013)

[BCPR14] Bitansky, N., Canetti, R., Paneth, O., Rosen, A.: On the existence of
extractable one-way functions. In: STOC (2014)

[BGI+01] Barak, B., et al.: On the (im)possibility of obfuscating programs. In:
CRYPTO, pp. 1–18 (2001)

[BGI14] Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudoran-
dom functions. In: PKC, pp. 501–519 (2014)

[BISW17] Boneh, D., Ishai, Y., Sahai, A., Wu, D.J.: Lattice-based SNARGs and
their application to more efficient obfuscation. In: EUROCRYPT (2017)

[BISW18] Boneh, D., Ishai, Y., Sahai, A., Wu, D.J.: Quasi-optimal snargs via linear
multi-prover interactive proofs. In: EUROCRYPT, pp. 222–255 (2018)

[BW13] Boneh, D., Waters, B.: Constrained pseudorandom functions and their
applications. In: ASIACRYPT, pp. 280–300 (2013)

[CHM+20] Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.P.: Marlin:
Preprocessing zkSNARKs with universal and updatable SRS. In: EURO-
CRYPT (2020)

[CJJ21a] Choudhuri, A.R., Jain, A., Jin, Z.: Non-interactive batch arguments for
NP from standard assumptions. In: CRYPTO, pp. 394–423 (2021)

[CJJ21b] Choudhuri, A.R., Jain, A., Jin, Z.: Snargs for P from LWE. In: FOCS,
pp. 68–79 (2021)

[COS20] Chiesa, A., Ojha, D., Spooner, N.: Post-quantum and transparent recur-
sive proofs from holography. In: EUROCRYPT, Fractal (2020)

[DFH12] Damgård, I., Faust, S., Hazay, C.: Secure two-party computation with low
communication. In: TCC (2012)

[DGKV22] Devadas, L., Goyal, R., Kalai, Y., Vaikuntanathan, V.: Rate-1 non-
interactive arguments for batch-NP and applications. IACR Cryptol.
ePrint Arch. (2022)

[GGPR13] Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span pro-
grams and succinct NIZKs without PCPs. In: EUROCRYPT (2013)

[Gro10] Groth, J.: Short pairing-based non-interactive zero-knowledge arguments.
In: ASIACRYPT (2010)

[Gro16] Groth, J.: On the size of pairing-based non-interactive arguments. In:
EUROCRYPT (2016)

[GW11] Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from
all falsifiable assumptions. In: STOC, pp. 99–108 (2011)

[HW15] Hubácek, P., Wichs, D.: On the communication complexity of secure func-
tion evaluation with long output. In: ITCS, pp. 163–172 (2015)

[JLS21] Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-
founded assumptions. In: STOC, pp. 60–73 (2021)

[JLS22] Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from LPN
over f_p, dlin, and prgs in nĉ 0. In: EUROCRYPT (2022)

[KLW15] Koppula, V., Lewko, A.B., Waters, B.: Indistinguishability obfuscation for
turing machines with unbounded memory. In: STOC, pp. 419–428 (2015)

[KPTZ13] Kiayias, A., Papadopoulos, S., Triandopoulos, S., Zacharias, T.: Delegat-
able pseudorandom functions and applications. In: ACM CCS, pp. 669–
684 (2013)

[Lip13] Lipmaa, H.: Succinct non-interactive zero knowledge arguments from span
programs and linear error-correcting codes. In: ASIACRYPT (2013)

[Mer87] Merkle, R.C.: A digital signature based on a conventional encryption func-
tion. In: CRYPTO, pp. 369–378 (1987)

Fully Succinct Batch Arguments for NP from iO 555

[Mic95] Micali, S.: Computationally-sound proofs. In: Proceedings of the Annual
European Summer Meeting of the Association of Symbolic Logic (1995)

[Nao03] Naor, M.: On cryptographic assumptions and challenges. In: CRYPTO
(2003)

[OPWW15] Okamoto, T., Pietrzak, K., Waters, B., Wichs, D.: New realizations of
somewhere statistically binding hashing and positional accumulators. In:
ASIACRYPT, pp. 121–145 (2015)

[PHGR13] Parno, B., Howell, J., Gentry, C., Raykova, M.: Nearly practical verifiable
computation. In: IEEE Symposium on Security and Privacy, Pinocchio
(2013)

[Set20] Setty, S.T.V.: Spartan: efficient and general-purpose zkSNARKs without
trusted setup. In: CRYPTO (2020)

[SW14] Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deni-
able encryption, and more. In: STOC (2014)

[WW22] Waters, B., Wu, D.J.: Batch arguments for NP and more from standard
bilinear group assumptions. In: CRYPTO (2022)

	Fully Succinct Batch Arguments for NP from Indistinguishability Obfuscation
	1 Introduction
	1.1 Technical Overview

	2 Preliminaries
	2.1 Batch Arguments for NP

	3 Non-Adaptive Batch Arguments for Index Languages
	4 Non-Adaptive BARGs for NP from BARGs for Index Languages
	5 Updatable Batch Argument for NP
	5.1 Updatable BARGs for NP from Indistinguishability Obfuscation

	References

