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Abstract. Secret-sharing is one of the most fundamental primitives in
cryptography, and has found several applications. All known construc-
tions of secret sharing (with the exception of those with a pathological
choice of parameters) require access to uniform randomness. However,
in practice it is extremely challenging to generate a source of uniform
randomness. This has led to a large body of research devoted to design-
ing randomized algorithms and cryptographic primitives from imperfect
sources of randomness. Motivated by this, Bosley and Dodis (TCC 2007)
asked whether it is even possible to construct a 2-out-of-2 secret sharing
scheme without access to uniform randomness.

In this work, we make significant progress towards answering this
question. Namely, we resolve this question for secret sharing schemes
with important additional properties: 1-bit leakage-resilience and non-
malleability. We prove that, for not too small secrets, it is impossible to
construct any 2-out-of-2 leakage-resilient or non-malleable secret sharing
scheme without access to uniform randomness.

Given that the problem of whether 2-out-of-2 secret sharing requires
uniform randomness has been open for more than a decade, it is rea-
sonable to consider intermediate problems towards resolving the open
question. In a spirit similar to NP-completeness, we also study how the
existence of a t-out-of-n secret sharing without access to uniform random-
ness is related to the existence of a t′-out-of-n′ secret sharing without
access to uniform randomness for a different choice of the parameters
t, n, t′, n′.

1 Introduction

Secret sharing, introduced by Blakley [12] and Shamir [47], strikes a meaningful
balance between availability and confidentiality of secret information. This fun-
damental cryptographic primitive has found a host of applications, most notably
to threshold cryptography and multi-party computation (see [21] for an exten-
sive discussion). In a secret sharing scheme for n parties, a dealer who holds a
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secret s chosen from a domain M can compute a set of n shares by evaluating
a randomized function on s which we write as Share(s) = (Sh1, . . . ,Shn). The
notion of threshold secret sharing is particularly important: A t-out-of-n secret
sharing scheme ensures that any t shares are sufficient to recover the secret s,
but any t − 1 shares reveal no information about the secret s.

Motivated by practice, several variants of secret sharing have been sug-
gested which guarantee security under stronger adversarial models. The notion
of leakage-resilient secret sharing was put forth in order to model and han-
dle side-channel attacks to secret shared data. In more detail, the adversary,
who holds an unauthorized subset of shares, is furthermore allowed to spec-
ify a leakage function Leak from a restricted family of functions and learn
Leak(Sh1, . . . ,Shn). The goal is that this additional side information reveals
almost no information about the secret. Typically one considers local leakage,
where Leak(Sh1, . . . ,Shn) = (Leak1(Sh1), . . . , Leakn(Shn)) for local leakage func-
tions Leaki with bounded output length. This makes sense in a scenario where
shares are stored in physically separated locations. The alternative setting where
adversaries are allowed to corrupt all shares (e.g., by infecting storage devices
with viruses) led to the introduction of non-malleable secret sharing. In this
case, the adversary specifies tampering functions f1, f2, . . . , fn which act on the
shares, and then the reconstruction algorithm is applied to the tampered shares
f1(Sh1), . . . , fn(Shn). The requirement, roughly speaking, is that either the orig-
inal secret is reconstructed or it is destroyed, i.e., the reconstruction result is
unrelated to the original secret. Both leakage-resilient and non-malleable secret
sharing have received significant attention in the past few years.

Cryptography with Weak Randomness. It is well-known that randomness plays
a fundamental role in cryptography and other areas of computer science. In
fact, most cryptographic goals cannot be achieved without access to a source
of randomness. Almost all settings considered in the literature assume that this
source of randomness is perfectly random: It outputs uniformly random and
independent bits. However, in practice it is extremely hard to generate perfect
randomness. The randomness needed for the task at hand is generated from
some physical process, such as electromagnetic noise or user dependent behav-
ior. While these sources have some inherent randomness, in the sense that they
contain entropy, samples from such sources are not necessarily uniformly dis-
tributed. Additionally, the randomness generation procedure may be partially
accessible to the adversary, in which case the quality of the randomness provided
degrades even further. The difficulty in working with such imperfect randomness
sources not only arises from the fact that they are not uniformly random, but
also because the exact distribution of these sources is unknown. One can at best
assume that they satisfy some minimal property, for example that none of the
outcomes is highly likely as first considered by Chor and Goldreich [19].

The best one can hope for is to deterministically extract a nearly per-
fect random string for direct usage in the desired application. While there are
source models which allow for determinisitc randomness extraction, such as von
Neumann sources [42], bit-fixing sources [20], affine sources [15], and other effi-
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ciently generated or recognizable sources [11,13,18,29,30,35,37,46,51], all these
models make strong assumptions about the structure of the source. On the other
hand, the most natural, flexible, and well-studied source model where we only
assume a lower bound on the min-entropy of the source1 does not allow deter-
ministic extraction of even 1 almost uniformly random bit [19]. This holds even
in the highly optimistic case where the source is supported on {0, 1}d and has
min-entropy d − 1. Nevertheless, it has been long known, for example, that min-
entropy sources are sufficient for simulating certain randomized algorithms and
interactive protocols [19].

This discussion naturally leads us to wonder whether perfect randomness is
essential in different cryptographic primitives, in the sense that the underlying
class of sources of randomness allows deterministic extraction of nearly uniformly
random bits. We call such classes of sources extractable. More concretely, the
following is our main question.

Question 1. Does secret sharing, or any of its useful variants such as
leakage-resilient or non-malleable secret sharing, require access to extractable
randomness?

This question was first asked by Bosley and Dodis [14] (for 2-out-of-2 secret
sharing) and it remains open. Bosley and Dodis settled the analogous question for
the case of information-theoretic private-key encryption, motivated by a series of
(im)possibility results for such schemes in more specific source models [24,26,41].
More precisely, they showed that encryption schemes using d bits of randomness
and encrypting messages of size b > log d require extractable randomness, while
those encrypting messages of size b < log d − log log d − 1 do not.

As noted in [14,25], private-key encryption schemes yield 2-out-of-2 secret
sharing schemes by seeing the uniformly random key as the left share and the
ciphertext as the right share. Therefore, we may interpret the main result of [14]
as settling Question 1 for the artificial and highly restrictive class of secret sharing
schemes where the left share is uniformly random and independent of the secret,
and the right share is a deterministic function of the secret and the left share.
No progress has been made on Question 1 since.

Random-Less Reductions for Secret Sharing. Given that the problem of whether
2-out-of-2 secret sharing requires extractable randomness has been open for 15
years, it is reasonable to consider intermediate problems towards resolving the
open question. In a spirit similar to computational complexity, we consider how
the question whether t out of n secret sharing requires extractable randomness
is related to the same question for a different choice of the parameters t, n i.e.,

Question 2. Given t, n, t′, n′, does the fact that t-out-of-n secret sharing require
extractable randomness imply that t′-out-of-n′ secret sharing require extractable
randomness?

1 A source is said to have min-entropy k if the probability that it takes any fixed value
is upper bounded by 2−k.
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A natural approach towards resolving this question is to try to construct a t-out-
of-n secret sharing scheme from a t′-out-of-n′ secret sharing scheme in a black-
box manner without any additional randomness. Intuitively, since we don’t have
access to any additional randomness, it seems that the most obvious strategy
to achieve such reductions is to choose n subsets of the set of n′ shares in such
a way that any t out of these n subsets contain at least t′ out of the original
n′ shares and any t − 1 subsets contain at most t′ − 1 of the original n′ shares.
In particular, there is a trivial reduction when t = n = 2 that chooses the first
subset to contain the first of the n′ shares, and the second subset to contain any
t′ − 1 of the remaining shares. This shows the completeness of the extractability
of 2-out-of-2 secret sharing with respect to these reductions. Such reductions can
be formalized via distribution designs [49].

1.1 Our Results

In this work, we make progress on both Question 1 and Question 2. Before we
proceed to discuss our results, we formalize the notions of an extractable class
of randomness sources and threshold secret sharing.

Definition 1 (Extractable class of sources). We say a class of randomness
sources Y over {0, 1}d is (δ, m)-extractable if there exists a deterministic func-
tion Ext : {0, 1}d → {0, 1}m such that2 Ext(Y ) ≈δ Um for every Y ∈ Y, where
Um denotes the uniform distribution over {0, 1}m.

Note that we may consider the support of all sources in Y to be contained in
some set {0, 1}d without loss of generality. Since we will be interested in studying
the quality of randomness used by secret sharing schemes, we make the class of
randomness sources allowed for a secret sharing scheme explicit in the definition
of t-out-of-n threshold secret sharing below.

Definition 2 (Threshold secret sharing scheme). A tuple (Share, Rec, Y)
with Share : {0, 1}b × {0, 1}d →

(
{0, 1}�

)n and Rec : {0, 1}∗ → {0, 1}b deter-
ministic algorithms and Y a class of randomness sources over {0, 1}d is a (t, n, ε)-
secret sharing scheme (for b-bit messages using d bits of randomness) if for every
randomness source Y ∈ Y the following hold:

1. If T ⊆ [n] satisfies |T | ≥ t (i.e., T is authorized), then

Pr
Y

[Rec(Share(x, Y )T ) = x] = 1

for every x ∈ {0, 1}b;
2. If T ⊆ [n] satisfies |T | < t (i.e., T is unauthorized), then for any x, x′ ∈

{0, 1}b we have
Share(x, Y )T ≈ε Share(x′, Y )T ,

where Share(x, Y )T denotes the shares of parties i ∈ T .
2 We use the notation X ≈δ Y to denote the fact that Δ(X; Y ) ≤ δ, where Δ(·; ·)

corresponds to statistical distance (see Definition 8).
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Leakage-Resilient 2-out-of-2 Secret Sharing Requires Extractable Ran-
domness. As our first contribution, we settle Question 1 for the important
sub-class of leakage-resilient 2-out-of-2 secret sharing. Intuitively, we consider 2-
out-of-2 secret sharing schemes with the additional property that the adversary
learns almost nothing about the message when they obtain bounded information
from each share. More formally, we have the following definition.

Definition 3 (Leakage-resilient secret sharing scheme). We say that a
tuple (Share, Rec, Y) with Share : {0, 1}b × {0, 1}d →

(
{0, 1}�

)2 and Rec :
{0, 1}∗ → {0, 1}b deterministic algorithms and Y a class of randomness sources
over {0, 1}d is an (ε1, ε2)-leakage-resilient secret sharing scheme (for b-bit mes-
sages using d bits of randomness) if (Share, Rec, Y) is a (t = 2, n = 2, ε1)-
secret sharing scheme and the following additional property is satisfied: For any
two messages x, x′ ∈ {0, 1}b and randomness source Y ∈ Y, let (Sh1,Sh2) =
Share(x, Y ) and (Sh′

1,Sh′
2) = Share(x′, Y ). Then, for any leakage functions

f, g : {0, 1}� → {0, 1} it holds that

f(Sh1), g(Sh2) ≈ε2 f(Sh′
1), g(Sh′

2).

Leakage-resilient secret sharing has received significant attention recently,
with several constructions and leakage models being analyzed [1,10,17,36,38,
39,48]. Comparatively, Definition 3 considers a significantly weaker notion of
leakage-resilience than all works just mentioned. In particular, we do not require
leakage-resilience to hold even when the adversary has full access to one of the
shares on top of the leakage. This means that our results are widely applicable.
Roughly speaking, we prove that every leakage-resilient secret sharing scheme for
b-bit messages either requires a huge number of bits of randomness, or we can
extract several bits of perfect randomness with low error from its underlying
class of randomness sources. More formally, we prove the following.

Theorem 1. Let (Share, Rec, Y) be an (ε1, ε2)-leakage-resilient secret sharing
scheme for b-bit messages. Then, either:

1. The scheme uses d ≥ min
(
2Ω(b), (1/ε2)Ω(1)) bits of randomness, or;

2. The class of sources Y is (δ, m)-extractable with δ ≤ max
(

2−Ω(b), ε
Ω(1)
2

)
and

m = Ω(min(b, log(1/ε2))). Moreover, if Share is computable by a poly(b)-
time algorithm, then Y is (δ, m)-extractable by a family of poly(b)-size circuits.

An important corollary of Theorem 1 is that every efficient negligible-error
leakage-resilient secret sharing scheme requires extractable randomness with neg-
ligible error.

Corollary 1. If (Share, Rec, Y) is an (ε1, ε2)-leakage-resilient secret sharing
scheme for b-bit messages running in time poly(b) with ε2 = negl(b),3 it follows
that Y is (δ, m)-extractable with δ = negl(b) and m = Ω(min(b, log(1/ε2))).

3 By ε2 = negl(b), we mean that ε2 = o(1/bc) for every constant c > 0 as b → ∞.
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Split-State Non-malleable Coding Requires Extractable Randomness. Non-
malleable coding, introduced by Dziembowski, Pietrzak, and Wichs [31], is
another recent notion which has attracted much attention, in particular regard-
ing the split-state setting (see [3] and references therein). Informally, a split-state
non-malleable code has the guarantee that if an adversary is allowed to split a
codeword in half and tamper with each half arbitrarily but separately, then the
tampered codeword either decodes to the same message, or the output of the
decoder is nearly independent of the original message. More formally, we have
the following definition.

Definition 4 (Split-state non-malleable code [31]). A tuple (Enc, Dec, Y)
with Enc : {0, 1}b × {0, 1}d → ({0, 1}�)2 and Dec : ({0, 1}�)2 → {0, 1}b ∪ {⊥}
deterministic algorithms and Y a class of randomness sources is a (split-state)
ε-non-malleable code if the following holds for every randomness source Y ∈ Y:

1. Pr[Dec(Enc(x, Y )) = x] = 1 for all x ∈ {0, 1}b;
2. For tampering functions f, g : {0, 1}� → {0, 1}�, denote by Tampf,g

x the tam-
pering random experiment which computes (L, R) = Enc(x, Y ) and outputs
Dec(f(L), g(R)). Then, for any tampering functions f and g there exists a
distribution Df,g over {0, 1}b ∪ {⊥, same∗} such that

Tampf,g
x ≈ε Simf,g

x

for all x ∈ {0, 1}b, where Simf,g
x denotes the random experiment which sam-

ples z according to Df,g and outputs z if z 
= same∗ and x if z = same∗.

The notion of non-malleable code in the split-state model is equivalent to the
notion of a 2-out-of-2 non-malleable secret sharing scheme [34].

It is known by [2, Lemmas 3 and 4] that every ε-non-malleable coding scheme
(Enc, Dec, Y) for b-bit messages is also a (2ε, ε)-leakage-resilient secret shar-
ing scheme, provided b ≥ 3 and ε < 1/20. Combining this observation with
Theorem 1 yields the following corollary, which states that every split-state non-
malleable code either uses a huge number of bits of randomness, or requires
extractable randomness with low error and large output length.

Corollary 2. Let (Enc, Dec, Y) be an ε-non-malleable code (i.e., 2-out-of-2 ε-
non-malleable secret sharing scheme) for b-bit messages with b ≥ 3 and ε < 1/20.
Then, either:

1. The scheme uses d ≥ min
(
2Ω(b), (1/ε)Ω(1)) bits of randomness, or;

2. The class of sources Y is (δ, m)-extractable with δ ≤ max
(
2−Ω(b), εΩ(1)) and

m = Ω(min(b, log(1/ε))). Moreover, if Enc is computable by a poly(b)-time
algorithm, then Y is (δ, m)-extractable by a family of poly(b)-size circuits.

As a result, an analogous version of Corollary 1 also holds for split-state non-
malleable coding. This resolves Question 1 for 2-out-of-2 non-malleable secret
sharing.
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Random-Less Reductions for Secret Sharing. In this section, we discuss
our contribution towards resolving Question 2. We focus on the following com-
plementary scenario: Suppose we have proved that all (t, n, ε)-secret sharing
schemes for b-bit messages using d bits of randomness require a (δ, m)-extractable
class of randomness sources. It is then natural to wonder whether such a result
can be bootstrapped to conclude that all (t′, n′, ε)-secret sharing schemes for
the same message length b and number of randomness bits d also require (δ, m)-
extractable randomness, for different threshold t′ and number of parties n′. A
natural approach is to set up general black-box reductions between different types
of secret sharing which, crucially, do not use extra randomness. In fact, if we can
obtain from a (t′, n′, ε)-secret sharing scheme (Share′, Rec′, Y) another (t, n, ε)-
secret sharing scheme (Share, Rec, Y) for b-bit messages which uses the same
class of randomness sources Y, then our initial assumption would allow us to
conclude that Y is (δ, m)-extractable.

Remarkably, we are able to obtain the desired reductions for a broad range
of parameters by exploiting a connection to the construction of combinatorial
objects called distribution designs, a term coined by Stinson and Wei [49] for the
old technique of devising a new secret sharing scheme by giving multiple shares of
the original scheme to each party. Surprisingly, although these objects have roots
going back to early work on secret sharing [9], they have not been the subject of
a general study. In this work, we obtain general and simple constructions of, and
bounds for, distribution designs, which are tight in certain parameter regimes.
We give two examples of reductions we derive from these results.

Corollary 3 (Informal). If every (t = 2, n, ε)-secret sharing scheme for b-
bit messages using d bits of randomness requires a (δ, m)-extractable class of
randomness sources, then so does every (t′, n′, ε)-secret sharing scheme for b-bit
messages using d bits of randomness whenever n ≤

(
n′

t′−1
)
. Moreover, this is the

best distribution-design-based reduction possible with t = 2.

Corollary 4 (Informal). If every (t, n, ε)-secret sharing scheme for b-bit mes-
sages using d bits of randomness requires a (δ, m)-extractable class of randomness
sources, then so does every (t′ = n′, n′, ε)-secret sharing scheme for b-bit mes-
sages using d bits of randomness whenever n′ ≥

(
n

t−1
)
. Moreover, this is the best

distribution-design-based reduction possible with t′ = n′.

1.2 Related Work

We begin by discussing the results on private-key encryption that led to the work
of Bosley and Dodis [14] in more detail. Early work by McInnes and Pinkas [41]
showed that min-entropy sources and Santha-Vazirani sources are insufficient for
information-theoretic private-key encryption of even 1-bit messages. This nega-
tive result was later extended to computationally secure private-key encryption
by Dodis, Ong, Prabhakaran, and Sahai [24], and was complemented by Dodis
and Spencer [26], who showed that, in fact, non-extractable randomness is suf-
ficient for information-theoretic private-key encryption of 1-bit messages. Later,
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the picture was completed by the aforementioned groundbreaking work of Bosley
and Dodis [14].

Besides the results already discussed above for private-key encryption and
secret sharing, the possibility of realizing other cryptographic primitives using
certain classes of imperfect randomness sources has also been studied. Non-
extractable randomness is known to be sufficient for message authentica-
tion [26,40], signature schemes [5,24], differential privacy [23,27,52], secret-key
agreement [5], identification protocols [5], and interactive proofs [24]. On the
other hand, Santha-Vazirani sources are insufficient for bit commitment, secret
sharing, zero knowledge, and two-party computation [24], and in some cases this
negative result even holds for Santha-Vazirani sources with efficient tampering
procedures [5].

In other directions, the security loss incurred by replacing uniform random-
ness by imperfect randomness was studied in [6,8], and the scenario where a
perfect common reference string is replaced by certain types of imperfect ran-
domness has also been considered [4,16]. The security of keyed cryptographic
primitives with non-uniformly random keys has also been studied [28].

1.3 Technical Overview

Leakage-Resilient Secret Sharing Requires Extractable Randomness.
We present a high-level overview of our approach towards proving Theorem 1.
Recall that our goal is to show that if (Share, Rec, Y) is an (ε1, ε2)-leakage-
resilient secret sharing for b-bit messages using d bits of randomness, then there
exists a deterministic function Ext : {0, 1}d → {0, 1}m such that Ext(Y ) ≈δ Um

for all sources Y ∈ Y, provided that the number of randomness bits d used is
not huge.

Our candidate extractor Ext works as follows on input some y ∈ {0, 1}d:

1. Compute (Sh1,Sh2) = Share(0b, y) ∈ {0, 1}� × {0, 1}�;
2. For appropriate leakage functions f, g : {0, 1}� → {0, 1}s, compute the tuple

(f(Sh1), g(Sh2));
3. For an appropriate function h : {0, 1}2s → {0, 1}m, output

Ext(y) = h(f(Sh1), g(Sh2)).

The proof of Theorem 1 follows from an analysis of this candidate construction,
and we show the existence of appropriate functions f , g, and h via the probabilis-
tic method. Note that the number of sources in Y may be extremely large. Con-
sequently, our first step, which is similar in spirit to the first step of the related
result for private-key encryption in [14], is to exploit the leakage-resilience of
the scheme in question to show that it suffices to focus on a restricted family
to prove the desired result. More precisely, it suffices to show the existence of
functions f , g, and h as above satisfying

h(f(Z1), g(Z2)) ≈δ′ Um, (1)
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with δ′ an appropriate error parameter, for all (Z1, Z2) ∈ Z defined as

Z = {Share(Ub, y) : y ∈ {0, 1}d},

which contains at most 2d distributions. Our analysis then proceeds in three
steps:
1. We show that each (Z1, Z2) ∈ Z is close in statistical distance to a con-

vex combination of joint distributions (D1,i, D2,i) with the property that
H∞(D1,i) + H∞(D2,i) is sufficiently large for all i, where H∞(·) denotes
the min-entropy of a distribution;

2. Exploiting the previous step, we prove that if we pick f and g uniformly
at random, then with high probability over this choice it holds that the joint
distribution (f(Z1), g(Z2)) is close in statistical distance to a high min-entropy
distribution;

3. A well known, standard application of the probabilistic method then shows
that a uniformly random function h will extract many perfectly random bits
from (f(Z1), g(Z2)) with high probability over the choice of h.

While this proves that there exist functions f , g, and h such that (1) holds for
a given (Z1, Z2) ∈ Z, we need (1) to be true simultaneously for all (Z1, Z2) ∈ Z.
We resolve this by employing a union bound over the at most 2d distributions
in Z. Therefore, if d is not extremely large, we succeed in showing the existence
of appropriate functions f , g, and h, and the desired result follows. More details
can be found in Sect. 3.

Random-Less Reductions for Secret Sharing. In this section, we define
distribution designs and briefly discuss how they can be used to provide the
desired black-box reductions between different types of threshold secret sharing,
in particular Corollaries 3 and 4. Intuitively, a (t, n, t′, n′)-distribution design
distributes shares (Sh1,Sh2, . . . ,Shn′) of some (t′, n′, ε)-secret sharing scheme
into subsets of shares S1, . . . , Sn, with the property that (S1, . . . , Sn) are now
shares of a (t, n, ε)-secret sharing scheme. More formally, we have the following
definition, which also appears in [49].
Definition 5 (Distribution design). We say a family of sets D1, D2, . . . ,
Dn ⊆ [n′] is a (t, n, t′, n′)-distribution design if for every T ⊆ [n] it holds that

∣
∣
∣
∣
∣

⋃

i∈T
Di

∣
∣
∣
∣
∣

≥ t′

if and only if |T | ≥ t.
Given a (t, n, t′, n′)-distribution design D1, . . . , Dn ⊆ [n′], it is clear how to

set up a black-box reduction without extra randomness from (t′, n′, ε)-secret
sharing to (t, n, ε)-secret sharing: If (Share′, Rec′, Y) is an arbitrary (t′, n′, ε)-
secret sharing scheme for b-bit messages, we can obtain a (t, n, ε)-secret sharing
scheme (Share, Rec, Y) for b-bit messages by defining

Share(x, y)i = Share′(x, y)Di
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for each i ∈ [n], and

Rec(Share(x, y)T ) = Rec′
(

Share′(x, y)⋃
i∈T

Di

)

for each T ⊆ [n]. The following lemma is then straightforward from the defini-
tions of threshold secret sharing and distribution designs, and this construction.

Lemma 1. If every (t, n, ε)-secret sharing scheme for b-bit messages using d
bits of randomness requires (δ, m)-extractable randomness and there exists a
(t, n, t′, n′)-distribution design, then so does every (t′, n′, ε)-secret sharing scheme
for b-bit messages using d bits of randomness.

Details of our constructions of distribution designs and associated bounds can be
found in Sect. 4. The black-box reductions then follow immediately by combining
these constructions with Lemma 1.

1.4 Open Questions

We obtain distribution designs for a wide variety of parameters, but for some of
these constructions we could not prove optimality or find a better construction.
We leave this as an open question. A naturally related question is whether there
is an alternative approach to obtain a random-less reduction for secret sharing
that does not use distribution designs.

Finally, we hope this work further motivates research on the main open ques-
tion of whether 2-out-of-2 secret sharing (or even t-out-of-n secret sharing for
any t and n) requires extractable randomness.

2 Preliminaries

2.1 Notation

Random variables are denoted by uppercase letters such as X, Y , and Z, and we
write Um for the uniform distribution over {0, 1}m. We usually denote sets by
uppercase calligraphic letters like S and T , and write [n] for the set {1, 2, . . . , n}.
Given a vector x ∈ Sn and set T ⊆ [n], we define xT = (xi)i∈T . We denote the
F2-inner product between vectors x, y ∈ {0, 1}n by 〈x, y〉. All logarithms in this
paper are taken with respect to base 2.

2.2 Probability Theory

In this section, we introduce basic notions from probability theory that will be
useful throughout this work.

Definition 6 (Min-entropy). The min-entropy of a random variable X on a
set X , denoted by H∞(X), is defined as

H∞(X) = − log max
x∈X

Pr[X = x].
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Definition 7 ((n, k)-source). We say a random variable X supported over
{0, 1}n is an (n, k)-source if H∞(X) ≥ k. When the support of the random
variable is clear from context we may instead say k-source. Moreover, we say X
is flat if it is uniformly distributed over a subset of {0, 1}n.

Definition 8. The statistical distance between random variables X and Y over
a set X , denoted by Δ(X, Y ), is defined as

Δ(X, Y ) = max
S⊆X

| Pr[X ∈ S] − Pr[Y ∈ S]| = 1
2

∑

x∈X
|Pr[X = x] − Pr[Y = x]|.

Moreover, we say that X and Y are ε-close, denoted by X ≈ε Y , if Δ(X, Y ) ≤ ε,
and ε-far if this does not hold.

The following lemma is a version of the well-known XOR lemma (see [33] for
a detailed exposition of these types of results).

Lemma 2 (XOR Lemma). If X and Y are distributions supported on {0, 1}t

such that
〈a, X〉 ≈ε 〈a, Y 〉

for all non-zero vectors a ∈ {0, 1}t, then

X ≈ε′ Y

for ε′ = 2t/2ε.

We end this section with a standard lemma stemming from a straightforward
application of the probabilistic method, which states that, with high probability,
a random function extracts almost perfect randomness from a fixed source with
sufficient min-entropy. By a union bound, this result also implies that a random
function is a great extractor for all sufficiently small classes of flat sources (and
convex combinations thereof), an observation we will exploit later on.

Lemma 3. Fix an (n, k)-source X. Then, for every ε > 0 it holds that a uni-
formly random function F : {0, 1}n → {0, 1}m with m ≤ k − 2 log(1/ε) satisfies
F (X) ≈ε Um with probability at least 1 − 2e−ε22k over the choice of F .

Proof. See Appendix A. �
The following extension of Lemma 3, stating that a random function con-

denses weak sources with high probability, will also be useful.

Lemma 4. Fix an (n, k)-source X. Then, for every ε > 0 it holds that a uni-
formly random function F : {0, 1}n → {0, 1}m satisfies F (X) ≈ε W for some W

such that H∞(W ) ≥ min(m, k − 2 log(1/ε)) with probability at least 1 − 2e−ε22k

over the choice of F .

Proof. For m′ = min(m, k − 2 log(1/ε)), let F ′ : {0, 1}n → {0, 1}m′ be the
restriction of F to its first m′ bits. Then, Lemma 3 ensures that F ′(X) ≈ε Um′

with probability at least 1−2e−ε22k over the choice of F . Via a coupling argument,
this implies that F (X) ≈ W for some W with H∞(W ) ≥ m′. �
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2.3 Amplifying Leakage-Resilience

Recall the definition of leakage-resilient secret sharing from Definition 3 already
discussed in Sect. 1. The following lemma states that every secret sharing scheme
withstanding 1 bit of leakage also withstands t > 1 bits of leakage from each
share, at the cost of an increase in statistical error.

Lemma 5. Let (Share, Rec, Y) be an (ε1, ε2)-leakage-resilient secret sharing
scheme. Then, for all secrets x, x′ ∈ {0, 1}b, randomness source Y ∈ Y, and
functions f, g : {0, 1}� → {0, 1}t we have

f(Sh1), g(Sh2) ≈ε′ f(Sh′
1), g(Sh′

2)

with ε′ = 2tε2, where (Sh1,Sh2) = Share(x, Y ) and (Sh′
1,Sh′

2) = Share(x′, Y ).

Proof. Fix arbitrary secrets x, x′ ∈ {0, 1}b and a randomness source Y ∈ Y,
and define (Sh1,Sh2) = Share(x, Y ) and (Sh′

1,Sh′
2) = Share(x′, Y ). Suppose

that there exist functions f, g : {0, 1}� → {0, 1}t such that the distributions
(f(Sh1), g(Sh2)) and (f(Sh′

1), g(Sh′
2)) are (ε′ = 2tε2)-far. Then, the XOR lemma

implies that there is a non-zero vector a ∈ {0, 1}2t, which we may write as
a = (a(1), a(2)) for a(1), a(2) ∈ {0, 1}t, such that the distributions

〈a, (f(Sh1), g(Sh2))〉 = 〈a(1), f(Sh1)〉 + 〈a(2), g(Sh2)〉

and
〈a, (f(Sh′

1), g(Sh′
2))〉 = 〈a(1), f(Sh′

1)〉 + 〈a(2), g(Sh′
2)〉

are ε2-far. Consequently, for f ′, g′ : {0, 1}� → {0, 1} defined as f ′(z) =
〈a(1), f(z)〉 and g′(z) = 〈a(2), g(z)〉 it holds that

f ′(Sh1), g′(Sh2) 
≈ε2 f ′(Sh′
1), g′(Sh′

2),

contradicting the fact that (Share, Rec, Y) is an (ε1, ε2)-leakage-resilient secret
sharing scheme. �

3 Randomness Extraction from Leakage-Resilient Secret
Sharing Schemes

In this section, we show that all 2-out-of-2 secret sharing schemes satisfying the
weak leakage-resilience requirement from Definition 2 require extractable ran-
domness with good parameters.

Theorem 2. Given any γ ∈ (0, 1), there are absolute constants cγ , c′
γ , c′′

γ > 0
such that the following holds: Suppose (Share, Rec, Y) is an (ε1, ε2)-leakage-
resilient secret sharing scheme for b-bit messages using d bits of randomness.
Then, if b ≥ cγ and d ≤ 2c′

γ b it holds that Y is (δ, m)-extractable with δ ≤
2bε2 + 2−c′′

γ b and m ≥ (1 − γ)b.
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We prove Theorem 2 via a sequence of lemmas by showing the existence of
an extractor Ext : {0, 1}d → {0, 1}m for the class Y with appropriate param-
eters. Our construction works as follows: On input y ∈ {0, 1}d, the extrac-
tor Ext computes (Ly, Ry) = Share(0b, y), applies special leakage functions
f, g : {0, 1}� → {0, 1}b to be determined in order to obtain local leakage
(f(Ly), g(Ry)), and finally outputs Ext(y) = h(f(Ly), g(Ry)) for an appropri-
ate function h : {0, 1}2b → {0, 1}m. Our goal is to show that

Ext(Y ) ≈δ Um (2)

for all sources Y ∈ Y. Similarly in spirit to [14], our first lemma shows that
in order to prove (2) we can instead focus on extracting randomness from the
family of distributions

Z = {Share(Ub, y) : y ∈ {0, 1}d}.

Lemma 6. Fix functions f, g : {0, 1}� → {0, 1}b and h : {0, 1}2b → {0, 1}m,
and suppose that

Ext′(Z) = h(f(Z1), g(Z2)) ≈δ′ Um (3)

for all Z = (Z1, Z2) ∈ Z. Then, it holds that Ext given by Ext(y) = h(f(Ly),
g(Ry)), where (Ly, Ry) = Share(0b, y), satisfies

Ext(Y ) ≈δ Um

for all Y ∈ Y with δ = 2bε2 + δ′.

Proof. Lemma 5 implies that

f(LY ), g(RY ) ≈ε′ f(L′
Y ), g(R′

Y ),

where (L′
Y , R′

Y ) = Share(Ub, Y ) holds with ε′ = 2bε2 for all Y ∈ Y, and so
Ext(Y ) ≈ε′ h(f(L′

K), g(R′
K)). Since (3) holds for all Z ∈ Z and Share(Ub, Y ) is

a convex combination of distributions in Z, it follows that h(f(L′
Y ), g(R′

Y )) ≈δ′

Um. The triangle inequality yields the desired result. �

Given Lemma 6, we will focus on proving (3) for appropriate functions f , g, and
h and error δ′ in the remainder of this section. We show the following lemma,
which implies Theorem 2 together with Lemma 6.

Lemma 7. Given any γ ∈ (0, 1), there are absolute constants cγ , c′
γ , c′′

γ > 0 such
that if b ≥ cγ and d ≤ 2c′

γ b, then there exist functions f, g : {0, 1}� → {0, 1}b

and h : {0, 1}2b → {0, 1}m such that

Ext′(Z) = h(f(Z1), g(Z2)) ≈δ′ Um

for all Z = (Z1, Z2) ∈ Z with δ′ ≤ 2−c′′
γ b and m ≥ (1 − γ)b.

The roadmap for the proof ahead is that we are first going to fix a Z ∈ Z,
and then do the following:
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1. Justify that Z = (Z1, Z2) is statistically close to an appropriate convex
combination of distributions with linear min-entropy that suit our purposes.
(Lemma 8)

2. Show that if we pick f and g uniformly at random, then with high proba-
bility over this choice it holds that (f(Z1), g(Z2)) is statistically close to a
distribution with decent min-entropy. (Lemma 9)

3. Note that a random function h extracts uniformly random bits from the tuple
(f(Z1), g(Z2)) with high probability, provided that this distribution contains
enough min-entropy. A union bound over the 2d distributions in Z concludes
the argument.

Lemma 8. Fix β ∈ (0, 1) and an integer r > 0. Then, for all (Z1, Z2) ∈ Z
it holds that (Z1, Z2) is

(
r · 2−(1−β−1/r)b)

-close to a distribution D =
∑

i∈I pi ·
(D1,i, D2,i) where for each i ∈ I ⊆ [r] it holds that D1,i, D2,i ∈ {0, 1}�, and
H∞(D1,i) ≥

(
β − ( i−1

r )
)
b and H∞(D2,i|D1,i = sh1) ≥

(
i−1

r

)
b for every sh1 ∈

supp(D1,i).

Proof. Fix some y ∈ {0, 1}d and set (Z1, Z2) = Share(Ub, y). It will be help-
ful for us to see Share(·, y) as a bipartite graph G with left and right vertex
sets {0, 1}� and an edge between sh1 and sh2 if (sh1, sh2) ∈ supp(Z1, Z2). Then,
(Z1, Z2) is the uniform distribution on the 2b edges of G by the correctness of
the scheme. For every left vertex sh1 ∈ {0, 1}�, we define its neighborhood

A(sh1) = {sh2 : (sh1, sh2) ∈ supp(Z1, Z2)}

and its degree
deg(sh1) = |A(sh1)|.

Note that (Z2|Z1 = sh1) is uniformly distributed over A(sh1), and so

H∞(Z2|Z1 = sh1) = log deg(sh1).

Partition supp(Z1) into sets

Si =
{
sh1 : 2(

i−1
r )b ≤ deg(sh1) < 2( i

r )b
}

for i ∈ [r]. With this definition in mind, we can express (Z1, Z2) as
∑

i∈[r]

Pr[Z1 ∈ Si](Z1, Z2|Z1 ∈ Si),

where (Z1, Z2|Z1 ∈ Si) denotes the distribution (Z1, Z2) conditioned on the
event that Z1 ∈ Si. Call a non-empty set Si good if

∑
sh1∈Si

deg(sh1) ≥ 2(β+1/r)b.
Otherwise the set Si is bad. Let I denote the set of indices i ∈ [r] such that Si

is good. We proceed to show that we can take the target distribution D in the
lemma statement to be D =

∑
i∈I pi · (D1,i, D2,i) for

pi = Pr[Z1 ∈ Si]
Pr[Z1lands on good set]
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with (D1,i, D2,i) = (Z1, Z2|Z1 ∈ Si) when i ∈ I.
To see this, consider the case where Si is good, i.e., we have∑

sh1∈Si
deg(sh1) ≥ 2(β+1/r)b. For each sh1 ∈ Si, we have

Pr[Z1 = sh1|Z1 ∈ Si] = deg(sh1)
∑

s∈Si
deg(s)

≤ 2 i
r b

2(β+1/r)b

= 2−(β−( i−1
r ))b.

Furthermore, for any sh1 ∈ Si and sh2 we know that

Pr[Z2 = sh2|Z1 = sh1] ≤ 2−( i−1
r )b.

Combining these two observations shows that in this case we have H∞(Z1|Z1 ∈
Si) ≥

(
β − ( i−1

r )
)
b and H∞(Z2|Z1 = sh1) ≥

(
i−1

r

)
b for all valid fixings sh1 ∈ Si.

To conclude the proof, consider D as above, which we have shown satisfies
the properties described in the lemma statement. Noting that D corresponds
exactly to (Z1, Z2) conditioned on Z1 landing on a good set, we have

Δ((Z1, Z2); D) ≤ Pr[Z1lands in a bad set].

It remains to bound this probability on the right-hand side. Assuming the set Si

is bad, it holds that
∑

sh1∈Si
deg(sh1) < 2(β+1/r)b. Therefore, since (Z1, Z2) takes

on any edge with probability 2−b, it holds that Z1 lands in Si with probability
at most 2−b · 2(β+1/r)b = 2−(1−β−1/r)b. There are at most r bad sets, so by a
union bound we have Pr[Z1lands in a bad set] ≤ r · 2−(1−β−1/r)b. �

Lemma 9. Fix α, β ∈ (0, 1) and an integer r. Then, with probability at least
1 − 3r · eb−α22min(b/r,(β−1/r)b) over the choice of uniformly random functions f, g :
{0, 1}� → {0, 1}b it holds that (f(Z1), g(Z2)) is

(
2α + r · 2−(1−β−1/r)b)

-close to
a (2b, (β − 1/r)b − 4 log(1/α))-source.

Proof. Suppose we pick functions f, g : {0, 1}� → {0, 1}b uniformly at random.
We begin by expressing (f(Z1), g(Z2)) as

∑

i∈[r]

Pr[Z1 ∈ Si](f(Z1), g(Z2)|Z1 ∈ Si),

which by Lemma 8 is
(
r · 2−(1−β−1/r)b)

-close to
∑

i∈I
Pr[Z1 ∈ Si](f(D1,i), g(D2,i)).
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We proceed by cases:

1. i−1
r ≥ β−1/r: We know from Lemma 8 that H∞(D2,i|D1,i = sh1) ≥ (β−1/r)b

for all sh1 ∈ supp(D1,i). By Lemma 4, we have

(g(D2,i)|D1,i = sh1) ≈α V

for some V with H∞(V ) ≥ (β − 1/r)b − 2 log(1/α) with probability at least
1 − 2e−α22(β−1/r)b over the choice of g. Since this holds for any valid fixing
D1,i = sh1, we conclude via a union bound over the at most 2b possible fixings
that

f(D1,i), g(D2,i) ≈α Wi

for some Wi with H∞(Wi) ≥ (β −1/r)b−2 log(1/α) with probability at least
1 − 2eb−α22(β−1/r)b over the choice of f and g.

2. 1/r ≤ i−1
r < β − 1/r: We know from Lemma 8 that H∞(D1,i) ≥

(
β − i−1

r

)
b

and H∞(D2,i|D1,i = sh1) ≥
(

i−1
r

)
b for all sh1 ∈ supp(D1,i). First, by Lemma 4

we conclude that with probability at least

1 − 2e−α22(β− i−1
r )b

≥ 1 − 2e−α22b/r

over the choice of f it holds that

f(D1,i) ≈α V1 (4)

for some V1 with H∞(V1) ≥ (β − i−1
r )b − 2 log(1/α). Analogously, for every

sh1 ∈ supp(D1,i), we can again invoke Lemma 4 to see that with probability
at least

1 − 2e−α22(
i−1

r )b

≥ 1 − 2e−α22b/r

over the choice of g, for any sh1 ∈ supp(D1,i) it holds that

(g(D2,i)|D1,i = sh1) ≈α V2,sh1 (5)

for some V2,sh1 with H∞(V2,sh1) ≥
(

i−1
r

)
b−2 log(1/α). By a union bound over

the at most 2b possible fixings sh1, we conclude that (5) holds simultaneously
for all sh1 ∈ supp(D1,i) with probability at least 1 − 2eb−α22b/r over the
choice of g. An additional union bound shows that this holds simultaneously
along (4) with probability at least 1 − 3eb−α22b/r over the choice of f and g,
which implies that

f(D1,i), g(D2,i) ≈2α Wi

for some Wi with

H∞(Wi) ≥
(

β − i − 1
r

)
b − 2 log(1/α) +

(
i − 1

r

)
b − 2 log(1/α)

= βb − 4 log(1/α).
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3. i = 1: In this case, by Lemma 8 we know that H∞(D1,i) ≥ βb. Therefore,
Lemma 4 implies that f(D1,i) ≈α V1 for some V1 such that H∞(V1) ≥ βb −
2 log(1/α) with probability at least 1−2e−α22βb ≥ 1−2e−α22b/r . This implies
that f(D1,i), g(D2,i) ≈α Wi for some Wi with H∞(Wi) ≥ βb − 2 log(1/α).

Finally, a union bound over the at most r indices i ∈ I yields the desired
statement. �

We are now ready to prove Lemma 7 with the help of Lemma 9.

Proof (Proof of Lemma 7). Fix some γ ∈ (0, 1). Then, we set β = 1−γ/2 > 1−γ,
α = 2−cb for a sufficiently small constant c > 0, and r > 0 a sufficiently large
integer so that

1 − γ ≤ β − 1/r − 6c (6)

and
1/r + 6c ≤ min(β, 1 − β)

100 . (7)

According to Lemma 9, we know that for any given Z = (Z1, Z2) ∈ Z it holds
that (f(Z1), g(Z2)) is (2α + r · 2−(1−β−1/r)b)-close to some (2b, (β − 1/r)b −
4 log(1/α))-source W with probability at least 1 − 3r · eb−α22min(b/r,(β−1/r)b) over
the choice of f and g.

Let m = (1 − γ)b and pick a uniformly random function h : {0, 1}2b →
{0, 1}m. Then, since m ≤ H∞(W ) − 2 log(1/α) by (6), Lemma 3 implies that
h(W ) ≈α Um, and hence

h(f(Z1), g(Z2)) ≈3α+r·2−(1−β−1/r)b Um, (8)

with probability at least

1 − 2e−α22(β−1/r)b−4 log(1/α) − 3r · eb−α22min(b/r,(β−1/r)b)

≥ 1 − 5r · eb−α22min(b/r,(β−1/r)b)−4 log(1/α)

over the choice of f , g, and h, via a union bound.
Now, observe that from (7), if b ≥ cγ for a sufficiently large constant cγ > 0,

it follows that
5r · eb−α22min(b/r,(β−1/r)b)−4 log(1/α) ≤ 2−22c′

γ b

for some constant c′
γ > 0. Moreover, under (7) we also have that

δ′ := 3α + r · 2−(1−β−1/r)b ≤ 2−c′′
γ b

for some constant c′′
γ > 0. Finally, a union bound over the 2d distributions in

Z shows that (8) holds simultaneously for all Z ∈ Z with probability at least
1 − 2d−22c′

γ b

. Consequently, if d ≤ 2c′
γ b it follows that there exist functions f , g,

and h such that (8) holds for all Z ∈ Z with the appropriate error δ′ and output
length m. �
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3.1 The Main Result

We now use Theorem 2 to obtain the main result of this section.

Theorem 3 (First part of Theorem 1, restated). Suppose (Share, Rec, Y)
is an (ε1, ε2)-leakage-resilient secret sharing scheme for b-bit messages. Then,
either:

– The scheme uses d ≥ min
(
2Ω(b), (1/ε2)Ω(1)) bits of randomness, or;

– The class of sources Y is (δ, m)-extractable with δ ≤ max
(

2−Ω(b), ε
Ω(1)
2

)
and

m = Ω(min(b, log(1/ε2))).

Proof. Given the scheme (Share, Rec, Y) from the theorem statement, let b′ =
min

(
b,

⌈
log(1/ε2)

100

⌉)
and consider the modified scheme (Share′, Rec′, Y) for b′-

bit messages obtained by appending 0b−b′ to every b′-bit message and running
the original scheme (Share, Rec, Y). Applying Theorem 2 to (Share′, Rec′, Y)
we conclude that either Share′, and hence Share, uses at least

2Ω(b′) = min
(

2Ω(b), (1/ε2)Ω(1)
)

bits of randomness, or Y is (δ, m)-extractable with

δ ≤ 2−Ω(b′) = max
(

2−Ω(b), ε
Ω(1)
2

)

and m = Ω(b′) = Ω(min(b, log(1/ε2))). �

3.2 Efficient Leakage-Resilient Secret Sharing Requires Efficiently
Extractable Randomness

In this section, we prove the remaining part of Theorem 1. We show that every
low-error leakage-resilient secret sharing scheme (Share, Rec, Y) for b-bit mes-
sages where Share is computed by a poly(b)-time algorithm admits a low-error
extractor for Y computable by a family of poly(b)-size circuits. Similarly to [14,
Section 3.1], this is done by replacing the uniformly random functions f , g, and
h in the proof of Theorem 2 by t-wise independent functions, for an appropriate
parameter t.

We say that a family of functions Ft from {0, 1}p to {0, 1}q is t-wise indepen-
dent if for F sampled uniformly at random from Ft it holds that the random vari-
ables F (x1), F (x2), . . . , F (xt) are independent and uniformly distributed over
{0, 1}q for any distinct x1, . . . , xt ∈ {0, 1}p. There exist t-wise independent fam-
ilies of functions Ft such that every f ∈ Ft can be computed in time poly(b)
and can be described by poly(b) bits whenever p, q, and t are poly(b) [14,22,51].
Therefore, since Share admits a poly(b)-time algorithm, it suffices to show the
existence of functions f , g, and h belonging to appropriate poly(b)-wise indepen-
dent families of functions such that Ext(Y ) = h(f(Sh1), g(Sh2)) is statistically
close to uniform, where (Sh1,Sh2) = Share(0b, Y ), for every source Y ∈ Y (the
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advice required to compute Ext would be the description of f , g, and h). We
accomplish this with the help of some auxiliary lemmas. The first lemma states
a standard concentration bound for the sum of t-wise independent random vari-
ables.

Lemma 10 ([22, Theorem 5], see also [7, Lemma 2.2]). Fix an even integer
t ≥ 2 and suppose that X1, . . . , XN are t-wise independent random variables in
[0, 1]. Let X =

∑N
i=1 Xi and μ = E[X]. Then, it holds that

Pr[|X − μ| ≥ ε · μ] ≤ 3
(

t

ε2μ

)t/2

for every ε < 1.

We can use Lemma 10 to derive analogues of Lemmas 3 and 4 for t-wise indepen-
dent functions.

Lemma 11. Suppose f : {0, 1}p → {0, 1}q is sampled uniformly at random from
a 2t-wise independent family of functions with q ≤ k − log t − 2 log(1/ε) − 5 and
t ≥ q, and let Y be a (p, k)-source. Then, it follows that

f(Y ) ≈ε Uq

with probability at least 1 − 2−t over the choice of f .

Proof. Fix a (p, k)-source Y and suppose f : {0, 1}p → {0, 1}q is sampled from
a family of 2t-wise independent functions. Note that

Δ(f(Y ); Uq) = 1
2

∑

z∈{0,1}q

| Pr[f(Y ) = z] − 2−q|.

For each y ∈ {0, 1}p and z ∈ {0, 1}q, consider the random variable Wy,z =
Pr[Y = y] · 1{f(y)=z}. Then, we may write

Δ(f(Y ); Uq) = 1
2

∑

z∈{0,1}q

∣
∣
∣
∣
∣
∣

∑

y∈{0,1}p

Wy,z − 2−q

∣
∣
∣
∣
∣
∣
.

Note that the Wy,z’s are 2t-wise independent, E[
∑

y∈{0,1}n Wy,z] = 2−q, and
that 2k · Wy,z ∈ [0, 1]. Therefore, an application of Lemma 10 with the random
variables (2k · Wy,z)y∈{0,1}p,z∈{0,1}q shows that

Pr

⎡

⎣

∣
∣
∣
∣
∣
∣

∑

y∈{0,1}p

Wy,z − 2−q

∣
∣
∣
∣
∣
∣

> 2ε · 2−q

⎤

⎦ ≤ 3
(

t · 2q

2ε22k

)t

.

Therefore, a union bound over all z ∈ {0, 1}q shows that f(Y ) ≈ε Uq fails to
hold with probability at most 3 ·2q ·2−t

(
t·2q

ε2·2k

)t ≤ 2−t over the choice of f , where
the inequality follows by the upper bound on q. �
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The proof of the following lemma is analogous to the proof of Lemma 4, but
using Lemma 11 instead of Lemma 3.

Lemma 12. Suppose f : {0, 1}p → {0, 1}q is sampled uniformly at random
from a 2t-wise independent family of functions with t ≥ q, and let Y be a (p, k)-
source. Then, it follows that f(Y ) ≈ε W for some W such that H∞(W ) ≥
min(q, k − log t − 2 log(1/ε) − 5) with probability at least 1 − 2−t over the choice
of f .

Following the reasoning used in the proof of Theorem 2 but sampling f, g :
{0, 1}� → {0, 1}b and h : {0, 1}b → {0, 1}m from 2t-wise independent families
of functions with t = 100 max(b, d) = poly(b), and using Lemmas 11 and 12 in
place of Lemmas 3 and 4, respectively, yields the following result analogous to
Theorem 2. Informally, it states that efficient low-error leakage-resilient secret
sharing schemes require low-complexity extractors for the associated class of
randomness sources.
Theorem 4. There exist absolute constants c, c′ > 0 such that the following
holds for b large enough: Suppose (Share, Rec, Y) is an (ε1, ε2)-leakage-resilient
secret sharing for b-bit messages using d bits of randomness such that Share
is computable by a poly(b)-time algorithm. Then, there exists a deterministic
extractor Ext : {0, 1}d → {0, 1}m computable by a family of poly(b)-size circuits
with output length m ≥ c · b such that

Ext(Y ) ≈δ Um

with δ = 2bε2 + 2−c′·b for every Y ∈ Y.
Finally, replacing Theorem 2 by Theorem 4 in the reasoning from Sect. 3.1

yields the remaining part of Theorem 1.

3.3 An Extension to the Setting of Computational Security

In this work we focus on secret sharing schemes with information-theoretic secu-
rity. However, it is also natural to wonder whether our result extends to secret
sharing schemes satisfying a reasonable notion of computational security. Indeed,
a slight modification to the argument used to prove Theorem 1 also shows that
computationally-secure efficient leakage-resilient secret sharing schemes require
randomness sources from which one can efficiently extract bits which are pseudo-
random (i.e., computationally indistinguishable from the uniform distribution).
We briefly discuss the required modifications in this section. For the sake of
exposition, we refrain from presenting fully formal definitions and theorem state-
ments.

First, we introduce a computational analogue of Definition 3. We say that
(Share, Rec, Y) is a computationally secure leakage-resilient secret sharing
scheme (for b-bit messages) if the scheme satisfies Definition 3 except that
the leakage-resilience property is replaced by the following computational ana-
logue: “For any leakage functions f, g : {0, 1}� → {0, 1} computed by poly(b)-
sized circuits and any two secrets x, x′ ∈ {0, 1}b, it holds that any adversary
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computable by poly(b)-sized circuits cannot distinguish between the distribu-
tions (f(Sh1), g(Sh2)) and (f(Sh′

1), g(Sh′
2)) with non-negligible advantage (in

some security parameter λ), where (Sh1,Sh2) = Share(x) and (Sh′
1,Sh′

2) =
Share(x′).”

Using this definition, the exact argument we used to prove Theorem 1 com-
bined with a modified version of Lemma 6 then shows that we can extract bits
which are computationally indistinguishable from the uniform distribution using
the class of randomness sources used to implement such a computationally-secure
leakage-resilient secret sharing scheme. In fact, the proof of Theorem 1 only
uses the leakage-resilience property of the secret sharing scheme in the proof
of Lemma 6. The remaining lemmas only make use of the correctness property
of the scheme, which remains unchanged in the computational analogue of Defi-
nition 3. Crucially, as shown in Sect. 3.2, we can construct the functions f , g, and
h so that they are computed by poly(b)-sized circuits assuming that the sharing
procedure is itself computable by poly(b)-sized circuits. Therefore, the following
computational analogue of Lemma 6, which suffices to conclude the proof of the
computational analogue of Theorem 1, holds: “Suppose that there are functions
f, g : {0, 1}� → {0, 1} and a function h : {0, 1}2b → {0, 1}m computable by
poly(b)-sized circuits such that

h(f(Z1), g(Z1)) ≈δ Um

for δ = negl(λ) and for all (Z1, Z2) in Z. Then, it holds that no adversary
computable by poly(b)-sized circuits can distinguish Ext(Y ) from a uniformly
random string with Y ∈ Y, where Ext(Y ) = h(f(LY ), g(RY )) and (Ly, Ry) =
Share(0b, Y ).”

4 Random-Less Reductions for Secret Sharing

In this section, we study black-box deterministic reductions between different
types of threshold secret sharing. Such reductions from (t′, n′, ε)-secret sharing
schemes to (t, n, ε)-secret sharing schemes (for the same message length b and
number of randomness bits d) would allow us to conclude that if all these (t, n, ε)-
secret sharing schemes require a (δ, m)-extractable class of randomness sources,
then so do all (t′, n′, ε)-secret sharing schemes. We provide reductions which
work over a large range of parameters and prove complementary results show-
casing the limits of such reductions. As already discussed in Sect. 1, our starting
point for devising black-box reductions is the notion of a distribution design as
formalized by Stinson and Wei [49] (with roots going back to early work on
secret sharing [9]), which we defined in Definition 5. As stated in Lemma 1, the
existence of a (t, n, t′, n′)-distribution design yields the desired reduction from
(t′, n′, ε)-secret sharing to (t, n, ε)-secret sharing. Therefore, we focus directly on
the study of distribution designs in this section.

We begin with a naive construction.
Theorem 5. There exists a (t, n, t′, n′)-distribution design whenever t′ ≥ t and
n′ ≥ n + (t′ − t). In particular, if every (t, n, ε)-secret sharing scheme for b-bit
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messages and using d bits of randomness requires a (δ, m)-extractable class of
randomness sources, then so does every (t′, n′, ε)-secret sharing scheme for b-bit
messages using d bits of randomness whenever t′ ≥ t and n′ ≥ n + (t′ − t).

Proof. Consider the (t, n, t′, n′)-distribution design D1, . . . , Dn obtained by set-
ting Di = {i} ∪ {n′ − (t′ − t) + 1, n′ − (t′ − t) + 2, . . . , n′}, which is valid exactly
when the conditions of the theorem are satisfied. �

The following result shows the limits of distribution designs, and will be used
to show the optimality of our constructions when t = 2 or t′ = n′.

Theorem 6. A (t, n, t′, n′)-distribution design exists only if
(

n′

t′−1
)

≥
(

n
t−1

)
and

t′ ≥ t.

Proof. Consider an arbitrary (t, n, t′, n′)-distribution design D1, D2, . . . , Dn.
First, note that it must be the case that all the Di’s are non-empty. This implies
that we must have t′ ≥ t. Second, to see that

(
n′

t′−1
)

≥
(

n
t−1

)
, consider all

(
n

t−1
)

distinct subsets T ⊆ [n] of size t−1, and denote DT =
⋃

i∈T Di. By the definition
of distribution design, it must hold that

|DT | ≤ t′ − 1.

Consider now modified sets D̂T obtained by adding arbitrary elements to DT so
that |D̂T | = t′ − 1. Then, from the definition of distribution design, for any two
distinct subsets T , T ′ ⊆ [n] of size t − 1 it must be the case that

∣
∣
∣D̂T ∪ D̂T ′

∣
∣
∣ ≥ t′.

This implies that D̂T 
= D̂T ′ for all distinct subsets T , T ′ ⊆ [n] of size t − 1,
which can only hold if

(
n′

t′−1
)

≥
(

n
t−1

)
. �

We now show that Theorem 6 is tight for a broad range of parameters. In
particular, when t = 2 or t′ = n′ we are able to characterize exactly under which
parameters a (t, n, t′, n′)-distribution design exists.

Theorem 7. There exists a (t = 2, n, t′, n′)-distribution design if and only if
n ≤

(
n′

t′−1
)
. In particular, if every (t = 2, n, ε)-secret sharing scheme for b-bit

messages using d bits of randomness requires (δ, m)-extractable randomness, then
so does every (t′, n′, ε)-secret sharing scheme for b-bit messages using d bits of
randomness whenever n ≤

(
n′

t′−1
)
.

Proof. Note that the condition n ≤
(

n′

t′−1
)

implies that we can take D1, . . . , Dn

to be distinct subsets of [n′] of size t′ − 1, and so |Di ∪ Dj | ≥ t′ for any distinct
indices i and j. The reverse implication follows from Theorem 6. �
Theorem 8. There exists a (t, n, t′ = n′, n′)-distribution design if and only if
n′ ≥

(
n

t−1
)
. In particular, if every (t, n, ε)-secret sharing scheme for b-bit mes-

sages using d bits of randomness requires (δ, m)-extractable randomness, then
so does every (n′, n′, ε)-secret sharing scheme for b-bit messages using d bits of
randomness whenever n′ ≥

(
n

t−1
)
.
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Proof. We show that a (t, n, n′, n′)-distribution design exists whenever n′ =(
n

t−1
)
, which implies the desired result. Let P denote the family of all subsets

of [n] of size t − 1, and set n′ = |P| =
(

n
t−1

)
(we may use any correspondence

between elements of P and integers in [n′]). Then, we define the set Di ⊆ P for
i ∈ [n] to contain all elements of P except the subsets of [n] which contain i.
We argue that D1, . . . , Dn is a distribution design with the desired parameters.
First, observe that for any distinct indices i1, i2, . . . , it−1 ∈ [n] it holds that

t−1⋃

j=1
Dij

= P \ {{i1, i2, . . . , it−1}}.

On the other hand, since {i1, . . . , it−1} ∈ Dit
for any index it 
= i1, . . . , it−1, it

follows that
⋃t

j=1 Dij
= P, as desired.

The reverse implication follows from Theorem 6. �

4.1 Distribution Designs from Partial Steiner Systems

In this section, we show that every partial Steiner system is also a distribution
design which beats the naive construction from Theorem 5 for certain parameter
regimes. Such set systems have been previously used in seminal constructions of
pseudorandom generators and extractors [43,50], and are also called combinato-
rial designs.

Definition 9 (Partial Steiner system). We say a family of sets D1, . . . , Dn ⊆
[n′] is an (n, n′, 
, a)-partial Steiner system if it holds that |Di| = 
 for every
i ∈ [n] and |Di ∩ Dj | ≤ a for all distinct i, j ∈ [n].

The conditions required for the existence of a partial Steiner system are well-
understood, as showcased in the following result from [32,43,50], which is nearly
optimal [44,45].
Lemma 13 ([32,43,50]). Fix positive integers n, 
, and a ≤ 
. Then, there
exists an (n, n′, 
, a)-partial Steiner system for every integer n′ ≥ e · n1/a · �2

a .
Noting that every partial Steiner system with appropriate parameters is also a
distribution design, we obtain the following theorem.

Theorem 9. Fix an integer a ≥ 1. Then, there exists a (t, n, t′, n′)-distribution
design whenever t′ ≥ t2 + at(t−1)2

2 and n′ ≥ en1/a

a ·
(

1 + t′

t + a(t−1)
2

)2
.

Proof. Fix an integer a ≥ 1 and an (n, n′, 
, a)-partial Steiner system
D1, . . . , Dn ⊆ [n′] with 
 =

⌈
t′

t + a(t−1)
2

⌉
. By Lemma 13 and the choice of 
,

such a partial Steiner system is guaranteed to exist whenever n′ satisfies the con-
dition in the theorem statement. We proceed to argue that this partial Steiner
system is also a (t, n, t′, n′)-distribution design. First, fix an arbitrary set T ⊆ [n]
of size t − 1. Then, we have

|DT | ≤ 
(t − 1) ≤ t′ − 1,
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where the rightmost inequality holds by our choice of 
 and the condition on t′

and t in the theorem statement. Second, fix an arbitrary set T ⊆ [n] of size t.
Then, it holds that

|DT | ≥ 
 + (
 − a) + (
 − 2a) + · · · + (
 − a(t − 1))

= 
 · t − at(t − 1)
2

≥ t′,

where the last equality follows again from our choice of 
 and the condition on
t′ and t in the theorem statement. �

When n is sufficiently larger than t and t′ and t′ is sufficiently larger than t,
the parameters in Theorem 9 cannot be attained by the naive construction from
Theorem 5, which always requires choosing t′ ≥ t and n′ ≥ n. For example, if
t3 ≤ t′ ≤ Ct3 for some constant C ≥ 1 then we can choose a = 2, in which case
we have

t2 + at(t − 1)2

2 ≤ t3 ≤ t′. (9)

Moreover, it holds that

en1/a

a
·
(

1 + t′

t
+ a(t − 1)

2

)2

≤ e
√

n

2 ·
(
Ct2 + t

)2

≤ 2eC2√
nt4. (10)

Combining (9) and (10) with Theorem 9, we obtain the following example result
showing it is possible to improve on Theorem 5 in some parameter regimes.
Corollary 5. Suppose t3 ≤ t′ ≤ Ct3 for some constant C ≥ 1. Then, there
exists a (t, n, t′, n′)-distribution design for any n′ ≥ 2eC2√

nt4. In particular, if
t ≤ n1/9 and n is large enough, we may choose n′ significantly smaller than n.
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A Proof of Lemma3
Fix an (n, k)-source X and pick a function F : {0, 1}n → {0, 1}m with m ≤
k − 2 log(1/ε) uniformly at random. It suffices to bound the probability that

| Pr[F (X) ∈ T ] − μ(T )| ≤ ε
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holds for every set T ⊆ {0, 1}m, where μ(T ) = |T |/2m denotes the density
of T . Fix such a set T , and let Zx = Pr[X = x] · 1F (x)∈T . Then, we have
Pr[F (X) ∈ T ] =

∑
x∈{0,1}n Zx and E

[∑
x∈{0,1}n Zx

]
= μ(T ). As a result, since

Zx ∈ [0, Pr[X = x]] for all x ∈ {0, 1}n, Hoeffding’s inequality4 implies that

Pr

⎡

⎣

∣
∣
∣
∣
∣
∣

∑

x∈{0,1}n

Zx − μ(T )

∣
∣
∣
∣
∣
∣

> ε

⎤

⎦ ≤ 2 · exp
(

− 2ε2
∑

x∈{0,1}n Pr[X = x]2

)

≤ 2 · e−2ε22k

.

The last inequality follows from the fact that
∑

x∈{0,1}n

Pr[X = x]2 ≤ max
x∈{0,1}n

Pr[X = x] ≤ 2−k,

since X is an (n, k)-source. Finally, a union bound over all 22m sets T ⊆ {0, 1}m

shows that the event in question holds with probability at least

1 − 2 · 22
m · e−2ε22k ≥ 1 − 2e−ε22k

over the choice of F , given the upper bound on m.
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