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Preface

The 20th Theory of Cryptography Conference (TCC 2022) was held during November
7–10, 2022, at the University of Chicago, USA. It was sponsored by the International
Association for Cryptologic Research (IACR). The general chair of the conference was
David Cash.

The conference received 139 submissions, of which the Program Committee (PC)
selected 60 for presentation giving an acceptance rate of 43%. Each submission was
reviewed by at least three PC members in a single-blind process. The 44 PC members
(including PC chairs), all top researchers in our field, were helped by 116 external
reviewers, who were consulted when appropriate. These proceedings consist of the
revised version of the 60 accepted papers. The revisions were not reviewed, and the
authors bear full responsibility for the content of their papers.

We are extremely grateful to Kevin McCurley for providing fast and reliable techni-
cal support for the HotCRP review software whenever we had any questions. We made
extensive use of the interaction feature supported by the review software, where PC
members could anonymously interact with authors. This was used to ask specific techni-
cal questions, such as those about suspected bugs or unclear connections to prior work.
We believe this approach improved our understanding of the papers and the quality of
the review process. We also thank Kay McKelly for her fast and meticulous help with
the conference website.

This was the eighth year that TCC presented the Test of Time Award to an out-
standing paper that was published at TCC at least eight years ago, making a significant
contribution to the theory of cryptography, preferably with influence also in other areas
of cryptography, theory, and beyond. This year, the Test of Time Award Committee
selected the following paper, published at TCC 2011: “Perfectly secure oblivious RAM
without random oracles” by Ivan Damgård, SigurdMeldgaard, and Jesper Buus Nielsen.
The award committee recognized this paper for “the first perfectly secure unconditional
Oblivious RAM scheme and for setting the stage for future Oblivious RAM and PRAM
schemes”. The authors were invited to deliver a talk at TCC 2022. The conference also
featured two other invited talks, by Rahul Santhanam and by Eran Tromer.

This year, TCC awarded a Best Young Researcher Award for the best paper authored
solely by young researchers. The award was given to the paper “A Tight Computational
Indistinguishability Bound of Product Distributions” by Nathan Geier.

We are greatly indebted to the many people who were involved in making TCC 2022
a success. A big thanks to the authors who submitted their papers and to the PC mem-
bers and external reviewers for their hard work, dedication, and diligence in reviewing
the papers, verifying their correctness, and discussing the papers in depth. We thank
the University of Chicago Computer Science department, Google Research, Algorand
Foundation, NTT Research, and Duality Technologies for their generous sponsorship
of the conference. A special thanks goes to the general chair David Cash, and to Brian
LaMacchia, Kevin McCurley, Kay McKelly, Sandry Quarles, Douglas Stebila, and the
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TCCSteering Committee. Finally, we are thankful to the thriving and vibrant community
of theoretical cryptographers. Long Live TCC!

September 2022 Eike Kiltz
Vinod Vaikuntanathan
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Post-quantum Insecurity from LWE

Alex Lombardi1, Ethan Mook2, Willy Quach2(B), and Daniel Wichs2,3

1 MIT, Cambridge, USA
alexjl@mit.edu

2 Northeastern, Boston, USA
{mook.e,quach.w}@northeastern.edu, wichs@ccs.neu.edu

3 NTT Research, Palo Alto, USA

Abstract. We show that for many fundamental cryptographic prim-
itives, proving classical security under the learning-with-errors (LWE)
assumption, does not imply post-quantum security. This is despite the
fact that LWE is widely believed to be post-quantum secure, and our
work does not give any evidence otherwise. Instead, it shows that post-
quantum insecurity can arise inside cryptographic constructions, even if
the assumptions are post-quantum secure.

Concretely, our work provides (contrived) constructions of pseu-
dorandom functions, CPA-secure symmetric-key encryption, message-
authentication codes, signatures, and CCA-secure public-key encryption
schemes, all of which are proven to be classically secure under LWE via
black-box reductions, but demonstrably fail to be post-quantum secure.
All of these cryptosystems are stateless and non-interactive, but their
security is defined via an interactive game that allows the attacker to
make oracle queries to the cryptosystem. The polynomial-time quantum
attacker can break these schemes by only making a few classical queries
to the cryptosystem, and in some cases, a single query suffices.

Previously, we only had examples of post-quantum insecurity under
post-quantum assumptions for stateful/interactive protocols. Moreover,
there appears to be a folklore intuition that for stateless/non-interactive
cryptosystems with black-box proofs of security, a quantum attack against
the scheme should translate into a quantumattack on the assumption.This
work shows otherwise. Our main technique is to carefully embed interac-
tive protocols inside the interactive security games of the above primitives.

As a result of independent interest, we also show a 3-round quantum
disclosure of secrets (QDS) protocol between a classical sender and a
receiver, where a quantum receiver learns a secret message in the third
round but, assuming LWE, a classical receiver does not.
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1 Introduction

Recent years have seen tremendous investment and progress in quantum comput-
ing (e.g., [3]), raising our hopes and fears that quantum computing may one day
become a reality. The fear is due to the fact that the public-key cryptosystems in
use today, based on the hardness of factoring and discrete-logarithms, are known
to be efficiently breakable by quantum computers. This brought about the search
for post-quantum secure cryptosystems that would remain unbreakable even by
quantum computers, and there is an ongoing NIST competition to standardize
such cryptosystems [35]. While there are several candidates, arguably the most
appealing ones are based on the learning with errors (LWE) assumption [36],
which is widely believed to be post-quantum secure. The LWE assumption is
also extremely versatile and enables us to construct many types of advanced
cryptosystems, such as fully homomorphic encryption [14,22], attribute-based
encryption [25], and more.

Post-quantum Security of Cryptosystems? While the post-quantum security of
LWE itself has been well studied, the post-quantum security of the various cryp-
tosystems based on LWE has been given considerably less scrutiny. In general,
one can ask:

When does classical security under a post-quantum assumption imply
post-quantum security?

For example, is it the case that cryptosystems (encryption, signatures, PRFs,
etc.) with classical black-box proofs of security under LWE1 are also guaranteed
to be post-quantum2 secure? At first glance, it may seem that this should
generally hold, based on the following reasoning: black-box reductions should be
oblivious to the computational model and should therefore work equally well for
classical attackers and quantum attackers. In particular, a black-box reduction
should convert any attack on the cryptosystem, whether classical or quantum,
into an equivalent attack on the underlying assumption.

Post-Quantum Insecurity for Protocols. Unfortunately, the above intuition is
not rigorous and fails on closer inspection. The most glaring reason for this is
due to rewinding in the context of interactive protocols.

1 The same question could also be asked for cryptosystems based on any of the other
candidate post-quantum assumptions such as isogenies or even post-quantum secure
one-way functions or collision-resistant hashing. We frame our discussion in terms
of LWE for concreteness and because our eventual results specifically rely on LWE.

2 We focus on “post-quantum security”, where only the adversary is quantum, but
all interaction with the cryptosystem is classical. We distinguish this from what is
sometimes called “quantum security” [45], where the cryptosystem needs to also
accept quantum inputs. For the latter, it is already known that, e.g., allowing an
adversary quantum query access to a PRF may compromise security. We discuss this
in detail in Sect. 1.2.
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A classical black-box security reduction for interactive protocols can (and
typically does) rewind the adversary and restore its state to some earlier point
in the execution. While this is a valid form of analysis for classical adversaries, we
cannot always rewind and restore the state of a quantum adversary. In particular,
if the adversary performs some measurements on its internal quantum state
during the protocol execution, then this can destroy the state in a way that
makes it impossible to restore.

The issue of rewinding has been known for some time in the context of
establishing zero knowledge [27,41] and computational soundness [1,39,40] for
interactive proofs/arguments. For example, it was recognized that classical black-
box security proofs of zero-knowledge do not appear to generically translate to
the post-quantum setting; instead, there has been much recent work trying to
understand and prove the security of specific interactive protocols [9,16,17,32,
41] by relying on substantially more complex techniques.

We highlight that this issue is not merely a limitation of our security analysis;
we can also provide explicit examples of interactive protocols that are classically
secure under LWE, but are demonstrably not post-quantum secure. One way
to see this is by considering “interactive proofs of quantumness” (IPQs) [13].
An IPQ is an interactive protocol consisting of classical communication between
a (potentially quantum) prover and a classical verifier, such that there is an
efficient quantum prover that causes the verifier to accept at the end of the
protocol, but no efficient classical prover should be able to do so with better
than negligible probability. In other words, an IPQ is precisely an example of
an interactive protocol that is classically computationally sound but quantumly
unsound. We have constructions of IPQs from LWE with 4 rounds of interaction
[13,30], where classical soundness is proved via a black-box reduction from LWE
using rewinding. It is easy to embed such IPQs inside other interactive cryp-
tosystems, such as zero-knowledge proofs or multi-party computation protocols,
to get constructions that are classically secure under LWE, but are demonstrably
post-quantum insecure.

What About Non-interactive Cryptography? So far, we have seen that rewinding
poses a problem for post-quantum security of interactive protocols. However, it
may appear that such examples of post-quantum insecurity under post-quantum
assumptions are limited to the interactive setting. Can this phenomenon also
occur in non-interactive cryptographic primitives such as pseudorandom func-
tions, encryption, signatures etc.? One might expect that this should not be
possible. After all, the only reason we have seen primitives fail to inherit post-
quantum security is due to rewinding, and rewinding does not appear to come
up for non-interactive primitives.

1.1 Our Results

In this work, we show that the above intuition is wrong! We provide explicit
(contrived) examples of many of the most fundamental cryptographic prim-
itives, including pseudorandom functions (PRFs), CPA-secure symmetric-key
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encryption, message-authentication codes (MACs), signatures, and CCA-secure
public-key encryption schemes, all of which are proven to be classically secure
under LWE via a black-box reduction, but demonstrably fail to be post-quantum
secure.

These primitives are qualitatively different from interactive protocols such
as zero-knowledge proof systems. First of all, the primitives are stateless – they
maintain a secret key, but do not keep any other state between operations.
Second of all, the basic operations (e.g., PRF evaluation, encryption, decryption,
signing, verifying) are non-interactive. However, the security of these primitives
is defined via an interactive game that allows the attacker to make oracle queries
to the cryptosystem (e.g., PRF queries, encryption queries, decryption queries,
signing queries). The quantum attacker can keep internal quantum state, but
can only query the cryptosystem on classical inputs. We show that even these
cryptosystems may be insecure against quantum attacks, despite having provable
classical security under LWE.

Concretely, we give the following constructions under the LWE assumption:

– A PRF scheme that is classically secure in the standard sense, but broken by
a quantum adversary making 3 classical PRF queries. If we consider a PRF
with public parameters (e.g., the adversary gets some public parameters that
depend on the secret key at the beginning of the game) then we get a scheme
that can be quantumly broken with only 2 queries.3

– A symmetric-key encryption scheme that is classically CPA-secure in the
standard sense, but broken by a quantum adversary making 2 encryption
queries before seeing the challenge ciphertext. If we consider symmetric-key
encryption with public parameters, then we get a scheme that is broken by a
quantum adversary making just 1 encryption query before seeing the challenge
ciphertext.

– A MAC that is classically secure in the standard sense, but broken by a
quantum adversary making 2 authentication queries. If we consider a MAC
with public parameters, then we get a scheme that is quantumly broken with
just 1 authentication query.

– A signature scheme that is classically secure in the standard sense, but broken
by a quantum adversary making 2 signing queries.

– A public-key encryption scheme that is classically CCA-2 secure in the stan-
dard sense, but is broken by a quantum adversary making 2 decryption queries
before seeing the challenge ciphertext.

Additional Counterexamples for One-Time Cryptography. Using a modified tech-
nique, we construct further examples of schemes that are quantumly broken using
even a single classical query, but are also only classically secure for a single query:

– A PRF scheme with public parameters that is classically but not post-
quantum secure against an adversary making a single query.

3 Note that PRFs (and other symmetric-key primitives) with public parameters are
natural to consider; for instance, the group-based PRFs (e.g., [34]) would naturally
have public parameters that include a description of the group.
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– A one-time symmetric-key encryption scheme (i.e., the adversary only gets a
single challenge ciphertext) with public parameters that is classically but not
post-quantum secure.

– A one-time signature scheme that is classically but not post-quantum secure.
– A bounded-CCA public-key encryption scheme that is classically but not

post-quantum secure against an adversary making a single decryption query.

These examples are incomparable to the previous ones, since they give a more
dramatic demonstration of post-quantum insecurity with minimal interaction,
but they also only satisfy a limited form of classical security against a bounded
number of queries. We view these examples as particularly surprising: a one-time
signature scheme seems very non-interactive, so how can we distinguish between
classical and quantum attacks?

Our Techniques. All of our examples are constructed by carefully embedding
instances of interactive quantum advantage—either an IPQ or a new proto-
col that we call “quantum disclosure of secrets” (QDS)—into stateless/non-
interactive cryptographic primitives. The key conceptual insight is that although
the primitives we consider are non-interactive, the corresponding security games
are interactive, allowing us to use a quantum attacker that wins an IPQ to also
win in the security game of the given primitive. The classical security of our con-
structions follows via a black-box reduction that rewinds the adversary, which
is the underlying reason that it fails to translate into the quantum setting.

Towards showing the above results, we also develop new ways of demon-
strating quantumness that may be of independent interest. Firstly, we observe
that the known 4-round IPQs also satisfy resettable soundness against classical
provers that can arbitrarily rewind the verifier to earlier points in the execution.
Using this observation, we construct a stateless/deterministic quantum advan-
tage function Fsk keyed by some secret key sk that is generated together with
some public parameters pp: an efficient classical attacker given pp and oracle
access to Fsk cannot cause it to ever output a special “accept” symbol (in fact,
cannot even distinguish it from a random function), while a quantum attacker
can do so by only making 2 classical queries.

Secondly, we construct a 3-round quantum disclosure of secrets (QDS) proto-
col between a classical sender that has some message m and a receiver, where a
classical receiver does not learn anything about m during the protocol (assuming
LWE), while a quantum receiver learns m at the end of the protocol. This gives
a kind of interactive quantum advantage in three rounds, despite the fact that
interactive proofs of quantumness in three rounds are not known under post-
quantum assumptions (e.g., LWE) in the plain model. This primitive is used to
prove our second slate of results. Our QDS protocol makes essential use of the
recent quantum advantage technique of [30].

We give a more detailed description of our techniques in Sect. 2.
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Conclusion: Counterexamples in Cryptography. This paper provides counterex-
amples to the folklore belief that classical proofs of security under post-quantum
assumptions (e.g., LWE) imply post-quantum security for basic cryptographic
primitives, including PRFs, symmetric/public-key encryption, and signatures.
To do so, we construct schemes that are classically secure under LWE but
demonstrably fail to be post-quantum secure. Why are we putting effort into
constructing schemes that fail to be post-quantum secure? This result fits into a
broader and important area of cryptography that provides demonstrable coun-
terexamples to intuitive but incorrect beliefs that certain forms of security should
generically hold. Other examples of such results include counterexamples for
the random-oracle heuristics [5,15,24], circular security [26,31,37,42], selective-
opening attacks [21,28], hardness amplification [4,6,20], security composition
[21,23], etc. Such counterexamples are extremely important and serve as a warn-
ing that can hopefully prevent us from making such mistakes in the future. Hav-
ing a demonstrable counterexample is much more convincing than just pointing
out that our intuition for why security should hold is flawed. Counterexamples
also point to specific pitfalls that need to be avoided if we want to prove security.
They enhance our understanding of otherwise elusive topics. Lastly, they often
lead to new techniques that tend to find positive applications down the line.

1.2 Related Work

One of the primary goals of the study of quantum computation is to understand
which tasks can be solved efficiently by quantum computers but not by classical
ones. This is informally referred to as a quantum advantage. Many instances
of quantum advantage have implications for the security of classical cryptogra-
phy; the implications will typically hold in the particular computational model
specified by the kind of quantum advantage obtained. We list a few examples
below.

Shor’s Algorithm. [38] gives a quantum polynomial-time algorithm for factoring
integers and computing discrete logarithms in finite cyclic groups with compu-
tationally efficient group operations. This renders typical cryptosystems based
on discrete logarithms, factoring, or RSA-type assumptions broken in quantum
polynomial time.

Interactive Proofs of Quantumness. As discussed above, [13,29,30] give surpris-
ing examples of interactive quantum advantage under LWE, despite the fact
that LWE is believed to be hard for efficient quantum algorithms. They con-
struct interactive protocols where an honest quantum prover causes the verifier
to accept, but any efficient classical prover cannot cause the verifier to accept
assuming the hardness of LWE. This immediately implies that certain interactive
protocols can be classically secure under LWE but quantumly insecure.
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Counterexamples in the Random Oracle Model. Many cryptosystems are built
using a generic “unstructured” hash function H; security is argued in the random
oracle model [7], a model in which the adversary can make only polynomially
many queries to H (and H is treated as a uniformly random function).

For these schemes, the random oracle model serves as a heuristic indicat-
ing that the scheme might be secure when instantiated with a good concrete
hash function. However, when quantum attacks on the scheme are considered,
a serious problem arises [10]: given a concrete hash function H, a quantum
algorithm can query H in superposition (that is, compute the unitary map
|x〉|y〉 �→ |x〉|y⊕H(x)〉 on an arbitrary input state). Thus, to heuristically capture
security of these schemes against quantum attacks, one should prove security in
the quantum random oracle model (QROM), in which the adversary can make
polynomially many superposition queries (rather than classical queries).

Prior work [10,43,44,47] has constructed examples of cryptosystems, defined
relative to an arbitrary hash function H, that are secure in the classical ran-
dom oracle model (possibly under an additional computational assumption) but
insecure in the QROM. For example, [43] construct encryption and signature
schemes that are secure in the ROM but not the QROM, while [44] even con-
structs such examples for one-way functions!

We note that counterexamples for ROM cryptosystems are fundamentally
different from what we are asking in this work. ROM vs. QROM separations
highlight the insufficiency of the classical ROM for accurately describing the
security of hash function-based cryptosystems against quantum attacks. And at
the technical level, the ROM “has room” for counterexamples by embedding an
oracle separation between classical and quantum computation, which may even
be unconditional. Of course, ROM based examples also translate into plain model
examples that are quantum insecure and heuristically classically secure when
instantiated with a good hash function. For example, [44] gives a construction
of a one-way function with this property. However, the classical security of the
resulting one-way function is only heuristic and does not appear to be provable
under any standard post-quantum assumption such as LWE. Indeed, since one-
wayness is defined via a completely non-interactive security game with no room
for rewinding, if one had a black-box reduction showing one-wayness under LWE,
then it would also imply the post-quantum insecurity of LWE (at least in the
uniform setting without [quantum] auxiliary input, see discussion on [8] below).
In contrast, our work shows quantum insecurity for primitives whose classical
security is proved under LWE using a black-box reduction.

Quantum Oracle Queries in the Security Game. When the security game under-
lying a cryptographic primitive involves giving an adversary oracle access to
some functionality (such as a PRF), the natural definition of post-quantum secu-
rity is to consider a quantum attacker breaking a cryptosystem used by classical
honest users who perform operations on classical inputs. Modeling this corre-
sponds to a security game where the attacker is restricted to querying the oracle
on classical inputs. However, one could imagine a stronger notion of “quantum
security” [45], where even the honest users want to perform cryptographic oper-
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ations on quantum inputs, in which case we need to give the adversary quantum
oracle access.

In these situations, classical security proofs do not generically carry over to
the quantum query setting, and there often exist counterexample protocols that
are secure against adversaries that make classical queries but insecure in the
presence of quantum queries [11,12,45,46].

On the other hand, in this work we are interested in understanding whether
there are quantum attacks on classical cryptosystems that only operate on clas-
sical inputs, and therefore the above counterexamples do not apply.

Quantum Auxiliary Input. The recent work of [8] noticed that rewinding may
be an issue even for completely non-interactive security games (e.g., one-way
functions or pseudorandom generators), if one considers a setting where a non-
uniform adversary may have quantum auxiliary input. They provide techniques
for showing that certain (but not all) forms of classical rewinding-based reduc-
tions do in fact carry over to the quantum setting. While they provide some
examples were their techniques fail, it does not translate into an overall example
showing insecurity. It would be extremely interesting to see if one can come up
with examples of (e.g.,) one-way functions that are proven secure classically via
a black-box reduction under a post-quantum assumption, but are not secure in
the quantum setting with quantum auxiliary input.

2 Technical Overview

Our main technique in constructing cryptographic primitives that are classically
secure but post-quantum insecure is to embed interactive proofs of quantum-
ness (IPQs) [13,29,30] based on LWE inside these primitives. Such IPQs consist
of 4-message interactive protocols, where the verifier sends the first message
and the prover sends the last message. The main difficulty is that IPQs are
stateful/interactive protocols, while the primitives we consider are stateless/non-
interactive.

For concreteness, let’s start with signature schemes as an illustrative exam-
ple, but we will later explain how to extend the ideas all the other primitives as
well.

Stateful Signatures. As a start, let’s relax the standard notion of signatures
to allow the signing algorithm to be stateful. Then we can take any standard
signature scheme (under LWE) and easily augment it to incorporate an IPQ as
follows. In addition to signing the messages with the standard signature scheme,
our augmented signing algorithm also runs the verifier of an IPQ on the side. It
interprets any messages to be signed as prover message in an IPQ and appends
the appropriate verifier responses to the signatures (the verification algorithm of
the augmented signature scheme simply ignores these appended values). Since
the IPQ verifier is stateful, this also requires the signing algorithm to be stateful.
If at any point in time the IPQ verifier accepts, then the signing algorithm simply
appends the secret key of the signature scheme to the signature.
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It is easy to see that the above augmented signature scheme is classically
secure under LWE, since a classical adversary making signing queries will be
unable to get the IPQ verifier to accept. It is also easy to see that the scheme is
insecure against a quantum attacker who acts as the quantum prover in an IPQ,
causes it to accept, and recovers the secret key of the signing algorithm, which
it then uses to construct its forgery. If we use a 4-message IPQ and append the
initial verifier message to the verification key of the signature, then the above
attack corresponds to making 2 signing queries.

Stateless Signatures. Unfortunately, the above idea seems to crucially rely on
having a stateful signing algorithm, and our goal is to extend it to the stateless
setting. To do so, we essentially construct an IPQ with a stateless verifier and
resettable security: even if the classical prover can reset the verifier and run it
many times with different prover messages, it cannot cause the verifier to accept.

We rely on the fact that the 4-message IPQs of [13,30] have special structure.
The first round is secret-coin and the verifier generates an initial message v1
together with some secret state st and sends v1. The prover responds with p1.
The verifier then uses public-coins to send a uniformly random message v2 and
the prover responds with p2. At the end of the 4th round, the verifier uses the
secret state st to decide if the transcript (v1, p1, v2, p2) is accepting or rejecting.
We observe that we can convert the verifier of such an IPQ (as long as it has
negligible soundness error) into a deterministic/stateless IPQ verifier Vsk that
just maintains a secret key sk = (v1, st, k) consisting of the first round verifier
message v1 of the original IPQ, the secret st, and a key k for a PRF fk. We
define the function Vsk as follows:

– On input the empty string, output v1.
– On input p1, output v2 = fk(p1).
– On input p1, p2, compute v2 = fk(p1) and use st to check if (v1, p1, v2, p2) is

an accepting transcript: if so accept, else reject.

An efficient quantum prover with oracle access to Vsk can cause it to accept,
using the same strategy as in the original IPQ.4 However, an efficient classical
prover with oracle access to Vsk cannot cause it to accept, even if it can make
arbitrarily many queries on arbitrary inputs, effectively being able to run many
executions of the original interactive protocol with rewinding. We show this via
a simple reduction where we convert any adversary that causes the stateless IPQ
verifier Vsk to accept into an adversary on the original stateful IPQ.

We use the above stateless IPQ to derive our counterexample for stateless
signatures. We start with any standard signature scheme (secure under LWE)
and augment it by incorporating the stateless IPQ as follows. Firstly, we generate
the secret key sk of the stateless IPQ verifier Vsk as above, and append sk to the
original signature secret key skSig. We also append v1 to the original verification

4 Technically, it may be possible that the completeness error of the IPQ increases non-
negligibly if the PRF is only classically secure but not post-quantum secure. But it
is easy to solve this by relying on a PRF that is one-wise independent.
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key. We then modify the signing algorithm: we append the output of Vsk(m) to
any signature of m, and, if at any point Vsk(m) accepts, then we append the
original signature signing key skSig to the signature. The verification algorithm
ignores these appended components.

We have an efficient quantum adversary on this signature scheme by running
the quantum prover of the IPQ: the adversary gets v1 from the verification key
and queries the signing algorithm twice, once on p1 to get v2 and once on p1, p2 to
cause the IPQ verifier to accept and recover skSig. At this point, the adversary
can forge a signature on any message of its choosing. On the other hand, an
efficient classical adversary cannot cause Vsk to accept and hence does not learn
any additional information about skSig beyond what it would get in the original
signature game. Therefore the above signature scheme is classically secure under
LWE, but quantumly broken with just 2 signing queries.

Generalizing: Quantum Advantage Function. We abstract out the above idea of
stateless IPQs via a quantum advantage function (QAF). A QAF is a determin-
istic/stateless function Fsk, indexed by a secret key sk. A classical polynomial-
time adversary with oracle access to Fsk can never cause it to output a special
accept value (except with negligible probability), while a quantum polynomial-
time adversary can cause it to do so by only making 3 classical oracle queries.
We can set the QAF Fsk = Vsk to be the stateless IPQ verifier defined above.

Alternatively, we can define a QAF with public parameters pp that depend
on sk: even given pp a classical polynomial-time adversary with oracle access
to Fsk can never cause it to output accept, while a quantum polynomial-time
adversary given pp can do so by only making 2 classical oracle queries. We can
construct such a QAF by setting the public parameters pp = v1 to be the first
verifier message and setting Fsk = Vsk to be the stateless IPQ verifier above.5

We can embed our QAF inside various stateless/non-interactive cryptosys-
tems to get our remaining counterexamples:

– Symmetric-key message authentication codes (MAC): Take any existing
secure MAC and augment it by running a QAF on the side. The QAF out-
puts are appended to the tags of the original scheme, and the verification
procedure is augmented to automatically accept any message on which the
QAF accepts. This gives a classically secure MAC that can be quantumly
broken using 2 authentication queries, or alternately, even just 1 authentica-
tion query in the setting with public parameters.6 In particular, the quantum
attacker uses the k queries needed to get the QAF to accept (k = 3 or k = 2
depending on public parameter) as k−1 authentication queries and a forgery.

– CCA-2 secure public-key encryption: Take any existing secure scheme and
augment it with a QAF with public parameters as follows. Append the public

5 In this case, we can remove the instruction that Vsk outputs v1 on the empty string,
since we already give out v1 in the public parameters.

6 For symmetric-key primitives in the public-parameter setting, the secret key of the
primitive is generated together with some public parameters that are given to the
adversary, but are not otherwise needed for correctness.
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parameters to the public key of the scheme. Modify encryption to ensure that
all valid ciphertexts start with a 0 bit. Modify the decryption procedure so
that, it decrypts valid ciphertexts correctly, but if it gets as an invalid cipher-
text it evaluates the QAF on it instead of decrpyting. If the QAF ever accepts,
the decryption procedure outputs the secret key of the encryption scheme.
The scheme remains correct and classically secure, but can be quantumly
broken using just 2 decryption queries (made before receiving the challenge
ciphertext) to recover the secret key.

– Pseudorandom functions (PRF): We notice that the outputs our QAF can be
either: (i) v1 which is pseudorandom for known IPQs, (ii) v2 = Fk(p1) which is
pseudorandom, or (iii) accept/reject. We can modify the QAF so that instead
of rejecting it applies an independent PRF. With this modification, a classical
attacker cannot distinguish it from a random function, since it cannot cause
the original QAF to ever accept. On the other hand, a quantum attacker can
easily distinguish, by causing the original QAF to accept, using just 3 queries,
or even 2 queries in the setting with public parameters.

– Symmetric-key encryption: Take any existing secure scheme and augment it
with a pseudorandom QAF (as constructed in the previous bullet) as follows.
When encrypting a message m, choose some fresh randomness r and append
r together with the output of the QAF applied on m||r to the ciphertext. If
the QAF accepts, also append the secret key of the original symmetric-key
encryption to the ciphertext. The decryption algorithm ignores the appended
values.
For classical adversaries, we can rely on the fact that the QAF is pseudoran-
dom (and cannot be caused to accept) to argue that this modification does
not break CPA security. For quantum adversaries, we show that it is possible
to cause the QAF to accept using 3 CPA queries, or even just 2 CPA queries
in the setting with public parameters. There is a minor difficulty that the
quantum adversary only gets to pick the left half m of the QAF inputs, while
the right half r is chosen randomly. Nevertheless, by starting with an IPQ
protocol where we expand prover messages to contain a dummy “right half”
that the verifier ignores, we get a QAF that can be efficiently quantumly
attacked even if the right half of the inputs is chosen randomly.

One-Time Security and Quantum Disclosure of Secrets. We also give alternate
examples of cryptosystems that are classically “one-time” secure, but are not
post-quantum one-time secure. As an example, let’s consider one-time signatures.
The security game for one-time signatures consists of 4 rounds: the challenger
sends a verification key, the attacker chooses a message, the challenger sends a
signature and the attacker produces a forgery. Therefore, there is hope that we
can embed a 4-message IPQ into the 4-message security game of one-time sig-
natures. However, we notice that the one-time signature game has an additional
feature that we call public verifiablity : just by looking at the transcript of the
game, an external observer can tell whether the verifier accepted or rejected.
On the other hand, the known 4-message IPQs from LWE do not have public
verifiability. Therefore, to give a counterexample for signatures, we at the very
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least need to construct a 4-message publicly verifiable IPQ.7 Alternately, let’s
consider one-time symmetric-key encryption with public parameters. There, the
security game consists of only 3 rounds: the challenger chooses the secret key
with public parameters and sends the latter to the attacker, the attacker chooses
two messages m0,m1 and gets an encryption of mb. At the end of the 3 rounds
the adversary has to distinguish between b = 0 and b = 1. Therefore, we would
need some sort of a 3 round game with quantum advantage, where a quantum
adversary can distinguish between two possibilities, but a classical one cannot.
Current IPQs from LWE all require 4 rounds.

We solve both of the above issues by constructing a new type of 3-message
protocol with quantum advantage under LWE, which we refer to as a quantum
disclosure of secrets (QDS). A QDS is an interactive protocol between a classical
sender who has some message m and a (potentially quantum) receiver. No effi-
cient classical receiver can distinguish between any two possible sender messages
m0,m1 at the end of the protocol, while a quantum receiver can fully recover m.
We construct a 3-message QDS under LWE and we give an overview of this con-
struction further below.8 For now, let us assume we have such a 3-message QDS,
whose execution consists of three messages s1, r1, s2, where si denotes sender
messages and ri the receiver message. We use it to get various counterexamples
to post-quantum security of one-time primitives under LWE. For simplicity, we
just discuss one-time signatures and one-time symmetric-key encryption (with
public parameters), but the other counterexamples are all similar:

– One-time Signatures: Take any secure one-time signature scheme and aug-
ment it by running a QDS on the side, where the sender’s message is set
to be the signing key of the original scheme. Append the first message s1
of the QDS to the verification key and st to the signing key. To sign some
message, sign it under the original signature scheme, but also interpret the
message as the receiver’s message r1 in the QDS protocol and run the QDS
on it to produce the response s2 (using st), and append s2 to the signature.
The verification algorithm ignores the appended components.
A classical attacker cannot break one-time security since it does not learn
anything about the signing key from the QDS when making one signing query.
However, a quantum attacker can break security by recovering the original
signing key from the QDS using one signing query, and then can forge the
signature of an arbitrary new message.

– One-time Symmetric-Key Encryption (with public parameters): Take any
secure one-time encryption (e.g., one-time pad) and augment it with a QDS,

7 It is easy to make an IPQ publicly verifiable simply by adding an additional round
where the verifier publicly declares whether it accepted or rejected, but this would
require 5 rounds and we need 4.

8 A 3-message QDS also implies a 4-message publicly verifiable IPQ. This is shown
implicitly by our one-time signature counterexample below, but can be done more
directly as follows. Use a QDS to send a random message x and append a one-way
function f(x) to the 3rd round; then accept in the 4th round if the prover replies a
valid preimage x′ for f(x).
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where the sender’s message is set to be the secret key of the original encryp-
tion scheme. Set the public parameters to consist of the first round QDS
message s1 and append st to the secret key. To encrypt a message, use the
original one-time encryption scheme, but also interpret the message as the
receiver’s message r1 in the QDS protocol and run the QDS on it to produce
the response s2 (using st), and append s2 to the ciphertext.
To argue (computational) classical security, we rely on the fact that, for a
classical receiver in the QDS, not only is the sender’s message hidden but
entire sender response s2 sent in the third round looks pseudorandom. On
the other hand, a quantum adversary can recover the key of the original
encryption scheme and decrypt.

We note that the 3-message QDS scheme that we construct is not resettably
secure: if a classical receiver can rewind the sender with many different values of
r1 and get the corresponding values s2 then it can learn the sender’s message.
This is the reason that our results above are incomparable to the previous ones
and only achieve one-time classical security. If we were able to construct a reset-
tably secure QDS, we would get the best of both worlds and construct schemes
that are fully secure in the standard sense against classical adversaries, but not
even one-time secure against quantum adversaries.

Quantum Disclosure of Secrets from LWE. We now give an overview of our con-
struction of 3-message QDS from LWE. Our main idea is to start with a special
4-message IPQ from LWE that has a unique final answer : given (v1, p1, v2) and
st, the verifier can efficiently compute a unique prover answer p2 that would cause
it to accept. We can convert such a 4-message IPQ into a 3-message QDS. We
keep the first two messages of the IPQ and QDS the same with s1 = v1, r1 = p1.
Then, in the beginning of the third round, we have the sender choose a random
v2 as the IPQ verifier would, compute the unique correct p∗

2 that would make
the IPQ verifier accept, take a Goldreich-Levin hardcore bit GL(p∗

2) and use it
to one-time pad the sender-message m by setting s2 = (v2, GL(p∗

2) ⊕ m).9 By
relying on Goldreich-Levin decoding, we can translate any classical attack on
the 3-message QDS into a classical attack on the original 4-message IPQ. On
the other hand, we can use a quantum attack on the 4-message IPQ to easily
recover the message m in the 3-message QDS by computing the correct p2 from
v2 and then using the hardcore bit of p2 to un-blind the message.

Therefore, to construct a 3-message QDS, we need to construct a 4-message
IPQ with a unique final answer. Unfortunately, the IPQ schemes of [13] do not
have this property (either directly or with any simple modification). On the other
hand, the work of [30] gives a general template for constructing 4-message IPQ
schemes. We review this template and show that there is a careful instantiation
of it that does have a unique final answer.

The template of [30] construct a (4-message) IPQ from any 2-prover non-
local game. A 2-prover non-local game consists of 2 provers who cannot commu-
nicate and are given two questions (q1, q2 respectively) sampled from some joint
9 This allows us to encrypt a single bit, but we can repeat this in parallel to encrypt a

multi-bit message one bit at a time. Security follows via a simple hybrid argument.
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distribution. Their goal is to reply with answers a1, a2 respectively, and they
win if some relation R(q1, q2, a1, a2) holds. Such a game has quantum advantage
if quantum provers who share entangled quantum state at the beginning of the
game can have a noticeably larger winning probability than classical provers who
only share classical shared randomness. For example, the CHSH game [18] sets
q1, q2, a1, a2 to be bits, samples (q1, q2) uniformly and independently, and defines
R(q1, q2, a1, a2) to hold if a1 ⊕ a2 = q1 ∧ q2. Classical provers can only win with
probability .75, but quantum provers can win with probability cos2(π/8) > .85.

The work of [30] compiles any such game into a 4-message IPQ with a single
prover by using quantum fully homomorphic encryption. The verifier sends v1 =
Enc(q1) the prover responds with p1 = Enc(a1), the verifier sends q2 and the
prover responds with a2: the verifier accepts if R(q1, q2, a1, a2) holds. The good
news is that, if we instantiate this template with the CHSH game, then there is
a unique final answer a2 = (q1 ∧ q2) ⊕ a1. However, the resulting IPQ only has a
noticeable gap between the success of a classical prover and a quantum one (.75 vs
.85), but we want an IPQ where the classical prover only has a negligible success
probability while the quantum one can win with all but negligible probability.
We can achieve this by using parallel repetition of many copies of the CHSH
game and accepting if the prover wins in > .8 fraction of them. But now there
is no longer a unique final answer that wins the IPQ, since the prover can win
any .8 fraction of the games to get the verifier to accept (and even a quantum
prover won’t be able to win significantly more that .85 fraction)! Instead, we
start with a different non-local game, which is a variant of the magic square
game [2,19].10 In this game, there is a unique final answer a2 determined by
q1, q2, a1, and there is a pair of entangled quantum provers that can win with
probability 1, while classical provers only win with probability at most 17/18. By
taking a sufficiently large parallel repetition and accepting if all copies accept,
we can drive down the winning probability of classical provers to negligible, while
allowing quantum provers to win with probability 1 and preserving a unique final
answer a2 determined by q1, q2, a1. Therefore, if we apply the [30] framework with
the parallel-repeated variant of Magic Square as above, we get a 4-message IPQ
with a unique final answer as desired.11

10 We think of a 3 × 3 square of bits. The challenge q1 corresponds to a random row
or column (6 possibilities) and q2 corresponds to a random location inside that
row/column. The provers are supposed to answer with a1 being the 3 bits in the
given row/column specified by q1 and a2 being the bit in the position specified by
q2. They win if the answers are consistent and if the bits of a1 have parity 0 when
q1 is a row or parity 1 when q1 is a column.

11 Unfortunately, if we use this 2-prover non-local game, then the resulting 4-message
IPQ cannot be made resettably sound. This is because the challenge q2 gives infor-
mation about q1. By rewinding the verifier and seeing many values of q2, a classical
adversary can learn q1 and win the game. (Even if the 4-message IPQ was resettably
sound, it wouldn’t guarantee that the 3-message QDS would be, because it reveals
various GL bits in the 3rd round.) In contrast, in the original instantiation of the
[30] framework with the CHSH game and threshold parallel repetition, the result-
ing 4-message IPQ does not have unique final answers, but can be given resettable
security using a PRF to generate q2, because q2 is random and independent of q1.



Post-quantum Insecurity from LWE 17

3 Open Problems

We mention several fascinating open problems left by our work.

– Can we construct a CPA-secure public-key encryption scheme which is classi-
cally secure under LWE but post-quantum insecure? The CPA security game
for public-key encryption consists of 3 rounds, so it may seem like we should
be able to embed a QDS scheme inside it. But the 3rd round of the CPA
security game must be publicly computable from the first 2 rounds, while our
QDS requires secret state to compute the 3rd round.

– Can we construct a 3-message stateless/resettable QDS under LWE? This
would allow us to construct cryptosystems that are classically secure in the
standard sense under LWE, but fail to be even one-time post-quantum secure.

– Can we construct IPQs and classically secure/quantum-insecure cryptosys-
tems under other plausibly post-quantum assumptions beyond LWE? Ideally
we would even be able to do so under generic assumptions, such as one-way
functions.

– Can we construct 3-message (resettably secure) IPQs from LWE? This would
allow us to get rid of the public parameters in our symmetric-key examples.

– Inspired by [8], can we construct one-way functions under post-quantum
assumptions (e.g., LWE), where the one-way function is classically secure,
but post-quantum insecure given quantum auxiliary input? As noted in [8],
this may be possible even if classical security is proven via a black-box reduc-
tion.

– Can we construct one-way functions under a post-quantum assumptions (e.g.,
LWE), where the one-way function is classically secure but post-quantum
insecure, even without quantum auxiliary input? Since the security game of
one-way function is non-interactive, there is no possibility of rewinding dis-
tinguishing between classical and quantum adversaries. Therefore, the clas-
sical security of such one-way functions could not be proven via a black-box
reduction. Could we perhaps have such an example nevertheless by using a
non-black-box reduction?

4 Preliminaries

We use QPT to denote quantum polynomial time and PPT to denote classical
probabilistic polynomial time. We say that a function f(n) is negligible if for all
constants c > 0, f(n) < n−c for all but finitely many n.

4.1 Interactive Proofs of Quantumness

For concreteness and simplicity of notation, we will focus throughout this work
on interactive proofs of quantumness with 4 messages in total. Note that this
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corresponds to the best round complexity known for interactive proofs of quan-
tumness in the plain model.

Definition 1. An interactive proof of quantumness is an interactive protocol Π
between a prover P and a verifier V, with the following properties:

– Quantum completeness: there exists a efficient quantum prover P such that:

Pr
[
(P,V)(1λ) = 1

] ≥ 1 − negl(λ).

– Classical soundness: for any efficient classical prover P∗:

Pr
[
(P∗,V)(1λ) = 1

] ≤ negl(λ).

Let v1, v2 (resp. p1, p2) denote the messages sent by the verifier (resp. the prover)
during the execution of an interactive proof of quantumness Π.

An interactive proof of quantumness can furthermore satisfy the following
optional properties:

1. Public-coin second verifier message: the second verifier message v2 consists of
uniformly and independently sampled random coins.

2. (Classically) Pseudorandom verifier messages: for any efficient classical prover
P∗, the messages (v1, v2), output by the verifier in a protocol execution with
P∗, are computationally indistinguishable from uniformly random strings,
even if P∗ learns the outcome of the execution.12

3. Unique final answer: given any partial transcript τ = (v1, p1, v2) and any ver-
ifier state st, there exists an efficient algorithm UniqueAnswer(v1, p1, v2, st) →
p∗
2 ∈ {0, 1}� which outputs the unique final prover message that can make the

verifier accept (namely, output 1) if such a final prover message exists.

We will make use of constructions of two different interactive proofs of quan-
tumness in this paper:

Lemma 1. Under the LWE assumption, there exists a 4-message interactive
proof of quantumness satisfying properties 1 (public-coin second verifier mes-
sages) and 2 (classically pseudorandom verifier messages) (Definition 1).

Lemma 1 is obtained by combining ([30], Theorem 3.7) using a λ-wise parallel
repetition of the independent question magic square game [2,19]. We refer to the
full version of the paper [33] for more details.

We will also use a proof of quantumness with unique answers (while still
requiring completeness 1 − negl(λ) and negligible soundness). While we are not
aware of any explicit constructions satisfying this property in the literature, we
observe that instantiating [30] with an appropriate non-local game gives such a
proof of quantumness.
12 Allowing P∗ to learn the outcome of the protocol execution is without loss of gen-

erality by negligible classical soundness: all executions of the protocol with P∗ will
be rejected with overwhelming probability.
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Lemma 2. Under the LWE assumption, there exists a 4-message interactive
proof of quantumness satisfying properties 2 (classically pseudorandom verifier
messages) and 3. (unique final answers) (Definition 1).

Lemma 2 also follows from combining [30], with now a unique answer version
of the magic square game [2,19]. We refer to the full version of the paper [33]
for more details.

5 Deterministic Oracles with Quantum Advantage

5.1 Quantum Advantage for Unbounded-Classical Query
Algorithms

We introduce quantum advantage functions, which are by default stateless and
deterministic functions that demonstrate a quantum advantage given only clas-
sical query access. In its stronger form, such a function acts as a pseudorandom
function against classical adversaries.

Definition 2 (Quantum Advantage Functions). A quantum advantage
function family is a pair of efficient algorithms (Setup, Fsk) with the following
syntax:

– Setup(1λ): sample some public parameters pp, a secret key sk and outputs
(pp, sk). Without loss of generality, we will consider throughout the paper that
sk includes the public parameters pp.

– Fsk(·): on input a message x, either output a message y, or a special “accept”
symbol denoted accept, or a special “reject” symbol denoted reject. We require
by default that Fsk is stateless and deterministic.

We additionally require the following properties:

1. (k-Quantum easiness) There exists a QPT oracle algorithm AF (·)(pp) such
that:

Pr
[
AFsk(·)(pp) = x∗ ∧ Fsk(x∗) = accept

]
= 1 − negl(λ),

where AFsk(·)(pp) makes k classical oracle queries in total to Fsk(·) before
outputting x∗, and where the probability is over (pp, sk) ← Setup(1λ). We
simply say that (Setup, Fsk) satisfies quantum easiness if it satisfies 1-quantum
easiness.

2. (Classical hardness) For all PPT oracle algorithms AO(·)(pp):

Pr
[
AFsk(·)(pp) = x∗ ∧ Fsk(x∗) = accept

]
= negl(λ).

over (pp, sk) ← Setup(1λ).
We optionally require the following stronger notion of classical hardness:
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3. ((Classical) Pseudorandomness of outputs and public parameters) For all
PPT distinguishers A:

∣
∣
∣Pr

[
AFsk(·)(pp) = 1

]
− Pr

[AR(p̃p) = 1
]∣∣
∣ ≤ negl(λ).

over (pp, sk) ← Setup(1λ), and where R is a uniformly random function, and
p̃p is uniformly random.

Theorem 1. Let Π be a 4-message interactive proof of quantumness satisfy-
ing the properties specified in Lemma 1: (Item 1) the second verifier message
is public-coin and (Item 2) verifier messages are pseudorandom (Definition 1).
Then additionally assuming one-way functions, there exists a quantum advantage
function with pseudorandom outputs satisfying quantum easiness (Definition 2).

Combined with Lemma 1, we obtain the following:

Corollary 1. Assuming the (classical) hardness of LWE, there exists a quan-
tum advantage function with pseudorandom outputs satisfying quantum easiness
(Definition 2).

Construction. Let Π be a 4-message interactive proof of quantumness. Let
(PRF.KeyGen,PRF) be a one-wise independent PRF (see [33] for a definition).

We define our quantum advantage function (Setup, Fsk) as follows:

– Setup(1λ): Sample K ← PRF.KeyGen(1λ). Compute a first verifier message
v1 for Π, using some fresh randomness ρ. Set pp = v1, sk = (pp,K, ρ), and
output (pp, sk).

– Fsk : on input x, we consider two distinguished cases:13
• If x is of the form p1: Compute the public-coin verifier message v2 =

PRFK(p1), which we interpret as a second verifier message with partial
transcript (v1, p1) (where v1 = pp). Output y = v2.

• If x is of the form (p1, p2): Compute v2 = PRFK(p1). If the verifier for Π
accepts the transcript (v1, p1, v2, p2) with secret state ρ, output accept,
otherwise output reject.

• Otherwise output reject.

Lemma 3 (Quantum easiness). Suppose Π satisfies quantum completeness
(Definition 1), and (PRF.KeyGen,PRF) is one-wise independent (see [33] for a
definition). Then (Setup, Fsk) satisfies quantum easiness.

Proof. Let P denote the efficient quantum prover for Π such that

Pr
[
(P,V)(1λ) = 1

] ≥ 1 − negl(λ).

Define the following QPT algorithm A(pp):
13 Technically, to have Fsk be defined over a fixed input domain, we actually distinguish

the cases x = (0‖p1‖∗) and x = (1‖p1, p2) where ∗ denotes a 0 padding of appropriate
length, and where Fsk outputs reject on inputs not of this form. We keep the notation
of the construction above for clarity of exposition.
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– On input pp, parse pp = v1 as a first verifier message in Π, and compute a
first prover message p1 according to P. Query Fsk on input p1, and receive
v2.

– Given (v1, p1, v2), compute the second prover message p2 according to P.
Output x∗ = (p1, p2).

By construction, (v1, p1, v2, p2) denotes a transcript generated by P,V, where
V uses randomness ρ and ρ2 = PRFK(p1) to generate its messages v1 and v2
respectively. Since PRF is one-wise independent, A perfectly simulates the view
of P in an interaction with V. Thus Fsk(x∗) outputs accept with probability
1 − negl(λ). ��
Lemma 4 (Classical hardness). Suppose Π is sound against classical
provers and has public-coin intermediate verifier messages (Definition 1, Prop-
erty 1) and that (PRF.KeyGen,PRF) is a (classically secure) PRF. Then
(Setup, Fsk) satisfies classical hardness.

Proof. Let A(pp) denote a PPT adversary with oracle access to Fsk. Without
loss of generality, we assume that A queries its output x∗ to Fsk before halting,
and that A outputs the first x∗ it queries such that Fsk(x∗) = accept, if such a
query exists. Let Q denote the number of oracle queries A makes. We define a
sequence of hybrid experiments, where we change the input-output behaviour of
Fsk, as follows:

– Hybrid 0: This is the classical hardness experiment (Definition 2, Property
2) where A has oracle access to O0

sk := Fsk, where (pp, sk) ← Setup(1λ).
We say that the adversary wins the experiment if he outputs x∗ such that
O0

sk(x
∗) = accept.

– Hybrid 1: We change how the oracle queries are handled, and define O1
sk as

follows. The (now stateful) oracle computes v2 using a lazily-sampled random
function R instead of a PRF. Specifically, on queries of the form x = p1 if
R(x) is not yet defined, sample v2 uniformly and set R(x) = v2, then output
v2.

– Hybrid 2: We do not change the behavior of the oracle (O2
sk = O1

sk), but
we change the win condition of the experiment. We now guess two uniformly
random indices j1, j2 ← [Q], where Q denotes the number of oracle queries
made by A. We now say that A wins if and only if the following conditions
hold:
(1) the j2th oracle query from A, on input xj2 , is of the form xj2 = (p∗

1, p
∗
2),

(2) O2
sk(xj2) = accept, and, for all prior oracle queries x, O2

sk(x) = accept,
(3) the j1th oracle query from A, on input xj1 has p∗

1 as a prefix (i.e. either
xj1 = p∗

1 or xj1 = (p∗
1, p2) for some p2), and, for all prior oracle queries x,

the prefix of x with appropriate length is not equal to p∗
1.

– Hybrid 3: We change how oracle queries are handled and define O3
sk as

follows. On any query j = j2 of the form xj = (p1, p2), O3
sk rejects.

We refer to the full version [33] for an analysis of these consecutive hybrid
games, which shows that the success probability of A in hybrid 0 is negligible. ��
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Last, we show that we can obtain pseudorandomness of Fsk with a simple
modification.

Lemma 5 (Pseudorandomness). Under the same hypotheses as Lemmas 3
and 4 there exists a quantum advantage function F̃sk satisfying pseudorandom-
ness.

Proof. Let (Setup, Fsk) denote the previous construction. We define F̃sk as fol-
lows: on input x, compute Fsk(x). If Fsk(x) = reject, output PRFK(x); otherwise
output Fsk(x). Pseudorandomness of non-special outputs of Fsk (that is, accept
or reject) follows by the public-coin property of second verifier messages of Π
(Definition 1, Property 1). Furthermore, it is classically hard to find inputs x
such that Fsk(x) = accept by classical hardness of Fsk, and inputs x such that
Fsk(x) = reject are mapped by F̃sk to pseudorandom outputs by PRF security.
The proofs of quantum easiness and classical hardness for F̃sk follow almost
identically to the ones for Fsk. ��
Remark 1 (Generalizing to constant-round proofs of quantumness). Our defini-
tions, construction and proofs can readily be extended to work starting with any
constant-round interactive proof of quantumness, assuming all intermediate veri-
fier messages are public-coin (that is, not counting the first verifier message if the
verifier produces the first message of the protocol). Starting with a 2k-message
protocol, this gives a quantum advantage function with (k−1)-quantum easiness
(and where classical hardness and pseudorandomness hold as in Definition 2).

Removing Public Parameters. We observe that any quantum advantage function
with public parameters induces one without public parameters. Let (Setup, F sk)
be a quantum advantage function. Consider the following algorithms (Setup, Fsk):

– Setup(1λ): run (pp, sk) ← Setup(1λ) and output sk = (pp, sk).
– Fsk: on input x, if x = init where init is a special input symbol, output pp.

Otherwise output F sk(x).14

Claim 1. Assume that (Setup, F sk) is a quantum advantage function. Then
(Setup, Fsk) satisfies 2-quantum easiness, and classical hardness (Definition 2).
Furthermore, assuming that (Setup, F sk) has pseudorandom outputs and pub-
lic parameters (Definition 2), then (Setup, Fsk) also has pseudorandom outputs
(against classical distinguishers).

Corollary 2. Assuming the (classical) hardness of LWE, there exists a quantum
advantage function without public parameters, that satisfies 2-quantum easiness,
and have pseudorandom outputs (against classical distinguishers).

14 Technically, we pad the shorter of pp and F sk(x) to obtain outputs with fixed length.
We define the padding as an independent PRF of the input to conserve pseudoran-
domness of outputs.
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Randomized Quantum Advantage Functions. It will also be useful to us in some
cases to consider randomized quantum advantage functions, for which we can
consider the following stronger notion of pseudorandomness:

3’ (Strong pseudorandomness of outputs and public parameters) For all PPT
distinguishers A:

∣
∣
∣Pr

[
AFsk(·)(pp) = 1

]
− Pr

[AU (p̃p) = 1
]∣∣
∣ ≤ negl(λ).

over (pp, sk) ← Setup(1λ), and where U is defined as sampling and outputting
fresh independent randomness at every call, and where p̃p is uniformly ran-
dom.

We observe that our previous construction of (deterministic) quantum advan-
tage function can be extended to satisfy the stronger property above. We refer
to the full version [33] for details.

5.2 Quantum Disclosure of Secrets

Definition 3 (Quantum Disclosure of Secrets). Let ΠQDS denote an inter-
active protocol between a sender and receiver. The sender S has as input a mes-
sage m, while the receiver R has no input.

We say that ΠQDS is a quantum disclosure of secrets if there is the following
quantum-classical gap:

1. (Quantum correctness) There is an efficient quantum receiver R∗ such that,
if R∗ interacts with the honest sender S, R∗ outputs the sender’s message m
with probability 1 − negl(λ).

2. (Classical privacy) For any efficient classical receiver R, if R interacts with
the honest sender S, for any pair of messages m0,m1, the view of R when
interacting with S(m0) is computationally indistinguishable from the view of
R when interacting with S(m1).

Theorem 2. Let Π be a 4-message interactive proof of quantumness with unique
final answer (Definition 1, Property 3.). Then there exists a 3-message quantum
disclosure of secrets protocol. Furthermore, if Π has pseudorandom verifier mes-
sages (Definition 1, Property 2), then the sender messages in ΠQDS are jointly
classically indistinguishable from uniformly random.

Combined with Lemma 2, we obtain the following:

Corollary 3. Assuming the classical hardness of LWE, there exists a 3-message
quantum disclosure of secrets protocol, such that sender messages are jointly
classically indistinguishable from uniformly random.
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Construction. We focus on one-bit messages. Extending it to arbitrary length
messages is then done by executing independent copies of the protocol in parallel
for each bit of the message; security follows by a hybrid argument.

Let Π be a 4-round interactive proof of quantumness with unique final answer
(Lemma 2). We define our 3-message quantum disclosure of secrets protocol
ΠQDS as follows:

– The sender S generates a first verifier message v1 for the interactive proof of
quantumness and internal state st. The sender sends a first message s1 = v1
to the receiver.

– The receiver R responds with a prover message r1 = p1 for the interactive
proof of quantumness.

– The sender S computes a third message v2 for the interactive proof of quan-
tumness as well as p∗

2 = UniqueAnswer(v1, p1, v2, st). The sender sends its
second message s2 = (v2, r, y = 〈r, p∗

2〉⊕m) for uniformly random r ← {0, 1}�

where � = |p∗
2|.

We now state correctness, privacy and pseudorandomness of our construction.
We refer to the full version [33] for proofs.

Lemma 6 (Quantum correctness). Suppose Π is a 4-message interactive
proof of quantumness with unique final answer (Definition 1). Then ΠQDS sat-
isfies quantum correctness.

Lemma 7 (Classical privacy). Suppose Π is a 4-round interactive proof
of quantumness with unique final answer (Definition 1). Then ΠQDS satisfies
classical privacy.

Lemma 8 (Pseudorandomness of verifier messages). Suppose that Π has
pseudorandom verifier messages (Definition 1, Property 2). Then the sender mes-
sages in ΠQDS are jointly classically indistinguishable from uniformly random.

Quantum Disclosure of Secrets Function. Let ΠQDS be a quantum disclosure
of secrets. We define, for all messages m, the following quantum disclosure of
secrets function (Setup, Fsk,m):

– Setup(1λ):15 Sample the first sender message s1 in ΠQDS, along with an
internal state st and some (potentially correlated) randomness for the sec-
ond sender message ρ2, and output (pp = s1, sk = (s1, st, ρ2)).

– Fsk,m: On input x, parse x as a receiver message r1 in ΠQDS, and compute a
second sender message s2 given (s1, r1, st,m) using randomness ρ2.

15 In general, the first sender message in the QDS s1 depends on the message m, and so
in general Setup would take m as input. For simplicity of notation, we note that our
construction of QDS above is delayed-input, in the sense that s1 is computed inde-
pendently of m, which allows Setup to be independent of m. Our counterexamples
in Sect. 6 would work even if the QDS was not delayed input.
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We note that Fsk,m is stateless and deterministic. The properties of ΠQDS trans-
late directly to properties of (Setup, Fsk,m):

– Quantum easiness: there exists a QPT algorithm A such that

Pr
[AFsk,m(pp) = m

]
= 1 − negl(λ),

where (pp, sk) ← Setup(1λ), and where A makes one classical query to Fsk,m;
– Weak pseudorandomness: for all PPT algorithms A that make at most one

oracle query :
∣
∣
∣Pr

[
AFsk,m(·)(pp) = 1

]
− Pr

[AR(p̃p) = 1
]∣∣
∣ ≤ negl(λ),

where (pp, sk) ← Setup(1λ), R denotes a random function and p̃p is uniformly
sampled.

Removing Public Parameters from the QDS Function. We observe that any
QDS function with public parameters induces a QDS function without public
parameters as follows. Let (Setup, F sk,m) be a QDS function, and H be a family
of pairwise independent hash functions with uniformly random description.16

Consider the following algorithms (Setup, Fsk,m):

– Setup(1λ): Sample (pp, sk) ← Setup(1λ), and sample a pairwise independent
hash function h ← H. Output sk = (pp, sk, h).

– Fsk,m: on input x, if x = init where init is a special input symbol, output
y = (h, pp). Otherwise output y = F sk,m(x) ⊕ h(x).

The resulting QDS function (Setup, Fsk,m) has the following properties:

– 2-Quantum easiness: there exists a QPT algorithm A that outputs m using
two classical queries to Fsk,m. This follows by calling Fsk,m on input init, receiv-
ing (pp, h), and then calling the quantum easiness algorithm for (Setup, F sk,m)
to (1) obtain an input query x, and (2) recover m from the output from
(Setup, F sk,m) (which can be recovered by computing h(x) given h and
unmasking the output of Fsk,m).

– 2-Query weak pseudorandomness: for any PPT algorithm A making at most
2 oracle queries, Fsk,m is computationally indistinguishable from a random
function. This follows by considering the following cases. If none of the two
queries are made on input x = init, pseudorandomness follows by pairwise
independence of h. Otherwise at most one query is made on an input x = init,
and weak pseudorandomness follows by 1-query weak pseudorandomness of
(Setup, F sk,m).

16 Uniform description follows by considering for instance random affine functions over
the field {0, 1}n where n denotes the input size, so that hash functions have descrip-
tions h = (a, b) ← {0, 1}n × {0, 1}n.
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6 Counterexamples for Post-quantum Security

In this section we use our functions from Sect. 5 to give examples of classically
secure primitives that are quantum insecure.

6.1 Counterexamples for Standard Cryptographic Primitives

We first focus on cryptographic primitives with usual security notions. We refer
to the full version [33] for formal definitions of the cryptographic primitives we
consider. Note that that the precise formulations of the security experiments do
influence the exact query complexity in the theorem below.

Theorem 3. Assuming the existence of a quantum advantage function with
pseudorandom outputs (Definition 2), there exists:

– A signature scheme that is secure against classical adversaries, but insecure
against quantum adversaries making two classical queries to the signing oracle.

– Additionally assuming the existence of CCA-1 (resp. CCA-2)-secure public-
key encryption, there exists a CCA-1 (resp. CCA-2)-secure public-key encryp-
tion scheme that is secure against classical adversaries, but insecure against
quantum adversaries making two classical queries to the decryption oracle
before making its challenge query.17

– A PRF with public parameters that is secure against classical adversaries,
but insecure against quantum adversaries making two classical queries to the
PRF.

– A CPA-secure symmetric-key encryption scheme with public parameters that
is secure against classical adversaries, but insecure against quantum adver-
saries making one query to the encryption oracle before making its challenge
query
(see [33] for a definition).

– A MAC with public parameters that is secure against classical adversaries, but
insecure against quantum adversaries making one query to the authentication
oracle.

Furthermore there exists a PRF, MAC and CPA-secure symmetric encryption
scheme each without public parameters and with the same classical security,
but insecurity against quantum adversaries making one additional query to the
respective oracles than listed above.

Combined with Corollary 1, such constructions exist assuming the (classical)
hardness of LWE.

Counterexample for Signatures. Let (Setup, Fsk) be a quantum advantage func-
tion (Definition 2). Let (KeyGen,Sign,Verify) be a (classically) secure signature
scheme. We define the following signature scheme (KeyGen,Sign,Verify):

17 In other words, the quantum attack is a CCA-1 attack.
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– KeyGen(1λ) : Sample (Sig.vk,Sig.sk) ← KeyGen(1λ) and (pp, sk) ← Setup(1λ).
Output (Sig.vk = (Sig.vk, pp), Sig.sk = (Sig.sk, sk)).

– Sign(Sig.sk,m) : Compute σ ← Sign(Sig.sk,m) and y = Fsk(m). If y = accept,
output σ = (σ,Sig.sk). Otherwise, output σ = (σ, y).

– Verify(Sig.vk,m, σ) : Output Verify(Sig.vk,m, σ).

Correctness of (KeyGen,Sign,Verify) follows directly from correctness of the
scheme (KeyGen,Sign,Verify).

Claim 2. Suppose that (Setup, Fsk) satisfies quantum easiness (Definition 2),
and that (KeyGen,Sign,Verify) is correct. Then there exists a QPT adversary F
that breaks unforgeability of (KeyGen,Sign,Verify) using two (classical) signing
queries.

Proof. Let A be the QPT algorithm associated to the quantum easiness of
(Setup, Fsk) (Definition 2). Define F as follows. Run A to obtain x1 ← A(pp),
and send a signing query with message x1. Upon receiving σ1 = (σ1, y1), con-
tinue the execution of A, setting the oracle response as y1, so that A produces
x2 = x∗ as a candidate accepting input for Fsk. F submit x2 as the second query.
F receives as response σ2 which it parses as σ2 = (σ2, y2). It picks an arbitrary
m = q1, q2 and outputs as its forgery σ∗ = Sign(y2,m).

By quantum easiness of (Setup, Fsk), we have with overwhelming probability
Fsk(x2) = accept, so that y2 = Sig.sk. Thus F produces a valid forgery with
overwhelming probability by correctness of (KeyGen,Sign,Verify). ��
Claim 3. Suppose (Setup, Fsk) satisfies classical hardness (Definition 2), and
that (KeyGen,Sign,Verify) is unforgeable (against classical adversaries). Then
(KeyGen,Sign,Verify) is unforgeable against classical adversaries.

Proof. We define the following hybrid experiment:

– Hybrid 1: We modify the behavior of the signing oracle. Compute σ ←
Sign(Sig.sk,m) and y = Fsk(m) as normal. If y = accept, abort. Otherwise,
output σ = (σ, y).

For any PPT adversary F , the probability of F making a signing query with
some input m that makes the signing oracle abort in hybrid 1 is negligible
by classical hardness of (Setup, Fsk) (Theorem 1). Therefore the output of the
unforgeability experiment for (KeyGen,Sign,Verify) is indistinguishable from its
output in hybrid 1.

Now unforgeability in hybrid 1 follows directly from (classical) unforgeability
of (KeyGen,Sign,Verify), where the reduction samples (pp, sk) ← Setup(1λ) and
computes y = Fsk(m) on its own upon receiving a signing query with message
m. ��

The counterexamples for CCA-secure encryption, PRFs, symmetric-key
encryption and MACS, along with the claimed classical security and quantum
insecurity, follow in an almost identical manner. We refer to the full version [33]
for the constructions.



28 A. Lombardi et al.

Removing Public Parameters in Secret-Key Primitives. Using a (deterministic)
quantum advantage function without public parameters (Claim1 and Corol-
lary 2), we obtain a PRF (respectively, a MAC) without public parameters, that
is quantum insecure using three classical PRF queries (resp. two MAC queries).

To remove public parameters from the secret-key encryption counterexam-
ple, we simply modify the scheme to append the public parameters pp of the
randomized quantum advantage function to all ciphertexts (and new cipher-
texts therefore have the form (pp, ct, y), where either y = Fsk(m′) for some m′

or y = Enc.sk). The new scheme is still quantumly broken using 2 (classical)
queries, where the additional query (on a dummy input) is used to obtain pp.
Classical security is maintained given that classical security for the original coun-
terexample held given pp.

6.2 Counterexamples for One-Time Primitives

We now study one-time counterparts of the primitives considered in the previous
section. Using the results from Sect. 5.2 we obtain constructions of “one-time”
analogs of counterexamples in Sect. 6.1, that are only secure against classical
attackers that are allowed to make only a limited number of queries to their
respective oracles. However they are broken by quantum attackers that make
one fewer query than their counterparts for the constructions from the previous
section. We refer again to the full version [33] for formal definitions (again, note
that the precise formulations of the security experiments do influence the exact
query complexity in the theorem below).

Theorem 4. Assuming the existence of a quantum disclosure of secrets function
(see Sect. 5.2), there exists:

– A one-time signature scheme that is secure against classical adversaries mak-
ing one query to the signing oracle, but insecure against quantum adversaries
making one classical query.

– Additionally assuming the existence of single-decryption CCA-1 (resp. CCA-
2)-secure public-key encryption, there exists a single-decryption CCA-1 (resp.
CCA-2)-secure public-key encryption scheme that is secure against classical
adversaries making one query to the decryption oracle, but insecure against
quantum adversaries making one classical query.

– A one-query PRF with public parameters that is secure against classical adver-
saries making one query to the PRF, but insecure against quantum adver-
saries making one classical query. Furthermore, there exists a PRF (without
public parameters) that is secure against classical adversaries making two
queries to the PRF but insecure against quantum adversaries making two
classical queries.

– A one-time symmetric-key encryption scheme with public parameters that
is secure against classical adversaries (making one challenge query and no
encryption queries), but insecure against quantum adversaries. Furthermore,
there exists a symmetric-key encryption scheme (without public parameters)



Post-quantum Insecurity from LWE 29

that is secure against classical adversaries making one encryption query and
one challenge query but insecure against quantum adversaries making one
classical encryption query and one challenge query.

Combined with Corollary 3, such constructions exist assuming the (classical)
hardness of LWE.

Counterexample for One-Time Signatures. Let (Setup, Fsk,·) be a quantum dis-
closure of secrets function (see Sect. 5.2). Let (KeyGen,Sign,Verify) be a (classi-
cally) secure one-time signature scheme (see [33] for a definition).

We define the following one-time signature scheme (KeyGen,Sign,Verify):

– KeyGen(1λ): Sample (Sig.vk,Sig.sk) ← KeyGen(1λ) and (pp, sk) ← Setup(1λ).
Output (Sig.vk = (Sig.vk, pp),Sig.sk = (Sig.sk, sk)).

– Sign(Sig.sk,m): Compute σ ← Sign(Sig.sk,m) and compute the quantum dis-
closure of secrets function with message Sig.sk: y = Fsk,Sig.sk(m). Output
σ = (σ, y).

– Verify(Sig.vk,m, σ): Parse σ = (σ, y). Output Verify(Sig.vk,m, σ)

Claim 4. Assume (Setup, Fsk,·) satisfies quantum easiness (see Sect. 5.2), and
(KeyGen,Sign,Verify) is correct. Then there exists a QPT adversary F that breaks
unforgeability of (KeyGen,Sign,Verify) using one (classical) signing query.

Proof. By the quantum easiness property of (Setup, Fsk,Sig.sk), F can recover
Sig.sk with overwhelming probability by making only one (classical) query to
the signing oracle. Then F can produce a forgery by running Sign(Sig.sk,m) for
an arbitrary message m (different from the one used in the query). ��
Claim 5. Assume (Setup, Fsk,·) satisfies weak pseudorandomness (see Sect. 5.2),
and (KeyGen,Sign,Verify) is one-time unforgeable. Then (KeyGen,Sign,Verify) is
one-time unforgeable against classical adversaries (see [33] for a definition).

Proof. We define the following hybrid experiment:

– Hybrid 1: We modify the behavior of the signing oracle. Instead of computing
y = Fsk,Sig.sk(m), sample y uniformly at random.

Given that forgers in the one-time experiment are only allowed to make
a single signing query, the output of the experiment defined by hybrid 1
is indistinguishable from that of the one-time unforgeability experiment for
(KeyGen,Sign,Verify), by weak pseudorandomness of (Setup, Fsk,Sig.sk). (One-
time) unforgeability in hybrid 1 follows directly from (one-time) unforgeability
of (KeyGen,Sign,Verify). ��

The counterexamples for single-decryption CCA-secure public-key encryp-
tion, one-query PRFs and one-time secure symmetric-key encryption are con-
structed in a nearly identical manner to the corresponding ones from Sect. 6.1,
with similar modifications as in the above construction for one-time signatures.

We refer to the full version [33] for the constructions, where we also discuss
how to remove public parameters for secret-key primitives.
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Abstract. In the first part of the paper, we show a generic compiler
that transforms any oracle algorithm that can query multiple oracles
adaptively, i.e., can decide on which oracle to query at what point depen-
dent on previous oracle responses, into a static algorithm that fixes these
choices at the beginning of the execution. Compared to naive ways of
achieving this, our compiler controls the blow-up in query complexity
for each oracle individually, and causes a very mild blow-up only.

In the second part of the paper, we use our compiler to show the secu-
rity of the very efficient hash-based split-key PRF proposed by Giacon,
Heuer and Poettering (PKC 2018), in the quantum random-oracle model.
Using a split-key PRF as the key-derivation function gives rise to a secure
KEM combiner. Thus, our result shows that the hash-based construction
of Giacon et al. can be safely used in the context of quantum attacks, for
instance to combine a well-established but only classically-secure KEM
with a candidate KEM that is believed to be quantum-secure.

Our security proof for the split-key PRF crucially relies on our
adaptive-to-static compiler, but we expect our compiler to be useful
beyond this particular application. Indeed, we discuss a couple of other,
known results from the literature that would have profitted from our
compiler, in that these works had to go though serious complications in
order to deal with adaptivity.

1 Introduction

This paper offers two main contributions. In a first part, we show a generic
reduction from adaptive to static multi-oracle algorithms, with a mild increase
of the query complexity for each oracle individually, and in the second part,
exploiting the reduction from the first part, we prove quantum security of the
hash–based split-key pseudorandom function (skPRF) proposed in [6]. We now
discuss these two contributions in more detail.

Adaptive Versus Static Multi-oracle Algorithms. In certain crypto-
graphic security games, the attacker A is an oracle algorithm that is given query
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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access to multiple oracles. This is in particular the case when considering the
design of a cryptographic scheme in an idealized setting. Consider for instance
the security definitions of public-key encryption and signature schemes in the
(quantum) random-oracle model, where the attacker is given oracle access to
both: the random-oracle and to a decryption/signing oracle.

By default, such an attacker A can then choose adaptively, i.e., depending
on answers to previous queries, at what point to query which oracle. This is
in contrast to a static A that has a predefined order of when it queries which
oracle.1 In certain cases, proving security for a static attacker is easier than
proving security for a full fledged adaptive attacker, or taking care of adaptivity
(naively) results in an unnecessary blow-up in the error term (see later).

In this light, it seems to be desirable to have a generic compiler that trans-
forms any adaptive attacker A into a static attacker Ā that is equally successful
in the attack. And there is actually a simple, naive solution for that. Indeed,
let A be an arbitrary oracle algorithm that makes adaptive queries to n ora-
cles O1, . . . ,On, and consider the static oracle algorithm Ā defined as follows:
Ā simply runs A, and at every point in time when A makes a query to one of
O1, . . . ,On (but due to the adaptivity it will only become clear at the time of
the query which Oi is to be queried then), the algorithm Ā makes n queries, one
to every Oi, and it relays A’s query to the right oracle, while making dummy
queries to the other oracles.

At first glance, this simple solution is not too bad. It certainly transforms
any adaptive A into a static Ā that will be equally successful, and the blow-up
in the total query complexity is a factor n only, which is mild given that the
typical case is n = 2. However, it turns out that in many situations, considering
the blow-up in the total query complexity is not good enough.

For example, consider again the case of an attacker against a public-key
encryption scheme in the random-oracle model. In this example, it is typically
assumed that A may make many more queries to the random-oracle than to
the decryption oracle, i.e., qH � qD. But then, applying the above simple com-
piler, Ā makes the same number of queries to the random-oracle and to the
decryption oracle; namely q̄H = q̄D = qH + qD. Furthermore, the actual figure
of merit, namely the advantage of an attacker Ā, is typically not (bounded by)
a function of the total query complexity, but a function of the two respective
query complexities qH and qD individually. For example, if one can show that
the advantage of any static attacker Ā with respective query complexities q̄H

and q̄D is bounded by, say, q̄H q̄2D, then the above compiler gives a bound on
the advantage of any adaptive attacker A with respective query complexities qH

and qD of q3H + 2q2HqD + qHq2D. If qH � qD then this is significantly worse than
≈ qHq2D, which one might hope for given the bound for static Ā.

Our first result is a compiler that transforms any adaptive oracle algorithm
A that makes at most qi queries to oracle Oi for i = 1, . . . , n into a static oracle
algorithm Ā that makes at most q̄i = nqi queries to oracle Oi for i = 1, . . . , n.

1 In either case, we allow A to decide adaptively what input to query, when having
decided (adaptively or statically) on which oracle to query.
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Thus, rather than controlling the blow-up in the total number of queries, we can
control the blow-up in the number of queries for each oracle individually, yet still
with the same factor n. Our result applies for any vector q = (q1, . . . , qn) ∈ N

n

and contains no hidden constants. Our compiler naturally depends on q (or,
alternatively, needs q as input) but otherwise only requires straight-line black-
box access to A, and it preserves efficiency: the run time of Ā is polynomial in
Q = q1 + · · · + qn, plus the time needed to run A. Furthermore, the compiler is
applicable to any classical or quantum oracle algorithm A, where in the latter
case the queries to the oracles O1, . . . ,On may be classical or quantum as well;
however, the choice of the oracle for each query is assumed to be classical (so
that individual query complexities are well defined).

In the above made-up example of a public-key encryption scheme with advan-
tage bounded by q̄H q̄2D for any static Ā with respective query complexities q̄H

and q̄D, we now get the bound 8qHq2D for any adaptive A with respective query
complexities qH and qD.

We show the usefulness of our adaptive-to-static compiler by discussing two
example results from the literature. One is the security proof by Alkim et al. [3]
of the qTESLA signature scheme [2] in the quantum random-oracle model; the
other is the recent work by Alagic, Bai, Katz and Majenz [1] on the quantum
security of the famous Even-Mansour cipher. In both these works, the adaptivity
of the attacker was a serious obstacle and caused a significant overhead and
additional complications in the proof. With our results, these complications could
have been avoided without sacrificing much in the security loss (as would be the
case with using a naive compiler). We also exploit our adaptive-to-static compiler
in our second main contribution, discussed below.

Interestingly, all three example applications are in the realm of quantum
security (of a classical scheme). This seems to suggest that the kind of adaptivity
we consider here is not so much of a hurdle in the case of classical queries.
Indeed, in that case, a typical argument works by inspecting the entire query
transcript and identifying an event with the property that conditioned on this
event, whatever needs to be shown holds with certainty, and then it remains
to show that this event is very likely to occur. In the case of quantum queries,
this kind of reasoning does not apply since one cannot “inspect” the query
transcript anymore; instead, one then typically resorts to some sort of hybrid
argument where queries are replaced one-by-one, and then adaptivity of the
queries may — and sometimes does, as we discuss — form a serious obstacle.

Quantum-Security of a Split-Key PRF. In the upcoming transition to
post-quantum secure cryptographic standards, combiners may play an important
role. A combiner can be used compile several cryptographic schemes into a new,
“combined” scheme, which offers the same (or a similar) functionality, and so
that the new scheme is secure as long as at least one of the original schemes is
secure. For example, combining a well-established but quantum-insecure scheme
with a believed-to-be quantum-secure (but less well studied) scheme then offers
the best of both worlds: it offers security against quantum attacks, should there
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really be a quantum computer in the future, but it also offers some protection
in case the latter scheme turns out to be insecure (or less secure than expected)
even against classical attacks. In other words, using a combiner in this context
ensures that we are not making things less secure by trying to aim for quantum
security.

In [6], Giacon, Heuer and Poettering showed that any split-key PRF (skPRF)
gives rise to a secure KEM combiner. In more detail, they show that if a skPRF
is used in the (rather) obvious way as a key-derivation function in a KEM com-
biner, then the resulting combined KEM is IND-CCA secure if at least one of
the component KEMs is IND-CCA secure. They also suggest a few candidates
for skPRFs. The most efficient of the proposed constructions is a hash-based
skPRF, which is proven secure in [6] in the random-oracle model. However, in
the context of a quantum attack, which is in particular relevant in the above
example application of a combiner, it is crucial to prove security in the quan-
tum random-oracle model [4]. Here, we close this gap by proving security of
the hash-based skPRF construction proposed by Giacon et al. in the quantum
random-oracle model.

Our security proof crucially exploits our adaptive-to-static compiler to reduce
a general, adaptive attacker/distinguisher to a static one. Namely, in spirit, our
security proof is a typical hybrid proof, where we replace, one by one, the queries
to the (sk)PRF by queries to a truly random function; however, the crux is
that for each hybrid, corresponding to a particular function query that is to
be replaced, the closeness of the current to the previous hybrid depends on the
number of hash queries between the current and the previously replaced function
query. In case of an adaptive A, each such “window” of hash queries between
two function queries could be as large as the total number of hash queries in the
worst case, giving rise to a huge multiplicative blow-up when using this naive
bound. Instead, for a static A, each such window is bounded by a fixed number,
with the sum of these numbers being the total number of hash queries.

By means of our compiler, we can turn the possibly adaptive A into a static
one (almost) for free, and this way avoid an unnecessary blow-up, respectively
bypass additional complications that arise by trying to avoid this blow-up by
other means.

2 Preliminaries

We consider oracle algorithms AO1,...,On that make queries to (possibly unspec-
ified) oracles O1, . . . ,On, see Fig. 1 (left). Sometimes, and in particular when
the oracles are not specified, we just write A and leave it implicit that A makes
oracle calls. We allow A to be classical or quantum, and in the latter case we
may also allow the queries (to some of the oracles) to be quantum; however, the
choice of which oracle is queried is always classical. For the purpose of our work,
we may assume A to have no input; any potential input could be hardwired
into A. For a vector q = (q1, . . . , qn) ∈ N

n, we say that A is a q-query oracle
algorithm if it makes at most qi queries to the oracle Oi.
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In general, such an oracle algorithm A may decide adaptively which oracle to
query at what step, dependent on previous oracle responses. In contrast to this,
a static oracle algorithm has an arbitrary but pre-defined order in querying the
oracles.

Our goal will be to transform any adaptive oracle algorithm A into a static
oracle algorithm Ā that is functionally equivalent, while keeping the blow-up in
query complexity for each individual oracle, i.e., the blow-up for each individual
qi, small. By functionally equivalent (for certain oracle instantiations) we mean
the respective executions of AO1,...,On and ĀO1,...,On give rise to the same out-
put distribution for all (the considered) instantiations O1, . . . , On of the oracles
O1, . . . ,On. In case of quantum oracle algorithms, we require the output state
to be the same.

For this purpose, we declare that an interactive oracle algorithm B is an inter-
active algorithm with two distinct interaction interfaces, one for the interaction
with A (we call this the simulation interface), and one for the oracle queries (we
call this the oracle interface), see Fig. 1 (middle). For any oracle algorithm A,
we then denote by B[A] the oracle algorithm that is obtained by composing A
and B in the obvious way. In other words, B[A] runs A and answers all of A’s
oracle queries using its simulation interface; furthermore, B[A] outputs whatever
A outputs at the end of this run of A, see Fig. 1 (right).2

A ...
... B...

... A ...
... B ...

...

B[A]

...
...

Fig. 1. An oracle algorithm A (left), an interactive oracle algorithm B (middle), and
the oracle algorithm B[A] obtained by composing A and B (right).

In contrast to A (where, for our purpose, any input could be hardwired),
we explicitly allow an interactive oracle algorithm B to obtain an input. Indeed,
our transformation, which turns any adaptive oracle algorithm A into a static
oracle algorithm Ā, needs to “know” q, i.e., the number of queries A makes to
the different oracles. Thus, this will be provided in the form of an input to B;
for reasons to be clear, it be provided in unary, i.e., as 1q := (1q1 , . . . , 1qn).

We stress that we do not put any computational restriction on the oracle
algorithms A (beyond bounding the queries to the individual oracles); however,
2 Note, we silently assume consistency between A and B, i.e. A should send a message

when B expects one and the format of these messages should match the format of
the messages that B expects (and vice versa), so that the above composition makes
sense. Should B encounter some inconsistency, it will abort.
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we do want our transformation to preserve efficiency. Therefore, we say that an
interactive oracle algorithm B is polynomial-time if the number of local compu-
tation steps it performs is bounded to be polynomial in its input size, and where
we declare that copying an incoming message on the simulation interface to an
outgoing message on the oracle interface, and vice versa, is unit cost (irrespec-
tively of the size of the message). By providing q in unary, we thus ensure that
B is polynomial-time in q1 + · · · + qn.

3 A General Adaptive-to-Static Reduction
for Multi-oracle Algorithms

3.1 Our Result

Let n ∈ N be an arbitrary positive integer. We present here a generic adaptiv-
to-static compiler B that, on input a vector q ∈ N

n, turns any adaptive q-query
oracle algorithm AO1,...,On into a static nq-query algorithm.

Theorem 1. There exists a polynomial-time interactive oracle algorithm B,
such that for any q ∈ N

n and any adaptive q-query oracle algorithm AO1,...,On ,
the oracle algorithm B[A](1q) is a static nq-query oracle algorithm that is func-
tionally equivalent to A for all stateless instantiations of the oracles O1, . . . ,On.

Remark 1. As phrased, Theorem 1 applies to oracle algorithms A that have no
input. This is merely for simplicity. In case of an oracle algorithm A that takes
an input, we can simply apply the statement to the algorithm A(x) that has the
input x hardwired, and so argue that Theorem 1 also applies in that case.

Remark 2. B[A] is guaranteed to behave the same way as A for stateless (instan-
tiations of the) oracles only. This is become most of the queries that B[A] makes
are actually dummy queries (i.e., queries on a default input and with the response
ignored), which have no effect in case of stateless oracles, but may mess up things
in case of stateful oracles. Theorem 1 extends to arbitrary stateful oracles if we
allow B[A] to skip queries instead of making dummy queries (but the skipped
queries would still count towards the query complexity).

Given the vector q = (q1, . . . , qn) ∈ N
n, the core of the problem is to find

a fixed sequence of Oi’s in which each individual Oi occurs at most nqi times,
and so that every sequence of Oi’s that contains each individual Oi at most qi

times can be embedded into the former. We consider and solve this abstract
problem in the following section, and then we wrap up the proof of Theorem 1
in Sect. 3.3.

3.2 The Technical Core

Let Σ be an non-empty finite set of cardinality n. We refer to Σ as the alphabet.
As is common, Σ∗ denotes the set of finite strings over the alphabet Σ. In other
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words, the elements of Σ∗ are the strings/sequences s = (s1, . . . , s�) ∈ Σ� with
arbitrary � ∈ N (including � = 0).

Following standard terminology, for s = (s1, . . . , s�) and s′ = (s′
1, . . . , s

′
m) in

Σ∗, the concatenation of s and s′ is the string s‖s′ = (s1, . . . , s�, s
′
1, . . . , s

′
m), and

s′ is a subsequence of s, denoted s′ � s if there exist integers 1 ≤ j1 < . . . <
jm ≤ � with (sj1 , . . . , sjm

) = (s′
1, . . . , s

′
m). Such an integer sequence (j1, . . . , jm)

is then called an embedding of s′ into s. 3

Finally, for a function q : Σ → N, σ 	→ qσ, we say that s = (s1, . . . , s�) ∈ Σ∗

has characteristic (at most) q if #{i | si = σ} = qσ (≤ qσ) for any σ ∈ Σ.

Lemma 1 (Embedding Lemma). Let Σ be an alphabet of size n, and let
q : Σ → N, σ 	→ qσ. Then, there exists a string s ∈ Σ∗ with characteristic
n · q : σ 	→ n · qσ such that any string s′ ∈ Σ∗ with characteristic at most q is a
subsequence of s, i.e., s′ � s.

The idea of the construction of the sequence s is quite simple: First, we evenly
distribute n ·qσ copies of σ within the interval (0, n] by “attaching” one copy of σ
to every point in (0, n] that is an integer multiple of 1/qσ (see Fig. 2). Note that
it may happen that different symbols are “attached” to the same point. Then,
we walk along the interval from 0 and n and, one by one, collect the symbols we
encounter in order to build up s′ from left to right; in case we encounter a point
with multiple symbols “attached” to it, we collect them in an arbitrary order.

0

{σ1}

1/qσ1

{σ2}

1/qσ2

{σ1}

2/qσ1

{σ1, σ2}

3/qσ1 = 2/qσ2
. . .

. . .

Fig. 2. Constructing the string s by distributing the different symbols evenly within
the interval (0, n] (here with 3/qσ1 = 2/qσ2), and then collecting them from left to
right.

It is then not too hard to convince yourself that this s indeed satisfies the
claim. Namely, for any s′ = (s′

1, . . . , s
′
m) as considered, we can again walk along

the interval from 0 and n, and we will then encounter all the symbols of s′, one
by one: we will encounter the symbol s′

1 within the walk from 0 to 1/qs′
1
, the

symbol s′
2 then within the walk from 1/qs′

1
to 1/qs′

1
+ 1/qs′

2
, etc.

Putting this idea into a formal proof is somewhat tedious, but in the end not
too difficult. In order to formalize things properly, we generalize the standard
notion of a sequence s ∈ Σ∗ in a way that allows us to talk about “attaching”
a symbol to a point on R, etc., in a rigorous way. Formally, we define a line
sequence to be an arbitrary finite (possibly empty) subset S ⊆ R × Σ, i.e.,

S = {(t1, s1), . . . , (t�, s�)} ∈ P<∞(R×Σ) ,

3 We use string and sequence interchangeably; however, following standard terminol-
ogy, there is a difference between a substring and subsequence: namely, a substring
is a subsequence that admits an embedding with ji+1 = ji + 1.
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where w.l.o.g. we will always assume that t1 ≤ . . . ≤ t�. We may think of the
symbol si to “occur at the time” ti.4 For a subset T ⊂ R, the set P<∞(T ×Σ)
then obviously denotes the set of line sequences with t1, . . . , t� ∈ T .

Assuming that the alphabet Σ is equipped with a total order ≤, any line
sequence S = {(t1, s1), . . . , (t�, s�)} is naturally associated with the ordinary
sequence

π(S) := (s1, . . . , s�) ∈ Σ∗ ,

which is uniquely determined by the convention t1 ≤ . . . ≤ t� and insisting on
si ≤ sj whenever ti = tj for i < j.

This projection π : P<∞(R×Σ) → Σ∗ preserves the characteristic of the
sequence, i.e., if s = (s1, . . . , s�) = π(S) then

#{t | (t, σ) ∈ S} = #{i | si = σ} (1)

for any σ ∈ Σ. Furthermore, for T, T ′ ⊂ R with T < T ′ point-wise, and for S ∈
P<∞(T×Σ) and S′ ∈ P<∞(T ′×Σ), it is easy to see that π(S∪S′) = π(S)‖π(S′) ,
from which it then follows that for ordinary sequences s, s′ ∈ Σ∗

s � π(S) ∧ s′ � π(S′) =⇒ s‖s′ � π(S)‖π(S′) = π(S ∪ S′) . (2)

A final, simple observation, which follows directly from the definitions, is that
for σ ∈ Σ, i.e. a sequence of length m = 1, σ � π(S) holds if and only if there
exists a time t ∈ R such that (t, σ) ∈ S.

Proof of Lemma 1. For any symbol σ ∈ Σ let Sσ be a line sequence

Sσ :=
{

1
qσ

, ..., nqσ

qσ

} × {σ} ∈ P<∞((0, n]×Σ) ,

and set S :=
⋃

σ∈Σ Sσ. We will show that s := π(S) is as claimed.
The claim on the characteristic of s follows from the preservation of the

characteristic under π, i.e. (1), and from #{t | (t, σ) ∈ S} = #Sσ = n · qσ, which
holds by construction of S.

Let s′ = (s′
1, . . . , s

′
m) ∈ Σ∗ be arbitrary with characteristic bounded by q.

We consider the times τj := 1/qs′
1
+ · · ·+1/qs′

j
for j ∈ {1, . . . , m}, and we let Tj

be the interval
Tj :=

(
τj−1, τj

]
=

(
τj−1, τj−1+ 1

q′
j

] ⊂ R ,

and decompose S = S1 ∪ . . . ∪ Sm with Sj := S ∩ (Tj×Σ) ∈ P<∞(Tj×Σ). Here,
we exploit that

τm =
∑

σ∈Σ

#{i | s′
i = σ}

qσ
≤

∑

σ∈Σ

qσ

qσ
= n ,

and so the Sj ’s indeed cover all of S ∈ P<∞((0, n]×Σ). Given that the interval
Tj ⊂ (0, n] has size 1/qs′

j
, there exists a time tj ∈ Tj ∩ {

1
qσ

, ..., nqσ

qσ

}
. But then,

4 Note that we allow ti = tj for i �= j while the definition prohibits (ti, si) = (tj , sj).
If desired, one could allow the latter by letting S be a multi-set, but this is not
necessary for us.
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(tj , s′
j) ∈ Sj by construction of S, and therefore s′

j � π(Sj). Finally, since
Tj−1 < Tj , property (2) implies that

s′ = s′
1‖ · · · ‖s′

m � π(S1 ∪ . . . ∪ Sm) = s

which was to be shown.

While Lemma 1 above settles the existence question, the following two obser-
vations settle the corresponding efficiency questions. For concreteness, we assume
Σ = {1, . . . , n} below, and thus can identify the function q : Σ → N, σ 	→ qσ

with the vector q = (q1, . . . , qn).
First, we observe that the line sequence S defined in the proof above, as well

as its projection s = π(S), can be computed in polynomial time in q1 + · · · + qn;
thus, we have the following.

Lemma 2. There exists a polynomial-time algorithm that, on input 1q, com-
putes a string s ∈ Σ∗ as specified in the proof of Lemma 1.

Furthermore, for any s′ ∈ Σ∗ with characteristic at most q, for which we
then know by Lemma 1 that s′ can be embedded into s, the following ensures
that this embedding can be computed efficiently and on the fly.

Lemma 3. There exists a polynomial-time algorithm E such that for every
string s ∈ Σ∗ and every subsequence s′ = (s′

1, . . . , s
′
m) � s, the following holds.

Computing inductively ji ← E(s, s′
i, ji−1) for every i ∈ [m], where j0 := 0, results

in an increasing sequence j1 < · · · < jm with

s′ = (sj1 , . . . , sjm
) .

The algorithm E simply follows the obvious greedy strategy: for each s′
i it

looks for the next ji for which s′
i = sji

. More formally:

Proof. The algorithm E(s, s′
i, ji−1) computes

ji := min {k ∈ N | ji−1 < k ≤ m, sk = s′
i} . (3)

It can be easily shown that the minimum is well-defined, i.e. taken over a non-
empty set for each i by the assumption that s′ is a subsequence of s, and thus
by construction, every ji is such that s′

i = sji
while keeping j1 < · · · < jn

increasing. This concludes the proof. ��

3.3 Wrapping up the Proof of Theorem 1

The claimed interactive oracle algorithm B now works in the obvious way. On
input q (provided in unary) and for any A, B[A] will make static oracle queries to
Os1 ,Os2 , . . . ,OsnQ

, where s = (s1, . . . , snQ) ∈ {1, . . . , n}∗ is the string promised
to exist by Lemma 1, with Q = q1 + · · · + qn. In more detail, it first computes
s using the algorithm from Lemma 2. Then, for the i-th oracle query that B
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receives from A (starting with i = 1), and which consists of the identifier s′
i ∈

{1, . . . , n} of which oracle to query now and of the actual input to the oracle
Os′

i
, the algorithm B does the following: it computes ji ← E(s, s′

i, ji−1) using
the algorithm from Lemma 3, makes dummy queries to Osji−1+1 , . . . ,Osji−1 , and
forwards A’s query input to Osji

= Os′
i
. The fact that (j1, . . . , jQ) computed

this way forms an embedding of s′ = (s′
1, . . . , s

′
Q) into s ensures that B is able to

forward all the queries that A makes to the right oracle, and so A will produce
its output as in an ordinary run with direct adaptive access to the oracles.

3.4 Applications

To demonstrate the usefulness of our adaptive-to-static compiler, we briefly dis-
cuss three results from the literature. For two of them, the adaptivity of the
attacker was explicitly declared as an obstacle in the security proof, and deal-
ing with it complicated the proof substantially. These complications could be
avoided/removed by means of our adaptive-to-static compiler. For the third one,
we can immediately strengthen one of the results, which is restricted to hold for
static multi-oracle adversaries, by dropping this restriction via our compiler.

Quantum Security of qTESLA. Our first application is in the context of
qTESLA [2], which is a signature scheme that made it into the second round
of the NIST post-quantum competition. Its security is based on the Ring-LWE
problem, to which the authors of [3] give a reduction in the quantum random-
oracle model (QROM).5 In the reduction, which starts from the security notion
of Unforgeability under Chosen Message Attack (UF-CMA), the adversary can
query a random-oracle H as well as a signing oracle, where the order of oracle
queries may be adaptive.

The reduction strategy of [3] applies only to a static adversary, with a fixed
query pattern. Thus, the authors first compile the adaptive into a naive static
attacker by letting it do qH (the number of H-queries of the original adaptive
adversary) H-queries between any two signing queries. Leaving it with this would
blow up the number of H-queries to qSqH . In order to avoid that, they give the
attacker a “live-switch”, meaning that each query to H may be in superposition
of making the query and not making the query, and the total “query magnitude”
on actual H-queries is still restricted to qH . Not so surprising, adding even more
“quantumness” to the problem in this way, makes the analysis more complicated
(compared to using standard “all-or-nothing” static queries and a standard clas-
sical bound on the query complexity), but it allows the authors to avoid the
above blow-up in the (classical) query complexity to transpire into the security
loss. The overall loss they obtain in the end is O((qSq2H +q3S +q2SqH) ·ε) for small
ε determined by the parameters of the scheme.

5 We note that some versions of qTESLA have been broken [8], but the attack only
applies to an optimized variant that was developed for the NIST-competition, and
does not apply to the scheme in [3] that we discuss here.
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Since the security reduction in [3] intertwines the adaptive to static hurdle
with other aspects of the proof, we cannot simply insert our Theorem 1 and
then continue the proof as is. Still, by applying our result, we could obtain
a static adversary with almost no cost in the number of H-queries, avoiding
the need for the rather complicated “live-switch superposition” attacker, thus
simplifying the overall proof significantly. Furthermore, looking ahead at Sect. 4,
our result allows us to obtain the much better O(

√
qOq2Hε +

√
q2OqHε) loss in

a similar context — similar in the sense that it also involves two oracles where
one reprograms the other at some high-entropy input. The adaptive to static
reduction there allows us to apply some additional QROM tools that could
potentially also be applied in the setting of qTESLA to improve the bound.
However, actually doing this would require us to rewrite the entire proof of [3],
which we consider outside the scope of this work.

Quantum Security of the Function FX. Our second application is to [7],
where the post-quantum security of the FX key-length extension is studied
(which is a generalization of the Even-Mansour cipher). In a first part, post-
quantum security of FX is shown under the restriction that the inputs to the
queries are fixed in advance. In a second part, towards avoiding this restriction,
the authors consider a variation of the FX construction, which they call FFX
(for “function FX”), and they show in their Theorem 3 post-quantum security
of FFX under the restriction that the attacker is “order consistent”, as they call
it in [7], which is precisely our notion of a static multi-oracle algorithm. Thus, by
a direct application of our Theorem 1, this restriction can be dropped (almost)
for free, i.e., with a small constant blow-up on the attackers advantage.

Quantum Security of the Even-Mansour Cipher. The recent work [1]
shows full post-quantum security of the (unmodified) Even-Mansour cipher. Is
in the case of qTESLA, the fact that the attacker can choose adaptively whether
to query the public permutation of the cipher complicates the proof. Indeed, as
is explained on page 3 in [1], this adaptivity issue forces the authors to extend
the blinding lemma of Alagic et al. to a variant that gives a bound in terms of
the expected number of queries. While the authors succeed in providing such an
extended version of the blinding lemma (Lemma 3 in [1]), it further increases
the complexity of an already involved proof. 6

Thus, again, our Theorem 1 could be used to simplify the given proof by
bypassing the complications that arise due to the attacker choosing adaptively
which oracle to query at what point.

6 To be fully precise, Lemma 3 in [1] also generalizes the original blinding lemma
in a different direction by allowing to reprogram to an arbitrary value instead of
a uniformly random one; however, this generalization comes for free in that the
original proof still applies up to obvious changes, while allowing an expected number
of queries, which is needed to deal with the adaptivity issue, requires a new proof.
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4 Quantum Security of a Split-Key PRF

4.1 Hybrid Security and skPRFs

A split-key pseudorandom function (skPRF), as introduced in [6], is a
polynomial-time computable function F : K1 × · · · × Kn × X → Y that
is a pseudorandom function (PRF) in the standard sense for every i ∈ [n]
when considered as a keyed function with key space Ki and message space
K1 × · · · × Ki−1 × Ki+1 × · · · × Kn × X , with the additional restriction that
the distinguisher A (in the standard PRF security definition) must use a fresh
x ∈ X in every query (k1, . . . , ki−1, ki+1, . . . , kn, x).

This restriction on the PRF distinguisher may look artificial, but is motivated
by this definition of a skPRF being good enough for the intended purpose of a
skPRF, namely to give rise to a secure KEM combiner. Indeed, [6] shows that the
naturally combined KEM, obtained by concatenating the individual ciphertexts
to C = (c1, . . . , cn), and combining the individual session keys k1, . . . , kn using
the above mentioned skPRF as

K = F (k1, . . . , kn, C) ,

is IND-CCA secure if at least one of the individual KEM’s is IND-CCA secure.
The paper [6] also proposes a particularly efficient hash-based construction,

given by
F (k1, . . . , kn, x) := H(g(k1, . . . , kn), x) (4)

where g : K1 × · · · × Kn → W is a polynomial-time mapping with the property
that, for some small ε,

Pr
ki←Ki

[g(k1, . . . , kn) = w] ≤ ε , (5)

for every i ∈ [n] and for every k1, . . . , ki−1, ki+1, . . . , kn and every w; furthermore,
H : W → Y is a cryptographic hash function. Simple choices for the function g
are g(k1, . . . , kn) = (k1, . . . , kn) and g(k1, . . . , kn) = k1 + · · · + kn.

It is shown in [6] that this construction is a skPRF when H is modelled as
a random-oracle; indeed, it is shown that the distinguishing advantage is upper-
bounded by qHε, where qH is the number of queries to the random-oracle H.

Given the natural use of combiners in the context of the upcoming transi-
tion to post-quantum cryptography, it is natural — and well-motivated — to ask
whether F can be proven to be a skPRF in the presence of a quantum attacker,
i.e., when H is modeled as a quantum random-oracle. Below, we answer this in
the affirmative.

4.2 Quantum-Security of the skPRF

The goal of this section is to show the security of the skPRF (4) in the quantum
random-oracle model. In essence, this requires proving that F is a PRF (in the
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quantum random-oracle model) with respect to any of the ki’s being the key,
subject to the restriction of asking a fresh x in each query.

To simplify the notation, we fix the index i ∈ [n] and simply write k for ki

and x for (k1, . . . , ki−1, ki+1, . . . , kn, x), and we abstract away the properties of
the function g as follows. We let

F (k, x) := H(h(k, x)) ,

where h : K × X → W is an arbitrary function with the property that, for some
parameter ε > 0,

Pr
k←K

[h(k, x) = w] ≤ ε (6)

for all w ∈ W and x ∈ X . Furthermore, in the PRF security game, we restrict
the attacker/distinguisher A to queries x with a fresh value of h(k, x), no matter
what k is.

More formally, let AH,O be an arbitrary quantum oracle algorithm, making
quantum superposition queries to an oracle H and classical queries to another
oracle O, with the restriction that for every query x to O it holds that

h(κ, x) �= h(κ, x′) , (7)

for any prior query x′ to O and all κ ∈ K. For any such oracle algorithm AH,O,
we consider the standard PRF security games

PR1 := AH,F and PR0 := AH,R ,

obtained by instantiating H with a random function H (the random-oracle) in
both games, and in one game we instantiate O with the pseudorandom function
F , which we understand to return F (k, x) on query x for a random k ← K,
chosen once and for all queries, and in the other we instantiate O with a truly
random function R instead.

We show that the distinguishing advantage for these two games is bounded
as follows.

Theorem 2. Let AH,O be a (qH, qO)-query oracle algorithm satisfying (7). Then

∣
∣Pr

[
1 ← PR1

] − Pr
[
1 ← PR0

]∣∣ ≤ 4
√

2q2OqHε + 4
√

2q2HqOε .

We can now apply Theorem 2 to the function h(k, x) := (g(k1, . . . , kn), x̃),
where k := ki and x := (k1, . . . , ki−1, ki+1, . . . , kn, x̃). Indeed, the condition (5)
on g implies the corresponding condition (7) on h, and the restriction on x̃ being
fresh in the original skPRF definition implies the above restriction on h(k, x)
being fresh no matter what k is, i.e., 6). Thus, we obtain the following.

Corollary 1. For any function g satisfying (5) for a given ε > 0, the func-
tion F (k1, . . . , kn, x) := H(g(k1, . . . , kn), x) is a skPRF in the quantum random-
oracle model with distinguishing advantage at most 4

√
2q2OqHε + 4

√
2q2HqOε.
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4.3 Proof of Theorem 2

Proof (of Theorem 2). Let AH,O be an oracle algorithm as considered in the
previous subsection. Thanks to Theorem 1, taking a factor-2 blow-up in the
query complexity into account, we may assume A to be a static (qH, qO)-query
oracle algorithm. It will be convenient to write such a static algorithm as

A[H0OH1OH2...OHqO ] ,

where each block Hi = H · · · H consists of a (possibly empty) sequence of sym-
bols H of length qH

i = |Hi|, and with the understanding that A first makes
qH
0 queries to H, then a query to O, then qH

1 queries to H, etc., where, obvi-
ously, qH

0 + · · · + qH
qO = qH then. Instantiating H with H, and O with F and R,

respectively, we can then write

PR0 = A[H0RH1...RHqO ] and PR1 = A[H0FH1...FHqO ] .

For the proof, we introduce certain hybrid games. For this purpose, we introduce
the following alternative (stateful and R-dependent) instantiation H ′ of H. To
start with, H ′ is set to be equal to H, but whenever R is queried on some input x,
H ′ is reprogrammed at the point h(k, x) to the value H ′(h(k, x)) := R(x). For
any i, we now define the two hybrid games

PR2
i :=A[H0R...RHiFH′

i+1F...FH′
qO ]

P̃R
2

i :=A[H0R...RHiRH′
i+1F...FH′

qO ]

and also spell out

PR2
i+1 =A[H0R...RHiRHi+1F...FH′

qO ]

to emphasize its relation to P̃R
2

i . We note that in all of the above, the first
occurrences of H and O are instantiated with R and H, respectively, but at
some point we switch to R and H ′ instead.

The extreme cases match up the games we are interested in. Indeed,

PR2
0 = A[H0FH′

1...FH′
qO ] = A[H0FH1...FHqO ] = PR1 ,

where we exploit that there are no queries to R and thus H ′ remains equal to
H, and, by definition,

PR2
qO = A[H0RH1...RHqO ] = PR0 .

Our goal is to prove the closeness of the following games

PR1 = PR2
0 ≈ P̃R2

0 ≈ PR2
1 · · · ≈ PR2

qO−1 ≈ P̃R
2

qO−1 ≈ PR2
qO = PR0 .

We do this by means of applying Lemma 4 and 5, which we state here and prove
further down.
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Lemma 4. For each 0 ≤ i < qO,
∣
∣
∣Pr

[
1 ← PR2

i

]
− Pr

[
1 ← P̃R

2

i

]∣∣
∣ ≤ 2

√ ∑

1≤j≤i

qH
j ε .

Lemma 5. For each 0 ≤ i < qO,
∣
∣
∣Pr

[
1 ← P̃R

2

i

]
− Pr

[
1 ← PR2

i+1

]∣∣
∣ ≤ 2qH

i+1

√
qOε .

Indeed, by repeated applications of these lemmas, and additionally using that
qH
0 + · · · + qH

i ≤ qH for all 0 ≤ i ≤ qO, we obtain

∣
∣Pr

[
1 ← PR1

] − Pr
[
1 ← PR0

]∣∣ ≤ 2
qO∑

i=0

√ ∑

1≤j≤i

qH
j ε + 2

qO∑

i=0

qH
i+1

√
qOε

≤ 2
√

q2OqHε + 2
√

q2HqOε

which concludes the claim of Theorem 2 when incorporating the factor-2 increase
in qH and qO due to switching to a static A. ��

It remains to prove Lemma 4 and 5, which we do below. In both proofs,
we use the gentle measurement lemma [9, Lemma 9.4.1], which states that if a
projective measurement has a very likely outcome then the measurement causes
only little disturbance on the state. More formally, for any density operator ρ
and any projector P , where p := tr(PρP ) then is the probability to observe the
outcome associated with P when measured using the measurement {P, I − P},
the trace distance between the original state ρ and the post-measurement state
ρ′ := PρP/p is bounded by

√
1 − p. This in turn implies that ρ and ρ′ can be

distinguished with an advantage
√

1 − p only.
The proof of Lemma 4 additionally makes use of Zhandry’s compressed oracle

technique [10]. It is out of scope of this work to give a self-contained description
of this technique; we refer to the original work [10] instead, or to [5], which
offers an alternative concise description. At the core is the observation that
one can purify the random choice of the function H and then, by switching to
the Fourier basis and doing a suitable measurement, one can check whether a
certain input x has been “recorded” in the database (mind though that such
a measurement disturbs the state). If the outcome is negative then the oracle
is still in a uniform superposition over all possible hash values for x, and as a
consequence, when removing the purification by doing a full measurement of H
(in the computational basis), H(x) is ensured to be a “fresh” uniformly random
value, with no information on H(x) having been leaked in prior queries.

In the proof of Lemma 4, we use this technique to check whether prior to the
crucial query, which is to F in one and to R in the other game, there was a query
to H that would reveal the difference, and we use (6) to argue that it is unlikely
that such a query occurred. Since this measurement has a likely outcome, it is
also ensured by the gentle measurement lemma that this measurement causes
little disturbance.



48 J. Don et al.

Proof (of Lemma 4). For convenience, we refer to the crucial query as the respec-
tive query to F and R that differs between

PR2
i = A[H0R...RHiFH′

i+1F...FH′
qO ] and P̃R

2

i = A[H0R...RHiRH′
i+1F...FH′

qO ] .

Furthermore, we let x be the input to that query, and we set w := h(k, x), with
k being the key chosen and used by F . Note that up to this very query, the two
games are identical. Also, by (7) it is ensured that for any prior query x′ to R
it holds that h(k, x′) �= w.

First, we consider the games G1 and G̃1 that work exactly as PR2
i and P̃R

2

i ,
respectively, except that, at the beginning of the games we set up the compressed
oracle and answer all queries made to H prior to the crucial query using the
compressed oracle. Then, once x is received during the crucial query, we do a
full measurement of the purified (i.e. uncompressed) oracle in order to obtain
the function H, which is then to be used in the remainder of the games. We
note that setting up the function H ′ is then necessarily also deferred to after
this measurement, where H ′ is then set to be equal to H, except that for any
prior query x′ to R it is reprogrammed to H ′(h(k, x′)) := R(x′). Only once H
has been measured and H ′ set up as above, is the crucial query then actually
answered.

It follows from basic properties of the compressed oracle that the respective
output distributions of G1 and G̃1 match with those of PR2

i and P̃R
2

i .
Then, we define G2 and G̃2 from G1 and G̃1, respectively, by introducing one

more measurement. Namely, right after x is sent by A and before H is measured,
we measure in the compressed oracle whether the input w = h(k, x) has been
recorded in the database, and in case of a positive outcome, the game aborts.
By the gentle measurement lemma (and basic properties of the trace distance),

∣
∣Pr

[
1 ← G1

] − Pr
[
1 ← G2

]∣∣ ≤
√

Pr [G2 aborts]

and similarly for G̃1 and G̃2, where G̃2 aborts with the same probability as G2.
By basic properties, after t := qH

0 + · · ·+qH
i queries to the compressed oracle,

no more than t values have been recorded. I.e., if we were to measure, for the
sake of the argument, the entire compressed oracle to obtain the full database
D, it would hold that supp(D) := {u |D(u) �=⊥} has cardinality at most t. Since
k has not been used yet and so is still freshly random (i.e., independent of x and
D), the high-entropy condition (6) then ensures that

Pr
[
G̃2 abort

]
= Pr

[
G2 abort

]
= Pr

[
w ∈ supp(D)

] ≤
∑

j<i

qH
j ε .

It remains to show that G2 and G̃2 behave identically conditioned on not
aborting. The only difference between the two games is that in G2 the crucial
query is answered with y := H(h(k, x)) = H(w) and H ′ is not reprogrammed at
the point w, while in G̃2 the crucial query is answered with y := R(x) and H ′ is
reprogrammed at the point w to H ′(w) := R(x). We argue that this difference
is not noticable by A.
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First, we note that y is a fresh random value in both games. In the former
game it is because, conditioned on not aborting, the compressed oracle at the
register h(k, x) is ⊥, and so when uncompressing and measuring to obtain H, the
hash value H(w) will be a fresh random value. In the latter game it is because
R(x) is a truly random function and, due to (7), x has not been queried to R
before.

Second, we observe that y = H ′(w) in both games. Indeed, in G̃2 this holds
by definition; in G2 it holds because H ′(w) = H(w), which follows from the
fact that H ′ is reprogrammed only at points w′ = h(k, x′) with x′ being a prior
query to R, but then (7) ensures that w′ �= w.

Thus, in both games, from A’s perspective, the tuple (k, y,H ′,H\w) of ran-
dom variables has the same distribution, where H\w refers to the function (table
of) H but with the value at the point w removed. The only difference is that
in one game H ′(w) = H(w) and in the other not (necessarily). However, the
future behavior of A in both games only depends on (k, y,H ′,H\w), and thus
A behaves the same way in both games. Here we are exploiting that the future
hash queries by A are to H ′ (and not to H anymore), and, once more, we are
using the restriction (7), here to ensure that for any future F -query x′ by A, it
holds that h(k, x′) �= w, and thus the response does not depend on H(w). Thus,
H(w) does indeed not affect A’s behavior after the crucial query.

Exploiting that PR2
i = G1 ≈ G2 = G̃2 ≈ G̃1 = P̃R

2

i , with the approxima-
tions bounded as discussed further up, we obtain the claimed closeness claim.
This concludes the proof. ��

Proof of Lemma 5. In order to show the closeness between P̃R
2

i and PR2
i+1, we

define the intermediate games

Gi,j := A[H0R...HiRH′
i,jHi,jF...FH′

qO ]

for 0 ≤ j ≤ m := qH
i+1, where H′

i,j and Hi,j consists of j and m − j copies of H ′

and H respectively. Note that for the extreme cases we have

Gi,0 = P̃R
2

i and Gi,m = PR2
i+1 .

Thus, it suffices to show closeness between Gi,j and Gi,j+1 for any 0 ≤ j < m.
Note that they only differ at one query, which is either to H ′ or to H, which we
will refer to as the crucial query for convenience. In the remainder, i and j are
arbitrary (in the considered ranges) but fixed.

Define the games G̃1 and G1 from Gi,j and Gi,j+1 respectively as follows.
Let X be the set of queries x made to R prior to the crucial query, and set
S := {h(k, x) |x ∈ X}. We then measure the crucial query, which may be in
a superposition, with the binary measurement that checks whether the crucial
query is an element of S, and we abort if this is the case.

In case of a negative outcome, i.e., the crucial query is not in S, there is
no difference between the reply provided by H and by H ′, and thus there is
no difference between the two games — and in case of a positive outcome, they
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both abort. In order to argue that this measurement causes little disturbance,
we again use the gentle measurement lemma to argue that

∣
∣Pr

[
1 ← G1

] − Pr [1 ← Gi,j+1]
∣
∣ ≤

√
Pr [G1 abort] ,

and correspondingly for Gi,j and G̃1. So it remains to bound the abort prob-
ability. For the purpose of the argument, let us do a full measurement of the
query, and let w be the outcome. We note that k has not been used yet, and
thus remains a fresh random key, independent of w and X. Thus, using (6),

Pr
[
G1 abort

]
= Pr

[
G̃1 abort

]
= Pr [w ∈ S] ≤

∑

x∈X

Pr [w = h(k, x)] ≤ qOε .

Adding up this error term over the sequence Gi,0 ≈ · · · ≈ Gi,m of approxima-
tions, the proof is concluded. ��
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Abstract. The classical (parallel) black pebbling game is a useful
abstraction which allows us to analyze the resources (space, space-time,
cumulative space) necessary to evaluate a function f with a static data-
dependency graph G. Of particular interest in the field of cryptography
are data-independent memory-hard functions fG,H which are defined by
a directed acyclic graph (DAG) G and a cryptographic hash function
H. The pebbling complexity of the graph G characterizes the amor-
tized cost of evaluating fG,H multiple times as well as the total cost
to run a brute-force preimage attack over a fixed domain X , i.e., given
y ∈ {0, 1}∗ find x ∈ X such that fG,H(x) = y. While a classical attacker
will need to evaluate the function fG,H at least m = |X | times a quan-
tum attacker running Grover’s algorithm only requires O (

√
m) blackbox

calls to a quantum circuit CG,H evaluating the function fG,H . Thus, to
analyze the cost of a quantum attack it is crucial to understand the
space-time cost (equivalently width times depth) of the quantum circuit
CG,H . We first observe that a legal black pebbling strategy for the graph
G does not necessarily imply the existence of a quantum circuit with
comparable complexity—in contrast to the classical setting where any
efficient pebbling strategy for G corresponds to an algorithm with com-
parable complexity for evaluating fG,H . Motivated by this observation
we introduce a new parallel reversible pebbling game which captures
additional restrictions imposed by the No-Deletion Theorem in Quan-
tum Computing. We apply our new reversible pebbling game to ana-
lyze the reversible space-time complexity of several important graphs:
Line Graphs, Argon2i-A, Argon2i-B, and DRSample. Specifically, (1) we
show that a line graph of size N has reversible space-time complexity

at most O
(
N

1+ 2√
log N

)
. (2) We show that any (e, d)-reducible DAG has

reversible space-time complexity at most O (
Ne + dN2d

)
. In particular,

this implies that the reversible space-time complexity of Argon2i-A and
Argon2i-B are at most O (

N2 log log N/
√

log N
)

and O (
N2/ 3

√
log N

)
,

respectively. (3) We show that the reversible space-time complexity of
DRSample is at most O (

N2 log log N/ log N
)
. We also study the cumu-

lative pebbling cost of reversible pebblings extending a (non-reversible)
pebbling attack of Alwen and Blocki on depth-reducible graphs.
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1 Introduction

The (parallel) black pebbling game [PH70,Coo73] is a powerful abstraction which
can be used to analyze the resources (space, space-time, amortized space-time)
necessary to evaluate any function fG with a static data-dependency graph G. In
the black pebbling game we are given a directed acyclic graph (DAG) G = (V,E)
where nodes intuitively represent intermediate data values and edges represent
dependencies between these values, e.g., if z = x×y then we would add directed
edges from nodes x and y to node z to indicate that x and y are required to com-
pute z. However, while the parallel black pebbling game is a useful abstraction
for classical computation it is not a suitable model for reversible computation
as in quantum computation. In this paper, we introduce a parallel reversible
pebbling game as an abstraction which can be used to analyze the resources
required to build a reversible quantum circuit evaluating our function fG. We
use the parallel reversible pebbling game to analyze the space-time cost of sev-
eral important graphs (the line graph, Argon2i-A, Argon2i-B, DRSample) asso-
ciated with prominent data-independent memory-hard functions (iMHFs)—used
in cryptography to design egalitarian proof of work puzzles and to protect low-
entropy secrets (e.g., passwords) against brute-force attacks.

Review: Parallel Black Pebbling. The classical parallel black pebbling game
begins with no pebbles on the graph (P0 = {}), and during each round of
the pebbling game, we may only place a new pebble on a node v if all of v’s
parents were pebbled in the previous round. Intuitively, if the data value Xv cor-
responding to node v is computed as Xv := H(Xu,Xv−1) then G would include
directed edges (u, v) and (v − 1, v) indicating that we cannot compute value Xv

(resp. place a pebble on node v) unless Xu and Xv−1 are already available in
memory (resp. we already have pebbles on nodes u and v − 1). More formally,
if Pi ⊆ V denotes the set of pebbled nodes during round i, then we require
that parents(Pi+1 \ Pi, G) ⊆ Pi where parents(S,G) =

⋃
v∈S{u : (u, v) ∈ E}. In

the black pebbling game we are given a subset T ⊆ V of target nodes (corre-
sponding to output data values) and the goal of the black pebbling game is to
eventually place a pebble on each node in T . A pebbling P = (P0, P1, . . . , Pt)
is legal if P0 = {} and parents(Pi+1 \ Pi, G) ⊆ Pi for each i < t. Intuitively,
the requirement that parents(Pi+1 \ Pi, G) ⊆ Pi enforces the natural constraint
that we cannot compute a new data value before all dependent data values are
available in memory. In the sequential pebbling game, we additionally require
that |Pi+1 \ Pi| ≤ 1 so that only one new pebble can be placed on the graph
in each round while the parallel pebbling game has no such restriction. Thus,
a legal parallel (resp. sequential) pebbling of a data-dependency graph G natu-
rally corresponds to a parallel (resp. sequential) algorithm to compute fG and
the number of pebbles |Pi| on the graph in each round i corresponds to memory
usage during each round of computation.
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The sequential black pebbling game has been used to analyze space complex-
ity [HPV77,PTC76] and to examine space-time tradeoffs [Cob66,Coo73,Pau75,
PV76,Tom81]. In the field of cryptography, the parallel black pebbling game has
been used to analyze the security of data-independent memory-hard functions
(iMHFs). An iMHF fG,H is defined using a cryptographic hash function H and
a data-dependency graph G [AS15,AB16,ABP17,BZ17]. The output of fG,H(x)
is defined to be the label XN of the final sink node N in G where the label
X1 = H(X) of the first (source) node is obtained by hashing the input and
the label of each internal node v is obtained by hashing the labels of all of v’s
parents, e.g., if parents(v,G) = {u, v − 1} then we would set Xv = H(Xu, xv−1).
In many cryptographic applications (e.g., password hashing), we want to ensure
that it is moderately expensive to evaluate fG,H to ensure that a brute-force
pre-image attack (given y find some x such that fG,H(x) = y) is prohibitively
expensive even when the domain X of inputs is smaller (e.g., low entropy pass-
words). When modeling the cryptographic hash function H as a random oracle,
one can prove that the cost to evaluate fG,H in the parallel random oracle model
is exactly captured by the pebbling cost of G [AS15,AT17,ABP18]. Thus, we
would like to pick a graph G with high pebbling costs and/or understand the
pebbling costs associated with candidate iMHFs. Prior work demonstrated that
the amortized space-time complexity of prominent iMHF candidates, includ-
ing Password Hashing Competition winner Argon2i, was lower than previously
hoped [AB16,ABP17,AB17,BZ17]. On the positive side, recent work has shown
how to use depth-robust graphs [EGS75] to construct iMHFs with (essentially)
optimum amortized space-time complexity [ABP17,ABH17,BHK+19]. However,
it is important to note that the classical black pebbling game does not include
any rules constraining our ability to remove pebbles. We are allowed to remove
pebbles from the graph at any point in time which corresponds to freeing mem-
ory and can be done to reduce the space usage. While the classical pebbling
game allows us to discard pebbles at any point in time to free memory, this
action is often not possible in a quantum circuit due to the No-Deletion Theo-
rem [KPB00]. In this sense, the black pebbling game cannot be used to model
reversible computation as in a quantum circuit and an efficient parallel black
pebbling for a graph G does not necessarily imply the existence of a quantum
circuit CG,H with comparable cost.

Review: Measuring Pebbling Costs. There are several natural ways to measure
the cost of a pebbling. The space cost of a pebbling P = (P0, . . . , Pt) mea-
sures the maximum number of pebbles on the graph during any round, i.e.,
maxi |Pi| and the space complexity of a graph measures the minimum space
cost over all legal pebblings of G. Similarly, the space-time cost of a pebbling
P = (P0, . . . , Pt) measures the product t × maxi |Pi| and the cumulative peb-
bling cost is

∑
i |Pi|. Intuitively, space complexity measures the amount of mem-

ory (e.g., RAM) required for a computation and space-time cost measures the
full cost of the computation by telling how long the memory will be locked up
during computation. Cumulative pebbling cost gives the amortized space-time
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complexity of pebbling multiple copies of the graph G, i.e., when we are evalu-
ating our function fG on multiple different inputs in parallel [AS15].

(Quantum) Pre-image Attacks. Understanding the amortized space-time com-
plexity of a graph G is important to estimate the cost of a classical brute-force
pre-image attack over a domain X of size m. In particular, suppose we are given
a target output y (e.g., y = fG,H(x′) for a secret input x ∈ X ) and we wish
to find some input x′ ∈ X such that y = fG,H(x′). Classically, the space-time
cost of a black-box pre-image attack would require us to evaluate the function
fG,H on Ω(m) inputs. If the cumulative pebbling cost of G is given by

∑
i |Pi|

then the total space-time cost of the pre-image attack would scale proportionally
to m

∑
i |Pi|, i.e., m times the amortized space-time complexity. Thus, a more

efficient black pebbling strategy for G yields a lower-cost pre-image attack.
In the context of quantum computing, Grover’s algorithm [Gro96] substan-

tially reduces the cost of a brute-force pre-image attack over a domain X of
size m. In particular, Grover’s algorithm only requires O(

√
m) black-box queries

to the function fG,H evaluating the function fG,H and this is optimal—any
quantum algorithm using fG,H as a black box must make at least Ω(

√
m)

queries [BBBV97]. If we instantiate fG,H with a quantum circuit of width w
and depth d then full Grover circuit would have width W = O(w) and depth
D = d × O(

√
m). In particular, the total space-time (equivalently width-depth)

cost of the attack would be wd × O(
√

m). Thus, to analyze the cost of a quan-
tum pre-image attack it is crucial to understand the space-time (or width-depth)
cost of a quantum circuit CG,H computing fG,H . Our goal will be to treat H
as a black box and use graph pebbling to characterize the space-time cost. A
natural first attempt would be to use the classical black pebbling game to ana-
lyze the parallel pebbling cost of G as above. If this approach worked we could
simply leverage prior (parallel) black pebbling analysis of prominent iMHF can-
didates [AB16,ABP17,AB17,BZ17] to analyze the cost of a quantum pre-image
attack. Unfortunately, this approach breaks down because a legal black pebbling
strategy does not necessarily correspond to a valid quantum circuit CG,H with
comparable cost. Thus, we will require a different pebbling game to analyze the
width-depth cost of the quantum circuit CG,H .

Notation. We use the notation [N ] (resp. [a, b]) to denote the set {1, . . . , N}
(resp. {a, a + 1, . . . , b}) for a positive integer N (resp. a ≤ b). The notation
$← denotes a uniformly random sampling, e.g., we say x $← [N ] when x is a

uniformly sampled integer from 1 to N . For simplicity, we let log(·) be a log
base 2, i.e., log x := log2 x.

Let G = (V,E) be a directed acyclic graph (DAG) where we denote N
to be the number of nodes in V = [N ]. Given a node v ∈ V , we define
parents(v,G) to be the immediate parents of node v in G, and we extend
this definition to a subset of nodes as well; for a set W ⊆ V , we define
parents(W,G) :=

⋃
w∈W {u : (u,w) ∈ E}. We let ancestors(v,G) be the set

of all ancestors of v in G, i.e., ancestors(v,G) :=
⋃

i≥1 parents
i(v,G), where

parents1(v,G) = parents(v,G) and parentsi(v,G) = parents(parentsi−1(v,G), G).



56 J. Blocki et al.

Similarly, for a set W ⊆ V , we define ancestors(W,G) :=
⋃

i≥1 parents
i(W,G),

where parents1(W,G) = parents(W,G) and recursively define parentsi(W,G) =
parents(parentsi−1(W,G), G).

We denote the set of all sink nodes of G with sinks(G) := {v ∈ V : �(v, u) ∈
E} – note that ancestors(sinks(G), G) = V . We define depth(v,G) to refer to
the number of the longest directed path in G ending at node v and we define
depth(G) = maxv∈V depth(v,G) to refer to the number of nodes in the longest
directed path in G. Given a node v ∈ V , we define indeg(v) := |parents(v,G)|
to denote the number of incoming edges into v, and we also define indeg(G) :=
maxv∈V indeg(v). Given a set S ⊆ V of nodes, we use G − S to refer to the
subgraph of G obtained by deleting all the nodes in S and all edges that are
incident to S. We also use the notation S≤k := S∩[k] denotes the subset of S that
only intersects with [k]. We say that a DAG G = (V,E) is (e, d)-depth robust if
for any subset S ⊆ V such that |S| ≤ e we have depth(G−S) ≥ d. Otherwise, we
say that G is (e, d)-reducible and call the subset S a depth-reducing set (which
is of size at most e and yields depth(G − S) < d).

We denote with PG,T and P‖
G,T the set of all legal sequential and parallel

classical pebblings of G with target set T , respectively. In the case where T =
sinks(G), we simply write PG and P‖

G, respectively.

1.1 Our Results

We introduce the parallel reversible pebbling game as a tool to analyze the
(amortized) space-time cost of a quantum circuit evaluating a function f with a
static data-dependency graph G. Prior work [Ben89,Krá01,MSR+19] introduced
a sequential reversible pebbling game. As we discuss, there are several key sub-
tleties that arise when extending the sequential reversible pebbling game to the
parallel setting. We argue that any parallel quantum pebbling P = (P0, . . . , Pt)
of the graph G corresponds to a quantum circuit CP evaluating f with compara-
ble costs, e.g., the depth of the quantum circuit CP corresponds to the number
of pebbling rounds t and the width of the circuit corresponds to the space com-
plexity of the pebbling, i.e., maxi |Pi|. Thus, any reversible pebbling attack will
yield a more efficient quantum pre-image attack1.

As an application, we use the parallel reversible pebbling game to analyze the
space-time cost of several important password hashing functions fG,H including
PBKDF2, BCRYPT, Argon2i, and DRSample.

Reversible Pebbling Attacks on Line Graphs. We first focus on analyzing the
reversible pebbling cost of a line graph LN with N nodes {1, . . . , N} and edges
1 While one could use the parallel reversible pebbling game as a heuristic to lower
bound the cost of a quantum pre-image attack we stress that, at this time, there is
no pebbling reduction which provably lower bounds the cost of a quantum pre-image
attack on fG,H using reversible pebbling cost of the underlying DAG G. We do have
pebbling reductions for classical (non-reversible) pebblings in the parallel random
oracle model [AS15], but there are several technical barriers which make it difficult
to extend this reduction to the quantum random oracle model.
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(i, i+1) for each 1 ≤ i < N . Classically, there is a trivial black pebbling strategy
for the line graph with simply walks a single pebble from node 1 to node N over
N pebbling rounds, i.e., in each round i we place a new pebble on node i and then
delete the pebble on node i − 1. This pebbling strategy is clearly optimal as the
maximum space usage is just 1 and the space-time cost is just N × 1 = N . How-
ever, this simple pebbling strategy is no longer legal in the reversible pebbling
game and it is a bit tricky just to find a reversible pebbling strategy whose space-
time cost is significantly lower than O (

N2
)
—the space-time cost of the näıve

pebbling strategy which avoids removing pebbles. In Theorem 1 we show that the
(sequential) reversible space-time complexity of a line graph is O

(
N

1+ 2√
log N

)
.

A similar argument seems to be implicitly assumed by Bennett [Ben89] though
the argument was never explicitly formalized as a reversible pebbling strategy.
The result improves upon a result of Li and Vitányi [LV96] who showed that the
space-time complexity is at most O (

N log 3 log N
)
2.

Because the space-time complexity of the line graph G = LN is so low, it
is a poor choice for an iMHF fG,H or for password hashing [BHZ18]. However,
the line graph LN naturally corresponds to widely deployed password hashing
algorithms like BCRYPT [PM99] and PBKDF2 [Kal00] which use hash iteration
to increase costs where the parameter N controls the number of hash iterations.
Thus, to understand the cost of a (quantum) brute-force password cracking
attack it is useful to analyze the (reversible) pebbling cost of LN .

Reversible Pebbling Attack for Depth-Reducible DAGs. In Theorem 2 we give a
generic parallel reversible pebbling attack on any (e, d)-reducible DAG G with
space-time cost O (

Ne + dN2d
)

which corresponds to a meaningful attack when-
ever e = o(N) and d2d = o(N). A DAG G is said to be (e, d)-reducible if there is
a subset S ⊆ V of at most e nodes such that any length d path P in G contains
at least one node in S. As we show this leads to meaningful reversible pebbling
attacks on Argon2i, the winner of the Password Hashing Competition. Specifi-
cally, we demonstrate how to construct depth-reducing sets for Argon2i-A (an
older version of Argon2i) and Argon2i-B (the current version of Argon2i) with
e = o(N) and d2d = o(N). This leads to reversible pebbling attacks with space-
time complexity O (

N2 log log N/
√

log N
)

and O (
N2/ 3

√
log N

)
against Argon2i-

A and Argon2i-B, respectively—see Corollary 1.
In the classical pebbling setting, Alwen and Blocki [AB16] previously gave

a generic pebbling attack on (e, d)-reducible DAGs with amortized space-time
cost O (

Ne + N2d/e
)
. However, this pebbling attack is not legal in the reversible

setting, and without amortization, the space-time cost is still N2—the average
number of pebbles on the graph per round is just e + Nd/e but at the peak,
the pebbling strategy still requires Ω(N) pebbles. In our pebbling strategy, the
maximum space usage is O (

e + d2d
)
.

2 The pebbling of Li and Vitányi [LV96] runs in time O (
N log 3

)
while using at most

O (log N) pebbles. Our pebbling strategy uses more pebbles to reduce the overall
space-time cost by improving the pebbling time.
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Reversible Pebbling Attack Against DRSample. Finally, we use the parallel
reversible pebbling game to analyze DRSample [ABH17]—a proposal to update
the edge distribution in Argon2i with a depth-robust graph. With high prob-
ability, a randomly sampled DRSample DAG G will not be (e, d)-reducible for
parameters e, d as large as e = Ω(N/ log N) and d = Ω(N). Thus, the generic
reversible pebbling attack on (e, d)-reducible graphs does not seem to apply. We
give an alternate pebbling strategy by partitioning the nodes of G into 	N/b

consecutive blocks of size b and converting a parallel reversible pebbling of the
line graph L�N/b	 into a legal reversible pebbling of G. The reversible pebbling
strategy will be cost-effective as long as we have an efficient pebbling strategy
for L�N/b	 and the graph G does not contain too many “long” edges (u, v) with
|v − u| ≥ b — we show that DRSample does not contain too many long edges
when b = N/ log2 N . Combined with our parallel reversible pebbling strategies
for the line graph, this leads to an attack on DRSample with space-time cost at
most O (

N2 log log N/ log N
)
—see Corollary 2.

More generally, in Theorem 3 we give an efficient reversible pebbling algo-
rithm which transforms a legal reversible pebbling P ′ = (P ′

1, . . . , P
′
t′) of the

line graph L�N/b	 into a legal reversible pebbling P = (P1, . . . , Pt) of a DAG
G = (V,E). The reversible pebbling requires t = O (bt′) rounds and space
bs′ + (#skip) where #skip is upper bounded by the number of long edges
(u, v) ∈ E with |v−u| ≥ b and s′ = maxi |P ′

i | upper bounds the space usage of the
pebbling P ′. Thus, the total space-time complexity will be O (

b2s′t′ + N#skip
)

and we will be able to obtain an efficient reversible pebbling attack as long as
b = o(N) and (#skip) = o(N)—we show that this is the case for DRSample.

Cumulative Pebbling Cost and Parallel Reversible Pebbling. Alwen and
Blocki [AB16] gave a general parallel black pebbling attack on any (e, d)-
reducible graph. This general pebbling attack was used to upper bound the
cumulative cost of many prominent iMHFs including Argon2i-A [AB16] and
Argon2i-B [AB17]. More generally the attack shows that any constant indegree
DAG G has cumulative pebbling cost at most O (

N2 log log N/ log N
)
. We show

how the pebbling attack of Alwen and Blocki [AB16] can be extended to the par-
allel reversible pebbling game3. In particular, we can show that the cumulative
reversible pebbling costs of an (e, d)-reducible DAG with maximum indegree δ

is upper bounded by O
(
eN + gδN + N2d

g

)
for any parameter g ≥ d matching

the non-reversible pebbling attacks of Alwen and Blocki [AB16]—see Theorem
4. More specifically, since any DAG G with constant indegree δ = O(1) is (e, d)-
reducible with d = N/ log2 N and e = O (N log log N/ log N) [AB16] we can plug

3 Alwen, Blocki and Pietrzak [ABP17] later provided a recursive version of the peb-
bling attacks of Alwen and Blocki [AB16] which can further reduces the cumulative
pebbling cost of a DAG which is (ei, di)-reducible at a sequence of points (ei, di) with
di < di−1 and ei ≥ di−1. The recursive pebbling attack yields tighter asymptotic
upper bounds for some iMHF candidates [BZ17,ABP17]. We conjecture that these
recursive pebbling attacks can also be generalized to the reversible pebbling setting
though we leave this as an open problem.
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in g = e to obtain a reversible pebbling strategy with cumulative cost at most
O (

N2 log log N/ log N
)
—see Corollary 3. We can also upper bound the cumu-

lative reversible pebbling costs of Argon2i-A and Argon2i-B as O (
N1.75 log N

)

and O (
N1.8

)
respectively—see the full version for the details.

1.2 Technical Overview

Defining the Parallel Reversible Pebbling Game. We begin by defining and moti-
vating the parallel reversible pebbling game. We want to ensure that any legal
(parallel) reversible pebbling strategy for G corresponds to a quantum circuit
CG,H evaluating fG,H that could be used as part of a pre-image attack using
Grover’s algorithm.

We first consider the parallel quantum random oracle model [BDF+11] where
the random oracle is a function H : {0, 1}≤2λ → {0, 1}λ. In the parallel quantum
random oracle model we are given access to a quantum oracle maps basis states
of the form |x1, y1, . . . , xk, yk, z〉 to the new state |x1, y1 ⊕ H(x1), . . . , xk, yk ⊕
H(xk), z〉. Here, x1, . . . , xk denote the queries, y1, . . . , yk denote the output reg-
isters and z denotes any auxiliary data. Notice that if yi = 0λ then the ith output
register will just be H(xi) after the query is submitted.

Now consider the function f(x) = HN (x) where H1(x) = H(x) and
Hi+1(x) = H(Hi(x)). The data-dependency graph for f is simply the line graph
G = LN . In our reversible pebbling game, we want to ensure that each pebbling
transition corresponds to a legal state transition in the quantum random oracle
model. If N = 5, then the pebbling configuration Pi = {2, 3, 4} intuitively corre-
sponds to a quantum state containing the labels X2 = H2(x), X3 = H3(x) and
X4 = H4(x). From this state, we could use X4 and an input register and submit
the query |X4, 0λ〉 to the random oracle to obtain X5 = H(X4) from the result-
ing state |X4,H(X4)〉. Similarly, while we cannot simply delete X3 we could
uncompute this value by using X3 as an output register and submitting the ran-
dom oracle query |X2,X3〉 to obtain the new state |X2,H(X2) ⊕ X3〉 = |X2, 0λ〉
in which the label X3 has been removed. However, without the label X1 there
is no way to uncompute X2 without first recomputing X1.

The above example suggests that we extend the parallel pebbling game by
adding the rule that parents(Pi \Pi+1, G) ⊆ Pi, i.e., a pebble can only be deleted
if all of its parents were pebbled at the end of the previous pebbling round.
While this rule is necessary, it is not yet sufficient to prevent impossible quan-
tum state transitions. In particular, the rule would not rule out the pebbling
transition from Pi = {1, 2, . . . , i} to the new configuration Pi+1 = {} where all
labels have been removed from memory. This pebbling transition would corre-
spond to a quantum transition from a state in which labels X1, . . . , Xi are stored
in memory to a new state where all of these labels have been uncomputed after
just one (parallel) query to the random oracle. Because quantum computation is
reversible this would also imply that we could directly transition from the orig-
inal state (no labels computed) to a state in which all of the labels X1, . . . , Xi

are available after just one (parallel) query to the quantum random oracle. How-
ever, it is known that computing Xi = Hi(x) requires at least i rounds of
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computation even in the parallel quantum random oracle model [BLZ21]. Thus,
the pebbling transition from Pi = {1, 2, . . . , i} to Pi+1 = {} must be disallowed
by our reversible pebbling rules as the corresponding quantum state transition
is impossible.

We address this last issue by adding another pebbling rule: if v ∈ parents(Pi \
Pi−1, G) ∪ parents(Pi−1 \ Pi, G), then v ∈ Pi. Intuitively, the rule ensures that
if the label Xv appeared in an input register to either compute or uncompute
some other data label then we cannot also uncompute Xv in this round, i.e., we
must keep a pebble at node v.

We make several observations about the reversible pebbling game. First, any
legal reversible pebbling of a DAG G is also a legal (classical) parallel black
pebbling of G since we only added additional pebbling restrictions. More for-
mally, if P‖

G (resp. PG) denotes the set of all legal parallel (resp. sequential)
black pebblings of G and P →← ,‖

G (resp. P →←
G ) denotes the set of all legal paral-

lel (resp. sequential) reversible pebblings of G then we have P →← ,‖
G ⊆ P‖

G and
P →←

G ⊆ PG. Thus, any lower bounds on the classical parallel pebbling cost of G
will immediately carry over to the reversible setting. However, upper bounds will
not necessarily carry over since classical pebbling attacks may not be legal in
the reversible pebbling game. Second, we observe that the following sequential
reversible pebbling strategy works for any DAG G = (V = [N ], E). In the first
N rounds, pebble all nodes in topological order without deleting any pebbles.
In the next N − 1 rounds remove pebbles from all nodes (excluding sinks(G)) in
reverse topological order. More formally, assuming that 1, . . . , N is a topological
order and that node N is the only sink node we have Pi = [i] for each i ≤ N
and PN+j = [N ] \ [N − j,N − 1] for each j ≤ N − 1. The pebbling requires N
pebbles and finishes in t = 2N − 1 rounds so the space-time cost is 2N2 − N .
We refer to the above sequential strategy as the näıve reversible pebbling for a
graph G.

Reversible Pebbling Attack on Line Graphs. We give a reversible pebbling attack
on a line graph LN of size N with the space-time cost O

(
N

1+ 2√
log N

)
. This can

be achieved by generalizing Li and Vitányi’s work [LV96]. Li and Vitányi [LV96]
gave a reversible pebbling strategy on a line graph of size N with space-time
cost O (

N log 3 log N
)

by translating ideas of Bennett [Ben89] into a reversible
pebbling argument. Intuitively, if we define N(k) using the recurrence relation-
ship N(k) = k +

∑k−1
j=0 N(j), solving to N(k) = 2k − 1, then they show that the

line graph with N(k) nodes can be pebbled using space S(k) = S(k − 1)+1 = k
and time T (k) = 3T (k − 1) + 1 = O (

3k
)

for a total space-time cost of
O (

k3k
)

= O (
(N(k))log 3 log N(k)

)
. Their pebbling strategy works as follows:

(1) recursively apply the pebbling strategy to place a pebble on node N(k − 1)
using space at most S(k − 1) and time at most T (k − 1), (2) place a pebble on
node v1 = N(k − 1) + 1, (3) recursively apply the strategy (in reverse) to clear
any leftover pebbles from nodes 1 to N(k − 1) in time T (k − 1) and (additional)
space at most S(k−1). We are left with (k−1)+

∑k−2
j=1 N(j) = N(k−1) remain-
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ing nodes which will be handled recursively using time T (k−1) and (additional)
space S(k − 1).

We observe that by increasing the space usage slightly we can decrease the
pebbling time to obtain a superior space-time cost. We note that Bennett [Ben89]
mentions a similar idea in his paper, but that this idea was not formalized as
a reversible pebbling strategy either by Bennett [Ben89] or by Li and Vitányi
[LV96]. The key modification is as follows: we redefine N(k) = ck +

∑k−1
j=0 cN(j)

solving to N(k) = Θ
(
(c + 1)k

)
. We can now recursively pebble a line graph

with N(k) nodes in sequential time T (k) = (2c + 2)T (k − 1) + c = O (
(2c + 2)k

)

and space S(k) = c + S(k − 1) = ck. Intuitively, the recursive pebbling strategy
will begin by dropping pebbles on each of the nodes N(k − 1) + 1, 2N(k − 1) +
2, ..., cN(k − 1) + c using space at most S(k − 1) + c and time 2c · T (k − 1). We
are left with c(k −1)+

∑k−2
j=0 cN(j) = N(k −1) remaining nodes which can then

be handled recursively. Setting c = 2k, we have k = Θ(
√

log N(k)) yielding an

upper bound of O
(

N(k)
1+(2+o(1)) 1√

log N(k)

)

on the sequential space-time cost.

We can obtain a minor improvement by exploiting parallelism to save time
while increasing space usage slightly. In particular, our parallel strategy uses
space O (

c2k
)

and time O (
(c + 2)k

)
with total space-time cost O (

c(2c + 4)k
)
.

Setting c + 1 = 2k we have a slightly better upper bound O
(

N(k)
1+ 2√

log N(k)

)

on the space-time cost. Further details can be found in the full version.

Generic Reversible Pebbling Attack on Depth-Reducible Graphs. We give a
generic reversible pebbling attack on any (e, d)-reducible DAG G = (V = [N ], E)
with maximum indegree 2. The space-time cost of our reversible pebbling attack
is at most O (

Ne + Nd2d
)
. Thus, the attack will be superior to the näıve

reversible pebbling strategy as long as e = o(N) and d2d = o(N). We begin
with a depth-reducing set S ⊆ V of size |S| ≤ e. Our reversible pebbling strat-
egy will never remove pebbles from the set S until all of the sink nodes in G are
pebbled and we are ready to remove pebbles from the remaining nodes. On each
round i ≤ N we will place a new pebble on node {i}. To ensure that this step
is legal, we consider the subgraph formed by all of node i’s ancestors in G − S.
Since G − S does not contain a directed path of length d and each node has at
most 2 parents there are at most 2d ancestors of node i in G − S. Once again
applying the observation that the depth of G − S is at most d we can start to
repebble i’s ancestors in round i − d − 1 to ensure that i’s immediate parents
are pebbled by round i − 1. After we place a pebble on node i we can remove
pebbles from i’s ancestors in G − S over the next d rounds. Since we only keep
pebbles on the set S and the ancestors of up to 2d nodes in G−S, the maximum
space usage of this reversible pebbling strategy will be O (

e + d2d
)
.

We apply the generic attack to Argon2i-A and Argon2i-B. In particular,
we apply ideas from the previous work [AB17,BZ17] to show that Argon2i-A
(resp. Argon2i-B) graphs are (e, d)-reducible with e = O (

N log log N/
√

log N
)

and d = log N/ log log N (resp. e = O (
N/ 3

√
log N

)
and d = (log N)/2). This
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leads to reversible pebbling attacks with cost O (
N2 log log N/

√
log N

)
and

O (
N2/ 3

√
log N

)
) for Argon2i-A and Argon2i-B, respectively. An intriguing open

question is whether or not these are the best reversible pebbling attacks for
Argon2i-A and Argon2i-B?

Reversible Pebbling Attack on DRSample. We provide a general reversible peb-
bling attack on any DAG G with the property that G contains few skip nodes
(defined below). Intuitively, given a DAG G = (V,E) with |V | = N and a param-
eter b ≥ 1, we can imagine partitioning the nodes of V into consecutive blocks
B1 = {v1, . . . , vb}, B2 = {vb+1, . . . , v2b}, . . . , B�N/b	 = {v(�N/b	−1)b+1, . . . , vN}
such that we have 	N/b
 blocks in total and each block contains exactly b nodes
(with the possible exception of the last block if N/b is not an integer). We call
a node u in block Bi a skip node if G contains a directed edge (u, v) from u to
some node v ∈ Bj with j > i + 1 and we call the edge (u, v) a skip edge, i.e., the
edge (u, v) skips over the block Bi+1 entirely.

We first observe that if the graph G contained no skip edges then it would
be trivial to transform a (parallel) reversible pebbling P ′ of the line graph
L�N/b	 = (V ′, E′) with space-time cost Π

→← ,‖
st (P ′) into a (parallel) reversible

pebbling P of G with space-time cost O
(
b2Π

→← ,‖
st (P ′)

)
(see Definition 2 for the

definition of Π
→← ,‖

st (·)). In particular, placing a pebbling on node v′ ∈ V ′ of
the line graph corresponds to b rounds in which we pebble all nodes in block
Bv′ . Thus, the pebbling time increases by a factor of O (b), and the total space
usage also increases by a factor b. Unfortunately, this strategy may result in an
illegal reversible pebbling when G contains skip edges. However, we can modify
the above strategy to avoid removing pebbles on skip nodes which intuitively
increases our space usage by s—the total number of skip nodes in the graph G.
The procedure P = Trans(G,P ′, b) and an example for the reversible pebbling
strategy are formally described in the full version. As long as s is sufficiently
small, we obtain an efficient parallel reversible pebbling attack on G. In par-
ticular, given a reversible pebbling P ′ of the line graph L�N/b	 = (V ′, E′) with
space-time cost Π

→← ,‖
st (P ′) we can find a reversible pebbling P of G with space-

time cost O
(
sN + b2Π

→← ,‖
st (P ′)

)
. Combining this observation with our efficient

reversible pebbling attacks on the line graph we can see that the space-time
costs will be at most O (

sN + b2(N/b)1+ε
)

for any constant ε > 0. For graphs
like DRSample [ABH17], we can show that (whp) the number of skip nodes is
at most s = O

(
N log log N

log N

)
when we set the block size b = O

(
N

log2 N

)
leading

to a reversible pebbling attack with space-time cost O
(

N2 log log N
log N

)
.

Cumulative Cost for Reversible Pebblings: Depth-Reducing Reversible Pebbling
Attacks. Alwen and Blocki [AB16] gave a non-reversible pebbling attack with
reduced cumulative pebbling cost for any (e, d)-reducible DAG G. While their
pebbling attack is non-reversible, we observe that almost all pebbling rounds
respect the constraints of reversible pebbling. We then identify the few non-
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reversible rounds and how these steps can be patched to respect the additional
constraints of reversible pebbling. See details in Sect. 4.

1.3 Related Work

Related Pebbling Games. Prior work [Ben89,Krá01,MSR+19] introduced a
reversible pebbling game to capture restrictions imposed by the Quantum No-
Deletion Theorem and analyze space-time tradeoffs in quantum computing.
However, the pebbling game considered in these works is sequential and only
allows for the addition/removal of one pebble in each round. Thus, the sequen-
tial reversible pebbling game is not suitable for analyzing the space-time cost
of a quantum circuit evaluating fG,H since the circuit can evaluate H multiple
times in parallel. We note that there are several important subtleties that must
be considered when extending the game to the parallel setting.

More recently, Kornerup et al. [KSS21] introduced a new (sequential) peb-
bling game called the spooky pebble game to model measurement-based deletion
in quantum computation. Intuitively, measurement-based deletion allows for the
conversion of some qubits into (cheaper) classical bits which can later be used to
restore the quantum state. The spooky pebble game only allows for sequential
computation and the cost model ignores classical storage. One disadvantage of
instantiating a spooky pebbling attack as part of a quantum pre-image attack
is that the final attack requires many intermediate measurements which intro-
duces additional technical challenges, i.e., we need to ensure that each and every
intermediate measurement does not disturb the state of the nearby qubits or
the rest of the quantum computer [Div00]. By contrast, a pebbling attack in
our parallel reversible pebbling game naturally corresponds to a quantum cir-
cuit which does not require any intermediate measurements and our cost model
accounts for the total storage cost (classical + quantum). While Kornerup et
al. [KSS21] introduced a spooky pebbling attack on the line graph, we note this
spooky pebbling strategy does not yield an efficient reversible pebbling attack
in our model as their pebbling attack inherently relies on frequent intermediate
measurements to reduce the number of qubits.

Remark 1. One could always try to eliminate the intermediate measurements
by applying the “principle of deferred measurement” [NC02]. However, “deferred
measurement” increases the space and/or depth of a quantum circuit. For exam-
ple, if the quantum circuit C acts on s qubits and performs m intermediate
measurements then we can obtain an equivalent quantum circuit C ′ with no
intermediate measurements with the caveat that C ′ operates on s′ = s+poly(m)
qubits. The space blowup is especially high if C makes many intermediate mea-
surements, e.g., s = O (log m). Fefferman and Remscrim [FR21] gave a space-
efficient version of the transform, but their transform yields a large penalty in
running time cost, i.e., the transform incurs a multiplicative poly(t2s) overhead
in the total running time t.

If we apply spooky pebbling in the context of Grover’s search then the total
number of intermediate measurements m would be exponential, i.e., even if we
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have a quantum circuit Cf evaluating a function f : {0, 1}k → {0, 1}k with
just a single intermediate measurement, performing the full Grover’s search to
find a pre-image of f would involve m = O (

2k/2
)

intermediate measurements
and applying “deferred measurement” to the full Grover circuit would incur a
massive time (or space) penalty. Thus, finding a quantum circuit Cf which has
reduced space-time cost and does not require any intermediate measurements
would yield a more compelling quantum pre-image attack.

2 Parallel Reversible Pebbling Games

The biggest difference between the classical and reversible pebbling games occurs
when removing pebbles from a pebbling configuration. In a classical setting, we
can always delete any pebbles in any point in time when they are no longer
needed. On the other hand, in a reversible setting, this is not feasible by quantum
no-cloning theorem. Since we can only free a pebble by querying a random oracle
at the same input, we can observe that a pebble can be deleted only if we know
all of its parents, i.e., all of its parents were previously pebbled. The following
definition captures this property:

Definition 1 (Parallel/Sequential Reversible Graph Pebbling). Let
G = (V,E) be a DAG and let T ⊆ V be a target set of nodes to be pebbled. A
pebbling configuration (of G) at round i is a subset Pi ⊆ V . Let P = (P0, . . . , Pt)
be a sequence of pebbling configurations. Below are the following properties which
define various aspects of reversible pebblings.

(1) The pebbling should start with no pebbles (P0 = ∅) and end with pebbles on
all of the target nodes i.e., T ⊆ Pt.

(2) A pebble can be added only if all of its parents were pebbled at the end of the
previous pebbling round, i.e., ∀i ∈ [t] : x ∈ (Pi \ Pi−1) ⇒ parents(x,G) ⊆
Pi−1.

(3) (Quantum No-Deletion Property) A pebble can be deleted only if all of its
parents were pebbled at the end of the previous pebbling round, i.e., ∀i ∈ [t] :
x ∈ (Pi−1 \ Pi) ⇒ parents(x,G) ⊆ Pi−1.

(4) (Quantum Reversibility) If a pebble was required to generate new pebbles (or
remove pebbles), then we must keep the corresponding pebble around, i.e.,
∀i ∈ [t] : x ∈ parents(Pi \ Pi−1, G) ∪ parents(Pi−1 \ Pi, G) ⇒ x ∈ Pi.

(5) (Remove Excess Pebbles) We also consider an optional constraint that Pt =
T . If a pebbling does not satisfy this optional constraint we call it a relaxed
pebbling.

(6) (Sequential pebbling only) At most one pebble is added or removed in each
round, i.e., ∀i ∈ [t] : |(Pi ∪ Pi−1) \ (Pi ∩ Pi−1)| ≤ 1.

Now we give pebbling definitions with respect to the above properties.

– A legal parallel reversible pebbling of T is a sequence P = (P0, . . . , Pt) of
pebbling configurations of G where P0 = ∅ and which satisfies conditions (1),
(2), (3), (4) and (5) above. If our pebbling additionally satisfies condition (6)
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then we say that it is a sequential pebbling. Similarly, if our pebbling does not
satisfy condition (5) then we call our pebbling strategy a relaxed pebbling.

– A legal reversible pebbling sequence is a sequence of pebbling configurations
(P0, . . . , Pt) which satisfies properties (2) and (3) and (4) without requiring
P0 = {}.

– A legal (non-reversible) pebbling sequence is a sequence of pebbling configu-
rations (P0, . . . , Pt) satisfying condition (2).

We denote with P →←
G,T and P →← ,‖

G,T the set of all legal sequential and parallel
reversible pebblings of G with a target set T , respectively. We denote with P̃ →←

G,T

and P̃ →← ,‖
G,T the set of all legal relaxed sequential and parallel reversible pebblings

of G with target set T , respectively. Note that we have P →←
G,T ⊆ P →← ,‖

G,T and P̃ →←
G,T ⊆

P̃ →← ,‖
G,T . We will mostly be interested in the case where T = sinks(G) in which case

we simply write P →←
G and P →← ,‖

G or P̃ →←
G and P̃ →← ,‖

G , respectively.

Remark 2. We first note that from any parallel relaxed reversible pebbling of
G we can obtain a quantum circuit CG,H which computes fG,H . If our peb-
bling is not relaxed then the circuit CG,H will map the basis state |x, y, z〉 to
the new state |x, y ⊕ fG,H(x), z〉 with no ancilla bits although this property is
not necessary for Grover’s search. Including the requirement that a reversible
pebbling eliminates excess pebbles makes it easier to apply the pebbling attack
as a recursive subroutine. Thus, in this paper, we will focus on finding non-
relaxed reversible pebbling attacks. We also note that the space-time cost of a
relaxed/non-relaxed reversible pebbling is not fundamentally different. In par-
ticular, if (P1, . . . , Pt) is a relaxed pebbling where Pt = T contains the final sink
node N , then (P1, . . . , Pt, Pt−1 ∪ T, . . . , P1 ∪ T, T ) is a legal and complete (non-
relaxed) reversible pebbling of G. The running time increases by a multiplicative
factor of 2 and the space increases by an additive factor of |T | ≤ |Pt| where T
is the target set. In particular, the overall space-time costs increase by a multi-
plicative factor of 4 at most. In the remainder of the paper, when we write “legal
reversible pebbling” we assume that the pebbling is parallel and non-relaxed by
default.

Definition 2 (Reversible Pebbling Complexity). Given a DAG G =
(V,E), we essentially use the same definitions for the reversible pebbling com-
plexity as defined in the previous literature [AS15,ABP17,ABP18]. That is, the
standard notion of time, space, space-time and cumulative pebbling complexity
(CC) of a reversible pebbling P = {P0, . . . , Pt} ∈ P →← ,‖

G are also defined to be:

– (time complexity) Π
→← ,‖

t (P ) = t,
– (space complexity) Π

→← ,‖
s (P ) = maxi∈[t] |Pi|,

– (space-time complexity) Π
→← ,‖

st (P ) = Π
→← ,‖

t (P ) · Π
→← ,‖

s (P ), and
– (cumulative pebbling complexity) Π

→← ,‖
cc (P ) =

∑
i∈[t] |Pi|.
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For α ∈ {s, t, st, cc} and a target set T ⊆ V , the parallel reversible pebbling
complexities of G are defined as

Π
→← ,‖

α (G,T ) = min
P∈P →← ,‖

G,T

Π
→← ,‖

α (P ).

When T = sinks(G) we simplify notation and write Π
→← ,‖

α (G).
We define the time, space, space-time and cumulative pebbling complex-

ity of a sequential reversible pebbling P = {P0, . . . , Pt} ∈ P →←
G in a similar

manner: Π →←
t (P ) = t, Π →←

s (P ) = maxi∈[t] |Pi|, Π →←
st (P ) = Π →←

t (P ) · Π →←
s (P ),

and Π →←
cc (P ) =

∑
i∈[t] |Pi|. Similarly, for α ∈ {s, t, st, cc} and a target set

T ⊆ V , the sequential reversible pebbling complexities of G are defined as
Π →←

α (G,T ) = minP∈P →←
G,T

Π →←
α (P ). When T = sinks(G) we simplify notation

as well and write Π →←
α (G).

When compared to the definition of a classical pebbling, we can observe
that a reversible pebbling has more restrictions, i.e., it only allows us to have
pebbles exactly on the target nodes at the end of the pebbling steps, and it
further requires quantum no-deletion property and quantum reversibility. This
implies that any legal reversible pebblings are also legal classical pebblings, i.e.,
P‖

G,T ⊆ P →← ,‖
G,T (resp. PG,T ⊆ P →←

G,T ). This implies that for any graph G, target

set T and cost metric α ∈ {s, t, st, cc}, we have Π
‖
α(G,T ) ≤ Π

→← ,‖
α (G,T ) (resp.

Πα(G,T ) ≤ Π →←
α (G,T )) for a DAG G = (V,E) and a target set T ⊆ V , where

Π
‖
α(G,T ) (resp. Πα(G,T )) denotes the parallel (resp. sequential) classical peb-

bling complexities which are defined essentially the same as in Definition 2 with
a classical pebbling P = {P0, . . . , Pt} ∈ P‖

G (resp. PG). This means that any
lower bound on the classical pebbling complexity of a graph G immediately car-
ries over to the reversible setting and an upper bound (attack) on the reversible
pebbling cost immediately carries over to the setting classical pebbling.

In the context of quantum pre-image attacks, parallel space-time costs are
arguably the most relevant metric. In particular, the depth of the full Grover
circuit scales with the number of queries to our quantum circuit CG,H for fG,H

multiplied by the number of pebbling rounds for G. Similarly, the width of the
full Grover circuit will essentially be given by the space usage of our pebbling.
Thus, the space-time of Grover’s algorithm will scale directly with Π

→← ,‖
s (P ).

The cumulative pebbling complexity would still be relevant in settings where we
are running multiple instances of Grover’s algorithm in parallel and can amortize
space usage over multiple inputs. In this paper, we primarily focus on analyzing
reversible space-time costs, as this would likely be the most relevant metric in
practice. However, cumulative pebbling complexity still can be worthwhile to
study and we provide some initial results in this direction.
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3 Reversible Pebbling Attacks and Applications
on iMHFs

3.1 Warmup: Parallel Reversible Pebbling Attack on a Line Graph

We first consider two widely deployed hash functions, PBKDF2 [Kal00] and
BCRYPT [PM99], as motivating examples for analyzing a line graph. Basically,
they are constructed by hash iterations so they can be modeled as a line graph
when simplified. Hence, the pebbling analysis of a line graph tells us about the
costs of PBKDF2 and BCRYPT. Although there has been some effort to replace
such password-hash functions with memory-hard functions such as Argon2 or
SCRYPT [BHZ18], PBKDF2 and BCRYPT are still commonly used by a num-
ber of organizations. Thus, it is still important to understand the costs of an
offline brute-force attack on passwords protected by functions like PBKDF2 and
BCRYPT. In fact, NIST recommends using memory-hard functions for password
hashing [GNP+17] but they still allow PBKDF2 and BCRYPT when used with
long enough hash iterations. Hence, there is still value to analyze the quantum
resistance of these functions. Our reversible pebbling attack on DRSample relies
on efficient pebbling strategies for line graphs as a subroutine providing further
motivation to understand the reversible pebbling costs of a line graph.

As we illustrated in Sect. 1.2, we give a (sequential/parallel) reversible peb-
bling strategy for a line graph LN using recursion. It can be done by recursively
define the sequence of consecutive locations I(k) as I(k) = I(k − 1)′ ◦ I(k −
2)′ ◦ . . . ◦ I(0)′ for k > 0 and I(0) = {}, where for 0 ≤ j < k, I(j)′ is defined
to be a concatenation of c copies of I(j) and ij (which is an incident node to
I(j)), i.e., I(j)′ := I(j)(1) ◦ i

(1)
j ◦ I(j)(2) ◦ i

(2)
j ◦ . . . ◦ I(j)(c) ◦ i

(c)
j , where A(�)

denotes the �th copy of A. Intuitively, we can sequentially pebble I(k) by peb-
bling I(k − 1)′, I(k − 2)′, . . . , I(0)′. Here, pebbling I(j)′ means that we pebble
I(j)(�), i

(�)
j , and unpebble I(j)(�), and we move on to the next copy to pebble

I(j)(�+1). We can parallelize this strategy by removing and adding pebbles on
the consecutive copies at the same time, which requires more space usage but
saves time. Here, we only state the space-time cost of our reversible pebbling
strategy on a line graph in Theorem1. Details of our pebbling strategy can be
found in the full version.

Theorem 1. Let LN be a line graph of size N . Then we have Π →←
st (LN ) =

O
(
N

1+(2+o(1)) 1√
log N

)
and Π

→← ,‖
st (LN ) = O

(
N

1+ 2√
log N

)
.

The proof of Theorem 1 can be found in the full version.

3.2 Reversible Pebbling Attacks on (e, d)-Reducible DAGs

In this section, we introduce another type of reversible pebbling attack on (e, d)-
reducible DAGs with depth-reducing sets with d very small. In this paper, we
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only consider DAGs with constant indegree, and especially the current state-of-
the-art constructions of iMHFs have indegree 2. Therefore, we will assume that
indeg(G) = 2 for the DAGs that we consider.

Since the graph has indegree 2, if we find a depth-reducing set S such that
G−S has depth d, then we observe that |ancestors(v,G−S)| ≤ 2d for any node v
in G − S. If d is small, i.e., d � log N , then 2d � N and we can expect that the
space-time cost for pebbling such (e, d)-reducible DAG becomes o(N2). More
precisely, we start with giving a regular pebbling strategy (without quantum
restrictions) for such DAGs.

Classical Black Pebbling Strategy. We begin by giving a classical pebbling strat-
egy with small space-time complexity. Note that prior pebbling strategies focused
exclusively on minimizing cumulative pebbling cost, but the pebbling attacks of
Alwen and Blocki [AB16]4 for (e, d)-reducible graphs still have the space-time
cost Ω(N2).

We first introduce the following helpful notation. For nodes x and y in a DAG
G = (V,E), let LongestPathG(x, y) denote the number of nodes in the longest
path from x to y in G. Then for a node w ∈ V , a depth-reducing set S ⊆ V ,
and a positive integer i ∈ Z>0, we first define a set Aw,S,i which consists of the
nodes v where the longest directed path from v to w in G − S≤w−1 has length
i, i.e., it contains exactly i nodes.

Aw,S,i :=
{

v : LongestPathG−S≤w−1
(v, w) = i

}
.

It is trivial by definition that for any v ∈ V , Av,S,1 = {v}.
Let G = (V = [N ], E) be an (e, d)-reducible DAG. We observe that

depth(G≤k − S≤k) ≤ d is still true for any k ≤ N . At round k, we have always
ensured that we have pebbles on the set S≤k and on {k} itself. Further, at
round k, we can look d steps into the future so that at round k + d we can peb-
ble node k +d without delay. Hence, we start to repebble ancestors(k +d,G−S)
in this round and because depth(G≤k − S≤k) ≤ d we are guaranteed to fin-
ish within d rounds—just in time to pebble node k + d. Taken together, in
round k, we have pebbles on {k}, S≤k, and ancestors(k + i, G − S) for all

i ≤ d. More precisely, for v ∈ V , let Pv = S≤v ∪
(⋃d

j=1

⋃d
i=j Av−1+j,S,i

)
.

Since each ancestor graph has size at most 2d and there are at most d of
them, we observe that the total number of pebbles in each round is at most
1 + |S≤k| +

∑d
i=1 |ancestors(k + i, G − S)| ≤ 1 + e + d2d. Hence, we have that

Π
‖
st(G) ≤ N(1 + e + d2d).

Reversible Pebbling Strategy. While the above strategy works in the classical
setting it will need to be tweaked to obtain a legal reversible pebbling. In par-
ticular, after node k + d is pebbled we cannot immediately remove pebbles from

4 If G is (e, d)-reducible then Alwen and Blocki [AB16] showed that Π
‖
cc(G) ≤

ming≥d

(
eN + gN · indeg(G) + N2d

g

)
= o(N2).
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all nodes in ancestors(k + d,G − S) because this would violate our quantum
reversibility property. Instead, we can reverse the process and unpebble nodes in
ancestors(k + d,G−S) over the next G−S rounds—with the possible exception
of nodes v ∈ ancestors(k + d,G−S) which are part of ancestors(k + d+ j,G−S)
and are still required for some future node k + d + j. Thus, if a DAG G is
(e, d)-reducible we can establish the following result.

Theorem 2. Let G = (V = [N ], E) be an (e, d)-reducible DAG. Then
Π

→← ,‖
st (G) = O (

Ne + Nd2d
)
.

We will give the proof of Theorem 2 later in the subsection. To prove Theo-
rem 2, we first would need to give a legal reversible pebbling for an (e, d)-reducible
DAG G. Lemma 1 provides the desired reversible pebbling for G. The proof of
Lemma 1 can be found in the full version.

Lemma 1. Let G = (V = [N ], E) be an (e, d)-reducible DAG and let S ⊆ V be
a depth-reducing set. Define

Bv :=
d+1⋃

j=1

d+1⋃

i=j

(Av+1−j,S,i ∪ Av−1+j,S,i) ,

for v ∈ V . Then P = (P0, P1, . . . , P2N ), where each pebbling configuration is
defined by

– P0 = ∅,
– for v ∈ [N ], Pv := S≤v ∪ Bv, and
– for N < v ≤ 2N , Pv := P2N−v ∪ {N},
is a legal parallel reversible pebbling for G.

Now we are ready to prove Theorem 2.

Proof of Theorem 2: Let P = {P0, P1, . . . , P2N} as defined in Lemma 1, in
which we showed that it is a legal quantum pebbling. Clearly, Π

→← ,‖
t (P ) = 2N .

Further, we observe that Π
→← ,‖

s (P ) ≤ maxv∈V {|S≤v|+|Bv|+1}. Since we assume
that indeg(G) = 2, we have

|Bv| =

∣
∣
∣
∣
∣
∣

d+1⋃

j=1

d+1⋃

i=j

(Av+1−j,S,i ∪ Av−1+j,S,i)

∣
∣
∣
∣
∣
∣

≤
d+1∑

j=1

d+1∑

i=j

|Av+1−j,S,i| + |Av−1+j,S,i|

≤
d+1∑

j=1

d+1∑

i=j

2i+1 = 8d2d + 2.

Taken together, Π
→← ,‖

st (P ) ≤ 2N(e + 8d2d + 3) = O (
Ne + Nd2d

)
. Hence,

Π
→← ,‖

st (G) = min
P∈P →← ,‖

G,{N}
Π

→← ,‖
st (P ) = O (

Ne + Nd2d
)
. ��
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Analysis of Argon2i. There are a number of variants for the Argon2i graphs. We
will focus on Argon2i-A [BCS16] and Argon2i-B5 [BDKJ16] here. Recall that
Argon2i-A is a graph G = (V = [N ], E), where E = {(i, i + 1) : i ∈ [N − 1]} ∪
{(r(i), i)}, where r(i) is a random value that is picked uniformly at random from
[i−2]. Argon2i-B has the same structure, except that r(i) is not picked uniformly
at random but has a distribution as follows:

Pr [r(i) = j] = Pr
x∈[N ]

[

i

(

1 − x2

N2

)

∈ (j − 1, j]
]

.

Lemma 2. Let GArg-A = (VA = [N ], EA) and GArg-B = (VB = [N ], EB) be
randomly sampled graphs according to the Argon2i-A and Argon2i-B edge distri-
butions, respectively. Then with high probability, the following holds:

(1) GArg-A is (e1, d1)-reducible for e1 = N
d′ + N lnλ

λ and d1 = d′λ, for any 0 <

λ < N and 0 < d′ < N
λ .

(2) GArg-B is (e2, d2)-reducible for e2 = N
d′ + 2N√

λ
and d2 = d′λ, for any 0 < λ < N

and 0 < d′ < N
λ .

Alwen and Blocki [AB16,AB17] established similar bounds to Lemma 2, but
focused on parameter settings where the depth d is large. By contrast, we will
need to pick a depth-reducing set with a smaller depth parameter d � log N
to minimize the d2d cost term in our pebbling attack. The full proof of Lemma
2 can be found in the full version. Here, we only give a brief intuition of the
proof. To reduce the depth of a graph, we follow the approach of Alwen and
Blocki [AB16,AB17] and divide N nodes into λ layers of size N/λ and then
reduce the depth of each layer to d′ so that the final depth becomes d = d′λ.
To do so, we delete all nodes with parents in the same layer, and then delete
one out of d′ nodes in each layer. And then we count the number of nodes to be
deleted in both steps for each graph.

Applying the result from Lemma2 to Theorem 2, we have the following space-
time cost of reversible pebbling for Argon2i-A and Argon2i-B. Intuitively, we
obtain Corollary 1 by setting λ =

√
log N and d′ = λ/ ln λ ≈ 2

√
log N/ log log N

(resp. λ = 3
√

log2 N and d′ = 3
√

log N/2) in Lemma 2 for Argon2i-A (resp.
Argon2i-B). The full proof of Corollary 1 can be found in the full version.

Corollary 1. Let GArg-A = (VA = [N ], EA) and GArg-B = (VB = [N ], EB)
be randomly sampled graphs according to the Argon2i-A and Argon2i-B
edge distributions, respectively. Then with high probability, Π

→← ,‖
st (GArg-A) =

O
(

N2 log log N√
log N

)
, and Π

→← ,‖
st (GArg-B) = O

(
N2

3√log N

)
.

3.3 Reversible Pebbling Attacks Using an Induced Line Graph

In this section, we give another general strategy to pebble DAGs by “reduc-
ing” the DAG G to a line graph, as shown in Fig. 1. Intuitively, given a DAG
5 We will follow the naming convention of Alwen and Blocki [AB17] throughout the

paper and use Argon2i-A to refer to Argon2i-A v1.1 and Argon2i-B to refer to v1.2+.
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Fig. 1. A line graph L�N/b� induced from a DAG G. Note that each block in an original
graph corresponds to a node in the corresponding line graph, e.g., a block Bi in G that
consists of five nodes correspond to the node v′

i in L�N/b�.

G = (V,E) with |V | = N and an integer parameter b ≥ 1, we can partition V
into consecutive blocks B1, . . . , B�N/b	 such that each block contains exactly b
nodes, while for the last block we can have less than b nodes if N/b is not an
integer.

Notation. Now we consider a reversible pebbling P ′ of the line graph L�N/b	 =
(V ′ = [	N/b
], E′). Intuitively, each node in L�N/b	 corresponds to each block
in G. To transform P ′ into a pebbling P of G, it will be useful to introduce
some notation. Given a node v′ ∈ V ′ and the pebbling P ′ of L�N/b	, we define
LastDelete(P ′, v′) := max {i : v′ ∈ P ′

i} to denote the unique index i such that
node v′ ∈ P ′

i , but v′ �∈ P ′
j for all rounds j > i, i.e., the pebble on node v′ was

removed for the final time in round i + 1. Similarly, it will be convenient to
define LastAdd(P ′) := max

{
i : 	N/b
 �∈ P ′

i−1

}
to be the unique round where a

pebble was placed on the last node v = 	N/b
 for the final time (Note: it is
possible that a legal pebbling P ′ places/removes a pebble on node v = 	N/b

several times). We make a couple of basic observations. First, we note that if
u′ < v′ then LastDelete(P ′, u′) > LastDelete(P ′, v′) since we need node v′ − 1 on
the graph to remove a pebble from node v′. Similarly, we note that for any node
v′ < 	N/b
 that LastDelete(P ′, v′) > LastAdd(P ′) since we need node 	N/b
 − 1
to be pebbled before we can place a pebble on the final node. Given our graph
G = (V,E), a parameter b, and a partition B1, . . . , B�N/b	 of V into consecutive
blocks of size b, we define Skip(Bi, G), for each i, to be the set of all skip nodes
in block Bi, i.e., the set of nodes with an outgoing edge that skips over block
Bi+1:

Skip(Bi, G) := {v ∈ Bi : ∃j > i + 1 such that v ∈ parents(Bj , G)}. (1)

We further define NumSkip(G, b) as the total number of skip nodes in G =
(V,E) after partitioning the set of nodes V into consecutive blocks of size b, i.e.,
NumSkip(G, b) :=

∑�N/b	
i=1 |Skip(Bi, G)|, where Bi’s are defined as before.

Pebbling Attempt 1. Our first approach to convert P ′ ∈ P →← ,‖
L�N/b	 to a legal

reversible pebbling P of G is as follows. Since each node in L�N/b	 corresponds to
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a block (of size at most b) in G, we can transform placing a pebble on a node in
L�N/b	 to pebbling all nodes in the corresponding block in G in at most b steps.
Similarly, we can convert removing a pebble on a node in L�N/b	 to removing
pebbles from all nodes in the corresponding block in G in at most b steps. It
gives us Π

→← ,‖
s (P ) ≤ bΠ

→← ,‖
s (P ′) since each node is transformed to a block of

size at most b, and Π
→← ,‖

t (P ) ≤ bΠ
→← ,‖

t (P ′) since one pebbling/removing step
in L�N/b	 is transformed to at most b pebbling/removing steps in G.

However, this transformation does not yield a legal reversible pebbling of G
due to the skip nodes. In particular, given a reversible pebbling configuration
P ′

k = {v′} of L�N/b	, it is legal to proceed as P ′
k+1 = {v′, v′ +1}. However, when

converting it to a reversible pebbling of G, one would need to place pebbles on
block Bv′+1 while only having pebbles on block Bv′ . This could be illegal if there
is a node v ∈ V such that v ∈ Bi for i < v′ and v ∈ parents(Bv′+1, G), i.e., v
is a skip node in Bi, because v must be previously pebbled to place pebbles on
block Bv′+1.

Reversible Pebbling Strategy. To overcome this barrier, when we convert P ′ ∈
P →← ,‖

L�N/b	 to a legal reversible pebbling P of G, we define a transformation P =
Trans(G,P ′, b) which convert placing/removing a pebble on/from a node v′ in
L�N/b	 to placing/removing pebbles on/from all nodes in the corresponding block
Bv′ in G in at most b steps as our first attempt, but when we remove pebbles
from Bv′ in G, we keep skip nodes for the block in the transformation until we
delete pebbles from the block for the last time, i.e., after round LastDelete(P ′, v′),
since these skip nodes will no longer needed to pebble nodes in other blocks in
the future.

Furthermore, for the last block (in G), when a pebble is placed on the last
node (in L�N/b	) for the final time, i.e., in round LastAdd(P ′), we indeed want
to only pebble the last node (sink node) in the block but not the entire block.
Hence, we need additional (at most b−1) steps to remove pebbles from all nodes
except for the last node in the block.

We can argue the legality of the converted pebbling of G because pebbling
steps in each block is legal and keeping skip nodes during the transformation
does not affect the legality of pebbling. Intuitively, whenever we pebble a new
node v in L�N/b	 the node v − 1 must have been pebbled in the previous round.
Thus, in G we will have pebbles on all nodes in the block Bv−1. Now for every
node w ∈ Bv and every edge of the form (u,w) we either have (1) u ∈ Bv−1,
(2) u ∈ Bv or (3) u ∈ Bj with j < v − 1. In the third case, u is a skip node
and will already be pebbled allowing us to legally place a pebble on node w.
Similarly, in the first case, we are guaranteed that u is already pebbled before
we begin pebbling nodes in block Bv since every node in Bv−1 is pebbled, and in
the second case, u will be (re)pebbled before node w. A similar argument shows
that all deletions are legal as well. The full proof of Lemma3 can be found in
the full version.
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Lemma 3. Let G = (V = [N ], E) and b ∈ [N ] be a parameter. If P ′ ∈ P →← ,‖
L�N/b	 ,

then P = Trans(G,P ′, b) ∈ P →← ,‖
G .

The formal definition of the procedure Trans(G,P ′, b) and an example for the
reversible pebbling strategy can be found in the full version. Now we observe the
following theorem describing the space-time cost of the converted pebbling in
terms of the cost of the reduced pebbling of the line graph. We defer the proof
of Theorem 3 to the full version.

Theorem 3. Given a DAG G = (V,E) with |V | = N nodes, a reduced line
graph L�N/b	 = (V ′, E′) with |V ′| = 	N/b
 nodes (where b is a positive integer),
and a legal reversible pebbling P ′ ∈ P →← ,‖

L�N/b	 , there exists a legal reversible pebbling

P = Trans(G,P ′, b) ∈ P →← ,‖
G such that

Π
→← ,‖

st (P ) ≤ 2b2Π
→← ,‖

st (P ′) + 2bΠ
→← ,‖

t (P ′) · NumSkip(G, b).

Analysis on DRSample. DRSample [ABH17] is the first practical construction
of an iMHF which modified the edge distribution of Argon2i. Consider a DAG
G = (V = [N ], E). Intuitively, similar to Argon2i, each node v ∈ V \ {1} has
at most two parents, i.e., there is a directed edge (v − 1, v) ∈ E and a directed
edge from a random predecessor r(v). While Argon2i-A picks r(v) uniformly at
random from [v − 2], DRSample picks r(v) according to the following random
process: (1) We randomly select a bucket index i ≤ log v, (2) We randomly
sample r(v) from the bucket Bi(v) = {u : 2i−1 < v − u ≤ 2i}. We can upper
bound the number of skip nodes when we sample G according to this distribu-
tion. In particular, we observe that NumSkip

(
GDRS,

⌈
N

log2 N

⌉)
= O

(
N log log N

log N

)

where GDRS is a randomly sampled graph according to the DRSample edge
distribution. Intuitively, to count the number of skip nodes, we need to find
edges with length > b so that the edge skips over a block. There are at most
log v − log b (out of log v) buckets which potentially could result in a skip node,
which implies that the probability that the edge (r(v), v) is longer than b is at
most 1 − log b/ log v ≤ 1 − log b/ log N = log(N/b)/ log N . Thus, the expected
number of skip nodes in DRSample is at most N log(N/b)/ log N and standard
concentration bounds imply that the number of skip nodes will be upper bounded
by O(N log(N/b)/ log N) with high probability. Setting b = 	N/ log2 N
 we
can conclude that the expected number of skip nodes in DRSample is at most
O(N log log N/ log N) with high probability. Further details can be found in the
full version. Applying this result to Theorem3, we have the following space-time
cost of reversible pebbling for DRSample.

Corollary 2. Let GDRS = (VDRS = [N ], EDRS) be a randomly sampled graph
according to the DRSample edge distribution. Then with high probability,
Π

→← ,‖
st (GDRS) = O

(
N2 log log N

log N

)
.

The proof of Corollary 2 is deferred to the full version and we only give a brief
intuition here. Basically, we can reduce GDRS to the induced line graph L�log2 N	
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of size 	log2 N
. Then by plugging in the reversible time and space-time cost
of L�log2 N	 and the number of skip nodes of GDRS in Theorem 3 with setting

b = 	N/ log2 N
, we can conclude that Π
→← ,‖

st (GDRS) = O
(

N2 log log N
log N

)
.

4 Reversible Pebbling Attacks for Minimizing
Cumulative Complexity

In this section, we adapt the depth-reducing pebbling attack GenPeb from Alwen
and Blocki [AB16] to a reversible pebbling attack with the same asymptotic
CC. The pebbling attack of Alwen and Blocki [AB16] applies to any (e, d)-
reducible DAG G with e = o(N) and d = o(N). We first provide an overview of
their pebbling strategy before describing how we extend the attack to obtain a
reversible pebbling.

Overview of the Attack [AB16]. Suppose that we are given a DAG G = (V =
[N ], E) with constant indegree δ along with a depth-reducing set S of size |S| ≤ e.
Intuitively, the pebbling attack of Alwen and Blocki [AB16] can be divided into
a series of alternating “light phases” and “balloon phases.” It is also helpful
to imagine partitioning the nodes [N ] into intervals Ii = [(i − 1)g + 1, ig] of g
consecutive nodes.

– Light Phases: During the ith light phase our goal will be to pebble all of the
nodes in Ii over the next g consecutive pebbling rounds. The pre-condition
for the ith light phase is that we start off with pebbles on all of the nodes
(parents(Ii) ∪ S) ∩ [(i − 1)g] where parents(Ii) = {u : ∃v ∈ Ii s.t. (u, v) ∈ E}
denotes the set of parents of nodes in Ii. Similarly, the post-condition for the
ith light phase is that we have pebbles on all of the nodes (parents(Ii) ∪ S) ∩
[(i−1)g]∪ Ii. If Pj = (parents(Ii) ∪ S)∩ [(i−1)g] denotes the initial pebbling
configuration at the start of the light phase then we can set Pj+x = Pj ∪
[(i − 1)g, (i − 1)g + x] so that Pj+g gives us our post-condition. During each
light phase we keep at most |(parents(Ii) ∪ S) ∩ [(i − 1)g] ∪ Ii| ≤ e + δg + g
pebbles on the graph. Thus, the total cost incurred during each light phase
is at most (e + δg + g)g and the total cost incurred over all N

g light phases is
at most N(e + δg + g).

– Balloon Phases: The ith balloon phase takes place immediately after the ith

light phase with the goal of quickly recovering previously discarded pebbles
to satisfy the pre-condition for the next ((i + 1)st) light phase. In particular,
the post-condition for the ith balloon phase should match the pre-condition
for the (i+1)st light phase. The pre-condition for the ith balloon phase is that
our starting configuration contains pebbles on all of the nodes S∩ [ig]. During
a balloon phase, we are not worried about space so we can recover pebbles on
the entire set [ig] within d rounds by exploiting the fact that G − S contains
no directed path of length d. Once we have recovered pebbles on the entire
set [ig] we can then discard all of the pebbles that are not needed for the next
light phase. Thus, the total cost incurred by each individual balloon phase is
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at most dN and the total cost incurred over all N
g balloon phases is at most

N2d
g .

4.1 A Reversible Pebbling Attack

We first note that the pebbling attack above [AB16] is not reversible. In particu-
lar, at the end of each balloon phase we immediately transition from the pebbling
configuration with pebbles on all of the nodes [ig] to the pebbling configuration
with pebbles only on the nodes (parents(Ii+1) ∪ S) ∩ [ig]. The purpose of this
pebbling transition is to save space during the next light phase by discarding
unnecessary pebbles. Unfortunately, the rules of the reversible pebbling game
would prevent us from discarding all of these pebbles.

To address this challenge we define a reversible balloon phase which reaches
the desired target pebbling configuration (parents(Ii+1) ∪ S) ∩ [ig] in at most
2d pebbling rounds. Intuitively, our reversible balloon phase is based on several
observations: (1) any legal monotonic black pebbling sequence Pj ⊆ Pj+1 ⊆
. . . ⊆ Pj+k is also a legal reversible pebbling sequence the reversible pebbling
game only places additional restrictions on which pebbles can be removed, (2)
if (S ∩ [ig]) ⊆ Pj then there is a monotonic black pebbling sequence Pj ⊆
Pj+1 ⊆ . . . ⊆ Pj+d with Pj+d = [ig], (3) if Pj , . . . , Pj+d and P ′

j , . . . , P
′
j+d are

both legal reversible pebbling sequences and Pj+d = P ′
j+d then the sequence

Pj , . . . , Pj+d, P
′
j+d−1, . . . , P

′
j is also a legal reversible pebbling sequence taking us

from initial configuration Pj to final configuration P ′
j—we defer the formal proof

to the full version of this paper, (4) setting Pj = ((parents(Ii) ∪ S) ∩ [(i − 1)g])∪
[(i − 1)g + 1, ig] (the configuration from the post-condition at the end of the ith

light phase) and P ′
j = (parents(Ii+1) ∪ S) ∩ [ig] (the configuration from the pre-

condition at the beginning of the (i+1)st light phase) we observe that S ∩ [ig] ⊆
Pj ∩P ′

j . Thus, we can exploit the above observation to obtain reversible pebbling
sequences Pj , . . . , Pj+d and P ′

j , . . . , P
′
j+d with Pj+d = [ig] = P ′

j+d allowing us
to transition from Pj to P ′

j in time 2d. Using the modified reversible balloon
phase (above) we obtain our main result Theorem 4. In particular, given a (e, d)
depth-reducible DAG we obtain a reversible pebbling strategy with cumulative
pebbling cost Ne+N(δ +1)g + 2N2d

g . This result is asymptotically equivalent to
the non-reversible pebbling attacks of Alwen and Blocki [AB16] so we can apply
it to analyze the reversible CC of any iMHF. The detailed pebbling attack and
legality proofs are deferred to the full version.

The proof of Lemma 4 can be found in the full version.

Lemma 4. Let 〈P1, . . . , Pt〉 and 〈P ′
1, . . . , P

′
t′〉 be two legal reversible pebbling

sequences for some graph G such that Pt = P ′
t′ . Then for any T ⊆ Pt,

〈P1, . . . , Pt, P
′
t′−1 ∪ T, P ′

t′−2 ∪ T, . . . , P ′
1 ∪ T 〉

is also a legal reversible pebbling sequence for G.

Each balloon phase from [AB16] is monotonic because it simply pebbles all
possible nodes each round. To extend the non-reversible balloon phase of [AB16],
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observe that the final pebbling configuration is [ig] for some i ≥ 1, i.e., we end
with pebbles on all of the nodes 1, 2, . . . , ig. While the final target configuration
(after the balloon phase completes) discards many pebbles from the graph we
note that it still includes pebbles on all nodes in S ∩ [ig]. Thus, there is also
a monotonic pebbling from this target configuration to the configuration with
pebbles on [ig]. Lemma 4 shows that we can combine these halves to form a
reversible balloon phase.

This gives an upper bound on the reversible CC of pebbling graphs. The
proof of Theorem 4 can be found in the full version of this paper.

Theorem 4. For any (e, d)-reducible graph G on N nodes and any g ∈ [d,N ],

Π
→← ,‖

cc (G) ≤ 2N

(
2Nd

g
+ e + (δ + 1)g

)

+ N +
2N2d

g
.

For any iMHF corresponding to a DAG G the reversible cumulative peb-
bling complexity obtained from our attack is identical to the attack from
Alwen and Blocki [AB16]. In particular, for Argon2i-A and Argon2i-B we have
Π

→← ,‖
cc (GArg-A) = O (

N1.75 log N
)

and Π
→← ,‖

cc (GArg-B) = O (
N1.8

)
.

Alwen and Blocki [AB16] showed that any constant indegree DAG is (e, d)-
reducible with e = O (N log log N/ log N) and d = N/ log2 N . Applying The-
orem 4 we obtain the following upper bound for any DAG G with constant
indegree.

Corollary 3. For any DAG G = (V = [N ], E) with constant indegree δ = O (1)
the reversible cumulative pebbling cost is at most Π

→← ,‖
cc (G) = O

(
N2 log log N

log N

)
.
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Abstract. We investigate the security of succinct arguments against
quantum adversaries. Our main result is a proof of knowledge-soundness
in the post-quantum setting for a class of multi-round interactive proto-
cols, including those based on the recursive folding technique of Bullet-
proofs. To prove this result, we devise a new quantum rewinding strategy,
the first that allows for rewinding across many rounds. This technique
applies to any protocol satisfying natural multi-round generalizations
of special soundness and collapsing. For our main result, we show that
recent Bulletproofs-like protocols based on lattices satisfy these proper-
ties, and are hence sound against quantum adversaries.

Keywords: Succinct arguments · lattice · Bulletproofs · Quantum ·
Knowledge-soundness

1 Introduction

Succinct arguments [13,20] allow a prover to convince a verifier that a statement
x belongs to a language L, with communication shorter than the witness length
for the corresponding relation. Succinct arguments have become a cornerstone
of modern cryptography and fueled the development of many real-world applica-
tions, such as verifiable computation and anonymous cryptocurrencies. Recent
years have seen an explosion of new constructions of succinct arguments, based
on a variety of cryptographic assumptions.

However, the advent of quantum computation poses a significant threat to
these advancements. On the one hand, Shor’s algorithm [22] forces us to transi-
tion to cryptographic systems based on post-quantum assumptions, such as the
hardness of the learning with errors (LWE) problem [21]. On the other hand,
some known techniques to prove security of cryptographic protocols no longer
apply in the post-quantum regime, due to the fundamentally different nature of
quantum information. Most notable are rewinding techniques, which are ubiq-
uitous in security proofs for succinct arguments.
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In a rewinding proof, it is argued that an adversary that succeeds on a sin-
gle random challenge with high enough probability must succeed on multiple
challenges. This classically intuitive idea fails in the quantum setting, because
measuring the adversary’s response to one challenge causes an irreversible loss
of information which may render it useless for answering other challenges.

An important family of succinct arguments are interactive protocols based on
the recursive folding technique of [7,10], also known in the literature as Bullet-
proofs. Leveraging algebraic properties of cryptographic schemes, Bulletproofs-
like protocols can achieve much smaller proof sizes than PCP- and IOP-based
succinct arguments [6,13] while retaining the benefit of a public-coin setup.
Unlike PCP- and IOP-based arguments, however, the original Bulletproofs con-
structions are not post-quantum secure, being based on the hardness of the
discrete logarithm problem. This has motivated a line of work that aims to
design “post-quantum Bulletproofs” [2,4,8,9]. While these works do not rely on
cryptographic assumptions which are quantum-insecure, their analysis of post-
quantum security is only heuristic, in the sense that soundness is only shown
against a classical adversary. Motivated by this state of affairs, we ask the fol-
lowing question:

Can we prove post-quantum security for Bulletproofs-like protocols?

Known techniques for rewinding quantum adversaries [11,24] do not appear to
generalize to multi-round challenge-response protocols, let alone to logarithmic-
round protocols like Bulletproofs. Thus, answering the above question requires
us to develop new quantum rewinding techniques.

1.1 Our Results

In this work, we show that a class of “recursive” many-round interactive proto-
cols is knowledge-sound against quantum adversaries. As a special case, we estab-
lish that lattice-based Bulletproofs protocols are post-quantum secure, assuming
the quantum hardness of LWE. Loosely speaking, our main result can be restated
as follows.

Theorem 1 (Informal). Assuming the quantum hardness of the (Ring-)LWE
problem, lattice-based Bulletproofs protocols are knowledge-sound against quan-
tum algorithms.

Our main result is obtained by developing two technical contributions of inde-
pendent interest:

Fold-Collapsing Hash: We show that the lattice-based hash function
HashA(x) = Ax mod q, where A is sampled uniformly at random and x is
a “short” vector, satisfies a strong collapsing property1. Intuitively, we show

1 Collapsing can be thought of as the quantum analogue of collision-resistance, and
loosely speaking it requires that it is hard to determine whether a register containing
valid pre-images of a given y was measured or not.
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that HashA remains collapsing even when the key A is compressed via lin-
ear combinations of its columns with coefficients being short units in the base
ring. This fold-collapsing property can be based on a variety of computational
assumptions, including the (Ring-)LWE assumption.

Quantum Tree Rewinding: We develop a new quantum rewinding technique
that allows us to extract from multi-round interactive protocols with certain
collapsing and “recursive special soundness” properties. Our method com-
bines the state-repair procedure of [11] with a probability estimation step that
determines the success probability of the adversary on a given sub-tree. Com-
bined with the collapsing property above and the recursive special soundness
of Bulletproofs-like arguments, this establishes the post-quantum security of
these protocols.

1.2 Related Work

The witness folding technique for constructing succinct arguments was first intro-
duced by Bootle et al. [7] and later optimized by Bünz et al. [10], who called
their protocols Bulletproofs. The term “Bulletproofs” is now used to refer to a
family of succinct arguments with a certain recursive structure. The early Bul-
letproofs protocols [7,10] prove quadratic relations of exponents of elements in
prime-order cyclic groups, and their soundness relies on the discrete logarithm
assumption over these groups. Lai, Malavolta, and Ronge [14] generalized the
folding technique to prove quadratic relations over bilinear pairing groups under
a variant of the discrete logarithm assumption defined over these groups. As the
discrete logarithm problems can be solved by Shor’s algorithm [22] in quantum
polynomial time, none of these protocols are post-quantum sound.

While it is necessary to consider non-linear relations to obtain an argument
for NP, Attema and Cramer [3] showed how to linearize the non-linear relations
using secret-sharing techniques, and apply the folding technique to compress the
argument for the linearized relations. Although their protocols for proving linear
relations over groups are in fact unconditionally sound, they are trivial in the
quantum setting because the relations that they prove are in BQP.

Bootle et al. [9] adapted the Bulletproofs folding technique to the lattice set-
ting, giving a succinct argument for proving knowledge of the witness of a short
integer solution (SIS) instance, i.e. a short vector x satisfying Ax = y mod q,
over the m-th cyclotomic ring with m being a power of 2. The protocol, however,
has large “slack”: the knowledge extractor is only able to extract a short vector
x′ satisfying Ax′ = 8t · y mod q, where � = 2t is the dimension of the witness
x. Albrecht and Lai [2] revisited this protocol and reduced the slack from 8t

to 2t with a careful choice of the challenge set R. They further eliminated the
slack in the case of prime-power cyclotomic rings, i.e. when m is a power of a
polynomially-large prime. Attema, Cramer, and Kohl [4] improved the soundness
analysis of [2,9], reducing the knowledge error from O(log �/|R|) to 2 log �/|R|,
which is tight. Bootle, Chiesa, and Sotiraki [8] proposed the abstract framework
of sumcheck arguments which captures all Bulletproofs-like protocols, particu-
larly lattice-based ones, mentioned above. Although lattice-based Bulletproofs
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for proving SIS relations are shown to be unconditionally sound against classi-
cal provers, the security proofs implicitly assume that the success probability
of a prover remains unchanged after rewinding, which is generally false in the
quantum setting.

1.3 Organization

In Sect. 2 we give an overview of our technical results. In Sect. 3 we recall stan-
dard preliminaries. In Sect. 4 we recall the notion of public-coin interactive argu-
ments and introduce the notions of recursive special soundness and last-round
collapsing. In Sect. 5 we show that protocols satisfying these properties are also
knowledge-sound, even against quantum provers. In Sect. 6 we study the col-
lapsing properties of hash function families implicit in lattice-based Bulletproof
protocols. In the full version we build upon the results of Sect. 6 to show that
lattice-based Bulletproof protocols are recursive special sound and last-round
collapsing, and hence knowledge-sound, even against quantum provers.

2 Technical Overview

We give a brief overview of the main technical steps of our work. Before delving
into the details of our analysis, we summarize the main conceptual steps of our
proof:

Step I: We formalize a family of public-coin protocols Σ that satisfy two main
properties of interest, namely recursive special soundness and last-round col-
lapsing.

Step II: We describe a new quantum rewinding strategy that allows us to extract
a witness from any recursive special sound and last-round collapsing protocol
of the above defined family.

Step III: We show that the lattice-based hash function HashA(x) = Ax is fold-
collapsing, assuming that the (Ring-)LWE problem is intractable for quantum
algorithms.

Step IV: Using the result from the previous step, we show that lattice-based
Bulletproofs protocols are recursive special sound and last-round collapsing.

The remainder of the technical overview will be split into two parts, detailing
Step I–II and Step III–IV respectively.

2.1 Quantum Rewinding

We first establish some context. Consider a (2t + 1)-message public-coin inter-
active argument Σ where both the prover and the verifier input a statement x
and the prover additionally inputs a witness w. The first 2t rounds of the pro-
tocol consists of the prover sending a “commitment” zi and the verifier sending
a challenge ri for i ∈ [t]. The protocol ends with the prover sending a response
wt+1 and the verifier outputting a single bit. The protocol Σ is k-tree-special
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sound, or (k, . . . , k)-special sound, for a relation R if the following holds: There
exists an efficient extractor E which, given a statement x and complete k-ary
tree of (edge-)depth t where the nodes and edges in each root-to-leaf path are
labelled by a transcript (z1, r1, . . . , zt, rt, wt+1) of Σ which is accepting, extracts
a witness w satisfying R(x,w) = 1.

In the following, we first review how tree-special soundness classically implies
knowledge-soundness, and discuss where the classical reduction fails in the quan-
tum setting. We then overview how post-quantum knowledge-soundness can be
proven for protocols which satisfy a strengthening of tree special soundness along
with a natural “collapsing” property.

Classical Tree Rewinding. To prove that a tree-special sound argument is
knowledge-sound, the classical extraction proof (e.g. given in [9]) is based on the
tree extraction technique of [7]. This technique obtains a k-ary tree of transcripts
using a simple recursive strategy. This tree can then be provided to E in order
to obtain the witness. For i ∈ [t], [7] define subtree extractors Ti which, given a
transcript prefix, obtain a k-ary subtree rooted at that prefix:

Ti(r1, . . . , ri−1) :

1. Let τ be a graph containing a single (root) node v.
2. Query the adversary at (r1, . . . , ri−1) to obtain the i-th round commitment

zi. Label v with zi.
3. Repeat until v has k children: Choose ri ← Ri uniformly at random, and

run τ ′ ← Ti+1(r1, . . . , ri). If Ti+1 does not abort, attach τ ′ to v via an edge
labelled with ri.
If Ti+1 aborts, and this is the first loop iteration, then abort.

4. Return τ .

The base case Tt+1(r1, . . . , rt) queries the adversary at (r1, . . . , rt) to obtain a full
protocol transcript (z1, . . . , zt+1) and returns zt+1 if that transcript is accepting
(and otherwise aborts). The italicized condition above ensures that the procedure
runs in expected polynomial time. Concretely, let ε denote the probability for ri

chosen uniformly at random that Ti+1(r1, . . . , ri) does not abort. The number of
calls that Ti makes to Ti+1 is then 1 with probability 1− ε (due to the italicized
condition) and 1 + (k − 1)/ε (in expectation) with probability ε. Hence the
overall expected number of calls is k, and by induction Ti runs in expected time
O(kt−i · tA), where tA is the running time of the adversary.

Quantum Tree Rewinding. Moving now to the quantum setting, the imme-
diate problem is that Step 3 is a rewinding step: The above argument implicitly
uses the fact that a classical adversary can be rewound to ensure that the suc-
cess probability of Ti+1 in each iteration is always ε. For quantum adversaries,
the situation is more complicated, since measurements are in general irreversible
operations. Known techniques [11,24] allow one to recover this type of rewind-
ing in the quantum setting, provided the protocol satisfies a special “collapsing”
condition.
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Roughly speaking, this condition says the measurement performed by the
reduction in the rewinding loop to obtain the response (in this case τ) is indistin-
guishable (to the adversary) from a binary measurement of whether the obtained
response is valid or not (in this case, whether Ti+1 aborts). Unfortunately, for
the extractor above for general tree-special sound protocols we do not have this
guarantee. The issue is that τ contains information about the set of challenges to
which the adversary produces an accepting response. Measuring this information
can cause the adversary’s state to be disturbed in a detectable way. As a result,
we do not know how to achieve general tree extraction in the quantum setting.

Instead, we observe that Bulletproofs-like protocols satisfy additional struc-
tural properties such that extracting the full tree is not necessary. Specifically,
we can identify a family of protocols (Σi)t

i=0 associated to Σ, where Σi has 2i+1
messages, Σt = Σ and Σ0 is a noninteractive protocol where the prover sends w
and the verifier checks R(x,w).

This family has the property that, given a k-ary tree of accepting transcripts
for Σi, we can obtain a k-ary tree of accepting transcripts for Σi−1 by applying
only “local” operations at the i-th layer: specifically, we compute a new label for
each node vi at depth i by applying a function Ei to the labels of its children.
With this structural property, we can modify Ti (for all i) to directly output
a witness (label) wi instead of a tree τ . As a result, T0 will directly output a
witness w for x.

Moreover, we identify that if each Σi satisfies another property called last-
round collapsing and, crucially, Ti+1 is executed projectively by Ti, then measur-
ing the output of Ti+1 is in fact indistinguishable from a binary measurement.
It turns out that the key technical challenge here is the projectivity of Ti+1.

The Extractor. A general quantum measurement given by a circuit can be
implemented projectively in a standard way using the principle of deferred mea-
surement. Specifically, a circuit C has a corresponding unitary dilation U (given
by replacing measurement gates with controlled-NOTs); the projective imple-
mentation is obtained by applying U , measuring the output register, and then
applying U†.

Unfortunately, this method only applies to circuits, whereas in the above
template, Ti+1 is an algorithm with variable (expected polynomial) runtime. The
unitary dilation of an expected (quantum) polynomial time (EQPT) algorithm
is not generally efficiently implementable2. To avoid this problem, we design
an extractor where the recursive call is to a strict polynomial-time algorithm.
To give a sense of our construction, we will (for now) return to the classical
setting. A natural first attempt is to simply truncate Ti+1 to some strict number
of repetitions N ; applying this to all layers of the tree yields an extractor that

2 [16] proposes an extended computational model (in the context of zero knowledge
simulation) which does permit this. However, this is not sufficient for our setting:
While the model supports black-box access to unitary dilations of EQPT algorithms,
here we would require a unitary dilation of an EQPT algorithm which itself calls the
unitary dilation of an EQPT algorithm, etc.
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makes N t calls to the adversary. How large does N need to be? By Markov’s
inequality, the error incurred by truncation is O(k/N); hence to achieve any
guarantee, we require that N = Ω(k/ε). As a result, N t is superpolynomial
(since ε is an arbitrary inverse polynomial).

The key to overcoming this issue is to ensure that, no matter how many
repetitions of Step 3 we execute, we only make k recursive calls. In particular,
we must guarantee that whenever we make a call to Ti+1, it succeeds with high
probability. To do this in the classical setting, we can modify the extractor as
follows.

Ti,ε(r1, . . . , ri−1) :

1. Repeat at most N times until |W | = k:
(a) Choose ri ← Ri uniformly at random.
(b) Estimate ε′ ← Prri+1,...,rt

[A(r1, . . . , rt) convinces V ].
(c) If ε′ ≥ ε − β, compute wi ← Ti+1,ε−β(r1, . . . , ri). Add (ri, wi+1) to W .

2. Return wi ← Ei(W ).

Note that we explicitly provide T with a lower bound ε on the success probability
of A. We choose β = 1/poly (λ) to be small enough so that the adversary still
has high enough success probability at the base of the recursion. The estimation
step must be accurate to within an additive o(β) = 1/poly (λ) factor, which can
be achieved using polynomially many calls to A. By Markov’s inequality, the
probability that ε′ ≥ ε−β is at least β, and so by setting N = O(λ/β) = poly (λ)
we see k successful iterations with probability 2−λ. The running time of Ti,ε is
then k · |Ti+1,ε−β | + N · poly (λ) = O(kt−i · poly (λ)).

Instantiating the above template in the quantum setting requires some care.
The estimation step is achieved using e.g. the Marriott-Watrous algorithm [19]
as described in [11]. We facilitate the main rewinding loop using the state repair
technique of [11]. The state repair technique recovers the success probability of a
state after it is disturbed by a (binary) projective measurement. In our setting,
this measurement is “does the estimation step output ε′ ≥ ε − β?” All of these
procedures have associated error; this error must be managed to ensure that it
does not increase too much throughout the recursion. For more details, we refer
the reader to Sect. 5.

2.2 Lattice-Based Bulletproofs

In the above, we established that if a (2t + 1)-message public-coin argument
Σ induces a family (Σi)t

i=0 which is recursive special sound, and each Σi is
last-round collapsing, then Σ has post-quantum knowledge-soundness. In the
following, we consider the case where Σ is a lattice-based Bulletproofs protocol,
describe what it means for (Σi)t

i=0 to be recursive special sound and Σi to be
last-round collapsing, and outline how the properties can be achieved.

We recall the lattice-based Bulletproofs protocols from [2,4,9]. In such pro-
tocols, both the prover and the verifier receive as input a SIS instance (A,y)
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defined over a ring R3, and the prover additionally receives a short vector x
satisfying Ax = y mod q4. The interactive protocol consists of a recursive appli-
cation of a subroutine that allows the prover and the verifier to cut the size of
the relation in half at each iteration: On input a hash key A = A0‖A1 and an
image y, the verifier samples a random (short) ring element r from a challenge
set R ⊆ R. The hash key is then “folded” by taking the appropriate linear com-
bination of the columns A′ = r ·A0 +A1. Next, the prover updates the witness
x = x0‖x1 to x′ = x0+r ·x1, thus defining a new SIS instance (A′,y′) satisfying

A′x′ = (r · A0 + A1)(x0 + r · x1)

= A1x0 + r · (A0x0 + A1x1) + r2 · A0x1

= A1x0
︸ ︷︷ ︸

l

+r · y + r2 · A0x1
︸ ︷︷ ︸

r

= y′

where the terms (l, r) are sent by the prover to help the verifier compute the
new image y′. This effectively reduces the dimension of the statement by half.
Repeating this procedure t-times, where � = 2t is the dimension of the witness
x, brings the dimension down to 1, at which point the prover can simply send
the witness in the plain to the verifier.

Recursive Special Soundness. To define recursive special soundness, we first
specify the family of protocols (Σi)t

i=0 induced by a lattice-based Bulletproofs
protocol Σ. For each i, the (2i + 1)-message protocol Σi applies the folding
technique recursively on the input statement (A,y) for i times, each taking 2
messages, and the final message is simply the witness xi of the i-th folded state-
ment (Ai,yi). Note that Σ0 is the trivial 1-message protocol where the prover
simply sends the witness x of (A,y), while Σt = Σ. Recursive special soundness
requires that, for each i ∈ [t], given k accepting transcripts (for Bulletproofs
k = 3) for Σi that differ only in the last challenge-response rounds (i.e. mes-
sages 2i and 2i + 1), it is possible to efficiently recover a valid last-round (i.e.
(2i − 1)th) message for the protocol Σi−1. From this definition, we can see that
given a complete k-ary tree of accepting transcripts for Σt, it is possible to
recursively recover a valid prover message x for the trivial protocol Σ0.

With its close connection to the standard special soundness property, it is
natural that the recursive special soundness of (Σi)t

i=0 can be proven similarly:
Given an accepting transcript of Σi of the form

(A,y, (l1, r1), r1, . . . , (li−1, ri−1), ri−1, (li, ri), (r
(j)
i ,x(j)

i )j∈[k])

3 Rigorously, the matrix A is sampled uniformly at random by a setup algorithm, and
is taken as input by the prover and the verifier as a public parameter.

4 We focus only on the component of lattice-based Bulletproofs protocols where the
witness folding technique is applied, since this is the technically challenging compo-
nent in the quantum setting.
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the extractor Ei first derives (Ai,y
(j)
i )j∈[k] satisfying

Ai

(

x(1)
i x(2)

i x(3)
i

)

= yi mod q,

then extracts xi−1 satisfying Ai−1xi−1 = yi−1 mod q, provided that the chal-
lenges (r(j)i )j∈[k] are chosen from a subtractive set [2]5. The tuple

(A,y, (l1, r1), r1, . . . , (li−1, ri−1), ri−1,xi−1)

is then an accepting transcript of Σi−1. As usual, two subtleties in the lattice
setting are that the norm of the witness is slightly increased with each extraction
step, and that the extracted witness may only be a preimage of s ·yi−1 for some
short slack element s ∈ R. These soundness gap issues can be handled by making
an appropriate choice of (extraction relation) R, and choosing the challenge set
and other parameters carefully.

Fold-Collapsing. Finally, we describe what it means for Σi to be last-round
collapsing and how it is achieved. Last-round collapsing requires that, provided
an accepting transcript of Σi where all messages but the last one are measured,
it is computationally hard to tell whether the last message was also measured or
not. In the procotol Σi induced above, the last message consists of a witness xi of
the statement (Ai,yi) defined by the previous rounds of interaction. Importantly,
(Ai,yi) is fixed by the first 2i messages of the protocol. Thus, proving the above
property is equivalent to establishing that the hash function

HashAi
(xi) = Aixi mod q

is collapsing for all i ∈ {0, . . . , t}. It is known that such function satisfies the
collapsing property, if the key A is uniformly chosen [1,15]. However, recall that
Ai is obtained by progressively folding the original key A, so we need to show
that the function remains collapsing even after we perform such operations over
the hash key. We refer to this notion as fold-collapsing.

Our strategy to prove that the function is fold-collapsing proceeds in three
steps: First, we appeal to the well-known fact that collapsing is implied by the
stronger notion of somewhere statistically binding (SSB). Loosely speaking, SSB
requires that the hash function has an alternative key generation mode, which
is (i) computationally indistinguishable from the original mode, and that (ii)
makes the hash statistically binding for a chosen position (say the j-th one)
of the pre-image. Second, we show that the function HashA is SSB. This is
done by embedding ciphertexts of a linearly homomorphic encryption (with the
appropriate ciphertext space) as the columns of the key A. In the alternative
mode, the key Ãj consists of

Ãj =

⎛

⎜

⎝Enc(0) . . .Enc(0) Enc(1)
︸ ︷︷ ︸

j-th position

Enc(0) . . .Enc(0)

⎞

⎟

⎠ .

5 A subtractive set, also known as an exceptional sequence, is a set of ring elements
such that the difference between any distinct members is invertible over the ring.
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Since HashÃj
is a linear function, by the linearly-homomorphic property of the

encryption scheme, we have Ãjx = Enc(xj) mod q. Then, by the correctness of
the encryption scheme, the hash function statistically binds the j-th coordinate
of x, as desired. Finally, to show that the folded key is still SSB, it suffices to
observe that if the challenge set R consists of only units, i.e. R ⊆ R×, then
rA0 + A1 still preserves the invariant that exactly one ciphertext is not an
encryption of 0 for any r ∈ R, again invoking the linear homomorphism of the
encryption scheme. Thus, the folded key is still statistically binding on exactly
one position of the input vector. Repeating this process recursively yields the
desired statement.

Conveniently, for each of the subtractive sets R′ suggested in [2] to be used
as a challenge set, all but one element (i.e. 0) in R′ are units in R. Instantiating
R with R′ \ {0} therefore meets all our requirements.

Remark 1. We stress that all of our results concern the protocol in the interac-
tive setting. In particular, it should be noted that all lattice-based Bulletproofs
protocols have at most inverse polynomial soundness, due to the fact that the
challenge space is only polynomial size. While one can always reduce this to
negligible by sequentially repeating the protocol, parallel repetition for super-
constant round arguments is much less well-understood. In the classical setting,
this was recently solved for tree special sound protocols in [5]; we leave open
the problem of extending this to the quantum setting. Note that this required
to establish that existing lattice-based Bulletproofs protocols can be made non-
interactive in the QROM via Fiat-Shamir; importantly, sequential repetition
does not suffice.

3 Preliminaries

Let λ ∈ N be the security parameter. We write [n] := {1, 2, . . . , n} and Zn :=
{0, 1, . . . , n − 1} for n ∈ N. We write ϕ(n) for the Euler totient function, i.e. the
number of positive integers at most and coprime with n. If a is a ring element,
we write 〈a〉 for the ideal generated by a.

We make use of the following simple fact, a consequence of Markov’s inequal-
ity.

Proposition 1. Let X be a random variable supported on [0, 1]. Then for all
α ≥ 0, Pr [X ≥ α] ≥ E[X] − α.

3.1 Lattices

For m ∈ N, let ζ = ζm ∈ C be any fixed primitive m-th root of unity. We write
K = Q(ζ) for the cyclotomic field of order m ≥ 2 and degree ϕ(m), and R = Z[ζ]
for its ring of integers, called a cyclotomic ring for short. It is well-known that
R ∼= Z[x]/ 〈Φm(x)〉, where Φm(x) is the m-th cyclotomic polynomial. For q ∈ N,
write Rq := R/q · R.
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For elements x ∈ R we denote the infinity norm of its coefficient vector (with
the powerful basis

{

1, ζ, . . . , ζϕ(m)−1
}

) as ‖x‖. If x ∈ Rk we write ‖x‖ for the
infinity norm of x.

The ring expansion factor of R is defined as γR := maxa,b∈R
‖a·b‖

‖a‖·‖b‖ . By
definition, we have for any x, y ∈ R that ‖x · y‖ ≤ γR · ‖x‖ · ‖y‖.

For any ordered set T = (ri)i∈Zt
⊆ R, we write

VT :=

⎛

⎜

⎜

⎜

⎝

1 1 . . . 1
r0 r1 . . . rt−1

...
...

. . .
...

rt−1
0 rt−1

1 . . . rt−1
t−1

⎞

⎟

⎟

⎟

⎠

for the (column-style) Vandermonde matrix induced by T .

Definition 1 ((s, t)-Subtractive Sets [2]). Let s ∈ R and t ∈ [n]. A set
R ⊆ R is said to be (s, t)-subtractive if for any t-subset T = {ri}i∈Zt

⊆ R,
it holds that s ∈ 〈det(VT )〉. If R is (1, 2)-subtractive, we simply say that R is
subtractive.

Proposition 2 ([2]). If m is a power of a prime p and R is the m-th order cyclo-
tomic ring, then the set R :=

{

1, 1 + ζ, . . . ,
∑

i∈Zp−1
ζi
}

⊆p−1 R is subtractive.
Furthermore, for any ordered set T = (r0, r1, r2) ⊆ R and any x0, x1, x2 ∈ R
with ‖xj‖ ≤ β,

∥

∥

∥

∥

∥

∥

(

r0 · x0 r1 · x1 r2 · x2

x0 x1 x2

)

· V−1
T ·

⎛

⎝

0
1
0

⎞

⎠

∥

∥

∥

∥

∥

∥

≤ 24 · ϕ(m) · γR · β.

If m is a power of 2 and R is the m-th order cyclotomic ring, then the set
R :=

{

1, ζ, . . . , ζϕ(m)−1
} ⊆ϕ(m) R is (2, 3)-subtractive. Furthermore, for any

ordered set T = (r0, r1, r2) ⊆ R and any x0, x1, x2 ∈ R with ‖xj‖ ≤ β,
∥

∥

∥

∥

∥

∥

(

r0 · x0 r1 · x1 r2 · x2

x0 x1 x2

)

· s · V−1
T ·

⎛

⎝

0
1
0

⎞

⎠

∥

∥

∥

∥

∥

∥

≤ 3 · ϕ(m) · γR · β.

3.2 Quantum Information

We recall the basics of quantum information. Most of the following is taken
almost in verbatim from [11]. A (pure) quantum state is a vector |ψ〉 in a com-
plex Hilbert space H with ‖|ψ〉‖ = 1; in this work, H is finite-dimensional. We
denote by S(H) the space of Hermitian operators on H. A density matrix is a
positive semi-definite operator ρ ∈ S(H) with Tr(ρ) = 1. A density matrix rep-
resents a probabilistic mixture of pure states (a mixed state); the density matrix
corresponding to the pure state |ψ〉 is |ψ〉〈ψ|. Typically we divide a Hilbert space
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into registers, e.g. H = H1 ⊗ H2. We sometimes write, e.g., ρH1 to specify that
ρ ∈ S(H1).

A unitary operation is a complex square matrix U such that UU† = I. The
operation U transforms the pure state |ψ〉 to the pure state U |ψ〉, and the
density matrix ρ to the density matrix UρU†. We write U(H) for the set of
unitary operators on H.

A projector Π is a Hermitian operator (Π† = Π) such that Π2 = Π.
A projective measurement is a collection of projectors P = (Πi)i∈S such that
∑

i∈S Πi = I. This implies that ΠiΠj = 0 for distinct i and j in S. The applica-
tion of P to a pure state |ψ〉 yields outcome i ∈ S with probability pi = ‖Πi |ψ〉‖2;
in this case the post-measurement state is |ψi〉 = Πi |ψ〉 /

√
pi. We refer to the

post-measurement state Πi |ψ〉 /
√

pi as the result of applying P to |ψ〉 and post-
selecting (conditioning) on outcome i. A state |ψ〉 is an eigenstate of P if it is an
eigenstate of every Πi. A two-outcome projective measurement is called a binary
projective measurement, and is written as P = (Π, I−Π), where Π is associated
with the outcome 1, and I − Π with the outcome 0.

General (non-unitary) evolution of a quantum state can be represented via
a completely-positive trace-preserving (CPTP) map T : S(H) → S(H′). We omit
the precise definition of these maps in this work; we only use the facts that they
are trace-preserving (for every ρ ∈ S(H) it holds that Tr(T (ρ)) = Tr(ρ)) and
linear. For every CPTP map T : S(H) → S(H) there exists a unitary dilation U
that operates on an expanded Hilbert space H ⊗ K, so that T (ρ) = TrK(U(ρ ⊗
|0〉〈0|K)U†). This is not necessarily unique; however, if T is described as a circuit
then there is a dilation UT represented by a circuit of size O(|T |).

For Hilbert spaces A,B the partial trace over B is the unique CPTP map
TrB : S(A⊗B) → S(A) such that TrB(ρA ⊗ρB) = Tr(ρB)ρA for every ρA ∈ S(A)
and ρB ∈ S(B).

A general measurement is a CPTP map M : S(H) → S(H ⊗ O), where O is
an ancilla register holding a classical outcome. Specifically, given measurement
operators {Mi}N

i=1 such that
∑N

i=1 MiM
†
i = I and a basis {|i〉}N

i=1 for O, M(ρ) =
∑N

i=1(MiρM†
i ⊗|i〉〈i|O). We sometimes implicitly discard the outcome register. A

projective measurement is a general measurement where the Mi are projectors.
A measurement induces a probability distribution over its outcomes given by
Pr [i] = Tr

(|i〉〈i|OM(ρ)
)

; we denote sampling from this distribution by i ← M(ρ).
The trace distance between states ρ, σ, denoted d(ρ, σ), is defined as

d(ρ, σ) =
1
2

Tr
(
√

(ρ − σ)2
)

.

The trace distance is contractive under CPTP maps (for any CPTP map T ,
d(T (ρ), T (σ)) ≤ d(ρ, σ)). It follows that for any measurement M, the statistical
distance between the distributions M(ρ) and M(σ) is bounded by d(ρ, σ).

We also define a notion of quantum computational distinguishability. Specif-
ically, for states ρ, σ,

dcomp(ρ, σ)N := max
D,|D|≤N

|Pr [D(ρ) → 1] − Pr [D(σ) → 1] | ,
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where D is a quantum circuit. For sequences of states (ρλ)λ, (σλ)λ we say that
dcomp(ρλ, σλ) ≤ ε + negl (λ) if for all polynomials p, dcomp(ρλ, σλ)p(λ) ≤ ε +
negl (λ).

Clearly dcomp satisfies the triangle inequality and for all λ ∈ N,
dcomp(ρ, σ)(λ) ≤ d(ρ, σ). For bipartite states on A ⊗ B we affix a superscript
A to d and dcomp to indicate that the distance is with respect to A only, i.e.

dA(ρ, σ) = d(TrB(ρ),TrB(σ)) .

Gentle Measurement. We have the following gentle measurement lemma,
which bounds how much a state is disturbed by applying a measurement whose
outcome is almost certain.

Lemma 1 (Gentle Measurement [26]). Let ρ ∈ S(H) and P = (Π, I − Π)
be a binary projective measurement on H such that Tr(Πρ) ≥ 1 − δ. Let

ρ′=
ΠρΠ

Tr(Πρ)
and ρ′′=ΠρΠ + (I − Π)ρ(I − Π).

Then
d(ρ, ρ′) ≤ 2

√
δ and d(ρ, ρ′′) ≤ 2

√
δ.

Quantum Algorithms. In this work, a quantum adversary is a family of quan-
tum circuits {Aλ}λ∈N represented classically using some standard universal gate
set. A quantum adversary is polynomial-size if there exists a polynomial p and
λ0 ∈ N such that for all λ > λ0 it holds that |Aλ| ≤ p(λ) (i.e., quantum adver-
saries have classical non-uniform advice).

A circuit C with black-box access to a unitary U , denoted CU , is a standard
quantum circuit with special gates that act as U and U†. We also use CT to
denote black-box access to a map T , which we interpret as CUT for a unitary
dilation UT of T ; all of our results are independent of the choice of dilation. This
allows, for example, the “partial application” of a projective measurement, and
the implementation of a general measurement via a projective measurement on
a larger space.

Interactive Quantum Circuits. We introduce the definition for interactive
quantum circuits.

Definition 2. A t-round interactive quantum circuit A is a sequence of maps
(U1, . . . , Ut) where Ui : Ri → U(I ⊗ Zi). We also denote by Ui the unitary
∑

ri∈Ri
|ri〉〈ri| ⊗ Ui(ri). The size of an interactive quantum circuit is the sum

of the sizes of the circuits implementing the unitaries U1, . . . , Ut.
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Let P ∗ = (U1, . . . , Ut, |ψ〉); then EP ∗
is a quantum circuit with special gates

corresponding to the unitaries Ui and (Ui)† for i ∈ [t]. The requirement that
the Ui be unitary is without loss of generality, in the sense that any interactive
quantum adversary not of this form can be “purified” into a circuit of this form
that is only a constant factor larger with the same observable behavior. Using
this formulation, we can sample the random variable 〈P ∗(|ψ〉), V 〉 equivalently
as:

1. Initialize the register I to |ψ〉, and τ = ().
2. For i = 1 . . . t:

(a) Sample ri ← Ri.
(b) Apply unitary Ui(ri) to I ⊗ Zi.
(c) Measure Zi in the computational basis to obtain response zi. Append

(ri, zi) to τ .
3. Return the output of V (τ).

In particular, the interaction is public coin. Note again that we restrict the
operation of P ∗ in each round to be unitary except for the measurement of Zi

in the computational basis.

4 Recursive Special Sound and Last-Round Collapsing
Arguments

We recall the definitions of interactive arguments and their knowledge soundness.
We then define the new notions of recursive special soundness and last-round
collapsing.

Definition 3 (Arguments). Let i ≥ 0 be an integer. A (2i+1)-message public-
coin argument system Π = (Setup, Σ = (P, V )) consists of a PPT algorithm
Setup and a (2i + 1)-message protocol Σ = (P, V ) between an interactive PPT
prover P and an interactive PPT verifier V , is associated to a tuple of spaces
(X,W, (Zj , Rj)j∈[i],Wi+1), and has the following structural properties:

– The Setup algorithm takes as input the security parameter 1λ and outputs
some public parameters pp.

– Both P and V receive as input the public parameters pp and a statement
x ∈ X. The prover P additionally receives a witness w ∈ W .

– The public parameters, the statement x, and the 2i + 1 messages sent by
P and V in the protocol Σ, called collectively a transcript, is labelled by
(pp, x, z1, r1, . . . , zi, ri, wi+1), where zj ∈ Zj sent by P are called commit-
ments, rj ∈ Rj sent by V are called challenges, and wi+1 ∈ Wi+1 sent by P
is called a response.

– The challenges rj are sampled by V uniformly randomly from Rj
6.

6 In general, rj could be sampled from a public distribution over Rj .
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A transcript (pp, x, z1, r1, . . . , zi, ri, wi+1) is said to be accepting for Σ if it holds
that V (pp, x, z1, r1, . . . , zi, ri, wi+1) = 1. A k-branch of transcripts of Σ is a tuple
consisting of some public parameters, a statement, and a prefix of messages

(pp, x, z1, r1, . . . , zi−1, ri−1, zi)

along with k distinct i-th round challenges (r(j)i )j∈[k], and k responses
(w(j)

i+1)j∈[k]. A k-branch of transcripts is said to be accepting for Σ if

(pp, x, z1, r1, . . . , zi−1, ri−1, zi, r
(j)
i , w

(j)
i+1)

is accepting for Σ for all j ∈ [k].

Note that if i = 0 then the protocol is non-interactive: the transcript consists
only of (pp, x, w1).

For the protocols we consider, the statement to be proved depends on the
public parameters pp. As such, we will define proofs of knowledge with respect
to relations on triples (pp, x, w). Observe, in particular, that when i = 0 in
Definition 3 the verifier itself defines such a relation. Our proof of knowledge
definition is somewhat weaker than standard definitions of proof of knowledge
in that the extractor is permitted a given additive inverse polynomial loss.

Definition 4 (Proof of knowledge). We say that an argument system Π =
(Setup, Σ = (P, V )) is a (post-quantum) proof of knowledge with knowledge error
κ for a relation R if there exists a (quantum) polynomial-time extractor E and
such that for any inverse polynomial ν and any (quantum) polynomial-size adver-
sary P ∗,

Pr

[

R(pp, x, w)
∣

∣

∣

∣

pp ← Setup(1λ)
w ← ExtractP

∗
(pp, x, 11/ν)

]

≥ Pr [〈P ∗, V 〉 = 1]−κ(λ)−ν(λ) .

Definition 5 (Recursive k-Special Soundness). For i ∈ Zt+1, let Πi =
(Setup, Σi = (Pi, Vi)) be a (2i + 1)-message public-coin argument system with
a common Setup algorithm associated to the spaces (X,W, (Zj , Rj)j∈[i],Wi+1).
The family (Πi)t

i=0 is said to be recursive k-special sound if for each i ∈ [t] there
exists an efficient extractor Ei satisfying the following properties:

– The extractor Ei takes as input (r(j)i , w
(j)
i+1)j∈[k] ∈ (Ri × Wi+1)k and outputs

wi ∈ Wi.
– If

(pp, x, z1, r1, . . . , zi−1, ri−1, zi, (r
(j)
i , w

(j)
i )j∈[k])

is an accepting k-branch of transcripts for Σi, and wi = Ei((r
(j)
i , w

(j)
i+1)j∈[k]),

then
(pp, x, z1, r1, . . . , zi−1, ri−1, wi)

is an accepting transcript for Σi−1.
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Definition 6 (Last-Round Collapsing). Let Π be a (2i+1)-message public-
coin argument system associated to the spaces (X,W, (Zj , Rj)j∈[i],Wi+1). We
say that Π is last round collapsing if for any efficient (quantum) adversary A

∣

∣Pr
[

LastRoundCollapsing0Π,A(1λ) = 1
]− Pr

[

LastRoundCollapsing1Π,A(1λ) = 1
]∣

∣

≤ negl(λ),

where the experiment LastRoundCollapsingb
Π,A is defined as follows:

LastRoundCollapsingb
Π,A(1λ) :

1. The challenger generates pp ← Setup(1λ).
2. The challenger runs x ← A(pp).
3. The challenger executes the interaction (A, V (pp, x)) up until measuring the

last message of the adversary. Let τ = (pp, x, z1, r1, . . . , zt, rt) be the protocol
transcript thus far (excluding the last message) and let W be the register that
contains the state corresponding to the last message of the adversary.

4. Let Vτ be the unitary that acts on W and a fresh ancilla, and CNOTs into
the fresh ancilla the bit that determines whether the transcript is valid. Apply
Vτ , measure the ancilla, and apply V †

τ .
5. If the output of the measurement is 0, then abort the experiment. Else proceed.
6. If b = 0 do nothing.
7. If b = 1 measure the register W in the computational basis, discard the result.
8. Return to A all registers and output whichever bit A outputs.

5 Quantum Tree-Extraction

In this section we give an algorithm for extracting a witness from a recursively
k-special sound, last-round collapsing protocol. We prove the following general
theorem.

Theorem 2. Let (Πi = (Setup, Σi = (Pi, Vi)))t
i=0 be a recursively k-special

sound family where Πi is last-round collapsing for all i. Then Πt is a post-
quantum proof of knowledge for (the relation induced by) V0 with knowledge
error

t
∑

i=1

k − 1
|Ri| .

In Sect. 5.1 we give some notation which will be used in this section, and
specify the quantum algorithms we require. We also prove a new result about the
Repair algorithm of [11], which gives a better characterization of the distribution
of outcomes from repeated applications of the repair experiment; this is necessary
for our main result. In Sect. 5.2 we specify our extractor and show that it runs
in polynomial time. In Sect. 5.3 we prove that the extractor is correct.
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5.1 Notation and Quantum Algorithms

For a classical predicate f : R × Z → {0, 1}, let Πf(r,·) :=
∑

z∈Z,f(r,z)=1|z〉〈z|Z .
Given also a mapping U : r → U(A,Z), we define the Hermitian matrix EU,f :=
1

|R|
∑

r∈R U(r)†Πf(r,·)U(r). Let TU,f
≥p := (ΠU,f

≥p , I − ΠU,f
≥p ), where

ΠU,f
≥p :=

∑

j,pj≥p

|j〉〈j| ,

for
∑

j pj |j〉〈j| the spectral decomposition of EU,f . Note that 0 ≤ pj ≤ 1 for
all j.

Lemma 2 ([11,27]). For every ε, δ > 0 there is a quantum algorithm
Estimateε,δ with the following guarantees. For any classical predicate f : R×Z →
{0, 1}, mapping U : r → U(A,Z) and state ρ ∈ A ⊗ Z:

– E[p | (p, ρ′) ← EstimateU,f
ε,δ (ρ)] = Tr(EU,fρ) = 1

|R|
∑

r∈R Tr
(

Πf(r,·)UrρU†
r

)

;

– EstimateU,f
ε,δ is (ε, δ)-almost projective; and

– For any q ∈ [0, 1],

Pr

[

p ≥ q ∧ b = 0

∣

∣

∣

∣

∣

(p, ρ′) ← EstimateU,f
ε,δ (ρ)

b ← TU,f
≥q−ε(ρ

′)

]

≤ δ .

EstimateU,f
ε,δ has quantum circuit complexity O(|f | · 1

ε log 1
δ ) given oracle access to

U :=
∑

r∈R|r〉〈r| ⊗ U(r).

We denote by Thresholdγ,ε,δ the quantum algorithm which runs Estimate and
outputs 1 if its output is at least γ, and 0 otherwise.

Fig. 1. Experiments involving the Repair algorithm.
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We recall the state repair theorem of [11].

Theorem 3 (State repair, [11]). Let M be an (ε, δ)-almost projective mea-
surement on H, let P be an n-outcome projective measurement on H, and
let T be any positive integer. There is quantum procedure Repair such that
RepExptM,P

T (see Fig. 1) satisfies the following guarantee. For any state ρ on
H and (p, p′) ← RepExptM,P

T (ρ):

Pr [|p′ − p| > 2ε] ≤ n(δ + 1/T ) + 4
√

δ.

Moreover, Repair has quantum circuit complexity O(T ) given oracle access to P
and M.

Fix M to be the procedure EstimateU,f
ε,δ from Lemma 2, and for r ∈ R,

denote by Pr the binary measurement (U†
r Πf(r,·)Ur, I −U†

r Πf(r,·)Ur). In [11] it is
observed that Theorem 3 directly implies the following. If we choose a uniformly
random sequence (r1, . . . , rN ) ∈ RN and apply RepExpt

M,Pr1
T , . . . ,RepExpt

M,PrN

T

sequentially, the expected number of 1-outcomes for the Pri
is at least p−O(εN),

where p is the prover’s success probability in the protocol.
For our application we will need to strengthen this result in two ways. First,

we allow the sequence to be drawn from a more general distribution, even
depending on prior measurement outcomes. Second, we require a strong con-
centration guarantee, which we obtain by showing that the number of successes
dominates a binomial distribution of the appropriate parameters. The relevant
experiment is given as MultiExpt in Fig. 1. Note that the setting in [11] is obtained
by choosing Ds as the uniform distribution over R for all s.

Lemma 3. For each s = 1, . . . , N , let Ds be a randomized function that takes
an element of (N × {0, 1})s−1 and outputs is ∈ N. Let (Mi)i∈N be a list of
measurements.

For any state ρ ∈ S(A ⊗ Z), the following holds:

PrS←MultiExpt(ρ) [S < k] ≤ Pr

[

N
∑

i=1

Ys < k

]

+ N/T + O(
√

δ + (N/T )2) ,

where the (Ys)N
s=1 are distributed as follows:

1. Apply EstimateU,f
ε,δ to ρ, obtaining outcome p0. Let α := p0 − 2εN .

2. For each s ∈ [N ], sample Ys from a Bernoulli distribution with parameter

ζ := min
|v〉∈im(ΠU,f

≥α
)

min
i∈N

s−1

b∈{0,1}s−1

Eis←Ds(i,b)Pr [Mis
(|v〉〈v|) → 1] .

Proof. By Theorem 3, for each s ∈ [N ] it holds that

Pr [ps < ps−1 − 2ε] ≤ 2/T + O(
√

δ) .
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Denote by E the event that, for any s ∈ [N ], ps < ps−1 − 2ε. By a union bound,

Pr [E] ≤ 2N/T + O(N
√

δ + (N/T )2) .

Now consider the following hybrid experiment:

HybPT :
1. Apply Estimate, obtaining outcome p0.
2. For s = 1, . . . , N :

(a) Apply Estimate, obtaining outcome ps.
(b) Apply TU,f

≥ps−ε, and postselect on obtaining outcome 1.
(c) Sample (is,M) ← Ds(i1, b1, . . . , is−1, bs−1), and measure bs ← M.
(d) Run RepairT [Estimate,Mi](bs, ps).

By Lemma 2, in each iteration s, TU,f
≥ps−ε yields outcome 1 with probability

at least 1 − δ. Hence by gentle measurement, d(MultiExpt,Hyb) = O(N
√

δ).
Switching to Hyb, it holds by definition of ζ that

PrHyb [bs = 1 | ¬E, i1, b1, . . . , is−1, bs−1] ≥ ζ .

Therefore the distribution of (
∑N

s=1 bs | ¬E) induced by Hyb stochastically dom-
inates

∑N
s=1 Ys; that is, for all k,

PrHyb

[

N
∑

s=1

bs < k

∣

∣

∣

∣

∣

¬E

]

≤ Pr

[

N
∑

s=1

Ys < k

]

.

Since Pr [A] ≤ Pr [A|B]Pr [B], we have that

PrHyb

[

N
∑

s=1

bs < k

]

≤
Pr

[
∑N

s=1 Ys < k
]

PrHyb [E]

≤ Pr

[

N
∑

s=1

Ys < k

]

+ 2N/T + O(N
√

δ + (N/T )2) .

The lemma then follows by trace distance. ��

5.2 Description of the Extractor

For a measurement channel M : S(A) → S(A ⊗ O), we denote by M ∈ U(A ⊗
O ⊗B) some unitary dilation of M. We denote by M : S(A⊗B) → S(A⊗O ⊗B)
a projective dilation of M, given by

M(ρ) :=
∑

i

M
†|i〉〈i|OMρM

†|i〉〈i|OM

where {|i〉}i is a basis for O. All of our procedures and correctness analyses are
independent of the choice of dilation, and we assume that the circuit complexity
of M,M is linear in the circuit complexity of M.
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We now describe the extractor, which is a measurement channel
Extracti,ν : S(A ⊗ Z) → S(A ⊗ Z ⊗ O), where Z = (Z1, . . . ,Zt,Wt+1) are the
prover’s output registers. Recall that we model the prover as a sequence of uni-
taries U1, . . . , Ut.

For i ∈ [t], denote by U (i) : Ri × · · · × Rt → U(A ⊗ Zi+1 ⊗ · · · ⊗ Zt ⊗ Wt+1)
the map

U (i)(ri, . . . , rt) = Ut(rt) · · · Ui(ri) .

For i ∈ [t], r = (r1, . . . , ri−1) ∈ R1 × · · · × Ri−1, let f
(i)
(r) : (Ri × · · · × Rt) × (Z1 ×

· · · × Zt × Wt+1) → {0, 1} denote the function f
(i)
(r)(ri, . . . , rt, z1, . . . , zt, wt+1) :=

V (z1, r1, . . . , zt, rt, wt+1).

Extracti,ν(r1, . . . , ri−1):
1. Set N := �2t ln(1/δ)/ν2�, ε := ν/4kNt, β := ν/2kt.

2. Compute p0 ← Estimate
U(i),f(i)

r

ε,δ . If p0 < γ :=
∑t

j=i
k−1
Ri

+ ν, stop
and output ⊥.

3. For j = 1, . . . , k:
(a) Set b := 0.
(b) For s = 1, . . . , N , apply the following steps:

i. Compute ps ← Estimate
U(i),f(i)

r

ε,δ .
ii. Choose ri ← Ri \SuppW uniformly at random and apply

Ui(ri).
iii. Initalize ancilla register B (for Threshold) to |0〉.
iv. Measure b ← ThresholdU(i+1),f(i+1)

γ′,ε,δ , where γ′ :=
∑t

j=i+1
k−1
Ri

+ ν · t−i−1
t−i + ε. If b = 1, go to Step 3c.

v. Apply Ui(ri)†.

vi. Run RepairkN/2β2 [Estimate
U(i),f(i)

r

ε,δ , (Ui(ri))† ·
ThresholdU(i+1),f(i+1)

γ′,ε,δ · Ui(ri)].

(c) Apply Threshold
U(i+1),f(i+1)

γ′,ε,δ .
(d) Compute Wi+1 ← Extracti+1,ν′(r1, . . . , ri) coherently, for

ν′ := ν · t−i−1
t−i .

(e) If b = 1, measure b′ ← Vi(Z1, r1, . . . ,Zi, ri,Wi).
(f) If b = b′ = 1, measure wi+1 ← Wi+1 and add (ri �→ wi) to

W .
(g) Apply Extracti+1,ν′(r1, . . . , ri)†.

(h) Apply (Threshold
U(i+1),f(i+1)

γ′,ε,δ )†, then Ui(ri)†.

(i) Run RepairkN/2β2 [Estimate
U(i),f(i)

r

ε,δ , (Ui(ri))† ·
ThresholdU(i+1),f(i+1)

γ′,ε,δ · Ui(ri)].
4. Output wi ← Ei(W ).

Extractt,ν(r1, . . . , rt−1) is simply the [11] extractor, modified to sample rt without
replacement:
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Extractt,ν(r1, . . . , rt−1):

1. Compute p0 ← Estimate
U(i),f(i)

r

ε,δ . If p0 < γ := k−1
Rt

+ ν, stop and
output 0.

2. For j = 1, . . . , k:
(a) Set b := 0.
(b) For s = 1, . . . , N , and while b = 0, apply each of the following

steps:
i. Compute ps ← Estimate

Ut,f
(t)
r

ε,δ .
ii. Choose rt ← Rt\SuppW uniformly at random and apply

Ut(rt).
iii. Measure b ← Vt(Z1, r1, . . . ,Zt, rt,Wt+1).
iv. If b = 1, measure wt+1 ← Wt+1 and add (rt �→ wt+1) to

W .
v. Apply Ut(rt)†.

vi. Run RepairkN/2β2 [Estimate
Ut,f

(t)
r

ε,δ , (Ut(rt))† · ΠVt(r,·) ·
Ui(ri)].

3. Output Et(W ).

Lemma 4. Extracti,ν is a circuit of size P (t, k, log(1/δ), 1/ν) · (ck)t−i for some
polynomial P and constant c. In particular, if k = O(1), t = O(log n), δ = 2−λ

and ν = 1/poly (λ) then Extractν = Extract1,ν is a polynomial-size quantum
circuit.

Proof. Let P be a polynomial (with positive coefficients) such that for any i,

|Extracti,ν | ≤ P (t, k, log(1/δ), 1/β, 1/ν) + k · 2|Extracti+1,ν′ | .

Such a polynomial exists by Lemma 2 and Theorem 3. Let c be a constant
such that P (1, 1, 1, 1, 2) ≤ c · P (1, 1, 1, 1, 1). The circuit size of Extracti,ν is then
bounded by

P (t, k, log(1/δ), 1/β, 1/ν) + k · 2|Extracti+1,ν′ |
≤ P (t, k, log(1/δ), 1/β, 1/ν) + 2ct−i−1kt−i · P (t, k, log(1/δ), 1/β, 1

ν · t−i
t−i−1 )

≤ (ck)t−iP (t, k, log(1/δ), 1/β, 1/ν) ,

since t−i
t−i−1 ≤ 2 for all i ∈ {1, . . . , t − 1}. ��

5.3 Correctness

The key lemma which establishes the correctness of the extractor is the following.

Lemma 5. Let Extract′ be as Extract, except that its output is 0 if Extract out-
puts ⊥ and

Vi−1(z1, r1, . . . , zi−1, ri−1, wi−1)
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otherwise. Then for γ :=
∑t

j=i
k−1
Ri

+ ν and all r = (r1, . . . , ri−1),

dA,Z,O
comp (Extract′i,ν(r; ρ),ThresholdU(i),f(i)

r

γ,ε,δ (ρ))

≤ kt−i · (β + O(β2) + poly (λ) · 4
√

δ) + negl (λ) .

Before proving the lemma, we discuss the intuition behind it and then show
how to use it to prove Theorem 2. Extract′i,ν measures whether the extractor

succeeds at the i-th level. ThresholdU(i),f(i)
r

γ,ε,δ measures whether the prover’s success
probability in the i-th round is at least γ. The lemma bounds the computational
distinguishability of these measurements; in particular, it implies that if we first
measure ThresholdU(i),f(i)

r

γ,ε,δ and obtain an outcome b ∈ {0, 1}, then the outcome of
applying Extract′i,ν to the post-measurement state is also b with all but inverse
polynomial probability. Hence to determine whether Extract′i,ν will succeed it

suffices to measure Threshold
U(i),f(i)

r

γ,ε,δ ; the complexity of the latter does not grow
with decreasing i.

We note that it is crucial that Lemma 5 bounds the distinguishability of
these measurements and not simply the probability that they produce different
outcomes when applied in sequence. While gentle measurement allows one to
move from the latter property to the former, this incurs a square-root loss in the
bound. Compounding this loss over log n rounds would make the bound trivial.

Proof (Theorem 2). Let P ∗ = (U1, . . . , Ut, ρ) be an adversary for Πt. By
Lemma 2, E[EstimateU(1),f(1)

ε,δ (ρ)] = Pr [〈P ∗, Vt〉 → 1]. Hence by Proposition 1,

Pr
[

ThresholdU(1),f(1)

γ,ε,δ (ρ) → 1
]

≥ Pr [〈P ∗, Vt〉 → 1] − γ.

It follows by Lemma 5 that

Pr
[

Extract′1,ν/2 → 1
]

≥ Pr [〈P ∗, Vt〉 → 1] − κ − ν

for κ :=
∑t

i=1
k−1
|Ri| and since β = ν/2kt. The theorem follows by noting that, by

definition, the probability that Extract succeeds is equal to the probability that
Extract′ outputs 1. ��
Proof. We argue the inductive step. The base case follows by a similar (simpler)
argument.

Consider a hybrid extractor Hyb1 in which we replace Steps 3f and 4 with

3f’. If b′ = 1, add (ri �→ ⊥) to W .
4’. Output 1 if |W | = k, else 0.

By last-round collapsing, dA,Z,O
comp (Extract′i,γ,ε,Hyb1) = negl (λ).

Observe that after removing the measurement of Wi in Extract′, Steps 3d,3e
and 3g are equivalent to an invocation of Extract′i+1,ν′ . We can now invoke the
inductive hypothesis. Specifically, we consider another hybrid extractor Hyb2, in
which we replace Steps 3d to 3g with the following:
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– If b = 1, measure b′ ← ThresholdUr,fr

γ′−ε,ε,δ. If b′ = 1, add (ri → ⊥) to W .

By induction and the triangle inequality, d(Hyb1,Hyb2) ≤ kt−i · (ε + O(ε2) +
poly (λ) · 4

√
δ + negl (λ)).

Hyb3 is obtained from Hyb2 by replacing Step 5.3 with

5.3’ If b = 1, add (ri → ⊥) to W .

If b = 1, then by Lemma 2, Pr [b′ = 1] ≥ 1 − δ. Hence by gentle measurement,
dA,Z,O(Hyb2,Hyb3) = O(k

√
δ). We write out Hyb3 in full, simplifying where

possible.

Hyb3:

1. Compute p0 ← Estimate
U(i),f(i)

r

ε,δ . If p0 < γ, stop and output 0.
2. For j = 1, . . . , k:

(a) Set b := 0.
(b) For s = 1, . . . , N , and while b = 0, apply each of the following

steps:
i. Compute ps ← Estimate

U(i),f(i)
r

ε,δ .
ii. Choose ri ← Ri \SuppW uniformly at random and apply

Ui(ri).
iii. Initalize ancilla register B to |0〉.
iv. Measure b ← ThresholdU(i+1),f(i+1)

γ′,ε,δ , where γ′ :=
∑t

j=i+1
k−1
Ri

+ ν · t−i−1
t−i + ε.

v. If b = 1, add (ri �→ ⊥) to W .
vi. Apply Ui(ri)†.

vii. Run RepairkN/2β2 [Estimate
U(i),f(i)

r

ε,δ , (Ui(ri))† ·
ThresholdU(i+1),f(i+1)

γ′,ε,δ · Ui(ri)].
3. Output 1 if |W | = k, else 0.

Consider now the j-th iteration of the outer loop. We compute the quantity
ζ from Lemma 3. Let |v〉 ∈ im(ΠU(i),f(i)

r

≥α ). Then

Eri←Ri\SuppW [EstimateU(i+1),f(i+1)

ε,δ (Ui(ri) |v〉)]

≥ 〈v|E
U(i),f

(i)
r

|v〉 − j − 1
|Ri| ≥ α − k − 1

|Ri| .

So by Proposition 1,

Prri←Ri\SuppW

[

ThresholdU(i+1),f(i+1)

γ′,ε,δ (Ui(ri) |v〉) → 1
]

≥ α − k − 1
|Ri| − γ′.

Since we abort if p0 < γ, by our choice of ε we have that α − k−1
|Ri| ≥ γ′ + ν

2t .
Hence ζ ≥ ν/2t.
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Then by Lemma 3, the probability that b is never set to 1 is at most

(1 − ν/2t)N + O(N(1/T +
√

δ)) ≤ β2/2k + O(N
√

δ + β4/k2)

given our choice of N . Hence the probability that p0 ≥ γ and Hyb3 outputs 0 is
at most β2/2 + O(kN

√
δ + β4). By gentle measurement,

dA,Z,O(Hyb
3
,Threshold

U(i),f(i)
r

γ,ε,δ ) ≤ β + O(
√

kN
4
√

δ + β2).

The lemma then follows by the triangle inequality. ��

6 Collapsing Hash Function Families

In the following, we show that the hash functions HashA(x) = A · x mod q,
indexed by the matrix A, are collapsing and even when A is “folded” with
coefficients being small units in the base ring.

6.1 Definitions

We recall the definition of a hash function family and the desired properties.

Definition 7 (Hash Function Family). Let �, k ∈ poly (λ). A hash function
family Hash = (Setup,H) from X  to Yh consists of a PPT Setup algorithm
and a deterministic polynomial-time H algorithm. The Setup algorithm inputs a
security parameter 1λ and outputs the public parameters pp. The H algorithm
inputs pp and a preimage x ∈ X . It outputs an image y ∈ Yh. When it is clear
from the context, we omit the input pp and write y = H(x).

We define below the notion of collapsing for hash functions [25].

Definition 8 (Collapsing). Let �, k ∈ poly (λ) and W ⊆ X . Let Hash =
(Setup,H) be a hash function from X  to Yh. We say that Hash is collapsing
over W if for any efficient (quantum) adversary A

∣

∣Pr
[

Collapsing0A(1λ) = 1
]− Pr

[

Collapsing1A(1λ) = 1
]∣

∣ ≤ negl (λ),

where the experiment Collapsingb
A is defined as follows:

Collapsingb
A(1λ) :

1. Sample pp using the Setup(1λ) algorithm and send it over to A.
2. A replies with a classical bitstring y and a quantum state on a register X .
3. Let UH,y be the unitary that acts on X and a fresh ancilla, and CNOTs into

the fresh ancilla the bit that determines whether the output of H(·) equals
y and the input belongs to W. Apply Upp,y, measure the ancilla, and apply
U†
pp,y.

4. If the output of the measurement is 0, then abort the experiment. Else proceed.
5. If b = 0 do nothing.
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6. If b = 1 measure the register X in the computational basis, discard the result.
7. Return to A all registers and output whichever bit A outputs.

Note that the security experiment Collapsingb
A in the definition of collapsing

is a quantum algorithm. It is often easier to work with the classical security
notion of somewhere-statistically binding (SSB), defined below, which is known
to imply collapsing.

Definition 9 (Somewhere-Statistically Binding). Let h, � ∈ poly (λ) and
W ⊆ X . A hash function family Hash = (Setup,H) from X  to Yh is said to
be somewhere-statistically binding (SSB) over W if there exists a PPT BSetup
algorithm such that the following hold:

– The BSetup algorithm inputs a security parameter 1λ and an index i ∈ Z. It
outputs the public parameters pp.

– For all i ∈ Z, the distributions Setup(1λ) and BSetup(1λ, i) are computation-
ally indistinguishable.

– For all i ∈ Z,

Pr
[∃ x0,x1 ∈ W : x0,i �= x1,i ∧ H(pp,x0) = H(pp,x1)

∣

∣ pp ← BSetup(1λ, i)
]

≤ negl (λ).

Lemma 6 ([1,18]). Let Hash = (Setup,H) be a hash function family from X 

to Yh and W ⊆ X . If Hash is SSB over W, then Hash is collapsing over W.

6.2 Bounded Homomorphic Public-Key Encryption

We recall the notion of public-key encryption. Note that we define a variant of
public-key encryption with perfect correctness.

Definition 10 (Public-Key Encryption). A public-key encryption (Gen,Enc,
Dec) consists of a key generation algorithm Gen that takes as input the security
parameter 1λ and returns a key pair (pk, sk). The encryption algorithm Enc takes
as input pk and a message m an produces a ciphertext c. We require that for all
λ ∈ N, all (pk, sk) in the support of Gen(1λ) and all messages m, it holds that
Dec(sk,Enc(pk,m)) = m.

To prove the security of the hash function family fA we assume the existence
of a bounded linearly homomorphic encryption scheme, that we define in the
following.

Definition 11 ((�, β)-Bounded Linearly Homomorphic Encryption over
Rh

q ). Let h, q ∈ N. An encryption scheme (Gen,Enc,Dec) is (�, β)-bounded lin-
early homomorphic over Rh

q if the following hold:

– (Ciphertext Indistinguishability) For a uniformly sampled key pair (pk, sk) ←
Gen(1λ), and for all bits b ∈ {0, 1} it holds that the following distributions are
computationally indistinguishable:

c ←$Enc(pk, b) ≈ u ←$ Rh
q .
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– (Bounded Homomorphism) For all key pairs (pk, sk) in the support of Gen(1λ),
all bits (b1, . . . , b) ∈ {0, 1}, all ciphertexts (c1, . . . , c) ∈ Rh×

q in the support
of (Enc(pk, b1), . . . ,Enc(pk, b)), and all vectors x ∈ R where ‖x‖ ≤ β, it
holds that:

Dec(sk, (c1, . . . , c) · x mod q) =

∑

i=1

bi · xi.

Examples of encryption schemes that satisfy the above property are NTRU [12,
23] (for h = 1) and Regev encryption based on (Ring)-LWE [17,21] (for h > 1).

6.3 A Fold-Collapsing Hash Function

Let h, t ∈ N, � = 2t, i ∈ {0, 1, . . . , t}, and (rj)j∈[i]] ∈ Ri. Define �i := �/2i = 2t−i.
For any matrix Ai ∈ Rh×i

q , we denote by (Ai,0,Ai,1) ∈ (Rh×i+1
q )2 an arbi-

trary fixed partitioning of the columns of A into two disjoint sets of columns
of identical cardinality. Similarly, for any vector xi ∈ Ri , we denote by
(xi,0,xi,1) ∈ (Ri+1

q )2 the partitioning of x induced by that of A. In Fig. 2 we
define a hash function family Hashi := Hash[h, �, (rj)j∈[i]] from X i to Yh.

Fig. 2. Construction of hash function families Hashi from X �i to Yh, where �i := �/2i =
2t−i. For i = 0, we denote the family by Hash0 = Hash[h, �].

We are now ready to show that the hash function as defined above is SSB,
generalizing a Theorem from [1]. As an immediate corollary, we obtain that the
hash function is also collapsing.

Lemma 7 (Collapsing). Let β0 ∈ R. Let W0 := {x ∈ R : ‖x‖ ≤ β0}. If
there exists an (�, β0)-bounded linearly homomorphic encryption over Rh

q , then
Hash[h, �] is SSB over W0.

Proof. Let (Gen,Enc,Dec) be an (�, β0)-bounded linearly homomorphic encryp-
tion over Rh

q . Let A be a uniformly sampled hash key. We define � hybrid dis-
tributions where we gradually substitute the columns of A with encryptions of
0. That is, in the i-th hybrid, the key of the hash function consists of

(c1, . . . , ci,Bi)
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where (ci . . . ci) ←$Enc(pk, 0) and Bi ←$ Rh×(−i)
q . It is easy to show that the

hybrids of each neighbouring pair are computationally indistinguishable by the
ciphertext indistinguishability of the encryption scheme. Note that, in the �-th
hybrid, the hash key consists of a concatenation of encryption of 0.

We will now show that the hash function defined in the �-th hybrid is SSB,
and the lemma statement will follow. We define BSetup(1λ, i) to be identical to
the distribution above, except that we substitute the i-th column of the key with
ci ←$Enc(pk, 1). The two distributions are computationally indistinguishable by
another application of ciphertext indistinguishability. We now show that there
does not exist a pair (x0,x1) ∈ W2

0 such that H(x0) = H(x1) and x0,i �= x1,i.
Assume towards contradiction that it exists, then we have that

c̃ = (c1, . . . , c) · x0 = (c1, . . . , c) · x1 mod q.

By the (�, β0)-bounded linear homomorphism of the encryption scheme, it holds
that c̃ decrypts to two different x0,i and x1,i. This contradicts the correctness of
the scheme. ��

Next we show that the function remains collapsing even if we fold the hashing
key by linear combinations with short units. We refer to this property as fold-
collapsing.

Lemma 8 (Fold-Collapsing). Let βi ∈ R, i ∈ Zt, ri+1 ∈ R×

be a unit with ‖ri+1‖ = 1, Wi := {x ∈ R : ‖x‖ ≤ βi}, Wi+1 :=
{

x ∈ R : ‖x‖ ≤ γ−1
R · βi

}

, Hashi := Hash[h, �, (rj)j∈[i]] = (Setupi,Hi), and
Hashi+1 := Hash[h, �, (rj)j∈[i+1]] = (Setupi+1,Hi+1). If Hashi is SSB over Wi

i ,
then Hashi+1 is SSB over Wi+1

i+1 .

Proof. Since Hashi is SSB over Wi
i , there exists a PPT algorithm BSetupi such

that

1. BSetupi inputs 1λ and j ∈ Zi
and outputs pp.

2. For any j ∈ Zi
, Setupi(1λ) and BSetupi(1λ, j) are computationally indistin-

guishable.
3. For any j ∈ Zi

,

Pr [BAD(i, j)
∣

∣ Ai ← BSetupi(1
λ, j)

] ≤ negl(λ)

where BAD(i, j) is defined as the following event:
{

∃ xi,0,xi,1 ∈ Wi
i : xi,0,j �= xi,1,j ∧ Ai · xi,0 = Ai · xi,1 mod q

}

.

We construct a PPT algorithm BSetupi+1 which, on input j′ ∈ Zi+1 , samples
b ∈ {0, 1}, runs BSetupi on j = j′ + b · �i+1 to obtain Ai, and returns Ai+1 :=
ri+1 ·Ai,0 +Ai,1 mod q. By Property 2 above, we clearly have that Setupi+1(1λ)
and BSetupi+1(1λ, j′) are computationally indistinguishable for all j′ ∈ Zi+1 .

Fix any j ∈ Zi
and j′ ∈ Zi+1 satisfying j = j′ mod �i+1, any Ai ∈

BSetupi(1λ, j), any Ai+1 = ri+1 · Ai,0 + Ai,1 mod q ∈ BSetupi+1(1λ, j′), and
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any xi+1,0,xi+1,1 ∈ Wi+1
i+1 satisfying Ai+1 · xi+1,0 = Ai+1 · xi+1,1 mod q. Define

xi,0 := (ri+1 · xi+1,0,xi+1,0) and xi,1 = (ri+1 · xi+1,1,xi+1,1).
Note that ‖xi+1,0‖ ≤ γ−1

R · βi and ‖xi+1,1‖ ≤ γ−1
R · βi. Clearly ‖xi,0‖ ≤ βi

and ‖xi,1‖ ≤ βi. In other words, we have xi,0,xi,1 ∈ Wi
i .

Since Ai+1 · xi+1,0 = Ai+1 · xi+1,1 mod q, we have

Ai+1 · xi+1,0 = Ai+1 · xi+1,1 mod q,

(ri+1 · Ai,0 + Ai,1) · xi+1,0 = (ri+1 · Ai,0 + Ai,1) · xi+1,1 mod q,

Ai · (ri+1 · xi+1,0,xi+1,0) = Ai · (ri+1 · xi+1,1,xi+1,1) mod q,

Ai · xi,0 = Ai · xi,1 mod q.

Furthermore, if xi+1,0,j′ �= xi+1,1,j′ , we have xi,0,j′ �= xi,1,j and xi,0,j′+i+1 �=
xi,1,j′+i+1 since ri+1 ∈ R× is a unit in R.

Suppose Hashi+1 is not SSB over Wi+1
i+1 , then there exists j′ ∈ Zi+1 such

that

Pr [BAD(i + 1, j′)
∣

∣ Ai+1 ← BSetupi+1(1
λ, j′)

]

is non-negligible. Consequently, by the above derivation, the average

1
2

· Pr [BAD(i, j′)
∣

∣ Ai ← BSetupi(1
λ, j′)

]

+
1
2

· Pr [BAD(i, j′ + �i+1)
∣

∣ Ai ← BSetupi(1
λ, j′ + �i+1)

]

is non-negligible. We conclude that there exists j ∈ {j′, j′ + �i+1} ⊆ Zi
such

that
Pr [BAD(i, j)

∣

∣ Ai ← BSetupi(1
λ, j)

]

is non-negligible, contradicting Property 3 above. ��
Note that the elements rj of the sets R defined in Proposition 2 satisfy the

requirements in Lemma 8.
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23. Stehlé, D., Steinfeld, R.: Making NTRU as secure as worst-case problems over ideal
lattices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 27–47.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4 4

24. Unruh, D.: Quantum proofs of knowledge. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 135–152. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29011-4 10

25. Unruh, D.: Computationally binding quantum commitments. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 497–527. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 18

26. Winter, A.: Coding theorem and strong converse for quantum channels. IEEE
Trans. Inf. Theory 45(7), 2481–2485 (1999). https://doi.org/10.1109/18.796385,
https://doi.org/10.1109

27. Zhandry, M.: Schrödinger’s pirate: how to trace a quantum decoder. In: Pass, R.,
Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12552, pp. 61–91. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-64381-2 3

https://doi.org/10.1007/978-3-642-13190-5_1
https://www.cs.princeton.edu/fermim/talks/collapse-binding.pdf
https://www.cs.princeton.edu/fermim/talks/collapse-binding.pdf
https://doi.org/10.1109/SFCS.1994.365746
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1007/978-3-642-20465-4_4
https://doi.org/10.1007/978-3-642-29011-4_10
https://doi.org/10.1007/978-3-662-49896-5_18
https://doi.org/10.1109/18.796385
https://doi.org/10.1109
https://doi.org/10.1007/978-3-030-64381-2_3


Interactive Proofs



Fiat-Shamir Transformation
of Multi-round Interactive Proofs

Thomas Attema1,3,4(B), Serge Fehr1,3, and Michael Klooß2

1 CWI, Cryptology Group, Amsterdam, The Netherlands
serge.fehr@cwi.nl

2 Karlsruhe Institute of Technology, KASTEL, Karlsruhe, Germany
michael.klooss@kit.edu

3 Leiden University, Mathematical Institute, Leiden, The Netherlands
4 TNO, Cyber Security and Robustness, The Hague, The Netherlands

thomas.attema@tno.nl

Abstract. The celebrated Fiat-Shamir transformation turns any public-
coin interactive proof into a non-interactive one, which inherits the main
security properties (in the random oracle model) of the interactive ver-
sion. While originally considered in the context of 3-move public-coin
interactive proofs, i.e., so-called Σ-protocols, it is now applied to multi-
round protocols as well. Unfortunately, the security loss for a (2μ + 1)-
move protocol is, in general, approximately Qµ, where Q is the number
of oracle queries performed by the attacker. In general, this is the best
one can hope for, as it is easy to see that this loss applies to the μ-fold
sequential repetition of Σ-protocols, but it raises the question whether
certain (natural) classes of interactive proofs feature a milder security
loss.

In this work, we give positive and negative results on this question. On
the positive side, we show that for (k1, . . . , kµ)-special-sound protocols
(which cover a broad class of use cases), the knowledge error degrades
linearly in Q, instead of Qµ. On the negative side, we show that for
t-fold parallel repetitions of typical (k1, . . . , kµ)-special-sound protocols
with t ≥ μ (and assuming for simplicity that t and Q are integer mul-
tiples of μ), there is an attack that results in a security loss of approxi-
mately 1

2
Qµ/μµ+t.

1 Introduction

1.1 Background and State of the Art

The celebrated and broadly used Fiat-Shamir transformation turns any public-
coin interactive proof into a non-interactive proof, which inherits the main secu-
rity properties (in the random oracle model) of the interactive version. The
rough idea is to replace the random challenges, which are provided by the veri-
fier in the interactive version, by the hash of the current message (concatenated
with the messages from previous rounds). By a small adjustment, where also
the to-be-signed message is included in the hashes, the transformation turns
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
E. Kiltz and V. Vaikuntanathan (Eds.): TCC 2022, LNCS 13747, pp. 113–142, 2022.
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any public-coin interactive proof into a signature scheme. Indeed, the latter is a
commonly used design principle for constructing very efficient signature schemes.

While originally considered in the context of 3-move public-coin interactive
proofs, i.e., so-called Σ-protocols, the Fiat-Shamir transformation also applies
to multi-round protocols. However, a major drawback in the case of multi-round
protocols is that, in general, the security loss obtained by applying the Fiat-
Shamir transformation grows exponentially with the number of rounds. Con-
cretely, for any (2μ + 1)-move interactive proof Π (where we may assume that
the prover speaks first and last, so that the number of communication rounds
is indeed odd) that admits a cheating probability of at most ε, captured by
the knowledge or soundness error, the Fiat-Shamir-transformed protocol FS[Π]
admits a cheating probability of (approximately) at most Qμ ·ε, where Q denotes
the number of random-oracle queries admitted to the dishonest prover. A tight
reduction is due to [11] with a security loss

(
Q
μ

) ≈ Qµ

μµ , where the approxima-
tion holds whenever μ is much smaller than Q, which is the typical case. More
concretely, [11] introduces the notions of state-restoration soundness (SRS) and
state-restoration knowledge (SRK), and it shows that any (knowledge) sound
protocol Π satisfies these notions with the claimed security loss. 1 The security
of FS[Π] (with the same loss) then follows from the fact that these soundness
notions imply the security of the Fiat-Shamir transformation.

Furthermore, there are (contrived) examples of multi-round protocols Π for
which this Qμ security loss is almost tight. For instance, the μ-fold sequential
repetition Π of a special-sound Σ-protocol with challenge space C is ε-sound with
ε = 1

|C|µ , while it is easy to see that, by attacking the sequential repetitions round
by round, investing Q/μ queries per round to try to find a “good” challenge, and
assuming |C| to be much larger than Q, its Fiat-Shamir transformation FS[Π]
can be broken with probability approximately

(
Q
μ

1
|C|

)μ = Qµ

μµ · ε.2

For μ beyond 1 or 2, let alone for non-constant μ (e.g., for IOP-based proto-
cols [3,10,11] and also Bulletproofs-like protocols [13,15]), this is a very unfor-
tunate situation when it comes to choosing concrete security parameters. If one
wants to rely on the proven security reduction, one needs to choose a large secu-
rity parameter for Π, in order to compensate for the order Qμ security loss,
effecting its efficiency; alternatively, one has to give up on proven security and
simply assume that the security loss is much milder than what the general bound
suggests. Often, the security loss is simply ignored.

This situation gives rise to the following question: Do there exist natural
classes of multi-round public-coin interactive proofs for which the security loss
behaves more benign than what the general reduction suggests? Ideally, the gen-
eral Qμ loss appears for contrived examples only.

1 As a matter of fact, [11] considers arbitrary interactive oracle proofs (IOPs), but
these notions are well-defined for ordinary interactive proofs too.

2 This is clearly a contrived example since the natural construction would be to apply
the Fiat-Shamir transformation to the parallel repetition of the original Σ-protocol,
where no such huge security loss would then occur.
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So far, the only positive results, establishing a security loss linear in Q, were
established in the context of straight-line/online extractors that do not require
rewinding. These extractors either rely on the algebraic group model (AGM) [22],
or are restricted to protocols using hash-based commitment schemes in the ran-
dom oracle model [11]. To analyze the properties of straight-line extractors,
new auxiliary soundness notions were introduced: round-by-round (RBR) sound-
ness [17] and RBR knowledge [18]. However, it is unclear if and how these notions
can be used in scenarios where straight-line extraction does not apply.

In this work, we address the above question (in the plain random-oracle
model, and without restricting to schemes that involve hash-based commit-
ments), and give both positive and negative answers, as explained in more detail
below.

1.2 Our Results

Positive Result. We show that the Fiat-Shamir transformation of any
(k1, . . . , kμ)-special-sound interactive proof has a security loss of at most Q + 1.
More concretely, we consider the knowledge error κ as the figure of merit, i.e.,
informally, the maximal probability of the verifier accepting the proof when
the prover does not have a witness for the claimed statement, and we prove
the following result, also formalized in the theorem below. For any (k1, . . . , kμ)-
special-sound (2μ + 1)-move interactive proof Π with knowledge error κ (which
is a known function of (k1, . . . , kμ)), the Fiat-Shamir transformed protocol FS[Π]
has a knowledge error at most (Q + 1) · κ. This result is directly applicable to a
long list of recent zero-knowledge proof systems, e.g., [4,6,12,13,15,16,21,26,29].
While all these works consider the Fiat-Shamir transformation of special-sound
protocols, most of them ignore the associated security loss.

Main Theorem (Theorem 2). Let Π be a (k1, . . . , kμ)-out-of-(N1, . . . , Nμ)
special-sound interactive proof with knowledge error κ. Then the Fiat-Shamir
transformation FS[Π] of Π is knowledge sound with knowledge error

κfs(Q) = (Q + 1) · κ .

Since in the Fiat-Shamir transformation of any (2μ + 1)-move protocol Π,
a dishonest prover can simulate any attack against Π, and can try Q/μ times
when allowed to do Q queries in total, our new upper bound (Q + 1) · κ is
close to the trivial lower bound 1 − (1 − κ)Q/μ ≈ Qκ/μ. Another, less explicit,
security measure in the context of knowledge soundness is the run time of the
knowledge extractor. Our bound on the knowledge error holds by means of a
knowledge extractor that makes an expected number of K +Q · (K − 1) queries,
where K = k1 · · · kμ. This is a natural bound: K is the number of necessary
distinct “good” transcripts (which form a certain tree-like structure). The loss
of Q·(K−1) captures the fact that a prover may finish different proofs, depending
on the random oracle answers, and only one out of Q proofs may be useful for
extraction, as explained below.
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Our result on the knowledge soundness of FS[Π] for special-sound protocols Π
immediately carries over to ordinary soundness of FS[Π], with the same security
loss Q + 1. However, proving knowledge soundness is more intricate; showing a
linear-in-Q loss for ordinary soundness can be obtained via simpler arguments
(e.g., there is no need to argue efficiency of the extractor).

The construction of our knowledge extractor is motivated by the extractor
from [5] in the interactive case, but the analysis here in the context of a non-
interactive proof is much more involved. We analyze the extractor in an inductive
manner, and capture the induction step (and the base case) by means of an
abstract experiment. The crucial idea for the analysis (and extractor) is how to
deal with accepting transcripts which are not useful.

To see the core problem, consider a Σ-protocol, i.e., a 3-move k-special-sound
interactive proof, and a semi-honest prover that knows a witness and behaves
as follows. It prepares, independently, Q first messages a1, . . . , aQ and asks for
all hashes ci = RO(ai), and then decides “randomly” (e.g., using a hash over all
random oracle answers) which thread to complete, i.e., for which i∗ to compute
the response z and then output the valid proof (ai∗

, z). When the extractor then
reprograms the random oracle at the point ai∗

to try to obtain another valid
response but now for a different challenge, this affects i∗, and most likely the
prover will then use a different thread j∗ and output the proof (aj∗

, z′) with
aj∗ �= ai∗

. More precisely, Pr(j∗ = i∗) = 1/Q. Hence, an overhead of Q appears
in the run-time.

In case of an arbitrary dishonest prover with an unknown strategy for com-
puting the ai’s above, and with an arbitrary (unknown) success probability ε,
the intuition remains: after reprogramming, we still expect Pr(j∗ = i∗) ≥ 1/Q
and thus a linear-in-Q overhead in the run-time of the extractor. However, pro-
viding a rigorous proof is complicated by the fact that the event j∗ = i∗ is not
necessarily independent of the prover producing a valid proof (again) after the
reprogramming. Furthermore, conditioned on the prover having been successful
in the first run and conditioned on the corresponding i∗, the success probability
of the prover after the reprogramming may be skewed, i.e., may not be ε any-
more. As a warm-up for our general multi-round result, we first give a rigorous
analysis of the above case of a Σ-protocol. For that purpose, we introduce an
abstract sampling game that mimics the behavior of the extractor in finding two
valid proofs with j∗ = i∗, and we bound the success probability and the “cost”
(i.e., the number of samples needed) of the game, which directly translate to the
success probability and the run-time of the extractor.

Perhaps surprisingly, when moving to multi-round protocols, dealing with the
knowledge error is relatively simple by recursively composing the extractor for
the Σ-protocol. However, controlling the run-time is intricate. If the extractor is
recursively composed, i.e., it makes calls to a sub-extractor to obtain a sub-tree,
then a naive construction and analysis gives a blow-up of Qμ in the run-time.
Intuitively, because only 1/Q of the sub-extractor runs produce useful sub-trees,
i.e., sub-trees which extend the current ai∗

. The other trees belong to some aj∗
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with j∗ �= i∗ and are thus useless. This overhead of Q then accumulates per
round.

The crucial observation that we exploit in order to overcome the above issue
is that the very first (accepting) transcript sampled by a sub-extractor already
determines whether a sub-tree will be (potentially) useful, or not. Thus, if this
very first transcript already shows that the sub-tree will not be useful, there is
no need to run the full-fledged sub-tree extractor, saving precious time.

To illustrate this more, we again consider the simple case of a dishonest prover
that succeeds with certainty. Then, after the first run of the sub-extractor to
produce the first sub-tree (which requires expected time linear in Q) and having
reprogrammed the random oracle with the goal to find another sub-tree that
extends the current ai∗

, it is cheaper to first do a single run of the prover to
learn j∗ and only run the full fledged sub-extractor if j∗ = i∗, and otherwise
reprogram and re-try again. With this strategy, we expect Q tries, followed by
the run of the sub-extractor, to find a second fitting sub-tree. Altogether, this
amounts to linear-in-Q runs of the prover, compared to the Q2 using the naive
approach.

Again, what complicates the rigorous analysis is that the prover may suc-
ceed with bounded probability ε only, and the event j∗ = i∗ may depend on the
prover/sub-extractor being successful (again) after the reprogramming. Further-
more, as an additional complication, conditioned on the sub-extractor having
been successful in the first run and conditioned on the corresponding i∗, both
the success probability of the prover and the run-time of the sub-extractor after
the reprogramming may be skewed now. Again, we deal with this by consider-
ing an abstract sampling game that mimics the behavior of the extractor, but
where the cost function is now more fine-grained in order to distinguish between
a single run of the prover and a run of the sub-extractor. Because of this more
fine-grained way of defining the “cost”, the analysis of the game also becomes
substantially more intricate.

Negative Result. We also show that the general exponential security loss of
the Fiat-Shamir transformation, when applied to a multi-round protocol, is not
an artefact of contrived examples, but there exist natural protocols that indeed
have such an exponential loss. For instance, our negative result applies to the
lattice-based protocols in [5,14]. Concretely, we show that the t-fold parallel
repetition Πt of a typical (k1, . . . , kμ)-special-sound (2μ + 1)-move interactive
proof Π features this behavior when t ≥ μ. For simplicity, let us assume that
t and Q are multiples of μ. Then, in more detail, we show that for any typical
(k1, . . . , kμ)-special-sound protocol Π there exists a poly-time Q-query prover
P∗ against FS[Πt] that succeeds in making the verifier accept with probability
≈ 1

2Qμκt/μμ+t for any statement x, where κ is the knowledge error (as well as
the soundness error) of Π. Thus, with the claimed probability, P∗ succeeds in
making the verifier accept for statements x that are not in the language and/or
for which P∗ does not know a witness. Given that κt is the soundness error
of Πt (i.e., the soundness error of Πt as an interactive proof), this shows that
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the soundness error of Πt grows proportionally with Qμ when applying the
Fiat-Shamir transformation. Recent work on the knowledge error of the parallel
repetition of special-sound multi-round interactive proofs [7] shows that κt is also
the knowledge error of Πt, and so the above shows that the same exponential
loss holds in the knowledge error of the Fiat-Shamir transformation of a parallel
repetition.

1.3 Related Work

Independent Concurrent Work. In independent and to a large extent con-
current work,3 Wikström [31] achieves a similar positive result on the Fiat-
Shamir transformation, using a different approach and different techniques: [31]
reduces non-interactive extraction to a form of interactive extraction and then
applies a generalized version of [30], while our construction adapts the interac-
tive extractor from [5] and offers a direct analysis. One small difference in the
results, which is mainly of theoretical interest, is that our result holds and is
meaningful for any Q < |C|, whereas [31] requires the challenge set C to be large.

The Forking Lemma. Security of the Fiat–Shamir transformation of k-special-
sound 3-move protocols is widely used for construction of signatures. There,
unforgeability is typically proven via a forking lemma [9,28], which extracts,
with probability roughly εk/Q, a witness from a signature-forging adversary
with success probability ε, where Q is the number of queries to the random
oracle. The loss εk is due to strict polynomial time extraction (and can be
decreased, but in general not down to ε). Such a k-th power loss in the success
probability for a constant k is fine in certain settings, e.g., for proving the security
of signature schemes; however, not for proofs of knowledge (which, on the other
hand, consider expected polynomial time extraction [8]).

A previous version of [20] generalizes the original forking lemma [9,28] to
accommodate Fiat-Shamir transformations of a larger class of (multi-round)
interactive proofs. However, their forking lemma only targets a subclass of the
(k1, . . . , kμ)-special-sound interactive proofs considered in this work. Moreover,
in terms of (expected) runtime and success probability, our techniques signifi-
cantly outperform their generalized forking lemma. For this reason, the latest
version of [20] is based on our extraction techniques instead.

A forking lemma for interactive multi-round proofs was presented in [13]
and its analysis was improved in a line of follow-up works [2,24,25,27,30]. This
forking lemma shows that multi-round special-sound interactive proofs satisfy a
notion of knowledge soundness called witness extended emulation. Eventually, it
was shown that (k1, . . . , kμ)-special-soundness tightly implies knowledge sound-
ness [5].

The aforementioned techniques for interactive proofs are not directly appli-
cable to the Fiat-Shamir mode. First, incorporating the query complexity Q of
3 When finalizing our write-up, we were informed by Wikström that he derived similar

results a few months earlier, subsequently made available online [31].
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a dishonest prover P∗ attacking the non-interactive Fiat–Shamir transformation
complicates the analysis. Second, a naive adaptation of the forking lemmas for
interactive proofs gives a blow-up of Qμ in the run-time.

1.4 Structure of the Paper

Section 2 recalls essential preliminaries. In Sect. 3, the abstract sampling game
is defined and analyzed. It is used in Sect. 4 to handle the Fiat–Shamir transfor-
mation of Σ-protocols. Building on the intuition, Sect. 5 introduces the refined
game, and Sect. 6 uses it to handle multi-round protocols. Lastly, our negative
result on parallel repetitions is presented in Sect. 7.

2 Preliminaries

2.1 (Non-)Interactive Proofs

We assume the reader to be familiar with the basic concepts related to interactive
proofs, and to non-interactive proofs in the random oracle model. We briefly
recall here the notions that are important for us and fix the notation that we will
be using. For formal definitions and more details, we refer to the full version [1].

Special-Sound Protocols. We consider a public-coin interactive proof Π for
an NP relation R. If Π consists of 3 moves, it is called a Σ-protocol, and we then
typically write a for the first message, c for the challenge, and z for the response.
A Σ-protocol Π is called k-special-sound if there exists a polynomial-time algo-
rithm that computes a witness w for the statement x from any k accepting
transcripts (a, c1, z1), . . . , (a, ck, zk) for x with the same fist message a and pair-
wise distinct challenges ci �= cj . We refer to Π as being k-out-of-N special-sound
to emphasize that the challenge space C has cardinality N .

More generally, we consider (2μ + 1)-move public-coin interactive proofs.4

The communication transcript is then written as (a1, c1, . . . , aμ, cμ, aμ+1) by
default. Such a protocol is called (k1, . . . , kμ)-special-sound, or (k1, . . . , kμ)-out-
of-(N1, . . . , Nμ) special-sound when we want to be explicit about the sizes of
the challenge sets, if there exists a polynomial-time algorithm that computes a
witness w for the statement x from any accepting (k1, . . . , kμ)-tree of transcripts
for x, defined in Definition 1 and illustrated in Fig. 1.

Definition 1 (Tree of Transcripts). Let k1, . . . , kμ ∈ N. A (k1, . . . , kμ)-tree
of transcripts for a (2μ+1)-move public-coin interactive proof Π = (P,V) is a set
of K =

∏μ
i=1 ki transcripts arranged in the following tree structure. The nodes

in this tree correspond to the prover’s messages and the edges to the verifier’s
challenges. Every node at depth i has precisely ki children corresponding to ki

pairwise distinct challenges. Every transcript corresponds to exactly one path
from the root node to a leaf node. See Fig. 1 for a graphical illustration. We refer
to the corresponding tree of challenges as a (k1, . . . , kμ)-tree of challenges.
4 We always assume that the prover sends the first and the last message.



120 T. Attema et al.

A (k1, . . . , kμ)-out-of-(N1, . . . , Nμ) special-sound protocol is known to be
(knowledge) sound with knowledge/soundness error

Er(k1, . . . , kμ;N1, . . . , Nμ) = 1 −
μ∏

i=1

Ni − ki + 1
Ni

= 1 −
μ∏

i=1

(
1 − ki − 1

Ni

)
, (1)

which is tight in general [5]. Note that Er(k;N) = (k − 1)/N and, for all 1 ≤
m ≤ μ,

Er(km, . . . , kμ;Nm, . . . , Nμ)

= 1 − Nm − km + 1
Nm

(
1 − Er(km+1, . . . , kμ;Nm+1, . . . , Nμ)

)
,

(2)

where we define Er(∅; ∅) = 1. If N1 = · · · = Nμ = N , we simply write
Er(k1, . . . , kμ;N), or Er(k;N) for k = (k1, . . . , kμ).

Fig. 1. (k1, . . . , kµ)-tree of transcripts of a (2μ + 1)-move interactive proof [5].

The Fiat-Shamir Transformation and NIROPs. By applying the Fiat-
Shamir transformation [19] to a public-coin interactive proof, one obtains a non-
interactive proof in the random oracle model, i.e., a so-called non-interactive
random oracle proof (NIROP). In the case of a Σ-protocol, the Fiat-Shamir
transformation replaces the random choice of the challenge c by setting c =
RO(a) (or c = RO(x, a) in case of adaptive security), where RO is a random
oracle. In case of multi-round protocols, the idea is the same, but one has to
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be careful with “chaining” the challenges properly. For concreteness, we specify
that the i-th challenge is set to be

ci = ROi(a1, . . . , ai−1, ai) .

Note that, for simplicity, we assume μ different random oracles ROi then. Fur-
thermore, we assume the range of ROi to be the corresponding challenge set Ci,
and the domain to be {0, 1}≤u for large enough u.

The notion of knowledge soundness that we consider for NIROPs, and in
particular for the Fiat-Shamir transformation of special-sound protocols, is the
natural modification of the knowledge soundness definition of interactive proofs
as introduced by Goldreich [23], to the setting of non-interactive proofs in the
random oracle model. In more detail, a NIROP is knowledge sound with know-
ledge error κ : N × N → [0, 1], if there exists an expected polynomial time
knowledge extractor E and a polynomial q such that for every Q-query dishon-
est prover P∗ that succeeds to convince the verifier about a statement x with
probability ε(P∗, x), when E is given black-box access to P∗ it holds that

Pr
(
(x;w) ∈ R : w ← EP∗

(x)
) ≥ ε(P∗, x) − κ(|x|, Q)

q(|x|) ,

i.e., E succeeds to extract a witness w for x with the above probability. It is not
too hard to see that it is sufficient to consider deterministic provers P∗.

2.2 Negative Hypergeometric Distribution

An important tool in our analysis is the negative hypergeometric distribution.
Consider a bucket containing � green balls and N − � red balls, i.e., a total of
N balls. In the negative hypergeometric experiment, balls are drawn uniformly
at random from this bucket, without replacement, until k green balls have been
found or until the bucket is empty. The number of red balls X drawn in this
experiment is said to have a negative hypergeometric distribution with parameters
N, �, k, which is denoted by X ∼ NHG(N, �, k).

Lemma 1 (Negative Hypergeometric Distribution). Let N, �, k ∈ N with
�, k ≤ N , and let X ∼ NHG(N, �, k). Then E[X] ≤ k N−�

�+1 .

Remark 1. Typically, negative hypergeometric experiments are restricted to the
non-trivial case � ≥ k. For reasons to become clear later, we also allow parameter
choices with � < k resulting in a trivial negative hypergeometric experiment in
which all balls are always drawn.

Remark 2. The above has a straightforward generalization to buckets with balls
of more than 2 colors: say � green balls and mi balls of color i for 1 ≤ i ≤ M .
The experiment proceeds as before, i.e., drawing until either k green balls have
been found or the bucket is empty. Let Xi be the number of balls of color i
that are drawn in this experiment. Then Xi ∼ NHG(� + mi, �, k) for all i. To
see this, simply run the generalized negative hypergeometric experiment without
counting the balls that are neither green nor of color i.
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3 An Abstract Sampling Game

Towards the goal of constructing and analyzing a knowledge extractor for the
Fiat-Shamir transformation FS[Π] of special-sound interactive proofs Π, we
define and analyze an abstract sampling game. Given access to a deterministic
Q-query prover P∗, attacking the non-interactive random oracle proof FS[Π], our
extractor will essentially play this abstract game in the case Π is a Σ-protocol,
and it will play this game recursively in the general case of a multi-round proto-
col. The abstraction allows us to focus on the crucial properties of the extraction
algorithm, without unnecessarily complicating the notation.

The game considers an arbitrary but fixed U -dimensional array M , where, for
all 1 ≤ j1, . . . , jU ≤ N , the entry M(j1, . . . , jU ) = (v, i) contains a bit v ∈ {0, 1}
and an index i ∈ {1, . . . , U}. Think of the bit v indicating whether this entry
is “good” or “bad”, and the index i points to one of the U dimensions. The
goal will be to find k “good” entries with the same index i, and with all of
them lying in the 1-dimensional array M(j1, . . . , ji−1, · , ji+1, . . . , jU ) for some
1 ≤ j1, . . . , ji−1, ji+1, . . . , jU ≤ N .

Looking ahead, considering the case of a Σ-protocol first, this game captures
the task of our extractor to find k proofs that are valid and feature the same first
message but have different hash values assigned to the first message. Thus, in our
application, the sequence j1, . . . , jU specifies the function table of the random
oracle RO : {1, . . . , U} → {1, . . . , N}, i �→ ji, while the entry M(j1, . . . , jU ) =
(v, i) captures the relevant properties of the proof produced by the considered
prover when interacting with that particular specification of the random oracle.
Concretely, the bit v indicates whether the proof is valid, and the index i is the
first message a of the proof. Replacing ji by j′

i then means to reprogram the
random oracle at the point i = a. Note that after the reprogramming, we want
to obtain another valid proof with the same first message, i.e., with the same
index i (but now a different challenge, due to the reprogramming).

The game is formally defined in Fig. 2 and its core properties are summa-
rized in Lemma 2 below. Looking ahead, we note that for efficiency reasons, the
extractor will not sample the entire sequence j1, . . . , jU (i.e., function table), but
will sample its components on the fly using lazy sampling.

It will be useful to define, for all 1 ≤ i ≤ U , the function

ai : {1, . . . , N}U → N≥0,

(j1, . . . , jU ) �→ ∣
∣{j : M(j1, . . . , ji−1, j, ji+1, . . . , jU ) = (1, i)

}∣
∣ .

(3)

The value ai(j1, . . . , jU ) counts the number of entries that are “good” and have
index i in the 1-dimensional array M(j1, . . . , ji−1, · , ji+1, . . . , jU ). Note that ai

does not depend on the i-th entry of the input vector (j1, . . . , jU ), and so, by a
slight abuse of notation, we sometimes also write ai(j1, . . . , ji−1, ji+1, . . . , jU ).

Lemma 2 (Abstract Sampling Game). Consider the game in Fig. 2. Let
J = (J1, . . . , JU ) be uniformly distributed in {1, . . . , N}U , indicating the first
entry sampled, and let (V, I) = M(J1, . . . , JU ). Further, for all 1 ≤ i ≤ U , let
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Fig. 2. Abstract sampling game.

Ai = ai(J). Moreover, let X be the number of entries of the form (1, i) with
i = I sampled (including the first one), and let Λ be the total number of entries
sampled in this game. Then

E[Λ] ≤ 1 + (k − 1)P and

Pr(X = k) ≥ N

N − k + 1

(
Pr(V = 1) − P · k − 1

N

)
,

where P =
∑U

i=1 Pr(Ai > 0).

Remark 3. Note the abstractly defined parameter P . In our application, where
the index i of (v, i) = M(j1, . . . , jU ) is determined by the output of a prover
making no more than Q queries to the random oracle with function table
j1, . . . , jU , the parameter P will be bounded by Q + 1. We show this formally
(yet again somewhat abstractly) in Lemma 3. Intuitively, the reason is that
the events Ai > 0 are disjoint for all but Q indices i (those that the consid-
ered prover does not query), and so their probabilities add up to at most 1.
Indeed, if ai(j1, . . . , jU ) > 0 for an index i that the algorithm did not query
then M(j1, . . . , jU ) ∈ {(0, i), (1, i)}; namely, since i has not been queried, the
index i output by the algorithm is oblivious to the value of ji. Therefore, given
j1, . . . , jU , there is at most one unqueried index i with ai(j1, . . . , jU ) > 0.

Proof (of Lemma 2). Expected Number of Samples. Let us first derive an
upper bound on the expected value of Λ. To this end, let X ′ denote the number
of sampled entries of the form (1, i) with i = I, but, in contrast to X, without
counting the first one. Similarly, let Y ′ denote the number of sampled entries of
the form (v, i) with v = 0 or i �= I, again without counting the first one. Then
Λ = 1 + X ′ + Y ′ and

Pr(X ′ = 0 | V = 0) = Pr(Y ′ = 0 | V = 0) = 1 .

Hence, E[X ′ | V = 0] = E[Y ′ | V = 0] = 0.
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Let us now consider the expected value E[Y ′ | V = 1]. To this end, we observe
that, conditioned on the event V = 1 ∧ I = i ∧ Ai = a with a > 0, Y ′ follows a
negative hypergeometric distribution with parameters N − 1, a − 1 and k − 1.
Hence, by Lemma 1,

E[Y ′ | V = 1 ∧ I = i ∧ Ai = a] ≤ (k − 1)
N − a

a
,

and thus, using that Pr(X ′ ≤ k − 1 | V = 1) = 1,

E[X ′ + Y ′ | V = 1 ∧ I = i ∧ Ai = a] ≤ (k − 1) + (k − 1)
N − a

a
= (k − 1)

N

a
.

On the other hand
Pr(V = 1 ∧ I = i | Ai = a) =

a

N

and thus
Pr(V = 1 ∧ I = i ∧ Ai = a) = Pr(Ai = a)

a

N
. (4)

Therefore, and since Pr(V = 1 ∧ I = i ∧ Ai = 0) = 0,

Pr(V = 1) · E[X ′ + Y ′ | V = 1] =
U∑

i=1

N∑

a=1

Pr(V = 1 ∧ I = i ∧ Ai = a)

· E[X ′ + Y ′ | V = 1 ∧ I = i ∧ Ai = a]

≤
U∑

i=1

N∑

a=1

Pr(Ai = a)(k − 1)

= (k − 1)
U∑

i=1

Pr(Ai > 0)

= (k − 1)P ,

where P =
∑U

i=1 Pr(Ai > 0). Hence,

E[Λ] = E[1 + X ′ + Y ′]
= 1 + Pr(V = 0) · E[X ′ + Y ′ | V = 0] + Pr(V = 1) · E[X ′ + Y ′ | V = 1]
≤ 1 + (k − 1)P ,

which proves the claimed upper bound on E[Λ].
Success Probability. Let us now find a lower bound for the “success prob-

ability” Pr(X = k) of this game. Using (4) again, we can write

Pr(X = k) =
U∑

i=1

Pr(V = 1 ∧ I = i ∧ Ai ≥ k) =
U∑

i=1

N∑

a=k

Pr(Ai = a)
a

N
.
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Now, using a ≤ N , note that

a

N
= 1 −

(
1 − a

N

)
≥ 1 − N

N − k + 1

(
1 − a

N

)

=
N

N − k + 1

(
N − k + 1

N
− 1 +

a

N

)
=

N

N − k + 1

(
a

N
− k − 1

N

)
.

Therefore, combining the two, and using that the summand becomes negative
for a < k to argue the second inequality, and using (4) once more, we obtain

Pr(X = k) ≥
U∑

i=1

N∑

a=k

Pr(Ai = a)
N

N − k + 1

(
a

N
− k − 1

N

)

≥
U∑

i=1

N∑

a=1

Pr(Ai = a)
N

N − k + 1

(
a

N
− k − 1

N

)

=
N

N − k + 1

U∑

i=1

N∑

a=1

(
Pr(V = 1 ∧ I = i ∧ Ai = a) − Pr(Ai = a) · k − 1

N

)

=
N

N − k + 1

(

Pr(V = 1) − k − 1
N

U∑

i=1

Pr(Ai > 0)

)

=
N

N − k + 1

(
Pr(V = 1) − P · k − 1

N

)
,

where, as before, we have used that Pr(V = 1 ∧ I = i ∧ Ai = 0) = 0 for all 1 ≤
i ≤ U to conclude the second equality, and finally that P =

∑U
i=1 Pr(Ai > 0).

This completes the proof of the lemma. �
Our knowledge extractor will instantiate the abstract sampling game via a deter-
ministic Q-query prover P∗ attacking the Fiat-Shamir transformation FS[Π].
The index i of M(v, i) = (j1, . . . , jU ) is then determined by the output of P∗,
with the random oracle being given by the function table j1, . . . , jU . Since the
index i is thus determined by Q queries to the random oracle, the following
shows that the parameter P will in this case be bounded by Q + 1.

Lemma 3. Consider the game in Fig. 2. Let v and idx be functions such that
M(j) =

(
v(j), idx(j)

)
for all j ∈ {1, . . . , N}U . Furthermore, let J = (J1, . . . , JU )

be uniformly distributed in {1, . . . , N}U , and set Ai = ai(J) for all 1 ≤ i ≤ U .
Let us additionally assume that for all j ∈ {1, . . . , N}U there exists a subset
S(j) ⊆ {1, . . . , U} of cardinality at most Q such that idx(j) = idx(j′) for all j′

with j′
� = j� for all � ∈ S(j). Then

P =
U∑

i=1

Pr(Ai > 0) ≤ Q + 1 .
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Proof. By basic probability theory, it follows that5

P =
U∑

i=1

Pr(Ai > 0) =
∑

j∈{1,...,N}U

Pr(J = j)
U∑

i=1

Pr(Ai > 0 | J = j)

=
∑

j

Pr(J = j)
( ∑

i∈S(j)

Pr(Ai > 0 | J = j) +
∑

i/∈S(j)

Pr(Ai > 0 | J = j)
)

Since |S(j)| ≤ Q for all j, it follows that

P ≤
∑

j

Pr(J = j)
(

Q +
∑

i/∈S(j)

Pr(Ai > 0 | J = j)
)

≤ Q +
∑

j

Pr(J = j)
∑

i/∈S(j)

Pr(Ai > 0 | J = j)

Now note that, by definition of the sets S(j), for all j ∈ {1, . . . , N}U , i /∈ S(j)
and j∗ ∈ {1, . . . , N}, it holds that

Pr
(
idx(J1, . . . , JI−1, j

∗, Ji+1, . . . , JU ) = idx(j) | J = j
)

= 1 .

Therefore, for all i /∈ S(j) ∪ {idx(j)},

Pr(Ai > 0 | J = j) = 0 .

Hence, ∑

i/∈S(j)

Pr(Ai > 0 | J = j) ≤ Pr(Aidx(j) > 0 | J = j) ≤ 1.

Altogether, it follows that

P ≤ Q +
∑

j

Pr(J = j) = Q + 1 ,

which completes the proof. �

4 Fiat-Shamir Transformation of Σ-Protocols

Let us first consider the Fiat-Shamir transformation of a k-special-sound Σ-
protocol Π, i.e., a 3-move interactive proof, with challenge set C; subsequently,
in Sect. 6, we move to general multi-round interactive proofs.

Let P∗ be a deterministic dishonest Q-query random-oracle prover, attacking
the Fiat-Shamir transformation FS[Π] of Π on input x. Given a statement x as
input, after making Q queries to the random oracle RO : {0, 1}≤u → C, P∗

5 The probabilities Pr(Ai > 0 | J = j) are all 0 or 1; however, it’s still convenient to
use probability notation here.



Fiat-Shamir Transformation of Multi-round Interactive Proofs 127

outputs a proof π = (a, z). For reasons to become clear later, we re-format (and
partly rename) the output and consider I := a and π as P∗’s output. We refer
to the output I as the index. Furthermore, we extend P∗ to an algorithm A that
additionally checks the correctness of the proof π. Formally, A runs P∗ to obtain
I and π, queries RO to obtain c := RO(I), and then outputs

I = a , y := (a, c, z) and v := V (y) ,

where V (y) = 1 if y is an accepting transcript for the interactive proof Π on
input x and V (y) = 0 otherwise. Hence, A is a random-oracle algorithm making
at most Q+1 queries; indeed, it relays the oracle queries done by P∗ and makes
the one needed to do the verification. We may write ARO to make the dependency
of A’s output on the choice of the random oracle RO explicit. A has a naturally
defined success probability

ε(A) := Pr
(
v = 1 : (I, y, v) ← ARO

)
,

where RO : {0, 1}≤u → C is chosen uniformly at random. The probability ε(A)
equals the success probability ε(P∗, x) of the random-oracle prover P∗ on input x.

Our goal is now to construct an extraction algorithm that, when given black-
box access to A, aims to output k accepting transcripts y1, . . . , yk with common
first message a and distinct challenges. By the k-special-soundness property of Π,
a witness for statement x can be computed efficiently from these transcripts.

The extractor E is defined in Fig. 3. We note that, after a successful first run
of A, having produced a first accepting transcript (a, c, z), we rerun A from the
very beginning and answer all oracle queries consistently, except the query to a;
i.e., we only reprogram the oracle at the point I = a. Note that since P∗ and
thus A is deterministic, and we only reprogram the oracle at the point I = a, in
each iteration of the repeat loop A is ensured to make the query to I again.6

A crucial observation is the following. Within a run of E , all the queries that
are made by the different invocations of A are answered consistently using lazy
sampling, except for the queries to the index I, where different responses c, c′, . . .
are given. This is indistinguishable from having them answered by a full-fledged
random oracle, i.e., by means of a pre-chosen function RO : {0, 1}≤u → C, but
then replacing the output RO(I) at I by fresh challenges c′ for the runs of A
in the repeat loop. By enumerating the elements in the domain and codomain
of RO, it is easily seen that the extractor is actually running the abstract game
from Fig. 2. Thus, bounds on the success probability and the expected run time
(in terms of queries to A) follow from Lemma 2 and Lemma 3. Altogether we
obtain the following result.

Lemma 4 (Extractor). The extractor E of Fig. 3 makes an expected number
of at most k + Q · (k − 1) queries to A and succeeds in outputting k transcripts

6 Of course, it would be sufficient to rewind A to the point where it makes the (first)
query to a, but this would make the description more clumsy.
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Fig. 3. Extractor E .

y1, . . . , yk with common first message a and distinct challenges with probability
at least

N

N − k + 1

(
ε(A) − (Q + 1) · k − 1

N

)
.

Proof. By enumerating all the elements in the domain and codomain of the
random oracle RO, we may assume that RO : {1, ..., U} → {1, ..., N}, and thus
RO can be represented by the function table (j1, ..., jU ) ∈ {1, . . . , N}U for
which RO(i) = ji. Further, since P∗ is deterministic, the outputs I, y and
v of the algorithm A can be viewed as functions taking as input the func-
tion table (j1, . . . , jU ) ∈ {1, . . . , N}U of RO, and so we can consider the array
M(j1, . . . , jU ) =

(
I(j1, . . . , jU ), v(j1, . . . , jU )

)
.

Then, a run of the extractor perfectly matches up with the abstract sam-
pling game of Fig. 2 instantiated with array M . The only difference is that, in
this sampling game, we consider full-fledged random oracles encoded by vectors
(j1, . . . , jU ) ∈ {1, . . . , N}U , while the actual extractor implements these random
oracles by lazy sampling. Thus, we can apply Lemma 2 to obtain bounds on the
success probability and the expected run time. However, in order to control the
parameter P , which occurs in the bound of Lemma 2, we make the following
observation, so that we can apply Lemma 3 to bound P ≤ Q + 1.

For every (j1, . . . , jU ), let S(j1, . . . , jU ) ⊆ {1, . . . , U} be the set of points
that P∗ queries to the random oracle when (j1, . . . , jU ) corresponds to the entire
function table of the random oracle. Then, P∗ will produce the same output when
the random oracle is reprogrammed at an index i /∈ S(j1, . . . , jU ). In particular,
I(j1, . . . , ji−1, j, ji+1, . . . , jU ) = I(j1, . . . , ji−1, j

′, ji+1, . . . , , jU ) for all j, j′ and
for all i /∈ S(j1, . . . , jU ). Furthermore, |S(j1, . . . , jU )| ≤ Q. Hence, the conditions
of Lemma 3 are satisfied and P ≤ Q + 1. The bounds on the success probability
and the expected run time now follow, completing the proof. �
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The existence of the above extractor, combined with the k-special-soundness
property, implies the following theorem.

Theorem 1 (Fiat-Shamir Transformation of a Σ-Protocol). The Fiat-
Shamir transformation FS[Π] of a k-out-of-N special-sound Σ-protocol Π is
knowledge sound with knowledge error

κfs(Q) = (Q + 1) · κ ,

where κ := Er(k;N) = (k − 1)/N is the knowledge error of Π.

5 Refined Analysis of the Abstract Sampling Game

Before we prove knowledge soundness of the Fiat-Shamir transformation of
multi-round interactive protocols, we reconsider the abstract game of Sect. 3,
and consider a refined analysis of the cost of playing the game. The multi-round
knowledge extractor will essentially play a recursive composition of this game;
however, the analysis of Sect. 3 is insufficient for our purposes (resulting in a
super-polynomial bound on the run-time of the knowledge extractor). Fortu-
nately, it turns out that a refinement allows us to prove the required (polynomial)
upper bound.

In Sect. 3, the considered cost measure is the number of entries visited dur-
ing the game. For Σ-protocols, every entry corresponds to a single invocation
of the dishonest prover P∗. For multi-round protocols, every entry will corre-
spond to a single invocation of a sub-tree extractor. The key observation is that
some invocations of the sub-tree extractor are expensive while others are cheap.
For this reason, we introduce a cost function Γ and a constant cost γ to our
abstract game, allowing us to differentiate between these two cases. Γ and γ
assign a cost to every entry of the array M ; Γ corresponds to the cost of an
expensive invocation of the sub-tree extractor and γ corresponds to the cost of a
cheap invocation. While this refinement presents a natural generalization of the
abstract game of Sect. 3, its analysis becomes significantly more involved.

The following lemma provides an upper bound for the total cost of playing
the abstract game in terms of these two cost functions.

Lemma 5 (Abstract Sampling Game - Weighted Version). Consider
again the game of Fig. 2, as well a cost function Γ : {1, . . . , N}U → R≥0 and
a constant cost γ ∈ R≥0. Let J = (J1, . . . , JU ) be uniformly distributed in
{1, . . . , N}U , indicating the first entry sampled, and let (V, I) = M(J1, . . . , JU ).
Further, for all 1 ≤ i ≤ U , let Ai = ai(J), where the function ai is as defined in
Eq. 3.

We define the cost of sampling an entry M(j1, . . . , jU ) = (v, i) with index
i = I to be Γ (j1, . . . , jU ) and the cost of sampling an entry M(j1, . . . , jU ) = (v, i)
with index i �= I to be γ. Let Δ be the total cost of playing this game. Then

E[Δ] ≤ k · E[Γ (J)] + (k − 1) · T · γ

where T =
∑U

i=1 Pr(I �= i ∧ Ai > 0) ≤ P .
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Remark 4. Note that the parameter T in the statement here differs slightly from
its counterpart P =

∑
i Pr(Ai > 0) in Lemma 2. Recall the informal discussion

of P in the context of our application (Remark 3), where the array M is instan-
tiated via a Q-query prover P∗ attacking the Fiat-Shamir transformation of an
interactive proof. We immediately see that now the defining events I �= i∧Ai > 0
are empty for all U −Q indices that the prover does not query, giving the bound
T ≤ Q here, compared to the bound P ≤ Q + 1 on P . The formal (and more
abstract) statement and proof is given in Lemma 6.

Proof. Let us split up Δ into the cost measures Δ1, Δ2 and Δ3, defined as
follows. Δ1 denotes the total costs of the elements M(j1, . . . , jU ) = (1, i) with
i = I sampled in the game, i.e., the elements with bit v = 1 and index i = I;
correspondingly, X denotes the number of entries of the form (1, i) with i = I
sampled (including the first one if V = 1). Second, Δ2 denotes the total costs of
the elements M(j1, . . . , jU ) = (0, i) with i = I sampled, i.e., the elements with
bit v = 0 and index i = I; correspondingly, Y denotes the number of entries of
the form (0, i) with i = I sampled (including the first one if V = 0). Finally,
Δ3 denotes the total costs of the elements M(j1, . . . , jU ) = (v, i) with i �= I
sampled; correspondingly, Z denotes the number of entries of this form sampled.

Clearly Δ = Δ1 + Δ2 + Δ3. Moreover, since the cost γ is constant, it fol-
lows that E[Δ3] = γ · E[Z]. In a similar manner, we now aim to relate E[Δ1]
and E[Δ2] to E[Y ] and E[Z], respectively. However, since the cost function
Γ : {1, . . . , N}U → R≥0 is not necessarily constant, this is more involved.

For 1 ≤ i ≤ U let us write J∗
i = (J1, . . . , Ji−1, Ji+1, . . . , JU ), which is uni-

formly random with support {1, . . . , N}U−1. Moreover, for all 1 ≤ i ≤ U and
j∗ = (j∗

1 , . . . , j∗
i−1, j

∗
i+1, · · · , jU ) ∈ {1, . . . , N}U−1, let Λ(i, j∗) denote the event

Λ(i, j∗) = [I = i ∧ J∗
i = j∗] .

We note that conditioned on the event Λ(i, j∗), all samples are picked from
the subarray M(j∗

1 , . . . , j∗
i−1, · , j∗

i+1, · · · , j∗
U ); the first one uniformly at random

subject to the index I being i, and the remaining ones (if V = 1) uniformly at
random (without replacement).

We first analyze and bound E[Δ1 | Λ(i, j∗)]. We observe that, for all i and j∗

with Pr
(
Λ(i, j∗)

)
> 0,

E[Δ1 | Λ(i, j∗)] =
N∑

�=0

Pr
(
X = � | Λ(i, j∗)

) · E[Δ1 | Λ(i, j∗) ∧ X = �] .

Since, conditioned on Λ(i, j∗) ∧ X = � for � ∈ {0, . . . , N}, any size-� subset of
elements with v = 1 and index i is equally likely to be sampled, it follows that

E[Δ1 | Λ(i, j∗) ∧ X = �] = E[Γ (J) | V = 1 ∧ Λ(i, j∗)] · � .

Hence,

E[Δ1 | Λ(i, j∗)] = E[Γ (J) | V = 1 ∧ Λ(i, j∗)] ·
∑

�

Pr
(
X = � | Λ(i, j∗)

) · �

= E[Γ (J) | V = 1 ∧ Λ(i, j∗)] · E[X | Λ(i, j∗)] .
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Similarly,

E[Δ2 | Λ(i, j∗)] = E[Γ (J) | V = 0 ∧ Λ(i, j∗)] · E[Y | Λ(i, j∗)] .

Next, we bound the expected values of X and Y conditioned on Λ(i, j∗).
The analysis is a more fine-grained version of the proof of Lemma 2. Bounding
E[X | Λ(i, j∗)] is quite easy: since V = 0 implies X = 0 and V = 1 implies
X ≤ k, it immediately follows that

E[X | Λ(i, j∗)] = Pr(V = 0 | Λ(i, j∗)) · E[X | V = 0 ∧ Λ(i, j∗)]

+ Pr(V = 1 | Λ(i, j∗)) · E[X | V = 1 ∧ Λ(i, j∗)]

≤ Pr(V = 1 | Λ(i, j∗)) · k .

Hence,

E[Δ1 | Λ(i, j∗)] ≤ k · Pr(V = 1 | Λ(i, j∗)) · E[Γ (J) | V = 1 ∧ Λ(i, j∗)] . (5)

Suitably bounding the expectation E[Y | Λ(i, j∗)], and thus E[Δ2 | Λ(i, j∗)],
is more involved. For that purpose, we introduce the following parameters.
For the considered fixed choice of the index 1 ≤ i ≤ U and of j∗ =
(j∗

1 , . . . , j∗
i−1, j

∗
i+1, · · · , j∗

U ), we let7

a := ai(j∗) =
∣
∣{j : (vj , ij) = M(j∗

1 , . . . , j∗
i−1, j, j

∗
i+1, . . . , j

∗
U ) = (1, i)

}∣
∣ and

b := bi(j∗) :=
∣
∣{j : (vj , ij) = M(j∗

1 , . . . , j∗
i−1, j, j

∗
i+1, . . . , j

∗
U ) = (0, i)

}∣
∣ .

Let us first note that

Pr
(
V = 1 | Λ(i, j∗)

)
=

a

a + b
and Pr

(
V = 0 | Λ(i, j∗)

)
=

b

a + b

for all i and j∗ with Pr
(
Λ(i, j∗)

)
> 0. Therefore, if we condition on the event

V = 1 ∧ Λ(i, j∗) we implicitly assume that i and j∗ are so that a is positive.
Now, towards bounding E[Y | Λ(i, j∗)], we observe that conditioned on the
event V = 1∧Λ(i, j∗), the random variable Y follows a negative hypergeometric
distribution with parameters a + b − 1, a − 1 and k − 1. Hence, by Lemma 1,

E[Y | V = 1 ∧ Λ(i, j∗)] ≤ (k − 1)
b

a
,

and thus

E[Y | Λ(i, j∗)] = Pr(V = 0 | Λ(i, j∗)) · E[Y | V = 0 ∧ Λ(i, j∗)]

+ Pr(V = 1 | Λ(i, j∗)) · E[Y | V = 1 ∧ Λ(i, j∗)]

≤ Pr
(
V = 0 | Λ(i, j∗)

)
+ Pr

(
V = 1 | Λ(i, j∗)

) · (k − 1)
b

a

=
b

a + b
+

a

a + b
· (k − 1)

b

a
= k

b

a + b

= k · Pr(V = 0 | Λ(i, j∗)) ,

7 Recall that we use ai(j1, . . . , jU ) and ai(j1, . . . , ji−1, ji+1, . . . , jU ) interchangeably,
exploiting that ai(j1, . . . , jU ) does not depend on the i-th input ji.
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where we use that E[Y | V = 0 ∧ Λ(i, j∗)] = 1. Hence,

E[Δ2 | Λ(i, j∗)] ≤ k · Pr(V = 0 | Λ(i, j∗)) · E[Γ (J) | V = 0 ∧ Λ(i, j∗)] ,

and thus, combined with Eq. 5,

E[Δ1 + Δ2 | Λ(i, j∗)] ≤ k · E[Γ (J) | Λ(i, j∗)] .

Since this inequality holds for all i and j∗ with Pr
(
Λ(i, j∗)

)
> 0, it follows that

E[Δ1 + Δ2] ≤ k · E[Γ (J)] .

What remains is to show that E[Z] ≤ (k − 1)T . The slightly weaker bound
E[Z] ≤ (k − 1)P follows immediately from observing that Z ≤ Y ′ for Y ′ as in
the proof of Lemma 2 (the number of entries counted by Z is a subset of those
counted by Y ′), and using that E[Y ′] ≤ E[X ′ + Y ′] ≤ (k − 1)P as derived in the
proof of Lemma 2. This then implies E[Δ3] ≤ (k − 1) · P · γ, and so, altogether,
we obtain the weaker version of the claimed bound:

E[Δ] = E[Δ1 + Δ2 + Δ3] ≤ k · E[Γ (J)] + (k − 1) · P · γ .

For the stronger version in terms of T , we refer to the full version [1]. �
Lemma 6. Consider the game in Fig. 2. Let v and idx be functions such that
M(j) =

(
v(j), idx(j)

)
for all j ∈ {1, . . . , N}U . Furthermore, let J = (J1, . . . , JU )

be uniformly distributed in {1, . . . , N}U and set Ai = ai(J) for all 1 ≤ i ≤ U as
in Eq. 3. Let us additionally assume that for all j ∈ {1, . . . , N}U there exists a
subset S(j) ⊆ {1, . . . , U} of cardinality at most Q such that idx(j) = idx(j′) for
all j, j′ with j� = j′

� for all � ∈ S(j). Then

T =
U∑

i=1

Pr
(
idx(J) �= i ∧ Ai > 0

) ≤ Q .

See the full version [1] for a proof of lemma 6.

6 Fiat-Shamir Transformation of Multi-round Protocols

Let us now move to multi-round interactive proofs. More precisely, we consider
the Fiat-Shamir transformation FS[Π] of a k-special-sound (2μ + 1)-move inter-
active proof Π, with k = (k1, . . . , kμ). While the multi-round extractor has a
natural recursive construction, it requires a more fine-grained analysis to show
that it indeed implies knowledge soundness.

To avoid a cumbersome notation, below we first handle (2μ + 1)-move inter-
active proofs in which the verifier samples all μ challenges uniformly at random
from the same set C. In the full version [1], we consider a generalization for
varying challenges sets and extend our results to adaptive security.
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Consider a deterministic dishonest Q-query random-oracle prover P∗, attack-
ing the Fiat-Shamir transformation FS[Π] of a k-special-sound interactive proof
Π on input x. We assume all challenges to be elements in the same set C.
After making at most Q queries to the random oracle, P∗ outputs a proof
π = (a1, . . . , aμ+1). We re-format the output and consider

I1 := a1 , I2 := (a1, a2) , . . . , Iμ := (a1, . . . , aμ) and π

as P∗’s output. Sometimes it will be convenient to also consider Iμ+1 :=
(a1, . . . , aμ+1). Furthermore, we extend P∗ to a random-oracle algorithm A that
additionally checks the correctness of the proof π. Formally, relaying all the ran-
dom oracle queries that P∗ is making, A runs P∗ to obtain I = (I1, . . . , Iμ) and π,
additionally queries the random oracle to obtain c1 := RO(I1), . . . , cμ := RO(Iμ),
and then outputs

I , y := (a1, c1, . . . , aμ, cμ, aμ+1) and v := V (x, y) ,

where V (x, y) = 1 if y is an accepting transcript for the interactive proof Π on
input x and V (x, y) = 0 otherwise. Hence, A makes at most Q + μ queries (the
queries done by P∗, and the queries to I1, . . . , Iμ). Moreover, A has a naturally
defined success probability

ε(A) := Pr
(
v = 1 : (I, y, v) ← ARO

)
,

where RO : {0, 1}≤u → C is distributed uniformly. As before, ε(A) = ε(P∗, x).
Our goal is now to construct an extraction algorithm that, when given black-

box access to A, and thus to P∗, aims to output a k-tree of accepting transcripts.
By the k-special-soundness property of Π, a witness for statement x can then
be computed efficiently from these transcripts.

To this end, we recursively introduce a sequence of “sub-extractors”
E1, . . . , Eμ, where Em aims to find a (1, . . . , 1, km, . . . , kμ)-tree of accept-
ing transcripts. The main idea behind this recursion is that such a
(1, . . . , 1, km, . . . , kμ)-tree of accepting transcripts is the composition of km

appropriate (1, . . . , 1, km+1, . . . , kμ)-trees.
For technical reasons, we define the sub-extractors Em as random-oracle algo-

rithms, each one making Q + μ queries to a random oracle. As we will see, the
recursive definition of Em is very much like the extractor from the 3-move case,
but with A replaced by the sub-extractor Em+1; however, for this to work we
need the sub-extractor to be the same kind of object as A, thus a random-oracle
algorithm making the same number of queries. As base for the recursion, we
consider the algorithm A (which outputs a single transcript, i.e., a (1, . . . , 1)-
tree); thus, the sub-extractor Eμ (which outputs a (1, . . . , 1, kμ)-tree) is essen-
tially the extractor of the 3-move case, but with A now outputting an index
vector I = (I1, . . . , Iμ), and with Eμ being a random-oracle algorithm, so that
we can recursively replace the random-oracle algorithm A by Eμ to obtain Eμ−1,
etc.

Formally, the recursive definition of Em from Em+1 is given in Fig. 4, where
Eμ+1 (the base case) is set to Eμ+1 := A, and where Em exploits the following
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early abort feature of Em+1: like A, the sub-extractor Em+1 computes the index
vector it eventually outputs by running P∗ as its first step (see Lemma 7 below).
This allows the executions of Em+1 in the repeat loop in Fig. 4 to abort after a
single run of P∗ if the requirement I ′

m = Im on its index vector I is not satisfied,
without proceeding to produce the remaining parts y′, v′ of the output (which
would invoke more calls to P∗).

The actual extractor E is then given by a run of E1, with the Q + μ random-
oracle queries made by E1 being answered using lazy-sampling.

Fig. 4. Sub-extractor Em, as a (Q + μ)-query random-oracle algorithm.

Remark 5. Let us emphasize that within one run of Em, except for the query
to Im for which the response is “reprogrammed”, all the queries made by the
multiple runs of the sub-extractor Em+1 in the repeat loop are answered consis-
tently, both with the run of Em+1 in the first step and among the runs in the
repeat loop. This means, a query to a value ξ that has been answered by η in
a previous run on Em+1 (within the considered run of Em) is again answered by
η, and a query to a value ξ′ that has not been queried yet in a previous run
on Em+1 (within the considered run of Em) is answered with a freshly chosen
uniformly random η′ ∈ C. In multiple runs of Em, very naturally the random
tape of Em will be refreshed, and thus there is no guaranteed consistency among
the answers to the query calls of Em+1 across multiple runs of Em.

The following lemma captures some technical property of the sub-
extractors Em. Subsequently, Proposition 1 shows that Em, if successful, indeed
outputs a (1, . . . , 1, km . . . , kμ)-tree of accepting transcripts. Proposition 2
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bounds the success probability and expected run time of Em. All statements
are understood to hold for any statement x and any m ∈ {1, . . . , μ + 1}.

Lemma 7 (Consistency of P∗ and Em). Em obtains the index vector I, which
it eventually outputs, by running (I, π) ← P∗ as its first step. In particular, for
any fixed choice of the random oracle RO, the index vector I output by ERO

m

matches the one output by P∗,RO.

Proof. The first claim holds for Eμ+1 = A by definition of A, and it holds for Em

with m ≤ μ by induction, given that Em runs Em+1 as a first step. The claim on
the matching index vectors then follows trivially. �
Proposition 1 (Correctness). For any fixed choice of the random ora-
cle let (I, y1, . . . , ykm

, v) ← ERO
m (x). If v = 1 then (y1, . . . , ykm

) forms a
(1, . . . , 1, km, . . . , kμ)-tree of accepting transcripts.

Proof. All km+1 · · · kμ transcripts in a (1, . . . , 1, km+1, . . . , kμ)-tree contain the
same partial transcript (a1, c1, . . . , cm, am+1), i.e., the first 2m−1 messages in all
these transcripts coincide. Hence, any (1, . . . , 1, km+1, . . . , kμ)-tree of transcripts
has a well-defined trunk (a1, c1, . . . , cm, am+1).

By induction on m, we will prove that if v = 1 then (y1, . . . , ykm
)

forms a (1, . . . , 1, km, . . . , kμ)-tree of accepting transcripts with trunk
(a1,RO(I1), . . . ,RO(Im−1), am), where Im+1 = (a1, . . . , am+1). This obviously
implies the correctness claim.

For the base case m = μ + 1, recall that Eμ+1 = A, and that by definition of
A and its output (I, y, v), if v = 1 then y is an accepting transcript, and thus
a (1, . . . , 1)-tree of accepting transcripts with (a1,RO(I1), . . . ,RO(Iμ), aμ+1) as
trunk where Iμ+1 = (a1, . . . , aμ+1), by definition of I = (I1, . . . , Iμ).

For the induction step, by the induction hypothesis on Em+1 and its output
(I, y, v), if v = 1 then y is a (1, . . . , 1, km+1, . . . , kμ)-tree of accepting transcripts
with trunk (a1,RO(I1), . . . , am,RO(Im), am+1), where Im+1 = (a1, . . . , am+1).
This holds for (I, y1, v) output by Em+1 in the first step of Em, but also for any
invocation of Em+1 in the repeat loop with output (I′, y′, v′), here with trunk
(a′

1,RO
′(I ′

1), . . . , a
′
m,RO′(I ′

m), a′
m+1), where I ′

m+1 = (a′
1, . . . , a

′
m+1) and RO′ is

such that RO′(Ij) = RO(Ij) for all j �= m, while RO(Im) = ci and RO′(Im) = c′
i.

By definition of the output of Em, for y1 and y′ occurring in the output of Em,
it is ensured that Im = I ′

m.
Now note that, by Lemma 7, for the purpose of the argument, Em could have

run P∗ instead of Em+1 to obtain I and I′. Therefore, by definition of the index
vectors output by P∗, which is such that Ij is a (fixed-size) prefix of Im for
j < m, it follows that also Ij = I ′

j for all j < m.
Therefore, the output y1, . . . , ykm

of Em forms a (1, . . . , 1, km, . . . , kμ)-tree of
accepting transcripts with trunk (a1,RO(I1), . . . , am−1,RO(Im−1), am), where
Im = (a1, . . . , am). This completes the proof. �
Proposition 2 (Run Time and Success Probability). Let Km =
km · · · kμ. The extractor Em makes an expected number of at most Km + Q ·
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(Km − 1) queries to A (and thus to P∗) and successfully outputs v = 1 with
probability at least

ε(A) − (Q + 1) · κm

1 − κm

where κm := Er(km, . . . , kμ;N) is as defined in Eq. 1.

Proof. The proof goes by induction on m. The base case m = μ+1 holds trivially,
understanding that Kμ+1 = 1 and Er(∅, N) = 0. Indeed, Eμ+1 makes 1 call to A
and outputs v = 1 with probability ε(A). Alternatively, we can take m = μ as
base case, which follows immediately from Lemma 4.

For the induction step, we assume now that the lemma is true for m′ = m+1
and consider the extractor Em. As in the 3-move case, we observe that, within a
run of Em, all the queries that are made by the different invocations of Em+1 are
answered consistently using lazy sampling, except for the queries to the index Im,
which is answered with different responses c′. This is indistinguishable from hav-
ing them answered by a full-fledged random oracle RO : {1, . . . , U} → {1, . . . , N},
where we have enumerated the domain and codomain of RO as before. This
enumeration allows RO to be identified with its function table (j1, . . . , jU ) ∈
{1, . . . , N}U . Thus, the extractor is actually running the abstract sampling game
from Fig. 2.

However, in contrast to the instantiation of Sect. 4, the entries of the array M
are now probabilistic. Namely, while A is deterministic, the extractor Em+1 is a
probabilistic algorithm. Fortunately, this does not influence the key properties of
the abstract sampling game. For the purpose of the analysis we may namely fix
the randomness of the extractor Em+1. By linearity of the success probability and
the expected run time, the bounds that hold for any fixed choice of randomness
also hold when averaged over the randomness. Thus, we can apply Lemma 2
and Lemma 5 to bound the success probability and the expected run time.8

To control the parameters P and T , which occur in the bounds of these
lemmas, we make the following observation. A similar observation was required
in the proof of Lemma 4.

First, by Lemma 7, the index vector I output by Em+1 matches the index
vector output by P∗, when given the same random oracle RO. Second, since P∗

is deterministic, its output can only change when the random oracle is repro-
grammed at one of the indices i ∈ {1, . . . , U} queried by P∗. Therefore, for
every (j1, . . . , jU ), let S(j1, . . . , jU ) ⊆ {1, . . . , U} be the set of points that P∗

queries to the random oracle when (j1, . . . , jU ) corresponds to the entire func-
tion table of the random oracle. Then, P∗ will produce the same output when
the random oracle is reprogrammed at an index i /∈ S(j1, . . . , jU ). In particular,
I(j1, . . . , ji−1, j, ji+1, . . . , jU ) = I(j1, . . . , ji−1, j

′, ji+1, . . . , , jU ) for all j, j′ and

8 To be more precise, to allow for fresh randomness in the different runs of Em+1

within Em, we first replace the randomness of Em+1 by F (j1, . . . , jU ) for a random
function F , where (j1, . . . , jU ) is the function table of the random oracle providing
the answers to Em+1’s queries, and then we fix the choice of F and average over F
after having applied Lemma 2 and Lemma 5.
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for all i /∈ S(j1, . . . , jU ). Furthermore, |S(j1, . . . , jU )| ≤ Q. Hence, the condi-
tions of Lemma 3 and Lemma 6 are satisfied, and it follows that P ≤ Q + 1 and
T ≤ Q. We are now ready to analyze the success probability and the expected
number of A queries of Em.

Success Probability. By the induction hypothesis, the success probability
pm+1 of Em+1 is bounded by

pm+1 ≥ ε(A) − (Q + 1) · κm+1

1 − κm+1
.

Then, by Lemma 2 and Lemma 3, the success probability of Em is bounded by

N

N − km + 1

(
pm+1 − (Q + 1)

km − 1
N

)

≥ N

N − km + 1

(
ε(A) − (Q + 1) · κm+1

1 − κm+1
− (Q + 1)

km − 1
N

)
.

By the recursive property (2) of κm = Er(km, . . . , kμ;N, . . . , N
)
, it follows that

N − km + 1
N

(1 − κm+1) = 1 − κm .

Hence,

pm ≥ ε(A) − (Q + 1) · κm+1

1 − κm
− (Q + 1)

km − 1
N − km + 1

=
1

1 − κm

(
ε(A) − (Q + 1) ·

(
κm+1 + (1 − κm)

km − 1
N − km + 1

))

=
1

1 − κm

(
ε(A) − (Q + 1) ·

(
1 − (1 − κm)·

N

N − km + 1
+ (1 − κm)

km − 1
N − km + 1

))

=
ε(A) − (Q + 1) · κm

1 − κm
,

which proves the claimed success probability.
Expected Number of A-Queries. Let the random variable Tm denote the

number of A-queries made by extractor Em. By the induction hypothesis,

E[Tm+1] ≤ Km+1 + Q · (Km+1 − 1) .

We make one crucial observation, allowing us to achieve the claimed query
complexity, linear in Q. Namely, we can view the run of a (sub)extractor as a
two-stage algorithm that allows an early abort. By Lemma 7, after only one A-
query Em+1 already returns the index Im. At this stage, Em can decide whether
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to continue the execution of Em+1 or to early abort this execution. If the index
is incorrect, i.e., it does not match the one obtained in the first invocation of
Em+1, then Em early aborts the execution of Em+1. Only if the index is correct,
the Em+1 execution has to be finished.

For this reason, we define the function (j1, . . . , jU ) �→ Γ (j1, . . . , jU ), where
Γ (j1, . . . , jU ) is the (expected) costs of running Em+1 (completely) with random
oracle (j1, . . . , jU ). Moreover, we set γ = 1 indicating the cost of an early abort
invocation of Em+1. These cost functions measure the expected number of calls
to A.

Hence, by Lemma 5 and Lemma 6, the expected cost of running Em is

E[Tm] ≤ km · E[Γ (C)] + γ · Q · (km − 1) = km · E[Tm+1] + Q · (km − 1)
≤ Km + Q · (Km − km) + Q · (km − 1) = Km + Q · (Km − 1) ,

where C is distributed uniformly at random in CU . This completes the proof. �
The existence of extractor E1, combined with the k-special-soundness prop-

erty, implies the following. This theorem shows that the Fiat-Shamir security
loss for k-out-of-N special-sound (2μ + 1)-round interactive proofs is Q + 1, i.e.,
the security loss is linear in the query complexity Q of provers P∗ attacking the
considered non-interactive random oracle proof FS[Π]. In particular, the Fiat-
Shamir security loss is independent of the number of rounds (2μ + 1) of Π.

Theorem 2 (FS Transformation of a (k1, . . . , kμ)-Special-Sound Proto-
col). The Fiat-Shamir transformation FS[Π] of a k = (k1, . . . , kμ)-special-sound
interactive proof Π, in which all challenges are sampled from a set C of size N ,
is knowledge sound with knowledge error

κfs(Q) = (Q + 1)κ ,

where κ := Er(k;N) is the knowledge error of the interactive proof Π.

7 The Fiat-Shamir Transformation of Parallel Repetitions

In the previous sections we have established a positive result; for a broad class
of interactive proofs the Fiat-Shamir security loss is only linear in the query
complexity Q and independent of the number of rounds. One might therefore
wonder whether the generic (Q + 1)μ security loss, for (2μ + 1)-move protocols,
is only tight for contrived examples. In this section, we show that this is not the
case. We demonstrate a non-trivial attack on the Fiat–Shamir transformation of
the parallel repetition of k-special-sound protocols.

Let Π = (P,V) be a (2μ+1)-move k-special-sound interactive proof. We write
Πt = (Pt,Vt) for its t-fold parallel repetition. That is, the prover Pt(x;w) runs
t instances of P(x;w), i.e., each message is a tuple (a1, . . . , at) of messages, one
for each parallel thread of execution. Likewise, the verifier Vt(x) runs t instances
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of V(x) in parallel, i.e., each challenge is a tuple (c1, . . . , ct) of challenges, one for
each parallel thread of the execution. Finally, the verifier accepts if all parallel
instances are accepting.

Assuming certain natural properties on Π, which are satisfied by typical
examples, and assuming again for simplicity that the challenge spaces Ci all
have the same cardinality N , we show that, when t ≥ μ, there exists a malicious
Q-query prover P∗, attacking FS[Πt], that, for any statement x, succeeds in
convincing the verifier with probability at least

1
2

Qμ

μt+μ
Er(k;N)t ,

assuming some mild conditions on the parameters. Given that Er(k;N)t equals
the soundness as well as the knowledge error of Πt,9 our attack shows that
the security loss of the Fiat-Shamir transformation, when applied to the t-fold
parallel repetition of Π, is at least 1

2Qμ/μt+μ. This stands in stark contrast to a
single execution of a k-special-sound protocol, where the loss is linear in Q and
independent of μ.

We go on to discuss the kind of k-special-sound protocols Π for which our
attack applies. For simplicity, we restrict our attention here to k = (k, . . . , k) and
assume t and Q to be multiples of μ. In the full version [7], we consider the case
of arbitrary k, and the restrictions on t and Q can be easily avoided with some
adjustments to the bound and the reasoning. Let � = (�, . . . , �) where � ≤ k − 1.
The attack on FS[Πt] uses a property most k-special-sound protocols Π satisfy,
namely that there exists an efficient attack strategy A against Π which tries to
guess challenges up front so that:

1. In any round, A can prepare and send a message so that if he is lucky and
the next challenge falls in a certain set Γ of cardinality �, A will be able to
complete the protocol and have the verifier accept (no matter what challenges
A encounters in the remaining rounds), and

2. until A is lucky in the above sense, in any round A can actually prepare B
distinct messages as above, for a given parameter B.

We call protocols which admit such an attack strategy �-special-unsound with B
potential responses per round (see the full version [7] for a formal definition). The
first point in particular implies an attack strategy for the interactive proof Π that
succeeds with probability Er(� + 1, N). Since many k-special-sound interactive
proofs Π are �-special-unsound with � = k−1, this confirms the tightness of the
knowledge error Er(k, N). The second point implies that in the context of the
Fiat-Shamir transformation, an attacker can produce and try multiple message-
challenge pairs in any round.

9 The soundness and knowledge error of a single invocation of Π are both equal to
Er(k; N). Therefore, it immediately follows that the soundness error of the parallel
repetition Πt is Er(k; N)t. The fact that the knowledge error of Πt also equals
Er(k; N)t follows from the recent work [7].
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These requirements are very common (for non-trivial � and large B). For
example, the folding technique of [13], when used to fold two parts into one,
satisfies (3, . . . , 3)-special-soundness and (2, . . . , 2)-special-unsoundness with an
exponential parameter B. Note that, while the honest prover is deterministic, a
dishonest prover can produce different messages (and hope to be lucky with one
of the corresponding challenges).

The following theorem gives a lower bound for the success probability of our
attack on the Fiat-Shamir transformation FS[Πt] of the t-fold parallel repetition
Πt of an interactive proof Π with certain common soundness and unsoundness
properties.

Theorem 3. Let Π be a (2μ + 1)-move (k, . . . , k)-out-of-(N, . . . , N) special-
sound interactive proof that is (�, . . . , �)-special-unsound with B responses per
round for � = k−1. Furthermore, let t,Q ∈ N be integer multiples of μ such that
Q · (

�
N

)t/μ ≤ 1/4 and B ≥ Q. Then there exists a Q-query dishonest prover P∗

against (P,V) = FS[Πt] such that, for any statement x ∈ {0, 1}∗,

ε(P∗, x) = Pr
(VRO(x,P∗,RO) = 1

) ≥ 1
2

Qμ

μt+μ
Er(k;N)t .

The run-time of P∗ is at most tQ times the run-time of attack strategy A.

Proof. The basic idea of the attack is that (groups of) parallel threads can
be attacked individually and independently from each other over the different
rounds of the protocol. Concretely, the attack is given by the adversary P∗

against FS[Πt], which makes up to Q = μ · Q′ queries, defined as follows: P∗

runs attack strategy A in parallel against all t = μ · t′ threads. Let us call a
thread green if strategy A succeeds in guessing the challenge for that thread
(and hence, V will eventually accept for that thread). Otherwise, a thread is red.
All threads start out red, and the goal of P∗ is to turn all threads green. To
do so, in every round P∗ tries to turn at least t′ = t/μ red threads into green
threads (or all red threads into green threads if fewer than t/μ remain). For this,
P∗ uses A to get the messages which it feeds to the random oracle. If P∗ was
lucky with the received challenges for at least t′ = t/μ threads, then enough red
threads turn green. Else, P∗ tries the considered round again, exploiting that A
can produce up to B distinct messages that give him a chance, each one giving
a fresh challenge from the random oracle. The dishonest prover P∗ tries up to
Q′ = Q/μ times per round until it gives up (and fails).

The number of queries P∗ makes to the random oracle is at most Q, hence
P∗ is a Q-query adversary. The probability that P∗ succeeds for any try in
any round to turn at least t′ = t/μ red threads into green threads is at least
( �

N )t′
= λt′

, where we introduce λ = �
N to simplify the upcoming expressions.

Therefore, since P∗ makes at most Q′ = Q/μ queries in every round, the success
probability for any fixed round is at least

1 − (
1 − λt′)Q′

≥ Q′λt′ − 2Q′2λ2t′
= Q′λt′(

1 − 2Q′λt′)
. (6)
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where the inequality follows from the fact that 1− (1−x)n ≥ nx−2n2x2, which
can be shown to hold when nx ≤ 1/2, which is (more than) satisfied for x = λt′

and n = Q′ by assumption. Hence, P∗ succeeds (in all μ rounds) with probability
at least

Q′μλt
(
1 − 2Q′λt′)μ ≥ Q′μλt

(
1 − 2Qλt′) ≥ 1

2
Q′μλt ,

where we use that (1 − z)n ≥ 1 − nz for n ∈ N and z ∈ [0, 1] to argue the first

inequality, and Q · ( �
N

)t′
≤ 1/4 for the second. To complete the analysis of P∗’s

success probability, we observe that

Er(k;N) = 1 −
(

1 − k − 1
N

)μ

≤ μ · k − 1
N

= μ · �

N
= μ · λ .

Hence, the success probability of P∗ is at least 1
2Q′μ(Er(k;N)

μ

)t, as claimed. �
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Abstract. We revisit the well-studied problem of preventing stegano-
graphic communication in multi-party communications. While this is
known to be a provably impossible task, we propose a new model that
allows circumventing this impossibility. In our model, the parties first
publish a single message during an honest non-interactive pre-processing
phase and then later interact in an execution phase. We show that in this
model, it is indeed possible to prevent any steganographic communica-
tion in zero-knowledge protocols. Our solutions rely on standard crypto-
graphic assumptions.

1 Introduction

Consider the following scenario: a computer at a government agency storing
highly classified data has been infected with a stealthy malware. The malware’s
main purpose is to communicate the classified data to an attacker on the Inter-
net. To minimize the possibility of being detected and quarantined, the malware
has been designed to stealthily “encode” the secret data in ordinary communi-
cation between the infected computer and the outside world. This may include
communication with “honest” entities on the Internet or potentially even the
attacker (disguised as an honest user). An intriguing question, which forms the
basis of the present work, is whether it is possible to detect such communication?

The above scenario is representative of a broader theme concerning stegano-
graphic communication, where a party A wants to transmit a secret message
to another party B by communicating over a public broadcast channel without
being detected by an external observer who is listening on the channel. Since the
use of an encrypted channel can be easy to detect, A may instead try to embed
its message in an innocuous-looking conversation. For example, [34], it may send
a photograph of a person to securely transmit bit 0 if the 30th hair from the left
is white, and 1 otherwise.
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A sequence of works [3,14,29,31] have established that such steganographic
communication is always possible in any system with some entropy, and is prov-
ably impossible to detect. As such, it may seem that the answer to the afore-
mentioned question is negative.

A New Model for Preventing Steganography. In this work, we propose
a new model for circumventing the aforementioned impossibility result. In our
model, any communication (via an interactive protocol) proceeds in two phases:
a non-interactive pre-processing phase and an execution phase. Each party pub-
lishes a single message during the pre-processing phase, while the execution
phase corresponds to the actual protocol execution. We assume that the parties
are honest during the pre-processing phase, but may be completely malicious
during the execution phase. Our main goal is to ensure that any attempts at
steganographic communication during the execution phase will be detected by the
external observer.

We, in fact, consider a stronger model where only one of the parties is required
to be honest during the pre-processing phase. In this case, the malicious parties
may be able to subliminally embed information in their pre-processing messages.
However, we require that such subliminal communication is limited to the (non-
interactive) pre-processing and that no steganographic communication can be
performed during the execution phase. Our model is meaningful in our moti-
vating example: if the pre-processing step is executed before the computer is
infected, then it ensures that no information can be later leaked by the malware
without being detected.

Let us now explain why the pre-processing model can help in preventing
steganography. As observed in many prior works, the key source of the problem
is that the parties’ algorithms may be randomized, which opens an avenue for
subliminal communication. Removing the use of randomness altogether does not
yield a solution since randomness is necessary for most of cryptography [21]. The
pre-processing model helps resolve this dilemma. The main insight is that the
pre-processing step can be used to “fix” the randomness of the parties, thereby
forcing them to become deterministic during the execution phase. If the parties
deviate from the prescribed strategy, they can be detected by the observer.

A common method to detect deviation from prescribed strategy in any proto-
col is to use zero-knowledge (ZK) proofs [27], à la Goldreich, Micali, Wigderson
(GMW) compiler [26]. However, ZK proofs themselves require randomness [21].
As such, a priori, it might not be clear how to implement the above idea.

1.1 Our Contribution

We present a general method for preventing steganographic communication in
interactive protocols.

Defining Steganography Freeness. We start by defining steganography free-
ness for generic interactive protocols (S,R) in the non-interactive pre-processing
model. Intuitively, our notion requires that no adversarial sender S can stegano-
graphically communicate even a single bit of information to the receiver R during
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the execution phase as long as at least one of them was honest during the pre-
processing phase. We formalize this via a game-based definition (Sect. 3) where
at the start of the execution phase, the adversarial sender is given a randomly
chosen bit b. We require that at the end of the execution phase, the probability
that the receiver correctly guesses b and the execution transcript is accepted by
the observer is only negligibly more than one half.

Steganography-Free Zero-Knowledge. Our main tool for achieving
steganography freeness in a generic interactive protocol is a new notion of
steganography-free zero-knowledge (SF-ZK). An SF-ZK argument proceeds in
two phases: first, the prover and the verifier participate in a non-interactive
pre-processing step where they send a single message to each other. This step
is executed before the prover receives the statement and the witness. Next, the
prover and the verifier participate in the execution phase where the prover proves
the validity of the statement.

An SF-ZK argument system must satisfy the standard completeness, sound-
ness, and ZK properties. In particular, soundness (resp. ZK) must hold even if
the prover (resp. verifier) is malicious both during the pre-processing as well as
the execution phase. Further, SF-ZK must satisfy two new security properties:

– Observer Soundness: This property states that for any false statement, no
coalition of prover and verifier can produce a transcript that will be accepted
by the external observer as long as either the prover or the verifier was honest
during the pre-processing phase.

– Computationally Unique Transcripts (CUT): We define this property w.r.t.
languages L with unique witnesses; however, it can be naturally extended to
the multiple witnesses case. Intuitively, it states that once the pre-processing
phase has been executed (where either the prover or the verifier was honest),
then for any statement x ∈ L, two different sets of efficient prover and verifier
strategies cannot produce two different transcripts of the execution phase that
will both be accepted by the observer.

We show that the CUT property implies steganography freeness. Further,
we note that the observer soundness property is crucial in natural applications
of SF-ZK. Indeed, if we use SF-ZK to implement a GMW-style compiler for
constructing steganography-free protocols, then observer soundness would be
necessary to ensure that an adversarial party cannot deviate from a prescribed
strategy in the underlying protocol and therefore cannot use the execution tran-
script to perform steganographic communication.

We refer the reader to Sect. 3.1 for a formal definition of SF-ZK.

Positive Results. We construct an SF-ZK argument system with black-box
simulation for all languages in NP. We, in fact, provide two constructions: first,
assuming sub-exponentially hard injective one-way functions, we devise a solu-
tion in the single-execution setting, where the pre-processing phase can only be
used once. Then, assuming the existence of fully homomorphic encryption [24],
we present a solution in the multi-execution setting, where the pre-processing
can be refreshed to allow for an unbounded number of execution phases.
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Our construction of SF-ZK directly works for circuit satisfiability and avoids
any use of expensive NP reductions. In Sect. 4, we provide a construction of SF-
ZK in the single-execution setting. While this protocol follows a conceptually
clean approach, it involves a computationally expensive sub-protocol where the
prover is required to give a “proof of proof,” namely, proof of honest behavior
in the execution of another proof. To obtain a more efficient solution, we also
present another construction that follows the same key ideas as in our first
construction but avoids the expensive sub-protocol by instead using cut-and-
choose techniques [37].

In the full version of the paper, we extend our construction of SF-ZK to the
multi-execution setting.

Optimality of our Model. In the full version, we show that our adversar-
ial model is “tight”. Specifically, we show that when both the prover and the
verifier are malicious during the pre-processing, SF-ZK is impossible, except for
languages in BPP.

1.2 Applications

In the following we highlight a few interesting applications of SF-ZK.

Online Games. Imagine a group of players that want to engage in a game
of poker without a trusted dealer. The standard solution for this is to use a
multi-party computation (MPC) protocol to simulate a dealer by combining the
randomness of all players. MPC is however an inherently randomized machin-
ery and the same randomness could be used by colluding players to communi-
cate information (say, about their hands) in an undetectable way. This problem
was considered in [34], where the authors proposed a solution based on generic
MPC together with unique ZK proof.1 Their solution relies on players physically
exchanging sealed envelopes prior to the execution of the protocol and hence
cannot be used over the internet (see Sect. 1.4 for a more detailed comparison).

In contrast, using SF-ZK allows us to bypass any physical interaction among
participants at the cost of a non-interactive pre-processing phase. The resulting
protocol is sanitized from any covert communication, since transmitting infor-
mation covertly via SF-ZK is computationally hard.

Private Classifier. Consider the scenario where a server holds a trained clas-
sifier and wants to give clients oracle access to the prediction without revealing
the logic implemented by the predictor. At the same time, the client wants to be
assured that the answers of the server are consistent and indeed correspond to
the output of the classifier. An obvious solution to this problem is to augment
the client-server interaction with a standard ZK proof of correctness.

Consider the event the server gets infected by a virus. The malicious program
might instruct the machine to simply output the full description of the classifier.
However, such behavior is easy to detect for anyone observing the network traffic.

1 In unique ZK only a single valid proof exists for a given statement-witness pair.
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What if the virus implements a more clever strategy: use the ZK proof as a vector
to slowly exfiltrate secret information? Since ZK proofs must be randomized,
there is plenty of room to transmit information in an undetectable manner.

One solution is to use SF-ZK instead: the (computational) uniqueness of the
transcripts ensures that the virus cannot embed information in the randomness
of the protocol and observer soundness forces the server to behave correctly.
That is, whatever the client can learn from an infected machine he can also
learn by honest queries to the non-corrupted server. Note that in this scenario
we can assume that the server is not infected during the training of the model,
which can be paired with the computation of the honest prover pre-processing.

A similar argument applies to any interaction in the client-server setting
where the server holds some amount of secret data (e.g., a password file, or,
classified emails) and might get infected with a virus.

1.3 Our Techniques

In this section, we provide an overview of the main ideas underlying our con-
structions of SF-ZK, both in the single-execution and multi-execution settings.

How to Simulate? We start by describing a key conceptual challenge in con-
structing SF-ZK. Recall that a black-box simulator works by rewinding the
adversarial verifier potentially multiple times. This involves creating multiple
protocol transcripts which are necessarily different (for the rewinding to be “suc-
cessful”). This seems to be at odds with the computationally unique transcripts
(CUT) property of SF-ZK; indeed, since the simulator is also an efficient algo-
rithm, intuitively, it should also not be able to produce multiple transcripts of
the execution phase. This presents a catch-22: how can we achieve ZK property
without violating the CUT property (or vice-versa)?

Towards resolving this conundrum, recall that the CUT property is required
to hold against two different pairs of prover and verifier strategies (P1, V1) and
(P2, V2), who cannot communicate with each other. This rules out oblivious
black-box simulation strategies that involve running multiple execution threads
(with a common prefix) in parallel since such a strategy implies multiple tran-
script choices during an honest execution. However, it does not rule out non-
oblivious black-box simulation strategies. In particular, a non-oblivious simulator
can potentially create a transcript, and then use information learned from that
transcript to create another one. This does not violate the CUT property but
opens up an avenue for black-box simulation.

Starting Approach. To explain our approach, let us first recall the notion
of delayed-input witness indistinguishable (WI) proofs, where the statement
and the witness is only required for computing the last prover message. Such
proofs are known in three rounds with a public-coin verifier based on one-way
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functions [33]. In particular, a recent work of [28] constructed such proofs for
circuit satisfiability2 based on garbled circuits.

Now consider the following template for SF-ZK: during the pre-processing
phase, the prover publishes the first message α of the delayed-input WI and addi-
tionally commits to some randomness (say) r. The verifier commits in advance
to the second (public-coin) message β of the WI and additionally publishes a
“trapdoor” statement with a (verifiably) unique witness. Both the prover and
verifier use a non-interactive commitment scheme with unique decommitment3

to compute their respective commitments.
At the start of the execution phase, both the prover and the verifier receive

the statement x and the prover additionally receives a (unique) witness w. The
execution phase proceeds as follows:

– The prover first simply sends a commitment c to 0 using randomness r.
– Next, the verifier decommits to the second message of WI and additionally

reveals the (unique) witness for the trapdoor statement.
– Finally, the prover sends the third message γ of the WI proof to prove the

statement: “either x is true or I committed to the trapdoor witness in c using
randomness r that was committed in the pre-processing”.

Let us now see why the above template enables black-box simulation. A
simulator can first produce a partial transcript of the execution phase by simply
committing to 0 in c and then learn the witness for the trapdoor statement.
Now, the simulator can rewind the verifier to the start of the execution phase
and generate a new transcript where it commits to the trapdoor witness. It then
continues the computation of the second transcript and produces the WI proof
using the second branch of the statement. Note that the simulator can use the
second branch in the WI because it is now true.

Challenges with CUT. In order to achieve the CUT property, we require the
delayed-input WI proof to have a unique accepting third message γ for a fixed
partial transcript (α, β) and a fixed statement and witness. Towards this, let us
briefly recall the construction of [28]. Below, we describe the basic version which
achieves soundness one half; the full protocol with negligible soundness error is
achieved by parallel repetition of the basic protocol.

– First, the prover computes and sends a garbled circuit for the NP verification
circuit. Additionally, it commits to all the wire labels of the garbled circuit.

– Next, the verifier sends a random challenge bit.
– If the challenge bit is 0, the prover “opens” everything by revealing its random

tape, otherwise, it decommits to wire labels corresponding to the statement
and the witness. In the latter case, the verifier simply evaluates the garbled
circuit to check if its output is accepting.

2 The choice of circuit satisfiability as the language is not arbitrary. We use it to
avoid the potential issue of using NP reductions that do not preserve the number of
witnesses, which can open up an avenue for subliminal communication.

3 Such schemes are known based on injective one-way functions.
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At a first glance, it may seem that the above construction satisfies the unique
third message property if the witness is unique. A closer inspection, however,
reveals a subtle problem when we use the above WI in our template for SF-ZK.
The issue is that a cheating prover can simply guess in advance, e.g., the first
index (among all the parallel repetitions) where the challenge bit is 1. In that
repetition, he can choose to garble a trivial circuit that outputs 1 on every input.
Clearly, in this case, there are exponentially many accepting third messages. As
such, the adversarial prover can violate the CUT property with non-negligible
probability.

Towards addressing the above problem, our first observation is that the above
protocol can be transformed into one that satisfies the unique third message
property at the cost of losing the delayed input property. The transformation
is simple: for every repetition, the prover pre-commits to both of its possible
third messages (one for every challenge bit) in the first round. Now, in the last
round, it simply decommits to the appropriate response. Clearly, this protocol
satisfies the unique third message property but is no longer delayed input since
the prover must know the statement and the witness in order to compute the
first message. The latter means that we can not directly use it in our template
for SF-ZK.

Nevertheless, as we now describe, the above observation can be used to con-
struct a delayed-input WI with the required property. Our main observation is
as follows: the aforementioned attack required the prover to deviate from the
honest strategy, namely, sending a garbling of a circuit different from the NP
verification circuit (i.e., the circuit which outputs 1 on every input). If we could
ensure that the prover garbled the “correct” circuit, then the protocol would
indeed satisfy the aforementioned uniqueness property.

Towards this end, we modify the protocol template and now require the
prover to additionally prove via a separate three-round proof system that it
computed the garbling in the first round message of delayed-input WI “hon-
estly”. Crucially, a non-delayed-input proof with unique third message suffices
for this task since the statement and the witness is known in advance. The first
and second messages of this proof are fixed in the pre-processing (in a manner
as discussed before in the template); the prover only sends the third message of
the proof in the execution phase. The uniqueness of this message ensures that it
cannot be used for subliminal communication. More importantly, the soundness
of this proof ensures that the prover’s first message in the delayed-input WI is
well-formed, and therefore, the last message is unique.4

Challenges in ZK. The above idea resolves the main challenge in achieving
CUT property, but creates a new challenge in achieving the ZK property. Specif-
ically, the main issue is that in order to perform simulation, it seems that we

4 We remark that our actual protocol slightly differs from the above description in
that instead of using delayed-input WI, we introduce and use the notion of (com-
putationally) unique non-interactive WI with honest prover pre-processing. This
approach yields a more simplified construction. In this Section, however, we ignore
this distinction.
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need the non-delayed-input proof to itself be a (steganography-free) ZK proof.
However, this is very close to the goal we started with in the first place.

To resolve this seeming circularity, we observe that the non-delayed-input
proof does not always need to be simulated. In particular, this proof would only
need to be simulated when we invoke the WI property of the delayed-input WI
inside the hybrids for proving the ZK property of our main SF-ZK construc-
tion. Therefore, we do not need this proof to satisfy the standard notion of
ZK with polynomial-time simulation, and instead, it suffices to use ZK with
super-polynomial-time simulation. Indeed, the super-polynomial-time simulator
would only be invoked in the “intermediate” hybrids, but not the final one;
therefore, the running time of our final simulator for SF-ZK is unaffected. For-
tunately, the three-round proof system we described earlier indeed satisfies the
super-polynomial-time simulation property.

Observer Soundness. While the above solution template resolves the main
challenges in achieving ZK and CUT properties, it does not achieve observer
soundness property of SF-ZK. Indeed, consider the scenario where the verifier is
malicious during the pre-processing phase and uses some a priori fixed random-
ness (e.g., all 0’s). Now, in the execution phase, a malicious prover can use the
trapdoor witness (i.e., the witness of the second branch) in the WI proof in the
last round.

To address this challenge, we observe that if the verifier is dishonest dur-
ing pre-processing, then by our assumption that at least one of the parties be
honest, we have that the prover must be honest during pre-processing. We use
this observation to create an “asymmetry” between a malicious prover and the
simulator. Specifically, we require the prover to commit to bit 0 in the pre-
processing phase. We also modify the second branch of the WI in the execution
phase. Specifically, the second branch will now additionally require the prover
to prove that it committed to 1 in the pre-processing phase. Note that since the
prover was honest in the pre-processing, it can never execute the second branch
since it is always false. However, a simulator can choose to commit to 1 in the
pre-processing phase and therefore still use the second branch of the WI.

Other Details. The above discussion is oversimplified and ignores several addi-
tional technical issues that we need to address to obtain a secure construction
of SF-ZK. For example, we must deal with aborting verifiers who may choose
to abort on one of the branches of WI with a high probability to skew the
distribution of transcripts generated by the simulator. We also need to enable
some mechanism for proving soundness as well as the CUT property via extrac-
tion, even when the verifier’s randomness is fixed during the pre-processing. We
resolve these issues by using techniques from [25], and by relying on complexity
leveraging in some of our proofs. We refer the reader to the technical Sections
for more details.

Multi-execution SF-ZK. The pre-processing phase of the above construc-
tion is non-reusable, i.e., it can only be used for a single execution phase. We
now describe a strategy to refresh the pre-processing phase. Our starting idea is
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simple: During the i-th execution phase, the prover and the verifier simply gen-
erate new pre-processing messages using pre-committed randomness and give
a new SF-ZK proof to establish that the new message was computed honestly.
Note, however, that in regular ZK proofs, the size of the prover’s message grows
with the size of the relation circuit. This means that the size of the i-th pre-
processing messages must be larger than the size of the (i+1)-th pre-processing
messages, at least by a multiplicative overhead of the security parameter. This
means that this approach becomes infeasible after a constant number of refreshes.

A plausible approach to allow unlimited refreshing is to use an SF-ZK where
the communication complexity does not grow with the size of the relation circuit.
Four round ZK arguments (without SF property) that satisfy such a succinctness
property are known for all of NP based on collision-resistant hash functions [32].
Unfortunately, it is not clear how to use such argument systems in our setting:
first, we need the argument system to be delayed-input, namely, where the first
message of the prover is independent of the statement. Further, it is unclear how
to force uniqueness of last prover message while only relying on non-interactive
pre-processing.

We instead use a different solution based on (leveled) fully-homomorphic
encryption. The main idea is that instead of having the prover perform an
“expensive” computation and prove its validity to the verifier, we instead require
both the prover and the verifier to perform the expensive computation “locally”
on their own. Since the computation involves the private state of the prover, we
use FHE to send it to the verifier, who can use the homomorphism property to
perform the computation. Now, the prover only needs to prove a simple state-
ment that the resulting encryption (after homomorphic evaluation) decrypts to
the “correct” value. The size of this statement (and the corresponding relation
circuit) is fixed, and does not cause a blowup as before. Also observe that the
maximum size of the circuit to be computed homomorphically is a priori fixed,
therefore leveled FHE suffices. We note that this idea has been previously used
(see, e.g., [30]) to construct “short” non-interactive zero-knowledge proofs.

1.4 Related Work

Preventing steganographic communication has been the subject of a large body
of literature addressing the problem in variety models. We provide a short sum-
mary of other directions that address the challenge of protecting cryptosystems
against different forms of subversion in below (also refer the reader to [38] for
an excellent comprehensive survey).

Collusion-Free Protocols. Our work is closely related to prior work on
collusion-free protocols [34] (see also [35]). Roughly speaking, a collusion-free
multiparty protocol prevents a group of adversarial parties from colluding with
each other to gain an unfair advantage over honest participants, e.g., in a game
of poker. As Lepinski et al. explain in their work, a key challenge in designing
such protocols is preventing steganographic communication between the adver-
sarial parties. They use physical assumptions, namely, simultaneous exchange of
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sealed envelopes, and an interactive pre-processing model to construct collusion-
free protocols. While their overall goal is very similar to ours, we note that
their constructions require strong physical assumptions (e.g., sealed envelopes)
to ensure verifiable determinism.

We further note that our notion of steganography-free ZK is similar in spirit
to the notion of “unique ZK” [35], which is used by [34] in their constructions. In
particular, unique ZK requires a one-to-one mapping between a proof transcript
and the witness used to compute the transcript, which is similar to the CUT
property of steganography-free ZK. However, while our notion of steganography-
free ZK is a strengthening of zero-knowledge, the notion of unique ZK is not.
Unique ZK requires a common reference string as well as a pre-processing step
where the prover must necessarily be honest. This means that if the prover was
dishonest from the beginning, the soundness no longer holds (even if the verifier
continues to be honest from the beginning). Unique ZK also does not require the
observer soundness property, which makes it harder to use in our applications.

Preventing Steganography via Sanitization. Multiple lines of works have
used the approach of using “sanitization” to prevent steganographic communi-
cation. The work of Alwen et al. [1] considered a mediator model for collusion-
free protocols to avoid the use of pre-processing and physical channels. This
active mediator has the ability to modify the messages of the protocol partic-
ipants. This approach is similar in spirit to prior work on subliminal-free ZK
and divertible ZK protocols [9,11–13,18,39] who also use an active “warden” to
modify the messages of the prover and the verifier. More recently, Mironov and
Stephens-Davidowitz [38] (see also [20]) initiated the study of “reverse firewalls”
to prevent steganographic communication in general two-party communication.
Roughly speaking, a reverse firewall for a party P is an external entity that sits
between P and the outside world and whose scope is to sanitize P ’s incoming
and outgoing messages in the face of subversion of their computer. Later, there
has been more efforts on secure computation protocols in this model [15,16,23].

Comparison to Our Model. In the sanitization-based model there is an entity
(namely, the reverse firewall) that sits on the network of each participant and
has the ability to re-randomize the messages sent by the parties. We note that
all of these works differ fundamentally from ours in that they rely on an active
mediator (or warden, or reverse firewall) who can sanitize the messages of the
parties, whereas we consider the classical steganographic communication setting,
where there is a passive observer who can look at the messages of the parties
(but not modify them). This allows one to detect steganography by just looking
at the communication transcript.

Kleptography and Algorithmic-Substitution Attacks. A sequence of
works starting from [44,45], and more recently followed by a series of papers
[2,5,7,8,41,42], consider the problem of designing cryptographic primitives
which retain meaningful security even against adversaries who can tamper with
the implementation of the cryptographic algorithm. In particular, these works
consider “functionality-preserving” tampering where the adversary does not
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break the functionality of the cryptographic algorithm to avoid detection. How-
ever, this still leaves open the possibility of the tampered implementation leaking
any secret information used by the cryptographic algorithm (e.g., a secret-key for
encryption, or a signing key for signature schemes) to the adversary by misusing
the randomness. For this reason, these works either avoid the use of randomness
altogether (whenever possible), or rely on external sanitizers (such as random
oracles) or consider split-state tampering.

There has been another the line of work for protection mechanisms by Dodis
et al. [19] that studies backdoored pseudorandom generators (BPRGs). In their
setting, public parameters are secretly generated together with secret backdoors
by a subversive that allows to bypass security, while for any adversary that does
not know the backdoor it remains secure.5 They showed that BPRGs can be
immunized by applying a non-trivial function (e.g., a PRF or a seeded extractor)
to the outputs of a possibly backdoored pseudorandom generator.

Comparison to Our Model . Our setting (involving ZK proofs and multi-party
computation) necessarily relies on the use of randomness. As such, the solutions
we achieve in our model restrict the use of randomness to the pre-processing
step, without relying on external sanitizers, or other such means.

Trusted Initialization Phase. Assuming the trust initialization phase setting,
Fischlin and Mazaheri [22] proposed an alternative defense mechanism, so-called
self-guarding that contrary to the aforementioned approaches that rely on exter-
nal sanitizers, does not depend on external parties. The security definitions in
this model rely on the assumption of having a “secure initialization phase”. This
assumption makes our problem substantially easier: The NIZK by Sahai and
Waters [43] has a deterministic prover and it trivially yields a construction of
steganography-free ZK in the common reference string (CRS) model.

Comparison to Our Model. Self-guarding requires one to rely on a trusted initial-
ization phase where the cryptosystem is unsubverted. In our model, each party
runs a local pre-processing, and security is guaranteed if either of the parties is
honest during the pre-processing phase.

2 Preliminaries

We denote by n ∈ N the security parameter that is implicitly given as input to
all algorithms in unary representation 1n. We denote by {0, 1}� the set of all
bit-strings of length �. For a finite set S, we denote the action of sampling x
uniformly at random from S by x ←$ S, and we denote the cardinality of S by
|S|. An algorithm is efficient or PPT if it runs in time polynomial in the security
parameter. If A is randomized then by y := A(x; r) we denote that A is run on

5 Parameter subversion has been considered for several primitives, including pseu-
dorandom generators [17,19], non-interactive zero knowledge [4], and public-key
encryption [2].
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input x and with random coins r and produces output y. If no randomness is
specified, then it is assumed that A is run with freshly sampled uniform random
coins, and we write this as y ← A(x). A function negl(n) is negligible if for all
positive polynomial poly(n), there exists an N ∈ N, such that for all n > N ,
negl(n) ≤ 1/poly(n).

We recall the notions of projective garbling schemes [6], homomorphic encryp-
tion [24], zero-knowledge arguments with super-polynomial simulation (SPS-
ZK) [40], and non-Interactive witness indistinguishable arguments with honest
pre-processing (HPP-NIWI) [10] in the full version of this paper.

3 Defining Steganography-Freeness

In this section, we introduce the definitions of steganography-free zero-
knowledge interactive arguments and steganography-free multi-party computa-
tion. Steganography-freeness is generally impossible for regular protocols because
without being constrained, a malicious party could always try to correlate its
randomness with the secrets it wishes to subliminally communicate. We prevent
such attacks by utilizing a non-interactive pre-processing phase. Specifically, we
consider protocols that proceed in two phases: A non-interactive pre-processing
phase, and an interactive execution phase. As we will see below, our definitions
guarantee that no steganographic communication can be performed in the exe-
cution phase, once the pre-processing was completed.

We begin by defining steganography-freeness for generic interactive protocols
(with pre-processing), which closely matches the intuition behind this notion.
Roughly speaking, our notion steganography-free says that no machines can
communicate through a protocol execution without being detected. This is cap-
tured as a game between a sender and a receiver, where the sender is given
a random bit b and interacts with the receiver. In order to win the game the
receiver must output b, without raising the suspicion of an external observer.
The formal definition is given in the following.

Definition 1 (Steganography-Freeness). A protocol Π = (S1,R1,S2,R2)
is steganography-free relative to a PPT observer Θ if for all admissible pairs
(S̃1, R̃1), and for all PPT algorithms (S∗,R∗) it holds that

Pr

[
(s1, p1) ← S̃1(1λ), (s2, p2) ← R̃1(1λ),

b ←$ {0, 1}, T := 〈S∗(s1, p2, b),R∗(s2, p1)〉
:

Θ(p1, p2, T ) = 1∧
R∗(s2, p1, T ) = b

]
≤ 1

2
+ negl(n)

where (S∗,R∗) are the (possibly) corrupted versions of (S2,R2). Both parties (S1

and R1) individually compute pre-processing information comprising of a public
output and a secret state in the pre-processing stage. In the execution phase, both
parties (S2 and R2) receive as input their respective secret states as well as the
other party’s public output from the pre-processing phase.

Note that the definition is relative to some observer Θ. Generally, any proto-
col is steganography-free relative to some observer, e.g., the trivial Θ that does
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not accept any transcript. However, this is of course not a useful property. The
challenge, therefore, is to achieve steganography-freeness relative to a meaningful
observer that accepts honest communication.

It is also important to observe that the definition is conditioned on some
admissibility criterion on the behavior of the players in the pre-processing. In
this work we are interested in what we call a partial-honest pre-processing, i.e.,
a pair (S̃1, R̃1) is considered admissible if both algorithms are PPT and at least
one of them is honest. Note that for this case we consider rushing adversaries
that sample their pre-processing after the honest one is fixed. We mention that
the definition can be extended to capture a bounded amount of covert commu-
nication by sampling multiple bits.

3.1 Steganography-Free Zero-Knowledge

Towards defining steganography-free zero-knowledge, we extend the stan-
dard definitions in a natural way to accommodate an input-independent pre-
processing phase. In the pre-processing stage, both parties (P1 and V1) individ-
ually compute pre-processing information comprising of a public output and a
secret state. In the execution phase, both parties (P2 and V2) receive as input
their respective secret states as well as the other party’s public output from
the pre-processing phase, together with the statement x. The prover addition-
ally receives a witness w. At the end of this phase, the honest verifier outputs
either 0 or 1. In addition to the standard properties for a zero-knowledge proto-
col, a steganography-free zero-knowledge protocol must additionally satisfy the
following new properties:

1. Observer Completeness: There exists an efficient algorithm Θ, that takes as
input the protocol transcript and accepts if both parties are honest.

2. Observer Soundness: The (possibly colluding) prover and verifier cannot con-
vince the observer to accept a transcript for any x /∈ L, as long as either the
prover or the verifier executes the pre-processing phase honestly.

3. Computationally Unique Transcripts: Given a language with unique wit-
nesses, no two independent coalitions of prover and verifier can produce two
different transcripts that are both accepted by the observer. This is again
conditioned on the fact that at least one of the parties was honest during the
pre-processing.

This set of properties will guarantee that the protocol execution cannot be used
as a covert channel. Later we will show that these conditions are indeed sufficient
to achieve steganography-freeness. The formal definition is given in the following.

Definition 2 (Steganography-Free Zero-Knowledge Arguments). Let L
be a language in NP with corresponding relation R. A steganography-free inter-
active argument system Π = (P,V) for language L in the non-interactive pre-
processing model with observer Θ must satisfy the following properties:
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Completeness. For all (x,w) ∈ R it holds that

Pr

[
(s1, p1) ← P1(1n),

(s2, p2) ← V1(1n)
: 1 ←

〈
P2(x,w, s1, p2),V2(x, s2, p1)

〉]
≥ 1 − negl(n) .

Computational Non-adaptive Soundness. For all x /∈ L and all malicious PPT
provers P∗ it holds that

Pr

[
(s1, p1) ← P∗(x),

(s2, p2) ← V1(1n)
: 1 ←

〈
P∗(x, s1, p2),V2(x, s2, p1)

〉]
≤ negl(n) .

Computational Soundness. For all malicious PPT provers P∗ it holds that

Pr

⎡
⎢⎣

(s1, p1) ← P∗(1n),

(s2, p2) ← V1(1n),
x ← P∗(s1, p2)

: 1 ←
〈
P∗(x, s1, p2),V2(x, s2, p1)

〉
∧ x /∈ L

⎤
⎥⎦ ≤ negl(n) .

Here, we use the terms computational soundness and adaptive computational
soundness interchangeably.
Zero-Knowledge. For all malicious PPT verifiers V∗ there exists an expected
polynomial time simulator Sim, such that for all PPT distinguishers D, it holds
that for all tuples (x,w) ∈ R∣∣∣∣∣∣∣∣∣∣

Pr

[
(s1, p1) ← P1(1n),

(s2, p2) ← V∗(x)
: D(

〈
P2(x,w, s1, p2),V∗(x, s2, p1)

〉
) = 1

]

− Pr

[
(s1, p1) ← Sim(1n),

(s2, p2) ← V∗(x)
: D(〈Sim(x, s1, p2),V∗(x, s2, p1)〉) = 1

]
∣∣∣∣∣∣∣∣∣∣
≤ negl(n) .

Observer Completeness. For all (x,w) ∈ R it holds that

Pr

[
(s1, p1) ← P1(1n), (s2, p2) ← V1(1n),

T :=
〈
P2(s1, p2, x, w),V2(s2, p1, x)

〉 : Θ(p1, p2, T , x) = 1

]
≥ 1 − negl(n) .

Non-Adaptive Observer Soundness. For all x /∈ L, for all admissible pairs
(P̃1, Ṽ1), for all PPT algorithms P∗ and V∗ it holds that

Pr

[
(s1, p1) ← P̃1(x), (s2, p2) ← Ṽ1(x),
T := 〈P∗(s1, p2, x),V∗(s2, p1, x)〉

: Θ(p1, p2, T , x) = 1

]
≤ negl(n)

Observer Soundness. For all admissible pairs (P̃1, Ṽ1), for all PPT algorithms
P∗ and V∗ it holds that

Pr

[
(s1, p1) ← P̃1(1n), (s2, p2) ← Ṽ1(1n),

x ← P∗(s1, p2); T := 〈P∗(s1, p2, x),V∗(s2, p1, x)〉
:

Θ(p1, p2, T , x) = 1

∧ x /∈ L

]
≤ negl(n)
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where a pair (P̃1, Ṽ1) is considered admissible if both algorithms are PPT and it
holds that P̃1(w, x) = P1(1n) or Ṽ1(x) = V1(1n). Notice that, we use the terms
observer soundness and adaptive observer soundness interchangeably.
Computationally Unique Transcripts. For all x ∈ L such that there exists a
unique w such that R(x,w) = 1, for all admissible pairs (P̃1, Ṽ1), for all PPT
algorithms (P∗,V∗, P̂∗, V̂∗) it holds that

Pr

⎡
⎢⎢⎣

(s1, p1) ← P̃1(w, x), (s2, p2) ← Ṽ1(x),
T1 := 〈P∗(s1, p2, x, w),V∗(s2, p1, x)〉,

T2 :=
〈
P̂∗(s1, p2, x, w), V̂∗(s2, p1, x)

〉 :
Θ(p1, p2, T1, x) = 1∧
Θ(p1, p2, T2, x) = 1∧

T1 	= T2

⎤
⎥⎥⎦ ≤ negl(n)

where a pair (P̃1, Ṽ1) is considered admissible if both algorithms are PPT and it
holds that P̃1(w, x) = P1(1n) or Ṽ1(x) = V1(1n).

Observe that, although the honest pre-processing algorithms do not require
the statement or the witness as input, we still provide the (possibly) malicious
machines with x (and w if the prover is malicious). This guarantees that the prop-
erties are preserved even if the algorithm has partial knowledge of the statement
(and possibly the witness) ahead of time.

We further remark that our definition of computationally unique transcripts
is going to be useful only for languages with unique witnesses, since the prover
might be able to produce two accepting transcripts by simply executing the
protocol with two different witnesses. While this suffices for our applications,
the definition can be naturally extended to the k-witnesses case by requiring the
coalitions to output k + 1 distinct valid transcripts.

Steganography-Freeness. In the following, we argue that our conditions
defined above suffice to show that the protocol satisfies steganography-freeness.

Theorem 1 (Steganography-Freeness). Let L be a language with unique
witnesses and let (P,V) be an observer sound zero-knowledge protocol for L with
computationally unique transcripts. Then (P,V) is steganography-free relative to
the observer with partially honest pre-processing.

We defer the proof to the full version.

Multi-execution SF-ZK. The above definition refers to single-execution SF-
ZK where all of the properties are required to hold for a single execution phase,
after the pre-processing is fixed. In the full version of the paper, we extend the
notion of SF-ZK to the multi-execution setting.

4 A Steganography-Free ZK Protocol

Let L̃ be any average-case hard language with unique witnesses and let f :
{0, 1}nOWF → {0, 1}mOWF be a one-way function with an efficiently checkable
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range. Let (WI-P,WI-V) be an HPP-NIWI with unique proofs for the follow-
ing language: LNIWI =

⎧⎪⎨
⎪⎩

(
x, y, w̃,

c0, c̄, c̃

) ∣∣∣∣∣∣∣
∃(w, s, r̃) : ((x, w) ∈ R ∧ Com(r̃; s) = c̄ ∧ Com(0n; r̃) = c̃)

[−1ex] ∨ ∃(r, r̃) : (Com(1; r) = c0 ∧ Com(w̃; r̃) = c̃)

[−1ex] ∨ ∃(w, r, z) : ((x, w) ∈ R ∧ Com(1; r) = c0 ∧ f(z) = y)

⎫⎪⎬
⎪⎭

where the first branch (1) is going to be used by the prover and the second
branch (2) will allow one to simulate without knowing the witness. Interestingly
the third branch (3) is used neither by the honest prover nor by the simulator,
but it is only instrumental to prove the indistinguishability of the two. Finally,
we let (SPS-P,SPS-V) be a three-round SPS-ZK argument system with unique
last messages for the following language:

LSPSZK = {τ | ∃u : WI-P1(u) = τ } .

Fig. 1. Our SF-ZK protocol.

4.1 Our Protocol

Our protocol SF-ZK is formally described in Fig. 1. We describe extensions to
the multi-execution setting in the full version.
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Pre-processing. In the pre-processing phase, the honest prover computes a
commitment to 0 and to some random coins r̃. The former guarantees that, if
the prover’s pre-processing is honest, then it is hard to cheat in the execution
phase, whereas the latter fixes the random coins used later in the execution
phase. The prover also initializes the pre-processing τ of an HPP-NIWI proof
and computes the first message α of an SPS-ZK proof that asserts that τ is
well-formed. The public output of the prover’s pre-processing consists of the
commitments together with the messages (τ, α). The secret state consists of the
random coins used in the pre-processing.

On the other hand, the verifier samples a random image y from the domain
of the one-way function f and computes a commitment c to a randomly sam-
pled second message β of the SPS-ZK proof. Furthermore, it samples a random
instance x̃ of an average-case hard language with unique witnesses. The public
output of the verifier’s pre-processing consists of (c, x̃, y), and the secret state
consists of the random coins used in the pre-processing.

Execution. The execution phase is started by the prover, who sends a commit-
ment c̃ to 0n, using the random coins r̃ fixed in the pre-processing. Then the
verifier replies with the decommitment (β, t) to c and reveals the unique witness
w̃. The prover checks that (β, t) is a valid decommitment for c and computes
the last message γ of the SPS-ZK protocol that certifies that τ is well-formed.
Finally, it computes the proof π using the first branch (1) thereby proving that
c̃ was correctly formed using the random coins committed in the pre-processing
and that x is indeed an accepting instance of L. The verifier simply checks
whether the transcript (α, β, γ) and the proof π verify correctly.

While c̃ might seem purposeless, it is going to be useful in the simulation:
The simulator will spawn a lookahead thread to learn w̃, which will allow it to
rewind the execution to compute c̃ as a commitment to w̃. This in turn allows
it to compute the proof π using the second branch (2), which does not require
knowledge of the witness for x. This is however not a feasible strategy for any
malicious prover (which cannot rewind the execution of the protocol), since it
requires to know w̃ ahead of time.

4.2 Analysis

Parameters. Let n be the security parameter of our scheme, we consider the
following parameters that are (implicitly) given as input to each algorithm of
our building blocks:

– nSPSZK : The security parameter for the SPS-ZK argument (SPS-P,SPS-V).
– nNIWI : The security parameter for the non-interactive witness indistinguish-

able argument (WI-P,WI-V).
– nCOM : The security parameter for the perfectly binding commitment scheme
Com with unique openings.

– nL : The security parameter for the average-case hard language with unique
witnesses L̃.

– nOWF : The security parameter for the one-way function f .
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We require that the parameters satisfy the following relation

2nSPSZK � 2nOWF � 2nCOM � 2nNIWI = 2nL ,

where a � b means that for all polynomial functions a·poly(n) < b. In particular
we require the SPS-ZK argument to be sound against an adversary that runs
in time poly(nSPSZK) and to be simulatable in time O(2nSPSZK). By setting the
security parameter of the underlying perfectly binding commitment scheme to
be also nSPSZK, then one can find the committed message in time O(2nSPSZK) by
exhaustive search.6 We require the one-way function to be hard to invert in time
O(2nSPSZK) but easy to invert in time O(2nOWF), similarly the commitment scheme
is hiding against O(2nOWF) bounded machines but extractable in time O(2nCOM).
Finally, the HPP-NIWI and the average-case hard language shall be hard even
for adversaries running in time O(2nCOM)  O(2nOWF)  O(2nSPSZK).

Security Proof. In the following, we state our main theorems:

Theorem 2 (Soundness). If (WI-P,WI-V) is an HPP-NIWIs with unique
proofs, L̃ is an average-case hard language with unique witnesses, (SPS-P,SPS-V)
is an SPS-ZK argument, and the commitment scheme Com is perfectly binding,
then the argument system SF-ZK in Fig. 1 is computationally sound.

Proof. The proof consists of two steps. In the first step, we prove that it in
present of non-adaptive (selective) security notation in a way that the adversary
is not allow to adaptively choose the statement. In the second step, we invoke
complexity leveraging to lift the reduction to the adaptive settings.

Non-adaptive Soundness. Assume that there exists an x∗ /∈ L and a mali-
cious PPT prover P∗ such that the verifier on input x∗ and interaction with P∗

will accept with probability ε. Let xNIWI := (x, y, w̃, c0, c̄, c̃) We can split this
probability into two parts: Either P∗ cheats in such away that xNIWI /∈ LNIWI (in
which case we will be able to use the soundness of the HPP-NIWI to show that
P∗ would not be successful) or P∗ cheats in such away that xNIWI ∈ LNIWI. In this
case, we show that this event can only occur with negligible probability due to
the average-case hardness of L̃. Let cheat be the event that a malicious prover
causes the honest verifier to accept x∗.

ε = Pr[cheat]
= Pr[cheat|xNIWI /∈ LNIWI ] · Pr[xNIWI /∈ LNIWI ]︸ ︷︷ ︸

ε′

+ Pr[cheat|xNIWI ∈ LNIWI ] · Pr[xNIWI ∈ LNIWI ]︸ ︷︷ ︸
ε′′

6 This instantiation of the perfectly binding commitment scheme used inside the SPS-
ZK protocol is different from the perfectly binding commitment scheme Com used
in our protocol. In particular, we use different security levels for these schemes.
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Bounding ε′. We will first bound ε′ using the soundness of the HPP-NIWI and
the super-polynomial extractability of the SPS-ZK. Assume towards contradic-
tion, that ε′ ≥ 1/poly(n). We then construct a malicious WI-P∗ as follows: WI-P∗

engages with P∗ in a protocol execution where it impersonates the verifier and
computes all of the messages honestly. Let (α, β, γ) be the variables determined
by the transcript of the execution. Then WI-P∗ checks that SPS-V(τ, α, β, γ) = 1
and extracts the witness u from (α, β, γ) in time O(2nSPSZK) (recall the choice of
parameters from Sect. 4.2) if this is the case. If the extraction fails or the tran-
script does not verify, then WI-P∗ aborts. Finally, WI-P∗ outputs (xNIWI, τ, π, u).

It is easy to see that WI-P∗ perfectly simulates the verifier’s preprocessing as
well as the execution phase for P∗. WI-P∗ successfully cheats, if (τ, π) verifies,
extraction is successful, and xNIWI /∈ LNIWI.

Note that 1 ←
〈
P∗(x∗, s1, p2),V1(x∗, s2, p1)

〉
implies that both (α, β, γ) as

well as (τ, π) verify correctly. Assume for the moment that the extraction from
(α, β, γ) is successful with probability 1 − negl(n). Then it holds that

Pr

[
(xNIWI, τ, π, u) ← WI-P∗(1n) :

xNIWI /∈ LNIWI ∧ WI-P1(u) = τ

∧ WI-V(xNIWI, τ, π) = 1

]

≥ Pr[cheat|xNIWI /∈ LNIWI ] · Pr[xNIWI /∈ LNIWI ] · (1 − negl(n))
=ε′ − negl(n) = 1/poly(n) − negl(n) .

Since WI-P∗ runs in time O(2nSPSZK) + poly(n) this would contradict the sound-
ness of the HPP-NIWI. What is left to be shown is that the probability that
the extraction from (α, β, γ) is not successful is bounded by a negligible func-
tion. If this was not the case, then α and the randomness used to compute
it would uniquely determine β (recall the properties of SPS-ZK from Sect. 2).
Therefore we could find the randomness in time O(2nSPSZK) + poly(n) and use
it together with α, to break the hiding property of c = Com(β). It follows that
the extraction must succeed with all but negligible probability. We can conclude
that ε′ ≤ negl(n).

Bounding ε′′. Assume towards contradiction that ε′′ ≥ 1/poly(n). Since x∗ /∈ L,
the definition of LNIWI implies that for an xNIWI ∈ LNIWI there exists an (r, r̃)
such that Com(1; r) = c0 and Com(w̃; r̃) = c̃. However, we can show that this
would allow us to decide L̃ in the average case as follows.

Given a random instance x̃, compute a verifier preprocessing honestly using
x̃ as the random instance of the average-case hard language. The prover P∗

returns its pre-processing and the commitment c̃. Then extract the content of
c̃ in time O(2nCOM). If it contains a valid witness for x̃ return 1, else return
a random bit. Note that if x̃ /∈ L̃ then w̃ does not exist and therefore the
algorithm described above will always output a random bit. On the other hand,
if x̃ ∈ L̃ then we can lower bound the probability of the algorithm outputting
1 by 1/2 + ε′′ = 1/2 + 1/poly(n). Since the described algorithm runs in time
O(2nCOM) + poly(n) this clearly contradicts the average case hardness of L̃ as
specified in Sect. 4.2. We have thus established that ε = ε′ + ε′′ ≤ negl(n) and
SF-ZK is therefore computationally sound.
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From Selective to Adaptive. For the second step of the proof, we rely on
complexity leveraging. Let lx be the domain size of the statement lx = |x|. Let
B against the adaptive security. We set lx to be

2lx � 2nSPSZK � 2nOWF � 2nCOM � 2nNIWI = 2nL .

We construct a reduction which behaves identically as the non-adaptive case,
except that it guesses a statement x and aborts if x 	= x∗. The analysis is
identical to what described above, except that the advantage drops by a factor
at most 1/2lx .

Theorem 3 (Observer Soundness). If (WI-P,WI-V) is an HPP-NIWI
with unique proofs, L̃ is an average-case hard language with unique witnesses,
Com is a perfectly binding commitment scheme with unique openings, and
(SPS-P,SPS-V) is an SPS-ZK argument, then the argument system SF-ZK in
Fig. 1 is observer sound.

Fig. 2. The observer algorithm Θ

Proof. We describe the observer algorithm in Fig. 2. Recall that the observer
soundness definition considers two cases. In one case the prover acts honestly
during the pre-processing phase (P̃ = P1), in the other case the verifier does
(Ṽ = V1). We analyze the two cases separately.

Honest P1. Assume towards contradiction, that there exists an x∗ /∈ L, a mali-
cious prover P∗, and a malicious verifier V∗ such that

1
poly(n)

≤ Pr

[
(s1, p1) ← P1(1n), (s2, p2) ← V∗(x∗),

T := 〈P∗(x∗, s1, p2),V∗(x∗, s2, p1)〉
: Θ(p1, p2, T , x) = 1

]
.

From this it follows that

1
poly(n)

≤ Pr

[
(r, τ) ← P1(1n),

π ∈ T
: WI-V((x, y, w̃, c0, c̄, c̃), τ, π) = 1

]
. (1)

where Eq. 1 stems from the fact that the prover’s pre-processing is honest and the
observer always verifies the proof π. Recall that the statement (x, y, w̃, c0, c̄, c̃) ∈
LNIWI if and only if
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∃(s, r̃) : (x∗ ∈ L ∧ Com(r̃; s) = c̄ ∧ Com(0n, r̃) = c̃)
∨ ∃(r, r̃) : (Com(1; r) = c0 ∧ Com(w̃, r̃) = c̃)
∨ ∃(r, z) : (x∗ ∈ L ∧ Com(1; r) = c0 ∧ f(z) = y)

(2)

By assumption, x∗ /∈ L and Com(0; r) = c0, since the prover’s pre-processing is
generated honestly and the commitment scheme is perfectly binding. Therefore
each of the parts underlined in Eq. 2 is false. By extensions, this makes the
conjunction in each of the three branches false. It follows then that π is a proof for
a false statement given an honestly generated τ , which contradicts the soundness
of the HPP-NIWI.

Honest V1. For this case we can bootstrap the verifier’s honest preprocessing
into a fully honest verifier execution and then simply reduce observer soundness
to regular soundness.

Assume towards contradiction that there exists an x∗ /∈ L, a malicious prover
P∗, and a malicious verifier V∗ such that

1
poly(n)

≤ Pr

[
(s1, p1) ← P∗(x∗), (s2, p2) ← V1(1n),

T := 〈P∗(x∗, s1, p2),V∗(x∗, s2, p1)〉
: Θ(p1, p2, T , x) = 1

]
.

From this it follows that

1
poly(n)

≤ Pr

⎡
⎢⎣

(s1, p1) ← P∗(x∗),

(s2, p2) ← V1(1n),

T :=
〈
P∗(x∗, s1, p2),V2(x∗, s2, p1)

〉 : Θ(p1, p2, T , x) = 1

⎤
⎥⎦ (3)

= Pr

[
(s1, p1) ← P∗(x∗),

(s2, p2) ← V1(1n)
: 1 ←

〈
P∗(x∗, s1, p2),V2(x∗, s2, p1)

〉]
(4)

To see why Eq. 3 holds, first note that the commitment scheme is perfectly bind-
ing and the language L̃ has unique witnesses. Since Θ verifies in line 1 that (β, t)
is a valid decommitment of c and that w̃ is indeed a witness of x̃, it follows that
given the verifier’s honest pre-processing there exists only a unique verifier mes-
sage that does not cause the observer to output 0. For every possible transcript
of the interaction between P∗ and V∗ consider the following two possibilities.
Either the message sent by V∗ is exactly that unique message or it sends any
other message. In the first case, the malicious verifier behaves identically to the
honest verifier and replacing V ∗ by V 2 does not change the resulting transcript
or the output of Θ at all. In the latter case, Θ already outputs 0 for this tran-
script anyway and the only change could be that Θ now outputs 1. Thus we can
conclude that the probability of Θ outputting 1 can only increase. Thus Eq. 3
must hold.

To see that Eq. 4 must hold we simply need to consider the checks per-
formed by Θ in line 3. It’s easy to see that Θ(p1, p2, T , x) = 1 implies that
SPS-V(τ, α, β, γ) = 1 and WI-V((x, y, w̃, c0, c̄, c̃), τ, π) = 1, since the protocols
are public-coin (and therefore publicly verifiable). However, these coincide with
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all checks performed by the honest verifier. Therefore, in an execution between
the malicious prover and the honest verifier, the honest verifier accepts if and
only if the transcript is accepted by the observer. Equation 4 therefore holds.
We’ve thus shown that

1
poly(n)

≤ Pr

[
(s1, p1) ← P∗(x∗),

(s2, p2) ← V1(1n)
: 1 ←

〈
P∗(x∗, s1, p2),V2(x∗, s2, p1)

〉]

which would contradict the soundness of SF-ZK. Therefore, an x∗ and P∗ as
assumed above cannot exist and SF-ZK must also be (selective) observer sound.
The proof for the adaptive observer sound is the same as above.

Theorem 4 (Zero Knowledge). If (WI-P,WI-V) is an HPP-NIWIs with
unique proofs, (SPS-P,SPS-V) is an SPS-ZK argument with unique last message,
f is a one-way function with efficiently checkable range, and Com is a perfectly
binding and computationally hiding commitment scheme, then the argument sys-
tem SF-ZK in Fig. 1 is computationally zero knowledge.

Proof. We specify the zero-knowledge simulator Sim in the following. The simu-
lator keeps a record of its running time and aborts if the number of steps exceeds
2n.

1. During the preprocessing phase the simulator acts exactly like the honest
prover, except that it commits to 1 in c0 ← Com(1, r).

2. In the execution phase, it initializes a counter i = 0 and runs the following
lookahead thread.
(a) Commit to 0n in c̃ using fresh randomness and send c̃.
(b) As a response V∗ either aborts or sends a response (w̃, β, t).
(c) If i = 0 check whether the verifier aborts or (x̃, w̃) /∈ R̃ and abort the

whole simulation if any of these conditions are met, outputting whatever
V∗ outputs. Otherwise set i := 1 and return to step 2a.

(d) If i 	= 0 check whether the verifier aborts or (x̃, w̃) /∈ R̃ and return to
step 2a if this is the case. Otherwise set i := i + 1; if i = 12n exit the
loop, otherwise return to step 2a.

3. Let T be the number of iterations of the previous loop. Let p̃ := 12n/T . Then
the simulator enters in the following loop up to (n2/p̃)-many times.
(a) Use the alternative witness w̃ to compute c̃ := Com(w̃; r∗), using fresh

random coins r∗, and send c̃ to the verifier.
(b) As a response V∗ either aborts or sends a second message (w̃, β, t).
(c) If the verifier aborts or the second message is invalid, return to step 3a,

else exit the loop.
4. If n2/p̃ iterations were reached without a valid w̃ being output by the verifier,

output fail. Else use the alternative witness (r, r∗) to compute π using the
second branch (2) of the HPP-NIWI proof and compute γ honestly. Send
(γ, π) to the verifier.

5. The simulator outputs whatever V∗ outputs.



Steganography-Free Zero-Knowledge 165

We first bound the running time of the simulator and the probability of the
simulator outputting fail.

Lemma 1. Sim runs in expected polynomial time in n.

Proof. Let p(n) be the probability that V∗ outputs a well-formed response given
c̃ computed as in step 2a. Observe that the work of the simulator is strictly
polynomial time except for the number of rewindings, therefore it is sufficient
to bound the number of iterations. Note that from [36] the expected number
of iterations of the first loop is exactly 12n

p(n) . With this observation in mind, we
distinguish between two cases

1. p(n)
p̃ 	= O(1). In this case, we use the trivial bound 2n. However, this case can

be shown to happen with negligible probability by the Chernoff bound.
2. p(n)

p̃ = O(1). In this case we can bound the running time by

poly(n) · p(n) ·
(

12n

p(n)
+

n2

p̃

)
= poly(n) · p(n)

p̃
= poly(n)

which concludes our analysis.

Next we bound the probability that the simulator outputs fail.

Claim. The probability that Sim outputs fail is negligible in n.

Let q(n) be the probability that V∗ outputs a well-formed response given c̃
(computed as in step 3). We state and prove the following helping lemma.

Lemma 2. There exists a negligible function such that q(n) ≥ p(n) − negl(n).

Proof. If p(n) is negligible than it is trivial. Else it can be easily shown via a
two-step argument. Let us define q(n) as q(n) except that in the simulation the
commitment c̄ is computed as the commitment to a random string. Note that in
the real protocol the corresponding opening s is used only after the last message
of V∗ and therefore q(n) = q(n) − negl(n) by the hiding of the commitment
scheme.

Recall that p(n) is defined as the probability of V∗ to abort given c̃ = Com(0)
using fresh randomness and q(n) is defined as the probability of V∗ to abort given
c̃ = Com(w̃) using fresh randomness. Thus we can use V∗ as a distinguisher for
the commitment scheme and it will succeed with probability p(n) − q(n). Since
this value can be bound by a negligible function by the computational hiding of
Com, we have that

p(n) − (q(n) + negl(n)) = p(n) − q(n) ≤ negl(n)

which implies that q(n) ≥ p(n) − negl(n) and concludes our proof.

We are now in the position of proving our claim.
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Proof. Recall that the simulator outputs fail if all n2

p̃ iterations in step 3 are not
successful. We consider two cases.

1. p(n) ≤ 2 · negl(n). In this case the simulator reaches step 3 with negligible
probability and therefore fail happens with the same probability.

2. p(n) > 2 · negl(n). For conceptual simplicity we split the loop in step 3 to n
independent rewinds, each upper-bounded by n

p̃ steps. Then fail happens if all
of the rewinds as not successful. By a routine calculation we obtain that the
expected number of iterations of each rewinding until a successful instance is
found is

1
q(n)

≤ 1
p(n) − negl(n)

<
2

p(n)
= O

(
1
p̃

)
,

where the first inequality is by Lemma2 and last equality is discussed above.
By Markov’s inequality the probability that the simulator tries more than n

p̃

iterations is at most O(1/n). Since we consider n independent instances, the
total probability is bounded by O(1/n)n.

Finally, we show that the distribution induced by the output of the simulator is
computationally indistinguishable from the honest one. Consider the following
sequence of hybrids.

Hybrid H1: The first hybrid is the interaction between the simulator Sim and
the malicious verifier V∗.

Hybrid H2: The last message γ of the SPS-ZK is simulated in time O(2nSPSZK).
Hybrid H3: The simulator inverts the one-way function to obtain z̃ such that

f(z̃) = y and uses it, together with the original witness w and the
randomness r, to compute π by satisfying the third branch (3).

Hybrid H4: The simulator computes c̃ as Com(0n) using fresh random coins.
Hybrid H5: The simulator no longer rewinds the verifier and simply executes

the protocol in a single thread.
Hybrid H6: The commitment c̃ is computed using the committed randomness

r̃, instead of a fresh r∗.
Hybrid H7: The simulator computes π using the original witness (w, s, r̃), with-

out inverting f .
Hybrid H8: The SPS-ZK is no longer simulated and instead computed honestly.
Hybrid H9: The simulator now commits to 0 in c0 = Com(0; r).

It is easy to see that the last hybrid exactly matches the honest execution. We
will show that each δi defined as

δi := |Pr[D(〈Hi(x,w),V∗(x)〉) = 1] − Pr[D(〈Hi+1(x,w),V∗(x)〉) = 1]|

is negligible in n. Note that the simulator Sim runs in expected (super)
polynomial-time, whereas all of the following reductions must terminate in strict
(super) polynomial-time. This issue can be dealt with by truncating Sim to twice
its expected running time. By Markov’s inequality, this reduces its success prob-
ability by at most 1/2.
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Observe that the difference in the first hybrid is that the SPS-ZK protocol is
simulated in super-polynomial time. The simulator simply guesses the challenge
of the verifier ahead of time and restarts the whole execution if the guess was
not correct. The expected number of attempts is in the order of O(2nSPSZK),
however, when the simulator is successful, the transcript of the execution is
statistically close to the transcript of an honest run. This bounds the value of
δ1 (and analogously of δ7) to a negligible function.

The differences δ2 and δ6 can be shown to be negligible with a reduction to the
witness indistinguishability of the HPP-NIWI arguments: The reduction simply
sets π to be the challenge proof and returns the output of the distinguisher.
Note that the random coins of the setup are not required for the simulation.
The reduction runs in time O(2nOWF) + O(2nSPSZK) + poly(n) and therefore the
differences among these hybrids can be bound by a negligible function (recall
the parameter setup from Sect. 4.2).

Note that the fifth hybrid differs from the fourth only in case fail happens,
however by Lemma 4.2 this happens with negligible probability and the bound
on δ4 follows. δ3 and δ5 can be shown to be negligible with a trivial reduction
to the hiding property of the commitment scheme. Note that the reduction runs
in time O(2nOWF) + O(2nSPSZK) + poly (n), however the commitment scheme is
assumed to be hiding for machines bounded by such a runtime. The bound on
δ8 uses an identical argument except that now the reduction runs in (strict)
polynomial time. We can conclude that

|Pr[D(〈P(x,w),V∗(x)〉) = 1] − Pr[D(Sim(x)) = 1]| ≤
9∑

i=1

δi ≤ negl(n) .

Theorem 5 (Computationally Unique Transcripts). If (WI-P,WI-V) is
an HPP-NIWI with unique proofs, L̃ is an average-case hard language with
unique witnesses, f is a one-way function, (SPS-P,SPS-V) is an SPS-ZK argu-
ment with unique last messages, and the commitment scheme Com is perfectly
binding and has unique openings, then the argument system SF-ZK in Fig. 1 has
computationally unique transcripts.

Proof. Recall that a pair of machines (P̃1, Ṽ1) is admissible if at least one of
the two is identical to an honest generation algorithm. We treat the two cases
separately.

Honest P1. First observe that the verifier only sends the decommitment (β, t)
and the witness w̃. Since the commitment scheme is perfectly binding and has
unique decommitments and Θ verifies that the decommitment is correct, then
(β, t) is uniquely determined by the preprocessing. Further, L̃ has unique wit-
nesses, therefore w̃ is also fixed by the preprocessing, for any choice of x̃.

On the prover’s side the tuple (c̃, γ, π) collects all messages sent in the exe-
cution. Since the prover’s preprocessing phase is honest, c0 is a commitment to
0. Since the commitment scheme is perfectly binding and has unique decommit-
ments, then c̄ from the pre-processing fixes both (s, r̃). If we assume towards
contradiction that there exists two different accepting c̃ and ĉ, by the soundness
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of π we have that c̃ = Com(0n, r̃) and ĉ = Com(0n, r̂), where c̄ = Com(r̃, s) and
c̄ = Com(r̂, s). However this is a contradiction since the commitment has unique
openings. It follows that r̃ = r̂ and therefore c̃ is unique. Recall that both the
HPP-NIWI and the SPS-ZK have unique last messages, and therefore (γ, π) are
uniquely determined by the pre-processing.

Honest V1. Given an honest verifier pre-processing p2 and a (possibly malicious)
prover pre-processing p1 for a certain statement x with unique witnesses, let
T1 := (c̃, β, t, w̃, π, γ) and T2 := (ĉ, β̂, t̂, ŵ, π̂, γ̂) be the two transcripts such that
Θ(p1, p2, T1, x) = Θ(p1, p2, T2, x) = 1. We shall prove that T1 = T2 with all but
negligible probability.

(β, t) = (β̂, t̂) : Since the commitment scheme is perfectly binding and has unique
openings and c = Com(β; t) is fixed in the pre-processing, this equality must hold.

w̃ = ŵ : The witness is uniquely determined by the statement x̃, since L̃ has
unique witnesses.

γ = γ̂ : Fix τ and (α, β), which are all part of the pre-processing, then γ is unique
since the SPS-ZK has unique last messages.

π = π̂ : First note that there must exist some u such that WI-P1(u) = τ . To see
why this is the case, recall either the transcript of the SPS-ZK proof uniquely
determines the witness or α (together with the randomness used to compute it)
uniquely determines the challenge β. If a valid u does not exist, then we are left
with the latter case, which implies that we can guess the content of c running
in time O(2nSPSZK). This contradicts the hiding property of Com (refer to Sect. 2
for further discussion). It follows that τ is well-formed except with negligible
probability.

Therefore both π and π̂ are generated using the witness for one of the fol-
lowing branches:

∃(s, r̃) : (x∗ ∈ L ∧ Com(r̃; s) = c̄ ∧ Com(0n, r̃) = c̃)
∨ ∃(r, r̃) : (Com(1; r) = c0 ∧ Com(w̃, r̃) = c̃)
∨ ∃(r, z) : (x∗ ∈ L ∧ Com(1; r) = c0 ∧ f(z) = y)

We bound the probability that π or π̂ is a valid proof for the second branch (2)
in the following. Assume without loss of generality that such proof is π. Since the
commitment scheme is perfectly binding we can extract w̃ from c̃ (by exhaustive
search) in time O(2nCOM). Note that the extraction is successful with probability 1
since c̃ is perfectly binding. Recall that Ṽ1 is honest by assumption and therefore
we can plug in a hard instance x̃ and break the average-case hardness of L̃ from
the first message of the prover.

On the other hand, if the third branch (3) is proven with non-negligible
probability then we can invert y in time O(2nSPSZK) + poly (n) by extracting
u from (α, β, γ) and running the polynomial-time extractor of the HPP-NIWI
proof. It follows that both proofs are for the first branch (1), which implies that
they are identical.
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c̃ = ĉ : As we argued above, π must be a proof for the first branch. Since (s, r̃)
are fixed in the pre-processing by c̄, then c̃ is also uniquely determined, unless π
is a proof for a false statement. This happens only with negligible probability. ��
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Abstract. Compressed Σ-Protocol Theory (CRYPTO 2020) presents
an “alternative” to Bulletproofs that achieves the same communication
complexity while adhering more elegantly to existing Σ-protocol theory,
which enables their techniques to be directly applicable to other widely
used settings in the context of “plug & play” algorithmics. Unfortunately,
their techniques are restricted to arithmetic circuits over prime fields,
which rules out the possibility of using more machine-friendly moduli
such as powers of 2, which have proven to improve efficiency in applica-
tions. In this work we show that such techniques can be generalized to
the case of arithmetic circuits modulo any number. This enables the use
of powers of 2, which can prove to be beneficial for efficiency, but it also
facilitates the use of other moduli that might prove useful in different
applications.

In order to achieve this, we first present an instantiation of the main
building block of the theory of compressed Σ-protocols, namely compact
vector commitments. Our construction, which may be of independent
interest, is homomorphic modulo any positive integer m, a result that
was not known in the literature before. Second, we generalize Compressed
Σ-Protocol Theory from finite fields to Zm. The main challenge here is
ensuring that there are large enough challenge sets as to fulfill the nec-
essary soundness requirements, which is achieved by considering certain
ring extensions. Our techniques have direct application for example to
verifiable computation on homomorphically encrypted data.

1 Introduction

Zero knowledge proofs, introduced in [36], constitute an important tool used all
across cryptography to build several other powerful constructions, and they also
find applications outside cryptography thanks to their considerable flexibility
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and high potential. In a nutshell, a zero knowledge proof enables a prover to
convince a verifier that a given statement belongs to certain language, without
revealing anything else beyond this fact. In addition, in a zero knowledge proof
of knowledge the verifier gets convinced that the prover actually knows certain
information, without leaking the information itself.

Zero knowledge proofs are used thoroughly in several cryptographic construc-
tions such as secure multiparty computation and other distributed protocols to
prove, without leaking sensitive information, that certain messages are “well
formed” (e.g. [10,34]). In many cases this turns out to be essential to be able to
support “active adversaries”, which model real-world attackers who can deviate
from the specification of the cryptographic construction at hand. Furthermore,
thanks to a rich and fruitful series of works [2,9,14,15,19,32,37,43,44], several
zero knowledge protocols with a wide range of desirable properties and trade-offs
exist today.

Typically, zero knowledge techniques operate by somehow translating general
statements to arithmetic statements, ultimately dealing with additions and mul-
tiplications over some algebraic structure. Traditionally, this arithmetic happens
over what is known as a finite field, such as Zp, the set of integers modulo p,
for prime p. The tendency to use this type of structures is also present in other
areas such as secure multiparty computation [1,17,23,25] and, in essence, this
is due to the fact that these structures possess very nice properties that make
them “easy” to work with.

Finite fields, on top of being simple and well-structured algebraic construc-
tions, can be used in a wide range of applications. For instance, the set {0, 1}
with the XOR and AND operations is a finite field (Z2, integers modulo 2), so any
binary circuit as traditionally known from electrical engineering can be expressed
in terms of arithmetic over the field Z2. Additionally, by choosing p to be large
enough so that wrap-around modulo p does not occur, Zp can be used to emu-
late integer arithmetic, which facilitates numerical applications. However, from
a mere use-case standpoint, the choice of arithmetic modulo a prime number
may seem a bit arbitrary; after all, what is so special about prime numbers?1

Depending on the context, other moduli may be considered equally or per-
haps even more important. A natural example is the case of arithmetic modulo
powers of two like 264 or 2128, since this corresponds to the type of basic arith-
metic performed by arithmetic logic units and is expected to lead to improve-
ments in efficiency, as is the case for secure multiparty computation [23,25], or
certain zero-knowledge protocols [6]. Some other examples may include moduli
structured in specific ways, such as RSA integers N = p · q for large prime num-
bers p and q, and variants of this, which could benefit applications making use
of these constructions. Finally, we observe that, in mathematics, it is customary
and quite enlightening to gradually reduce/abstract the required properties of
a given construction to see, in essence, what are the features or patterns that

1 Of course, within mathematics, prime numbers hold a special throne, but from an
application point of view modular arithmetic is essentially the same regardless of
the chosen modulus.
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enable certain propositions or constructions to hold. It is in this direction that it
becomes natural to wonder if nice and well-behaved algebraic structures such as
finite fields are really “necessary” within the context of zero knowledge proofs,
or if they are simply more “convenient” to deal with.

Compressed Σ-Protocols. Of particular importance among existing zero knowl-
edge proof techniques is the concept of Σ-protocols [21]. These tools constitute
honest verifier zero knowledge proofs of knowledge, meaning that they enable a
verifier to be convinced that a prover knows certain secret data, and this data is
not leaked assuming that the verifier behaves honestly. Σ-protocols have proven
to be an essential tool for building more complex protocols, like actual malicious
verifier zero knowledge proofs, but also more elaborate systems such as proofs
of disjunctions and proofs of some-out-of-many statements [24], identification
schemes [42], among many others. They have also been used in contexts such as
maliciously secure multiparty computation with a dishonest majority (e.g. [10]).

In [3], the authors presented a series of techniques for compressing Σ-
protocols, in a way that adheres to the existing theory of Σ-protocols and there-
fore inherits all the results and applications from the field. Other works such
as [15] achieved similar results in terms of communication efficiency, but were
presented as a replacement for standard Σ-protocol theory and, as a result, do
not serve as a building block for constructions making use of Σ-protocols, or at
least not without any (typically non-trivial) adaptation.

The results in [3] shed an important light on the expressibility and efficiency
of the Σ-protocol framework. However, as is the case with most of the literature
on interactive proofs and zero knowledge proofs, their techniques are restricted
to finite fields, which is made evident from the fact that they use several tools
restricted to finite fields such as polynomial interpolation or Pedersen commit-
ments, among others. Given the importance of this general theory, a worthy goal
is then to extend the results in [3] to the setting in which the algebraic structure
under consideration is not necessarily a finite field Zp. This would enable the use
of these tools in a much wider range of applications and scenarios, and it could
also potentially boost its efficiency by considering rings of the form Z2k , as seen
in works such as [6]. In addition, as discussed earlier, such study would make
more clear what is the inherent reach and limitation of the theory on compressed
Σ-protocols, in terms of the underlying algebraic structure.

1.1 Our Contribution

In this work we explore an extension of the compressed Σ-protocol framework
from [3], from the case in which the algebraic structure is a field of the form Zp,
to the more general setting of Zm, for an arbitrary positive integer m. Our results
show that compressed Σ-protocols for partial openings over Zm, where a prover
shows that it knows how to open a commitment to a vector that maps to a given
value under certain Zm-linear map, are possible in a direct and efficient manner,
without the need to “emulate” arithmetic using existing field-based techniques.

Our techniques inherit all the “plug & play” applications of [3], and in par-
ticular, they can be used in a wide range of settings in which Σ-protocols prove
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useful, without the restriction of having a prime modulus. As an example of this,
we show in Sect. 6 an application to the domain of efficient verifiable computation
schemes on encrypted data, where [13] offered a framework that can deal effi-
ciently with the general case in which the ciphertext space of the homomorphic
encryption scheme is a polynomial ring with coefficients in a ring Zm. Some of
their constructions require commit-and-prove arguments for certain statements
(mainly linear) defined over Zm and over extension Galois rings. They leave
open the existence of succinct arguments that work directly over such rings. Our
results are well suited for this application and can be directly plugged in that
framework.

At a high level, our results are obtained as a combination of the following
two main contributions.

Compact Vector Commitments over Zm. One of the core ingredients in the con-
text of zero-knowledge proofs, and in particular [3], are (vector) commitment
schemes allowing a prover to commit to long vectors of (secret) information.2

These must be homomorphic over the given algebraic domain, which is Zm for an
arbitrary integer m in our setting. In [3] different instantiations of this construc-
tion are considered, namely Pedersen commitments and also RSA-based com-
mitments. However, these constructions are restricted to m being a prime, and,
besides a few exceptions that will be discussed in Sect. 1.2 below, no construction
of a compact vector commitment scheme with homomorphism over Zm for an
arbitrary m is known. To tackle this issue we present in Sect. 4, as a contribution
of potential independent interest, an efficient construction of said commitment
schemes. This is achieved by first abstracting and generalizing a template present
in several previous schemes like Pedersen’s to obtain a compact vector commit-
ment scheme from a single-value construction, and then focusing on instantiating
the latter type of commitments. Simply using homomorphic commitments over
the integers, such as the one by Damg̊ard and Fujisaki [26], does not achieve the
properties needed for their application in the context of Σ-protocols: we need
to guarantee that opening a commitment to a linear combination modulo m of
committed messages does not reveal any additional information about the initial
messages. Integer commitments would reveal too much, namely the same linear
combination over Z. Instead, we show a construction where, depending on the
parity of m, we either rely on the hardness of finding roots over RSA groups, or
factoring.

Compressing Mechanism over Zm. In order to compress a basic three-move Σ-
protocol, the work of [3] resorts to using an efficient proof of knowledge to handle
the last message in such a protocol, which constitutes the prover’s response to
the verifier’s challenge. In [3], the proof of knowledge used is an adaptation of
Bulletproof’s folding technique [14,15]. This is not restricted to finite fields per

2 We note that [18] additionally requires a vector commitment scheme to admit a
protocol for opening individual coordinates of the committed vector. We do not
impose this requirement and refer to a vector commitment scheme simply as a scheme
for committing to vectors.
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se, but it does require large enough exceptional sets, also known as challenge
sets, for it to obtain reasonably small soundness error. If m is prime, and in
general, if m does not have small prime factors, then such sets over Zm exist,
but if m is divisible by a small prime then this does not hold. To address this
issue, we resort to considering ring extensions of the form Zm[X]/(f(X)) for a
polynomial f(X), which increases the sizes of the required exceptional sets. We
show in Sect. 5 that our commitment construction is compatible with this type
of arithmetic, and that this leads to a natural adaptation of the results from [3]
from the field setting to Zm, for an arbitrary m.

1.2 Related Work

Compressed Σ-protocol theory [3] presents a Σ-protocol for proving knowledge
that a vector underlying a given commitment satisfies certain linear relation. The
linear communication complexity of this initial Σ-protocol is then compressed
down to logarithmic by adapting the techniques from [14,15]. Additionally, in [3]
it is shown how to linearize non-linear relations, showing that arbitrary NP
statements can be proven with logarithmic communication complexity by using
compressed Σ-protocols. As we have already mentioned, the techniques in the
references cited above are mostly suitable when the computation domain is a
finite field Zq.

An instantiation of compressed Σ-protocol theory in the context of lattices is
presented in [4]. Lattice-based (compressed) Σ-protocols allow provers to prove
knowledge of a short homomorphism preimage, i.e., a preimage of bounded norm.
However, these protocols have the additional complication that the norm bound
β of the secret witness, known by an honest prover, differs from the norm bound
τ · β that the prover ends up proving. The factor τ is referred to as the sound-
ness slack. In most practical scenarios, this relaxed functionality is sufficient.
However, due to the soundness slack, lattice-based compressed Σ-protocols have
polylogarithmic, instead of logarithmic, communication complexity. More pre-
cisely, lattice-based compressed Σ-protocols require the prover to send logarith-
mically many messages to the verifier, but due to the soundness slack, which
grows with the size of the witness, larger protocol parameters are warranted.
For this reason, the size of individual messages grows (logarithmically) with
the size of the witness. These complications would be attenuated by using ring
extensions as we do here, so their techniques do not directly fit our purpose.

Further, [16] presents an adaptation of Bulletproofs defined over the integers
Z. Their techniques allow a prover to prove knowledge of a vector of bounded inte-
gers satisfying arbitrary constraints captured by a circuit over Z. However, Block
et al. [12] recently found a gap in the analysis of [16]. A non-trivial adaptation,
increasing the communication complexity from logarithmic to polylogarithmic,
was required to overcome this issue [12].

By appropriately encoding vectors x ∈ Z
n
m as (bounded) integers, we thus

obtain a zero-knowledge proof system for relations defined over the ring Zm for
an arbitrary m ∈ N. However, this indirect approach results in polylogarith-
mic communication complexity, while our construction works directly over Zm
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and achieves O(log n log log n) communication complexity. Moreover, it cannot
harness the efficiency improvements foreseen when the arithmetic takes place in
rings Zm, with m = 264 or m = 2128, corresponding to machine computations.
These efficiency improvements have already been demonstrated in multiparty
computation applications [23,25], and in zero-knowledge proof systems [6].

Zero knowledge for more general rings has not been studied in great detail,
to the best of our knowledge. The only works we are aware of are Rinocchio [30],
which presents a succinct non-interactive arguments of knowledge (SNARK) pro-
tocol for statements represented as circuits over general commutative rings hav-
ing large enough exceptional sets, and the “Appenzeller to Brie” zero-knowledge
protocol from [7]. None of these works are based on Σ-protocols.

Finally, in terms of homomorphic and compact vector commitments, to the
best of our knowledge, no previous work has tackled the case in which the under-
lying algebraic structure is Zm, for an arbitrary m. Most existing constructions
only work for m a prime, as is the case with Pedersen commitments [41] and also
constructions based on homomorphic encryption such as ElGamal [27]. Further-
more, schemes such as Paillier [40] or Okamoto-Uchiyama [39] operate over non-
prime modulus, but these are still very structured (e.g., N = PQ or N = P 2Q).
Even many lattice-based homomorphic commitments such as [8,11] require a
prime modulus so that their associated algebraic structure factors nicely. Homo-
morphic commitments over Z2k exist, such as the Joye-Libert construction [38],
but it is not clear how to generalize this approach to other m and moreover it
requires RSA moduli whose bitlength is linear on k, while in our instantiation
we use standard RSA moduli of length independent of k.

2 Technical Overview

As a starting point, we begin with the theory of compressed Σ-protocols pre-
sented in [3], and analyze in detail which parts are inherently dependent on
the underlying algebraic structure being Zp for a prime number p. Let us begin
with a short overview of the techniques in [3], which will be followed by the
aforementioned analysis.

Overview of the Techniques in [3]. The basic “pivot” presented in [3], from
which most of their results are derived, is a Σ-protocol that enables a prover to
convince a verifier that, given a commitment and certain value, he knows how
to open that commitment to a vector that maps, under a some public linear
mapping, to the given value. More precisely, let G be a finite abelian group of
prime order q. Let P be a Pedersen commitment P = hγ

∏n
i=1 gxi

i to a vector
x = (x1, . . . , xn) ∈ Z

n
q , where the g1, . . . , gn, h are uniformly random elements

from G sampled in a setup phase. Also, let L : Zn
q → Zq be a linear form, and

let y ∈ Zq be a given value. The authors of [3] devise a communication efficient
Σ-protocol that enables a prover to prove knowledge of x, the vector underlying
the commitment P , while proving that this vector satisfies L(x) = y. At a high
level, such protocol is achieved by first considering a basic and natural three-
move Σ-protocol for this relation, which would involve the prover sending a long
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response to the challenge provided by the verifier, and then optimizing this last
step by making use of a more efficient proof of knowledge of this response, which
is derived from the techniques in Bulletproofs [14,15].

The basic three-move Σ-protocol looks as follows:

1. The prover samples r ← Z
n
q and ρ ← Zq, and sends t = L(r) and A =

hρ
∏n

i=1 gri
i to the verifier;

2. The verifier samples a challenge c ← Zq to the prover;
3. The prover responds with z = cx + r and φ = cγ + ρ, and the verifier checks

that hφ
∏n

i=1 gzi
i = AP c and L(z) = cy + t.

In the second part, instead of the prover sending z and φ as the last step
of the protocol above, the prover uses a more efficient proof of knowledge to
prove to the verifier that he knows z and φ satisfying hφ

∏n
i=1 gzi

i = AP c and
L(z) = cy + t. This proof has logarithmic (in n) communication complexity, and
it is based on the core pivot of the Bulletproof protocol [14,15]. It is quite difficult
to provide a general intuition on these techniques in a few paragraphs but, in a
nutshell, they consist of splitting the data into two halves, and combining them
via a new challenge that makes it hard for the prover to cheat. This can be
recursed to obtain logarithmic communication.

Dependencies on Zq for a Prime q. At this point, we can identify two main
locations in the protocol from [3] that seem to depend heavily on the algebraic
structure being Zq for a prime q.

– Challenges and soundness. To ensure low cheating probability, challenges are
sampled by the verifier to somehow “randomize” the response the prover
needs to provide. Ultimately, to show special soundness, one must show that
successfully replying to multiple challenges enables us to extract a witness.
This is typically done by solving a linear equation, or more generally, a set
of linear equations. Such approach proves difficult when not operating over a
field given the lack of invertible elements.

– Homomorphic commitments. The techniques from [3] depend on a commit-
ment scheme that is homomorphic over the desired algebraic structure. We
considered above Pedersen commitments, but the results from [3] include
other constructions whose security depends on different assumptions such as
Strong RSA and Knowledge-of-Exponent, and Lattices were considered in
[4]. All of these techniques, however, require a specific type of modulus. For
instance, Pedersen commitments are defined over cyclic groups, and the con-
struction from [3] based on the Strong RSA assumption only allows for RSA
moduli.

Our Approach to Extend to Zm for Any m

– Challenges and soundness. Fortunately, we can address the issue of soundness
and non-invertibility by sampling challenges from an exceptional set, which
consists of elements whose non-zero pairwise differences are invertible. This
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approach has been used in quite a few works in the context of secure mul-
tiparty computation [1], but also recently in zero-knowledge proofs [30]. For
some choices of m, Zm may not admit large enough exceptional sets, but this
can be fixed by considering a ring extension of Zm of large enough degree.

– Homomorphic commitments. Arguably, the biggest difficulty in extending the
techniques in [3] to any ring of the form Zm lies in efficiently and securely
instantiating the homomorphic commitment scheme used to hide/bind the
vectors on which statements are proved. Traditionally, most commitment
schemes that support any notion of homomorphism, do so modulo very struc-
tured integers. For example, constructions based on discrete-log-type assump-
tions typically work modulo a prime, since operations are carried out over a
cyclic group. Alternatively, systems based on RSA-type assumptions tend to
operate either modulo a prime, or modulo products of two primes.

To address this difficulty we present, as a contribution of potential inde-
pendent interest, a novel construction of a vector commitment scheme that is
homomorphic modulo m, for an arbitrary integer m. Our construction follows a
two-step approach. First, we show how to derive a compact vector commitment
scheme from any single-value commitment scheme. This consists, in a nutshell,
of committing using the single-value scheme to a uniformly random linear com-
bination of the coordinates of the desired vector, making sure to randomize
the commitment with a commitment to zero. This approach is already present
in other compact commitment schemes such as Pedersen’s, and in this work
we present an abstraction of this “compactification” technique, together with a
generalization to the setting in which the modulus is any integer m.

Second, we provide an instantiation for the homomorphic single-value com-
mitment scheme. We provide two constructions depending on the parity of m.
For odd m we propose a generic template based on what we call commitment-
friendly groups, which are essentially groups where exponentiating to all primes
dividing m leads to a collision-resistant function. These groups can be used to
obtain a single-value commitment scheme defined as Compk=a(x, r) = (am)xrm.
This is clearly hiding, and it can be proven to be binding under the assumption
that p-th roots are hard to find, for any prime p dividing m. Furthermore, we
instantiate commitment-friendly groups with an RSA group Z

∗
N .

The template above does not directly work for m even given that the resulting
group cannot be commitment-friendly: raising to a square power clearly leads to
collisions since x2 = (−x)2. To address this complication, we instead work on a
subgroup of Z∗

N , containing all elements in Z
∗
N having Jacobi symbol 1. This way,

even though it still holds that x2 = (−x)2 in this group, we can carefully choose
N in such a way that this does not play any effect into the binding property.

3 Preliminaries

Some General Notation. Let m be a positive integer. The ring of integers modulo
m is denoted by Zm. Vectors are denoted by bold letters, like x and y, and their
coordinates will be denoted by the same letter with normal font, e.g. xi and yi.
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The notation x + y mod m represents addition modulo m coordinate-wise. We
will omit the “mod m” when it is clear from context. Given a finite set A, a ← A
denotes sampling a uniformly random value a from A.

3.1 Vector Commitments

At a high level, a vector commitment over Zn
m enables a party to compute some

data from an n-dimensional vector over Zm in such a way that (1) the derived
data does not reveal anything about the original vector and (2) if the party
decides to “open” the vector (e.g. announce it to other parties) at a later point,
then the additional computed data ensures he cannot “change his mind” by
announcing a different vector.

Definition 1 (Vector commitments). A homomorphic vector commitment
scheme for Z

n
m is a tuple (G,Com, R), where G is a probabilistic polynomial time

algorithm, called the key generation algorithm, and Com, R are polynomial time
computable functions, satisfying the following syntax.

– G(m,n, κ) outputs a public key pk.
– Compk takes as input the public key pk, a vector x ∈ Z

n
m and a uniformly

random r sampled from R, and produces a string c. We assume that the
image. of Compk is a finite group, and that the group operation (for which we
use multiplication notation) can be computed efficiently given pk.

– Rpk takes as input the public key pk and produces as output an element of R.
It receives different possible inputs which will be clarified below. We abbreviate
by R when clear from the context.

Let pk ← G(m,n, κ). We require the following properties.

– Perfect Hiding. For any x,x′ ∈ Z
n
m, the distributions of Compk(x, r) and

Compk(x′, r′) for uniformly random r, r′ ∈ R are identical.
– Computational Binding. For any PPT A, consider the following experi-

ment: Send pk to A, who wins the game if it outputs (x, r,x′, r′) such that
x �= x′ and Compk(x, r) = Compk(x′, r′). Then A wins with negligible proba-
bility (over the choice of pk and the random coins of A).

– Homomorphic property. It holds that3 Compk(x, r) · Compk(x′, r′) =
Compk(x + x′, R(x,x′, r, r′)), and Compk(x, r)−1 = Compk(−x, R(x,−1, r)).

– Randomized property. For any x′,x ∈ Z
n
m, if at least one of r or r′ is

chosen uniformly at random in R, then R(x,x′, r, r′) is uniform in R.

Note that the homomorphic property implies that for commitment c =
Compk(x, r) and integer a, ca can be opened as a · x (modulo m). We write the
associated randomness as R(x, a, r), i.e., Compk(x, r)a = Compk(a·x, R(x, a, r)

)
.

On the other hand, the randomization property will enable us to randomize
commitments by multiplying by a random commitment: if one opens a product
commitment Compk(x+x′, R(x,x′, r, r′)), then, as long as one of r, r′ is uniform,

3 Note that we allow the R-function to take both 1 (zero-openings), 3 and 4 arguments.
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the only information this reveals on x,x′ is x + x′ mod m. The combination of
these two facts will be essential in the Sigma-protocols where, given a commit-
ment to secret x, the prover first commits to random x′ and then opens x+a ·x′

for challenge a. This should not give information about x. We remark that using
an integer commitment such as the one in [26] falls short in our scenario for a
similar reason: given commitments to x, x′ opening their sum over Z, x + x′,
reveals more information about x,x′ than opening x + x′ mod m.

Single-Value Commitment. We consider the notion of single-value commit-
ment scheme. A single-value commitment scheme is a vector commitment scheme
that only allows n = 1. However, for our needs, we impose the following addi-
tional condition on single-value commitment schemes.

Definition 2. A single-value homomorphic commitment scheme for Zm is a
homomorphic vector commitment scheme for Z

n
m that only allows n = 1, and

has the following additional property.

– Zero-commitment opening. For any single-value commitment c, the com-
mitment cm can be opened as zero. More specifically, we have that4 cm =
Compk(0, R(c)).

This property implies that cm can be opened by a party who possibly
did not create c. The fact that cm is a commitment to 0 is already implied
by the homomorphic property implies given that, if c = Compk(x, r), then
cm = Compk(m · x, R(x,m, r)) = Compk(0, R(x,m, r)); but the above prop-
erty further ensures that the corresponding randomness can be derived from c
alone. Intuitively, the reason why this property is needed is the following. The
commitment schemes we consider in this work are homomorphic modulo m, i.e.
their message space forms a module over Zm, and (linear) operations over com-
mitments should correspond to the analogue operations over the message space.
Nevertheless, we are only assuming that the set in which the commitments live
is a finite group, and we do not assume anything about its order. The zero-
commitment property ensures that, even though this group’s exponent may not
be a divisor of m (so cm may not equal the identity of the group), raising to m
still leads to commitments that can be easily dealt with. We use this property,
for example, in Theorem 2 when we prove the homomorphic property of our
vector commitment scheme.

3.2 Interactive Proofs

In this work we consider interactive proofs that, given an NP-relation R, enable
a prover to prove, to a verifier, knowledge of a witness w with respect to a given
statement x, i.e., (x;w) ∈ R. In this work we consider public coin interactive
proofs in which the messages sampled by the verifier are uniformly random.

4 Here we, once again, abuse notation and let R take a commitment as input.
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An interactive proof is (perfectly) complete (or satisfies completeness) if for all
inputs (x;w), if (x;w) ∈ R, then the verifier outputs accept with probability
1. Further, informally, an interactive proof is said to be knowledge sound with
knowledge error κ if a dishonest prover without knowledge of a witness can not
succeed is convincing the verifier with probability larger than κ. For a formal
definition we refer to [33].

We also consider the notion of (k1, . . . , kμ)-special-soundness or more pre-
cisely (k1, . . . , kμ)-out-of-(N1, . . . , Nμ) special-soundness. We follow the nota-
tion of [4]. To this end, let (P,V) be a (2μ + 1)-move public-coin interactive
proof. Moreover, we assume the verifier to sample its i-th challenge from a
challenge set Ci of cardinality Ni. The following defines a (k1, . . . , kμ)-tree of
transcripts for (P,V) to be a set of K = k1 · · · kμ protocol transcripts of the
form (a1, c1, a2, . . . , cμ, aμ+1) that are in a certain tree structure. For a graphical
representation see [4].

Definition 3 (Tree of Transcripts). Let k1, . . . , kμ ∈ N. A (k1, . . . , kμ)-tree
of transcripts for a (2μ + 1)-move public-coin protocol (P,V) is a set of K =∏μ

i=1 ki transcripts arranged in the following tree structure. The nodes in this tree
correspond to the prover’s messages and the edges to the verifier’s challenges.
Every node at depth i has precisely ki children corresponding to ki pairwise
distinct challenges. Every transcript corresponds to exactly one path from the
root node to a leaf node.

Definition 4 ((k1, . . . , kμ)-out-of-(N1, . . . , Nμ)Special-Soundness).A (2μ+
1)-move public-coin protocol (P,V) for relation R, where V samples the i-th chal-
lenge from a set of cardinality Ni ≥ ki for 1 ≤ i ≤ μ, is (k1, . . . , kμ)-out-of-
(N1, . . . , Nμ) special-sound if there exists a polynomial time algorithm that, on
input a statement x and a (k1, . . . , kμ)-tree of accepting transcripts outputs a wit-
ness w such that (x;w) ∈ R. We also say (P,V) is (k1, . . . , kμ)-special-sound.

It is well known that, for 3-move protocols, k-special-soundness implies
knowledge soundness, but only recently it was shown that more generally,
for public-coin (2μ + 1)-move protocols, (k1, . . . , kμ)-special-soundness tightly
implies knowledge soundness [4].

Theorem 1 [4]. A (k1, . . . , kμ)-out-of-(N1, . . . , Nμ) special-sound interactive
proof is knowledge sound with knowledge error

κ = 1 −
μ∏

i=1

(
1 − ki − 1

Ni

)
.
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With regards to zero-knowledge, as typical with Σ-protocols, we restrict
our attention to special honest-verifier zero-knowledge (SHVZK), which requires
that, given a statement x and a set of uniformly random verifier messages, it is
possible to produce (without knowing any witness) an accepting transcript that
follows the same distribution as an honest interaction between the prover and
the verifier.

4 Vector Commitments over Zm

In this section we present one of our main contributions, namely the construction
of a compact modulo-m homomorphic vector commitment scheme. In Sect. 4.1
we show a generic method to obtain a compact vector commitment scheme from
any single-value commitment scheme. In Sect. 4.2, we present a construction of
a single-value commitment scheme based on what we call commitment friendly
groups. We also present an instantiation of commitment friendly groups that,
unfortunately, is restricted to odd values of m, since a similar instantiation for
even m would require an expensive set-up. To address this issue, we present
in Sect. 4.3 a construction of single-value commitment schemes for the case in
which m is even.

4.1 Vector Commitments from Single-Value Commitments

Let (G′,Com′, R′) be a single-value commitment scheme for Zm. The goal of this
section is to derive from this scheme, for any integer n > 0, a compact vector com-
mitment scheme (G,Com, R). At a high level, our construction generalizes the
approach followed in Pedersen’s construction to obtain compact commitments
to long vectors, by taking a “random linear combination in the exponent”.

VCm,n: Vector Commitment Scheme for Z
n
m

(G′,Com′, R′) is a single-value commitment scheme for elements over Zm

– G, on input n, m, κ, proceeds as follows.
1. Run pk′ = G′(m, κ).
2. For i = 1, . . . , n, sample ai ← Zm and ri ← R. Set gi = Com′

pk′(ai, ri)
3. Output pk = (pk′, g1, . . . , gn).

– Given x = (x1, . . . , xn) and r ∈ R as input, Compk outputs Com′
pk′(0, r) ·∏n

i=1 gxi
i .

We remark that in some cases, including our instantiations, the gi’s can be
sampled obliviously (without knowing ai) and hence without a trusted set-up. As
we shall see in a moment, there is a very efficient reduction that shows that the
binding property holds in VCm,n, assuming that it holds on the underlying single-
value commitment scheme, with only a 1/2 factor loss (which is independent of
n) in terms of the success probability of the adversary attacking the binding
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property, i.e., the adversary trying to output two different openings for the same
commitment. In addition, observe that the vector commitment scheme VCm,n is
compact, given that a commitment is made of a homomorphic combination of
single-value commitments.

Theorem 2. When based on a single-value homomorphic commitment scheme
for Zm satisfying Definition 2, VCm,n is a homomorphic vector commitment
scheme for Z

n
m, according to Definition 1.

Proof. To see that the perfect hiding property holds, begin by observing that,
by construction of the gi’s and the homomorphic property of the single value
scheme, we have Compk

(
x, r

)
= Com′

pk′

(∑n
i=1 aixi, s

)
· Com′

pk′(0, r), for some
s that can be computed by applying the R-function of the single value scheme
several times on inputs x and r1, . . . , rn. Perfect hiding now follows immediately
from the perfect hiding property of the underlying single-value scheme, together
with its randomization property, which ensures that the randomness appearing
in the overall commitment above is uniformly random.

For the the binding property, assume the existence of an adversary A that
wins the binding experiment for VCm,n with probability ε. We will show that
such an adversary can be used to build an adversary B that breaks binding
experiment of the original single-value scheme with probability at least ε/2.
Since ε is negligible, given that the underlying single-value scheme satisfies the
binding property, we obtain that VCm,n satisfies the property as well.

We define the algorithm B as follows. B gets a public key pk′ as input, and
then expands this to a public key pk = (pk′, g1, . . . , gn) following the definition
of G. Then B runs A on input pk. Now, assume that A wins, which means that
A outputs (x, r,x′, r′) with x �= x′ and Compk(x, r) = Compk(x′, r′). As we did
with the hiding property, we can write both sides of the expression above in
terms of single-value commitments, as follows: the left-hand side equals

Com′
pk′(

n∑

i=1

aixi, s) · Com′
pk′(0, r),

while the right-hand side is

Com′
pk′(

n∑

i=1

aix
′
i, s

′) · Com′
pk′(0, r′)

for values s, s′ that can be efficiently computed. Using the homomorphic property
of the original scheme once more, we get

Com′
pk′

( n∑

i=1

aixi, R
′
( n∑

i=1

aixi, 0, s, r
))

= Com′
pk′

( n∑

i=1

aix
′
i, R

′
( n∑

i=1

aix
′
i, 0, s′, r′

))

.

If
∑

i aixi �= ∑
i aix

′
i mod m, this clearly means that B can break binding of

the original scheme by outputting these values together with the corresponding
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randomness used for the commitments above. To finish the proof of our main
claim, it suffices then to show that

∑
i aixi �= ∑

i aix
′
i mod m happens with

probability at least 1/2.
To see this, assume that

∑
i ai(xi − x′

i) = 0 mod m. Since we are assuming
that A wins, we have xi0 −x′

i0
�= 0 mod m for some i0. From this, it must be the

case that xi0 − x′
i0

�= 0 mod p for at least one prime factor p in m. Additionally,
notice that

∑n
i=1 ai(xi−x′

i) = 0 mod p, given that the corresponding congruence
holds modulo m, so we can rewrite ai0 = −(xi0 −x′

i0
)−1 ·∑i�=i0

ai(xi−x′
i) mod p.

Now, notice that by the hiding property of the single-value scheme, the gi’s
included in the public key of VCm,n follow a distribution that is independent of
the ai’s, so, in particular, the xi − x′

i values produced by A are independent of
these ai’s. From this, we see that the right-hand side of the previous expression is
independent of the left-hand side, which is uniformly random, so the probability
of this equation being satisfied is at most 1/p, or, in other words, B wins the
binding experiment with probability 1 − 1/p ≥ 1 − 1/2 = 1/2. This implies that
B succeeds with an overall probability of at least ε/2, which proves the binding
property of the vector commitment scheme.

To establish the homomorphic property, consider commitments

Compk(x, r) = Com′
pk′(0, r) ·

n∏

i=1

gxi
i

and

Compk(x′, r′) = Com′
pk′(0, r′) ·

n∏

i=1

g
x′

i
i .

Using the homomorphic property of the single-value scheme, we can write

Compk(x, r) · Compk(x′, r′) =
n∏

i=1

g
xi+x′

i
i · Com′

pk′(0, r) · Com′
pk′(0, r′)

=
n∏

i=1

g
xi+x′

i
i · Com′

pk′(0, R′(0, 0, r, r′))

=
n∏

i=1

g
xi+x′

i mod m
i g�im

i · Com′
pk′(0, R′(0, 0, r, r′)),

where 
i is defined by xi+x′
i =

(
(xi+x′

i) mod m
)
+
im. Now, recall that the zero-

commitment opening property from Definition 2 of the single-value commitment
scheme enables, for any commitment c, to open cm to zero. Since g�i

i is a valid
commitment (to 
i · ai mod m, but this is irrelevant), we have that (g�i

i )m =
Com′

pk′(0, R′(g�i
i )). Inserting this in the above is easily seen to imply that



Vector Commitments over Rings and Compressed Σ-Protocols 187

Compk(x, r)·Compk(x
′, r′)

=

n∏

i=1

g
xi+x′

i mod m
i Com′

pk′(0, R′(g�i
i )) · Com′

pk′(0, R′(0, 0, r, r′))

=
n∏

i=1

g
xi+x′

i mod m
i Com′

pk′(0, s) = Compk(x + x′, s) ,

for some s ∈ R that can be computed by applying the randomness func-
tion R′ of the single value scheme several times on inputs x,x′, r, r′, g1, . . . , gn.
This (implicitly) defines the randomness function R of the vector scheme. In a
very similar way, one proves that Compk(x, r)−1 can be opened as −x mod m.
Namely, if we insert the expression for Compk(x, r), we get −xi’s appearing in
the exponent, but these are equal to −xi mod m except for a multiple of m
which can “absorbed” into the randomness factor in the commitment using the
zero-commitment opening property.

The randomization property follows immediately from the randomization
property of the original scheme. �	

4.2 Single-Value Commitments via Commitment Friendly Groups

Commitment Friendly Groups. We will assume we have a PPT algorithm
GG which, on input m and security parameter κ, outputs a finite Abelian group
G, whose order does not have to be related to m. For a prime p dividing m,
consider the function φp : G 
→ G given by φp(g) = gp, where p is a prime factor
in m.

Definition 5 (Commitment friendly groups). We say that GG is commit-
ment friendly if for all primes p | m, the following holds:

1. φp is collision intractable, i.e., it is hard to find g �= g′ such that φp(g) =
φp(g′). More formally, for any PPT algorithm A, the experiment where GG
is run on input (m,κ) to get G, and then A is run on input G will result in
a collision with negligible probability.

2. Let Gm = {am| a ∈ G}, which is a subgroup of G. For uniformly random
g ∈ Gm, it is hard to find h ∈ G with φp(h) = g. More formally, for any PPT
A, the experiment where GG is run on input (m,κ) to get G, g is sampled at
random in Gm, and A is run on input (G, g), will result in a p’th root of g
only with negligible probability.

G can reasonably be conjectured to be commitment friendly if computing the
order of G is hard, which can be the case if G is a class group or an RSA group,
as we discuss in more detail later. Indeed, if φp(g) = φp(g′) and g �= g′, then the
order of g′g−1 is p, and finding such an element can be conjectured hard if the
order of G is not known. More precisely, finding an element of known order p
immediately reveals that p is a divisor of the group order. This contradicts the
assumption that the order of the group is unknown. Moreover, notice that φp is
collision intractable if gcd(p, |G|) = 1, since in this case φp is injective.
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Commitments from Commitment Friendly Groups. We now construct a
single value commitment scheme for Zm, assuming a generator algorithm GG for
commitment friendly groups.

SVm: Single-Value Commitment Scheme over Zm

– Key generation. Run GG on input m and κ to get G. Let g = am for a
uniformly random a ∈ G. Return pk = (G, g).

– Commitment. Set R = G and compute Compk(x, r) = gxrm.

Intuitively, the commitment is hiding because rm is uniformly random in
Gm, the group where the commitments takes values, and it is binding because
of the required properties on φp for all p|m: in a nutshell, for any x �= x′ mod m
there is some prime power p� dividing m and not (the integer) x − x′. In these
conditions, we show in the proof of Theorem3 below that given openings to both
x and x′, and if φp is collision intractable, then one can extract s with φp(s) = g,
contradicting the second property, since g is uniform in Gm.

Theorem 3. SVm is a single-value commitment scheme over Zm.

Proof. First, observe that the perfect hiding and randomization properties follow
immediately from the fact that a commitment to any value is a uniformly random
element in Gm.

The homomorphic property follows from

Compk(x, r)Compk(x′, r′) = gx+x′
(rr′)m = gx+x′ mod m(gtrr′)m =

Compk(x + x′ mod m, gtrr′) ,

where t is defined by x+x′ =
(
(x+x′) mod m

)
+tm. So we can set R(x, x′, r, r′) =

gtrr′.
Likewise, we have that Compk(x, r)−1 = g−x(r−1)m, which in turn equals

g−x mod m(g�r−1)m, where 
 is defined by −x =
(−x mod m

)
+ 
m, so we

set R(x,−1, r) = g�r−1. Also, the zero-opening property follows trivially since
Compk(x, r)m = Compk(0,Compk(x, r)).

Finally to argue binding, assume an adversary is able to produce x �= x′,
r, r′ such that gxrm = gx′

r′m. Setting s = r′r−1 we get gx−x′
= sm. Since

x − x′ �= 0 mod m, there must be a prime factor p dividing m such that, if pt is
the maximal p-power dividing x−x′ and pk is the maximal power dividing m, we
have pt < pk. The equation above can be written as (g(x−x′)/pt

)pt

= (sm/pt

)pt

.
Since φp is assumed collision intractable, we conclude5 that g(x−x′)/pt

= sm/pt

.
Now, because pt < pk, we can define a = sm/pt+1

, and inserting in the equation
gives g(x−x′)/pt

= ap.

5 We use that if φp is collision intractable, then it is hard to find a �= b with apt

= bpt

.

Indeed, given such a and b, there must exist 0 ≤ i < t such that api �= bpi

but

api+1
= bpi+1

which yields the collision (api

, bpi

) for φp.
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Observe that gcd(p, (x − x′)/pt) = 1 and hence we can compute α, β such
that αp + β(x − x′)/pt = 1. Now set h = gαaβ , and observe that

hp = gαp(ap)β = gαp(g(x−x′)/pt

)β = gαp+β(x−x′)/pt

= g .

Hence, we have found a p’th root of g. This contradicts the assumption that G
is commitment friendly, and so the binding property of the commitment scheme
holds. �	

Examples of Commitment Friendly Groups for Odd m. We now dis-
cuss instantiations of commitment friendly groups. A first natural example is
to choose an RSA modulus N and set G = Z

∗
N . If m is odd, we can choose

N such that m is relatively prime to ϕ(N). As discussed above, the collision
intractability of φp(g) = gp is then trivially satisfied for all p | m. Furthermore,
the assumption about p-th roots being hard to compute is essentially the RSA
assumption. In more detail, even if m is exponentially large, it can only have a
polynomial number of different prime factors, so in contrast to the strong RSA
assumption the adversary cannot choose the “public exponent” freely in the p-th
root finding experiment, which makes this assumption weaker with respect to the
strong RSA assumption. But of course in applications where the adversary can
choose the modulus m, security directly reduces to the strong RSA assumption.

4.3 Single-Value Commitment Schemes for Even m

If m is even, collision intractability is violated for p = 2 because we have x2 =
(−x)2 mod N . As a result, we cannot use the template presented before with
G = Z

∗
N in a direct manner.

If N = PQ with P,Q ≡ 3 mod 4, then we could use the template by setting
G to be directly QR(N), the group of quadratic residues modulo N , because its
order is odd and QR(N) satisfies the properties of a commitment-friendly group.
However, this construction has the practical drawback that it requires an expen-
sive set-up to establish g, because membership in QR(N) cannot be efficiently
decided (so rejection sampling on random elements in Z

∗
N does not work), and

the alternative of sampling an element in Z
∗
N and squaring it would require a

protocol that keeps the initial value hidden for everybody, only revealing the
squared value, which is possible, but expensive.

Instead, we will describe a slight variant of the single-value commitment
construction from Sect. 4.2 that solves this problem. We will use G = J+(N), the
subgroup of numbers with Jacobi symbol 1 modulo N . This has the advantage
that one can compute the Jacobi symbol efficiently given only N , so membership
in J+(N) can be verified efficiently. Moreover, we use N = PQ such that both
P and Q are congruent to 3 modulo 4. With this setup, G has even order (P −
1)(Q − 1)/2, and also −1 ∈ G; so it is unfortunately still the case that, for
x ∈ G, −x is also in G and x2 = (−x)2 mod N . In fact, squaring maps J+(N)
into QR(N) ≤ J+(N), a proper subgroup (where |J+(N)| = 2|QR(N)|).
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To address this issue, we modify the construction as shown below. Note
that now we sample g directly in G = J+(N) (which can be done by rejection
sampling), rather than as am. The choice of N ensures that the subgroup of
quadratic residues QR(N) has odd order (more precisely, |QR(N)| = (P −1)(Q−
1)/4). Therefore we can choose N in such a way that gcd(|QR(N)|,m) = 1. This
also implies that −1 ∈ J+(N)\QR(N). These facts ensure not only that (−1)brm

is uniform in J+(N), guaranteeing perfect hiding, but still allow us to guarantee
the binding property. For more information, see the proof of Theorem4 below.

SVm: Single-Value Commitment Scheme over Zm, for even m

– Key generation. Return pk = (G, g), where G = J+(N) and N is chosen as
above, and g ← G.

– Commitment. Set R = {0, 1} × G. Given x ∈ Zm, choose (b, r) ∈ R, and
output Compk(x, (b, r)) = gx(−1)brm mod N .

Theorem 4. Under the assumption that factoring N is hard, the construction
SVm from above constitutes a single-value commitment scheme over Zm.

Proof. Perfect hiding follows because rm is uniform in QR(N) and therefore
(−1)brm is uniform in J+(N). The homomorphic and randomization properties
are easy to verify in much the same way as in Theorem 3.

For binding, we proceed in a similar way as the aforementioned theorem. If
an adversary breaks the binding property this means it would be able to find
x, x′, r, r′, b, b′ such that gx(−1)brm = gx′

(−1)b′
r′m mod N . There must be a

prime factor p in m such that the maximal p-power pt dividing x − x′ is smaller
than the maximal p-power pk dividing m. If p is odd, we can proceed in exactly
the same way as in Theorem 3, except that in our current case the powers of −1
may lead to the equations being satisfied up to a ±1 factor. We therefore end
up concluding that we can compute h such that hp = ±g mod N . If we have
hp = −g mod N , then since p is odd, this implies that (−h)p = g mod N , so we
get a p’th root of g in any case.

The more challenging case is when p = 2. In this case, the same arguments
will lead to the equation

(
g(x−x′)/2t)2t

= ±(
sm/2t)2t

mod N .
First, since both sides are squares and −1 is not a square modulo N , it must

be the case that
(
g(x−x′)/2t)2t

=
(
sm/2t)2t

mod N. Unfortunately, since G has
even order, we cannot conclude that g(x−x′)/2t

= sm/2t

. However, we can instead
say that g(x−x′)/2t

= sm/2t

α mod N , where α2t

mod N = 1. In particular, α has
order a 2-power, and by construction of N , the only possible orders of α would
be 1 or 2.

Given the above, one possibility is that α is a non-trivial square root of 1. In
this case, we can use α to factor N easily since (α−1)(α+1) = 0 mod N implies
that gcd(α − 1, N) is either P or Q, which breaks the assumption. Otherwise,
α is plus or minus 1. We can now continue the reasoning in the same way as in
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the original proof, and find that we can compute h such that h2 mod N = ±g.
Computing such a square-root easily implies you can factor N and break the
computational assumption. �	
Remark 1 (Using class groups). Alternatively, we can take G to be a class group.
Such a group is constructed from a discriminant Δ, and it is a standard assump-
tion that for large enough Δ, the order of the corresponding class group is hard
to compute. If Δ is a prime, then the order of the group is odd, but otherwise
we do not know any way to efficiently compute information on prime factors in
the order. However, as we have already mentioned, if one finds a collision for φp

as defined above, one can find an element of order p, and for odd p one can rea-
sonably conjecture that this is a hard problem in class groups. The assumption
on p’th roots is motivated by the fact that the group order is hard to compute,
in a similar way as for RSA.

The case of p = 2 requires special care. The issue is that if the prime factors
of Δ are known, one can compute square roots efficiently in the class group.
Therefore, for even m, we need that Δ is hard to factor. One can of course use
an RSA modulus as discriminant, but this provides little advantage as then it
would be more efficient to do the RSA based solution directly. For an alternative,
see the discussion below on trusted set-up.

Remark 2 (On trusted setup). It can be an advantage in practice if the public
key of the commitment scheme can be chosen in such a way that no one knows
any side information that would allow breaking the scheme. Delegating key gen-
eration to a trusted party will work, but one would clearly prefer a solution
where no trusted party is needed.

For the RSA-based schemes, this cannot be completely satisfied since the fac-
tors of the modulus must be unknown to the committer, and we cannot generate
a correctly formed modulus without access to the prime factors, or using a less
efficient solution based on multiparty computation. However, observe that once
the modulus N is generated, the rest of the public key, namely g, can be chosen
“in public”, since it is in fact just a random group element (either in Z

∗
N for

odd m, or in J+(N) for even m). The vector commitment scheme we derived in
Sect. 4.1 inherits this property since the n commitments in the public key are also
random group elements. This can be useful, e.g., in case we have an RSA-based
PKI. In such a setting we must assume to begin with that the factorization of
the CA’s modulus N is safe, and we can then leverage this modulus to generate
the rest of the public key without trusted setup.

For class groups, one can generate the group G without trusted setup since
the discriminant is public in a first place. In this case, however, it is not possible
to determine whether Gm = G or not, as the order of G cannot be computed
efficiently. Yet, precisely because of this, it seems reasonable to conjecture that,
for odd m, elements in Gm are indistinguishable from random elements in G.
Under this assumption we can choose g randomly in G and get a scheme that
requires no trusted setup at all and still is computationally hiding since a random
g cannot be distinguished from an m’th power.
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For even m we need in addition, as mentioned above, that the discriminant
is hard to factor. We can get such a scheme with no trusted setup by using a
random discriminant large enough that it cannot be factored completely. This
results in a scheme that is not very efficient in practice, but is still interesting
from a theoretical point of view since no trusted setup is required.

Remark 3 (On q-one-way homomorphisms). In [22], the notion of q-one-way
homomorphisms for a prime q is introduced. Informally, this is a homomor-
phism f : G 
→ H between two finite groups G and H such that (1) f is hard to
invert and yet, (2) for any y ∈ H it is easy to compute a preimage of yq. A com-
mitment is constructed based on this notion: the public key is y ∈ Im(f), and a
commitment to x ∈ Zq is of the form yxf(r), where r ∈ G is uniformly random.
It is very easy to see that this scheme satisfies our definition of a single-value
commitment scheme, where m = q, and therefore implies a vector commitment
scheme based on Theorem 2.

One example of a q-one-way homomorphism is f(x) = gx mod p, where p is
prime and g ∈ Z

∗
p has order q. In this case, we recover the well-known Pedersen

commitment scheme and its vector commitment variant (which in particular
shows that our efficient reduction for proving binding applies to Pedersen vector
commitments). Another example is f(x) = xq mod N for an RSA modulus N .
Unfortunately, these constructions only work when q is prime, so they are not
suitable for our needs, where we require a single-value commitment scheme over
Zm, for any positive integer m.

5 Compressed Σ-Protocol

Let (G,Com, R) be a vector commitment scheme as defined in Sect. 4.1, allowing
a prover to commit to vectors x ∈ Z

n
m. In this section, we consider the problem

of proving knowledge of an opening (x, γ) of a commitment P = Compk(x, γ)
satisfying a linear constraint L(x) = y captured by a linear form L : Zn

m → Zm.
We construct a compressed Σ-protocol [3] for this problem.

In contrast to the compressed Σ-protocols of [3], our protocols are not defined
over a finite field F but over the ring Zm. Because non-zero challenge differences
are required to be invertible, a challenge set C ⊆ Zm has to be exceptional. Recall
that a subset C of a ring is said to be exceptional if c − c′ is invertible for all
distinct c, c′ ∈ C. The largest exceptional subset of Zm has cardinality p, where
p is the smallest prime divisor of m. Therefore, a straightforward application
of [3] can result in (much) smaller challenges sets and therefore larger knowledge
errors. In many scenarios, this can be overcome by a t-fold parallel repetition
reducing the knowledge error from κ down to κt [5]. However, this parallel repe-
tition approach is sub-optimal and in some cases even insufficient. Namely, since
the compression mechanism is 3-special sound, the challenge set is required to
have cardinality at least 3. This is impossible when 2 | m. For this reason, we
adapt the compressed Σ-protocols of [3] to allow for challenges sampled from an
appropriate extension of the ring Zm.
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In Sect. 5.1, we extend our Zm-vector commitment scheme to a commitment
scheme or vectors defined over an extension S of the ring Zm. In Sect. 5.2, we
describe a standard Σ-protocol for proving that a committed vector x ∈ Sn

satisfies a linear constraint, whose communication complexity is linear in n.
Subsequently, we describe a compression mechanism (Sect. 5.3) and, as a recur-
sive composition of the basic Σ-protocol and this compression mechanism, we
obtain the final compressed Σ-protocol (Sect. 5.4) with logarithmic communica-
tion complexity for a fixed ring extension S.

5.1 Vector Commitments over Ring Extensions

Let f(X) ∈ Zm[X] be a monic polynomial of degree d and let S = Zm[X]/(f(X))
be a degree d ring extension of Zm. Then the commitment scheme (G,Com, R)
for Zm-vectors has an extension to a scheme (G,Com′, R′) for S-vectors6 where
vectors are committed coefficient-wise, i.e.,

Com′
pk

(
⎛

⎜
⎝

∑d
i=1 a1,iX

i−1

...
∑d

i=1 an,iX
i−1

⎞

⎟
⎠ ,

⎛

⎜
⎝

γ1
...

γd

⎞

⎟
⎠

)

→

⎛

⎜
⎝

Compk

(
(a1,1, . . . , an,1), γ1

)

...
Compk

(
(a1,d, . . . , an,d), γd

)

⎞

⎟
⎠ .

Hence, Com′
pk commits to an n-dimensional S-vector x ∈ Sn by committing to

the d coefficient vectors of x (which are vectors in Z
n
m) using d invocations of

the Zm-vector commitment scheme Compk.
This commitment scheme inherits the homomorphic, randomization and zero-

opening properties of (G,Com, R). Additionally, committed vectors can be mul-
tiplied by ring elements a ∈ S, i.e., for c = Com′

pk(x, γ) and a ∈ S, the com-
mitment ca is well-defined and can be opened to a · x ∈ Sn. To see this note
that any a ∈ S corresponds to a matrix M(a) ∈ Z

d×d
m , such that for all b ∈ S,

a ·∑d
i=1 biX

i−1 =
∑d

i=1 ciX
i−1 ∈ S iff M(a) ·(b1, . . . , bd)ᵀ = (c1, . . . , cd)ᵀ ∈ Z

d
m.

By lifting this matrix to Z
d×d,7 it follows that the homomorphic operation

ca can be expressed in terms of the standard homomorphic properties of the
Zm-commitment scheme (G,Com, R). As before, we write R′(x, a, γ) for the ran-
domness required to open ca to a ·x ∈ Sn. We say that this commitment scheme
is S-homomorphic. Finally, a Zm-vector commitment P can also be viewed as a
S-vector commitment (P, 1, . . . , 1), now with S-homomorphic properties.

Notice that, in contrast, committing by concatenating all coefficients over
Zm would only be Zm-homomorphic and not S-homomorphic.

5.2 Standard Σ-Protocol

The reason for considering vectors defined over S = Zm[X]/(f(X)) is that when
this extension is appropriately chosen it contains larger exceptional subsets than
6 Note that in Sect. 3.1 we only defined commitments for vectors over Zm, while here

we need commitments for vectors over S, which are homomorphic as a S-module.
This notion is defined in a similar manner as the one in Sect. 3.1.

7 We lift to Z
d×d because the homomorphic properties are defined over Z.
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the ring Zm. Namely, if f(X) is irreducible modulo all prime divisors of m,
then S contains an exceptional subset of cardinality pd where p is the smallest
prime dividing m. This allows us to design (compressed) Σ-protocols with larger
challenge sets and therefore smaller knowledge errors. We will assume f(X) to
be of this form and C ⊆ S to be an exceptional subset of cardinality pd.

Protocol 1, denoted by Π1, is a standard Σ-protocol, with challenge set C,
for proving knowledge of a commitment opening satisfying a linear constraint,
i.e., it is a Σ-protocol for relation X d given by {(P, y;x, γ) : Com′

pk(x, γ) =
P, L(x) = y}, where x ∈ Sn and L : Sn → S is a linear form. The properties of
Π1 are summarized in Theorem 5.

Protocol 1. Standard Σ-Protocol Π1 for relation X d.

Input(P, y;x, γ),
Prover P = Com′

pk(x, γ), y = L(x) Verifier

r ←R Sn, ρ ←R Rd

A = Com′
pk(r, ρ), t = L(r)

A,t−−−−−−−−−−−−−−→
c ←R C ⊆ S

c←−−−−−−−−−−−−−−
z = r + cx

ψ = R′(r, cx, ρ, R′(x, c, γ)
) z,ψ−−−−−−−−−−−−−−→ Com′

pk(z, ψ)
?
= A · P c

L(z)
?
= t + cy

Theorem 5 (Standard Σ-Protocol). Protocol Π1 is a Σ-protocol for X d.
More precisely, it is a 3-round protocol that is perfectly complete, special honest-
verifier zero-knowledge and unconditionally knowledge sound with knowledge
error 1/pd, where p is the smallest prime dividing m.

Proof. Completeness follows directly by the homomorphic properties of
Compk(·) and the linearity of L.

SHVZK: We simulate a transcript as follows. Given a challenge c, sample
(z, ψ) ←R Sn × Rd uniformly at random and let A = Com′

pk(z, ψ) · P−c

and t = L(z) − cy. By the randomization property of Com′
pk it follows that

the simulated transcripts (A, t, c, z, ψ) have exactly the same distribution as
honestly generated transcripts.

Knowledge Soundness: We show that Π1 is special-sound. Knowledge sound-
ness is then implied. Let (A, t, c, z, ψ), (A, t, c′, z′, ψ′) be two accepting tran-
scripts with c �= c′ ∈ C, and let c̃ = (c − c′)−1. Then define z̃ := c̃(z − z′)
and ψ̃ := R′(c̃z,−c̃z′, R′(z, c̃, ψ), R′(z′,−c̃, ψ′)). By the homomorphic prop-
erties of Com′

pk(·) and since the transcripts are accepting, it follows that
Com′

pk(z̃, ψ̃) = P c̃(c−c′) = P · P �m for some 
 ∈ Z. Hence, by the zero-
opening property of Com′

pk(·), (z̃, ψ̄) is an opening of commitment P , where
ψ̄ = R′(z̃, 0, ψ̃, R′(P−�

))
. By the linearity of L, it additionally follows that

L(z̃) = y, i.e., (z̃, ψ̄) is a witness for statement (P, y) ∈ LX d .
�	



Vector Commitments over Rings and Compressed Σ-Protocols 195

Remark 4 (Proving openings of d Zm-commitments). Protocol Π1 can be used
to prove knowledge of the openings of d different Zm-commitments P1, . . . , Pd,
all satisfying a constraint captured by the same linear form L, by defining P =
(P1, . . . , Pd), i.e., a protocol for proving knowledge of d witnesses for relation X 1.
This compares positively to the alternatives: instantiating d different Σ-protocols
defined directly over Zm would result in a larger knowledge error; while applying
standard amortization techniques to prove knowledge of d witnesses with the
same communication costs as proving knowledge of only 1 witness (see e.g. [3])
would reduce communication costs by a factor d but again increase the knowledge
error. See Table 1.

Table 1. Properties of different Σ-protocols for proving knowledge of d witnesses for
relation X 1. Columns 2–4 contain communication costs, while the last column contains
knowledge error.

Protocol # Zm-elements # R-elements # Z
n
m-Commitments K. error

d Separate Σ-Protocols d(n + 1) d d 1/p

Amortized Σ-Protocol n + 1 1 1 d/p

Our Σ-Protocol Π1 d(n + 1) d d 1/pd

5.3 Compression Mechanism

The communication complexity of the standard Σ-protocol Π1 is linear in the
dimension n of vector x ∈ Sn. The compression mechanism for Σ-protocols
of [3], based on Bulletproof’s folding technique [14,15], allows the communication
complexity to be reduced from linear down to logarithmic. A key observation
of this compression mechanism is that the final message of protocol Π1 is a
witness for relation X d, i.e., the final message is a trivial proof-of-knowledge
(PoK) for this relation. Therefore, this message can also be replaced by another
PoK for relation X d with a smaller communication complexity. This is the case
of compression mechanism Π2, described in Protocol 2. Protocol 2 is identical to
the compression mechanism of [3], although here we use the notation introduced
in the previous sections. Bulletproof’s folding technique takes an n-dimensional
witness x = (xL,xR) ∈ Sn and, given a challenge c ∈ C, it folds the left and right
halves xL,xR ∈ Sn/2 onto each other obtaining a new message z = xL + cxR

of dimension n/2. This technique reduces the communication complexity by
roughly a factor 2. The properties of this protocol are summarized in Theorem6.
For more details we refer to [3].

Theorem 6 (Compression Mechanism) Let n be even. Protocol Π2 (as
defined in Protocol 2) is a 3-round protocol for relation X d. It is perfectly com-
plete and unconditionally knowledge sound with knowledge error 2/pd, where p
is the smallest prime diving m. Its communication costs from Prover to Verifier
are 2 S-commitments, n/2 + 2 elements in S and 1 elements in Rd, and from
Verifier to Prover are 1 challenge in C ⊆ S.
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Protocol 2. Compression Mechanism Π2 for Relation X d [3].

Input(P, y;x, γ)
Prover P = Com′

pk(x, γ), y = L(x) Verifier

ρ ←R Rd

A = Com′
pk((0,xL), ρ), a = L(0,xL)

B = Com′
pk((xR, 0), ρ), b = L(xR, 0)

A,B,a,b−−−−−−−−−→
c ←R C ⊆ S

c←−−−−−−−−−
z = xL + cxR

ψ1 = R′((0,xL), cx, ρ, R′(x, c, γ)
)

ψ2 = R′((xR, 0), c2, ρ
)

ψ = R′((0,xL) + cx, c2(xR, 0), ψ1, ψ2
) z,ψ−−−−−−−−−→ Com′

pk

(
(cz, z), ψ

) ?
=

A · P c · Bc2

L(cz, z)
?
= a + cy + c2b

Proof. Completeness: Observe that (cz, z) = (0,xL) + cx + c2(xR,0). Com-
pleteness now follows from the homomorphic properties of Com′

pk(·) and the
linearity of L.

3-Special Soundness: Let (A,B, a, b, c1, z1, ψ1), (A,B, a, b, c2, z2, ψ2) and
(A,B, a, b, c3, z3, ψ3) be three accepting transcripts for pairwise distinct chal-
lenges c1, c2, c3 ∈ C ⊂ R. Let (a1, a2, a3) ∈ S3 be such that

⎛

⎝
1 1 1
c1 c2 c3
c21 c22 c23

⎞

⎠

⎛

⎝
a1

a2

a3

⎞

⎠ =

⎛

⎝
0
1
0

⎞

⎠ .

Note that such a vector (a1, a2, a3) exists because the Vandermonde matrix has
determinant (c2 − c1)(c3 − c1)(c3 − c2) and challenge differences are invertible
modulo in S.

Let z̃ :=
∑3

i=1 ai(cizi, zi). Then, for some 
 ∈ Z, Com′
pk(z̃, φ̃) = P · P �m,

where φ̃ can be computed by a recursive application of the randomness function
R′.

Hence, by the zero-opening property, (z̃, φ̄) is an opening of commitment
(P, y) ∈ LR, where φ̄ = R′(z̃, 0, ψ̃, R′(P−�

))
. By the linearity of L, it additionally

follows that L(z̃) = y, i.e., (z̃, ψ̄) is a witness for statement (P, y) ∈ LX d , which
completes the proof. �	

5.4 Compressed Σ-Protocol

To reduce the communication costs of the Σ-protocol Π1 down to logarithmic the
compression mechanism is applied recursively, i.e., instead of sending the final
message of protocol Π2 the protocol is applied again until the dimension of the
final message equals 4. Note that the compression mechanism could be applied
even further, reducing the dimension of the final message to 2 or 1. However,
since the prover has to send 4 elements in every compression, this would result
in a sub-optimal communication costs. This recursive composition is referred to
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as Compressed Σ-Protocol, it is denoted by Πc = Π2 � · · · �Π2 �Π1 (composition
of Π2 happens �log2(n)� − 2 times) and its properties are summarized in the
following theorem. In particular the protocol is (2, 3, . . . , 3)-special-sound, which
has recently been shown to tightly imply knowledge soundness [4].

Theorem 7 (Compressed Σ-Protocol). Let n = 2μ ≥ 4. Then, Protocol
Πc is a (2μ − 1)-round protocol for relation X d. It is perfectly complete, spe-
cial honest-verifier zero-knowledge. Moreover, it is unconditionally (2, 3, . . . , 3)-
special-sound and therefore knowledge sound with knowledge error ≤ (2μ−3)/pd,
where p is the smallest prime dividing m. In terms of communication costs, from
Prover to Verifier there are 2μ − 3 S-commitments, 2μ + 1 elements in S and 1
element in Rd, while from Verifier to Prover there are μ− 1 challenges in C ⊆ S.

In practical applications, Πc should be instantiated with knowledge error at
most 2−λ, where λ denotes the security parameter. To this end, we choose a ring
extension S of degree d ≥ (1 + λ + log log n)/ log p = O(λ + log log n). Hence, to
obtain a knowledge error negligible in the security parameter, the degree must
depend on the input dimension n. However, thus far we have only considered the
communication complexity for fixed ring extensions S of degree d and thus with
fixed, not necessarily negligible, knowledge error. In fact, the communication
complexity of Πc is only logarithmic in n for fixed S and d. For d = O(λ +
log log n), the communication complexity is actually O(λ log n + log n log log n),
i.e., it is not logarithmic in n. However, this is still an improvement over the
polylogarithmic communication complexity achieved by the naive approach using
integer commitment schemes.

Further, the knowledge error of Πc shows that we must choose the degree d
of the ring extension such that pd > 2. In particular, if p = 2 the compression
mechanism can not be defined directly over Zm. If p > 2, then the compressed
Σ-protocol could have been defined over Zm directly. However, this would result
in a larger knowledge error. Reducing this knowledge error by a d-fold paral-
lel composition would result in exactly the same communication costs as the
protocol defined over the ring extension S. However, this parallel composition
approach results in a knowledge error that can be bounded by (2μ − 3)d/pd,
which is larger than the the knowledge error of our protocol. Hence, even for
the case p > 2, it is beneficial to define the protocols over the ring extension S.
Moreover, this approach allows a prover to prove d Zm-statements simultane-
ously (coordinate-wise) with exactly the same costs as proving only 1 statement.

Remark 5. The communication complexity of protocol Πc can be further
reduced with roughly factor 1/2, by incorporating the linear form evalua-
tion L(x) into the commitment. More precisely, before evaluating the Com-
pressed Σ-Protocol, the verifier sends a random challenge c ∈ C ⊆ S to the
prover, and relation X is transformed into relation X d

c given by {(P, y;x, γ) :
Com′

pk(x, c · L(x), γ) = P}. After this transformation the prover does not have
to send the linear form evaluations a, b in compression mechanism Π2 to the
verifier. For more details see [3].
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Remark 6. With small adaptations to existing work, we can use our Σ-protocols
to prove non-linear constraints. Namely, following [3], we can “linearize” this
type of constraints by an arithmetic secret sharing based technique, after which
the protocols described in previous sections can be used in a black-box manner.
In the lattice-based compressed Σ-protocols of [4] it was already shown how to
adapt this techniques to the ring scenario.8 For a general arithmetic circuit C
over S we can then construct a protocol that can prove the relation {(P, y;x, γ) :
Com′

pk(x, γ) = P, C(x) = y}, with communication complexity logarithmic in
the dimension n of x ∈ Sn and the number of multiplication gates m in the
circuit C.

Finally, our protocols are also compatible with the Fiat-Shamir heuristic,
which is discussed in the full version.

6 An Application: Verifiable Computation on Encrypted
Data with Context-Hiding

In this section, we argue that our commitments and compressed Σ-protocols over
rings are useful in the context of proofs of correct computation on homomorphi-
cally encrypted data. We illustrate this concretely by considering the problem
of verifiable computation on encrypted data supporting non-deterministic com-
putations and context hiding from the recent work [13].

In verifiable computation [31], a client wants to delegate a (typically expen-
sive) computation y = g(x) to a server, which must later prove that the compu-
tation has been carried out correctly. When the client does not want the server
to learn information about the actual inputs x of the computation, we speak
of private verifiable computation. To address this privacy consideration, several
works [13,28,29] have proposed to combine verifiable computation and homo-
morphic encryption: the client encrypts the input data with a fully homomor-
phic scheme and sends the ciphertexts ctx1 , ctx2 , . . . to the server, which carries
out the corresponding computation ĝ(ctx1 , ctx2 , . . . ) on the encrypted data and
proves its correctness via a verifiable computation scheme.

[13] introduced a scheme that provides flexibility in this combination, where
the idea is that the proof of correctness of the computation is done on a “homo-
morphic hash” version of it into a smaller algebraic domain, more specifically a
Galois ring Zq[X]/(h). For this, one can use as succinct argument a version of
the GKR protocol [35] adapted for Galois rings, presented in [20].

However, an additional challenge appears if the privacy of the input data
needs to be preserved with respect to a (public) verifier too. In this case, we
speak of verifiable computation with context-hiding, as introduced in [29], and
[13] proposes to use a commit-and-proof strategy where the client and server
additionally commit publicly to the input and output ciphertexts respectively

8 On the other hand, since they only considered rings with large enough exceptional
sets, their protocol for proving linear statements could be defined over the base ring
and therefore the adaptations of the previous sections were not required in [4].
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(plus some additional blinding encryptions of 0 in the case of the server) and the
server uses a commit-and-proof argument to show that the computation is done
correctly on the hashed values (which, for adequate parameters, can be made
public with no harm to privacy). This strategy even extends to non-deterministic
computations y = g(x;w) which may depend on private randomness w chosen
by the server.

While [13] propose these generic solutions, they leave as an open question
the existence of succinct commit-and-proof arguments that directly handle state-
ments over (Galois) rings, so that there is no need to emulate the ring arithmetic
with an argument over a finite field, which causes considerable overhead in this
application.

Given the type of statements required in this application, our homomorphic
commitments and compressed Sigma-protocols provide a simple and efficient way
of instantiating the type of commit-and-proof arguments needed in this context;
indeed, the statements are of two types: knowledge of ctx with H(ctx) = y,
where H : Z�

m → Zm[X]/(h) is a Zm-linear map, y is public and ctx has been
committed to, which is precisely the situation we have considered in Sect. 5 (and
further, since H is always the same map, we can efficiently batch several proofs
together, as per Remark 4); and statements consisting on proving that a given
commitment hides a correct encryption, which can be reduced to a number of
range proofs and addressed by adapting the efficient protocols for range proofs
described in [3] to a large enough extension ring of Zm.

Acknowledgments. This research has been partially supported by EU H2020 project
PROMETHEUS (No. 780701), the Spanish Governement under project SecuRing
(ref. PID2019-110873RJ-I00/MCIN/AEI/10.13039/501100011033), by a grant from
the Tezos Foundation and by Madrid regional government as part of the program
S2018/TCS-4339 (BLOQUES-CM) co-funded by EIE Funds of the European Union.

This paper was prepared in part for information purposes by the Artificial Intel-
ligence Research group of JPMorgan Chase & Co and its affiliates (“JP Morgan”),
and is not a product of the Research Department of JP Morgan. JP Morgan makes no
representation and warranty whatsoever and disclaims all liability, for the complete-
ness, accuracy or reliability of the information contained herein. This document is not
intended as investment research or investment advice, or a recommendation, offer or
solicitation for the purchase or sale of any security, financial instrument, financial prod-
uct or service, or to be used in any way for evaluating the merits of participating in
any transaction, and shall not constitute a solicitation under any jurisdiction or to any
person, if such solicitation under such jurisdiction or to such person would be unlawful.
2021 JP Morgan Chase & Co. All rights reserved.

References

1. Abspoel, M., Cramer, R., Damg̊ard, I., Escudero, D., Yuan, C.: Efficient
information-theoretic secure multiparty computation over Z/pk

Z via galois rings.
In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11891, pp. 471–501.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36030-6 19

https://doi.org/10.1007/978-3-030-36030-6_19


200 T. Attema et al.

2. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: lightweight sub-
linear arguments without a trusted setup. In: Thuraisingham, B.M., Evans, D.,
Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 2087–2104. ACM Press, October
2017

3. Attema, T., Cramer, R.: Compressed Σ-protocol theory and practical applica-
tion to plug & play secure algorithmics. In: Micciancio, D., Ristenpart, T. (eds.)
CRYPTO 2020. Part III. LNCS, vol. 12172, pp. 513–543. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-56877-1 18

4. Attema, T., Cramer, R., Kohl, L.: A compressed Σ-protocol theory for lattices.
In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part II. LNCS, vol. 12826, pp.
549–579. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84245-1 19

5. Attema, T., Fehr, S.: Parallel repetition of (k1, . . . , kμ)-special-sound multi-round
interactive proofs. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022. LNCS, vol.
13507, pp. 415–443. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
15802-5 15

6. Baum, C., Braun, L., Munch-Hansen, A., Razet, B., Scholl, P.: Appenzeller to brie:
efficient zero-knowledge proofs for mixed-mode arithmetic and Z2k. In: Vigna, G.,
Shi, E. (eds.) ACM CCS 2021, pp. 192–211. ACM Press, November 2021

7. Baum, C., Braun, L., Munch-Hansen, A., Scholl, P.: Appenzeller to brie: efficient
zero-knowledge proofs for mixed-mode arithmetic and z2k (2021)

8. Baum, C., Damg̊ard, I., Lyubashevsky, V., Oechsner, S., Peikert, C.: More efficient
commitments from structured lattice assumptions. In: Catalano, D., De Prisco, R.
(eds.) SCN 2018. LNCS, vol. 11035, pp. 368–385. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-98113-0 20

9. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.:
Aurora: transparent succinct arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019. LNCS, vol. 11476, pp. 103–128. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17653-2 4

10. Bendlin, R., Damg̊ard, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption
and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 169–188. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-20465-4 11

11. Benhamouda, F., Krenn, S., Lyubashevsky, V., Pietrzak, K.: Efficient zero-
knowledge proofs for commitments from learning with errors over rings. In: Pernul,
G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9326, pp. 305–325.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24174-6 16

12. Block, A.R., Holmgren, J., Rosen, A., Rothblum, R.D., Soni, P.: Time- and space-
efficient arguments from groups of unknown order. In: Malkin, T., Peikert, C. (eds.)
CRYPTO 2021. LNCS, vol. 12828, pp. 123–152. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-84259-8 5

13. Bois, A., Cascudo, I., Fiore, D., Kim, D.: Flexible and efficient verifiable compu-
tation on encrypted data. In: Garay, J.A. (ed.) PKC 2021. LNCS, vol. 12711, pp.
528–558. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75248-4 19

14. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron,
J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 327–357. Springer, Heidel-
berg (2016). https://doi.org/10.1007/978-3-662-49896-5 12

15. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
short proofs for confidential transactions and more. In: 2018 IEEE Symposium on
Security and Privacy, pp. 315–334. IEEE Computer Society Press, May 2018

https://doi.org/10.1007/978-3-030-56877-1_18
https://doi.org/10.1007/978-3-030-84245-1_19
https://doi.org/10.1007/978-3-031-15802-5_15
https://doi.org/10.1007/978-3-031-15802-5_15
https://doi.org/10.1007/978-3-319-98113-0_20
https://doi.org/10.1007/978-3-319-98113-0_20
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-319-24174-6_16
https://doi.org/10.1007/978-3-030-84259-8_5
https://doi.org/10.1007/978-3-030-84259-8_5
https://doi.org/10.1007/978-3-030-75248-4_19
https://doi.org/10.1007/978-3-662-49896-5_12


Vector Commitments over Rings and Compressed Σ-Protocols 201

16. Bünz, B., Fisch, B., Szepieniec, A.: Transparent SNARKs from DARK compilers.
In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 677–
706. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1 24

17. Catalano, D., Di Raimondo, M., Fiore, D., Giacomelli, I.: MonZ2ka: fast maliciously
secure two party computation on Z2k . In: Kiayias, A., Kohlweiss, M., Wallden, P.,
Zikas, V. (eds.) PKC 2020. LNCS, vol. 12111, pp. 357–386. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45388-6 13

18. Catalano, D., Fiore, D.: Vector commitments and their applications. In: Kurosawa,
K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 55–72. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-36362-7 5

19. Chase, M., et al.: Post-quantum zero-knowledge and signatures from symmetric-
key primitives. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.)
ACM CCS 2017, pp. 1825–1842. ACM Press, October 2017

20. Chen, S., Cheon, J.H., Kim, D., Park, D.: Verifiable computing for approximate
computation. Cryptology ePrint Archive, Report 2019/762 (2019). https://eprint.
iacr.org/2019/762

21. Cramer, R.: Modular design of secure yet practical cryptographic protocols. Ph.D.
thesis, CWI and University of Amsterdam (1996)

22. Cramer, R., Damg̊ard, I.: Zero-knowledge proofs for finite field arithmetic, or:
Can zero-knowledge be for free? In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 424–441. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0055745

23. Cramer, R., Damg̊ard, I., Escudero, D., Scholl, P., Xing, C.: SPDZ2k : efficient MPC
mod 2k for dishonest majority. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018. LNCS, vol. 10992, pp. 769–798. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96881-0 26

24. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of Partial Knowledge and
Simplified Design of Witness Hiding Protocols. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/
10.1007/3-540-48658-5 19

25. Damg̊ard, I., Escudero, D., Frederiksen, T.K., Keller, M., Scholl, P., Volgushev,
N.: New primitives for actively-secure MPC over rings with applications to private
machine learning. In: 2019 IEEE Symposium on Security and Privacy, pp. 1102–
1120. IEEE Computer Society Press, May 2019

26. Damg̊ard, I., Fujisaki, E.: A statistically-hiding integer commitment scheme based
on groups with hidden order. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol.
2501, pp. 125–142. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
36178-2 8

27. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theory 31, 469–472 (1985)

28. Fiore, D., Gennaro, R., Pastro, V.: Efficiently verifiable computation on encrypted
data. In: Ahn, G.-J., Yung, M., Li, N. (eds.) ACM CCS 2014, pp. 844–855. ACM
Press, November 2014

29. Fiore, D., Nitulescu, A., Pointcheval, D.: Boosting verifiable computation
on encrypted data. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.)
PKC 2020. LNCS, vol. 12111, pp. 124–154. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-45388-6 5

30. Ganesh, C., Nitulescu, A., Soria-Vazquez, E.: Rinocchio: snarks for ring arithmetic.
IACR Cryptology ePrint Archive 2021:322 (2021)

https://doi.org/10.1007/978-3-030-45721-1_24
https://doi.org/10.1007/978-3-030-45388-6_13
https://doi.org/10.1007/978-3-642-36362-7_5
https://eprint.iacr.org/2019/762
https://eprint.iacr.org/2019/762
https://doi.org/10.1007/BFb0055745
https://doi.org/10.1007/BFb0055745
https://doi.org/10.1007/978-3-319-96881-0_26
https://doi.org/10.1007/978-3-319-96881-0_26
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-36178-2_8
https://doi.org/10.1007/3-540-36178-2_8
https://doi.org/10.1007/978-3-030-45388-6_5
https://doi.org/10.1007/978-3-030-45388-6_5


202 T. Attema et al.

31. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourc-
ing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 465–482. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14623-7 25

32. Giacomelli, I., Madsen, J., Orlandi, C.: ZKBoo: faster zero-knowledge for Boolean
circuits. In: Holz, T., Savage, S. (eds.) USENIX Security 2016, pp. 1069–1083.
USENIX Association, August 2016

33. Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2. Cambridge
University Press, Cambridge (2004)

34. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th
ACM STOC, pp. 218–229. ACM Press, May 1987

35. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive
proofs for muggles. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 113–
122. ACM Press, May 2008

36. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems (extended abstract). In: 17th ACM STOC, pp. 291–304. ACM Press,
May 1985

37. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 305–326. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 11

38. Joye, M., Libert, B.: Efficient cryptosystems from 2k. In: Johansson, T., Nguyen,
P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 76–92. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38348-9 5

39. Okamoto, T., Uchiyama, S.: A new public-key cryptosystem as secure as factoring.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 308–318. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054135

40. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

41. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 9

42. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 22

43. Wahby, R.S., Tzialla, I., shelat, A., Thaler, J., Walfish, M.: Doubly-efficient
zkSNARKs without trusted setup. In: 2018 IEEE Symposium on Security and
Privacy, pp. 926–943. IEEE Computer Society Press, May 2018

44. Xie, T., Zhang, J., Zhang, Y., Papamanthou, C., Song, D.: Libra: succinct zero-
knowledge proofs with optimal prover computation. In: Boldyreva, A., Micciancio,
D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 733–764. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26954-8 24

https://doi.org/10.1007/978-3-642-14623-7_25
https://doi.org/10.1007/978-3-642-14623-7_25
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-642-38348-9_5
https://doi.org/10.1007/BFb0054135
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/978-3-030-26954-8_24


Universally Composable Σ-protocols
in the Global Random-Oracle Model

Anna Lysyanskaya and Leah Namisa Rosenbloom(B)

Brown University, Providence, RI 02906, USA
{anna lysyanskaya,leah rosenbloom}@brown.edu

Abstract. Numerous cryptographic applications require efficient non-
interactive zero-knowledge proofs of knowledge (NIZKPoK) as a build-
ing block. Typically they rely on the Fiat-Shamir heuristic to do so,
as security in the random-oracle model is considered good enough in
practice. However, there is a troubling disconnect between the stand-
alone security of such a protocol and its security as part of a larger,
more complex system where several protocols may be running at the
same time. Provable security in the general universal composition model
(GUC model) of Canetti et al. is the best guarantee that nothing will
go wrong when a system is part of a larger whole, even when all parties
share a common random oracle. In this paper, we prove the minimal nec-
essary properties of generally universally composable (GUC) NIZKPoK
in any global random-oracle model, and show how to achieve efficient
and GUC NIZKPoK in both the restricted programmable and restricted
observable (non-programmable) global random-oracle models.

1 Introduction

Non-interactive zero-knowledge proofs of knowledge (NIZKPoK) [5,28,42] form
the basis of many cryptographic protocols that are on the cusp of widespread
adoption in practice. For example, the Helios voting system [1] and other effi-
cient systems employing cryptographic shuffles [46] use zero-knowledge proofs of
knowledge to ensure that each participant in the system correctly followed the
protocol and shuffled or decrypted its inputs correctly. Anonymous e-cash [12]
and e-token [11] systems use them to compute proofs of validity of an e-coin or
e-token. In group signatures [2,18] they are used to ensure that the signer is in
possession of a group signing key. In anonymous credential constructions [13,14],
they are used to ensure that the user identified by a given pseudonym is in pos-
session of a credential issued by a particular organization.

The non-interactive aspect of NIZKPoK is especially important to most of
these applications—it enables a prover to form a proof of some attribute for a
general verifier rather than forcing the prover to talk to each verifier individually,
which is inefficient in most cases and infeasible for some applications. It is also
extremely important that the NIZKPoK be efficient. Thus, the constructions
cited above use efficient Σ-protocols [26] made non-interactive via the Fiat-
Shamir heuristic [29] to instantiate the NIZKPoK in the random-oracle model
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(ROM) [3]. Recall that a Σ-protocol for a relation R is, in a nutshell, a (1−negl)-
sound honest-verifier three-move proof system in which the single message from
the verifier to the prover is a random �-bit string. The Fiat-Shamir transform
makes the proof system non-interactive by replacing the message from the verifier
with the output of a random oracle (RO).

Recently, a better understanding of how badly such NIZKPoK fare in the
concurrent setting emerged [4,27,39,44]. Allowing for secure concurrent execu-
tions is of vital importance for the real-world application of any of the cryp-
tographic protocols mentioned above, and especially for distributed protocols.
But Drijvers et al. [27] demonstrated subtleties in the proofs of security for
concurrent protocol executions that often go undetected, leaving building-block
cryptographic protocols vulnerable to attacks like Wagner [44] and Benhamouda
et al.’s exploitation of the ROS problem [4].

One way to circumvent the unique subtleties of composing cryptographic
primitives is to prove that each primitive is universally composable using
Canetti’s universal composition (UC) framework [19]. In the UC framework,
the security of a particular session of a protocol is analyzed with respect to
an environment, which represents an arbitrary set of concurrent protocols. The
environment in the UC framework can talk to and collude with the traditional
“adversary” in cryptographic protocols, directing it to interfere with the proto-
col. However, the original UC framework did not provide a mechanism for parties
in different settings to use a shared global functionality, for instance a shared
RO or common reference string (CRS). In real-world applications, it is virtually
guaranteed that parties will share setup and state between sessions.

To address the issue of shared state and concurrency in the UC framework,
Canetti, Dodis, Pass, and Walfish developed the general UC (GUC) framework,
which considers “global” functionalities G that can be queried by any party
in any session at any time, including the environment [20]. Canetti, Jain, and
Scafuro later showed several practical applications of the GUC framework with
a restricted observable global RO GroRO as the only trusted setup. They include
commitment, oblivious transfer, and secure function evaluation protocols, all
GUC in the GroRO-hybrid model [22]. Building on Canetti et al.’s framework,
Camenisch, Drijvers, Gagliardoni, Lehmann, and Neven developed a restricted
programmable observable global RO, denoted GrpoRO, that allows for more efficient
GUC commitments in the GrpoRO-hybrid model [10].

Thus, the GroRO- and GrpoRO-hybrid models are attractive ones for constructing
and analyzing practical and composable non-interactive zero-knowledge proofs.
Obtaining an efficient NIZKPoK (for a relation R) in either global ROM from an
efficient Σ-protocol (for the same relation) is a natural goal. We begin by showing
that any protocol that can be considered a GUC NIZKPoK in any global ROM
must satisfy particular flavors of completeness, zero-knowledge, and soundness
(formalized in Definitions 3, 4, and 5, respectively)—i.e., that these flavors are
necessary to achieve security in the global RO model.
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Theorem 1 (Informal). If a protocol is a GUC NIZKPoK in any global
ROM, then it satisfies Definitions 3, 4, and 5.

Next, we obtain GUC NIZKPoK in the (programmable) GrpoRO-hybrid model
by using a straight-line compiler on any Σ-protocol. A straight-line compiler [30]
transforms a Σ-protocol into a non-interactive zero-knowledge proof system in
which the knowledge extractor uses the proof itself as well as the adversary’s
random-oracle query history in order to compute an adversarial prover’s witness.
(More formally, the resulting protocol satisfies our Definitions 3–5.)

Theorem 2 (Informal). The non-interactive proof system obtained by
running any Σ-protocol for relation R through any straight-line compiler
is a GUC NIZKPoK for relation R in the GrpoRO-hybrid model.

While the programming property of GrpoRO is helpful in proving security, it
also localizes aspects of the global RO by providing a programming verification
interface that concurrent protocols cannot access. It is unclear how localized
interfaces that are vital to the security of component protocols might impact
the security analysis of composed protocols.

Therefore, we also consider NIZKPoK in the less restrictive (non-program-
mable) GroRO-hybrid model, where GroRO’s interfaces are completely public. Unfor-
tunately, Pass [40] and Canetti et al. [22] point out that it is not possible to con-
struct NIZKPoK using only a global functionality, because there is no way for
the simulator in the security experiment to exercise control over it. We introduce
a new model called the GroRO-FCRS-hybrid model, in which protocol participants
have access to a trusted common reference string (CRS) functionality. Partici-
pants can compute this CRS for a one-time cost at the beginning of the session
using only GroRO and Canetti et al.’s GUC non-interactive secure computation
(NISC) protocol [22]. We prove that any straight-line compiler in conjunction
with our new construction, which uses a special type of Σ-protocol called an OR-
protocol [24,26], is sufficient to transform any Σ-protocol into a GUC NIZKPoK
in the GroRO-FCRS-hybrid model.

Theorem 3 (Informal). The non-interactive proof system obtained by
composing any Σ-protocol for relation R with a local CRS relation S and
running the combined OR-protocol through any straight-line compiler is a
GUC NIZKPoK for relation R ∨ S in the GroRO-FCRS-hybrid model.

The straight-line compiler we use ensures that the protocols we obtain satisfy
the flavors of completeness, zero-knowledge, and soundness from Definitions 3,
4, and 5. Combined with Theorem 1, this demonstrates that these flavors are
both necessary and sufficient.

Finally, we realize our GUC transforms for Σ-protocols using Kondi and
shelat’s randomized version of the Fischlin transform [30,35], demonstrating
that it is possible to construct efficient GUC NIZKPoK from a broad class of
Σ-protocols in both the GrpoRO and GroRO-FCRS-hybrid models.
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Along the way, we uncover theoretical observations that may be of indepen-
dent interest. First, that straight-line compilers afford strong security guarantees:
because they work exclusively using information the adversary already knows,
we can compose them with other building blocks such as zero-knowledge simula-
tors without compromising the security of the overall system. This “decoupling”
property [30], and security properties of non-rewinding extractors in general,
are of interest in the quantum random-oracle model (QROM), where rewind-
ing is tricky because of the no-cloning theorem [34,43,45]. It is the subject of
future work to explore whether other mechanisms of straight-line extraction (for
example, ones that do not rely on the adversary’s query history) [17,34,40,43]
are sufficient to bootstrap Σ-protocols into GUC NIZKPoK in the GrpoRO- or
GroRO-FCRS-hybrid models, a different global ROM, or the QROM.

Organization. In the remainder of the introduction, we provide general back-
ground information on Σ-protocols, the GUC model, the global ROM(s), and
straight-line extraction. In Sect. 2, we give formal definitions of Σ-protocols and
straight-line compilers. Section 3 contains definitions of GUC-security in vari-
ous global ROMs and a proof of Theorem 1 (that any GUC NIZKPoK must
have the security properties afforded by straight-line compilers). In Sect. 4, we
prove Theorem 2 (that any straight-line compiler is sufficient to transform any
Σ-protocol into a GUC NIZKPoK in the GrpoRO-hybrid model), and in Sect. 5 we
prove Theorem 3 (that any straight-line compiler in conjunction with our OR-
protocol construction is sufficient to complete the transform in the GroRO-FCRS-
hybrid model). Finally in Sect. 6, we leverage the randomized Fischlin transform
to efficiently realize our constructions in both global ROMs.

Σ-Protocols. A Σ-protocol for a binary NP relation R is a three-round, public-
coin proof system. On input x and w such that (x,w) ∈ R, the prover generates
its first message com (in the literature on Σ protocols, this first message is often
referred to as a “commitment”). In response, the honest verifier sends a unique �-
length random “challenge” chl to the prover. Finally, the prover “responds” with
a value res. The resulting transcript (com, chl, res) is then fed to a verification
algorithm that determines whether the verifier accepts or rejects.

Σ-protocols must additionally satisfy three properties. First, they must sat-
isfy completeness: if the prover has a valid witness and both parties engage in the
protocol honestly, the verifier always accepts. Next, they must be special honest-
verifier zero-knowledge: there must exist a simulator algorithm that on input
x and chl ∈ {0, 1}� outputs an accepting transcript (com, chl, res) for x such
that, if chl was chosen uniformly at random, (com, chl, res) is indistinguish-
able from that output by an honest prover on input x. Finally, they must have
special soundness: if there are two accepting transcripts for any statement with
the same commitment com but different challenges chl �= chl′, there exists an
extractor algorithm that can produce a valid witness from the transcripts. The
stronger version of soundness, special simulation soundness, says that special
soundness must still hold even if an adversary has oracle access to the simulator.
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The Σ-protocol format captures many practical zero-knowledge proof sys-
tems. For example, Wikström [46] shows Σ-protocols for proving a rich set of
relations between ElGamal ciphertexts, which in turn allow proving that a set
of ciphertexts was shuffled correctly; similar protocols exist for Paillier cipher-
texts [17,23]. A robust body of literature exists giving Σ-protocols for proving
that values committed using Pedersen [41] and Fujisaki-Okamoto [32] commit-
ments satisfy general algebraic and Boolean circuits [8,15,16] and lie in certain
integer ranges [6,36]. For all the Σ-protocols listed above, the size and com-
plexity of the proof system is a O(1) factor of the complexity of verifying the
underlying relation R(x,w), making Σ-protocols extremely desirable in practice.

Σ-protocols are also the most efficient technique to achieve zero-knowledge
proofs of knowledge of a commitment opening in the lattice setting [25,38], where
the complexity grows by a factor of O(k) in order to achieve soundness (1−2−k).
Thus, for all the relations R cited above, our results immediately yield the most
efficient known GUC NIZKPoK in the global ROM.

The General Universal Composability (GUC) Model. Our security
experiment is that of the GUC model of Canetti et al. [20], which enables the
UC-security analysis of protocols with global functionalities.

Briefly, the UC and GUC modeling of the world envisions an adversarial
environment Z, which provides inputs to honest participants, observes their
outputs, and (at a high level) directs the order in which messages are passed
between different system components. Additionally, the world includes honest
participants (that receive inputs from Z and let Z observe their outputs) and
adversarial participants controlled by the adversary A (whose behavior is also
directed and observed by Z).

The ideal world additionally contains an ideal functionality F and an ideal
adversary S, also called the simulator. In the ideal world, the honest partici-
pants pass their inputs directly to F and receive output from it. The real world
does not contain such a functionality; instead, the honest participants run a
cryptographic protocol. The corrupted participants in the ideal world always
communicate through S, who simulates their view and may pass their inputs
to F through a private channel. There are also worlds in between these two: in
a G-hybrid world, the honest participants run a protocol that can make calls
to an ideal functionality G. In the GUC model, G is accessible not only to the
honest participants, but also to Z. A cryptographic protocol is said to be (G)UC
with respect to a functionality F (in other words, the protocol (G)UC-realizes
F) if for any real-world adversary A , there exists an “ideal” adversary (simu-
lator) S which creates a view for the environment (in the ideal world) that is
indistinguishable from its view of the cryptographic protocol.

In our case, the ideal functionality is the NIZKPoK ideal functionality, or
FNIZK, which works as follows. An honest participant in a protocol session s can
compute a proof π of knowledge of w such that (x,w) ∈ R by querying FNIZK’s
Prove interface and giving it (s, x, w). The string π itself is computed according
to the algorithm SimProve provided by the ideal adversary S. The functionality
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guarantees the zero-knowledge property because SimProve is independent of
w. An honest participant can also verify a supposed proof π for x by querying
FNIZK’s Verify interface on input (x, π). FNIZK ensures the soundness of the proof
system as follows: if the proof π was not issued by FNIZK, then it runs an extractor
algorithm Extract provided by S to try to compute a witness w from the proof
π. The Extract algorithm may also require additional inputs from S.

The Global Random-Oracle Models (Global ROMs). The traditional
random oracle (RO) H : {0, 1}∗ → {0, 1}� is a function that takes any string
as input and returns a uniformly random �-bit string as output [3]. The global
random-oracle model (global ROM) allows us to capture the realistic scenario in
which the same RO is reused by many parties over many (potentially concurrent)
executions of numerous distinct protocols. As envisioned by Canetti et al. [22]
and formalized by Camenisch et al. [10], the “strict” global RO functionality
GsRO is a public, universally-accessible RO that can be queried by any party in
any protocol execution, including by the arbitrary concurrent protocols modeled
by the environment in the UC framework [20].

Pass [40], Canetti and Fischlin [21], Canetti et al. [20,22], and Camenisch
et al. [10] have all discussed the limitations of GsRO. In particular, Canetti and
Fischlin [21] demonstrated that it is impossible to achieve UC commitments with
only a global setup, and Canetti et al. extended this argument to commitments
and zero knowledge in the GUC framework [20] and the GroRO-hybrid model [22].
The limitation stems from the fact that in a “strict” setup, the simulator does not
have any special advantage over a regular protocol participant. In our setting,
FNIZK needs to observe the adversary’s RO queries in order to extract witnesses
and ensure the special soundness property. Most zero-knowledge simulators also
rely on the extra ability to program the RO at selected points in order to simulate
proofs of statements without witnesses.

Canetti et al. first introduced a global RO GroRO with a restricted “observ-
ability” property [22]. The ideal adversary (simulator) S in the security proof
of a protocol Π emulating an ideal functionality F in the GroRO-hybrid model is
able to observe all adversarial queries to GroRO as follows. First, S can observe the
corrupted parties’ queries to GroRO by directly monitoring their input and output
wires (recall that in the ideal world, corrupted parties communicate through S).
The environment’s queries to GroRO, on the other hand, are not directly moni-
tored by S. Since GroRO is completely public, the environment is free to query it
anytime; however, the environment is not free to query it with the same session
identifier (SID) as the participants in Π or F , because it is external to legitimate
sessions of Π by definition. In order to ensure the environment’s queries are still
available to the simulator, GroRO checks whether the SID for a query matches the
SID of the querent. In the event that it does not, this query is labelled “illegit-
imate,” creating the restriction. GroRO makes a record of all illegitimate queries
available to an ideal functionality F with the correct SID, if it exists. We will
see that for our construction of GUC NIZKPoK in the GrpoRO- and GroRO-FCRS-



UC Σ-protocols in the Global ROM 209

hybrid models, FNIZK can leverage these queries to extract witnesses from the
environment’s proofs.

Camenisch et al.’s restricted programmable observable global RO GrpoRO [10]
builds on the functionality of GroRO as follows. In order to ensure that program-
ming is restricted to the simulator, GrpoRO has an IsProgrammed interface that
allows participants with a particular SID to check whether the output of GrpoRO

was programmed on some input pertaining to the same session. Honest par-
ties in the challenge session can therefore check whether the adversary has pro-
grammed GrpoRO, and can refuse to continue the protocol if so. In the real world,
no programming occurs; in the ideal world, the simulator, who controls the cor-
rupted parties’ views of the experiment, can program GrpoRO and then pretend
it did not program anything by returning “false” to all of the corrupted parties’
IsProgrammed queries. Since only parties running a legitimate protocol session
s are allowed to use the IsProgrammed interface for s, the environment can-
not make IsProgrammed queries for s—if it could, it would easily be able to
distinguish between the real and ideal experiments by checking whether honest
parties’ responses were programmed.

We show how to construct efficient, GUC NIZKPoK in the GrpoRO-hybrid
model. However, we believe there may be downsides to programmable global
ROs like GrpoRO: it is not clear how compromising the fully-public aspect of the
global RO with a locally-restricted interface might impact the overall compos-
ability of protocols proven secure in the GrpoRO-hybrid model.1 In order to achieve
efficient GUC NIZKPoK without this localized interface, we build a new hybrid
model called the GroRO-FCRS-hybrid model. The GroRO-FCRS-hybrid model shifts
the localized interface from inside of the global RO to inside of the protocol.
For a one-time cost at the beginning of the protocol execution, participants can
compute this CRS securely and realize FNIZK using only the observable global RO
GroRO by leveraging Canetti et al.’s GUC NISC protocol [22]. Similar mechanisms
are used in practice to obtain practical NIZKPoK in other ROMs [7].

In the real world, our ideal CRS functionality FCRS returns a random string
CRS (the CRS our real-world participants might compute using the NISC proto-
col). In the ideal world, the simulator generates CRS itself, along with a trapdoor
trap that only it knows. The proof-generation process in our construction of
GUC NIZKPoK in the GroRO-FCRS-hybrid model is to show that the prover either
knows a “real” witness w for a statement x such that (x,w) ∈ R, or it knows
the trapdoor to the CRS. The Prove and SimProve algorithms differ only in
the witness used: a real prover must use a real witness, while the simulator can
use trap in a way that we will show is imperceptible to the environment. We
formalize this intuition using an OR-protocol [24,26] over the original relation
R and what we call a samplable-hard relation for the CRS.

Straight-Line Extraction and the Fischlin Transform. The original
Fischlin transform [30] is a non-interactive transform for Σ-protocols in the
1 For a full discussion of the subtle differences between observation and programming

privileges in the global ROM(s), see Appendix A.2 in the full version [37].
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standard ROM that allows for straight-line (or online) extraction. Straight-line
extraction is a process by which the extractor can produce a witness straight
from a valid proof without any further interaction with the prover. (In order to
do so, it will need additional, auxiliary information available to the extractor
algorithm only.) This is in contrast to extraction in the “rewinding” model, in
which the extractor resets the prover to a previous state and hopes for a certain
pattern of interaction before it can obtain a witness. Straight-line extraction is
necessary in the (G)UC model, which does not allow the simulator to rewind the
environment [20]. Furthermore, straight-line extraction produces a tight reduc-
tion, which avoids security nuances surrounding the forking lemma [33].

In order to create a straight-line extractable proof system from a Σ-protocol,
the Fischlin transform essentially forces the prover to rewind itself, requiring
multiple proofs on repeated commitments until the probability that the prover
has generated at least two responses to different challenges on the same com-
mitment is overwhelming. Kondi and shelat recently showed that because the
Fischlin prover is deterministic—that is, because it tests challenges by iterating
from zero to some fixed constant—the original transform is open to a “replay”
attack that breaks the the witness indistinguishability property of OR-protocols
[35]. To avoid the attack, Fischlin’s original construction requires the underly-
ing Σ-protocols to have a property called quasi-unique responses, which Kondi
and shelat demonstrate precludes the transformation of OR-protocols. Kondi
and shelat show how this property can be omitted (and most OR-protocols
transformed) by randomizing the challenge selection process and replacing the
quasi-unique responses property with a (more general) property called strong
special soundness. We review the details of the resulting “randomized” Fischlin
transform [31,35] in Appendix A.12 of the full version of the paper [37].

2 Preliminaries

We use standard notation, available in Appendix A.1 of the full version [37].

2.1 Σ-protocols, Revisited

Let R be any efficiently computable binary relation. For pairs (x,w) ∈ R, or
equivalently such that R(x,w) = 1, we call x a statement in the language of R,
denoted LR, and say w is a witness to x ∈ LR. We consider Σ-protocols over a
relation R between a prover P and a verifier V that have the general commit-
challenge-respond format discussed in Sect. 1, which Damg̊ard formalizes as a
protocol template [26]. Since we will later introduce compilers for Σ-protocols—
first to make them non-interactive and straight-line extractable and then to make
them GUC—it will be helpful to define Σ-protocol interfaces with precise inputs
and outputs. We begin by formalizing an algorithmic version of the protocol tem-
plate τ as a tuple of algorithms (Setup, Commit, Challenge, Respond, Decision),
the details of which are provided alongside Damg̊ard’s original version in
Appendix A.3 [37].
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Σ-protocols must also satisfy the properties of completeness, special honest-
verifier zero-knowledge (SHVZK), and special soundness (SS). The SHVZK prop-
erty requires the existence of a simulator algorithm SimProve for simulating
proofs, and the SS property requires an extractor algorithm Extract for extract-
ing witnesses. Therefore, our algorithmic specification of a Σ-protocol includes
three additional algorithms: SimSetup, SimProve, and Extract.

In order to more easily translate our definition of Σ-protocols into the non-
interactive setting, we combine the Commit, Challenge, and Respond algorithms
of the protocol template into a Prove interface. For now we are still dealing with
the interactive version, and the specification of Prove below is a two-party pro-
tocol where the first input to the algorithm is the prover’s input, and the second
input is the verifier’s. After running Prove, both parties obtain the same copy
of the proof transcript π = (com, chl, res). In the next section, we will intro-
duce a straight-line compiler that makes the Prove interface a non-interactive
algorithm in the random-oracle model (ROM). The non-interactive, straight-line
extractable (NISLE) proof system resulting from the transformation will have
different versions of the SHVZK and SS properties; because we will work almost
exclusively with these versions, we defer formal definitions and discussions of the
original formulations [26] to Appendix A.5 of the full version of the paper [37].

Definition 1 (Σ-protocol). A Σ-protocol for a relation R based on a proto-
col template τ (Definition 15 in [37]) is a tuple of efficient procedures ΣR,τ =
(Setup, Prove, Verify, SimSetup, SimProve, Extract), defined as follows.

– ppm ← Setup(1λ): Given a security parameter 1λ, invoke τ.Setup(1λ) to
obtain the public parameters ppm.

– π ← Prove((ppm, x, w), (ppm, x)): Let the first (resp. second) argument to
Prove be the input of the prover (resp. verifier), where both parties get ppm
and the statement x, but only the prover gets w. P and V run τ.Commit,
τ.Challenge, and τ.Respond. Output π = (com, chl, res).

– {0, 1} ← Verify(ppm, x, π): Given a proof π for statemenet x, parse π
as (com, chl, res) and output the result of running τ.Decision on input
(x, com, chl, res). Verify must satisfy the completeness property from Defi-
nition 18 in Appendix A.5 of the full version of the paper [37].

– (ppm, z) ← SimSetup(1λ): Generate ppm and the simulation trapdoor z.
Together, SimSetup and SimProve must satisfy the special honest-verifier
zero-knowledge property from Definition 19 in Appendix A.5.

– π ← SimProve(ppm, z, x, chl) : Given public parameters ppm, trapdoor z,
statement x, and a challenge chl, produce a proof π = (com, chl, res).

– w ← Extract(ppm, x, π, π′) : Given two proofs π = (com, chl, res) and
π′ = (com, chl′, res′) for a statement x such that τ.Decision(x, π) =
τ.Decision(x, π′) = 1 and chl �= chl′, output a witness w. Extract must
satisfy the special soundness property from Definition 20 in Appendix A.5.

For convenience and when the meaning is clear, we use ΣR to represent ΣR,τ

and omit ppm from the input of the algorithms.
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2.2 Straight-Line Compilers

Inspired by the straight-line transform due to Fischlin [30,31] described in
Sect. 1, our formalization of a straight-line compiler (SLC) for Σ-protocols in
the random-oracle model (ROM) takes any interactive Σ-protocol ΣR for rela-
tion R and creates a non-interactive, straight-line extractable (NISLE) proof
system ΠSLC

R for the same relation. Both the proof simulation and witness extrac-
tion procedures in a NISLE proof system are non-interactive algorithms in the
ROM—the challenger in the security experiment may not rely on rewinding the
prover, but is permitted to use the adversary’s previous queries to the RO.

The non-interactive equivalent of the special honest-verifier zero-knowledge
(SHVZK) game must reflect the fact that the zero-knowledge simulator might
be programming the RO. The SHVZK property must continue to hold even as
the RO is updated, meaning that if the simulator changes the RO at all, it
must be done in a way that is imperceptible to to the adversary A . Note that
the definition does not imply that the simulator has to program the RO—just
that if it does, it must do so imperceptibly. This nuance is important because
we will later give a construction in Sect. 5.3 for GUC NIZKPoK in the (non-
programmable) GroRO-FCRS-hybrid model—this construction should not (and does
not) contradict our result from Theorem 1, which says that any GUC NIZKPoK
must meet the requirements of non-interactive (multiple) SHVZK.

In the non-interactive version of the special soundness (SS) game in Fischlin’s
construction, the Extract algorithm works on input (x, π,QA ), where QA are
A ’s queries to the RO. Fischlin’s approach is not the only one for achieving
straight-line extraction. Verifiable encryption [9,17] provides a different mech-
anism: the parameters ppm contain a public key, and the proof π contains an
encryption of the witness under this key. The extractor’s trapdoor is the decryp-
tion key. The latter approach requires additional machinery: it needs a proof
system for proving that a plaintext of a particular ciphertext is a witness w, and
thus cannot be constructed directly from ΣR. It is the subject of future work to
determine how such a “key-based” extractor would fare; for now, we assume the
extractor works on the adversary’s queries to the RO.

Finally, Fischlin proposes an optional (negligible) weakening of the complete-
ness property, which we call overwhelming completeness, that allows protocol
designers to optimize other parameters for efficiency reasons. Certainly any SLC
that satisfies the regular notion of completeness will also satisfy the weaker
notion, so we recall the weaker property below and demonstrate in Sect. 3.5 that
it is sufficient for GUC NIZKPoK.

Definition 2 (Straight-Line Compiler). An algorithm SLC is a straight-
line compiler (SLC) in the random-oracle model if given any Σ-protocol ΣR

for relation R (Definition 1) as input, it outputs a tuple of algorithms ΠSLC
R =

(SetupH , ProveH , VerifyH , SimSetup, SimProve, Extract) with access to ran-
dom oracle H that satisfy the following properties: overwhelming completeness
(Definition 3), non-interactive multiple special honest-verifier zero-knowledge
(Definition 4), and non-interactive special simulation-soundness (Definition 5).
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We refer to ΠSLC
R ← SLC(ΣR) as a non-interactive, straight-line extractable

(NISLE) proof system for R, and proofs generated by ΠSLC
R as non-interactive,

straight-line extractable zero-knowledge proofs of knowledge (NISLE ZKPoK).

Definition 3 (Overwhelming Completeness). A NISLE proof system
ΠSLC

R = (SetupH , ProveH , VerifyH , SimSetup, SimProve, Extract) for relation
R in the random-oracle model has the overwhelming completeness property if
for any security parameter λ, any random oracle H, any (x,w) ∈ R, and any
proof π ← ΠSLC

R .ProveH(x,w),

Pr[ΠSLC
R .VerifyH(x, π) = 1] ≥ 1 − negl(λ).

Recall from the introduction of this section that the simulator in the non-
interactive version of the SHVZK experiment is allowed to program the RO.
In order to precisely describe this programming, we differentiate in Fig. 1 the
traditional RO Hf , which is parameterized by a function f ←$ F selected from
random function family F , from the programmable RO HL, which is parameter-
ized by a list L that can be added to (but not edited by) the simulator. We call
this type of oracle a “Random List Oracle,” and provide the simulator algorithms
in the non-interactive SHVZK game oracle access to an interface ProgL, which
allows the caller to map any (previously unmapped) input x to an output v of
its choice. The adversary’s inability to distinguish between the real-world oracle
Hf that is simply a random function and the ideal-world oracle HL that is a
list managed by the simulator is an essential part of the non-interactive SHVZK
experiment—it ensures that the introduction of the non-interactivity property
(via queries to a programmable RO) does not compromise the SHVZK property.

Fig. 1. Random oracle functionalities for NIM-SHVZK and NI-SSS games.

In the standard definition of SHVZK, A is only permitted to issue one Prove
query. In the GUC security experiment (and in most natural applications of Σ-
protocols), the environment is allowed to issue polynomially-many Prove queries,
and we will still need the SHVZK property to hold. Therefore, we present a
version of non-interactive multiple SHVZK (NIM-SHVZK) [30].
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Definition 4 (Non-interactive Multiple SHVZK). A NISLE proof system
ΠSLC

R = (SetupH , ProveH , VerifyH , SimSetup, SimProve, Extract) for relation
R in the random-oracle model has the non-interactive multiple special honest-
verifier zero-knowledge (NIM-SHVZK) property if for any security parameter λ,
any random oracle H, any PPT adversary A , and a bit b ←$ {0, 1}, there exists
some negligible function negl such that Pr[b′ = b] ≤ 1

2 + negl(λ), where b′ is
the result of running the game NIM–SHVZKH∗,∗

A ,ΠSLC
R

(1λ, b) from Fig. 2. We say A

wins the NIM–SHVZK game if Pr[b′ = b] > 1
2 + negl(λ).

Fig. 2. Non-interactive multiple SHVZK (NIM-SHVZK) game.

Similarly, the environment in the ideal-world GUC experiment will have
access to polynomially-many proofs generated by the SimProve algorithm, which
FNIZK will use to simulate proofs. We therefore define our straight-line compilers
to have the NI special simulation soundness property (NI-SSS), which says that
special soundness must still hold even after an adversary has seen polynomially-
many proofs from the simulator. Fischlin’s original construction is both NIM-
SHVZK and NI-SSS [30]. We will use his results in Sect. 6.1 to prove that the
randomized Fischlin transform [30,35] is also NIM-SHVZK and NI-SSS.

Definition 5 (Non-interactive Special Simulation-Soundness). A NISLE
proof system ΠSLC

R = (SetupH , ProveH , VerifyH , SimSetup, SimProve, Extract)
for relation R in the random-oracle model has the non-interactive special simula-
tion-soundness property if for any security parameter λ, any random oracle H, and
any PPT adversary A , there exists some negligible function negl such that

Pr[Fail ← NI–SSSH∗,Prog
A ,ΠSLC

R
(1λ)] ≤ negl(λ),
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where NI–SSS is the game described in Fig. 3. We say A wins if Pr[Fail ←
NI–SSSH∗,Prog

A ,ΠSLC
R

(1λ)] > negl(λ).

Fig. 3. Non-interactive special simulation-soundness (NI-SSS) game.

Σ-protocols that maintain the SHVZK property under any non-interactive
transform in the ROM must additionally have com messages with entropy that is
superlogarithmic in the security parameter [31], such that the adversary cannot
exhaustively query commitments to the RO and check whether the challenge
supplied by the prover matches what it receives. We recall and discuss Fischlin’s
superlogarithmic commitment entropy property further in Appendix A.7 [37].

2.3 OR-Protocols

Rather than producing a proof corresponding to a single statement x in a lan-
guage LR, the prover in an OR-protocol proves that it knows a witness for either
a statement x0 in LR0 or another statement x1 in LR1 . At a high level, the prover
does this by simulating the proof of the statement for which it does not have
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a witness, while computing the proof of the statement for which it does have a
witness honestly.

Our definition is adapted directly from Damg̊ard’s [26], with a few minor
tweaks to make it more general. Since we will use the OR-protocol functionality
as a black box in our construction, it suffices for the purpose of understanding our
results to treat the OR-protocol as a Σ-protocol (according to Definition 1) with
compound inputs. For example, we represent the compound statement x0 ∨ x1

with the upper-case variable X = (x0, x1). The witness W = (w, b) includes
a witness along with a bit b such that (xb, w) ∈ Rb. We provide the detailed
version of our definition alongside Damg̊ard’s, as well as a discussion of the
minor differences between them, in Appendix A.8 of the full version [37].

3 Properties of GUC NIZKPoK

In this section we formalize the definitions of the programmable global RO GrpoRO

and the observable global RO GroRO, the ideal NIZKPoK functionality FNIZK, the
CRS ideal functionality FCRS, and the security requirements for protocols that
GUC-realize FNIZK in the GrpoRO- and GroRO-FCRS-hybrid models. We then show
that the non-interactive multi-SHVZK and non-interactive special simulation-
soundness properties are strictly necessary to obtain GUC NIZKPoK in any
global ROM.

3.1 GroRO and GrpoRO, Revisited

Building on the overview of the global ROM(s) given in Sect. 1, we now formalize
Canetti et al.’s restricted observable global RO GroRO [22] and Camenisch et al.’s
restricted programmable observable global RO GrpoRO. As with traditional ROs,
both oracles act as functions that respond to each input string xi ∈ {0, 1}∗ with a
uniformly random �-bit string vi ∈ {0, 1}�. We call this original algorithm Query.
Since GrpoRO builds on the interfaces of GroRO, we will start with the specification
of GroRO and follow with the extra interfaces of GrpoRO.

The first thing GroRO does when it receives a query is to check whether the
querent’s SID sid matches the session s for which it has requested randomness. If
sid �= s, GroRO assumes this is an “illegitimate” query made by the environment,
and records the query in its special list of illegitimate queries for s, denoted Qs.
In the original version of the definition [22], only the ideal functionality Fs for
session s can query GroRO using the Observe interface to get the list of illegitimate
queries for s. However, note that no honest provers’ queries will ever be recorded
in this list, as they will only ever be querying GroRO for randomness sessions in
which they are participating legitimately. Therefore, we follow Camenisch et al.’s
version of the restricted observability property [10] and simply release the list
Qs to anyone who wants it.

Definition 6 (Observable Global RO GroRO). [10,22] The observable global
RO GroRO is a tuple of algorithms (Query, Observe) defined over an output length
� and an initially empty list of queries Q:
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– v ← Query(x) : Parse x as (s, x′) where s is an SID. If a list Qs of illegitimiate
queries for s does not yet exist, set Qs = ⊥. If the caller’s SID �= s, add
(x, v) to Qs. If there already exists a pair (x, v) in the query list Q, return v.
Otherwise, choose v uniformly at random from {0, 1}�, store the pair (x, v)
in Q, and return v.

– Qs ← Observe(s) : If a list Qs of illegitimate queries for s does not yet exist,
set Qs = ⊥. Return Qs.

In addition to the Query and Observe interfaces, Camenisch et al.’s restricted
programmable observable global RO GrpoRO has two extra interfaces, Program
and IsProgrammed. GrpoRO keeps track of which queries have been programmed
using the set prog. Note that since privileged (simulator-only) programming is
not allowed in the GUC model, anyone can program GrpoRO. In order to func-
tionally restrict this privilege to the simulator, Camenisch et al. introduces the
IsProgrammed interface, which reveals whether or not GrpoRO was programmed
on an index x = (s, x′), but only to a calling party with sid = s. Notably, this
interface directly restricts the environment from ever seeing whether or not the
oracle was programmed (since the environment is by definition not part of any
legitimate protocol session), and indirectly restricts the adversary from ever see-
ing whether or not the oracle was programmed (since the simulator is in charge
of its view in the ideal-world experiment in which programming is employed.)

Definition 7 (Restricted Programmable Observable Global RO GrpoRO).
[10] The restricted programmable observable global random oracle GrpoRO is a
tuple of algorithms (Query, Observe, Program, IsProgrammed) defined over an
output length � and initially empty lists Q (queries) and prog (programmed
queries):

– v ← Query(x) : Same as Definition 6 above.
– Qs ← Observe(s) : Same as Definition 6 above.
– {0, 1} ← Program(x, v) : If ∃v′ ∈ {0, 1}� such that (x, v′) ∈ Q and v �= v′,

output 0. Otherwise, add (x, v) to Q and prog and output 1.
– {0, 1} ← IsProgrammed(x) : Parse x as (s, x′). If the caller’s SID �= s, output

⊥. Otherwise if x ∈ prog, output 1. Otherwise, output 0.

3.2 The NIZKPoK Ideal Functionality

We now formalize the NIZKPoK ideal functionality FNIZK. Recall from Sect. 1 that
in the “ideal” world, the honest parties who would execute protocol Π are actually
dummy parties who do not perform any computations of their own. Instead, they
pass all of their inputs to an ideal functionality FNIZK, who instructs them on how
to respond. As is standard in the (G)UC framework [19,20,22], there is one ideal
functionality for each SID s. A dummy party with SID s can only send input and
receive output from the FNIZK with the same SID, denoted Fs

NIZK.
Each Fs

NIZK will need to run some kind of setup, then process proofs and
verifications on behalf of the honest parties in its session. Recall that in order
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to be NIZKPoK, the proofs must be non-interactive, zero-knowledge (satisfying
the SHVZK property), and proofs of knowledge (satisfying the SS property).
These properties imply the existence of SHVZK simulator algorithms SimSetup
and SimProve that do not take the prover’s witness as input, as well as of the
SS algorithm Extract that can compute witnesses from adversarially-created
proofs. During FNIZK’s Setup procedure, FNIZK requests the specifications of these
algorithms from the ideal adversary (simulator) S.

Note that there are two conditions in which FNIZK can output Fail. The first
is a completeness error, where FNIZK’s execution of the SimProve algorithm on
input (x,w) ∈ R fails to produce a proof π such that Verify(x, π) = 1. The
second is an extraction error, where FNIZK’s execution of the Extract algorithm
on input a valid, non-simulated proof tuple (x, π) fails to produce a witness w
such that R(x,w) = 1. In the proof of Theorem 1 in Sect. 3.5, we will draw
a direct correspondence between these failures and the functionality of a Σ-
protocol.

Definition 8 (NIZKPoK Ideal Functionality). The ideal functionality
FNIZK of a non-interactive zero-knowledge proof of knowledge (NIZKPoK) is
defined as follows.

Setup: Upon receiving the request (Setup, s) from a party P = (pid, sid), first
check whether sid = s. If it doesn’t, output ⊥. Otherwise, if this is the first time
that (Setup, s) was received, pass (Setup, s) to the ideal adversary S, who returns
the tuple (Algorithms, s, Setup, Prove, Verify, SimSetup, SimProve, Extract)
with definitions for the algorithms FNIZK will use. FNIZK stores the tuple.

Prove: Upon receiving a request (Prove, s, x, w) from a party P = (pid, sid),
first check that sid = s and R(x,w) = 1. If not, output ⊥. Otherwise, com-
pute π according to the SimSetup and SimProve algorithms and check that
Verify(x, π) = 1. If it doesn’t, output Fail. Otherwise, record then output the
message (Proof, s, x, π).

Verify: Upon receiving a request (Verify, s, x, π) from a party P = (pid, sid),
first check that sid = s. If it doesn’t, output ⊥. Otherwise if Verify(x, π) =
0, output (Verification, s, x, π, 0). Otherwise if (Proof, s, x, π) is already
stored, output (Verification, s, x, π, 1). Otherwise, compute w according to the
Extract algorithm. If R(x,w) = 1, output (Verification, s, x, π, 1) for a suc-
cessful extraction. Else if R(x,w) = 0, output Fail.

3.3 The CRS Ideal Functionality

Below is the ideal common reference string (CRS) functionality, which relies on
a generic “GenCRS” algorithm. In Sect. 5.1, we will articulate the properties that
GenCRS must have for the purposes of our construction.

Definition 9 (CRS Ideal Functionality). The ideal functionality FCRS of
a common reference string (CRS) for a particular CRS generation mechanism
GenCRS is defined as follows.
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Query: Upon receiving a request (Query, s) from a party P = (pid, sid), first
check whether sid = s. If it doesn’t, output ⊥. Otherwise, if this is the first time
that (Query, s) was received, compute x according to the algorithm GenCRS and
store the tuple (CRS, s, x). Return (CRS, s, x).

3.4 GUC Security Definitions

We are now ready to formalize what it means for a protocol Π to be a GUC
NIZKPoK in the GrpoRO- and GroRO-FCRS-hybrid models. We review the standard
GUC model real- and ideal-world experiments given by Canetti et al. [20] in
Appendix A.9 of the full version of the paper [37], noting that we are working
in the passive corruption model—i.e. Z must decide at the time of a party’s
invocation whether or not they are corrupt.

Definition 10 (GUC NIZKPoK in the GrpoRO-hybrid Model). A pro-
tocol Π = (Setup, Prove, Verify, SimSetup, SimProve, Extract) with security
parameter λ GUC-realizes the NIZKPoK ideal functionality FNIZK in the GrpoRO-
hybrid model if for all efficient A , there exists an ideal adversary S efficient in
expectation such that for all efficient environments Z,

IDEAL
GrpoRO

FNIZK,S,Z(1λ, aux) ≈c REAL
GrpoRO

Π,A ,Z(1λ, aux),

where GrpoRO is the restricted programmable observable global RO (Definition 7)
and aux is any auxiliary information provided to the environment.

Definition 11 (GUC NIZKPoK in the GroRO-FCRS-hybrid Model). A pro-
tocol Π = (Setup, Prove, Verify, SimSetup, SimProve, Extract) with security
parameter λ GUC-realizes the NIZKPoK ideal functionality FNIZK in the GroRO-
FCRS hybrid model if for all efficient A , there exists an ideal adversary S efficient
in expectation such that for all efficient environments Z,

IDEALGroRO

FNIZK,S,Z(1λ, aux) ≈c REALGroRO,FCRS

Π,A ,Z (1λ, aux),

where GroRO is the restricted observable global RO (Definition 6), FCRS is the ideal
CRS functionality (Definition 9), and aux is any auxiliary information provided
to the environment.

3.5 GUC NIZKPoK are Complete, NIM-SHVZK, and NI-SSS

We prove in this section that any protocol Π = (Setup, Prove, Verify, SimSetup,
SimProve, Extract) that GUC-realizes FNIZK in any global ROM must be over-
whelmingly complete, non-interactive multiple special honest-verifier zero-know-
ledge (NIM-SHVZK) and non-interactive special simulation simulation-sound
(NI-SSS) according to the definitions in Sect. 2.2. In other words, the NIM-SHVZK
and NI-SSS properties guaranteed by a straight-line compiler (SLC) are strictly
necessary to create GUC NIZKPoK in the global ROM.
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As we show briefly in Appendix B.1 [37], any ordinary Σ-protocol that is
regular SHVZK is also multi-SHVZK. The more interesting result is the necessity
of special simulation-soundness, since that is not a property guaranteed by all Σ-
protocols—it will be up to the SLC to create a special simulation-sound NISLE
proof system even when the underlying Σ-protocol is only regular special-sound.
In the proof of Theorem 3 in the full version of his paper [30], Fischlin shows
that the NISLE proof systems resulting from his transform satisfy both NIM-
SHVZK and NI-SSS. A key element in Fischlin’s proof that will surface again in
the proof of Theorem 1 below, as well as in the proofs of Theorems 3 and 4, is the
observation that an Extract algorithm based on the adversary’s query history
functionally decouples the extraction process from the rest of the experiment—
interacting with the extractor does not influence the adversary’s view in any way.
Intuitively, this is because Extract works solely using inputs that the adversary
already knows.

Since the following result is independent of the choice of global RO, we
recall the strict global RO GsRO outlined by Canetti et al. [22] and formalized by
Camenisch et al. [10] described in the introduction. GsRO has the same parameters
as GrpoRO and GroRO but only one interface, Query, which acts as globally accessible
random function. The functionality of GsRO is the minimal-most assumption of
an RO in the GUC model, creating a direct correspondence to the standard RO
H in the NIM-SHVZK and NI-SSS experiments. Because the point of using GsRO

here is to convey the minimal assumption needed (and not to prove the result
only for GsRO), we use the generic notation GRO, which represents any global RO
with a minimum of GsRO’s Query interface. The GUC security definition in the
GRO-hybrid model is the same as in Definition 10, except that GrpoRO is replaced
with GRO in the notation.

Theorem 1. Let Π be a protocol that GUC-realizes FNIZK in the GRO-hybrid
model (Definition 10 where GrpoRO is replaced with GRO). Then Π must be over-
whelmingly complete (Definition 3), NIM-SHVZK (Definition 4) and NI-SSS
(Definition 5).

Proof Sketch. We proceed by cases and show that if Π is not overwhelmingly
complete and NIM-SHVZK then it does not GUC-realize FNIZK, and similarly
that if Π is not NI-SSS then it does not GUC-realize FNIZK. The full proof is
available in Appendix B.2 of the full version of the paper [37].

In the first half of the proof, we construct a reduction that uses an adversary
A that can win the NIM-SHVZK experiment from Fig. 2 with non-negligible
advantage to determine whether it is living in the real- or ideal-world GUC
experiment. The reduction forwards A ’s oracle queries to and from GRO and
Prove queries to the GUC challenger, returning the proofs it receives back to A .
We note that since the reduction has no control over GRO, its view of GRO is exactly
the same as A ’s, so anything A can learn about the proofs from interacting with
GRO, the reduction can also learn. Furthermore if the GUC challenger is running
the ideal-world experiment and FNIZK outputs Fail (indicating that Simulate
failed to compute a valid proof for a statement-witness pair (x,w) ∈ R), the
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reduction can immediately tell it is living in the ideal world. As long as FNIZK

does not produce Fail, the reduction simulates A ’s exact view of the challenger
in the NIM-SHVZK game and succeeds in distinguishing the real- from ideal-
world GUC experiments with the same probability as A .

The second reduction uses an A that can win the NI-SSS game from Fig. 3
with non-negligible advantage in order to distinguish between the GUC experi-
ments. This reduction proceeds similarly to the last, forwarding all of A ’s queries
to the relevant parties. The argument regarding the reduction’s view of GRO is
identical to the argument above. In this case, however, there is a nuance to A ’s
view: the regular NI–SSS challenger always produces simulated proofs, while the
reduction will only produce simulated proofs if the GUC challenger is running
the ideal-world experiment. We argue that in the case that the GUC challenger
is running the real-world experiment, A ’s view from the reduction reduces to
the regular non-interactive special soundness property given in Appendix A.6
[37], in which A can only run the regular Prove algorithm itself (and does not
have oracle access to the simulator). The reduction therefore runs two copies of
A , returning proofs from the GUC challenger to the first copy A and generat-
ing proofs for the second copy A ′ itself using Π.Prove. If the GUC challenger
is running the ideal-world experiment, the reduction is able to simulate A ’s
exact view of the NI-SSS game, and the reduction will be able to determine that
it is living in the ideal-world experiment with the same probability that A is
able to output a proof that causes FNIZK’s Extract algorithm to output Fail.
If the GUC challenger is running the real-world experiment and A ′ can output
a valid proof such that Π.Extract fails but the GUC challenger does not fail,
the reduction knows it is playing against the real-world GUC challenger, and
can therefore distinguish the experiments with the same probability that A ′

succeeds in winning the NI-SS game.
Note that in order to check the result of Π.Extract against the GUC chal-

lenger’s verification, the reduction must be able to be able to compute Π.Extract
itself, which it can only do because it operates using QA ,A ′ . It is the subject
of future work to attempt the reduction in the case that the Extract algorithm
requires a secret decryption key, as discussed in Sect. 2.2. Finally, note the reduc-
tion would not work if Π were only SS, since the adversary in the NI-SS game
does not have well-defined behavior with respect to simulated proofs. �

4 GUC NIZKPoK in the Programmable Global ROM

We will now prove that any straight-line compiler (SLC) is sufficient to transform
any Σ-protocol into a GUC NIZKPoK in the the GrpoRO-hybrid model.

Theorem 2. Let ΣR be any Σ-protocol for relation R (Definition 1), GrpoRO be
the restricted programmable observable global random oracle (Definition 6), and
SLC be any straight-line compiler (Definition 2). Then the NISLE proof system
ΠSLC

R ← SLC(ΣR) GUC-realizes FNIZK in the GrpoRO-hybrid model (Definition 10).

Proof Sketch. In the ideal-world experiment, our simulator S hands the ideal
functionality FNIZK the tuple of algorithms ΠSLC

R , returns false to the corrupted
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parties’ IsProgrammed queries, and otherwise functions as a dummy adversary,
forwarding communications between the environment and the protocol.

We proceed by creating a hybrid reduction starting in the real-world exper-
iment that replaces each piece of the real-world protocol ΠSLC

R with the func-
tionality of FNIZK. First, we replace all of the environment’s and adversary’s
connections to the real-world protocol participants with the “challenger” of our
reduction, C. This difference is syntactic, so the first two hybrids are identical.

In the next hybrid, we replace C’s Prove functionality with the Prove inter-
face of FNIZK, and show the environment’s views are indistinguishable between
these experiments as long as ΠSLC

R has the non-interactive multiple special honest-
verifier zero-knowledge (NIM-SHVZK) property. The reduction proceeds as fol-
lows. First, C always returns false to any of the adversary’s IsProgrammed
queries. As long as 1) ΠSLC

R .SimProve produces valid proofs for statements
x ∈ LR with overwhelming probability (which follows from overwhelming com-
pleteness), and 2) the environment’s view of GrpoRO remains statistically indistin-
guishable between the hybrids (which follows from the NIM-SHVZK property
and the restriction of the IsProgrammed interface), it remains to show that the
outputs of ΠSLC

R .Prove and ΠSLC
R .SimProve are similarly indistinguishable. If the

outputs are statistically indistinguishable—i.e. if ΣR is statistical SHVZK and
SLC preserves this property such that ΠSLC

R is statistical NIM-SHVZK—we are
done. In the event that ΠSLC

R is only computationally NIM-SHVZK, we con-
struct a (tight) reduction that uses an environment that can distinguish the
two hybrids to win the NIM-SHVZK game from Fig. 2. The reduction simply
proceeds by forwarding all of the environment’s RO queries to GrpoRO, all Prove
queries to the NIM-SHVZK challenger, and answering Verify queries itself by
running ΠSLC

R .Verify. If the NIM-SHVZK challenger is playing with bit b = 0
and the proofs are according to ΠSLC

R .Prove, the reduction produces the envi-
ronment’s exact view of the first hybrid; otherwise if b = 1 and the proofs are
according to ΠSLC

R .SimProve, it produces a view of the second hybrid. Therefore,
our reduction succeeds with the same probability as the hybrid-distinguisher
environment, contradicting the NIM-SHVZK property of ΠSLC

R .
In the penultimate hybrid, we replace C’s Verify functionality with the

Verify interface of FNIZK, and show the environment’s views are computationally
indistinguishable between these hybrids as long as ΠSLC

R has the non-interactive
special simulation-soundness (NI-SSS) property. Recall that the Verify function-
ality of FNIZK uses the ΠSLC

R .Extract algorithm, and fails whenever the witness
extracted from a valid (non-simulated) proof is such that R(x,w) = 0. Our
reduction uses an environment that can distinguish the simulate-only hybrid
from the simulate-and-extract hybrid as a black-box to produce a proof that
wins the NI-SSS game from Fig. 3 as follows.

For Prove queries, the reduction simulates proofs according to either hybrid
(both use ΠSLC

R .SimProve). Any time the environment wants to verify a proof
that the reduction did not create itself, it gathers the environment’s queries
(which are freely available—recall that all of the environment’s wires pass
through C) and sends the proof along with the environment’s queries to the
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NI-SSS challenger. Note that since the only difference between the hybrids is
that the second hybrid can output Fail while the first never does, the only way
for the environment to distinguish between them is to produce such a failure by
outputting a valid (non-simulated) proof that causes ΠSLC

R .Extract to fail. Since
the challenger in the NI-SSS game also uses the ΠSLC

R .Extract algorithm, the
reduction succeeds with the same probability as the environment, contradict-
ing the NI-SSS property and proving that the hybrids must be computationally
indistinguishable.

The final step is to replace C with FNIZK and S. Note that since C already runs
the algorithms of FNIZK and returns false to corrupted parties’ IsProgrammed
queries, this is again only a syntactic difference, and the last two hybrids are
identical. The full proof is available in Appendix B.3 of the full version of the
paper [37]. �

5 GUC NIZKPoK in the Observable Global ROM

Recall from Sect. 1 that in order to avoid the session-localized IsProgrammed
interface, we pursue GUC NIZKPoK in the GroRO-FCRS-hybrid model, where FCRS

is the ideal CRS functionality from Sect. 3.3. We begin by discussing the spe-
cific properties of FCRS’s CRS generation mechanism GenCRS, then introduce a
compiler that creates GUC NIZKPoK from any Σ-protocol and any SLC in the
GroRO-FCRS-hybrid model.

5.1 Generating a CRS that Plays Nice with Σ-protocols

In our construction, the prover convinces the verifier that either it knows a “real”
witness, or else it knows the trapdoor to the CRS. In the real world, nobody
knows the trapdoor (as long as the CRS is generated securely, for instance using
Canetti et al.’s NISC protocol and only GroRO [22]). Therefore, all proofs executed
by the regular Prove algorithm will be using real witnesses. In the ideal world,
the simulator gets to generate the CRS for each session s with a trapdoor as part
of the SimProve algorithm. SimProve is otherwise the same as Prove, except the
witness is always the trapdoor for the CRS.

In order for this OR-proof to work, Prove and SimProve must be able to
interpret the CRS as a statement x = CRSs with a corresponding trapdoor
witness w = traps, such that the pair (CRSs, traps) satisfies some binary NP
relation S. For efficiency purposes (since the simulator must run in polynomial-
time) the CRS must be efficiently computable, and for security purposes, the
trapdoor must be difficult to compute from the CRS. We call a relation that
satisfies the efficiency property samplable and a relation that satisfies the security
property hard. The intuition is similar to that of Fischlin’s one-way instance
generator [31].

Definition 12 (Samplable-Hard Relation). A binary NP relation S is
samplable-hard with respect to a security parameter λ if it has the following
properties.
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1. Sampling a statement-witness pair is easy. There exists a sampling
algorithm κS that on input 1λ outputs (x,w) such that S(x,w) = 1 and
|x| = poly(λ).

2. Computing a witness from a statement is hard. For a randomly sam-
pled statement-witness pair (x,w) ← κS(1λ) the probability that an efficient
adversary A can find a valid witness given only the statement is negligible.
Formally, for all PPT A ,

Pr[(x,w) ← κS(1λ), w′ ← A (1λ, x, κS) : (x,w′) ∈ R] ≤ negl(λ).

Finally, we require that the relation S underlying the CRS has an efficient
corresponding Σ-protocol ΣS . Our construction will instantiate an OR-protocol
ΣR∨S based on ΣR and ΣS for the relation R ∨ S.

Putting the pieces together, the CRS generation mechanism GenCRS for FCRS

in our construction fixes S as a samplable-hard relation with corresponding
efficient Σ-protocol ΣS , and consists of running (CRSs, traps) ← κS(1λ). We
combine this FCRS with the restricted observable global RO GroRO to instantiate
the GroRO-FCRS-hybrid model, and are now ready to introduce our GUC compiler.

5.2 GUC Compiler

We propose a compiler that uses any SLC in conjunction with the OR-protocol
discussed in Sects. 2.3 and 5.1 to transform any Σ-protocol into a GUC NIZKPoK
in the GroRO-FCRS-hybrid model. The compiler works as follows.

First, FCRS is fixed as described in Sect. 5.1. The real-world Setup function-
ality runs the OR-protocol ΣR∨S for relation R ∨ S through any SLC to obtain
ΠSLC

R∨S, and returns the same setup parameters as ΠSLC
R∨S.

For each session s, provers in the real world query the CRS ideal functionality
Fs

CRS to obtain CRSs. Each time a real prover with SID s needs to create a proof of
a statement x using witness w, it obtains CRSs and sets the compound statement
X = (x, CRSs). It then generates a proof Π using ΠSLC

R∨S.Prove(X,W ), where
W = (w, 0) to indicate it knows a witness for the first statement x. In order to
verify the proof, a verifier first obtains CRSs from Fs

CRS, then checks whether it is
the correct CRS for session s. If it is, it the verifier outputs the result of running
ΠSLC

R∨S.Verify(X,Π).
In the ideal world, the SimSetup algorithm begins by generating an empty

list in which to store the simulated CRS for each session, denoted simcrs. When
it is time to prove a statement on behalf of an honest (dummy) party in session
s, the compiler’s SimProve algorithm generates (CRSs, traps) ← κS(1λ) (if one
has not been generated already), and computes the proof using ΠSLC

R∨S.Prove, this
time using traps as the witness.

Given a non-simulated proof and a list Qs
P ∗ of adversarial provers’ queries for

session s, the compiler’s Extract algorithm runs ΠSLC
R∨S.Extract using Qs

P ∗ and
tests the compound witness W = (w0, w1). If RR∨S(X,W ) = 1 but R(x0, w0) = 0,
Extract outputs Fail. Otherwise, it outputs W .

Note that this formulation diverges from the general intuition of an OR-
protocol extractor (see Appendix A.8 of the full version of the paper [37]) in
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that we require any valid witness W to imply that R(x0, w0) = 1, not that
either R(x0, w0) = 1 or S(x1, w1) = 1. This is because we need to account for
the fact that FNIZK will never invoke the Extract algorithm on proofs it has
generated using SimProve, and nobody else should ever have access to the CRS
trapdoor. If FNIZK gets a proof that verifies because S(CRSs, w1) = 1, it must be
the case that an adversarial prover has acquired the trapdoor, and Extract forms
its output in such a way that FNIZK will output Fail. In our proof of security,
we will bound the probability of this failure by constructing a reduction to the
hardness property of S.

We give a formal construction of the candidate compiler below, and prove in
Sect. 5.3 that it creates GUC NIZKPoK in the GroRO-FCRS-hybrid model.

Definition 13 (Candidate Compiler). Let ΣR be any Σ-protocol for
relation R (Definition 1), GroRO be the restricted observable global ran-
dom oracle (Definition 6), ΣS be an efficient Σ-protocol for samplable-
hard relation S (Definition 12), FCRS be the ideal CRS functionality (Def-
inition 9) where GenCRS := κS, and SLC be any straight-line com-
piler (Definition 2). Then our candidate compiler guc is an algorithm
that, on input ΣR and SLC, produces a tuple of algorithms Πguc

R∨S =
(SetupGroRO , ProveGroRO,FCRS , VerifyGroRO,FCRS , SimSetup, SimProve, Extract),
defined in Fig. 4.

5.3 Realizing FNIZK in the GRO-FCRS-hybrid Model

We now prove that the algorithm guc from Definition 13 compiles any Σ-protocol
into a GUC NIZKPoK in the GRO-FCRS-hybrid model.

Theorem 3. Let ΣR be any Σ-protocol for relation R (Definition 1), GroRO be
the restricted observable global random oracle (Definition 6), ΣS be an efficient
Σ-protocol for samplable-hard relation S (Definition 12), FCRS be the ideal CRS
functionality (Definition 9) where GenCRS := κS, SLC be any straight-line com-
piler (Definition 2), and guc be our candidate compiler (Definition 13). Then
Πguc

R∨S ← guc(ΣR, SLC) GUC-realizes FNIZK in the GroRO-FCRS-hybrid model (Defi-
nition 11).

Proof Sketch. The proof proceeds similarly to that of Theorem 2 in Sect. 4, where
we construct a sequence of hybrids that transition between the real- and ideal-
world GUC experiments. In the ideal-world experiment, our simulator S hands
the ideal functionality FNIZK the tuple of algorithms Π

guc
R∨S and otherwise functions

as a dummy adversary, forwarding communications between the environment
and the protocol. Throughout the proof when we say an argument is identical to
an argument from the proof of Theorem 2, we mean identical up to the handling
of the IsProgrammed interface, which does not exist in the GroRO-FCRS-hybrid
model.

The first hybrid is identical to the first hybrid in the proof of Theorem 2: we
replace all of the real-world protocol participants, GroRO, and now FCRS with a
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Fig. 4. Compiler Πguc
R∨S ← guc(ΣR, SLC) for ΣR in the GroRO-FCRS-hybrid Model
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challenger C who controls all of the wires in and out of the environment and the
adversary, noting this step permits C to program GroRO.2 The second hybrid is also
identical to the one in the proof of Theorem 2 above, except instead of jumping
straight to replacing C’s real-world Prove algorithm with the Prove interface
of the ideal functionality, which will use Πguc

R∨S.SimSetup and Πguc
R∨S.SimProve, we

instead replace Prove with ΠSLC
R∨S.SimSetup and ΠSLC

R∨S.SimProve. This step allows
us to postpone giving the reduction access to the CRS trapdoors, since we will
need to ensure that any adversarially-created proofs in the next hybrid will
only avoid extraction if the adversary is somehow able to generate the trapdoor
itself. By the arguments used in the proof of Theorem 2, we can reduce the
indistinguishability of the first two hybrids to the NIM-SHVZK property of ΠSLC

R∨S.
The third hybrid is identical to the third hybrid in the proof of Theorem 2 in

that we replace C’s Verify procedure with FNIZK’s Verify interface, which uses
Πguc

R∨S.Extract. The proof of indistinguishability of the second and third hybrids
will differ slightly due to the new failure condition in the Π

guc
R∨S.Extract algo-

rithm: namely, the clause that says if the overall witness W = (w, traps) is a
valid witness for the statement X = (x, CRSs) but w is not a valid witness for x,
output Fail. We can limit the probability of this failure by constructing a reduc-
tion to the hardness property of the samplable-hard relation: if the environment
is able to produce a proof that meets the failure condition, the reduction can
produce a tuple (CRSs, traps) given only CRSs ← κS(1λ). Since the probability
of generating such a tuple is negligible by the hardness property of S, the proba-
bility of such a failure is similarly negligible. The only other way for the environ-
ment to distinguish the hybrids is to produce a valid, non-extractable proof of a
statement X—i.e. such that RR∨S(X,W ) = 0 for W ← ΠSLC

R∨S.Extract(X,W ). In
this case, C can use this proof to contradict the NI-SSS (or NI-SS) property of
ΠSLC

R∨S in the exact same way as the parallel reduction in the proof of Theorem 2.
Finally, the penultimate hybrid replaces ΠSLC

R∨S.SimSetup and ΠSLC
R∨S.SimProve

with the candidate compiler’s algorithms Πguc
R∨S.SimSetup and Πguc

R∨S.SimProve.
This step effectively reverts the proofs back to the real-world Prove mechanism,
except C is using trapdoors rather than real witnesses. If ΠSLC

R∨S is statistical
NIM-SHVZK, then there is automatically negligible difference in view between
the third and penultimate hybrids. If, however, there is computational wiggle
room between the proofs in the two experiments, and the distinguisher envi-
ronment now has access to the extractor, we must ensure that the only way
the environment can distinguish the hybrids is by the contents of the proofs
(as opposed to somehow using its view of the new proofs, which use the CRS
trapdoor, to cause the extractor to fail). We argue here that because the straight-
line extractor works exclusively based on statements, proofs, and oracle queries
that the environment made itself, anything the environment can learn from the
extractor it could have learned on its own. Therefore, it cannot have possibly

2 As discussed by Camenish et al. [10], the challenger in such a hybrid experiment can
make use of techniques like programming and rewinding that are otherwise “illegal”
for the simulator to employ in the GUC model.
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learned anything new about the hybrids from the extractor, and the reduction
to computational NIM-SHVZK proceeds the same as before.

The last hybrid replaces C with FNIZK and S—this is again a syntactic rear-
rangement, and is functionally identical to the ideal-world experiment. The full
version of this proof is available in Appendix B.4 of the full version [37]. �

6 Constructions via the Randomized Fischlin Transform

We demonstrated in the last two sections that any straight-line compiler (SLC)
that satisfies Definition 2 is sufficient to transform any Σ-protocol ΣR into a
GUC NIZKPoK in the GrpoRO-hybrid model, and sufficient in conjunction with
our OR-protocol compiler to complete the transformation in the GroRO-FCRS-
hybrid model. In this section, we will show that the randomized Fischlin trans-
form [31,35] meets our definition of an SLC for a broad class of Σ-protocols, and
therefore enables us to practically instantiate both sets of GUC NIZKPoK. The
efficiency of the resulting proof systems reduce to the efficiency of the random-
ized Fischlin transform, which requires only a linear increase in the size of the
proofs for small multiplicative and additive constants.

In this section, we review the randomized Fischlin transform rFis and show
that it meets our definition of an SLC. We then apply rFis to efficiently realize
GUC NIZKPoK in the GrpoRO- and GroRO-FCRS-hybrid models, respectively.

6.1 The Randomized Fischlin Transform, Revisited

Recall from Sect. 1 that the randomized Fischlin transform due to Kondi and
shelat [35] is a version of the Fischlin transform [30,31] in which the challenges
are selected uniformly at random from the challenge space. In Fischlin’s origi-
nal construction, the Σ-protocols under transformation need a property called
quasi-unique responses, which Kondi and shelat demonstrate precludes the trans-
formation of OR-protocols. In order to use the randomized Fischlin transform on
our OR-protocol construction in a way that preserves security, the OR-protocol
must have the (more general) strong special soundness property. We consolidate
the two properties below, and a brief discussion of the necessity of strong special
soundness in Appendix A.10 of the full version of the paper [37].

Definition 14 (Required Properties for rFis). A Σ-protocol ΣR for rela-
tion R (Definition 1) has required properties for the randomized Fischlin trans-
form rFis if it has the quasi-unique responses property (Definition 25 in
Appendix A.10 [37]) or the strong special soundness property (Definition 26
in Appendix A.10 [37]).

In the full version of his paper, Fischlin proves that his transform over
Σ-protocols with quasi-unique responses creates a protocol that is both NIM-
SHVZK and NI-SSS in the standard ROM [30]. Kondi and shelat show that the
randomized Fischlin transform over a Σ-protocol with the more general strong
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special soundness property creates a protocol that is standard (non-multi) NI-
SHVZK and standard (non-simulation) strong NI-SS [35]. Therefore, it remains
to show that the NI multi -SHVZK and strong special simulation soundness
properties are similarly preserved under the randomized transform for strong
special-sound Σ-protocols. Our proof of the theorem below draws heavily on
arguments from Fischlin [30] and Kondi and shelat [35]; the only novelty is in
the (nearly verbatim) application of Fischlin’s arguments for NIM-SHVZK and
NI-SSS to the randomized transform. We therefore defer the technical details of
the randomized Fischlin transform to Definition 29 in Appendix A.12, and the
full proof to Appendix B.5 of the full version of the paper [37].

Theorem 4. Let ΣR be any Σ-protocol for relation R (Definition 1) with the
required properties for rFis (Definition 14). Then the randomized Fischlin trans-
form rFis (Definition 29 in Appendix A.12 [37]) is a straight-line compiler for
ΣR (Definition 2).

Proof sketch. Recall that a straight-line compiler according to our definition
must create protocols that are NIM-SHVZK and NIM-SSS. Kondi and shelat
prove in Theorem 6.4 [35] that the tuple of algorithms ΠrFis

R (denoted πF−rand
NIZK

in their paper) produced by running the randomized Fischlin transform on any
strong special sound Σ-protocol ΣR for relation R is a NISLE ZKPoK for LR

in the standard random-oracle model. Since Kondi and shelat use the standard
definitions of SHVZK and strong special soundness (Definitions 19 and 14 in
the full version, respectively [37]), it remains to show that ΠrFis

R satisfies NIM-
SHVZK and NIM-SSS.

Fischlin shows in the proof of Theorem 3 [30] that his original transform sat-
isfies the NIM-SHVZK and NI-SSS properties. Since the strong special soundness
property replaces the quasi-unique responses property and the challenges in the
randomized version are identically distributed to those in the original version,
the proof of NIM-SHVZK and NI-SSS for the randomized Fischlin transform is
almost identical to Fischlin’s proof of Theorem 3. We discuss the minor differ-
ences in the full proof (Appendix B.5 [37]). �

6.2 Efficient, GUC NIZKPoK in the GrpoRO-hybrid Model

We demonstrated in Sect. 4 that any SLC is sufficient to compile any Σ-protocol
into a GUC NIZKPoK in the GrpoRO-hybrid model, and argued in Sect. 6.1 above
that the transform rFis is an SLC. Therefore, given any Σ-protocol ΣR that
meets the requirements for rFis, ΠrFis

R ← rFis(ΣR) is sufficient to create GUC
NIZKPoK in the GrpoRO-hybrid model.

Corollary 1. Let ΣR be any Σ-protocol for a relation R (Definition 1) with the
required properties for rFis (Definition 14) and rFis be the randomized Fischlin
transform (Definition 29 in Appendix A.12 [37]). Then ΠSLC

R ← rFis(ΣR) GUC-
realizes FNIZK in the GrpoRO-hybrid model (Definition 10).

Proof. The corollary follows directly from Theorems 2 and 4. �
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6.3 Efficient, GUC NIZKPoK in the GroRO-FCRS-hybrid Model

Our construction for the GroRO-FCRS-hybrid model requires two layered com-
pilers: any SLC, and our OR-protocol compiler guc from Definition 13. We
proved in Theorem 3 that Πguc

R∨S ← guc(ΣR, SLC) GUC-realizes FNIZK for any
Σ-protocol ΣR, and again in Sect. 6.1 that rFis is an SLC. Therefore, Π

guc
R∨S ←

guc(ΣR, rFis) creates GUC NIZKPoK in the GroRO-FCRS-hybrid model.

Corollary 2. Let ΣR be any Σ-protocol for a relation R (Definitions 1) with
the required properties for rFis (Definition 14), rFis be the randomized Fis-
chlin transform (Definition 29 in Appendix A.12 [37]), and guc be the candidate
compiler from Definition 13. Then Π

guc
R∨S ← guc(ΣR, rFis) GUC-realizes FNIZK

in the GroRO-FCRS-hybrid model (Definition 11).

Proof. The corollary follows directly from Theorems 3 and 4. �
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Abstract. Pseudorandom quantum states (PRS) are efficiently con-
structible states that are computationally indistinguishable from being
Haar-random, and have recently found cryptographic applications. We
explore new definitions, new properties and applications of pseudoran-
dom states, and present the following contributions:
1. New Definitions: We study variants of pseudorandom function-like

state (PRFS) generators, introduced by Ananth, Qian, and Yuen
(CRYPTO’22), where the pseudorandomness property holds even
when the generator can be queried adaptively or in superposition.
We show feasibility of these variants assuming the existence of post-
quantum one-way functions.

2. Classical Communication: We show that PRS generators with
logarithmic output length imply commitment and encryption
schemes with classical communication. Previous constructions of
such schemes from PRS generators required quantum communica-
tion.

3. Simplified Proof: We give a simpler proof of the Brakerski–Shmueli
(TCC’19) result that polynomially-many copies of uniform superpo-
sition states with random binary phases are indistinguishable from
Haar-random states.

4. Necessity of Computational Assumptions: We also show that
a secure PRS with output length logarithmic, or larger, in the key
length necessarily requires computational assumptions.

1 Introduction

The study of pseudorandom objects is central to the foundations of cryptogra-
phy. After many decades, cryptographers have developed a deep understanding
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of the zoo of pseudorandom primitives such as one-way functions (OWF), pseu-
dorandom generators (PRG), and pseudorandom functions (PRF) [8,9].

The study of pseudorandomness in the quantum setting, on the other hand,
is just getting started. Objects such as state and unitary k-designs have been
studied extensively, but these are best thought of as quantum analogues of k-wise
independent hash functions [1,6]. There are unconditional constructions of state
and unitary designs and they do not imply any computational assumptions [1,
18].

Quantum pseudorandomness requiring computational assumptions, in con-
trast, has been studied much less. Ji, Liu, and Song introduced the notion
of pseudorandom quantum states (PRS) and pseudorandom quantum unitaries
(PRU) [11]. At a high level, these are efficiently sampleable distributions over
states/unitaries that are computationally indistinguishable from being sampled
from the Haar distribution (i.e., the uniform measure over the space of states/
unitaries). Ji, Liu, and Song as well as Brakerski and Shmueli have presented con-
structions of PRS that are based on quantum-secure OWFs [3,4,11]. Kretschmer
showed, however, that PRS do not necessarily imply OWFs; there are oracles
relative to which PRS exist but OWFs don’t [12]. This was followed by recent
works that demonstrated the cryptographic utility of PRS: basic cryptographic
tasks such as bit commitment, symmetric-key encryption, and secure multiparty
computation can be accomplished using only PRS as a primitive [2,16]. It is an
intriguing research direction to find more cryptographic applications of PRS and
PRU.

The key idea in [2] that unlocked the aforementioned applications was the
notion of a pseudorandom function-like state (PRFS) generator. To explain this
we first review the definition of PRS generators. A quantum polynomial-time
(QPT) algorithm G is a PRS generator if for a uniformly random key k ∈ {0, 1}λ

(with λ being the security parameter), polynomially-many copies of the state
|ψk〉 = G(k) is indistinguishable from polynomially-many copies of a state |ϑ〉
sampled from the Haar measure by all QPT algorithms. One can view this as a
quantum analogue of classical PRGs. Alternately, one could consider a version of
PRS where the adversary only gets one copy of the state. However, as we will see
later, the multi-copy security of PRS will play a crucial role in our applications.

The notion of PRFS generator introduced by [2] is a quantum analogue of
PRF (hence the name function-like): in addition to taking in a key k, the gener-
ator G also takes an input x (just like a PRF takes a key k and an input x). Let
|ψk,x〉 = G(k, x). The pseudorandomness property of G is that for all sequences
of inputs (x1, . . . , xs) for polynomially large s, averaged over the key k, the collec-
tion of states |ψk,x1〉

⊗t
, . . . , |ψk,xs

〉⊗t for polynomially large t is computationally
indistinguishable from |ϑ1〉⊗t

, . . . , |ϑs〉⊗t where the |ϑi〉’s are sampled indepen-
dently from the Haar measure. In other words, while PRS generators look like
(to a computationally bounded distinguisher) they are sampling a single state
from the Haar measure, PRFS generators look like they are sampling many (as
compared to the key length) states from the Haar measure. Importantly, this
still holds true even when the distinguisher is given the inputs x1, . . . , xs.
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As mentioned, this (seemingly) stronger notion of quantum pseudorandom-
ness provided a useful conceptual tool to perform cryptographic tasks (encryp-
tion, commitments, secure computation, etc.) using pseudorandom states alone.
Furthermore, [2] showed that for a number of applications, PRFS generators
with logarithmic input length suffices and furthermore such objects can be con-
structed in a black-box way from PRS generators.1

Despite exciting progress in this area in the last few years, there is still much
to understand about the properties, relationships, and applications of pseudo-
random states. In this paper we explore a number of natural questions about
pseudorandom states:

– Feasibility of Stronger Definitions of PRFS: In the PRFS definition of [2],
it was assumed that the set of inputs on which the adversary obtains the
outputs are determined ahead of time. Moreover, the adversary could obtain
the output of PRFS on only classical inputs. This is often referred to as
selective security in the cryptography literature. For many interesting appli-
cations, this definition is insufficient2. This leads us to ask: is it feasible to
obtain strengthened versions of PRFS that maintain security in the presence
of adaptive and superposition queries?

– Necessity of Assumptions: In the classical setting, essentially all cryptographic
primitives require computational assumptions, at the very least P �= NP.
What computational assumptions are required by pseudorandom quantum
states? The answer appears to depend on the output length of the PRS gen-
erator. Brakerski and Shmueli [4] constructed PRS generators with output
length c log λ for some c > 0 satisfying statistical security (in other words,
the outputs are statistically close to being Haar-random). On the other hand,
Kretschmer showed that the existence of PRS generators with output length
λ implies that BQP �= PP [12]. This leads to an intriguing question: is it
possible to unconditionally show the existence of n(λ)-length output PRS, for
some n(λ) ≥ log(λ)?

– Necessity of Quantum Communication: A common theme in all the different
PRS-based cryptographic constructions of [2,16] is that the parties involved in
the system perform quantum communication. Looking forward, it is conceiv-
able that quantum communication will be a much more expensive resource
than having access to a quantum computer. Achieving quantum cryptography
with classical communication has been an important direction, dating back
to Gavinsky [7]. We ask the following question: is quantum communication
inherent in the cryptographic constructions based on PRS?

1 However, unlike the equivalence between PRG and PRF in the classical setting [8], it
is not known whether every PRFS generator can be constructed from PRS generators
in a black-box way.

2 For example, the application of private-key encryption from PRFS as described
in [2] is only selectively secure. This is due to the fact that the underlying PRFS is
selectively secure.
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1.1 Our Results

We explore the aforementioned questions. Our results include the following.

Adaptive-Secure and Quantum-Accessible PRFS. As mentioned earlier, the
notion of PRFS given by [2] has selective security, meaning that the inputs
x1, . . . , xs are fixed ahead of time. Another way of putting it is, the adversary
can only make non-adaptive, classical queries to the PRFS generator (where by
query we mean, submit an input x to the generator and receive |ψk,x〉 = G(k, x)
where k is the hidden, secret key).

We study the notion of adaptively secure PRFS, in which the security holds
with respect to adversaries that can make queries to the generator adaptively.
We consider two variants of this: one where the adversary is restricted to making
classical queries to the generator (we call this a classically-accessible adaptively
secure PRFS ), and one where there are no restrictions at all; the adversary can
even query the generator on a quantum superposition of inputs (we call this a
quantum-accessible adaptively secure PRFS ). These definitions can be found in
Sect. 3.

We then show feasibility of these definitions by constructing classically- and
quantum-accessible adaptively secure PRFS generators from the existence of
post-quantum one-way functions. These constructions are given in the full ver-
sion of the paper.

A Sharp Threshold for Computational Assumptions. In Sect. 4 we show that
there is a sharp threshold between when computational assumptions are required
for the existence of PRS generators: we give a simple argument that demon-
strates that PRS generators with log λ-length outputs require computational
assumptions on the adversary3. This complements the aforementioned result of
Brakerski and Shmueli [4] that shows c log λ-length PRS for some c > 0 do not
require computational assumptions. We also note that the calculations of [12]
can be refined to show that the existence of (1+ ε) log λ-length PRS for all ε > 0
implies that BQP �= PP.

PRS-Based Constructions with Classical Communication. We show that bit
commitments and pseudo one-time pad schemes can be achieved using only
classical communication based on the existence of PRS with λ-bit keys and
O(log(λ))-output length. This improves upon the previous result of [2] who
achieved bit commitments and pseudo one-time pad schemes from PRS using
quantum communication. However, we note that [2] worked with a wider range

3 We also note that there is a much more roundabout argument for a quantitatively
weaker result: [2] constructed bit commitment schemes from O(log λ)-length PRS. If
such PRS were possible to construct unconditionally, this would imply information-
theoretically secure bit commitment schemes in the quantum setting. However, this
contradicts the famous results of [13,15], which rules out this possibility. Our calcu-
lation, on the other hand, directly shows that log λ (without any constants in front)
is a sharp threshold.
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of parameters while our constructions are based on PRS with O(log(λ))-output
length.

En route, we use quantum state tomography (or tomography for short), a well
studied concept in quantum information. Roughly speaking, tomography, allows
for obtaining a classical string u that captures some properties of an unknown
quantum state ρ, given many copies of this state.

We develop a new notion called verifiable tomography that might particularly
be useful in cryptographic settings. Verifiable tomography allows for verifying
whether a given string u is consistent (according to some prescribed verification
procedure) with a quantum state ρ. We present the definition and instantiations
of verifiable tomography in Sect. 5. In Sect. 6, we use verifiable tomography to
achieve the aforementioned applications. At a high level, our constructions are
similar to the ones in [2], except that verifiable tomography is additionally used
to make the communication classical.

A Simpler Analysis of Binary-Phase PRS. Consider the following construction
of PRS. Let {Fk : {0, 1}n → {0, 1}}k∈{0,1}λ denote a (quantum-secure) pseu-
dorandom function family. Then {|ψk〉}k forms a PRS, where |ψk〉 is defined
as

|ψk〉 = 2−n/2
∑

x∈{0,1}n

(−1)Fk(x) |x〉 . (1)

In other words, the pseudorandom states are binary phase states where the
phases are given by a pseudorandom function. This is a simpler construction of
PRS than the one originally given by [11], where the phases are pseudorandomly
chosen N -th roots of unity with N = 2n. Ji, Liu, and Song conjectured that the
binary phase construction should also be pseudorandom, and this was confirmed
by Brakerski and Shmueli [3].

We give a simpler proof of this in the full version, which may be of indepen-
dent interest.

1.2 Threshold for Computational Assumptions

We show that PRS generators with λ-bit keys and log λ-length outputs cannot
be statistically secure. To show this we construct an inefficient adversary, given
polynomially many copies of a state, can distinguish whether the state was sam-
pled from the output distribution of a log λ-length PRS generator or sampled
from the Haar distribution on log λ-qubit states with constant probability.

Simple Case: PRS output is always pure. Let us start with a simple case when
the PRS generator is such that each possible PRS state is pure. Consider the
subspace spanned by all possible PRS outputs. The dimension of the subspace
spanned by these states is atmost 2λ: the reason being that there are at most
2λ keys. Now, consider the subspace spanned by t-copies of PRS states. The
dimension of this subspace is still at most 2λ and in particular, independent of
t. Define P (t) to be a projector (which could have an inefficient implementation)
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onto this subspace. By definition, the measurement of t copies of the output of
a PRS generator with respect to P (t) always succeeds.

Recall that the subspace spanned by t-copies of states sampled from the Haar
distribution (of length log λ) is a symmetric subspace of dimension

(
2λ+t−1

t

)
. By

choosing t as an appropriate polynomial (in particular, set t � λ), we can make(
2λ+t−1

t

)
� 2λ, such that a measurement with P (t) on t copies of states sampled

from the Haar distribution fails with constant probability. Hence, an adversary,
who just runs P , can successfully distinguish between t copies of the output of
a log λ-length PRS generator and t copies of a sample from a Haar distribution
with constant probability.

General Case. Now let us focus on the case when the PRS generator can also
output mixed states. Then we have 2 cases:

– The majority of outputs of the PRS generator are negligibly close to a pure
state: In this case, we show that the previous approach still works. We replace
the projector P (t) with a projection onto the space spanned by states closest
to the output states of the PRS generator and we can show that modified
projector still succeeds with constant probability.

– The majority of outputs of the PRS generator are not negligibly close to a
pure state: In this case, most PRS outputs have purity4 non-negligibly away
from 1. Thus, we can violate the security of PRS as follows: run polynomially
(in λ) many SWAP tests to check if the state is mixed or not. When the
input state is from a Haar distribution, the test will always determine the
input state to be pure. On the other hand, if the input state is the output of
a PRS generator, the test will determine the input to be pure with probability
that is non-negligibly bounded away from 1. Thus, this case cannot happen
if the PRS generator is secure.

Details can be found in Sect. 4.

1.3 Cryptographic Applications with Classical Communication

We show how to construct bit commitments and pseudo one-time encryp-
tion schemes from O(log(λ))-output PRS with classical communication. Pre-
viously, [2] achieved the same result for a wider range of parameters. In this
overview, we mainly focus on bit commitments since the main techniques used
in constructing commitments will be re-purposed for designing pseudo one-time
encryption schemes.

We use the construction of bit commitments from [2] as a starting point. Let
d = O (log λ), n = O (log λ) and G is a (d, n)-PRFS generator5. The commitment
scheme from [2] is as follows:

4 A density matrix ρ has purity p if Tr(ρ2) = p.
5 This in turn can be built from O(log(λ))-output PRS as shown in [2].
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– In the commit phase, the receiver sends a random 2dn-qubit Pauli P = P1 ⊗
P2 ⊗ · · ·⊗P2d−1 to the sender, where each Pi is an n-qubit Pauli. The sender
on input bit b, samples a key k uniformly at random from {0, 1}λ. The sender
then sends the state ρ =

⊗
x∈[2d] P

b
xσk,xP b

x , where σk,x = G(k, x) to the
receiver.

– In the reveal phase, the sender sends (k, b) to the receiver. The receiver accepts
if P bρP b is a tensor product of the PRFS evaluations of (k, x), for all x =
0, . . . , 2d − 1.

To convert this scheme into one that only has classical comunication, we need a
mechanism to generate classical information c from ρ, where ρ is generated from
(k, b) as above, that have the following properties:

1. Classical Description: c can be computed efficiently and does not leak any
information about b.

2. Correctness: (k, b) is accepted as a valid opening for c,
3. Binding: (k′, b′), for b �= b′, is rejected as an opening for c

State Tomography. To design such a mechanism, we turn to quantum state
tomography. Quantum state tomography is a process that takes as input multiple
copies of a quantum state σ and outputs a string u that is close (according
to some distance metric) to a classical description of the state σ. In general,
tomography procedures require exponential in d number of copies of a state and
also run in time exponential in d, where d is the dimension of the state. Since the
states in question are O(log(λ))-output length PRFS states, all the algorithms
in the commitment scheme would still be efficient.

Since performing tomography on a PRFS state does not violate its pseudoran-
domness property, the hiding property is unaffected. For achieving correctness
and binding properties, we need to also equip the tomography process with a
verification algorithm, denoted by Verify. A natural verification algorithm that
can be associated with the tomography procedure is the following: to check if
u is a valid classical description of a state σ, simply run the above tomography
procedure on many copies of σ and check if the output density matrix is close
to u.

More formally, we introduce a new tomography called verifiable tomography
and we present a generic transformation that converts a specific tomography
procedure into one that is also verifiable. We will see how verifiable tomography
helps us achieve both correctness and binding. Before we dive into the new
notion and understand its properties, we will first discuss the specific tomography
procedure that we consider.

Instantiation. We develop a tomography procedure based on [14] that outputs
a denisity matrix close (constant distance away) to the input with 1 − negl(λ)
probability. This is an upgrade to the tomography procedure in [14], the expected
distance of whose output was a constant. To achieve this, we make use of the fact
that if we repeat [14]’s tomography procedure polynomially many times, most
output states cluster around the input at a constant distance with 1 − negl(λ)
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probability. We believe this procedure might be of independent interest. Details
about this procedure can be found in Sect. 5.2.

Verifiable Tomography. Verifiable tomography is a pair of efficient algorithms
(Tomography,Verify) associated with a family of channels Φλ such that the fol-
lowing holds:

– Same-input correctness: Let u1 = Tomography(Φλ(x)) and u2 =
Tomography(Φλ(x)), then Verify(u1, u2) accepts with high probability.

– Different-input correctness: Let u1 = Tomography(Φλ(x1)) and u2 =
Tomography(Φλ(x2)), and x1 �= x2, then Verify(u1, u2) rejects with high prob-
ability.

The family of channels we consider corresponds to the PRFS state generation.
That is, Φλ(x = (k, i)) outputs G(k, i). As mentioned earlier, we can generically
convert the above instantiation into a verifiable tomography procedure. Let us
see how the generic transformation works.

For simplicity, consider the case when the underlying PRFS has perfect state
generation, i.e., the output of PRFS is always a pure state. In this case, the
verification algorithm is the canonical one that we described earlier: on input
u and PRFS key k, input i, it first performs tomography on many copies of
G(k, i) to recover u′ and then checks if u is close to u′ or not. The same-input
correctness follows from the tomography guarantee of the instantiation. To prove
the different-input correctness, we use the fact that PRFS outputs are close to
uniformly distributed and the following fact [2, Fact 6.9]: for two arbitrary n-
qubit states |ψ〉 and |φ〉,

E

P
$←−Pn

[
|〈ψ|P |φ〉|2

]
= 2−n.

Thus, if x1 �= x2 then u1 and u2 are most likely going to be far and thus,
differing-input correctness property is satisfied as well.

The proofs get more involved when the underlying PRFS does not satisfy
perfect state generation. We consider PRFS generators that satisfy recognisable
abort; we note that this notion of PRFS can be instantiated from PRS, also
with O(log(λ)) outpout length, using [2]. A (d(λ), n(λ))-PRFS generator G has
the strongly recognizable abort property if its output can be written as follows:
Gλ(k, x) = TrA (η |0〉〈0| ⊗ |ψ〉〈ψ| + (1 − η) |⊥〉〈⊥|), where A is the register with
the first qubit. Moreover, |⊥〉 is of the form |1〉 |⊥̂〉 for some n(λ)-qubit state
state |⊥̂〉 so that, (〈0| ⊗ 〈ψ|)(|⊥〉) = 0. The same-input correctness essentially
follows as before; however arguing differing-input correctness property seems
more challenging.

Arguing different-input correctness is more tricky. Consider the following
degenerate case: suppose k be a key and x1, x2 be two inputs such that PRFS
on input (k, x1) and PRFS on (k, x2) abort with very high probability (say,
close to 1). Note that the recognizable abort property does not rule out this
degenerate case. Then, it holds that the outputs u1 = Tomography(Φλ(x1))
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and u2 = Tomography(Φλ(x2)) are close. Verify(u1, u2) accepts and thus, the
different-input correctness is not satisfied. To handle such degenerate cases, we
incorporate the following into the verification procedure: on input (u1, u2), reject
if either u1 or u2 is close to an abort state. Checking whether a classical descrip-
tion of a state is close to an abort state can be done efficiently.

From Verifiable Tomography to Commitments. Incorporating verifiable tomog-
raphy into the commitment scheme, we have the following:

– The correctness follows from the same-input correctness of the tomography
procedure.

– The binding property follows from the different-input correctness of the
tomography procedure.

– The hiding property follows from the fact that the output of a PRFS generator
is indistinguishable from Haar random, even given polynomially many copies
of the state.

2 Preliminaries

We present the preliminaries in this section. We use λ to denote the security
parameter. We use the notation negl(·) to denote a negligible function.

We refer the reader to [17] for a comprehensive reference on the basics of
quantum information and quantum computation. We use I to denote the identity
operator. We use D(H) to denote the set of density matrices on a Hilbert space
H.

Haar Measure. The Haar measure over C
d, denoted by H (Cd) is the uniform

measure over all d-dimensional unit vectors. One useful property of the Haar
measure is that for all d-dimensional unitary matrices U , if a random vector |ψ〉
is distributed according to the Haar measure H (Cd), then the state U |ψ〉 is
also distributed according to the Haar measure. For notational convenience we
write Hm to denote the Haar measure over m-qubit space, or H ((C2)⊗m).

Fact 1. We have

E
|ψ〉←H (Cd)

|ψ〉〈ψ| =
I

d
.

2.1 Distance Metrics and Matrix Norms

Trace Distance. Let ρ, σ ∈ D(H) be density matrices. We write TD(ρ, σ) to
denote the trace distance between them, i.e.,

TD(ρ, σ) =
1
2
‖ρ − σ‖1

where ‖X‖1 = Tr(
√

X†X) denotes the trace norm.
We denote ‖X‖ := sup|ψ〉{〈ψ|X|ψ〉} to be the operator norm where the

supremum is taken over all unit vectors. For a vector x, we denote its Euclidean
norm to be ‖x‖2.
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Frobenius Norm. The Frobenius norm of a matrix M is

‖M‖F =
√∑

i,j

|Mi,j |2 =
√

Tr (MM†),

where Mi,j denotes the (i, j)th entry of M .
We state some useful facts about Frobenius norm below.

Fact 2. For all matrices A,B we have ‖A − B‖2F = ‖A‖2F + ‖B‖2F − 2Tr(A†B).

Fact 3. Let M0,M1 be density matricies and |ψ〉 be a pure state such that
〈ψ|M0 |ψ〉 ≤ α and ‖M0 − M1‖2F ≤ β, where β + 2α < 1 then

〈ψ|M1 |ψ〉 ≤ α +
√

β +
√

(2 − 2α) β.

Proof. From fact 2, we have the following:

‖M0 − |ψ〉〈ψ| ‖F =
√

‖M0‖2F + ‖ |ψ〉〈ψ| ‖2F − 2Tr(M†
0 |ψ〉〈ψ|)

=
√

‖M0‖2F + 1 − 2 〈ψ| M0 |ψ〉

≥
√

‖M0‖2F + 1 − 2α.

By triangle inequality, we know

‖M1‖F ≤ ‖M0‖F + ‖M0 − M1‖F ≤ ||M0||F +
√

β.

Similarly by fact 2,

‖M1 − |ψ〉〈ψ| ‖F =
√

1 + ‖M1‖2F − 2 〈ψ| M1 |ψ〉

≤
√

1 +
(
‖M0‖F +

√
β
)2

− 2 〈ψ| M1 |ψ〉.

By triangle inequality, we know ‖M0 − |ψ〉〈ψ| ‖F ≤ ‖M1 − |ψ〉〈ψ| ‖F + ‖M0 −
M1‖F . Hence,

√
1 + ‖M0‖2F − 2α ≤

√
1 +

(
‖M0‖F +

√
β
)2

− 2 〈ψ| M1 |ψ〉 +
√

β.

By some easy manipulation, we get

〈ψ|M1 |ψ〉 ≤ α + ‖M0‖2F
√

β +
√

(1 + ‖M0‖2F − 2α) β ≤ α +
√

β +
√

(2 − 2α) β.

��

Fact 4. For any 0 ≤ ε ≤ 1,

Pr|ψ1〉,|ψ2〉←Hn

[
‖ |ψ1〉〈ψ1| − |ψ2〉〈ψ2| ‖2F ≤ ε

]
≤ 1

e2
n(1− ε

2 )
.
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Proof. From fact 2,

‖ |ψ1〉〈ψ1| − |ψ2〉〈ψ2| ‖2F = ‖ |ψ1〉〈ψ1| ‖2F + ‖ |ψ2〉〈ψ2| ‖2F − 2Tr (|ψ1〉〈ψ1| |ψ2〉〈ψ2|)
= 2 − 2|〈ψ1|ψ2〉|2

Thus, we have the following:

Pr|ψ1〉,|ψ2〉←H n

[‖ |ψ1〉〈ψ1| − |ψ2〉〈ψ2| ‖2F ≤ ε
]
= Pr|ψ1〉,|ψ2〉←H n

[
|〈ψ1|ψ2〉|2 ≥ 1 − ε

2

]

≤ 1

e2
n(1− ε

2 )
,

where the last inequality was shown in [5] (Eq. 14). ��

2.2 Quantum Algorithms

A quantum algorithm A is a family of generalized quantum circuits {Aλ}λ∈N

over a discrete universal gate set (such as {CNOT,H, T}). By generalized, we
mean that such circuits can have a subset of input qubits that are designated to
be initialized in the zero state, and a subset of output qubits that are designated
to be traced out at the end of the computation. Thus a generalized quantum
circuit Aλ corresponds to a quantum channel, which is a is a completely positive
trace-preserving (CPTP) map. When we write Aλ(ρ) for some density matrix
ρ, we mean the output of the generalized circuit Aλ on input ρ. If we only
take the quantum gates of Aλ and ignore the subset of input/output qubits
that are initialized to zeroes/traced out, then we get the unitary part of Aλ,
which corresponds to a unitary operator which we denote by Âλ. The size of
a generalized quantum circuit is the number of gates in it, plus the number of
input and output qubits.

We say that A = {Aλ}λ is a quantum polynomial-time (QPT) algorithm if
there exists a polynomial p such that the size of each circuit Aλ is at most p(λ).
Furthermore we say that A is uniform if there exists a deterministic polynomial-
time Turing machine M that on input 1n outputs the description of Aλ.

We also define the notion of a non-uniform QPT algorithm A that consists
of a family {(Aλ, ρλ)}λ where {Aλ}λ is a polynomial-size family of circuits (not
necessarily uniformly generated), and for each λ there is additionally a subset of
input qubits of Aλ that are designated to be initialized with the density matrix
ρλ of polynomial length. This is intended to model non-uniform quantum adver-
saries who may receive quantum states as advice. Nevertheless, the reductions
we show in this work are all uniform.

The notation we use to describe the inputs/outputs of quantum algorithms
will largely mimic what is used in the classical cryptography literature. For
example, for a state generator algorithm G, we write Gλ(k) to denote running
the generalized quantum circuit Gλ on input |k〉〈k|, which outputs a state ρk.

Ultimately, all inputs to a quantum circuit are density matrices. However, we
mix-and-match between classical, pure state, and density matrix notation; for
example, we may write Aλ(k, |θ〉 , ρ) to denote running the circuit Aλ on input
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|k〉〈k| ⊗ |θ〉〈θ| ⊗ ρ. In general, we will not explain all the input and output sizes
of every quantum circuit in excruciating detail; we will implicitly assume that
a quantum circuit in question has the appropriate number of input and output
qubits as required by context.

2.3 Pseudorandomness Notions

Next, we recall the different notions of pseudorandomness. First, in Sect. 2.3,
we recall (classical) pseudorandom functions (prfs) and consider two notions of
security associated with it. Then in Sect. 2.3, we define pseudorandom quantum
state (PRS) generators, which are a quantum analogue of pseudorandom genera-
tors (PRGs). Finally in Sect. 2.3, we define pseudorandom function-like quantum
state (PRFS) generators, which are a quantum analogue of pseudorandom func-
tions. To make it less confusing to the reader, we use the abbreviation “prfs”
(small letters) for classical pseudorandom functions and “PRFS” (all caps) for
pseudorandom function-like states.

Pseudorandom Functions. We present two security notions of pseudorandom
functions. First, we consider the notion of post-quantum security, defined below.

Definition 1 (Post-Quantum Pseudorandom Functions). We say that
a deterministic polynomial-time algorithm F : {0, 1}λ × {0, 1}d(λ) → {0, 1}n(λ)

is a post-quantum secure pseudorandom function (pq-prf) if for all QPT (non-
uniform) distinguishers A = (Aλ, ρλ) there exists a negligible function ε(·) such
that the following holds:

∣∣∣∣ Pr
k←{0,1}λ

[
A

Oprf(k,·)
λ (ρλ) = 1

]
− Pr

ORand

[
A

ORand(·)
λ (ρλ) = 1

]∣∣∣∣ ≤ ε(λ),

where:

– Oprf(k, ·), modeled as a classical algorithm, on input x ∈ {0, 1}d(λ), outputs
F (k, x).

– ORand(·), modeled as a classical algorithm, on input x ∈ {0, 1}d(λ), outputs
yx, where yx ←− {0, 1}n(λ).

Moreover, the adversary Aλ only has classical access to Oprf(k, ·) and ORand(·).
That is, any query made to the oracle is measured in the computational basis.

We also say that F is a (d(λ), n(λ))-pq-prf to succinctly indicate that its input
length is d(λ) and its output length is n(λ).

Next, we consider the quantum-query security, as considered by Zhandry [19].
In this security notion, the adversary has superposition access to either Oprf or
ORand. By definition, quantum-query security implies post-quantum security.

Unlike all the other pseudorandom notions considered in this section, we are
going to use a different convention and allow the key length to be a polynomial in
λ, instead of it being just λ. We also parameterize the advantage of the adversary.
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Definition 2 (Quantum-Query Secure Pseudorandom Functions). We
say that a deterministic polynomial-time algorithm F : {0, 1}�(λ) × {0, 1}d(λ) →
{0, 1}n(λ) is a quantum-query ε-secure pseudorandom function (qprf) if for all
QPT (non-uniform) distinguishers A = (Aλ, ρλ) there exists a function ε(·) such
that the following holds:

∣∣∣∣ Pr
k←{0,1}�(λ)

[
A

|Oprf(k,·)〉
λ (ρλ) = 1

]
− Pr

ORand

[
A

|ORand(·)〉
λ (ρλ) = 1

]∣∣∣∣ ≤ ε(λ),

where:

– Oprf(k, ·) on input a (d + n)-qubit state on registers X (first d qubits) and
Y, applies an (n + d)-qubit unitary U described as follows: U |x〉 |a〉 =
|x〉 |a ⊕ F (k, x)〉. It sends back the registers X and Y.

– ORand(·) on input a (d + n)-qubit state on registers X (first d qubits) and Y,
applies an (n+d)-qubit unitary R described as follows: R |x〉 |a〉 = |x〉 |a ⊕ yx〉,
where yx ← {0, 1}n(λ). It sends back the registers X and Y.

Moreover, Aλ has superposition access to Oprf(k, ·) and ORand(·). We denote the
fact that Aλ has quantum access to an oracle O by A

|O〉
λ .

We also say that F is a (�(λ), d(λ), n(λ), ε)-qprf to succinctly indicate that
its input length is d(λ) and its output length is n(λ). When �(λ) = λ, we drop
�(λ) from the notation. Similarly, when ε(λ) can be any negligible function, we
drop ε(λ) from the notation.

Zhandry [19] presented a construction of quantum-query secure pseudorandom
functions from one-way functions.

Lemma 1 (Zhandry [19]). Assuming post-quantum one-way functions, there
exists quantum-query secure pseudorandom functions.

Useful Lemma. We will use the following lemma due to Zhandry [20]. The lemma
states that any q-query algorithm cannot distinguish (quantum) oracle access to
a random function versus a 2q-wise independent hash function. We restate the
lemma using our notation.

Lemma 2 ([20, Theorem 3.1]). Let A be a q-query algorithm. Then, for any
d, n ∈ N, every 2q-wise independent hash function H : {0, 1}�(q) × {0, 1}d →
{0, 1}n satisfies the following:

∣∣∣∣ Pr
k←{0,1}�(q)

[
A

|OH(k,·)〉
λ (ρλ) = 1

]
− Pr

ORand

[
A

|ORand(·)〉
λ (ρλ) = 1

]∣∣∣∣ = 0,

where ORand is as defined in Definition 2 and OH is defined similarly to Oprf

except that the unitary U uses H instead of F .
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Pseudorandom Quantum State Generators. We move onto the pseudo-
random notions in the quantum world. The notion of pseudorandom states were
first introduced by Ji, Liu, and Song in [11]. We reproduce their definition here:

Definition 3 (PRS Generator [11]). We say that a QPT algorithm G is a
pseudorandom state (PRS) generator if the following holds.

1. State Generation. For all λ and for all k ∈ {0, 1}λ, the algorithm G behaves
as

Gλ(k) = |ψk〉〈ψk| .
for some n(λ)-qubit pure state |ψk〉.

2. Pseudorandomness. For all polynomials t(·) and QPT (nonuniform) dis-
tinguisher A there exists a negligible function ε(·) such that for all λ, we have

∣∣∣∣ Pr
k←{0,1}λ

[
Aλ(Gλ(k)⊗t(λ)) = 1

]
− Pr

|ϑ〉←Hn(λ)

[
Aλ(|ϑ〉⊗t(λ)) = 1

]∣∣∣∣ ≤ ε(λ) .

We also say that G is a n(λ)-PRS generator to succinctly indicate that the output
length of G is n(λ).

Ji, Liu, and Song showed that post-quantum one-way functions can be used to
construct PRS generators.

Theorem 5 ( [4,11]). If post-quantum one-way functions exist, then there exist
PRS generators for all polynomial output lengths.

Pseudorandom Function-Like State (PRFS) Generators. In this section,
we recall the definition of pseudorandom function-like state (PRFS) generators
by Ananth, Qian and Yuen [2]. PRFS generators generalize PRS generators in
two ways: first, in addition to the secret key k, the PRFS generator additionally
takes a (classical) input x. The second way in which this definition generalizes
the definition of PRS generators is that the output of the generator need not be
a pure state.

However, they considered the weaker selective security definition where the
adversary needs to choose all the inputs to be queried to the PRFS ahead of time.
Later we will introduce the stronger and the more useful definition of adaptive
security.

Definition 4 (Selectively Secure PRFS Generator). We say that a QPT
algorithm G is a (selectively secure) pseudorandom function-like state (PRFS)
generator if for all polynomials s(·), t(·), QPT (nonuniform) distinguishers A
and a family of indices

(
{x1, . . . , xs(λ)} ⊆ {0, 1}d(λ)

)
λ
, there exists a negligible

function ε(·) such that for all λ,
∣
∣
∣ Pr

k←{0,1}λ

[
Aλ(x1, . . . , xs(λ), Gλ(k, x1)

⊗t(λ), . . . , Gλ(k, xs(λ))
⊗t(λ)) = 1

]

− Pr
|ϑ1〉,...,|ϑs(λ)〉←H n(λ)

[
Aλ(x1, . . . , xs(λ), |ϑ1〉⊗t(λ) , . . . , |ϑs(λ)〉⊗t(λ)) = 1

] ∣
∣
∣ ≤ ε(λ) .

We say that G is a (d(λ), n(λ))-PRFS generator to succinctly indicate that its
input length is d(λ) and its output length is n(λ).
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Our notion of security here can be seen as a version of (classical) selective
security, where the queries to the PRFS generator are fixed before the key is
sampled.

State Generation Guarantees. Towards capturing a natural class of PRFS gen-
erators, [2] introduced the concept of recognizable abort. At a high level, rec-
ognizable abort is the property that the output of PRFS can be written as a
convex combination of a pure state and a known abort state, denoted by |⊥〉. In
more detail, the PRFS generator works in two stages. In the first stage it either
generates a valid PRFS state |ψ〉 or it aborts. If it outputs a valid PRFS state
then the first qubit is set to |0〉 and if it aborts, the entire state is set to |⊥〉.
We have the guarantee that |0〉 |ψ〉 is orthogonal to |⊥〉. In the next stage, the
PRFS generator traces out the first qubit and outputs the resulting state. Our
definition could be useful to capture many generators that don’t always succeed
in generating the pseudorandom state; for example, Brakerski and Shmueli [4]
design generators that doesn’t always succeed in generating the state.

We formally define the notion of recognizable abort6 below.

Definition 5 (Recognizable Abort). A (d(λ), n(λ))-PRFS generator G has
the strongly recognizable abort property if there exists an algorithm Ĝ and a
special (n(λ) + 1)-qubit state |⊥〉 such that Gλ(k, x) has the following form: it
takes as input k ∈ {0, 1}λ, x ∈ {0, 1}d(λ) and does the following,

– Compute Ĝλ(k, x) to obtain an output of the form η |0〉〈0| ⊗ |ψ〉〈ψ| + (1 −
η) |⊥〉〈⊥| and moreover, |⊥〉 is of the form |1〉 |⊥̂〉 for some n(λ)-qubit state
state |⊥̂〉. As a consequence, (〈0| ⊗ 〈ψ|)(|⊥〉) = 0.

– Trace out the first bit of Ĝλ(k, x) and output the resulting state.

As observed by [2], the definition alone does not have any constraint on η being
close to 1. The security guarantee of a PRFS generator implies that η will be neg-
ligibly close to 1 with overwhelming probability over the choice of k [2, Lemma
3.6].

3 Adaptive Security

The previous work by [2] only considers PRFS that is selectively secure. That
is, the adversary needs to declare the input queries ahead of time. For many
applications, selective security is insufficient. For example, in the application of
PRFS to secret-key encryption (satisfying multi-message security), the resulting
scheme was also only proven to be selectively secure, whereas one could ask
for security against adversaries that can make adaptive queries to the PRFS
generator. Another drawback of the notion considered by [2] is the assumption

6 We note that [2] define a slightly weaker definition of recognizable abort. However,
the definitions and results considered in [2] also work with our (stronger) definition
of recognizable abort.
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that the adversary can make classical queries to the challenger who either returns
PRFS states or independent Haar random states, whereas one would ideally
prefer security against adversaries that can make quantum superposition queries.

In this work, we consider stronger notions of security for PRFS. We
strengthen the definitions of [2] in two ways. First, we allow the the adversary
to make adaptive queries to the PRFS oracle, and second, we allow the adver-
sary to make quantum queries to the oracle. The oracle model we consider here
is slightly different from the usual quantum query model. In the usual model,
there is an underlying function f and the oracle is modelled as a unitary acting
on two registers, a query register X and an answer register Y mapping basis
states |x〉X ⊗ |y〉Y to |x〉X ⊗ |y ⊕ f(x)〉Y (in other words, the function output
is XORed with answer register in the standard basis). The query algorithm also
acts on the query and answer registers; indeed, it is often useful in quantum
algorithms to initialize the answer register to something other than all zeroes.

In the PRS/PRFS setting, however, there is no underlying classical function:
the output of the PRFS generator G could be an entangled pseudorandom state
far from any standard basis state; it seems unnatural to XOR the pseudorandom
the state with a standard basis state. Instead we consider a model where the
query algorithm submits a query register X to the oracle, and the oracle returns
the query register X as well as an answer register Y. If the algorithm submits
query |x〉X, then the joint state register XY after the query is |x〉X ⊗ |ψx〉Y for
some pure state |ψx〉. Each time the algorithm makes a query, the oracle returns
a fresh answer register. Thus, the number of qubits that the query algorithm
acts on grows with the number of queries.7

How the oracle behaves when the query algorithm submits a superposition∑
x αx |x〉X in the query register is a further modeling choice. In the most general

setting, the oracle behaves as a unitary on registers XY,8 and the resulting state
of the query and answer registers is

∑
x αx |x〉X ⊗ |ψx〉Y. That is, queries are

answered in superposition. We call such an oracle quantum-accessible.
We also consider the case where the queries are forced to be classical, which

may already be useful for some applications. Here, the oracle is modeled as
a channel (instead of a unitary) that first measures the query register in the
standard basis before returning the corresponding state |ψx〉. In other words,
if the query is

∑
x αx |x〉X, then the resulting state becomes the mixed state∑

x |αx|2 |x〉〈x|X ⊗ |ψx〉〈ψx|Y. This way, the algorithm cannot take advantage
of quantum queries – but it can still make queries adaptively. We call such an
oracle classically-accessible.

To distinguish between classical and quantum access to oracles, we write AO

to denote a quantum algorithm that has classical access to the oracle O, and
A|O〉 to denote a quantum algorithm that has quantum access to the oracle O.

7 Alternatively, one can think of answer registers Y1,Y2, . . . as being initialized in
the zeroes state at the beginning, and the query algorithm is only allowed to act
nontrivially on Yi after the i’th query.

8 Alternatively, one can think of the oracle as an isometry mapping register X to
registers XY.
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3.1 Classical Access

We define adaptively secure PRFS, where the adversary is given classical access
to the PRFS/Haar-random oracle.

Definition 6 (Adaptively-Secure PRFS). We say that a QPT algorithm
G is an adaptively secure pseudorandom function-like state (APRFS) generator
if for all QPT (non-uniform) distinguishers A, there exists a negligible function
ε, such that for all λ, the following holds:

∣∣∣∣ Pr
k←{0,1}λ

[
A

OPRFS(k,·)
λ (ρλ) = 1

]
− Pr

OHaar

[
A

OHaar(·)
λ (ρλ) = 1

]∣∣∣∣ ≤ ε(λ),

where:

– OPRFS(k, ·), on input x ∈ {0, 1}d(λ), outputs Gλ(k, x).
– OHaar(·), on input x ∈ {0, 1}d(λ), outputs |ϑx〉, where, for every y ∈ {0, 1}d(λ),

|ϑy〉 ← Hn(λ).

Moreover, the adversary Aλ has classical access to OPRFS(k, ·) and OHaar(·). That
is, we can assume without loss of generality that any query made to either oracle
is measured in the computational basis.

We say that G is a (d(λ), n(λ))-APRFS generator to succinctly indicate that
its input length is d(λ) and its output length is n(λ).

Some remarks are in order.

Instantiation. For the case when d(λ) = O(log(λ)), selectively secure PRFS
is equivalent to adaptively secure PRFS. The reason being that we can assume
without loss of generality, the selective adversary can query on all possible inputs
(there are only polynomially many) and use the outputs to simulate the adaptive
adversary. As a consequence of the result that log-input selectively-secure PRFS
can be built from PRS [2], we obtain the following.

Lemma 3. For d = O(log(λ)) and n = d + ω(log log λ), assuming the existence
of (d + n)-PRS, there exists a (d, n)-APRFS.

In the case when d(λ) is an arbitrary polynomial in λ, we present a construction
of APRFS from post-quantum one-way functions in the full version of the paper.

Test Procedure. It was shown by [2] that a PRFS admits a Test procedure
(See Sect. 3.3 in [2]). The goal of a Test procedure is to determine whether the
given state is a valid PRFS state or not. Having a Test procedure is useful in
applications. For example, [2] used a Test procedure in the construction of a
bit commitment scheme. We note that the same Test procedure also works for
adaptively secure PRFS.
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Multiple Copies. In the definition of PRS (Definition 3) and selectively-secure
PRFS (Definition 4), the adversary is allowed to obtain multiple copies of the
same pseudorandom (or haar random) quantum state. While we do not explicitly
state it, even in Definition 6, the adversary can indeed obtain multiple copies
of a (pseudorandom or haar random) quantum state. To obtain t copies of the
output of Gλ(k, x) (or |ϑx〉), the adversary can query the same input x, t times,
to the oracle OPRFS(k, ·) (or OHaar(·)).

3.2 Quantum Access

We further strengthen our notion of adaptively secure PRFS by allowing the
adversary to make superposition queries to either OPRFS(k, ·) or OHaar(·). Provid-
ing superposition access to the adversary not only makes the definition stronger9

than Definition 6 but is also arguably more useful for a larger class of appli-
cations. To indicate quantum query access, we put the oracle inside the ket
notation: A|O〉 (whereas for classical query access we write AO).

We provide the formal definition below.

Definition 7 (Quantum-Accessible Adaptively-Secure PRFS). We say
that a QPT algorithm G is a quantum-accessible adaptively secure pseudorandom
function-like state (QAPRFS) generator if for all QPT (non-uniform) distin-
guishers A if there exists a negligible function ε, such that for all λ, the following
holds:

∣∣∣∣ Pr
k←{0,1}λ

[
A

|OPRFS(k,·)〉
λ (ρλ) = 1

]
− Pr

OHaar

[
A

|OHaar(·)〉
λ (ρλ) = 1

]∣∣∣∣ ≤ ε(λ),

where:

– OPRFS(k, ·), on input a d-qubit register X, does the following: it applies a
channel that controlled on the register X containing x, it creates and stores
Gλ(k, x) in a new register Y. It outputs the state on the registers X and Y.

– OHaar(·), modeled as a channel, on input a d-qubit register X, does the fol-
lowing: it applies a channel that controlled on the register X containing x,
stores |ϑx〉〈ϑx| in a new register Y, where |ϑx〉 is sampled from the Haar
distribution. It outputs the state on the registers X and Y.

Moreover, Aλ has superposition access to OPRFS(k, ·) and OHaar(·).
We say that G is a (d(λ), n(λ))-QAPRFS generator to succinctly indicate

that its input length is d(λ) and its output length is n(λ).

We present a construction satisfying the above definition in the full version of
the paper.

Unlike Definition 6, it is not without loss of generality that Aλ can get multi-
ple copies of a quantum state. To illustrate, consider an adversary that submits
9 It is stronger in the sense that an algorithm that has quantum query access to the

oracle can simulate an algorithm that only has classical query access.



Pseudorandom (Function-Like) Quantum State Generators 255

a state of the form
∑

x αx |x〉 to the oracle. It then gets back
∑

x αx |x〉 |ψx〉
(where |ψx〉 is either the output of PRFS10 or it is Haar random) instead of∑

x αx |x〉 |ψx〉⊗t, for some polynomial t. On the other hand, if the adversary
can create multiple copies of

∑
x αx |x〉, the above definition allows the adver-

sary to obtain (
∑

x αx |x〉 |ψx〉)⊗t for any polynomial t(·) of its choice.

4 On the Necessity of Computational Assumptions

The following lemma shows that the security guarantee of a PRS generator
(and thus of PRFS generators) can only hold with respect to computationally
bounded distinguishers, provided that the output length is at least log λ.

Lemma 4. Let G be a PRS generator with output length n(λ) ≥ log λ. Then
there exists a polynomial t(λ) and a quantum algorithm A (not efficient in gen-
eral) such that

∣∣∣∣ Pr
k←{0,1}λ

[
Aλ

(
Gλ(k)⊗t(λ)

)
= 1

]
− Pr

|ϑ〉←Hn(λ)

[
Aλ

(
|ϑ〉〈ϑ|⊗t(λ)

)
= 1

]∣∣∣∣ ≥ 1
3

for all sufficiently large λ.

Proof. For notational convenience we abbreviate n = n(λ) and t = t(λ). We
split the proof into two cases.

Case 1: if there does not exist a negligible function ν(·) such that

Pr
k

[
min
|θ〉

TD(Gλ(k), |θ〉〈θ|) ≤ ν(λ)
]

≥ 1
2
. (2)

Then there exists some non-negligible function κ(·) such that with probability
at least 1

2 over the choice of k, min|θ〉 TD(Gλ(k), |θ〉〈θ|) ≥ κ(λ). Let νk,1 ≥
... ≥ νk,2n and |αk,1〉 , ..., |αk,2n〉 be eigenvalues and eigenvectors for Gλ(k). Then
κ ≤ TD(Gλ(k), |αk,1〉〈αk,1|) = 1

2 (1 − νk,1 + νk,2 + · · · + νk,2n) = 1 − νk,1. Thus
by Hölder’s inequality, Tr(Gλ(k)2) ≤ 1 − κ. Therefore, a purity test using t =
O(1/κ(λ)) copies will correctly reject PRS states with probability at least 1

3 but
never incorrectly reject any Haar random state.

Case 2: if there exists a negligible function ν(·) such that (2) holds. There
exists a polynomial t(λ) such that

2λ ≤ 1
6

· dim Π2n,t
sym =

1
6

·
(

2n + t − 1
t

)

for all sufficiently large λ. This is because by setting t = λ + 1, we can lower
bound the dimension of Π2n,t

sym by
(

2λ
λ+1

)
and

(
2λ

λ

)
≥ λ

λ + 1
4λ

√
πλ

(
1 − 1

8λ

)

10 In this illustration, we are pretending that the PRFS satisfies perfect state generation
property. That is, the output of PRFS is always a pure state.
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which is much larger than 6 · 2λ for all sufficiently large λ.
Let g ⊆ {0, 1}λ be the set of k’s such that min|θ〉 TD(Gλ(k), |θ〉〈θ|) ≤ ν(λ).

Note that 2λ is an upper bound on the rank of the density matrix

E
k←g

|ψk〉〈ψk|⊗t
, (3)

where |ψk〉 = arg min|θ〉 TD(Gλ(k), |θ〉〈θ|). Note that the rank of the density
matrix

E
|ϑ〉←Hn(λ)

|ϑ〉〈ϑ|⊗t =
Π2n,t

sym

dim Π2n,t
sym

(4)

is equal to dim Π2n,t
sym .

For all λ, define the quantum circuit Aλ that, given a state on tn qubits,
performs the two-outcome measurement {P, I − P} where P is the projector
onto the support of Ek←g |ψk〉〈ψk|⊗t, and accepts if the P outcome occurs.

By assumption of case 2, given the density matrix (3) the circuit Aλ will
accept with probability at least 1

2 . On the other hand, given the density
matrix (4) the circuit Aλ will accept with probability

Tr

(
P ·

Π2n,t
sym

dim Π2n,t
sym

)
≤ Tr

(
P

dim Π2n,t
sym

)
=

rank(P )
dim Π2n,t

sym

≤ 1
6

.

Letting A = {Aλ}λ we obtained the desired Lemma statement. ��

We remark that the attack given in Lemma 4 cannot be used on smaller
output length, up to additive factors of superpolynomially smaller order in the
output length. Suppose n = log λ − ω(log log λ) and for any t = λO(1),

log
(

2n + t − 1
t

)
≤ 2n · log

e(2n + t − 1)
2n − 1

=
λ

ω(log λ)
· O(log λ).

This means that
(
2n+t−1

t

)
= 2λ/ω(log λ) � 2λ and therefore the attack above does

not necessarily apply. Indeed, Brakerski and Shmueli [4] have shown that PRS
generators with output length n(λ) ≤ c log λ for some c > 0 can be achieved
with statistical security.

We conclude the section by remarking that the result of Kretschmer [12] can
be easily generalized so that PRS generators with output length at least log λ+c
(for some small constant 0 < c < 2) imply BQP �= PP as well11.

11 For readers familiar with [12], it can be verified that a sufficient condition for that
proof to go through is if 2λ · e−2n/3 is negligible, which is satisfied if n ≥ log λ + 2.
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5 Tomography with Verification

Quantum state tomography (or just tomography for short) is a process that takes
as input multiple copies of a quantum state ρ and outputs a string u that is a
classical description of the state ρ; for example, u can describe an approximation
of the density matrix ρ, or it could be a a more succinct description such as a
classical shadow in the sense of [10]. In this paper, we use tomography as a
tool to construct protocols based on pseudorandom states with only classical
communication.

For our applications, we require tomography procedures satisfying a useful
property called verification. Suppose we execute a tomography algorithm on
multiple copies of a state to obtain a classical string u. The verification algo-
rithm, given u and the algorithm to create this state, checks if u is consistent
with this state or not. Verification comes in handy when tomography is used in
cryptographic settings, where we would like to make sure that the adversary has
generated the classical description associated with a quantum state according to
some prescribed condition (this will be implictly incorporated in the verification
algorithm).

Verifiable Tomography. Let C = {Φλ : λ ∈ N} be a family of channels where
each channel Φλ takes as input �(λ) qubits for some polynomial �(·). A verifiable
tomography scheme associated with C is a pair (Tomography,Verify) of QPT
algorithms, which have the following input/output behavior:

– Tomography: given as input a quantum state ρ⊗L for some density matrix ρ
and some number L, output a classical string u (called a tomograph of ρ).

– Verify: given as input a pair of classical strings (x, u) where x has length �(λ),
output Valid or Invalid.

We would like (Tomography,Verify) to satisfy correctness which we describe next.

5.1 Correctness Notions for Verifiable Tomography

We can consider two types of correctness. The first type of correctness, referred to
as same-input correctness, states that Verify(x, u) outputs Valid if u is obtained
by running the Tomography procedure on copies of the output of Φλ(x). The
second type of correctness, referred to as different-input correctness, states that
Verify(x′, u) outputs Invalid if u is obtained by applying tomography to Φλ(x),
where (x′,x) do not satisfy a predicate Π.

Same-Input Correctness. Consider the following definition.

Definition 8 (Same-Input Correctness). We say that (Tomography,Verify)
satisfies L-same-input correctness, for some polynomial L(·), such that for every
x ∈ {0, 1}�(λ), if the following holds:

Pr
[
Valid ← Verify

(
x,Tomography

(
(Φλ(x))⊗L(λ)

))]
≥ 1 − negl(λ),
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For some applications, it suffices to consider a weaker definition. Instead of
requiring the correctness guarantee to hold for every input, we instead require
that it holds over some input distribution.

Definition 9 (Distributional Same-Input Correctness). We say that
(Tomography,Verify) satisfies (L,D)-distributional same-input correctness, for
some polynomial L(·) and distribution D on �(λ)-length strings, if the following
holds:

Pr
[
Valid ← Verify

(
x,Tomography

(
(Φλ(x))⊗L(λ)

))
: x ← D

]
≥ 1 − negl(λ)

Different-Input Correctness. Ideally, we would require that Verify(x, u) outputs
Invalid if u is produced by tomographing Φλ(x′), and x′ is any string such that
x′ �= x. However, for applications, we only require that this be the case when
the pair (x,x′) satisfy a relation defined by a predicate Π. In other words, we
require Verify(x, u) outputs Invalid only when u is a tomograph of Φλ(x′) and
Π(x′,x) = 0.

We define this formally below.

Definition 10 (Different-Input Correctness). We say that
(Tomography,Verify) satisfies (L,Π)-different-input correctness, for some poly-
nomial L(·) and predicate Π : {0, 1}�(λ) ×{0, 1}�(λ) → {0, 1}, such that for every
x,x′ ∈ {0, 1}�(λ) satisfying Π(x,x′) = 0, if the following holds:

Pr
[
Invalid ← Verify

(
x′,Tomography

(
(Φλ(x))⊗L(λ)

))]
≥ 1 − negl(λ)

Analogous to Definition 9, we correspondingly define below the notion of
(L,D,Π)-different-input correctness.

Definition 11 (Distributional Different-Input Correctness). We say
that (Tomography,Verify) satisfies (L,Π,D)-distributional different-input cor-
rectness, for some polynomial L(·), predicate Π : {0, 1}λ × {0, 1}λ → {0, 1} and
distribution D supported on (x,x′) ∈ {0, 1}�(λ) × {0, 1}�(λ) satisfying Π(x,x′) =
0, if the following holds:

Pr(x,x′)←D
[
Invalid ← Verify

(
x′,Tomography

(
(Φλ(x))⊗L(λ)

))]
≥ 1 − negl(λ)

Sometimes we will use the more general (ε, L,Π,D)-distributional different-
input correctness definition. In this case, the probability of Verify outputting
Invalid is bounded below by 1 − ε instead of 1 − negl(λ).

5.2 Verifiable Tomography Procedures

We will consider two different instantiations of (Tomography,Verify) where the
first instantiation will be useful for bit commitments and the second instantiation
will be useful for pseudo one-time pad schemes.

In both the instantiations, we use an existing tomography procedure stated
in the lemma below.
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Lemma 5 (Sect. 1.5.3, [14]). There exists a tomography procedure T that
given sN2 copies of an N -dimensional density matrix ρ, outputs a matrix M
such that E‖M − ρ‖2F ≤ N

s where the expectation is over the randomness of the
tomography procedure. Moreover, the running time of T is polynomial in s and
N .

We state and prove a useful corollary of the above lemma.

Corollary 1. There exists a tomography procedure Timp that given 4sN2λ copies
of an N -dimensional density matrix ρ, outputs a matrix M such that the follow-
ing holds:

Pr

[
‖M − ρ‖2F ≤ 9N

s

]
≥ 1 − negl(λ)

Moreover, the running time of Timp is polynomial in s,N and λ.

The proof of this corollary can be found in the full version.

First Instantiation. We will work with a verifiable tomography procedure that
will be closely associated with a PRFS. In particular, we will use a (d(λ), n(λ))-
PRFS {Gλ (·, ·)} satisfying recognizable abort property (Definition 5). Let Ĝ be
the QPT algorithm associated with G according to Definition 5. Note that the
output length of Ĝ is n + 1. We set d(λ) = � log(λ)

log(log(λ))� and n(λ) = �3 log(λ)�.
We will describe the algorithms (Tomography,Verify) in Fig. 1. The set of

channels C = {Φλ : λ ∈ N} is associated with (Tomography,Verify), where Φλ is
defined as follows:

– Let the input be initialized on register A.
– Controlled on the first register containing the value (Px, k, x, b), where Px

is an n-qubit Pauli, k ∈ {0, 1}λ, b ∈ {0, 1}, do the following: compute(
I ⊗ P b

x

)
Ĝλ(k, x)

(
I ⊗ P b

x

)
and store it in the register B.

– Trace out A and output B.

The channel Φλ can be represented as a quantum circuit of size polynomial in λ
as the PRFS generator Ĝ runs in time polynomial in λ.

Distributional Same-Input Correctness. We prove below that
(Tomography,Verify) satisfies distributional same-input correctness. For every
x ∈ {0, 1}d(λ), for every n-qubit Pauli Px and b ∈ {0, 1}, define the distribution

DPx,x,b as follows: sample k
$←− {0, 1}λ and output x = (Px, k, x, b).

Lemma 6. Let L = O(23nλ). The verifiable tomography scheme
(Tomography,Verify) described in Fig. 1 satisfies (L,DPx,x,b)-distributional same-
input correctness for all Px, x, b.

The proof of this lemma can be found in the full version.
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Fig. 1. First instantiation of Tomography

Distributional Different-Input Correctness. We prove below that
(Tomography,Verify) satisfies (ε, L,Π,Dx)-different-input correctness, where Π
and Dx are defined as follows:

Π ((P0, k0, x0, b0) , (P1, k1, x1, b1)) =

{
0 P0 = P1, x0 = x1 and b0 �= b1,

1 otherwise.

The sampler for Dx is defined as follows: sample Px
$←− Pn, k0, k1

$←− {0, 1}λ

and output ((Px, k0, x, 0) , ((Px, k1, x, 1)). We first prove an intermediate lemma
that will be useful for proving distributional different-input correctness. Later
on, this lemma will also be useful in the application of bit commitments.

Lemma 7. Let Px ∈ Pn and there exists a density matrix M such that
Verify(Px‖k0‖x‖0,M) = Valid and Verify(Px‖k1‖x‖1,M) = Valid, for some
k0, k1 ∈ {0, 1}λ. Then

Tr (Px |ψk1,x〉〈ψk1,x|Px |ψk0,x〉〈ψk0,x|) ≥ 542
729

.

The proof of this lemma can be found in the full version.
With the above lemma in mind, we can prove the different-input correctness.

Lemma 8. (Tomography,Verify) in Fig. 1 satisfies (O(2−n), L,Π,Dx)-
different-input correctness, where L = O(23nλ).

The proof of this lemma can be found in the full version. We give a second
instantiation in the full version that is used to achieve a psuedo-random one
time pad.

6 Applications

In this section, we show how to use PRFS to constrtuct a variety of applications:
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1. Bit commitments with classical communication and,
2. Pseudo one-time pad schemes with classical communication.

To accomplish the above applications, we use verifiable tomography from Sect. 5.
The construction and proofs of the pseudo one-time pad schemes can be found
in the full version of the paper.

6.1 Commitment Scheme

We construct bit commitments with classical communication from pseudoran-
dom function-like quantum states. We recall the definition by [2].

A (bit) commitment scheme is given by a pair of (uniform) QPT algorithms
(C,R), where C = {Cλ}λ∈N is called the committer and R = {Rλ}λ∈N is called
the receiver. There are two phases in a commitment scheme: a commit phase
and a reveal phase.

– In the (possibly interactive) commit phase between Cλ and Rλ, the committer
Cλ commits to a bit, say b. We denote the execution of the commit phase to
be σCR ← Commit〈Cλ(b), Rλ〉, where σCR is a joint state of Cλ and Rλ after
the commit phase.

– In the reveal phase Cλ interacts with Rλ and the output is a trit μ ∈ {0, 1,⊥}
indicating the receiver’s output bit or a rejection flag. We denote an execution
of the reveal phase where the committer and receiver start with the joint state
σCR by μ ← Reveal〈Cλ, Rλ, σCR〉.

We require that the above commitment scheme satisfies the correctness, compu-
tational hiding, and statistical binding properties below.

Definition 12 (Correctness). We say that a commitment scheme (C,R) sat-
isfies correctness if

Pr
[
b∗ = b :

σCR←−Commit〈Cλ(b),Rλ〉,
b∗←Reveal〈Cλ,Rλ,σCR〉

]
≥ 1 − ν(λ),

where ν(·) is a negligible function.

Definition 13 (Computational Hiding). We say that a commitment scheme
(C,R) satisfies computationally hiding if for any malicious QPT receiver
{R∗

λ}λ∈N
, for any QPT distinguisher {Dλ}λ∈N

, the following holds:
∣∣ Pr
(τ,σCR∗ )←−Commit〈Cλ(0),R∗

λ〉
[Dλ(σR∗) = 1]

− Pr
(τ,σCR∗ )←−Commit〈Cλ(1),R∗

λ〉
[Dλ(σR∗) = 1]

∣∣ ≤ ε(λ),

for some negligible ε(·).
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Definition 14 (Statistical Binding). We say that a commitment scheme
(C,R) satisfies statistical binding if for every QPT sender {C∗

λ}λ∈N, there exists
a (possibly inefficient) extractor E such that the following holds:

Pr

[
μ �= b∗ ∧ μ �= ⊥ :

(τ,σC∗R)←−Commit〈C∗
λ,Rλ〉,

b∗←E(τ),
μ←Reveal〈C∗

λ,Rλ,σC∗R〉

]
≤ ν(λ),

where ν(·) is a negligible function and τ is the transcript of the Commit phase.

Remark 1. (Comparison with [2]). In the binding definition of [2], given the fact
that the sender’s and the receiver’s state could potentially be entangled with
each other, care had to be taken to ensure that after the extractor was applied
on the receiver’s state, the sender’s state along with the decision bit remains
(indistinguishable) to the real world. In the above definition, however, since the
communication is entirely classical, any operations performed on the receiver’s
end has no consequence to the sender’s state. As a result, our definition is much
simpler than [2].

Construction. Towards constructing a commitment scheme with classical com-
munication, we use a verifiable tomography from Fig. 1.

Construction. We present the construction in Fig. 2. In the construction, we
require d(λ) = �log 3λ

n � ≥ 1.

Fig. 2. Commitment scheme

We prove that the construction in Fig. 2 satisfies correctness, computational
hiding and statistical binding properties.
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Lemma 9 (Correctness). The commitment scheme in Fig. 2 satisfies correct-
ness.

Proof. This follows from Lemma 6. ��

Lemma 10 (Computational Hiding). The commitment scheme in Fig. 2 sat-
isfies computational hiding.

Proof. We prove the security via a hybrid argument. Fix λ ∈ N. Consider a QPT
adversary R∗

λ.

Hybrid H1,b, for all b ∈ {0, 1}. This corresponds to C commiting to the bit b.

Hybrid H2,b, for all b ∈ {0, 1}. This hybrid is the same as before except that
for all x ∈ {0, 1}d, Φλ (P ||k||x||b) replaced with

(
|0〉〈0| ⊗

(
P b

x

)
(|ϑx〉〈ϑx|)

(
P b

x

))

where |ϑ1〉 , ..., |ϑ2d〉 ←− Hn.
The hybrids H1,b and H2,b are computationally indistinguishable because of

the security of PRFS. H2,0 and H2,1 are identical by the unitary invariance
property of Haar distribution. Hence, H1,0 and H1,1 are computationally indis-
tinguishable. ��

Lemma 11 (Statistical Binding). The commitment scheme in Fig. 2 satis-
fies O(2−0.5λ)-statistical binding.

Proof. of Lemma 11. Let C∗ = {C∗
λ}λ∈N

be a malicous committer. Execute the
commit phase between C∗

λ and Rλ. Let τ be the classical transcript and let σC∗R

be the joint state of C∗R. We first provide the description of an extractor.

Description of E . On the input τ = (P,M), the extractor does the following:

1. For all k′||b′ ∈ {0, 1}λ ×{0, 1}, run for all x ∈ {0, 1}d, Verify(Px||k′||x||b′,M).
2. If for all x ∈ {0, 1}d, Verify(P ||k′||x||b′,M) = Valid, output b′.
3. Else output ⊥.

��

Fact 6. Let Pm be the m-qubit Pauli group. Then,

Pr
P

$←−Pm

[
∃k0, k1 : ∀x ∈ {0, 1}d, |〈ψk0,x|Px |ψk1,x〉|2 ≥ δ

]
≤ δ−2d

22λ−m.

Proof. We use the following fact [2, Fact 6.9]: Let |ψ〉 and |φ〉 be two arbitrary
n-qubit states. Then,

E

Px
$←−Pn

[
|〈ψ|Px |φ〉|2

]
= 2−n.

For any k0, k1, x by the above fact, E
Px

$←−Pn

[
|〈ψk0,x|Px |ψk1,x〉|2

]
= 2−n. Using

Markov’s inequality we get that for all δ > 0,

Pr
Px

$←−Pn

[
|〈ψk0,x|Px |ψk1,x〉|2 ≥ δ

]
≤ δ−12−n.
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Since, all Px’s are independent,

Pr
P

$←−Pm

[
∀x ∈ {0, 1}d, |〈ψk0,x|Px |ψk1,x〉|2 ≥ δ

]
≤

(
δ−12−n

)2d

.

Using a union bound over all k0, k1,

Pr
P

$←−Pm

[
∃k0, k1 : ∀x ∈ {0, 1}d, |〈ψk0,x|Px |ψk1,x〉|2 ≥ δ

]
≤ δ−2d

22λ−m.

��

Let the transcript be (P,M) where P is chosen uniformly at random. Let

p = Pr

[
μ �= b∗ ∧ μ �= ⊥ :

(τ,σC∗R)←−Commit〈C∗
λ,Rλ〉,

b∗←E(τ),
μ←Reveal〈τ,σC∗R〉

]

Then

p = Pr
P

$←−Pm

[
∃k0, k1, b0, b1 : ∀x ∈ {0, 1}d

Verify(Px||k0||x||b0,Mx)=Valid,

Verify(Px||k1||x||b1,Mx)=Valid,

b0 
=b1

]
.

Without loss of generality we can assume b0 = 0 and b1 = 1,

p = Pr
P

$←−Pm

[
∃k0, k1 : ∀x ∈ {0, 1}d Verify(Px||k0||x||0,Mx)=Valid,

Verify(Px||k1||x||1,Mx)=Valid

]
.

By Lemma 7,

p ≤ Pr
P

$←−Pm

[
∃k0, k1 :∀x ∈ {0, 1}d,

T r(Px |ψk1,x〉〈ψk1,x|Px |ψk0,x〉〈ψk0,x|) ≥ 542/729
]

By Fact 6,

p ≤ 729
542

2d (
22λ−m

)
.

For m ≥ 3λ, the protocol satisfies O(2−0.5λ)-statistical binding. ��
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Abstract. Trapdoor Claw-free Functions (TCFs) are two-to-one trap-
door functions where it is computationally hard to find a claw, i.e., a
colliding pair of inputs. TCFs have recently seen a surge of renewed
interest due to new applications to quantum cryptography: as an exam-
ple, TCFs enable a classical machine to verify that some quantum com-
putation has been performed correctly. In this work, we propose a new
family of (almost two-to-one) TCFs based on conjectured hard problems
on isogeny-based group actions. This is the first candidate construction
that is not based on lattice-related problems and the first scheme (from
any plausible post-quantum assumption) with a deterministic evaluation
algorithm. To demonstrate the usefulness of our construction, we show
that our TCF family can be used to devise a computational test of a
qubit, which is the basic building block used in the general verification
of quantum computations.

Keywords: Trapdoor claw-free · Quantum protocols · Isogeny

1 Introduction

Trapdoor claw-free functions (TCFs) consist of pairs of functions (f0, f1) : X →
Y that are easy to evaluate in the forward direction, but the knowledge of a
trapdoor is required in order to efficiently invert such functions. Furthermore,
for any y in the image of these two functions, there are exactly two pre-images
(x0, x1) such that f0(x0) = f1(x1) = y and the pair (x0, x1) is referred to as a
claw. Claws are guaranteed to exist, though they are computationally hard to
find, without the knowledge of the trapdoor. TCFs have been a central object
in the theory of cryptography, and they have recently seen a surge of interest
with a newly established connection with quantum cryptography. TCFs are the

G. Malavolta—Research partially supported by the German Federal Ministry of Edu-
cation and Research BMBF (grant 16K15K042, project 6GEM) and partially funded
by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under
Germany’s Excellence Strategy - EXC 2092 CASA - 390781972.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
E. Kiltz and V. Vaikuntanathan (Eds.): TCC 2022, LNCS 13747, pp. 266–293, 2022.
https://doi.org/10.1007/978-3-031-22318-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22318-1_10&domain=pdf
https://doi.org/10.1007/978-3-031-22318-1_10


Candidate TCFs from Group Actions 267

main cryptographic building block that enabled a series of recent breakthroughs
in the area of quantum computation. To mention a few applications: the first
protocol for testing the randomness of a single quantum device [BCM+18], classi-
cal verification of quantum computation [Mah18b], quantum fully homomorphic
encryption [Mah18a], verifiable test of quantumness [BKVV20], remote state
preparation [GV19], and deniable encryption [CGV22].

At present, there is a single family of (noisy) TCFs [BCM+18] known to satisfy
all of the properties needed for the above applications, whose security is based on
the (quantum) hardness of the learning with errors (LWE) problem. While we have
no reasons to cast doubts on the validity of this assumption, we believe that this
situation is unsatisfactory and reflects our lack of understanding of cryptographic
primitives useful for constructing protocols in the quantum regime.

This work aims to progress on this point and to place the security of the
above protocols on broader cryptographic foundations. Towards this end, we turn
our attention to alternative proposals for quantum-safe cryptographic schemes:
Alongside lattices, another notable class of assumptions that enable advanced
cryptographic applications (such as key exchange) is isogeny-based assumptions,
including recent proposals based on group actions [CLM+18,BKV19]. Thus, we
ask the following question:

Can we construct TCFs (or relaxations thereof) from isogeny-based group
actions?

1.1 Our Results

We propose the first candidate construction of an “almost” TCF family from a
class of isogeny-based assumptions, where by almost we mean that for all but
an inverse polynomial fraction of inputs x ∈ X, there is an x′ ∈ X such that
f0(x) = f1(x′). We later formalize this notion as a weak TCF (wTCF) family.

We show the security of our construction assuming an extended version of
the linear hidden shift (LHS) problem (which plausibly holds over the isogeny-
based group action of [BKV19]), introduced in [ADMP20]. A noteworthy aspect
of our scheme is that the evaluation of the function is deterministic, which is
in contrast with LWE-based schemes, where the function maps to a probability
distribution. Thus, strictly speaking, our scheme is the first example of a wTCF
function with plausible post-quantum security.

Our construction also satisfies a weaker variant of the adaptive hardcore bit
property [BCM+18]: loosely speaking, it guarantees that one cannot simultane-
ously solve the adaptive hardcore bit problem for n independent instances, except
with probability negligible in n. Interestingly, our proof strategy is completely
different from that of [BCM+18], and does not rely on any leakage-resilience
property. To obtain the stronger variant of the adaptive hardcore bit property
(as formulated in [BCM+18]) we conjecture that computing the XOR of adap-
tive hardcore bits amplifies the security to negligibly close to 1/2. In the con-
text of one-wayness, it is known that direct-product hardness implies the XOR
lemma [GNW11,GSV18], and we leave open the problem of proving a similar
statement for the adaptive hardcore bit property.
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To substantiate the usefulness of our construction, we show that our wTCF
family can be used to devise a computational test of qubit [BCM+18,Vid20],
which is the basic building block used in the general verification of quantum
computations.

1.2 Technical Overview

We now provide a simplified overview of how we construct a wTCF family
from an assumption that plausibly holds over isogeny-based group actions. We
present our overview entirely in terms of group actions (based on the frame-
work of [ADMP20]), and thus we do not assume any familiarity with CSIDH
and its variants [CLM+18,BKV19]. The starting point for our construction is
a recently introduced assumption in [ADMP20], called the linear hidden shift
(LHS) assumption. In a nutshell, LHS assumption over a regular and abelian
group action � : G × X → X states that for any � = poly(λ), if M ← G

�×n,
v ← {0, 1}n, and x ← X

� (for some sufficiently large n) then

(x,M,Mv � x)
c≈ (x,M,u),

where u ← X
� is sampled uniformly and � is applied component-wise. Given

this assumption, we rely on an observation by [KCVY21] to construct a function
family that is (almost) 2-to-1. It can be verified by inspection that if B = poly(λ)
is a large enough integer, then for any injective function f̄ whose domain is
a superset of [B + 1]n, the function f with domain {0, 1} × [B]n defined by
f(b ∈ {0, 1}, s ∈ [B]n) = f̄(s + b · v) is an “almost” 2-to-1 function. Based on
this simple observation, an initial attempt to define a claw-free “almost” 2-to-1
function (from LHS) would be

fpp(b, s) = M(s + b · v) � x, pp = (M ← G
n×n,Mv � x,x ← X

n), (∗)

where v ← {0, 1}n. As a sanity check, any claw-pair ((0, s0), (1, s1)) can be used
to break the LHS assumption by simply computing v = s0 − s1. There are two
major issues with the initial attempt above: (1) unlike the DDH-based construc-
tion of [KCVY21], a cryptographic group action does not seem to be amenable
for a “DDH-style” trapdoor [FGK+10] (in fact, any such technique would imme-
diately break the post-quantum security of LHS assumption), and (2) it is not
clear how to translate the LWE-based proof of adaptive hardcore bit property
from [BCM+18] to the group action setting. Indeed, the latter seems to be a
major bottleneck, because [BCM+18] relies on the lossy mode of LWE to prove
the adaptive hardcore bit property via a lossiness argument, a technique that
seems to be out of reach based on our current understanding of cryptographic
group actions. At a high level, any change in the structure of matrix M (say
using a “rank” 1 matrix) can be easily detected by a quantum adversary. Thus,
we opt for an entirely computational approach to prove the adaptive hardcore
bit property. We first describe our approach for showing adaptive hardcore bit
property, and later we explain how to add input recoverability based on a related
computational assumption.
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From a Claw-Based Inner Product to a Shift-Based Equation. Note that
for the function (family) fpp above (∗), the adaptive hardcore bit property means
that no QPT adversary can simultaneously hold a preimage (b, sb) and a pair
(d, c ∈ {0, 1}) such that c = 〈d, s0 ⊕ s1〉, where s1−b is the preimage of fpp(b, sb)
such that s1−b 
= sb and the inner product is computed over F2. To simplify the
proof, an observation by [BCM+18] showed that any such tuple (b, sb,d, c) can be
transformed into a binary equation in terms of the shift vector v, i.e., there is an
efficient transformation T that given (b, sb,d, c) outputs a binary vector d′ and
c′ ∈ {0, 1} such that c′ = 〈d′,v〉, and that for a uniformly chosen d the result-
ing d′ is non-zero with overwhelming probability. Thus, the adaptive hardcore bit
property can be rephrased as the infeasibility of computing any non-trivial parity
of the shift vector v with a probability noticeably more than 1/2. Although our
final construction will be quite different from the simple one outlined above (∗), it
would still be amenable to a transformation from a claw-based inner product into a
shift-based equation. Therefore, we focus on the latter in the remaining part of this
overview. Looking ahead, in our final construction the shift vector v will consist of
n binary vectors vi (for i ∈ [n]). In the next step, we describe a generic approach
to prove that no attacker can succeed in outputting n non-zero vectors d′

i and n
bits ci (i ∈ [n]) such that ci = 〈d′

i,vi〉 for all i ∈ [n].

Direct-Product Adaptive Hardcore Bit. Let Fpp : {0, 1}n → Y be a func-
tion (family) such that pp is generated via a randomized algorithm Gen. In addi-
tion, assume that F satisfies correlated pseudorandomness, i.e., for uniformly
sampled w ← {0, 1}n and n independently sampled (ppi)i∈[n] (via Gen) we have

(pp1, . . . , ppn, Fpp1(w), . . . , Fppn
(w))

c≈ (pp1, . . . , ppn, u1, . . . , un),

where ui ← Y for i ∈ [n]. Suppose that there is a procedure P that given
(ppi, Fppi

(w))i∈[n] (where ppi is generated independently for i ∈ [n]) and n
(random) binary vectors (ri)i∈[n], it outputs

(pp′
i, Fpp′

i
(w ⊕ ri))i∈[n]

such that

(pp′
i, Fpp′

i
(w ⊕ ri))i∈[n]

s≈ (ppi, Fppi
(vi))i∈[n], (∗∗)

where vi ← {0, 1}n for i ∈ [n] and each ppi is generated independently. Moreover,
the procedure P should map a random tuple (ppi, ui)i∈[n] (where ui ← Y ) to a
random tuple.

Given such a function family with corresponding procedure P, below we
briefly outline a reduction that shows for any QPT1 adversary A, given
(ppi, Fppi

(vi))i∈[n] where ppi and vi are sampled independently for i ∈ [n], it is

1 The reduction is entirely classical, so if correlated pseudorandomness holds with
respect to all classical PPT adversaries, then the proposition holds for the same
class of adversaries as well.
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infeasible to produce n non-zero vectors d′
i and n bits ci (for i ∈ [n]) such that

ci = 〈d′
i,vi〉 for all i ∈ [n], where the inner product is computed over F2. We

informally refer to this property as direct-product adaptive hardcore bit property.
Let H = (pp1, . . . , ppn, y1, . . . , yn) be a correlated pseudorandomness chal-

lenge. The reduction samples ri for i ∈ [n] and it runs P on (H, r1, . . . , rn). Let
(d′

i, βi) for i ∈ [n] be the output of A. Observe that if the advantage of A is
non-negligible and H is pseudorandom, i.e., yi = Fppi

(w) for all i ∈ [n], the
reduction can use (d′

i, βi) and ri to compute ci = 〈d′
i,w〉 for i ∈ [n]. If there

exists an index n′ such that d′
n′ lies in the span of (d′

1, . . . ,d
′
n′−1), i.e.,

d′
n′ =

n′−1∑

i=1

αid′
i, (α1, . . . , αn′−1) ∈ {0, 1}n′−1,

the reduction can simply check cn′
?=

∑n′−1
i=1 αici. If the equality holds the reduc-

tion outputs 0, otherwise it outputs a random bit. On the other hand, a routine
information-theoretic argument shows that if H is a truly random tuple then the
check above passes with a probability close to 1/2, because ri (for any i ∈ [n]) is
statistically hidden from the view of A, allowing us to deduce the direct-product
adaptive hardcore bit property (a slight modification of the argument also works
in case all d′

i for i ∈ [n] are linearly independent).
So far, we argued that if Fpp : {0, 1}n → Y is a function family with correlated

pseudorandomness and a corresponding procedure P, it also satisfies the direct-
product adaptive hardcore bit property. In the next step, we rely on a conjecture
to deduce the (plain) adaptive hardcore bit property (defined below), which
will allow us to deduce the adaptive hardcore bit property (for an almost 2-to-
1 function) in our final construction. A non-adaptive version of the following
conjecture has already been proved via a transformation from direct-product
hardness to (Yao’s) XOR lemma [GNW11].

Conjecture 1 (Informal). If Fpp : {0, 1}n → Y is a function family (with the
properties described above) that satisfies the direct-product adaptive hardcore bit
property, it also satisfies the following adaptive hardcore bit property defined as:

Pr

[
A({ppi}i∈[n], {Fppi

(vi)}i∈[n]

) →
(

{d′
i �= 0n}i∈[n],

n⊕
i=1

〈d′
i,vi〉

)]
≤ 1/2 + negl .

Remark 1. While the adaptive hardcore bit property in the conjecture above
is different from the adaptive hardcore bit property in the case of the (2-to-1)
TCF family, they can be related via the transformation that has been described
before, namely the transformation from a claw-based inner product to a shift-
based equation.

Realizing (Direct-Product) Adaptive Hardcore Bit. It remains to show
how we can realize the abstraction above using LHS or a related assumption.
First, observe that correlated pseudorandomness can be easily handled since for
n randomly generated ppi of the following form, it follows immediately by the



Candidate TCFs from Group Actions 271

LHS assumption that for i ∈ [n]:

(xi,Mi,Miw � xi)i∈[n]
c≈ (xi,Mi,ui)i∈[n] ppi = (Mi ← G

n×n,xi ← X
n)

where w ← {0, 1}n and ui ← X
n for i ∈ [n]. However, it is unclear how to

find a corresponding efficiently computable procedure P (defined in the previous
part). To get around this issue, we work with a slightly different form of the LHS
assumption. Specifically, we can work with the following form of the LHS assump-
tion (which is implied by the original LHS assumption via a simple reduction):

ppi = (M(0)
i ← G

n×n,M(1)
i ← G

n×n,xi ← X
n), i ∈ [n],

(
xi,M

(0)
i ,M(1)

i ,
[
M(0)

i (1 − w) + M(1)
i w

]
� xi

)
i∈[n]

c≈ (
xi,M

(0)
i ,M(1)

i ,ui

)
i∈[n]

,

where 1 is an all-one vector. It is not hard to see that based on the new form of
the assumption, given (ppi, Fppi

(w)) and binary vectors ri for i ∈ [n], one can
efficiently produce

(pp′
i, Fpp′

i
(w ⊕ ri)), i ∈ [n],

where Fpp′
i
(w ⊕ ri) = Fppi

(w), and pp′
i is simply obtained by swapping the

jth column of M(0)
i and M(1)

i for all positions j such that the jth bit of ri

is 1. One can also verify that the aforementioned procedure also satisfies the
indistinguishability (∗∗).

Input Recoverability and Extended LHS Assumption. To add input
recoverability, we informally define one-matrix version of an extended form of
the LHS assumption, which asserts that

(
M,m,x(β),y(β)

)
β∈{0,1}

c≈ (
M,m,u(β),u′(β))

β∈{0,1},

where each of the terms above is distributed as

w ← {0, 1}n, M ← G
n×n, m ← G

n, x(0) ← X
n,

t ← G
n, u(β) ← X

n, u′(β) ← X
n, (β ∈ {0, 1})

x(1) :=
[
Mw

]
� x(0), y(0) := t � x(0),

y(1) :=
[
Mw + m � w

]
� y(0),

and � denotes the component-wise product of an integer and a group element
(defined in a natural way). Note that for the left-hand side of the assumption
above, knowing (a trapdoor) t is enough to recover w,2 since

−t � y(1) = (m � w) � x(1).

2 Note that knowledge of t is enough to recover w even if w is non-binary but with
short entries, i.e., if each entry of w is polynomially bounded.
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Final Construction. Now we provide the final construction of our wTCF
family. To generate a key-trapdoor pair, for each i ∈ [n] and β ∈ {0, 1} sample

vi ← {0, 1}n, M(β)
i ← G

n×n, m(β)
i ← G

n, x(0)
i ← X

n, ti ← G
n,

and set

x(1)
i :=

[
M(0)

i (1 − vi) + M(1)
i vi

]
� x(0)

i , y(0)
i := ti � x(0)

i ,

y(1)
i :=

[
M(0)

i (1 − vi) + M(1)
i vi + m(0)

i � (1 − vi) + m(1)
i � vi

]
� y(0)

i ,

where � denotes component-wise product. Output (ek, td) where

td =
(
vi, ti

)
i∈[n]

, ek =
(
M(β)

i ,m(β)
i ,x(β)

i ,y(β)
i

)
i∈[n],β∈{0,1}.

To evaluate the function fek,b on input (si)i∈[n] ∈ ([B]n)n, output (z̄i, zi) for
i ∈ [n] where

z̄i =
[
(1 − b) · M(0)

i 1 +
(
M

(1)
i − M

(0)
i

)
si

]
� x

(b)
i ,

zi =
[
(1 − b) · M(0)

i 1 +
(
M

(1)
i − M

(0)
i

)
si + (1 − b) · m(0)

i + (m
(1)
i − m

(0)
i ) � si

]
� y

(b)
i .

Observe that if fek,b((si)i∈[n]) = (z̄i, zi)i∈[n] then the following relation holds
for any i ∈ [n]:

(−ti − m(0)
i ) � zi =

[
(m(1)

i − m(0)
i ) � (si + b · vi)

]
� z̄i.

Because the action is applied component-wise and each entry of si lies in [B],
one can recover each entry of si efficiently by a simple brute force, since both vi

and ti are included in the trapdoor.

Computational Qubit Test. To exemplify the usefulness of our wTCF family,
we show how it can be used as the cryptographic building block in the compu-
tational qubit test described by Vidick [Vid20]. Such a test allows a quantum
prover to certify the possession of a qubit in its internal state. Importantly,
the verifier and the communication are entirely classical. The protocol that we
present is largely unchanged from [Vid20], except for a few syntactical modifi-
cations due to the presence of non-perfect matchings in the input domain of our
wTCFs. For more details, we refer the reader to Sect. 5. We view this protocol
as a promising first step towards the usage of our isogeny-based wTCF in more
complex protocols for the verification of more involved quantum tasks.

2 Preliminaries

We denote by λ ∈ N the security parameter. A function negl is negligible if it
vanishes faster than any polynomial. We denote by [n] the set {1, . . . , n}.
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2.1 Quantum Information

We recall a few facts about quantum information to establish some notation
and we refer the reader to [NC02] for a more comprehensive overview. A (pure)
quantum state |ψ〉 is a unit vector in a separable Hilbert space H. Throughout
this work, we will only consider finite-dimensional Hilbert spaces and so we will
always assume that H � C

d, for some integer d ≥ 1. A Projector-Valued Measure
(PVM) consists of a set of projectors {Πi} that sum up to identity, and if Πi are
not required to be projectors, it is called a Positive Operator-Valued Measure
(POVM). Given a POVM {Πi}, the Born rule establishes that measuring a state
|ψ〉 will yield outcome i with probability 〈ψ| Πi |ψ〉.

An observable O is a Hermitian operator on H. Let O =
∑

i λiΠi be the
spectral decomposition of O, then we call an eigenstate of O a pure state |ψ〉 such
that Πi |ψ〉 will deterministically yield outcome λi, when measured according to
O. Throughout this work, we will only consider binary observables O such that
O2 = Id, and that O = Π0 − Π1. I.e., they are the sum of two projectors and
have eigenvalues λi ∈ {−1,+1}. It is convenient to define the expected outcome
of an observable O on a state |ψ〉 as

∑

i

λi 〈ψ| Πi |ψ〉 = 〈ψ| O |ψ〉 .

2.2 Cryptographic Group Actions and Extended LHS Assumption

In this part we recall some definitions related to cryptographic group actions
from [ADMP20], which provided a framework to capture certain isogeny-
based assumptions (e.g., variants of CSIDH [CLM+18,BKV19]). We refer
to [ADMP20] for a detailed explanation of these definitions. Towards the end
of the section, we provide a definition of extended linear hidden shift assump-
tion, from which we later show the construction of wTCF family. We present
our results entirely in terms of group actions with certain hardness properties
(based on the framework of [ADMP20]), and thus we do not assume familiarity
with CSIDH and its variants [CLM+18,BKV19]. We refer to [Pei20,BS20] for an
overview of quantum attacks against CSIDH for certain choices of parameters.

Throughout the paper, we use the abbreviated notation (G,X, �) to denote
a group action � : G × X → X. Moreover, we are going to assume that group
actions are abelian and regular, i.e., both free and transitive (which is the case
for all isogeny-based group actions). For such group actions, we have |G| = |X|.
Note that if a group action is regular, then for any x ∈ X, the map fx : g �→ g �x
defines a bijection between G and X.

We recall the definition of an effective group action (EGA) from [ADMP20].
In a nutshell, an effective group action allows us to efficiently perform certain
tasks over G (e.g., group operation, inversion, and sampling uniformly) effi-
ciently, along with an efficient procedure to compute the action of any group
element on any set element. As a concrete example, a variant of CSIDH [BKV19]
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(called “CSI-FiSh”) can be modeled as an effective group action, for which the
group G is isomorphic to (ZN ,+).3

Definition 1 (Effective Group Action (EGA)). A group action (G,X, �) is
effective if it satisfies the following properties:

1. The group G is finite and there exist efficient (PPT) algorithms for:
(a) Membership testing (deciding whether a binary string represents a group

element).
(b) Equality testing and sampling uniformly in G.
(c) Group operation and computing inverse of any element.

2. The set X is finite and there exist efficient algorithms for:
(a) Membership testing (to check if a string represents a valid set element),
(b) Unique representation.

3. There exists a distinguished element x0 ∈ X with known representation.
4. There exists an efficient algorithm that given any g ∈ G and any x ∈ X,

outputs g � x.

Notation. For a group action � : G × X → X, we always use the additive
notation + to denote the group operation in G. Since G is abelian, it can be
viewed as a Z-module, and hence for any z ∈ Z and g ∈ G the term zg is well-
defined. This property naturally extends to vectors and matrices as well, so if
g ∈ Gn and z ∈ Z

n for some n ∈ N, then we use 〈g, z〉 to denote
∑n

i=1 zigi.
Thus, for any matrix M ∈ G

m×n and any vector z ∈ Z
n, the term Mz is also

well-defined.
For any two vectors z ∈ Z

n and g ∈ G
n we use the notation z�g to denote a

vector whose ith component is zigi (component-wise/Hadamard product). The
group action also extends to the direct product group G

n for any positive integer
n. If g ∈ G

n and x ∈ Xn, we use g � x to denote a vector of set elements whose
ith component is gi � xi.

Definition 2 (Weak Pseudorandom EGA). An (effective) group action
(G,X, �) is said to be a weak pseudorandom EGA if it holds that

(x, y, t � x, t � y)
c≈ (x, y, u, u′),

where x ← X, y ← X, t ← G, u ← X, and u′ ← X.

Definition 3 (Linear Hidden Shift (LHS) assumption [ADMP20]). Let
(G,X, �) be an effective group action (EGA), and let n > log |G| + ω(log λ) be
a positive integer. We say that liner hidden shift (LHS) assumption holds over
(G,X, �) if for any � = poly(λ) the following holds:

(x,M,Mw � x)
c≈ (x,M,u),

3 Although we present our results in terms of EGA, one can also obtain the same
results from a restricted EGA assuming a one-time quantum preprocessing, since
EGA and restricted EGA are quantumly equivalent [ADMP20].
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where each of the terms above is distributed as

x ← X
�, M ← G

�×n, w ← {0, 1}n, u ← X
�.

Definition 4 (Extended LHS assumption). Let (G,X, �) be an effective
group action (EGA), and let n > log |G| + ω(log λ) be a positive integer. We
say that extended LHS assumption holds over (G,X, �) if for any � = poly(λ)
the following holds:

(
Mi,mi,x

(β)
i ,y(β)

i

)
i∈[�],β∈{0,1}

c≈ (
Mi,mi,u

(β)
i ,u′(β)

i

)
i∈[�],β∈{0,1},

where each of the terms above is distributed as

w ← {0, 1}n, Mi ← G
n×n, mi ← G

n, x(0)
i ← X

n,

ti ← G
n, u(β)

i ← X
n, u′(β)

i ← X
n,

x(1)
i :=

[
Miw

]
� x(0)

i , y(0)
i := ti � x(0)

i ,

y(1)
i :=

[
Miw + mi � w

]
� y(0)

i .

Remark 2. Note that in the assumption above if y(1)
i were distributed as y(1)

i =[
Miw

]
� y(0)

i , then the extended LHS assumption would be implied by any
weak pseudorandom EGA over which LHS assumption holds. In other words,
the presence of the term mi �w makes the extended LHS assumption seemingly
stronger than the plain LHS assumption.

3 Weak Trapdoor Claw-Free Functions

We define the notion of a weak trapdoor claw-free function (wTCF) family. We
adopt a slightly simplified syntax compared to [BCM+18] as each function in our
definition of wTCF family will be a deterministic function rather than mapping
to a probability distribution.

Definition 5 (wTCF). Let n = n(λ) be an integer such that n = poly(λ). Let
F be a family of functions

F = {fek,b : Xn → Y }(ek,b)∈K×{0,1},

where X, Y , and K are finite sets indexed by λ, and K denotes the the key
space. We say that F is a weak trapdoor claw-free (wTCF) function family if it
satisfies the following properties:

1. There exists a PPT algorithm Gen which generates an evaluation key ek along
with a trapdoor td as (ek, td) ← Gen(1λ).

2. For all but a negligible fraction of key-trapdoor pairs (ek, td) ∈ supp(Gen(1λ)),
the following properties hold.



276 N. Alamati et al.

(a) There exists an efficient algorithm Invert that for any b ∈ {0, 1} and any
x ∈ Xn, it holds that

Invert(td, b, fek,b(x)) = x.

(b) There exists two dense subsets X0 ⊆ Xn and X1 ⊆ Xn and a perfect
matching Rek ⊆ X0 × X1 such that for any (x0,x1) ∈ X0 × X1 it holds
that fek,0(x0) = fek,1(x1) iff (x0,x1) ∈ Rek, where a dense subset X ⊆ Xn

is defined as a subset that satisfies

Pr
x←Xn

[x ∈ X] ≥ 1 − n−c,

for some constant c ≥ 1. For any x ∈ Xn, membership in X0 or X1

can be checked efficiently given the trapdoor td. In addition, there exists
a dense subset X̄ ⊆ X0 ∩ X1 ⊆ Xn such that membership in X̄ can be
checked without td.
Informally, this property means that a randomly sampled x ← Xn lies in
X̄ ⊆ X0∩X1 with “good” probability. Moreover, for any x ∈ X0∩X1 and
any b ∈ {0, 1}, the image y = fek,b(x) has exactly one preimage x0 ∈ X0

under fek,0 and one preimage x1 ∈ X1 under fek,1.
3. (a) There exists an efficiently computable “binary encoding” function B :

Xn → {0, 1}n� such that B−1 is also efficiently computable on the range
of B.

(b) For any b ∈ {0, 1} and any x ∈ Xn, there exists a set Yb,x ⊆ {0, 1}n�

such that
Pr

d←{0,1}n�
[d /∈ Yb,x] ≤ negl,

and membership in Yb,x can be checked efficiently given b and x.
(c) Let Wek be a (key-dependent) set of tuples defined as

Wek =
{(

b,xb,d,
(〈di,Bi(x0) ⊕ Bi(x1)〉

)
i∈[n]

)∣∣∣ b ∈ {0, 1}, (x0,x1) ∈ Rek,
d ∈ Y0,x0 ∩ Y1,x1

}
,

where di and Bi(·) denote the ith �-bit chunk of d and B(·), respectively
(the inner product is computed over F2). We require that for any QPT
adversary A, if (ek, td) ← Gen(1λ) then

Pr[A(ek) ∈ Wek] ≤ negl,

where the probability is taken over all randomness in the experiment.

3.1 XOR Lemmas for Adaptive Hardcore Bits

The weak version (direct-product) of the adaptive hardcore bit property (prop-
erty 3c) will not be sufficient for our protocol. In the following, we define a
stronger version of the property that we will need in our analysis. Note that the
only difference with respect to property 3c is that the adversary is required to
output a single bit h, which is the XOR of the n bits required before.



Candidate TCFs from Group Actions 277

Definition 6 (Adaptive Hardcore Bit). Let F be a wTCF, and let Wek be
a (key-dependent) set of tuples defined as

Wek =
{(

b,xb,d, h
)∣∣∣ b ∈ {0, 1}, (x0,x1) ∈ Rek,d ∈ Y0,x0 ∩ Y1,x1 ,

h =
⊕n

i=1〈di,Bi(x0) ⊕ Bi(x1)〉
}

,

where di and Bi(·) denote the ith �-bit chunk of d and B(·), respectively. We
require that for any QPT adversary A, if (ek, td) ← Gen(1λ) then

Pr[A(ek) ∈ Wek] ≤ 1/2 + negl,

where the probability is taken over all randomness in the experiment.

We define the following property for a wTCF family, which requires that any
key/input/output can be viewed as n independent instances. Our construction
of wTCF will satisfy this property.

Definition 7. Let F be a wTCF family of functions with domain Xn and range
Y = Ȳ n. Let Gen, Eval, and Invert be the associated algorithms. We say that
F is a wTCF family with independent evaluations (wTCF-IE) if there exists
algorithms Gen, Eval, and Invert such that

– Gen is identically distributed to the concatenation of n independent runs of
Gen.

– For each (ek, td) = {(eki, tdi)}i∈[n] in the support of Gen ≡ (Gen)n, the output
of any function fek,b ∈ F on any x ∈ Xn is identical to the concatenation of
Evaleki,b on xi for i ∈ [n].

– For each (ek, td) = {(eki, tdi)}i∈[n] in the support of Gen ≡ (Gen)n, the output
of Inverttd,b on any y ∈ Ȳ n is identical to the concatenation of Inverttdi,b on
yi for i ∈ [n].

Next we state our conjecture, namely that any wTCF-IE that satisfies direct-
product adaptive hardcore bit property (3c), also satisfies the adaptive hardcore
bit property.

Conjecture 2. If F is a wTCF-IE family that satisfies the direct-product adaptive
hardcore bit property 3c, then F satisfies the property in Definition 6.

Remark 3. Note that for our construction, the conjecture above is implied by
the (informal) Conjecture 1 via a transformation (from claw-based inner product
to shift-based equation) that we will see later. We omit the formal details as it
is going to be similar to the proof of Lemma7.

Random Subset Adaptive Hardcore Bit. To gain confidence in our con-
jecture, we show that a weaker variant of it is implied by property 3c. Roughly
speaking, this notion says that it is hard to predict the XOR of a random subset
of the adaptive n hardcore bits. However, note that the predictor is not given
the subset ahead of time.
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Definition 8 (Random Subset Adaptive Hardcore Bit). Let F be a
wTCF. For any QPT adversary A, the success probability in the following exper-
iment is negligibly close to 1/2.

– The challenger samples (ek, td) ← Gen(1λ) and sends ek to A.
– A sends a tuple (b,xb,d).
– The challenger samples a subset r ← {0, 1}n and sends r to A.
– A returns a bit h ∈ {0, 1} and succeeds if the following conditions are satisfied:

• (x0,x1) ∈ Rek

• d ∈ Y0,x0 ∩ Y1,x1

• h =
⊕n

i=1 ri · 〈di,Bi(x0) ⊕ Bi(x1)〉
where di and Bi(·) denote the ith �-bit chunk of d and B(·), respectively.

Next we show that this new variant is directly implied by Definition 5. This is
an almost immediate application of a theorem from [AC02].

Lemma 1. Let F be a wTCF, then F satisfies Definition 8.

Proof. The proof consists of a reduction to the direct-product adaptive hard-
core bit property of the wTCF (property 3c). Let A be a QPT algorithm that
succeeds in the above game with probability greater than 1/2 + ε, for some
inverse-polynomial ε. Let |ψ〉 denote the internal state of the adversary after the
second step of the protocol, and in particular after the tuple (b,xb,d) has been
sent to the challenger. Let Gek be a set defined as follows:

Gek =

{
(b,xb,d, |ψ〉) : Pr

[
A(r; |ψ〉) =

n⊕
i=1

ri · 〈di,Bi(x0) ⊕ Bi(x1)〉
]

≥ 1/2 + ε/2

}

where the probability is taken over the random choice of r and over the internal
coins of A. We use the abbreviation A(r; |ψ〉) to denote the output of the adver-
sary A run on state |ψ〉 and on input r. Observe that the above set is well-defined,
since xb uniquely determines the claw (x0,x1), provided that (x0,x1) ∈ Rek.

We argue that Pr[(b,xb,d, |ψ〉) ∈ Gek] ≥ ε/2, where the probability is over
the random choice of ek and the random coins of A. For notational convenience,
we relabel hi = di · [

Bi(x0) ⊕ Bi(x1)
]
.

Assume towards contradiction that Pr[(b,xb,d, |ψ〉) ∈ Gek] < ε/2. We can
then rewrite:

Pr [A succeeds] = Pr

[
A(r; |ψ〉) =

n⊕
i=1

ri · hi

]

= Pr

[
A(r; |ψ〉) =

n⊕
i=1

ri · hi

∣∣∣(b,xb,d, |ψ〉) ∈ Gek

]
Pr [(b,xb,d, |ψ〉) ∈ Gek]

+ Pr

[
A(r; |ψ〉) =

n⊕
i=1

ri · hi

∣∣∣(b,xb,d, |ψ〉) /∈ Gek

]
Pr [(b,xb,d, |ψ〉) /∈ Gek]

< ε/2 + (1/2 + ε/2)

= 1/2 + ε
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which contradicts our initial hypothesis. Conditioned on (b,xb,d, |ψ〉) ∈ Gek,
we then consider the algorithm A(·; |ψ〉). Such an algorithm runs in polynomial
time and, on input r, it returns

h =
n⊕

i=1

ri · hi =
n⊕

i=1

ri · 〈di,Bi(x0) ⊕ Bi(x1)〉

with probability at least ε/2 (over the random choice of r and the internal coins of
A). By the Adcock-Cleve theorem [AC02], it follows that there exists an efficient
algorithm that, with a single query to A(·; |ψ〉), returns (h1, . . . , hn) with inverse
polynomial probability. This violates the direct-product adaptive hardcore bit
property of F .

4 wTCF from Extended LHS Assumption

Here we show how to construct a wTCF family from extended LHS assumption
(Definition 4) over a group action (G,X, �).

Construction. Let n be the secret dimension of underlying extended LHS
assumption, and let B > 2n3 be an integer. We define a wTCF family as follows.
Let X = [B]n, and Y = (X2n)n. Note that Xn = ([B]n)n and Y will be the input
and output space of our wTCF family, respectively. To generate a key-trapdoor
pair, for each i ∈ [n] and β ∈ {0, 1} sample

vi ← {0, 1}n, M(β)
i ← G

n×n, m(β)
i ← G

n, x(0)
i ← X

n, ti ← G
n,

and set

x(1)
i :=

[
M(0)

i (1 − vi) + M(1)
i vi

]
� x(0)

i , y(0)
i := ti � x(0)

i ,

y(1)
i :=

[
M(0)

i (1 − vi) + M(1)
i vi + m(0)

i � (1 − vi) + m(1)
i � vi

]
� y(0)

i ,

where � denotes component-wise product. Output (ek, td) where

td =
(
vi, ti

)
i∈[n]

, ek =
(
M(β)

i ,m(β)
i ,x(β)

i ,y(β)
i

)
i∈[n],β∈{0,1}.

To evaluate the function fek,b on input (si)i∈[n] ∈ ([B]n)n, output (z̄i, zi) for
i ∈ [n] where

z̄i =
[
(1 − b) · M(0)

i 1 +
(
M

(1)
i − M

(0)
i

)
si

]
� x

(b)
i ,

zi =
[
(1 − b) · M(0)

i 1 +
(
M

(1)
i − M

(0)
i

)
si + (1 − b) · m(0)

i + (m
(1)
i − m

(0)
i ) � si

]
� y

(b)
i .

To invert the function fek,b on some value (z̄i, zi)i∈[n], we recover each si (for
i ∈ [n]) as follows. Observe that if fek,b((si)i∈[n]) = (z̄i, zi)i∈[n] then the following
relation holds for any i ∈ [n]:

(−ti − m(0)
i ) � zi =

[
(m(1)

i − m(0)
i ) � (si + b · vi)

]
� z̄i.
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Because the action is applied component-wise and each entry of si lies in [B],
one can recover each entry of si efficiently by a simple brute force, since both vi

and ti are included in the trapdoor.
We have already shown the construction above satisfies the properties (1)

and (2a) of a wTCF family, thus proving the following lemma.

Lemma 2. Let F be the function family (with associated algorithms) as
described in the construction, then F satisfies the properties 1 and 2a.

Next, we show the construction above satisfies the remaining properties of a
wTCF family (Definition 5) via the following lemmata.

Lemma 3. Let F be the function family (with associated algorithms) as
described in the construction, then F satisfies the property 2b.

Proof. It is easy to see that for all but a negligible fraction of key-trapdoor pairs
(ek, td) ∈ supp(Gen(1λ))

– Any evaluation key ek uniquely determines vi for i ∈ [n].4

– fek,b is an injective function.

For a given evaluation key ek, consider the following two subsets:

X0 =
{
(si)i∈[n] | ∀i ∈ [n] : si ∈ [B]n ∧ si − vi ∈ [B]n

}
,

X1 =
{
(si)i∈[n] | ∀i ∈ [n] : si ∈ [B]n ∧ si + vi ∈ [B]n

}
.

Let Rek ⊆ X0 × X1 be the relation defined as

Rek =
{((

s(0)i

)
i∈[n]

,
(
s(1)i

)
i∈[n]

)
∈ X0 × X1

∣∣∣ ∀i ∈ [n] : s(0)i = s(1)i + vi

}
.

One can immediately verify that Rek is a perfect matching. Because fek,b is
injective, it holds that

∀
((

s(0)i

)
i∈[n]

,
(
s(1)i

)
i∈[n]

)
∈ X0 × X1 :

fek,0

((
s(0)i

)
i∈[n]

)
= fek,1

((
s(1)i

)
i∈[n]

)
⇐⇒

(
s(0)i

)
i∈[n]

=
(
s(1)i + vi

)
i∈[n]

⇐⇒
((

s(0)i

)
i∈[n]

,
(
s(1)i

)
i∈[n]

)
∈ Rek.

Since each vi is a binary vector, it follows that for any b ∈ {0, 1}
Pr

(si)i∈[n]←([B]n)n

[
(si)i∈[n] ∈ Xb

] ≥ 1 − n2(B − 1)−1 ≥ 1 − n−1.

4 Recall that G is a superpolynomially (and possibly exponentially) large group. For
example, in case of the variant from [BKV19] the group is cyclic, and hence a ran-
domly chosen evaluation key uniquely determines vi with overwhelming probabil-
ity [BM87].



Candidate TCFs from Group Actions 281

For any b ∈ {0, 1}, given any tuple (si)i∈[n] membership in Xb can be checked
efficiently using the trapdoor, simply by testing whether si − (−1)bvi ∈ [Bn] for
all i ∈ [n].

Finally, define the set X̄ as

X̄ =
{
(si)i∈[n] | ∀i ∈ [n] : si ∈ {2, . . . , B − 1}n

}
.

Membership in X̄ can be checked efficiently without a trapdoor. Moreover, by a
simple argument, we have

Pr
(si)i∈[n]←([B]n)n

[
(si)i∈[n] ∈ X̄

] ≥ 1 − 2n2(B − 1)−1 ≥ 1 − n−1,

and hence X̄ is a dense subset of the input space ([B]n)n.

Lemma 4. Let F be the function family (with associated algorithms) as
described in the construction, then F satisfies the properties 3a and 3b.

Proof. Consider the binary encoding function B : (([B])n)n → {0, 1}n� where � =
n�log B�. Specifically, B((si)i∈[n]) outputs the binary representation of (si)i∈[n],
where each component of si is represented using a chunk of �log B�-bit string.
It is immediate to see that B is injective and it is also efficiently invertible on its
range, and hence F satisfies the property 3a.

To avoid abusing the notation, we also define a simple function B̄ : [B] →
{0, 1}�log B�, which outputs the binary representation of any s ∈ [B]. For a tuple
(b, s,d) ∈ {0, 1} × [B]n × {0, 1}�, let Tb,d : [B]n → {0, 1}n be a function that
maps s = (s1, . . . , sn) to d′ = (d′

1, . . . , d
′
n) where

d′
j = 〈d(j), B̄(sj) ⊕ B̄(sj − (−1)b)〉, j ∈ [n],

and d(j) denotes the jth �log B�-bit chunk of d. Note that the inner product is
computed over F2, while the operation − is performed over Z. As we will see later,
the motivation for defining the transformation Tb,d stems from the following
observation [BCM+18] that given (s,d, 〈d, (s + v)〉) ∈ [B]n × {0, 1}� × {0, 1}
for some binary v ∈ {0, 1}n, where the inner product is computed over F2 and
the addition + is over integers, one can use Tb,d to obtain a pair of the form
(d′, 〈d′,v〉) ∈ {0, 1}n × {0, 1}. This transformation will be useful in proving the
weak adaptive hardcore bit property 3c.

For any s ∈ [B]n, since B̄ is an injective function it follows that the term
B̄(sj)⊕B̄(sj −(−1)b) is non-zero for any j ∈ [n]. Therefore, if d(j) ← {0, 1}�log B�

then d′
j will be 0 with probability 1/2. It follows that for any s ∈ [B]n and any

b ∈ {0, 1}, if d ← {0, 1}� then

Pr[Tb,d(s) = 0n] ≤ negl .
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For any b ∈ {0, 1} and any (si)i∈[n] ∈ ([B]n)n, consider the following set

Yb,(si)i∈[n]
=

{
(di)i∈[n] ∈ {0, 1}n�

∣∣ ∀i ∈ [n] : Tb,si
(di) 
= 0n

}
.

By a simple union bound it follows that for any b ∈ {0, 1} and (si)i∈[n] ∈
([B]n)n we have

Pr
(di)i∈[n]←{0,1}n�

[
(di)i∈[n] ∈ Yb,(si)i∈[n]

] ≤ negl,

where we used the fact that for each i ∈ [n] it holds that Prdi
[Tb,di

(si) = 0n] ≤
negl. Clearly, Tb,d is efficiently computable, and hence membership in Yb,(si)i∈[n]

is efficiently checkable given b and (si)i∈[n], establishing the property 3b.

Lemma 5. Let F be the function family (with associated algorithms) as
described in the construction, then F satisfies the property 3c based on the
extended LHS assumption.

Proof. The lemma follows from putting together Lemma 6 (proving hardness of
an alternative formulation of the extended LHS assumption), Lemma7 (which
shows a transformation relating claw-based equations to linear equations in vi),
and Lemma 8 (showing hardness of predicting concatenation of any non-trivial
parity of vi for i ∈ [n] based on the extended LHS assumption), all of which will
be proved subsequently.

Theorem 1. Let F be the function family (with associated algorithms) as
described in the construction, then F is a wTCF-IE family based on the extended
LHS assumption.

Proof. We have already established that F is a wTCF family by putting together
Lemma 2, 3, 4, and 5. It follows by inspection that F also satisfies the indepen-
dent evaluation property in Definition 7, and hence F is a wTCF-IE family.

The following lemma establishes the hardness of a different formulation of
the extended LHS assumption.

Lemma 6. If H0 and H1 be two distributions defined as follows then H0
c≈ H1

based on the extended LHS assumption.

w ← {0, 1}n, M(β)
i ← G

n×n, m(β)
i ← G

n,

x(0)
i ← X

n, ti ← G
n, u(β)

i ← X
n, u′(β)

i ← X
n,
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x(1)
i :=

[
M(0)

i (1 − w) + M(1)
i w

]
� x(0)

i , y(0)
i := ti � x(0)

i ,

y(1)
i :=

[
M(0)

i (1 − w) + M(1)
i w + m(0)

i � (1 − w) + m(1)
i � w

]
� y(0)

i ,

H0 :=
(
M

(β)
i ,m

(β)
i ,x

(β)
i ,y

(β)
i

)
i∈[n],β∈{0,1}, H1 :=

(
M

(β)
i ,m

(β)
i ,u

(β)
i ,u′(β)

i

)
i∈[n],β∈{0,1},

Proof. Given a challenge of the form

H ′ =
(
Mi,mi,x

(β)
i ,y(β)

i

)
i∈[n],β∈{0,1},

the reduction samples two matrices M(0)
i and M(1)

i and two vectors m(0)
i and

m(1)
i uniformly conditioned on

Mi = M(1)
i − M(0)

i , mi = m(1)
i − m(0)

i .

It then sets

x̄(0)
i := x(0)

i , ȳ(0)
i := y(0)

i ,

x̄(1)
i := M(0)

i 1 � x(0)
i , y(1)

i :=
[
M(0)

i 1 + m(0)
i � 1

]
� y(0)

i ,

and outputs the following tuple

(
M(β)

i ,m(β)
i , x̄(β)

i , ȳ(β)
i

)
i∈[n],β∈{0,1}.

Observe that in the tuple above M(β)
i ,m(β)

i are distributed uniformly for i ∈ [n]
and β ∈ {0, 1}. If H ′ corresponds to extended LHS samples, a routine calcula-
tion shows that the tuple above is distributed as H0. On the other hand, if H ′

corresponds to truly random samples then the tuple above would be distributed
as H1. Therefore, based on the extended LHS assumption it follows that H0 is
indistinguishable from H1.

Lemma 7. Let ek =
(
M(β)

i ,m(β)
i ,x(β)

i ,y(β)
i

)
i∈[n],β∈{0,1} be a tuple distributed

as in the construction, i.e.,

vi ← {0, 1}n, M(β)
i ← G

n×n, m(β)
i ← G

n, x(0)
i ← X

n, ti ← G
n,

x(1)
i :=

[
M(0)

i (1 − vi) + M(1)
i vi

]
� x(0)

i , y(0)
i := ti � x(0)

i ,

y(1)
i :=

[
M(0)

i (1 − vi) + M(1)
i vi + m(0)

i � (1 − vi) + m(1)
i � vi

]
� y(0)

i ,

and let Wek be the set defined in the property 3c with respect to the construction
of wTCF family, i.e.,

Wek =
{(

b,
(
s
(b)
i

)
i∈[n]

,d,
(〈di,Bi

((
s
(0)
i

)
i∈[n]

) ⊕ Bi

((
s
(1)
i

)
i∈[n]

)〉)
i∈[n]

∣∣∣
b ∈ {0, 1},

((
s
(0)
i

)
i∈[n]

)
,
(
s
(1)
i

)
i∈[n]

)) ∈ Rek,d ∈ Y
0,(s

(0)
i )i∈[n]

∩ Y
1,(s

(1)
i )i∈[n]

}
,
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where B, Rek, and Yb,(si)i∈[n]
are defined in the proof of Lemma 4. If there is an

attacker A such that
Pr[A(ek) ∈ Wek] = ε,

then there is an attacker A′ such that

Pr
[
A′(ek) → (

d′
i 
= 0n, 〈d′

i,vi〉
)
i∈[n]

]
≥ ε.

Proof. Let the following tuple

γ :=
(
b,

(
s(b)i

)
i∈[n]

,d,
(
ci

)
i∈[n]

)
,

be the output A on ek. We are going to argue that if γ ∈ Wek and d′
i is computed

as d′
i = T

b,s
(b)
i

(di) for i ∈ [n], then ci = 〈d′
i,vi〉 for all i ∈ [n], where T is the

transformation defined in the proof of Lemma4. Observe that since

d ∈ Y
0,(s

(0)
i )i∈[n]

∩ Y
1,(s

(1)
i )i∈[n]

⊆ Y
b,(s

(b)
i )i∈[n]

,

it follows from the definition of these sets (in the proof of Lemma4) that for each
i ∈ [n] we have d′

i 
= 0n. Furthermore, relying again on the proof of Lemma4 we
have

((
s(0)i

)
i∈[n]

,
(
s(1)i

)
i∈[n]

)
∈ Rek =⇒ (

s(0)i

)
i∈[n]

=
(
s(1)i + vi

)
i∈[n]

=⇒
B

((
s(0)i

)
i∈[n]

) ⊕ B
((

s(1)i

)
i∈[n]

)
= B

((
s(b)i

)
i∈[n]

) ⊕ B
((

s(1−b)
i − (−1)bvi

)
i∈[n]

)
.

Let d′
i,j , s

(b)
i,j , and vi,j be the jth component of d′

i, s(b)i , and vi, respectively. Let
di,j ∈ {0, 1}�log B� be the jth �log B�-bit chunk of di. By definition of T and B̄
from the proof of Lemma 4, it follows that for any i ∈ [n] we have

ci =
n∑

j=1

〈di,j ,
(
B̄(s(b)i,j ) ⊕ B̄(s(b)i,j − (−1)bvi,j)

)〉

=
n∑

j=1

vi,j〈di,j ,
(
B̄(s(b)i,j ) ⊕ B̄(s(b)i,j − (−1)b)

)〉

=
n∑

j=1

vi,jd
′
j = 〈d′

i,vi〉,

where the second line follows from the fact that vi,j ∈ {0, 1} and the last line
follows from the definition of T. Note that any computation inside B̄ is done over
Z, while any other computation (including the overall summation) is performed
over F2.

Viewing any evaluation key ek as a (one-way) function of (vi)i∈[n] in the
construction, the following lemma establishes that any QPT adversary cannot
predict a string obtained by concatenating any non-trivial parity of vi for i ∈ [n].
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Lemma 8. If ek =
(
M(β)

i ,m(β)
i ,x(β)

i ,y(β)
i

)
i∈[n],β∈{0,1} be a tuple distributed as

in the construction, i.e.,

vi ← {0, 1}n, M(β)
i ← G

n×n, m(β)
i ← G

n, x(0)
i ← X

n, ti ← G
n,

x(1)
i :=

[
M(0)

i (1 − vi) + M(1)
i vi

]
� x(0)

i , y(0)
i := ti � x(0)

i ,

y(1)
i :=

[
M(0)

i (1 − vi) + M(1)
i vi + m(0)

i � (1 − vi) + m(1)
i � vi

]
� y(0)

i ,

then for any QPT adversary A we have

Pr
[
A(ek) → (

d′
i 
= 0n, 〈d′

i,vi〉
)
i∈[n]

]
≤ negl,

where the probability is taken over randomness of ek and A, and the inner product
is computed over F2.

Proof. Consider the following two hybrids H0 and H1 defined as

w ← {0, 1}n, M(β)
i ← G

n×n, m(β)
i ← G

n, x(0)
i ← X

n, ti ← G
n,

x(1)
i :=

[
M(0)

i (1 − w) + M(1)
i w

]
� x(0)

i , y(0)
i := ti � x(0)

i ,

y(1)
i :=

[
M(0)

i (1 − w) + M(1)
i w + m(0)

i � (1 − w) + m(1)
i � w

]
� y(0)

i ,

H0 :=
(
M

(β)
i ,m

(β)
i ,x

(β)
i ,y

(β)
i

)
i∈[n],β∈{0,1}, H1 :=

(
M

(β)
i ,m

(β)
i ,u

(β)
i ,u′(β)

i

)
i∈[n],β∈{0,1},

where u(β)
i ← X

n and u′(β)
i ← X

n for i ∈ [n] and β ∈ {0, 1}. Note that H0 does
not correspond to the distribution of a “real” evaluation key, as H0 incorpo-
rates a single vector w ∈ {0, 1}n across different samples. We show that given
any adversary with a non-negligible advantage in outputting concatenation of
adaptive hardcore bits, one can construct another adversary that can distinguish
between H0 and H1 with a non-negligible advantage. By Lemma6, we know that
H0 is computationally distinguishable from H1 and hence the statement of the
lemma follows.

For any vector r ∈ {0, 1}n, let πr be a simple mapping that takes two n by
n matrices M(0) and M(1), and for each i ∈ [n] it swaps the ith column of M(0)

and M(1) if ri = 1. As two simple examples, we have

π0n

(
M(0),M(1)

)
=

(
M(0),M(1)

)
, π1n

(
M(0),M(1)

)
=

(
M(1),M(0)

)
.

As a simple special case, we also use the notation πr(m(0),m(1)) to denote
swapping components of two vectors m(0) and m(1) with respect to r. Let the
following (

M(0)
i ,M(1)

i ,m(0)
i ,m(1)

i ,x(β)
i ,y(β)

i

)
i∈[n],β∈{0,1}
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be a tuple that is distributed as H0 (with a slight reformatting). For any n binary
vectors ri ∈ {0, 1}n, set

(
M′(0)

i ,M′(1)
i

)
:= πri

(
M(0)

i ,M(1)
i

)
, (m′(0)

i ,m′(1)
i ) := πri

(m(0)
i ,m(1)

i ),

and observe that the tuple

H ′
0 :=

(
M′(0)

i ,M′(1)
i ,m′(0)

i ,m′(1)
i ,x(β)

i ,y(β)
i

)
i∈[n],β∈{0,1}

is distributed as follows:

x
(1)
i :=

[
M

′(0)
i (1− (w ⊕ ri)) + M

′(1)
i (w ⊕ ri)

]
� x

(0)
i ,

y
(1)
i :=

[
M

′(0)
i (1− (w ⊕ ri)) + M

′(1)
i (w ⊕ ri) + m

′(0)
i 	 (1 − (w ⊕ ri)) + m

′(1)
i 	 (w ⊕ ri)

]
� y

(0)
i .

Now if we sample each ri randomly, it is not hard to see that H ′
0 is statistically

indistinguishable from an honestly generated evaluation ek as defined in the
lemma. Thus, there is an efficient randomized procedure P that maps an instance
of H0 to an honestly generated ek. Furthermore, applying the same procedure
P would still map an instance of H1 to an instance of H1.

Let Hb (for some challenge b ∈ {0, 1}) be a challenge tuple of the form
(
M(0)

i ,M(1)
i ,m(0)

i ,m(1)
i ,x(β)

i ,y(β)
i

)
i∈[n],β∈{0,1},

and let A be an attacker that outputs concatenation of adaptive hardcore bits.
We construct an adversary A′ that distinguishes H0 and H1. First, A′ samples
n random vector ri ← {0, 1}n and sets

(
M′(0)

i ,M′(1)
i

)
:= πri

(
M(0)

i ,M(1)
i

)
, (m′(0)

i ,m′(1)
i ) := πri

(m(0)
i ,m(1)

i ).

It then runs A on ēk where

ēk =
(
M′(0)

i ,M′(1)
i ,m′(0)

i ,m′(1)
i ,x(β)

i ,y(β)
i

)
i∈[n],β∈{0,1}.

Let (d′
i, ci)i∈[n] be the output of A(ēk). In the next step A′ proceeds as follows:

A′ computes c′
i = 〈d′

i, ri〉 ⊕ ci for i ∈ [n]. Let D′ ∈ {0, 1}n×n be a matrix
whose rows are d′

i.

– Case 1: If (d′
i)i∈[n] are linearly independent vectors, A′ computes w′ =

D′−1c′, where operations are performed over F2. If the following holds, A′

outputs 0. Otherwise it outputs a random bit b′.

x(1)
1 =

[
M(0)

1 (1 − w′) + M(1)
1 w′] � x(0)

1 .

– Case 2: There is a minimal index n′ > 1 and n′ − 1 bits (α1, . . . , αn′−1) such
that d′

n′ =
∑n′−1

i=1 αid′
i. If the following holds, A′ outputs 0. Otherwise, it

outputs a random bit b′.

c′
n′ =

n′−1∑

i=1

αic
′
i.
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We now analyze the advantage of A′ in distinguishing H0 and H1.

– Hb is distributed as H0: Since A′ maps an instance of H0 to a tuple that is
statistically indistinguishable from an honestly generated evaluation key, it
follows that if ε be the advantage of A, then

Pr
[
A(ēk) → (

d′
i 
= 0n, 〈d′

i,w ⊕ ri〉
)
i∈[n]

]
= ε,

and hence with probability ε we have

c′
i = 〈d′

i, ri〉 ⊕ ci = 〈d′
i, ri〉 ⊕ 〈d′

i,w ⊕ ri〉 = 〈d′
i,w〉, ∀i ∈ [n].

Furthermore, it is easy to see that conditioned on the event that A succeeds,
A′ outputs 0. This follows immediately by observing that in case 1, A′ recovers
w, and in case 2

c′
n′ = 〈d′

n′ ,w〉 = 〈
n′−1∑

i=1

αid′
i,w〉 =

n′−1∑

i=1

αi〈d′
i,w〉 =

n′−1∑

i=1

αic
′
i.

Therefore, it holds that

Pr[A′(H0) = 0] ≥ ε + (1 − ε) · Pr[b′ = 0] = (1 + ε)/2.

– Hb is distributed as H1: Although A′ maps a truly random instance (i.e.,
H1) to a truly random instance, we can still argue that A′ outputs 0 with
probability negligibly close to 1/2. First, observe that the vectors (ri)i∈[n] are
information-theoretically hidden from the view of A. Thus, conditioned on
the event that case 2 happens we have

Pr
[
c′
n′ =

n′−1∑

i=1

αic
′
i

]
= Pr

[
〈d′

n′ , rn′〉 ⊕ cn′
︸ ︷︷ ︸

σL

=
n′−1∑

i=1

αi · (〈d′
i, ri〉 ⊕ ci

)

︸ ︷︷ ︸
σR

]
.

Because d′
i 
= 0n (for all i ∈ [n]) and there exists at least one index i∗ such

that αi∗ 
= 0, it follows that the left-hand side (σL) and the right-hand side
(σR) are distributed independently from each other, and hence we have

Pr
[
c′
n′ =

n′−1∑

i=1

αic
′
i

]
= 1/2.

A similar argument implies that conditioned on the event that case 1 happens,
A′ outputs 0 with probability 1/2 + negl. Therefore, it holds that

Pr[A′(H0) = 0] ≤ 1/2 + negl,

and hence the advantage of A′ in distinguishing H0 and H1 is at least ε/2 −
negl, as required.
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5 Computational Test of Qubit

We show that our wTCF can be used to devise a computational test that the
prover has a qubit. The protocol closely follows the outline of [Vid20], with a
few syntactical modifications, due to the usage of wTCFs.

5.1 Definition

We start by recalling the definition of a qubit. We denote {A,B} ≡ AB + BA
as the anti-commuter of two operators A and B, and we say A anti-commutes
B if {A,B} = 0.

Definition 9 (Qubit). A qubit is a triple (|ψ〉 ,X, Z) such that |ψ〉 is a unit
vector on H and X,Z are binary observables on H, such that

{X,Z} |ψ〉 = 0.

As usual in the computational settings, we will be interested in a slightly weaker
guarantee, where the above quantity is bounded by a negligible function negl,
in which case we say that the tuple (|ψ〉 ,X, Z) is computationally close to a
qubit. The following lemma justifies the definition of a qubit, and its proof can
be found in [Vid20].

Lemma 9 ([Vid20]). Let (|ψ〉 ,X, Z) be a qubit on H. Then there exists a Hilbert
space H′ and an isometry V : H → C

2 ⊗ H′ such that:

V X |ψ〉 = (σX ⊗ Id)V |ψ〉 and V Z = (σZ ⊗ Id)V |ψ〉
where

σX =
(

0 1
1 0

)
and σZ =

(
1 0
0 −1

)

are the Pauli observables.

5.2 Protocol

Let F be a wTCF function family. The protocol for a computational test of a
qubit is described below.

1. The verifier samples (ek, td) ← Gen(1λ) and sends ek to the prover.
2. The prover prepares the state

1√
2 · |Xn|

∑

b∈{0,1}

∑

xb∈Xn

|b〉 |xb〉 |fek,b(xb)〉

which is efficiently computable since fek,b is efficiently computable. Then it
uncomputes the first register and traces it out to obtain

1√
2 · |Xn|

∑

b∈{0,1}

∑

xb∈Xn

|xb〉 |fek,b(xb)〉 .



Candidate TCFs from Group Actions 289

Note that this mapping is efficiently computable since, given xb and fek,b(xb),
the bit b is efficiently computable. The prover then measures the last register
in the computational basis to obtain some y ∈ Y . The prover returns y to the
verifier.

3. The verifier computes

Invert(td, 0, y) = x0 and Invert(td, 1, y) = x1

and aborts if x0 /∈ X̄ and x1 /∈ X̄. The verifier then selects a uniformly
random challenge c ← {0, 1} and sends c to the prover.

4. (a) (Preimage test) If c = 0, the prover measures the first register in the
computational basis to obtain an x, which is sent to the verifier. The
verifier accepts if there exists a b ∈ {0, 1} such that fek,b(x) = y.

(b) (Equation test) If c = 1, the prover measures the first register in the
Hadamard basis to obtain some d = (d1, . . . ,dn) ∈ {0, 1}n�, which is
sent to the verifier. Let (x0,x1) be the vectors defined in the previous
step, and B is defined in Definition 5. The verifier accepts if

d ∈ Y0,x0 ∩ Y1,x1 and
n⊕

i=1

〈di,Bi(x0) ⊕ Bi(x1)〉 = 0.

5.3 Analysis

First, we argue that the protocol is correct, i.e., the honest prover passes the
tests with probability 1 − n−c, for some constant c. Observe that the verifier
accepts at step 3 if x0 ∈ X̄ or x1 ∈ X̄. Since X̄ is a dense subset of Xn, it follows
that:

– x0 ∈ X̄ or x1 ∈ X̄, and
– (x0,x1) ∈ Rek

except with inverse polynomial probability. Thus, the verifier rejects y with prob-
ability at most inverse polynomial. Conditioning on the verifier accepting in step
3, we have that the state of the prover equals

1√
2

(|x0〉 + |x1〉) |y〉

where (x0,x1) are the pre-images of y under fek,0 and fek,1, respectively. On
the one hand, measuring the first register in the computational basis returns a
random pre-image of y, which allows the prover to pass the pre-image test with
probability one, on the other hand, measuring the register in the Hadamard
basis, returns a random vector orthogonal to B(x0) ⊕ B(x1), where B is the
bit-decomposition operator. By definition, we have that

〈d,B(x0) ⊕ B(x1)〉 =
n⊕

i=1

〈di,Bi(x0) ⊕ Bi(x1)〉 = 0.
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Furthermore, d belongs to the set Y0,x0 ∩ Y1,x1 with overwhelming probability.
Thus the prover passes the equation test with probability negligibly close to one.

Next, we argue that the prover’s state contains a qubit assuming that F is
a wTCF family satisfying the adaptive hardcore bit property. The argument is
essentially identical to the one shown in [Vid20] with minor syntactical modifi-
cations and we report it here only for completeness.

Theorem 2. Let F be a wTCF family that satisfies the adaptive hardcore bit prop-
erty. Let |ψ〉 be the state of a prover (after step 2) that succeeds with probability
negligibly close to one. Then there exist two binary observables X and Z, such that
(|ψ〉 ,X, Z) is computationally close to a qubit. In particular, assuming the Conjec-
ture 2, the protocol can be instantiated based on the extended LHS assumption.

Proof. Let |ψ〉 be the state of the prover after sending the y to the verifier. We
assume without loss of generality that |ψ〉 is a pure bipartite state on HP ⊗ HM,
where the register P keeps the internal state of the prover. We also assume without
loss of generality that the answer for c = 0 is obtained by measuring M on the
computational basis. On the other hand, we also assume that the answer for c = 1
is obtained by computing U |ψ〉, for some unitary U , and measuring the resulting
register M in the Hadamard basis. Next, we define the observables X and Z as

Z =
∑

x∈Xn

(−1)zek,y(x) |x〉〈x| ⊗ IdP

and

X =
∑

d∈Y0,x0∩Y1,x1

(−1)xek,y(d)U†(H⊗n�
M ⊗ IdP)†(|d〉〈d|M ⊗ IdP)(H⊗n�

M ⊗ IdP)U

where the predicate zek,y(x) labels as 0 the pre-image of y under fek,0 and as 1 the
pre-image of y under fek,1 (other vectors are labeled arbitrarily). On the other
hand, the predicate xek,y(d) labels as 0 the d such that 〈d,B(x0) ⊕ B(x1)〉 =
0 and as 1 all other vectors. We are now ready to show that (|ψ〉 ,X, Z) is
computationally close to a qubit. Let us rewrite

1

4
‖{X, Z} |ψ〉‖2

=
1

4
‖(XZ + ZX) |ψ〉‖2

=
1

4
〈ψ| (XZ + ZX)†(XZ + ZX) |ψ〉

=
1

4
〈ψ| (XZ + ZX)2 |ψ〉

=
1

2
(〈ψ| (XZ0XZ0) |ψ〉 + 〈ψ| (XZ1XZ1) |ψ〉 + 〈ψ| (Z0XZ0X) |ψ〉 + 〈ψ| (Z1XZ1X) |ψ〉)

= 〈ψ| (Z0XZ0) |ψ〉 + 〈ψ| (Z1XZ1) |ψ〉 + negl
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where the third equality uses that (XZ +ZX) is Hermitian, the fourth equality
follows from Lemma 10, and the last equality follows since we assume the prover
to succeed with probability close to 1 and this |ψ〉 is negligibly close to an
eigenstate of X with eigenvalue +1.

To complete the proof, we, therefore, need to show that the quantities
〈ψ| (Z0XZ0) |ψ〉 and 〈ψ| (Z1XZ1) |ψ〉 are negligible. We show this for the first
term and the second case follows by symmetry. The proof consists of a reduction
against the adaptive hardcore bit of property of F : The reduction receives the
key ek for the challenger and internally runs the prover to obtain the state |ψ〉
then it measures the register M in the computational basis to obtain some x.
If x is a pre-image of 1, then the reduction returns a (x,d), for a randomly
sampled d. Else, it applies the unitary U to |ψ〉 and measures the register M in
the Hadamard basis to obtain d. It returns (x,d).

In the former case (x being a pre-image of 1), we can lower bound the success
probability of the reduction to be negligibly close to 1/2 〈ψ| Z1 |ψ〉, since the
prover is assumed to succeed with probability close to 1 and thus the post-
measurement state is close to Z1 |ψ〉. Analogously, in the latter case (x being a
pre-image of 0), the success probability of the reduction is negligibly close to

〈ψ| Z0X0Z0 |ψ〉 = 1/2(〈ψ| Z0 |ψ〉 + 〈ψ| Z0XZ0 |ψ〉).
Overall, the success probability of the reduction is 1/2 + 1/2 〈ψ| Z0XZ0 |ψ〉. We
can conclude that the second summand is negligible unless the reduction can
break the adaptive hardcore bit property with a non-negligible probability. “In
particular” part of theorem follows from Theorem1.

To complete the proof, we need the following Lemma, which follows in verbatim
from [Vid20].

Lemma 10. Let X and Z be binary observables, then
1
2
(XZ + ZX)2 = XZ0XZ0 + XZ1XZ1 + Z0XZ0X + Z1XZ1X.

Proof. Since X and Z are Hermitian and square to identity, we can rewrite

(XZ + ZX)2 = 2Id + XZXZ + ZXZX.

Recall that Z = Z0 − Z1, and thus we can expand

ZXZ = (Z0 − Z1)X(Z0 − Z1) = Z0XZ0 + Z1XZ1 − Z0XZ1 − Z1XZ0.

Using that Z0 + Z1 = Id we have

X = IdXId = (Z0 + Z1)X(Z0 + Z1) = Z0XZ0 + Z1XZ1 + Z0XZ1 + Z1XZ0.

Combining the two equations above we obtain that ZXZ = 2(Z0XZ0 +
Z1XZ1) − X. Plugging this into our first equation we obtain

(XZ + ZX)2 = 2Id + XZXZ + ZXZX

= 2Id + X(2(Z0XZ0 + Z1XZ1) − X) + (2(Z0XZ0 + Z1XZ1) − X)X

= 2Id + 2XZ0XZ0 + 2XZ1XZ1 + 2Z0XZ0X + 2Z1XZ1X − 2X2

= 2(XZ0XZ0 + XZ1XZ1 + Z0XZ0X + Z1XZ1X).
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Proof of Quantumness. We mention that our wTCF can be plugged into
the work of [BKVV20]5 to obtain a classically verifiable proof of quantumness
(PoQ). While PoQ is a strictly weaker goal than the qubit test that we described
above, we explicitly mention this application since PoQ only requires the claw-
freeness property. In particular, this means that we obtain a protocol for PoQ
without the need to invoke Conjecture 2 by relying only on the extended LHS
assumption.
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Abstract. Copy-protection is the task of encoding a program into a
quantum state to prevent illegal duplications. A line of recent works
studied copy-protection schemes under “1 → 2 attacks”: the adversary
receiving one program copy can not produce two valid copies. However,
under most circumstances, vendors need to sell more than one copy of
a program and still ensure that no duplicates can be generated. In this
work, we initiate the study of collusion resistant copy-protection in the
plain model. Our results are twofold:

– The feasibility of copy-protecting all watermarkable functionalities
is an open question raised by Aaronson et al. (CRYPTO’ 21). In the
literature, watermarking decryption, digital signature schemes and
PRFs have been extensively studied.
For the first time, we show that digital signature schemes can be
copy-protected. Together with the previous work on copy-protection
of decryption and PRFs by Coladangelo et al. (CRYPTO’ 21),
it suggests that many watermarkable functionalities can be copy-
protected, partially answering the above open question by Aaronson
et al.

– We make all the above schemes (copy-protection of decryption, digi-
tal signatures and PRFs) k bounded collusion resistant for any poly-
nomial k, giving the first bounded collusion resistant copy-protection
for various functionalities in the plain model.

1 Introduction

The idea of exploiting the quantum no-cloning principle for building cryptog-
raphy was pioneered by Wiesner. In his seminal work [27], he proposed the
notion of quantum banknotes that cannot be counterfeited due to the unclon-
ability of quantum information. This idea has profoundly influenced quantum
cryptography, for example, inspiring the famous work on secure quantum key
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exchange [10]. Since all classical information is inherently clonable, unclonable
cryptography is only achievable through the power of quantum information.

Aaronson [2] further leveraged the capability of no-cloning to achieve copy-
protection. The idea of copy-protection is the following. A software vendor wants
to sell a piece of software, abstracted as a classical function f . It prepares a
quantum state ρf so that anyone with a copy of ρf can evaluate f on a polynomial
number of inputs. However, no efficient pirate receiving a single copy of ρf , could
produce two programs that compute f correctly.

The notion above intuitively captures the security of a copy-protection
scheme under what we call an “1 → 2 attack”: the adversary receives 1 pro-
gram copy, and attempts to produce 2 copies with the correct functionality. A
recent line of works [4,6,13,14] achieve secure copy-protection for various func-
tionalities under 1 → 2 attacks.

However, such a security notion is extremely limiting: in most circumstances,
we cannot expect the software vendor to issue only one copy of the program.
When the vendor gives out multiple copies, all users can collude and generate
pirate copies together. Therefore, a useful copy-protection scheme should be
secure against any “k → k + 1 attack” for any polynomial k. Such security is
usually referred to as collusion resistance in the literature.

Prior Works on Copy-Protection. We first recall on a high level how most exist-
ing copy-protection schemes work: a copy-protection program consists of a quan-
tum state as an “unclonable token”, and a classical part containing an obfuscated
program (either as an oracle or the output coming out of some obfuscation func-
tionality). The obfuscated program takes in a token and an input one requests
to evaluate on; it verifies the validity of the token and if the verification passes,
it outputs the evaluation on the requested input.1

Until now, collusion resistant copy-protection has essentially been wide open.
The only work that considers issuing more than a single program is Aaronson’s
original work [2], which is proven to be secure in the k → k + r setting for
r ≥ k in some structured quantum oracle model. This is undesirable in two
ways: (a) it is unclear whether the scheme allows an adversary to double the
copies of programs (Aaronson leaves improving r as a challenging open question),
which is not a complete break but still potentially devastating to applications;
but more importantly, (b) unlike a classical oracle which could be heuristically
instantiated using indistinguishability obfuscation, we do not even know how
to heuristically instantiate a quantum oracle. Moreover, we believe that any
extension of Aaronson’s scheme would very likely still require some obfuscation
of quantum circuits, since we have evidence that Haar random states, which
is the core of Aaronson’s scheme, lack the structure that can be verified by a
classical circuit [22].

1 The general functionality copy protection schemes in [2,4] and the schemes in [7,13]
all satisfy this format. The copy-protection schemes for point/compute-and-compare
functions in [2,6,11,14] are not necessarily of such a format.
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If we turn to the other works constructing copy-protection without using
quantum oracles, one näıve idea is to take any such scheme that is 1 → 2 secure,
and simply generate and hand out multiple copies of ρf . It turns out that while
this satisfies correctness, they are all trivially broken once two copies are given.
This is because they are all based on quantum states that are unclonable for one
copy, but trivially clonable as soon as two copies are given.

To get around this issue, another idea is to instead employ a quantum state
that already bears a “(k → k+1)-unclonable” property. However, the only known
such states are Haar random states and its computationally (or statistically)
close neighbors, such as pseudorandom states (or t-designs), which leads us back
to the verification issue without a quantum oracle from before.

Therefore, we raise the natural question: Is collusion resistant copy-protection
feasible, either resisting k → k + 1 attacks, or without using a quantum oracle?
(Ideally both?)

Copy-Protection in the Plain Model. In this work, we restrict our attention to
investigate the question above in the plain model, i.e. we want provably secure
protocols without any oracle or heuristics. Unfortunately, it has been known that
copy-protection in the plain model even for unlearnable functions is impossible
in general [7], and thus we have to further restrict ourselves to construct copy-
protection for specific classes of functions that evade the impossibility.

Secure software leasing (SSL) [7] is a weakened notion for copy-protection:
in (infinite-term) SSL, the malicious pirate may attempt to make pirate copies
as it wants. However, the freeloaders are restricted to running a fixed public
quantum circuit on some quantum state produced by the pirate. On the other
hand, in copy-protection, the freeloaders are free to execute any quantum circuit
that the pirate asks them to. Despite facing the same impossibility as copy-
protection, secure software leasing has also been built for various functionalities
[4,7,11,14,21].2

Especially, [4,21] showed that secure software leasing for watermarkable func-
tions could be obtained from watermarking and public key quantum money in
a black-box way. Watermarking [8] is a primitive that embeds a watermark into
a program so that any attempt to remove the watermark would destroy the
program’s functionality. Observing this, Aaronson et al. [4] raised the following
open question: Can all watermarkable functions also be copy-protected in the
plain model?

In this work, we will use the word “major watermarkable functions” to denote
(decrypting) public key encryption, (signing) signatures, and (evaluating) PRFs
and only focus on copy-protecting those functionalities. Starting from the work by
Cohen et al. [12], a line of works [18–20,28,29] focuses on watermarking these three
functionalities. Copy-protecting these cryptographic functionalities also has a nat-
ural and strong motivation: the ability to evaluate these functions is supposedly
private in many circumstances. If owners of a decryption key, signing key, or PRF

2 The formal security definitions for SSL in [4,7,11,14,21] vary slightly from one to
another. We will discuss them in Sect. 1.2.
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key can share their key with others, it will trigger severe security concerns. Fur-
thermore, copy-protecting a cryptographic function can lead to copy-protecting a
software entity of which this cryptographic function is a component.

We observe that collusion resistant secure software leasing for watermark-
able functions can be achieved as long as the underlying watermarking scheme
and quantum money scheme are both collusion resistant, by looking into the
construction in [4,21]. (Bounded) collusion resistant watermarking for PRFs,
public-key encryptions, etc. are constructed in the plain model [18,28,29, . . . ]
and quantum money can be made collusion resistant with a digital signature on
its serial number [3]. This observation seems to suggest that collusion resistant
copy-protection could be a much more challenging goal.

1.1 Our Results

In this work, we (partially) answer all of the questions above. In particular, we
show how, in the plain model, to construct collusion resistant copy-protection for
(decrypting) public-key encryption, (signing) signatures, and (evaluating) PRFs.
Our results, together with the prior work on copy-protection of decryption and
PRFs (Coladangelo et al. [13]), show that major watermarkable cryptographic
functionalities can be copy-protected against even colluding adversaries, in the
plain model. We now explain this in more detail.

Collusion Resistant Unclonable Decryption. Our first result is collusion resistant
copy-protection for decryption keys in a public-key encryption scheme. We refer
to such copy-protection scheme as unclonable decryption by convention, as first
proposed by Georgiou and Zhandry [17].

Theorem 1. Assuming post-quantum subexponentially secure indistinguishabil-
ity obfuscation and subexponentially secure LWE, there exists k-bounded collu-
sion resistant unclonable decryption for any polynomial k.

Our collusion resistant unclonable decryption scheme is based on the con-
struction from the prior work of Coladangelo et al. [13] that achieves the same
except with only 1 → 2 security. Note that while we require subexponential secu-
rity, these assumptions match those already required in the prior work. In par-
ticular, here, we invoke subexponential security only for a compute-and-compare
obfuscation scheme with certain properties as our building block. All the reduc-
tions in this work are polynomial.

While we do achieve k → k + 1 security, a caveat is that we only achieve “k-
bounded collusion resistance”, by which we mean that we need a preset number
of users k to generate the public key. Still, we consider all users as potentially
malicious and colluding. We note that this is similar to watermarking decryption
circuits of public-key encryption schemes, where to the best of our knowledge,
unbounded collusion resistance is also unknown [18,28]. Furthermore, it is fore-
seeable that bounded collusion resistance suffices in certain enterprise use cases
where the number of (partially) authorized parties is a priori known and fixed;
furthermore, such tokens can be transferred to a new employee irrevocably.
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The main challenges are in the anti-piracy security proof. The prior proof
idea for 1 → 2 anti-piracy does not translate to the k → k + 1 setting. We
present a new view on security reductions to handle a polynomial number of
possibly entangled quantum adversaries, which we will elaborate in the technical
overview.

Copy-Protecting Watermarkable Functionalities. We complement the previous
theorem regarding public-key encryption, with the following result on collusion
resistant copy-protection for signatures and PRFs:

Theorem 2. Assuming post-quantum subexponentially secure indistinguisha-
bility obfuscation and subexponentially secure LWE, there exists k-bounded
collusion resistant copy-protection for digital signatures and PRFs, for any poly-
nomial k.

We base our construction on the signature token scheme and unclonable PRF
in the plain model built in [13] (with 1 → 2 anti-piracy). However, our signature
scheme is significantly different in two aspects: (a) the signing key in [13] will be
consumed after one use whereas our scheme is reusable, and (b) unforgeability
breaks down when multiple signature queries can be issued, whereas ours satisfies
standard existential unforgeability.

1.2 Related Works

[2] first built copy-protection for all unlearnable functions based on a quantum
oracle, with weak collusion resistance. Besides [13] which we have discussed, [4]
showed a construction for all unlearnable functions based on a classical oracle.
[6,14] constructed copy-protection for point functions and compute-and-compare
functions in QROM, the latter improving the security of the former.3

Regarding the negative results: [7] demonstrated that it is impossible to
have a copy-protection scheme for all unlearnable circuits in the plain model,
assuming LWE and quantum FHE. [5] extended this impossibility result to the
setting where we allow approximate correctness of the copy-protection program
and working in the classical-accessible random oracle model.

[7] put forward secure software leasing (SSL). In the finite-term case, a
software vendor would lease a quantum state as the software to a user; later, the
user needs to return a part of a bipartite state to the vendor, and the vendor
will use its own secret key to verify if this returned state is the one issued in
the authentic program. The security guarantees that while passing the above
verification, the user should not be able to evaluate the functionality correctly
using the other part of its bipartite state executed under a public, fixed quantum
circuit eval (specified by the vendor). In the infinite-term case, the user does not
need to return the state to the vendor; the security guarantees that it should not
produce two states that can both evaluate the function correctly when executed
3 All constructions discussed in this section are not proved under collusion resistant

security unless otherwise specified.
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under eval. [7] also built an (infinite-term) SSL scheme for searchable compute-
and-compare circuits under iO and LWE.

[4] observed that under a definition essentially equivalent to infinite-term
SSL, namely copy-detection, one could obtain a black-box construction for
infinite-term SSL from watermarking and public-key quantum money. [21] con-
structed finite-term SSL for PRFs and compute-and-compare functions from
(subexponential) LWE, with similar observations.

[11,14] constructed secure software leasing for point functions and compute-
and-compare functions; [11] is information-theoretically secure and [14] is secure
under QROM. They both used a stronger version of finite-term SSL security:
while the vendor will honestly check the returned state from the adversary, the
adversary can execute the leftover half of its bipartite state maliciously, i.e., not
following the instructions in eval. SSL security of this stronger finite-term variant
is only known for point/compute-and-compare functions up till now.

1.3 Technical Overview

We start by showing how to overcome the aforementioned barriers and con-
struct Collusion Resistant Unclonable Decryption (CRUD). As briefly discussed
in the introduction, there are challenges to constructing collusion resistant copy-
protection based on the so-called “k → (k +1) no-cloning theorem”. Instead, we
take a different approach by constructing collusion resistant unclonable decryp-
tion CRUD from unclonable decryption UD whose security only holds for “1 → 2
attacks”. The construction uses UD in a black-box manner:
– For every i ∈ [k], sample (|ski〉, pki) ← UD.KeyGen; |ski〉 will be the i-th

copy of the quantum unclonable decryption key; the public key will be pk =
(pk1, · · · , pkk).

– The encryption algorithm takes a single bit message m and outputs a classical
ciphertext ct that consists of k copies of ciphertext, among which the i-th copy
cti is the ciphertext of m under pki.

– To decrypt ct = (ct1, · · · , ctk) with |ski〉, one can decrypt the i-th ciphertext
cti.

Intuitively in the above encryption scheme, one can decrypt only if it knows the
decryption key for at least one of the public keys. Note that our k decryption
keys are sampled independently at random and each state satisfies 1 → 2 unclon-
ability. To establish anti-piracy, we want to prove a security reduction from a
k → k + 1 quantum pirate decryptors to the 1 → 2 unclonability of one of the
decryption keys.

Unfortunately, we do not know how to prove the security of this scheme
generically. As we will elaborate in Sect. 1.4, we need to open up the construction
of the underlying unclonable encryption in order to establish the security.

More importantly, in the following section, we demonstrate that even if we
open up the construction and the proof, the proof technique in [13] seems not
sufficient for CRUD and we thereby work on a new technique that subsumes that
in [13] to complete the proof. We start by recalling the definition of regular UD
and the proof in [13].
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Regular Unclonable Decryption. Let UD be a regular (1 → 2) unclonable decryp-
tion scheme. For the sake of convenience, we assume the message space is {0, 1}.
A pair of a classical public key pk and a quantum unclonable secret key |sk〉 is
generated by KeyGen.

The anti-piracy security guarantees that no efficient adversary with |sk〉 can
produce two “working” keys by a CPA indistinguishability standard: if one
estimates the success probabilities of both decryption keys on distinguishing
a ciphertext of 0 from a ciphertext of 1, their success probabilities cannot be
simultaneously significantly greater than 1/2, except with negligible probabil-
ity. This security notion has been previously studied by Aaronson et al. [4] and
Coladangelo et al. [13]

Before we delve into the security proof, it is enlightening to see how this secu-
rity guarantee is efficiently “falsifiable”. Estimating the success probability of a
classical decryptor is easy. One can generate a ciphertext for a random message
using the public key and check whether the classical decryptor is correct on that
ciphertext; then, a simple counting estimates its success probability within any
inverse polynomial error. Unfortunately, this method does not naturally work in
the quantum setting since a single execution of the decryption key (produced by
the adversary) may disturb the state and prevent further execution of the same
key.

Nevertheless, Zhandry [30] shows that such estimation can be done analogous
to the classical setting, inspired by the famous work of Marriott and Watrous
[23] for witness-preserving error reduction for quantum Arthur–Merlin game.
Informally, the work of Zhandry utilizes a measurement procedure called “pro-
jective implementation” (abbreviated as PI)4 to estimate the success probability
of a quantum adversary (see Fig. 1).

1. Let D be a ciphertext distribution we define the procedure with respect to.
2. For any quantum decryptor σ with success probability p over D, running PID

on the decryptor produces a probability p′ and σ collapses to σ′;
3. σ′ as a decryptor, has success probability p′ over D;
4. Applying PID on σ′ always produces p′ and σ′ remains intact;
5. The expectation of p′ is p.

Fig. 1. PI: measure success probability of a decryptor.

4 For simplicity, we only use the inefficient estimation procedure. The same argument
in the technical overview holds using an efficient and approximated version. Similarly
for TI.
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Put shortly, this measurement procedure will output an estimation of the
success probability p′ for a quantum decryptor σ. After the measurement, the
decryptor collapsed to another decryptor σ′, whose success probability is still
p′. We will intuitively call PI as “probability estimation’ instead of its original
name in the scope of the overview.

In the anti-piracy security definition, we care about whether both decryptors
have the success probability significantly greater than 1/2. [13] defines the fol-
lowing “threshold measurement” or “goodness measurement” TID,ε for deciding
if a quantum decryptor σ is good, for some inverse-polynomial ε:

1. Let D be a ciphertext distribution we define the procedure with respect to.
2. Run PID coherently on σ and measure if the outcome register (containing the

resulting probability p′) is greater than 1/2 + ε, which produces a single bit
outcome b. The quantum decryptor collapses to σ′.

3. If b = 1, σ′ lies in the span of good decryptors, whose success probability is
at least 1/2+ε; otherwise, σ′ is in the subspace with the basis being quantum
decryptors whose winning probability is strictly less than 1/2 + ε.

Fig. 2. TI: measure goodness of a decryptor.

We note that TID,ε is a projection, which says if σ′ is the collapsed decryptor
for outcome b, applying TID,ε will always produce b and σ′ does not change.

We are now ready to formally define the anti-piracy security in [13]. Let D
be the ciphertext distribution for honestly generated ciphertext, which encodes
a uniformly random message. No efficient adversary can turn |sk〉 into a possi-
bly entangled decryptors σ over two registers, such that applying the threshold
measurement TID,ε on both decryptors σ[1], σ[2] will produce two outcomes 1s
with non-negligible probability. To put it another way, no efficient adversary
can produce two decryptors such that they jointly have non-negligible weight on
good decryptors.

Security Proof for “ 1 → 2 Attacks”. Before scoping the proof of our collusion
resistant unclonable decryption, we recall the security proof in [13] for “1 →
2 unclonability”. In this following section, we will highlight the difficulties of
applying the same ideas to CRUD and introduce a new approach to resolve this
issue.

The proof works as follows:

– A reduction applies TID,ε on both decryptors σ[1], σ[2]. With some non-
negligible probability, it will produce two outcomes 1s and the two decryptors
become σ′[1], σ′[2].
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– Extraction on the First Register. Let D′ be the ciphertext distribution
for “junk” ciphertext which only encrypts an empty symbol ⊥. Applying
TID′,ε on σ′[1] always result in outcome 0, whereas the outcome of applying
TID,ε on σ′[1] is always 1.
We can thereby conclude that σ′[1] must contain some secret information
about the secret key |sk〉. In fact, we can use an extraction algorithm to
extract the classical information about the secret key. Note that the algorithm
may be destructive that, for example, may measure σ′[1] completely.

– Extraction on the Second Register. Conditioned on the successful extrac-
tion on σ′[1], we want to argue that a similar extraction on the second register
works. If so, we can simultaneously extract secret information about |sk〉 from
two non-communicating parties. This will violate the underlying quantum
information guarantee5.

The remaining is to show such an extraction is feasible on the second decryptor,
even conditioned on the successful extraction on σ′[1]. This is because TID,ε is a
projection, conditioned on the outcome being 1, σ′[2] will be in the span of good
decryptors (see bullet (3) of the description of TI). Regardless of what event is
conditioned on σ′[1], the second decryptor is still in the span of good decryptors.
Thus, an extraction algorithm would extract the classical information about the
secret key from σ′[2] with non-negligible probability. This concludes the proof
idea in [13].

To conclude, the core idea in the proof is that, a “1 → 2 attack” produces
two quantum registers that

1. they have a non-negligible probability w1 = γ on both registers being good
decryptors on D (with success probabilities at least 1/2 + ε);

2. they have a negligible probability w2 on both being good decryptors on D′.

If both 1 and 2 are satisfied, a simultaneous extraction succeeds with a non-
negligible probability.

In the next few paragraphs, we still denote w1 as the joint probability of
both decryptors being good on distribution D; w2 as the joint probability of
both decryptors being good on distribution D′.

In the above proof for 1 → 2 attack, we crucially require w1 is non-negligible
and w2 is negligible or zero, in order to argue that extraction would succeed even
after conditioned on successful extraction on one side.

We can also observe that for the 1 → 2 proof, w2 is automatically zero. As D′

does not encode a real message, no quantum decryptor can achieve any advantage
over random guessing. But this is not always the case when it turns to our CRUD
security proof: for which, D = (ct⊥, · · · , ctj , ctj+1, · · · ) has the first (j−1) cipher-
texts being junk and the rest being real; whereas D′ = (ct⊥, · · · , ct⊥, ctj+1, · · · )
has the first j ciphertexts being junk.

5 In the actual proof, two non-communicating parties will extract two vectors, one in
the primal coset and the other in the dual coset of a coset state. This will violate
the strong computational monogamy-of-entanglement property of coset states.
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As we will see in the following section, for CRUD, the condition “w1 − w2 is
non-negligible” is the best we can hope for. Therefore, we attempted to see if
a proof similar to the above exists, when we can only condition on“w1 − w2 is
non-negligible”. Unfortunately, the answer to this attempt is negative, as we will
provide some intuition in the immediate next paragraph. We thereby conclude
that the proof technique in [13] cannot extend to collusion resistant anti-piracy
security proof in a generic way.

To see why the condition “w1−w2 is non-negligible” does not necessarily give
a simultaneous extraction, we consider the time when a successful extraction has
already been done on the first decryptor σ′[1]. If w2 is negligible, the leftover
state of the second decryptor σ′[2] has at most w2/ζ weight lying in the span of
bad decryptors. Here ζ is the probability of a successful extraction on the first
decryptor and conditioned on this extraction, the weight w2 will be amplied by
at most 1/ζ. Since w2/ζ is still negligible, this allows an extraction from σ′[2]
happens with a non-negligible chance. However, if w2 is not negligible but only
satisfies w1 − w2 is non-negligible, σ′[2] can lie in the span of bad decryptors:
the extreme case will be the event of successful extraction on σ′[1] has “positive
correlation” with σ′[2] being bad; in this case, the weight can be as large as
w2/ζ ≈ 1.

Obstacles for Extraction from Quantum Decryptors. The high-level intuition for
why such a construction would satisfy k → k + 1 is comprehensible. Assume an
adversary uses |sk1〉, · · · , |skk〉 to produce (k + 1) (possibly entangled) malicious
decryptors σ. Let σ[i] denote the i-th pirate decryptor. Since each σ[i] is a
“working” pirate decryptor, it should at least decrypt one of ct1, · · · , ctk (say
ctj). Applying pigeonhole principle, there are two decryptors that decrypts the
same ciphertext slot, which would violate 1 → 2 unclonability. However, such an
intuition is nontrivial to formalize since a quantum adversary could distribute
these secret keys in multiple ways in superposition.

A straightforward idea is to extract secret information for the j-th private key
|skj〉 from σ[i]. Let D′ be the ciphertext distribution (ct⊥, ct⊥, · · · , ct⊥) contain-
ing all junk ciphertext. Clearly, if we apply TID′,ε on any quantum decryptor, the
result is always 0 (meaning “bad”). If we can find an index j such that Dj is the
distribution (ct⊥, ct⊥, · · · , ctj , · · · , ct⊥) and applying TIDj ,ε on σ[i] gives 1 with
non-negligible chance, we can extract secrets for |skj〉 from σ[i]. If one can extract
from every σ[i], by the pigeonhole principle, it breaks the underlying quantum
information guarantee for one of the unclonable decryption keys. Unfortunately,
this idea does not go through, considering the following bad situation.

Even if σ[i] has success probability 1, such j may not exist. Consider
a quantum program that knows all the decryption keys |sk1〉, · · · , |skk〉
but only decrypts ct if and only if every |skj〉 can successfully decrypt
ctj ; if any decryption fails to decrypt, it outputs a random guess. Feed-
ing (· · · , ct⊥, ctj , ct⊥, · · · , ) to the decryptor will always result in a random
guessing.
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Note that this is not only an issue for quantum decryptors but also presents
if decryptors are classical.

A natural fix of the above idea is to consider the following hybrid distribu-
tions. We define Dj for every j ∈ {0, 1, · · · , k}:

– Dj : = (ct⊥, · · · , ct⊥, ctj , ctj+1 · · · ). In other words, only the last k − j cipher-
texts encode the same random message m ∈ {0, 1}, the first j ciphertexts are
junk ciphertexts .

– TIj := TIDj ,ε: the goodness estimation with respect to the ciphertext distri-
bution Dj and threshold 1/2 + ε.

That is, each Dj will replace the first non-junk ciphertext from Dj−1 with a junk
ciphertext. Note that D := D0. By the definition of σ[i] is a working decryptor,
applying TI0 on σ[i] will produce 1 with a non-negligible probability. On the flip
side, applying TIk on σ[i] will always produce 0.

We denote wj as the probability of applying TIDj ,ε on the decryptor σ[i] and
getting outcome 1. By a standard hybrid argument, we can conclude that there
must exist an index j ∈ [k] such that,

wj−1 − wj is non-negligible.

The gap allows extraction on σ[i]. However, as we discussed in the last section,
it does not satisfy the condition “wj−1 is non-negligible and wj is negligible”,
which can not guarantee a simultaneous extraction when we consider two decryp-
tors.

A bad example looks like the following: w0 = γ for some inverse polynomial
γ and wj = γ/2j for all j 	= k and wk = 0. There does not exists a j such that
wj−1 is non-negligible but wj is negligible.

We now elaborate on our approaches to resolve these obstacles. Our approach
directly takes advantage of the probability measure PI instead of TI. This also
gives an alternative security proof for the construction in [13].

Extract a Single Decryption Key: Detect a Large Jump in Success Probability.
Let us start with attempts to extract from a single “working” decryptor σ, using
the probability estimation PI. Recall that by the definition of “working”, we
mean applying PID on σ yields some probability p significantly larger than the
trivial guessing probability 1/2.

We first recall the following ciphertext distributions Dj and define probability
estimation procedure PIj for every j ∈ {0, 1, · · · , k}:

– Dj : = (ct⊥, · · · , ct⊥, ctj , ctj+1 · · · ).
– PIj := PIDj

: the probability estimation with respect to the ciphertext distri-
bution Dj .

Now we give the following attempted extraction, which almost works but
has one caveat. We call this extraction procedure a “repeated probability esti-
mation/measurement”:
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1. We first apply PI0 to σ and obtain p0 and a collapsed decryption key σ0.
2. We then apply PI1 to the collapsed σ0 to obtain p1 and σ1.

Now if p1−p0 is at least p0− 1
2

k , we perform an extraction procedure to extract
secrets for |sk1〉 from σ0. Intuitively, since we observe a noticeable probability
decrease when ct1 is replaced with junk ciphertext, there must be some part
of σ[i] that uses ct1 to recover the original plaintext. We then abort the
procedure.

3. Otherwise, p0 and p1 should be negligibly close. We again apply PI2 on σ1

and obtain p2, σ2. If p2 − p1 is at least p0− 1
2

k , we perform extraction on σ1

and abort.
4. We continue this process for all j = 3, ..., k.

We claim that the above repeated measurement procedure will always ter-
minate at some j ∈ [k]. To see this, think of p1, ..., pk as a sequence of random
variables, whose values are only observed when the corresponding measurement
is applied. Note that pk = 1/2 always, because the underlying ciphertext dis-
tribution Dk encodes all junk ciphertexts, so no adversary can achieve better
advantage than guessing. Therefore, the claim follows from triangle inequality.

(σ0, p0)
PI1−−→ (σ1, p1)

PI2−−→ (σ2, p2)
PI3−−→ · · · PIk−1−−−→ (σk, pk)

The above extraction procedure almost works. But it is actually not physi-
cally executable: we need σj−1 in order to perform extraction as that is the state
with a “working” component for ciphertext ctj , but by the time that we decide
to extract, we already get to state σj because we have to obtain measurement
outcome pj to claim a jump in probability happens. It is generally infeasible to
rewind a quantum state, in this case from σj to σj−1.6

Fortunately, it is plausible for a single decryptor: we guess j (denoting the
first index having a probability jump) and stop the procedure when we have done
PI0, · · · ,PIj−1. With probability at least 1/k, we can extract for |skj〉 from the
current decryptor σj−1. We will get to why this procedure avoids the rewind-
ing issue and preserves our success probability, when it comes to the (k + 1)
decryptors case in the next paragraph.

Extending to (k + 1) decryptors. Finally, we show how to generalize the above
extraction strategy to extracting secrets from the same key |skj〉.

We apply the repeated measurement individually to every decryptor: that
is, for the i-th decryptor, we apply PI0,PI1, · · · ,PIk, one upon another. The
procedure will yield pi,0, pi,1, · · · , pi,k. Since pi,0 is always greater than 1/2 + γ
and pi,k = 1/2, there must exist a large probability gap between pi,ji−1 and
pi,ji for some ji ∈ [k]. By the pigeonhole principle, for some x 	= y, j := jx =
jy. We hope to stop at the x-th and y-th decryptors before applying PIj and
simultaneously turn them into two keys for ctj .

6 The probability estimation PIj will preserve the success probability of the state but
nothing else. Applying PIj will likely change σj−1.
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Since there will always be two decryptors having large probability gaps for
the same index, the chance of having such gaps for randomly guessed x, y and
j is at least 1

(k+1
2 )k

≥ 1/k3. But the success probability of this guess is not

immediately guaranteed, because we need to stop before the j-th probability
estimation for states σ[x], σ[y] otherwise we can’t rewind to this state needed for
extraction. We are still two unpredictable measurements away from the event we
guess for. Fortunately, guessing and stopping before the j-th PI will indeed work
with probability at least 1/(2k3), through a trick for randomized algorithms.

Now we can apply repeated measurement and stop before applying PIj on
any of these two decryptors. Let the leftover decryptors be σ∗[x, y] and the last
probability outcomes be px,j−1 and py,j−1. With probability at least 1/(2k3),
(σ∗[x, y], px,j−1, py,j−1) satisfy the following conditions (*) and (**):

(*) Applying PIj−1 on both σ∗[x] and σ∗[y] always produces px,j−1 and py,j−1.
(**) Applying PIj on both σ∗[x] and σ∗[y], with probability at least 1/(2k3),

produces large probabilities gaps for both px,j−1 and py,j−1.

It seems that we have come to the right “spot” for extraction. However, we
still face a challenge. How do we guarantee that we can simultaneously extract
from two possibly entangled states? A possible malicious behavior is that mea-
suring one decryptor’s key will collapse the other decryptor to a “not working”
state.

We can clearly extract secrets for |skj〉 from either σ∗[x] or σ∗[y]: since there
is a probability gap, it must mean σ∗[x] (or σ∗[y]) use ctj for decryption at some
point. From the probability point of view, we then argue why simultaneous
extraction is feasible.

Define Ex (Ey, here E stands for “(E)xtraction”) be the event of a successful
extraction on the x-th decryptor (or on the y-th decryptor respectively). Define
Gx (Gy, here G stands for “(G)ap”) be the event that applying PIj on the x-th
decryptor (or on the y-th decryptor respectively) yields a large probability gap.
We will prove Pr[Ex ∧ Ey] is non-negligible by contradiction.

It is clear that Pr[Ex] is non-negligible. To show Pr[Ey|Ex] is non-negligible,
it is sufficient to show that Pr[Gy|Ex] is non-negligible, since a large gap implies
a large chance of extraction.

We can intuitively think of Pr[Ex] = 0.1Pr[Gx] and Pr[Ey] = 0.1Pr[Gy]7.
We may expect that Pr[Ex ∧ Ey] = 0.1Pr[Gx ∧ Gy], which would conclude the
proof. However, this does not follow immediately from above as it could be the
case that Gx ∧ Gy occurs with non-negligible probability, but Ex ∧ Ey never
occurs. The main insight here is that we can instead show that Pr[Ex|Gy] =
0.1Pr[Gx|Gy], as finding the gap for y does not impact the extraction for x.
Invoking Bayes’ rule, this shows that Pr[Gy|Ex] = Pr[Ex|Gy] Pr[Gy]/Pr[Ex]
is non-negligible as well. As a consequence, Pr[Ey|Ex] and thus Pr[Ex ∧ Ey]
(simultaneous extraction) are both large.

7 The choice of 0.1 is arbitrary here. Indeed, they are polynomially related. For the
sake of simplicity, we assume they are linearly related.
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Collusion Resistant Copy-Protection for Signatures and PRFs. Now with the
building block of collusion resistant unclonable decryption, we come to copy-
protect more cryptographic functions.

As briefly discussed in the introduction, even though [13] presented the first
unclonable signature scheme without oracles, its scheme is a signature token
that will be consumed after one use. One-time signature is a security notion
interesting under many circumstances [9,17], but it’s crucial that we investigate
the possibility of copy-protecting a standard digital signature. Moreover, once
achieved, this construction helps us get closer to the goal of copy-protecting all
watermarkable functionalities.

The [13] signature token is one-time because when signing a message, the
signer simply measures the quantum key and the measurement outcome is a
signature. It is not existentially unforgeable for the same reason: if an adversary
gets a few random measurement results of quantum keys, he is granted the power
to sign, without the need of an intact quantum key.

To resolve the problem, we resort to the classic picture of generic copy-
protection: the signing program first verifies if a quantum key is a valid “token”
and then outputs a signature (computed independently of the quantum key)
as well as the almost unharmed key. In particular, we observe that the unclon-
able decryption scheme in [13] will pave the way for such a construction. Their
scheme can be extended to a copy-protection for evaluating puncturable PRFs
with the “hidden trigger” technique from [25]. Meanwhile, such PRF evaluation
functionality can be used as a signing program after obfuscation.

We thereby give a copy-protection for existentially unforgeable, publicly-
verifiable signature scheme, based on the above ideas. Along the way, we deal
with a few subtleties that emerge because we need public verification and gener-
alization to collusion resistance. More specifically, we present a k-party version
of the [25] hidden trigger technique to obtain both collusion resistant copy-
protection for signatures and for PRFs.

1.4 Discussions and Open Problems

Comparisons to [13]. An informed reader may claim that one main obstacle
(namely simultaneous extraction) for proving anti-piracy security in this paper
resembles the obstacle in the 1 → 2 anti-piracy schemes of [4,13]. We emphasize
that while this issue may be bumped into in all quantum copy-protection proofs,
our approach of resolving the issue is different from previous works, especially
to identify gaps in a repeated probability estimation procedure (see more details
in the technical overview). In particular, our approach can be used to prove
security for the schemes in [4,13], but as we have discussed in the technical
overview, their techniques will not work for the k → k + 1 setting8

8 The approach for simultaneous extraction when showing 1 → 2 anti-piracy in [4]
bears a high-level similarity with [13]. We have discussed [13] in the overview since
we focus on unclonable decryption.
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On Non-Black-Box Reduction. In the technical overview, we describe a black-box
way of reducing “k → (k+1) security” to “1 → 2 security”. As mentioned earlier,
we cheat in the technical overview and the approach is not entirely black-box.

A high-level summary for the reason is: a black-box reduction algorithm (i.e.
an adversary for a 1 → 2 unclonable decryption scheme) is not able to generate
the correct distribution for the ciphertext to feed to the k collusion resistant
adversary. Elaborated as follows:

First, recall that in a k collusion resistant scheme, an encryption for a message
m is an ensemble of ciphertexts ct = (ct1, ..., ctk) where cti = Enc(pki,m) for all
i ∈ [k].

In the reduction, we want to apply PIDj
on a malicious decryptor to extract

secrets from |skj〉 for some j ∈ [k]:

Dj : the first j ciphertexts (that is, ct1, · · · up to ctj) are simulated ciphertexts,
the rest of them encrypt the same message.

The problem is the following: the reduction only gets a single ciphertext
ctj+1, whereas the malicious decryptor takes input of the form in Dj . The reduc-
tion needs to generate other ciphertext on its own: including those simulated
and those encrypting the same message as cj+1. Since the reduction does not
know which message is encrypted in ctj+1 (otherwise, the reduction itself already
breaks the security of the underlying 1 → 2 unclonable decryption), it cannot
generate a valid ciphertext ct = (ct1, · · · , ctk) from the distribution Dj .

Therefore, we need to open this proof up in a non-black-box way: it’s based
on the security of coset states. When we break the security of coset states,
the message (encrypted in ctj+1) is known by the reduction. In fact, it is even
sampled by the reduction R.

Open Problems. The main limitation of our constructions is that the number of
collisions is bounded to a polynomial specified during setup, and the parameters
grow with the collusion bound. Because of this collusion bound, our results
are technically incomparable to [2], which, despite having a much weaker copy-
protection guarantee and using a strong oracle, required no prefixed user number.
We leave achieving unbounded k → k + 1 collusion resistance as an interesting
open question.

1.5 Organization

The rest of the paper is organized as follows. In Sect. 2, we recall the definitions
and properties of coset states and how to measure success probabilities of quan-
tum adversaries. In Sect. 3, we present the definition, construction, and security
proof of collusion resistant unclonable decryption. Our constructions and secu-
rity proofs for (collusion resistant) copy-protection for signature schemes and
PRFs are covered in the full version.
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2 Preliminaries

In this paper, λ denotes the security parameter. poly(·) denotes a polynomial
function. We say a function f(·) : N → R

≥0 is negligible if for all constant
c > 0, f(n) ≤ 1

nc for all sufficiently large n. negl(·) denotes a negligible function.
Similarly, we say a function f(·) : N → R

≥0 is sub-exponential if there exists a
constant c < 1, such that f(n) ≤ 2nc

for all sufficiently large n. subexp(·) denotes
a sub-exponential function. For an integer k, We denote {1, 2, · · · , k} by [k]. We
denote F2 to be the binary field.

We refer the reader to [24] for a reference of basic quantum information
and computation concepts. We also leave the definition for indistinguishability
obfuscation in the full version. Readers can also find the definition in [8,16].

2.1 Coset States

We recall the notion of coset states, introduced by [26] and later studied by
[13] in the setting of quantum copy-protection. We then present a property of
coset states: a strong computational monogamy-of-entanglement (MOE) prop-
erty. This property is used to obtain an unclonable decryption scheme and other
copy-protection of watermarkable cryptographic primitives in this work. Some
part of this section is taken verbatim from [13].

Definitions. For any subspace A, its complement is A⊥ = {b ∈ F
n
2 | 〈a, b〉 =

0 , ∀a ∈ A}. It satisfies dim(A)+dim(A⊥) = n. We also let |A| = 2dim(A) denote
the number of elements in the subspace A.

Definition 1 (Coset States). For any subspace A ⊆ F
n
2 and vectors s, s′ ∈ F

n
2 ,

the coset state |As,s′〉 is defined as:

|As,s′〉 =
1

√|A|
∑

a∈A

(−1)〈s′,a〉|a + s〉 .

By applying H⊗n (Hadamard on every qubit) on the state |As,s′〉, one obtains
exactly |A⊥

s′,s〉. Given A, s and s′, there is an efficient quantum algorithm that
generates |As,s′〉, by [13].

For a subspace A and vectors s, s′, we define cosets A + s = {v + s : v ∈ A},
and A⊥ + s′ = {v + s′ : v ∈ A⊥}. It is also convenient for later sections to define
a canonical representative, with respect to subspace A, of the coset A + s.

Definition 2 (Canonical Representative of a Coset). For a subspace A,
we define the function CanA(·) such that CanA(s) is the lexicographically smallest
vector contained in A+s (we call this the canonical representative of coset A+s).

[13] showed that, CanA and CanA⊥ are efficiently computable given the classical
description of A.

When it is clear from the context, we will write A + s to denote the pro-
gram that checks membership in A+s. The following equivalences, which follow
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straightforwardly from the security of iO, will be useful in our security proofs
later on.

Proposition 1. For any subspace A ⊆ F
n
2 , iO(A+s) ≈c iO(CC[CanA,CanA(s)]).

Recall that CC[CanA,CanA(s)] refers to the compute-and-compare program which
on input x outputs 1 if and only if CanA(x) = CanA(s).

This is due to the fact that A+s has the same functionality as CC[CanA,CanA(s)].
The lemma then follows the security of iO.

Strong Monogamy-of-Entanglement Property. Consider a game between
a challenger and an adversary (A0,A1,A2):

– The challenger picks a uniformly random subspace A ⊆ F
n
2 of dimension n

2 ,
and two uniformly random elements s, s′ ∈ F

n
2 . It sends |As,s′〉, iO(A + s),

and iO(A⊥ + s′) to A0.
– A0 creates a bipartite state on registers B and C. Then, A0 sends register B

to A1, and C to A2.
– The classical description of A is then sent to both A1,A2.
– A1 and A2 return respectively s1 and s2.

(A0,A1,A2) wins if and only if s1 ∈ A + s and s2 ∈ A⊥ + s′.

Let CompStrongMonogamy((A0,A1,A2), n) be a random variable which takes
the value 1 if the game above is won by adversary (A0,A1,A2), and takes the
value 0 otherwise.

Theorem 3. Assuming the existence of sub-exponentially secure post-quantum
iO and one-way functions, then for any QPT adversary (A0,A1,A2),

Pr[CompStrongMonogamy((A0,A1,A2), n) = 1] ≤ 1/subexp(n) .

[15] proved an information-theoretic version of the strong monogamy prop-
erty (without giving out the iO programs to the adversary). [13] showed that
one can obtain the computational statement by lifting the information-theoretic
statement.

2.2 Measure Success Probabilities of Quantum Adversaries:
Projective/Threshold Implementation

In this section, we include several definitions and results about estimating success
probabilities or estimating whether the probability is above a threshold. Part of
this section is taken verbatim from [4,13]. In this section, we will mainly talk
about how to measure probability in an inefficient way. The proofs in the main
body of the proof use this inefficient measuring procedure as subroutines. All
these proofs can be translated easily using the efficient version of such measuring
procedures. We will cover those in the full version.
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Estimating success probabilities of adversaries is essential in many settings,
especially for a reduction to know whether the adversary is good or if an extrac-
tion on the adversary can succeed with high probability. Classically it is easy.
Let D be a testing input distribution and C be a classical program for which we
want to estimate probability. We can keep running C on uniformly fresh inputs
sampled from D to estimate the probability up to any inverse polynomial error.
Such procedure is infeasible for quantum adversaries, since a single execution of
a quantum program may completely collapse the program, leading to failure for
future executions.

Projective Implementation. Zhandry [30] formalizes the following probability
measurement procedure for a quantum program ρ under some test distribu-
tion D.

Consider the following procedure as a binary POVM PD = (PD, QD) acting
on a quantum program ρ (whose success probability is equal to p): sample an
input x from D, evaluates the quantum program ρ on x, and checks if the output
is correct. Let PD denote the operator for output being correct and QD be the
quantum operator for the output being incorrect.

Zhandry proposed a procedure that applies an appropriate projective mea-
surement which measures the success probability of ρ on input x ← D, and
outputs the probability p′. Conditioned on the outcome is some probability p′,
the quantum program collapsed to ρ′ whose success probability is exactly p′.
Furthermore, the expectation of p′ equals to p.

Theorem 4 (Projective Implementation). Let D be a distribution of
inputs. Let PD = (PD, QD) be a binary outcome POVM described above with
respect to the distribution D. There exists a projective measurement PI(PD) such
that for any quantum program ρ with success probability p on D:

(i) Applying PI(PD) on ρ yields ρ′, p′.
(ii) ρ′ has success probability p′ with respect to D. Furthermore, applying PI(PD)

on ρ′ always produces p′.
(iii) The expectation of p′ equals to p.

We say the above measurement procedure is a projective implementation of PD.
When the distribution is clear from the context, we sometimes ignore the sub-
script D in both PD and PI(PD).

Threshold Implementation. The concept of threshold implementation [4] is sim-
ilar to projective implementation, except it now outputs a binary outcome indi-
cating whether the probability is above or below some threshold.

Theorem 5 (Threshold Implementation). Let D be a distribution of
inputs. Let PD = (PD, QD) be a binary outcome POVM described above with
respect to the distribution D. For any 0 ≤ γ ≤ 1, there exists a projective mea-
surement TIγ(PD) such that for any quantum program ρ:

(i) Applying TIγ(PD) on ρ yields a binary outcome b′ and a collapsed program
ρ′.
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(ii) If b′ = 1, ρ′ has success probability at least γ with respect to D. Furthermore,
applying TIγ(PD) on ρ′ always produces 1.

(iii) If b′ = 0, ρ′ has success probability less than γ with respect to D. Further-
more, applying TIγ(PD) on ρ′ always produces 0.

We say the above measurement procedure is a threshold implementation of PD
with threshold γ. When the distribution is clear from the context, we sometimes
ignore the subscript D in TI(PD).

Moreover, TI(PD) can be implemented by first applying PI(PD) to get a out-
come p and outputting 1 if p ≥ γ or 0 otherwise.

For simplicity, we denote by Tr[TIγ(PD) ρ] the probability that the threshold
implementation applied to ρ outputs 1. Thus, whenever TIγ(PD) appears inside
a trace Tr, we treat TIγ(PD) as a projection onto the 1 outcome.

The approximate and efficient versions of both PI and TI will be covered in
the full version

3 Collusion Resistant Unclonable Decryption

In this section, we give the formal definition of collusion resistant unclonable
decryption. We will then show the construction for achieving bounded collu-
sion resistance for any k — polynomial number of parties. Finally, we prove the
construction satisfies correctness, semantic security and anti-piracy against col-
luding adversaries. Our scheme has security against bounded number of parties.
It requires to know the parameter k in the setup phase and only k copies of keys
can be generated later. Furthermore, the public key, secret key and ciphertext
have length linear in the number of parties k. Note that our scheme is secure
even if an adversary takes control of all copies of decryption keys; the adversary
still can not produce any additional functioning key.

3.1 Definitions

Definition 3 (Bounded Collusion Resistant Unclonable Decryption
Scheme). A bounded collusion resistant unclonable decryption scheme CRUD
for a message space M consists of the following efficient algorithms:

– Setup(1λ, k) → (sk, pk) : a (classical) probabilistic polynomial-time (in λ, k)
algorithm that takes as input an upper bound k on the number of users and
a security parameter λ and outputs a classical secret key sk and a classical
public key pk.

– QKeyGen(sk) → ρsk,1 ⊗ ρsk,2 ⊗ · · · ⊗ ρsk,k : a quantum algorithm that takes as
input a secret key sk and outputs k copies of quantum secret keys.

– Enc(pk,m) → ct : a (classical) probabilistic algorithm that takes as input a
public key pk, a message m and outputs a classical ciphertext ct.

– Dec(ρsk, ct) → m/⊥ : a quantum algorithm that takes as input a quantum
secret key ρsk and a classical ciphertext ct, and outputs a message m or a
decryption failure symbol ⊥.
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Here ‘bounded’ refers to the restriction that the Setup procedure requires to
know the maximal number of keys distributed in the QKeyGen.

A bounded collusion resistant unclonable decryption scheme should satisfy
the following:

Correctness: For every polynomial k(·), there exists a negligible function
negl(·), for all λ ∈ N, let k := k(λ), for all m ∈ M, all i ∈ [k],

Pr

⎡

⎣Dec(ρsk,i, ct) = m

∣∣∣
∣∣∣

(sk, pk) ← Setup(1λ, k),
ρsk,1 ⊗ · · · ⊗ ρsk,k ← QKeyGen(sk),

ct ← Enc(pk,m)

⎤

⎦ ≥ 1 − negl(λ)

In other words, correctness says the i-th quantum decryption key will always
decrypt correctly (except with negligible probability). By the gentle mea-
surement lemma [1], each decryption key can function correctly polynomially
many times for honestly generated encryptions.
CPA Security: This is the regular semantic security for an encryption
scheme. An adversary without getting any decryption key (neither sk nor
these quantum keys) can not distinguish ciphertexts of chosen plaintexts.
Formally, for every (stateful) QPT adversary A, for every polynomial k(·),
there exists a negligible function negl(·) such that for all λ ∈ N, the following
holds:

Pr

⎡

⎣A(ct) = b :
(sk, pk) ← Setup(1λ, k)

((m0,m1) ∈ M2) ← A(1λ, pk)
b ← {0, 1}; ct ← Enc(pk,mb)

⎤

⎦ ≤ 1
2

+ negl(λ),

Anti-Piracy Security. Finally, we define anti-piracy against colluding adver-
saries. Anti-piracy intuitively says there is no adversary who gets all copies of
the decryption keys can successfully produce one additional “working” key.

We will follow the two different definitions of “working” proposed in [13]
and give two definitions for anti-piracy. The first definition allows a pirate to
announce two messages (m0,m1), much like the semantic security. A decryption
key is good if an adversary can distinguish encryptions of m0 and m1 by using the
decryption key. The second definition of a “working” decryption key is basing on
whether it decrypts correctly with high probability on uniformly random inputs.

Before describing the security games, we first recall the concept of a quantum
decryptor (or a quantum decryption key) [13] with respect to a collusion resistant
unclonable decryption scheme.

Definition 4 (Quantum Decryptor). A quantum decryptor ρ for cipher-
texts of length m, is an �-qubit state for some polynomial �. For a ciphertext c of
length m, we say that we run the quantum decryptor ρ on ciphertext c to mean
that we execute a universal quantum circuit U on inputs |c〉 and ρ, and measure
the output registers.

We are now ready to describe the CPA-style anti-piracy game as well as
the random challenge anti-piracy game. We first introduce the notion of good
decryptors with respect to two messages (m0,m1).
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Definition 5 (( 12+γ)-good Test with respect to (m0,m1)). Let γ ∈ [0, 1/2].
Let pk be a public key, and (m0,m1) be a pair of messages. We refer to the
following procedure as a test for a γ-good quantum decryptor with respect to pk
and (m0,m1):

– The procedure takes as input a quantum decryptor ρ.
– Let P = (P, I − P ) be the following POVM acting on some quantum state ρ′:

• Sample a uniform b ← {0, 1} and random coins r. Compute c ←
Enc(pk,mb; r).

• Run the quantum decryptor on input c. Check whether the outcome is mb.
If so, output 1; otherwise output 0.

– Let (TI1/2+γ , I −TI1/2+γ) be the threshold implementation of P with threshold
value 1

2 + γ, as defined in Theorem 5. Run the threshold implementation on
ρ, and output the outcome. If the output is 1, we say that the test passed,
otherwise the test failed.

Definition 6 (k-Strong-Anti-Piracy Game, CPA-style). Let λ, k ∈ N
+.

The CPA-style strong anti-piracy game for a collusion resistant unclonable
decryption scheme is the following game between a challenger and an adver-
sary A.

1. Setup Phase: The challenger samples keys (sk, pk) ← Setup(1λ, k).
2. Quantum Key Generation Phase: The challenger sends A the classi-

cal public key pk and all k copies of quantum decryption keys ρ = ρsk,1 ⊗
· · · ρsk,k ← KeyGen(sk).

3. Output Phase: A outputs a pair of distinct messages (m0,m1). It also
outputs a (possibly mixed and entangled) state σ over k + 1 registers
R1, R2, · · · , Rk+1. We interpret σ as k + 1 (possibly entangled) quantum
decryptors σ[R1], · · · , σ[Rk+1].

4. Challenge Phase: Let TI1/2+γ be the ( 12 + γ)-good test with respect to
(m0,m1). The challenger applies TI1/2+γ to each of these decryptors. The
challenger outputs 1 if and only if all the measurements output 1.

We denote by StrongAntiPiracyCPA(1λ, 1/2 + γ, k,A) a random variable for the
output of the game.

Definition 7 (Strong Anti-Piracy-Security). Let γ : N
+ → [0, 1]. An

unclonable decryption scheme satisfies strong γ-anti-piracy security, if for any
polynomial k(·), for any QPT adversary A, there exists a negligible function
negl(·) such that the following holds for all λ ∈ N:

Pr
[
b = 1, b ← StrongAntiPiracyCPA(1λ, 1/2 + γ(λ), k(λ),A)

] ≤ negl(λ) (1)

Note that the above strong anti-piracy security is defined by the threshold
implementation TI. By [13], this definition implies a weaker notion called regular
CPA-style anti-piracy security, which says the probability of all k + 1 malicious
parties simultaneously distinguish encryptions of m0 or m1 (m0 and m1 are
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chosen independently for each malicious parties) is at most negligibly greater
than 1/2.

We can similarly define regular anti-piracy security with random message
challenges: the probability of all k + 1 malicious parties simultaneously recover
ciphertext of independent random messages is at most negligibly greater than
1/2n, where n is the message length.

3.2 Construction

We now give the construction of our collusion resistant unclonable decryption.
Let UD be the unclonable decryption scheme based on coset states [13]. Our
CRUD takes k as input and outputs k pairs of freshly generated keys for UD. A
message is encrypted under each public key. Decryption works if a decryptor can
decrypt any ciphertext. The construction of CRUD follows from the construction
of UD. The security of our CRUD requires a non-black-box analysis for the last
step.

Fig. 3. Collusion resistant unclonable decryption.

We recall the unclonable decrytion scheme in [13] (see Fig. 4).
There is one additional function Sim which takes a parameter n (message

length) and outputs a junk ciphertext, which will be crucial for our anti-piracy
proof. Intuitively, if one can distinguish from a honestly generated ciphertext
with a simulated ciphertext, they can extract secrets for the underlying coset
states.

The efficiency, correctness and CPA security of our CRUD scheme follows
easily from those of UD. We are focusing on the proof of its anti-piracy in the
next section.
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Fig. 4. Unclonable decryption in [13].

3.3 Proof of Anti-Piracy

In this section, we prove that our construction satisfies anti-piracy. Although
the proof requires to open up the structure of UD, this only happens for the last
step: for arguing we can extract secrets for the underlying coset states using the
properties of compute-and-compare obfuscation. Therefore, we will present the
main idea of the proof here, leaving the proof of successful extraction (see Claim
5) in the full version.

Theorem 6. The construction in Sect. 3.2 has strong γ-anti-piracy for any
inverse polynomial γ (as defined in Definition 7).

Proof. We prove by contradiction. There exist inverse polynomials γ(·), ν(·), k(·)
and an adversary A such that for infinitely many λ ∈ N

+, A outputs a pair of
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Fig. 5. Program Pm,r

distinct messages (m0,m1) and a state σ over k + 1 registers (which are k + 1
decryptors) such that

Tr
[(
TI1/2+γ ⊗ TI1/2+γ ⊗ · · · ⊗ TI1/2+γ

)
σ
] ≥ ν. (2)

Let σ∗ be the leftover state (over the k +1 registers), conditioned on all TI1/2+γ

outputting 1. With Equation (2), we can get to σ∗ with probability at least ν.
Next we will prove the theorem assuming we have perfect projective imple-

mentation (see below). Therefore, the resulting reduction is inefficient. At the
end of the section, we will show the proof translates easily when we replace
every projective implementation with its approximated and efficient version.
This replacement will give us an efficient reduction and only incur a small loss.

Defining Probability Measurement PI. We start by defining the following mea-
surements PIi for each i ∈ [k]. PIi stands for the projective implementation
where the underlying ciphertext distribution is: the first i ciphertexts are “fake”,
without encoding any information about the plaintext; the rest are generated
honestly. pk are (pk1, · · · , pkk) as defined in our construction Sect. 3.2; similarly
for ski.

– Let Pi = (Pi, I −Pi) be the following POVM acting on a quantum decryptor:
• Sample a uniform b ← {0, 1} and random coins (which will be used to

generated ciphertexts ct1, · · · , ctk).
• For each j ∈ {1, · · · , i − 1}, compute ctj ← UD.Sim(n) where n is the

length of m0 and m1.
• For each j ∈ {i, · · · , k}, compute ctj ← UD.Enc(pkj ,mb).
• Let ct = (ct1, · · · , ctk).
• Run the quantum decryptor on input ct. Check whether the outcome is

mb. If so, output 1; otherwise, output 0.
– Let PIi be the projective implementation of Pi.

It is easy to see that when a quantum decryptor is in the subspace defined by
TI1/2+γ , applying PI0 on the state will always produce a real number β ≥ 1/2+γ.
This is a simple observation following Theorem 5: TI1/2+γ is implemented by first
applying PI0 and comparing the outcome with 1/2 + γ.
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Let the outcome of applying PI0 on the i-th quantum decryptor of σ∗ be a
random variable bi,0. We have:

Pr
[
∀i ∈ [k + 1], bi,0 ≥ 1

2
+ γ

]
= 1. (3)

Repeated Probability Measure and Its Properties. We then define repeated pro-
jective implementation. For the first quantum decryptor σ∗[1], we apply PI0 to
obtain a outcome b1,0. Then we apply the next projective implementation PI1
on the leftover state to obtain a outcome b1,1. So on and so forth, until we stop
after applying PIk. The outcomes of all measurements are denoted by random
variables b1,0, · · · , b1,k.

Claim 1. There always exists j ∈ [k] such that b1,j−1 − b1,j ≥ γ/k.

Proof. For any quantum decryptor, if we apply PIk on it, the outcome will always
be 1/2. This is because the ciphertext in PIk is always generated without any
information about m0 or m1. Therefore, every decryptor’s behavior is random
guessing: b1,k is always 1/2.

From Eq. (3), we know that b1,0 ≥ 1/2 + γ. By triangle inequality, the claim
holds. ��

We use a random variable j1 for the first index such that b1,j1−1−b1,j1 ≥ γ/k.

We similarly define the above repeated projective implementation for every
quantum decryptor σ∗[i]. Since the repeated measurement on the i-th decryptor
commutes with the repeated measurement on the i′-th (i′ 	= i) decryptor, we
can safely assume they are done in any order. Let (bi,0, · · · , bi,j , · · · , bi,k) be the
outcome of the repeated projective implementation the i-th decryptor. Similarly,
Claim 1 holds for every decryptor:

Claim 2. For every i ∈ [k+1], there always exists j ∈ [k] such that bi,j−1−bi,j ≥
γ/k.

Let ji be the first index such that bi,ji−1 − bi,ji ≥ γ/k. We next show that there
always exist x 	= y such that jx = jy.

Claim 3. Pr [∃x 	= y, jx = jy] = 1.

Proof. This is simply because for every i ∈ [k + 1], ji ∈ [k]. The claim follows
from the pigeonhole principle.

��
Guessing x, y and jx. We describe the first half of our reduction algorithm. The
algorithm takes as input σ∗ (postselecting on all TI1/2+γ output 1, and aborting
if it fails).

In the second part of the reduction algorithm, it will extract a pair of secrets
for the same coset states from σ∗∗[x, y].

We prove the following claim for the above algorithm.
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Fig. 6. Reduction Algorithm Part 1

Claim 4. With probability at least 1/(2k3), the above procedure produces
(x, y, j, bx,j−1, by,j−1) and σ∗∗[x, y] satisfy:

1. Applying PI⊗2
j−1 jointly on σ∗[x, y] produces bx,j−1, by,j−1 with probability 1.

2. Applying PI⊗2
j jointly on σ∗[x, y] produces bx,j , by,j , such that:

Pr
[
bx,j−1 − bx,j ≥ γ

k
∧ by,j−1 − by,j ≥ γ

k

]
≥ 1

2k3
.

Proof (Proof for Claim 4). By Claim 2, there is always a pair of indices x < y and
an integer j ∈ [k] such that bx,j−1−bx,j ≥ γ

k and by,j−1−by,j ≥ γ
k simultaneously.

As a consequence, suppose that we guess x, y and j uniformly at random after
applying the repeated projective implementation PI0, · · · ,PIk on every quantum
decryptor, then

Pr
[
bx,j−1 − bx,j ≥ γ

k
∧ by,j−1 − by,j ≥ γ

k

]
≥ 1

(
k+1
2

) · k
≥ 1

k3
, (4)

where the last inequality follows by k ≥ 1.
Since the repeated projective implementations on disjoint quantum decryp-

tors commute , the same probability can be achieved if we only apply the
repeated measurements on the x-th and y-th decryptors, skipping the other
(k − 1) ones (see Fig. 7).

We have

Pr
RandomMeasure(σ∗)

[
bx,j−1 − bx,j ≥ γ

k
∧ by,j−1 − by,j ≥ γ

k

]
≥ 1

k3
. (5)

Eqs. (4) and (5) differ on how bx,j−1, bx,j , by,j−1, by,j is sampled.

We can view our reduction algorithm (Fig. 6) as the first step of RandomMea-
sure (Fig. 7). More formally, RandomMeasure first runs the reduction algorithm
to get (x, y, j, bx,j−1, by,j−1) and σ∗∗[x, y]; it then applies PIj on both registers
to obtain bx,j and by,j .

If the claim we want to prove does not hold, then with probability < 1/(2k3),
the outcome (x, y, j, bx,j−1, by,j−1) and σ∗∗[x, y] satisfy condition (2) in Claim 4.
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Fig. 7. Algorithm RandomMeasure(σ∗)

Therefore, the probability in Eq. (5) is strictly smaller than 1/(2k3) + 1/(2k3).
This is a contradiction .

��
Extracting Secrets from σ∗∗[x, y]. We describe the second half of our reduction
algorithm. Given (x, y, j, bx,j−1, by,j−1) and σ∗∗[x, y] that satisfy both conditions
in Claim 4, we can extract secrets for both coset states. This violates the strong
computational monogamy-of-entanglement property of coset states, thus finishes
the proof.

Recall the underlying ciphertext distribution of PIj−1 and PIj :

1. The first j − 1 ciphertexts ct1, · · · , ctj−1 are generated by Sim(n).
2. The last k − j ciphertexts ctj+1, · · · , ctk are generated honestly, using their

corresponding public key.
3. The j-th ciphertext is either generated honestly using the j-th public key pkj

(in PIj−1), or by Sim(n) (in PIj). pkj , skj is generated by UD.Setup in Fig. 4.
Let the underlying cosets be {Al + sl, A

⊥
l + s′

l}�
l=1:

pkj = {iO(Al + sl), iO(A⊥
l + s′

l)}l∈[�],

skj = {Al, sl, s
′
l}l∈[�].

The following claim says that if applying Pj−1 or Pj on a quantum decryptor
produce different values (with difference more than γ/k), then we can extract �
vectors v1, · · · , v�: each vl is uniformly in either Al + sl or A⊥

l + s′
l.

Claim 5. For any k = poly(λ), let (sk, pk) ← CRUD.Setup(1λ, k) where sk =
(sk1, · · · , skk) and pk = (pk1, · · · , pkk). Let ρsk be the unclonable decryption
key. For any j ∈ [k], let PIj−1 and PIj be defined at the beginning of the proof.
Let pkj = {iO(Al + sl), iO(A⊥

l + s′
l)}l∈[�], skj = {Al, sl, s

′
l}l∈[�].

If there exist inverse polynomials α1(·), α2(·) and an quantum algorithm B
that takes (ρsk, pk) outputs ρ such that with probability at least α1, ρ satisfies
the following:

1. There exists bj−1 ∈ (0, 1], applying PIj−1 on ρ always produces bj−1.
2. Let the outcome of applying PIj on ρ be bj . Then Pr[bj−1 − bj > γ/k] > α2.
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Then there exists another inverse polynomial β(·) and an efficient quantum algo-
rithm C that takes all the descriptions of {Al}�

l=1 (denoted by A), ρ and � random
coins r1, · · · , r� ∈ {0, 1} such that:

Pr
sk,pk,ρsk,r

ρ←B(ρsk,pk)

[

∀l ∈ [�], vl ∈
{

Al + sl if rl = 0
A⊥

l + s′
l if rl = 1

, (v1, · · · , v�) ← C(A, ρ, r)

]

≥ β.

The proof of this is similar to the extraction technique in [13] using compute-
and-compare obfuscation. We refer interested readers to the full version.

By setting α1 = α2 := 1/(2k3), B be the reduction algorithm in Fig. 6 and
ρ := σ∗∗[x], we conclude that there exists another algorithm that takes σ∗∗[x],
random coins r1, · · · , r� and outputs (v1, · · · , v�) in the corresponding cosets
(depending on each rl).

Next, we show that after a successful extraction on the σ∗∗[x], the other
decryptor still satisfy the conditions (1) (2) for Claim 5. Therefore, we can extract
another random set of vectors from the other decryptor, with non-negligible
probability, even conditioned on a successful extraction on σ∗∗[x].

Assume conditioned on a successful extraction on the σ∗∗[x], the other
decryptor becomes σ′[y] and it does not satisfy the conditions in Claim 5.

First, applying PIj−1 on σ′[y] always produces by,j−1. This is because the
extraction on the σ∗∗[x] register does not change the support of σ′[y]. Thus,
condition (2) in Claim 5 can not hold. Let E1 denote a successful (E)xtraction
on σ∗∗[x] and G2 be a indicator that applying PIj on σ∗∗[y] to get by,j and
by,j < by,j−1 − γ

k3 (a big (G)ap). We know that in this case, Pr[E1 ∧ G2] is
negligibly small.

However, this can not be true. We can imagine PIj is implemented first. We
know that Pr[G2] is non-negligible by the condition (2) in Claim 4. Conditioned
on G2, let the x-th decryptor become σ′[x]. We know that σ′[x] must satisfy
both conditions in Claim 5. Otherwise, condition (2) in Claim 4 can not hold.
Thus, Pr[G2|E1] must be non-negligible. This contradicts with the assumption
that Pr[E1 ∧ G2] is negligibly small.

Thus, the reduction algorithm, with non-negligible probability, can extract
(v1, · · · , v�) and (v′

1, · · · , v′
�) with respect to random r1, · · · , r� and r′

1, · · · , r′
�.

With probability at least 1 − 2−�, there exist l ∈ [�] such that rl 	= r′
l. Thus, vl

and v′
l will be two vectors in each of the cosets Al + sl and A′

l + s′
l. By guessing

this l, this breaks the computational strong monogamy-of-entanglement game
(Theorem 3). ��
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Abstract. Secret-sharing is one of the most fundamental primitives in
cryptography, and has found several applications. All known construc-
tions of secret sharing (with the exception of those with a pathological
choice of parameters) require access to uniform randomness. However,
in practice it is extremely challenging to generate a source of uniform
randomness. This has led to a large body of research devoted to design-
ing randomized algorithms and cryptographic primitives from imperfect
sources of randomness. Motivated by this, Bosley and Dodis (TCC 2007)
asked whether it is even possible to construct a 2-out-of-2 secret sharing
scheme without access to uniform randomness.

In this work, we make significant progress towards answering this
question. Namely, we resolve this question for secret sharing schemes
with important additional properties: 1-bit leakage-resilience and non-
malleability. We prove that, for not too small secrets, it is impossible to
construct any 2-out-of-2 leakage-resilient or non-malleable secret sharing
scheme without access to uniform randomness.

Given that the problem of whether 2-out-of-2 secret sharing requires
uniform randomness has been open for more than a decade, it is rea-
sonable to consider intermediate problems towards resolving the open
question. In a spirit similar to NP-completeness, we also study how the
existence of a t-out-of-n secret sharing without access to uniform random-
ness is related to the existence of a t′-out-of-n′ secret sharing without
access to uniform randomness for a different choice of the parameters
t, n, t′, n′.

1 Introduction

Secret sharing, introduced by Blakley [12] and Shamir [47], strikes a meaningful
balance between availability and confidentiality of secret information. This fun-
damental cryptographic primitive has found a host of applications, most notably
to threshold cryptography and multi-party computation (see [21] for an exten-
sive discussion). In a secret sharing scheme for n parties, a dealer who holds a
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secret s chosen from a domain M can compute a set of n shares by evaluating
a randomized function on s which we write as Share(s) = (Sh1, . . . ,Shn). The
notion of threshold secret sharing is particularly important: A t-out-of-n secret
sharing scheme ensures that any t shares are sufficient to recover the secret s,
but any t − 1 shares reveal no information about the secret s.

Motivated by practice, several variants of secret sharing have been sug-
gested which guarantee security under stronger adversarial models. The notion
of leakage-resilient secret sharing was put forth in order to model and han-
dle side-channel attacks to secret shared data. In more detail, the adversary,
who holds an unauthorized subset of shares, is furthermore allowed to spec-
ify a leakage function Leak from a restricted family of functions and learn
Leak(Sh1, . . . ,Shn). The goal is that this additional side information reveals
almost no information about the secret. Typically one considers local leakage,
where Leak(Sh1, . . . ,Shn) = (Leak1(Sh1), . . . , Leakn(Shn)) for local leakage func-
tions Leaki with bounded output length. This makes sense in a scenario where
shares are stored in physically separated locations. The alternative setting where
adversaries are allowed to corrupt all shares (e.g., by infecting storage devices
with viruses) led to the introduction of non-malleable secret sharing. In this
case, the adversary specifies tampering functions f1, f2, . . . , fn which act on the
shares, and then the reconstruction algorithm is applied to the tampered shares
f1(Sh1), . . . , fn(Shn). The requirement, roughly speaking, is that either the orig-
inal secret is reconstructed or it is destroyed, i.e., the reconstruction result is
unrelated to the original secret. Both leakage-resilient and non-malleable secret
sharing have received significant attention in the past few years.

Cryptography with Weak Randomness. It is well-known that randomness plays
a fundamental role in cryptography and other areas of computer science. In
fact, most cryptographic goals cannot be achieved without access to a source
of randomness. Almost all settings considered in the literature assume that this
source of randomness is perfectly random: It outputs uniformly random and
independent bits. However, in practice it is extremely hard to generate perfect
randomness. The randomness needed for the task at hand is generated from
some physical process, such as electromagnetic noise or user dependent behav-
ior. While these sources have some inherent randomness, in the sense that they
contain entropy, samples from such sources are not necessarily uniformly dis-
tributed. Additionally, the randomness generation procedure may be partially
accessible to the adversary, in which case the quality of the randomness provided
degrades even further. The difficulty in working with such imperfect randomness
sources not only arises from the fact that they are not uniformly random, but
also because the exact distribution of these sources is unknown. One can at best
assume that they satisfy some minimal property, for example that none of the
outcomes is highly likely as first considered by Chor and Goldreich [19].

The best one can hope for is to deterministically extract a nearly per-
fect random string for direct usage in the desired application. While there are
source models which allow for determinisitc randomness extraction, such as von
Neumann sources [42], bit-fixing sources [20], affine sources [15], and other effi-
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ciently generated or recognizable sources [11,13,18,29,30,35,37,46,51], all these
models make strong assumptions about the structure of the source. On the other
hand, the most natural, flexible, and well-studied source model where we only
assume a lower bound on the min-entropy of the source1 does not allow deter-
ministic extraction of even 1 almost uniformly random bit [19]. This holds even
in the highly optimistic case where the source is supported on {0, 1}d and has
min-entropy d − 1. Nevertheless, it has been long known, for example, that min-
entropy sources are sufficient for simulating certain randomized algorithms and
interactive protocols [19].

This discussion naturally leads us to wonder whether perfect randomness is
essential in different cryptographic primitives, in the sense that the underlying
class of sources of randomness allows deterministic extraction of nearly uniformly
random bits. We call such classes of sources extractable. More concretely, the
following is our main question.

Question 1. Does secret sharing, or any of its useful variants such as
leakage-resilient or non-malleable secret sharing, require access to extractable
randomness?

This question was first asked by Bosley and Dodis [14] (for 2-out-of-2 secret
sharing) and it remains open. Bosley and Dodis settled the analogous question for
the case of information-theoretic private-key encryption, motivated by a series of
(im)possibility results for such schemes in more specific source models [24,26,41].
More precisely, they showed that encryption schemes using d bits of randomness
and encrypting messages of size b > log d require extractable randomness, while
those encrypting messages of size b < log d − log log d − 1 do not.

As noted in [14,25], private-key encryption schemes yield 2-out-of-2 secret
sharing schemes by seeing the uniformly random key as the left share and the
ciphertext as the right share. Therefore, we may interpret the main result of [14]
as settling Question 1 for the artificial and highly restrictive class of secret sharing
schemes where the left share is uniformly random and independent of the secret,
and the right share is a deterministic function of the secret and the left share.
No progress has been made on Question 1 since.

Random-Less Reductions for Secret Sharing. Given that the problem of whether
2-out-of-2 secret sharing requires extractable randomness has been open for 15
years, it is reasonable to consider intermediate problems towards resolving the
open question. In a spirit similar to computational complexity, we consider how
the question whether t out of n secret sharing requires extractable randomness
is related to the same question for a different choice of the parameters t, n i.e.,

Question 2. Given t, n, t′, n′, does the fact that t-out-of-n secret sharing require
extractable randomness imply that t′-out-of-n′ secret sharing require extractable
randomness?

1 A source is said to have min-entropy k if the probability that it takes any fixed value
is upper bounded by 2−k.
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A natural approach towards resolving this question is to try to construct a t-out-
of-n secret sharing scheme from a t′-out-of-n′ secret sharing scheme in a black-
box manner without any additional randomness. Intuitively, since we don’t have
access to any additional randomness, it seems that the most obvious strategy
to achieve such reductions is to choose n subsets of the set of n′ shares in such
a way that any t out of these n subsets contain at least t′ out of the original
n′ shares and any t − 1 subsets contain at most t′ − 1 of the original n′ shares.
In particular, there is a trivial reduction when t = n = 2 that chooses the first
subset to contain the first of the n′ shares, and the second subset to contain any
t′ − 1 of the remaining shares. This shows the completeness of the extractability
of 2-out-of-2 secret sharing with respect to these reductions. Such reductions can
be formalized via distribution designs [49].

1.1 Our Results

In this work, we make progress on both Question 1 and Question 2. Before we
proceed to discuss our results, we formalize the notions of an extractable class
of randomness sources and threshold secret sharing.

Definition 1 (Extractable class of sources). We say a class of randomness
sources Y over {0, 1}d is (δ, m)-extractable if there exists a deterministic func-
tion Ext : {0, 1}d → {0, 1}m such that2 Ext(Y ) ≈δ Um for every Y ∈ Y, where
Um denotes the uniform distribution over {0, 1}m.

Note that we may consider the support of all sources in Y to be contained in
some set {0, 1}d without loss of generality. Since we will be interested in studying
the quality of randomness used by secret sharing schemes, we make the class of
randomness sources allowed for a secret sharing scheme explicit in the definition
of t-out-of-n threshold secret sharing below.

Definition 2 (Threshold secret sharing scheme). A tuple (Share, Rec, Y)
with Share : {0, 1}b × {0, 1}d →

(
{0, 1}�

)n and Rec : {0, 1}∗ → {0, 1}b deter-
ministic algorithms and Y a class of randomness sources over {0, 1}d is a (t, n, ε)-
secret sharing scheme (for b-bit messages using d bits of randomness) if for every
randomness source Y ∈ Y the following hold:

1. If T ⊆ [n] satisfies |T | ≥ t (i.e., T is authorized), then

Pr
Y

[Rec(Share(x, Y )T ) = x] = 1

for every x ∈ {0, 1}b;
2. If T ⊆ [n] satisfies |T | < t (i.e., T is unauthorized), then for any x, x′ ∈

{0, 1}b we have
Share(x, Y )T ≈ε Share(x′, Y )T ,

where Share(x, Y )T denotes the shares of parties i ∈ T .
2 We use the notation X ≈δ Y to denote the fact that Δ(X; Y ) ≤ δ, where Δ(·; ·)

corresponds to statistical distance (see Definition 8).
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Leakage-Resilient 2-out-of-2 Secret Sharing Requires Extractable Ran-
domness. As our first contribution, we settle Question 1 for the important
sub-class of leakage-resilient 2-out-of-2 secret sharing. Intuitively, we consider 2-
out-of-2 secret sharing schemes with the additional property that the adversary
learns almost nothing about the message when they obtain bounded information
from each share. More formally, we have the following definition.

Definition 3 (Leakage-resilient secret sharing scheme). We say that a
tuple (Share, Rec, Y) with Share : {0, 1}b × {0, 1}d →

(
{0, 1}�

)2 and Rec :
{0, 1}∗ → {0, 1}b deterministic algorithms and Y a class of randomness sources
over {0, 1}d is an (ε1, ε2)-leakage-resilient secret sharing scheme (for b-bit mes-
sages using d bits of randomness) if (Share, Rec, Y) is a (t = 2, n = 2, ε1)-
secret sharing scheme and the following additional property is satisfied: For any
two messages x, x′ ∈ {0, 1}b and randomness source Y ∈ Y, let (Sh1,Sh2) =
Share(x, Y ) and (Sh′

1,Sh′
2) = Share(x′, Y ). Then, for any leakage functions

f, g : {0, 1}� → {0, 1} it holds that

f(Sh1), g(Sh2) ≈ε2 f(Sh′
1), g(Sh′

2).

Leakage-resilient secret sharing has received significant attention recently,
with several constructions and leakage models being analyzed [1,10,17,36,38,
39,48]. Comparatively, Definition 3 considers a significantly weaker notion of
leakage-resilience than all works just mentioned. In particular, we do not require
leakage-resilience to hold even when the adversary has full access to one of the
shares on top of the leakage. This means that our results are widely applicable.
Roughly speaking, we prove that every leakage-resilient secret sharing scheme for
b-bit messages either requires a huge number of bits of randomness, or we can
extract several bits of perfect randomness with low error from its underlying
class of randomness sources. More formally, we prove the following.

Theorem 1. Let (Share, Rec, Y) be an (ε1, ε2)-leakage-resilient secret sharing
scheme for b-bit messages. Then, either:

1. The scheme uses d ≥ min
(
2Ω(b), (1/ε2)Ω(1)) bits of randomness, or;

2. The class of sources Y is (δ, m)-extractable with δ ≤ max
(

2−Ω(b), ε
Ω(1)
2

)
and

m = Ω(min(b, log(1/ε2))). Moreover, if Share is computable by a poly(b)-
time algorithm, then Y is (δ, m)-extractable by a family of poly(b)-size circuits.

An important corollary of Theorem 1 is that every efficient negligible-error
leakage-resilient secret sharing scheme requires extractable randomness with neg-
ligible error.

Corollary 1. If (Share, Rec, Y) is an (ε1, ε2)-leakage-resilient secret sharing
scheme for b-bit messages running in time poly(b) with ε2 = negl(b),3 it follows
that Y is (δ, m)-extractable with δ = negl(b) and m = Ω(min(b, log(1/ε2))).

3 By ε2 = negl(b), we mean that ε2 = o(1/bc) for every constant c > 0 as b → ∞.
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Split-State Non-malleable Coding Requires Extractable Randomness. Non-
malleable coding, introduced by Dziembowski, Pietrzak, and Wichs [31], is
another recent notion which has attracted much attention, in particular regard-
ing the split-state setting (see [3] and references therein). Informally, a split-state
non-malleable code has the guarantee that if an adversary is allowed to split a
codeword in half and tamper with each half arbitrarily but separately, then the
tampered codeword either decodes to the same message, or the output of the
decoder is nearly independent of the original message. More formally, we have
the following definition.

Definition 4 (Split-state non-malleable code [31]). A tuple (Enc, Dec, Y)
with Enc : {0, 1}b × {0, 1}d → ({0, 1}�)2 and Dec : ({0, 1}�)2 → {0, 1}b ∪ {⊥}
deterministic algorithms and Y a class of randomness sources is a (split-state)
ε-non-malleable code if the following holds for every randomness source Y ∈ Y:

1. Pr[Dec(Enc(x, Y )) = x] = 1 for all x ∈ {0, 1}b;
2. For tampering functions f, g : {0, 1}� → {0, 1}�, denote by Tampf,g

x the tam-
pering random experiment which computes (L, R) = Enc(x, Y ) and outputs
Dec(f(L), g(R)). Then, for any tampering functions f and g there exists a
distribution Df,g over {0, 1}b ∪ {⊥, same∗} such that

Tampf,g
x ≈ε Simf,g

x

for all x ∈ {0, 1}b, where Simf,g
x denotes the random experiment which sam-

ples z according to Df,g and outputs z if z 
= same∗ and x if z = same∗.

The notion of non-malleable code in the split-state model is equivalent to the
notion of a 2-out-of-2 non-malleable secret sharing scheme [34].

It is known by [2, Lemmas 3 and 4] that every ε-non-malleable coding scheme
(Enc, Dec, Y) for b-bit messages is also a (2ε, ε)-leakage-resilient secret shar-
ing scheme, provided b ≥ 3 and ε < 1/20. Combining this observation with
Theorem 1 yields the following corollary, which states that every split-state non-
malleable code either uses a huge number of bits of randomness, or requires
extractable randomness with low error and large output length.

Corollary 2. Let (Enc, Dec, Y) be an ε-non-malleable code (i.e., 2-out-of-2 ε-
non-malleable secret sharing scheme) for b-bit messages with b ≥ 3 and ε < 1/20.
Then, either:

1. The scheme uses d ≥ min
(
2Ω(b), (1/ε)Ω(1)) bits of randomness, or;

2. The class of sources Y is (δ, m)-extractable with δ ≤ max
(
2−Ω(b), εΩ(1)) and

m = Ω(min(b, log(1/ε))). Moreover, if Enc is computable by a poly(b)-time
algorithm, then Y is (δ, m)-extractable by a family of poly(b)-size circuits.

As a result, an analogous version of Corollary 1 also holds for split-state non-
malleable coding. This resolves Question 1 for 2-out-of-2 non-malleable secret
sharing.
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Random-Less Reductions for Secret Sharing. In this section, we discuss
our contribution towards resolving Question 2. We focus on the following com-
plementary scenario: Suppose we have proved that all (t, n, ε)-secret sharing
schemes for b-bit messages using d bits of randomness require a (δ, m)-extractable
class of randomness sources. It is then natural to wonder whether such a result
can be bootstrapped to conclude that all (t′, n′, ε)-secret sharing schemes for
the same message length b and number of randomness bits d also require (δ, m)-
extractable randomness, for different threshold t′ and number of parties n′. A
natural approach is to set up general black-box reductions between different types
of secret sharing which, crucially, do not use extra randomness. In fact, if we can
obtain from a (t′, n′, ε)-secret sharing scheme (Share′, Rec′, Y) another (t, n, ε)-
secret sharing scheme (Share, Rec, Y) for b-bit messages which uses the same
class of randomness sources Y, then our initial assumption would allow us to
conclude that Y is (δ, m)-extractable.

Remarkably, we are able to obtain the desired reductions for a broad range
of parameters by exploiting a connection to the construction of combinatorial
objects called distribution designs, a term coined by Stinson and Wei [49] for the
old technique of devising a new secret sharing scheme by giving multiple shares of
the original scheme to each party. Surprisingly, although these objects have roots
going back to early work on secret sharing [9], they have not been the subject of
a general study. In this work, we obtain general and simple constructions of, and
bounds for, distribution designs, which are tight in certain parameter regimes.
We give two examples of reductions we derive from these results.

Corollary 3 (Informal). If every (t = 2, n, ε)-secret sharing scheme for b-
bit messages using d bits of randomness requires a (δ, m)-extractable class of
randomness sources, then so does every (t′, n′, ε)-secret sharing scheme for b-bit
messages using d bits of randomness whenever n ≤

(
n′

t′−1
)
. Moreover, this is the

best distribution-design-based reduction possible with t = 2.

Corollary 4 (Informal). If every (t, n, ε)-secret sharing scheme for b-bit mes-
sages using d bits of randomness requires a (δ, m)-extractable class of randomness
sources, then so does every (t′ = n′, n′, ε)-secret sharing scheme for b-bit mes-
sages using d bits of randomness whenever n′ ≥

(
n

t−1
)
. Moreover, this is the best

distribution-design-based reduction possible with t′ = n′.

1.2 Related Work

We begin by discussing the results on private-key encryption that led to the work
of Bosley and Dodis [14] in more detail. Early work by McInnes and Pinkas [41]
showed that min-entropy sources and Santha-Vazirani sources are insufficient for
information-theoretic private-key encryption of even 1-bit messages. This nega-
tive result was later extended to computationally secure private-key encryption
by Dodis, Ong, Prabhakaran, and Sahai [24], and was complemented by Dodis
and Spencer [26], who showed that, in fact, non-extractable randomness is suf-
ficient for information-theoretic private-key encryption of 1-bit messages. Later,
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the picture was completed by the aforementioned groundbreaking work of Bosley
and Dodis [14].

Besides the results already discussed above for private-key encryption and
secret sharing, the possibility of realizing other cryptographic primitives using
certain classes of imperfect randomness sources has also been studied. Non-
extractable randomness is known to be sufficient for message authentica-
tion [26,40], signature schemes [5,24], differential privacy [23,27,52], secret-key
agreement [5], identification protocols [5], and interactive proofs [24]. On the
other hand, Santha-Vazirani sources are insufficient for bit commitment, secret
sharing, zero knowledge, and two-party computation [24], and in some cases this
negative result even holds for Santha-Vazirani sources with efficient tampering
procedures [5].

In other directions, the security loss incurred by replacing uniform random-
ness by imperfect randomness was studied in [6,8], and the scenario where a
perfect common reference string is replaced by certain types of imperfect ran-
domness has also been considered [4,16]. The security of keyed cryptographic
primitives with non-uniformly random keys has also been studied [28].

1.3 Technical Overview

Leakage-Resilient Secret Sharing Requires Extractable Randomness.
We present a high-level overview of our approach towards proving Theorem 1.
Recall that our goal is to show that if (Share, Rec, Y) is an (ε1, ε2)-leakage-
resilient secret sharing for b-bit messages using d bits of randomness, then there
exists a deterministic function Ext : {0, 1}d → {0, 1}m such that Ext(Y ) ≈δ Um

for all sources Y ∈ Y, provided that the number of randomness bits d used is
not huge.

Our candidate extractor Ext works as follows on input some y ∈ {0, 1}d:

1. Compute (Sh1,Sh2) = Share(0b, y) ∈ {0, 1}� × {0, 1}�;
2. For appropriate leakage functions f, g : {0, 1}� → {0, 1}s, compute the tuple

(f(Sh1), g(Sh2));
3. For an appropriate function h : {0, 1}2s → {0, 1}m, output

Ext(y) = h(f(Sh1), g(Sh2)).

The proof of Theorem 1 follows from an analysis of this candidate construction,
and we show the existence of appropriate functions f , g, and h via the probabilis-
tic method. Note that the number of sources in Y may be extremely large. Con-
sequently, our first step, which is similar in spirit to the first step of the related
result for private-key encryption in [14], is to exploit the leakage-resilience of
the scheme in question to show that it suffices to focus on a restricted family
to prove the desired result. More precisely, it suffices to show the existence of
functions f , g, and h as above satisfying

h(f(Z1), g(Z2)) ≈δ′ Um, (1)
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with δ′ an appropriate error parameter, for all (Z1, Z2) ∈ Z defined as

Z = {Share(Ub, y) : y ∈ {0, 1}d},

which contains at most 2d distributions. Our analysis then proceeds in three
steps:
1. We show that each (Z1, Z2) ∈ Z is close in statistical distance to a con-

vex combination of joint distributions (D1,i, D2,i) with the property that
H∞(D1,i) + H∞(D2,i) is sufficiently large for all i, where H∞(·) denotes
the min-entropy of a distribution;

2. Exploiting the previous step, we prove that if we pick f and g uniformly
at random, then with high probability over this choice it holds that the joint
distribution (f(Z1), g(Z2)) is close in statistical distance to a high min-entropy
distribution;

3. A well known, standard application of the probabilistic method then shows
that a uniformly random function h will extract many perfectly random bits
from (f(Z1), g(Z2)) with high probability over the choice of h.

While this proves that there exist functions f , g, and h such that (1) holds for
a given (Z1, Z2) ∈ Z, we need (1) to be true simultaneously for all (Z1, Z2) ∈ Z.
We resolve this by employing a union bound over the at most 2d distributions
in Z. Therefore, if d is not extremely large, we succeed in showing the existence
of appropriate functions f , g, and h, and the desired result follows. More details
can be found in Sect. 3.

Random-Less Reductions for Secret Sharing. In this section, we define
distribution designs and briefly discuss how they can be used to provide the
desired black-box reductions between different types of threshold secret sharing,
in particular Corollaries 3 and 4. Intuitively, a (t, n, t′, n′)-distribution design
distributes shares (Sh1,Sh2, . . . ,Shn′) of some (t′, n′, ε)-secret sharing scheme
into subsets of shares S1, . . . , Sn, with the property that (S1, . . . , Sn) are now
shares of a (t, n, ε)-secret sharing scheme. More formally, we have the following
definition, which also appears in [49].
Definition 5 (Distribution design). We say a family of sets D1, D2, . . . ,
Dn ⊆ [n′] is a (t, n, t′, n′)-distribution design if for every T ⊆ [n] it holds that

∣
∣
∣
∣
∣

⋃

i∈T
Di

∣
∣
∣
∣
∣

≥ t′

if and only if |T | ≥ t.
Given a (t, n, t′, n′)-distribution design D1, . . . , Dn ⊆ [n′], it is clear how to

set up a black-box reduction without extra randomness from (t′, n′, ε)-secret
sharing to (t, n, ε)-secret sharing: If (Share′, Rec′, Y) is an arbitrary (t′, n′, ε)-
secret sharing scheme for b-bit messages, we can obtain a (t, n, ε)-secret sharing
scheme (Share, Rec, Y) for b-bit messages by defining

Share(x, y)i = Share′(x, y)Di
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for each i ∈ [n], and

Rec(Share(x, y)T ) = Rec′
(

Share′(x, y)⋃
i∈T

Di

)

for each T ⊆ [n]. The following lemma is then straightforward from the defini-
tions of threshold secret sharing and distribution designs, and this construction.

Lemma 1. If every (t, n, ε)-secret sharing scheme for b-bit messages using d
bits of randomness requires (δ, m)-extractable randomness and there exists a
(t, n, t′, n′)-distribution design, then so does every (t′, n′, ε)-secret sharing scheme
for b-bit messages using d bits of randomness.

Details of our constructions of distribution designs and associated bounds can be
found in Sect. 4. The black-box reductions then follow immediately by combining
these constructions with Lemma 1.

1.4 Open Questions

We obtain distribution designs for a wide variety of parameters, but for some of
these constructions we could not prove optimality or find a better construction.
We leave this as an open question. A naturally related question is whether there
is an alternative approach to obtain a random-less reduction for secret sharing
that does not use distribution designs.

Finally, we hope this work further motivates research on the main open ques-
tion of whether 2-out-of-2 secret sharing (or even t-out-of-n secret sharing for
any t and n) requires extractable randomness.

2 Preliminaries

2.1 Notation

Random variables are denoted by uppercase letters such as X, Y , and Z, and we
write Um for the uniform distribution over {0, 1}m. We usually denote sets by
uppercase calligraphic letters like S and T , and write [n] for the set {1, 2, . . . , n}.
Given a vector x ∈ Sn and set T ⊆ [n], we define xT = (xi)i∈T . We denote the
F2-inner product between vectors x, y ∈ {0, 1}n by 〈x, y〉. All logarithms in this
paper are taken with respect to base 2.

2.2 Probability Theory

In this section, we introduce basic notions from probability theory that will be
useful throughout this work.

Definition 6 (Min-entropy). The min-entropy of a random variable X on a
set X , denoted by H∞(X), is defined as

H∞(X) = − log max
x∈X

Pr[X = x].
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Definition 7 ((n, k)-source). We say a random variable X supported over
{0, 1}n is an (n, k)-source if H∞(X) ≥ k. When the support of the random
variable is clear from context we may instead say k-source. Moreover, we say X
is flat if it is uniformly distributed over a subset of {0, 1}n.

Definition 8. The statistical distance between random variables X and Y over
a set X , denoted by Δ(X, Y ), is defined as

Δ(X, Y ) = max
S⊆X

| Pr[X ∈ S] − Pr[Y ∈ S]| = 1
2

∑

x∈X
|Pr[X = x] − Pr[Y = x]|.

Moreover, we say that X and Y are ε-close, denoted by X ≈ε Y , if Δ(X, Y ) ≤ ε,
and ε-far if this does not hold.

The following lemma is a version of the well-known XOR lemma (see [33] for
a detailed exposition of these types of results).

Lemma 2 (XOR Lemma). If X and Y are distributions supported on {0, 1}t

such that
〈a, X〉 ≈ε 〈a, Y 〉

for all non-zero vectors a ∈ {0, 1}t, then

X ≈ε′ Y

for ε′ = 2t/2ε.

We end this section with a standard lemma stemming from a straightforward
application of the probabilistic method, which states that, with high probability,
a random function extracts almost perfect randomness from a fixed source with
sufficient min-entropy. By a union bound, this result also implies that a random
function is a great extractor for all sufficiently small classes of flat sources (and
convex combinations thereof), an observation we will exploit later on.

Lemma 3. Fix an (n, k)-source X. Then, for every ε > 0 it holds that a uni-
formly random function F : {0, 1}n → {0, 1}m with m ≤ k − 2 log(1/ε) satisfies
F (X) ≈ε Um with probability at least 1 − 2e−ε22k over the choice of F .

Proof. See Appendix A. �
The following extension of Lemma 3, stating that a random function con-

denses weak sources with high probability, will also be useful.

Lemma 4. Fix an (n, k)-source X. Then, for every ε > 0 it holds that a uni-
formly random function F : {0, 1}n → {0, 1}m satisfies F (X) ≈ε W for some W

such that H∞(W ) ≥ min(m, k − 2 log(1/ε)) with probability at least 1 − 2e−ε22k

over the choice of F .

Proof. For m′ = min(m, k − 2 log(1/ε)), let F ′ : {0, 1}n → {0, 1}m′ be the
restriction of F to its first m′ bits. Then, Lemma 3 ensures that F ′(X) ≈ε Um′

with probability at least 1−2e−ε22k over the choice of F . Via a coupling argument,
this implies that F (X) ≈ W for some W with H∞(W ) ≥ m′. �
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2.3 Amplifying Leakage-Resilience

Recall the definition of leakage-resilient secret sharing from Definition 3 already
discussed in Sect. 1. The following lemma states that every secret sharing scheme
withstanding 1 bit of leakage also withstands t > 1 bits of leakage from each
share, at the cost of an increase in statistical error.

Lemma 5. Let (Share, Rec, Y) be an (ε1, ε2)-leakage-resilient secret sharing
scheme. Then, for all secrets x, x′ ∈ {0, 1}b, randomness source Y ∈ Y, and
functions f, g : {0, 1}� → {0, 1}t we have

f(Sh1), g(Sh2) ≈ε′ f(Sh′
1), g(Sh′

2)

with ε′ = 2tε2, where (Sh1,Sh2) = Share(x, Y ) and (Sh′
1,Sh′

2) = Share(x′, Y ).

Proof. Fix arbitrary secrets x, x′ ∈ {0, 1}b and a randomness source Y ∈ Y,
and define (Sh1,Sh2) = Share(x, Y ) and (Sh′

1,Sh′
2) = Share(x′, Y ). Suppose

that there exist functions f, g : {0, 1}� → {0, 1}t such that the distributions
(f(Sh1), g(Sh2)) and (f(Sh′

1), g(Sh′
2)) are (ε′ = 2tε2)-far. Then, the XOR lemma

implies that there is a non-zero vector a ∈ {0, 1}2t, which we may write as
a = (a(1), a(2)) for a(1), a(2) ∈ {0, 1}t, such that the distributions

〈a, (f(Sh1), g(Sh2))〉 = 〈a(1), f(Sh1)〉 + 〈a(2), g(Sh2)〉

and
〈a, (f(Sh′

1), g(Sh′
2))〉 = 〈a(1), f(Sh′

1)〉 + 〈a(2), g(Sh′
2)〉

are ε2-far. Consequently, for f ′, g′ : {0, 1}� → {0, 1} defined as f ′(z) =
〈a(1), f(z)〉 and g′(z) = 〈a(2), g(z)〉 it holds that

f ′(Sh1), g′(Sh2) 
≈ε2 f ′(Sh′
1), g′(Sh′

2),

contradicting the fact that (Share, Rec, Y) is an (ε1, ε2)-leakage-resilient secret
sharing scheme. �

3 Randomness Extraction from Leakage-Resilient Secret
Sharing Schemes

In this section, we show that all 2-out-of-2 secret sharing schemes satisfying the
weak leakage-resilience requirement from Definition 2 require extractable ran-
domness with good parameters.

Theorem 2. Given any γ ∈ (0, 1), there are absolute constants cγ , c′
γ , c′′

γ > 0
such that the following holds: Suppose (Share, Rec, Y) is an (ε1, ε2)-leakage-
resilient secret sharing scheme for b-bit messages using d bits of randomness.
Then, if b ≥ cγ and d ≤ 2c′

γ b it holds that Y is (δ, m)-extractable with δ ≤
2bε2 + 2−c′′

γ b and m ≥ (1 − γ)b.
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We prove Theorem 2 via a sequence of lemmas by showing the existence of
an extractor Ext : {0, 1}d → {0, 1}m for the class Y with appropriate param-
eters. Our construction works as follows: On input y ∈ {0, 1}d, the extrac-
tor Ext computes (Ly, Ry) = Share(0b, y), applies special leakage functions
f, g : {0, 1}� → {0, 1}b to be determined in order to obtain local leakage
(f(Ly), g(Ry)), and finally outputs Ext(y) = h(f(Ly), g(Ry)) for an appropri-
ate function h : {0, 1}2b → {0, 1}m. Our goal is to show that

Ext(Y ) ≈δ Um (2)

for all sources Y ∈ Y. Similarly in spirit to [14], our first lemma shows that
in order to prove (2) we can instead focus on extracting randomness from the
family of distributions

Z = {Share(Ub, y) : y ∈ {0, 1}d}.

Lemma 6. Fix functions f, g : {0, 1}� → {0, 1}b and h : {0, 1}2b → {0, 1}m,
and suppose that

Ext′(Z) = h(f(Z1), g(Z2)) ≈δ′ Um (3)

for all Z = (Z1, Z2) ∈ Z. Then, it holds that Ext given by Ext(y) = h(f(Ly),
g(Ry)), where (Ly, Ry) = Share(0b, y), satisfies

Ext(Y ) ≈δ Um

for all Y ∈ Y with δ = 2bε2 + δ′.

Proof. Lemma 5 implies that

f(LY ), g(RY ) ≈ε′ f(L′
Y ), g(R′

Y ),

where (L′
Y , R′

Y ) = Share(Ub, Y ) holds with ε′ = 2bε2 for all Y ∈ Y, and so
Ext(Y ) ≈ε′ h(f(L′

K), g(R′
K)). Since (3) holds for all Z ∈ Z and Share(Ub, Y ) is

a convex combination of distributions in Z, it follows that h(f(L′
Y ), g(R′

Y )) ≈δ′

Um. The triangle inequality yields the desired result. �

Given Lemma 6, we will focus on proving (3) for appropriate functions f , g, and
h and error δ′ in the remainder of this section. We show the following lemma,
which implies Theorem 2 together with Lemma 6.

Lemma 7. Given any γ ∈ (0, 1), there are absolute constants cγ , c′
γ , c′′

γ > 0 such
that if b ≥ cγ and d ≤ 2c′

γ b, then there exist functions f, g : {0, 1}� → {0, 1}b

and h : {0, 1}2b → {0, 1}m such that

Ext′(Z) = h(f(Z1), g(Z2)) ≈δ′ Um

for all Z = (Z1, Z2) ∈ Z with δ′ ≤ 2−c′′
γ b and m ≥ (1 − γ)b.

The roadmap for the proof ahead is that we are first going to fix a Z ∈ Z,
and then do the following:



340 D. Aggarwal et al.

1. Justify that Z = (Z1, Z2) is statistically close to an appropriate convex
combination of distributions with linear min-entropy that suit our purposes.
(Lemma 8)

2. Show that if we pick f and g uniformly at random, then with high proba-
bility over this choice it holds that (f(Z1), g(Z2)) is statistically close to a
distribution with decent min-entropy. (Lemma 9)

3. Note that a random function h extracts uniformly random bits from the tuple
(f(Z1), g(Z2)) with high probability, provided that this distribution contains
enough min-entropy. A union bound over the 2d distributions in Z concludes
the argument.

Lemma 8. Fix β ∈ (0, 1) and an integer r > 0. Then, for all (Z1, Z2) ∈ Z
it holds that (Z1, Z2) is

(
r · 2−(1−β−1/r)b)

-close to a distribution D =
∑

i∈I pi ·
(D1,i, D2,i) where for each i ∈ I ⊆ [r] it holds that D1,i, D2,i ∈ {0, 1}�, and
H∞(D1,i) ≥

(
β − ( i−1

r )
)
b and H∞(D2,i|D1,i = sh1) ≥

(
i−1

r

)
b for every sh1 ∈

supp(D1,i).

Proof. Fix some y ∈ {0, 1}d and set (Z1, Z2) = Share(Ub, y). It will be help-
ful for us to see Share(·, y) as a bipartite graph G with left and right vertex
sets {0, 1}� and an edge between sh1 and sh2 if (sh1, sh2) ∈ supp(Z1, Z2). Then,
(Z1, Z2) is the uniform distribution on the 2b edges of G by the correctness of
the scheme. For every left vertex sh1 ∈ {0, 1}�, we define its neighborhood

A(sh1) = {sh2 : (sh1, sh2) ∈ supp(Z1, Z2)}

and its degree
deg(sh1) = |A(sh1)|.

Note that (Z2|Z1 = sh1) is uniformly distributed over A(sh1), and so

H∞(Z2|Z1 = sh1) = log deg(sh1).

Partition supp(Z1) into sets

Si =
{
sh1 : 2(

i−1
r )b ≤ deg(sh1) < 2( i

r )b
}

for i ∈ [r]. With this definition in mind, we can express (Z1, Z2) as
∑

i∈[r]

Pr[Z1 ∈ Si](Z1, Z2|Z1 ∈ Si),

where (Z1, Z2|Z1 ∈ Si) denotes the distribution (Z1, Z2) conditioned on the
event that Z1 ∈ Si. Call a non-empty set Si good if

∑
sh1∈Si

deg(sh1) ≥ 2(β+1/r)b.
Otherwise the set Si is bad. Let I denote the set of indices i ∈ [r] such that Si

is good. We proceed to show that we can take the target distribution D in the
lemma statement to be D =

∑
i∈I pi · (D1,i, D2,i) for

pi = Pr[Z1 ∈ Si]
Pr[Z1lands on good set]
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with (D1,i, D2,i) = (Z1, Z2|Z1 ∈ Si) when i ∈ I.
To see this, consider the case where Si is good, i.e., we have∑

sh1∈Si
deg(sh1) ≥ 2(β+1/r)b. For each sh1 ∈ Si, we have

Pr[Z1 = sh1|Z1 ∈ Si] = deg(sh1)
∑

s∈Si
deg(s)

≤ 2 i
r b

2(β+1/r)b

= 2−(β−( i−1
r ))b.

Furthermore, for any sh1 ∈ Si and sh2 we know that

Pr[Z2 = sh2|Z1 = sh1] ≤ 2−( i−1
r )b.

Combining these two observations shows that in this case we have H∞(Z1|Z1 ∈
Si) ≥

(
β − ( i−1

r )
)
b and H∞(Z2|Z1 = sh1) ≥

(
i−1

r

)
b for all valid fixings sh1 ∈ Si.

To conclude the proof, consider D as above, which we have shown satisfies
the properties described in the lemma statement. Noting that D corresponds
exactly to (Z1, Z2) conditioned on Z1 landing on a good set, we have

Δ((Z1, Z2); D) ≤ Pr[Z1lands in a bad set].

It remains to bound this probability on the right-hand side. Assuming the set Si

is bad, it holds that
∑

sh1∈Si
deg(sh1) < 2(β+1/r)b. Therefore, since (Z1, Z2) takes

on any edge with probability 2−b, it holds that Z1 lands in Si with probability
at most 2−b · 2(β+1/r)b = 2−(1−β−1/r)b. There are at most r bad sets, so by a
union bound we have Pr[Z1lands in a bad set] ≤ r · 2−(1−β−1/r)b. �

Lemma 9. Fix α, β ∈ (0, 1) and an integer r. Then, with probability at least
1 − 3r · eb−α22min(b/r,(β−1/r)b) over the choice of uniformly random functions f, g :
{0, 1}� → {0, 1}b it holds that (f(Z1), g(Z2)) is

(
2α + r · 2−(1−β−1/r)b)

-close to
a (2b, (β − 1/r)b − 4 log(1/α))-source.

Proof. Suppose we pick functions f, g : {0, 1}� → {0, 1}b uniformly at random.
We begin by expressing (f(Z1), g(Z2)) as

∑

i∈[r]

Pr[Z1 ∈ Si](f(Z1), g(Z2)|Z1 ∈ Si),

which by Lemma 8 is
(
r · 2−(1−β−1/r)b)

-close to
∑

i∈I
Pr[Z1 ∈ Si](f(D1,i), g(D2,i)).
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We proceed by cases:

1. i−1
r ≥ β−1/r: We know from Lemma 8 that H∞(D2,i|D1,i = sh1) ≥ (β−1/r)b

for all sh1 ∈ supp(D1,i). By Lemma 4, we have

(g(D2,i)|D1,i = sh1) ≈α V

for some V with H∞(V ) ≥ (β − 1/r)b − 2 log(1/α) with probability at least
1 − 2e−α22(β−1/r)b over the choice of g. Since this holds for any valid fixing
D1,i = sh1, we conclude via a union bound over the at most 2b possible fixings
that

f(D1,i), g(D2,i) ≈α Wi

for some Wi with H∞(Wi) ≥ (β −1/r)b−2 log(1/α) with probability at least
1 − 2eb−α22(β−1/r)b over the choice of f and g.

2. 1/r ≤ i−1
r < β − 1/r: We know from Lemma 8 that H∞(D1,i) ≥

(
β − i−1

r

)
b

and H∞(D2,i|D1,i = sh1) ≥
(

i−1
r

)
b for all sh1 ∈ supp(D1,i). First, by Lemma 4

we conclude that with probability at least

1 − 2e−α22(β− i−1
r )b

≥ 1 − 2e−α22b/r

over the choice of f it holds that

f(D1,i) ≈α V1 (4)

for some V1 with H∞(V1) ≥ (β − i−1
r )b − 2 log(1/α). Analogously, for every

sh1 ∈ supp(D1,i), we can again invoke Lemma 4 to see that with probability
at least

1 − 2e−α22(
i−1

r )b

≥ 1 − 2e−α22b/r

over the choice of g, for any sh1 ∈ supp(D1,i) it holds that

(g(D2,i)|D1,i = sh1) ≈α V2,sh1 (5)

for some V2,sh1 with H∞(V2,sh1) ≥
(

i−1
r

)
b−2 log(1/α). By a union bound over

the at most 2b possible fixings sh1, we conclude that (5) holds simultaneously
for all sh1 ∈ supp(D1,i) with probability at least 1 − 2eb−α22b/r over the
choice of g. An additional union bound shows that this holds simultaneously
along (4) with probability at least 1 − 3eb−α22b/r over the choice of f and g,
which implies that

f(D1,i), g(D2,i) ≈2α Wi

for some Wi with

H∞(Wi) ≥
(

β − i − 1
r

)
b − 2 log(1/α) +

(
i − 1

r

)
b − 2 log(1/α)

= βb − 4 log(1/α).
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3. i = 1: In this case, by Lemma 8 we know that H∞(D1,i) ≥ βb. Therefore,
Lemma 4 implies that f(D1,i) ≈α V1 for some V1 such that H∞(V1) ≥ βb −
2 log(1/α) with probability at least 1−2e−α22βb ≥ 1−2e−α22b/r . This implies
that f(D1,i), g(D2,i) ≈α Wi for some Wi with H∞(Wi) ≥ βb − 2 log(1/α).

Finally, a union bound over the at most r indices i ∈ I yields the desired
statement. �

We are now ready to prove Lemma 7 with the help of Lemma 9.

Proof (Proof of Lemma 7). Fix some γ ∈ (0, 1). Then, we set β = 1−γ/2 > 1−γ,
α = 2−cb for a sufficiently small constant c > 0, and r > 0 a sufficiently large
integer so that

1 − γ ≤ β − 1/r − 6c (6)

and
1/r + 6c ≤ min(β, 1 − β)

100 . (7)

According to Lemma 9, we know that for any given Z = (Z1, Z2) ∈ Z it holds
that (f(Z1), g(Z2)) is (2α + r · 2−(1−β−1/r)b)-close to some (2b, (β − 1/r)b −
4 log(1/α))-source W with probability at least 1 − 3r · eb−α22min(b/r,(β−1/r)b) over
the choice of f and g.

Let m = (1 − γ)b and pick a uniformly random function h : {0, 1}2b →
{0, 1}m. Then, since m ≤ H∞(W ) − 2 log(1/α) by (6), Lemma 3 implies that
h(W ) ≈α Um, and hence

h(f(Z1), g(Z2)) ≈3α+r·2−(1−β−1/r)b Um, (8)

with probability at least

1 − 2e−α22(β−1/r)b−4 log(1/α) − 3r · eb−α22min(b/r,(β−1/r)b)

≥ 1 − 5r · eb−α22min(b/r,(β−1/r)b)−4 log(1/α)

over the choice of f , g, and h, via a union bound.
Now, observe that from (7), if b ≥ cγ for a sufficiently large constant cγ > 0,

it follows that
5r · eb−α22min(b/r,(β−1/r)b)−4 log(1/α) ≤ 2−22c′

γ b

for some constant c′
γ > 0. Moreover, under (7) we also have that

δ′ := 3α + r · 2−(1−β−1/r)b ≤ 2−c′′
γ b

for some constant c′′
γ > 0. Finally, a union bound over the 2d distributions in

Z shows that (8) holds simultaneously for all Z ∈ Z with probability at least
1 − 2d−22c′

γ b

. Consequently, if d ≤ 2c′
γ b it follows that there exist functions f , g,

and h such that (8) holds for all Z ∈ Z with the appropriate error δ′ and output
length m. �
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3.1 The Main Result

We now use Theorem 2 to obtain the main result of this section.

Theorem 3 (First part of Theorem 1, restated). Suppose (Share, Rec, Y)
is an (ε1, ε2)-leakage-resilient secret sharing scheme for b-bit messages. Then,
either:

– The scheme uses d ≥ min
(
2Ω(b), (1/ε2)Ω(1)) bits of randomness, or;

– The class of sources Y is (δ, m)-extractable with δ ≤ max
(

2−Ω(b), ε
Ω(1)
2

)
and

m = Ω(min(b, log(1/ε2))).

Proof. Given the scheme (Share, Rec, Y) from the theorem statement, let b′ =
min

(
b,

⌈
log(1/ε2)

100

⌉)
and consider the modified scheme (Share′, Rec′, Y) for b′-

bit messages obtained by appending 0b−b′ to every b′-bit message and running
the original scheme (Share, Rec, Y). Applying Theorem 2 to (Share′, Rec′, Y)
we conclude that either Share′, and hence Share, uses at least

2Ω(b′) = min
(

2Ω(b), (1/ε2)Ω(1)
)

bits of randomness, or Y is (δ, m)-extractable with

δ ≤ 2−Ω(b′) = max
(

2−Ω(b), ε
Ω(1)
2

)

and m = Ω(b′) = Ω(min(b, log(1/ε2))). �

3.2 Efficient Leakage-Resilient Secret Sharing Requires Efficiently
Extractable Randomness

In this section, we prove the remaining part of Theorem 1. We show that every
low-error leakage-resilient secret sharing scheme (Share, Rec, Y) for b-bit mes-
sages where Share is computed by a poly(b)-time algorithm admits a low-error
extractor for Y computable by a family of poly(b)-size circuits. Similarly to [14,
Section 3.1], this is done by replacing the uniformly random functions f , g, and
h in the proof of Theorem 2 by t-wise independent functions, for an appropriate
parameter t.

We say that a family of functions Ft from {0, 1}p to {0, 1}q is t-wise indepen-
dent if for F sampled uniformly at random from Ft it holds that the random vari-
ables F (x1), F (x2), . . . , F (xt) are independent and uniformly distributed over
{0, 1}q for any distinct x1, . . . , xt ∈ {0, 1}p. There exist t-wise independent fam-
ilies of functions Ft such that every f ∈ Ft can be computed in time poly(b)
and can be described by poly(b) bits whenever p, q, and t are poly(b) [14,22,51].
Therefore, since Share admits a poly(b)-time algorithm, it suffices to show the
existence of functions f , g, and h belonging to appropriate poly(b)-wise indepen-
dent families of functions such that Ext(Y ) = h(f(Sh1), g(Sh2)) is statistically
close to uniform, where (Sh1,Sh2) = Share(0b, Y ), for every source Y ∈ Y (the
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advice required to compute Ext would be the description of f , g, and h). We
accomplish this with the help of some auxiliary lemmas. The first lemma states
a standard concentration bound for the sum of t-wise independent random vari-
ables.

Lemma 10 ([22, Theorem 5], see also [7, Lemma 2.2]). Fix an even integer
t ≥ 2 and suppose that X1, . . . , XN are t-wise independent random variables in
[0, 1]. Let X =

∑N
i=1 Xi and μ = E[X]. Then, it holds that

Pr[|X − μ| ≥ ε · μ] ≤ 3
(

t

ε2μ

)t/2

for every ε < 1.

We can use Lemma 10 to derive analogues of Lemmas 3 and 4 for t-wise indepen-
dent functions.

Lemma 11. Suppose f : {0, 1}p → {0, 1}q is sampled uniformly at random from
a 2t-wise independent family of functions with q ≤ k − log t − 2 log(1/ε) − 5 and
t ≥ q, and let Y be a (p, k)-source. Then, it follows that

f(Y ) ≈ε Uq

with probability at least 1 − 2−t over the choice of f .

Proof. Fix a (p, k)-source Y and suppose f : {0, 1}p → {0, 1}q is sampled from
a family of 2t-wise independent functions. Note that

Δ(f(Y ); Uq) = 1
2

∑

z∈{0,1}q

| Pr[f(Y ) = z] − 2−q|.

For each y ∈ {0, 1}p and z ∈ {0, 1}q, consider the random variable Wy,z =
Pr[Y = y] · 1{f(y)=z}. Then, we may write

Δ(f(Y ); Uq) = 1
2

∑

z∈{0,1}q

∣
∣
∣
∣
∣
∣

∑

y∈{0,1}p

Wy,z − 2−q

∣
∣
∣
∣
∣
∣
.

Note that the Wy,z’s are 2t-wise independent, E[
∑

y∈{0,1}n Wy,z] = 2−q, and
that 2k · Wy,z ∈ [0, 1]. Therefore, an application of Lemma 10 with the random
variables (2k · Wy,z)y∈{0,1}p,z∈{0,1}q shows that

Pr

⎡

⎣

∣
∣
∣
∣
∣
∣

∑

y∈{0,1}p

Wy,z − 2−q

∣
∣
∣
∣
∣
∣

> 2ε · 2−q

⎤

⎦ ≤ 3
(

t · 2q

2ε22k

)t

.

Therefore, a union bound over all z ∈ {0, 1}q shows that f(Y ) ≈ε Uq fails to
hold with probability at most 3 ·2q ·2−t

(
t·2q

ε2·2k

)t ≤ 2−t over the choice of f , where
the inequality follows by the upper bound on q. �
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The proof of the following lemma is analogous to the proof of Lemma 4, but
using Lemma 11 instead of Lemma 3.

Lemma 12. Suppose f : {0, 1}p → {0, 1}q is sampled uniformly at random
from a 2t-wise independent family of functions with t ≥ q, and let Y be a (p, k)-
source. Then, it follows that f(Y ) ≈ε W for some W such that H∞(W ) ≥
min(q, k − log t − 2 log(1/ε) − 5) with probability at least 1 − 2−t over the choice
of f .

Following the reasoning used in the proof of Theorem 2 but sampling f, g :
{0, 1}� → {0, 1}b and h : {0, 1}b → {0, 1}m from 2t-wise independent families
of functions with t = 100 max(b, d) = poly(b), and using Lemmas 11 and 12 in
place of Lemmas 3 and 4, respectively, yields the following result analogous to
Theorem 2. Informally, it states that efficient low-error leakage-resilient secret
sharing schemes require low-complexity extractors for the associated class of
randomness sources.
Theorem 4. There exist absolute constants c, c′ > 0 such that the following
holds for b large enough: Suppose (Share, Rec, Y) is an (ε1, ε2)-leakage-resilient
secret sharing for b-bit messages using d bits of randomness such that Share
is computable by a poly(b)-time algorithm. Then, there exists a deterministic
extractor Ext : {0, 1}d → {0, 1}m computable by a family of poly(b)-size circuits
with output length m ≥ c · b such that

Ext(Y ) ≈δ Um

with δ = 2bε2 + 2−c′·b for every Y ∈ Y.
Finally, replacing Theorem 2 by Theorem 4 in the reasoning from Sect. 3.1

yields the remaining part of Theorem 1.

3.3 An Extension to the Setting of Computational Security

In this work we focus on secret sharing schemes with information-theoretic secu-
rity. However, it is also natural to wonder whether our result extends to secret
sharing schemes satisfying a reasonable notion of computational security. Indeed,
a slight modification to the argument used to prove Theorem 1 also shows that
computationally-secure efficient leakage-resilient secret sharing schemes require
randomness sources from which one can efficiently extract bits which are pseudo-
random (i.e., computationally indistinguishable from the uniform distribution).
We briefly discuss the required modifications in this section. For the sake of
exposition, we refrain from presenting fully formal definitions and theorem state-
ments.

First, we introduce a computational analogue of Definition 3. We say that
(Share, Rec, Y) is a computationally secure leakage-resilient secret sharing
scheme (for b-bit messages) if the scheme satisfies Definition 3 except that
the leakage-resilience property is replaced by the following computational ana-
logue: “For any leakage functions f, g : {0, 1}� → {0, 1} computed by poly(b)-
sized circuits and any two secrets x, x′ ∈ {0, 1}b, it holds that any adversary
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computable by poly(b)-sized circuits cannot distinguish between the distribu-
tions (f(Sh1), g(Sh2)) and (f(Sh′

1), g(Sh′
2)) with non-negligible advantage (in

some security parameter λ), where (Sh1,Sh2) = Share(x) and (Sh′
1,Sh′

2) =
Share(x′).”

Using this definition, the exact argument we used to prove Theorem 1 com-
bined with a modified version of Lemma 6 then shows that we can extract bits
which are computationally indistinguishable from the uniform distribution using
the class of randomness sources used to implement such a computationally-secure
leakage-resilient secret sharing scheme. In fact, the proof of Theorem 1 only
uses the leakage-resilience property of the secret sharing scheme in the proof
of Lemma 6. The remaining lemmas only make use of the correctness property
of the scheme, which remains unchanged in the computational analogue of Defi-
nition 3. Crucially, as shown in Sect. 3.2, we can construct the functions f , g, and
h so that they are computed by poly(b)-sized circuits assuming that the sharing
procedure is itself computable by poly(b)-sized circuits. Therefore, the following
computational analogue of Lemma 6, which suffices to conclude the proof of the
computational analogue of Theorem 1, holds: “Suppose that there are functions
f, g : {0, 1}� → {0, 1} and a function h : {0, 1}2b → {0, 1}m computable by
poly(b)-sized circuits such that

h(f(Z1), g(Z1)) ≈δ Um

for δ = negl(λ) and for all (Z1, Z2) in Z. Then, it holds that no adversary
computable by poly(b)-sized circuits can distinguish Ext(Y ) from a uniformly
random string with Y ∈ Y, where Ext(Y ) = h(f(LY ), g(RY )) and (Ly, Ry) =
Share(0b, Y ).”

4 Random-Less Reductions for Secret Sharing

In this section, we study black-box deterministic reductions between different
types of threshold secret sharing. Such reductions from (t′, n′, ε)-secret sharing
schemes to (t, n, ε)-secret sharing schemes (for the same message length b and
number of randomness bits d) would allow us to conclude that if all these (t, n, ε)-
secret sharing schemes require a (δ, m)-extractable class of randomness sources,
then so do all (t′, n′, ε)-secret sharing schemes. We provide reductions which
work over a large range of parameters and prove complementary results show-
casing the limits of such reductions. As already discussed in Sect. 1, our starting
point for devising black-box reductions is the notion of a distribution design as
formalized by Stinson and Wei [49] (with roots going back to early work on
secret sharing [9]), which we defined in Definition 5. As stated in Lemma 1, the
existence of a (t, n, t′, n′)-distribution design yields the desired reduction from
(t′, n′, ε)-secret sharing to (t, n, ε)-secret sharing. Therefore, we focus directly on
the study of distribution designs in this section.

We begin with a naive construction.
Theorem 5. There exists a (t, n, t′, n′)-distribution design whenever t′ ≥ t and
n′ ≥ n + (t′ − t). In particular, if every (t, n, ε)-secret sharing scheme for b-bit
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messages and using d bits of randomness requires a (δ, m)-extractable class of
randomness sources, then so does every (t′, n′, ε)-secret sharing scheme for b-bit
messages using d bits of randomness whenever t′ ≥ t and n′ ≥ n + (t′ − t).

Proof. Consider the (t, n, t′, n′)-distribution design D1, . . . , Dn obtained by set-
ting Di = {i} ∪ {n′ − (t′ − t) + 1, n′ − (t′ − t) + 2, . . . , n′}, which is valid exactly
when the conditions of the theorem are satisfied. �

The following result shows the limits of distribution designs, and will be used
to show the optimality of our constructions when t = 2 or t′ = n′.

Theorem 6. A (t, n, t′, n′)-distribution design exists only if
(

n′

t′−1
)

≥
(

n
t−1

)
and

t′ ≥ t.

Proof. Consider an arbitrary (t, n, t′, n′)-distribution design D1, D2, . . . , Dn.
First, note that it must be the case that all the Di’s are non-empty. This implies
that we must have t′ ≥ t. Second, to see that

(
n′

t′−1
)

≥
(

n
t−1

)
, consider all

(
n

t−1
)

distinct subsets T ⊆ [n] of size t−1, and denote DT =
⋃

i∈T Di. By the definition
of distribution design, it must hold that

|DT | ≤ t′ − 1.

Consider now modified sets D̂T obtained by adding arbitrary elements to DT so
that |D̂T | = t′ − 1. Then, from the definition of distribution design, for any two
distinct subsets T , T ′ ⊆ [n] of size t − 1 it must be the case that

∣
∣
∣D̂T ∪ D̂T ′

∣
∣
∣ ≥ t′.

This implies that D̂T 
= D̂T ′ for all distinct subsets T , T ′ ⊆ [n] of size t − 1,
which can only hold if

(
n′

t′−1
)

≥
(

n
t−1

)
. �

We now show that Theorem 6 is tight for a broad range of parameters. In
particular, when t = 2 or t′ = n′ we are able to characterize exactly under which
parameters a (t, n, t′, n′)-distribution design exists.

Theorem 7. There exists a (t = 2, n, t′, n′)-distribution design if and only if
n ≤

(
n′

t′−1
)
. In particular, if every (t = 2, n, ε)-secret sharing scheme for b-bit

messages using d bits of randomness requires (δ, m)-extractable randomness, then
so does every (t′, n′, ε)-secret sharing scheme for b-bit messages using d bits of
randomness whenever n ≤

(
n′

t′−1
)
.

Proof. Note that the condition n ≤
(

n′

t′−1
)

implies that we can take D1, . . . , Dn

to be distinct subsets of [n′] of size t′ − 1, and so |Di ∪ Dj | ≥ t′ for any distinct
indices i and j. The reverse implication follows from Theorem 6. �
Theorem 8. There exists a (t, n, t′ = n′, n′)-distribution design if and only if
n′ ≥

(
n

t−1
)
. In particular, if every (t, n, ε)-secret sharing scheme for b-bit mes-

sages using d bits of randomness requires (δ, m)-extractable randomness, then
so does every (n′, n′, ε)-secret sharing scheme for b-bit messages using d bits of
randomness whenever n′ ≥

(
n

t−1
)
.
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Proof. We show that a (t, n, n′, n′)-distribution design exists whenever n′ =(
n

t−1
)
, which implies the desired result. Let P denote the family of all subsets

of [n] of size t − 1, and set n′ = |P| =
(

n
t−1

)
(we may use any correspondence

between elements of P and integers in [n′]). Then, we define the set Di ⊆ P for
i ∈ [n] to contain all elements of P except the subsets of [n] which contain i.
We argue that D1, . . . , Dn is a distribution design with the desired parameters.
First, observe that for any distinct indices i1, i2, . . . , it−1 ∈ [n] it holds that

t−1⋃

j=1
Dij

= P \ {{i1, i2, . . . , it−1}}.

On the other hand, since {i1, . . . , it−1} ∈ Dit
for any index it 
= i1, . . . , it−1, it

follows that
⋃t

j=1 Dij
= P, as desired.

The reverse implication follows from Theorem 6. �

4.1 Distribution Designs from Partial Steiner Systems

In this section, we show that every partial Steiner system is also a distribution
design which beats the naive construction from Theorem 5 for certain parameter
regimes. Such set systems have been previously used in seminal constructions of
pseudorandom generators and extractors [43,50], and are also called combinato-
rial designs.

Definition 9 (Partial Steiner system). We say a family of sets D1, . . . , Dn ⊆
[n′] is an (n, n′, 
, a)-partial Steiner system if it holds that |Di| = 
 for every
i ∈ [n] and |Di ∩ Dj | ≤ a for all distinct i, j ∈ [n].

The conditions required for the existence of a partial Steiner system are well-
understood, as showcased in the following result from [32,43,50], which is nearly
optimal [44,45].
Lemma 13 ([32,43,50]). Fix positive integers n, 
, and a ≤ 
. Then, there
exists an (n, n′, 
, a)-partial Steiner system for every integer n′ ≥ e · n1/a · �2

a .
Noting that every partial Steiner system with appropriate parameters is also a
distribution design, we obtain the following theorem.

Theorem 9. Fix an integer a ≥ 1. Then, there exists a (t, n, t′, n′)-distribution
design whenever t′ ≥ t2 + at(t−1)2

2 and n′ ≥ en1/a

a ·
(

1 + t′

t + a(t−1)
2

)2
.

Proof. Fix an integer a ≥ 1 and an (n, n′, 
, a)-partial Steiner system
D1, . . . , Dn ⊆ [n′] with 
 =

⌈
t′

t + a(t−1)
2

⌉
. By Lemma 13 and the choice of 
,

such a partial Steiner system is guaranteed to exist whenever n′ satisfies the con-
dition in the theorem statement. We proceed to argue that this partial Steiner
system is also a (t, n, t′, n′)-distribution design. First, fix an arbitrary set T ⊆ [n]
of size t − 1. Then, we have

|DT | ≤ 
(t − 1) ≤ t′ − 1,
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where the rightmost inequality holds by our choice of 
 and the condition on t′

and t in the theorem statement. Second, fix an arbitrary set T ⊆ [n] of size t.
Then, it holds that

|DT | ≥ 
 + (
 − a) + (
 − 2a) + · · · + (
 − a(t − 1))

= 
 · t − at(t − 1)
2

≥ t′,

where the last equality follows again from our choice of 
 and the condition on
t′ and t in the theorem statement. �

When n is sufficiently larger than t and t′ and t′ is sufficiently larger than t,
the parameters in Theorem 9 cannot be attained by the naive construction from
Theorem 5, which always requires choosing t′ ≥ t and n′ ≥ n. For example, if
t3 ≤ t′ ≤ Ct3 for some constant C ≥ 1 then we can choose a = 2, in which case
we have

t2 + at(t − 1)2

2 ≤ t3 ≤ t′. (9)

Moreover, it holds that

en1/a

a
·
(

1 + t′

t
+ a(t − 1)

2

)2

≤ e
√

n

2 ·
(
Ct2 + t

)2

≤ 2eC2√
nt4. (10)

Combining (9) and (10) with Theorem 9, we obtain the following example result
showing it is possible to improve on Theorem 5 in some parameter regimes.
Corollary 5. Suppose t3 ≤ t′ ≤ Ct3 for some constant C ≥ 1. Then, there
exists a (t, n, t′, n′)-distribution design for any n′ ≥ 2eC2√

nt4. In particular, if
t ≤ n1/9 and n is large enough, we may choose n′ significantly smaller than n.

Acknowledgment. JR was supported in part by the NSF grants CCF-1814603 and
CCF-2107347 and by the NSF award 1916939, DARPA SIEVE program, a gift from
Ripple, a DoE NETL award, a JP Morgan Faculty Fellowship, a PNC center for finan-
cial services innovation award, and a Cylab seed funding award. The work in CQT was
supported in part by the Singapore National Research Foundation through National
Research Foundation Research Fellowship (NRF RF) under Award NRF-NRFF2013-
13; and in part by the Ministry of Education, Singapore, through the Research Centres
of Excellence Programme by the Tier-3 Grant “Random numbers from quantum pro-
cesses” under Grant MOE2012-T3-1-009. The work of Maciej Obremski was supported
by the Foundations of Quantum-Safe Cryptography under Grant MOE2019-T2-1-145.
The authors would like to thank Daniele Venturi for insightful comments.

A Proof of Lemma3
Fix an (n, k)-source X and pick a function F : {0, 1}n → {0, 1}m with m ≤
k − 2 log(1/ε) uniformly at random. It suffices to bound the probability that

| Pr[F (X) ∈ T ] − μ(T )| ≤ ε
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holds for every set T ⊆ {0, 1}m, where μ(T ) = |T |/2m denotes the density
of T . Fix such a set T , and let Zx = Pr[X = x] · 1F (x)∈T . Then, we have
Pr[F (X) ∈ T ] =

∑
x∈{0,1}n Zx and E

[∑
x∈{0,1}n Zx

]
= μ(T ). As a result, since

Zx ∈ [0, Pr[X = x]] for all x ∈ {0, 1}n, Hoeffding’s inequality4 implies that

Pr

⎡

⎣

∣
∣
∣
∣
∣
∣

∑

x∈{0,1}n

Zx − μ(T )

∣
∣
∣
∣
∣
∣

> ε

⎤

⎦ ≤ 2 · exp
(

− 2ε2
∑

x∈{0,1}n Pr[X = x]2

)

≤ 2 · e−2ε22k

.

The last inequality follows from the fact that
∑

x∈{0,1}n

Pr[X = x]2 ≤ max
x∈{0,1}n

Pr[X = x] ≤ 2−k,

since X is an (n, k)-source. Finally, a union bound over all 22m sets T ⊆ {0, 1}m

shows that the event in question holds with probability at least

1 − 2 · 22
m · e−2ε22k ≥ 1 − 2e−ε22k

over the choice of F , given the upper bound on m.
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Abstract. Motivated by leakage-resilient secure computation of circuits
with addition and multiplication gates, this work studies the leakage-
resilience of linear secret-sharing schemes with a small reconstruction
threshold against any bounded-size family of joint leakage attacks, i.e.,
the leakage function can leak global information from all secret shares.

We first prove that, with high probability, the Massey secret-sharing
scheme corresponding to a random linear code over a finite field F is
leakage-resilient against any �-bit joint leakage family of size at most
|F |k−2.01/8�, where k is the reconstruction threshold. Our result (1)
bypasses the bottleneck due to the existing Fourier-analytic approach,
(2) enables secure multiplication of secrets, and (3) is near-optimal. We
use combinatorial and second-moment techniques to prove the result.

Next, we show that the Shamir secret-sharing scheme over a prime-
order field F with randomly chosen evaluation places and with threshold
k is leakage-resilient to any �-bit joint leakage family of size at most
|F |2k−n−2.01/(k! ·8�) with high probability. We prove this result by mar-
rying our proof techniques for the first result with the existing Fourier
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analytical approach. Moreover, it is unlikely that one can extend this
result beyond k/n � 0.5 due to the technical hurdle for the Fourier-
analytic approach.

1 Introduction

Traditionally, the security of cryptographic primitives assumes cryptosystems as
impervious black-boxes, faithfully realizing the desired input-output behavior
while providing no additional information. Real-world implementations, how-
ever, do not always maintain this idealized assumption. Innovative side-channel
attacks starting with the seminal works of [20,21] have repetitively found success
in obtaining partial information on the secret states. These diverse side-channel
attacks pose significant threats to the security of underlying cryptographic prim-
itives and all the cryptographic constructions that rely on them.

Towards resolving such concerns, one could develop ad hoc countermeasures
for every existing side-channel attack. This approach, however, is unable to
address the threat of unknown attacks. On the other hand, leakage-resilient cryp-
tography aims to define potential avenues of information leakages formally and
provide provable security guarantees against all such information leakages, even
including the unforeseen ones. In the last few decades, a large body of influential
works has studied the feasibility and efficiency of leakage-resilient cryptography
against various models of potential leakages. We refer the readers to the excellent
survey [19] for more details.

Secret-sharing schemes, a fundamental primitive in cryptography that is
essential to all threshold cryptography constructions, are also threatened by
such leakage attacks. The standard security of secret-sharing schemes guaran-
tees that, given the (entire) secret shares of any unauthorized set of parties,
one cannot learn any information about the secret. However, the security of the
secret is not apparent if an adversary obtains (partial) information from every
secret share. Such potential loss in security may percolate into cryptographic
constructions built using these vulnerable secret-sharing schemes.

Application: Leakage-resilient Secure Computation. For example, secret-
sharing schemes are commonplace in secure multi-party computation schemes
that privately compute over private data using the GMW-technique [14]. Lin-
ear secret-sharing schemes naturally enable the secure addition of secrets.
Secure multiplication of secrets typically uses multiplication-friendly secret-
sharing schemes (for example, Shamir’s secret-sharing scheme [34] and secret-
sharing schemes based on other Goppa codes [12,13,15,30]) or, more generally,
some restrictive versions of linear secret-sharing schemes. Multiplication-friendly
secret-sharing schemes require the reconstruction threshold k +1 to be less than
half the number of parties n to facilitate secure multiplication. More generally,
linear secret-sharing schemes facilitate secure multiplication when (k+1) � √

n.
If the secret-sharing scheme used in the secure computation is leakage-resilient,
then the resulting computation is itself leakage-resilient. Motivated by this
application in leakage-resilient secure computation involving the addition and
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multiplication of secrets, our work studies the leakage-resilience of linear secret-
sharing schemes with a small reconstruction threshold.

State-of-the-Art. Initiated by Benhamouda, Degwekar, Ishai, and Rabin [5],
many recent works [1,25,28,31] study the leakage-resilience of linear secret-
sharing schemes against local leakage attacks. In the local leakage model, the
adversary picks an independent leakage function for each secret share. The final
leakage is the union of the local leakages from every secret share. Even for this
restrictive model, our understanding of the leakage-resilience of secret-sharing
schemes is still far from complete.

Benhamouda, Degwekar, Ishai, and Rabin [6] proved that (k + 1)-out-of-n
Shamir secret-sharing is locally 1-bit leakage-resilient when k/n > 0.85. Recently,
Maji, Nguyen, Paskin-Cherniavsky, and Wang [27] improved this to k/n > 0.78.
Maji, Paskin-Cherniavsky, Suad, and Wang [28] proved that the Massey secret-
sharing scheme [30] corresponding to a random linear code of dimension-(k + 1)
is locally leakage-resilient with overwhelming probability when k/n > 0.5. Since
these secret-sharing schemes require k/n > 0.5 to achieve leakage-resilience, they
cannot facilitate the secure multiplication of secrets as motivated above. Further-
more, Maji et al. [28] pointed out an inherent barrier when k/n < 0.5 for existing
works’ Fourier-analytic technical approaches. In particular, they pinpoint a local
leakage function that leaks the quadratic residuosity of every secret share, and
existing Fourier-analytic approaches cannot prove leakage-resilience against this
single function when k/n � 0.5.

Maji, Nguyen, Paskin-Cherniavsky, Suad, and Wang [25] consider the natural
physical-bit leakage family in the small reconstruction threshold regime. In this
model, the secret shares are stored in their natural binary representation, and
the leakage function can learn physical bits stored at specified locations. [25]
proved that Shamir secret-sharing with random evaluation places is leakage-
resilient to the physical-bit leakage even for the most stringent reconstruction
threshold (k + 1) = 2 (and polynomially large n). However, their approach still
follows the Fourier-analytic approach. Consequently, one cannot hope to extend
their result to any small family of leakage functions containing the quadratic
residuosity leakage.

Summary of Our Results and Technical Contribution. This work stud-
ies the Monte-Carlo construction of leakage-resilience secret-sharing schemes.
Our work studies the general leakage-resilience of (1) the Massey secret-sharing
scheme corresponding to a random linear code, and (2) the Shamir secret-sharing
scheme with random evaluation places. The leakage function can leak global
information from all secret shares.

First, we show that the Massey secret-sharing scheme corresponding to a
random linear code1 with dimension (k + 1) � 4 is leakage-resilient to any

1 This random linear code only needs to be chosen once. With only an exponentially
small failure probability, the Massey secret-sharing scheme corresponding to this
code shall be leakage-resilient. For instance, this random linear code can be specified
by, for example, a common random string (CRS).
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bounded-size family of (joint) leakage functions, except with an exponentially
small probability. For example, one can consider the family of leakage functions
containing all physical-bit leakages, NC0 leakages, and circuits of bounded size.
In the context of leakage-resilient secure computation, we also consider the col-
lusion of adversarial parties who (in addition to their respective secret shares)
obtain leakage on the honest parties’ secret shares. Our result is near-optimal as
evidenced by the leakage attack family presented in Remark 1. We also present a
partial derandomization of this Monte-Carlo construction using a variant of the
Wozencraft ensemble. Technically, we prove our results using a purely combinato-
rial argument and the second-moment technique. This argument is different from
existing works [5,25,27,28] as all of them rely on a Fourier-analytic approach
to prove the leakage-resilience. In particular, our technical approach bypasses
the bottleneck result from the quadratic residuosity local leakage function, as
indicated by [28].

Second, we show that a (k + 1)-out-of-n Shamir secret-sharing scheme with
k > n/2 and random evaluation places is leakage-resilience to any bounded-size
leakage family except with an exponentially small probability. This result is a
partial derandomization of the leakage-resilience of the Massey secret-sharing
scheme corresponding to a random linear code. We prove our result using the
second-moment technique inspired by the first result and the Fourier-analytic
approach together with Bézout’s theorem inspired by [25]. Our result is near-
optimal due to the inherent barrier when k/n � 0.5 for the Fourier-analytic
approach pointed out in [28] (see Remark 2 for details).

1.1 Our Contribution

Table 1. Summary of relevant prior work (in chronological order) and our results,
where λ is the security parameter.

Relevant work Secret sharing scheme Leakage family Reconstruction
threshold (k + 1)

BDIR’18 [5] Shamir secret-sharing with any
fixed evaluation places

arbitrary local k > 0.85 · n

MPSW’21 [28] Massey secret-sharing of a random
linear code

arbitrary local k > 0.5 · n

MNPSW’21 [25] Shamir secret-sharing with
random evaluation places

physical-bit k � 1,
n = poly(λ)

MNPW’22 [27] Shamir secret-sharing with any
fixed evaluation places

arbitrary local k > 0.78 · n

Our work Massey secret-sharing of a random
linear code

arbitrary global
of bounded size

k � 3,
n = poly(λ)

Shamir secret-sharing with
random evaluation places

arbitrary global
of bounded size

k > 0.5 · n,
n = poly(λ)

In this section, we present the main result of this paper. We refer the readers to
Table 1 for a comparison between our results and the state-of-the-art results.
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This section introduces some notations to facilitate the introduction of our
results. Let λ denote the security parameter, the number of bits in the secret
shares of every party. Let F be a finite field such that 2λ−1 � |F | < 2λ. Let n
be the number of parties and k + 1 be the reconstruction threshold.

Leakage-resilient Secret-sharing. Consider a secret-sharing scheme among
n parties, where every secret share is an element in F . An �-bit leakage function
is any function L : Fn → {0, 1}�. That is, L takes all the secret shares as input
and outputs an �-bit (joint) leakage. For any �-bit leakage function L and any
secret s ∈ F , we define L(s) as the distribution of the leakage when one applies
L to the secret shares of s. A secret-sharing scheme is ε-leakage-resilient against
L if for all secrets s(0) and s(1), the statistical distance between the leakage joint
distributions L

(
s(0)

)
and L

(
s(1)

)
is (at most) ε. Finally, let L be a collection

of some �-bit leakage functions. A secret-sharing scheme is an (L, ε)-leakage-
resilient secret-sharing scheme if it is ε-leakage-resilient against every leakage
function L ∈ L.

Linear Code. A linear code C ⊆ F (n+1) is a linear subspace. Suppose the
dimension of C is k + 1. A matrix G+ ∈ F (k+1)×(n+1) is a generator matrix of
C if the rows of G+ span the subspace C. The generator matrix G+ is in the
standard form if G+ = [Ik+1|P ]. That is, the first k + 1 columns of G+ is the
identity matrix. We refer to P as the parity-check matrix.

Massey Secret-Sharing Schemes [30]. Given a linear code C ⊆ F (n+1), the
Massey secret-sharing scheme corresponding to a code C is defined as follows.
For a secret s ∈ F , one samples a random codeword (s0, s1, . . . , sn) ∈ C such
that s0 = s. For i ∈ {1, 2, . . . , n}, the ith secret share is si ∈ F .

Shamir Secret-Sharing Schemes [34]. Let s ∈ F be the secret and �X =
(X1,X2, . . . , Xn) ∈ (F ∗)n be distinct evaluation places, i.e., Xi �= Xj for all i �=
j. The [n, k + 1, �X]F -Shamir secret-sharing scheme picks a random polynomial
P (X) ∈ F [X]/Xk+1 conditioned on the fact that P (0) = s. The secret shares of
parties 1, 2, . . . , n are s1 = P (X1), s2 = P (X2), . . . , sn = P (Xn), respectively.

Result I: Leakage-resilience of Random Linear Codes. We prove the
following theorem regarding the leakage-resilience of a random linear code.

Theorem 1 (Technical Result). Let L be a family of �-bit (joint) leakage
functions and F be a finite field (possibly, of composite order). Let n, k ∈ N
be arbitrary parameters such that k < n. Define G+ = [Ik+1|P] as a ran-
dom variable over the sample space F (k+1)×(n+1), where every element of P ∈
F (k+1)×(n−k) is sampled independently and uniformly at random from the field
F . The Massey secret-sharing scheme corresponding to G+ is (L, ε)-leakage-
resilient except with probability (at most)

8�

ε2
· |L|
|F |k−2

.

In particular, if ε =
(
8� · |L|/|F |k−2

)1/3, then this failure probability is also (at
most) ε.
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Observe that the randomness complexity of this Monte-Carlo construction for
leakage-resilient secret-sharing scheme is O(k · (n − k) · lg|F |) bits. Next, we
interpret our technical result via a sequence of corollaries. We always consider a
finite field F such that 2λ−1 � |F | < 2λ and n, k = poly(λ) unless specified.

Corollary 1. Let c > 0 be an arbitrary positive constant. Let L be an arbitrary
�-bit leakage family such that

|L| � |F |k−2−c/8�.

Then, the Massey secret-sharing scheme corresponding to G+ is (L,
exp(−Ω(λ)))-leakage-resilient except with probability exp(−Ω(λ)).

We remark that for a small leakage family L, such as the physical-bit leakage
family, any constant n and k = 3 suffices to ensure leakage-resilience. For the
Massey secret-sharing scheme corresponding to an arbitrary linear code, having
a small reconstruction threshold is desirable in the following two ways.

First, when n > (k+1)2, parties can locally transform the secret shares of two
secrets into the secret shares of their product. This enables secret-sharing-based
multiparty computation protocols to perform secure multiplication.

Second, when we consider malicious parties who may not report their shares
honestly, reconstructing the secret is significantly challenging. In fact, decoding
erroneous random linear code is believed to be computationally hard [32,33].
However, if k is a constant, one can efficiently decode using (exhaustive search-
based) majority voting techniques.

Remark 1. Our result is near-optimal as follows. Define L∗ as the set of all leak-
age functions defined by (S, α1, α2, . . . , αk+1), where S = {i1, i2, . . . , ik+1} ⊆
{1, 2, . . . , n}, and α1, . . . αk+1 ∈ F . The (� = 1)-bit leakage function correspond-
ing to (S, α1, . . . , αk+1) indicates whether

α1 · si1 + α2 · si2 +· · · + αk+1 · sik+1 = 0,

or not. Here si1 , . . . , sik+1 represents the i1-th, . . . , ik+1-th secret share, respec-
tively. The size of this leakage family is O(nk+1 · |F |k+1).

For any Massey secret-sharing scheme corresponding to the linear code gen-
erated by [Ik+1|P ], there is a leakage function in the family L that can dis-
tinguish the secret s(0) = 0 from the secret s(1) = 1. Given the generator
matrix [Ik+1|P ] there are (at most) k + 1 columns i1, . . . , ik+1 that span the
generator matrix’s 0-th column. Therefore, there exists a linear reconstruction
α1 · si1 + · · · + αk+1 · sik+1 for the secret. The leakage function corresponding
to (S = {i1, . . . , ik+1}, α1, . . . , αk+1) distinguishes the secret s(0) = 0 from any
s(1) ∈ F ∗ (for example, s(1) = 1).

In comparison, we show that G+ is leakage-resilient to any family L if |L| �
|F |k−2−c for an arbitrary constant c > 0. The near optimality of our result
follows from the fact that n = poly(λ) and |F | ≈ 2λ.
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Next, we interpret our result in context of the motivating example of leakage-
resilient secure computation. Suppose t parties participating in the secure com-
putation protocol collude and obtain additional one-bit physical-bit local leakage
on the secret shares of the remaining honest parties. The total number of bits
leaked is

� = t · λ + (n − t) � tλ + n.

The total number of leakage functions is

|L| =
(

n

t

)
· λn−t � 2n · λn.

Therefore, k = ω(n log λ/λ) and t � k/3− c′ ensures that |L| � |F |k−2−c/8�, for
any positive constant c′. The following corollary summarizes this result.

Corollary 2. Let L be the leakage family that leaks t secret shares in the entirety
and one physical bit from the remaining shares. Then, Massey secret-sharing
scheme corresponding to G+ is (L, exp(−Ω(λ)))-leakage-resilient except with
exp(−Ω(λ)) probability if we have

k = ω(n log λ/λ) and t � k/3 − c′,

where c′ is an arbitrary constant.

Next, we interpret our result in the context of more sophisticated local leakage
attacks. We consider the local leakage attack where every local leakage function
is a small circuit. These circuits take the λ-bit binary representation of F as
input. We consider two natural families of circuits.

Local Leakage with Bounded-Depth Circuits. Let NC0
d be the set of circuits with

depth at most d. The size of NC0
d is upper-bounded by

(
λ
2d

) · 22d

. The size of the
local leakage family where every local leakage function is NC0

d that leaks one bit
is upper-bounded by

((
λ
2d

) · 22d
)n

. Consequently, the prerequisite of Corollary
1 holds (for all constant d) as long as k = ω(n log λ/λ). Hence, we have the
following corollary.

Corollary 3. Let L be the local leakage family where every local leakage function
is NC0 that leaks one bit. Massey secret-sharing scheme corresponding to G+ is
(L, exp(−Ω(λ)))-leakage-resilient except with exp(−Ω(λ)) probability if we have

k = ω(n log λ/λ).

In particular, for any constant n and k = 3, the corresponding Massey secret-
sharing scheme is leakage-resilient.

We remark that the NC0-local leakage family is a superset of the physical-
bit local leakage family (for example, as considered in the recent work of [25]).
[25] proved that the Shamir secret-sharing scheme with reconstruction threshold
k � 2 and random evaluation places is leakage-resilient to physical-bit leakages,
which is a significantly smaller subset of the NC0

d local leakage considered in our
work.
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Local Leakage with Bounded-Size Circuits. The number of circuits of size (at
most) s is upper-bounded by (10s) · 2s [3]. Hence, the size of the local leakage
family where every local leakage function is a circuit of size (at most) s that
leaks one bit is upper-bounded by (10s · 2s)n. Consequently, the prerequisite of
Corollary 1 holds as long as k = ω(n · s/λ). Thus, we have the following corollary.

Corollary 4. Let L be the local leakage family where every local leakage func-
tion is a circuit of size (at most) s that leaks one bit. Massey secret-sharing
scheme corresponding to G+ is (L, exp(−Ω(λ)))-leakage-resilient except with
exp(−Ω(λ)) probability if we have

k = ω(n · s/λ).

In particular, when s = o(λ/
√

n), one may pick k � √
n.

For example, using a large-enough finite field F such that λ = n2, the Massey
secret-sharing scheme corresponding to random linear codes is leakage-resilient
to size-(s = n) local leakage circuits.

Leakage-resilience of Randomly Twisted Additive Secret-Sharing. Fix a finite
field F . The additive secret-sharing scheme over F for n parties chooses ran-
dom secret shares s1, s2, . . . , sn ∈ F conditioned on s1 + s2 + · · · + sn = s,
where s ∈ F is the secret. For a (publicly-known) twist (α1, α2, . . . , αn) ∈ (F ∗)n,
the corresponding twisted additive secret-sharing scheme chooses random secret
shares s1, s2, . . . , sn ∈ F conditioned on

∑n
i=1 αi · si = s. The randomly

twisted additive secret-sharing scheme picks a uniformly random public twist
(α1, . . . , αn) ∈ (F ∗)n and shares the secret using the corresponding twisted addi-
tive secret-sharing scheme.

When the reconstruction threshold is identical to the number of parties, our
result also implies the leakage-resilience of randomly twisted additive secret-
sharing.2

Corollary 5. Let c > 0 be an arbitrary positive constant. Let L be an arbitrary
�-bit leakage family such that

|L| � |F |n−2−c/8�.

If n = o(λ), the randomly twisted additive secret-sharing scheme is
(L, exp(−Ω(λ)))-leakage-resilient except with probability exp(−Ω(λ)).

Reverse Multiplication Friendly Embedding (RMFE). The reverse multiplication
friendly embedding (RMFE) [7,8,10] is a bilinear map that embeds SIMD-style
multiple instances of the multiplication over a small field (say F ′) into a single mul-
tiplication instance over an extension field F . Therefore, RMFE modularly packs
multiple F ′ secrets into one F secret in a manner that is addition and multipli-
cation friendly, making these mappings suitable for cryptographic applications.
2 This observation is due to that a random square matrix over a large enough field F

is full-rank with overwhelming probability.
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The number of packed secrets is linear in the degree of the extension [8,10]. For
example, one can pack Θ(λ) secrets in F ′ = GF [2]) (i.e., binary secrets) into one
F = GF [2λ] secret. AnRMFE-based packed secret-sharing schemepacks F ′ secrets
into one F secret and secret shares this F secret.

Observe that our leakage-resilience result for the Massey secret-sharing
schemes corresponding to random linear codes also holds for extension fields
F with arbitrary small characteristics (e.g., characteristic-2). Consequently,
the RMFE-based packed secret-sharing scheme over F ′ (as described above)
is leakage-resilient because the secret-sharing over F is leakage-resilient. This
consequence extends our technical results to construct leakage-resilient secret-
sharing schemes for (multiple) constant-size secrets.

The Monte-Carlo construction presented above samples a fully random par-
ity check matrix P ∈ F (k+1)×(n−k), which requires k(n − k) independent and
uniformly random elements from the finite field F . We partially derandomize
this result using (a variant of) the Wozencraft ensemble. In particular, we use
two types of partially random matrices.

Wozencraft Ensemble W. Consider a finite field K, which is a degree k exten-
sion of F . The Wozencraft ensemble maps every element α ∈ K to a matrix
M(α) ∈ F k×k. To sample a k × (n − k) matrix, one picks m = �(n − k)/k	
random elements α(1), . . . ,α(m) ∈ K. The sampled matrix W shall be the first
n − k columns of the matrix

[
M
(
α(1)

) | · · · |M (
α(m)

)]
. We refer the readers to

Definition 3 for more details.

t-Row Random Matrix M(t). For this random matrix, the first t rows are sampled
independently and uniformly at random. The remaining rows are fixed to be 0.
Refer to Definition 2 for more details.

Using these two types of partially random matrices, we prove the following
theorem. A proof is provided in Appendix 6.

Theorem 2. Let L be an arbitrary family of �-bit leakage functions and F be a
finite field (possibly, of composite order). Let n, k ∈ N be arbitrary parameters
such that k < n. Define G+ = [Ik+1|P] as a random variable over the sample
space F (k+1)×(n+1), where P is sampled as follows.

– Entries of the first row of P are sampled independently and uniformly at ran-
dom from F .

– The submatrix consisting of the rest of the rows, refer to as R, is sampled as
W + M(t), where W and M(t) are sampled independently.

The Massey secret-sharing scheme corresponding to G+ is (L, ε)-leakage-resilient
except with probability (at most)

8�

ε2
· |L|
|F |t−2

.

In particular, ε =
(
8� · |L|/|F |t−2

)1/3 ensures that the failure probability is at
most ε. Furthermore, ε is exponentially decaying when |L| � |F |t−2−c

/8�, where
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c > 0 is a constant. The random F -elements required to sample G+ is (t+1)(n−
k) + k · �n−k

k 	.

Result II: Leakage resilience of Shamir’s secret sharing schemes with
random evaluation places. Our second result is the following.

Theorem 3. Let F be a prime order field of size p. Let L be an arbitrary family
of �-bit joint leakage functions. Define �X be a random variable, where �X is chosen
uniformly at random from the set (F ∗)n such that Xi �= Xj for all i �= j. The
[n, k +1, �X]F -Shamir’s secret-sharing scheme corresponding to randomly chosen
evaluation places �X is (L, ε)-leakage-resilient except with probability at most

4 · |L| · 8� · pn−k+1 · k!
ε2 · (p − n)k

.

In particular, setting ε =
(
4 · |L| · 8� · pn−k+1 · k!/(p − n)k

)1/3 ensures that the
failure probability is at most ε.

Our proof of this theorem combines the combinatorial proof techniques used in
our first result with the Fourier-analytic approach in the literature [5,25,27,28].

Observe that the randomness complexity of this construction is O(n · lg|F |)
bits. Next, we interpret our technical result as follows. We omit the details for
the leakage-resilience of Shamir secret-sharing schemes against local leakage with
bounded-depth or bounded-size circuits.

Corollary 6. Let c and δ be arbitrary positive constants. Let L be an arbitrary
�-bit leakage family such that

|L| � (p − n)k−c

4 · 8� · pn−k+1 · k!
.

Let F be a finite field such that 2λ−1 � |F | < 2λ, k = (1/2+δ)n, and n = poly(λ).
Then, the [n, k + 1, �X]F -Shamir’s secret-sharing scheme is (L, exp(−Ω(λ)))-
leakage-resilient except with probability exp(−Ω(λ)).

We note that any constant n and k > (n + 1)/2 suffices to ensure leakage-
resilience for any small enough leakage family, for example, the physical-bit leak-
age family.

Remark 2. The inherent barrier of the existing Fourier’s analytic approach as
pointed out in [28] tells us that k/n must be greater than 1/2 to achieve leakage-
resilient even against a leakage family of size one that contains only the quadratic
residue leakage function. Our result shows that any k > (n + 1)/2 suffices, and
the larger value of k the bigger size of the leakage family. Let L∗∗ be the set of all
1-bit leakage functions that indicate whether λ1 ·s1+λ2 ·s2+· · ·+λk+1 ·sk+1 = 0,
where s1, s2, . . . , sk+1 are the secret shares of parties 1, 2, . . . , k + 1, respectively,
and λj are the Lagrange coefficients defined as

λj :=
∏

i∈{1,2,··· ,k+1}\{j}

(
Xi

Xi − Xj

)
.



Leakage-resilient Secret-sharing Against Arbitrary Bounded-size Leakage 365

The size of L∗∗ is equal to the number of tuples (λ1, λ2, · · · , λk), which is equal to
(p−1)·(p−2) · · · (p−k−1). For any Shamir’s secret-sharing scheme corresponding
to the evaluation places �X, there is a leakage function in the family L∗∗ that
can distinguish the secret s(0) = 0 from any other secret. Observe that when k
is close to n, our result is near-optimal.

1.2 Prior Relevant Works

Since the introduction of leakage-resilient secret-sharing [5,16], there are two
main research directions. The first direction is to construct new secret-sharing
schemes that are leakage-resilient against various models of leakages [2,4,9,11,
16,22,35]. The other direction is to investigate the leakage-resilience of prominent
secret-sharing schemes against local leakages [1,5,23,25,28]. We shall focus our
discussion on the second line of work.

Interestingly, the leakage-resilience of the Massey secret-sharing scheme is
connected to the exciting problem of repairing a linear code in the distributed
storage setting. For example, Guruswami and Wootters [17,18] presented a
reconstruction algorithm that obtains one bit from every block of a Reed-
Solomon code to repair any block when the field has characteristic two. Their
results show that Shamir’s secret-sharing schemes over characteristic two fields
are utterly broken against general one-bit local leakages.

For the case of prime-order fields, [6,28] proved that Shamir secret-sharing
scheme is robust to one-bit local leakage if the reconstruction threshold k �
0.85n. Very recently, [27] improved this threshold to k � 0.78n. Furthermore,
[28] proved that when k > 0.5n, the Massey secret-sharing scheme corresponding
to a random linear code is leakage-resilient even if a constant number of bits
are leaked from every share. For restricted families of leakages, [25] studied the
physical-bit leakage attacks on the Shamir secret-sharing scheme. They proved
that the Shamir secret-sharing scheme with random evaluation places is leakage-
resilient to this family when reconstruction threshold k � 2.

From the lower bound perspective, Nielsen and Simkin [31] proved that
Shamir secret-sharing scheme is not locally leakage-resilient if m ≈ k · log|F |/n
bits is leaked from every secret share. Finally, the recent work of [26] proved that
the “parity-of-parity” attack [25] on the additive secret sharing scheme has the
optimal distinguishing advantage of 2−Θ(n). Hence, if an additive secret sharing
scheme is 1-bit locally leakage-resilient it must hold that n = ω(log λ).

2 Technical Overview

Let λ represent the security parameter. Let F be a finite field (possibly, of
composite order) such that 2λ−1 � |F | < 2λ. That is, every element of F has
a λ-bit representation. Let n represent the number of secret shares and k + 1
represent the reconstruction threshold of the secret-sharing scheme.
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Overview of Result I. Consider a generator matrix G+ ∈ F (k+1)×(n+1) in
the standard form, i.e., G+ = [Ik+1|P ]. The linear code generated by G+ (i.e.,
the row span of G+) is denoted by 〈G+〉. We shall index the rows of G+ by
{0, 1, . . . , k} and the columns of G+ by {0, 1, . . . , n}. We refer to the submatrix
G+

{1,...,k},{1,...,n} as G. Consider the Massey secret-sharing scheme corresponding
to the linear code 〈G+〉. Observe that the secret shares corresponding to the
secret 0 are identical to the linear code 〈G〉. Furthermore, we refer to the row
vector G+

0,{1,...,n} as �v. This representation has the benefit of succinctly express-
ing the secret shares of s as the affine subspace s · �v + 〈G〉. Refer to Fig. 1 for a
pictorial summary of these notations.

For now, we shall consider a fully random G+ such that every element of the
parity check matrix P is sampled independently and uniformly at random from
the finite field F .

Reduction 1. Fix any �-bit (joint) leakage family L. Our objective is to prove that
the Massey secret-sharing scheme corresponding to a random code G+ is (L, ε)-
leakage-resilient, with overwhelming probability. Observe that it is sufficient to
consider an arbitrary function L and prove an upper bound on the probability
that G+ is not ε-leakage-resilient against L. Once we have this upper bound,
invoking a union bound over all leakage functions contained in the set L yields an
upper bound on the probability that G+ is not (L, ε)-leakage-resilient. Hence,
in the rest of the discussion, we fix the leakage function L and consider the
probability that G+ is not ε-leakage-resilient against a particular �-bit leakage
function L.

Reduction 2. By definition, if G+ is not ε-leakage-resilient against L, there exists
two secrets s(0) and s(1) such that the statistical distance between L(s(0)) and
L(s(1)) is > ε. However, note that it suffices to restrict s(0) = 0. This restriction
is justified because the triangle inequality ensures that there must be a secret
s ∈ F ∗ such that the statistical distance between the leakage joint distributions
L(0) and L(s) must be at least ε/2. Henceforth, our objective is to consider a
pair of secret 0 and s ∈ F ∗ and estimate the probability that the statistical
distance between the joint leakage distribution L(0) and L(s) is > ε/2.

Reduction 3. Observe that the statistical distance between L(0) and L(s) is

1
2

·
∑

�w∈{0,1}�

1
|F |k

∣
∣
∣|〈G〉 ∩ A�w| − |(s · �v + 〈G〉 ) ∩ A�w|

∣
∣
∣,

where A�w := L−1(�w) is the preimage of the observed leakage �w. For any A ⊆ Fn

and secret s ∈ F , we define the random variable

Xs,A :=
1

|F |k
∣
∣
∣|〈G〉 ∩ A| − |(s · �v + 〈G〉 ) ∩ A|

∣
∣
∣.

Our objective can be further reduced to show that the random variable Xs,A is
sufficiently small with overwhelming probability. This bound is sufficient because
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one may complete the proof by union bounding over all the choices of s ∈ F ∗

and A�w ⊆ Fn.

Upper Bounding the Second Moment. We proceed via a second-moment tech-
nique to prove that the random variable Xs,A is sufficiently small with over-
whelming probability. An upper bound on the expectation of the second moment
suffices for our proof because one can use the Chebyshev inequality to prove that
Xs,A is sufficiently small with overwhelming probability. Indeed, we prove that,
when G+ is fully random, the expectation of the second moment is small. Our
results on the second moment of the random variable Xs,A are summarized as
Lemma 2.

Partial Derandomization. Finally, we show that one may prove a similar bound
on the second moment of Xs,A when G+ is only partially random. In particular,
we consider the sampling part of the parity check matrix P as the sum of the
Wozencraft ensemble and the set of matrices with few random rows. Appendix
6 provides additional details on this result.

On the Combinatorial Approach. Our combinatorial approach deviates from the
Fourier-analytical approach of prior works and, hence, circumvents the road-
blocks that are inherent to it. Surprisingly, this elementary approach already
gives us near-optimal results in terms of the size of the leakage family. How-
ever, our approach does not extend to proving the leakage-resilience of Massey
secret-sharing corresponding to a fixed linear code or Shamir secret-sharing with
fixed evaluation places. It seems that our ideas does not extend to large leakage
family, for example, the entire local leakage family.

Overview of Result II. We shall restrict the field F to be a prime order
field of size p in the following discussion. Let �X be distinct evaluation places in
(F ∗)n. Consider the [n, k +1, �X]F -Shamir’s secret-sharing scheme. Observe that
the secret shares corresponding to the secret 0 are identical to the linear code
C �X =

〈
G �X

〉
, where G �X is the following matrix.

G �X =

⎛

⎜
⎜
⎜
⎝

X1 X2 · · · Xn

X2
1 X2

2 · · · X2
n

...
...

. . .
...

Xk
1 Xk

2 · · · Xk
n

⎞

⎟
⎟
⎟
⎠

.

Observe also that the secret shares of a secret s ∈ F is the affine subspace
s · �1 +

〈
G �X

〉
, where �1 is the vector of length n whose every coordinate is one.

We note that C �X is an [n, k]F maximum distance separable code.
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We shall consider random distinct evaluation places �X, and so the random
matrix G�X, which is a partial derandomization of the matrix G considered in
the first result. Our objective is to prove that Shamir’s secret-sharing scheme
corresponding to G�X is (L, ε)-leakage-resilient, with overwhelming probability.

Using a similar argument as in the case of random linear code, our objective
is reduced to show that the random variable Ys,A is sufficiently small with
overwhelming probability, where

Ys,A :=
1
pk

·
(
|〈G�X

〉 ∩ A| − |( 〈G�X

〉
+ s ·�1) ∩ A|

)
.

We once again use the second-moment technique to prove that the random vari-
able Ys,A is sufficiently small with high probability (see Lemma 3). However,
we use a Fourier-analytical approach instead of the combinatorial approach for
the random linear code. The randomness in G�X is much less compared to the
randomness in G. Consequently, the combinatorial proof does not go through for
G�X. To circumvent this, we rely on the Fourier-analytical approach [5,25,28].
However, unlike prior works, our analysis can handle not only local leakage but
also global leakage. In addition, our proof imports a result (Claim 3) from [25]
that upper-bounds the probability that a codeword �α belongs to a random code〈
G�X

〉⊥, which follows from a generalization of Bézout’s theorem.

Comparison with [25]. In a recent work, Maji et al. [25] considered the leakage-
resilience of Shamir secret-sharing against physical-bit leakage. They proved that
the Shamir secret-sharing scheme with random evaluation places is leakage-
resilient to the physical-bit leakage family for any reconstruction threshold
(k + 1) � 2. The Shamir secret-sharing scheme is multiplication-friendly for
any k < n/2.

In comparison to our result I, for the physical-bit leakage family, we prove
that the Massey secret-sharing scheme corresponding to a random linear code
is leakage-resilient for any reconstruction threshold (k + 1) � 4. The product
of the Massey secret-sharing scheme corresponding to a general linear code is a
ramp secret-sharing scheme (with k-privacy and (k + 1)2-reconstruction thresh-
old). Hence, Massey’s secret-sharing scheme corresponding to a general linear
code is multiplication-friendly when n � (k + 1)2. However, our result is signif-
icantly more general as it applies to arbitrary small (potentially joint) leakage
families. In contrast, the techniques of [25] follow the Fourier analytic approach
and, hence, cannot be extended to arbitrary local leakage families (due to the
bottleneck presented by [28]).

The result in [25] is incomparable to our result II. Their result is only for the
physical-bit leakage family but works for any (k +1) � 2, while our result works
for any bounded-size joint leakage family but requires that the reconstruction
threshold is > (n + 1)/2.

Comparison with [6,28]. Benhamouda et al. [6] proved that the Shamir secret-
sharing scheme is leakage-resilient to all local leakage functions when k > 0.85n.
Similarly, Maji et al. [28] proved that the Massey secret-sharing scheme corre-
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sponding to a random linear code is leakage-resilient to all local leakage functions
when k > 0.5n.

Both results are incomparable to our result I as they require a significantly
higher threshold k, but proved a stronger result, i.e., leakage-resilience against
all local leakage functions. In particular, the parameter settings for k and n in
their results are not multiplication-friendly.

Again both results are incomparable to our result II as the size of all the local
leakage functions is significantly larger than the size of the bounded-size joint
leakage family in ours. Theirs and ours require a high reconstruction threshold.

3 Preliminaries

Throughout this paper, we use F for a finite field. Our work uses the length of
the binary representation of the order of the field F as the security parameter λ,
i.e., λ = log2|F |. The total number of parties n = poly(λ) and the reconstruction
threshold k = poly(λ) as well. The objective of our arguments shall be to show the
insecurity of the cryptographic constructions is ε = negl(λ), i.e., a function that
decays faster than any inverse-polynomial of the λ. For any two distributions
A and B over the same sample space (which is enumerable), the statistical
distance between the two distributions, represented by SD(A,B), is defined as
1
2 ·∑x|Pr[A = x] − Pr[B = x]|.

For any set A, we denote the indicator function of the set A as 1A. That is,
1A(x) = 1 if x ∈ A and 0 otherwise. For an element x and a set S, we use x + S
to denote the set {x + s : s ∈ S}.

3.1 Matrices

A matrix M ∈ F k×n has k-rows and n-columns, and each of its element is in F .
Let I ⊆ {1, . . . , k} and J ⊆ {1, . . . , n} be a subset of row and column indices,
respectively. The matrix M restricted to rows I and columns J is represented
by MI,J . If I = {i} is a singleton set, then we represent Mi,J for M{i},J . The
analogous notation also holds for singleton J . Furthermore, G∗,J represents the
columns of G indexed by J (all rows are included). Similarly, G∗,j represents the
j-th column of the matrix G. Analogously, one defines GI,∗ and Gi,∗.

Some parts of the documents use {0, 1, . . . , k} as row indices and {0, 1, . . . , n}
as column indices for a matrix G+ ∈ F (k+1)×(n+1).

3.2 Codes and Linear Secret-sharing Schemes

We use the following notations for error-correcting codes as consistent with [24].
A linear code C (over the finite field F ) of length (n+1) and rank (k +1) is a

(k+1)-dimension vector subspace of Fn+1, referred to as an [n+1, k+1]F -code.
The generator matrix G ∈ F (k+1)×(n+1) of an [n+1, k+1]F linear code C ensures
that every element in C can be expressed as �x · G, for an appropriate �x ∈ F k+1.
Given a generator matrix G, the row-span of G, i.e., the code generated by G, is
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represented by 〈G〉. A generator matrix G is in the standard form if G = [Ik+1|P ],
where Ik+1 ∈ F (k+1)×(k+1) is the identity matrix and P ∈ F (k+1)×(n−k) is the
parity check matrix. In this work, we always assume that the generator matrices
are in their standard form.

Maximum Distance Separable Codes. The distance of a linear code is the mini-
mum weight of a non-zero codeword. An [n, k]F -code is maximum distance sep-
arable (MDS) if its distance is (n − k + 1).

Massey Secret-Sharing Schemes. Let C ⊆ Fn+1 be a linear code. Let s ∈
F be a secret. The Massey secret-sharing scheme corresponding to C picks a
random element (s, s1, . . . , sn) ∈ C to share the secret s. The secret shares of
parties 1, . . . , n are s1, . . . , sn, respectively.

Recall that the set of all codewords of the linear code generated by the
generator matrix G+ ∈ F (k+1)×(n+1) is

{
�y : �x ∈ F k+1, �x · G+ =: �y

} ⊆ Fn+1.

For such a generator matrix, its rows are indexed by {0, 1, . . . , k} and its columns
are indexed by {0, 1, . . . , n}. Let s ∈ F be the secret. The secret-sharing scheme
picks independent and uniformly random r1, . . . , rk ∈ F . Let

(y0, y1, . . . , yn) := (s, r1, . . . , rk) · G+.

Observe that y0 = s because the generator matrix G+ is in the standard form.
The secret shares for the parties 1, . . . , n are s1 = y1, s2 = y2, . . . , sn = yn,
respectively. Observe that every party’s secret share is an element of the field
F . Of particular interest will be the set of all secret shares of the secret s = 0.
Observe that the secret shares form an [n, k]F -code that is 〈G〉, where G =
G+

{1,...,k}×{1,...,n}. Note that the matrix G is also in the standard form. The
secret shares of s ∈ F ∗ form the affine space s · �v + 〈G〉, where �v = G+

0,{1,...,n}.
Refer to Fig. 1 for a pictorial summary.

Fig. 1. A pictorial summary of the generator matrix G+ = [Ik+1 | P ], where P
is the shaded matrix. The indices of rows and columns of G+ are {0, 1, . . . , k} and
{0, 1, . . . , n}, respectively. The (blue) matrix G = [Ik | R] is a submatrix of G+. In
particular, the secret shares of secret s = 0 form the code 〈G〉. The (red) vector is �v. In
particular, for any secret s, the secret shares of s form the affine subspace s · �v + 〈G〉.
(Color figure online)
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Suppose parties i1, . . . , it ∈ {1, . . . , n} come together to reconstruct the secret
with their, respective, secret shares si1 , . . . , sit

. Let G+
∗,i1

, . . . , G+
∗,it

∈ F (k+1)×1

represent the columns indexed by i1, . . . , it ∈ {1, . . . , n}, respectively. If the
column G+

∗,0 ∈ F (k+1)×1 lies in the span of
{
G+

∗,i1
, . . . , G+

∗,it

}
then these parties

can reconstruct the secret s using a linear combination of their secret shares.
If the column G+

∗0 does not lie in the span of
{
G+

∗,i1
, . . . , G+

∗,it

}
then the secret

remains perfectly hidden from these parties.

Shamir Secret-sharing Schemes. Let F be a prime field. Let �X =
(X1, . . . , Xn) be evaluation places satisfying (1) Xi ∈ F ∗ for all 1 � i � n,
and (2) Xi �= Xj for all 1 � i < j � n. The corresponding [n, k, �X]F -Shamir
secret-sharing is defined as follows.

– Given secret s ∈ F , Share �X(s) independently samples a random ai ∈ F , for
all 1 � i < k. The ith share of Share �X(s) is

Share
�X(s)i := s + a1Xi + a2X

2
i + · · · + ak−1X

k−1
i .

– Given shares
(
Share

�X(s)i1 , . . . ,Share
�X(s)it

)
, Rec �X interpolates to obtain the

unique polynomial f ∈ F [X]/Xk such that f(Xij
) = Share

�X(s)ij
for all 1 �

j � t, and outputs f(0) to be the reconstructed secret.

3.3 Joint Leakage-resilience of Secret-sharing Scheme

Consider an n-party secret-sharing scheme, where every party gets an element
in F as their secret share. Let L be an �-bit joint leakage function, i.e., L : Fn →
{0, 1}�. Let L(s) be the distribution of the leakage defined by the experiment: (a)
sample secret shares (s1, . . . , sn) for the secret s, and (b) output L(s1, . . . , sn).

Definition 1. Let L be a family of �-bit joint leakage functions. We say a secret-
sharing scheme is ε-leakage-resilient against L if for all leakage functions L ∈ L
and for all secrets s(0) and s(1), we have

SD
(
L
(
s(0)

)
,L
(
s(1)

))
� ε.

3.4 Fourier Analysis

Let F be a prime field of order p and let n be a positive integer. For any complex
number a ∈ C, let a represent its conjugate. For any two functions f, g : Fn → C,
their inner product is

〈f, g〉 :=
1
pn

·
∑

�x∈F n

f(�x) · g(�x).

Let ω = exp(2πı/p) be the pth root of unity. For all �α ∈ Fn, the function
χ�α : Fn → C is defined to be

χ�α(�x) := ω�α·�x,
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where �α · �x is the inner product over Fn. The respective Fourier coefficient f̂(�α)
is defined as

f̂(�α) := 〈f, χ�α〉 .

We have the following facts and lemma.

Fact 1 (Fourier Inversion Formula) f(�x) =
∑

α∈F n f̂(�α) · ω�α·�x.

Fact 2 (Parseval’s Identity) 1
pn

∑
�x∈F n |f(�x)|2 =

∑
�α∈F n |f̂(�α)|2.

Lemma 1 (Poisson Summation Formula). Let C ⊆ Fn be a linear code
with dual code C⊥. Let f : Fn → C be an arbitrary function. Then, the following
identity holds.

E
�x∈C

[f(�x)] =
∑

�α∈C⊥
f̂(�α)

In particular, if f(�x) = f1(x1) · f2(x2) · · · fn(xn), where fi : F → C for every
1 � i � n, it holds that

E
�x←C

[
n∏

i=1

fi(xi)

]

=
∑

�y∈C⊥

(
n∏

i=1

f̂i(yi)

)

.

4 Leakage-resilience of Fully Random Code

In this section, we consider the fully random generator matrix G+ = [Ik+1|P].
That is, every entry of the parity check matrix P is sampled as an independently
uniformly random element from F . Fix any small leakage family L. We shall
show that the Massey secret-sharing scheme corresponding to G+ is leakage-
resilient to L with overwhelming probability. In particular, we prove the following
theorem.

Theorem 4. Let L be an arbitrary family of �-bit joint leakage functions. The
Massey secret-sharing scheme corresponding to fully random G+ is ε-leakage-
resilient against L except with probability

� |L| · 8�

ε2 · |F |k−2
.

In particular, letting ε =
(|L| · 8�/|F |k−2

)1/3 ensures that the failure probability
is at most ε. Furthermore, ε is exponentially decaying when |L| � |F |k−2−c

/8�,
where c > 0 is an arbitrary constant.

Remark 3. We note that a fully random matrix over (exponentially large) F is
maximum distance separable (MDS) with overwhelming probability when 2n =
o(|F |). Hence, the resulting Massey secret-sharing scheme is a (k + 1)-out-of-
n threshold secret-sharing scheme with overwhelming probability. We refer the
readers to Appendix B.1 of [28] for a proof.
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We shall present a combinatorical proof of this theorem. First, it shall be
convenient to define the following random variable. For any secret s ∈ F and
any subset A ⊆ Fn, define

Xs,A :=
1

|F |k
·
(
|〈G〉 ∩ A| − |( 〈G〉 + s · �v) ∩ A|

)
.

Recall that 〈G〉 is the set of all the secret shares of secret 0. Furthermore, 〈G〉+s·�v
is the set of all the secret shares of secret s. Hence, the random variable Xs,A

represents the difference in the probability that the secret shares falls into the
set A between secret being 0 and s. Our key technical lemma is the following.

Lemma 2 (Key Technical Lemma). For any secret s ∈ F and any subset
A ⊆ Fn, it holds that

E
G+

[
(Xs,A)2

]
� 1

|F |k−1
.

Let us first show why Lemma 2 is sufficient to prove Theorem 4.

Proof (Proof of Theorem 4 using Lemma 2). First, Lemma 2 implies that, for
all t > 0, we have

Pr
G+

[|Xs,A| � t] � 1
t2 · |F |k−1

(1)

since

Pr
G+

[|Xs,A| � t] � E[(Xs,A)2]
t2

(Markov’s inequality)

� 1
t2 · |F |k−1

. (Lemma 2)

Given this, observe that

Pr
G+

[
G+ is not ε-leakage-resilient against L]

= Pr
G+

[
∃s(0), s(1), ∃L ∈ L, SD

(
L
(
s(0)

)
,L
(
s(1)

))
> ε

]

� Pr
G+

[∃s, ∃L ∈ L, SD (L (0),L (s)) > ε/2]

�
∑

L∈L

(
Pr
G+

[∃s, SD (L (0),L (s)) > ε/2]
)

. (Union bound)

Fix any L ∈ L. For any leakage �w ∈ {0, 1}�, let A�w := L−1 (�w). That is, A�w is
the set of secret shares that would result in the leakage �w. It holds that

Pr
G+

[∃s, SD (L (0),L (s)) > ε/2]

= Pr
G+

⎡

⎣∃s,
1
2

·
∑

�w∈{0,1}�

|Xs,A�w
| > ε/2

⎤

⎦ (By definition of SD and Xs,A�w
)
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�
∑

s∈F

⎛

⎝Pr
G+

⎡

⎣
∑

�w∈{0,1}�

|Xs,A�w
| > ε

⎤

⎦

⎞

⎠ (Union bound)

�
∑

s∈F

(
Pr
G+

[∃�w ∈ {0, 1}�, |Xs,A�w
| > ε/2�

]
)

(Pigeon-hole principle)

�
∑

s∈F

∑

�w∈{0,1}�

(
Pr
G+

[|Xs,A�w
| > ε/2�

]
)

(Union bound)

� |F | · 2� · 22�

ε2 · |F |k−1
(since Eq. 1 applies to arbitrary A and s)

=
8�

ε2 · |F |k−2
.

Combining everything, we get

Pr
G,v

[
G+ is not ε-leakage-resilient

]
� |L| · 8�

ε2 · |F |k−2
.

We complete the proof of Theorem 4 by proving our key technical lemma.

Proof (Proof of Lemma 2). Recall that

Xs,A =
1

|F |k ·
(
|〈G〉 ∩ A| − |( 〈G〉 + s · �v) ∩ A|

)
.

Hence, the second moment of Xs,A can be written as

(Xs,A)2 =
1

|F |2k
·
∑

�x,�y∈F k

(
1A (�x · G) − 1A (�x · G + s · �v)

)
·

(
1A (�y · G) − 1A (�y · G + s · �v)

)
.

For short, for all �x and �y, let us define

T�x,�y :=
(
1A (�x · G) − 1A (�x · G + s · �v)

)(
1A (�y · G) − 1A (�y · G + s · �v)

)
.

Recall that G = [Ik|R] is in the standard form and the first k coordinates of �v
are 0 (refer to Fig. 1). Hence, one may write

T�x,�y =
(
1A(�x) (�x · R) − 1A(�x)

(
�x · R + s · �v{k+1,...,n}

) )·
(
1A(�y) (�y · R) − 1A(�y)

(
�y · R + s · �v{k+1,...,n}

) )

where
A(�x) := A

⋂
{x1} × · · · × {xk} × F × · · · × F︸ ︷︷ ︸

n−k times
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and
A(�y) := A

⋂
{y1} × · · · × {yk} × F × · · · × F︸ ︷︷ ︸

n−k times

.

Clearly, �x · R and �y · R are both uniform over Fn−k. Moreover, observe that
�x · R and �y · R are independent random variables when �x and �y are linearly
independent. Therefore, fix any linearly independent �x and �y, we have

E
G+

[T�x,�y] = E
�v

[

E
R

[(
1A(�x) (�x · R) − 1A(�x)

(
�x · R + s · �v{k+1,...,n}

) )]

· E
R

[(
1A(�y) (�y · R) − 1A(�y)

(
�y · R + s · �v{k+1,...,n}

) )]
]

= E
�v

[( |A(�x)|
|F |n−k

− |A(�x)|
|F |n−k

)( |A(�x)|
|F |n−k

− |A(�x)|
|F |n−k

)]
= 0

Let us define the bad set as

Bad := {(�x, �y) : �x and �y are linearly dependent} .

Hence, we have shown that

(�x, �y) /∈ Bad =⇒ E
G+

[T�x,�y] = 0.

On the other hand, for all �x and �y, it trivially holds that

E
G+

[T�x,�y] � 1.

Therefore, this completes the proof as

E
G+

[
(Xs,A)2

]
=

1
|F |2k

∑

�x,�y∈F k

E
G+

[T�x,�y] (Linearity of expectation)

� 1
|F |2k

⎛

⎝
∑

(�x,�y)/∈Bad

0 +
∑

(�x,�y)∈Bad

1

⎞

⎠ � 1
|F |k−1

.

5 Leakage-resilience of Shamir Secret-sharing Schemes
with Random Evaluation Places

This section considers Shamir secret-sharing over a prime order field and with
randomly chosen evaluation places. Fix any small (joint) leakage family L. We
shall show that Shamir secret-sharing with distinct random evaluation places is
leakage-resilient to L.

In this section, we write f(λ) � g(λ) for f(λ) = (1 + o(1)) · g(λ).
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Theorem 5. Let L be an arbitrary family of �-bit joint leakage functions. The
[n, k +1, �X]F -Shamir’s secret-sharing scheme corresponding to randomly chosen
evaluation places �X is ε-leakage-resilient against L except with probability at
most

4 · |L| · 8� · pn−k+1 · k!
ε2 · (p − n)k

.

In particular, letting ε =
(
4 · |L| · 8� · pn−k+1 · k!/(p − n)k

)1/3 ensures that the
failure probability δ is at most ε. Furthermore, ε is exponentially decaying when
|L| � (p − n)k−c/(4 · 8� · pn−k+1 · k!), where c > 0 is an arbitrary constant.

In contrast to the proof of Theorem 4, we rely on Fourier-analytical tech-
niques to prove Theorem 5. In this section, we restrict to prime field F of order
p. Consider an [n, k+1, �X]F -Shamir secret-sharing scheme with randomly chosen
evaluation places �X. Let C�X be the set of all possible secret shares corresponding
to the secret 0. Recall that C�X =

〈
G�X

〉
, where the generator matrix of G�X is

the following matrix.

G�X =

⎛

⎜
⎜
⎜
⎝

X1 X2 · · · Xn

X2
1 X2

2 · · · X2
n

...
...

. . .
...

Xk
1 Xk

2 · · · Xk
n

⎞

⎟
⎟
⎟
⎠

.

Furthermore,
〈
G�X

〉
+ s · �1 is the set of all the secret shares of secret s for any

s ∈ F . For any secret s ∈ F and any subset A ⊆ Fn, define

Ys,A :=
1
pk

·
(
|〈G�X

〉 ∩ A| − |( 〈G�X

〉
+ s · �1) ∩ A|

)

= E
�x∈C�X

[1A(�x)] − E
�x∈C�X

[
1A(�x + s ·�1)

]

Intuitively, the random variable Ys,A represents the difference in the probability
that the secrets shares falls into the set A between the secret being 0 and s. The
following lemma is the main technical result of Theorem 5.

Lemma 3. For any secret s ∈ F and any subset A ⊆ Fn, it holds that

E
�X

[
(Ys,A)2

]
� 4 · pn−k+1 · k!

(p − (n − k + 1)) · · · (p − n)
� 4 · pn−k+1 · k!

(p − n)k

Note that A need not be a product space. Now, we first prove Theorem 5 using
Lemma 3.

Proof (Proof of Theorem 5). Using a similar argument as in the proof of Theorem
4, one can show that

Pr
�X

[
G�X is not ε-leakage-resilient against L]
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�
∑

L∈L

∑

s∈F

∑

�w∈{0,1}�

(
Pr
G�X

[|Ys,A�w
| � ε/2�

]
)

(Union bound)

�
∑

L∈L

∑

s∈F

∑

�w∈{0,1}�

4 · pn−k · k!
(p − (n − k + 1)) · · · (p − n)

·
(

2�

ε

)2

(Lemma 3 and Markov’s inequality)

=|L| · p · 2� · 22� · 4 · pn−k · k!
ε2 · (p − (n − k + 1)) · · · (p − n)

�4 · |L| · 8� · pn−k+1 · k!
ε2 · (p − n)k

,

which completes the proof.

Next, we state all the claims that are needed for the proof of Lemma 3. Using
the Poisson summation formula (Lemma 1), the variable Ys,A can be rewritten
as follow.

Claim 1. Ys,A =
∑

�α∈C⊥
�X

\{�0} 1̂A(�α)
(
1 − ω〈�α,s·�1〉) .

The next claim upper bounds the �2 norm of the Fourier weights corresponding
to an indicator function of an arbitrary subset of Fn. This result follows from
Parseval’s identity directly.

Claim 2. For any subset A ⊆ Fn, it holds that
∑

�α∈F n\{�0}
|1̂A(�α)|2 � 1.

Finally, the following claim upper bounds the probability of a non-zero vector
that is in the dual space C⊥

�X
, where the probability is taken over the randomness

of the evaluation places �X. This result was proven in [25] using a generalization
of Bezout’s theorem.

Claim 3 (Claim 4 of [25]). For any non-zero vector �α ∈ Fn, the following
bound holds.

Pr
�X

[
�α ∈ C⊥

�X

]
� k!

(p − (n − k + 1)) · · · (p − n)

Now, we are ready to prove Lemma 3.

Proof (Proof of Lemma 3). We have

E
�X

[
(Ys,A)2

]
= E

�X

⎡

⎢
⎣

⎛

⎜
⎝

∑

�α∈C⊥
�X

\{�0}
1̂A(�α)

(
1 − ω〈�α,s·�1〉)

⎞

⎟
⎠

2⎤

⎥
⎦ (Claim 1)
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� E
�X

⎡

⎢
⎣

⎛

⎜
⎝

∑

�α∈C⊥
�X

\{�0}
|1 − ω〈�α,s·�1〉|2

⎞

⎟
⎠ ·

⎛

⎜
⎝

∑

�α∈C⊥
�X

\{�0}
|1̂A(�α)|2

⎞

⎟
⎠

⎤

⎥
⎦

(Cauchy-Schwarz)

� E
�X

⎡

⎢
⎣

⎛

⎜
⎝

∑

�α∈C⊥
�X

\{�0}
4

⎞

⎟
⎠ ·

⎛

⎜
⎝

∑

�α∈C⊥
�X

\{�0}
|1̂A(�α)|2

⎞

⎟
⎠

⎤

⎥
⎦

(Triangle inequality)

� 4 · pn−k+1 · E
�X

⎡

⎢
⎣

∑

�α∈C⊥
�X

\{�0}
|1̂A(�α)|2

⎤

⎥
⎦

= 4 · pn−k ·
∑

�α∈F n\{�0}
|1̂A(�α)|2 · Pr

�X

[
�α ∈ C⊥

�X

]

(Linearity of expectation)

� 4 · pn−k ·
∑

�α∈F n\{�0}
|1̂A(�α)|2 · k!

(p − (n − k + 1)) · · · (p − n)

(Claim 3)

� 4 · pn−k · k!
(p − (n − k + 1)) · · · (p − n)

(Claim 2)

� 4 · pn−k · k!
(p − n)k

.

This completes the proof.

6 Leakage-resilience of Partially Random Code

In this section, we show a natural trade off between the amount of randomness
one uses and the size of the leakage family that the secret-sharing scheme is
resilient against. Intuitively, we show that, for any constant t ∈ N, one may
employ t · (n − k) random elements from F to sample the random generator
matrix such that the Massey secret-sharing scheme is resilient against any L of
size (approximately) |F |t/8�. Let us start by defining some ways of sampling
partially random matrices.

Definition 2 (t-row random matrix). The t-row random matrix M(t) is a
matrix where elements M(t)

i,j in the first t rows of the matrix are chosen inde-
pendently uniformly random from F , and all the other elements are fixed to be
zero.
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M(t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

M(t)
1,1 M(t)

1,2 · · · M(t)
1,n−k

...
...

...
M(t)

t,1 M(t)
t,2 · · · M(t)

t,n−k

0 0 · · · 0
...

...
...

0 0 · · · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Clearly, one needs t(n − k) random field elements to sample M(t).

Next, we define Wozencraft ensemble, standard technique in derandomization.

Definition 3 (Wozencraft Ensemble [29].). Let finite field K be a degree k
extension of the finite field F . There is a bijection between elements of K and
F k. For every element �α ∈ F k, we shall represent the corresponding element in
K to be (�α)K ∈ K. Fix an element (�β)K ∈ K. There exists a (unique) matrix
M(�β) ∈ F k×k such that, for any (�x)K ∈ K, it ensures

(�x)K · (�β)K =
(
�x · M(�β)

)

K

That is, for all �x, the matrix product of �x and M(�β) over F (which is a vector
in F k), corresponds to the product of (�x)K and (�β)K over K.

One may use the Wozencraft ensemble to sample a partially random matrix
in F k×(n−k) as follows. Let m = �(n − k)/k	 (i.e., (m − 1)k < (n − k) � mk).
One samples m random vectors �α(1), �α(2), . . . , �α(m) in F k. One picks the first
(n − k) columns of the matrix

[
M
(
�α(1)

) ∣∣
∣
∣M

(
�α(2)

) ∣∣
∣
∣ · · ·

∣
∣
∣
∣M

(
�α(m)

)]

as the sampled random matrix in F k×(n−k). We shall use W as a partially ran-
dom matrix sampled using Wozencraft ensemble. Clearly, one needs �n−k

k 	 · k ≈
(n − k) random elements from F to sample W.

We are now ready to state our theorem for this section.

Theorem 6. Let L be an arbitrary collection of �-bit joint leakage functions.
Let G+ be the generator matrix (refer to Fig. 1) sampled as follows.

1. Entries of �v{k+1,...,n} are sampled independently uniformly random from F .
2. Matrix R ∈ F k×(n−k) is sampled as M(t) + W, where M(t) and W are

sampled independently according to Definition 2 and Definition 3.

The Massey secret-sharing scheme corresponding to G+ is ε-leakage-resilient to
the leakage family L except with probability (at most)

|L| · 8�

ε2 · |F |t−2
.
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In particular, ε =
(|L| · 8�/|F |t−2

)1/3 ensures that the failure probability is at
most ε. Furthermore, ε is exponentially decaying when |L| � |F |t−2−δ

/8�, where
δ ∈ (0, 1) is an appropriate constant. The random field elements required to
sample G+ is (approximately) (t + 2)(n − k).

Intuitively, the Wozencraft ensemble ensures that G+ is MDS with high prob-
ability and we rely on the t-row random matrix to prove our technical lemma
below. The proof of this theorem follows analogously as the proof of Theorem
4. We present an outline of the proof below. First, we have our key technical
lemma.

Lemma 4 (Key Technical Lemma). For any secret s ∈ F and any subset
A ⊆ Fn, it holds that

E
G+

[
(Xs,A)2

]
� 1

|F |t−1
.

The proof of Theorem 6 from Lemma 4 is identical to the previous section.
Hence, we omit it. Before we present the proof of Lemma 4, we define the fol-
lowing notion of bad set.

Definition 4 (Bad Set). A pair of vectors �x, �y ∈ F k is “bad” if the following
2(n − k) random variables are not independently uniform.

�x · R∗,j and �y · R∗,j j ∈ {1, 2, . . . , n − k}.

Succinctly, we use Bad ⊆ F k × F k to denote the set of all “bad” �x and �y. The
density of badness of a (partially) random generator matrix is the density of the
bad set, i.e., |Bad|/|F |2k.

Let us assume that the density of badness is β. One may prove Lemma 4 in
the exactly manner as in the previous section. That is,

E
G+

[
(Xs,A)2

]
=

1
|F |2k

⎛

⎝
∑

(�x,�y)/∈Bad

E
G+

[T�x,�y] +
∑

(�x,�y)∈Bad

E
G+

[T�x,�y]

⎞

⎠

� 1
|F |2k

⎛

⎝
∑

(�x,�y)/∈Bad

0 +
∑

(�x,�y)∈Bad

1

⎞

⎠

= β.

Now, we have reduced our problem to computing the density of badness. Note
that, when G+ is the fully random matrix, the characterization of “bad” set is
straightforward. “Bad” set is exactly those �x and �y that are linearly dependent.

However, for a partially random matrix such as the G+ that we consider
in this section, the characterization of “bad” set might be highly non-trivial.
Nevertheless, we note that an upper bound on the density of the badness suffices
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for this proof. And one may prove such upper bound by showing what �x and �y
is not “bad”. In particular, we note that

(x1, . . . , xt) and (y1, . . . , yt) are linearly independent =⇒ (�x, �y) /∈ Bad.

Clearly, when (x1, . . . , xt) and (y1, . . . , yt) are not linearly dependent, �x · M(t)

and �y ·M(t) are independently uniformly random. Since we sample R as M(t) +
W where W is independent of M(t), �x · R and �y · R are also independently
uniformly random. Consequently, the density of badness is (at most) 1/|F |t−1,
which completes the proof of Lemma 4 and, in turn, the proof of Theorem 6.
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Abstract. Broadcast is an essential primitive for secure computation.
We focus in this paper on optimal resilience (i.e., when the number of
corrupted parties t is less than a third of the computing parties n), and
with no setup or cryptographic assumptions.

While broadcast with worst case t rounds is impossible, it has been
shown [Feldman and Micali STOC’88, Katz and Koo CRYPTO’06] how
to construct protocols with expected constant number of rounds in the
private channel model. However, those constructions have large commu-
nication complexity, specifically O(n2L + n6 log n) expected number of
bits transmitted for broadcasting a message of length L. This leads to
a significant communication blowup in secure computation protocols in
this setting.

In this paper, we substantially improve the communication complexity
of broadcast in constant expected time. Specifically, the expected com-
munication complexity of our protocol is O(nL+n4 log n). For messages
of length L = Ω(n3 log n), our broadcast has no asymptotic overhead
(up to expectation), as each party has to send or receive O(n3 log n)
bits. We also consider parallel broadcast, where n parties wish to broad-
cast L bit messages in parallel. Our protocol has no asymptotic overhead
for L = Ω(n2 log n), which is a common communication pattern in per-
fectly secure MPC protocols. For instance, it is common that all parties
share their inputs simultaneously at the same round, and verifiable secret
sharing protocols require the dealer to broadcast a total of O(n2 log n)
bits.

As an independent interest, our broadcast is achieved by a packed ver-
ifiable secret sharing, a new notion that we introduce. We show a protocol
that verifies O(n) secrets simultaneously with the same cost of verifying
just a single secret. This improves by a factor of n the state-of-the-art.

Keywords: MPC · Byzantine agreement · Broadcast

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
E. Kiltz and V. Vaikuntanathan (Eds.): TCC 2022, LNCS 13747, pp. 384–414, 2022.
https://doi.org/10.1007/978-3-031-22318-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22318-1_14&domain=pdf
https://doi.org/10.1007/978-3-031-22318-1_14


Asymptotically Free Broadcast via Packed VSS 385

1 Introduction

A common practice in designing secure protocols is to describe the protocol
in the broadcast-hybrid model, i.e., to assume the availability of a broadcast
channel. Such a channel allows a distinguished party to send a message while
guaranteeing that all parties receive and agree on the same message. Assuming
the availability of a broadcast channel is reasonable only in a restricted setting,
for instance, when the parties are geographically close and can use radio waves.
In most settings, particularly when executing the protocol over the Internet,
parties have to implement this broadcast channel over point-to-point channels.

The cost associated with the implementation of the broadcast channel is often
neglected when designing secure protocols. In some settings, the implementation
overhead is a real obstacle in practice. In this paper, we focus on the most
demanding setting: perfect security with optimal resilience.

Perfect security means that the protocol cannot rely on any computational
assumptions, and the error probability of the protocol is zero. Optimal resilience
means that the number of parties that the adversary controls is bounded by
t < n/3, where n is the total number of parties. This bound is known to be
tight, as a perfectly-secure broadcast protocol tolerating n/3 corrupted parties or
more is impossible to construct [44,48], even when a constant error probability is
allowed [4].

Asymptotically-free broadcast. What is the best implementation of broad-
cast that we can hope for? For broadcasting an L bit message, consider the ideal
trusted party that implements an “ideal broadcast”. Since each party has to
receive L bits, the total communication is O(nL). To avoid bottlenecks, we would
also prefer balanced protocols where all parties have to communicate roughly the
same number of bits, i.e., O(L), including the sender.

Regarding the number of rounds, it has been shown that for any broad-
cast protocol with perfect security there exists an execution that requires t + 1
rounds [32]. Therefore, a protocol that runs in strict constant number of rounds
is impossible to achieve. The seminal works of Rabin and Ben-Or [10,49] demon-
strated that those limitations can be overcome by using randomization. We
define asymptotically-free broadcast as a balanced broadcast protocol that runs
in expected constant number of rounds and with (expected) communication com-
plexity of O(nL).

There are, in general, two approaches for implementing broadcast in our
setting. These approaches provide an intriguing tradeoff between communication
and round complexity:

– Low communication complexity, high number of rounds: For broad-
casting a single bit, the first approach [13,22] requires O(n2) bits of com-
munication complexity, which is asymptotically optimal for any deterministic
broadcast protocols [27], or in general, O(nL+n2 log n) bits for broadcasting
a message of size L bits via a perfect broadcast extension protocol [20].1 This
comes at the expense of having Θ(n) rounds.

1 Broadcast extension protocols handle long messages efficiently at the cost of a small
number of single-bit broadcasts.
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– High communication complexity, constant expected number of
rounds: The second approach, originated by the seminal work of Feldman and
Micali [29], followed by substantial improvements and simplifications by Katz
and Koo [41], requires significant communication complexity of O(n6 log n) bits
in expectation for broadcasting just a single bit, or O(n2L + n6 log n) bits for
a message of L bits.2 However, they work in expected constant rounds.

To get a sense of how the above translates to practice, consider a network
with 200 ms delay per round-trip (such a delay is relatively high, but not unusual,
see [1]), and n = 300. Using the first type of protocol, ≈ 300 rounds are translated
to a delay of 1 min. Then, consider for instance computing the celebrated protocol
of Ben-Or, Goldwasser and Wigderson [12] on an arithmetic circuit with depth
30. In each layer of the circuit the parties have to use broadcast, and thus the
execution would take at least 30 min. The second type of protocols require at
least Ω(n6 log n) bits of communication. The protocol is balanced and each party
sends or receives n5 log n bits ≈ 2.4 terabytes. Using 1Gbps channel, this is a
delay of 5.4 h. Clearly, both approaches are not ideal.

This current state of the affairs calls for the design of faster broadcast pro-
tocols and in particular, understanding better the tradeoff between round com-
plexity and communication complexity.

Why Perfect Security? Our main motivation for studying broadcast is for
perfectly secure multiparty computation. Perfect security provides the strongest
possible security guarantee. It does not rely on any intractable assumptions
and provides unconditional, quantum, and everlasting security. Protocols with
perfect security remain adaptively secure (with some caveats [6,18]) and secure
under universal composition [43]. Perfect broadcast is an essential primitive in
generic perfectly secure protocols.

Even if we relax our goals and aim for statistical security only, the situation
is not much better. Specifically, the best upper bounds that we have are in
fact already perfectly secure [13,20,22,41,46,47]. That is, current statistically
secure results do not help in achieving a better communication complexity vs
round complexity tradeoff relative to the current perfect security results. We
remark that in the computational setting, in contrast, the situation is much
better. Asymptotically-free broadcast with f < n/2 can be achieved assuming
threshold signatures and setup assumption in constant expected rounds and with
O(n2 + nL) communication [3,41,50].

1.1 Our Results

We provide a significant improvement in the communication complexity of broad-
cast with perfect security and optimal resilience in the presence of a static adver-
sary. Towards that end, we also improve a pivotal building block in secure com-
putation, namely, verifiable secret sharing (VSS). Our new VSS has an O(n)
2 Using broadcast extension of [46] we can bring the asymptotic cost to O(nL) +

E(O(n7 log n)) bits. However, the minimum message size to achieve this L =
Ω(n6 log n). This is prohibitively high even for n = 100.



Asymptotically Free Broadcast via Packed VSS 387

complexity improvement that may be of independent interest. We present our
results in a top-down fashion. Our main result is:

Theorem 1.1. There exists a perfectly secure, balanced, broadcast protocol with
optimal resilience, which allows a dealer to send L bits at the communication
cost of O(nL) bits, plus O(n4 log n) expected bits. The protocol runs in constant
expected number of rounds and assumes private channels.

Previously, Katz and Koo [41] achieved O(n2L) bits plus O(n6 log n) expected
number of bits. For messages of size L = Ω(n3 log n) bits, the total communica-
tion of our protocol is O(nL) bits. Thus, we say that our protocol is asymptoti-
cally free for messages of size L = Ω(n3 log n) bits. We recall that [41] together
with [46] are also asymptotically free albeit only for prohibitively large value of L
( = Ω(n6 log n)). Table 1 compares our work to the state of the art in broadcast
protocols.

To get a sense from a practical perspective, for broadcasting a single bit with
n = 300, our protocol requires each party to send/receive roughly n3 log n ≈ 27
MB (as opposed to ≈ 2.4 terabytes by [41]). Using a 1Gbps channel, this is 200ms.
For broadcasting a message of size ≈ 27 MB, each party still has to send/receive
roughly the same size of this message, and the broadcast is asymptotically free
in that case.

Parallel Composition of Broadcast. In MPC, protocols often instruct the n
parties to broadcast messages of the same length L in parallel at the same round.
For instance, in the protocol of [12], all parties share their input at the same
round, and for verifying the secret, each party needs to broadcast L = O(n2 log n)
bits.3 In fact, the notion of parallel-broadcast goes back to the work of Pease et
al. [48]. We have the following extension to our main result:

Corollary 1.2. There exists a perfectly-secure, balanced, parallel-broadcast pro-
tocol with optimal resilience, which allows n dealers to send messages of size L
bits each, at the communication cost of O(n2L) bits, plus O(n4 log n) expected
bits. The protocol runs in constant expected number of rounds.

For message of size L = O(n2 log n) bits, which is common in MPC, our broad-
cast is asymptotically optimal. We obtain a cost of O(n4 log n) bits in expec-
tation, with expected constant rounds. Note that each party receives O(nL)
bits, and therefore O(n2L) = O(n4 log n) bits is the best that one can hope for.
Again, the protocol is balanced, which means that each party sends or receives
only O(nL) bits.

For comparison, the other approach for broadcast based on [13,20,22]
requires total O(n4 log n) bits for this task, but with Θ(n) rounds. We refer
again to Table 1 for comparison.

3 In fact, in each round of the protocol, each party performs O(n) verifiable secret
sharings (VSSs), i.e., it has to broadcast O(n3 log n) bits. In [2] it has been shown
how to reduce it to O(1) VSSs per party, i.e., each party might have to broadcast
O(n2 log n).
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Table 1. Comparison of communication complexity of our work with the state-of-the-
art broadcast. 1 × BC(L) refers to the task of a single dealer broadcasting a L-element
message. n × BC(L) refers to the task of n dealers broadcasting a L-element message
in parallel.

Task Reference Total P2P (in bits) Rounds

1× BC(L) [13,22] O(n2L) O(n)

[13,22] + [20] O(nL+ n2 logn) O(n)

[41] O(n2L) + E(O(n6 log n)) E(O(1))

[41] + [46]∗ O(nL) + E(O(n7 logn)) E(O(1))

Our work O(nL) + E(O(n4 log n))O(nL) + E(O(n4 logn))O(nL) + E(O(n4 logn)) E(O(1))E(O(1))E(O(1))

n× BC(L) [13,22] O(n3L) O(n)

[41] O(n3L) + E(O(n6 log n)) E(O(1))

[41] + [46]a O(n2L) + E(O(n7 log n)) E(O(1))

Our work O(n2L) + E(O(n4 logn))O(n2L) + E(O(n4 log n))O(n2L) + E(O(n4 log n)) E(O(1))E(O(1))E(O(1))
a Since the broadcast extension protocol of [20] requires O(n)
rounds, combining [41] with [20] results in linear-round complex-
ity and a worse communication complexity than what the second
row ([13,22] + [20]) provides.

To get a practical sense of those complexities, when n = 300 and parties have
to broadcast simultaneously messages of size L, our protocol is asymptotically
optimal for L = n2 log n ≈ 90KB.

Packed Verifiable Secret Sharing. A pivotal building block in our construc-
tion, as well as perfectly secure multiparty protocols is verifiable secret sharing
(VSS), originally introduced by Chor et al. [21]. It allows a dealer to distribute
a secret to n parties such that no share reveal any information about the secret,
and the parties can verify, already at the sharing phase, that the reconstruction
phase would be successful.

To share a secret in the semi-honest setting, the dealer embeds its secret in a
degree-t univariate polynomial, and it has to communicate O(n) field elements.
In the malicious setting, the dealer embeds its secret in a bivariate polynomial
of degree-t in both variables [12,30]. The dealer then has to communicate O(n2)
field elements to share its secret. An intriguing question is whether this gap
between the semi-honest (where the dealer has to encode its secret in a structure
of size O(n)) and the malicious setting (where the dealer has to encode its secret
in a structure of size O(n2)) is necessary. While we do not answer this question,
we show that the dealer can pack O(n) secrets, simultaneously in one bivariate
polynomial. Then, it can share it at the same cost as sharing a single VSS,
achieving an overhead of O(n) per secret. We show:

Theorem 1.3. Given a synchronous network with pairwise private channels and
a broadcast channel, there exists a perfectly secure packed VSS protocol with
optimal resilience, which has a communication complexity of O(n2 log n) bits over
point-to-point channels and O(n2 log n) bits broadcast for sharing O(n) secret
field elements (i.e., O(n log n) bits) in strict O(1) rounds. The optimistic case
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(where all the parties behave honestly) does not use the broadcast channel in the
protocol.

The best previous results achieve O(n3 log n) (point-to-point and broadcast)
for sharing O(n) secret elements [5,12,30,42], this is an improvement by a factor
of n in communication complexity.

Packing k secrets into one polynomial is a known technique, proposed by
Franklin and Yung [34]. It was previously used in Shamir’s secret sharing scheme.
However, it comes with the following price: While Shamir’s secret sharing allows
protecting against even n−1 corrupted parties, packing k secrets in one polyno-
mial achieves privacy against only n−k−1 parties. In the malicious case, VSS of
a single secret is possible only when the number of corruption satisfies t < n/3.
The idea of packing many secrets without trading off the allowed threshold of
corruption has been explored by Damg̊ard et al. [25]. However, this is achieved
at the expense of having O(n) rounds. In contrast, our packed verifiable secret
sharing enables packing O(n) secrets while keeping the threshold exactly the
same and ensuring O(1) round complexity. Compared to a constant round VSS
of a single secret, we obtain packed secret sharing completely for free (up to
small hidden constants in the O notation of the above theorem).

Optimal Gradecast for Ω(n2) Messages. Another building block that we
improve along the way is gradecast. Gradecast is a relaxation of broadcast intro-
duced by Feldman and Micali [29] (“graded-broadcast”). It allows a distinguished
dealer to transmit a message, and each party outputs the message it receives
together with a grade g ∈ {0, 1, 2}. If the dealer is honest, all honest parties
receive the same message and grade 2. If the dealer is corrupted, but some hon-
est party outputs grade 2, it is guaranteed that all honest parties output the
same message (though some might have grade 1 only). We show that:

Theorem 1.4. There exists a perfectly secure gradecast protocol with optimal
resilience, which allows a party to send a message of size L bits with a com-
munication cost of O(nL + n3 log n) bits and in O(1) rounds. The protocol is
balanced.

This result is optimal when L = Ω(n2 log n) bits as each party has to receive
L bits even in an ideal implementation. Previously, the best gradecast protocol
in the perfect security setting [29] required O(n2L) bits of communication.

1.2 Applications and Discussions

Applications: Perfect Secure Computation. We demonstrate the potential
speed up of protocols in perfect secure computation using our broadcast. There
are, in general, two lines of works in perfectly secure MPC, resulting again in an
intriguing tradeoff between round complexity and communication complexity.

The line of work [2,8,12,19,24,37] achieves constant round per multiplica-
tion and round complexity of O(depth(C)), where C is the arithmetic circuit
that the parties jointly compute. The communication complexity of those proto-
cols results in O(n3|C| log n) bits over point-to-point channels in the optimistic
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case, and an additional O(n3|C| log n) bits over the broadcast channel in the pes-
simistic case (recall that this means that each party has to send or receive a total
of O(n4|C| log n) bits). In a nutshell, the protocol requires each party to per-
form O(1) VSSs in parallel for each multiplication gate in the circuit, and recall
that in each VSS the dealer broadcasts O(n2 log n) bits. This is exactly the set-
ting in which our parallel broadcast gives asymptotically free broadcast (Corol-
lary 1.2). Thus, we get a protocol with a total of O(n4|C| log n) bits (expected) and
expected O(depth(C)) rounds over point-to-point channels. Previously, using [41],
this would have been resulted in expected O(n6|C| log n) communication complex-
ity with O(depth(C)) rounds.

Another line of work [9,39,40] in perfectly-secure MPC is based on the player
elimination framework (introduced by Hirt and Maurer and Przydatek [40]).
Those protocol identify parties that may misbehave and exclude them from the
execution. Those protocols result in a total of O((n|C| + n3) log n) bits over
point-to-point channels, and O(n log n) bits over the broadcast channel. How-
ever, this comes at the expense of O(depth(C) + n) rounds. This can be com-
piled to O((n|C| + n3) log n) communication complexity with O(n2 + depth(C))
rounds using [13,22], or to O((n|C| + n7) log n) communication complexity with
O(n + depth(C)) rounds (expected) using [41]. Using our broadcast, the com-
munication complexity is O((n|C| + n5) log n) with O(n + depth(C)) rounds
(expected). We remark that in many setting, a factor n in round complexity
should not be treated the same as communication complexity. Roundtrips are
slow (e.g., 200 ms delay for each roundtrip), whereas communication channels
can send relatively large messages fast (1 or even 10Gbps).

On Sequential and Parallel Composition of Our Broadcast. Like Feld-
man and Micali [29] and Katz and Koo [41] (and any o(t)-round expected
broadcast protocol), our protocol cannot provide simultaneous termination.
Sequentially composing such protocols is discussed in Lindell, Lysyanskaya and
Rabin [45], Katz and Koo [41] and Cohen et al. [23]. Regarding parallel composi-
tion, unlike the black-box parallel composition of broadcasts studied by Ben-Or
and El-Yaniv [11], we rely on the idea of Fitzi and Garay [33] that applies to
OLE-based protocols. The idea is that multiple broadcast sub-routines are run
in parallel when only a single election per iteration is required for all these sub-
routines. This reduces the overall cost and also guarantees that parallel broadcast
is also constant expected number of rounds.

Modeling Broadcast Functionalities. We use standalone, simulation-based
definition as in [16]. The standalone definition does not capture rounds in the
ideal functionalities, or the fact that there is no simultaneous termination. The
work of Cohen et al. [23] shows that one can simply treat the broadcast with-
out simultaneous termination as an ideal broadcast as we provide (which, in
particular, has simultaneous and deterministic termination). Moreover, it allows
compiling a protocol using deterministic-termination hybrids (i.e., like our ideal
functionalities) into a protocol that uses expected-constant-round protocols for
emulating those hybrids (i.e.,. as our protocols) while preserving the expected
round complexity of the protocol. We remark that in order to apply the compiler
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of [23], the functionalities need to follow a structure of (1) input from all parties;
(2) leakage to the adversary; (3) output. For simplicity, we did not write our
functionalities using this specific format, but it is clear that our functionalities
can be written in this style.

Our Broadcast with Strict-Polynomial Run Time. Protocols in constant
expected number of rounds might never terminate (although, with extremely
small probability). Our protocols can be transformed into a protocol that runs
in strict polynomial time using the approach of Goldreich and Petrank [38]:
Specifically, after O(n) attempts to terminate, the parties can run the O(n)
rounds protocol with guaranteed termination. See also [23].

1.3 Related Work

We review the related works below. Error-free byzantine agreement and broad-
cast are known to be possible only if t < n/3 holds [44,48]. Moreover, Fischer
and Lynch [32] showed a lower bound of t + 1 rounds for any deterministic
byzantine agreement protocol or broadcast protocol. Faced with this barrier,
Rabin [49] and Ben-Or [10] independently studied the effect of randomization
on round complexity, which eventually culminated into the work of Feldman
and Micali [31] who gave an expected constant round protocol for byzantine
agreement with optimal resilience. Improving over this work, the protocol of
[41] requires a communication of O(n2L + n6 log n) for a message of size L bits,
while achieving the advantage of expected constant rounds. In regards to the
communication complexity, Dolev and Reischuk [28] established a lower bound
of n2 bits for deterministic broadcast or agreement on a single bit. With a round
complexity of O(n), [13,22] achieve a broadcast protocol with a communication
complexity of O(n2) bits.

We quickly recall the state of the art perfectly-secure broadcast extension
protocols. Recall that these protocols aim to achieve the optimal complexity
of O(nL) bits for sufficiently large message size L and utilize a protocol for
bit broadcast. The protocol of [35,47] communicates O(nL) bits over point-to-
point channels and O(n2) bits through a bit-broadcast protocol. The work of
[46] improves the number of bits sent through a bit-broadcast protocol to O(n)
bits. Both these extension protocols are constant round. The recent work of [20]
presents a protocol that communicates O(nL+n2 log n) bits over point-to-point
channels and a single bit through a bit-broadcast protocol. However, the round
complexity of this protocol is O(n).

2 Technical Overview

We describe the high-level overview of our techniques. We start with our
improved broadcast in Sect. 2.1, and then describe packed VSS in Sect. 2.2, fol-
lowed by the gradecast protocol in Sect. 2.3. To aid readability, we summarize
our different primitives and the relationship between them in Fig. 1. In each one
of the those primitives we improve over the previous works.



392 I. Abraham et al.

Primitive P2P Broadcast Reference Remarks

Broadcast O(nL) + E(O(n4 logn)) – Section 8.2 L bit message
Byzantine Agreement O(n2) + E(O(n4 logn)) – Section 8.1 –

Gradecast O(nL+ n3 logn) – Section 5 L bit message
Oblivious Leader Election O(n4 logn) – Section 7 –
Multi-moderated VSS O(n4 logn) – Section 6 Sharing O(n) values

Packed VSS (w. Gradecast) O(n3 logn) – Section 4 Sharing O(n) values
Packed VSS (w. Broadcast) O(n2 logn) O(n2 logn) Section 4 Sharing O(n) values

Broadcast

Byzantine Agreement
(BA)

Oblivious Leader Election
(OLE) Multi-moderated VSS

Gradecast

Packed VSS
(w. Gradecast)

Fig. 1. Roadmap of our building blocks. All lines are compositions, except for the line
from Multi-moderated VSS to Packed VSS, which is a white-box modification.

2.1 Improved Broadcast in Constant Expected Rounds

Our starting point is a high-level overview of the broadcast protocol of Katz
and Koo [41], which simplifies and improves the construction of Feldman and
Micali [29]. Following the approach of Turpin and Coan [51] for broadcast exten-
sion closely, broadcast can be reduced to two primitives: Gradecast and Byzan-
tine agreement.

1. Gradecast: A gradecast is a relaxation of broadcast, where a distinguished
dealer transmits a message, and parties output the message together with a
grade. If the dealer is honest, all honest parties are guaranteed to output the
dealer’s message together with a grade 2. Moreover, if the dealer is corrupted
and one honest party outputs grade 2, then it is guaranteed that all other
honest parties also output the same message, though maybe with a grade 1.
Looking ahead, we show how to improve gradecast of message of length L
bits from O(n2L) bits to O(nL+n3 log n) bits, which is optimal for messages
of L = Ω(n2 log n) bits. We overview our construction in Sect. 2.3.

2. Byzantine agreement: In Byzantine agreement all parties hold some bit as
input, and all of them output a bit at the end of the protocol. If all honest
parties hold the same value, then it is guaranteed that the output of all parties
would be that value. Otherwise, it is guaranteed that the honest parties would
agree and output the same (arbitrary) bit.

To implement broadcast, the dealer gradecasts its message M and then the
parties run Byzantine agreement (BA) on the grade they received (using 1 as
input when the grade of the gradecast is 2, and 0 otherwise). Then, if the output
of the BA is 1, each party outputs the message it received from the gradecast,
and otherwise it outputs ⊥.
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If the dealer is honest, then all honest parties receive grade 2 in the gradecast,
and all would agree in the BA that the grade is 2. In that case, they all output
M . If the dealer is corrupted, and all honest parties received grade 0 or 1 in
the gradecast, they would all use 0 in the Byzantine agreement, and all would
output ⊥. The remaining case is when some honest parties receives grade 2 in
the gradecast, and some receive 1. However, once there is a single honest party
that received grade 2 in the gradecast, it is guaranteed that all honest parties
hold the same message M . The Byzantine agreement can then go either way
(causing all to output M or ⊥), but agreement is guaranteed.

Oblivious Leader Election. It has been shown that to implement a Byzantine
agreement (on a single bit), it suffices to obliviously elect a leader, i.e., a ran-
dom party among the parties. In a nutshell, a Byzantine agreement proceeds in
iterations, where parties exchange the bits they believe that the output should
be and try to see if there is an agreement on the output. When there is no clear
indication of which bit should be the output, the parties try to see if there is an
agreement on the output bit suggested by the elected leader. A corrupted leader
might send different bits to different parties. However, once an honest leader is
elected, it must have sent the same bit to all parties. In that case the protocol
guarantees that all honest parties will agree in the next iteration on the output
bit suggested by the leader, and halt.

Oblivious leader election is a protocol where the parties have no input, and
the goal is to agree on a random value in {1, . . . , n}. It might have three different
outcomes: (1) All parties agree on the same random index j ∈ {1, . . . , n}, and
it also holds that Pj is honest; this is the preferable outcome; (2) All parties
agree on the same index i ∈ {1, . . . , n}, but Pi is corrupted; (3) The parties do
not agree on the index of the party elected. The goal is to achieve the outcome
(1) with constant probability, say ≥ 1/2. Recall that once outcome (1) occurs
then the Byzantine agreement succeeds. Achieving outcome (1) with constant
number of rounds and with constant probability implies Byzantine agreement
with constant expected number of rounds.

The key idea to elect a leader is to randomly choose, for each party, some
random value ci. Then, the parties choose an index j of the party for which cj

is minimal. To do that, we cannot let each party Pj choose its random value cj ,
as corrupted parties would always choose small numbers to be elected. Thus, all
parties contribute to the random value associated with each party. That is, each
party Pk chooses ck→j ∈ {1, . . . , n4} and the parties define cj =

∑n
k=1 ck→j mod

n4 as the random value associated with Pj . This guarantees that each value cj

is uniform.
However, just as in coin-tossing protocols, a party cannot publicly announce

its random choices, since then it would allow a rushing adversary to choose
its random values as a function of the announced values. This is prevented by
using verifiable secret sharing. Verifiable secret sharing provides hiding – given t
shares, it is impossible to determine what is the secret, and binding – at the end
of the sharing phase, the dealer cannot change the secret, and reconstruction is
guaranteed. The parties verifiably share their random values ck→j for every k, j.
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After all parties share their values, it is safe to reconstruct the secret, reveal the
random values, and elect the leader based on those values.

A Problem: VSS Uses a Broadcast Channel. A problem with the above
solution is that protocols for VSS use a broadcast channel to reach an agree-
ment on whether or not to accept the dealer’s shares. Yet, the good news is that
broadcast is used only during the sharing phase. Replacing each broadcast with
a gradecast does not suffice since honest parties do not necessarily agree on the
transmitted messages when corrupted senders gradecast messages. This leads to
the notion of “moderated VSS”, where the idea is to have a party that is respon-
sible for all broadcasted message. Specifically, now there are two distinguished
parties: a dealer Pk and a moderator Pj . The parties run the VSS where Pk is
the dealer; whenever a participant has to broadcast a message m, it first grade-
casts it, and then the moderator Pj has to gradecast the message it received.
Each party can then compare between the two gradecasted messages; however,
the parties proceed the execution while using the message that the moderator
had gradecasted as the message that was broadcasted. At the end of the exe-
cution, each party outputs together with the shares, a grade for the moderator
in {0, 1}. For instance, if the moderator ever gradecasted some message and the
message was received by some party Pi with grade ≤ 1, then the grade that
Pi gives the moderator is 0 — Pi cannot know whether other parties received
the same message at all. The idea is that honest parties might not necessarily
output the same grade, but if there is one honest party that outputs grade 1,
it is guaranteed that the VSS was successful, and we have binding. Moreover, if
the moderator is honest, then all honest parties would give it grade 1.

Going back to leader election, the value ck→j is distributed as follows: the
parties run a VSS where Pk is the dealer and Pj is the moderator. After all
values of all parties were shared (i.e., all parties committed to the values ck→j),
each party defines for each moderator Pj the value cj =

∑n
k=1 ck→j . If the grade

of Pj was not 1 in all its executions as a moderator, then replace cj = ∞. Each
party elects the party P� for which c� is minimal.

If the moderator Pj is honest, then for both honest and corrupted dealer
Pk, the VSS would end up with agreement, and all honest parties would give
Pj grade 1 as a moderator. The value cj =

∑n
k=1 ck→j mod n4 would be the

same for all honest parties, and it must distribute uniformly as honest dealers
contributed random values in this sum. Likewise, if a moderator Pj is corrupted
but some honest party outputs grade 1 in all executions where Pj served as
a moderator, then the value cj =

∑n
k=1 ck→j mod n4 must be the same for

all honest parties, and it also must be random, as honest dealers contributed
random values. There might be no agreement if some honest parties gave grade
1 for that moderator, while others did not and defined cj = ∞. In that case, we
might not have an agreement on the elected leader. However, it is guaranteed
that the value cj is distributed uniformly. Thus, the inconsistency is bounded
with constant probability (roughly t/n ≤ 1/3).



Asymptotically Free Broadcast via Packed VSS 395

Our Improvements. As noticed above, each party participates as the dealer
in n executions, and as the role of the moderator in n executions. Thus, we have
a total of n2 executions of VSS. First, we show a new protocol that enables a
dealer to pack O(n) secrets at the cost of just one VSS (assuming broadcast),
called packed VSS (see an overview in Sect. 2.2). For leader election, we have to
replace the broadcast in the packed VSS with a gradecast (with a moderator).

However, we cannot just pack all the O(n) values ck→j where Pk is the
dealer in one instance of a VSS with a moderator since each one of the secrets
corresponds to a different moderator. We, therefore, introduce a new primitive
which is called “Multi-moderated packed secret sharing”: The dealer distributes
O(n) values, where each corresponds to a different moderator, and have all
parties serve as moderator in one shared execution of a VSS.

More precisely, the packed VSS uses several invocations of broadcasts in
the sharing phase, just as a regular VSS. Until the very last round, the dealer
also serves as the moderator within each of those broadcasts. In the last round,
there is a vote among the parties whether accept or reject the dealer, where the
vote is supposed to be performed over the broadcast channel. At this point, the
execution is forked to O(n) executions. Each corresponds to a different modera-
tor, where the moderator moderates just the last round’s broadcasts. The idea is
that the vast majority of the computation is shared between all O(n) executions,
thus the additional cost introduced for each moderator is small. This allows us
to replace all n executions where Pi serves as a dealer with just one execution
where Pi is the dealer and other O(n) parties are moderators at the same time.

Another obstacle worth mentioning is that within multi-moderated packed
VSS, the dealer broadcasts O(n2 log n) bits, whereas other participant broadcasts
at most O(n log n) bits. Our gradecast is not optimal for this message size, and
thus when replacing those broadcasts with gradecasts, the overall cost would be
O(n5 log n). We can do better by considering all the multi-moderated VSSs in
parallel. Each party then participates in O(1) executions as a dealer and in O(n)
executions as a participant. Therefore, each party has to broadcast O(n2 log n)
bits in all invocations of multi-moderated packed VSS combined (O(n2 log n)
bits when it serves as a dealer, and (n − 1) × O(n log n) when it serves as a
participant). For that size of messages, our gradecast is optimal.

To conclude, to obtain our broadcast, we build upon [29,41] and introduce:
(1) an optimal gradecast protocol for Ω(n2 log n) messages which is used twice –
for gradecasting the message before running the Byzantine agreement and within
the Byzantine agreement as part of the VSSs; (2) a novel multi-moderated packed
secret sharing, which is based on a novel packed VSS protocol; (3) carefully
combine all the O(n) invocations of multi-moderated packed secret sharing to
amortize the costs of the gradecasts.

When comparing to the starting point of O(n2L) plus E(O(n6 log n)) of [41],
the improved gradecast allows us to reduce the first term to O(nL), for large
enough messages. Regarding the second term, packing O(n) values in the VSS
reduces one n factor, and the improved gradecast within the VSS reduces another
n factor. Overall this brings us to O(nL) plus E(O(n4 log n)).
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2.2 Packed Verifiable Secret Sharing

Our packed verifiable secret sharing protocol is the basis of the multi-moderated
VSS. We believe that it will find applications in future constructions of MPC
protocols, and is of independent interest. Communication cost wise, the best-
known constant-round perfect VSS sharing one secret is O(n2 log n) bits over
point-to-point channels in the optimistic case, and additional O(n2 log n) bits
over the broadcast channel in the pessimistic case [7,12,36]. Here, we retain the
same cost, yet “pack” t+1 secrets in one bivariate polynomial and generate t+1
independent Shamir-sharings at one go.

Sharing More Secrets at One Go. Our goal is to generate Shamir-sharing of
t+1 secrets, s−t, . . . , s0, at once. Denoting Shamir-sharing of a secret s by [s], our
goal is to produce [s−t] , . . . , [s0] using a single instance of a VSS. For this, the
dealer chooses a degree-(2t, t) bivariate polynomial4 S(x, y) such that S(l, 0) = sl

for each l ∈ {−t, . . . , 0}. We set fi(x) = S(x, i) of degree 2t and gi(y) = S(i, y) of
degree-t and observe that for every i, j it holds that fi(j) = S(j, i) = gj(i). The
goal of the verification part is that each Pi will hold fi(x) and gi(y) on the same
bivariate polynomial S(x, y). Then, each degree-t univariate polynomial gl(y) for
l ∈ {−t, . . . , 0} is the standard Shamir-sharing of sl amongst the parties. Once
the shares of the parties are consistent, each party Pi can locally compute its
share on gl(y) as gl(i) = fi(l).

Our protocol is a strict improvement of [2]. Specifically, the work of [2] con-
siders the VSS protocol of [12] when the dealer uses a (2t, t)-polynomial instead
of a degree-(t, t) polynomial. It observes that by minor modifications, the proto-
col still provides weak verifiability even though the sharing is done on a higher
degree polynomial. By “weak”, we mean that the reconstruction phase of the
polynomial might fail in the case of a corrupted dealer. Nevertheless, the guar-
antee is that the reconstruction phase would either end up successfully recon-
structing S(x, y), or ⊥, and whether it would succeed or not depends on the
adversary’s behavior. In contrast, in a regular (“strong”) VSS, reconstruction is
always guaranteed.

The work of [2] utilizes this primitive to improve the efficiency of the degree-
reduction step of the BGW protocol. However, this primitive is weak and does
not suffice for most applications of VSS. For instance, it cannot be used as a part
of our leader election protocol: The adversary can decide whether the polynomial
would be reconstructed or not. Thus there is no “binding”, and it can choose,
adaptively and based on the revealed secrets of the honest parties, whether the
reconstruction would be to the secret values or some default values. As such, it
can increase its chance of being elected.

Our Work: Achieving Strong Binding. In our work, we show how to achieve
strong binding. We omit the details in this high-level overview of achieving weak
verifiability of [2] secret sharing while pointing out that the protocol is a variant
of the VSS protocol of [12]. For our discussion, the protocol reaches the following
4 We call a bivariate polynomial where the degree in x is 2t and in y is t, i.e., S(x, y) =∑2t

i=0

∑t
j=0 ai,jx

iyj as a (2t, t)-bivariate polynomial.
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stage: If the dealer is not discarded, then there is a CORE of 2t + 1 parties that
hold shares of a unique bivariate polynomial S(x, y), and this set of parties
is public and known to all (it is determined based on votes performed over
the broadcast channel). Each party Pi in CORE holds two univariate shares
fi(x) = S(x, i) of degree-2t and gi(y) = S(i, y) of degree-t. Each party Pj for
j �∈ CORE holds a polynomial gj(y) = S(j, y), where some of those polynomials
are also public and were broadcasted by the dealer. In case the dealer is honest,
then all honest parties are part of CORE, whereas if the dealer is corrupted, then
it might be that only t + 1 honest parties are part of CORE. To achieve strong
binding, the dealer has to provide shares for parties outside CORE, publicly, and
in a constant number of rounds.

The first step is to make all the polynomials gj(y) for each j �∈ CORE public.
This is easy, since each such polynomial is of degree t. The dealer can broadcast
it, and the parties in CORE vote whether to accept. If there are no 2t + 1 votes
to accept, then the dealer is discarded. Since the shares of the honest parties in
CORE are consistent and define a unique (2t, t)-bivariate polynomial S(x, y), the
dealer cannot publish any polynomial gj(y) which is not S(j, y). Any polynomial
g′

j(y) �= S(j, y) can agree with at most t points with S(j, y) and thus it would
receive at most t votes of honest parties in CORE, i.e., it cannot reach 2t + 1
votes.

The next step is to make the dealer also publicize the shares fj(x) for each
j �∈ CORE. This is more challenging since each fj(x) is of degree-2t, and therefore
achieving 2t + 1 votes is not enough, as t votes might be false. Therefore, the
verification is more delicate:

1. First, the parties in CORE have to vote OK on the f -polynomials that the
dealer publishes. If there are less than 2t + 1 votes, the dealer is discarded.

2. Second, for each party Pj in CORE that did not vote OK, the dealer is required
to publish its gj(y) polynomial. The parties in CORE then vote on the revealed
polynomials as in the first step of boosting from weak to strong verification.

To see why this works, assume that the dealer tries to distribute a polynomial
f ′

j(x) �= S(x, j). Then, there must exist an honest party such that its share does
not agree with f ′

j(x). If f ′
j(x) does not agree with shares that are public, then

it would be immediately discarded. If f ′
j(x) does not agree with a share of an

honest party Pk that is part of CORE, then gk(y) would become public in the
next round, and the dealer would be publicly accused. The dealer cannot provide
a share gk(y) �= S(k, y) for the same reason as the first step of boosting from
weak to strong VSS. At the end of this step we have that all honest parties are
either part of CORE and their shares are private, or they are not in CORE and
their shares are public. Overall, all honest parties hold shares on the bivariate
polynomial S(x, y). We refer to Sect. 4 for the formal protocol description.

2.3 Optimal Gradecast

A crucial building block in our construction is gradecast. We show how to imple-
ment gradecast of a message of length L bits using total communication of
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O(n3 log n + nL) bits. For this overview, we just deal with the case where the
dealer is honest and show that all honest parties output the message that the
dealer gradecasted with grade 2. We leave the case of a corrupted dealer to the
relevant section (Sect. 5).

Data Dissemination. Our construction is inspired in part by the data dissem-
ination protocol of [26], while we focus here on the synchronous settings. In the
task of data dissemination, t + 1 honest parties hold as input the same input
M , while other honest parties hold the input ⊥, and the goal is that all honest
parties receive the same output M in the presence of t corrupted parties. In
our protocol, assume for simplicity messages of size (t + 1)2 field elements (i.e.,
a degree-(t, t) bivariate polynomial). Data dissemination can be achieved quite
easily: (1) Each honest party sends to each party Pj the univariate polynomials
S(x, j), S(j, y). (2) Once a party receives t + 1 messages with the same pair of
univariate polynomials, it forwards those polynomials to all others. An adver-
sary might send different polynomials, but it can never reach plurality t + 1.
(3) After all the honest parties forwarded their polynomials to the others, we
are guaranteed that each party holds 2t + 1 correct shares of S and at most t
incorrect shares. Each party can reconstruct S efficiently using Reed Solomon
decoding. Note that this procedure requires the transmission of O(n3 log n) bits
overall. Therefore, our goal in the gradecast protocol is to reach a state where
t + 1 honest parties hold shares of the same bivariate polynomial.

Gradecast. For the sake of exposition, we first describe a simpler protocol where
the dealer is computationally unbounded, and then describe how to make the
dealer efficient. Again, assume that the input message of the dealer is encoded
as a bivariate polynomial S(x, y). The dealer sends the entire bivariate poly-
nomial to each party. Then, every pair Pi and Pj exchange the polynomials
S(x, i), S(i, y), S(x, j), S(j, y). The two parties check whether they agree on those
polynomials or not. If Pi sees that the polynomials it received from Pj are the
same as it received from the dealer, then it adds j to a set Agreedi. The par-
ties then send their sets Agreedi to the dealer, who defines an undirected graph
where the nodes are the set {1, . . . , n} and an edge {i, j} exists if and only if
i ∈ Agreedj and j ∈ Agreedi. The dealer then (inefficiently) finds a maximal
clique K ⊆ {1, . . . , n} of at least 2t + 1 parties and gradecasts K to all parties
using a näıve gradecast protocol of [29,41] (note that this is a gradecast of case
O(n2L) with L = O(n log n)). A party Pi is happy if: (1) i ∈ K; (2) it received
the gradecast message of the dealer with grade 2; and (3) K ⊆ Agreedi. The
parties then proceed to data dissemination protocol.

The claim is that if the dealer is honest, then at least t+1 honest parties are
happy, and they all hold the same bivariate polynomial. This is because the set
of honest parties defines a clique of size 2t + 1, and any clique that the honest
dealer finds of cardinality 2t + 1 must include at least t + 1 honest parties. The
result of the data dissemination protocol is that all honest parties output S. If
the dealer is corrupted, we first claim that all honest parties that are happy must
hold the same bivariate polynomial. Any two honest parties that are happy must
be part of the same clique K that contains at least t + 1 honest parties, and
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all honest parties in that clique must agree with each other (all see the same
clique K defined by the dealer, and verified that they agreed with each other).
The univariate polynomials exchanged between those t + 1 honest parties define
a unique bivariate polynomial. Again, data dissemination would guarantee that
all honest parties would output that bivariate polynomial.

On Making the Dealer Efficient. To make the dealer efficient, we rely on
a procedure that finds an approximation of a clique, known as the STAR tech-
nique, introduced by [14]. In the technical section, we show how we can use this
approximation of a clique, initially introduced for the case of t < n/4, to the
much more challenging scenario of t < n/3. We refer to Sect. 5 for the technical
details.

3 Preliminaries

We consider a synchronous network model where the parties in P = {P1, . . . , Pn}
are connected via pairwise private and authenticated channels. Additionally, for
some of our protocols we assume the availability of a broadcast channel, which
allows a party to send an identical message to all the parties. One of the goals
of this paper is to implement such a broadcast channel over the pairwise pri-
vate channels, and we mention explicitly for each protocol whether a broadcast
channel is available or not. The distrust in the network is modelled as a com-
putationally unbounded active adversary A which can maliciously corrupt up to
t out of the n parties during the protocol execution and make them behave in
an arbitrary manner. We prove security in the standard, stand-alone simulation-
based model in the perfect setting [7,16] for a static adversary. Owing to the
results of [18], this guarantees adaptive security with inefficient simulation. We
derive universal composability [17] for free using [43]. We refer the readers to
the full version for the security proofs and more details.

Our protocols are defined over a finite field F where |F| > n + t + 1. We
consider two sets of n and t + 1 distinct elements from F publicly known to all
the parties, which we denote by {1, . . . , n} and {−t, . . . , 0} respectively. We use
[v] to denote the degree-t Shamir-sharing of a value v among parties in P.

3.1 Bivariate Polynomials

A degree (l,m)-bivariate polynomial over F is of the form S(x, y) =
∑l

i=0

∑m
j=0 bijx

iyj where bij ∈ F. The polynomials fi(x) = S(x, i) and gi(y) =
S(i, y) are called ith f and g univariate polynomials of S(x, y) respectively. In our
protocol, we use (2t, t)-bivariate polynomials where the ith f and g univariate
polynomials are associated with party Pi for every Pi ∈ P.

3.2 Finding (n, t)-STAR

Definition 3.1. Let G be a graph over the nodes {1, . . . , n}. We say that a pair
(C,D) of sets such that C ⊆ D ⊆ {1, . . . , n} is an (n, t)-star in G if the following



400 I. Abraham et al.

hold: (a) |C| ≥ n−2t; (b) |D| ≥ n− t; and (c) for every j ∈ C and every k ∈ D,
the edge (j, k) exists in G.

Canetti [14,15] showed that if a graph has a clique of size n − t, then there
exists an efficient algorithm which always finds an (n, t)-star. We refer the readers
to the full version for details.

4 Packed Verifiable Secret Sharing

Here we present a packed VSS to generate Shamir sharing of t + 1 secrets at
the cost of O(n2 log n) bits point-to-point and broadcast communication. The
security proof appears in the full version of the paper.

The Functionality. On holding t + 1 secrets s−t, . . . , s0, the dealer chooses a
uniformly random (2t, t)-bivariate polynomial S(x, y) such that S(l, 0) = sl for
each l ∈ {−t, . . . , 0} and uses the polynomial as its input. Our functionality for
VSS is as follows, followed by the VSS protocol.

Functionality 4.1: FVSS – Packed VSS Functionality

Input: The dealer holds a polynomial S(x, y).

1. The dealer sends S(x, y) to the functionality.
2. If S(x, y) is of degree at most 2t in x and at most t in y, then the function-

ality sends to each party Pi the two univariate polynomials S(x, i), S(i, y).
Otherwise, the functionality sends ⊥ to all parties.

Protocol 4.2: ΠpVSS – Packed VSS Protocol

Common input: The description of a field F, two sets of distinct elements from
it denoted as {1, . . . , n} and {−t, . . . , 0}.
Input: The dealer holds a bivariate polynomial S(x, y) of degree at most 2t in
x and at most t in y. Each Pi initialises a happy bit happyi = 15.

1. (Sharing) The dealer sends (fi(x), gi(y)) to Pi where fi(x) = S(x, i), gi(y) =
S(i, y).

2. (Pairwise Consistency Checks) Each Pi sends (fi(j), gi(j)) to every Pj .
Let (fji, gji) be the values received by Pi from Pj . If fji �= gi(j) or gji �= fi(j),
Pi broadcasts complaint(i, j, fi(j), gi(j)).

3. (Conflict Resolution) For each complaint(i, j, u, v) such that u �= S(j, i) or
v �= S(i, j), dealer broadcasts gD

i (y) = S(i, y). Let pubR be the set of parties
for which the dealer broadcasts gD

i (y). Each Pi ∈ pubR sets happyi = 0. For
two mutual complaints (complaint(i, j, u, v), complaint(j, i, u′, v′)) with either
u �= u′ or v �= v′, if the dealer does not broadcast anything, then discard the
dealer.

5 The happy bits will be used later for Multi-Moderated VSS in Sect. 6.
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4. (Identifying the CORE Set) Each Pi �∈ pubR broadcasts OK if fi(k) =
gD

k (i) holds for every k ∈ pubR. Otherwise, Pi sets happyi = 0. Let CORE be
the set of parties who broadcasted OK. If |CORE| < 2t + 1, then discard the
dealer.

5. (Revealing f-polynomials for non-CORE parties) For each Pk /∈
CORE, the dealer broadcasts fD

k (x) = S(x, k). Discard the dealer if for any
Pj ∈ pubR and Pk /∈ CORE, gD

j (k) �= fD
k (j). Each Pi /∈ pubR broadcasts

OK if fD
k (i) = gi(k) holds for every broadcasted fD

k (x). Otherwise Pi sets
happyi = 0. Let K = {Pj |Pj /∈ pubR and did not broadcast OK}.

6. (Opening g-polynomials for complaining parties) For each Pj ∈ K,
the dealer broadcasts gD

j (y) = S(j, y). Set pubR = pubR ∪ K. Discard the
dealer if fD

k (j) �= gD
j (k) for any Pk /∈ CORE and Pj ∈ K. Each Pi ∈ CORE

with happyi = 1 broadcasts OK if fi(j) = gD
j (i) for every broadcasted gD

j (y).
Otherwise, Pi sets happyi = 0. If at least 2t + 1 parties do not broadcast OK,
then discard the dealer.

7. (Output) If the dealer is discarded, then each Pi outputs ⊥. Otherwise, Pi

outputs (fi(x), gi(y)), where fi(x) = fD
i (x) if Pi /∈ CORE and gi(y) = gD

i (y)
if Pi ∈ pubR.

Theorem 4.3. Protocol ΠpVSS (Protocol 4.2) securely realizes FVSS (Function-
ality 4.1) in the presence of a static malicious adversary controlling up to t
parties with t < n/3.

Lemma 4.4. Protocol ΠpVSS has a communication complexity of O(n2 log n)
bits over point-to-point channels and O(n2 log n) bits broadcast for sharing O(n)
values (i.e., O(n log n) bits) simultaneously in 9 rounds.

5 Balanced Gradecast

In a Gradecast primitive, a dealer has an input and each party outputs a value
and a grade {0, 1, 2} such that the following properties are satisfied: (Validity):
If the dealer is honest then all honest parties output the dealer’s input and
grade 2; (Non-equivocation): if two honest parties each output a grade ≥ 1
then they output the same value; and lastly (Agreement): if an honest party
outputs grade 2 then all honest parties output the same output and with grade
≥ 1. We model this in terms of a functionality given in Functionality 5.1. The
case of an honest dealer captures validity. Case 2a and Case 2b capture the
agreement and non-equivocation respectively.

Functionality 5.1: FGradecast

The functionality is parameterized by the set of corrupted parties, I ⊆ {1, . . . , n}.

1. If the dealer is honest: the dealer sends m to the functionality, and all parties
receive (m, 2) as output.
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2. If the dealer is corrupted then it sends some message M to the functionality.
(a) If M = (ExistsGrade2,m, (gj)j �∈I) for some m ∈ {0, 1}∗ and each gj ∈

{1, 2}, then verify that each gj ≥ 1 and that at least one honest party
receives grade 2. Send (m, gj) to each party Pj .

(b) If M = (NoGrade2, (mj , gj)j �∈I) where each mj ∈ {0, 1}∗ and gj ∈ {0, 1},
then verify that for every j, k �∈ I with gj = gk = 1 it holds that mj = mk.
Then, send (mj , gj) to each party Pj .

In Sect. 5.1 we first describe a protocol that is not balanced, i.e., the total
communication complexity is O(n2L) but in which the dealer sends O(n2L) and
every other party sends O(nL). In Sect. 5.2 we show how to make the protocol
balanced, in which each party (including the dealer) sends/receives O(nL) bits.

5.1 The Gradecast Protocol

We build our construction in Protocol 5.2 using the idea presented in Sect. 2.3.
Recall that the gradecast used inside our protocol is the näıve gradecast with
complexity O(n2L) bits for L-bit message, as in [29,31]. The security of our
protocol is stated in Theorem 5.3 and the proof appears in the full version.

Protocol 5.2: ΠGradecast

Input: The dealer P ∈ {P1, . . . , Pn} holds (t+1)2 field elements (bi,j)i,j∈{0,...,t}
where each bi,j ∈ F that it wishes to distribute. All other parties have no input.

1. (Dealer’s polynomial distribution) The dealer:
(a) The dealer views its elements as a bivariate polynomial of degree at most

t in both x and y, i.e., S(x, y) =
∑t

i=0

∑t
j=0 bi,jx

iyj .
(b) The dealer sends S(x, y) to all parties.

2. (Pair-wise Information Exchange) Each party Pi:
(a) Let Si(x, y) be the polynomial received from the dealer.
(b) Pi sends to each party Pj the four polynomials (Si(x, j), Si(j, y), Si(x, i),

Si(i, y)).
3. (Informing dealer about consistency) Each party Pi:

(a) Initialize Agreedi = ∅. Let (f j
i (x), gj

i (y), f j
j (x), gj

j (y)) be the polynomials
received from party Pj . If f j

i (x) = Si(x, i), gj
i (y) = Si(i, y), f j

j = Si(x, j)
and gj

j (y) = Si(j, y) then add j to Agreedi.
(b) Send Agreedi to the dealer.

4. (Quorum forming by dealer) The dealer:
(a) Define an undirected graph G as follows: The nodes are {1, . . . , n} and

an edge {i, j} ∈ G if and only if i ∈ Agreedj and j ∈ Agreedi. Use
STAR algorithm (Algorithm ??) to find a set (C,D) ∈ {1, . . . , n}2 where
|C| ≥ t+1 and |D| ≥ 2t+1, C ⊆ D, such that for every c ∈ C and d ∈ D
it holds that c ∈ Agreedd and d ∈ Agreedc.
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(b) Let E be the set of parties that agree with at least t + 1 parties in C.
That is, initialize E = ∅ and add i to E if |Agreedi ∩ C| ≥ t + 1.

(c) Let F be the set of parties that agree with at least 2t + 1 parties in E.
That is, initialize F = ∅ and add i to F if |Agreedi ∩ E| ≥ 2t + 1.

(d) If |C| ≥ t + 1 and |D|, |E|, |F | ≥ 2t + 1, then gradecast (C,D,E, F ).
Otherwise, gradecast (∅, ∅, ∅, ∅).

5. (First reaffirmation) Each party Pi:
(a) Let (Ci,Di, Ei, Fi, g) be the message that the dealer gradecasted and let

g be the associated grade.
(b) If (1) g = 2; (2) i ∈ Ci; (3) |Di| ≥ 2t+1; and (4) Agreedi ∩Di = Di; then

send OKC to all parties. Otherwise, send nothing.
6. (Second reaffirmation) Each party Pi:

(a) Let C ′
i be the set of parties that sent OKC in the previous round.

(b) If i ∈ Ei and |Agreedi ∩ Ci ∩ C ′
i| ≥ t + 1 then send OKE to all parties.

7. (Third reaffirmation and propagation) Each party Pi:
(a) Let E′

i be the set of parties that sent OKE in the previous round.
(b) If i ∈ Fi and |Agreedi ∩Ei ∩E′

i| ≥ 2t+1 then send (OKF , Si(x, j), Si(j, y))
to each party Pj .

8. (Final propagation) Each party Pi: Among all messages that were
received in the previous round, if there exist polynomials f ′

i(x), g′
i(y) that

were received at least t + 1 times, then forward those polynomials to all.
Otherwise, forward ⊥.

9. (Output) Each party Pi: Let ((f ′
1(x), g′

1(y)), . . . , (f ′
n(x), g′

n(y)) be the mes-
sages received in the previous round. If received at least 2t + 1 polynomials
that are not ⊥, then use robust interpolation to obtain a polynomial S′(x, y).
If there is no unique reconstruction or less than 2t + 1 polynomials received,
then output (⊥, 0). Otherwise, if S′(x, y) is unique, then:
(a) If (1) Pi sent OKF in Round 7; and (2) it received 2t + 1 messages OKF

at the end of Round 7 from parties in Fi with the same polynomials
(f ′

i(x), g′
i(y)); then output (S′, 2).

(b) Otherwise, output (S′, 1).

Theorem 5.3. Let t < n/3. Protocol ΠGradecast (Protocol 5.2) securely realizes
Functionality FGradecast (Functionality 5.1) in the presence of a malicious adver-
sary controlling at most t parties. The parties send at most O(n3 log n) bits where
O(n2 log n) is the number of bits of the dealer’s input.

5.2 Making the Protocol Balanced

To make the protocol balanced, note that each party sends or receives O(n2 log n)
bits except for the dealer who sends O(n3 log n). We therefore change the first
round of the protocol as follows:
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1. The dealer:
(a) The dealer views its elements as a bivariate polynomial of degree at most

t in both x and y, i.e., S(x, y) =
∑t

i=0

∑t
j=0 bi,jx

iyj .
(b) The dealer sends S(x, i) to each party Pi.

2. Each party Pi:
(a) Forwards the message received from the dealer to every other party.
(b) Given all univariate polynomials received, say u(x, 1), . . . , u(x, n), runs

the Reed-Solomon decoding procedure to obtain the bivariate polynomial
Si(x, y). If there is no unique decoding, then use Si(x, y) = ⊥.

3. Continue to run Protocol ΠGradecast (Protocol 5.2) from Step 2 to the end
while interpreting Si(x, y) decoded from the prior round as the polynomial
received from the dealer.

Theorem 5.4. The modified protocol securely realizes Functionality FGradecast

(Functionality 5.1) in the presence of a malicious adversary controlling at most t
parties. Each party, including the dealer sends or receives O(n2 log n) bits (giving
a total communication complexity of O(n3 log n)).

The following is a simple corollary, where for general message length of L
bits the dealer simply breaks the message into � = L/(t + 1)2 log n� blocks and
runs � parallel executions of gradecast. Each party outputs the concatenation of
all executions, with the minimum grade obtained on all executions. The protocol
is optimal for L > n2 log n. We thus obtain the following corollary.

Corollary 5.5. Let t < n/3. There exists a gradecast protocol in the presence
of a malicious adversary controlling at most t parties, where for transmitting L
bits, the protocol requires the transmission of O(nL + n3 log n) bits, where each
party sends or receives O(L + n2 log n) bits.

6 Multi-moderated Packed Secret Sharing

At a high level multi-moderated packed secret sharing is a packed VSS moderated
by a set M of t + 1 distinguished parties called moderators. The parties output
a flag for every moderator in the end. We represent the flag for a moderator
M ∈ M held by a party Pk as vk

M . In addition, each party Pk holds a variable
dk

M taking values from {accept, reject} for each M ∈ M which identifies whether
the dealer is accepted or rejected when M assumes the role of the moderator.

If a moderator M is honest, then every honest party Pk will set vk
M = 1

and the properties of VSS will be satisfied irrespective of whether the dealer is
honest or corrupt. If the dealer is honest, every honest Pk will set dk

M = accept.
For a corrupt dealer, the bit can be 0 or 1 based on the dealer’s behaviour, but
all the honest parties will unanimously output the same outcome.

If a moderator M is corrupt, then it is guaranteed that: if some honest party
Pk sets the flag vk

M = 1, then the properties of VSS will be satisfied irrespective
of whether the dealer is honest or corrupt. That is, if the dealer is honest every
honest Pk outputs dk

M = accept. For a corrupt dealer, it is guaranteed that all
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the honest parties unanimously output the same outcome for the dealer. We note
that when no honest party sets its flag to 1 for a moderator M , then irrespective
for whether the dealer is honest or corrupt, it is possible that the parties do not
have agreement on their dk

M . The functionality is defined as follows:

Functionality 6.1: Fmm-pVSS – Multi-moderated Packed Secret Sharing

The functionality is parameterized by the set of corrupted parties I ⊆ {1, . . . , n},
a set M of t + 1 distinguished parties called as moderators.

1. The dealer sends polynomials fj(x), gj(y) for every j. If the dealer is honest,
then there exists a single (2t, t) polynomial S(x, y) that satisfies fj(x) =
S(x, j) and gj(y) = S(j, y) for every j ∈ {1, . . . , n}.

2. If the dealer is honest, then send fi(x), gi(y) for every i ∈ I to the adversary.
3. For each moderator Mj ∈ M:

(a) If the moderator Mj is honest, then set vk
Mj

= 1 for every k ∈ {1, . . . , n}.
Moreover:
i. If the dealer is honest, then set dk

Mj
= accept for every k ∈ {1, . . . , n}.

ii. If the dealer is corrupt, then receive a message mj from the adversary.
If mj = accept then verify that the shares of the honest parties define
a unique (2t, t)-polynomial. If so, set dk

Mj
= accept for every k ∈

{1, . . . , n}. In any other case, set dk
Mj

= reject for every k ∈ {1, . . . , n}.

(b) If the moderator Mj is corrupt then receive mj from the adversary.
i. If mj = (Agreement, (vk

Mj
)k �∈I), dMj

) where dMj
∈ {accept, reject},

and for some k �∈ I it holds that vk
Mj

= 1. Set (vk
Mj

)k �∈I as received
from the adversary. Verify that S(x, y) is (2t, t)-polynomial. If not,
set dk

Mj
= reject for every k �∈ I. Otherwise, set dk

Mj
= dMj

for every
k �∈ I.

ii. If mj = (NoAgreement, (dk
Mj

)k �∈I) where each dk
Mj

∈ {accept, reject},
then set vk

Mj
= 0 for every k ∈ {1, . . . , n} and d1Mj

, . . . , dn
Mj

as received
from the adversary.

4. Output: Each honest party Pk (k �∈ I) receives as output fi(x), gi(y),
(dk

M )M∈M, and flags (vk
M )M∈M.

To clarify, each party Pi receives global shares for all moderators, and an
output di

M and flag vi
M for each moderator M ∈ M. If the dealer and the

moderator are honest, then all the flags are 1 and the parties accept the shares.
If the moderator Mj is corrupted, then as long as there is one honest party Pk

with vk
Mj

= 1 there will be an agreement in the outputs d1Mj
, . . . , dn

Mj
(either all

the honest parties accept or all of them reject). When vk
Mj

= 0 for all the honest
parties, we might have inconsistency in the outputs d1Mj

, . . . , dn
Mj

with respect
to that moderator.



406 I. Abraham et al.

The Protocol. We build on the discussion given in Sect. 2.1. We consider the
protocol of VSS where the dealer inputs some bivariate polynomial S(x, y)
of degree at most 2t in x and degree at most t in y. For multi-moderated
packed secret sharing, essentially, each broadcast from ΠpVSS is simulated with
two sequential gradecasts. The first gradecast is performed by the party which
intends to broadcast in the underlying packed VSS protocol, while the second is
executed by a moderator. Note that these gradecasts are realized via the protocol
ΠGradecast, presented in the Sect. 5, having the optimal communication complex-
ity. Up to Step 6 of ΠpVSS (Protocol 4.2), the dealer is the moderator for each
gradecast. At Step 6, we fork into t + 1 executions, with a unique party acting
as the moderator in each execution. Since the protocol steps remain similar to
ΠpVSS, we describe the multi-moderated packed secret sharing protocol below in
terms of how the broadcast is simulated at each step and the required changes
at Step 6 of the packed VSS protocol.

Protocol 6.2: Πmm-pVSS – Multi-moderated Packed Secret Sharing

Simulating broadcast up to (including) Step 6 of ΠpVSS:

1. Simulating broadcast of a message by the dealer.
(a) The dealer: When the dealer has to broadcast a message m it gradecasts

it.
(b) Party Pi: Let (m, g) be the message gradecasted by the dealer, where

m is the message and g is the grade. Proceed with m as the message
broadcasted by the dealer. If g �= 2, then set happyi = 0 within the
execution of ΠpVSS.

2. Simulating broadcast of a party Pj .
(a) Party Pj: When Pj wishes to broadcast a message m, it first gradecasts

it.
(b) The dealer: Let (m, g) be the message and g its associated grade. The

dealer gradecasts m.
(c) Each party Pi: Let (m′, g′) be the messages gradecasted by the dealer.

Use m′ as the message broadcasted by Pj in the protocol. Moreover, if
g′ �= 2; or if g = 2 but m′ �= m, then Pi sets happyi = 0 within the
execution of ΠpVSS.

After Step 6 of ΠpVSS:

1. Each party Pi: Set vi
Mj

= 1, and let fi(x), gi(y) be the pair of shares Pi is
holding at end of Step 6. Gradecast accept if happyi = 1 and reject otherwise.
At this point, we fork into |M| executions, one per moderator Mj ∈ M as
follows:
(a) The moderator Mj: Let (a1, . . . , an) be the decisions of all parties as

received from the gradecast. Gradecast (a1, . . . , an).
(b) Each party Pi: Let (a1, . . . , an) be the decisions received directly from

the parties, and let (a′
1, . . . , a

′
n) be the message gradecasted from the

moderator Mj with associated grade g′. Set vi
Mj

= 0 if g′ �= 2, or there
exists ak received from Pk with grade 2 but for which ak �= a′

k. Then:
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i. If there exists 2t+1 accepts within (a′
1, . . . , a

′
n), then set di

Mj
= accept.

ii. Otherwise, set di
Mj

= reject.
2. Output: Pi outputs (fi(x), gi(y)), (di

M1
, . . . , di

Mt
) and (vi

M1
, . . . , vi

Mt
).

Theorem 6.3. Protocol 6.2 computes Fmm-pVSS (Functionality 6.1) in the pres-
ence of a malicious adversary corrupting at most t < n/3 parties. The protocol
requires the transmission of O(n2 log n) bits over point-to-point channels, the
dealer gradecasts O(n2 log n) bits, and each party gradecasts at most n log n bits.

6.1 Reconstruction

The reconstruction protocol ensures that even for a corrupt moderator, all the
honest parties reconstruct the same value when its flag is set to 1 by some honest
party. This aligns with the guarantees of the sharing phase, which ensures that
the protocol achieves VSS corresponding to a moderator when there exists an
honest party with its flag set to 1 at the end of the sharing phase.

Protocol 6.4: ΠRec
mm-pVSS – Reconstruct of Multi-Moderated Packed

Secret Sharing

The protocol is parameterized by the set of moderators M and a set B contain-
ing |M| distinct non-zero values in the field. To be specific B denotes the set
{−t, . . . , 0} used in ΠpVSS. We assume a one-to-one mapping between M and
{−t, . . . , 0}.
Input: Each party Pi holds (fi(x), gi(y)), (di

M )M∈M and (vi
M )M∈M.

1. Each party sends fi(x) to all. Let (f1(x)′, . . . , fn(x)′) be the polynomials
received.

2. For each M ∈ M (let β∗ ∈ B be its associated value):
(a) If di

M = accept, then use Reed Solomon decoding procedure to reconstruct
the unique degree-t polynomial gβ∗(y) that agrees with at least 2t + 1
values f1(β∗), . . . , fn(β∗) and set si

M = gβ∗(0). If there is not unique
decoding, then set si

M = 0.
(b) If di

M = reject, then set si
M = 0.

3. Output: Output (si
M )M∈M.

Theorem 6.5. For each moderator M ∈ M, if there exists an honest party with
vk

M = 1 then all honest parties hold the same sk′
M = sk

M .
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7 Oblivious Leader Election

We start with the functionality which captures OLE with fairness δ, where
each party Pi outputs a value �i ∈ {1, . . . , n} such that with probability
at least δ there exists a value � ∈ {1, . . . , n} for which the following con-
ditions hold: (a) each honest Pi outputs �i = �, and (b) P� is an honest
party. The functionality is parameterized by the set of corrupted parties I, a
parameter δ > 0 and a family of efficiently sampling distributions D = {D}.
Each D ∈ D is a distribution D : {0, 1}poly(n) → {1, . . . , n}n satisfying:
Prr←{0,1}poly(n) [D(r) = (j, . . . , j) s.t. j �∈ I] ≥ δ .

Functionality 7.1: FOLE – Oblivious Leader Election Functionality

The functionality is parameterized by the set of corrupted parties I ⊂ {1, . . . , n}
and the family D.

1. The functionality receives from the adversary a sampler D and verifies that
D ∈ D. If not, then it takes some default sampler in D ∈ D.

2. The functionality chooses a random r ← {0, 1}poly(n) and samples
(�1, . . . , �n) = D(r).

3. It hands r to the adversary and it hands �i to every party Pi .

Looking ahead, our protocol will define a family D in which the functionality
can efficiently determine whether a given sampler D is a member of D. Specif-
ically, we define the sampler as a parametrized algorithm with some specific
values hardwired. Therefore, the ideal adversary can just send those parameters
to the functionality to specify D in the family.

Protocol 7.2: ΠOLE – Oblivious Leader Election Protocol

1. Choose and commit weights: Each party Pi ∈ P acts as the dealer and
chooses ci→j as random values in {1, . . . , n4}, for every j ∈ {1, . . . , n}. Pi

then runs the following for T := n/t + 1� times in parallel. That is, for
� ∈ [1, . . . , T ], each Pi acting as the dealer executes the following in parallel:
(a) Let the set of moderators be M� = (P(�−1)·(t+1)+1, . . . , P�·(t+1)).
(b) The dealer Pi chooses a random (2t, t)-bivariate polynomial Si,�(x, y)

while hiding the t+1 values ci→j for every j ∈ {(�− 1) · (t+1)+1, . . . , � ·
(t + 1)}, one corresponding to each moderator Pj ∈ M�. Specifically, Pi

chooses Si,�(x, y) such that Si,�(0, 0) = ci→(�−1)·(t+1)+1 and so on till
Si,�(−t, 0) = ci→�·(t+1). The parties invoke Fmm-pVSS (Fig. 6.1) where Pi

is the dealer, and the moderators are parties in M�.
(c) Each party Pk gets as output a pair of shares f i,�

k (x), gi,�
k (y), outputs dk

i,j

and a flag vk
i,j for each moderator Pj ∈ M�.
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Note that the above is run for all dealers P1, . . . , Pn in parallel, where each
dealer has T parallel instances (in total T · n invocations).
Upon completion of the above, let succeededi be the set of moderators for
which Pi holds a flag 1 in all executions, i.e., succeededi := {j | vi

d,j =
1 for all dealers Pd ∈ P}.

2. Reconstruct the weights and pick a leader: The reconstruction phase,
ΠRec

mm-pVSS (Fig. 6.4) of each of the above nT instances of multi-moderated
packed secret sharing is run in parallel to reconstruct the secrets previously
shared.
Let ck

i→j denote Pk’s view of the value ci→j for every i, j ∈ {1, . . . , n}, i.e.,
the reconstructed value for the instance where Pi is the dealer and Pj is the
moderator.
Each party Pk sets ck

j =
∑n

i=1 ck
i→j mod n4 and outputs j that minimizes ck

j

among all j ∈ succeededk (break ties arbitrarily).

Theorem 7.3. Protocol ΠOLE (Protocol 7.2) computes FOLE (Functionality 7.1)
in the presence of a malicious adversary corrupting at most t < n/3 parties. The
protocol requires a transmission of O(n4 log n) bits over point-to-point channels.

8 Broadcast

8.1 Byzantine Agreement

In a Byzantine agreement, every party Pi holds initial input vi and the following
properties hold: (Agreement): All the honest parties output the same value;
(Validity): If all the honest parties begin with the same input value v, then
all the honest parties output v. We simply plug in our OLE in the Byzantine
agreement of [41]. As described in Sect. 1.3, we present standalone functionalities
for Byzantine agreement and broadcast, where the intricacies of sequential com-
position are tackled in [23]. The protocol for byzantine agreement (ΠBA) which
follows from [41] and its proof of security appear in the full version of the paper.

Functionality 8.1: FBA – Byzantine Agreement

The functionality is parameterized by the set of corrupted parties I.

1. The functionality receives from each honest party Pj its input bj ∈ {0, 1}.
The functionality sends (bj)j �∈I to the adversary.

2. The adversary sends a bit b̂.
3. If there exists a bit b such that bj = b for every j �∈ I, then set y = b.

Otherwise, set y = b̂.
4. Send y to all parties.

Theorem 8.2. Protocol ΠBA is a Byzantine agreement protocol tolerating t <
n/3 malicious parties that works in constant expected rounds and requires the
transmission of O(n2) bits plus expected O(n4 log n) bits of communication.
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8.2 Broadcast and Parallel-broadcast

In a broadcast protocol, a distinguished dealer P ∗ ∈ P holds an initial input
M and the following hold: (Agreement): All honest parties output the same
value; Validity: If the dealer is honest, then all honest parties output M . We
formalize it using the following functionality:

Functionality 8.3: FBC

The functionality is parametrized with a parameter L.

1. The dealer (sender) P ∗ sends the functionality its message M ∈ {0, 1}L.
2. The functionality sends to all parties the message M .

To implement this functionality, the dealer just gradecasts its message M
and then parties run Byzantine agreement on the grade they received, while
parties use input 1 for the Byzantine agreement if and only if the grade of the
gradecast is 2. If the output of the Byzantine agreement is 1, then they output
the message they received in the gradecast, and otherwise, they output ⊥. We
simply plug in our gradecast and Byzantine agreement in the protocol below.
Note that the communication complexity our protocol is asymptotically free (up
to the expectation) for L > n3 log n.

Protocol 8.4: ΠBC– Broadcast Protocol for a single dealer

– Input: The dealer holds a message M ∈ {0, 1}L.
– Common input: A parameter L.

1. The dealer: Gradecast M .
2. Each party Pi: Let M ′ be the resultant message and let g be the asso-

ciated grade. All parties run Byzantine agreement where the input of Pi

is 1 if g = 2, and otherwise the input is 0.
– Output: If the output of the Byzantine agreement is 1 then output M ′.

Otherwise, output ⊥.

Theorem 8.5. Protocol 8.4 is a secure broadcast tolerating t < n/3 malicious
parties. For an input message M of length L bits, the protocol requires O(nL)
plus expected O(n4 log n) bits total communication, and constant expected rounds.

Parallel Broadcast. Parallel broadcast relates to the case where n parties wish
to broadcast a message of size L bits in parallel. In that case, we rely on an idea
of Fitzi and Garay [33] that applies to OLE-based protocols. The idea is that the
multiple broadcast sub-routines are run in parallel when only a single election
per iteration is required for all these sub-routines. This results in the following
corollary:
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Corollary 8.6. There exists a perfectly secure parallel-broadcast with optimal
resilience, which allows n parties to broadcast messages of size L bits each, at
the cost of O(n2L) bits communication, plus O(n4 log n) expected communicating
bits. The protocols runs in constant expected number of rounds.

For completeness, we provide the functionality for parallel broadcast below,
and omit the proof since it follows from broadcast.

Functionality 8.7: Fparallel
BC

The functionality is parametrized with a parameter L.

1. Each Pi ∈ P sends the functionality its message Mi ∈ {0, 1}L.
2. The functionality sends to all parties the message {Mi}i∈{1,...,n}.

Efficiency. The protocol gradecasts n messages, each of which requires O(nL)
bits of communication and runs in constant rounds. In addition, we run Byzan-
tine agreement where a single leader election per iteration is necessary across
all the instances, which requires expected O(n4 log n) bits of communication in
expected constant rounds.
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Abstract. Zero-knowledge proofs allow a prover to convince a verifier
of a statement without revealing anything besides its validity. A major
bottleneck in scaling sub-linear zero-knowledge proofs is the high space
requirement of the prover, even for NP relations that can be verified in
a small space.

In this work, we ask whether there exist complexity-preserving (i.e.
overhead w.r.t time and space are minimal) succinct zero-knowledge
arguments of knowledge with minimal assumptions while making only
black-box access to the underlying primitives. We design the first such
zero-knowledge system with sublinear communication complexity (when
the underlying NP relation uses non-trivial space) and provide evidence
why existing techniques are unlikely to improve the communication com-
plexity in this setting. Namely, for every NP relation that can be verified
in time T and space S by a RAM program, we construct a public-coin
zero-knowledge argument system that is black-box based on collision-
resistant hash-functions (CRH) where the prover runs in time ˜O(T ) and
space ˜O(S), the verifier runs in time ˜O(T/S + S) and space ˜O(1) and
the communication is ˜O(T/S), where ˜O() ignores polynomial factors in
log T and κ is the security parameter. As our construction is public-
coin, we can apply the Fiat-Shamir heuristic to make it non-interactive
with sample communication/computation complexities. Furthermore, we
give evidence that reducing the proof length below ˜O(T/S) will be hard
using existing symmetric-key based techniques by arguing the space-
complexity of constant-distance error correcting codes.

1 Introduction

Zero-knowledge proofs, introduced by Goldwasser, Micali and Rackoff [20] are
powerful cryptographic objects that allow a prover to convince a verifier of a
statement while revealing nothing beyond the validity of the statement. Succinct
non-interactive zero-knowledge arguments (ZK-SNARKs and ZK-SNARGs) are
variants of zero-knowledge proof systems that offer very efficient verification,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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namely, proof lengths and verification times that are polylogarithmic in the size
of the instance. ZK-SNARKs have been the focus of intense research from both
theory and practice in the past few years as they are becoming an indispensable
tool to bringing privacy and efficiency to blockchains (see [23,35] for two recent
surveys).

While the initial constructions of concretely efficient ZK-SNARKs suffered
from significantly high prover times, recent works have shown how to improve
the computational complexity to essentially linear in the time taken compute the
underlying relation (for an NP-language) [12,14,26,27,33,34,36,37]. However,
these works come with a steep price in terms of space, namely, for computations
that take time T and space S, the space complexity of the prover is Ω(T ).
Notably, only a few works provide time and space efficient constructions that
we discuss next. This fact turns out to be a major bottleneck in scaling up
zero-knowledge proofs to larger and larger computations.

To make the context precise, we focus on the task of proving that a non-
deterministic RAM machine M accepts a particular instance x, i.e. uniform
non-deterministic computations. The goal here is if M accepts/rejects x in time
T and space S the resulting ZK proof system preserves these complexities on
the prover’s side and polylogarithmic in T (i.e. succinct) or even sublinear on
the verifier’s side.

When considering designated verifier ZK-SNARKs, complexity preserving
solutions (i.e. poly-logarithmic overhead in space and time) have been con-
structed by Bitansky and Chiesa [8] and by Holmgren and Rothblum [22] in
the non-interactive setting. The work of Ephraim et al. [18] show that assuming
the existence of standard (circuit) SNARKs one can construct a non-interactive
succinct argument of knowledge (i.e. SNARK) for parallel RAM computations
where the complexities are preserved on the prover’s side and the verifier requires
polylogarithmic in T time and space based on collision-resistant hash functions
(CRHF), where the underlying CRHF and SNARK is used in a non-black-box
manner. Publicly-verifiable ZK-SNARKs with similar overheads can be accom-
plished via recursive composition [13,15,16]. However, these constructions have
significant overheads as they typically rely on non-black-box usage of the under-
lying primitives. Imposing black-box access to the underlying primitives is an
important step to obtain practically viable constructions [1,21,28].

More recently, two works by Block et al. [9,10], designed the first black-
box construction of a ZK-SNARKs with polylogarithmic overhead in space and
time based on “more standard” assumptions. The first work assumes hardness
of discrete logarithm in prime-order groups and relies on the random oracle
to construct a public-coin zero-knowledge argument where the proof length
is polylog(T ), the prover is complexity preserving and the verifier runtime is
T · polylog(T ) while using polylog(T ) space. The second work improves the veri-
fier’s runtime from T · polylog(T ) to n · polylog(T ), where n is the input length,
under hardness assumptions on hidden order groups. We note that these works
make extensive use of public-key operations - e.g., the prover needs to do Ω(T )
exponentiations, and public-key operations are typically orders of magnitude
more expensive than symmetric key operations.
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Thus, the prior works leave the following question open:

Is it possible to design a complexity preserving (zero-knowledge) argu-
ment system based on minimal assumptions (e.g., symmetric-key primi-
tives) with a succinct verifier where the underlying primitives are used in
a black-box manner?

As noted above, the problem is solved if we are willing to assume (and exten-
sively use) public-key primitives. We further highlight that the problem can be
solved if we relax either the computation or the space requirements of the prover.
The works of [5,7] demonstrate a ZK-SNARK with succinct proofs and verifi-
cation (i.e. polylogarithmic in T ), where the prover’s running time and space
are quasilinear in T . If we relax the time but restrict the space of the prover,
it is easy to see how to extend the same constructions of [5,7] by observing
that a Reed-Solomon encoding of streaming data of size T can be computed
in time polynomial in T with space polylog(T ). Finally, if we relax the black-
box requirement, recursive composition can be used to construct (ZK-)SNARKS
[13,15,16].

1.1 Our Results

Theorem 1. Assume that collision-resistant hash functions exist. Then, every
NP relation that can be verified by a time T and space S RAM machine has a
public-coin zero-knowledge argument-system such that:

1. The prover runs in time T · poly(log(T ), λ) and uses space S · poly(log(T ), λ).
2. The verifier runs in time (T/S + S) · poly(log(T ), λ) and uses space

poly(log(T ), λ).
3. The communication complexity is (T/S)·poly(log(T ), λ) and number of rounds

is constant.
4. The protocol has perfect completeness and negligible soundness error.

where λ is the computational security parameter. Moreover, applying the Fiat-
Shamir heuristic results in a non-interactive sublinear zero-knoweldge argument
of knowledge with the same asymptotic efficiencies.

We remark that our construction could lead to concretely efficient complexity
preserving ZK-SNARKs that are possibly post-quantum secure since it is based
on symmetric-key primitives and is black-box in the underlying primitives.

Next we complement our upper bound with a lower bound. We prove that
any constant-distance code with an encoding algorithm that runs in time quasi-
linear in the input length n must require space at least Ω̃(n). More formally, we
prove the following theorem.

Theorem 2 (Informal). Suppose that a code over F with message length n,
codeword length m and minimum relative distance δ (i.e. [m,n, δm] code) can be
encoded via a RAM machine with space S while making r passes over the input
message, then S ∈ Ω(δn/r · log |F|).
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Interpreting Theorem 2 in the context of proof systems, we note that most
IOP/PCP constructions use constant-distance codes to encode the computation-
transcript, which is of size ˜O(T ). Our lower bound implies that encoding an
˜O(T ) message with space S will have distance ˜O(S/T ) which implies a query
complexity (and consequently proof length) of Ω(T/S) for the IOP/PCPs that
encode the transcript and this matches our upper bound.

1.2 Technical Overview

The most common approach to design a ZK-SNARK black-box from symmetric-
key primitives in a black-box way is to first design an interactive oracle proof
(IOP) system [6,31], then compile it to an succinct interactive zero-knowledge
proof system (honest-verifier) using collision-resistant hash functions and finally
relying on the Fiat-Shamir heuristic [19] to make it non-interactive.

Interactive oracle proofs and probabilistically checkable proofs encode the
computation in such a way that the verifier needs to query only few bits to verify
its validity. These proofs typically involve encoding the computation transcript
using some constant-rate constant-distance error-correcting codes. Computing
these codes on a computational transcript of size T can be done efficiently, i.e.
in time ˜O(T ) using FFTs. Unfortunately, all FFTs are believed to require a high
space complexity. In fact, it was shown in a specific computational model that
computing Fourier transforms on a domain of size n with time T and space S
requires T · S ∈ Ω(n2) [32]. This means that if S << T , then the running time
to compute Fourier transforms will no longer be quasi-linear in n. As mentioned
above, we demonstrate that even designing codes with constant-distance requires
significant space.

Our starting point for our upper bound is the Ligero ZK argument system [1]
which is an instantiation of the IOP framework (based on the MPC-in-the-head
paradigm [24]) but provides a trade-off between size of the Fourier transforms
and proof length. Given a parameter β, for a computation of size T , the Ligero
proof system provides a O(T/β + β)-sized proof and requires executing several
O(T/β) FFTs on size β. However, the proof system as we describe below still
requires a space complexity of O(T ). Our main contribution is a new proof
system that follows the blueprint of the Ligero proof system and preserves time
and space efficiency.

We provide a high-level description of the Ligero proof system in the IOP
model and identify the bottlenecks in making it time and space efficient. Given
an arithmetic circuit C over a field F, the Ligero system proves satisfiability of
C as follows:

1. Preparing the proof oracle: In the first step in Ligero, the prover computes
an “extended” witness (of size O(|C|)) that incorporates all intermediate com-
putations (namely, output of each “gate”) and encodes it using an Interleaved
Reed-Solomon code. This code is set as the proof oracle.

2. Testing the encoding: Next, the verifier tests if the prover set the oracle
with a valid encoding of some message. The Interleaved Reed-Solomon Code
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can be interpreted as a matrix U where each row is a Reed-Solomon code
of some message. The verifier challenges the prover with a set of random
elements (one for each row of U) and the prover responds with a random
linear combination of the rows based on the randomness provided by the
prover. The verifier rejects if this combination is not a valid (Reed Solomon)
code. The idea is that if each row of U is a valid Reed Solomon code, then by
linearity the random linear combination provided by the prover must also be
a valid Reed Solomon code.

3. Testing linear constraints: Linear constraints incorporate all the addition
gates and circuit wiring in C. The verifier tests these constraints by providing
randomness and obtaining an encoding of a random linear combination of the
result of all the linear constraints applied to the extended witness. Given the
prover’s response the verifier checks if the response encodes values that sum
up to 0. The idea here is that even if one of the linear relations do not hold,
then the values encoded in the random linear combination will not sum up
to 0 with very high probability.

4. Testing quadratic constraints: Quadratic constraints incorporate all the
multiplication gates in C. The verifier tests these constraints analogously to
the linear constraints. Specifically, the verifier checks if the prover’s response
encodes a vector of all zeros. This test utilizes the strong multiplicative prop-
erty of the Reed-Solomon encoding [30].

5. Column check: Finally, the verifier checks if the responses provided by the
prover in the three tests presented above are consistent with the code in the
proof oracle. Since all the tests can be performed via row operations on the
matrix, the verifier selects a random subset of the columns of the matrix and
recomputes the results of the tests for these columns and checks if they are
consistent with the responses.

Compiling the IOP system to a sublinear argument is achieved by replacing
the proof oracle with the root hash of a Merkle hash tree with leaves as the
elements of the code matrix and providing Merkle decommitments along with
the elements (columns) revealed in the column check step [6,25].

Next, we analyze the space complexity of the Ligero system, describe the
obstacles to make it space-efficient and then explain our approach to overcome
these obstacles.

1. The first step of the argument system involves the prover computing the code
generated by encoding the witness where this codeword serves as the proof
oracle. This is followed by computing the Merkle hash tree of the code. The
size of the code is O(|C|) and if we naively compute the Merkle tree it will
require holding the entire code in memory. However, if the Interleaved Reed
Solomon code can be computed one row at a time then the Merkle hash
tree can be computed with space proportional to the length of the code (i.e.
number of columns in the matrix) as the hash of the leaves can be itera-
tively aggregated using the Merkle-Damgard construction [17]. We remark
that computing the code one row at a time is not straight forward as the
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Ligero proof system actually requires the extended witness to be arranged
in a specific structure. The verifier on the other hand can check the Merkle
decommitments of the κ columns in space proportional to κ and polylog(T ).

2. In the code test, the prover computes a random linear combination of the rows
of the matrix. Once again, if we assume that the code matrix can be computed
one row at a time, then the linear combination can also be computed in space
proportional to the length of the code by maintaining a running aggregate.

3. The linear test is one of the main bottlenecks in terms of space complexity. As
the wiring in the circuit C can be arbitrary the linear constraints can involve
values encoded in arbitrary rows of the matrix. This means even if the code
can be computed one row at a time, computing the response to the linear
constraint could involve recomputing the entire code for each constraint to
access different rows of the code and this blows up the running time of the
prover beyond quasi-linear in the worst case. The issue of the wiring in the
circuit C being arbitrary (as described in the previous step) poses a challenge
to improving the verifier’s space complexity as well. In addition to the same
issues as discussed above, the verifier has more stringent space restrictions,
and verifying the prover’s response to the linear test in small space is non-
trivial. We discuss our approach for the linear test below.

4. In the quadratic test, the verifier checks the correctness of all the multiplica-
tion gates. The prover prepares the extended witness in a specific way where
the multiplication gates are batched and the wire values are aligned so that
they can be tested for correctness as follows: the verifier provides randomness
and the prover provides an aggregate computed via row operations which
the verifier checks if it encodes the all 0’s string. Making this space-efficient
requires arranging each batch of multiplication gates in neighboring rows.

5. In the final step, the verifier queries the proof oracle on a subset of the columns
and verifies if the responses provided by the prover for the code, linear and
quadratic tests are consistent with the columns. In the Ligero system, all these
tests are results of row operations on the encoded matrix. Hence the verifier
can check the correctness by simply recomputing the row operations on the
subset of columns opened by the verifier and checking against the prover’s
responses. If the tests can be computed by the prover in a space efficient
manner, then the verifier can rely on a similar approach to recompute the
responses for the columns in a space-efficient manner.

1.2.1 Our Approach
We want to design a space-efficient ZK-SNARK for RAM computations. First,
we fix the RAM model of computation as a machine that has (multi-pass) uni-
directional input tapes and a work tape with RAM access. Our first step is to
rely on the transformation from [4,11] to transform the RAM computation into
a (succinct) circuit C. We modify the compiler to generate directly a constraint
system that can be consumed by the Ligero system. In slightly more detail, the
Ligero constraint system is over a m× � matrix X that represents the “extended
witness” and instantiated via a linear constraint (A, b) and quadratic constraint
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system specified by tuples of rows (il, ir, io) on the matrix X. The linear con-
straint requires that Ax = b where x is the flattening of the matrix X (namely
concatenating the rows of X) and the quadratic constraint (il, ir, io) requires
that for every j ∈ [�], Xil,j · Xir,j = Xio,j .

By relying on the transformation of [4,11], we will obtain a Ligero constraint
system over a ˜O(T/S)× ˜O(S) matrix X where we can decompose X into ˜O(T/S)
blocks where a block, denoted by Xi, contains polylog(T ) rows of X with the
following properties:

1. First, a block can be stored in space ˜O(S) (as opposed to storing X which
requires ˜O(T ) space). The transformation will allow the prover to generate
and encode X block-wise as needed by the Ligero proof system while using
only ˜O(S) space.

2. The linear and quadratic constraints over the extended witness X will be
localized to a block or consecutive blocks i.e. these constraints only involve
values within a block or consecutive blocks of X. We will show that this allows
us to test constraints block-wise in a space efficient manner.

Next, we explain the main technical novelty of our approach - implementing
the linear and quadratic tests.

Linear Test. In this step, the prover convinces the verifier that the extended
witness X satisfies all the linear constraints. We observe from [4,11] that the
linear constraints are “localized” to blocks of size ˜O(S) and “uniform” i.e., the
set of the constraints applied to each block are the same. The efficiency of the
linear constraints relies on these two properties. In more detail, we express the
linear constraints for each block as Ayi = b where A is a public matrix of size
˜O(S)× ˜O(S) extracted from the transformation, b is a public vector of size ˜O(S)
and yi is ˜O(S)-sized flattened vector corresponding to block Yi that is obtained
by concatenating the rows of Yi.

We briefly describe the linear test for “uniform” constraints. To verify these
constraints, the witness is split into blocks yi and the verifier verifies that
rT(Ayi) = rTb for all blocks yi, where r is a random challenge it provides of
length ˜O(S). We explain the rest of the test for a specific block. To apply batch-
ing, the output of the batched test is takes as the random linear combination
of the individual tests. In such a test, the prover rearranges the vector rTA as
an ˜O(1) × ˜O(S) matrix and computes its Interleaved Reed Solomon encoding,
denoted by R. Then, instead of sending rT(Ayi), the prover sends the vector
q = (1m)T(R � Ui) where Ui is an encoding of Yi, 1m is the all ones length m
vector and � denotes pointwise product. By the multiplicative property of Reed-
Solomon codes, it follows that checking whether rT(Ayi) = rTb is equivalent to
checking whether the decoding of q satisfies that the sum of the decoded values
equals rTb. Towards making this test efficient in terms of both time and space,
the following three steps need to be computed efficiently.
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1. The prover and the verifier need to compute rTA. Note that naively storing
the entire matrix A requires space ˜O(S2). Instead, we observe the matrix
A benefits from the following properties of the circuit (which is obtained
from the RAM-to-Circuit reduction of [4,11]): (a) each wire of the circuit is
involved in at most polylogarithmic linear and quadratic constraints and (b)
all constraints involving a particular wire can be efficiently identified. This
translates into the following properties for A: (a) A is a sparse matrix i.e., the
number of non-zero elements in A is ˜O(S) and (b) all the non-zero elements
of a column can be efficiently computed in time ˜O(1) and space ˜O(1). To
perform the matrix-vector multiplication, we just need to query the non-zero
values for each column of A in time ˜O(1) and then multiply each of these non-
zero values with the appropriate randomness in r. The randomness associated
with ith row is set to si where s is a randomly generated seed. Hence, we can
compute each element of rTA in time ˜O(1) and space ˜O(1).

2. Next, both the prover and the verifier need to compute the encoding of rTA.
The prover rearranges the ˜O(S)-length vector into a ˜O(1)× ˜O(S) matrix and
then encodes each row using an RS encoding, denoted by R. The prover can
do this by first interpolating each row i of the matrix to generate a polynomial
ri(·) and then evaluate ri(·) at ˜O(S) evaluation points; performing interpo-
lation followed by evaluation (of size ˜O(S)) is done efficiently using iFFT
followed by FFT and requires space ˜O(S). The prover can perform these
operations, but the verifier has much less space i.e., poly(log T, κ). First, note
that the verifier needs to compute only at O(κ) columns of R (as opposed to
the prover who needs to compute the entire codeword, which is of size ˜O(S)).
However, this does not directly reduce the space to ˜O(1) as interpolation
followed by evaluation requires space ˜O(S) to store the interpolated polyno-
mials. By exploiting the structure of FFTs, we present an algorithm DEval
that can implicitly evaluate the polynomial without storing all the coefficients
at a particular point using ˜O(1) space given an input of size ˜O(S). This algo-
rithm will allow the verifier to recompute the result of the linear test on the
˜O(1) columns in ˜O(1) space.

3. Lastly, the verifier needs to check if the prover’s response in the linear test
encodes values that sum up to rTb. Suppose q(·) is the polynomial associated
with the prover’s response, then the verifier needs to evaluate q(·) at � points
and check if they sum up to rTb i.e.,

∑

i∈[�] q(ζi) = rTb where {ζi}i∈[�] are
the interpolation points. It is non-trivial to ensure that both the time and
space are optimal for this check as evidenced by the following two approaches
where one is optimal in time but not in space and vice-versa.
(a) If we use FFTs to evaluate the polynomial at � points, then the check is

optimal in time but not space i.e., this approach requires time O(� log �)
and space O(�).

(b) Alternately, instead of storing all � evaluations of q(·) and then adding
them up, we can compute the running aggregate of the values encoded
by q(·) while simultaneously evaluating the polynomial at all � points.
This approach updates the running partial aggregate as the terms of the
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polynomial are computed and just needs to store 1 field element. But the
time to evaluate a t degree polynomial at � points is at least O(t�), which
is O(�2) when t = �. Hence, this approach is optimal in terms of space
but not time i.e., it requires space O(1) and time O(�2) (if the degree of
q(·) is �).

We address this issue by setting the interpolation points to be the �th roots
of unity. It turns out that the sum of the values encoded by q(·) is equal to
�(c0 + c�) i.e.,

∑

i∈[�] q(ζi) = �(c0 + c�) where c0 and c� are the coefficients
of q(·). Our time and space-optimal approach is as follows. The prover sends
only the coefficients c0 and c� during the linear test. The verifier sums up
the two coefficients and checks if it is equal to rTb i.e., c0 + c� = rTb, which
requires time O(1) and space O(1).

Quadratic Test. Similar to the linear constraints, the quadratic constraints are
“localized” to a block i.e., the constraints involve only values within a block of X.
Further, the quadratic constraints require the rows of X to be aligned in a specific
way: the left, right, and output wire values of multiplication gates are aligned
in corresponding rows of a block. During the test, The verifier provides a vector
r′ of length ˜O(1) and tries to verify the following for all blocks i ∈ [O(T/S)],
r′T (Y left

i �Y right
i −Y out

i ) = [0]1× ˜O(S) where Y left
i , Y right

i and Y out
i are submatrices

of X is size ˜O(1) × ˜O(S) corresponding to left, right and output wire values
respectively (and they are all aligned). Towards this, the prover computes the
encoding of r′T (Y left

i �Y right
i −Y out

i ) for each block and then combines them by
taking a random linear combination of such encodings.

Similar to the linear test, the verifier needs to additionally check if the
prover’s response encodes a vector of all zeros. A similar challenge as described
in the linear test arises here as well. The verifier needs to evaluate the prover’s
response to the quadratic test, say q(·), at � points and check if each of them is
0. Like the previous solution for linear test, we set the interpolation points to
be the �th roots of unity. However, the solution for the previous step cannot be
directly applied here as we need to check if each of the values is 0 (instead of the
sum being 0). Instead, we observe that the polynomial q(·) can be expressed as
a product of two polynomials q′(·) and z(·) such that z(·) evaluates to zero at all
the interpolation points. We modify the quadratic test so that the prover sends
q′(·) instead of q(·) and the verifier computes q(·) from q′(·) and z(·) where z(·)
is a publicly known polynomial. This entirely avoids the need to check if q(·)
encodes all 0 values.

IPCP to ZK-SNARK. We compile an IPCP to a ZKSNARK in two steps. First
we compile an IPCP to a ZKIPCP and then transform ZKIPCP to a ZKSNARK.

In the first step, we need to ensure that the information revealed to the verifier
is “zero-knowledge”. Recall that information regarding the extended witness is
revealed in each of the code, linear and quadratic tests and in the symbols (i.e.
columns of the U matrix) queried by the verifier. The columns revealed can be
protected by adding redundancy to the encoding. More precisely, we instantiate
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the Reed-Solomon code so that the columns of U matrix provide t-privacy as a
secret sharing scheme where t is the number of symbols opened by the verifier.
To make sure that the result of the tests leak no information, it suffices to mask
the results by adding additional rows to the U matrix that blind the results of
the tests. The IPCP protocol can be converted into ZKIPCP protocol without
any additional overhead by: 1) adding blinding random codewords to encoded
witness U and 2) adding randomness while generating U . This compilation only
incurs a constant multiplicative overhead.

In the second step we rely on the compilation of Ben-Sasson et al. [6] (which
in turn is based on [25]) using Merkle trees. We argue that this step affects the
asymptotic computation or communication complexity only by a multiplicative
factor proportional to poly(κ) where κ is computational security parameter.

Efficiency. To get the target space and time efficiency we will set the β param-
eter (length of a block) of the proof system to be ˜O(S) and get a proof
length of ˜O((T/S) + S). The prover requires ˜O(T )-time and ˜O(S)-space, which
is complexity-preserving. Further, the verifier is “succinct” and will require
˜O(T/S + S)-time and ˜O(1)-space to verify the proof.

Improving Proof Length. To improve the proof length, the protocol does not send
the polynomials q(·) in the test. Instead, the polynomials generate a codeword
which will be used as an oracle. The prover proves the degree of the polynomial
using a low-degree testing protocol FRI [2] which requires polylogarithmic com-
munication in the degree of polynomial, thereby reducing the proof length to
˜O(T/S) and preserving the time and space complexities of both the prover and
the verifier.

1.2.2 A Matching Lower Bound
We complement our positive result with a lower bound that demonstrates why
getting a proof length better than ˜O(T/S) will be hard using current techniques.
As mentioned above, all techniques involve codes with constant distance in one
form or another. We show that any code that makes polylogarithmic passes on
an input message of length n and produces a code with constant distance must
require space ˜O(n). Interpreting the result in the context of proof systems, if
we want to generate a code of a message of length T in quasilinear time, it
will require space Ω(T ). A slightly more refined implication is that with space
S, encoding a T -length message in quasilinear time (in T ), can yield a code of
distance at most S · polylog(T )/T . Testing such codes typically requires queries
inversely proportional to the distance i.e. T/(S · polylog(T )). Hence, any proof
system that employs such a code and encodes a length T message, will need a
query complexity of at least T/(S · polylog(T )), implying that the proof length
will also be at least T/(S · polylog(T )).
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The high-level idea of the lower bound is to prove that for any constant-
distance code over a field F, the encoding algorithm requires space S > (n/(rδ)−
O(logm)) · log |F|, where n is the message length, m is the codeword length, δ
is the distance and r is the number of passes. We prove this in two steps.

First, consider an encoding algorithm that reads each block (i.e., contiguous
portion) of a message and outputs a portion of the codeword. We show that
there must be a message M that consists of a block of length O(n/δ) such that
the number of elements output by the encoding algorithm corresponding to that
block is δm/2.

Next, consider the set of all messages m′ that agree with m everywhere except
on that block (there are |F|O(n/δ) such messages). We show that there will be a
subset of messages, say D, of size at least |F|O(n/δ)−rS/ log |F|−O(r log m) such that
the encoding of any two messages will differ only in at most δm/2-elements where
r is the number of passes made by the encoding algorithm on the input. If this
set has at least two messages, then the encodings of these messages will differ in
at most δm/2 locations, thereby violating the distance property of the codeword
whose minimum distance is δm. To evade this contradiction, we require the size
of D to be at most 1, i.e., |F|O(n/δ)−rS/ log |F|−O(r log m) ≤ 1 which implies that
the space S > (n/(rδ) − O(logm)) · log |F|.

1.3 A Comparison with Related Work

Related to the design of sub-linear zero-knowledge arguments, the work of
Mohassel, Rosulek and Scafuro [29] constructs zero-knowledge arguments when
modeling the NP relation via a RAM program, that are sublinear in a different
sense. More precisely, they considered the scenario of a prover that commits to
a large database of size M , and later wishes to prove several statements of the
form ∃w such that Ri(M,w) = 1. After an initial setup with a computational
cost of O(M) only on the prover’s side, they achieve computation and commu-
nication complexities for both parties that are proportional to ˜O(T ) where T is
the running time of the RAM program implementing the relation and ˜O hides
a factor of poly(log(T ), κ).

Previously, the two works [9,10] also designed black-box constructions of ZK-
SNARKs with polylogarithmic overhead in time and space. These works rely on
the hardness of discrete logarithm and hidden order groups. Our protocol, on the
other hand, relies on symmetric key operations and requires collision-resistant
hash functions. The prover’s time and space complexities of [9,10] match our
complexity. This is the case for the verifier’s space complexity as well. The veri-
fier’s running time in [9] is ˜O(T ) and ˜O(n) in [10] where n is the input length. On
the other hand, our verifier’s complexity is ˜O(T/S+S). Finally, the communica-
tion complexity of prior works is ˜O(1) while we achieve ˜O(T/S). We summarize
these results in Table 1.
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Table 1. The complexity analysis of black-box ZKSNARKs. T and S are the respective
time and space complexities required by the RAM program to verify the NP relation.
n is the input length and ˜O(·) ignores polynomial factors of log T .

P time P space V time V space

[9] ˜O(T ) ˜O(S) ˜O(T ) ˜O(1)

[10] ˜O(T ) ˜O(S) ˜O(n) ˜O(1)

Theorem 1 ˜O(T ) ˜O(S) ˜O(T/S + S) ˜O(1)

2 Preliminaries

Basic Notations. Let κ be the security parameter. We use lower-case letters
such as x,y to represent vectors, and x[i] denotes the ith element in vector x.
We use capital letters such as X,Y to represent matrices. Also, X[j] denotes the
jth column and Xi,j denote the element in ith row and jth column in matrix
X. We use the notation ˜O(.) to ignore polylog(.) terms. A matrix X is said
to be flattened into a vector x (i.e. denoted by the lower-case letters of the
corresponding matrix), if x is a rearrangement of the matrix X row-wise i.e.,
x = (X1,1, . . . , X1,n, . . . , Xm,1,Xm,n) where X is of size m × n.

We also Xi or Yi to denote matrices, especially when there many such matri-
ces and i identifies a specific matrix in the set {Xi}i∈[n]. Note that the flattened
vector associated with Xi and Yi are denoted by corresponding lower-case letters
i.e. xi and yi respectively.

2.1 Circuit Notations

A arithmetic circuit C is defined over a field F and has input gates, output
gates, intermediate gates, and directed wires between them. Each gate computes
addition or multiplication over F. We define the notion of a transcript for an
arithmetic circuit C to be an assignment of values to the gates where the gates
are ordered in a lexicographic order; each gate in circuit C will have a gate id
gid and will have two input wires and one output wire. Each wire will also have
a wire id wid and in case a wire value is an output wire of gate gid, then the wire
id wid = gid. Each element in the transcript W is of the form (gid, type, γ) where
gid is the gate label, type ∈ {inp, add,mult, out} is the type of the gate and γ is
the output wire value of gate gid.

2.2 Zero-Knowledge Arguments

A zero-knowledge argument system for an NP relationship R is a protocol
between a computationally-bounded prover P and a verifier V. At the end of the
protocol, V is convinced by P that there exists a witness w such that (x;w) ∈ R

for some input x, and learns nothing beyond that. We focus on arguments of
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knowledge which have the stronger property that if the prover convinces the ver-
ifier of the statement validity, then the prover must know w. Formally, consider
the definition below, where we assume R is known to P and V.

Definition 1. Let R(x,w) be an NP relation corresponding to an NP language
L. A tuple of algorithm (P,V) is an argument of knowledge for R if the following
holds.

– Correctness. For every (x,w) ∈ R and auxiliary input z ∈ {0, 1}∗, it holds:

〈P(w),V(z)〉(x) = 1

– Soundness. For every x /∈ L, every (unbounded) interactive machine P∗,
and every w, z ∈ {0, 1}∗ and a large enough security parameter λ,

Pr[〈P(w),V(z)〉(x) = 1] ≤ negl(λ)

It is a zero-knowledge argument of knowledge it additionally satisfies:

– Zero knowledge. There exists a PPT simulator S such that for any PPT
algorithm V∗, auxiliary input z ∈ {0, 1}∗, and (x;w) ∈ R, it holds that

View(〈P(w),V(z)∗〉(x)) ≈ SV∗
(x, z)

Here SV∗
denotes that the simulator S sees the randomness from a polynomial-

size space of V∗.

Succinct vs. Sublinear Arguments. We say an argument of knowledge is
succinct if there exists a fixed polynomial p(·) such that the length of the proof
is is bounded by p(λ + log |C|) where C is the circuit corresponding to the
NP relation. Similarly, we say an argument of knowledge is sublinear if the
proof length is oλ(|C|) where oλ(·) hides multiplicative factors dependent on the
security parameter λ.

2.3 Random-Access Machines (RAM)

A Random-Access Machines (RAM) comprises of a finite set of instructions that
are executed sequentially on a finite set of registers and can make arbitrary
memory accesses. We assume that each time step during the execution of a
RAM program executes a single instruction or accesses the memory locations.
We model the RAM as a Reduced-Instruction Set Computer (RISC) which more
closely models programs compiled from high-level languages such as Java, C++.
We adopt the formal notation for RAM from [4].

Definition 2 (The RAM Model [4]). A random-access machine (RAM) is a
tuple M = (w, k,A,C,T), where:

– w ∈ N is the register size;
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– k ∈ N is the number of registers;
– C = (I0, . . . , In−1) is a set of instructions (or the code for the RAM program),

where n ∈ {1, . . . 2w} and each Ii is an instruction.
– T is a set of tapes which consists of a constant number of unidirectional input

tapes with read-only access and single unidirectional output tape.
– W is a work tape with arbitrary read and write accesses.

Consider a RAM program M that runs in time T (n) and uses S(n) memory
cells on input x with n-bits. For simplicity, we use T and S instead of T (n) and
S(n) as the input length can be easily inferred.

The RAM program M has arbitrary access to a work tape1. At any time
step, the RAM program may read from or write into the cells (also referred to as
memory cells) of the work tape using the load and store instructions respectively.
We say a RAM program uses space S, if at most S memory cells of the tape were
accessed during an execution of the M .

2.4 Succinct Matrix

We define succinct matrices which will be used in our zero-knowledge argument
system.

Definition 3 (Succinct Matrix). A succinct matrix A is a matrix of dimen-
sion n1 × n2 with the following properties:

– There are n1 · polylog(n1) non-zero values.
– There exists an algorithm getColumn(ů) that takes input j and outputs a list

L. The list L contains all non-zero elements of column j where each non-zero
element is represented as a tuple (k, val) where k represents the row number
and val represents the non-zero value. This algorithm runs in polylog(n1).

3 Lower Bound for Space-Efficient Encoding Schemes

In this section, we present our lower bound on space-efficient constant-distance
codes. This lower bound provides evidence for why it is unlikely for current
proof systems to be complexity preserving (in both time and space) when the
underlying RAM machine uses space S << T for non-trivial space.

3.1 Interpreting the Lower Bound in the Context of Proof Systems

As mentioned in the technical overview, all constructions of succinct non-
interactive arguments based on symmetric-key primitives that are black-box in
the underlying assumptions rely on constant-distance codes [1,3,5,25]. In slightly
more detail, all constructions first rely transforming the circuit evaluation to an
“execution” transcript that is proportional to the size of the circuit and then

1 Generally, the RAM program has access to memory which we model as a work tape.
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encoding the transcript via a constant-distance code. For a RAM machine, such
a transformation typically results in a transcript of size T where T is the running
time of the RAM computation. In this section, we will show that encoding a T -
element message via a constant-distance code will require space Ω(T/r), where
r is the number of passes taken by the algorithm on the input tape. In other
words, current techniques for constructing a time-preserving ZK-SNARK, i.e. r
is at most polylog(T ), will require prover’s space of Ω(T/r). In particular if the
space of the underlying RAM machine is S << T , it is unlikely to get such a
proof system that is complexity preserving (in time and space).

3.2 Warm Up: A Simple Lower Bound

As a warm up, we first present a lower bound where we assume a small restriction
on the encoding algorithm and then prove a more general result. We begin with
some notation that will help in our lower bounds.

Notation. We consider an encoding algorithm executed via a RAM machine
with space S that encodes a message of length n. The encoding algorithm has
unidirectional (i.e. linear) access to the input tape and can make multiple passes
on the input. The machine also has a unidirectional output tape. Further, the
encoding algorithm has RAM access to a work tape of size S bits (or equivalently
S/ log |F| field elements). To keep track of the current position of the read head
of the encoding algorithm on the input tape, we introduce the notion of head.
Specifically, we use read head and write head to denote the heads in the input
tape and output tapes, respectively (where the message to be encoded is read
from the input tape and the codeword is written on to the output tape). Note
that the contents of the work tape of the encoding algorithm differs depending
on the position of the read head. It will be convenient to divide a msg into
contiguous blocks of equal length. We will denote by msg[i] the ith block of msg.
We denote by cmsg the output of Enc on input msg. Let cmsg[i, j] denote the
part of the codeword output by the encoding algorithm when it reads the block
msg[i] during the jth pass, i.e. when the read head moves from the left end to the
right end of the block msg[i] in the jth pass. Let cmsg[i] be the concatenation of
{cmsg[i, 1], . . . , cmsg[i, r]}. We will drop the subscript when the msg is understood
from the context.

We present a high-level overview of the simplified version of the lower bound,
which imposes certain restrictions on the encoding algorithm. Note that the
encoding algorithm reads a certain portion of the message (referred to as a
block), outputs a portion of the codeword (associated with this block) and then
proceeds to the next message block. We make a simplifying assumption that the
length of the codeword portion associated with any message block is independent
of the contents of the message. This is formally stated in Assumption 1 below.

Assumption 1. The position of the read head and write head at any step during
the encoding is independent of the message.
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As a corollary we have the following: Suppose we divide the input message
into 	2/δ
 blocks of equal length. Given any two messages msg,msg′ ∈ F

n, the
output of the encoding algorithm satisfies |cmsg[i, j]| = |cmsg′ [i, j]| for all blocks
i ∈ [2/δ] and passes j ∈ [r].

We begin with a proof overview. On a high-level the idea is to identify a
set of messages whose encoding violate the minimum distance property. First,
by a simple counting argument we can argue that there must be a message
block t of length O(n/2δ) such that the total number of elements output by the
encoding algorithm when the read head passes through block t (i.e.

∑

j |c[t, j]|)
is at most δm/2. Observe that block t will have the same property for any
message by our Assumption 1. Next, we will focus on messages that are identical
everywhere except on block t; if we fix the remaining blocks then there are |F|δn/2

such messages as each block is of size δn/2. Out of these |F|δn/2 messages, we
identify a subset of messages that result in identical work tapes after the encoding
algorithm reads block t in each pass. These messages have property that the code
can only differ in the portions output when reading block t, namely c[t, j]. We
conclude by showing that there exist at least two messages in this set when
S ≤ (δn/2r) · log |F|. Since the codewords corresponding to these messages only
differ in at most δm/2 locations, but the minimum distance of the code is δm,
we arrive at a contradiction.

Theorem 3. Let C be a [m,n, δm] code over F with message length n, codeword
length m and minimum relative distance δ. Also, let Enc(T,S,r) : Fn → F

m be a
Turing machine that on input msg ∈ F

n outputs an encoding of msg in time
T with a work tape of size S while making r passes on the message. Suppose
Assumption 1 holds, then S ≥ (δn/2r) · log |F|.
Proof. Assume for contradiction that there exists a [m,n, δm] code C over F

with an encoding algorithm Enc(T,S,r). Consider an arbitrary message msg. Let’s
partition it into 2/δ blocks each of length δn/2 elements.

Assumption 1 implies that the length of the output of the encoding algorithm
associated with message block i, which is denoted by |c[t]|, is the same for all
messages. Here, c[i] is a concatenation of {c[i, 1], . . . , c[i, r]} for some message
msg. We drop the subscript for |cmsg[t]| as the length is the same for all messages.
Next, We show that there exists a message block t such that c[t] is of length at
most δm/2.

Lemma 1. There exists a t ∈ [2/δ] such that |c[t]| ≤ δm/2.

Proof. Assume for contradiction, for every t, |c[t]| > δm/2. Then,

|c| =
∑

i

|c[i]| > 2/δ × δm/2 > m

which is a contradiction.

Lemma 2. Given message block t ∈ [2/δ] and pass k ∈ [r], there exists a set
of messages Dk of size at least |F| δn

2 −kS/ log |F| such that for any two messages
msg,msg′ ∈ Dk the following holds:
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1. msg[i] = msg′[i] for all i = t.
2. At the end of the kth pass, cmsg and cmsg′ differ only at positions occupied

by c[t, 1], . . . , c[t, k]. Furthermore, the contents of the work tape of the encod-
ing algorithm at the end of the kth pass for messages msg and msg′ will be
identical.

Proof. Consider an arbitrary message msg, define D0 to be the set of all messages
that are identical to msg in every block i = t, but differ in block t. D0 contains
|F| δn

2 messages. We prove the claim via an induction on the number of passes.

Base Case: In the first pass, we show that there exists D1 ⊆ D0, such that
the properties of the claim hold. By an averaging argument, there must exist a
subset of D0, say D1, of size at least |F| δn

2 − S
log |F| with the following property:

the contents of the work tapes are identical for any two messages in D1 after the
encoding algorithm finishes reading block t message during the first pass.

We now show that the codewords cmsg and cmsg′ differ only in the codeword
portions c[t, 1] for any two messages msg,msg′ ∈ D1. Since all messages in D0 are
identical except for block t, the encoding will be identical before the codeword
portion c[t, 1]. Next, since the contents of work tapes after reading block t are
identical and the remaining part of the message (i.e., after message block t) are
the same, the rest of the output until the encoding finishes the first pass will
be the identical as well. Furthermore, the work tapes will be identical when the
encoding finishes the first pass.

Induction: Suppose that there exists a set of messages Dk for which the condi-
tions of the claim holds at the end of the kth pass. Then in the (k+1)st pass, the
encoding algorithm starts with identical contents on the work tape for every mes-
sage in Dk, so it will output the same elements until the encoding reaches block
t. Applying another averaging argument, there must exists a subset Dk+1 ⊆ Dk

of size at least |F| δn
2 − kS

log |F| /|F|S/ log |F| = |F| δn
2 − (k+1)S

log |F| such that the work tape
will be identical when the encoding finishes reading block t in the (k+1)st pass.
Similarly the contents of the work tapes and the output for these messages will
also be identical for every two messages in Dk+1 until the end of the (k + 1)st

pass. This completes the induction step.

Finally, we combine Lemmas 1 and 2 to prove Theorem 3 via contradiction.
As per Lemma 1, there exists a message block t such that the encodings of
messages differing only at this block have a distance of at most δm/2. If we
instantiate Lemma 2 for block t, we get that there exists a set of messages Dr of
size |F| δn

2 − rS
log |F| such that the encodings of any two messages in Dr differ in at

most δm/2 locations. If we set S < (δn/2r) · log |F|, then Dr will contain at least
2 messages whose encodings differ in at most δm/2 locations. This contradicts
the distance requirements of the codeword CF,n,m,δ whose minimum distance is
at least δm.
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3.3 Lower Bound for Multi-pass Space-Efficient Encoding Schemes

In this section, we extend the lower bound where we do not make Assumption 1.
Without this assumption, for two different messages, the portion of the code
affected by different blocks of the message could be different. The main idea to
deal with the general case is to show that there exist sufficiently many messages
for which Assumption 1 holds and then apply the preceding argument.

Theorem 4. Let C be a [m,n, δm] code over F with message length n, codeword
length m and minimum relative distance δ. Also, let Enc(T,S,r) : Fn → F

m be a
Turing machine that on input msg ∈ F

n outputs an encoding of msg in time T
with a work tape of size S while making r passes on the message. Then S ≥
(δn/4r − 2(log|F| m) − 2/r) · log |F|.
Proof. Assume for contradiction that there exists a code C and encoding algo-
rithm Enc. We partition the message msg into 4/δ blocks each of length δn/4.
We first show that there exists a subset containing |F|δn/4−2 messages, say D,
and an index t such that for each message msg in D, we have |cmsg[t]| ≤ δm/2.
Note however, that since Assumption 1 does not hold, the corresponding code
blocks for these messages might not be aligned.

Lemma 3. There exists a set of messages D of size at least |D| ≥ |F|δn/4−2 and
t ∈ [4/δ] such that for any two msg,msg′ ∈ D the following holds:

1. msg[i] = msg′[i] for all i = t.
2. |cmsg[t]| ≤ δm/2.

Proof. Assume for contradiction that such a set D does not exist. Given a mes-
sage msg, let At[msg] be the set of all possible messages that agree with msg on
all blocks except block t. We know that the size of At[msg] is |F|δn/4. By our
assumption, we have that for more than |F|δn/4 − |F|δn/4−2 of the messages in
At[msg], it holds that c[t] is of length bigger than δm/2. We will now compute

∑

s∈{0,1}n−δn/4

∑

t

∑

s′∈{0,1}δn/4

|cCombine(s,s′,t)[t]|

where Combine(a, b, i) denotes the string obtained by inserting b into string a
at position t × δn/4. Observe that the sum above, counts the sum total of the
lengths of the encodings of every message, which should be equal to m × |F|n.
By our assumption, we can lower bound the sum as

|F|n−δn/4 × 4/δ × (|F|δn/4 − |F|δn/4−2) × δm/2 = 2 × |F|n × (1 − 1/|F|2) × m

> |F|n × m

where the last step holds for |F| ≥ 2. This is a contradiction.

Next, we show that there are sufficiently many messages in D and indices t,
such that the message block t influences identical portions of the codeword. In
other words, the assumption we made for the warm-up proof holds for a subset
of the messages in D.
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Lemma 4. Given any index t ∈ [4/δ], set D of messages there exists a subset of
messages D′ ⊆ D of size at least |D|/m2r such that for all messages msg′,msg′′

in D′, the starting and ending positions of cmsg′ [t, i] and cmsg′′ [t, i] w.r.t the code
are identical for every i ∈ [r].

Proof. There are overall 2r positions considering the starting and ending points
of cmsg[t, 1], . . . , cmsg[t, r] w.r.t the code. The number of possibilities for these
2r points is exactly

(

m
2r

)

(because selection of 2r positions can be assigned as
starting and ending positions uniquely to the code blocks). By an averaging
argument there must be at least |D|

(m
2r)

≥ |D|
m2r messages in D for which these 2r

locations will be identical.

Combining Lemmas 3 and 4, we get that there exists a set B of size at least
|F| δn

4 −2r log|F|(m)−2 and index t that satisfy the conditions in both the lemmas.

Lemma 5. There exists a set of messages D ⊆ B of size at least
|F| δn

4 −2r(log m)− rS
log |F| −2 where the following properties hold for any messages

msg,msg′ ∈ D:

1. msg[i] = msg′[i] for all i = t.
2. At the end of the kth pass, cmsg and cmsg′ differ only in the portions occupied

by the blocks c[t, 1], . . . , c[t, k]. Furthermore, the contents of the work tape of
the encoding algorithm at the end of the kth pass will be identical.

Proof. Observe that all messages in B have the property that they are identical
on all blocks except at block t. Moreover, the starting and ending positions w.r.t
the code when the encoding algorithm reads block t are identical for all messages
in B. We can now follow essentially the same argument as Claim 2 to prove this
claim.

We conclude the proof of Theorem 4 by observing that if D has at least two
messages we arrive at a contradiction because for every message in D, c[t] is at
most δm/2 and for any two messages the corresponding codes only differ in these
locations. Thus, if δn

4 −2r(log|F| m)− rS
log |F| −2 > 0, we arrive at a contradiction.

4 Main Construction

In this section, we present a short overview of our space-efficient zero-knowledge
argument system for RAM programs based on collision-resistant hash-functions.
Please refer to the full version for a more detailed presentation.

The first main step in our construction is transforming a RAM program to
the Ligero constraint system. This is summarized in the Lemma below.

Lemma 6. Let M be an arbitrary (non-deterministic) Random Access Machine
that on input strings (x,w) runs in time T and space S. Then, (M,x) can be
transformed into the following system of constraints over a m × � matrix X:
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1. X is a m×� matrix that is subdivided into sub-matrices or blocks X1, . . . , XB

where each Xi is a m′ × � matrix, X =

⎡

⎢

⎢

⎢

⎣

X1

X2

...
XB

⎤

⎥

⎥

⎥

⎦

and B = O
(

T
S

)

,m′ =

polylog(T ), m = m′ · B and � = S · polylog(T ). We denote by xi the “flat-
tened” vector corresponding to matrix Xi (namely, xi is the vector obtained
by concatenating the rows of Xi).

2. (Intra-block Linear Constraints) A is of size (m′ ·�)×(m′ ·�) and b is a length
(m′ · �)-vector and Axi = b for all i ∈ [B].

3. (Inter-block Linear Constraints) A′ is a (2m′ · �) × (2m′ · �) matrix and b′ is

a length (2m′ · �)-vector and A′
[

xi

xi+1

]

= b′ for all i ∈ [B − 1].

4. (Input-Consistency Constraint) A′′ is a |x| × (m′ · �) matrix and A′′x1 = x
where |x| is the size of x.

5. (Quadratic Constraints) For each i ∈ [B], X left
i � Xright

i = Xout
i where �

denotes point-wise products and Xi =

⎡

⎢

⎢

⎣

Xinp
i

X left
i

Xright
i

Xout
i

⎤

⎥

⎥

⎦

where Xinp
i is minp × �

matrix and X left
i ,Xright

i ,Xout
i are mmult × � matrices.

Efficiency. Furthermore, the matrices A, A′ and A′′ are succinct according
to Definition 3 and an input-witness pair (x,w) that makes M accept can be
mapped to an extended witness X by a RAM machine in T · polylog(T ) and
space S · polylog(T ).

Equivalency. Any X that satisfies the system of constraints can be mapped to
a w such that M accepts (x,w).

The core of our construction is a space-efficient IPCP for the linear and
quadratic tests. We will only focus on linear test in this version of the paper.
For the full description of all the elements of our protocol, we refer the reader
to the full version. A formal description of the linear test is given below.

Lemma 7. Protocol 1 is an IOP/IPCP for testing linear constraints with the
following properties:

– Completeness: If U ∈ Lm is an encoding of a m × � matrix X such that,
for every i ∈ [B], Ayi = b where yi is the flattened vector corresponding to Yi

and block Yi is a m′ × � submatrix of X starting at the I[i]th row of X and
the P is honest, then V accepts with probability 1.
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Fig. 1. Protocol for linear test.

– Soundness: Let e be a positive integer such that e < d/2 where d is minimal
distance of Reed-Solomon code. Suppose that a badly formed matrix U∗ is e-
close to a codeword U that encodes a matrix X such that ∃i ∈ [B], Ayi = b
where yi is the flattened vector corresponding to Yi and block Yi is a m′ × �
submatrix of X starting at the I[i]th row of X. Then for any malicious P∗

strategy, V will reject except with probability ((e + 2�)/n)t + (ma + B)/|F|.
– Complexity:

P has X on its input tape and has a work tape of size O(m′�). In this model,
P makes a single pass on the input tape. We denote by m� the length of X,
the number of blocks as B and yi is a flattened vector of a block within X
of size m′ × �. Given that P is provided with a one-way linear access to X,
matrix A is a public succinct matrix of dimension ma × m′� as defined in
Definition 3 then the following complexities are obtained:

• Prover’s Time = m′�poly logma + O(m′�B log �).
• Verifier’s Time = m′�poly logma + O(m′�κ + Bm′κ)
• Prover’s Space = O(m′�).
• Verifier’s Space = O(κm′ + ma).
• Communication Complexity = O(�).
• Query Complexity = O(κ).

Our IPCP Protocol. Given a RAM program M , we construct a zero-knowledge
argument system for BHRAM(M) by composing the following two components.
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1. A complexity-preserving reduction from BHRAM to extended witness X that
satisfies the system of constraints defined in Lemma 6.

2. The protocols for testing interleaved linear codes, linear constraints and
quadratic constraints require oracle access to Lm-codeword U that encodes
the extended witness X. The prover computes the outputs of the tests by
processing X block-by-block. The verifier has a “succinct” representation of
the system of constraints imposed on X and can therefore check the outputs
of the tests in a space-efficient manner.

We compose these two components as follows. At a high level, the prover
generates the extended witness X block-by-block as described in the reduction
from BHRAM to X. As and when a block is generated, the prover processes this
block to compute “running partial outputs” for each of the three tests. The
prover only needs to store a few blocks in memory at a time rather than the
entire extended witness.

Theorem 5. Fix parameters m,m′,mmult, n, �, B, t, e, d such that e < d/3 and
d = n−�+1. For every NP relation that can be verified by a time T and space S
RAM machine M with input x has a public-coin IOP/IPCP with the following
properties:

1. Completeness: If there exist an witness w such that M(x,w) with time T and
space S is accepted and P generated the oracle U honestly, then V accepts
with probability 1.

2. Soundness: Let there exist no witness w such that M(x,w) is accepted in time
T and space S, then for every unbounded prover strategy P∗, V will reject
except with (1 − e/n)t + 4((e + 2�)/n)t + (d + 3m′� + mmult + |x| + 3B)/|F|.

3. Complexity: The complexities are in terms of the number of field operations
performed or number of field elements over a field F below.
(a) The prover runs in time T ·poly(log T, κ) and uses space S ·poly(log T, κ).
(b) The verifier runs in time (T/S + S) · poly(log T, κ) and uses space

poly(log T, κ).
(c) The communication complexity is S · poly(log T, κ), query complexity of

the verifier is (T/S) · poly(log T, κ) and number of rounds is a constant.

where κ is the statistical security parameter.

In the full version, we also show how to modify our IPCP to obtain zero-
knowledge and then how to improve the communication to ˜O(T/S).

5 Space-Efficient Affine Code Testing for Interleaved
Reed Solomon Codes

We begin by providing a high-level overview of our IPCP system. It follows
the same blueprint of the Ligero system (described in the introduction). In a
nutshell, our construction is a space-efficient variant of each phase of the Ligero
blueprint. The main steps involved in our IPCP system are as follows.
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1. RAM to circuit reduction: Given a RAM program M , we transform the
RAM program to circuits by relying on the transformation of [4,11] where
the resulting circuit C has a “succinct” representation.

2. Preparing the proof oracle: Next, the prover evaluates the circuit C on the
private witness w to compute all wire values (input, intermediate and output)
and arranges the values in a specific way in a m × � matrix X referred to as
the extended witness. The prover then encodes the matrix using a Interleaved
Reed Solomon (IRS) code to obtain a m×n matrix U , namely, each row of U
is an encoding of a corresponding row in X using a Reed Solomon code; this
is the proof oracle. The prover computes U in a row-by-row manner, which
is space-efficient.

3. Testing the encoding: This step involves testing interleaved linear codes
in a space efficient manner. This essentially follows as in the previous step
as rTU can be computed by recomputing U row-by-row and maintaining a
running partial aggregate of

∑

j rjUj,·.
4. Testing linear constraints: This step shows how the linear test can be

performed in a space efficient manner. This is the non-trivial part of the
construction as we need to utilize the succinct representation of C and the
arrangement of the extended witness in U to compute the response in a space-
efficient manner.

5. Testing quadratic constraints: This step relies on ideas from the previous
two steps to obtain a space-efficient version of the quadratic test.

In this section, we focus on our space-efficient IPCP for the linear test (men-
tioned in step 4 above), which is one of the core aspects of our construction. We
defer to the reader to the full version of our paper for the descriptions of the
rest of the steps mentioned above.

This test checks if the linear constraints imposed by the addition gates and
the circuit’s structure are satisfied. The linear check is performed over blocks,
where each block Yi starts at the row I[i] of the extended witness X and is of
size m′ ×� for all i ∈ B. Precisely, given a public matrix A of size (m′ ·�)×(m′ ·�)
and a vector b of size (m′ · �), the linear constraints are Ayi = b for each i ∈ [B]
where yi is the flattened vector of Yi and is of size (m′ · �). Note that linear
constraints imposed on each block are the same, which are captured by same
parameters A and b for all blocks.

Recall that the linear test in Ligero handles all the linear constraints over the
extended witness X in a single shot (represented as a linear equation A′X = b′

for some public matrix A′ and vector b′). Whereas we consider a variant of the
linear test where the same set of linear constraints repeat over different sections
(i.e., blocks) of the extended witness, which is represented as linear equations
Ayi = b for all i ∈ [B].

We first describe a simple algorithm for the new variant of linear test and
later show how to further improve the verifier’s time and space costs. At a high
level, we apply Ligero’s linear test on each block and then take a random linear
combination of the outputs of the test for each block. At the prover’s end, naively
computing rTA is expensive as A is a large matrix. By observing that the matrix
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Table 2. Description of the parameters.

Parameter Description

Yi Blocks associated with the linear constraints
yi Flattened vector corresponding to block Yi

B #Blocks associated with the linear test
m′ #Rows in each block Yi

I[i] Index of the first row of X included in Yi

s Seed 1 for randomness
s′ Seed 2 for randomness
r Randomness vector 1
r′ Randomness vector 2
A Linear constraint matrix
b Linear constraint vector
ma #Linear constraint for each yi

ri,j The value of the matrix at position (i, j) when parsing rTA into a
matrix

ri(·) ith polynomial generated by encoding rTA

A is sparse (more precisely, A is succinct), we reduce the time and space required
significantly by efficiently computing the positions of the non-zero elements of
A.

Roughly, the protocol for linear test proceeds as follows. The verifier provides
two random seeds s, s′ ∈ F, from which the prover and verifier can generate
random vectors r and r′. We require two randomness vectors where one is used
as random linear combiners for rows within a block, while the other is used as
random linear combiners across blocks. The prover computes the polynomial
encoding qi(·) of (rTA)yi for each block Yi and then computes the polynomial
encoding q(·) =

∑

i∈[B] r
′[i] · qi(·) of all the blocks. Lastly, the verifier checks

the consistency of q(·) with
∑

i∈[B] r
′[i] · (rTb) and U on t randomly chosen

columns. Refer to Fig. 1 for a formal description of the protocol and Table 2 for
a description of the parameters.

Algorithm DEval(v,R): On input (v,R), this algorithm outputs an evaluation
vector e = {p(ηj)}ηj∈R where the polynomial p(·) is defined such that p(ζi) = v[i]
for all i ∈ [�], ζi are the interpolation points, ηj are the evaluation points and R
is the set of query points. The input vector v is provided to the algorithm in an
input tape where the algorithm individually reads and processes each element
in vector v. The algorithm repeats until all the elements are read from the input
tape. The input v is a vector of size � which needs to be interpolated. We denote
the set of interpolation points to be ζ and set of evaluation points to be η. Note
that the set R needs to be a subset of η i.e. R ⊆ η.

We set the evaluation points and interpolation points to be related to the
roots of unity. In more detail, let w be a primitive 2nth root of unity where
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w2n = 1 but wm = 1 for 0 < m < 2n. We set the variable f = n/�,
ζ = {1, w2f , w4f , . . . , w2f(�−1)} and η = {w,w3, . . . w2f(�−1)+1}. Each individual
interpolation point and evaluation point can be represented as ζi = w2(i−1)f and
ηj = w2j−1 respectively. The algorithm is as follows:

1. Check if R ⊆ η. Abort if the check fails. If the check succeeds, initialize ej = 0
for all j such that ηj ∈ R.

2. Upon receiving an element v[k] from the input tape, update the running
partial sum ej = ej + 1

�
w(2j−1)�−1

w2k−1−2fk+2f −1
v[k] for all j such that ηj ∈ R.

3. After processing each element from the vector v, output all e′
js for all j such

that ηj ∈ R.

Proof. Correctness: Define a vector c such that each element of c represents the
coefficient of the polynomial p(·) and v is the vector which is being interpolated.
We represent the relation between c and v as v = Xc where X is a public
matrix and the ith row of X can be represented as X[i] = (ζ0i , ζ1i , . . . ζ�−1

i ). Each
element in X can be represented as X[i, j] = ζj−1

i = w2(i−1)(j−1)f . Another way
to represent the same equation is c = X−1v where X−1 is the inverse of the
matrix X i.e. XX−1 = I and I is an identity matrix.

It now follows that X−1[i, j] = 1
� w−2(i−1)(j−1)f . Lastly, to evaluate p(·) at

ηj , we define a vector w = (1, ηj , . . . , η
�−1
j ) and represent p(ηj) as p(ηj) = wT c =

wT X−1v. We calculate vector wT X−1 as:

wT X−1[k] =
�

∑

l=1

w[l] · X−1[l, k]

=
�

∑

l=1

ηl−1
j · 1

�
w−2(l−1)(k−1)f

=
1
�

�
∑

l=1

w(2j−1)(l−1) · w−2(l−1)(k−1)f

=
1
�

�
∑

l=1

w(l−1)(2j−1−2kf+2f)

=
1
�

w(2j−1)� − 1
w2j−1−2kf+2f − 1

p(ηj) = wT X−1v

=
�

∑

k=1

wT X−1[k]v[k]

=
1
�

�
∑

k=1

w(2j−1)� − 1
w2j−1−2kf+2f − 1

v[k]
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The algorithm reads each element of the vector v sequentially from the input
tape. Initialising ej = 0 and after reading the element v[k], the algorithm updates
ej = ej + w(2j−1)�−1

w2j−1−2kf+2f −1
v[k]. After processing the whole vector v, ej will satisfy

ej = p(ηj). Hence it shows the correctness of the algorithm.

Efficiency Analysis: For each element of v, the algorithm performs O(1) oper-
ations per evaluation point. Thus, the overall computational cost is O(t�) where
t is the number of evaluations and � is the size of v. The algorithm requires only
O(t) space to store only ej ’s and the t evaluation points.

Lemma 8. Protocol 1 is an IOP/IPCP for testing linear constraints with the
following properties:

– Completeness: If U ∈ Lm is an encoding of a m × � matrix X such that,
for every i ∈ [B], Ayi = b where yi is the flattened vector corresponding to Yi

and block Yi is a m′ × � submatrix of X starting at the I[i]th row of X and
the P is honest, then V accepts with probability 1.

– Soundness: Let e be a positive integer such that e < d/2 where d is minimal
distance of Reed-Solomon code. Suppose that a badly formed matrix U∗ is e-
close to a codeword U that encodes a matrix X such that ∃i ∈ [B], Ayi = b
where yi is the flattened vector corresponding to Yi and block Yi is a m′ × �
submatrix of X starting at the I[i]th row of X. Then for any malicious P∗

strategy, V will reject except with probability ((e + 2�)/n)t + (ma + B)/|F|.
– Complexity:

P has X on its input tape and has a work tape of size O(m′�). In this model,
P makes a single pass on the input tape. We denote by m� the length of X,
the number of blocks as B and yi is a flattened vector of a block within X
of size m′ × �. Given that P is provided with a one-way linear access to X,
matrix A is a public succinct matrix of dimension ma × m′� as defined in
Definition 3 then the following complexities are obtained:

• Prover’s Time = O(m′�(poly logma + B log �)).
• Verifier’s Time = O(m′�(poly logma + κ) + Bm′κ).
• Prover’s Space = O(m′�).
• Verifier’s Space = O(κm′ + ma).
• Communication Complexity = O(�).
• Query Complexity = O(κ).

Refer to the full version for the proof of completeness and soundness. Next,
we discuss the time and space complexities for the prover and the verifier.

Prover’s Time Complexity. Each column of A can be computed in time
O(poly logma) and computing each element of rTA requires the same complexity.
As length of vector rTA is m′�, computing rTA needs O(m′�poly logma) time.
The polynomials ri(·) generated in Step 2 can be constructed using inverse-FFT
in O(m′� log �) time. The intermediate proof polynomial qi(·) is composed by
multiplying m′ pairs of polynomial, each multiplication costs O(� log �) using
FFT. The proof polynomial q(·) requires O(Bm′� log �) time as it is generated
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by taking a random linear combination of all the intermediate proof polynomials.
The prover’s total time is O(m′�(poly logma + B log �)).

Before proceeding to the next analysis, we introduce a new lemma. This
lemma allows the verifier to efficiently evaluate the sum of evaluation of a poly-
nomial given the evaluation points are roots of unity.

Lemma 9. Given a polynomial p(·) of degree t and H be the �th roots of unity,
then

∑

a∈H p(a) = �
∑

imod�=0 ci.

We refer the readers to the full version for the proof.

Verifier’s Time Complexity. The verifier upon receiving the proof polyno-
mial q(·), needs to execute two checks. The first check is to check whether
∑

j∈[�] q(ζj) =
∑

i∈[B] r
′[i]rTb. To optimise the check, we leverage the structure

of interpolation points ζ. We show that �(c0 + c�) =
∑

j∈[�] q(ζj) where c0 and
c� are the constant and �th coefficient of the polynomial q(·). To prove this, we
directly use Lemma 9. This Lemma states that if a polynomial p(·) is evaluated
at �th roots of unity, then the evaluation of the polynomial at all the roots of
unity sums up to �

∑

i mod �=0 ci where ci is the ith coefficient of the polynomial
p(·). Therefore, we can verify whether �(c0 + c�) =

∑

i∈[B] r
′[i]rTb. This requires

O(ma + B) time. To verify the second check, the verifier needs to generate t
evaluations of polynomial ri(·) defined in Step 2. To compute it, the verifier first
evaluates rT A element by element. For each vector v = (ri,1, . . . , ri,�) which is
computed element by element and stored in the input tape of algorithm DEval.
The algorithm DEval outputs t evaluation ri(·) where ri(·) can be generated using
v. Evaluating v requires O(�poly logma) time and t = O(κ) evaluations is gener-
ated in O(�κ). As there are total m′ polynomials, all evaluations are completed
in O(m′�(poly logma + κ)) time. In addition, the verifier needs O(�κ) for evalu-
ating q(·) at t = κ evaluations and require O(Bm′κ) operations to verifying the
consistency between q(·) and U . Therefore, the total time to verify this check is
O((Bm′+�)κ). The verifier’s total time is O(m′�(poly logma+κ)+Bm′κ+ma).

Prover’s Space Complexity. Firstly, the prover computes rTA and the poly-
nomials ri(·) defined in Step 2 and stores them to be used for each i ∈ [B]
which requires O(m′�) space in the work tape. To compute the polynomial q(·)
in Step 2 in a space-efficient manner while making a single pass on input tape X,
we implement Step 2 by maintaining a running partial aggregate. More precisely,
the prover initialises the polynomial agg(·) = 0. Next, the prover processes X
row by row. It keeps track of the blocks Yi that contain the current row. There
can be at most m′ blocks Yi that contain X as there can be at most one block
that starts from any row of X. Let mini and maxi denote the first and last block
indices which contain the ith row of X. The polynomial agg(·) is updated as
follows:

agg(·) = agg(·) + pi(·)
maxi
∑

l=mini

r′[l]ri−I[l](·) (1)

After every row of X is processed, we set our proof polynomial as q(·) = agg(·).
The space required to generate the polynomial q(·) is the space for storing pi(·),
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agg(·) and the product of two polynomials of degree < �. Since we can multiply
polynomials via FFT, the space required is O(�). Therefore, the overall space
complexity of the prover in the interactive phase is dominated by storing the
ri(·) polynomials which is O(m′�).

Verifier’s Space Complexity. Upon receiving the proof polynomial q(·), the
verifier performs the following three checks:

– The degree of q is at most k+ �−1. This can be done by simply counting the
number of coefficients.

– The polynomial q satisfies
∑

j∈[�] q(ζj) =
∑

i∈[B] r
′[i]rTb. Following the opti-

mization mentioned in the time complexity analysis, the verifier simply checks
if � · (c0 + c�) =

∑

i∈[B] r
′[i]rT b where c0 and cl are the constant and �th coef-

ficient of the polynomial q(·). This requires O(ma) space to store b.
– Finally, the verifier needs to compute t = O(κ) evaluations on polynomials

ri(·) generated in Step 2. As we described in the beginning of this section,
the verifier will rely on the DEval algorithm is executed to generate these
evaluations. The verifier needs O(m′κ) space where m′ is the number of poly-
nomials. For each query j ∈ Q, the verifier initialises each variable aggj = 0.
When the verifier processes the ith element (or ith row of U) of each column
of U queried, it computes public variables mini and maxi just as the prover
and each variable aggj for all j ∈ Q is updated as follows:

aggj = aggj + Ui,j

maxi
∑

l=mini

r′[l]ri−I[l](ηj) (2)

As all ri(ηj) are already stored by the verifier, the verifier requires to store
only the aggj variable for each j. Overall the verifier’s space is O(m′κ+ma).
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Abstract. Interactive oracle proofs (IOPs) are a proof system model
that combines features of interactive proofs (IPs) and probabilistically
checkable proofs (PCPs). IOPs have prominent applications in complex-
ity theory and cryptography, most notably to constructing succinct argu-
ments.

In this work, we study the limitations of IOPs, as well as their rela-
tion to those of PCPs. We present a versatile toolbox of IOP-to-IOP
transformations containing tools for: (i) length and round reduction; (ii)
improving completeness; and (iii) derandomization.

We use this toolbox to establish several barriers for IOPs:
– Low-error IOPs can be transformed into low-error PCPs. In other

words, interaction can be used to construct low-error PCPs; alter-
natively, low-error IOPs are as hard to construct as low-error PCPs.
This relates IOPs to PCPs in the regime of the sliding scale conjec-
ture for inverse-polynomial soundness error.

– Limitations of quasilinear-size IOPs for 3SAT with small soundness
error.

– Limitations of IOPs where query complexity is much smaller than
round complexity.

– Limitations of binary-alphabet constant-query IOPs.
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barriers beyond our work.
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1 Introduction

Probabilistic proof systems have enabled breakthroughs in complexity theory
and cryptography in areas such as zero-knowledge, delegation of computation,
hardness of approximation, and more.

A probabilistically checkable proof (PCP) [6,24] is a proof system in which
a polynomial-time probabilistic verifier has query access to a proof string. The
power of PCPs is often exemplified by the celebrated PCP theorem [4,5]: every
language in NP can be decided, with constant soundness error, by probabilisti-
cally examining a constant number of bits in a polynomial-size proof. Decades
of PCP research have achieved many other goals and applications.

Yet challenging open problems about PCPs remain. For example, the shortest
PCPs known to date have quasi-linear length [13,20], and efforts to achieve linear
length have not succeeded. As another example, it remains open to construct a
PCP for NP with soundness error 1/n, alphabet size poly(n), query complexity
O(1), and randomness complexity O(log n). The existence of such “low-error”
PCPs is known as the “sliding-scale conjecture”.

Interactive Oracle Proofs. Due to the lack of progress on these and other open
problems, researchers introduced an interactive variant of PCPs called interac-
tive oracle proofs (IOP) [12,34]. A k-round IOP is a k-round IP where the verifier
has PCP-like access to each prover message (the verifier may read a few symbols
from any prover message).

A rich line of work constructs IOPs that provide significant efficiency
improvements over known PCPs [8–11,14–17,28,31,35,36,38]. In particular,
known IOPs achieve desirable properties such as linear proof length, fast provers,
added properties such as zero-knowledge, and even good concrete efficiency. In
turn, these IOPs have led to breakthroughs in the construction of highly-efficient
cryptographic proofs, which have been widely deployed in real-world applica-
tions.

Another line of work shows that IOPs can also be used to prove hardness of
approximation results for certain stochastic problems [2,3,19,22].

What is the Power of IOPs? Since IOPs were invented to bypass open problems
of PCPs, it is crucial to understand the limitations of IOPs, and the relation to
the limitations of PCPs.

What are the limitations of IOPs, and how do they compare to PCPs?

For example: What trade-offs are there between round complexity, query com-
plexity, and soundness error in IOPs? How small can the soundness error of an
IOP be if we require constant query complexity but allow increasing the alphabet
size (as in a sliding-scale PCP)?

In this paper, we explore these and other questions.
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1.1 Our Results

We show several results for IOPs in different regimes: (1) low-error IOPs imply
low-error PCPs; (2) limitations of short IOPs; (3) limitations of high-round low-
query IOPs; and (4) limitations of binary-alphabet constant-query IOPs. All
these results follow from combining various tools from a new toolbox of transfor-
mations for IOPs. We discuss this toolbox in more detail in Sect. 2. We believe
that our toolbox will prove useful to establish additional barriers beyond our
work.

(1) Low-Error IOPs Imply Low-Error PCPs. The “sliding scale” conjecture [7]
states that for every β with 1/poly(n) ≤ β < 1 there is a PCP system for NP
that has perfect completeness, soundness error β, polynomial proof length over a
poly(1/β)-size alphabet, constant query complexity, and logarithmic randomness
complexity. A major open problem is constructing such PCPs when β is an
inverse polynomial.

We show that (under a complexity assumption or using non-uniformity), a
polylog-round IOP with inverse-polynomial soundness error and constant query
complexity can be transformed into a sliding-scale PCP with inverse-polynomial
soundness error.

Theorem 1 (informal). Let R be a relation with a public-coin IOP with perfect
completeness, soundness error 1/n, round complexity polylog(n), alphabet size
poly(n), proof length poly(n), and query complexity O(1). Then under a deran-
domization assumption1 (or alternatively by using a non-uniform verifier) R has
a PCP with perfect completeness, soundness error 1/n, alphabet size poly(n),
proof length poly(n), and query complexity O(1).

Our full theorem, described in the full version of this paper, allows for trade-
offs between the parameters of the IOP and PCP.

Theorem 1 can be interpreted as a positive result or a negative result. The
positive viewpoint is that efforts towards constructing sliding-scale PCPs can rely
on interaction as an additional tool. The negative viewpoint is that constructing
polylog(n)-round IOPs with sliding-scale parameters is as hard as constructing
sliding-scale PCPs.

Our theorem does leave open the question of constructing poly(n)-round
IOPs with constant query complexity and small soundness error.

(2) Limitations of Short IOPs. While the shortest PCPs known have quasi-linear
proof length, constructing linear-size PCPs remains a major open problem. In
contrast, interaction has enabled IOPs to achieve linear proof length (e.g., [10]).
Yet, we do not have a good understanding of the relation between proof length
and soundness error for IOPs. We show that, under the randomized exponential-
time hypothesis (RETH),2 short IOPs for 3SAT have high soundness error.

1 There exists a function in E with circuit complexity 2Ω(n) for circuits with PSPACE
gates.

2 RETH states that there exists a constant c > 0 such that 3SAT /∈ BPTIME[2c·n].
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Theorem 2 (informal). Assume RETH and suppose that there exists a public-
coin IOP for n-variate 3SAT with the following parameters: perfect completeness,
soundness error β, round complexity polylog(n), alphabet size λ, (total) proof
length l, and query complexity q.

If
(

l·log λ
n

)q

≤ npolylog(n), then β > Ω
(

n
l·log λ

)q

.

The theorem provides a barrier to improving some state-of-the-art PCPs.
Dinur, Harsha, and Kindler [21] come close to a sliding-scale PCP in the inverse-
polynomial regime: they construct a PCP for NP with perfect completeness,
soundness error 1/poly(n), alphabet size n1/polyloglog(n), proof length poly(n),
and query complexity polyloglog(n). While IOPs have been useful in improv-
ing proof length over PCPs, Theorem 2 implies that IOPs are unlikely to help
achieving nearly-linear proof length in the parameter regime of [21] (even when
significantly increasing alphabet size).

Corollary 1. Assuming RETH, there is no public-coin IOP forn-variate 3SATwith
perfect completeness, soundness error 1/n, round complexity polylog(n), alphabet
size npolylog(n), proof length n·polylog(n), and query complexity polyloglog(n).

We leave open the question of whether IOPs in this parameter regime can
be made to have linear proof length by using O(n) rounds of interaction.

(3) Limitations of High-Round Low-Query IOPs. Goldreich, Vadhan, and
Wigderson [27] show that IP[k] �= IP[o(k)] for every k, under reasonable complex-
ity assumptions. In other words, IPs with k rounds cannot be “compressed” to
have o(k) rounds. In contrast, Arnon, Chiesa, and Yogev [2] show that k-round
IPs can be modified so that the verifier reads o(k) rounds. We show that reading
o(k) rounds comes at the price of a large soundness error.

Theorem 3. Let L ∈ AM[k]\AM[k′] be a language for k′ < k and suppose that
L has a public-coin IOP with perfect completeness, soundness error β, round
complexity k, alphabet size 2poly(n), proof length poly(n), and query complexity

q ≤ k′. Then β ≥ Ω
(

k′
k

)q

− n−c for every constant c > 0.

This provides a barrier to improving the parameters of IOPs in [2]. They show
that any language in IP[log(n)] has an IOP with perfect completeness, sound-
ness error 1/polylog(n), round complexity polylog(n), alphabet size 2poly(n), and
query complexity O(1). By Theorem 3 the soundness error 1/polylog(n) is tight
unless IP[log(n)] = IP[O(1)]. Moreover, since the soundness error of IOPs is
closely related to the approximation factor for the value of stochastic constraint
satisfaction problems (SCSP) (see [2]), our theorem additionally provides barri-
ers to proving hardness of approximation results for SCSPs using IOPs.

(4) Limitations of Binary-Alphabet Constant-Query IOPs. PCPs with a binary
alphabet and small query complexity cannot have good soundness. In more
detail, assuming the randomized exponential-time hypothesis, any binary-
alphabet PCP with perfect completeness, soundness error β, and query com-
plexity q satisfies the following.
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– If q = 2 then β = 1 (i.e., no such PCPs exist). This follows from the fact that
we have linear time algorithms to check satisfiability of every binary-alphabet
2-ary constraint satisfaction problem.

– If q = 3 then β > 5/8. Zwick [39] gives a polynomial-time algorithm that,
on input a satisfiable CSP with binary alphabet and arity 3, distinguishes
whether the CSP is satisfiable or whether every assignment satisfies at most
a 5/8 fraction of the constraints. This implies that, unless P = NP, every
PCP for NP with binary alphabet, polynomial size, and query complexity
3 must have soundness error greater than 5/8.3 H̊astad [30] shows that this
lower bound on soundness error is essentially optimal: for every ε > 0, he
constructs a PCP for NP with perfect completeness, soundness error 5/8+ ε,
binary alphabet, polynomial proof length, and query complexity 3.

We ask whether interaction can help in further reducing the soundness error
in the constant-query regime. Our next result shows that this is unlikely if the
number of rounds is not large.

Theorem 4. Assume RETH and suppose that there exists a non-adaptive public-
coin IOP for n-variate 3SAT with the following parameters: perfect completeness,
soundness error β, round complexity k, alphabet size 2, proof length 2o(n), query
complexity q, verifier randomness r, and verifier running time 2o(n).

– If q = 2 then β > 1 − ε for every ε satisfying k · log(r · n/ε) = o(n).
– If q = 3 then β > 5/8 − ε for every ε satisfying k · log(r · n/ε) = o(n).

For example, assuming RETH, there is no public-coin IOP with perfect com-
pleteness, soundness error β = 1 − 2−o(n), round complexity k = polylog(n),
alphabet size 2, proof length 2o(n), query complexity 2, and verifier randomness
r = 2o(n).

The bound on the query complexity of PCPs can be extended to q queries
for any q = O(1) for which there is a polynomial-time algorithm that decides
q-ary CSPs. Theorem 4 generalizes similarly to match the soundness error for
PCPs. However, for q > 3, we do not know the exact optimal soundness error
for PCPs with perfect completeness [29].

Constructing an IOP for 3SAT with polynomial round complexity, binary
alphabet, constant query complexity, and small soundness error remains an open
problem.

1.2 Related Work

Barriers on Probabilistic Proofs. We describe known limitations about PCPs,
IPs, and IOPs.

– PCPs. If P �= NP then, for every q = o(log n) and r = o(log n), NP has no
non-adaptive PCP with alphabet size λ = O(1), query complexity q, and ran-
domness complexity r. Indeed, the PCP-to-CLIQUE reduction in [23], given

3 Assuming ETH, the proof length of the PCP can be 2o(n).
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an instance x for the language L of the PCP, produces, in polynomial time, a
graph of size λq · 2r � n whose maximum clique size is either large (if x ∈ L)
or small (if x /∈ L), where the gap between these sizes depends on the PCP’s
completeness and soundness errors. By iteratively applying that reduction
a polynomial number of times, one can (in polynomial time) reduce x to a
graph G of size O(log n), while preserving the large-or-small property of the
maximum clique. Since the size of G is logarithmic, one can then determine in
polynomial time whether the largest clique in G is large or small, and thereby
decide membership for the original instance x.
Moreover, if P �= NP then NP does not have non-adaptive PCPs with alpha-
bet size λ = O(1), query complexity q = O(1), and randomness complexity
r = O(log n) with soundness error β < log λ

λq−1 . Indeed, such a non-adaptive
PCP can be converted into a CSP of size poly(n), and any efficient algorithm
for approximating the CSP’s number of satisfied constraints imposes a lim-
itation on the soundness error β. For example, the bound log λ

λq−1 follows from
the approximation algorithm in [32]. Assuming ETH, these limitations can be
extended to PCPs with super-polynomial proof length and super-constant
alphabet size and query complexity. See the full version of this paper for a
quantitative proof of how to combine PCPs with small soundness error for
3SAT and polynomial-time approximation algorithms for CSPs in order to
decide 3SAT faster than is possible under ETH.
Notice that an adaptive PCP with alphabet size λ and query complexity q
can be converted into a non-adaptive PCP with query complexity λq, which
is constant when λ = O(1) and q = O(1). Hence the above discussion applies
to adaptive PCPs in this regime as well.

– IPs. [26] show that public-coin IPs with bounded prover communication com-
plexity can be decided in non-trivial (probabilistic) time. [27] strengthen these
results for the case of private-coin IPs, showing that similar bounds on com-
munication imply that the complement of the language can be decided in
non-trivial non-deterministic time. Such results are limitations on IPs for
languages believed to be hard, such as SAT.

– IOPs. In order to derive barriers for succinct arguments, [18] extend to IOPs
the limitations of [26], showing barriers for IOPs with small soundness error
relative to query complexity.
[33] show limitations for succinct IOPs for circuit SAT (CSAT), where the
proof length is polynomial in the number n of circuit inputs. The results
cover different parameters, depending on the “plausibility” of the complexity
assumption used. For example (on the most probable end), suppose that the
satisfiability of a circuit C cannot be decided by a poly(n)-space algorithm
following poly(|C|)-time preprocessing. Then there is no succinct IOP for
CSAT with constant round complexity and logarithmic query complexity.

IOP-to-IOP Transformations. Our toolbox (outlined in Sect. 2) contains IOP-
to-IOP transformations that include round reduction, achieving perfect com-
pleteness, and derandomization.
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– [2,3] provide IOP-to-IOP transformations for round reduction and achieving
perfect completeness, but we cannot use them because those transformations
do not preserve query complexity of the IOP (a key property for us).

– [33] show that any public-coin IOP can be transformed into one with less
interaction randomness at the cost of introducing a “common reference string”
(CRS) and satisfying only non-adaptive soundness. Their main goal is to
achieve randomness complexity that depends (logarithmically) only on the
prover-to-verifier communication complexity (but not the instance length)
and on an error parameter over the choice of the CRS. They also show that
the CRS can be replaced with non-uniform advice for the verifier at the cost
of increasing the randomness complexity to also depend (logarithmically) on
the instance length. Our derandomization lemma focuses on IOPs with a
non-uniform verifier and allows choosing the target randomness complexity,
rather than optimizing with regards to the prover-to-verifier communication
complexity.

– [1] show how to derandomize private-coin IPs via non-uniform advice or
PRGs. Our derandomization lemma applies to public-coin IOPs.

2 Techniques

We describe our tools for IOPs and sketch their proofs, and then show how they
can be applied to achieve our main results. Further details on how these tools are
constructed can be found in the full version of this paper. The tools are divided
into three groups.

1. Tools for length and round reduction: Sect. 2.1 outlines transformations
that decrease the length and round complexity of IOPs with low query com-
plexity.

2. Tools for improving completeness: Section 2.2 outlines transformations
that improve the completeness errors of IOPs.

3. Tools for derandomization: Section 2.3 outlines transformations that
decrease the number of random bits used by the IOP verifier.

Following the presentation of our toolbox, in Sect. 2.4 we explain how we use
the tools (in conjunction with additional arguments) to derive the theorems
described in Sect. 1.1.

2.1 Tools for Length and Round Reduction

We describe how to decrease the length and round complexity of IOPs.

Lemma 1 (informal). Let R be a relation with a public-coin IOP (P,V) with
completeness error α, soundness error β, round complexity k, alphabet size λ,
per-round proof length l, query complexity q, per-round verifier randomness r,
and verifier running time vt.
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1. Length reduction: Let � be a parameter with q ≤ � ≤ k · l. Then R has a
public-coin IOP with completeness error 1 − (1 − α) · (�/(e · k · l))q, soundness
error β, round complexity k, alphabet size λ, total proof length �, query
complexity q, per-round verifier randomness r+�·log(k·l), and verifier running
time poly(vt, �).

2. Round reduction: Let k′ be a parameter with q ≤ k′ ≤ k. Then R has a
public-coin IOP with completeness error 1 − (1 − α) · (k′/(e · k))q, soundness
error β, round complexity k′ +1, alphabet size λ, per-round proof length l,
query complexity q, per-round verifier randomness k · (r + log k), and verifier
running time poly(vt).

3. Unrolling to PCP: R has a PCP with completeness error α, soundness
error β, alphabet size λ, proof length l·2O(k·r), query complexity q, randomness
k · r, and verifier running time poly(vt).

Below we sketch the proofs of Items 1 and 2. Item 3 is folklore and follows by
setting the PCP to equal the interaction tree of the IOP.

Length Reduction. The length of low-query IOPs can be reduced while incurring
an increase in the completeness error. The intuition is that if the IOP has query
complexity q � k · l, then each symbol in the proof is read by the verifier
with small probability. Hence, if the prover omits a random subset of the proof
symbols, the verifier is unlikely to require these missing symbols.

Construction 1 (informal). The new prover P′ receives as input an instance
x and a witness w, while the verifier V′ receives as input the instance x. They
interact as follows.

1. V′ guesses the locations that V will query. V′ samples and sends a random
set I ⊆ [k · l] of � indices from among all the prover message symbols.

2. The original IOP is simulated with prover messages omitted according to I.
For every j ∈ [k]:
(a) V′ sends ρj ← {0, 1}r.
(b) P′ computes πj := P(x,w, ρ1, . . . , ρj) and sends π′

j equal to πj with
symbols outside of I omitted.

3. V′ simulates V, and rejects if any queries are made outside of I. V′ simulates
the decision stage of V given input x. Whenever an index i ∈ I is queried,
return the appropriate symbol from the prover messages. If an index i /∈ I is
queried, then immediately reject. Output the same answer as V.

The total proof length is � since the prover P′ sends only those symbols whose
index is in I (which has size �). The per-round verifier randomness at most r + � ·
log(k · l) because in the first round the verifier sends I (which can be described with
� · log(k · l) random bits) and then it sends its first message of r bits. The rest of the
complexity parameters follow straightforwardly from the construction.

Soundness follows from the fact that the changes made to the IOP can only
increase the chance that the verifier rejects. We sketch the proof of completeness.
Fix some x ∈ L. The locations read by V are independent of the set I. Therefore,
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the probability that V queries outside the set I is
(
k·l−q
�−q

)
/
(
k·l
�

) ≥ (�/(e · k · l))q.
Conditioned onV querying only inside I,V accepts with probability at least 1−α.
Hence the probability that the new verifierV′ accepts is at least (1−α)·(�/(e·k·l))q.
Round Reduction. We sketch how the round-complexity of low-query IOPs can
be reduced. The intuition behind this lemma is similar to that described for
length reduction: if q � k, then the verifier is unlikely to need most of the
rounds, so removing a random subset of the rounds does not harm completeness
by much. Below we describe the transformation for IOP round reduction.

Construction 2 (informal). The new prover P′ receives as input an instance
x and a witness w, while the verifier V′ receives as input the instance x. They
interact as follows.

1. V′ guesses the rounds that V will query. V′ samples and sends a random set
I ⊆ [k] of k′ indices. Denote I := (i1, . . . , ik′) with ij < ij+1 and let i0 := 1.

2. The original IOP is simulated with rounds omitted according to I. For every
j ∈ [k′]:
(a) V′ sends ρi(j−1)+1, . . . , ρij ← {0, 1}r.
(b) P′ computes and sends πj := P(x,w, ρ1, . . . , ρij ).

3. V′ simulates V, and rejects if any queries are made outside of I. V′ samples
ρik′+1, . . . , ρk ← {0, 1}r simulates the decision stage of V given input x and
verifier messages ρ1, . . . , ρk. Whenever an index in round i ∈ I is queried,
return the appropriate symbol in the prover messages. If a round i /∈ I is
queried, then immediately reject. Output the same answer as V.

A technical remark: as written above, the protocol is not public-coin because
the verifier’s first message I dictates the length of subsequent verifier messages.
Nevertheless, the protocol can be made public-coin by padding verifier messages
to k·r bits. The prover and verifier act as in the protocol description, ignoring the
padding bits. The verifier additionally sends k′ · log k bits as the choice of the set
I. Thus, the per-round randomness of the verifier is k · r+k′ · log k ≤ k ·(r+log k).

2.2 Tools for Improving Completeness

A transformation for achieving perfect completeness for IPs is shown in [25].
Directly applying that transformation to IOPs increases the query complexity of
the protocol significantly. We show a variant of the transformation in [25] that
preserves query complexity up to a small additive constant.

Lemma 2 (informal). Let R be a relation with a public-coin IOP (P,V) with
completeness error α, soundness error β, round complexity k, alphabet size λ,
per-round proof length l, query complexity q, per-round verifier randomness r,
and verifier running time vt.

Then R has a public-coin IOP with perfect completeness, soundness error
O

(
β·k·r

log(1/α)

)
, round complexity k+1, alphabet size max{λ, 2k·r}, per-round proof

length O
(

l·k·r
log(1/α)

)
, query complexity q+2, per-round verifier randomness r, and

verifier running time poly(vt).
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Remark 1. If only small completeness error is desired (rather than completeness
error 0), then this can be achieved with similar query complexity but smaller
overhead to the alphabet size. See the full version of this paper for more details.

Review: Perfect Completeness for IPs. Consider the set S of verifier random
coins 
ρ = (ρ1, . . . , ρk) (over the entire protocol) where the honest prover has a
strategy to make the verifier accept if it is sent these strings while interacting
with the verifier. Given the matching prover messages, the verifier can efficiently
check whether 
ρ ∈ S. [25] shows that for large enough t there exist “shifts”

z1, . . . , 
zt such that for every choice of verifier randomness 
ρ there exists j such
that (
zj⊕
ρ) ∈ S. It follows that the honest prover needs only to send these shifts,
and then run the protocol with the verifier, giving answers matching each shift.
At the end of the protocol, the verifier accepts if and only if ∨t

j=1

(
(
zj ⊕ 
ρ)

?∈
S

)
= 1. The soundness error degrades by a multiplicative factor of t since a

malicious prover only needs to convince the verifier in one execution.

Perfect Completeness for IOPs. The aforementioned verifier computes the “OR”
of t expressions. We observe that, in order to prove the claim ∨t

j=1

(
(
zj ⊕ 
ρ)

?∈
S

)
= 1, it suffices for the prover to send the verifier a single index j where

(
zj ⊕ 
ρ) ∈ S, which is then checked by the verifier. The verifier only needs to
check a single execution of the IOP, rather than t, and so the query complexity
of the protocol is preserved up to reading the index j and shift 
zj .

Construction 3. Let t := 2 ·
(

r·k
log(1/α)

)
. The new prover P′ receives as input an

instance x and a witness w, while the verifier V′ receives as input the instance
x. They interact as follows.

1. P′ sends t “shifts” for the verifier randomness. P′ sends


z1, . . . , 
zt = (z1,1, . . . , z1,k), . . . , (zt,1, . . . zt,k) ∈ {0, 1}r·k ,

to the verifier such that for every 
ρ there exists j where (
zj ⊕ 
ρ) ∈ S (i.e., the
original prover P has an accepting strategy for verifier randomness (
zj ⊕ 
ρ)).

2. Original IOP is simulated, where for every verifier message, prover replies
with a message for each shifted randomness. For i = 1, . . . , k:

– V′: Choose ρi ← {0, 1}r uniformly and send to the prover.
– P′: Send {πj,i}j∈[t] where πj,i := P(x,w, ρ1 ⊕ zj,1, . . . , ρi ⊕ zj,i).

3. Prover sends index j of shift where its messages succeed in convincing the
verifier. P′: If there exists an index j ∈ [t], such that Vπj,1,...,πj,k(x, ρ1 ⊕
zj,1, . . . , ρk ⊕ zj,k) = 1, then send j to the verifier V′ as a non-oracle message.
Otherwise, send ⊥.

4. V′ checks that V accepts the “shifted” j-th execution. V′: Receive j as a
non-oracle message.
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(a) If j = ⊥, then reject.
(b) Otherwise, query 
zj = (zj,1, . . . , zj,k) and check that

Vπj,1,...,πj,k(x, ρ1 ⊕ zj,1, . . . , ρk ⊕ zj,k) = 1 ,

querying the appropriate proofs as required by V.

2.3 Tools for Derandomization

We show how to derandomize public-coin IOPs based on non-uniform advice or
based on pseudorandom generators (PRGs), while preserving the use of public-
coins. Both transformations achieve logarithmic randomness complexity but
slightly increase completeness and soundness error. Round complexity, proof
length, and query complexity are preserved.

Lemma 3 (informal). Let R be a relation with a public-coin IOP (P,V) with
completeness error α, soundness error β, round complexity k, alphabet size λ,
per-round proof length l, query complexity q, per-round verifier randomness r,
and verifier running time vt.

1. Derandomization using PRGs: Suppose that there exists a PRG against
polynomial-size PSPACE circuits with seed length �, error ε and evalu-
ation time tPRG. Then R has a public-coin IOP with completeness error
1 − O((1 − α) − ε · k2), soundness error O(β + ε · k3), round complexity
k, alphabet size λ, per-round proof length l, query complexity q, per-round
verifier randomness �, and verifier running time poly(vt, tPRG).
(Such a PRG with seed length � = O(log |x|), error ε = 1/poly(|x|) and com-
putation time tPRG = poly(|x|) exists if there exists a function in E with circuit
complexity 2Ω(n) for circuits with PSPACE gates.)

2. Derandomization using non-uniformity: Let ε ∈ (0, 1) be a parameter.
Then R has a public-coin IOP with completeness error α+k·ε, soundness error
β + k · ε, round complexity k, alphabet size λ, per-round proof length l, query
complexity q, per-round verifier randomness Θ(log ((r · k + |x|)/ε)),
and verifier running time poly(vt, k, l, r, 1/ε), where the verifier receives
poly(|x|, k, r, 1/ε) bits of non-uniform advice. Moreover, a random string con-
stitutes good advice with probability 1 − 2−|x|.

We focus the overview below on Item 1. Item 2 can be shown in a similar
manner.

Derandomization Using PRGs. We show that IOPs can be derandomized using
a pseudo-random generator. In this transformation, the verifier samples seeds for
the PRG rather than uniform random messages. Thus the verifier randomness
per-round is as small as a seed of the PRG.

Construction 4 (informal). On instance x and witness w, the protocol
(P′,V′) proceeds as follows:
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1. Simulate original IOP where verifier messages are chosen using the PRG. For
j = 1, . . . , k:
(a) V′: Sample and send a random ρj ← {0, 1}�.
(b) P′: Compute and send the prover message πj that maximizes the proba-

bility that V accepts where all of the verifier messages are chosen using
the PRG G.

2. V′: Accept if and only if Vπ1,...,πk(x,G(ρ1), . . . ,G(ρk)) = 1.

The verifier sends �PRG bits of randomness in each round, since it sends a seed for
the PRG. The rest of the complexity parameters follow straightforwardly from
the construction.

Interaction Trees. The interaction tree of a protocol on input x, denoted Tx is
the full tree of all possible transcripts corresponding to each choice of prover and
verifier messages. The leaves are labelled as accepting or rejecting corresponding
to whether the verifier accepts or rejects the full transcript represented by the
leaf.

The value of an interaction tree Tx, denoted by val(Tx), is the probability
of reaching an accepting leaf from the root of the tree in a walk on the tree
where verifier messages are chosen uniformly at random and prover messages
are chosen so as to maximize the probability of reaching an accepting node. The
notion of value extends to sub-trees as well, where the value is the probability
of reaching an accepting leaf when beginning on the root of the sub-tree. Notice
that val(Tx) = maxP̃{Pr[〈P̃,V〉(x) = 1]}. Moreover, val(Tx) can be computed
in space that is polynomial in |x|, the round complexity, the proof length, and
the verifier randomness of the IOP.

Completeness and Soundness. Completeness and soundness follow straightfor-
wardly from Sect. 2.3, which says that the value of the interaction tree of the IOP
does not change by much when the verifier messages are sampled via a PRG.

Claim. Let G be a PRG against circuits of size poly(|x|) with PSPACE gates.
Then for every instance x:

O(val(T ) − εPRG · k2) ≤ val(TG) ≤ O(val(T ) + εPRG · k3) ,

where T is the interaction tree of the IOP and TG is the interaction tree of
(P′,V′), which is identical to T except verifier randomness is always sampled
using the PRG G.

We give a simplified sketch of the proof of the claim. Let T (0) := TG and for
i = 1, . . . , k let T (i) be the tree of an intermediate protocol where the messages
ρ1, . . . , ρi are chosen uniformly at random and ρi+1, . . . , ρk are chosen from the
PRG. Notice that T (k) = T .

We show that, under a simplifying assumption to be described later,
there exist circuit families C(1), . . . , C(k) each comprised of circuits of size
poly(|x|, k, l, r) that have PSPACE gates, such that if G fools C(i) then
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|val(T (i−1)) − val(T (i))| ≤ εPRG · k .

Letting C := ∪iCi, we have that if G fools C (i.e., fools circuits of size
maxC∈C |C| = poly(|x|, k, l, r)), then

|val(Tx) − val(Tx,G)| ≤ εPRG · k2 .

Fix some i. We show a family C(i) such that if G fools C(i) then |val(T (i−1))−
val(T (i))| ≤ εPRG ·k. Consider a fixed node in T (i) corresponding to the transcript
prefix tr = (ρ1,m1, . . . , ρi−1,mi−1) (which is empty if i = 1). For ρi let T (i,tr)(ρi)
be the sub-tree of T (i) whose root corresponds to the transcript (tr||ρi).

Define

S :=

{(
1 +

1
3k

)−1

, . . . ,

(
1 +

1
3k

)−O(k)

, 0

}
.

We make the simplifying assumption that val(T (i,tr)(ρi)) ∈ S and
val(T (i−1,tr)(ρi)) ∈ S for every ρi. In the full proof of the claim we achieve
this by discretizing the functions val(T (i,tr)(·)) and val(T (i−1,tr)(·)), which incurs
additional errors. For simplicity, we ignore these errors in this overview.

For every transcript tr, let C(i,tr) := {C
(i,tr)
p }p∈S where each circuit C

(i,tr)
p ,

on input ρi, outputs 1 if and only if val(T (i,tr)(ρi)) = p. We observe that a
careful implementation of C

(i,tr)
p (computing the value of a tree can be done

space proportional to its depth) has size at most poly(|x|, k, l, r) using PSPACE
gates. Thus, if G fools every circuit in the family C(i,tr) we get that

val(T (i−1,tr)) =
∑
p∈S

p · Pr
s

[C(i,tr)
p (G(s)) = 1]

≤
∑
p∈S

p ·
(

Pr
ρi

[C(i,tr)
p (ρi) = 1] + εPRG

)

= val(T (i,tr)) +
∑
p∈S

p · εPRG

≤ val(T (i,tr)) + O(εPRG · k) ,

where T (i−1,tr) is the sub-tree of T (i−1) whose root corresponds to the transcript
tr. The final inequality follows by the fact that

∑
p∈S p =

∑O(k)
i=1 (1 + 1/3k)−i is

a geometric series bounded by O(k).
We can similarly show that val(T (i−1,tr)) ≥ val(T (i,tr)) − O(εPRG · k). Notice

that val(T (i)) = Etr[val(T (i,tr))] and val(T (i−1)) = Etr[val(T (i−1,tr))] (where the
expectation is over the verifier’s random coins). Therefore, if the G fools the
entire circuit family C(i) := ∪trC(i,tr) then we have

|val(T (i−1)) − val(T (i))| = |Etr[val(T (i−1,tr))] − Etr[val(T (i,tr))]|
≤

∣∣∣Etr

[
val(T (i,tr)) + O(εPRG · k)

]
− Etr

[
val(T (i,tr))

]∣∣∣
= O(εPRG · k) .
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2.4 Deriving Our Results Using the Tools

We use the toolbox developed in the previous sections to derive the theorems
in Sect. 1.1. Each theorem is proved by applying a carefully chosen sequence of
tools (along with other arguments). Figure 1 summarizes which tools are used
to derive each theorem and the order of their use.

Fig. 1. Summary of how our tools are used to derive each theorem. The “IP/IOP to
algorithm” and “Algorithm for CSP” boxes are due to prior work.

Low-Error IOPs to Low-Error PCPs. We sketch the proof of Theorem
1, which shows that low-error IOPs can be transformed into low-error PCPs.
The proof is a sequence of transformations from our toolbox, whose goal is to
transform the IOP into one that is efficient enough to be unrolled into a PCP
via Item 3 of Lemma 1. This unrolling has an exponential dependency on the
round complexity and on the verifier randomness complexity of the IOP, so we
seek to decrease these without increasing the soundness error.

Decreasing the round complexity is done using the round-reduction transfor-
mation of Lemma 1, and decreasing the verifier randomness is done using either
one of our derandomization lemmas (Lemma 3). Since both transformations
degrade completeness, prior to applying the unrolling lemma (Item 3 of Lemma
1), we restore the IOP back to having perfect completeness using Lemma 2.
Since the transformation for perfect completeness increases the soundness error,
we counterbalance it by beginning the sequence of transformations with a small
number of parallel repetitions.

In somewhat more detail, the sequence of transformations is as follows.

1. Initial IOP. We begin with an IOP with the following parameters: perfect
completeness, soundness error 1/|x|, round complexity polylog(|x|), alphabet
size poly(|x|), proof length poly(|x|), query complexity O(1), and per-round
randomness poly(|x|).
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2. Parallel repetition. Repeat the protocol twice in parallel, and have the
verifier accept if and only if both executions are accepted. This yields a public-
coin IOP for R with: perfect completeness, soundness error 1/|x|2, round
complexity k = polylog(|x|), alphabet size poly(|x|), query complexity q =
O(1), and per-round randomness poly(|x|).

3. Round reduction. Reduce the number of rounds of the IOP via Item 2
of Lemma 1 with � := q where q = O(1) is the query complexity of the
IOP verifier. This transformation results in a public-coin IOP for R with:
completeness error 1−(q/(e·k))q = 1−1/polylog(|x|), soundness error 1/|x|2,
round complexity O(1), alphabet size poly(|x|), query complexity O(1),
and per-round randomness poly(|x|).

4. Derandomization. Derandomize the IOP verifier using either item of
Lemma 3. This results in a public-coin IOP for R with: completeness error
1− 1/polylog(|x|), soundness error O(1/|x|2), round complexity O(1), alpha-
bet size poly(|x|), query complexity O(1), and per-round randomness
O(log |x|).

5. Perfect completeness. Improve the IOP to have perfect completeness
using Lemma 2. The resulting IOP has the following parameters: perfect
completeness, soundness error

O(1/|x|2) ·
(

q · O(log |x|)
− log(1 − 1/polylog(|x|))

)
≤ 1/|x| ,

round complexity O(1), alphabet size poly(|x|), query complexity O(1), and
randomness O(log |x|).

6. Unrolling to PCP. Unroll the IOP with perfect completeness into a PCP
via Item 3 of Lemma 1. This gives us our final PCP with parameters: per-
fect completeness, soundness error 1/|x|, alphabet size poly(|x|), proof length
poly(|x|), query complexity O(1), and randomness complexity O(log |x|).

Limitations of Short IOPs. We sketch the proof of Theorem 2, which shows
that short IOPs with small soundness contradict RETH, the hypothesis that
3SAT /∈ BPTIME[2c·n] for a constant c > 0. First, we convert the IOP into
a short IP, and then apply a transformation from [18] that converts short IPs
into fast probabilistic algorithms. This leads to a fast algorithm for 3SAT, con-
tradicting RETH.

Consider a public-coin IOP for n-variate 3SAT with parameters as in The-
orem 2: perfect completeness, soundness error β, round complexity polylog(n),
alphabet size λ, (total) proof length l, query complexity q, and verifier ran-

domness poly(n). Suppose towards contradiction that l ≥ n and
(

l·log λ
n

)q

≤
npolylog(n) and that β = 1

2 ·
(

2·e·l·log λ
c·n

)−q

≥ n−polylog(n).4

We apply the following transformations.
4 It is sufficient to assume that β = 1

2
· (

2·e·l·log λ
c·n

)−q
to find contradiction in β ≤

1
2

· (
2·e·l·log λ

c·n
)−q

since we can always increase the soundness error without loss of
generality.
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1. Length reduction. Apply Item 1 of Lemma 1 with parameter � := e ·
l · (2β)1/q. This results in an IOP with: completeness error α′ := 1 − 2β,
soundness error β, round complexity k′ := polylog(n), alphabet size λ′ := λ,
and proof length l′ := e · l · (2β)1/q.

2. IOP to algorithm. Convert the IOP into an algorithm using a lemma
from [18] that says that if a relation R has a public-coin IP with complete-
ness error α′, soundness error β′, round complexity k′, and prover-to-verifier
communication length l′ of symbols of size λ′, then there is a probabilistic
algorithm for deciding R in time 2O(d)+o(n) for d := l′ · log λ′ +k′ · log k′

1−α′−β′ .
Notice that while the result from [18] applies to IPs rather than IOPs, one
can straightforwardly convert an IOP into an IP by having the verifier read
the prover’s messages in their entirety.

Substituting the relevant parameters, we have that:

d = l′ · log λ′ + k′ · log
k′

1 − α′ − β′

= e · l · (2β)1/q · log λ + k · log(k/β)
= c · n/2 + polylog(n).

Thus, 3SAT is decidable in probabilistic time 2c·n/2+o(n) < 2c·n in contradiction
to RETH.

Limitations of High-Round Low-Query IOPs. We sketch the proof of The-
orem 3, showing that relations not decidable in few rounds do not have small-
query IOPs with good soundness error. As in the theorem statement, let
R ∈ AM[k]\AM[k′] be a relation for k′ < k and suppose that R has a k-round
public-coin IOP (P,V) with perfect completeness, soundness error β, alphabet
size 2poly(|x|), proof length poly(|x|), and query complexity q ≤ k′.

By applying the round-reduction lemma (Item 2 of Lemma 1) to the k-round
IOP (P,V) with parameter k′, we get a k′-round IOP (P′,V′) with completeness
error α′ := 1−(k′/(e ·k))q and soundness error β. Suppose towards contradiction
that β < (k′/(e · k))q − |x|−c for some c ∈ N. Then the (additive) gap between
completeness and soundness error of (P′,V′) is 1 − α′ − β > |x|−c.

Since the gap between completeness and soundness error of (P′,V′) is inverse
polynomial, it can be transformed into a k′-round public-coin IP (P′′

IP,V
′′
IP) for

R with completeness error 1/3 and soundness error 1/3. This is done by using
the standard technique of taking poly(|x|) parallel repetitions, computing the
fraction of accepting transcripts, and accepting if the number of accepting tran-
scripts is beyond some threshold that depends on α′ and |x|−c. The IP (P′′

IP,V
′′
IP),

then, contradicts the assumption that R /∈ AM[k′].

Limitations of Binary-Alphabet Constant-Query IOPs. We sketch the
proof of Theorem 4, showing that assuming RETH there are no binary-alphabet
IOPs with 2 or 3 queries and small soundness error for 3SAT. We first discuss
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the following lemma which says that, assuming RETH, algorithms for solving
constraint satisfaction problems (CSPs) cannot coexist with IOPs with a binary
alphabet, constant query complexity, and small soundness error.

Lemma 4. (informal). Assume RETH and suppose that both of the following
exist.

– An IOP with perfect completeness, soundness error β, round complexity k,
alphabet size 2, proof length 2o(n), query complexity q, verifier randomness r,
and verifier running time 2o(n).

– A polynomial-time algorithm A for deciding whether a binary-alphabet CSP
with arity q has value 1 or value at most γ.

Then β > γ − ε for every ε satisfying k · log(r · n/ε) = o(n).

The proof of the theorem is concluded by relying on known algorithms for
solving CSPs with appropriate arities q and decision bounds γ.

– For q = 2, we rely on Schaefer’s dichotomy theorem [37], which says that
the satisfiability of a binary-alphabet CSP with arity 2 can be decided in
polynomial time. In this case γ = 1.

– For q = 3, we rely on Zwick’s algorithm [39], which decides in polynomial time
whether a binary-alphabet CSP with arity 3 has value 1 or value smaller than
5/8. In this case γ = 5/8.

Proof sketch of Lemma 4. Suppose towards contradiction that β ≤ γ −ε where ε
satisfies k·log(r·n/ε) = o(n). The proof has two steps: (1) transform the IOP into
a PCP for 3SAT that is “efficient-enough”; and (2) use the “efficient-enough”
PCP and the algorithm A to decide 3SAT.

IOP to “Efficient-Enough” PCP. We apply these transformations from our tool-
box.

1. Derandomization using non-uniform advice. Reduce the verifier ran-
domness of the IOP using the non-uniform derandomization theorem (Lemma
3, Item 2) with error ε/k to get per-round randomness complexity of
O(log(r · n/ε)) bits. The new IOP uses poly(n, r, 1/ε) bits of non-uniform
advice, where a random string is good advice with overwhelming probability.
The resulting IOP has perfect completeness, soundness error β + ε ≤ γ,
round complexity k, alphabet size 2, proof length 2o(n), query complex-
ity q, verifier randomness O(log (r · n/ε)), and verifier running time
2o(n) + poly(n, r, 1/ε) = 2o(n).

2. Unrolling to PCP. Unroll the IOP into a PCP for 3SAT using Lemma
1, Item 3. This transformation preserves the number of advice bits, and also
the fact that a random string is good advice with overwhelming probability.
The resulting PCP has perfect completeness, soundness error γ, alphabet size
2, proof length 2O(k·log(k·n/ε))+o(n) = 2o(n), query complexity q, randomness
complexity O(log(k · n/ε)) = o(n), and verifier running time 2o(n).
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Solving 3SAT Using the PCP and CSP Solvers. We use the PCP and the algo-
rithm A to design a probabilistic algorithm A′ that decides whether a 3SAT
formula φ over n variables is satisfiable in time 2o(n). The algorithm A′, on
input the 3SAT formula φ, works as follows.

1. Sample random advice. Sample a random advice string z for the PCP
resulting from the previous transformation.

2. Transform formula to CSP. Transform the 3SAT formula φ into a binary-
alphabet CSP ψ with arity q. This is done using the standard method of
translating a PCP into a CSP; each constraint in the CSP is indexed by a
choice of verifier randomness ρ and described by the verifier circuit with the
input formula φ, randomness ρ, and advice z hard-coded. The CSP ψ has
size poly(2r

′
, vt′) = 2o(n) where r′ = o(n) and vt′ = 2o(n) are the randomness

complexity and verifier running time of the PCP. Additionally, assuming that
z is good advice, we have that if φ ∈ 3SAT then the value of ψ is 1, and if
φ /∈ 3SAT, then the value of φ is at most γ.

3. Solve CSP. Run A(ψ) and say that φ is satisfiable if and only if A says that
ψ’s value is 1.

The algorithm A′ decides 3SAT with high probability: with overwhelming
probability the choice of advice z is good, and deciding whether the value of
the CSP instance ψ is 1 or γ, as A does, is equivalent to deciding whether φ is
satisfiable.

Moreover, the algorithm A′ runs in probabilistic time 2o(n): the advice
sampled in the first step is polynomial; the second step can be done in time
poly(2r

′
, vt′) = 2o(n) where r′ = o(n) and vt′ = 2o(n) are the randomness com-

plexity and verifier running time of the PCP; the final step takes poly(|ψ|) =
2o(n), since A runs in polynomial time.

We obtained an algorithm for deciding 3SAT in probabilistic time 2o(n),
contradicting RETH. ��

References

1. Applebaum, B., Golombek, E.: On the randomness complexity of interactive proofs
and statistical zero-knowledge proofs. In: Proceedings of the 2nd Conference on
Information-Theoretic Cryptography, ITC 2021, pp. 4:1–4:23 (2021)

2. Arnon, G., Chiesa, A., Yogev, E.: Hardness of approximation for stochastic prob-
lems via interactive oracle proofs. In: Proceedings of the 37th Annual IEEE Con-
ference on Computational Complexity, CCC 2022, pp. 24:1–24:16 (2022)

3. Arnon, G., Chiesa, A., Yogev, E.: A PCP theorem for interactive proofs. In: Pro-
ceedings of the 41st Annual International Conference on Theory and Application
of Cryptographic Techniques, EUROCRYPT 2022, pp. 64–94 (2022)

4. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and
the hardness of approximation problems. J. ACM 45(3), 501–555 (1998). Prelimi-
nary version in FOCS ’92

5. Arora, S., Safra, S.: Probabilistic checking of proofs: a new characterization of NP.
J. ACM 45(1), 70–122 (1998). Preliminary version in FOCS ’92



A Toolbox for Barriers on Interactive Oracle Proofs 465

6. Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations in poly-
logarithmic time. In: Proceedings of the 23rd Annual ACM Symposium on Theory
of Computing, STOC 1991, pp. 21–32 (1991)

7. Bellare, M., Goldwasser, S., Lund, C., Russell, A.: Efficient probabilistically check-
able proofs and applications to approximations. In: Proceedings of the 25th Annual
ACM Symposium on Theory of Computing, STOC 1993, pp. 294–304 (1993)

8. Ben-Sasson, E., et al.: Computational integrity with a public random string from
quasi-linear PCPs. In: Proceedings of the 36th Annual International Conference
on Theory and Application of Cryptographic Techniques, EUROCRYPT 2017, pp.
551–579 (2017)

9. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Fast Reed-Solomon interactive
oracle proofs of proximity. In: Proceedings of the 45th International Colloquium
on Automata, Languages and Programming, ICALP 2018, pp. 14:1–14:17 (2018)

10. Ben-Sasson, E., Chiesa, A., Gabizon, A., Riabzev, M., Spooner, N.: Interactive
oracle proofs with constant rate and query complexity. In: Proceedings of the 44th
International Colloquium on Automata, Languages and Programming, ICALP
2017, pp. 40:1–40:15 (2017)

11. Ben-Sasson, E., Chiesa, A., Gabizon, A., Virza, M.: Quasilinear-size zero knowledge
from linear-algebraic PCPs. In: Proceedings of the 13th Theory of Cryptography
Conference, TCC 2016-A, pp. 33–64 (2016)

12. Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Proceedings
of the 14th Theory of Cryptography Conference, TCC 2016-B, pp. 31–60 (2016)

13. Ben-Sasson, E., Sudan, M.: Short PCPs with polylog query complexity. SIAM J.
Comput. 38(2), 551–607 (2008). Preliminary version appeared in STOC ’05

14. Bootle, J., Cerulli, A., Ghadafi, E., Groth, J., Hajiabadi, M., Jakobsen, S.K.:
Linear-time zero-knowledge proofs for arithmetic circuit satisfiability. In: Proceed-
ings of the 23rd International Conference on the Theory and Applications of Cryp-
tology and Information Security, ASIACRYPT 2017, pp. 336–365 (2017)

15. Bootle, J., Chiesa, A., Groth, J.: Linear-time arguments with sublinear verification
from tensor codes. In: Proceedings of the 18th Theory of Cryptography Conference,
TCC 2020, pp. 19–46 (2020)

16. Bootle, J., Chiesa, A., Liu, S.: Zero-knowledge IOPs with linear-time prover and
polylogarithmic-time verifier. In: Proceedings of the 41st Annual International
Conference on Theory and Application of Cryptographic Techniques, EURO-
CRYPT 2022, pp. 275–304 (2022)

17. Bordage, S., Nardi, J.: Interactive oracle proofs of proximity to algebraic geometry
codes. In: Proceedings of the 37th Annual IEEE Conference on Computational
Complexity, CCC 2022, pp. 30:1–30:45 (2022)

18. Chiesa, A., Yogev, E.: Barriers for succinct arguments in the random oracle model.
In: Proceedings of the 18th Theory of Cryptography Conference, TCC 2020, pp.
47–76 (2020)

19. Condon, A., Feigenbaum, J., Lund, C., Shor, P.W.: Random debaters and the
hardness of approximating stochastic functions. SIAM J. Comput. 26(2), 369–400
(1997)

20. Dinur, I.: The PCP theorem by gap amplification. J. ACM 54(3), 12 (2007)
21. Dinur, I., Harsha, P., Kindler, G.: Polynomially low error PCPs with polyloglog n

queries via modular composition. In: Proceedings of the 47th Annual ACM Sym-
posium on Theory of Computing, STOC 2015, pp. 267–276 (2015)

22. Drucker, A.: A PCP characterization of AM. In: Proceedings of the 38th Interna-
tional Colloquium on Automata, Languages and Programming, ICALP 2011, pp.
581–592 (2011)



466 G. Arnon et al.

23. Feige, U., Goldwasser, S., Lovász, L., Safra, S., Szegedy, M.: Approximating clique
is almost NP-complete (preliminary version). In: Proceedings of the 32nd Annual
Symposium on Foundations of Computer Science, SFCS 1991, pp. 2–12 (1991)

24. Feige, U., Goldwasser, S., Lovász, L., Safra, S., Szegedy, M.: Interactive proofs and
the hardness of approximating cliques. J. ACM 43(2), 268–292 (1996). Preliminary
version in FOCS ’91
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Abstract. Concretely efficient interactive oracle proofs (IOPs) are of
interest due to their applications to scaling blockchains, their minimal
security assumptions, and their potential future-proof resistance to quan-
tum attacks.

Scalable IOPs, in which prover time scales quasilinearly with the com-
putation size and verifier time scales poly-logarithmically with it, have
been known to exist thus far only over a set of finite fields of negligible
density, namely, over “FFT-friendly” fields that contain a sub-group of
size 2k.

Our main result is to show that scalable IOPs can be constructed over
any sufficiently large finite field, of size that is at least quadratic in the
length of computation whose integrity is proved by the IOP. This result
has practical applications as well, because it reduces the proving and veri-
fication complexity of cryptographic statements that are naturally stated
over pre-defined finite fields which are not “FFT-friendly”. Prior state-
of-the-art scalable IOPs relied heavily on arithmetization via univariate
polynomials and Reed–Solomon codes over FFT-friendly fields. To prove
our main result and extend scalability to all large finite fields, we gener-
alize the prior techniques and use new algebraic geometry codes evalu-
ated on sub-groups of elliptic curves (elliptic curve codes). We also show
a new arithmetization scheme that uses the rich and well-understood
group structure of elliptic curves to reduce statements of computational
integrity to other statements about the proximity of functions evaluated
on the elliptic curve to the new family of elliptic curve codes.

1 Introduction

Arithmetization was first used to construct interactive proofs in the semi-
nal work of Lund et al. [41] and shortly after played a key role in Shamir’s
proof of IP = PSPACE [47]. Ever since, this invaluable tool has dominated the
construction of interactive proofs (IP), multiprover interactive proofs (MIP), zero
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knowledge proofs (ZK), probabilistically checkable proofs (PCP) and related pro-
tocols. Arithmetization reduces statements about computational integrity, like

“I processed T = 10, 000 valid Ethereum transactions, leading to new
Ethereum state S”

to completely different statements, about low degree polynomials over a finite
field F, like

“I know polynomials A(X), B(X) over finite field F of degree at most T
that satisfy a set of polynomial constraints”.

The question studied in this paper is: Which finite fields F can be used to
create transparent1, scalable and concretely efficient proof systems? We start by
surveying the existing state of the art in this area.

To Reach Polynomial Efficiency, Any Large Finite Field Suffices. Early uses of
arithmetization, for example, in the seminal proofs of (i) MIP = NEXP [5], (ii) the
poly-logarithmic verification of NP [4] and (iii) the PCP Theorem [2,3], all work
with any sufficiently large finite field, of size at least poly(T), where T denotes the
length of the (nondeterministic) computation whose integrity is being proved;
in the case of the PCP Theorem, a field of size polylog(T) suffices. The commu-
nication complexity in all of these celebrated protocols is extremely efficient —
at most poly-logarithmic in T. However, none of these early constructions were
ever deployed in practice because their proofs, although of polynomial length in
T, were of impractical size, and the arithmetic complexity of both prover and
verifier were, concretely, prohibitively large.

Scalable Proof Systems Over FFT-Friendly Fields. The situation changed dra-
matically, in terms of both efficiency and field type, with the advent of scalable
information theoretic proof systems. A proof system is called scalable when both
(i) proving time2 scales quasilinearly in T and, simultaneously (ii) verification
time scales poly-logarithmically in T (and polynomially in the description of
the computation whose integrity is proved); see [7, Definition 3.3] for an exact
definition. Scalable PCP systems for any language in NEXP were presented by
[13,18,20], improving proving time from TO(1) to TpolylogT. However, these
constructions limited F to be FFT-friendly which means it must contain a sub-
group of size 2k, for integer k (the group can be multiplicative or additive)3. In
1 A proof system is transparent when all verifier messages are public random coins;

such systems are also called Arthur Merlin protocols.
2 Unless mentioned otherwise, throughout the paper running time is measured in

number of field operations, i.e., we assign unit cost to arithmetic operations over the
finite field.

3 More generally, scalable PCPs and IOPs can be constructed over any F which has a
sub-group of size that is a product of small primes, but prover and verifier running
time increase as the prime factors increase in number and size. For simplicity we stick
to interpreting an FFT-friendly field as one containing a multiplicative subgroup of
size 2k.
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spite of their improved efficiency, scalable PCPs are not used in practice because
the exponents in the poly-log expressions for proving and verification time, and
the amortized soundness error per PCP-query, are still, practically speaking, too
large.

The last and final step needed to create concretely efficient proof systems for
NEXP was taken within a relatively new computational model, the interactive
oracle proof (IOP) model [16,45] that generalizes both IP and PCP. From a
computational complexity point of view, IOP = MIP = PCP = NEXP (see [16]).
Within this model, proving time was reduced to O(T logT) and verification time
to O(logT), with relatively small asymptotic constants [7]. The requirement that
F be an FFT-friendly field remained.

To summarize, early IP,MIP and PCP constructions work over any sufficiently
large finite field, but scalable PCPs and IOPs required FFT-friendly ones. This
raises the question of whether FFT-friendliness is needed for scalability, and sets
the ground for our main result.

1.1 Main Results

The language most naturally suited for creating scalable IOPs is that of arith-
metic intermediate representations (AIR) [7,49]. Informally, an AIR instance of
complexity m and length T is defined over a finite field F by a set of low-degree
multivariate constraints, described by arithmetic circuits whose total sum (num-
ber of gates) is m, and by a cyclic group D of size T (see Definition 1). An AIR
witness is a tuple of functions f1, . . . , fw : D → F (see Definition 4), and the
AIR instance is satisfied by it if the application of the polynomial constraints to
the functions f1, . . . , fw and various cyclic shifts of them satisfy the polynomial
constraints of the AIR instance (see Definition 5).

From a concrete complexity point of view, the language of AIRs is used to
define computational integrity statements for scalable and transparent argument
of knowledge (STARK) systems, directly for specific computations like hashing
with ethSTARK [49], for domain specific languages like Winterfell, and for uni-
versal (Turing complete) virtual machines like Cairo [34]. In all these cases, the
computations and virtual machines are specified by AIRs. Systems written over
these machines, like StarkEx, have been used to process millions of transactions
and billions of dollars on Ethereum, underscoring their practical relevance.

From an asymptotic complexity point of view, the language of satisfiable
AIR instances is complete for NEXP. When restricting AIR to FFT-friendly
fields, the ensuing sub-language (FFT-friendly-AIR) remains NEXP-complete.
As mentioned earlier, prior to this work, it was known that the language of
FFT-friendly-AIR has a strictly scalable and transparent IOP [7]. By strictly
scalable we mean that (i) prover complexity is T · (O(logT) + poly(m)) and,
simultaneously, (ii) verifier complexity is O(logT) + poly(m), i.e., the exponents
in all polylog expressions are 1.

The main result of this paper is to remove the FFT-friendly requirement
about fields, leading to the following statement.

https://github.com/starkware-libs/ethSTARK
https://engineering.fb.com/2021/08/04/open-source/winterfell/
https://www.cairo-lang.org/
https://starkware.co/starkex/
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Theorem 1 (Main Theorem — Informal). For any finite field F and T ≤√|F|, the satisfiability of AIR instances over F of size m and computation length
at most T can be verified by a strictly scalable and transparent IOP of knowledge
with advice4. In particular, there exist randomized procedures for proving and
verification that require T ·(O(logT) + poly(m)) arithmetic operations over F for
proving, and λ·(O(logT) + poly(m)) arithmetic operations over F for verification
with knowledge soundness error at most 2−λ.

We point out that our results apply to other NEXP complete languages for
succinct IOPs, such as the succinct R1CS systems used in [15]; due to the con-
crete considerations mentioned above, as well as space limitations, we focus only
on AIR.

Remark 1 (Zero Knowledge). The construction used in Theorem 1 can be aug-
mented to achieve perfect zero knowledge, just like the FFT-friendly version of
it (Theorem 3) can be augmented to an IOP with perfect zero knowledge [11].
We omit the addition of zero knowledge from this version due to space consid-
erations.

Remark 2 (Post-quantum security). A number of works have shown that apply-
ing the Kilian-Micali and/or the BCS transformation from IOPs to noninter-
active arguments are secure in the quantum random oracle model, and these
generic transformations apply to all our results, rendering them post-quantum
secure in this model [26–28].

Fast IOPs of Proximity for Reed–Solomon and Elliptic Curve codes. A major
step, and bottleneck, in the construction of IOPs and PCPs is that of low-
degree testing. This is the sub-protocol that is given oracle access to a function
f : D′ → F and is charged with distinguishing between the case that f is a low-
degree polynomial, i.e., a Reed–Solomon (RS) codeword, and the case that f is
far, in Hamming distance, from the RS code. Strictly scalable IOPs use the Fast
RS IOPP (FRI) [6] protocol targeted for RS codes. For a function of blocklength
n = |D′|, the FRI protocol guarantees linear proving time (O(n) arithmetic oper-
ations), strictly logarithmic verification time and query complexity (O(λ log n)
arithmetic operations, to reduce the soundness error to 2−λ).

One of the main reasons that until now scalable IOPs were limited to FFT-
friendly fields was the fact that the FRI protocol is tightly related to the FFT
algorithm, and can be described as “randomly folding” an FFT. As part of our
proof of Theorem 1 we also extend the FRI protocol from [6], and its analysis
from [8], to hold over all fields, provided |F| ≥ Ω(n2).

Theorem 2 (FRI over all fields, informal). For any finite field F of size q,
integer n a power of 2 satisfying n ≤ √

q, integer t and integer R, the following
holds.
4 The proving and verifying procedures depend on O(T log q) bits of advice that

depend only on |F| and T – furthermore, this advice can be generated by a ran-
domized algorithm in time O(T polylog(T · q)) with high probability.
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There exists a subset D′ ⊆ F, |D′| = n, such that the family of RS codes of
rate5 ρ = 2−R evaluated over D′ has an IOP of proximity with:

– O(n) proving complexity,
– O(t · log n) verification complexity,
– t · log n query complexity,
– the following soundness behavior: if f is δ-far in Hamming distance from the

code, the probability that f is accepted by the protocol is at most

(max {(1 − δ),
√

ρ} − o(1))t
.

See Sect. 2.3 for more details and a formal statement of the result above.
We point out that we also obtain (and need, to prove Theorem 1) an IOPP for

a more general family of codes – which comprises evaluations of functions over
certain carefully selected points on an elliptic curve E; the points of evaluation
are cosets of a cyclic group of size 2k inside the elliptic curve group. We call this
protocol an elliptic curve FRI, abbreviated EC-FRI, because the IOPP for this
family of elliptic curve codes works by “decomposing” a function on the elliptic
curve into a pair of RS codewords and applying Theorem 2 to this pair. See the
online version [10] for details.

Applications to Concrete Scalability. We briefly argue why Theorem 1 is inter-
esting from the point of view of concrete (rather than asymptotic) complexity,
in applied cryptography settings. There are quite a few cryptographic primi-
tives used in practice that are naturally defined over specific, and non-FFT-
friendly, finite fields. Examples include the NIST Curve P-256 (used, e.g., on
Apple smartphones) and the secp256k1 curve (used for Bitcoin signatures), both
of which are prime, non-FFT-friendly, fields. Consider a prover attempting to
prove she processed correctly a large batch of ECDSA signatures over either one
of these primes, denoting it by p. Today, the prover would need to arithmetize her
statement over some FFT-friendly field, and thus simulate the basic arithmetic
operations of the (non-FFT friendly) field Fp over some other field Fq, result-
ing in significant overhead. For example, the implementation of secp256k1 and
NIST P-256 ECDSA in the Cairo programming language (which uses an IOP-
based STARK over a 254-bit, FFT-friendly, prime field Fq) requires roughly 128
arithmetic operations over Fq to simulate a single Fp multiplication (this imple-
mentation uses various optimizations, the naive bit-wise multiplication would be
far costlier).

Using the construction of Theorem 1 one may do better. The statement for
each of these curves could be constructed over the native prime field Fp, meaning
that each multiplication gate in the computation of the ECDSA “costs” only one
constraint, and addition comes for free. When computing the tradeoff between

5 The rate parameter, defined as the ratio between a code’s dimension and its block-
length, can be picked to be any constant ρ < 1, and affects the soundness error and
proximity parameters; see [8] for state of the art soundness bounds as a function of
rate.

https://github.com/starkware-libs/cairo-examples/tree/master/secp
https://github.com/spartucus/nistp256-cairo
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using an FFT-friendly field Fq or our new construction over Fp, one should
carefully measure the difference resulting from the new construction (which, as
explained later, involves elliptic curves rather than plain polynomials). We leave
this interesting question for future work, but speculate that in most cases the
new Fp-native constructions will be far better, in terms of prover time, verifier
time, and proof length, than arithmetization over a different, yet FFT-friendly,
field.

Next we discuss the four parts in which FFT-friendliness was demanded in
prior scalable systems, and then explain how we get rid of this requirement.

1.2 Why Do PCPs and IOPs Require FFT-friendliness?

The very first step taken by a scalable PCP/IOP prover, when writing a proof
for the integrity of a computation of length T, is typically to view the execution
trace of the computation as a series of functions f1, . . . , fw : D → F for some
evaluation domain D ⊂ F, |D| = T, and then compute the low degree extension
of each fi by first interpolating the polynomial Pi(X),deg(Pi) < T that agrees
with fi, and then evaluating P1, . . . , Pw on a larger domain D′ ⊂ F, |D′| � |D|,
leading to a new sequence f ′

1, . . . , f
′
w : D′ → F that are submitted to the verifier

as the very first part of the PCP/IOP. The four reasons D needs to be a cyclic
group of size 2k are explained next. If we wish to create scalable IOPs over all
fields, including ones that do not contain such groups, we shall need to find other
ways to achieve these properties.

– Super-efficient Reed–Solomon encoding: The main asymptotic bot-
tleneck of scalable IOPs on the prover side is the computation of the low
degree extensions of f1, . . . , fw from D to D′. When D is a subgroup of size
2k and D′ is a finite union of cosets of D, as used in all scalable PCP/IOP
constructions, the classical FFT algorithm can be used to solve the encoding
problem in time O(wT logT); the asymptotic constants hidden by O-notation
are rather small, which helps for concrete prover efficiency.

– Codewords are invariant to cyclic shifts: The algebraic constraints in
AIRs over the trace involve elements from previous timesteps, which corre-
spond to evaluations of f ′

1, . . . , f
′
w at translated arguments. Thus we need

work not only with the codewords f ′
1, . . . , f

′
w, but with words obtained by

cyclic shifts of their values (where the cyclic order is determined by the
indexing of the trace’s elements by D). To control the degree of the eval-
uated constraints, it is necessary to know that these shifted words are also
evaluations of polynomials of degree < T, i.e. codewords. This is indeed the
case when D is a cyclic group generated by g, D′ is a finite union of its cosets,
and the rows are indexed according to the cyclic order: shifting the values
of f ′

i(x) by t yields the function f ′
i(g

tx), which has the same degree as f ′
i(x)

(each coset of D undergoes the same cyclic shift).
– Polylogarithmic verification requires sparse domain polynomials:

To allow the verifier to check that the polynomial constraints arising out of
the arithmetization reduction hold for each of the T steps of the computation,
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as claimed by the prover, the verifier needs to evaluate the “vanishing poly-
nomial” of D, denoted ZD(X), which is the degree-T monic polynomial
whose roots are D, as well as polynomials that vanish on certain subsets
D1, . . . , Ds ⊂ D, denoted ZDi

(X). To facilitate scalable (polylogarithmic) ver-
ification, the verifier needs to evaluate ZD(X), ZD1(X), . . . , ZDs

(X) all in time
polylogT. When D is a multiplicative group of size T we have ZD(X) = XT−1.
This is a sparse polynomial that can be evaluated on any x0 using O(logT)
arithmetic operations. Likewise, when D1, . . . , Ds are subgroups of D or, more
generally, of “low-complexity” when expressed using subgroups (see Definition
3 for a definition of this term), then scalable (poly-logarithmic) verification
is possible.

– Low-degree testing: Soundness of scalable PCPs/IOPs requires a protocol
designed to verify that each of the functions f ′

1, . . . , f
′
w : D′ → F submitted

by the prover is an RS codeword (or is close to it in Hamming distance). All
scalable protocols — from the quasilinear RS-PCP of Proximity (PCPP) of
[20] to the linear Fast RS IOP of Proximity (IOPP) protocol of [6] (abbre-
viated as FRI) — rely on the FFT-friendly structure of the domain D′ over
which functions are evaluated. In more detail, the fact that a cyclic group of
size 2k has a cyclic group of size 2k−1 as a quotient group plays a vital role
in the FRI protocol.

To summarize, there are four separate places in which FFT-friendliness is
important in the construction of FRI-AIR STARK systems. RS encoding requires
quasilinear running time over any finite field but the best asymptotic running
time is obtained over multiplicative groups of order 2k, i.e., within FFT-friendly
fields. Expressing general constraints requires the RS codewords to be invariant
to cyclic shifts, which occurs when the domain is itself a cyclic group. Scalable
(poly-logarithmic) verification requires an evaluation domain that is represented
by a sparse polynomial, and any multiplicative subgroup could be used. Finally,
the low-degree testing protocol that lies at the heart of scalable PCP/IOP con-
structions requires an FFT-friendly domain.

1.3 Elliptic Curves Save the Day, Again

The virtues of elliptic curves in cryptography, computer science and mathematics
are well established [40,48,50]. Here we make novel use of their properties — to
create strictly scalable IOPs over any sufficiently large finite field, with the same
asymptotic and concrete arithmetic complexity as obtained over FFT-friendly
fields. A brief overview of some relevant standard facts and terms related to
elliptic curves may be found in the online version [10].

Our starting point is our recent work [9], that showed how to use elliptic curve
groups to enable an FFT-like computation over all finite fields, thus enabling fast
low degree extensions. This essentially gives us (with some small modifications)
the analogue of the first item from Sect. 1.2. Developing analogues of the remain-
ing three items is completely new to this paper, and it requires us to dig deeper



474 E. Ben–Sasson et al.

than [9] into the elliptic curve group structure and properties of Riemann–Roch
spaces over elliptic curves.

Another contribution of this paper is a randomized near-linear time algo-
rithm for doing all the (one-time) precomputation required for the ECFFT and
the EC based IOP. Additionally, in this paper we also provide a more explicit
description of the curves and maps that appear in the isogeny chain, which in
turn give us more explicit formulas for the FFTs themselves. This allows for easy
implementation and easy determination of running time with concrete constants.
See the online version [10] for details.

Taking a 30,000-feet view, fix any finite field F of size q. The family of ellip-
tic curves defined over F is a family of algebraic groups whose size range and
structure are well understood. Size-wise, nearly any number in the Hasse–Weil
bound [q+1±2

√
q] is the size of some elliptic curve over F (when q is prime then

every number in that range is the size of an elliptic curve). The group structure
of elliptic curves is somewhat more elaborate, but suffice to say that for any size
2k, there will exist some elliptic curve that contains a cyclic6 subgroup of size
2k, permitted that 2k is, roughly, at most

√
q.

Based on these observations, we shall replace the multiplicative subgroup
of size 2k (which may not exist inside F

∗
q) with a cyclic subgroup of size 2k of

points of some elliptic curve E defined over Fq. Then, we shall use a novel arith-
metization scheme that reduces computational problems to problems regarding
“low-degree” functions defined over the points of the elliptic curve; formally,
these functions will be members of a low-degree Riemann–Roch (RR) space.
The choice of this Riemann–Roch space in a way that enables arithmetization
is the crux of our IOP construction, and we discuss this next.

Arithmetization and Automorphisms. One property of polynomials (in the
classical FFT-friendly field IOP setting) which is needed for efficient arithmeti-
zation is their invariance under certain linear transformations. In particular, if
G ⊂ Fq is a multiplicative group generated by g, and f : G → Fq is an evaluation
of a polynomial of degree d, then f(g · x) is also a polynomial of degree d. In
other words, the space of functions of degree at most d is invariant under the
permutation that maps x to g · x.

Now suppose we wish to arithmetize using a cyclic group H that is gener-
ated by a point h on an elliptic curve (i.e., H is a sub-group of the curve). A
permutation that is natural in this context is given by x 	→ x + h (where x, h
are points on the curve and + is the curve’s group operand). We need a space
of functions that are invariant under this action, and this identifies a natural
candidate space – the Riemann–Roch space of functions that is supported in a
symmetric way on H, defined by the divisor

∑
z∈H [z].

Another way of viewing this generalization is as follows. The space of poly-
nomials of degree at most d in the projective space P

1 is the Riemann–Roch

6 The need for cyclic subgroups of size 2k, as opposed to general subgroups of size 2k,
of elliptic curve groups is new to this paper in comparison to [9]. The cyclicity is
essential for arithmetization.
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space associated with the divisor D = d · [∞] and D is invariant under the action
[x] 	→ [g · x]. In the case of an elliptic curve group, ∞ �= h + ∞ so we cannot use
D but rather need a different divisor, one that is invariant under the mapping
induced by h. The natural divisor is D′ :=

∑
z∈H [z] which is clearly invariant

under the action of h because H is cyclic.

Key ingredients for the new IOPs, and the relationship to ECFFT
Part I [9]. Let us now see the elliptic curve analogues of the four ingredients
that go into IOPs in FFT-friendly fields. The first of these essentially comes
from [9].

– Super-efficient EC code encoding: This essentially comes from [9]. Here
we generalize the results slightly to extend low-degree functions evaluated
over D to evaluations over a constant number of other cosets of D, in time
O(T logT) and with small concrete asymptotic constants. See the online ver-
sion [10] for details.

– Invariance to cyclic shifts: This is where the choice of the Riemann–
Roch space is crucially used. It was specifically constructed to be invariant
to translation of the argument by any element of the cyclic subgroup of size
2k in E, similarly to the case of polynomials with bounded degree. Since D′

is a union of cosets of the cyclic subgroup, these translations correspond to
cyclic permutations of each coset in D′.

– Polylogarithmic evaluation of the “vanishing RR function” of D: The
verifier now needs to evaluate “low-degree” “vanishing RR functions” (the
analogue of a vanishing polynomial in the Riemann–Roch space) ẐD(P ) on an
arbitrary point P = (x0, y0) of E, where ẐD is the RR function that vanishes
over D. It turns out that D can be constructed using a sequence of k = logT
rational functions and this implies that ẐD(P ) is computable using O(logT)
arithmetic operations, as before. Likewise, for subsets D1, . . . , Ds ⊂ D of “low
complexity” (per Definition 3), the verifier can evaluate ẐDi

(P ) as efficiently
for subsets of elliptic curves as was the case with subsets of multiplicative
groups.

– Low-degree testing: The FRI protocol can be described informally as “ran-
dom folding of an FFT”. Thus, once we have obtained a generalization of the
FFT algorithm to codes defined over elliptic curve groups, we also general-
ize the FRI protocol to verify the proximity of functions to low-degree RR
functions.

1.4 Related Work

Over the past decade we have experienced a Cambrian explosion in the field
of concretely efficient proof systems, with and without zero knowledge. These
systems are classified under various definitions including CS proofs [43], NIZKs
and succinct NIZKs [33], SNARGs, SNARKs, STARKs, and more. Realizations
in code include Pinocchio [44], C-SNARKs [14], PLONK [32], Halo [23], Frac-
tal [28], Marlin [25], Ligero [1], Sonic [42], Bulletproofs [24] and more.
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Nearly all of these systems involve arithmetization via polynomials (univari-
ate and multivariate) over large fields, of size at least poly(T), and thus when
efficiency (concrete and asymptotic) is of interest, FFT-friendliness is required,
along with proving time that is quasi-linear (or worse). An interesting research
question, not addressed here, is whether the techniques discussed in this paper
are relevant to some of these works. It seems likely to conjecture that many of the
works that are information theoretically secure, like the important lines of works
based on “interactive proofs for muggles” [35] and “MPC in the head” [38] may
be constructed with better efficiency over general large fields, using our results.

A class of concretely efficient and widely deployed ZK-SNARK systems is
based on knowledge-of-exponent assumptions and bi-linear pairings, starting
with the work of [44]. Several blockchain systems, including Zcash, Filecoin and
Tornado cash use the popular and efficient Groth16 ZK-SNARK [37]. The use
of bilinear pairings significantly limits the class of fields that can be arithme-
tized efficiently, requiring F to be a prime field with small embedding degree
and ruling out fields that are of prime power size7. Other constructions that
rely on number-theoretic assumptions but which do not require knowledge of
exponent assumptions, nor bilinear pairings (e.g., BulletProofs and Halo), may
be amenable to efficient constructions over non-FFT friendly, cryptographically
large primes/curves (but it seems unlikely they can be amended to allow native
arithmetization over fields of small characteristic).

An interesting and noteworthy recent line of works gives strictly linear prov-
ing time, thereby avoiding the need for FFTs [21,22,36,46] and large fields and
offering strictly better asymptotic proving time than mentioned above. However,
thus far this line of works has not produced scalable systems (per the definition
above) and requires super-polylogarithmic verification time which should be per-
formed either directly by the verifier or by a pre-processing entity trusted by it.
In particular, our main results (Theorems 1 and 2) do not imply these works
and vice versa.

Elliptic Curves and FFT. This work is a direct continuation of our previous
paper on quasilinear time Elliptic Curve FFT [9] (cf. [31] for an earlier work on
using elliptic curves to compute an FFT-like transform, as well as the discussion
in [9] of that paper). Indeed, the sequence of isogenies used here is adapted from
that work, and the EC-FRI protocol relies on our FFT-like interpolation and
evaluation algorithms of that work. Although we made this paper self-contained,
reading our previous work should help the reader with intuition (and notation)
here. See Sect. 1.3 for a detailed discussion of what is new in this paper in
comparison to [9].

Algebraic Geometry Codes and PCPs/IOPs. A line of works used alge-
braic geometry codes to obtain PCPs and IOPs with extremely efficient proof

7 Arithmetization in the context of such SNARKs has as its output a system of R1CS
constraints defined over an elliptic curve subgroup of prime order p that has small
constant embedding degree.
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length and query complexity over constant size fields [12,19]. Those works are
incomparable to ours because the curves there are of much higher genus, and
the end results are not related to our goal of constructing scalable proof systems
over any finite field.

2 Main Results

Our main result below is a scalable and transparent IOP of knowledge (abbre-
viated as STIK) for the language of satisfiable AIR instances defined over any
sufficiently large finite field. Thus, we start by defining this language (Definition
6). Then we state and discuss our main theorem (Theorem 4). We conclude with
a statement of the auxiliary results on FRI and EC-FRI over any finite field.

2.1 The AIR Language and Relation

We recall the definition of an AIR instance from [7], using the more recent
formulation in [49, Section 5], generalizing it slightly by using an abstract cyclic
group instead of a multiplicative group8 of a finite field. As shown in that paper,
this language, even when restricted to FFT-friendly fields, is NEXP-complete.
We start with the notion of an AIR instance.

Definition 1 (AIR Instance). An Algebraic Intermediate Representation
(AIR) instance is a tuple A = (F,w, h, d, s,H0, g, I,Cset) where:

– F is a finite field
– w, h, d, s are integers indicating the following sizes:

• w is the number of columns in the trace
• h denotes the logarithm of the size of the trace domain
• d is the maximal degree of a constraint
• s is the size of the set of constraints

– H0 is a cyclic group of size 2h, and g is a generator of it. We write H0

multiplicatively, so that gj · y means applying gj (the j-length cyclic shift) to
y. We call H0 the trace domain.

– I ⊆ {0, 1, . . . , 2h − 1} × {1, . . . ,w} is a set of pairs known as the set of mask
indices. Let Z = {Zj,l : (j, l) ∈ I} be a set of formal variables, called the mask
variables, indexed by elements of I.

– Cset = {C1, . . . ,Cs} is a finite set of constraints, of size s. Each constraint is
an ordered pair Cα = (Qα,Hα) where:

• Qα ∈ F
≤d[Z] is a multivariate polynomial over the mask variables, of total

degree at most d, called the α-th constraint polynomial.
• Hα ⊆ H0 is a subset of the group, called the α-th constraint enforcement

domain.

8 An AIR can also be defined using Hamiltonian paths in affine graphs, but restricting
to cyclic groups suffices for NEXP-completeness, see [7].
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The kind of result we will show is that the language of satisfiable AIRs over
every field has an efficient IOPP. The efficiency will be in terms of the complexity
of the constraints of the AIR, which we define next. Informally, the complexity
of the AIR constraints depend on two things. The first is the circuit complexity
of individual constraints, defined first (Definition 2). The second, less trivial,
component, is the specification of the domain on which different constraints
must be enforced (Definition 3).

Definition 2 (Complexity of Constraints of an AIR). Given an AIR
A = (F,w, h, d, s,H0, g, I,Cset), we define the complexity of the constraints of A,
denoted ‖Cset‖, as:

‖Cset‖ :=
s∑

α=1

(‖Qα‖ + ‖Hα‖),

where ‖Qα‖ is the arithmetic complexity of the circuit computing the polynomial
Qα, and ‖Hα‖ is the coset complexity of Hα (see definition below).

As motivation for the following definition, consider a linear computation in
which a constraint should be applied only to half of the timesteps. Informally, a
constraint applied periodically, every other step (on even-numbered time steps)
has lower complexity than a constraint that should be applied to a randomly
selected set of time steps. We define the set of relevant time steps using poly-
nomials and rational functions, and it turns out the the following measure is an
upper bound on their complexity as arithmetic circuits.

Definition 3 (Coset Complexity). For a subset S of a finite group H, we
define the coset complexity of S, denoted ‖S‖, to be the smallest value of

∑

i

(log2(|Ji|) + 1),

over all ways of writing the indicator function 1S of S as a signed sum of indi-
cator functions:

1S =
∑

i

εi · 1Ji
,

where each Ji is a coset of a subgroup of H and εi = ±1.

Next, we recall the definition of an AIR witness.

Definition 4 (AIR witness and composition). An AIR witness is a
sequence of functions f = (f1, . . . , fw), where each fl is a function from H0 to
F. The witness size is w · |H0|.

Given an AIR constraint polynomial Q ∈ F[Z], the composition of Q and the
witness f is the function

Q ◦ f : H0 → F,

where, for all y ∈ H0:

(Q ◦ f)(y) = Q
((

fl(gj · y)
)
j,l

)
.
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(On the right hand side, we replaced the variable Zj,l ∈ Z that appears in Q(Z)
with fl(gj · y)).

We now define which witnesses are said to satisfy an instance. As motivation,
consider a typical way that an AIR can encode a computation. We could have a
machine with w Fq-registers, and ask that fl(gj) represents the contents of the
l-th register at time j. Then we use the constraints to (1) capture the transition
rules between time step j and j + 1 for all j in the enforcement domain [0, T ],
and (2) enforce boundary constraints on the values of the registers at time 0 and
at time T .

Definition 5 (Satisfiability). We say that the AIR witness f = (f1, . . . , fw)
satisfies the AIR instance A = (F,w, h, d, s,H0, g, I,Cset) if and only if

∀α ∈ [s] : y ∈ Hα ⇒ (Qα ◦ f)(y) = 0.

In words, f satisfies A iff for every constraint Cα = (Qα,Hα) ∈ Cset it holds that
Qα ◦ f vanishes on the α-th constraint enforcement domain Hα. We say that the
AIR A is satisfiable if there exists an AIR witness f that satisfies it.

We now reach the main definition of this subsection, that of the language,
and relation, corresponding to satisfiable AIRs over fields of quadratic size.

Definition 6 (AIR Language/Relation). The AIR relation RAIR is

RAIR = {(A, f) | A = (F,w, h, d, s,H0, g, I,Cset) is an AIR,

f is a satisfying AIR witness for A,

|F| ≥ Ω(d2 · 22h)}.

The language of satisfiable AIRs is the projection of RAIR onto its first coordinate,

LAIR = {A | ∃f (A, f) ∈ RAIR}.

Remark 3 (Field size). The definition above requires |F| > (d|H0|)2. When
this is not the case one may embed F in a finite extension field K which is
sufficiently large, and apply our results to the AIR over K. This increases the
various complexity measures (proving time, verification time and query com-
plexity) by a multiplicative factor of at most M([K : F]), where M([K : F])
denotes the complexity of K-multiplication in terms of arithmetic operations
over F; notice that M(k) ≤ k2 for any K that is the degree k extension of
F. For instance, in the extremal case of the smallest possible field size, F2,
any AIR per Definition 1 over F2, using an (abstract) group H0 of size n,
would lead to using k = 2 log n + O(1), leading to total prover complexity of
O(n log n · M([F22 log n+O(1) : F2]) ≤ O(n log3 n) measured in arithmetic opera-
tions over F2.
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2.2 A Scalable and Transparent IOP for LAIR

To state our main result we assume familiarity with the definition of an IOP,
and briefly recall its main parameters [16,45].

An Interactive Oracle Proof (IOP) for a language L is an interactive proof
system defined by a prover P and verifier V, in which the verifier need not read the
prover’s messages in full. Rather, the IOP model allows the verifier oracle access
to the prover’s messages. (The prover is assumed to read all verifier messages in
entirety.) The main parameters of interest are:

– query complexity q is the total number of symbols queried by the verifier from
the prover’s messages

– round complexity k is the number of rounds of interaction between the two
parties.

– prover complexity timeP and verifier complexity timeV, which, in this paper,
will assume unit cost for arithmetic operations over the ambient field

– proof length l is the sum of lengths of oracles sent by the prover throughout
the protocol.

– soundness error err is the probability of the verifier accepting a false state-
ment.

Main Result. It was shown by [7] that the sub-language of LAIR restricted to
FFT-friendly fields has a scalable and transparent IOP of knowledge. Formally,
let

LAIR,FFT = {A ∈ LAIR | A = (F,w, h, d, s,H0, g, I,Cset) satisfies 2h | |F| − 1}.

The main theorem of [7] is:

Theorem 3 (STIK for LAIR,FFT – Prior state of art). There is an IOP
protocol for the language LAIR,FFT such that for A = (F,w, h, d, s,H0, g, I,Cset) of
witness size n = w · 2h and parameter t we have:

– Completeness, Proving time and Proof size: There is a Prover algo-
rithm that given f such that (A, f) ∈ RAIR, makes the verifier accept with
probability 1. Prover running time is

O(n · (log n + ‖Cset‖)),

and proof length l is O(n).
– Verifier runtime and query complexity: For all instances

A = (F,w, h, d, s,H0, g, I,Cset),

the verifier runs in time O(‖Cset‖ + t · h) and makes a total of of q ≤ t log n
queries

– Knowledge soundness and soundness: There exists an efficient extractor
running in time poly(n) such that, given access to a Prover which satisfies the
verifier with probability greater than 2−t, outputs f such that (A, f) ∈ RAIR. In
particular, if A �∈ LAIR then, for any Prover strategy, the verifier will reject
with probability at least 1 − 2−t.
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Remark 4 (Soundness and knowledge soundness). Often in the analysis of inter-
active proofs, the soundness error parameter is smaller than the knowledge
soundness parameter. In the theorem above we state the same parameter for
both because the state-of-the-art soundness analysis in our case is actually effi-
cient, and uses a witness extractor.

The first step of the above IOPP is to identify the cyclic group H0 with a
subgroup of the multiplicative group F

∗
q , and to view satisfying AIR witnesses

fl : H0 → Fq as the values of a low degree univariate polynomial fl(Y ) ∈ Fq[Y ].
This then makes the AIR a collection of constraints on the values of low-degree
polynomials at certain points of the field Fq, and brings the tools of algebra into
play.

The FFT-friendliness is crucial for this approach — without it, there is no
suitable multiplicative subgroup in F

∗
q to identify the cyclic group H0 with, and

the above approach fails to get off the ground (see Sect. 1.2).
Our main result, given below, removes the FFT-friendliness restriction, and

gives an IOPP for satisfiable AIRs over all finite fields with almost identical
guarantees as Theorem 3. The key ingredient is to identify the cyclic group H0

with a cyclic subgroup of an elliptic curve E over F, and to view satisfying AIR
witnesses fl : H0 → Fq as the values of low degree rational functions fl defined9

on the curve E.

Theorem 4 (Scalable and Transparent IOPs of Knowledge over all
large fields). There is an IOP protocol for the language LAIR with properties
and parameters as stated in Theorem 3 above.

The complexity parameters of the theorem, along with completeness, are
argued along the lines of the proof of Theorem 3 (see [49, Section 5]). The most
delicate part is the soundness analysis (as is always the case with IOP systems).
The proof appears in the online version [10].

EC-STARKs. Assuming the existence of a family of collision resistant hash func-
tions, and replacing the interactive oracles with Merkle commitment schemes a
la [39], one obtains an interactive Scalable Transparent ARgument of Knowl-
edge (STARK) as defined in [7]. Alternatively, working in the random oracle
model and applying the BCS reduction [16], one obtains a noninteractive STARK
(which is also, in particular, a transparent SNARK). Details of both reductions
are identical to prior STARKs and discussed elsewhere (e.g., [16,29,30,39,43]).
We point out that STARKs based on FFT-friendly fields (Theorem 3) are con-
cretely practical, as evidenced by the StarkEx system which implements them
to scale transactions on Ethereum. We conjecture that the new EC-based con-
struction of Theorem 1 will have practical applications in certain settings (as
discussed in Sect. 1.1).

9 To be precise, we work with a suitable Riemann–Roch space.

https://starkware.co/starkex/
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2.3 IOPs of Proximity (IOPPs) for RS Codes over All Large Fields

In this section we state our auxiliary main result: FRI over all large finite fields.
We start with a few necessary definitions.

We use Δ to denote relative Hamming distance between two vectors u, v ∈
F

n, defined as Δ(u, v) = 1
n | {i ∈ [n] | ui �= vi} |, and for a set V ⊂ F

n we let
Δ(u, V ) = min {Δ(u, v) | v ∈ V }. The agreement of u, v and u, V is defined to
be agree(u, v) = 1 − Δ(u, v), agree(u, V ) = 1 − Δ(u, V ).

Definition 7 (IOP of Proximity (IOPP)). Fix V ⊂ F
n. An IOP system

(P,V) is said to be an IOP of proximity (IOPP) for V with soundness error
function err : [0, 1] → [0, 1] (and additional complexity parameters as defined
for standard IOP systems above) if, assuming the verifier has oracle access to
v ∈ F

n, the following hold:

– There exists a prover P such that for v ∈ V ,

Pr [〈Vv ↔ P(v)〉 = accept] = 1

– If v �∈ V (so Δ(v, V ) > 0) then for any prover P∗ we have

Pr [〈Vv ↔ P(v)〉 = accept] ≤ err(Δ(v, V ))

Reed Solomon Codes. Let RS[Fq, L, ρ] denote the Reed–Solomon code over field
Fq, evaluation domain L and rate ρ:

RS[Fq, L, ρ] = {f : L → Fq : deg(f) < ρ|L|}. (1)

Recall the previous state of the art with respect to IOPPs for Reed–Solomon
codes. We call a finite field F n-smooth if it contains a sub-group (additive or
multiplicative) of size n = 2k for integer k.

Theorem 5 (FRI over smooth fields [6,8]). Let F be an n-smooth finite
field. Then there is a subset L ⊆ F with size n such that for any rate parameter
ρ = 2−R (R ∈ N) and repetition parameter t, the Reed–Solomon code RS[F, L, ρ]
has an IOPP with:

– linear proving time timeP = O(n) and proof length l < n,
– logarithmic query complexity q = t·log(n)+O(1) and verification time timeV =

O(t log n)
– soundness error function err, where:

err(δ) = O

(
n2

q

)
+ (min(δ, 1 − √

ρ) − o(1))t
.

Our second main result shows essentially the same bounds over any finite
field, not just smooth ones.

Theorem 6 (FRI over all fields). Let F be the finite field of size q, a prime
power. Then for every n ≤ O(

√
q) there exists a set L ⊆ Fq of size Θ(n) such

that for any rate parameter ρ = 2−R (R ∈ N) and repetition parameter t the
Reed–Solomon code RS[F, L, ρ] has an IOPP with the complexity measures as
stated in Theorem 5.
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2.4 Fast IOPs of Proximity for Elliptic Curve Codes

We generalize Theorem 6 to certain algebraic geometry codes, evaluations of
functions in a low-degree Riemann–Roch space over FFT-friendly subgroups of
elliptic curves. To define the specific codes recall the definition of Algebraic
Geometry (or Goppa) codes.

Definition 8 (Algebraic Geometry Codes). Let X be a non-singular pro-
jective curve over a field F, let D = {x1, . . . , xn} be a set of F-rational points and
G be a divisor with support disjoint from D. Let L (G) be the Riemann–Roch
space defined by G. Then the algebraic geometry (AG) code (also known as a
Goppa code) C(D,G) is

C(D,G) := {f(x1), . . . , f(xn) | f ∈ L (G), xi ∈ D} (2)

Our next result is the following.

Theorem 7 (Fast Elliptic Curve Code IOPP). Let E be an elliptic curve
over F, let G ⊂ E be a cyclic group of size 2h and let D be a union of m
nontrivial and disjoint cosets of G, such that G ∩ D = ∅. Let [G] :=

∑
P∈G[P ]

be the divisor naturally associated with G Then, for any repetition parameter
t and setting ρ = 1/m, the AG code C(D, [G]) has an IOPP with complexity
parameters as in Theorem 5.

3 Scalable IOPs for AIRs over Any Large Field

In this section we prove our main theorem – Theorem 4, relying on certain claims
that are proved in later sections.

3.1 The ECFFT Infrastructure

The proof of Theorem 4 relies on delicately chosen elliptic curves, subgroups
of those curves, Riemann–Roch spaces and AG codes, and special “degree-
correction” functions on the curve. All of these are explained meticulously, and
the required properties proven formally, in later sections. The goal of this section
is to lay out, in a self-contained manner, all the results which are needed to derive
our main results regarding IOPs and IOPs of proximity (in Sect. 3.2).

Due to space constraints, we briefly copy some the information from those
sections so that we can describe our main IOP construction in the next section.

The EC Backbone. The backbone of all of the constructions in this paper is
the chain of 2-isogenies whose existence was shown in [9, Theorem 4.9], which
we quote here:
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Theorem 8. For any prime power q ≥ 7 and any 1 < K = 2k ≤ 2
√

q, there exist
elliptic curves E0, E1, . . . , Ek over Fq in extended Weierstrass form, a subgroup
G0 ⊆ E0 of size K, 2-isogenies ϕi : Ei → Ei+1 and rational functions ψi : P1 →
P
1 of degree 2, such that the following diagram is commutative:

E0 E1 · · · Ek

P
1

P
1 · · · P

1

ϕ0

π0

ϕ1

π1

ϕk−1

πk

ψ0 ψ1 ψk−1

(3)

where:

– πi are the projection maps to the x-coordinate of each curve;
– |ϕi−1 ◦ · · · ◦ ϕ0(G0)| = 1

2i |G0| = 2k−i.
– G0 has a coset C such that C �= −C (as elements of the quotient group

E0(Fq)/G0).

Note that this theorem is very abstract: It only establishes the existence of
these curves and maps, but says almost nothing about the form of the equations
defining Ei or of the isogenies ϕi and maps ψi, does not specify the structure of
G0, and does not show how to find such curves.

In this work we revisit this theorem, and strengthen and refine it for our
needs. First, we show a realization of the above curve sequence using elliptic
curves Ei of a simple form, and and obtain simple, explicit formulas for ϕi and
ψi. Next, we show how to get the above sequence with G0 being a cyclic group
(isomorphic to Z/2kZ) — this is crucial for doing efficient arithmetization of AIRs
(which are defined in terms of cyclic groups). Finally, we give a probabilistic
algorithm for finding such curves in nearly optimal O(2k polylog q) time. The
following statement summarizes these improvements to Theorem 8.

Theorem 9. There exists a randomized algorithm Find Curve, that on input
k and q ≥ max

{
7, 22(k−1)

}
, runs in time O(2k log2q log log q), and with high

probability finds elliptic curves Ei in Weierstrass form and maps ϕi, ψi as in
Theorem 8, such that G0 is a cyclic group of size 2k and the maps ϕi, ψi are
computable via O(1) operations in Fq.

The upper bound on the algorithm’s runtime can be improved by a Õ(log q)
factor assuming the Riemann Hypothesis, and we believe that it should be even
faster. See the online version [10] for details.

Function Spaces and Evaluation Domains. We are now ready to explicitly
describe the setup we will need for our IOP for satisfiable AIRs. For analogues of
the FFT and IFFT algorithms and the FRI protocol, we will need to identify some
special functions and some special sets of evaluation points. These are captured
below.

Proposition 1 (Setup). For every q, k with q ≥ Ω(22k), there exists an elliptic
curve E/Fq such that E(Fq) contains a cyclic group G of size 2k.
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Fixing such a curve E, we introduce some notation:

– For each � ≤ k, let G〈�〉 be the cyclic subgroup of G of size 2�.
– A basic subset S of E(Fq) at scale � is a set S = C ∪ (−C), where C ⊆ E(Fq)

is a coset of G〈�〉 with C �= −C. Note that |S| = 2|C| = 2�+1.
– An evaluation domain S of E(Fq) at scale � is a union of disjoint basic subsets

of E(Fq) at scale �.
– Let K〈�〉 be the Fq-linear space L ([G〈�+1〉]) of rational functions on E. By the

Riemann–Roch theorem, we have dim(K〈�〉) = 2�+1.

We now set up similar notions on the projective line, obtained by project-
ing down to the x-coordinate via the map π. The curve E is assumed to be in
Weierstrass form.

– A basic subset T of Fq at scale � is the projection T = π(S) of a basic subset
of E(Fq) at scale �. Note that |T | = 2�.

– An evaluation domain of Fq at scale � is a union of disjoint basic subsets of
Fq at scale �. Equivalently, it is a set of the form T = π(S), where S is an
evaluation domain of E(Fq).

– Let M〈�〉 denote the space of polynomials in Fq[X] of degree at most 2� − 1.
Note that dim(M〈�〉) = 2�.

The K〈�〉 and M〈�〉 spaces above are related through a certain univariate
polynomial Ω〈�〉(X) of degree exactly 2� − 1 (see the online version [10] for an
explicit description). This shows that every rational function f(X,Y ) ∈ K〈�〉 can
be written uniquely in the following form:

f(X,Y ) =
1

Ω〈�〉(X)

(
f0(X) +

Y

X
f1(X)

)
, (4)

where f0(X), f1(X) ∈ M〈�〉. We will sometimes write this as:

f(Z) =
1

Ω〈�〉(π(Z))
(f0(π(Z) + ζ(Z)f1(π(Z))) ,

where Z = (X,Y ) is a pair of formal (related) variables representing a point on
the curve, π is the projection from E onto the x-coordinate, and ζ((X,Y )) = Y

X .
This representation will let us move between the space of rational functions

K〈�〉 and the space of polynomials M〈�〉.
FFT and IFFT

The following theorems give the new FFT and IFFT transformations that we
will need. The proofs of the following theorems appear in the online version [10].

The bases that appear in the theorems are defined there. Following the nota-
tion in [9], for a function f defined on an evaluation domain S, we denote by
〈f � S〉 the evaluation table of f on S. When f belongs in a linear space spanned
by a basis β, we denote by [f ]β the representation of f in the basis.
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Theorem 10 (FFT and IFFT- Elliptic Curve Version). For each �, there
is a basis κ〈�〉 = (κ〈�〉

j )2
�+1−1

j=0 of K〈�〉 such that for any basic set S at scale �:

– there is a O(� · 2�) time algorithm FFTS, that when given [f ]κ〈�〉 as input,
computes

〈
f � S

〉
.

– there is a O(� ·2�) time algorithm IFFTS, that when given
〈
f � S

〉
as input for

some f ∈ K〈�〉, computes [f ]κ〈�〉 . (In particular, f ∈ K〈�〉 is uniquely specified
by

〈
f � S

〉
).

Theorem 11 (FFT and IFFT- Univariate Polynomial Version). For each
�, there is a basis μ〈�〉 = (μ〈�〉

j )2
�−1

j=0 of M〈�〉 such that for any basic subset T of
Fq at scale �:

– there is a O(� · 2�) time algorithm FFTT , that when given [g]μ〈�〉 as input,
computes

〈
g � T

〉
.

– there is a O(� · 2�) time algorithm IFFTT , that when given
〈
g � T

〉
as input

for some g ∈ M〈�〉, computes [g]μ〈�〉 . (In particular, g ∈ M〈�〉 is uniquely
specified by

〈
g � T

〉
).

FRI Our key tool is the FRI protocol for testing proximity to univariate polyno-
mials. Specifically, when the set of evaluation points T is an evaluation domain
in Fq, then the FFT infrastructure enables a version of the FRI protocol for
RS[Fq,T, ρ], stated below. The proof appears in the online version [10].

Theorem 12 (Basic FRI). Let q, k,E and the setup be as above. Let � ≤ k. Let
R be a positive integer, and set ρ = 2−R. Let T ⊆ Fq be an evaluation domain
at scale � with |T| = 1

ρ2�.
Given a repetition parameter t > 0, there is an IOPP protocol (FRI) with

prover P and verifier V for RS[Fq,T, ρ] with:

– Completeness: There exists a prover P such that for any f ∈ RS[Fq,T, ρ]
causes the verifier V to accept f with probability 1.

– Soundness: If f is δ far from RS[Fq,T, ρ] then for any prover P∗, we have

Pr [〈V(f) ↔ P∗(f)〉 = accept] ≤ (1 − min {Δ(f,RS[Fq,T, ρ]),
√

ρ} + o(1))t

– Prover runtime: O(|T|) arithmetic operations over Fq

– Verifier runtime: O(t log |T|) arithmetic operations over Fq

– Proof length: O(|T|) field elements in Fq.

From the proximity gap property of Reed–Solomon codes [8], this leads to a
protocol for simultaneously checking a batch of functions evaluated on an evalu-
ation domain in Fq are low-degree. The proof appears in the online version [10].

Theorem 13 (Batched FRI). Let q, k,E and the setup be as above. Let � ≤ k.
Let R be a positive integer, and set ρ = 2−R. Let T ⊆ Fq be an evaluation
domain at scale � with |T| = 1

ρ2�.
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Let d1, . . . , dk be integers such that di ≤ ρ|T| for all i. Given a repetition
parameter t > 0 and oracle access to functions

g1, g2, . . . , gk : T → Fq,

there is an IOP protocol with the following behavior.

– Completeness: If for all i, gi is the evaluation of some polynomial in Fq[X]
of degree < di, then there is a prover strategy to make the verifier accept with
probability 1.

– Soundness: Suppose the protocol accepts with probability

p ≥ (ρ1/2 + ε)t + O

(
ρ2|T|2

ε7q

)
.

Then there exist polynomials G1(X), . . . , Gk(X) ∈ Fq[X], with deg(Gi) < di

and a set V ⊆ T such that:
1. |V | ≥ (ρ1/2 + ε)|T|,
2. gi(x) = Gi(x) for all x ∈ V , i ∈ [k].

– Prover runtime: O(k|T|) arithmetic operations over Fq

– Verifier runtime: O(t(k + log |T|)) arithmetic operations over Fq

– Proof length: O(|T|) field elements in Fq.

Note: The constants in O(·) in the last three items in both Theorems 12 and 13
are some explicit small constants that are each at most 10.

Vanishing Detection. The final tool that we need is a way to check that some
given rational function on E vanishes at a given set of points. See the online
version [10] for details.

Theorem 14 (Vanishing detection). Let I ⊆ E(Fq) be a subset which is
contained in a coset of G〈�〉.

There is a well-defined rational function ω
〈�〉
I ∈ L ([G〈�+1〉\G〈�〉]−[G〈�〉]+[I])

on E with the following properties:

– For every f ∈ L (2[G〈�〉]), we have:

f vanishes on I ⇔ ω
〈�〉
I · f ∈ L ([G〈�+1〉]).

– For almost every P ∈ E(Fq), excluding at most three cosets of G〈�+1〉, ω
〈�〉
I (P )

can be computed using O(‖I‖ + �) Fq-operations (where ‖I‖ is the coset com-
plexity of I).
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3.2 The IOP Protocol

In this section we describe an IOP for the satisfiable AIR language of Definition 6.
The crux of this protocol is for the prover to do a “low-degree extension” of

a satisfying AIR-witness f = (f1, . . . , fw), where each fl : H0 → Fq. This is not
the standard univariate polynomial low-degree extension; instead it is an elliptic
curve variant. Indeed, we first identify H0 with a coset C of a cyclic subgroup
of size 2h of a suitable elliptic curve E over Fq. Thus we may view each fl as
a function defined at some points of E. Next, we consider the Riemann–Roch
space K〈h〉 of E, and the prover finds elements f̂l of K〈h〉 whose restrictions to
C agree with the values taken on H0 by the fl’s. Finally, the prover provides
evaluations of these rational functions f̂l’s at another set of points D ⊆ E(Fq).
These extended evaluations are at the core of the prover’s proof of satisfiability
of an AIR.

To describe the IOP for LAIR we need to fix some auxiliary parameters aux
that will be used by it. For simplicity and ease of exposition, we will only describe
the IOP for AIRs which have the constraint degree d = 2.

– The rate parameter ρ = 2−R for some integer R. In practical settings, ρ is
typically fixed to a small constant such as 1

16 (thus R = 4), and it may help
the reader to consider this setting on first reading.

– An elliptic curve E over Fq with a cyclic subgroup G of size 2k, for k = h+R+5.
We then use the setup from Proposition 1 with respect to this curve.

– A choice of a coset C of G〈h〉 such that C �= −C. We identify H0 with C
by first picking an arbitrary Q0 ∈ C, an arbitrary generator g of G〈h〉, and
identifying

gj ↔ Q0 + j · g.

With this identification, the constraint enforcement domains Hα ⊆ H0 get
identified with Uα ⊆ C using:

Uα = {Q0 + j · g | gj ∈ Hα}.

Note that C ∪ (−C) is a basic set at scale h.
– An evaluation domain S ⊆ E(Fq) at scale h of size 2k

′
= d · 1

ρ ·2h+1 = 2h+R+1,
which is disjoint from the trace domain H0. Thus S is the union of d

ρ = 2R+1

basic sets at scale h.
– The projection T ⊆ Fq of the evaluation domain S to the x-coordinate (recall

the curve is in Weierstrass form) — this is an evaluation domain of Fq at
scale h. Note that |T| = 1

ρ2h+1 = 2h+R+1.
Later in the protocol, we shall represent functions f(x, y) : S → Fq as a pair
f0(x), f1(x) : T → Fq where T is the projection of S onto the x-coordinate,
using the decomposition of (4), i.e., defining

f(x, y) :=
1

Ω〈�〉(x)

(
f0(x) +

y

x
· f1(x)

)
,

where f is (or is supposed to be) an evaluation of a function in K〈�〉.
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We shall also use the following notation:

– For f : T → Fq and a function u : A → Fq, where A ∩ T = ∅, we define the
quotient of f by u to be the function:

Quotient (f ;u) : T → Fq, Quotient (f ;u) (x) :=
f(x) − U(x)

ZA(x)
,

where:
• U(X) ∈ Fq[X] is the unique polynomial of degree at most |A| − 1 with

U |A = u,
• ZA(X) =

∏
a∈A(X − a) is the vanishing polynomial of A.

Description of the Protocol. The protocol starts with an AIR instance A =
(F,w, h, d, s,H0, g, I,Cset) and auxiliary IOP parameters aux = (E, G,C,S, k′, t)
given to both prover and verifier.

At the high level, the steps closely track the corresponding steps in the
STARK protocol given in [49]10, with rational functions and points on the curve
replacing univariate polynomials and points in Fq.

At some points, we represent rational functions on the elliptic curve by pairs
of univariate polynomials, and invoke results about univariate polynomials. A
more natural and clean version could have been given if we had analogues of (i)
the proximity gaps phenomenon [8], and (ii) the DEEP query and quotienting
method [17], for AG codes on elliptic curves. We believe that this approach
ought to work but have not pursued these here in the interest of the simplicity
of relying on previous results for RS codes.

We now give the description of the IOP protocol.

1. Execution trace oracle: The prover first finds an AIR witness f =
(f1, . . . , fw) that satisfies the AIR instance A according to Definition 5. Next,
the prover finds functions f̂1, . . . , f̂w ∈ K〈h〉 extending the fl’s. Specifically, f̂l

is rational function f̂l(X,Y ) ∈ K〈h〉 such that f̂l

∣∣∣
C

= fl|H0
.

Note that a function f̂l ∈ K〈h〉 can be specified by giving its values on the
entire basic set C ∪ (−C) (using the IFFT from Theorem 10); thus the prover
has many valid choices for f̂l, determined by the values of f̂l

∣∣
∣
−C

.

The prover then expresses each f̂l(X,Y ) using a pair of univariate polynomials
f̂l,0(X), f̂l,1(X) ∈ Fq[X] of degree < 2h, via the decomposition of (4), i.e.,

f̂l(X,Y ) :=
1

Ω〈h〉(X)

(
f̂l,0(X) +

Y

X
f̂l,1(X)

)
.

The prover then evaluates these 2w low-degree polynomials 〈f̂l,0, f̂l,1 | l ∈ [w]〉
at all the points of T.

10 Some optimizations from [49], which are important for practical considerations and
could also be done here, are omitted for clarity.
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Prover sends
〈
f̂l,m � T〉

for each (l,m) ∈ [w] × {0, 1}.

Note that these are evaluations of degree 2h polynomials on a set T of size
1
ρ2h+1, so they are all supposed to be codewords of RS(Fq,T, ρ) (and even of
RS(Fq,T, ρ/2)).

2. Constraint randomness:

Verifier samples uniform randomness r := (r1, . . . , rs) ∈ F
s
q, one field

element per constraint, and sends it to the prover.

We now explain the role of this step. These random field elements will be
coefficients for taking a “random linear combination of the constraints” –
and the prover will now try to convince the verifier that this random linear
combination of the constraints is satisfied by the witness underlying the f̂l,0’s
and the f̂l,1’s.
In more detail, constraint Cα asks that

Qα((fl(gj · t))l,j) = 0,

for all t ∈ Hα.
If the f̂l ∈ K〈h〉 are truly such that f̂l|H0 = fl|C , then this is the same as:

Qα((f̂l(P + j · g))(l,j)∈I) = 0,

for all P ∈ Uα ⊂ E.
Since f̂l ∈ K〈h〉 = L ([G〈h+1〉]) and Qα has degree at most d = 2, we get that
the function Bα : E → Fq defined by:

Bα(P ) := Qα((f̂l(P + j · g))(l,j)∈I) ∀P ∈ E,

lies in L (2[G〈h+1〉]). Note that the verifier can simulate oracle access to Bα

at points in S using oracle access to evaluations of f̂l at points in S, which
themselves can be reconstituted from evaluations of f̂l,0 and f̂l,1 at points in
T.
Checking that Bα vanishes at all points in Hα is equivalent to checking that
the rational function

ωα · Bα

lies in L ([G〈h+2〉] = K〈h+1〉, where ωα := ωHα
is the degree adjustment

function for Uα.
Now we can explain where the randomness r is used — it is to check all the
above memberships of ωα · Bα in K〈h+1〉 simultaneously. The prover will try
to convince the verifier that the random linear combination:

f̂ r =
∑

α

rαωαBα (5)

lies in K〈h+1〉. This is what the prover does next.
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3. Constraint trace oracle:
The Prover then represents the rational function f̂ r ∈ K〈h+1〉 as 2 univariate
polynomials:

f̂ r(X,Y ) =
1

Ω〈h+1〉(X)

(
f̂ r
0(X) +

Y

X
f̂ r
1(X)

)
,

where f̂ r
m ∈ Mh+1 for m ∈ {0, 1}.

The prover then evaluates both univariate polynomials at the points of T.

Prover sends
〈
f̂ r
0 � T〉

,
〈
f̂ r
1 � T〉

.

Note that these are evaluations of univariate polynomials of degree < 2h+1 at
2h+R+1 points.

4. DEEP query:

Verifier samples DEEP query q = (x0, y0) uniformly at random from
E(Fq) \ (C ∪ S), where C = G〈h+2〉 ∪ (G〈h+2〉 + C) ∪ (G〈h+2〉 − C) is a
union of three cosets of G〈h+2〉.

5. DEEP answer:

Prover sends an answer sequence

answer = 〈〈αj,l,0, αj,l,1 : (j, l) ∈ I〉, 〈β0, β1〉〉 ∈ F
I×{0,1}
q × F

2
q.

The αj,l,m are supposed to be the evaluations f̂l,m(q+jg), and βm is supposed
to be the evaluation f̂ r

m(q). Following the DEEP philosophy [17], we can then
incorporate these claimed evaluations of f̂l,m and f̂ r

m by quotienting. This will
be taken into account in the next step of the protocol.
But first, the verifier has to do a basic sanity check on the claimed evaluations.
Letting

αj,l :=
1

Ω〈h〉(π(q + j · g))
(αj,l,0 + ζ(q + j · g) · αj,l,1)

β :=
1

Ω〈h+1〉(π(q))
(β0 + ζ(q)β1)

then supposedly αj,l = f̂l(q + j · g) and β = f̂ r(q).
We say the constraints Qα are validated by answer if the following equality
holds:

∑

α

rαωα(q)Qα

(
(αj,l)(j,l)∈I

)
= β, (6)

i.e., the answers are consistent with Eq. (5).
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6. FRI Protocol: This step verifies the low-degreeness of various functions
simultaneously. But first, we quotient out the functions f̂l,m and f̂ r

m by their
evaluations that the prover claimed in the previous step.
For l ∈ [w], define Al ⊆ Fq to be the set:

Al = {π(q + j · g) | (j, l) ∈ I}

Define ul,m : Al → Fq to be:

ul,m(π(q + j · g)) = αj,l,m.

For l ∈ [w] and m ∈ {0, 1}, define b̂l,m : T → Fq by:

b̂l,m(x) = Quotient
(
f̂l,m;ul,m

)
(x),

and degree parameter dl,m = 2h − 1 − |Al|.
For m ∈ {0, 1}, define um : {π(q)} → Fq by

um(π(q)) = βm.

Now define b̂rm : T → Fq by:

b̂rm(x) = Quotient
(
f̂ r

m;um

)
(x),

and degree parameter dm = 2h+1 − 2.
Note that oracle access to these functions can be simulated by the verifier
from oracle access to f̂l,m and f̂ r

m on T.

Prover and Verifier now run the Batched FRI protocol from Theorem
13 on all the b̂l,m and the b̂rm with degree parameters dl,m and dm,
and repetition parameter t.

Observe that all the degree parameters are smaller than ρ|T| – thus the
soundness of this step is governed by ρ and t.

7. Decision:

Verifier accepts iff (i) the constraints Qα are validated by answer (i.e.,
equation (6) holds), and (ii) the FRI protocol accepts.

Due to space limitations of the conference version, full proofs are omitted.
Full details appear in the online version [10].
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Abstract. We introduce the first proof system for layered arithmetic
circuits over an arbitrary ring R that is (possibly) non-commutative and
(possibly) infinite, while only requiring black-box access to its arithmetic
and a subset A ⊆ R. Our construction only requires limited commutativ-
ity and regularity properties from A, similar to recent work on efficient
information theoretic multi-party computation over non-commutative
rings by Escudero and Soria-Vazquez (CRYPTO 2021 ), but furthermore
covering infinite rings.

We achieve our results through a generalization of GKR-style inter-
active proofs (Goldwasser, Kalai and Rothblum, Journal of the ACM,
2015). When A is a subset of the center of R, generalizations of the
sum-check protocol and other building blocks are not too problematic.
The case when the elements of A only commute with each other, on the
other hand, introduces a series of challenges. In order to overcome those,
we need to introduce a new definition of polynomial ring over a non-
commutative ring, the notion of left (and right) multi-linear extensions,
modify the layer consistency equation and adapt the sum-check protocol.

Despite these changes, our results are compatible with recent devel-
opments such as linear time provers. Moreover, for certain rings our
construction achieves provers that run in sublinear time in the circuit
size. We obtain such result both for known cases, such as matrix and
polynomial rings, as well as new ones, such as for some rings resulting
from Clifford algebras. Besides efficiency improvements in computation
and/or round complexity for several instantiations, the core conclusion
of our results is that state of the art doubly efficient interactive proofs
do not require much algebraic structure. This enables exact rather than
approximate computation over infinite rings as well as “agile” proof sys-
tems, where the black-box choice of the underlying ring can be easily
switched through the software life cycle.

1 Introduction

Interactive proofs (IPs) are a natural extension of the standard notion of a
mathematical proof, where the verifier checking a proof is allowed to interrogate
the prover who is providing it. They were introduced by Goldwasser, Micali and
Rackoff [GMR89] in the 1980s and they soon made a huge impact in complexity

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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theory. IPs have also been influential to practical proof systems, for which a
lot of progress took place during the last decade. Usually, in those schemes, the
prover tries to convince a verifier about the correctness of the evaluation of a
circuit consisting of addition and multiplication gates. Moreover, the arithmetic
of this circuit is often over a finite field, no matter how well represented under
these constraints is the original computation whose correctness is being checked.

In 2008, Goldwasser, Kalai and Rothblum (GKR) presented the first doubly-
efficient interactive proof [GKR15], where the prover is only required to perform
a polynomial amount of work in the size of the (layered, over a finite field)
arithmetic circuit and the verifier only needs to be quasi-linear in the same
parameter. The prover’s effort was later improved to quasi-linear [CMT12] and
finally linear [XZZ+19] for the same family of circuits in 2019. Recently, the
restriction to layered circuits was removed [ZLW+21] without affecting the linear
complexity of the prover and only a slight increase in the verifier’s work for non-
layered circuits. In this work we are interested in a different kind of generalization
of the GKR protocol. Namely, we set out to answer the following question:

“Let C be a layered arithmetic circuit over a ring R. What algebraic prop-
erties does R need to satisfy in order to construct a doubly-efficient IP for
C’s correct evaluation, without emulating R’s arithmetic?”

The most relevant part of our quest is that of avoiding the emulation of R’s
arithmetic, which we refer to as being black-box over R. We answer this question
in a partial but constructive way by providing a doubly-efficient IP for rings R
that are possibly non-commutative as well as infinite.

The black-box nature of our constructions has a theoretical interest, in the
tradition of finding lower bounds and reducing assumptions. Namely, it helps
us understand what are the minimum algebraic properties that need to be
assumed for proof systems and their underlying techniques to go through,
and how does this affect their complexity. Whereas this path has been more
explored in the context of Multi-Party Computation (MPC, see e.g. [CFIK03,
CDI+13,ACD+19,DLS20,ES21] just to name a few), it has been strangely over-
looked in the context of proof and argument systems, with notable exceptions
[AIK10,HR18,CCKP19,GNS21,BCFK21,BCS21]. The main take-away of our
work is that, when it comes to GKR-style protocols and their complexity, the
algebraic properties of the ring do not matter much as long as it contains a
big enough set with “good enough” regular and commutative properties. Since
infinite rings are allowed, this is a superset of the rings for which we know how
to build efficient information-theoretic MPC in a black-box manner [ES21].

Besides the theoretical aspects of our work, we expect its generality to find
applications in practice. Practically relevant infinite rings (such as the integers)
and fields (such as rational or real numbers) as well as non-commutative rings
(such as matrices and quaternions) did not fit previous systems. Their arithmetic
had to be emulated (at best) or approximated (at worst) when compiled into
circuits over either finite fields or finite commutative rings [CCKP19]. Avoid-
ing this compilation step can bring improvements in several fronts. First of all,
removing this stage simplifies the practitioners’ work, who can now be agile
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with respect to the choice of rings that are more commonplace than finite fields.
If, after deployment, they need to provide a new proof system with a different
underlying arithmetic, they could simply change the underlying data type that
represents the ring, rather than having to develop an ad-hoc compiler. Moreover,
working natively over such data types (algebraic structures) allows them to eas-
ily use existing software libraries for those, since their arithmetic does not need
to be compiled into circuits. This, in turn, results in circuits with significantly
less gates, which can ultimately result in better concrete efficiency in terms of
computation and round complexity. Finally, the soundness error of our black-box
IP can also benefit from working over these rings. We encourage to read specific
applications and instantiations in the full version [Sor22].

Related Work. In [AIK10] Applebaum, Ishai and Kushilevitz show how to con-
struct a verifiable computation protocol out of message authentication codes
(MACs) and randomized encodings (REs). For their construction to be a proof
rather than an argument system, it would need to use information-theoretic
MACs and statistically secure REs. It is a longstanding open problem whether
such statistical REs could efficiently support layered arithmetic circuits over
the non-commutative and infinite rings that we support, or even finite fields.
In particular, such REs would imply efficient constant-round statistically secure
multi-party computation protocols for such circuits, which in turn solves an open
problem about locally decodable codes of quasi-polynomial parameters [IK04].

In 2013, Meir [Mei13] demonstrated how the IP = PSPACE result can
be proven using error-correcting codes (ECCs) that are more general than low
degree polynomials. Along the way, the sum-check protocol is generalized to
work with tensor products of linear ECCs. While that work is also interested
in reducing algebraic assumptions, the results and ECCs are defined over finite
fields. Whereas Meir’s goal is to provide a new proof for a complexity theory
result, we want to expand the amount of rings that one can use in a black-box
way for GKR-style protocols and we care about concrete efficiency.

1.1 Technical Overview

The GKR protocol [GKR15] is a doubly-efficient interactive proof for the evalua-
tion of a layered arithmetic circuit, which consists of addition and multiplication
gates of fan-in two. Parties move from the output (0-th layer) to the input layer
(D-th layer) one layer at a time. Each gate in the i-th layer is supposed to
take inputs from two wires in layer i + 1, and so the output wires of the i-th
layer gates are checked to be consistent with the ones in the preceding layer.
Let V (i) : {0, 1}si → F be the function that maps the string x to the value of
the x-th wire in layer i. Thus, layer i has (up to) 2si wires. Furthermore, let
add(i+1) : {0, 1}si × {0, 1}si+1 × {0, 1}si+1 → {0, 1} be the function satisfying
add(i+1)(z, x, y) = 1 if the z-th wire on layer i is the addition of the x-th and
y-th wires in layer i + 1, otherwise add(i+1)(z, x, y) = 0. Define mult(i+1) analo-
gously. If we use f̂ ∈ F[�X] to denote a (low degree) multivariate polynomial such
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that for all a ∈ {0, 1}s, f̂(a) = f(a), we can express layer consistency as follows:

V̂ (i)(�Z) =
∑

x,y∈{0,1}si+1

(
m̂ult

(i+1)
(�Z, x, y) · (

V̂ (i+1)(x) · V̂ (i+1)(y)
)

+ âdd
(i+1)

(�Z, x, y) · (V̂ (i+1)(x) + V̂ (i+1)(y)
))

. (1)

The advantage of using the polynomial extensions V̂ (i), V̂ (i+1), m̂ult
(i+1)

and
âdd

(i+1)
is that the previous equation can be easily checked using the sum-check

protocol [LFKN92]. Originally, as well as for most of its subsequent literature, the
GKR protocol only worked for circuits over finite fields. Chen et al. [CCKP19]
showed how to extend this result to finite commutative rings as long as the
points used to define the polynomial extensions and the random challenges from
the verifier belong to a set A = {a1, . . . , an} where ∀i �= j, ai − aj is not a zero
divisor. In our work, we denote such A a regular difference set.

As we realized, removing the finiteness assumption from [CCKP19] does
not introduce any additional problems. Even if R is infinite, we only need a
finite regular difference set A. On the other hand, when R is not commuta-
tive, we are presented with several issues. First, the definition of a polynomial
ring with coefficients in R is not straightforward. One easily finds obstacles
related to whether polynomial evaluation is a ring homomorphism (i.e., whether
f(a) + g(a) = (f + g)(a) and f(a) · g(a) = (f · g)(a)) or other crucial results,
such as Euclidean division or bounding the number of roots of a polynomial.
Nevertheless, if we restrict the regular difference set A to be contained in the
center of the ring (i.e., ∀r ∈ R, a ∈ A, a · r = r ·a), then Eq. (1) (and multi-linear
extensions, the sum-check protocol, etc.) behave as expected. In this scenario,
which we discuss in Sect. 4, we use the most common definition for polynomial
over non-commutative rings (Definition 9, the same as in [ES21]).

The most challenging part of our work comes from relaxing the commu-
tativity requirement on A, so that rather than A ⊂ Z(R), we only ask that
∀ai, aj ∈ A, ai · aj = aj · ai. This was also the most difficult family of rings
in [ES21], where Escudero and Soria-Vazquez showed how to build efficient
information-theoretic MPC protocols with black-box access to such a ring1.
Employing the same polynomial ring definition as in [ES21] fails in our context.
This poses the question of whether there are inherently more algebraic limi-
tations for doubly-efficient IPs than there are for information theoretic MPC,
potentially ruling out these “less commutative” rings. Fortunately, we overcome
most problems by putting forward a new polynomial ring definition (Defini-
tion 12) in Sect. 3, the notion of sandwich (and toast) polynomials (Sect. 3.1)
and reworking many basic algebraic results related to these new polynomials.
We show that there is no unique notion of multi-linear extension (MLE) in this
setting, so we have to define both left and right MLEs. Equipped with these
results, in Sect. 5 we show how to modify the layer consistency equation so that
1 In fact, in [ES21] they only show how to work with finite rings in that family. An

example interesting ring in this setting is Mn×n(F2), which has F2n as a subfield.
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it becomes a sandwich polynomial. We need to do this carefully, so that it is a
toast polynomial on every indeterminate. Finally, we provide a new sum-check
protocol for this layer consistency Eq. (Sect. 5.3), which we show how the prover
can run in linear time in Sect.A.

2 Preliminaries

Notation. We use [i, j], where i < j, to represent the set of positive integers
{i, i + 1, . . . , j}, and simply [n] to represent {1, 2, . . . , n}. Sometimes, we may
use arrows to denote vectors, e.g. �b = (b1, . . . , bn). For a “sub-interval” of the
elements of a vector, we might denote use �b[i,j] = (bi, . . . , bj).

2.1 Interactive Proofs and the GKR Protocol

In order to capture more naturally our results, we present these definitions in
terms of the prover P trying to convince a verifier V that the application of an
arithmetic circuit C over a ring R on some input inp results on a specific output
out, where inputs and outputs are elements of R.

Definition 1. Let C be an arithmetic circuit over a ring R. A pair of interactive
machines 〈P,V〉 is an ε-sound interactive proof (IP) for C if, on a claimed output
out by P:

– Completeness: For every inp s.t. C(inp) = out, it holds that
Pr[〈P,V〉(inp) = accept] = 1.

– ε-Soundness: For any inp s.t. C(inp) �= out, and any P∗, it holds that
Pr[〈P∗,V〉(inp) = accept] ≤ ε.

We say that an interactive proof has the succinct property if the running
time of V and the total communication between P and V is poly(|x|, log(|C|)).

The Sum-Check Protocol. Given an n-variate polynomial f : F
n → F, the

sum-check protocol [LFKN92] allows a verifier to outsource the computation
of

∑
�b∈{0,1}n f(�b) to a prover. If the verifier was to do this on their own, it

would take them O(2n) time. Let d be an upper bound on the degree of each
individual variable of f . The sum-check protocol is an n-round interactive proof
for this task, where both the proof size and the verifier’s work is O(n · d) and
the soundness error is ε = n · d · |F|−1. For a full description see either [LFKN92]
or the full version of this work.

The GKR Protocol. The basics of how circuits and wire values are represented
in the GKR protocol have been explained at the beginning of Sect. 1.1. Here
we give a bit more details about how Eq. (1) is combined with the sum-check
protocol and how to progress from the output to the input layer. P first sends the
claimed output to V, consisting of 2s0 different values. V defines a multi-linear
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polynomial V̂ (0) : F
s0 → F

s0 which extends V (0), samples a random γ ∈ F
s0 and

sends it to P. Both parties then evaluate V̂ (0)(γ) and run a sum-check protocol
on Eq. (1) for i = 0 and evaluated at γ. Let fi(�Z,�X,�Y) be the function such
that Eq. (1) is V̂ (i)(�Z) =

∑
x,y∈{0,1}si+1 fi(�Z, x, y). At the end of the protocol, V

needs to compute f0(γ, χ, ψ), where χ, ψ ∈ F
s1 are two random values produced

throughout the sum-check execution. Whereas V can evaluate âdd
(1)

(γ, χ, ψ)

and m̂ult
(1)

(γ, χ, ψ) on their own, it has to ask P for V̂ (1)(χ), V̂ (1)(ψ), since
those evaluations require the knowledge of the wire values on layer 1. This way,
a claim about the output layer has been reduced to two claims about layer one,
V̂ (1)(χ) and V̂ (1)(ψ). V and P could run one sum-check protocol for each of those
claims using Eq. (1) for i = 1, but the number of sum-check executions would
eventually become exponential in the depth of the circuit by following such a
route. In order to avoid this, both claims are combined into a single claim. We
provide a full description of the GKR protocol in the full version [Sor22]. Below,
we state the complexity and soundness of its current most efficient version.

Theorem 1 ([XZZ+19]). Let C : F
n → F

k be a depth-D layered arithmetic
circuit. The GKR protocol is an interactive proof for C with soundness error
O(D log |C|/|F|). Its communication and round complexity is O(D log |C|). The
prover complexity is O(|C|) and the verifier complexity is O(n+k+D log |C|+T ),

where T is the optimal time to evaluate every âdd
(i)

, m̂ult
(i)

wiring predicate. For
log-space uniform circuits, T = poly log(|C|).

2.2 Algebraic Background

We recap some basic notions in non-commutative algebra. Unless otherwise spec-
ified, whenever we talk about a ring R we mean a ring with identity 1 �= 0, for
which we assume neither commutativity nor finiteness.

Definition 2. Let R be a ring. An element a ∈ R is a unit if there exists b ∈ R
such that a · b = b · a = 1. The set of all units is denoted by R∗.

Definition 3. An element a ∈ R \ {0} is a left (resp. right) zero divisor if
∃ b ∈ R \ {0} such that a · b = 0 (resp. b · a = 0).

Sets of elements whose pairwise differences are either regular or invertible
will play a crucial role in our constructions.

Definition 4. Let A = {a1, . . . , an} ⊂ R. We say that A is a regular difference
set, or R.D. set for short, if ∀i �= j, ai − aj ∈ R is not a zero divisor. We define
the regularity constant of R to be the maximum size of an R.D. set in R.

Definition 5. Let A = {a1, . . . , an} ⊂ R. We say that A is an exceptional set
if ∀i �= j, ai −aj ∈ R∗. We define the Lenstra constant of R to be the maximum
size of an exceptional set in R.
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Besides “how regular” or “how invertible” are certain subsets of ring ele-
ments, we might also be interested in “how commutative” they are.

Definition 6. The center of a ring R, denoted by Z(R) consists of the elements
a ∈ Z(R) such that ∀b ∈ R, a · b = b · a.

Definition 7 ([QBC13]). Let A = {a1, . . . , an} ⊂ R. We say that A is a com-
mutative set if ∀ai, aj ∈ A, ai · aj = aj · ai.

Definition 8. Let R be a ring and A ⊂ R. The centralizer of the set A in R is:

CR(A) = {b ∈ R : b · a = a · b,∀a ∈ A}.

Lemma 1. Let R be a ring and A ⊂ R a commutative set. Then CR(A) ⊇
(A ∪ Z(R)). Furthermore, if A ⊆ Z(R), then CR(A) = R.

3 Polynomials over Non-commutative Rings

There is no unique choice for how to define a polynomial ring with coefficients on
a non-commutative ring R. Usually, as in [QBC13,ES21], univariate polynomials
are defined in such a way that “the indeterminate commutes with coefficients”,
so as to uniquely express any polynomial f ∈ R[X]≤d as f(X) =

∑d
i=0 fiXi, where

fi ∈ R. In the language of centralizers, this approach enforces CR[X]({X}) = R[X].
In the multivariate case, one can choose whether to define the ring so that
indeterminates commute with each other or not. For rings where A ⊆ Z(R),
we will stick with the former case and refer to it as a ring of non-commutative
polynomials. Due to space constraints, we defer the proofs of every statement in
this section to the full version [Sor22].

Definition 9. Let (R,+, ∗) be a ring and let Σ = {X1, . . . , Xn}. Let Σ∗ be the
free commutative monoid generated by Σ, i.e. the monoid whose binary operation
is the concatenation of finite strings and the letters of the alphabet Σ commute
with each other. The ring of non-commutative polynomials R[X1, . . . , Xn] is the
monoid ring of Σ∗ over R. Explicitly, a ∈ R[X1, . . . , Xn] is of the form a =∑

m∈Σ∗ amm, where am ∈ R and there is only a finite amount of am �= 0.
Addition and multiplication are defined as follows:

– Addition: a + b =
∑

m∈Σ∗(am + bm)m
– Multiplication: a · b =

∑
m1,m2∈Σ∗(am1 · bm2)m1m2.

Furthermore, for any set S ⊆ R, we define S[X1, . . . , Xn]≤d to be the subset of
polynomials in R[X1, . . . , Xn] of degree at most d whose coefficients belong to S.

The previous definition has many advantages, but it requires to be care-
ful about polynomial evaluation, which we next show to be a ring homomor-
phism if and only if the evaluation points belong to Z(R). For example, con-
sider polynomials f(X) = f0 + f1X and g(X) = g1X + g2X2. We would have that
h(X) = f(X) · g(X) = f0g1X + (f0g2 + f1g1)X2 + f1g2X3. Unless α commutes with
g1 and g2, this results in h(α) �= f(α) · g(α).



504 E. Soria-Vazquez

Lemma 2. Let A = {αi}n
i=1 ⊂ R be a commutative set and let α = (α1, . . . , αn).

Denote by Evα : R[X1, . . . , Xn] → R the map that takes a polynomial f ∈
R[X1, . . . , Xn] to its evaluation2 at α, by replacing each appearance of Xi with
αi and applying the product operation of R. Then:

1. ∀f, g ∈ R[X1, . . . , Xn], Evα(f) + Evα(g) = Evα(f + g).
2. Evα(f) · Evα(g) = Evα(f · g) holds ∀f, g ∈ R[X1, . . . , Xn] if and only if A ⊆

Z(R).

A different way to define the polynomial ring is by treating the indetermi-
nate X as a formal, non-commuting symbol. Polynomial addition works as usual,
whereas the product looks similar to string concatenation. In terms of centraliz-
ers, in this approach we enforce CR[X]({X}) = ∅. The advantage of this strategy is
that polynomial evaluation at any α ∈ R becomes a ring homomorphism, in con-
trast with Definition 9, where that is only true if α ∈ Z(R) (Lemma 2). On the
other hand, not being able to simplify polynomial expressions as in Definition 9
not only results in lengthier polynomials, but it also eliminates the possibility to
prove many useful results about polynomials. We will refer to this construction
as the ring of totally non-commutative polynomials.

Definition 10. Let (R,+,�) be a ring and let Σ = R ∪ {X1, . . . , Xn}. Let ∗
denote the string concatenation operation. Let M be the monoid generated by Σ
according to the non-commutative binary operation · : M × M → M, which we
restrict to finite strings and where:

r · s =

{
r � s, if r, s ∈ R

r ∗ s, if (r ∈ R ∧ s ∈ {Xi}n
i=1) ∨ (r ∈ {Xi}n

i=1 ∧ s ∈ R) ∨ (r, s ∈ {Xi}n
i=1)

(2)
The ring of totally non-commutative polynomials R�X1, . . . , Xn� consists of ele-
ments a ∈ R�X1, . . . , Xn� of the form a =

∑
m∈M am ·m, where am ∈ R and there

is only a finite amount of am �= 0. Addition (inherited from R) and multiplication
(inherited from M) are defined as follows:

– Addition: a + b =
∑

m∈M(am + bm) · m
– Multiplication: a · b =

∑
m1,m2∈M am1 · m1 · bm2 · m2.

Lemma 3. R�X1, . . . , Xn� is a ring.

Note 1. The only difference between (M, ·) in Definition 10 and the free monoid
over Σ is that, in M, strings containing sub-strings of the form Xi ∗ a ∗ b ∗ Xj do
not exist, since in M those are “simplified” to Xi ∗ c ∗ Xj where c = a � b.

Note 2. R�X1, . . . , Xn� allows for limited simplifications in polynomial expres-
sions: Those inherited from the associative and distributive properties if we
go from the “outside” to the “inside” of a monomial. E.g., it is true that
XrX3 + XsX3 = X(r + s)X3, but ∀m1 �= m2 ∈ M, we cannot simplify beyond
XrX3m1 + XsX3m2 = X(rX3m1 + sX3m2), since m1 �= m2 “blocks” any simplifica-
tion from the right end (besides any common factor at the right end of m1,m2).
2 Throughout the text, we implicitly refer to Evα(f) whenever we write either f(α) or

f(α1, . . . , αn) and f ∈ R[X1, . . . , Xn].
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The rationale behind defining the ring of non-commutative polynomials as
in Definition 9, as they do in e.g. [QBC13,ES21], is that in those works unique
polynomial interpolation is the most crucial property. In our case, the most
important requirement is that polynomial evaluation is a ring homomorphism,
so that we can meaningfully apply a sumcheck protocol to the layer consistency
Eq. (1). Unfortunately, the approach from Definition 10, where CR[X](X) = ∅, does
not serve us either, since the layer consistency equation is cubic. As it will become
clearer later on, when proving results about Euclidean division (Theorem 2)
and Lemma 6, we cannot bound the number of roots of the product of three
polynomials by simply following that route. Such bound is in turn necessary to
establish the soundness error of our new interactive proofs.

Due to the above, we introduce a novel polynomial ring definition, some-
where between Definitions 9 and 10. We define the polynomial ring with
evaluation set A, RA[X], by taking into account the specific set of points
A ⊂ R on which polynomials will be ever evaluated. Rather than construct-
ing the ring so that CR[X1,...,Xn]({Xi}n

i=1) = R[X1, . . . , Xn] (as in Definition 9)
or such that CR�X1,...,Xn�({Xi}n

i=1) = ∅ (as in Definition 10), we will enforce
CRA[X1,...,Xn]({Xi}n

i=1) = CR(A) ∪ {Xi}n
i=1. Hence, in RA[X1, . . . , Xn], indetermi-

nates commute with each other and “an indeterminate commutes with a coeffi-
cient c ∈ R if and only if c ∈ CR(A)”. Formally, we construct RA[X1, . . . , Xn]
by taking the quotient of the ring of totally non-commutative polynomials
R�X1, . . . , Xn� with a “commutator ideal” IA that enforces our precise commu-
tativity requirements.

Definition 11. Let R�X1, . . . , Xn� and let A ⊂ R. For i, j = 1, . . . n, let Si,j =
{XiXj − XjXi} and Si = {Xic − cXi : c ∈ CR(A)}. The two-sided ideal generated
by

⋃n
i=1

⋃i−1
j=1 Si,j ∪ Si is the commutator ideal of A, which we denote by IA.

For our specific goals, we will impose that the set A is commutative (see
Definition 7). This is to ensure that CR(A) ⊇ (A ∪ Z(R)).

Definition 12. Let A ⊂ R be a commutative set and let IA be the commutator
ideal it defines. We define the ring of polynomials with evaluation set A to be
RA[X1, . . . , Xn] = R�X1, . . . , Xn�/IA. For any set S ⊆ R, we define SA[X1, . . . , Xn]
to be the subset of polynomials in RA[X1, . . . , Xn] whose coefficients belong to S.

Claim. Let S ⊆ R. Any f ∈ SA[X1, . . . , Xn] can be uniquely expressed as

f =
s∑

k=1

( m∏

�=1

(
rk,�

n∏

i=1

(Xdi,�

i )
))

,

where rk,� ∈ S ∪ {1}, di,� ∈ Z and m is the maximum length of any monomial in
f . We consider X0i to be the empty string, for any i = 1, . . . , n.
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By Lemma 1, when A ⊆ Z(R) we have that CR(A) = R, in which
case the commutator ideal enforces CRA[X1,...,Xn]({Xi}n

i=1) = RA[X1, . . . , Xn].
Intuitively, in this situation, the polynomial ring RA[X1, . . . , Xn] behaves the
same way as R[X1, . . . , Xn] in Definition 9: R[X1, . . . , Xn] also satisfies that
CR[X1,...,Xn]({Xi}n

i=1) = R[X1, . . . , Xn] and, when the evaluation points are in
A ⊆ Z(R), evaluating polynomials from R[X1, . . . , Xn] is a ring homomorphism
too (Lemma 2). In the full version [Sor22] we show in more detail how both
definitions are interchangeable for our purposes when A ⊆ Z(R).

For the sake of generality, we will state and prove our results using the more
general ring RA[X1, . . . , Xn] from Definition 12. Nevertheless, when A ⊂ Z(R),
it is conceptually simpler to treat polynomials as elements from R[X1, . . . , Xn]
(Definition 9). For basic algebraic results that we will present in Sect. 3.1, such as
Euclidean division or the number of roots of a polynomial, simplified statements
and proofs for R[X1, . . . , Xn] can be found in e.g. [ES21].

3.1 Sandwich Polynomials

In the previous block of results, we have seen that when A ⊂ Z(R), the ring
RA[X1, . . . , Xn] from Definition 12 behaves the same way as R[X1, . . . , Xn] in Defi-
nition 9. It is when A is merely a commutative set –and hence CRA[X1,...,Xn](Xi) ⊇
(A ∪ Z(R) ∪ {Xj}n

j=1)– that our new Definition 12 will be necessary to enable
our GKR-style protocol over a ring R ⊃ A.

Our protocols will be concerned with a particular subset of the polynomials in
RA[X1, . . . , Xn], concretely the ones for which monomials have a single coefficient,
possibly “surrounded” by indeterminates on both sides. We will refer to these as
sandwich polynomials, metaphorically thinking of the indeterminates as bread
and the coefficient as the content3. The goal of this subsection is to generalize the
Schwartz-Zippel lemma to these polynomials, to the extent that it is possible.

Definition 13 (Sandwich polynomials). Let A be a commutative subset of
a ring R and let RA[X1, . . . , Xn] be the ring of polynomials with evaluation set A.
Let i = (i1, . . . , in), j = (j1, . . . , jn). We define the set of sandwich polynomials
over R with left-degree at most d′ and right-degree at most d to be:

RA[X1, . . . , Xn]≤d′,≤d

= {f(X1, . . . , Xn) =
∑

i∈[0,d′]n,j∈[0,d]n

Xin
n · . . . · Xi1

1 fi,jX
j1
1 · . . . · Xjn

n | fi,j ∈ R}

The subset of polynomials with right-degree exactly d, RA[X1, . . . , Xn]≤d′,d ⊂
RA[X1, . . . , Xn]≤d′,≤d, is given by further imposing that, for every Xk, the
polynomial must have at least one monomial of right-degree d in Xk. For-
mally: ∀k ∈ [n] ∃i ∈ [0, d′]n, j1, . . . , jk−1, jk+1, . . . , jn ∈ [0, d] such that
3 The reader might find funny to think about multiplication as “stacking sandwiches”

and addition as putting sandwiches next to each other. The commutativity of indeter-
minates with elements in CR(A), simplifications enabled by the distributive property
and other results in this section provide some (metaphorical) food for thought!
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fi,(j1,...,jk−1,d,jk+1,...,jn) �= 0. The subset of polynomials with left-degree exactly d′,
RA[X1, . . . , Xn]d′,≤d, is defined analogously. Furthermore, for any set S ⊆ R, we
define SA[X1, . . . , Xn]≤d′,≤d as the subset of polynomials in RA[X1, . . . , Xn]≤d′,≤d

whose coefficients fi,j all belong to S. Polynomials of exact degrees are defined
as in the previous paragraph.

Definition 14 (Toast polynomials). Let �X = (X1, . . . , Xn). A sandwich poly-
nomial f is a left (resp. right) toast polynomial if it is of right (resp. left) degree
zero, i.e. f ∈ RA[�X]≤d′,0 (resp. f ∈ RA[�X]0,≤d). If we do not want to specify the
position of the indeterminate, we may simply refer to it as a toast polynomial.

In the previous definitions, it is important to note that a polynomial in
RA[X1, . . . , Xn]≤d′,≤d has at most ((d′ + 1) · (d + 1))n monomials, i.e. for fixed
powers i ∈ [0, d′]n, j ∈ [0, d]n, an expression of the form

∑
� X

in
n ·. . .·Xi1

1 f
(�)
i,j X

j1
1 ·. . .·

Xjn
n is simplified into Xin

n ·. . .·Xi1
1 fi,jX

j1
1 ·. . .·Xjn

n , where fi,j =
∑

� f
(�)
i,j . Furthermore,

when we talk about polynomials of exact right degree d or left degree d′, we
assume that all possible simplifications have taken place. In particular4, for f ∈
RA[X]≤d′,d, we assume that fi,d is not simplified away with terms of the form
Xi+kfi+k,d−kXd−k, where k ∈ {1, . . . , d}, when fi,d, fi+k,d−k ∈ CR(A).

Lemma 4. Let �X = (X1, . . . , Xn). For 	 = 1, . . . m, let f (�) ∈ RA[�X]≤d′
f ,≤df

,
a(�) ∈ CR(A)[�X]≤d′

a,≤da
and b(�) ∈ CR(A)[�X]≤d′

b,≤db
. Let g =

∑m
�=1 a(�)f (�)b(�).

Then g ∈ RA[�X]≤(d′
a+da+d′

f ),≤(d′
b+db+df ).

Lemma 5. Let f ∈ RA[X1, . . . , Xn]≤d′,≤d and let a� ∈ A. Then, ∀	 ∈ {1, . . . , n}:
f(X1, . . . X�−1, a�, X�+1, . . . , Xn) ∈ RA[X1, . . . X�−1, X�+1, . . . , Xn]≤d′,≤d.

The advantage of sandwich polynomials is that they can be divided by monic
polynomials in SA[X], where S = CR(A) (recall notation from Definition 12).

Theorem 2 (Euclidean division). Let f(X) ∈ RA[X]d′,d be a non-zero
sandwich polynomial and let g(X) ∈ CR(A)A[X]0,m be a monic polynomial5.
There exist unique sandwich polynomials q�(X), r�(X) (resp. qr(X), rr(X)) such
that f(X) = q�(X) · g(X) + r�(X) (resp. f(X) = g(X) · qr(X) + rr(X)), where
q�(X) ∈ RA[X]≤d′,≤d−m and r�(X) ∈ RA[X]≤d′,≤m−1 (resp. qr(X) ∈ RA[X]≤d−m,≤d,
rr(X) ∈ RA[X]≤m−1,≤d).

Given the previous theorem, we can prove the following result about the
maximum number of roots of toast polynomials on their evaluation set A, when
A is not only commutative but also regular difference (Definition 4).

Lemma 6. Let A be a commutative, regular difference set of R and let f ∈
RA[X]0,≤d (resp. f̃ ∈ RA[X]≤d,0) be a non-zero toast polynomial. Then f (resp.
f̃) has at most d roots in A.
4 We give this example in the univariate case in order to avoid heavier notation.
5 I.e. g(X) = Xm +

∑m−1
�=0 g�X

�. Note that since g� ∈ CR(A) ∀� ∈ [0, m − 1], it is also
true that g(X) ∈ CR(A)A[X]m,0, that g(X) ∈ CR(A)A[X]m−1,1, etc.
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The proof of the previous is particularly useful to understand our need for
toast polynomials. Whereas, given Theorem 2 and Lemma 6, one could hope to
be able to bound the number of roots of any polynomial f ∈ RA[X]≤d′,≤d, we were
unable to prove such a result. This is due to the fact that the Euclidean division
of sandwich polynomials by a polynomial gi(X) = (X − αi), where αi is a root
of f , provides us with a remainder that is of degree zero only on the side from
which gi(X) is dividing. If α1 is a root of f , by calling Theorem 2 so that g1(X)
“divides on the right”, we can prove that f(X) = f1(X)(X − α1) + r1(X), where
f1 ∈ RA[X]≤d′,≤d−1, r1 ∈ RA[X]≤d′,0. If we divide r1(X) by g1(X) on the left, we
get to f(X) = f1(X)(X−α1)+(X−α1)f2(X), where f2 ∈ RA[X]≤d′−1,0. The problem
now is that, if α2 ∈ A is another root, we find no way forward from the expression
0 = f(α2) = f1(α2)(α2−α1)+(α2−α1)f2(α2). Alternative strategies also beared
no positive results. This important limitation will condition the generalization
of almost every building block of our doubly-efficient IP over non-commutative
rings when A is merely commutative, rather than A ⊆ Z(R).

Lemma 7 generalizes the Schwartz-Zippel lemma to toast polynomials.

Lemma 7 (Schwartz-Zippel Lemma). Let A ⊆ R be a finite, commutative
regular difference set. Let �X = (X1, . . . , Xn) and let f ∈ (RA[�X]≤d,0 ∪ RA[�X]0,≤d)
be a non-zero toast polynomial. Then, Pr�a←An [f(�a) = 0] ≤ n · d · |A|−1.

Multi-linear extensions were introduced in [BFL91] and extensively used in
[CMT12]. Here, we generalize their definition to toast polynomials (Definition 14).

Lemma 8. Let A be a regular difference, commutative set s.t. {0, 1} ⊂ A ⊂ R.
Given a function V : {0, 1}m → R, there exist unique multilinear polynomials
V̂L ∈ RA[X1, . . . , Xm]≤1,0 and V̂R ∈ RA[X1, . . . , Xm]0,≤1 extending V , i.e. V̂L(a) =
V (a) = V̂R(a) for all a ∈ {0, 1}m. We call V̂L (resp. V̂R) the left (resp. right)
multilinear extension of V , which we will abbreviate by LMLE (resp. RMLE).

When A ⊂ Z(R), or when V : {0, 1}m → CR(A), it furthermore holds that
V̂L(X1, . . . , Xm) = V̂R(X1, . . . , Xm), in which case we will simply refer to the mul-
tilinear extension (MLE) of V and denote it by V̂ (X1, . . . , Xm).

4 Doubly-Efficient IP over Non-commutative Rings:
Regular Difference Set Contained in Z(R)

In our first generalization, we assume that A is an R.D. set such that A ⊂ Z(R).
This greatly simplifies our protocol compared with the one we will present in
Sect. 5, where we only assume that A is commutative.

As most building blocks work essentially as in the finite commutative ring
case [CCKP19], we only give a high level overview of this simpler variant. Since
A ⊂ Z(R), all polynomials can be expressed as elements from R[X1, . . . , Xn] (the
ring in Definition 9) rather than RA[X1, . . . , Xn] (as we show in the full version).
This simpler polynomial ring definition is good enough in this case, since poly-
nomial evaluation at elements in A is a ring homomorphism (Lemma 2) and
furthermore we can bound the number of roots of these polynomials in A. The
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latter has been proved in [QBC13,ES21], where they use exceptional rather than
R.D. sets, but such assumption can be weakened for that result. Furthermore, we
have unique MLEs rather than LMLEs and RMLEs (see Lemma 8) and both the
layer consistency equation (Eq. (1)) and sum-check protocol generalize naturally.

The only state-of-the-art tool for doubly-efficient IPs that requires more care
in this scenario is the linear time prover sum-check protocol from [XZZ+19]. This
is a problem which we also encounter and solve in the harder case of Sect. 5. We
refer the reader interested in the particularities of this case to the full version.

Theorem 3. Let R be a ring and A ⊂ Z(R) a regular difference set. Let
C : Rn → Rk be a depth-D layered arithmetic circuit. There is an interac-
tive proof for C with soundness error O(D log |C|/|A|). Its round complexity is
O(D log |C|) and it communicates O(D log |C|) elements in R. The prover com-
plexity is O(|C|) and the verifier complexity is O(n + k + D log |C| + T ), where
T is the optimal time to evaluate every wiring predicate. For log-space uniform
circuits, T = poly log(|C|) and hence the IP is succinct.

4.1 Improved Efficiency

The generality of our construction opens up possibilities for concrete efficiency
improvements. One such example is the case when the ring R over which the
circuit is defined can be seen as a free module of rank d over a ring S with a R.D.
set A ⊆ Z(S). Namely, as long as a product of elements in R takes more than d
products in S, we have achieved our goal: Once the circuit has been evaluated, all
operations the prover performs are the (sum of) evaluation of polynomials in R[X]
at random elements from A. Polynomial evaluation is (the sum of) the product
of elements of R with elements of S. Hence, if the ratio between the product of
two elements in R and the product of an element of R with an element of S is
bigger than the constants hidden in the O(|C|) complexity of the prover, this
results in a sublinear time prover! We are only aware of two previous examples
in the literature where the prover is sublinear in the size of the circuit: Matrix
multiplication [Fre79,Tha13] and Fast Fourier Transforms (FFT) [LXZ21].

In [LXZ21], the authors provide a sum-check protocol for FFTs where the
prover only needs to do additional O(d) work to produce a proof for a vector
of size d. This is sublinear, since the FFT complexity is O(d log d). If FFTs are
used for fast polynomial multiplication, we also obtain sublinear time provers by
taking R to be the polynomial ring and S its coefficient ring. Multiplying two
degree-d polynomials requires either O(d2) or O(d log d) operations in S (since
in practice, for smaller values of d the former approach might be preferable).
Multiplying such a polynomial with an element of S, on the other hand, requires
exactly d operations in S, which is a gap of either O(d) or O(log d) between both
approaches. Thus, with our protocol we obtain a sublinear prover for polynomial
multiplication regardless of whether FFT is actually employed in practice.

For a matrix ring R = Mn×n(S), we have that R is a free module of rank
n2 over S. Since the best matrix multiplication algorithms we know require way
more than n2 operations, we once again obtain a sublinear prover by applying the
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observation at the beginning of this subsection. All in all, when taking every other
complexity metric into account, Thaler’s optimal MATMUL protocol [Tha13] is
still preferable to our approach in terms of concrete efficiency. Nevertheless,
we find interesting the extent to which our construction is versatile: We can
obtain sublinear provers as simple, natural instantiations, rather than having to
design a specific protocol. Furthermore, as far as we know, ours is only the third
conceptually different method allowing for sublinear provers when dealing with
matrix multiplication [Fre79,Tha13].

Even if they do not necessarily achieve sublinear time provers, many other
rings R benefit from the improvement implied from being a rank-d module over a
ring S. This is the case of many Clifford algebras, whose applications we discuss
in the full version [Sor22]. For example, let R = H(S) denote the quaternions
with coefficients over a ring S. We have that Z(R) = Z(S), and R is a free module
of rank 4 over S. Multiplying two elements in R requires at least 7 multiplications
in S for a commutative ring S (or at least 8 in the non-commutative case) [HL75].
Dual quaternions are of rank 8 over their coefficient ring S, whereas their product
consists on three quaternion products. Hence, if S is commutative, the prover
would roughly obtain a factor of 21/8 = 2.625 improvement compared with
running over [CCKP19] over S.

Theoretical Improvements. If we furthermore assumed that addition and multi-
plication of elements of the chosen non-commutative ring R can be performed
at unit cost, we can obtain a series of theoretical results. Even though one could
imagine to have specific hardware for that goal, these observations remain mostly
theoretical, as they require to work with exponential size rings.

First of all, in [HY11] Hrubeš and Yehudayoff show that given a polynomial
f (over a ring S) of degree d in n variables, there is a non-commutative extension
ring R such that S ⊂ Z(R) and f has a formula of size O(dn) over R. On the
other hand, if S is an algebraically closed field, no commutative extension ring
R can reduce the formula or circuit complexity of f . These would all seem good
news for us: Non-commutativity might be a requirement, the resulting formula
is really small and furthermore R could potentially be a free module over S.
Unfortunately, the dimension of this ring extension is roughly nd.

In [SS10], Schott and Staples show how many NP-complete and 
P-complete
problems can be moved to class P if addition and multiplication in a Clifford
algebra can be assumed to have unit cost. These include: Hamiltonian cycle
problem, set covering problem, counting the edge-disjoint cycle decompositions
of a finite graph, computing the permanent of an arbitrary matrix, computing
the girth and circumference of a graph, and finding the longest path in a graph.
Thus, in this model of computation, Theorem 3 provides us with a doubly-
efficient IP for those languages6. Remember that, since for a language to have
a doubly-efficient IP it has to belong to BPP, this was out of reach in the non-
algebraic complexity world! Once again, the problem is that the algebra has an
exponential dimension.

6 In all precision, Theorem 3 only deals with layered arithmetic circuits, but our result
can be generalized to general arithmetic circuits the same way as in [ZLW+21].
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5 Doubly-Efficient IP over Non-commutative Rings:
Commutative, Regular Difference Set

Our most general doubly-efficient IP supports rings that are possibly infinite and
non-commutative, as long as they contain a commutative R.D. set A such that
A ⊂ R. As a writing simplification, we will add the condition that7 {0, 1} ⊂ A.
An example ring to which this section applies is R = Mn×n(Z/pk

Z) for a prime
p. Since we can embed the Galois Ring S = GR(pk, n) into R and S contains an
exceptional set A of size pn, we can pick that same A as our commutative, R.D.
set [ES21]. On the other hand, we have that Z(R) = {a · Id : a ∈ Z/pk

Z}, so
the biggest regular difference set contained in Z(R) is of size p. Hence, for small
values of p, Sect. 4 might not be enough for soundness.

5.1 A New Layer Consistency Equation

Let us look at Eq. (1). The first problem when trying to generalize it to this
setting, is that we cannot define MLEs of the Vi : {0, 1}si → R functions which
map b ∈ {0, 1}si to the b-th wire in the i-th layer. Instead, we need to content
ourselves with either LMLEs or RMLEs for those functions (see Lemma 8). A
natural impulse would be to settle for e.g. the LMLE V̂

(i)
L (�Z) and express the

consistency with layer i+1 as follows, where âdd
(i+1)

(�Z,�X,�Y), m̂ult
(i+1)

(�Z,�X,�Y) ∈
RA[�X,�Y,�Z]≤1,0, V̂

(i+1)
L (�X) ∈ RA[�X]≤1,0 and V̂

(i+1)
R (�Y) ∈ RA[�Y]0,≤1:

V̂
(i)
L (�Z) =

∑

x,y∈{0,1}si+1

(
m̂ult

(i+1)
(�Z, x, y) · (V̂ (i+1)

L (x) · V̂
(i+1)
R (y)

)

+ âdd
(i+1)

(�Z, x, y) · (V̂ (i+1)
L (x) + V̂

(i+1)
R (y)

))
. (3)

The right hand side is a sandwich polynomial in RA[�X,�Y,�Z]≤1,≤1, since the coef-
ficients of the wiring predicates belong to Z(R). Having such a sandwich is
problematic when defining a sum-check protocol, which would progress through
univariate polynomials in each indeterminate by partially evaluating the right
hand side of Eq. (3). More specifically, the problem is with the Yj indetermi-
nates (for j = 1, . . . , si+1), as the partial evaluations sent by the prover would be
sandwich polynomials RA[Yj ]≤1,≤1. Since our Schwartz-Zippel lemma (Lemma 7)
only copes with toast polynomials, this will not provide us with a sound protocol.

In order to have toast polynomials at every step of the sum-check protocol,

we replace âdd
(i+1)

(�Z,�X,�Y), m̂ult
(i+1)

(�Z,�X,�Y) ∈ RA[�Z,�X,�Y]≤1,0 in Eq. (3) with

âdd
(i+1)

L (�Z,�X,�W), m̂ult
(i+1)

L (�Z,�X,�W) ∈ RA[�Z,�X,�W]≤1,0, still evaluating �W in y. This
seemingly minor change requires to develop a new sum-check protocol which

7 We can remove that simplification and work with polynomials in
RA∪{0,1}[�U,�W,�X,�Y]≤2,≤2 rather than RA[�U,�W,�X,�Y]≤2,≤2, since if A is a commu-
tative set, so is A ∪ {0, 1}. For the purpose of clarity, we avoid that notation.
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ensures that P evaluates �Y and �W at the same y. For the layer consistency equa-
tions featuring V̂

(i)
R (�Z) ∈ RA[�Z]0,≤1, we will also do a change of variables, as we

describe in Lemma 9. We display that information in Table 1.

Table 1. Polynomials involved in layer consistency equations. Note that MLEs such as

âdd
(i+1)
L could be considered as either polynomials in RA[�X,�W,�Z]≤1,0 or RA[�X,�W,�Z]0,≤1.

Polynomial ̂add
(i+1)
L , ̂mult

(i+1)
L

̂add
(i+1)
R , ̂mult

(i+1)
R V̂

(i+1)
L V̂

(i+1)
R V̂

(i)
L V̂

(i)
R

(L/R)MLE MLE MLE LMLE RMLE LMLE RMLE

Ring RA[�X,�W,�Z]≤1,0 RA[�Y,�U,�Z]≤1,0 RA[�X]≤1,0 RA[�Y]0,≤1 RA[�Z]≤1,0 RA[�Z]0,≤1

Lemma 9. Let �Z = (Z1, . . . , Zsi
). Toast multilinear polynomials V̂

(i)
L ∈

RA[�Z]≤1,0 and V̂
(i)
R ∈ RA[�Z]0,≤1 are equal to the following expressions:

V̂
(i)
L (�Z) =

∑

x,y∈{0,1}si+1

(
m̂ult

(i+1)

L (�Z, x, y) · (V̂ (i+1)
L (x) · V̂

(i+1)
R (y)

)

+ âdd
(i+1)

L (�Z, x, y) · (V̂ (i+1)
L (x) + V̂

(i+1)
R (y)

))
. (4)

V̂
(i)
R (�Z) =

∑

x,y∈{0,1}si+1

((
V̂

(i+1)
L (x) · V̂ (i+1)

R (y)
) · m̂ult(i+1)

R (�Z, x, y)

+
(
V̂

(i+1)
L (x) + V̂

(i+1)
R (y)

) · âdd(i+1)

R (�Z, x, y)
)
. (5)

Where, in Eq. (4), âdd
(i+1)

L (�Z,�X,�W), m̂ult
(i+1)

L (�Z,�X,�W) ∈ RA[�X,�W,�Z]≤1,0 and in

Eq. (5), âdd
(i+1)

R (�Z,�U,�Y), m̂ult
(i+1)

R (�Z,�U,�Y) ∈ RA[�Y,�U,�Z]≤1,0.

Proof. The term on each side of Eq. (4) (resp. Eq. (5)) is a multilinear polynomial
in RA[�Z]≤1,0 (resp. RA[�Z]0,≤1), so by the uniqueness of LMLEs (resp. RMLEs),
we are done if their evaluation at every z ∈ {0, 1}si coincides. The latter follows

from the definitions of âdd
(i+1)

L , m̂ult
(i+1)

L (resp. âdd
(i+1)

R , m̂ult
(i+1)

R ). �

Remark 1. An interesting detail about this construction, in which A �⊂ Z(R),
is that it is necessary for wiring predicates to be MLEs, rather than simply
LMLEs or RMLEs. Otherwise, we would not obtain toast polynomials (in the
Xi variables for Eq. (4), in Yi variables for Eq. (5)) throughout the execution of
the sumcheck protocol and we would be unable to apply Lemma 7 to determine
soundness. Whereas for the standard addition and multiplication gates (since
{0, 1} ⊆ Z(R) ⊆ CR(A)) we always obtain MLEs, if we use more complex wiring
predicates which enable multiplication by hard-coded constants, those constants
have to belong to CR(A).



Doubly Efficient Interactive Proofs over Infinite and Non-commutative Rings 513

5.2 2-to-1 Reduction

Our protocol starts with a simple layer consistency equation, which relates the
output layer with layer 1 in the circuit according to the following equation:

V̂
(0)
L (γ) =

∑

x,y∈{0,1}s1

(
m̂ult

(1)

L (γ, x, y) · (V̂ (1)
L (x) · V̂

(1)
R (y)

)

+âdd
(1)

L (γ, x, y) · (
V̂

(1)
L (x) + V̂

(1)
R (y)

))
. (6)

At the conclusion of the sumcheck protocol which is run to verify Eq. (6), V needs

to evaluate m̂ult
(1)

L (γ,�X,�W)·(V̂ (1)
L (�X)·V̂ (1)

R (�Y))+âdd
(1)

L (γ,�X,�W)·(V̂ (1)
L (�X)+V̂

(1)
R (�Y))

by replacing �X,�Y,�W with respective random values χ(0), ψ(0), ω(0) ∈ As1 . Since V
cannot compute neither V̂

(1)
L (χ(0)) nor V̂

(1)
R (ψ(0)) on their own, P will provide

those values. These alleged evaluations have to satisfy their corresponding layer
consistency equations, using LMLEs and RMLEs respectively. In order to avoid
an exponential blow-up in the depth of the circuit, we perform a reduction
from the two claimed values V̂

(1)
L (χ(0)), V̂ (1)

R (ψ(0)) to a single one. We do so by
sampling random values α(1), β(1) ∈ A and combining their corresponding layer
consistency equations as it is described next:

α(i)V̂
(i)
L (χ(i−1)) + β(i)V̂

(i)
R (ψ(i−1)) =

∑

x,y∈{0,1}si+1

(
α(i) · m̂ult(i+1)

L (χ(i−1), x, y) · (V̂ (i+1)
L (x) · V̂ (i+1)

R (y))

+ β(i) · (V̂ (i+1)
L (x) · V̂

(i+1)
R (y)) · m̂ult(i+1)

R (ψ(i−1), x, y)

+ α(i) · âdd(i+1)

L (χ(i−1), x, y) · (V̂ (i+1)
L (x) + V̂

(i+1)
R (y))

+ β(i) · (V̂ (i+1)
L (x) + V̂

(i+1)
R (y)) · âdd(i+1)

R (ψ(i−1), x, y)
)

(7)

A justification for the soundness of the previous equation, as well as the two
original layer consistency equations appears in the full version [Sor22], where we
also provide a different approach using a 4-to-2 reduction, which reduces round
complexity at the cost of increased communication.

5.3 Sum-Check for Non-commutative Layer Consistency

We provide the sum-check protocol for Eq. (7)8. The specific algorithm run by
the prover and its complexity analysis appears in Appendix A. Remember that
A ⊇ H = {0, 1} is an R.D. commutative set.

8 The simpler protocol for Eq. (6) can be found in the full version.
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Sum-Check Protocol for Eq. (7): Let �x = (x1, . . . , xm), �y = (y1, . . . , ym).
We provide a sum-check protocol for

∑
�x,�y∈Hm f(�x, �y, �x, �y) = β, where f ∈

RA[�U,�W,�X,�Y]≤2,≤2. If any of the checks throughout the protocol fails, V rejects.

1. In the first round, for b ∈ {0, 1}, P computes g1,b ∈ RA[U1]0,≤1, given by:

g1,b(U1) =
∑

x2,...,xm∈H
�y∈Hm

f(U1, x2, . . . , xm, �y, b, x2, . . . , xm, �y),

and sends them to V. Then V checks whether g1,0, g1,1 ∈ RA[U1]0,≤1 and∑
b∈H g1,b(b) = β. If true, V chooses a random r1 ∈ A and sends it to P.

2. For rounds 2 ≤ i ≤ m, define �x(i,m] = (xi+1, . . . , xm) and �x[1,i) =
(x1, . . . , xi−1). P sends the univariate toast polynomials gi,0, gi,1 ∈ RA[Ui]0,≤1

given by:

gi,b(Ui) =
∑

�x[1,i)∈Hi−1,�x(i,m]∈Hm−i

�y∈Hm

f(r1, . . . , ri−1, Ui, �x(i,m], �y, �x[1,i), b, �x(i,m], �y),

V checks whether gi,b ∈ RA[Ui]0,≤1 and
∑

b∈H gi,b(b) − gi−1,b(ri−1) = 0. If
that is the case, V chooses a random element ri ∈ A and sends it to P.

3. For rounds m + 1 ≤ i ≤ 2m, P, define j = i − m, �r[1,i) = (r1, . . . , ri−1),
�y(j,m] = (yj+1, . . . , ym) and �y[1,j) = (y1, . . . , yj−1). P sends the univariate
toast polynomials gi,0, gi,1 ∈ RA[Wj ]≤1,0 given by:

gi,b(Wj) =
∑

�y[1,j)∈Hj−1,�y(j,m]∈Hm−j

�x∈Hm

f(�r[1,i), Wj , �y(j,m], �x, �y[1,j), b, �y(j,m]),

V checks whether gi,0, gi,1 ∈ RA[Wj ]≤1,0 and
∑

b∈H gi,b(b) − gi−1,b(ri−1) = 0.
If that is the case, V chooses a random element ri ∈ A and sends it to P.

4. For round i = 2m + 1, define �r[1,2m+1) = (r1, . . . , r2m) and �x(1,m] =
(x2, . . . , xm). P sends the toast polynomial g2m+1 ∈ RA[X1]≤2,0:

g2m+1(X1) =
∑

�x(1,m]∈Hm−1,�y∈Hm

f(�r[1,2m+1), X1, �x(1,m], �y),

V checks whether g2m+1 ∈ RA[X1]≤2,0 and
∑

b∈H g2m+1(b) − g2m,b(r2m) = 0.
If so, V chooses a random element r2m+1 ∈ A and sends it to P.

5. For rounds 2m + 2 ≤ i ≤ 3m, define j = i − 2m, �r[1,i) = (r1, . . . , ri−1) and
�x(j,m] = (xj+1, . . . , xm). P sends the toast polynomial gi ∈ RA[Xj ]≤2,0:

gi(Xj) =
∑

�x(j,m]∈Hm−j ,�y∈Hm

f(�r[1,i), Xj , �x(j,m], �y)

V checks whether gi ∈ RA[Xj ]≤2,0 and
∑

b∈H gi(b) = gi−1(ri−1). If that is the
case, V chooses a random element ri ∈ A and sends it to P.
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6. For rounds 3m + 1 ≤ i ≤ 4m, define j = i − 3m, �r[1,i) = (r1, . . . , ri−1) and
�y(j,m] = (yj+1, . . . , ym). P sends the toast polynomial gi ∈ RA[Yj ]0,≤2:

gi(Yj) =
∑

�y(j,m]∈Hm−j

f(�r[1,i), Yj , �y(j,m]),

V checks whether gi ∈ RA[Yj ]0,≤2 and
∑

b∈H gi(b) = gi−1(ri−1). If that is the
case, V chooses a random element ri ∈ A and sends it to P.

7. After the 4m-th round, V checks whether g4m(r4m) = f(r1, . . . , r4m) by
querying9 its oracles at (r1, . . . , r4m).

Theorem 4. Let A be a commutative R.D. set such that {0, 1} ⊆ A. Let f ∈
RA[�U,�W,�X,�Y]≤2,≤2 be the multi-variate sandwich polynomial given by Eq. (7).
The sum-check protocol is a public coin interactive proof with soundness error
≤ 8m · |A|−1. The communication complexity is 14m elements in R.

5.4 Putting Everything Together

Theorem 5. Let R be a ring and A ⊂ R a commutative, regular difference set
such that {0, 1} ⊂ A Let C : Rn → Rk be a depth-D layered arithmetic circuit.

Fig. 1. Doubly-efficient IP over a ring containing a commutative, regular difference set.

9 As usual in the GKR protocol, some values are actually provided by P, unless the
input layer has been reached. This step is more detailed in Fig. 1.
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Figure 1 is an interactive proof for C with soundness error O(D log |C|/|A|).
Its round complexity is O(D log |C|) and it communicates O(D log |C|) elements
in R. In terms of operations in R, the prover complexity is O(|C|) and the
verifier complexity is O(n + k + D log |C| + T ), where T is the optimal time

to evaluate every wiring predicate (âdd
(i)

L , m̂ult
(i)

L , âdd
(i)

R , m̂ult
(i)

R ). For log-space
uniform circuits, T = poly log(|C|) and hence the IP is succinct.

A Linear Time Prover for Eq. (7)

Multi-linear extensions were key for [CMT12] to improve the complexity of the
Prover in [GKR15] from poly(|C|) to O(|C| log(|C|)). In this section, we will
show how to improve upon this to a complexity of O(|C|), in a style similar
to Libra [XZZ+19]. In order to achieve this, we will show how the Prover can

Fig. 2. Linear time prover for the sum-check protocol in Sect. 5.3.
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Fig. 3. Evaluations of toast multi-linear polynomials prior to sum-check.

Fig. 4. Sum-check polynomials for the block of �U,�W variables.
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execute the sum-check algorithm of Sect. 5.3 for Eq. (7). Recall that P has to
sum the evaluations of f ∈ RA[�U,�W,�X,�Y]≤2,≤2 in the hypercube H4m, where
H = {0, 1}. Our following algorithms assume that P has an initial lookup table
(LUT) Tf with these evaluations, as well as the same kind of lookup tables for its
constituent (L/R)MLEs T

̂multL
,T

̂addL
,TV̂L

,T
̂multR

,T
̂addR

,TV̂R
. We also assume that

P has received and stored the 2-to-1 reduction challenges α, β ∈ A. For a simpler
write-up, we write the different algorithms as if P already knew the challenge
vector �r = (r1, . . . , r4m) ∈ A4m, even though they will receive the different ri

values as the progress through the execution of the sum-check protocol.
In constrast with [XZZ+19], we make the Prover provide the Verifier with

explicit polynomials, rather than with their evaluations at (up to) three differ-
ent points. We do this for the sake of generality10, since interpolation requires
exceptional rather than regular-difference sets, and the target ring (e.g. Z) might
not contain a commutative exceptional set of size three.

Fig. 5. Evaluations of toast multi-linear polynomials for sum-check.

10 It would be easy to modify our algorithms to work by providing polynomial evalu-
ations instead. In fact, the set {0, 1, γ} is commutative and exceptional as long as
γ and γ − 1 are invertible. If 2 is not a zero divisor, we can always pick γ = 2.
Otherwise we may still find such γ easily (as e.g. in F2d ,GR(2k, d), Mn×n(Z/2k

Z))
or resort to ring extensions (e.g. embed Z/2k

Z in GR(2k, d) or Z in R).
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�U,�W Variables (Step 1). This is the easiest phase, since we can directly reason
about f ∈ RA[�U,�W,�X,�Y]≤2,≤2 from Eq. (7) and its LUT Tf . Sumcheck {U, W}
(Fig. 4) provides with the polynomials for these first 2m messages. All terms in

Fig. 6. Computing LUT for identity polynomial evaluated at a challenge.

Fig. 7. Substituting �Z,�U,�W in LUTs with their corresponding challenges.
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Fig. 8. Sumcheck polynomials for �X variables and “V̂
(i)

L -side” of Eq. (7).

the sums of Fig. 4 can be found, in turn, in the lookup table F produced by
Function Evaluations {U, W} (Fig. 3).

The algorithm in Fig. 3 follows from the simple observation that, because of
linearity, any RMLE f(�r, Ui,�t) ∈ RA[Ui]0,≤1 satisfies that f(�r, Ui,�t) = (f(�r, 1,�t)−
f(�r, 0,�t)) ·Ui+f(�r, 0,�t). Notice that, whereas the initial lookup table Tf contains
all the 24m evaluations of f from Eq. (7) in H = {0, 1}, modifications only occur
on the first 2m indices, which are the ones related to variables U and W.

�X Variables (Steps 2–6). In this phase, rather than reasoning about f ∈
RA[�U,�W,�X,�Y]≤2,≤2 from Eq. (7), we look at its constituent polynomials (m̂ultL,
âddL, V̂L, m̂ultR, âddR, V̂R) separately. Dealing with non-commutative rings is
the main reason for the different algorithms in these steps, compared with the
simpler description in Libra [XZZ+19]. Whereas in Libra expressions of the
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Fig. 9. Sumcheck polynomials for �X variables and “V̂
(i)

R -side” of Eq. (7).

form
∑

�x,�y∈Hm wp(�g, �x, �y)f2(�x)f3(�y) are rewritten as
∑

�x∈Hm f2(�x) ·h�g(�x), where
h�g(�x) =

∑
�y∈Hm wp(�g, �x, �y)f3(�y), we cannot assume this to be possible in our

setting, since f2(�x) ∈ R might not commute with wp(�g, �x, �y).
Instead, we start by using the algorithm SetupX (Fig. 7), which substitutes

the �Z,�U,�W variables in the LUTs of m̂ultL, âddL, m̂ultR and âddR with their
corresponding challenges. Next, applying Function Evaluations (Fig. 5) to the
(updated) LUTs, we can produce LMLEs in the �X variables for V̂L (in Step
3) and m̂ultL, âddL (which happens within Sumcheck X Left). Given two multi-
linear polynomials f(X), g(X), we know that we can compute the sum-check pro-



522 E. Soria-Vazquez

Fig. 10. Substituting �X with �r[2m+1,3m] ∈ Am in the LUTs of m̂ultL, âddL.

tocol on their product f(X) · g(X) in linear time [Tha13]. That is what we do in
algorithms Sumcheck X Left (Fig. 8) and Sumcheck X Right (Fig. 9), where we
compute, in linear time and without reordering its terms, the sum-check mes-
sages for

∑
�x,�y∈Hm wp(�g, �x, �y)f2(�x)f3(�y) corresponding to the �X variables. The

key observation for the latter two algorithms is that, for i ∈ [m], �x ∈ Hm−i and
wp ∈ {âddL, m̂ultL, âddR, m̂ultR}, the set

N i
�x = {�y ∈ Hm : ∃�z ∈ Hm, (x1, . . . , xi) ∈ Hi s.t. wp(�z, (x1, . . . , xi), �x, �y) �= 0},

is s.t.
∑

�x∈Hm−i |N i
�x| ∈ O(2m−i). We exploit the sparseness of our wiring predi-

cates to keep an O(2m)-time prover without reordering the terms of Eq. (7).

�Y Variables (Steps 7–8). Setup Y (Fig. 10) substitutes the �X variables
with �r[2m+1,3m] ∈ Am in the LUTs of m̂ultL, âddL, so that P obtains val-
ues âddL(�g, �r[m+1,2m], �r[2m+1,3m]) and m̂ultL(�g, �r[m+1,2m], �r[2m+1,3m]). Applying
Function Evaluations (Fig. 5) to the LUT of V̂R and the LUTs of m̂ultR and
âddR (which were previously updated in SetupX, Fig. 7), we can produce the dif-
ferent RMLEs in the �Y variables that are required for the execution of Sumcheck Y
(Fig. 11): For i ∈ [m], �y ∈ Hm−i, polynomials V̂R(�r[3m+1,3m+i−1], Yi, �y),
âddR(�r[3m+1,3m+i−1], Yi, �y) and m̂ultR(�r[3m+1,3m+i−1], Yi, �y).
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Fig. 11. Sumcheck polynomials for the block of �Y variables
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Abstract. Non-interactive batch arguments for NP provide a way to
amortize the cost of NP verification across multiple instances. In partic-
ular, they allow a prover to convince a verifier of multiple NP statements
with communication that scales sublinearly in the number of instances.

In this work, we study fully succinct batch arguments for NP in
the common reference string (CRS) model where the length of the
proof scales not only sublinearly in the number of instances T , but
also sublinearly with the size of the NP relation. Batch arguments with
these properties are special cases of succinct non-interactive arguments
(SNARGs); however, existing constructions of SNARGs either rely on
idealized models or strong non-falsifiable assumptions. The one excep-
tion is the Sahai-Waters SNARG based on indistinguishability obfusca-
tion. However, when applied to the setting of batch arguments, we must
impose an a priori bound on the number of instances. Moreover, the
size of the common reference string scales linearly with the number of
instances.

In this work, we give a direct construction of a fully succinct batch
argument for NP that supports an unbounded number of statements from
indistinguishability obfuscation and one-way functions. Then, by addi-
tionally relying on a somewhere statistically-binding (SSB) hash func-
tion, we show how to extend our construction to obtain a fully succinct
and updatable batch argument. In the updatable setting, a prover can
take a proof π on T statements (x1, . . . , xT ) and “update” it to obtain
a proof π′ on (x1, . . . , xT , xT+1). Notably, the update procedure only
requires knowledge of a (short) proof for (x1, . . . , xT ) along with a single
witness wT+1 for the new instance xT+1. Importantly, the update does
not require knowledge of witnesses for x1, . . . , xT .

1 Introduction

Non-interactive batch arguments (BARGs) provide a way to amortize the cost
of NP verification across multiple instances. Specifically, in a batch argument,
the prover has a collection of NP statements x1, . . . , xT and their goal is to
convince the verifier that xi ∈ L for all i, where L is the associated NP language.
The trivial solution is to have the prover send over the associated NP witnesses
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w1, . . . , wT and have the verifier check each one individually. The goal in a batch
argument is to obtain shorter proofs—namely, proofs whose size scales sublinearly
in T .

In this work, we operate in the common reference string (CRS) model where
we assume that there is a one-time (trusted) sampling of a structured reference
string. Within this model, we focus on the setting where where the proof is non-
interactive (i.e., the proof consists of a single message from the prover to the
verifier) and publicly-verifiable (i.e., verifying the proof only requires knowledge
of the associated statements and the CRS). Finally, we require soundness to hold
against computationally-bounded provers; namely, our goal is to construct batch
argument systems. Recently, there has been a flurry of work constructing batch
arguments for NP satisfying these requirements from standard lattice assump-
tions [CJJ21b,DGKV22], assumptions on groups with bilinear maps [WW22],
and from a combination of subexponential hardness of the DDH assumption
together with the QR assumption [CJJ21a].

This work: fully succinct batch arguments. The size of the proof in the aforemen-
tioned BARG constructions all scale linearly with the size of the NP relation.
In other words, to check T statements for an NP relation that is computable
by a circuit of size s, the proof sizes scale with poly(λ, s) · o(T ), where λ is the
security parameter. In this work, we study the setting where the proof π scales
sublinearly in both the number of instances T and the size s of the NP relation.
More precisely, we require that |π| = poly(λ, log s, log T ), and we refer to batch
arguments satisfying this property to be “fully succinct.” Our primary goal in
this work is to minimize the communication cost (and in conjunction, the verifier
cost) of batch NP verification.

We note that this level of succinctness is typically characteristic of
succinct non-interactive arguments (SNARGs), and indeed any SNARG
directly implies a fully succinct batch argument. However, existing con-
structions of SNARGs either rely on random oracles [Mic95,BBHR18,
COS20,CHM+20,Set20], the generic group model [Gro16], or strong
non-falsifiable assumptions [Gro10,BCCT12,DFH12,Lip13,PHGR13,GGPR13,
BCI+13,BCPR14,BISW17,BCC+17,BISW18,ACL+22]. Indeed, Gentry and
Wichs [GW11] showed that no construction of an (adaptively-sound) SNARG
for NP can be proven secure via a black-box reduction to a falsifiable assump-
tion [Nao03].

The only construction of (non-adaptively sound) SNARGs from falsifiable
assumptions is the construction by Sahai and Waters based on indistinguishabil-
ity obfuscation (iO) [SW14] in conjunction with the recent breakthrough works
of Jain et al. [JLS21,JLS22] that base indistinguishability obfuscation on falsi-
fiable assumptions. However, the Sahai-Waters SNARG from iO imposes an a
priori bound on the number of statements that can be proven, and in particular,
the size of the CRS grows with the total length of the statement and witness (i.e.,
the CRS consists of an obfuscated program that reads in the statement and the
witness and outputs a signature on the statements if the input is well-formed).
When applied to the setting of batch verification, this limitation means that we
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need to impose an a priori bound of the number of instances that can be proved,
and the size of the CRS necessarily scales with this bound. Our goal in this work
is to construct a fully succinct batch argument for NP that supports an arbitrary
number of instances from indistinguishability obfuscation and one-way functions
(i.e., the same assumption as the construction of Sahai and Waters).

An approach using recursive composition. A natural approach to constructing a
fully succinct batch argument that supports an arbitrary polynomial number of
statements is to compose a SNARG with polylogarithmic verification cost (for a
single statement) with a batch argument that supports an unbounded number
of statements. Namely, to prove that (x1, . . . , xT ) are true, the prover would
proceed as follows:

1. First, for each statement xi ∈ {0, 1}�, the prover constructs a SNARG proof
πi. If the SNARG has a polylogarithmic verification procedure, then the
size of the SNARG verification circuit for checking (xi, πi) is bounded by
poly(λ, �, log s), where s is the size of the circuit for checking the underlying
NP relation.

2. Next, the prover uses a batch argument to demonstrate that it knows
(π1, . . . , πT ) where πi is an accepting SNARG proof on instance xi ∈ {0, 1}�.
This is a batch argument for checking T instances of the SNARG verification
circuit, which has size poly(λ, �, log s). If the size of the batch argument scales
polylogarithmically with the number of instances, then the overall proof has
size poly(λ, �, log s, log T ).

Moreover, using a somewhere extractable commitment scheme [HW15,CJJ21b],
it is possible to remove the dependence on the instance size �.1 This yields
a fully succinct batch argument with proof size poly(λ, log s, log T ). To argue
(non-adaptive) soundness of this approach, we rely on soundness of the under-
lying SNARG and somewhere extractability of the underlying batch argument
(i.e., a BARG where the CRS can be programmed to a specific (hidden) index
i∗ such that there exists an efficient extractor that takes any accepting proof π
for a tuple (x1, . . . , xT ) and outputs a valid witness wi∗ for instance xi∗). We
can now instantiate the SNARG with polylogarithmic verification cost using the
Sahai-Waters construction based on iO and one-way functions, and the some-
where extractable BARG for an unbounded number of instances with the recent
lattice-based scheme of Choudhuri et al. [CJJ21b]. This result provides a basic
feasibility result for the existence of fully succinct batch arguments for NP. How-
ever, instantiating this compiler requires two sets of assumptions: iO and one-
way functions for the underlying SNARG, and lattice-based assumptions for the
BARG.

1 One way to do this is to observe that the above approach already gives a fully
succinct batch argument for index languages (i.e., a batch language where the T ≤ 2λ

instances are defined to be (x1, x2, . . . , xT ) = (1, 2, . . . , T )). Then, we can apply the
index BARG to BARG transformation from Choudhuri et al. [CJJ21b], which relies
on somewhere extractable commitments.
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This work. In this work, we provide a direct route for constructing fully suc-
cinct BARGs that support an unbounded number of statements from iO and
one-way functions. Notably, combined with the breakthrough work of Jain, Lin,
and Sahai [JLS22], this provides an instantiation of fully succinct BARGs with-
out lattice assumptions (in contrast to the generic approach above). Using our
construction, proving T statements for an NP relation of size s requires a proof
of length poly(λ). This is independent of both the number of statements T and
the size s of the associated NP relation. Like the scheme of Sahai and Waters,
our construction satisfies non-adaptive soundness (and perfect zero-knowledge).
We summarize this instantiation in the informal theorem below:

Theorem 1.1 (Fully Succinct BARG (Informal)). Assuming the existence
of indistinguishability obfuscation and one-way functions, there exists a fully suc-
cinct, non-adaptively sound batch argument for NP. The batch argument satisfies
perfect zero knowledge.

Updatable batch arguments. We also show how to extend our construction to
obtain an updatable BARG through the use of somewhere statistically binding
(SSB) hash functions [HW15,OPWW15]. In an updatable BARG, a prover is
able to take an existing proof πT on statements (x1, . . . , xT ) along with a new
statement xT+1 with associated NP witness wT+1 and update π to a new proof π′

on instances (x1, . . . , xT , xT+1). Notably, the update algorithm does not require
the prover to have a witness for any statement other than xT+1. This is useful
in settings where the full set of statements/witnesses are not fixed in advance
(e.g., in a streaming setting). For example, a prover might want to compute a
summary of all transactions that occur in a given day and then provide a proof
that the summary reflects the complete set of transactions from the day. An
updatable BARG would allow the prover to maintain just a single proof that
authenticates all of the summary reports from different days, and moreover, the
prover does not have to maintain the full list of transactions from earlier days to
perform the update. We show how to obtain a fully succinct updatable BARG
in Sect. 5, and we summarize this instantiation in the following theorem.

Theorem 1.2 (Updatable BARG (Informal)). Assuming the existence of
indistinguishability obfuscation scheme and somewhere statistical binding hash
functions, there exists a fully succinct, non-adaptively sound updatable batch
argument for NP. The batch argument satisfies perfect zero knowledge.

1.1 Technical Overview

In this section, we provide an informal overview of the techniques that we use to
construct fully succinct BARGs. Throughout this section, we consider the batch
NP language of Boolean circuit satisfiability. Namely, the prover has a Boolean
circuit C and a collection of instances x1, . . . , xT , and its goal is to convince
the verifier that there exist witnesses w1, . . . , wT such that C(xi, wi) = 1 for all
i ∈ [T ].
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The Sahai-Waters SNARG. As a warmup, we recall the Sahai-Waters [SW14]
construction of SNARGs from iO for a single instance (i.e., the case where
T = 1). In this construction, the common reference string (CRS) consists of two
obfuscated programs: Prove and Verify. The Prove program takes in the circuit C,
the statement x, and the witness w, and outputs a signature σx on x if C(x,w) =
1 and ⊥ otherwise. The proof is simply the signature π = σx. The Verify program
takes in the description of the circuit C, the statement x, and the proof π = σx

and checks whether σx is a valid signature on x or not. The signature in this
case just corresponds to the evaluation of a pseudorandom function (PRF) on
the input x. The key to the PRF is hard-coded in the obfuscated proving and
verification programs. Security in turn, relies on the Sahai-Waters “punctured
programming” technique.

Batch arguments for index languages. To construct fully succinct batch argu-
ments, we start by considering the special case of an index language (similar to
the starting point in the lattice-based construction of Choudhuri et al. [CJJ21b]).
In a BARG for an index language, the statements are simply the indices
(1, 2, . . . , T ). The prover’s goal is to convince the verifier that there exists wi

such that C(i, wi) = 1 for all i ∈ [T ]. We start by showing how to construct a
fully succinct BARG for index languages with an unbounded number of instances
(i.e., an index language for arbitrary polynomial T ). Our construction proceeds
iteratively as follows. Like the Sahai-Waters construction, the CRS in our scheme
consists of the obfuscation of the following two programs:

– The proving program takes in a circuit C, an index i, a witness wi for instance
i and a proof π for the first i−1 statements. The program checks if C(i, wi) = 1
and that the proof on the first i − 1 statements is valid. When i = 1, then we
ignore the latter check. If both conditions are satisfied, the program outputs
a signature on statement (C, i). Notably, the size of the prover program only
scales with the size of the circuit and the bit-length of the number of instances
(instead of linearly with the number of instances).

Similar to the construction of Sahai and Waters, we define the “signature”
on the statement (C, i) to be π = F(k, (C, i)), where F is a puncturable
PRF [BW13,KPTZ13,BGI14],2 and k is a PRF key that is hard-coded in
the proving program.

– To verify a proof on T statements (i.e., the instances 1, . . . , T ), the verification
program simply checks that the proof π is a valid signature on the pair (C, T ).
Based on how we defined the proving program above, this corresponds to
checking that π = F(k, (C, T )). Now, to argue soundness using the Sahai-
Waters punctured programming paradigm, we modify this check and replace
it with the check

2 A puncturable PRF is a PRF where the holder of the master secret key can “punc-
ture” the key on an input x∗. The resulting punctured key k′ can be used to evaluate
the PRF on all inputs except x∗. The value of the PRF at x∗ remains pseudorandom
(i.e., computationally indistinguishable from random) even given the punctured key
k′. We provide the formal definition in Definition 2.2.
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G(π) ?= G(F(k, (C, T ))),

where G is a length-doubling pseudorandom generator. This will be critical
for arguing soundness.

Soundness of the index BARG. To argue non-adaptive soundness of the above
approach (i.e., the setting where the statement is chosen independently of
the CRS), we apply the punctured programming techniques of Sahai and
Waters [SW14]. Take any circuit C∗ and suppose there is an index i∗ where
for all witnesses w, we have that C∗(i∗, w) = 0. Our soundness analysis proceeds
in two steps:

– We first show that no efficient prover can compute an accepting proof π on
instances (1, . . . , i∗) for circuit C∗.

– Then, we show how to “propagate” the inability to construct a valid proof
on index i∗ to all indices i ≥ i∗. This in turn suffices to argue non-adaptive
soundness for an arbitrary polynomial number of statements.

We now sketch the argument for the first step. In the following overview, suppose
the output space of F is {0, 1}λ and suppose that G : {0, 1}λ → {0, 1}2λ is length-
doubling.

– The real CRS consists of obfuscations of the following proving and verification
programs:

Prove(C, i, wi, π):

• If C(i, wi) = 0, output ⊥.
• If i = 1, output F(k, (C, i)).
• If G(π) = G(F(k, (C, i − 1))), output

F(k, (C, i)).
• Output ⊥.

Verify(C, i, π):

• If G(π) = G(F(k, (C, i))), output 1
• Output 0.

– First, instead of embedding the real PRF key k in the proving and verification
programs, we embed a punctured PRF key k′ that is punctured on the input
(C∗, i∗). Whenever the proving and verification program needs to evaluate F
on the punctured point (C∗, i∗), we hard-code the value z = F(k, (C∗, i∗)):

Prove(C, i, wi, π):

• If C(i, wi) = 0, output ⊥.
• If C = C∗ and i = i∗, output ⊥.
• If i = 1, output F(k′, (C, i)).
• If C = C∗ and i − 1 = i∗:

∗ If G(π) = G(z), output F(k′, (C, i)).
∗ Otherwise, output ⊥.

• If G(π) = G(F(k′, (C, i − 1))), output
F(k′, (C, i)).

• Output ⊥.

Verify(C, i, π):

• If C = C∗ and i = i∗, output 1 if G(π) =
G(z) and 0 otherwise.

• If G(π) = G(F(k′, (C, i))), output 1.
• Output 0.

Since the punctured PRF is functionality-preserving, on all inputs (C, i) �=
(C∗, i∗), we have that F(k, (C, i)) = F(k′, (C, i)). Since z = F(k, (C∗, i∗)),
the input/output behavior of the verification program is unchanged. Next,
C(i∗, w) = 0 for all w, so the input/output behavior of the proving program
is also unchanged. Security of iO then ensures that the obfuscated proving
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and verification programs are computationally indistinguishable from those
in the real scheme.

– Observe that both the proving and verification programs can be constructed
given just the value of G(z) without necessarily knowing z itself. We now
replace the target value G(z) with a uniform random string t r← {0, 1}2λ.
This follows by (1) puncturing security of F which says that the value of
z = F(k, (C∗, i∗)) is computationally indistinguishable from a uniform string
z r← {0, 1}λ; and (2) by PRG security since the distribution of G(z) where z r←
{0, 1}λ is computationally indistinguishable from sampling a uniform random
string t r← {0, 1}2λ. With these modifications, the proving and verification
programs behave as follows:
Prove(C, i, wi, π):

• If C(i, wi) = 0, output ⊥.
• If C = C∗ and i = i∗, output ⊥.
• If i = 1, output F(k′, (C, i)).
• If C = C∗ and i − 1 = i∗:

∗ If G(π) = t, output F(k′, (C, i)).
∗ Otherwise, output ⊥.

• If G(π) = G(F(k′, (C, i − 1))), output
F(k′, (C, i)).

• Output ⊥.

Verify(C, i, π):

• If C = C∗ and i = i∗, output 1 if G(π) = t
and 0 otherwise.

• If G(π) = G(F(k′, (C, i))), output 1.
• Output 0.

– Since t is uniform in {0, 1}2λ, the probability that t is even in the image of
G is at most 2−λ. Thus, in this experiment, with probability 1 − 2−λ, there
does not exist any accepting proof π for input (C∗, i∗). This means that we
can now revert to using the PRF key k in both the proving and verification
programs and simply reject all proofs on instance (C∗, i∗). In other words, we
can replace the proving and verification programs with obfuscations of the
following programs by appealing to the security of iO:
Prove(C, i, wi, π):

• If C(i, wi) = 0, output ⊥.
• If C = C∗ and i = i∗, output ⊥.
• If i = 1, output F(k, (C, i)).
• If C = C∗ and i − 1 = i∗, output ⊥.
• If G(π) = G(F(k, (C, i − 1))), output

F(k′, (C, i)).
• Output ⊥.

Verify(C, i, π):

• If C = C∗ and i = i∗, output 0.
• If G(π) = G(F(k, (C, i))), output 1.
• Output 0.

In this final experiment, there no longer exists an accepting proof π on instances
(1, . . . , i∗) for circuit C∗. Next, we show how to extend this argument to addi-
tionally remove accepting proofs on the batch of instances (1, . . . , i∗, i∗ +1). We
leverage a similar strategy as before:

– We replace the PRF key k with a punctured key k′ that is punctured at
(C∗, i∗ + 1) in both the proving and verification programs. Again, whenever
the programs need to compute F(k, (C∗, i∗ + 1)), we substitute a hard-coded
value z = F(k, (C∗, i∗ + 1)):
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Prove(C, i, wi, π):

• If C(i, wi) = 0, output ⊥.
• If C = C∗ and i∗ ≤ i ≤ i∗ + 1, output ⊥.
• If i = 1, output F(k′, (C, i)).
• If C = C∗ and i − 1 = i∗ + 1:

∗ If G(π) = G(z), output F(k′, (C, i)).
∗ Otherwise, output ⊥.

• If G(π) = G(F(k′, (C, i − 1))), output
F(k′, (C, i)).

• Output ⊥.

Verify(C, i, π):

• If C = C∗, and i = i∗, output 0.
• If C = C∗, i = i∗ +1, output 1 if G(π) =

G(z) and 0 otherwise.
• If G(π) = G(F(k′, (C, i))), output 1.
• Output 0.

Note that to simplify the notation, we merged the individual checks (C = C∗

and i = i∗) and (C = C∗ and i− 1 = i∗) in the proving program into a single
check that outputs ⊥ if satisfied.

– Observe once again that the description of the proving and verification pro-
grams only depends on G(z) (and not z itself). By the same sequence of steps
as above, we can appeal to puncturing security of F, pseudorandomness of
G, and security of iO to show that the obfuscated proving and verification
programs are computationally indistinguishable from the following programs:
Prove(C, i, wi, π):

• If C(i, wi) = 0, output ⊥.
• If C = C∗ and i∗ ≤ i ≤ i∗ + 2, output ⊥.
• If i = 1, output F(k, (C, i)).
• If G(π) = G(F(k, (C, i − 1))), output

F(k, (C, i)).
• Output ⊥.

Verify(C, i, π):

• If C = C∗ and i∗ ≤ i ≤ i∗ +1, output 0.
• If G(π) = G(F(k, (C, i))), output 1.
• Output 0.

We can repeat the above strategy any polynomial number of times. In particular,
for any T = poly(λ), we can replace the obfuscated programs in the CRS with
the following programs:

Prove(C, i, wi, π):

• If C(i, wi) = 0, output ⊥.
• If C = C∗ and i∗ ≤ i ≤ T + 1, output ⊥.
• If i = 1, output F(k, (C, i)).
• If G(π) = G(F(k, (C, i − 1))), output

F(k, (C, i)).
• Output ⊥.

Verify(C, i, π):

• If C = C∗ and i∗ ≤ i ≤ T , output 0.
• If G(π) = G(F(k, (C, i))), output 1.
• Output 0.

By security of iO, the puncturable PRF, and the PRG, this modified CRS is
computationally indistinguishable from the real CRS. However, when the ver-
ification program is implemented as above, there are no accepting proofs on
input (C∗, i) for any i∗ ≤ i ≤ T . Moreover, the size of the obfuscated programs
only depends on log T (and not T ). As such, the scheme supports an arbitrary
polynomial number of statements. We give the full analysis in Sect. 3.

Adaptive soundness and zero knowledge. Using standard complexity leveraging
techniques, we show how to extend our BARG for index languages with non-
adaptive soundness into one with adaptive soundness in the full version of this
paper. We note that due to the reliance on complexity leveraging, the resulting
BARGs we obtain are no longer fully succinct; the proof size now scales with
the size of the NP relation, but critically, still sublinearly in the number of
instances. We also note that much like the construction of Sahai and Waters,
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both our fully succinct non-adaptive BARG and our adaptive BARG satisfy
perfect zero-knowledge.

From index languages to general NP languages. Next, we show how to bootstrap
our fully succinct BARG for index languages to obtain a fully succinct BARG
for NP that supports an arbitrary polynomial number of statements. In this
setting, the prover has a Boolean circuit C and arbitrary instances x1, . . . , xT ;
the prover’s goal is to convince the verifier that for all i ∈ [T ], there exists wi

such that C(xi, wi) = 1.
The key difference between general NP languages and index languages is that

the tuple of statements (x1, . . . , xT ) no longer has a succinct description. This
property was critical in our soundness analysis above. The soundness argument
we described above works by embedding the instances xi∗ , xi∗+1, . . . , xT into
the proving and verification programs (where xi∗ denotes a false instance) and
have the programs always reject proofs on these statements (with respect to the
target circuit C∗). For index languages, these instances just correspond to the
interval [i∗ + 1, T ], which can be described succinctly with O(log T ) bits. When
xi∗ , xi∗+1, . . . , xT are arbitrary instances, they do not have a short description,
and we cannot embed these instances into the proving and verification programs
without imposing an a priori bound on the number of instances.

Instead of modifying the above construction, we instead adopt the approach
of Choudhuri et al. [CJJ21b] who previously showed how to generically upgrade
any BARG for index languages to a BARG for NP by relying on somewhere
extractable commitment schemes. If the underlying BARG for index languages
supports an unbounded number of instances, then the transformed scheme also
does. In our setting, we observe that if we only require (non-adaptive) sound-
ness (as opposed to “somewhere extraction”), we can use a positional accumu-
lator [KLW15] in place of the somewhere extractable commitment scheme. The
advantage of basing the transformation on positional accumulators is that we can
construct positional accumulators directly from indistinguishability obfuscation
and one-way functions. Applied to the above index BARG construction (see also
Sect. 3), we obtain a fully succinct batch argument for NP from the same set of
assumptions. In contrast, if we invoke the compiler of Choudhuri et al., we would
need to additionally assume the existence of a somewhere extractable commit-
ment scheme which cannot be based solely on indistinguishability obfuscation
together with one-way functions in a fully black-box way [AS15].

Very briefly, in the Choudhuri et al. approach, to construct a batch argument
on the tuple (C, x1, . . . , xT ), the prover first computes a succinct hash y of the
statements (x1, . . . , xT ). Using y, they define an index relation where instance i
is satisfied if there exists an opening (xi, πi) to y at index i, and moreover, there
exists a satisfying witness wi where C(xi, wi) = 1. The proof then consists of
the hash y and a proof for the index relation. In this work, we show that using
a positional accumulator to instantiate the hash function suffices to obtain a
BARG with non-adaptive soundness. We provide the full details in Sect. 4.

Updatable BARGs for NP . Our techniques also readily generalize to obtain an
updatable batch argument (for general NP) from the same underlying set of
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assumptions. Recall that in an updatable BARG, a prover can take an existing
proof π on a tuple (C, x1, . . . , xT ) together with a new statement xT+1 and wit-
ness wT+1 and extend π to a new proof π′ on the tuple (C, x1, . . . , xT , xT+1).
One way to construct an updatable BARG is to recursive compose a suc-
cinct non-interactive argument of knowledge [BCCT13] or a rate-1 batch argu-
ment [DGKV22].3 Here, we opt for a more direct approach based on the above
techniques, which does not rely on recursive composition.

First, our index BARG construction described above is already updatable.
However, if we apply the Choudhuri et al. [CJJ21b] transformation to obtain a
BARG for NP, the resulting scheme is no longer updatable. This is because the
transformation requires the prover to commit to the complete set of statements
and then argue that the statement associated with each index is true (which in
turn requires knowledge of all of the associated witnesses).

Instead, we take a different and more direct tree-based approach. For ease
of exposition, suppose first that T = 2k for some integer k. Our construction
will rely on a hash function H. Given a tuple of T statements (x1, . . . , xT ), we
construct a binary Merkle hash tree [Mer87] of depth k as follows: the leaves
of the tree are labeled x1, . . . , xT , and the value of each internal node v is the
hash H(v1, v2) of its two children v1 and v2. The output h of the hash tree is the
value at the root node, and we denote this by writing h = HMerkle(x1, . . . , xT ).
A proof on the tuple of instances (x1, . . . , xT ) is simply a signature on the root
node HMerkle(x1, . . . , xT ). Now, instead of providing an obfuscated program that
takes a proof on index i and extends it into a proof on index i + 1, we define
our obfuscated proving program to take in two signatures on hash values h1 =
HMerkle(x1, . . . , xT ) and h2 = HMerkle(y1, . . . , yT ) and output a signature on the
hash value h = H(h1, h2) = HMerkle(x1, . . . , xT , y1, . . . , yT ). This new “two-to-
one” obfuscated program allows us to merge two proofs on T instances into a
single proof on 2T instances. More generally, the (obfuscated) proving program
in the CRS now supports the following operations:

– Signing a single instance: Given a circuit C, a statement x, and a witness
w, output a signature on (C, x, 1) if C(x,w) = 1 and ⊥ otherwise. This can
be viewed as a signature on a hash tree of depth 1.

– Merge trees: Given a circuit C, hashes h1, h2 associated with two trees of
depth k, along with signatures σ1, σ2, check that σ1 is a valid signature on
(C, h1, k), and σ2 is a valid signature on (C, h2, k). If both checks pass, output
a signature on (C,H(h1, h2), k+1). This is a signature on a hash tree of depth
k + 1.

To construct a proof on instances (x1, . . . , xT ) using witnesses (w1, . . . , wT ) for
arbitrary T , we now proceed as follows:

– Run the (obfuscated) proving algorithm on (C, x1, w1) to obtain a signature
σ on (C, x1, 1). The initial proof π is simply the set {(1, x1, σ)}.

3 If the underlying BARG is not rate-1, then we can only compose a bounded number
of times.



536 R. Garg et al.

– Suppose π = {(i, hi, σi)} is a proof on the first T −1 statements. To update the
proof π to a proof on the first T statements, first run the proving algorithm on
(C, xT , wT ) to obtain a signature σ on (C, xT , 1). Now, we apply the following
merging procedure:

• Initialize (k, h′, σ′) ← (1, xT , σ) and π′ ← π.
• While there exists (i, hi, σi) ∈ π′ where i = k, run the (obfus-

cated) merge program on (C, hi, h
′, k, σi, σ

′) to obtain a signature σ′′ on
(C,H(hi, h

′), k + 1). Remove (i, hi, σi) from π′ and update (k, h′, σ′) ←
(k + 1,H(hi, h

′), σ′′).
• Add the tuple (k, h′, σ′′) to π′ at the conclusion of the merging process.

Observe that the update procedure only requires knowledge of the new state-
ment xT , its witness wT , and the proof on the previous statements π; it does
not require knowledge of the witnesses to the previous statements. Moreover,
observe that the number of hash-signature tuples in π is always bounded by
log T .

To verify a proof π = {(i, hi, σi)} with respect to a Boolean circuit C, the
verifier checks that σi is a valid signature on (C, hi, i) for all tuples in π, and
moreover, that each of the intermediate hash values hi are correctly computed
from (x1, . . . , xT ). Non-adaptive soundness of the above construction follows by
a similar argument as that for our index BARG. Notably, we show that if an
instance xi∗ is false, then the proving program will never output a signature
on input (C, xi∗ , 1). Using the same punctured programming technique sketched
above, we can again “propagate” the inability to compute a signature on the
leaf node i∗ to argue that any efficient prover cannot compute a signature on
any node that is an ancestor of xi∗ in the hash tree. Here, we will need to rely
on the underlying hash function being somewhere statistically binding [HW15,
OPWW15]. By a hybrid argument, we can eventually move to an experiment
where there are no accepting proofs on tuples that contain xi∗ , and soundness
follows. We provide the formal description in Sect. 5.

2 Preliminaries

Throughout this work, we write λ to denote the security parameter. We say a
function f is negligible in the security parameter λ if f = o(λ−c) for all c ∈ N.
We denote this by writing f(λ) = negl(λ). We write poly(λ) to denote a function
that is bounded by a fixed polynomial in λ. We say an algorithm is PPT if
it runs in probabilistic polynomial time in the length of its input. By default,
we consider non-uniform adversaries (indexed by λ) where the algorithm may
additionally take in an advice string (of poly(λ) length).

For a positive integer n ∈ N, we write [n] to denote the set {1, . . . , n} and
[0, n] to denote the set {0, . . . , n}. For a finite set S, we write x r← S to denote
that x is sampled uniformly at random from S. For a distribution D, we write
x ← D to denote that x is sampled from D. We say an event E occurs with
overwhelming probability if its complement occurs with negligible probability.
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Some of our constructions in this work will rely on hardness against adver-
saries running in sub-exponential time or achieving sub-exponential advantage
(i.e., success probability). To make this explicit, we formulate our security defi-
nitions in the language of (τ, ε)-security, where τ = τ(λ) and ε = ε(λ). Here, we
say a primitive is (τ, ε)-secure if for all (non-uniform) polynomial time adver-
saries running in time τ(λ) and all sufficiently large λ, the adversary’s advantage
is bounded by ε(λ). For ease of exposition, we will also write that a primitive
is “secure” (without an explicit (τ, ε) characterization) if for every polynomial
τ = poly(λ), there exists a negligible function ε(λ) = negl(λ) such that the prim-
itive is (τ, ε)-secure. We now review the main cryptographic primitives we use
in this work.

Definition 2.1 (Indistinguishability Obfuscation [BGI+01]). An indis-
tinguishability obfuscator for a circuit class C = {Cλ}λ∈N is a PPT algorithm
iO(·, ·) with the following properties:

– Correctness: For all security parameters λ ∈ N, all circuits C ∈ Cλ, and all
inputs x,

Pr[C ′(x) = C(x) : C ′ ← iO(1λ, C)] = 1.

– Security: We say that iO is (τ, ε)-secure if for all adversaries A running in
time at most τ(λ), there exists λA ∈ N, such that for all security parameters
λ > λA, all pairs of circuits C0, C1 ∈ Cλ where C0(x) = C1(x) for all inputs
x, we have,

AdviO
A :=

∣
∣Pr[A(iO(1λ, C0)) = 1] − Pr[A(iO(1λ, C1)) = 1]

∣
∣ ≤ ε(λ).

Definition 2.2 (Puncturable PRF [BW13,KPTZ13,BGI14]). A punc-
turable pseudorandom function family on key space K = {Kλ}λ∈N, domain
X = {Xλ}λ∈N and range Y = {Yλ}λ∈N consists of a tuple of PPT algorithms
ΠPPRF = (KeyGen,Eval,Puncture) with the following properties:

– KeyGen(1λ) → K: On input the security parameter λ, the key-generation
algorithm outputs a key K ∈ Kλ.

– Puncture(K,S) → K{S}: On input the PRF key K ∈ Kλ and a set S ⊆ Xλ,
the puncturing algorithm outputs a punctured key K{S} ∈ Kλ.

– Eval(K,x) → y: On input a key K ∈ Kλ and an input x ∈ Xλ, the evaluation
algorithm outputs a value y ∈ Yλ.

In addition, ΠPPRF should satisfy the following properties:

– Functionality-Preserving: For every polynomial s = s(λ), every security
parameter λ ∈ N, every subset S ⊆ Xλ of size at most s, and every x ∈ Xλ\S,

Pr[Eval(K, x) = Eval(K{S}, x) : K ← KeyGen(1λ), K{S} ← Puncture(K, S)] = 1.

– Punctured Pseudorandomness: For a bit b ∈ {0, 1} and a security param-
eter λ, we define the (selective) punctured pseudorandomness game ΠPPRF,
between an adversary A and a challenger as follows:
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• At the beginning of the game, the adversary commits to a set S ⊆ Xλ.
• The challenger then samples a key K ← KeyGen(1λ), constructs the punc-

tured key K{S} ← Puncture(K,S), and gives K{S} to A.
• If b = 0, the challenger gives the set {(xi,Eval(K,xi))}xi∈S to A. If b = 1,

the challenger gives the set {(xi, yi)}xi∈S where each yi
r← Yλ.

• At the end of the game, the adversary outputs a bit b′ ∈ {0, 1}, which is
the output of the experiment.

We say that ΠPPRF satisfies (τ, ε)-punctured security if for all adversaries
A running in time at most τ(λ), there exists λA such that for all security
parameters λ > λA,

|Pr[b′ = 1 : b = 0] − Pr[b′ = 1 : b = 1]| ≤ ε(λ)

in the punctured pseudorandomness security game.

For ease of notation, we will often write F (K,x) to represent Eval(K,x).

Definition 2.3 (Pseudorandom Generator). A pseudorandom generator
(PRG) on domain X = {Xλ}λ∈N and range Y = {Yλ}λ∈N is a deterministic
polynomial-time algorithm PRG : X → Y. We say that the PRG is (τ, ε)-secure
if for all adversaries A running in time at most τ(λ), there exists λA ∈ N, such
that for all security parameters λ > λA, we have,

AdvPRGA := |Pr[A(PRG(x)) = 1 : x ← Xλ] − Pr[A(y) = 1 : y ← Yλ]| ≤ ε(λ).

2.1 Batch Arguments for NP

We now introduce the notion of a non-interactive batch argument (BARG) for
NP. We focus specifically on the language of Boolean circuit satisfiability.

Definition 2.4 (Circuit Satisfiability). For a Boolean circuit C : {0, 1}� ×
{0, 1}m → {0, 1}, and a statement x ∈ {0, 1}n, we define the language of Boolean
circuit satisfiability LCSAT as follows:

LCSAT = {(C, x) | ∃w ∈ {0, 1}m : C(x,w) = 1}.

Definition 2.5 (Batch Circuit Satisfiability). For a Boolean circuit
C : {0, 1}� ×{0, 1}m → {0, 1}, positive integer t ∈ N, and statements x1, . . . , xt ∈
{0, 1}n, we define the batch circuit satisfiability language as follows:

LBatchCSAT,t = {(C, x1, . . . , xt) | ∀i ∈ [t],∃wi ∈ {0, 1}m : C(xi, wi) = 1}.

Definition 2.6 (Batch Argument for NP). A batch argument (BARG) for
the language of Boolean circuit satisfiability consists of a tuple of PPT algorithms
ΠBARG = (Gen,P,V) with the following properties:

– Gen(1λ, 1�, 1T , 1s) → crs: On input the security parameter λ, a bound on the
instance size �, a bound on the number of statements T , and a bound on the
circuit size s, the generator algorithm outputs a common reference string crs.
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– P(crs, C, (x1, . . . , xt), (w1, . . . , wt)) → π: On input the common reference
string crs, a Boolean circuit C : {0, 1}�×{0, 1}m → {0, 1}, a list of statements
x1, . . . , xt ∈ {0, 1}�, and a list of witnesses w1, . . . , wt ∈ {0, 1}m, the prove
algorithm outputs a proof π.

– V(crs, C, (x1, . . . , xt), π) → {0, 1}: On input the common reference string
crs, a Boolean circuit C : {0, 1}� × {0, 1}m → {0, 1}, a list of statements
x1, . . . , xt ∈ {0, 1}�, and a proof π, the verification algorithm outputs a bit
b ∈ {0, 1}.

Moreover, the BARG scheme should satisfy the following properties:

– Completeness: For all security parameters λ ∈ N and bounds � ∈ N, s ∈ N,
T ∈ N, t ≤ T , Boolean circuits C : {0, 1}� × {0, 1}m → {0, 1} of size at
most s, all statements x1, . . . , xt ∈ {0, 1}n and all witnesses w1, . . . , wt where
C(xi, wi) = 1 for all i ∈ [t], it holds that

Pr

[
V(crs, C, (x1, . . . , xt), π) = 1 :

crs ← Gen(1λ, 1�, 1T , 1s)
π ← P(crs, C, (x1, . . . , xt), (w1, . . . , wt))

]
= 1.

– Succinctness: We require ΠBARG satisfy two notions of succinctness:
• Succinct proof size: For all t ≤ T , it holds that |π| = poly(λ, log t, s)

in the completeness experiment defined above. Moreover, we say the proof
is fully succinct if |π| = poly(λ, log t, log s).

• Succinct verification time: For all t ≤ T , the running time of the veri-
fication algorithm V(crs, C, (x1, . . . , xt), π) is poly(λ, t, �)+poly(λ, log t, s)
in the completeness experiment defined above.

– Soundness: We require two succinctness properties:
• Non-adaptive soundness: For all polynomials T = T (λ), s = s(λ), � =

�(λ), t = t(λ) where t ≤ T , and all PPT adversaries A, there exists a
negligible function negl(·) such that for all λ ∈ N, all circuit families
C = {Cλ}λ∈N where Cλ : {0, 1}�(λ) × {0, 1}m(λ) → {0, 1} is a Boolean
circuit of size at most s(λ), and all statements x1, . . . , xt ∈ {0, 1}�(λ)

where (Cλ, (x1, . . . , xt)) �∈ LBatchCSAT,t,

Pr V(crs, Cλ, (x1, . . . , xt), π) = 1 :
crs ← Gen(1λ, 1�, 1T , 1s);

π ← A(1λ, crs, Cλ, (x1, . . . , xt))
= negl(λ).

• Adaptive soundness: For a security parameters λ and bounds T, �, s,
we define the adaptive soundness experiment between a challenger and an
adversary A as follows:
* The challenger samples crs ← Gen(1λ, 1�, 1T , 1s) and sends crs to A.
* Algorithm A outputs a Boolean circuit C : {0, 1}� × {0, 1}m → {0, 1}

of size at most s(λ), statements x1, . . . , xt ∈ {0, 1}�(λ), and a proof π.
Here, we require that t ≤ T .

* The experiment outputs b = 1 if V(crs, C, (x1, . . . , xt), π) = 1 and
(C, (x1, . . . , xt)) �∈ LBatchCSAT,T . Otherwise it outputs b = 0.
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The scheme satisfies adaptive soundness if for every non-uniform poly-
nomial time adversary A, every polynomial T = T (λ),� = �(λ), and
s = s(λ), there exists a negligible function negl(·) such that, Pr[b = 1] =
negl(λ) in the adaptive soundness experiment.

– Perfect zero knowledge: The scheme satisfies perfect zero knowledge if
there exists a PPT simulator S such that for all λ ∈ N, all bounds � ∈ N, T ∈
N, s ∈ N, all t ≤ T , all tuples (C, x1, . . . , xt) ∈ LBatchCSAT,t, and all witnesses
(w1, . . . , wt) where C(xi, wi) = 1 for all i ∈ [t], the following distributions are
identically distributed:

• Real distribution: Sample crs ← Gen(1λ, 1�, 1T , 1s) and a proof π ←
P(crs, C, (x1, . . . , xt), (w1, . . . , wt)). Output (crs, π).

• Simulated distribution: Output (crs∗, π∗) ← S(1λ, 1�, 1T , 1s,
C, (x1, . . . , xt)).

Definition 2.7 (BARGs for Unbounded Statements). We say that
a BARG scheme ΠBARG = (Gen,P,V) supports an unbounded polynomial
of statements if the algorithm Gen in Definition 2.6 runs in time that is
poly(λ, �, s, log T ), and correspondingly, output a CRS of size poly(λ, �, s, log T ).
Notably, the dependence on the bound T is polylogarithmic. In this case, we
implicitly set T = 2λ as the input to the Gen algorithm. Observe that in this
case, the P and V algorithms can now take any arbitrary polynomial number
t = t(λ) of instances as input where t ≤ 2λ.

Batch arguments for index languages. Similar to [CJJ21b], we also consider
the special case of batch arguments for index languages. We recall the relevant
definitions here.

Definition 2.8 (Batch Circuit Satisfiability for Index Languages). For
a positive integer t ≤ 2λ, we define the batch circuit satisfiability problem for
index languages LBatchCSATindex,t = {(C, t) | ∀i ∈ [t],∃wi ∈ {0, 1}m : C(i, wi) = 1}
where C : {0, 1}λ × {0, 1}m → {0, 1} is a Boolean circuit.4

Definition 2.9 (Batch Arguments for Index Languages). A BARG for
index languages is a tuple of PPT algorithms ΠIndexBARG = (Gen,P,V) that satisfy
Definition 2.7 for the index language LBatchCSATindex,t. Since we are considering
index languages, the statements always consist of the indices (1, . . . , t). As such,
we can modify the P and V algorithms in Definition 2.6 to take as input the
single index t (of length λ bits) rather than the tuple of statements (x1, . . . , xt).
Specifically, we modify the syntax as follows:

– P(crs, C, t, (w1, . . . , wt)) → π: The prove algorithm takes as input the common
reference string crs, a Boolean circuit C : {0, 1}λ×{0, 1}m → {0, 1}, the index
t ∈ N, and a list of witnesses w1, . . . , wt ∈ {0, 1}m, and outputs a proof π.

4 Here, and throughout the exposition, we associate elements of the set [2λ] with their
binary representation in {0, 1}λ, and the value 2λ with the all-zeroes string 0λ.
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– V(crs, C, t, π) → {0, 1}: The verification algorithm takes as input the common
reference string crs, a Boolean circuit C : {0, 1}λ×{0, 1}m → {0, 1}, the index
t ∈ N, and a proof π, and outputs a bit b ∈ {0, 1}.

The completeness and zero-knowledge properties are the same as those in Def-
inition 2.6(adapted to the unbounded case where T = 2λ). We define sound-
ness analogously, but require that the adversary outputs the statement index t
in unary. Namely, the adversary is still restricted to choosing a polynomially-
bounded number of instances t = poly(λ) even if the upper bound on t is T = 2λ.
For succinctness, we require the following stronger property on the verification
time:

– Succinct verification time: For all t ≤ 2λ, the verification algorithm
V(crs, C, t, π) runs in time poly(λ, s) in the completeness experiment.

3 Non-Adaptive Batch Arguments for Index Languages

In this section, we show how to construct a batch argument for index languages
that can support an arbitrary polynomial number of statements. We show how
to obtain a construction with non-adaptive soundness. As described in Sect. 1.1,
we include two obfuscated programs in the CRS to enable sequential proving
and batch verification:

– The proving program takes as input a Boolean circuit C : {0, 1}λ ×{0, 1}m →
{0, 1}, an instance number i ∈ [2λ], a witness w ∈ {0, 1}m for instance i as
well as a proof π for the first i−1 instances. The program validates the proof
on the first i−1 instances and that C(i, w) = 1. If both checks pass, then the
program outputs a proof for instance i. Otherwise, it outputs ⊥.

– The verification program takes as input the circuit C, the final instance num-
ber t ∈ [2λ], and a proof π. It outputs a bit indicating whether the proof is
valid or not. In this case, outputting 1 indicates that π is a valid proof on
instances (1, . . . , t).

Construction 3.1 (Batch Argument for Index Languages). Let λ be a
security parameter and s = s(λ) be a bound on the size of the Boolean cir-
cuit. We construct a BARG scheme that supports index languages with up to
T = 2λ instances (i.e., which suffices to support an arbitrary polynomial num-
ber of instances) and circuits of size at most s. The instance indices will be
taken from the set [2λ]. For ease of notation, we use the set [2λ] and the set
{0, 1}λ interchangably in the following description. Our construction relies on
the following primitives:

– Let PRF be a puncturable PRF with key space {0, 1}λ, domain {0, 1}s ×
{0, 1}λ and range {0, 1}λ.

– Let iO be an indistinguishability obfuscator.
– Let PRG be a pseudorandom generator with domain {0, 1}λ and range

{0, 1}2λ.
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We define our batch argument ΠBARG = (Gen,P,V) for index languages as fol-
lows:

– Gen(1λ, 1s): On input the security parameter λ, and a bound on the circuit
size s, the setup algorithm starts by sampling a PRF key K ← PRF.Setup(1λ).
The setup algorithm then defines the proving program Prove[K] and the ver-
ification program Verify[K] as follows:
The setup algorithm constructs ObfProve ← iO(1λ,Prove[K]) and
ObfVerify ← iO(1λ,Verify[K]). Note that both the proving circuit Prove[K]
and Verify[K] are padded to the maximum size of any circuit that appears
in the proof of Theorem 3.3. Finally, it outputs the common reference string
crs = (ObfProve,ObfVerify).

– P(crs, C, (w1, . . . , wt)): On input crs = (ObfProve,ObfVerify), a Boolean cir-
cuit C : {0, 1}λ × {0, 1}m → {0, 1}, and a collection of witnesses w1, . . . , wt ∈
{0, 1}m, the prover algorithm does the following:

• Compute π1 ← ObfProve(C, 1, w1,⊥).
• For i = 2, . . . , t, compute πi ← ObfProve(C, i, wi, πi−1).
• Output πt.

– V(crs, C, t, π): On input crs = (ObfProve,ObfVerify), a Boolean circuit
C : {0, 1}λ × {0, 1}m → {0, 1}, the instance count t ∈ [2λ], and a proof
π ∈ {0, 1}λ, the verification algorithm outputs ObfVerify(C, t, π).

Completeness and security analysis. We now state the completeness and security
properties of Construction 3.1, but defer their proofs to the full version of this
paper.
Theorem 3.2 (Completeness). If iO is correct, then Construction 3.1 is
complete.

Theorem 3.3 (Soundness). If PRF is functionality preserving and a secure
puncturable PRF, PRG is a secure PRG, and iO is secure, then Construction
3.1 satisfies non-adaptive soundness.

Theorem 3.4 (Succinctness). Construction 3.1 is fully succinct.

Theorem 3.5 (Zero Knowledge). Construction 3.1 satisfies perfect zero
knowledge.

Fig. 1. Program Prove[K]



Fully Succinct Batch Arguments for NP from iO 543

Fig. 2. Program Verify[K]

4 Non-Adaptive BARGs for NP from BARGs for Index
Languages

In this section, we describe an adaptation of the compiler of Choud-
huri et al. [CJJ21b] for upgrading a batch argument for index language to
a batch argument for NP. The transformation of Choudhuri et al. relied on
somewhere extractable commitments, which can be based on standard lattice
assumptions [HW15,CJJ21b] or pairing-based assumptions [WW22]. Here, we
show that the same transformation is possible using the positional accumulators
introduced by Koppula et al. [KLW15]. The advantage of basing the transforma-
tion on positional accumulators is that we can construct positional accumulators
directly from indistinguishability obfuscation and one-way functions, so we can
apply the transformation to Construction 3.1 from Sect. 3 to obtain a fully suc-
cinct batch argument for NP from the same set of assumptions. A drawback of
using positional accumulators in place of somewhere extractable commitments is
that our transformation can only provide non-adaptive soundness, whereas the
Choudhuri et al. transformation satisfies the stronger notion of semi-adaptive
somewhere extractability.

Positional accumulators. Like a somewhere statistically binding (SSB) hash
function [HW15], a positional accumulator allows a user to compute a short
“digest” or “hash” y of a long input (x1, . . . , xt). The scheme supports local
openings where the user can open y to the value xi at any index i with a short
opening πi. The security property is that the hash value y is statistically bind-
ing at a certain (hidden) index i∗. An important difference between positional
accumulators and somewhere statistically binding hash functions is that posi-
tional accumulators are statistically binding for the hash y of a specific tuple of
inputs (x1, . . . , xt) while SSB hash functions are binding for all hash values. We
give the definition below. Our definition is a simplification of the corresponding
definition of Koppula et al. [KLW15, §4] and we summarize the main differences
in Remark 4.3.

Definition 4.1 (Positional Accumulators [KLW15, adapted]). Let � ∈ N

be an input length. A positional accumulator scheme for inputs of length � is
a tuple of PPT algorithms ΠPA = (Setup,SetupEnforce,Hash,Open,Verify) with
the following properties:
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– Setup(1λ, 1�) → pp: On input the security parameter λ and the input length
�, the setup algorithm outputs a set of public parameters pp.

– SetupEnforce(1λ, 1�, (x1, . . . , xt), i∗) → pp: On input the security parameter λ,
an input length �, a tuple of inputs x1, . . . , xt ∈ {0, 1}�, and an index i∗ ∈ [t],
the enforcing setup algorithm outputs a set of public parameters pp.

– Hash(pp, (x1, . . . , xt)) → y: On input the public parameters pp, a tuple of
inputs x1 ∈ {0, 1}�, . . . , xt ∈ {0, 1}�, the hash algorithm outputs a value y.
This algorithm is deterministic.

– Open(pp, (x1, . . . , xt), i) → π: On input the public parameters pp, a tuple
of inputs x1 ∈ {0, 1}�, . . . , xt ∈ {0, 1}� and an index i ∈ [t], the opening
algorithm outputs an opening π.

– Verify(pp, y, x, i, π) → {0, 1}: On input the public parameters pp, a hash value
y, an input x ∈ {0, 1}�, an index i ∈ {0, 1}λ, and an opening π, the verification
algorithm outputs a bit {0, 1}.

Moreover, the positional accumulator ΠPA should satisfy the following properties:

– Correctness: For all security parameters λ ∈ N and input lengths � ∈ N, all
polynomials t = t(λ), indices i ∈ [t], and inputs x1, . . . , xt ∈ {0, 1}�, it holds
that

Pr

⎡

⎣Verify(pp, y, xi, i, π) = 1 :
pp ← Setup(1λ, 1�),

y ← Hash(pp, (x1, . . . , xt)),
π ← Open(pp, (x1, . . . , xt), i)

⎤

⎦ = 1.

– Succinctness: The length of the hash value y output by Hash and the length
of the proof π output by Open in the completeness experiment satisfy |y| =
poly(λ, �) and |π| = poly(λ, �).

– Setup indistinguishability: For a security parameter λ, a bit b ∈ {0, 1},
and an adversary A, we define the setup-indistinguishability experiment as
follows:

• Algorithm A starts by choosing inputs x1, . . . , xt ∈ {0, 1}�, and an index
i ∈ [t].

• If b = 0, the challenger samples pp ← Setup(1λ, 1�). Otherwise, if b = 1,
the challenger samples pp ← SetupEnforce(1λ, 1�, (x1, . . . , xt), i). It gives
pp to A.

• Algorithm A outputs a bit b′ ∈ {0, 1}, which is the output of the experi-
ment.

We say that ΠPA satisfies (τ, ε)-setup-indistinguishability if for all adversaries
running in time τ = τ(λ), there exists λA ∈ N such that for all λ > λA

|Pr[b′ = 1 | b = 0] − Pr[b′ = 1 | b = 1]| ≤ ε(λ).

in the setup-indistinguishability experiment.
– Enforcing: Fix a security parameter λ ∈ N, block size � ∈ N, a polynomial

t = t(λ), an index i∗ ∈ [t], and a set of inputs x1, . . . , xt. We say that a
set of public parameters pp are “enforcing” for a tuple (x1, . . . , xt, i

∗) if there
does not exist a pair (x, π) where x �= xi∗ , Verify(pp, y, x, i∗, π) = 1, and
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y ← Hash(pp, (x1, . . . , xt)). We say that the positional accumulator is enforc-
ing if for every polynomial � = �(λ), t = t(λ), index i∗ ∈ [t] and inputs
x1, . . . , xt ∈ {0, 1}�, there exists a negligible function negl(·) such that for all
λ ∈ N,

Pr[pp is “enforcing” for (x1, . . . , xT , i∗) :
pp ← SetupEnforce(1λ, 1�, (x1, . . . , xt), i∗)] ≥ 1 − negl(λ),

where the probability is taken over the random coins of SetupEnforce.

Theorem 4.2 (Positional Accumulators [KLW15]). Assuming the existence
of an indistinguishability obfuscation scheme and one-way functions, there exists
a positional accumulator for arbitrary polynomial input lengths � = �(λ).

Remark 4.3 (Comparison with [KLW15]). Definition 4.1 describes a simplified
variant of the positional accumulator from Koppula et al. [KLW15, §4]. Specif-
ically, we instantiate their construction with an (implicit) bound of T = 2λ for
the number of values that can be accumulated. The positional accumulators
from Koppula et al. also supports insertions (i.e., “writes”) to the accumulator
structure, whereas in our setting, all of the inputs are provided upfront (as an
input to Hash).

Construction 4.4 (Batch Argument for NP Languages). Let λ be a secu-
rity parameter and s = s(λ) be a bound on the size of the Boolean circuit. We
construct a BARG scheme that supports arbitrary NP languages with up to
T = 2λ instances (i.e., which suffices to support an arbitrary polynomial num-
ber of instances) and Boolean circuits of size at most s. For ease of notation, we
use the set [2λ] and the set {0, 1}λ interchangably in the following description.
Our construction relies on the following primitives:

– Let ΠPA = (PA.Setup,PA.SetupEnforce,PA.Hash,PA.Open,PA.Verify) be a
positional accumulator for inputs of length �.

– Let ΠIndexBARG = (IndexBARG.Gen, IndexBARG.P, IndexBARG.V) be a BARG
for index languages (that supports up to T = 2λ instances).5

We define our batch argument ΠBARG = (Gen,P,V) for batch circuit satisfiability
languages as follows:

– Gen(1λ, 1�, 1s): On input the security parameter λ, the statement length �,
and a bound on the circuit size s, sample pp ← PA.Setup(1λ, 1�). Let s′ be a
bound on the size of the following circuit:
Then, sample IndexBARG.crs ← IndexBARG.Gen(1λ, 1s′

). Output the common
reference string crs = (pp, IndexBARG.crs).

5 Our transformation also applies in the setting where the number of instances is
bounded and the transformed scheme inherits the same bound. For simplicity of
exposition, we just describe the transformation for the unbounded case.
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Fig. 3. The Boolean circuit C′[pp, h, C] for an index relation

– P(crs, C, (x1, . . . , xt), (w1, . . . , wt)): On input the common reference string
crs = (pp, IndexBARG.crs), a Boolean circuit C : {0, 1}� × {0, 1}m →
{0, 1}, statements x1, . . . , xt ∈ {0, 1}�, and witnesses w1, . . . , wt ∈ {0, 1}m,
compute h ← PA.Hash(pp, (x1, . . . , xt)). Then, for each i ∈ [t], let
σi ← PA.Open(pp, (x1, . . . , xt), i) and let w′

i = (xi, σi, wi). Output π ←
IndexBARG.P(IndexBARG.crs, C ′[pp, h, C], t, (w′

1, . . . , w
′
t)), where C ′[pp, h, C]

is the circuit for the index relation from Fig. 3.
– V(crs, C, (x1, . . . , xt), π): On input the common reference

string crs = (pp, IndexBARG.crs), the Boolean circuit C : {0, 1}� × {0, 1}m →
{0, 1}, instances x1, . . . , xt ∈ {0, 1}�, and a proof π, the verifica-
tion algorithm computes h ← PA.Hash(pp, (x1, . . . , xt)) and outputs
IndexBARG.V(IndexBARG.crs, C ′[pp, h, C], t, π), where C ′[pp, h, C] is the cir-
cuit for the index relation from Fig. 3.

Completeness and security analysis. We now state the completeness and security
properties of Construction 4.4, but defer their formal analysis to the full version
of this paper.

Theorem 4.5 (Completeness). If ΠIndexBARG is complete and ΠPA is correct,
then Construction 4.4 is complete.

Theorem 4.6 (Soundness). Suppose ΠIndexBARG satisfies non-adaptive sound-
ness, ΠPA satisfies setup-indistinguishability and is enforcing. Then, Construc-
tion 4.4 satisfies non-adaptive soundness.

Theorem 4.7 (Succinctness). If ΠIndexBARG is succinct (resp., fully succinct),
ΠPA is efficient, then Construction 4.4 is succinct (resp., fully succinct).

Theorem 4.8 (Zero Knowledge). If ΠIndexBARG is perfect zero-knowledge,
then Construction 4.4 is perfect zero-knowledge.

Remark 4.9 (Weaker Notions of Zero Knowledge). If ΠIndexBARG satisfies compu-
tational (resp., statistical) zero-knowledge, then Construction 4.4 satisfies com-
putational (resp., statistical) zero-knowledge. In other words, Construction 4.4
preserves the zero-knowledge property on the underlying index BARG.
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5 Updatable Batch Argument for NP

We say that a BARG scheme is updatable if it supports an a priori unbounded
number of statements (see Definition 2.7) and the prover algorithm is updatable.
Formally, we replace the prover algorithm P in the BARG with an UpdateP
algorithm. The UpdateP algorithm takes in statements (x1, . . . , xt), a proof πt on
these t statements, a new statement xt+1, along with an associated witness wt+1,
and outputs an “updated” proof πt+1 on the new set of statements (x1, . . . , xt+1).
The updated proof should continue to satisfy the same succinctness requirements
as before. We give the formal definition below:
Definition 5.1 (Updatable BARGs). An updatable batch argument (BARG)
for the language of Boolean circuit satisfiability consists of a tuple of PPT algo-
rithms ΠBARG = (Gen,UpdateP,V) with the following properties:
– Gen(1λ, 1�, 1s) → crs: On input the security parameter λ ∈ N, a bound on the

instance size � ∈ N, and a bound on the maximum circuit size s ∈ N, the
generator algorithm outputs a common reference string crs.

– UpdateP(crs, C, (x1, . . . , xt), πt, xt+1, wt+1) → πt+1: On input the common
reference string crs, a Boolean circuit C : {0, 1}� × {0, 1}m → {0, 1}, a list
of statements x1, . . . , xt ∈ {0, 1}�, a proof πt, a new statement xt+1 ∈ {0, 1}�

and witness wt+1 ∈ {0, 1}m, the update algorithm outputs an updated proof
πt+1. Note that the list of statements (x1, . . . , xt) is allowed to be empty. We
will write ⊥ to denote an empty list of statements.

– V(crs, C, (x1, . . . , xt), π) → b: On input the common reference string crs, a
Boolean circuit C : {0, 1}�×{0, 1}m → {0, 1}, a list of statements x1, . . . , xt ∈
{0, 1}�, and a proof π, the verification algorithm outputs a bit b ∈ {0, 1}.

An updatable BARG scheme should satisfy the following properties:
– Completeness: For every security parameter λ ∈ N and bounds t ∈ N,

� ∈ N, and s ∈ N, Boolean circuits C : {0, 1}� × {0, 1}m → {0, 1} of size
at most s, any collection of statements x1, . . . , xt ∈ {0, 1}� and associated
witnesses w1, . . . , wt ∈ {0, 1}m where C(xi, wi) = 1 for all i ∈ [t], we have
that

Pr ∀i ∈ [t] : V(crs, C, (x1, . . . , xi), πi) = 1 :

crs ← Gen(1λ, 1�, 1s) , π0 ← ⊥,

πi ← UpdateP(crs, C, (x1, . . . , xi−1), πi−1, xi, wi)

for all i ∈ [t]

= 1.

– Succinctness: Similar to Definition 2.6, we require two succinctness prop-
erties:

• Succinct proof size: There exists a universal polynomial poly(·, ·, ·),
such that for every i ∈ [t], |πi| = poly(λ, log i, s) in the completeness
experiment above.

• Succinct verification time: There exists a universal polynomial
poly(·, ·, ·) such that for all i ∈ [t], the verification algorithm
V(crs, C, (x1, . . . , xi), πi) runs in time poly(λ, i, �) + poly(λ, log i, s) in the
completeness experiment above.

– Soundness: The soundness definition is defined exactly as in Definition 2.6.
– Perfect zero knowledge: The zero-knowledge definition is defined exactly

as in Definition 2.6.
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5.1 Updatable BARGs for NP from Indistinguishability Obfuscation

We now give a direct construction of an updatable batch argument for NP lan-
guages from indistinguishability obfuscation together with somewhere statisti-
cally binding (SSB) hash functions [HW15]. We start with a construction that
provides non-adaptive soundness. We then show to use complexity leveraging to
obtain a construction with adaptive soundness.

Two-to-one somewhere statistically binding hash functions. Our construction
will rely on a two-to-one somewhere statistically binding (SSB) hash func-
tion [OPWW15]. Informally, a two-to-one SSB hash function hashes two input
blocks to an output whose size is comparable to the size of a single block. We
recall the definition below:

Definition 5.2 (Two-to-One Somewhere Statistically Binding Hash
Function [OPWW15]). Let λ be a security parameter. A two-to-one some-
where statistically binding (SSB) hash function with block size �blk = �blk(λ)
and output size �out = �out(λ, �blk) is a tuple of efficient algorithms ΠSSB =
(Gen,GenTD, LocalHash) with the following properties:

– Gen(1λ, 1�blk) → hk: On input the security parameter λ and the block size �blk,
the generator algorithm outputs a hash key hk.

– GenTD(1λ, 1�blk , i∗) → hk: On input a security parameter λ, a block size �blk,
and an index i∗ ∈ {0, 1}, the trapdoor generator algorithm outputs a hash key
hk.

– LocalHash(hk, x0, x1) → y: On input a hash key hk and two inputs x0, x1 ∈
{0, 1}�blk , the hash algorithm outputs a hash y ∈ {0, 1}�out .

Moreover, ΠSSB should satisfy the following requirements:

– Succinctness: The output length �out satisfies �out(λ, �blk) = �blk · (1 +
1/Ω(λ)) + poly(λ).

– Index hiding: For a security parameter λ, a bit b ∈ {0, 1}, and an adversary
A, we define the index-hiding experiment as follows:

• Algorithm A starts by choosing a block size �blk, and an index i ∈ {0, 1}.
• If b = 0, the challenger samples hk0 ← Gen(1λ, 1�blk). Otherwise, if b = 1,

the challenger samples hk1 ← GenTD(1λ, 1�blk , i). It gives hkb to A.
• Algorithm A outputs a bit b′ ∈ {0, 1}, which is the output of the experi-

ment.
We say that ΠSSB satisfies (τ, ε)-index-hiding, if for all adversaries running
in time τ = τ(λ), there exists λA ∈ N such that for all λ > λA, |Pr[b′ = 1 |
b = 0] − Pr[b′ = 1 | b = 1]| ≤ ε(λ) in the index-hiding experiment.

– Somewhere statistically binding: Let λ ∈ N be a security parameter and
� ∈ N be an input length. We say a hash key hk is"statistically binding"
at index i ∈ {0, 1}, if there does not exist two inputs (x0, x1) and (x∗

0, x
∗
1)

such that x∗
i �= xi and Hash(hk, (x0, x1)) = Hash(hk, (x∗

0, x
∗
1)). We then say

that the hash function is somewhere statistically binding if for all polynomials
�blk = �blk(λ), there exists a negligible function negl(·) such that for all indices
i∗ ∈ {0, 1} and all λ ∈ N,

Pr[hk is statistically binding at index i : hk ← GenTD(1λ, 1�blk , i)] ≥ 1 − negl(λ).
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Theorem 5.3 (Somewhere Statistically-Binding Hash Functions
[OPWW15]). Under standard number-theoretic assumptions (e.g., DDH, DCR,
LWE, or φ-Hiding), there exists a two-to-one somewhere statistically binding
hash function for arbitrary polynomial block size �blk = �blk(λ).

Notation. Our updatable BARG construction uses a tree-based construction.
Before describing the construction, we introduce some notation. First, for an
integer t < 2d, we write bind(t) ∈ {0, 1}d to denote the d-bit binary representa-
tion of t. For two strings ind ∈ {0, 1}∗, ind′ ∈ {0, 1}∗, let pad(ind) and pad(ind′)
be the respective strings padded with zeros to the length max{|ind|, |ind′|}. We
say ind ≤ ind′ if pad(ind) comes before pad(ind′) lexicographically. For strings
s1, s2 ∈ {0, 1}∗, we write s1‖s2 to denote their concatenation. We say that a
string x ∈ {0, 1}∗ is a prefix of a string y ∈ {0, 1}∗ if there exists a string
z ∈ {0, 1}∗ such that y = x‖z.

Binary trees. A binary tree Γ of height d consists of nodes where each node
is indexed by a binary string of length at most d. We now define a recursive
labeling scheme for the nodes of the tree; subsequently, we will refer to nodes by
their labels.

– Root node: The root node is labeled with the empty string ε.
– Child nodes: The left child of node ind has label ind‖0 and the right child

has label ind‖1. We also say that node ind‖0 is the “left sibling” of the node
ind‖1.

We define the level of a node ind by level(ind) = d − |ind|. In particular, the
root node is at level d while the leaf nodes are at level 0. We write {0, 1}≤d

to denote the set of node labels associated in the binary tree (i.e., the set of
all binary strings of length at most d). Finally, we can also associate each node
in the binary tree with a value; formally, for a binary tree Γ we write val(ind)
to denote the value associated with the node ind. When we write (Γ, val(·)), we
imply our binary tree has been initialized with the corresponding value function.
Finally, we define the notion of a “path” and a “frontier” of a node in a binary
tree Γ :

– Path of a node: We define the path associated with a node ind ∈ {0, 1}≤d

as
path(ind) = {ind′ | ind′ ∈ {0, 1}≤d and ind′ is a prefix of ind}.

Namely, path(ind) consists of the nodes along the path from the root to ind.
– Frontier of a node: For any ind ∈ {0, 1}≤d, we define

frontier(ind) = {ind}∪{ind′ ∈ {0, 1}≤d | ind′ is a left sibling of a node in path(ind)}.

Construction 5.4 (Non-Adaptive Updatable Batch Argument for NP).
Let λ be a security parameter, � = �(λ) be the statement size, and s = s(λ) be

a bound on the size of the Boolean circuit. We construct an updatable BARG
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Fig. 4. Program Prove[K, hk]

scheme that supports NP languages with up to T = 2λ instances of length �
and circuit size at most s. Note that setting T = 2λ means the construction
support an arbitrary polynomial number of instances. Our construction relies on
the following primitives:

– Let ΠSSB = (SSB.Gen,SSB.GenTD,SSB.LocalHash) be a two-to-one some-
where statistically binding hash function with output length �out =
�out(λ, �blk), where �blk denotes the block length. Our construction will con-
sider a binary tree of depth d = λ, and we define a sequence of block
lengths �0, . . . , �d where �0 = � and for j ∈ [d], let �j = �out(λ, �j−1).6 Let
�max = max(�0, . . . , �j).

– Let ΠPRF = (PRF.Setup,PRF.Puncture,PRF.Eval) be a puncturable PRF with
key space {0, 1}λ, domain {0, 1}≤s × {0, 1}≤�max × {0, 1}d and range {0, 1}λ.

– Let iO be an indistinguishability obfuscator for general circuits.
– Let PRG be a pseudorandom generator with domain {0, 1}λ and range

{0, 1}2λ.

We define our updatable batch argument ΠBARG = (Gen,UpdateP,Verify) for NP
languages as follows:

– Gen(1λ, 1�, 1s): On input the security parameter λ, the statement size �, and
a bound on the circuit size s, the setup algorithm starts by sampling a PRF
key K ← PRF.Setup(1λ). For j ∈ [d], sample hkj ← SSB.Gen(1λ, 1�j−1), Let
hk ← (hk1, . . . , hkd) and define the proving program Prove[K, hk] and the

6 Formally, our hash function will take inputs in {0, 1}�j−1∪{⊥}. For ease of exposition,
we drop the special input symbol ⊥ in our block length description.
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Fig. 5. Program Verify[K]

verification program Verify[K] as follows:
The setup algorithm obfuscates the above programs to obtain ObfProve ←
iO(1λ,Prove[K, hk]) and ObfVerify ← iO(1λ,Verify[K]). Note that both the
proving circuit Prove[K, hk] and Verify[K] are padded to the maximum size
of any circuit that appears in the proof of Theorem 5.6. Finally, it outputs
the common reference string crs = (ObfProve,ObfVerify, hk).

– UpdateP(crs, C, (x1, . . . , xt), πt, xt+1, wt+1): On input a common reference
string crs = (ObfProve,ObfVerify, hk), a Boolean circuit C : {0, 1}�×{0, 1}m →
{0, 1}, a set of statements x1, . . . , xt, xt+1 ∈ {0, 1}�, a proof πt =
{(ind, πind)}ind∈I on the first t statements where I ⊂ {0, 1}≤d, and a wit-
ness wt+1 ∈ {0, 1}m, the update algorithm proceeds as follows:
1. If t = 0, let ind(1) = bind(0) = 0d. Let

π ← ObfProve(C, x1,⊥, ind(1), w1,⊥) and output {(ind(1), π)}.
2. Otherwise, if t �= 0, the update algorithm computes ind(t) = bind(t − 1)

and checks that frontier(ind(t)) = I. If the check fails, then the update
algorithm outputs ⊥.

3. Next, the update algorithm constructs a binary tree (Γhash, valhash) ←
Hash[hk](x1, . . . , xt) of depth d whose values correspond to the statements
(x1, . . . , xt) and their hashes. Specifically, we define the Hash[hk] function
as follows:
Essentially, Hash[hk] computes a Merkle tree on the statements
(x1, . . . , xt).

4. The update algorithm then defines a binary tree Γproof of depth d with
the following value function valproof :

• For each index ind ∈ I, let valproof(ind) = πind.
• Let ind(t+1) = bind(t). Let
valproof(ind(t+1)) = ObfProve(C, xt+1,⊥, ind(t+1), wt+1,⊥).

• For all other nodes ind /∈ I, let valproof(ind) = ⊥.
The invariant will be that the nodes ind associated with the frontier of
leaf node t (with index bind(t − 1)) are associated with a proof πind.

5. Let ind′ be the longest common prefix to ind(t) and ind(t+1). Write ind(t) =
b1 · · · bd and ind′ = b1 · · · bρ, where ρ = |ind′| denotes the length of the
common prefix. If ρ < d − 1, then we apply the following procedure for
k = d − 1, . . . , ρ + 1 to merge proofs:
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• Let ind = b1 · · · bK and compute

valproof(ind) ← ObfProve (C, h1, h2, ind, valproof(ind‖0), valproof(ind‖1)) ,

where h1 ← valhash(ind‖0) and h2 ← valhash(ind‖1).
6. Output the updated proof, πt+1 = {(ind, valproof(ind))}ind∈frontier(ind(t+1)).

– V(crs, C, (x1, . . . , xt), π): On input crs = (ObfProve,ObfVerify, hk), a Boolean
circuit C : {0, 1}� × {0, 1}m → {0, 1}, statements x1, . . . , xt ∈ {0, 1}� and a
proof π = {(ind, πind)}ind∈I , the verification algorithm proceeds as follows:
1. The algorithm constructs a

binary tree (Γhash, valhash) ← Hash[hk](x1, . . . , xt) (defined in Fig. 6) of
depth d whose values correspond to the statements (x1, . . . , xt) and their
hashes.

2. Let ind(t) = bind(t − 1). If I �= frontier(ind(t)), output ⊥.
3. Finally, the verification algorithm checks

that ObfVerify(C, valhash(ind), ind, πind) = 1 for all ind ∈ frontier(ind(t)).
If any checks fail, output 0. Otherwise output 1.

Completeness and security analysis. We now state the completeness and security
properties of Construction 5.4, but defer their proofs to the full version of this
paper.

Theorem 5.5 (Completeness). If iO is correct, then Construction 5.4 is
complete.

Theorem 5.6 (Soundness). If ΠPRF is correct and a secure puncturable PRF,
PRG is a secure PRG, ΠSSB is a secure statistically binding two-to-one SSB hash
and iO is secure, then Construction 5.4 satisfies non-adaptive soundness.

Theorem 5.7 (Succinctness). If ΠSSB is succinct, then, Construction 5.4 is
fully succinct.

Theorem 5.8 (Zero-knowledge). Construction 5.4 satisfies perfect zero-
knowledge.

Combining Theorems 5.5 to 5.8, we obtain the following corollary:

Corollary 5.9 (Non-Adaptive Updatable BARGs). Assuming the exis-
tence of a secure indistinguishability obfuscation scheme and of somewhere
extractable hash functions, there exists an updatable batch argument for NP.
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Fig. 6. The function Hash[hk](x1, . . . , xt)
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[KLW15] Koppula, V., Lewko, A.B., Waters, B.: Indistinguishability obfuscation for
turing machines with unbounded memory. In: STOC, pp. 419–428 (2015)

[KPTZ13] Kiayias, A., Papadopoulos, S., Triandopoulos, S., Zacharias, T.: Delegat-
able pseudorandom functions and applications. In: ACM CCS, pp. 669–
684 (2013)

[Lip13] Lipmaa, H.: Succinct non-interactive zero knowledge arguments from span
programs and linear error-correcting codes. In: ASIACRYPT (2013)

[Mer87] Merkle, R.C.: A digital signature based on a conventional encryption func-
tion. In: CRYPTO, pp. 369–378 (1987)



Fully Succinct Batch Arguments for NP from iO 555

[Mic95] Micali, S.: Computationally-sound proofs. In: Proceedings of the Annual
European Summer Meeting of the Association of Symbolic Logic (1995)

[Nao03] Naor, M.: On cryptographic assumptions and challenges. In: CRYPTO
(2003)

[OPWW15] Okamoto, T., Pietrzak, K., Waters, B., Wichs, D.: New realizations of
somewhere statistically binding hashing and positional accumulators. In:
ASIACRYPT, pp. 121–145 (2015)

[PHGR13] Parno, B., Howell, J., Gentry, C., Raykova, M.: Nearly practical verifiable
computation. In: IEEE Symposium on Security and Privacy, Pinocchio
(2013)

[Set20] Setty, S.T.V.: Spartan: efficient and general-purpose zkSNARKs without
trusted setup. In: CRYPTO (2020)

[SW14] Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deni-
able encryption, and more. In: STOC (2014)

[WW22] Waters, B., Wu, D.J.: Batch arguments for NP and more from standard
bilinear group assumptions. In: CRYPTO (2022)



Identity-Based Encryption
and Functional Encryption



Lower Bounds for the Number
of Decryption Updates

in Registration-Based Encryption

Mohammad Mahmoody1, Wei Qi1(B), and Ahmadreza Rahimi2

1 University of Virginia, Charlottesville, VA, USA
{mohammad,wq4sr}@virginia.edu

2 Max Planck Institute for Security and Privacy, Bochum, Germany
ahmadreza.rahimi@mpi-sp.org

Abstract. Registration-based encryption (Garg, Hajiabadi, Mah-
moody, Rahimi, TCC’18) aims to offer what identity-based encryption
offers without the key-escrow problem, which refers to the ability of the
private-key generator to obtain parties’ decryption keys at wish. In RBE,
parties generate their own secret and public keys and register their public
keys to the key curator (KC) who updates a compact public parameter
after each registration. The updated public parameter can then be used
to securely encrypt messages to registered identities.

A major drawback of RBE, compared with IBE, is that in order to
decrypt, parties might need to periodically request so-called decryption
updates from the KC. Current RBE schemes require Ω(log n) number
of updates after n registrations, while the public parameter is of length
poly(log n). Clearly, it would be highly desirable to have RBEs with only,
say, a constant number of updates. This leads to the following natural
question: are so many (logarithmic) updates necessary for RBE schemes,
or can we decrease the frequency of updates significantly?

In this paper, we prove an almost tight lower bound for the number of
updates in RBE schemes, as long as the times that parties receive updates
only depend on the registration time of the parties, which is a natural
property that holds for all known RBE constructions. More generally, we
prove a trade-off between the number of updates in RBEs and the length
of the public parameter for any scheme with fixed update times. Indeed,
we prove that for any such RBE scheme, if there are n ≥ (

k+d
d+1

)
identities

that receive at most d updates, the public parameter needs to be of length
Ω(k). As a corollary, we find that RBE systems with fixed update times
and public parameters of length poly(log n), require Ω(log n/ loglog n)
decryption updates, which is optimal up to a O(loglog n) factor.

1 Introduction

Identity-based encryption (IBE) [Sha84,BF01] is a powerful encryption primitive
that allows a large group of identities to have a single public parameter pp in
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such a way that encryption to any identity id is possible solely based on the
public parameter and id. The main weakness of IBE is the so-called key-escrow
problem [Rog15,BF01,ARP03]. In particular, IBE schemes need a master secret
key msk that is needed to generate personalized decryption keys dkid for each
identity id, so that id can decrypt messages that are encrypted for them. This
means the holder of msk, called the “private-key generator” (PKG) can decrypt
all the messages, even the ones that are encrypted to parties who have not even
requested their decryption keys yet!

To address the key escrow problem with IBE, Garg et al. [GHMR18] intro-
duced a new primitive called Registration-based encryption (RBE). RBE is
indeed a hybrid of IBE and the more basic primitive of public-key encryption. In
RBE, every identity generates their own pair of public and secret keys (pkid, skid).
Then, if a party id decides to “register” (i.e. join the system), they can send a
request to a central party who manages the keys and is called the key curator
(KC). KC runs a deterministic and fully transparent algorithm and updates two
pieces of information: an auxiliary information auxn as well as a compact public
parameter ppn, where n shows how many people have registered in the system
so far. The public parameter ppn could be used like a public parameter of IBE
to encrypt messages to any of the n identities who have registered so far. The
auxiliary information auxn will be used to facilitate the next registration (and
another operation called update, which is discussed below). A key advantage of
RBE over IBE is that parties own their secret keys. However, they might some-
times need extra help from the KC to decrypt ciphertexts that are encrypted to
them, but perhaps using public parameters that are generated after the recipient
identity is registered in the system. However, these “decryption updates” shall
be needed rarely to make RBE useful.

Number of Updates vs. Compactness of Public-Parameters. If one puts no bound
on the length of the public parameter ppn, then a simple concatenation of all the
public keys of the registered parties ppn = {pk1, . . . , pkn} can be used to triv-
ially achieve RBE. Here the parties simply pick the public key of the receiver to
encrypt their messages to them. This trivial scheme does not need any decryption
updates! Hence, RBE is only meaningfully useful, if |ppn| = o(n) grows sublin-
early. In [GHMR18], it was suggested to keep |ppn| = poly(κ, log n) as the default
level of compactness for the public parameter and keep the number of needed
decryption updates to be O(log n). The work of [GHMR18] also constructed such
schemes based on indistinguishability obfuscation [BGI+01,GGH+13,JLS21]
and somewhere-statistically binding hashing schemes [HW15].

At a very high level, the public parameter ppn in [GHMR18] is the root of a
Merkle tree that hashes all the public parameters of the registered identities, and
so it can also be viewed as a commitment to all those public keys. This makes
the job of the KC very similar to that of accumulators [BdM94,BP97,CL02].
The ciphertexts in [GHMR18] are obfuscations of programs that anticipate an
“opening” into the identity’s public key and output encryption of the message
under such public keys. Therefore, to decrypt a message an identity idi would
need to know the“decommitment” (opening) to its public key pki with respect to
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the commitment message ppn. When the identities register, the Merkle tree grows
and decommitment needs to be updated as well. Therefore, when more parties
register, the previously registered parties need to request decryption updates to
keep their decommitments up to date. This approach led to Θ(log n) number of
updates. The work of Garg et al. [GHM+19] further improved the assumptions
needed for constructing RBE to more standard ones (such as CDH or LWE) by,
roughly speaking, substituting the obfuscation part with the powerful garbling
techniques of [DG17]. Furthermore, Goyal and Vusirikala [GV20] added efficient
verifiability mechanisms for membership and non-membership of identities.

All the RBE schemes so far have the same asymptotic efficiency barriers
built into them: they all use the same level of poly(κ, log n) compactness for the
public parameter and require Θ(log n) number of updates to guarantee successful
decryption. In this work, we revisit these bounds and ask the following question.

How many decryption updates are needed in RBEs with public parameters
of length poly(κ, log n)? More generally, what is the trade-off between the
number of updates and the length of the public parameter?

Our main result provides an answer to the question above by proving an
almost tight lower bound for the number of updates of any RBE schemes in which
the update times are fixed. We say an RBE scheme has fixed update times if for
every i ≤ j, it is known ahead of any actual registrations whether or not idi (i.e.,
the ith registered identity) needs a decryption update after the registration of
idj .1 Interestingly, all known constructions of RBE [GHMR18,GHM+19,GV20]
have fixed update times, and it is indeed unclear whether the times for the
updates can be tied to the public keys and (and the CRS) in a meaningful way.2

See Remark 1.3 for more discussions on how fixed updates arise in the current
constructions naturally, and why they are a useful property to have on their
own. More generally, we prove a trade-off between the number of updates that
are needed and the size of the public parameter.

Theorem 1.1 (Main Result). Let Π be any RBE scheme in which only d
decryption updates are needed for each identity when we limit the scheme to only
n identities. Further, suppose the times of the updates are only a function of the
time when a party registers and the total number of parties so far, and that the
length of the public parameter |ppn| is non-decreasing in n.3 Then,

(|ppn| + d

d + 1

)
≥ n.

1 More formally, there is an “update graph” G that is fixed and tells us if idi needs
an update after idj registers or not.

2 By “meaningful”, here we mean that the novel scheme cannot be trivially turned
into one with fixed update patterns, as it is not hard to come up with contrived
schemes whose update times depend on the public keys.

3 Notice that, one can always make |ppn| non-decreasing using simple padding (with
zeros) that prevents ppn from shrinking when n grows.
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In particular, for constant number of updates d = O(1), one needs public param-
eters of length |ppn| ≥ Ω(n1/(d+1)), and for public parameters of length at most
|ppn| ≤ poly(log n) one needs at least d ≥ Ω(log n/ loglog n) many updates.

See Theorem 4.1 and Corollary 1 for more details.
Our result leaves it open to either extend our lower bound to RBE schemes

with dynamic update times that depend on the public keys or to invent new RBE
schemes with dynamic update times that bypass our lower bound. In addition,
it remains open to close the rather small gap of 1/ loglog n factor between our
lower bound and the upper bounds of previously constructed RBE schemes.

1.1 Technical overview

We prove Theorem 1.1 by giving an explicit polynomial-time attack on any RBE
scheme that does not satisfy the stated trade-off between the public parameters’
length and the number of updates. Below, we fix n to be the number of the parties
who register in the system. For simplicity, we work with registered identities
{id1 = 1, id2 = 2, . . .} who register in this exact order.

Good Identity Tuples for the Attack. At a very high level, we show that for
any RBE scheme with n parties, d update at fixed times (independently of
the keys), and compact public parameter

(|ppn|+d
d+1

)
< n, there exists a tuple

(i, k) ∈ [n]2, i ≤ k that is “good for the attacker” in the following sense. If one
encrypts a message m for idi = i using ppk (i.e., the public parameter right after
idk registers), then the adversary can successfully decrypt the ciphertext back
into m, even though it does not have the real secret key of idi. Note that we
prove this, despite the fact that the public parameter ppk could still be “linked”
with the public and secret keys of idi (through the algorithm used by the KC).
Yet, we prove that if compared to the number of updates the public parameter
is not long enough, there is always a tuple (i, k) that is good for the attacker to
succeed.

Before proving the existence of good tuples and explaining how the adversary
actually uses them in its attack, we first outline the ideas that we develop to
achieve our goals. At a high level, we use two types of ideas as follows.

– Information theoretic ideas will rely on the length of the public parameter.
– Combinatorial tools will rely on the number of decryption updates.

In the following, we explain both of these ideas and how they play their role in our
attack and its analysis. In order to do that, we first go over the simplest form
of RBE schemes, in which no updates are allowed. This allows us to explain
information theoretic ideas more clearly. We then extend the attack and its
analysis to RBE schemes that allow one updates. Even this simple case will
be instructive to show the challenges that arise and the new (combinatorial)
tools that become necessary to overcome these challenges. The full poofs for the
general case can be found in Sect. 4. For simplicity of the presentation, we ignore
the existence of a CRS, but our proofs extend to having CRS as well.
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Breaking RBEs with No Updates: Information Theoretic Tools. Sup-
pose an RBE scheme has no updates. This is not entirely impossible, as one can
always concatenate the public keys and store them as one giant public parameter
that grows linearly with the number of parties n. But is this linear dependence
on n necessary? Here we observe, using basic information theoretic tools, that
this is indeed the case. First, we define a notation for keys as random variables.

Notation. We use KEYi = (PKi,SKi) to denote the public/secret keys of idi, as
random variables. We also use PPk to denote ppk as a random variable.

Bounding the Mutual Information. If |ppn| ≤ �, then the (Shannon) entropy of
PPn can be at most � bits.4 Therefore, the mutual information I(KEY1,...,n;PPn)
between PPn and concatenation of all the keys KEY1,...,n = (KEY1, . . . ,KEYn)
is also bounded by �.5 Since the keys are generated independently for different
identities, the average mutual information between PPn and KEYi of a random
party i is bounded Ei←[n][I(KEYi;PPn)] ≤ �/n. Therefore, there exists i ∈ [n],
such that I(KEYi;PPn) ≤ �/n. Such pair (i, k = n) will be good for the attacker.

From Bounded Mutual Information to Independence. If I(KEYi;PPn) ≤ �/n = ε
is sufficiently small (e.g., due to the small length of the public parameter), we
can use the Pinsker’s inequality (see Lemma B.5) to conclude that the two
distributions below are O(

√
ε)-statistically close

(KEYi,PPn) ≈O(
√

ε) (KEYi ⊗ PPn),

where in the left side (KEYi,PPn) is the jointly sampled pair of PPn and keys
KEYi for idi, while in the right side the ⊗ notation indicates that KEYi and PPn

are sampled from their corresponding true marginal distribution, but they are
sampled independently of each other.

From Independence to Successful Attacks. The argument above shows that due
to the (almost) independence of the keys KEYi of idi and PPn, if the adversary
simply picks a fresh pair of fake keys (PK′

i,SK
′
i) = KEY′

i for idi and uses SK′
i to

decrypt the messages encrypted for idi, it will succeed with probability ρ−O(
√

ε),
where ρ is the completeness of the scheme. The reason is that using the correct
keys would succeed with probability ρ, and switching to fake keys will affect this
probability by at most O(

√
ε).

The attack above on the simple RBE schemes with no updates crucially uses
the fact that no decryption updates are received by the parties at any time during
the course of the system. In fact, the information theoretic argument above
completely breaks down even if the registered parties receive just one update
right after they register! To see why suppose ui is the single decryption update
received by idi at some point after they register. Then, decrypting messages
that are encrypted to idi might require both ski and the update ui to succeed.
Therefore, we cannot simply rely on (KEYi,PPn) ≈O(

√
ε) (KEYi ⊗ PPn), and

e.g., stronger conditions that also involve ui might be necessary.
4 See Definition 2.5 for the definition of entropy.
5 See Definition B.1 for the definition of mutual information.
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Breaking RBEs with Single Immediate Updates. For the simpler case
that the update ui is generated right after the registration of idi, we can still
use the ideas for the no-update setting and slightly more powerful information
theoretic tools. First, note that the adversary needs to generate some form of
(fake) u′

i to run the decryption. A natural way to do it is to generate this fake
update u′

i using the fake keys KEY′
i that it has generated for the vulnerable

party idi (where (i, n) is a good pair as explained above). A key point is that
this update u′

i cannot be generated using KEY′
i alone, and it also needs to use

as input the publicly available auxiliary information that is stored at the key
curator. This public information is a function of (the CRS and) the registered
public keys. Hence, ui is a function of KEY′

i and the previously registered public
keys.

The above subtle point shows that the approximate independence of KEYi

and PPn is no longer sufficient for the attack’s success, and we need to also condi-
tion on the previously registered (public keys). Fortunately, this is not a problem,
as we can start from a stronger condition that still can be proven based on the
length of the public parameter: Ei←[n][I(KEYi;PPn|KEY1, . . . ,KEYi−1)] ≤ �/n.
(Note that we are now conditioning on the previous keys). Therefore, there exists
i ∈ [n], such that I(KEYi;PPn|KEY1, . . . ,KEYi−1) ≤ �/n. Therefore, we can
again use a variant of Pinsker’s inequality and show that (KEYi,PPn) ≈O(

√
ε)

(KEYi ⊗ PPn), holds even conditioned on the previously registered keys. Such i
will again make the pair (i, k = n) a good pair for the attack.

Breaking RBEs with Single Updates Arriving at Arbitrary Times.
When updates can arrive at arbitrary times, the simple information theoretic
arguments above break down, as we cannot simply use the fake keys of the party
idi to generate its needed decryption update. This means that we might need
to go a few steps further in time and even fake the keys of the parties idi+1, . . .
to be able to generate a useful update. But this will increase the length of the
random variables that we fake and that kills the small mutual information with
the public parameter. At a high level, we will group the identities in such a way
that different groups can be seen as “large identity” groups that can collectively
generate the needed update for the first identity in that group.

More formally, to attack RBEs with single updates that can arrive at any
moment after registration of idi, we define the notion of a good triple i ≤ j ≤ k
(for the attack) such that when the triple (i, j, k) is good, according to our
definition, then the pair (i, k) would be good (for the attacker) as described
above; namely, idi will become vulnerable to attacks after the kth registration.
The number j with i ≤ j ≤ k denotes how this attack will be done. In particular,
we call (i, j, k) a good triple if it has both of the following two properties.

1. Being useful in relation with updates. We require that idi will not receive
any updates during the registrations of idj+1, . . . , idk. This means that, if we
only use the updates generated for idi till the registration of idj , idi can still
decrypt messages that are encrypted till the registration of idk.
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2. Being useful in relation with key independence. We require that the concate-
nation of the keys of the identities (KEYi,KEYi+1, . . . ,KEYj), as one big ran-
dom variable, is almost independent of PPk, and this holds when we condition
on the first i − 1 pair of keys (KEY1, . . . ,KEYi−1).

If the above two conditions hold for a triple (i, j, k), then one can still use an
almost identical attack to that of the simpler cases above on the target identity i
as follows. The adversary simply asks a message to be encrypted to idi using ppk.
Then, it re-samples fake keys {KEYi, . . . ,KEYj} for all parties {idi, . . . , idj}. It
then registers all these fake keys in its head starting from the auxiliary informa-
tion auxi−1 of the KC for the moment right before the registration of idi. During
these fake registrations, the adversary looks for any potential (fake) decryption
updates that might be generated for idi. The adversary uses all of these fake
updates and the fake secret key sk′

i ← SK′
i for idi and tries to decrypt the chal-

lenge ciphertext. Therefore, all we need to do is to prove good triples exist.
Below, we sketch why good triples exist by relying on the fact that the public
parameter is small enough compared to the number of updates. For this, we
would need to introduce some useful graph theoretical notions.

DAGs of Decryption Update Times. Let G be the following directed acyclic
graph (DAG) on nodes [n] in regard to an RBE scheme Π. Connect i to j, if idi

receives a decryption update right after idj registers. Note that the number of
updates d translates into an upper bound on the out-degree of the nodes in G.
We refer to G as the update graph of the RBE scheme Π.

Skipping Sequences in DAGs. We now identify a special type of sub-graphs of
DAGs like G that can help an adversary break an RBE scheme whose graph
of update times is G. Let G be a DAG modeling the update times of our RBE
scheme as explained above over the vertices (identities) [n]. We call a sequence
S = {u1 < u2 < · · · < u�} ⊆ [n] a skipping sequence if for every t ≤ � − 1 and
every edge (ut, v) ∈ G (denoting that the utth identity idut

gets an update when
the vth identity idv registers), it holds that v /∈ {ut+1, ut+1 +1, . . . , u�}. In other
words, identity idut

will either get updates before time idut+1 registers, or after
time idu�

, but not in between.6 Intuitively, the sequence {u1 < u2 < · · · < u�}
allows us to group the identities into � groups such that each group internally
generate the update needed for their first member.

Skipping Sequences Imply Good Triples. Here we show that if a skipping sequence
in the update graph G is long enough, it implies the existence of a good triple
(i, j, k). To see why, let S = {u1 < u2 < · · · < u�} ⊆ [n] be a skipping sequence.

– For all t ∈ [k], (i = ut, j = ut+1 − 1, k = u�) satisfies the first property that
a good triple needs. This is directly implied by the non-existence of update
edges going from ui to any of the vertices ut+1, ut+1+1, . . . , u�, as guaranteed
by the definition of skipping sequences.

6 See Definition 3.1 for a formal definition.
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– Partition the set of (pairs of) keys of the registered identities into bigger
random variables as follows. Put the keys KEYu of identity idu in group Kt

if ut ≤ u < ut+1. This partitions the set of all keys of parties corresponding
to the vertices {u1, . . . u�} into � − 1 groups. Using the chain rule for mutual
information, we can again conclude that at least for one of these groups Kt,
it holds that the keys in the group Kt (jointly) have at most |ppk|/� mutual
information with PPk, when we condition on the keys of all the parties who
registered prior to idut

. Therefore, we can again apply Pinsker’s inequality
and prove that the triple (i = ut, j = ut+1 − 1, k = u�) also satisfies the
second property needed for a triple to be good.

DAGs of Bounded Out-Degrees Contain Long Skipping Sequences. It remains
to show that any DAG with a “small” out degree contains a “large” skipping
sequence. Here we explain the proof for the simple case of out-degrees equal to
1. The idea, however, can be extended to arbitrary (bounded) out-degrees (see
Theorem 3.2). We call a finite graph G a forward DAG if the vertices of G are
[n] and all the edges are of the form (i, j) for i ≤ j. We use deg+(u) to denote
the out-degree of u, which is the number of nodes like v where (u, v) is an edge
in G.

Claim 1.2 (Long Skipping Sequence in Forward DAGs of Out-Degree at Most 1).
Let G = (VG = [n], EG) be a forward DAG of size n =

(
k+1
2

)
for k ∈ N, and that

deg+(G) ≤ 1. Then, there exists a skipping sequence in G of size k.

In the following, we prove this claim. Since n =
(
k+1
2

)
=

∑k
i=1 i, we divide the n

vertices into k groups {Gi}i∈[k] such that when we read the vertices in the order
1, . . . , n, the members of the group Gi are immediately after the vertices of group
Gi−1 and the ith group Gi has (k + 1 − i) vertices.

We say an edge (u, v) lies in a group Gi if both u, v ∈ Gi. We say a group Gi

is green if there exists at least one vertex in Gi whose out-going edge lies in Gi

and we call any such vertex a representative of Gi. Otherwise, group Gi is red.
Now we do as follows to find a skipping sequence of the size we want:

1. If all k groups are green, then we select exactly one representative ri from each
group Gi and construct sequence S = {r1 < r2 < · · · < rk}. By construction,
for i < k the out-going edge (ri, v) must lie in Gi, which implies that v < ri+1.
Thus, S is a skipping sequence.

2. If red groups exist, let Gj be the red group with smallest j. We then construct
the sequence S = {r1 < r2 < · · · < rj−1} ∪ Gj of size k.

Where Did We Rely on the Fixed Update Times? In the proof sketched above, we
partition the keys into groups based on the skipping sequence S that comes out of
the update graph G. We then argued that, because this sequence is long enough,
the mutual information between ppk and one of the groups of keys defined by S
is small. If we allow the graph G itself to be correlated with the public parameter
ppk, the graph itself can carry information. Alternatively, one might try to first
sample and fix the graph G based on the execution of the system. After all, it will



Lower Bounds for the Number of Decryption Updates in RBE 567

again be a low-out-degree graph and it will be guaranteed to have a long skipping
sequence S = {u1 < · · · < u�}. However, if we pick a triple (ut, ut+1 − 1, u�) as a
candidate good triple, even an adversary who has the real keys for the identities
corresponding to {ut, . . . , ut+1 − 1} might fail to decrypt the challenge ciphertext!
That is because when we change the keys, the update times might change and now
identity ut might need an update after time ut+1.

Remark 1.3 (How to Interpret the Assumption of Fixed Update Times). As
mentioned before, all known constructions of RBE have fixed update times. Here
we sketch the reason. Despite their differences, the RBE schemes so far consist
of two components: a data structure that serves as a commitment/accumulator
for identity-key pairs, and a “crypto” component that either employs IO or
garbling to achieve a form of “delayed encryption”. The first component in known
constructions of RBE always consists of “subsets” whose sizes determine the
update times, while these sizes only depend on the number of identities registered
so far. Moreover, fixed update times seems like a meaningful feature on its own
to have for an RBE scheme, as it allows the parties in an RBE system to know
when they will need updates solely based on their registration time and the total
number of registered parties (without the need for failing in decryption to realize
that their credentials are outdated). In fact, if the RBE system is designed in
a (natural) way that KC itself takes on the role of pushing the updates then
having fixed update times would be even more natural, as the KC actually does
not have parties’ secret keys to even try any decryption. As it remains open to
potentially bypass our lower bound by leveraging on dynamic update times that
depend on the registered keys, we point out a success story that might have some
resemblance. Indeed, in the context of memory-hard functions, in which a DAG
is also built on top of the input data, provable barriers against memory-hard
functions have been overcome using data-dependent ones [BH22].

1.2 Related Work

Here we review some further related work.
In addition to the works [GHMR18,GHM+19,GV20] that studied the feasi-

bility and asymptotic efficiency of RBE, Cong, Eldefrawy, and Smart [CES21]
studied the non-asymptotic practicality of implementing RBE schemes by esti-
mating the concrete communication and computation costs of RBE and further
optimizing it using alternative tools instead of Merkle trees.

Prior to RBE, other approaches have been pursued to address the key-escrow
problem with IBE. One approach proposed by [BF01] was to make the PKG
decentralized and run by multiple parties. Goyal [Goy07,GLSW08] proposed
an after-the-fact approach of making PKG “accountable”, by hoping to catch
an irresponsible PKG in case of misuse. The works of [CCV04,Cho09,WQT18]
aimed at (a related goal of) making it harder for the PKG to find out the receiver
identity by hiding it in a large set of identities. Chow [Cho09] also studied ways
to allow the users to interactively obtain secret keys without revealing their
identities, and Emura et al. [EKW19] further formalized this approach.
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The work of [ARP03] pursued another approach to mix IBE and public-key
encryption by constructing “Certificateless” Public Key Cryptography. However,
we shall clarify that, since the key-escrow is inherent to IBE, none of these
approaches (including RBE) can really eliminate the key-escrow problem of IBE.

2 Definitions and Preliminaries

2.1 Registration-Based Encryption

In this subsection, we first define the syntax of RBE. We then present new
definitions of security and completeness for RBEs that are used in our lower
bounds. Standard definitions can be found in Sect.A. Our security notion is
weaker than (and implied by) the standard RBE security definition; in our defi-
nition, the adversary does not get any secret keys. Using this definition makes a
lower bound stronger. Our completeness is stronger than (and implies) the stan-
dard completeness definition of RBEs; in our definition, the update times are
fixed. It remains open to extend our lower bounds to the standard completeness
definition of RBE or to find a new construction that bypasses our lower bound.

Definition 2.1 (Syntax of Registration-Based Encryption). Five PPT
algorithms (Gen,Reg,Enc,Upd,Dec) form a registration-based encryption (RBE
for short) if they work together as follows.

– Generating CRS. A common random string crs of length poly(κ) is publicly
sampled at the beginning, for the security parameter κ.

– Key Generation. Gen(1κ) → (pk, sk): The randomized algorithm Gen out-
puts a pair of public and secret keys (pk, sk). The key generation algorithm is
run by any honest party locally who wants to register itself into the system.

– Registration. Reg[aux](crs, pp, id, pk) → pp′: The deterministic algorithm Reg
takes as input the CRS crs, current public parameter pp, a registering identity
id and a public key pk (supposedly for the identity id), and it outputs pp′ as the
updated public parameters. The Reg algorithm uses read and write access to
auxiliary information aux which will be updated into aux′ during the process
of registration and helps with the efficiency of the registration and updates
(below). The system is initialized with pp, aux = ⊥.

– Encryption. Enc(crs, pp, id,m) → ct: The randomized algorithm Enc takes
as input the CRS crs, a public parameter pp, a recipient identity id, and a
plaintext message m, and it outputs a ciphertext ct.

– Update. Updaux(pp, id, pk) → u: The deterministic algorithm Upd takes as
input the current public parameter pp, an identity id, and a public key pk.
It has read only oracle access to aux and generates an update information u
that can help id to decrypt its messages.

– Decryption. Dec(sk, u, ct) → m: The deterministic decryption algorithm Dec
takes as input a secret key sk, an update information u, and a ciphertext
ct, and it outputs a message m ∈ {0, 1}∗ or in {⊥,GetUpd}. The symbol
⊥ indicates a syntax error while GetUpd indicates that more recent update
information (than u) might be needed for decryption.
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The Reg and Upd algorithms are performed by the party called key curator, which
we call KC for short, and aux can be seen as the state held by the KC.

See Definitions A.1 and A.2 for the standard definitions of completeness and
security of RBEs. Below we present new definitions that are relevant to us.

We now introduce a generalization of the security of RBE called k-corruption
security. In the original security definition of RBE (see Definition A.2), the adver-
sary samples secret keys of all non-target identities. Here we only allow it to sam-
ple the keys of up to k non-target identities. In the extreme case where k = n−1
(, meaning all but the target identity is corrupted,) the definition matches Def-
inition A.2. In the extreme case where k = 0, the adversary is essentially an
observer who is curious to decrypt messages sent to parties.

Definition 2.2 (k-Corruption Security for RBE). Let k be a positive inte-
ger. For any interactive PPT adversary A, consider the following game Seck-c

A (κ)
between A and a challenger C.

1. Initialization. C sets pp = ⊥, aux = ⊥, (the set of non-corrupted identities)
Dnc = ∅, (the set of corrupted identities) Dc = ∅, id∗ = ⊥, crs ← Upoly(κ) and
sends the sampled crs to A.

2. Till A continues (which is at most poly(κ) steps), proceed as follows. At every
iteration, A chooses exactly one of the actions below to perform.
(a) Registering a corrupted (non-target) identity. This step is allowed

only if |Dc| < k. A sends some id /∈ Dnc ∪ Dc and pk to C. C registers
(id, pk) by letting pp := Reg[aux](crs, pp, id, pk) and Dc := Dc ∪ {id}.

(b) Registering an uncorrupted (potentially target) identity. A sends
an id /∈ Dnc ∪ Dc to C. C samples (pk, sk) ← Gen(1κ), runs pp :=
Reg[aux](crs, pp, id, pk), Dnc := Dnc ∪ {id}, and sends pk to A.

3. Encrypting for a target identity. A first sends some id∗ /∈ Dc to C. (If
id∗ ∈ Dnc, then the adversary is targeting one of the registered uncorrupted
identities, otherwise it is targeting a non-registered identity). Next A sends
messages m0,m1 of equal lengths |m0| = |m1| to the adversary. Then, C
generates ct ← Enc(crs, pp, id∗,mb), where b ← {0, 1} is a random bit, and
sends ct to A. The adversary A outputs a bit b′ and wins if b = b′.

We call the scheme k-corruption secure, if for all PPT A, it holds that

P[Awins Seck-c
A (κ)] <

1
2

+ negl(κ).

We now formally define RBE schemes with fixed update times. In such
schemes, when a person registers at time i, they already know the indices j > i
such that they would need an update when the jth identity registers. More for-
mally, we use the following game which is similar to the game of Definition A.1,
with the difference that the updates are generated as soon as they are required
by an “updates graph” (DAG) G.



570 M. Mahmoody et al.

Definition 2.3 (Forward DAGs). Let G = (VG, EG) be a directed acyclic
graph (DAG) with vertices VG = [n] (in case of being finite) or VG = N (in case
of being infinite). We write (i, j) ∈ G if (i, j) ∈ EG (i.e., there is an edge from i
to j in G). We call G a forward DAG, if for all (i, j) ∈ G, we have i ≤ j.

The definition below captures the property that by making the updates accord-
ing to the graph G, namely, by giving the update to person i whenever person
j registers and (i, j) ∈ G, then there will be no need for further updates. The
definition is written for the setting where an “adversary” targets a specific iden-
tity (and aims to make the updates insufficient for it). However, the definition
implies that even if there is more than one identity with honestly generated keys,
their updates would never be necessary outside what graph G instructs.

Definition 2.4 (Completeness of RBE with a Fixed Update Times).
Let G be an infinite forward DAG. For an RBE scheme and any interactive
computationally unbounded adversary A that still has a limited poly(κ) round
complexity, consider the game UpdTimesGA(κ) between A and a challenger C as
follows.

1. Initialization. C sets pp = ⊥, aux = ⊥, u = ⊥, D = ∅, S = ∅, t = 0, and
crs ← Upoly(κ), and sends the sampled crs to A.

2. Till A continues (which is at most poly(κ) steps), proceed as follows. At every
iteration, A chooses exactly one of the actions below to perform.
(a) Registering identities. A performs exactly one out of Step 2(a)i and

Step 2(a)ii below, but regardless of this choice, C will continue to send the
updates as described next.
(i) Registering a corrupted non-target identity. A sends some

id /∈ D and pk to C. C registers (id, pk) by letting pp :=
Reg[aux](crs, pp, id, pk) and D := D ∪ {id}.

(ii) Registering the target uncorrupted identity. This step is
allowed only if id∗ = ⊥. In that case, A sends some id∗ /∈
D to C. C then samples (pk∗, sk∗) ← Gen(1κ), runs pp :=
Reg[aux](crs, pp, id∗, pk∗), D := D ∪ {id∗}, and sends pk∗ to A.
Immediately updating the target identity, if required by G.
This step is allowed only if id∗ �= ⊥ (otherwise this step is skipped).
Suppose id∗ was the ith registered identity, and let the identity reg-
istered in either of Step 2(a)i Step or 2(a)ii be the jth identity.7 If
(i, j) ∈ G (i.e., there is an edge from i to j), then we update the
decryption information u = Updaux(pp, id∗) for the target identity.8

(b) Encrypting for the target identity. This step is allowed only if
id∗ �= ⊥. In that case, C sets t = t + 1. A sends mt ∈ {0, 1}∗ to
C who then sets m′

t := mt and sends back a corresponding ciphertext
ctt ← Enc(crs, pp, id∗,mt) to A.

(c) Decryption for the target identity. A sends j ∈ [t] to C who lets
m′

j = Dec(sk∗, u, ctj).

7 Note that this registered identity itself could be id∗.
8 This update might not be really necessary, but we still run them as instructed.
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The adversary A wins above, if there is some j ∈ [t] for which m′
j �= mj.

This particularly holds, e.g., if m′
j = GetUpd. We say that G is an update graph

for the RBE scheme, if P[Awins] = negl(κ). In this case, we also say that the
completeness holds with fixed update graph G.

2.2 Information-Theoretic Notation and the Twig Lemma

Notation. We use capital letters to refer to random variables and usually use low-
ercase letters of the same type to refer to samples from those random variables.
x ← X refers to sampling x from the random variable X. For jointly distributed
random variables X,Y , by XY or (X,Y ) we refer to their joint samples, and
by X ⊗ Y , we refer to sampling X,Y from their marginals independently. For
jointly distributed XY and y ∈ Y , by X|y we refer to the random variable X
conditioned on the sampled y. By X|Y we emphasize that X is sampled jointly
with (and conditioned on) Y , even though X|Y only refers to a sample from
X. Using this notation (X|Y )Y means the same thing as XY . For distributed
X,Y,Z, by (X|Z ⊗ Y |Z)Z we refer to sampling z ← Z first, and then sampling
X|z, Y |z independently from their marginals. By X ≡ Y we mean that X,Y are
identically distributed. We write ≈ε to denote ε-closeness in statistical distance.
By Supp(X) we mean the support set of the random variable (or probability
distribution) X. When we use X as set, we refer to its support set. So, X ∪ Y
means Supp(X) ∪ Supp(Y ). We let PX [x] = P[X = x]. log means logarithm in
base 2 and ln means logarithm in base e.

Definition 2.5 (Shannon Entropy). The Shannon Entropy of a random
variable X is defined as H(X) =

∑
x∈X −PX [x] logPX [x]. The conditional Shan-

non entropy H(X|Y ) is defined as Ey←Y [H(X|y)]. The entropy chain rule states
that H(XY ) = H(X) + H(Y |X) = H(Y ) + H(X|Y ).

Definition 2.6 (Statistical Distance). Let X and Y be two random variables.
We define the statistical distance between these two distributions as:

SD(X,Y ) =
∑

z∈X∪Y

|PX [z] − PY [z]|
2

We prove the following lemma in Sect. B.

Lemma 2.7 (The Twig Lemma). Let X0, . . . , X�, Y be jointly distributed
random variables. Then,

E
i←[�]

[SD(X0 . . . XiY,X0 . . . Xi−1X
′
iY )] ≤

√
H(Y ) ln 2

2�

in which Y Xi . . . X0 are sampled jointly, while Y X ′
iXi−1, . . . , X0 is sampled

by first sampling x0 . . . , xi−1y ← X0 . . . Xi−1Y and then sampling X ′
i from
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Xi|x1...xi−1 by ignoring the sampled y.9 In particular, if the length of the samples
from Y are at most d, there exists i ∈ [�] such that

SD(X0 . . . XiY,X0 . . . Xi−1X
′
iY ) ≤

√
d ln 2
2�

.

3 Skipping Sequences in DAGs

In this section, we formally study skipping sequences in DAGs and prove that
they emerge when the out degrees are small. In Sect. C, we prove that the
bounds of this section are tight. This means that our approach of using skipping
sequences cannot improve our lower bound of log n/ loglog n updates in RBEs.
This leaves open to close the gap between our lower bound and the upper bound
of log n updates for future work.

Intuition for Skipping Sequence. Intuitively, we want to find a sequence of iden-
tities whose updates are relatively independent from the next identity in the
sequence. Namely, every identity (except the last one) should receive all her
updates before the next identity in the sequence joins. Looking forward, we will
attack an RBE scheme immediately after the last identity of the sequence joins,
so it is irrelevant whether the identities will potentially receive another update
after the last one joins. This intuition is formalized by the following definition.

Definition 3.1 (Skipping Sequence). Let G be a forward DAG (see Defi-
nition 2.3). We call S = {u1 < u2 < · · · < uk} ⊆ VG a skipping sequence if
for every i ≤ k − 1 and every edge (ui, v) ∈ G, it holds that: either v < ui+1 or
v > uk (i.e., v /∈ {ui+1, ui+1 + 1, . . . , uk}).

See Fig. 1 for examples.

Fig. 1. Example of a forward DAG G with deg+(G) = 1. {1, 3, 6} and {1, 3, 4} are
skipping sequences. {1, 3, 4, 6} is not a skipping sequence, because vertex 3 has an
outgoing edge to vertex 5 which is smaller than vertex 6 but larger than vertex 4.

We let deg+(u) = |{v | (u, v) ∈ G}| be the out-degree of u and deg+(G) =
max{deg+(u) | u ∈ [n]} to be the maximum out-degree in G.

Our main result in this subsection is the following theorem.

Theorem 3.2 (Skipping Sequences from Bounded Out-Degrees). Let G
be a forward DAG with at least

(
k+d
d+1

)
vertices (for k, d ∈ N) and that deg+(G) ≤

d. Then, there exists a skipping sequence in G of size at least k.
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Fig. 2. Above is a forward DAG G = ([6], EG) with out-degree deg+(G) = 1. Group G1

consists of vertices {1, 2, 3} and it is a green group because the only out-going edge
from vertex 2 is (2, 3) and vertex 3 also belongs to G1. Namely, edge (2, 3) lies in G1.
Vertex 2 is a representative of G1. Group G2 consists of vertices {4, 5} and it is a red
group because no edge lies in it. (Color figure online)

In Theorem C.1 we prove that the bound of Theorem 3.2 is tight.

Proof (of Theorem 3.2). We prove Theorem 3.2 by induction. Without loss of
generality, we assume that G has exactly n =

(
k+d
d+1

)
vertices. We use induction

on the out-degree d. We first prove the base case for out-degree d = 0. In that
case, all the k vertices of a forward DAG G with out-degree deg+(G) = 0 form
a skipping sequence since none of the vertices has an out-going edge.

Assume the claim is true for forward DAGs of out-degree d−1. We now prove
that the claim is true for forward DAGs of out-degree d. To this end, consider an
arbitrary forward DAG G = (VG, EG) where |VG| = n =

(
k+d
d+1

)
and deg+(G) ≤ d.

From the hockey-stick identity we know

n =
(

k + d

d + 1

)
=

k∑
i=1

(
i + d − 1

d

)
.

We divide the n vertices into k groups {Gi}i∈[k] such that when we read the
vertices 1, . . . , n, the members of the group Gi are exactly those after the vertices
of group Gi−1 and the i-th group Gi has

(
k+d−i

d

)
vertices.

We say an edge (u, v) lies in a group Gi if both u, v ∈ Gi. We say a group Gi

is green if there exists at least one vertex in Gi all of whose outgoing edges lie
in Gi and we call any such vertex a representative of Gi. Otherwise, group Gi is
red (Fig. 2).

1. If all k groups are green, then we select exactly one representative ri from
each group Gi for i ∈ [k] and construct a sequence S = {r1 < r2 < · · · < rk}.
In that case, we know that for i ∈ [k − 1] all out-going edges of ri lie in Gi.
Therefore, S is a skipping sequence.

2. If there is at least one red group, let Gj be the red group with the smallest j.
By the induction hypothesis, there is a skipping sequence S ′ of size k + 1 − j
in group Gj since it contains

(
k+d−j

d

)
vertices all of which have at most d − 1

outgoing edges that lie in the group. We then construct our desired skipping
sequence as S = {r1 < r2 < · · · < rj−1} ∪ S ′ of size k.

��
9 Using our notation, that means Y X ′

iXi−1, . . . , X0 ≡ (Y |Z ⊗ Xi|Z)Z for Z =
Xi−1, . . . , X0.
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4 Breaking RBEs with Few Updates

In this section, we present a trade-off between the length of the public parameter
of RBEs with fixed update times and the number of such updates. At a high
level, we design an attack against any RBE scheme with fixed update times
assuming that the number of updates is “sufficiently small” compared to the
public parameter. The key technical result of this section is Theorem 4.1 below.
After stating Theorem 4.1, we first derive some corollaries about the number of
updates. We then define a notion of “good tuple” (i, j, k) that can serve as a
useful advice for breaking an RBE scheme. We then show how to break RBE
schemes given a good tuple. Then, we prove Theorem 4.1 by showing that good
tuples exist and how to find successful attacks without being given a good tuple.

Theorem 4.1 (Main Result). Let Π be an RBE scheme with a fixed update
graph G (see Definition 2.4) and at most d updates for n registered identities;
namely, deg+(G) ≤ d when we limit the graph G to the first n nodes/identities.
Suppose the scheme has completeness probability ρ. If n ≥ (

�+d
d+1

)
and |ppi| ≤ α

for all the first n registrations, then there is a 0-corruption (see Definition 2.2)
poly(κ)-time adversary who breaks Π with probability ρ − √

α ln 2/(2�) − δ (i.e.,
advantage ρ − 1/2 − √

α ln 2/(2�) − δ) for arbitrarily small δ = 1/poly(κ).

Before proving Theorem 4.1, we derive a corollary for the extreme cases of
constant number of (e.g., one) updates, and poly-logarithmic public parameters.

Corollary 1 Let Π be an RBE scheme with a fixed update graph G and secure
against 0-corruption. Let αn = maxi∈[n] |ppi| be the maximum length of the public
parameter when n identities register.

1. If deg+(G) ≤ d for a constant d, then αn ≥ Ω(n1/(d+1)).
2. If deg+(G) ≤ c log n/ loglog n for a constant c, then |αn| ≥ Ω(log1/c n).
3. If |αn| ≤ poly(κ, log n) for security parameter n, then deg+(G) cannot be

o(log n/ loglog n). (I.e., there will be a constant c and an infinite sequence of
n for which deg+(G) ≥ c · log n/ loglog n.)

Proof (of Corollary 1 using Theorem 4.1). First observe that by Theorem 4.1, if
the scheme is complete ρ > 0.99, it holds that when n =

(
�+d
d+1

)
, then αn ≥ �/10,

as otherwise the scheme will not be secure.

1. If deg+(G) ≤ d = O(1): In this case, since we have n =
(

�+d
d+1

)
= Θ(�d+1),

therefore we get αn ≥ Ω(�) ≥ Ω(n1/(d+1)).
2. If deg+(G) ≤ d = c log n/ loglog n: Using the well-known upper bound on the

binomial coefficients we get n ≤
(

(�+d)e
d+1

)d+1

. Taking logarithm, this implies

log n ≤ (c · (log n/ loglog n) + 1) · (log(e� + ed) − log(d + 1)).

It can be observed already that � = Ω(log n) (for constant c), as otherwise, the
right hand side will be o(log n). Therefore, it holds that d = o(�). Therefore,
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we can simplify the above to the following for sufficiently large n

log n ≤
(

c · log n

loglog n
+ 1

)
· log((e + o(1))�) <

(
c · log n

loglog n
+ 1

)
· log(3�),

which implies that loglog n ≤ c log(3�), and so αn ≥ Ω(�) ≥ Ω(log1/c n).
3. We use the previous item. Suppose αn = O(logs n) for (fixed κ and) con-

stant s, while deg+(G) = o(log n/ loglog n). Then, pick any (sufficiently
small) constant c such that 1/c > s. In this case, we still have deg+(G) ≤
c · log n/ loglog n, and αn ≥ Ω(log1/c n), contradicting αn = O(logs n).

��
Proof of Theorem 4.1. In the rest of this section, we prove Theorem 4.1 in three
steps. We first define a notion of good tuple (i, j, k) and prove that good tuples
exist. We then show that the attack can be launched successfully if a good tuple
is given as advice. These two steps already show the existence of an efficient non-
uniform attack. Finally, we show how to make the attack uniform by, roughly
speaking, finding a good-enough advice efficiently.

4.1 Defining Good Tuples and Proving Their Existence

We now define the notion of good tuples and prove that they actually exist
under certain conditions. These tuples later are shown to be useful, as advice to
an adversary, to break RBE schemes.

Definition 4.2 (Good Tuples for Forward DAGs). Let G be a forward
DAG with vertices [n]. For i, j, k ∈ [n] where i ≤ j ≤ k, we say the tuple (i, j, k)
is a good tuple for G, if the following holds:

� ∃j′ ∈ V such that j < j′ ≤ k ∧ (i, j′) ∈ G.

In other words, the ith registered identity will not need any updates starting from
the (j + 1)th registration till right after the kth registration.

Notation. We use the notation defined in Sect. 1.1 and use sans serif font for
the random variables denoting the keys and public parameters. Using the same
style, we also use CRS to refer to the CRS as a random variable.

Definition 4.3 (Good Tuples for RBE Schemes). Let Π be any RBE
scheme, and fix the first n identities to be {1, . . . , n}. For i, j, k ∈ [n] where
i ≤ j ≤ k we say the tuple (i, j, k) is (1 − ε)-good for Π if the following two
distributions are ε-close in statistical distance:

(CRS,KEY1 . . .KEYj ,PPk), and

(CRS,KEY1 . . .KEYi−1,KEY
′
i . . .KEY′

j ,PPk)
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where in the first distribution all components are sampled jointly from an honest
execution of the registration experiment in which the parties [n] are registered in
that order, while in the second distribution KEY′

i . . .KEY′
j are sampled indepen-

dently of the other components.10

Definition 4.4 (Good Tuples). For an RBE scheme Π with fixed updates
graph G and ε < 1, we simply call (i, j, k) a (1 − ε)-good tuple, if it is both good
for G and (1 − ε)-good for Π.

In the next subsection, we will show that if a good tuple is given to the
attacker, it can successfully break RBEs. But to obtain such attacks, we need
to at least prove that good tuples exist to begin with. That is exactly what the
next lemma does.

Lemma 4.5 Let Π be an RBE scheme with a fixed update graph G. Suppose
deg+(G) ≤ d when limited to the first n identities, α ≥ maxi∈[n] |ppi|, and

n ≥ (
�+d
d+1

)
. Then, there exists an (1 − ε)-good tuple (i, j, k) for ε =

√
α ln 2
2� .

Proof (of Lemma 4.5). From Theorem 3.2 we know that there is a skipping
sequence {s1 < s2 < · · · < s�} in G. Below, we show that there exists t ∈ [�]
such that (st, st+1 − 1, s�) is both good for G and (1 − ε)-good for Π. For t = �,
we define s�+1 = s� + 1 for simplicity so that the selected tuple is well defined,
and it will be (s�, s�, s�). We now show that every such tuple is good for G, and
that at least one of them is (1 − ε)-good for Π.

Good for G. By definition of skipping sequences, for all t ∈ [�], any outgoing
edge (st, v) will either satisfy v < st+1 or v > s�. (This also holds for t = �, as
this condition becomes always true in that case). Therefore (st, st+1 − 1, s�) is
good for G for all t ∈ [�].

Good for Π. For i ∈ [� − 1], define the random variable

X0 = (CRS,KEY1, . . . ,KEYs1−1),

Xi = (KEYsi
,KEYsi+1, . . . ,KEYsi+1−1),

X� = KEYs�
, Y = pps�

.

Now, by the branching lemma (Lemma 2.7),

E
t←[�]

[SD(X0 . . . XtY,X0 . . . Xt−1X
′
tY )] ≤

√
H(Y ) ln 2

2�
≤

√
α ln 2

2�

in which X ′
t is sampled independently of Y . As a result, one can fix t ∈ [�] in the

expectation above so that the inequality still holds. In our setting, this means

(st, st+1 − 1, s�) is (1 − ε)-good for Π where ε =
√

α ln 2
2� . ��

10 Alternatively, one can pretend that there has been true values of KEYi . . .KEYj

that were sampled jointly with CRS,KEY1 . . .KEYi−1,PPk and were thrown out to
be replaced with fresh samples at the end.
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4.2 Non-Uniform Attacks Using Good Tuples as Advice

We now present an attack that takes a tuple (i, j, k) that is guaranteed to be
(1 − ε)-good. (Namely, it is both good for G and (1 − ε)-good for Π, where

ε =
√

α ln 2
2� ). Looking ahead, we will later prove that a simple modification of

the attack will succeed even without the given advice.

Construction 4.6 (Attacking RBE with Advice). Let Π be an RBE
scheme with update graph G. Suppose (i, j, k) is given as advice. The adversary
A(i, j, k) proceeds as the following.

1. Identities: The adversary registers identities 1, . . . , k, while none are cor-
rupted. Therefore, the adversary can reconstruct all the intermediate auxiliary
information and the public parameters, including ppk.11

2. Target identity: the adversary announces i to be the target identity.
3. The adversary simply picks messages m0 = 0,m1 = 1, one of which will be

encrypted to identity i under the public parameter ppk.
4. To guess which message was decrypted, the adversary does as follows.

(a) Re-sample fake keys sk′
i, pk

′
i, . . . , pk

′
j for identities i, i + 1, . . . , j.

(b) Use pk′
i, . . . , pk

′
j to re-register all the identities i, . . . , j starting from the

auxiliary information auxi−1 that refers to the auxiliary information of the
system for the moment before identity i registers. As mentioned above,
auxi−1 is known to adversary, as it is a deterministic (efficiently com-
putable) function of crs, pk1, . . . , pki−1.

(c) Let u′ be the fake update that is generated for the identity i, while (fake)
registering identities i, . . . , j.

(d) Use sk′
i and u′ and try to decrypt the challenge as m′ ← Dec(sk′

i, u
′, ct).

(e) If m′ ∈ {0, 1}, then simply output m′.

The claim below is sufficient for proving Theorem 4.1, as explained above.

Claim 4.7. The adversary of Construction 4.6, once given an (1 − ε)-good tuple

(i, j, k) where ε =
√

α ln 2
2� , it succeeds in winning the security game of Defini-

tion 2.2 with probability ρ − ε.

Proof (of Claim 4.7). We will consider two worlds Real, Ideal.

1. Real: HERE the adversary A behaves as described in attack 4.6.
2. Ideal: This is the world where the adversary is given the real keys (including

the decryption key of the target identity).

Claim 4.7 directly follows from the following two Claims 4.8 and 4.9.

Claim 4.8. The adversary in Ideal wins with probability ≥ ρ, where ρ is the
completeness probability of the scheme.

11 Note that the public keys and the CRS will still be given to the adversary.
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Proof. Claim 4.8 directly follows from the ρ-completeness of the RBE scheme
and the fact that the given advice (i, j, k) is good for G. In particular, the fact
that (i, j, k) is good for G implies that the ith identity will not receive any
updates between the jth registration till end of kth registration. Therefore, all
the updates received before the jth registration would be enough for decrypting
a ciphertext that is encrypted using the kth public parameter. ��
Claim 4.9. Let pR be the probability that the adversary successfully decrypts
m′ = mb in the world Real, and let PI be the corresponding probability in the
Ideal world. Then, |pR − pI | ≤ ε.

Proof. Claim 4.9 directly follows from the fact that the given advice (i, j, k) is
(1 − ε)-good for Π. The key idea is that even though there are going to be
updates generated for the ith person till the encryption happens after the kth
registration, these updates are all functions of the keys of the first j parties.
More formally, Since (i, j, k) is (1 − ε)-good for Π, the following two random
variables DI ,DR stay ε-close, in which RE is the randomness for encryption and
M ← {0, 1} is the random challenge bit to be encrypted:

DI ≡ (CRS,KEY1 . . .KEYj ,PPk,RE ,M),

DR ≡ (CRS,KEY1 . . .KEYi−1,KEY
′
i . . .KEY′

j ,PPk,RE ,M)

Now, observe that actions of the adversary in the Real and Ideal followed by
encryption of the challenge bit b ← M and decrypting it only differs based on
whether we use DI or DR. In particular, all the updates generated for the ith
identity generated after jth registration and before (k + 1)st registration are
deterministic functions of the first k keys and the CRS (as KC is a deterministic
algorithm). By the data-processing inequality, the probability of successfully
decrypting back b ← M in the security game will not change by more than ε
across the experiments Real and Ideal. This finishes the proof of Claim 4.9. ��

This finishes the proof of Claim 4.7. ��

4.3 Efficient Uniform Attack Without Advice

Finally, we prove Theorem 4.1 using the results from the above subsections.

Proof (of Theorem 4.1). If one could test whether a given (i, j, k) is a good
tuple, there would be no need to have one explicitly given as in Construction 4.6,
because the adversary could enumerate all (i ≤ j ≤ k) ∈ [n]3 cases. Unfortu-
nately, we do not know how to test being (1 − ε)-good for Π, even if we could
test being good for G (e.g., due to knowing G explicitly). However, we can do
as follows.

– Defining good tuples for attack. For fixed parameters (including ε) define
(i, j, k) to be δ-good for attack, if by using (i, j, k) in Construction 4.6, the
adversary wins the attack with probability at least ρ − ε − δ. When δ = 0,
simply call (i, j, k) good for the attack.
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– There are tuples that are good for the attack. Due to Claim 4.7, we
already know that there exist tuples that are both good for G and (1 − ε)-
good for the RBE scheme. Therefore, by Claim 4.7, there exists at least one
tuple that is good for the attack.

– Finding tuples that are good for the attack. Finally, we observe that,
even though one might not be able to directly test whether a given (i, j, k) is
good for G or Π, one can indeed find a tuple (i, j, k) that is guaranteed to be
δ-good for the attack in time poly(κ/δ). All the adversary does is to go over
all (i ≤ j ≤ k) ∈ [n]3 tuples, run the attack enough in its head for q = κ/δ
times to approximate its probability of success within ±δ with probability
1 − negl(κ). Finally, the adversary simply uses the tuple (i, j, k) that leads
to the maximum (estimated) probability of success. Since we already know
that there is at least one tuple that is good for the attack, the adversary can
always find a δ-good one this way.

Putting this together, the adversary first finds a (δ/2)-good tuple for the attack
with probability 1 − negl(κ), and then plugs it into Construction 4.6 and runs
the attack against the challenger. The overall probability of adversary’s success,
this way, will be at least ρ − ε − δ/2 − negl(κ) ≥ ρ − ε − δ. ��

4.4 Extensions

In this subsection, we show some extensions to our main result Theorem 4.1.

Allowing Update Times to Depend on Identities. We first observe that
the lower bound of Theorem 4.1 holds even if the update graph G of the scheme
can depend on the registered identities and the CRS (but not on the keys).

It is easier to see that the update graph G can depend on the name of the
registered identities, as the adversary simply picks the identities to be idi = i
and fixes them throughout the attack.

Allowing dependence on the CRS is slightly more subtle. In summary, this
dependence is allowed, because the CRS is sampled and fixed before the keys are
sampled. In more detail, the main observation is that for every crs ← CRS, the
following hold.

1. The update graph Gcrs is fixed (with bounded out-degree). Therefore, there
will be a skipping sequence in Gcrs, as proved in Theorem 3.2.

2. Definition 4.3 of (1 − ε)-good can be adapted for any fixed crs.
3. Therefore, Lemma 4.5 can be stated and proved (using the same exact proof)

for the fixed crs, showing that a good tuple exists conditioned on crs.
4. Tuples that are good conditioned on the fixed crs can be used exactly as

before to break the RBE scheme.

Allowing Frequent Updates for Some Identities. Theorem 4.1 is stated
for schemes in which all parties receive up to d updates. However, a closer look
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at the proof reveals that all we need is a fixed update graph12 such that there are
at least n ≥ (

�+d
d+1

)
identities who receive at most d updates and that |ppi| ≤ α

for all the first i registrations. The conclusion of Theorem 4.1 holds as stated.
To see why the above mentioned extension holds, all we have to show is that

any update graph G with n ≥ (
�+d
d+1

)
vertices of out-degree at most d has a tuple

that is (1 − ε)-good. In order to show such tuples exist, all we have to do is to
show that sufficiently large skipping sequences exist in DAGs with sufficiently
many nodes with bounded out-degrees. Although we can prove such a result by
adapting the proof of Theorem 3.2, we prove this extension through a black-box
use of Theorem Theorem 3.2.

Theorem 4.10 (Skipping Sequences from Sufficiently Many Nodes of
Bounded Out-Degrees). Let G be a forward DAG and there exists S ⊆ VG

such that: |S| =
(
k+d
d+1

)
(for k, d ∈ N) and deg+(u) ≤ d for all u ∈ S. Then, there

exists a skipping sequence in G of size at least k.

Proof Let S = {v1 < v2 · · · < vn}. Construct a DAG GS as follows. GS has n
vertices. For the convenience of presentation, we keep the labels of the vertices of
GS as {v1 < v2 · · · < vn} and do not rename them to [n]. For any edge (vi, v) ∈ G,
let j ∈ [n] be the largest number such that vj ≤ v (note that j always exits and
it could be the same as i), and then add the edge (vi, vj) to GS .

Observe that the out-degrees GS remain at most d. That is because we
do not add any outgoing edges to any vertex (although we do add incoming
edges to some). Therefore, by Theorem 3.2, there is a skipping sequence U =
{u1 < · · · < uk} in the graph GS . We claim that the same sequence U is also
skipping in G. Below, we prove this by contradiction.

Suppose U is not skipping in G. This means that there is t ∈ [k − 1] and
an edge (ut, v) ∈ G such that ut+1 ≤ v ≤ uk. By the definition of GS , the
edge (ut, v) ∈ G will generate an edge (ut, vj) ∈ GS for ut+1 ≤ vj ≤ uk, which
contradicts the assumption that U is a skipping sequence in GS . ��

Putting all the extensions above together, we obtain the following theorem.

Theorem 4.11 (Extension of the Main Result). Let Π be an RBE scheme
with completeness probability ρ whose update graph G is fixed for any fixed
sequence id1, id2, . . . of identities and fixed CRS crs. Moreover, suppose the
update graph for the fixed crs and the fixed set of n identities has at least

(
�+d
d+1

)
identities who receive at most d updates, and that |ppi| ≤ α for all the n registra-
tions. Then there is a 0-corruption poly(κ)-time adversary who breaks Π with
probability ρ − √

α ln 2/(2�) − δ for arbitrarily small δ = 1/poly(κ).

Handling Schemes with an Amortized Bound on the Number of Updates. The
extension above allows us to use an amortized (i.e., average-case) upper bound on
the number of updates as well. For example, if the expected number of updates
is d among n registered parties, then by an averaging argument, for at least n/2

12 As discussed before, this graph can depend on the identities and/or the CRS.



Lower Bounds for the Number of Decryption Updates in RBE 581

of the parties, the number of received updates is at most 2d. As a result, if the
public parameter remains at most α bits and n ≥ 2 · (�+2d

2d+1

)
, then the adversary

can break the RBE scheme with probability ρ − √
α ln 2/(2�) − δ.
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Appendix

A Completeness and Security of RBE Schemes

Definition A.1 (Completeness, Compactness, and Efficiency of RBE).
Consider the following game CompA(κ) between a challenger C and an interactive
computationally unbounded adversary A who is yet limited to poly(κ) rounds
of interaction.

1. Initialization. C sets pp = ⊥, aux = ⊥, u = ⊥, D = ∅, id∗ = ⊥, t = 0, and
crs ← Upoly(κ), and sends the sampled crs to A.

2. Till A continues (which is at most poly(κ) steps), proceed as follows. At every
iteration, A chooses exactly one of the actions below to perform.
(a) Registering a corrupted (non-target) identity. A sends some id /∈ D

and pk to C. C registers (id, pk) by letting pp := Reg[aux](crs, pp, id, pk) and
D := D ∪ {id}.

(b) Registering the (uncorrupted) target identity. This step is allowed
only if id∗ = ⊥. In that case, A sends some id∗ /∈ D to C. C then samples
(pk∗, sk∗) ← Gen(1κ), updates pp := Reg[aux](crs, pp, id∗, pk∗) and D :=
D ∪ {id∗}, and sends pk∗ to A.

(c) Encrypting for the target identity. This step is allowed only if
id∗ �= ⊥. In that case, C sets t = t + 1. A sends mt ∈ {0, 1}∗ to
C who then sets m′

t := mt and sends back a corresponding ciphertext
ctt ← Enc(crs, pp, id∗,mt) to A.

(d) Decryption for the target identity. A sends a j ∈ [t] to C. C then
lets m′

j = Dec(sk∗, u, ctj). If m′
j = GetUpd, C gets u = Updaux(pp, id∗) and

then m′
j = Dec(sk∗, u, ctj).

Let n = |D| be the number of identities registered when the adversary ends
the game. We require the following properties to hold for such A (as specified
above) in the game CompA(κ).

– Completeness. The adversary A wins, if there is some j ∈ [t] for which
m′

j �= mj. We require that P[AwinsCompA(κ)] = negl(κ).13

13 For perfectly complete schemes we require this probability to be zero.
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– Compactness and efficiency. For the following three properties, here we
state the default requirements for standard RBE; however, in this work, we
also consider the relaxed version of RBE in which these quantities could be
other parameters that are still sublinear in n (e.g., poly(κ) · √

n) for com-
pactness and runtime efficiency. For number of updates, we also allow any
sublinear function of n to be a feasible number for RBE.

• Compactness. |pp|, |u| ≤ poly(κ, log(n)).
• Efficiency of runtime of registration and update. The running time

of each invocation of Reg and Upd is at most poly(κ, log(n)).
• Efficiency of the number of updates. The total number of invocations

of Upd for identity id∗ in Step 2(d) of the game CompA(κ) is at most
O(log(n)).

Definition A.2 (Security of RBE). For any interactive PPT adversary A,
consider the following game SecA(κ) between A and a challenger C.

1. Initialization. C sets pp = ⊥, aux = ⊥, D = ∅, id∗ = ⊥, crs ← Upoly(κ) and
sends the sampled crs to A.

2. Till A continues (which is at most poly(κ) steps), proceed as follows. At every
iteration, A chooses exactly one of the actions below to perform.
(a) Registering non-target identity. A sends some id /∈ D and pk to C. C

registers (id, pk) by pp := Reg[aux](crs, pp, id, pk) and D := D ∪ {id}.
(b) Registering the target identity. This step can be run only if id∗ = ⊥.

A sends some id∗ /∈ D to C. C then samples (pk∗, sk∗) ← Gen(1κ), updates
pp := Reg[aux](crs, pp, id∗, pk∗), D := D ∪ {id∗}, and sends pk∗ to A.

3. Encrypting for the target identity. If id∗ = ⊥, then A first sends some
id∗ /∈ D to C (this is for modeling encryptions for non-registered target iden-
tities.) Next A sends two messages m0,m1 of the same length to C. Next, C
generates ct ← Enc(crs, pp, id∗,mb), where b ← {0, 1} is a random bit, and
sends ct to A.14

4. The adversary A outputs a bit b′ and wins the game if b = b′.

An RBE scheme is secure if for all PPT A, P[Awins SecA(κ)] < 1
2 + negl(κ).

B Information-Theoretic Notions and Lemmas

Definition B.1 (Mutual Information). The mutual information of two dis-
crete random variables X,Y is defined as

I(X;Y ) = H(X) + H(Y ) − H(XY ) = H(X) − H(X|Y ) = H(Y ) − H(Y |X).

The conditional mutual information I(X;Y |Z) is defined as Ez←Z [I(X|z;Y |z)].
The chain rule for mutual information states that I(X;Y Z) = I(X;Y ) +
I(X;Z|Y ).
14 In the original paper of [GHMR18], the scheme’s security was defined for bit encryp-

tion. Even though secure bit-encryption schemes can be extended for full-fledged
schemes by independently encrypting every bit, here we write the definition directly
for the resulting scheme.
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Definition B.2 (Kullback-Leibler Divergence). For any two random vari-
ables X and Y where X ⊆ Y , the he Kullback-Leibler (KL) divergence (in base
2) is defined as

DKL(X ‖ Y ) =
∑
x∈X

PX [x] · log
PX [x]
PY [x]

.

Lemma B.3 (Conditional Mutual Information vs. KL Div). For any
three jointly distributed random variables X,Y,Z the following holds:

I(X;Y |Z) = DKL(XY Z ‖ (X|Z ⊗ Y |Z)Z).

In particular, when Z does not exist, we have I(X;Y ) = DKL(XY ‖ X ⊗ Y ).

We give a proof for completeness.

Proof By definition, we know

I(X;Y |Z) = E
z←Z

[I(X|z;Y |z)] =
∑
z∈Z

PZ [z]I(X|z;Y |z).

Now, if we call P = X|z and Q = Y |z, then I(X|z;Y |z) = I(P ;Q) is equal to:

= H(P ) + H(Q) − H(PQ)

= −
∑
x∈P

PP [x] logPP [x] −
∑
y∈Q

PQ[y] logPQ[y] +
∑
x∈P

∑
y∈Q

PPQ[x, y] logPPQ[x, y]

= −
∑
x∈P

∑
y∈Q

PPQ[x, y] logPP [x] −
∑
y∈Q

∑
x∈P

PPQ[x, y] logPQ[y]

+
∑
x∈P

∑
y∈Q

PPQ[x, y] logPPQ[x, y]

=
∑
x∈P

∑
y∈Q

PPQ[x, y] log
PPQ[x, y]

PP [x] · PQ[y]
.

Therefore, we get

I(X;Y |Z) =
∑
z∈Z

⎛
⎝PZ [z]

∑
x∈X

∑
y∈Y

PXY |z[x, y] log
PXY |z[x, y]

PX|z[x] · PY |z[y]

⎞
⎠

=
∑
z∈Z

∑
x∈X

∑
y∈Y

PXY Z [x, y, z] log
PXY |z[x, y]

PX|z[x] · PY |z[y]

=
∑
z∈Z

∑
x∈X

∑
y∈Y

PXY Z [x, y, z] log
PXY |z[x, y] · PZ [z]

PX|z[x] · PY |z[y] · PZ [z]

=
∑
z∈Z

∑
x∈X

∑
y∈Y

PXY Z [x, y, z] log
PXY Z [x, y, z]

PX|z[x] · PY |z[y] · PZ [z]

= DKL(XY Z ‖ (X|Z ⊗ Y |Z)Z).

��
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Theorem B.4 (Pinsker’s Inequality). For random variables X,Y we have

SD(X,Y ) ≤
√

DKL(X ‖ Y ) · ln 2
2

The following lemma follows from Lemma B.3 and Pinsker’s inequality.

Lemma B.5. For random variables X,Y,Z, it holds that

SD(XY Z, (X|Z ⊗ Y |Z)Z) ≤
√

I(X;Y |Z) · ln 2
2

.

In particular, when Z does not exist, we have SD(XY,X ⊗ Y ) ≤
√

I(X;Y )·ln 2
2 .

We finally prove the twig lemma (i.e., Lemma 2.7).

Proof (of Lemma 2.7). Let I(Y ;X0 . . . X�) = α and αi = I(Y ;Xi|Xi−1 . . . X0).
Firstly, we have α = H(Y )−H(Y |X0 . . . X�) ≤ H(Y ). By repeated applications
of the chain rule of mutual information,

H(Y ) ≥ α = I(Y ;X0) +
∑
i∈[�]

I(Y ;Xi|X0 . . . Xi−1) ≥ � · E
i∈[�]

[αi].

For each i ∈ [�], we get αi = DKL(Y Xi . . . , X0 ‖ Y X ′
iXi−1 . . . X0) by let-

ting X = Xi, Z = X0 . . . Xi−1 in Lemma B.3. By applying Pinsker’s inequality
through Lemma B.5 we now get

SD(Y Xi . . . , X0, Y X ′
iXi−1 . . . X0) ≤

√
αi ln 2

2
.

To conclude, we get

E
i←[�]

[√
αi ln 2

2

]
≤

√
Ei←[�][αi ln 2]

2
≤

√
(α/�) ln 2

2
≤

√
H(Y ) ln 2

2�
.

The first inequality is due to the concavity of
√·, and Jensen’s inequality.

C Theorem 3.2 is Optimal

In this section, we show that the bound in Theorem 3.2 is tight. Namely, we
prove the following theorem.

Theorem C.1 (Optimality of Theorem 3.2). For all n =
(
k+d
d+1

) − 1 where
integers k ≥ 1, d ≥ 0, there exists a forward DAG Gk,d of n vertices and
deg+(Gk,d) ≤ d that does not have any skipping sequence of size k.

We will use induction on d to prove Theorem C.1.
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Construction C.2 (Construction of Optimal DAG of Out-Degree d)
Let k ≥ 1, d ≥ 0 be integer. We construct a graph Gk,d recursively as follows

(Fig. 3).

1. If d = 0, Gk,0 has k − 1 vertices and no edges.15

2. If d ≥ 1, do the following.
(a) For i ∈ [k − 1] let Gi be a copy of Gk−i+1,d−1 followed by a new vertex

ui at the end. Moreover, in addition to the edges in Gk−i+1,d−1, for all
v ∈ Gi (including v = ui) add the edge (v, ui) to Gi.

(b) Divide the vertices of Gk,d into k − 1 groups, such that the i-th group is
a copy of Gi that comes right after Gi−1.

To prove Theorem C.1, it suffices to prove the following lemma.

Fig. 3. Illustration of the construction of the optimal forward DAG Gk,d =
(VGk,d , EGk,d) where VGk,d = [

(
k+d
d+1

) − 1]. Group G1 has
(
k+d−1

d

)
vertices and each

vertex of G1 has an out-going edge to vertex u1 which is the last vertex of G1. Group
Gk−1 has

(
d+1
d

)
vertices and each vertex of Gk−1 has an out-going edge to vertex uk−1.

Lemma C.3. Graph Gk,d of Construction C.2 has n =
(
k+d
d+1

)−1 vertices, degree
d and all of its skipping sequences are of size at most k − 1.

Note that by Theorem C.1 we already know that if k ≥ 1, then Gk,d has a
skipping sequence of size ≥ k−1; so by proving Lemma C.3 we actually conclude
that its maximum size of skipping sequences will be exactly k − 1.

Proof (of Lemma C.3). The proof is by induction. For d = 0, the proof is trivial.
Now suppose d ≥ 1. The number vertices of Gk,d by induction and the

hockey-stick identity will be

∑
i∈[k−1]

|VGk−i+1,d−1 | + 1 =
∑

i∈[k−1]

(
k + d − i

d

)
=

(
k + d

d + 1

)
−

(
d

d

)
.

Let S be any skipping sequence in Gk,d. Let j ∈ [k − 1] be the largest integer
such that there is a vertex from Gj in S. We first show that there can be at
most one vertex from each of the previous j −1 groups {Gi}i∈[j−1] in S. Assume
that there are two vertices u < v such that u, v ∈ S ∩ Gi. Let x ∈ Gj ∩ S. Then,

15 For k = 1, this graph is the empty graph that has no vertices.
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v < u < x will all be in S, while v has an outgoing edge to ui (the last vertex in
Gi) with u ≤ ui < x, but this contradicts the definition of skipping sequences.

Let S = S1 ∪S2, where S1 = S ∩ (∪i<jGi) and S2 = S ∩Gj . We already know
that |S1| ≤ j −1. It is sufficient to show that |S2| ≤ k − j. Firstly, note that if uj

(i.e., the last node in Gj) belongs to S, then no other vertex in Gj can belong to
S, as otherwise, it will contradict the definition of skipping sequences. Secondly,
note that if S is a skipping sequence, then its restriction S2 = S ∩ Gj shall be
skipping as well. Therefore, by induction |S2| ≤ max {1, k − j} = k − j, and so
|S| = |S1| + |S2| ≤ j − 1 + k − j = k − 1. ��
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Nico Döttling1, Sanjam Garg2,3, Sruthi Sekar2(B), and Mingyuan Wang2

1 Helmholtz Center for Information Security (CISPA), Saarbrücken, Germany
2 University of California, Berkeley, Berkeley, USA

{sanjamg,sruthi,mingyuan}@berkeley.edu
3 NTT Research, Palo Alto, USA

Abstract. Side-stepping the protection provided by cryptography, exfil-
tration attacks are becoming a considerable real-world threat. With the
goal of mitigating the exfiltration of cryptographic keys, big-key cryp-
tosystems have been developed over the past few years. These systems
come with very large secret keys which are thus hard to exfiltrate. Typ-
ically, in such systems, the setup time must be large as it generates the
large secret key. However, subsequently, the encryption and decryption
operations, that must be performed repeatedly, are required to be efficient.
Specifically, the encryption uses only a small public key and the decryp-
tion only accesses small ciphertext-dependent parts of the full secret key.
Nonetheless, these schemes require decryption to have access to the entire
secret key. Thus, using such big-key cryptosystems necessitate that users
carry around large secret-keys on their devices, which can be a hassle and
in some cases might also render exfiltration easy.

With the goal of removing this problem, in this work, we initiate the
study of big-key identity-based encryption (bk-IBE). In such a system, the
master secret-key is allowed to be large but we require that the identity-
based secret keys are short. This allows users to use the identity-based
short keys as the ephemeral secret keys that can be more easily carried
around and allow for decrypting ciphertexts matching a particular iden-
tity, e.g. messages that were encrypted on a particular date. In particular:

– We build a new definitional framework for bk-IBE capturing a range
of applications. In the case when the exfiltration is small our definition
promises stronger security—namely, an adversary can break semantic
security for only a few identities, proportional to the amount of leak-
age it gets. In contrast, in the catastrophic case where a large frac-
tion of the master secret key has been ex-filtrated, we can still resort
to a guarantee that the ciphertexts generated for a randomly chosen
identity (or, an identity with enough entropy) remain protected. We
demonstrate how this framework captures the best possible security
guarantees.

– We show the first construction of such a bk-IBE offering strong secu-
rity properties. Our construction is based on standard assumptions
on groups with bilinear pairings and brings together techniques from
seemingly different contexts such as leakage resilient cryptography,
reusable two-round MPC, and laconic oblivious transfer. We expect
our techniques to be of independent interest.
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1 Introduction

Compromises of deployed cryptographic schemes by means of cryptanalysis are
becoming increasingly rare. Instead, real-world adversaries try to circumvent
the protection offered by cryptography via side-channel attacks. The most high-
value targets for such side-channel attacks are cryptographic secret keys, which,
if somehow exfiltrated, give the adversary unrestrained access to its victim’s
confidential communication. For advanced notions of public-key encryption such
as identity-based encryption (IBE), exfiltration of the long-term master secret
key is the single biggest risk coming with the adoption of such a system. This
risk can be somewhat mitigated by distributing the master secret across several
servers [BF01,Goy07,KG10,Cha12], but this comes with an additional overhead
of maintaining multiple servers with shares of the master key.

Big-Key Cryptography in Bounded-Retrieval Model. The pervasiveness of side-
channel attacks has motivated the development of cryptosystems that remain
secure even when the adversary may have the ability to leak secrets of hon-
est parties. One line of defense against such attacks, is to develop cryptosys-
tems that have very large secret keys, or what is called big-key cryptography
(see e.g., [Dzi06a,DLW06,CDD+07,ADW09,ADN+10,BKR16,MW20]). Big-
key cryptosystems are developed with huge secret keys with the intent of making
it hard to exfiltrate or leak on such keys. Furthermore, leakage of large amounts of
data from a device can often be easier to detect and mitigate, or the bandwidth of
any residual side-channels of such a device can be bounded conservatively1. Such
cryptosystems aim to provide appropriate security even when a large amount of
arbitrary leakage occurs on the big secret key. Prior works have focused on con-
structing various big-key primitives in the bounded-retrieval model, including
symmetric-key encryption [BKR16], public-key encryption [ADN+10,MW20]
and authenticated key agreement [Dzi06b,CDD+07,ADW09].

In the symmetric key setting [BKR16], the big-key setup involves a procedure
to bound the adversary’s probability of predicting an optimal length sub-key
of the original exfiltrated big key, and using this to design an encapsulation
mechanism that can extract a random key (such a key encapsulation mechanism
directly gives an encryption scheme). Here, the encapsulation and decapsulation
procedures only make local access to the big-key, thus ensuring efficiency. The
key technique leveraged here is a primitive called “reusable locally-computable
computational extractors” [Dzi06b,CDD+07,BKR16].

On the other hand, in the public-key setting, only the secret key is big and
prone to exfiltration, while the public key is still short. The efficiency goals are
that the encryption and decryption running times do not grow with the size of
the big secret key. This naturally leads to the decryption procedure only making
a few local ciphertext-dependent access to the big secret key. The security goal
in this setting is typically to achieve semantic security, even when the adversary

1 Screaming Channels [CPM+18] are one such example, which optimistically transfers
at most 1 bit per second.
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can obtain arbitrary leakage on the big secret key. The security is only required
for fresh ciphertexts that are generated after the leakage by the adversary. In
contrast, no meaningful security can be offered for the old ciphertexts based on
which the leakage can be performed, e.g., the adversary might obtain leakage
corresponding to a few bits of the plaintext for a given ciphertext.

The use of big-keys in a big-key public-key encryption scheme limits their
usability and principal practicality. In particular, a user does not a priori know
what parts of a secret key it will need to decrypt a ciphertext on a particular
device. Thus, the user must carry around the entire large secret keys on all her
devices. This poses two challenges: (1) including large secret keys on a number
of devices can be a significant burden, e.g., wastage of limited storage space on
a mobile device; and (2) the replication of a large secret key across multiple
devices makes the user once again more susceptible to leakage based attacks,
e.g., the loss of a mobile device could leak the entire big key.

1.1 Leakage-Resilient Identity-Based Encryption: Our Approach
and Challenges

Motivated by these concerns, in this work, we will focus on the notion of identity-
based encryption (IBE) as a natural proxy for encryption schemes that allow the
delegation of decryption tokens. Recall that in an IBE scheme [BF01] a setup
algorithm generates a pair (mpk,msk) of master public and master secret keys.
The identity key generation algorithm takes the master secret key msk and an
identity string id and outputs an identity secret key skid. To encrypt a message
m, the encryption algorithm takes a master public key mpk and an identity
string id and produces a ciphertext c. Finally, the decryption algorithm takes an
identity secret key skid and a ciphertext c and returns a message m. In terms of
correctness, we require that if skid is a user secret key corresponding to an identity
id and a ciphertext c was encrypted to this same identity, then decrypting c with
skid returns the message that was encrypted.

Mapping our goal of designing a system with large long-term secrets but
succinct public keys, ephemeral keys, and ciphertexts to the notion of IBE, we
obtain the requirement that all system parameters except the master secret key
should be succinct. We refer to this notion as big-key identity-based encryption
(or bk-IBE for short).

Defining Security. In terms of security, the standard security notion for IBE
requires that a ciphertext c∗ encrypted to an identity id∗ should remain secure,
even if that adversary has access to any (polynomial number of) other secret
keys skid for id �= id∗. Depending on whether the adversary has to specify the
challenge identity id∗ at the start of the experiment or is allowed to choose it
adaptively depending on the master public key and some identity secret keys,
we refer to selective or full security, respectively.

Now, when we consider (selective or full) security under leakage, the adver-
sary additionally gets a leakage, L(msk), on the master secret key. In the bounded
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retrieval model [Dzi06a,DLW06], we only limit the number of bits that the func-
tion L outputs, but otherwise allow L to perform any (efficient) computation on
msk, i.e., L may try to somehow compress L first before producing its output.
However, how does this notion of leakage resilience go along with our goal of
making all system parameters small except the master secret key?

A moment of reflection points to the following dilemma, even in the setting of
selective security: if the bit-length of the leakage function’s output is allowed to
be larger than the bit-length of an identity secret key, then the leakage function
may just compute the key generation algorithm for the challenge identity id∗

on msk and output the identity secret key skid∗ thus obtained. This makes the
adversary’s task of breaking the security of the challenge ciphertext c∗ essentially
trivial: the leakage skid∗ allows to recover the challenge message via the legitimate
decryption algorithm!

For this reason, all prior works which studied the notion of leakage resilient
IBE thus restricted themselves to a setting where the identity secret keys are
large, and the master secret key is either large or permits no leakage [ADN+10,
CDRW10,LRW11,HLWW13,CZLC16,NY19]. This brings us to the following
question:

How can we meaningfully reconcile our design goal of short public param-
eters, identity secret keys, and ciphertexts with security against large
amounts of master secret key leakage?

1.2 A New Security Notion and Construction for bk-IBE

From the above discussion, it is clear that we have to depart from the standard
security notion of IBE. One way of relaxing the IBE security to circumvent
the problem of exfiltration of the challenge identity key, described above, could
consist of choosing the challenge identity at random or from a distribution of
sufficiently high entropy, after the adversary has obtained his leakage.

While this indeed leads to a meaningful notion sufficient for certain use cases,
the requirement of the challenge identity to be entropic puts restrictions on most
of the use cases we envision. As an example, if the identities correspond to calen-
dar dates, then choosing the challenge identity from a high entropy distribution
would imply that the point in time corresponding to the challenge message nec-
essarily needs to be highly uncertain—something that may not always be true.

However, we do expect exfiltration of a large portion of the already pretty
big master secret key to be hard, particularly while also avoiding detection. Note
that detection of leakage allows for alternative remedies such as revoking old keys
and replacing them with new ones. Thus, a natural way to think of the leakage
obtained by the adversary is as a budget of information about the master secret
key, which we expect to be relatively smaller than the size of the master secret
key. Of course, in a catastrophic event, a large fraction of the master secret key
may be leaked, in which case, we would like to revert to the weaker entropic
security guarantees.
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The main intuition behind our new definition is as follows: the adversary
may spend his exfiltration budget arbitrarily, and yet, he should not obtain more
information than what he could get via a trivial exfiltration attack– leaking the
identity secret keys of a number of challenge identities. Further, as mentioned
above, catastrophic leakage of a large fraction of the master secret key still
preserves entropic security.

In light of this, our security definition aims to capture how many identities
the adversary could break. In particular, suppose the adversary obtains an �-bit
leakage from the master secret key. We define our big-key IBE to be secure if
the adversary cannot break the security of ≥ � + 1 number of identities. This is
nearly-optimal as the adversary could launch the trivial attack by leaking Θ(�/λ)
identity secret keys2 in the entirety and, hence, breaking Θ(�/λ) identities.

Observe that this security notion is sufficiently strong for our applications.
For instance, if the identities are the calendar dates, our security guarantees
that an adversary leaking � bits cannot break the security for more than � days.
Moreover, a random identity with sufficiently high entropy will also be secure
since an adversary can break at most polynomially many identities.

Our Construction. Given this new security definition, we construct the first bk-
IBE that achieves selective security based on the hardness of standard assump-
tions on groups with bilinear pairing. Our construction builds on seemingly very
different tools such as leakage-resilient encryption scheme [HLWW13], reusable
two-round MPC [BL20], and laconic OT [CDG+17].

Potential Extensions to ABE/HIBE. In the context of IBE, it is usual to also
consider stronger encryption systems such as attribute-based encryption and
hierarchical identity-based encryption, which typically offer a single small secret
key that can be used to decrypt large families of ciphertexts. This is at odds
with the goals of this paper, where we aim to not have a single short key that
can decrypt large families of circuits, as such a key could end up getting leaked.

1.3 Technical Outline

bk-PKE via random selection. We will start by discussing the existing paradigms
to construct bk-PKE and the challenges that arise when trying to adapt these
techniques to the bk-IBE setting. One of the core ideas in the construction of
bk-PKE [ADN+10,MW20] is random selection. For the sake of simplicity, let
us drop the requirement of a short public key for a moment. Then there is
a natural idea to construct bk-PKE via the following approach, as detailed
in [ADN+10]. Let (KeyGen,Enc,Dec) be any public key encryption scheme,
and consider the following transformed scheme (KEY GEN,ENC,DEC). The
KEY GEN algorithm produces a pair of public key PK = (pk1, . . . , pk�) and a
secret key SK = (sk1, . . . , sk�) for a largeness parameter �, where each key-
pair (pki, ski) has been independently generated. The encryption algorithm
2 Without loss of generality, we define the length of the identity secret keys to be the

security parameter.
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ENC takes the public key PK and a message m and selects a random sub-
set I = {i1, . . . , iλ} ⊆ [�] of size (say) λ. Next, it computes a λ-out-of-λ secret
sharing of s1, . . . , sλ of m (e.g. via additive secret sharing), computes cipher-
texts c1 = Enc(pki1 , s1), . . . , cλ = Enc(pkiλ

, sλ) and outputs the ciphertext
C = (I, c1, . . . , cλ). To decrypt such a ciphertext C, the decryption algorithm
DEC retrieves the secret keys ski (for i ∈ I) from SK, decrypts the ci and
reconstructs the message m.

Note first, that the ciphertext C is small (i.e., of size poly(λ, log(�))) and
that both the encryption algorithm ENC and the decryption algorithm DEC
are local, in the sense that ENC only accesses PK in λ location and DEC
accesses SK in λ locations respectively.

Somewhat oversimplified, security is argued as follows, making critical use
of the random selection of the set I: Given any leakage L(SK) of size suffi-
ciently smaller than � bits, many of the individual secret keys sk1, . . . , sk� will
be information-theoretically hidden from the adversary. As the set I is chosen
randomly after the leak L(SK) has been computed, with very high probability
over the choice of I, there is an index i ∈ I for which L(SK) contains essentially
no information about ski. Thus, one can argue that the ciphertext component
ci hides the share si, and therefore the message m is hidden.

Returning to the issue of large public keys, compressing the public key PK
while keeping the secret key SK incompressible was, in fact, the main technical
challenge in the original construction of [ADN+10]. This was achieved via the
notion of identity-based hash-proof-systems.

With more recently developed tools, namely laconic oblivious transfer, hash
functions with encryption or registration-based encryption [CDG+17,DG17b],
[DGHM18,DGGM19,GHMR18,GHM+19,MW20], there is a significant short-
cut to compress the public key PK. Instead of providing the public key PK in
its entirety, only a short hash H(PK) of PK is provided. This hash H(PK) then
allows the encrypter to delegate the computation of the ciphertexts c1, . . . , cλ to
the decrypter in a secure way. As a matter of fact, looking ahead, our construc-
tion will rely on the same tools to compress the master public keys.

Challenges for Extending to bk-IBE. To adapt this high level idea to the IBE
setting, one encounters several bottlenecks, which we highlight below.

Firstly, recall that in the case of bk-PKE, the random selection of the set
I, containing the indices of secret keys that will be accessed by the decryption,
needs to be crucially made at the encryption time. This leads to a critical prob-
lem in the bk-IBE setting: since our target is to keep the identity secret keys
(decryption keys) short, this information pertaining to selection of the identity
keys must be fixed independent of the random coins of the encryption.

Secondly, one might think the above issue is no longer relevant if the challenge
identity is picked randomly. For example, suppose every identity id implicitly
defines some subset Sid, and its identity secret-key corresponds to {ski : i ∈ Sid}.
Then, one might hope a similar argument will prove the security of a randomly-
selected identity. However, recall that the adversary is given unbounded access
to KEY GEN in IBE schemes, through which he could potentially learn all the
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ski’s, thus breaking the security. This challenge posed by an unbounded access
to KEY GEN queries does not exist in the bk-PKE schemes.

Thus, one might wonder if we could handle the KEY GEN queries by start-
ing with a leakage-resilient IBE scheme and amplifying the leakage tolerance on
the master secret key through the above parallel repetition idea. For such an
amplification, we must start with an IBE scheme that tolerates some bounded
leakage, say m-bits, on the master secret key, and the only known prior scheme
allowing that is [LRW11] (other schemes only tolerate bounded leakage on large
identity secret keys, and not on the master key itself). The new scheme is
obtained by generating � independent instances of this underlying IBE scheme.
Now, every identity id is associated with a subset Sid ⊆ [�] and its identity
secret key is the identity secret keys for all the instances i ∈ Sid. It is plau-
sible to conjecture that a random identity is secure in this new scheme toler-
ating (approximately) m · �-bit leakage. However, the only known techniques
of proving such leakage amplification (using parallel repetition) are based on
information-theoretic arguments [ADW09,ADN+10,BK12,HLWW13]. In par-
ticular, the security proof requires that the ciphertext is indistinguishable from
some simulated ciphertext, which contains information-theoretic entropy in the
adversary’s view.3 However, no known leakage-resilience IBE supports such a
proof structure (as no entropy is left, given all the unbounded identity queries),
and hence the parallel repetition does not give an amplification. In fact, there
are works (e.g., [LW10,JP11]) which show that in general, parallel repetition of
a leakage-resilient encryption scheme does not amplify the leakage-resilience.

Our work precisely circumvents the problems listed above, and builds
a leakage-resilient IBE scheme from scratch, such that it supports such an
information-theoretic argument. In particular, we show that there is a way to
simulate the entire view of the adversary including all the secret key queries
such that (1) the adversary cannot distinguish the simulated view from the real
view and (2) in this simulated view, the challenge ciphertext retains information-
theoretic entropy, given the leakage. The key primitive that helps us achieve this
is a big-key pseudo-entropy function.

Our Ideas. We construct our bk-IBE scheme by anchoring the leakage resilience
properties from the corresponding properties of a simpler primitive, namely a
big-key pseudo-entropy function. A pseudo-entropy function (PEF) [BHK11] has
the property that its output at certain inputs are still unpredictable, even if the
distinguisher has obtained leakage about the PEF key (in addition to the output
of the PEF elsewhere). While ideally we would want to rely on pseudo-random
functions (PRFs), they cannot even tolerate a single bit of leakage.

In this work, we will focus on the selective security notion, both for IBE
and for PEFs. A pseudo-entropy function PEF is selectively secure for t
inputs against � bits of leakage, if for any inputs x1, . . . , xt it holds that

3 Given such a proof structure, parallel repetition amplifies the total entropy of the
simulated ciphertexts and, hence, naturally amplifies the leakage-resilience of the
system as well.
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PEF (K,x1), . . . , PEF (K,xt) is unpredictable given L(K), where L(·) is an
�-bit leakage function. For our construction, we will need a locally computable
PEF, i.e., PEF (K,x) will access the key K only in a few locations.4

Leakage Resilient Public-Key Encryption. Our big-key IBE scheme is conceptu-
ally built on the weak hash proof system framework of Hazay et al. [HLWW13].
This work constructs a leakage resilient key-encapsulation mechanism from any
(non-leakage resilient) public key encryption scheme. The main ideas of their
construction can roughly be summarized as follows. The public key PK of their
scheme consists of 2n pairs (pk1,0, pk1,1), . . . , (pkn,0, pkn,1) of public keys for an
underlying public key encryption scheme. The secret key SK on the other hand,
contains a random vector b = (b1, . . . , bn) and only contains one secret key ski,bi

for every index i. Key encapsulation proceeds as follows: To encapsulate a ran-
domly chosen key k = (k1, . . . , kn) ← {0, 1}n, compute ciphertexts ci,0 and ci,1

(for i = 1, . . . , n), where ci,0 encrypts ki under pki,0 and ci,1 encrypts ki under
pki,1. To decapsulate such a ciphertext, compute ki = Dec(ski,bi

, ci,bi
) for each

index i.
Leakage resilience of this encapsulation mechanism is established as follows:

Let c = ((c1,0, c1,1), . . . , (c1,n, c1,n)) be a challenge ciphertext. In the real CPA
experiment, both ci,0 and ci,1 encrypt the same bit ki for all i. Since for each
i the secret key corresponding to pki,1−bi

is not part of the secret key SK, by
relying on the IND-CPA security of the underlying encryption scheme we can
switch each ci,1−bi

to encrypt 1 − ki instead of ki. Note that even an adversary
in possession of SK would not notice this switch. Now, since the bi are chosen
uniformly at random, the encapsulated key depends on the entropy of b (which is
part of the secret key). Specifically, decapsulating such a malformed ciphertext
produces a key k′ = k ⊕ b. But this means that unless the adversary knows the
vector b entirely, k′ has entropy from the adversary’s view. In other words, as
long as the adversary’s leakage is sufficiently shorter than n, the key encapsulated
in such a malformed ciphertext will be unpredictable from the adversary’s point
of view. Establishing a uniform key follows via standard randomness extraction
techniques in a post-processing step.

Towards Identity-Based Encryption. Alas, this idea does not translate directly
to the setting of identity-based encryption. For each identity secret key skid we
would need to argue that some part of skid, similar to the vector b above, must
retain entropy in the adversary’s view, even given leakage about the master
secret key msk. However, since msk is a compact representation of all identity
secret keys, msk will be used to compute both skid,i,0 and skid,i,1 (to stay with
the above notation). In other words, msk cannot just forget half of the secret
keys for each identity.

4 For technical reasons, we need that the locations in which K is queried do not depend
on K itself. For this reason, our actual PEF construction relies on an additional
common reference string.
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Anchoring Leakage resilience in PEFs. Our approach is to adapt the [HLWW13]
technique so as to push the entire entropy of the master secret key into the
key K of a pseudo-entropy function. Furthermore, we will not rely on pairs
of public keys pki,0, pki,1 as the construction of [HLWW13], but instead rely
on a special type of witness encryption scheme [BL20] which allows us to use
information relating to the PEF key K to decrypt. Looking ahead, for each
identity id the role of the random vector b in the construction of [HLWW13]
will be played by a function value PEF (K, id). We first describe a version of
our construction with non-succinct public parameters and later show how these
can be compressed into succinct public parameters via a laconic OT-based non-
interactive secure computation (NISC) [CDG+17,DG17b,DG17a]. The master
secret key msk of our scheme is simply the key K for a leakage resilient local
big-key PEF. Assume that K = (K1, . . . , Kn), where the Ki are “short” blocks
of size poly(λ) (independent of the leakage bound �).

The public parameters pp consist of commitments to the blocks Ki of K, as
well as a common reference string crs for a special NIZK proof system. Both the
commitment scheme and the NIZK proof system need to be compatible with the
special witness encryption scheme of [BL20].

Identity secret keys in our scheme are generated as follows. First, the KeyGen
algorithm computes sid = PEF (K, id). Since PEF is local, this will only access
a small number of the blocks Ki. Further recall that the indices of these blocks
do not depend on K itself. The KeyGen algorithm now computes NIZK proofs
Πi, for each i = 1, · · · , λ, corresponding to the statements xi =“the i-th bit of
PEF (K, id) is sid,i” (where K relates to the commitments in the public parame-
ters pp). We stress that since PEF (K, id) only accesses a small number of blocks
of K, both the statements xi and the proofs Πi are succinct, i.e. independent
of �. The identity secret key skid now consists of sid, the statements xi and the
NIZK proofs Πi.

We will now describe the encapsulation and decapsulation algorithms. For
an identity id, we encapsulate a random key u = (u1, . . . , uλ) ← {0, 1}λ as
follows: for each index i we compute two ciphertexts ci,0 and ci,1 using the special
witness encryption scheme, both encrypting ui. The statement under which we
encrypt ci,0 is xi,0 =“the i-th bit of PEF (K, id) is 0”, whereas the corresponding
statement for ci,1 is xi,1 =“the i-th bit of PEF (K, id) is 1”. The ciphertext C
consists of (c1,0, c1,1), . . . , (cλ,0, cλ,1). To decapsulate such a ciphertext C using
an identity secret key skid, for each i ∈ {1, . . . , λ} we decrypt ci,sid,i

using Πi as
a witness. Correctness follows routinely from the correctness of the components.

Security. We will establish security roughly following the blueprint of [HLWW13].
Specifically, assume we have challenge identities id1, . . . , idt and challenge cipher-
texts C1, . . . , Ct. Our first step of modification relies on the fact that, for each pair
of ciphertexts ci,0, ci,1, one of the statements xi,0 or xi,1 must be false. Conse-
quently, by the security of the witness encryption scheme we can flip one of the
encrypted bits, effectively pushing entropy from sid = PEF (K, id) into the corre-
sponding challenge ciphertext.
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In the second step, we use the simulation property of the NIZK to remove
the dependence of the proofs Πi’s (in the identity secret keys) on the PEF key
K. Likewise, we can replace the commitments in the public parameters with fake
commitments, which are generated independently of the PEF key K.

Now observe that, the only part of the identity secret key that still depends
on the key K is PEF (K, id). To handle this, our PEF comes with a puncture
mode, where, given a set of challenge identities id1, . . . , idt, the PEF samples a
punctured key K�, such that: (A) it satisfies correctness for all non-challenge
identities, i.e., PEF (K, id) = PEF (K�, id) for all id /∈ {∈ id1, . . . , idt}. This
ensures that we can answer all KeyGen queries using K�; (B) the PEF out-
puts (PEF (K, id1), . . . , PEF (K, idt)) contain “high-enough” entropy, given K�.
This property ensures that the challenge ciphertexts are unpredictable, given the
adversary’s view (which now does not depend on K, but only on K�).

Finally, we reduce the selective security to the security of the underlying
PEF. The above arguments help us to push all the entropy of the PEF (K, idi)
to the corresponding challenge ciphertexts. Hence, we now invoke the selective
leakage resilience of the PEF to information-theoretically show that for some
identity idi the adversary cannot have a non-trivial advantage in distinguishing
the corresponding challenge ciphertext.

1.4 Future Directions

Our work leaves open several exciting problems. We discuss a few of them below.
As in IBE schemes, there are two flavors of security one could imagine,

namely, selective and adaptive/full security. In this work, we achieve selective
security, where the adversary must select the challenge set, J , of �+1 identities
before the setup of the system, and succeeds only if she breaks all the identities
in J . In contrast, full security allows the adversary to adaptively pick this set,
i.e., she succeeds as long as she breaks the security of all the identities in any
set J of size � + 1. We leave the problem of building a fully secure big-key IBE
as a fascinating open problem.

Secondly, having initiated the study of big-key IBE, the next natural step
towards making it truly practical would be to build it with only black-box use
of the underlying primitives. Another practically useful feature to add to our
big-key IBE would be to incorporate the updatability of the keys.

The third interesting problem that we leave open stems from the recent
technique [MW20] of making the secret keys “catalytic”, i.e., the large secret key
is no longer needed to be a completely random string (which the user doesn’t
utilize elsewhere), but is generated as a (randomized) encoding of some public
data (e.g., music library) that cannot be compressed further by the adversary.
Extending the study of such public-key encryption schemes with catalytic keys
to our big-key IBE setup would be another exciting problem to explore.

Finally, we note that typically, in IBE security definitions, the adversary is
given access to a KeyGen oracle, which outputs identity secret keys. The only
restriction is that the adversary cannot query the challenge identity id∗. In our
security definition, we do not allow the adversary to query KeyGen on any



598 N. Döttling et al.

identity in the set of challenge identities J accordingly. While such a restriction
seems natural, one may wonder whether it is necessary. Consider a relaxation of
this assumption where the adversary is allowed to make KeyGen queries with
keys in the set J of challenge identities, which are subsequently removed from
J . We claim that any scheme with a deterministic KeyGen algorithm (as is the
case for most IBE constructions) would be immediately insecure. The reason is
that the leakage function L may leak a succinct parity information about the
keys of the challenge identities, e.g. leak =

⊕
id∈J skid. Given this leakage leak,

the adversary could query the KeyGen oracle on all but one of the identities in
J , say id∗, and then reconstruct skid∗ via skid∗ = leak ⊕ ⊕

id∈J \{id∗} skid. As the
question of achieving such a stronger security notion by relying on additional
randomization of the KeyGen procedure seems quite challenging and is beyond
the scope of this work, we leave it open for future work.

2 Preliminaries

Notations. We use λ to denote the security parameter. negl(·) denotes a negligible
function. For n ∈ Z, [n] denotes the set [n] = {1, · · · , n}. For a distribution X,
we use x ← X to denote the process of sampling x from X. For a set X , we use
x ← X to denote sampling x from X uniformly at random. We also use UX for
the uniform distribution over X . We define statistical difference as Δ(X;Y ) =
1/2

∑
a |Pr[X = a] − Pr[Y = a]|, and say that X and Y are statistically close

if their statistical difference is bounded by a negligible function of the security
parameter. We say that X and Y are computationally indistinguishable if for
any PPT adversary D, |Pr[D(X) = 1] − Pr[D(Y ) = 1]| ≤ negl(λ).

2.1 Min-Entropy

Let X be a random variable supported on a finite set X and let Z ∈ Z be
another random variable (possibly correlated with X). The min-entropy of X
is defined as H∞(X) = − log(maxx Pr[X = x]). The average conditional min-
entropy [DORS08] of X given Z is defined by

H̃∞(X|Z) = − log
(

Ez∼Z

[

max
x∈X

Pr[X = x|Z = z]
])

.

We use the following weak chain rule about average conditional min-entropy.

Lemma 1 (Weak Min-Entropy Chain Rule [DORS08]). Let X ∈ X and
Z ∈ Z be random variables. Then it holds that

H̃∞(X|Z) ≥ H∞(X) − log(|Z|).

Additionally, for any δ > 0, with probability at least 1 − δ over z ← Z, we have

H∞(X|Z = z) ≥ H̃∞(X|Z) − log(1/δ).
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Further, our proof requires the following min-entropy splitting lemma, the proof
of which, essentially follows from recursively invoking [DFR+07, Lemma 4.2].

Lemma 2 (Min-Entropy Splitting Lemma). Let X1, . . . , Xκ be a sequence
of random variables such that H∞(X1, . . . , Xκ) ≥ α. There exists a random
variable C over [κ] s.t.

H∞(XC |C) ≥ α/κ − log κ.

Our construction also relies on a randomness extractor, which we recall below.

Definition 1 (Randomness Extractor). A function Ext : {0, 1}n ×{0, 1}d →
{0, 1}m is called a (k, ε)-strong randomness extractor if, for all distributions X
over {0, 1}n such that H∞(X) ≥ k, we have

Δ
( (

s,Ext(X, s)
)

;
(
U{0,1}d , U{0,1}m

) )
≤ ε,

where the seed s is chosen uniformly at random from {0, 1}d.

3 Puncturable Local Pseudo-Entropy Functions

In this section, we will provide definitions and construction of local pseudo-
entropy functions. Our target security notion is selective security, i.e., before
receiving leakage and getting access to the function, the adversary has to
announce his challenge inputs.

Definition 2. Given a parameter �, a puncturable local pseudo-entropy function
is specified by a pair of PPT algorithms (Gen,PEF) with the following syntax.

– Gen(1λ, �): Outputs a pair (CRS,K), where CRS is a common reference
string of size poly(λ), and K = (K1, . . . , Kn) is a key consisting of Ki ∈
{0, 1}poly(λ).5

– PEF(CRS,K, x): Takes as input CRS and x and gets RAM access to K, and
outputs a Y ∈ {0, 1}poly(λ).

We also require the existence of (Gen2,PEF2) with the following syntax.

– Gen2(1λ, �, x1, . . . , xκ): Outputs a tuple (CRS,K,K�).
– PEF2(CRS,K�, x): Takes as input CRS, K�, x, and outputs a Y .

We require the following properties to hold.

– Locality: PEF(CRS,K, ·) makes at most poly(λ) (independent of �) RAM
access to K = (K1, . . . , Kn).

– Mode-Indistinguishability: Fix x1, . . . , xκ ∈ {0, 1}λ and let (CRS′,K ′,K�) ←
Gen2(1λ, �, x1, . . . , xκ). Then (CRS′,K ′) is computationally indistinguishable
from (CRS,K) ← Gen(1λ, �).

5 The length of CRS and every Ki do not depend on �, but n shall depend on �.
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– Punctured correctness: Fix x1, . . . , xκ ∈ {0, 1}λ and let (CRS,K,K�) ←
Gen2(1λ, �, x1, . . . , xκ). Then it holds for all x /∈ {x1, . . . , xκ} that
PEF(CRS,K, x) = PEF2(CRS,K�, x), except with negligible probability over
the coins of Gen2.

– k-Selective β-Pseudo-Entropy Security: Fix x1, . . . , xκ ∈ {0, 1}λ and let (CRS,
K,K�) ← Gen2(1λ, �, x1, . . . , xκ). Then it holds that

H̃∞
(
PEF(CRS,K, x1), . . . ,PEF(CRS,K, xκ)

∣
∣
∣ CRS,K�

)
≥ β.

Observe that, by the punctured correctness, one could use K� to correctly
evaluate PEF at all inputs x /∈ {x1, . . . , xκ}. Therefore, this property implic-
itly states that, even if the adversary obtains PEF(x) at all inputs x /∈
{x1, . . . , xκ}, PEF(CRS,K, x1), . . . ,PEF(CRS,K, xκ) is still (information -
theoretically) unpredictable.

The notion of pseudo-entropy functions is first proposed by Braverman, Has-
sidim, and Kalai [BHK11]. Their definition supports puncturing at one input
and does not require locality. Let us recall their result.6

Theorem 1 ([BHK11] Thm. 4.1). Let δ > 0 be an arbitrary constant. Under
the decisional Diffie Hellman assumption, there exists a family of 1-selective
γ = (1 − δ)α-pseudo-entropy functions, where α is the length of the secret key.

In other words, [BHK11] constructed a PEF such that, after puncturing at
one input x, PEF(CRS,K, x) preserves almost the entire entropy of the key K.

Remark 1. We make a few remarks about our definition.

– Leakage-resilience. The leakage-resilience of the PEF simply follows from
the min-entropy chain rule (Lemma 1). That is, given an m-bit leakage L(K)
of the key K, the entropy guarantee in the definition

H̃∞
(
PEF(CRS,K, x1), . . . ,PEF(CRS,K, xκ)

∣
∣
∣ CRS,K�

)
≥ γ

implies

H̃∞
(
PEF(CRS,K, x1), . . . ,PEF(CRS,K, xκ)

∣
∣
∣ CRS,K�, L(K)

)
≥ γ − m.

Braverman et. al. [BHK11] choose to incorporate the leakage resilience in their
definition. Here, our definition simply states the min-entropy guarantee, and
we shall handle the leakage within corresponding proofs directly.

6 Their work predates the first mention of punctured PRFs [BGI14]. While they do
not use puncturing formalism, they implicitly define a punctured generation and
evaluation algorithm in their proof.
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– Parameters Setting. Looking ahead, we shall use our PEF to construct our
big-key IBE scheme. The big-key scheme first specifies a leakage parameter �
that it aims to achieve, which, in turn, determines the number κ of inputs our
PEF needs to puncture in order to obtain sufficiently high (e.g., ≥ �) min-
entropy guarantee. Finally, the number of inputs to be punctured determines
the number n of blocks we need to have in the key K = (K1, . . . , Kn).

– CRS. We note that our definition includes a CRS. Intuitively, the locations
in K that one needs to access in order to evaluate PEF(CRS,K, x) must be
fixed and public, given the CRS and x. As it will become clear in our big-key
IBE construction, this ensures that the encryption algorithm is also local (i.e.,
independent of �). We shall elaborate more on this later.
Finally, we note that the construction of [BHK11] does not have a CRS.
Hence, we omit the CRS when we use their PEF as a building block.

Finally, the following simple Lemma about random bipartite graphs shall be
useful to us, whose proof follows by a simple probabilistic argument.

Lemma 3 Let N,M > 0 be integers with N ≤ (1 − ε)M for a constant ε > 0
and d > 0 be an integer. Let L = [N ] and R = [M ]. Let Γ ⊆ L × R be a
random graph which is chosen as follows: For every vertex v ∈ L the neighborhood
Γ (v) is sampled by choosing w1, . . . , wd ← R uniformly at random and setting
Γ (v) = {w1, . . . , wd}. Let MATCH be the event that every vertex v ∈ L can
be matched with a unique vertext w ∈ R, i.e. for each v ∈ L there exists a
W (v) ∈ Γ (v) such that for v �= v′ it holds that W (v) �= W (v′). Then we have

Pr[MATCH] ≥ 1 − N · (1 − ε)d ≥ 1 − N · e−ε·d.

Furthermore, one can efficiently find this matching except with probability N ·
(1 − ε)d.7

We omit the proof due to space constraint and refer the reader to the full version.

3.1 Our Construction

We will now provide our construction of a local pseudo-entropy function. Our
construction will start from the PEF construction of [BHK11] which is not local,
and amplify this to a PEF which can be evaluated by a local algorithm.

Let (Gen′,PEF′) be the family of pseudo-entropy functions (without local
evaluation) from Theorem 1, and let PRF be a pseudorandom function which
takes as input an x ∈ {0, 1}λ and outputs a sequence of elements (i1, . . . , id) ∈
[�]d.

–Gen(1λ, �): For i = 1, . . . , n, compute Ki ← Gen′(1λ) and choose K∗ ← {0, 1}λ.
Output CRS = K∗ and K = (K1, . . . , Kn).

–PEF(CRS,K, x):
– Parse CRS = K∗

7 Note that the failure probability is negligible for N = poly(λ) and ε · d ≥ ω(log(λ)).
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– Compute (i1, . . . , id) ← PRF(K∗, x)
– Retrieve Ki1 , . . . , Kid

via oracle access to K
– Compute and output Y ← (PEF′(Ki1 , x), . . . ,PEF′(Kid

, x))

First note that PEF is local, as it only accesses K at d = poly(λ) locations
i1, . . . , id. Moreover, the location it accesses is fixed by CRS and x.

Selective Security. We will first provide the punctured key generation and evalua-
tion algorithms. Let Gen′

2(1
λ, ·) and PEF′

2(1
λ, ·) be the punctured key generation

and evaluation algorithms for (Gen′,PEF′).

– Gen2(1λ, �, x1, . . . , xκ): Generate the key PRF key K∗ ← {0, 1}λ and set
CRS = K∗. Let MATCH be the event that for every index i ∈ [κ] that there
is an index ji such that ji appears in the list generated by PRF(K∗, xi),
but ji appears in no other list generated by PRF(K∗, xi′) for i′ �= i. If
the event holds, compute such a matching. For each i = 1, . . . , κ, compute
(Kji

,K�
ji

) ← Gen′
2(1

λ, xi). For all remaining indices i ∈ [n] \ {j1, . . . , jκ},
compute Ki via Ki ← Gen′(1λ) and set K�

i = Ki. Set K = (K1, . . . , Kn),
K� = (K�

1 , . . . , K�
n ) and output (CRS,K,K�).

– PEF2(CRS,K�, x):
• Parse CRS = K∗

• Compute (i1, . . . , id) ← PRF(K∗, x)
• Compute and output Y ← (PEF′(K�

i1
, x), . . . ,PEF′(K�

id
, x)).

Theorem 2. Let δ > 0 be a constant, let κ = (1 − δ)n and let γ = poly(λ).
Assume that (Gen′,PEF′) is a family of 1-selective γ-pseudo-entropy functions
and PRF is a pseudo-random function. Then (Gen,PEF) has punctured correct-
ness, and satisfies the mode-indistinguishability and κ-selective (κ · γ)-pseudo-
entropy properties.

Remark 2. We stress that κ · γ can get arbitrary close to the entropy of the
PEF key K. Observe that the key K = (K1, . . . , Kn) supports puncturing κ
inputs, which is nearly n since κ = (1 − δ)n. Additionally, for every input xi,
the γ entropy of PEF(crs,K, xi) is nearly the entire entropy of some block Kji

(by Theorem 1). Overall, the entropy of (PEF(crs,K, x1), . . . ,PEF(crs,K, xκ)) is
nearly the entire entropy of the key K. In other words, for an adversary who may
leak almost the entire key K, (PEF(crs,K, x1), . . . ,PEF(crs,K, xκ)) still contains
unpredictability.

Due to space constraint, we omit the proof and refer the reader to the full version.

4 Big-Key Identity-Based Key Encapsulation Mechanism

In this section, we define and build a big-key identity-based key encapsulation
mechanism (IB-KEM). This construction of IB-KEM will have a large public
parameter. Afterward, one can generically transform it into an IBE scheme with
a short public parameter by using Non-interactive Secure Computation (NISC)
from [CDG+17]. We refer the reader to the full version for this transformation.
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4.1 Definition

Syntactically, a big-key identity-based key encapsulation mechanism consists of
the following efficient algorithms. All algorithms (except for Setup) implicitly
take the public parameter pp as input. We omit it to avoid cluttering.

– (pp,msk) ← Setup(1λ): This algorithm takes the security parameter as input,
and samples the public parameter pp and a master secret-key msk.

– skid ← KeyGen(msk, id): This algorithm takes the master secret-key msk and
the identity id as inputs, and samples an identity secret-key skid. In particular,
KeyGen has RAM access to msk.8

– (ct, u) ← Encap(id): This algorithm takes the identity id as input, and samples
a ciphertext ct and its associated encapsulated key u.

– u = Dec(id, ct, skid): This algorithm takes the identity id, the ciphertext ct,
and the identity secret-key skid as inputs, and output a decapsulated key u.

Definition 3 (Selective Secure IB-KEM). We say that an IB-KEM (Setup,
KeyGen,Encap,Dec) is selectively secure under bounded leakage if it satisfies the
following correctness, efficiency and security properties.

– Correctness. For any identity id, it holds that

Pr

[
(pp,msk) ← Setup(1λ), (ct, u) ← Encap(id)
skid ← KeyGen(msk, id), u′ = Dec(id, ct, skid)

: u = u′
]

= 1.

– Efficiency. The running time of KeyGen, Encap, and Dec are independent of
the leakage parameter �. This implicitly mandates that the identity secret-key
skid is succinct (i.e., its length is independent of �). Additionally, the length
of the public parameter pp is also required to be succinct.9

– Selective Security under Bounded Leakage. Fix an � > 0. We say that
an IB-KEM (Setup,KeyGen,Encap, Dec) is selectively secure, if for all PPT
adversaries A = (A1,A2,A3), for all non-negligible ε, it holds that

Pr
(msk,pp,J ,state,leak)

[ ∀ id ∈ J ,Advid(msk, pp, state, leak) ≥ ε
]

= negl(λ),

where (msk, pp,J , state, leak) are sampled from the Phase I of INDblsKEM(1λ)
(refer to Fig. 1) and the random variable Advid(msk, pp, state, leak) is defined
as follows.

Advid(msk, pp, state, leak) =
∣
∣
∣
∣Pr[Expid(msk, pp, state, leak) = 1] − 1

2

∣
∣
∣
∣

Here, the random variable Expid(msk, pp, state, leak) is as defined in Phase II,
and A3 is not allowed to query the KeyGen on J .

8 The length of the master secret-key msk depends on the leakage parameter, �, and
hence is long. However, the running time of KeyGen will be independent of �. That
is, it will only read a few bits of msk to create the short identity secret-key.

9 The running time of Setup and the length of the master secret-key msk, however,
will inevitably depend on the leakage parameter �.
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Fig. 1. Selective security experiment for IB-KEMs

Remark 3. Note that, in the above definition, the adversary A2 does not get
access to the KeyGen oracle. This is not restrictive since the leakage function
f gets access to the entire secret key msk. Hence, any leakage function f with
access to KeyGen oracle can be transformed into a leakage function f ′ that does
not have access to KeyGen oracle.

4.2 Witness Encryption for NIZK of Commitment Scheme

As a crucial building block for our IBE scheme, we shall use a witness encryp-
tion scheme for NIZK of commitment scheme. This was recently introduced and
constructed by Benhamouda and Lin [BL20]. Let us start with the definition.

Definition 4 ([BL20]). A witness encryption for NIZK of commitment scheme
that supports a circuit class G consists of the following efficient algorithms.

– CRS Setup: crs ← Setup(1λ) on input the security parameter λ, generates
a CRS crs.

– Commitment: c ← Com(crs, x; r) on input the CRS crs and a message x,
generates a commitment c. The decommitment is the message x and the pri-
vate randomness r.

– Language L: A language L is defined by the CRS crs as follows. A statement
st = (c,G, y), where c is a commitment and G ∈ G is a circuit, is in the
language L with witness (x, r) if it holds that (1) c = Com(crs, x; r); (2)
G(x) = y.

– NIZK Proof: π ← Prove(crs, c, G, (x, r)) on input the CRS crs, a commit-
ment c, a circuit G ∈ G, and a decommitment (x, r), generates a proof π
proving the statement (c,G,G(x)) ∈ L with witness (x, r).
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– Witness Encryption: ct ← WEnc(crs,msg, (c,G, y)) on input the CRS crs,
a message msg, and a statement (c,G, y), generates a ciphertext ct.

– Witness Decryption: msg = WDec(crs, ct, (c,G, y), π) on input the CRS
crs, a ciphertext ct, a statement (c,G, y), and a NIZK proof π, computes a
message msg.

– Simulated CRS: (crs, τ) ← SimSetup(1λ) on input the security parameter
λ, generates a simulation CRS crs and its associated trapdoor τ .

– Simulated Commitment: (c, aux) ← SimCom(crs), on input the CRS crs,
generates a simulated commitment c with its auxiliary information aux.

– Simulated Decommit: r = SimDecom(crs, τ, c, aux, x), on input the sim-
ulated CRS crs and its associated trapdoor τ , the simulated commitment c
and its associated auxilliary information aux, and any message x, generates
a decommitment r such that (x, r) is a valid decommitment of c with crs.

– Simulated Proof: π ← SimProve((crs, τ, aux), (c,G,G(x))) on input the sim-
ulated CRS crs, its associated trapdoor τ , the auxiliary information aux for
the commitment c, and finally a statement (c,G,G(x)), generates a simulated
proof π proving the statement (c,G,G(x)).

This set of algorithms satisfy the following guarantees.

– Perfect Correctness. For all input x, circuit G ∈ G, and message msg, we
have

Pr

⎡

⎢
⎢
⎢
⎣

crs ← Setup(1λ), c = Com(crs, x; r)
ct ← WEnc(crs,msg, (c,G,G(x)))

π ← Prove(crs, c, G, (x, r))
msg′ = WDec(crs, ct, (c,G,G(x)), π)

: msg = msg′

⎤

⎥
⎥
⎥
⎦

= 1.

– Perfect binding using honest CRS. For an honest CRS, the commitment
is perfectly binding. That is, there do not exist (x, r) and (x′, r′) such that

Com(crs, x; r) = Com(crs, x′; r′),

where crs ← Setup(1λ).
– (Perfect) Semantic Security. Let msg and msg′ be any two messages. For

all circuit G, input x, and y �= G(x), it holds that

WEnc(crs,msg, (c,G, y)) ≡ WEnc(crs,msg′, (c,G, y)),

where crs ← Setup(1λ) and c ← Com(crs, x). That is, when the CRS crs
and commitment c are sampled honestly, then the witness encryption satisfies
perfect semantic security.
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– Zero-knowledge.10 For any PPT adversary (A1,A2), it holds that

∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎢
⎣

crs ← Setup(1λ)
(state, x) ← A1(crs)
c = Com(crs, x; r)

: AO1(·)
2 (state, c, (x, r)) = 1

⎤

⎥
⎦ −

Pr

⎡

⎢
⎢
⎢
⎣

(crs, τ) ← SimSetup(1λ)
(state, x) ← A1(crs)

(c, aux) = SimCom(crs)
r = SimDecom(crs, τ, c, aux, x)

: AO2(·)
2 (state, c, (x, r)) = 1

⎤

⎥
⎥
⎥
⎦

∣
∣
∣
∣
∣
∣
∣
∣
∣

= negl(λ),

where O1(G) := Prove(crs, c, G, (x, r)) and O2(G) := SimProve((crs, τ, aux),
(c,G,G(x))). That is, the adversary could choose the message x, and is given
its commitment c with the decommitment (x, r). Still, given oracle access to
the proof of (c,G,G(x)), where the adversary chooses the circuit G arbitrarily,
it cannot distinguish the simulated proof from the honest proof.

Observe that these properties implicitly guarantee additional properties. For
example, the zero-knowledge property implies that the honest CRS and the
simulated CRS are computationally indistinguishable. Since our construction
does not explicitly use those properties, we do not state them explicitly here.
We will refer the readers to [BL20] for details.

Instantiation. We will use a witness encryption for NIZK of commitment scheme
that supports all polynomial-size circuits, recently constructed by [BL20] under
pairing assumptions.

Locality. The construction of Benhamouda and Lin [BL20] satisfies the following
local property. To commit to a message x = (x1, . . . , xN ), Com actually commits
to every xi independently. That is, Com(CRS, x; r) = (Com′(CRS, x1; r1), . . .,
Com′(CRS, xN ; rN )), where Com′ is some subroutine that commits a single
group element. Moreover, suppose G is a circuit that only depends on m
coordinates from x. Given RAM access to the commitment c = (c1, . . . , cN ),

10 Our definition is slightly different from the zero-knowledge definition in [BL20]. In
particular, in our definition, the adversary is additionally given the decommitment
r. Nonetheless, the construction of [BL20] satisfies our definition since the zero-
knowledge property holds for any circuit that the adversary queries. For example, the
adversary may query a circuit G defined to be G(x) = x1, where x = (x1, . . . , xN ).
In this case, the construction of [BL20] simply sends the decommitment of x1 as the
proof. Therefore, without loss of generality, we may assume that the adversary also
has the decommitment information.
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where ci = Com′(CRS, xi; ri), the running times of both generating the NIZK
proof π of the statement (c,G,G(x)) and the witness encryption/decryption
with

((
c,G,G(x)

)
, π

)
depend only on the locality m. In particular, if G

depends only on xi1 , . . . , xim
, then the statement st = (c,G,G(x)) can be

expressed succinctly as st′ =
((

ci1 , . . . , cim

)
, G,G(xi1 , . . . , xim

)
)

and the wit-
ness (xi1 , ri1 , . . . , xim

, rim
) is succinct as well.

In summary, if the circuit G only depends on m coordinates of its input x,
then the encryption/decryption and NIZK proof process all enjoy locality m.

4.3 Construction of Big-Key IB-KEM

Construction Overview. Our construction employs witness encryption for NIZK
of commitment scheme and a puncturable local pseudo-entropy function.

– Setup. Let � > 0 be a fixed parameter (which we will use for the leakage
bound later). To set up a public parameter and a master public-key, we shall
first sample a CRS crspef , a key k for the PEF, and also a CRS crs for the
witness encryption for NIZK of commitment scheme. The (crspef , crs) and
the commitment c of the secret-key k shall be the public parameter. The
master secret-key shall be the secret-key k and the necessary decommitment
information (r1, . . . , rN ).

– Identity Secret-key. The identity secret-key skid consists of two parts. The
first part is the evaluation of the PEF, i.e., PEF(crspef , k, id) = (y1, . . . , yλ).
Second, for every index i ∈ [λ], we generate a proof πi proving the state-
ment that c is a commitment of the key k such that PEF(crspef , k, id)i = yi.
Therefore, the identity secret-key skid is {yi, πi}λ

i=1.
– Encapsulation. To sample a ciphertext encapsulating a key, we shall use the

witness encryption. In particular, we sample a random string v = (v1, . . . , vλ).
For every index i ∈ [λ], we encrypt vi twice as11

cti0 := WEnc
(
crs, vi,

(
c, (id, i), 0

))
and cti1 := WEnc

(
crs, vi,

(
c, (id, i), 1

))
.

That is, we encrypt vi using two different statements. The 0-statement is that
c is a commitment of k such that PEF(crspef , k, id)i = 0 and the 1-statement is
that c is a commitment of k such that PEF(crspef , k, id)i = 1.12 Finally, we ask
the encryptor to sample an additional seed s, and we shall apply the seeded
extractor Ext(·, s) on the string v. That is, the ciphertext is

({
cti0, ct

i
1

}λ

i=1
, s

)

and the encapsulated key is u = Ext(v, s).

11 We write (id, i) for a circuit. Refer to the figure for the definition of (id, i).
12 Note that only one of the statements will be in L by the perfect binding property.
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Fig. 2. Our Big-key IB-KEM
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Fig. 2. (continued)

Remark 4 (Need for a crspef). Note that the Encap algorithm above requires the
knowledge of the exact m locations of k that were accessed by the PEF. This
information is fixed and public, given the crspef and the input id. Thus having a
crspef is essential to ensure that the Encap algorithm remains efficient and local
(i.e., independent of �). This explains why our PEF construction has a CRS.

We will prove the selective security of the above construction, assuming the
selective security of the underlying PEF, along with the security guarantees of
the witness encryption scheme. We formally state the theorem below.

Theorem 3. Assuming that the pseudo-entropy function PEF satisfies the selec-
tive security (Definition 2) and assuming the security of the witness encryption
for NIZK of the commitment scheme (Definition 4), the IB-KEM construction
from Fig. 2 is a big-key identity-based key encapsulation mechanism that satisfies
the selective security under bounded leakage (Definition 3). In particular, we can
instantiate the underlying schemes to get a leakage rate (i.e., �

|msk| , where � is
the size of the leakage allowed on msk) of 1/3.

The correctness of our construction follows from the correctness of the witness
encryption scheme. The efficiency property follows from the locality of both the
PEF, and the witness encryption for the NIZK of commitment scheme. We now
give a full proof of the selective security under bounded leakage.
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4.4 Proof of Selective Security Under Bounded Leakage

Proof Overview. Our security proof mainly consists of the following steps.

– Switch to invalid ciphertext. We first define another encapsulation algo-
rithm Encap∗ that generates an invalid ciphertext ct. ct is invalid in that
the two ciphertexts ct0i and ct1i encrypt two different messages. Our first
step is to switch from a valid ciphertext using Encap to an invalid cipher-
text using Encap∗. Since only one of the two statements (i.e., (c, (id, i), 0)
and (c, (id, i), 1)) is in the language, by the semantic security of the witness
encryption scheme, the two hybrids are indistinguishable.

– Switch to the simulation mode. Next, we define two auxiliary algorithms
SimSetup and SimKeyGen. In these two algorithms, instead of generates the
CRS and proof honestly, we switch to the simulation mode. That is, the CRS
and commitments are generated with trapdoors such that they are equivocal.
Then, all the proofs in the identity secret-key are given by the simulated
proof. By the zero-knowledge property of the witness encryption for NIZK of
commitment scheme, these two hybrids are indistinguishable.

– Switch to the punctured mode. In this step, we shall sample the key of the
PEF using the punctured mode. By invoking the mode-indistinguishability of
the PEF, the two hybrids are indistinguishable. Note that the key k sampled
in the punctured mode comes with a punctured key k�, where the identities
{id ∈ J } are the punctured places. This allows us to sample identity secret-
keys for all identities but those from the challenge set J . Crucially, this implies
that the entire view of the adversary can be simulated using only k�, without
k.

– Invoke the security of PEF and the randomness extractor Ext. Finally,
we argue that the adversary cannot distinguish the key encapsulated inside
the (invalid) ciphertext from a random string. We reduce this to the security
of the PEF. Intuitively, the output of the PEF at J , i.e., {PEF(crs, k, id) : id ∈
J }, guarantees sufficiently high entropy even conditioned on the adversary’s
view (which only depends on k�), and hence we can use the extractor security.

Proof. Now, we will prove that our scheme from Fig. 2 satisfies the selective
security under a bounded leakage from the master secret key, i.e., we show that
for any adversary A = (A1,A2,A3), trying to break the selective security game
INDblsKEM(1λ) (refer to Fig. 1) under �-leakage, and for all non-negligible ε, it
holds that:

Pr
(msk,pp,J ,state,leak)

[ ∀ id ∈ J ,Advid(msk, pp, state, leak) ≥ ε
]

= negl(λ),

where (msk, pp,J , state, leak) are sampled from the Phase I of INDblsKEM(1λ)
and the random variable Advid(msk, pp, state, leak) is defined as follows.

Advid(msk, pp, state, leak) =
∣
∣
∣
∣Pr[Expid(msk, pp, state, leak) = 1] − 1

2

∣
∣
∣
∣

Here, the random variable Expid(msk, pp, state, leak) is as defined in Phase II of
INDblsKEM(1λ), and A3 is not allowed to query the KeyGen on J .
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We prove this using a sequence of indistinguishable hybrids described below.

Hybrid 0: This hybrid is the real distribution INDblsKEM(1λ) (recall that A3 is
not allowed to query KeyGen on the challenge identities J ), defined as:

– Phase I. The system is set up as follows.
1. Let (J , state) ← A1(1λ), where J is a set of identities such that

|J | = � + 1.
2. (msk, pp) ← Setup(1λ).
3. f ← A2(state, pp), where the output length of f is (at most) �. Let

leak := f(msk).
– Phase II. For any id ∈ J , we define a security game
Expid(msk, pp, state, leak) as follows
1. (ct, u) ← Encap(id).
2. Let u′ be an independent random string.
3. Sample b ← {0, 1}.
4. If b = 0, let b′ = AKeyGen(msk,·)

3 (state, leak, pp, id, ct, u);
5. If b = 1, let b′ = AKeyGen(msk,·)

3 (state, leak, pp, id, ct, u′);
6. Output 1 if b = b′; otherwise, output 0.

Hybrid 1: This hybrid is identical to Hybrid 0, except that for each id ∈ J ,
instead of using Encap to generate the challenge ciphertext and the key, we use
Encap∗ to sample the invalid ciphertext and give its decryption to the adversary
when the choice bit b is 0.

– Phase I. The system is set up as follows.
1. Let (J , state) ← A1(1λ), where J is a set of identities such that

|J | = � + 1.
2. (msk, pp) ← Setup(1λ).
3. f ← A2(state, pp), where the output length of f is (at most) �. Let

leak := f(msk).
– Phase II. For any id ∈ J , we define a security game
Expid(msk, pp, state, leak) as follows
1. ct ← Encap∗(id).
2. Let u′ be an independent random string.
3. Sample b ← {0, 1}.
4. If b = 0, let b′ = AKeyGen(msk,·)

3 (state, leak, pp, id, ct,Dec(id, ct, skid));
5. If b = 1, let b′ = AKeyGen(msk,·)

3 (state, leak, pp, id, ct, u′);
6. Output 1 if b = b′; otherwise, output 0.

Claim 1. Hybrid 0 and Hybrid 1 are identically distributed.

This claim follows from the (perfect) semantics security of the WE scheme.
We omit the proof and refer the reader to the full version.

Hybrid 2: This hybrid is identical to Hybrid 1, except that we use the subroutines
SimSetup and SimKeyGen instead of using Setup and KeyGen. This switches the
actual NIZK proofs with the simulated ones.
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– Phase I. The system is set up as follows.
1. Let (J , state) ← A1(1λ), where J is a set of identities such that

|J | = � + 1.
2. (msk, pp) ← SimSetup(1λ).
3. f ← A2(state, pp), where the output length of f is (at most) �. Let

leak := f(msk).
– Phase II. For any id ∈ J , we define a security game
Expid(msk, pp, state, leak) as follows
1. ct ← Encap∗(id).
2. Let u′ be an independent random string.
3. Sample b ← {0, 1}.
4. If b = 0, let

b′ = ASimKeyGen(msk,·)
3 (state, leak, pp, id, ct,Dec(id, ct, skid));

5. If b = 1, let b′ = ASimKeyGen(msk,·)
3 (state, leak, pp, id, ct, u′);

6. Output 1 if b = b′; otherwise, output 0.

Claim 2. Hybrid 1 and Hybrid 2 are computationally indistinguishable.

This claims follows from the zero-knowledge property of the NIZK scheme.
We omit the full proof and refer the reader to the full version.

Hybrid 3: This hybrid is identical to Hybrid 2, except that we will switch to using
the punctured key of the PEF (punctured at the points id ∈ J ) for answering all
the SimKeyGen queries.

– Phase I. The system is set up as follows.
1. Let (J , state) ← A1(1λ), where J is a set of identities such that

|J | = � + 1.
2. (msk, pp) ← SimSetup�(1λ). Here, SimSetup� first generates

(crspef , k, k�) ← Gen2(1λ, N , J ) and uses k in msk and pp, gen-
erated as in SimSetup.

3. f ← A2(state, pp), where the output length of f is (at most) �. Let
leak := f(msk).

– Phase II. For any id ∈ J , we define a security game
Expid(msk, pp, state, leak) as follows
1. ct ← Encap∗(id).
2. Let u′ be an independent random string.
3. Sample b ← {0, 1}.
4. If b = 0, let

b′ = ASimKeyGen�(msk,·)
3 (state, leak, pp, id, ct,Dec(id, ct, skid));

5. If b = 1, let b′ = ASimKeyGen�(msk,·)
3 (state, leak, pp, id, ct, u′);

Here, SimKeyGen� works exactly like SimKeyGen, except that it uses
PEF2(crspef , k�, .) for the PEF evaluations.

6. Output 1 if b = b′; otherwise, output 0.

Claim 3. Hybrid 2 and Hybrid 3 are computationally indistinguishable.
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Proof. We use the mode indistinguishability of the PEF to prove the claim.
Particularly, if Hybrid 2 and Hybrid 3 were computationally distinguishable, we
can build an adversary B breaking the mode indistinguishability of the PEF.

B sends the challenge inputs J and receives the (crspef , k) from the mode
indistinguishability challenger, which either corresponds to the actual key gen-
eration or the punctured mode. Having this, B can simulate the entire hybrids,
while using k to answer the SimKeyGen or SimKeyGen�. Since the queries do not
contain the punctured points J , by the punctured correctness, the SimKeyGen�

responses will be same as the PEF evaluations on k. Depending on whether the
challenger returns the actual PEF key or the one in the punctured mode, B sim-
ulates Hybrid 2 or Hybrid 3. Thus, if the two hybrids are distinguishable, B can
break the mode indistinguishability of PEF. This completes the proof.

Observe that, in the case b = 0, in Hybrid 3, Dec(id, ct, skid) = Ext((v1 + y1, v2 +
y2, . . . , vλ + yλ), s), where (y1, · · · , yλ) = PEF(crspef , k, id), the PEF output on
the original key k. We will use this in completing the proof below.

Proving Selective Security: To finish proving the selective security, we need
to show that for all non-negligible ε, it holds that:

Pr
(msk,pp,J ,state,leak)

[ ∀ id ∈ J ,Advid(msk, pp, state, leak) ≥ ε
]

= negl(λ), (1)

where (msk, pp,J , state, leak) are sampled from the Phase I of Hybrid 3 and the
random variable Advid(msk, pp, state, leak) is defined as follows.

Advid(msk, pp, state, leak) =
∣
∣
∣
∣Pr[Expid(msk, pp, state, leak) = 1] − 1

2

∣
∣
∣
∣ .

Here, the random variable Expid(msk, pp, state, leak) is as defined in Phase II
of Hybrid 3. By the |J |-selective, γ · |J |-pseudo-entropy security of the PEF
(Theorem 2), we have that

H̃∞
(
{PEF(crspef , k, id) : id ∈ J }

∣
∣
∣ crspef , k

�
)

≥ γ · |J |.

Here, note that the leakage f(msk) in Hybrid 4, takes as input k and
(r1, · · · , rN ), and depends on pp, which in turn depends on crspef . Hence, we
can define the following function g on the PEF key k, by hardwiring the values
(crspef , τ, {ci, auxi}λ

i=1):

g(k1, k2, . . . , kN ) :=

{
∀i, ri = SimDecom(crs, τ, ci, auxi, ki)

Output f((k1, r1), . . . , (kN , rN ))

}

.

Thus, f(msk) = g(k), in Hybrid 4. Now, by Lemma 1, in the presence of this
�-bit leakage on msk we get that

H̃∞
(
{PEF(crspef , k, id) : id ∈ J }

∣
∣
∣ crspef , k

�, f(msk)
)

≥ γ · |J | − �.



614 N. Döttling et al.

Now, by Lemma 1, with overwhelming probability over the fixing of
crspef , k

�, f(msk), we have

H∞
(
{PEF(crspef , k, id) : id ∈ J }

)
≥ Θ(γ · |J | − �).

Next, by Lemma 2, there exists a distribution I over the identities J such that

H̃∞(PEF(crspef , k, I)|I) ≥ Θ(γ · |J | − �)
|J | −log |J | = Θ(γ) (Recall |J | = � + 1.)

In other words, with high probability (in particular, over the observed leakage
and I), there exists an id∗ ∈ J such that the min-entropy of PEF(crspef , k, id∗) is
≥ text, where we set text = Θ(γ). Now, by the definition of randomness extractor,
we can send A3 a uniform string u′ irrespective of the choice of b in Hybrid 4,
making the output of Expid

∗
uniformly random (as b′ would be uncorrelated to b).

The extractor security can be applied in Expid
∗
, because:

– The source PEF(crspef , k, id∗) has high entropy, given crspef , k
� and f(msk).

– The view of the adversary in this game is state, leak, pp, id∗, ct =({
cti0, ct

i
1

}λ

i=1
, s

)
, where the seed s is uniformly random and independent

from everything else in the hybrid.
– (v1, v2, . . . , vλ) is independent of (crspef , f(msk), id∗, k�), but is correlated

with ct and, hence, the adversary’s view.

Thus, given the adversary’s view in Expid
∗
, it cannot distinguish

Ext
(
(v1 + y1, . . . , vλ + yλ), s

)
,

which is what A3 gets in Hybrid 3 when b = 0, from uniform since (y1, . . . , yλ) is
sampled from a high min-entropy distribution that is independent of (v1, . . . , vλ).

Hence, in Hybrid 3, with high probability, there exists id∗ ∈ J such that
Expid(msk, pp, state, leak) in Phase II, outputs 1 with probability 1/2 + negl(λ)
(where negl(λ) comes from the extractor security error), which implies that the
security as needed in Equation 1 holds.

The Claims 1, 2, and 3 and the above argument complete the security proof.

Instantiation and Parameters. We can instantiate our construction with the
PEF from Theorem 2, the witness encryption for NIZK of commitment scheme
from [BL20] (see Sect. 4.2) and any randomness extractor (e.g., left-over hash
from [HILL99]). We allow a leakage of � bits from our msk. Now, our msk consists
of the PEF key k and additionally the randomness ri’s used in the commitment
scheme. The witness encryption from [BL20] uses 2 random group elements to
commit to a single group element (i.e., the ratio of ki (being committed) to
length of randomness ri is 1/2). Since the PEF gives a leakage rate of 1 (Remark
2), our big-key IB-KEM allows a leakage rate of 1/3.
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Abstract. The recent work of Agrawal et al. [Crypto ’21] and Goyal et al. [Euro-
crypt ’22] concurrently introduced the notion of dynamic bounded collusion
security for functional encryption (FE) and showed a construction satisfying the
notion from identity based encryption (IBE). Agrawal et al. [Crypto ’21] further
extended it to FE for Turing machines in non-adaptive simulation setting from the
sub-exponential learining with errors assumption (LWE). Concurrently, the work
of Goyal et al. [Asiacrypt ’21] constructed attribute based encryption (ABE) for
Turing machines achieving adaptive indistinguishability based security against
bounded (static) collusions from IBE, in the random oracle model. In this work,
we significantly improve the state of art for dynamic bounded collusion FE and
ABE for Turing machines by achieving adaptive simulation style security from a
broad class of assumptions, in the standard model. In more detail, we obtain the
following results:
1. We construct an adaptively secure (AD-SIM) FE for Turing machines,

supporting dynamic bounded collusion, from sub-exponential LWE. This
improves the result of Agrawal et al. which achieved only non-adaptive
(NA-SIM) security in the dynamic bounded collusion model.

2. Towards achieving the above goal, we construct a ciphertext policy FE
scheme (CPFE) for circuits of unbounded size and depth, which achieves
AD-SIM security in the dynamic bounded collusion model from IBE and
laconic oblivious transfer (LOT). Both IBE and LOT can be instantiated
from a large number of mild assumptions such as the computational Diffie-
Hellman assumption, the factoring assumption, and polynomial LWE. This
improves the construction of Agrawal et al. which could only achieve
NA-SIM security for CPFE supporting circuits of unbounded depth from
IBE.

3. We construct anAD-SIM secure FE for Turingmachines, supporting dynamic
bounded collusions, fromLOT,ABE forNC1 (orNC) and private information
retrieval (PIR) schemes which satisfy certain properties. This significantly
expands the class of assumptions on which AD-SIM secure FE for Turing
machines can be based. In particular, it leads to new constructions of FE for
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Turing machines including one based on polynomial LWE and one based on
the combination of the bilinear decisional Diffie-Hellman assumption and the
decisional Diffie-Hellman assumption on some specific groups. In contrast
the only prior construction by Agrawal et al. achieved only NA-SIM security
and relied on sub-exponential LWE.
To achieve the above result, we define the notion of CPFE for read only
RAM programs and succinct FE for LOT, which may be of independent
interest.

4. We also construct an ABE scheme for Turing machines which achieves
AD-IND security in the standard model supporting dynamic bounded col-
lusions. Our scheme is based on IBE and LOT. Previously, the only known
candidate that achieved AD-IND security from IBE by Goyal et al. relied on
the random oracle model.

Keywords: Turing machines · Functional encryption · Attribute based
encryption

1 Introduction

Functional encryption (FE) [15,38] is a powerful generalization of public key encryp-
tion, which goes beyond the traditional “all or nothing” access to encrypted data. In FE,
a secret key is associated with a function f , a ciphertext is associated with an input x
and decryption allows to recover f(x). Security intuitively requires that the ciphertext
and secret keys do not reveal anything other than the output of the computation. This
can be formalized by positing the existence of a simulator which can simulate cipher-
texts and secret keys given only the functions fi and their outputs on the messages xj ,
namely fi(xj) for all secret keys skfi

and ciphertexts ctxj
seen by the adversary in the

real world. This “simulation style” notion of security, commonly referred to as SIM
security, is ruled out by lower bounds in a general security game [2,15]. However, it
can still be achieved in the bounded collusion model [30], which restricts the adversary
to only request an a-priori bounded number of keys and challenge ciphertexts.

There has been intensive research in the community on FE in the last two decades,
studying the feasibility for general classes of functions, from diverse assumptions, sat-
isfying different notions of security. An exciting line of research has focused on FE for
uniform models of computation supporting unbounded input lengths, such as Deter-
ministic or Non-deterministic Finite Automata, Turing machines and Random Access
machines [4,7,8,11,28,34], in contrast to non-uniform models such as circuits. While
circuits are expressive, they suffer from two major drawbacks in the context of FE.
First, they force the input length to be fixed, a constraint that is inflexible and wasteful
in most applications. Second, they necessitate the worst-case running time of the func-
tion on every input. By overcoming these limitations, FE schemes can fit demands of
real world applications more seamlessly.

In this work, we study FE for Turing machines (henceforth TMFE) in the bounded
collusion model, namely a security model which restricts the adversary to only request
a bounded number of keys. Introduced by Gorbunov et al. [30], this model has been
popular since i) it is sufficient for multiple interesting real world scenarios, ii) it can
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support SIM style security, and iii) it can enable constructions from weaker assump-
tions or for more general functionalities. In the context of TMFE, the very recent
work of Agrawal et al. [5] provided the first construction of bounded TMFE from the
(sub-exponential) Learning With Errors assumption (LWE).1 Furthermore, this work
achieved the notion of dynamic bounded collusion, where the collusion bound Q does
not have to be declared during setup and may be chosen by the encryptor differently
for each ciphertext, based on the sensitivity of the encrypted data. Thus, in their con-
struction, the encryptor can choose an input x of unbounded length, a collusion bound
Q and a time bound t, the key generator can choose a machine M of unbounded length
and the decryptor runs M on x for t steps and outputs the result.

The work of Agrawal et al. [5] takes an important step forward in our understanding
of bounded TMFE by providing the first feasibility result in a flexible dynamic model.
However, it still leaves several important questions unanswered. For instance, the secu-
rity notion achieved by TMFE is non-adaptive (denoted by NA-SIM) [15] where the
adversary must send all the secret key requests before seeing the challenge ciphertext.
Moreover, this limitation appears as a byproduct of the security notion achieved by the
ingredient sub-schemes used for the construction (more on this below). Additionally,
[5] relies on the heavy machinery of succinct single key FE for circuits [29], where suc-
cinctness means that the ciphertext size does not depend on the size of circuits supported
(but may depend on output length and depth). Succinct FE is known to be constructible
only from sub-exponential LWE2 which necessitates the same assumption to underlie
TMFE. This seems unnecessarily restrictive – in contrast, for the circuit model, bounded
FE can be constructed from the much milder and more general assumption of public key
encryption (PKE) [12,30]. This raises the question of whether a strong primitive like
succinct FE is really necessary to support the Turing machine model. As detailed below,
succinct FE is a crucial tool in the construction, on whose properties the design relies
heavily, and it is not clear whether this requirement can be weakened.

For the more limited primitive of Attribute Based Encryption (ABE), the recent
work of [34] does provide a construction supporting Turing machines in the bounded
collusion model (albeit without the dynamic property discussed above), assuming only
the primitive of identity based encryption (IBE). Recall that ABE is a restricted class
of FE in which the ciphertext is associated with both an input x and a message m and
secret key is associated with a machine M . Decryption yields m given a secret key skM

such that M(x) = 1. Since IBE is a much weaker primitive than succinct FE and can be
constructed from several weak assumptions such as the computational Diffie-Hellman
assumption (CDH), the factoring assumption (Factoring), LWE and such others, this
state of affairs is more satisfying. However, ABE is significantly weaker than FE since
it does not hide the data on which the computation actually occurs, and is also an “all or
nothing” primitive. Moreover, while their construction achieves strong adaptive security
(denoted by AD-IND hereon), their construction relies on the random oracle model,
unlike [5] which is NA-SIM in the standard model.

1 Here, sub-exponential (resp., polynomial) LWE refers to the assumption that assumes the
distinguishing advantage of the adversary for the decision version of LWE is sub-exponentially
(resp., negligibly) small. The modulus to error ratio, which is another important parameter in
LWE, will be referred to as approximation factor in this paper.

2 Aside from obfustopia primitives such as compact FE [9,13].
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1.1 Our Results

In this work, we significantly improve the state of the art for dynamic bounded col-
lusion TMFE by achieving adaptive simulation style security from a broad class of
assumptions. In more detail, we obtain the following results:

1. We construct an adaptively secure (AD-SIM) TMFE, supporting dynamic bounded
collusion, from sub-exponential LWE. This improves the result of [5] which
achieved only NA-SIM security in the dynamic bounded collusion model.

2. Towards achieving the above goal, we construct a ciphertext policy FE3 scheme
(CPFE) for circuits of unbounded size and depth, which achieves AD-SIM security
in the dynamic bounded collusion model from IBE and laconic oblivious transfer
(LOT). Both IBE and LOT can be instantiated from a large number of mild assump-
tions such as CDH, Factoring or polynomial LWE. This improves the construction
of [5] which could only achieve NA-SIM security for CPFE supporting circuits of
unbounded depth from IBE.

3. We construct an AD-SIM secure TMFE, supporting dynamic bounded collusions,
from LOT, ABE for NC1 (or NC) and private information retrieval (PIR) schemes
which satisfy certain properties. This significantly expands the class of assumptions
on which AD-SIM secure TMFE can be based since ABE for NC1 can be con-
structed from pairing based assumptions like the bilinear decisional Diffie-Hellman
assumption (DBDH) [35] as well as polynomial LWEwith slightly super-polynomial
approximation factors4 [14,31], LOT can be based on CDH, Factoring and polyno-
mial LWE [16,20,21], and PIR with the required properties can also be based on
LWE [17], the decisional Diffie-Hellman assumption (DDH), or the quadratic resid-
uosity assumption (QR) [22]. This leads to new constructions of TMFE as follows:
– one based on the polynomial hardness of LWE with quasi-polynomial approxi-
mation factors,

– one based on the combination of DBDH and DDH on some specific groups.
– one based on the combination of DBDH and QR.

If we instantiate PIR with LWE, we need ABE for NC and LWE with quasi-
polynomial approximation factors [32] since the answer function of PIR from
LWE [17,27] is in NC. See Sect. 5 for the detail. In contrast the only prior con-
struction by [5] achieved only NA-SIM security and relied on sub-exponential LWE.
When instantiated with LWE, we observe that the above construction improves
the first construction we described. However, we still present the first construction
because it is much simpler.

4. We also construct an ABE scheme for Turing machines which achieves AD-IND
security in the standard model supporting dynamic bounded collusions. Our scheme
is based on IBE and LOT. Previously, the only known candidate that achieved
AD-IND security from IBE relied on the random oracle model [34].

3 A secret key and a ciphertext are associated with an input x and a function f , respectively
unlike the standard FE.

4 That is, O(λω(1)).
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Table 1. Comparison for bounded collusion-resistant FE for uniform models of computation

FE Class Security Model Assumption

[7] TM 1-key NA-SIM Static (sub-exp, sub-exp)-LWEa

[6] (SKFE) NFA Sel-SIM Static (sub-exp, sub-exp)-LWEa

[5] NL AD-SIM Dynamic (sub-exp, sub-exp)-LWEa

[5] TM NA-SIM Dynamic (sub-exp, sub-exp)-LWEa

Ours §4 TM AD-SIM Dynamic (sub-exp, sub-exp)-LWEa

Ours §5 TM AD-SIM Dynamic (poly, quasi-poly)-LWEa

Ours §5 TM AD-SIM Dynamic DDHb & DBDH

Ours §5 TM AD-SIM Dynamic QR & DBDH

a For adv ∈ {poly, sub-exp} and apprx ∈ {quasi-poly, sub-exp},
(adv, apprx)-LWE means that {polynomial, sub-exponential} hardness of
LWEwith {quasi-polynomial, sub-exponential} approxiation factors, respec-
tively.
b DDH over the multiplicative sub-group of Zq where q is a prime.

1.2 Other Related Work

A key policy FE5 (KPFE) for Turing machines supporting only a single key request
was provided by Agrawal and Singh [7] based on sub-exponential LWE. Agrawal,
Maitra and Yamada [6] provided a construction of KPFE for non-deterministic finite
automata (NFA) which is secure against bounded collusions of arbitrary size. However,
this construction is in the symmetric key setting. These constructions do not support
the dynamic collusion setting. The first works to (concurrently) introduce and sup-
port the notion of dynamic bounded collusion are [5,23]. Both works obtain simulation
secure KPFE schemes for circuits with dynamic collusion resistance. [5] additionally
obtain succinct CPFE/KPFE schemes for circuits with dynamic collusion property, and
also to support Turing machines and NL with different security trade-offs. We provide
a comparison for bounded collusion-resistant FE for uniform models of computation
in Table 1. All the results in the table are about FE whose encryption time depends on
the running-time of computation. There are FE schemes whose encryption time does not
depend the running-time of computation [4,11,28,36]. However, such constructions are
based on strong assumptions such as extractable witness encryption [28] and compact
FE [4,11,36]. We also omit works based on indistinguishability obfuscation. The focus
of the present work is on weak assumptions.

1.3 Our Techniques

In this section, we provide an overview of our techniques. Our final construction is
obtained by going through number of steps. We refer to Fig. 1 for the overview.

5 This is the same as the standard FE. We use this term to distinguish from CPFE.
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Fig. 1. Illustration of our construction path. Each rectangle represents FE and rounded rectan-
gles represents other primitives. “Bounded CPFE” (resp., “Unbounded CPFE”) means CPFE
for bounded (resp., unbounded) size circuits. The red (resp., blue) rectangles represent FE with
AD-SIM security under bounded dynamic collusion (resp., NA-SIM security under single key
collusion). The dashed lines indicate known implications or implications that can be shown by
adapting previous techniques relatively easily. The solid lines indicate implications that require
new ideas and are shown by us. We do not include (selectively secure) garbled circuits, secret key
encryption, and PRF in the figure in order to simplify the presentation. (Color figure online)

Recap of TMFE by [5]: To begin, we recap some of the ideas used in the construction
of TMFE provided by [5]. At a high level, their approach is to separate the cases where
the length of the input x and running time bound 1t is larger than the machine size
|M | and one where the opposite is true, i.e. |(x, 1t)| ≤ |M | and |(x, 1t)| > |M |. They
observe that running these restricted schemes in parallel allows supporting either case,
where the one sub-scheme is used to decrypt a ciphertext if |(x, 1t)| ≤ |M | and the
second is used otherwise. We note that such a compiler was first developed by [6] in
the symmetric key setting and [5] uses ideas from [33] to upgrade it to the public key
setting.

To construct the restricted sub-schemes, [5] uses KPFE for the case |(x, 1t)| ≤ |M |
and CPFE for |(x, 1t)| > |M |. For concreteness, let us consider the case |(x, 1t)| ≤
|M |. Now, using the “delayed encryption” technique of [33] (whose details are not
relevant for our purpose), one may assume that there exists an infinite sequence of
KPFE instances and the i-th instance supports circuits with input length i. To encrypt a
message x with respect to the time bound 1t, they use the |(x, 1t)|-th instance of KPFE.
To generate the secret key for a Turing machine M , they encode M into a set of circuits
Ci,M for i = 1, . . . , |M |, where Ci,M is a circuit that takes as input a string (x, 1t) of
length i, and then runs the machine M for t steps on this input to generate the output.
Secret keys for Ci,M are generated using the i-th instance of KPFE for all of i ∈ [|M |].
A crucial detail here is that M can be of unbounded size, because each KPFE instance
supports unbounded size circuits. Now, decryption is possible when |(x, 1t)| ≤ |M |
by using the |(x, 1t)|-th instance. To construct the KPFE scheme, the authors enhance
constructions of “succinct KPFE” from the literature [1,29], which can be constructed
from (sub-exponential) LWE. The resultant scheme satisfies AD-SIM security against
(dynamic) bounded collusions.



624 S. Agrawal et al.

To handle the opposite case, namely |(x, 1t)| > |M |, the authors follow the “dual”
of the above procedure, using a CPFE scheme in place ofKPFE, which supports circuits
of unbounded depth (hence size). In more detail, to encrypt a message (x, 1t), they
construct a circuit {Ui,x,t}i∈[|(x,1t)|], where Ui,x,t is a circuit that takes as input a string
M of length i, interprets it as a description of a Turing machine, runs it on input x for
t steps and outputs the result. They encrypt the circuit Ui,x,t using the i-th instance of
CPFE for all of i ∈ [|(x, 1t)|]. Note that it is necessary that the CPFE scheme support
circuits of unbounded depth and not just size, since the circuit must run Turing machine
for t steps, where t may be arbitrarily large. The authors use IBE to instantiate such a
CPFE. However, they can only achieve NA-SIM, where the adversary must make all its
key requests before obtaining the challenge ciphertext. This limitation is inherited by
the resultant TMFE scheme even though KPFE satisfies AD-SIM security as discussed
above.

TMFE with AD-SIM Security: As discussed above, the missing piece in construct-
ing TMFE with AD-SIM security from LWE is an instantiation of CPFE supporting
unbounded depth circuits with AD-SIM security. We now show how to design this by
carefully combining (in a non black-box way) two ingredients – i) an AD-SIM secure
CPFE for circuits of bounded depth, size and output, denoted by BCPFE, which was
constructed in [5] using IBE, and ii) adaptively secure garbled circuits (GC) based on
LOT [24]. Our construction makes crucial use of the structural properties of the LOT
based adaptive GC constructed by Garg and Srinivasan [24]. We describe this next.

Adaptively Secure Garbled Vircuits via LOT: Garg and Srinivasan [24] provided a con-
struction of adaptively secure GC with near optimal online rate by leveraging the power
of LOT. Recall that LOT [18] is a protocol between two parties: sender and a receiver.
The receiver holds a large databaseD ∈ {0, 1}N and sends a short digest d (of length λ)
of the database to the sender. The sender has as input a location L ∈ [N ] and two mes-
sages (m0,m1). It computes a read-ciphertext c using its private inputs and the received
digest d by running in time poly(logN, |m0|, |m1|, λ) and sends c to the receiver. The
receiver recovers the message mD[L] from the ciphertext c and the security require-
ment is that the message m1−D[L] remains hidden. Updatable LOT additionally allows
updates to the database.

The main idea in [24] is to “linearize” the garbled circuit, namely to ensure that
the simulation of a garbled gate g depends only on simulating one additional gate.
With this linearization in place, they designed a careful sequence of hybrids based on
a pebbling strategy where the number of changes required in each intermediate hybrid
is O(log(|C|)). In more detail, their construction views the circuit C to be garbled as a
sequence of step circuits along with a database D, where the ith step circuit implements
the ith gate in the circuit. The database D is initialized with the input x and updated to
represent the state of the computation as the computation progresses. Thus, at step i, the
database contains the output of every gate g < i in the execution of C on x. The ith step
circuit reads contents from two pre-determined locations in the database, corresponding
to the input wires, and writes a bit, corresponding to the output of the gate, to location
i. Thus, they reduce garbling of the circuit to garbling each step circuit along with the
database D.
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Coming back to our goal of CPFE for unbounded depth circuits, a starting point
idea is to use a sequence of bounded size schemes BCPFE to encode a sequence of
low depth step circuits described above. Intuitively, we leverage the decomposability of
the adaptive GC construction so that a BCPFE scheme can generate each garbled ver-
sion of the step circuit, using randomness that is derived jointly from the encryptor and
key generator via a pseudorandom function (PRF). Specifically, the key generator pro-
vides BCPFE keys for input x, along with a PRF input tag, and the encryptor provides
BCPFE ciphertexts for theGC step circuits along with a PRF seed. Put together,BCPFE
decrypts to provide the inner decomposable GC (generated using jointly computed PRF
output), which may then be evaluated to recover C(x). A crucial detail swept under the
rug here is how the sequence of GCs interacts with the database which captures the
state of the computation. In particular, as the computation proceeds, the database must
be updated, and these updates must be taken into account while proceeding with the
remainder of the evaluation. This detail is handled via the updatable property of our
LOT similarly to [24]. In the interest of brevity, we do not describe it here, and refer the
reader to Sect. 3 for details.

Assuming the sequence of BCPFE schemes can produce the garbled step circuits
and garbled database, we still run into another problem in the security proof – the num-
ber of BCPFE ciphertexts is as large as the size of the circuit being encrypted while on
the other hand, there is an information-theoretic barrier that the key size of an AD-SIM
secure CPFE should grow with the number of challenge ciphertexts [15]. This would
bring us right back to where we started as we want to handle unbounded depth circuits
and the key generator cannot even know this depth, so we cannot create enough space in
the key to support this embedding. Our key observation to overcome this hurdle is that
we do not need to simulate all the ciphertexts simultaneously. In particular, by relying
on the pebbling-based simulation strategy used in [24], we can upper bound the num-
ber of ciphertexts in “simulation mode” by a fixed polynomial in each hybrid in the
proof. This allows us to embed a simulated GC into the BCPFE secret key which is of
fixed size, thereby allowing the post challenge queries required for AD-SIM security. To
formalize this idea, we introduce an abstraction which we call “gate-by-gate garbling”
(see Sect. 3), which is similar to locally simulatable garbling introduced by Ananth and
Lombardi [10]. For more details, please see Sects. 3 and 4.

TMFE Without Succinct KPFE for Circuits: We now describe our construction of
TMFE without using succinct KPFE for circuits. The high level template for the final
construction is the same as discussed earlier, namely, to construct two sub-schemes
that handle the cases |(x, 1t)| ≤ |M | and |(x, 1t)| > |M | separately. Previously, we
showed how to construct CPFE with AD-SIM security, for unbounded depth circuits
from IBE and LOT, and used this to handle the case |(x, 1t)| > |M |. The counterpart
|(x, 1t)| ≤ |M | was handled using KPFE for circuits of unbounded size, which was
constructed in [5] by upgrading the succinct, single key KPFE of Goldwasser et al. [29]
from (sub-exponential) LWE. Our goal is to construct FE that can handle the case of
|(x, 1t)| ≤ |M | and satisfies AD-SIM security without relying on succinct KPFE.

To begin, observe that the generalized bundling technique discussed above lets us
focus on the case where |x, 1t| is fixed, but |M | is unbounded. Moreover, it suffices
to restrict ourselves to 1-NA-SIM security, since 1-NA-SIM implies AD-SIM for FE
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with bounded message length (please see Section [3, Sect. 6.4]). In [5], the authors use
succinct KPFE to instantiate this scheme by taking advantage of the fact that the size
of the circuit associated with the secret key in the succinct KPFE is unbounded. Thus,
we can embed a machine M of unbounded size into the secret key. Then we can run
the Turing machine inside the circuit for |M | steps, which exceeds t (since we have
t < |M |) and thus finishes the computation.

Our starting point observation is that since |(x, 1t)| ≤ |M |, where |(x, 1t)| is fixed
and |M | is unbounded, we can think of M as a large database, x as a short input and t
as bounded running time, which naturally suggest the random access machines (RAM)
model of computation. Intuitively, if |M | is massive but |x| and t are small, then running
M on x requires only a bounded number of lookups in the transition table and a bounded
number of steps, regardless of the size of M . Motivated by this observation, we cast M
as a large database and construct a program P which has (x, 1t) hardwired in it, and
executes M(x) via RAM access to M . It is important to note that even if the program
does not have M as an input, RAM access to M suffices, because the transition only
depends on the description of the current state and the bit that is pointed to by the header.
To capture this notion in the setting of FE, we introduce a new primitive, which we call
CPFE for (read only) RAM programs. Here, the encryptor encrypts the program P(x,1t)

above, the key generator provides a key for database M and decryption executes P(x,1t)

on M , which is equal to M(x). Crucially, the running time of encryption is required to
be independent of |D|.

To construct a CPFE for read only RAM, we build upon ideas that were developed in
the context of garbled RAM constructions [37]. In these constructions, a garbled RAM
program consists of t garbled copies of an augmented “step circuit” which takes as input
the current CPU state, the last read bit and outputs an updated state and the next read
location. Copy i of the CPU step circuit is garbled so that the labels for the output wires
corresponding to the output state match the labels of the input wires corresponding to
the input state in the next copy i+1 of the circuit. The obvious question in this context
is how to incorporate data from memory into the computation – clearly, decomposing
the computation necessitates some mechanism in which the sequence of garbled circuits
communicate with the outside memory6. To enable this, previous works have used IBE
and oblivious RAM (ORAM) [25,37]. At a very high level, IBE is used to choose the
correct label of the GC as follows – the garbled memory can consist of IBE secret keys
for identity (i, b) where i is the given location and b is the bit stored in it, while the
garbled circuits can output IBE ciphertexts whose messages are the labels of the next
circuit, under identities (i, b). On the other hand, ORAM hides the position read.

However, an immediate hurdle is that ORAM necessitates two parties (client and
server) to agree on a secret key. Translated into our setting, this would require that
the encryptor and key generator share some secret information – but this is not pos-
sible as we are in the public key setting. To overcome this barrier, we introduce the
notion of FE for LOT, denoted by LOTFE (Sect. 5.1). In LOTFE, the encryptor has two
messages (μ0, μ1) and a database location i. The key generator has a database D as
input. Decryption allows to recover μD[i] and security hides both μ1−D[i] as well as the

6 The careful reader may note the similarity with the adaptive garbled circuit construction by
[24] discussed above.
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position i. This corresponds to hiding the “other label” as well as the position that was
read, in the garbled RAM approach.

It remains to construct LOTFE. Observe that LOTFE must still satisfy the desired
succinctness properties, in that a secret key should encode unbounded size data and the
running time of the encryption algorithm should be independent of this size. However,
by reducing the requisite functionality to something simple like LOT, we earn several
benefits over using succinct KPFE. In particular, since we only need to support the
table lookup functionality, we can replace the fully homomorphic encryption (FHE)
which was used in the succinct KPFE construction [29] with the much weaker private
information retrieval (PIR). Due to this, we can replace ABE for circuits that is used in
the construction of [29] by the much weaker ABE for NC1 (or NC), which in turn can
be constructed by a wider variety of assumptions. We discuss this in more detail below.

Let us briefly recall the main ideas used to construct succinct KPFE. The construc-
tion of [29] carefully stitches together ABE for circuits, FHE and GC as follows. At a
very high level, FHE is used to encrypt the input x, and this ciphertext x̂ is then used as
the attribute string for ABE. To encode the circuit f , we construct an ABE secret key for
a closely related circuit f ′, which is used to restrict computation on the FHE ciphertext
embedded in the ABE encodings. During decryption, we can check if f ′(x̂) = 1 and
recover the message if so. Intuitively, f ′(x̂)will represent the bits of an FHE encryption

of f(x), denoted by ̂f(x) and provide a message lbli,0 if the ith bit of ̂f(x) is 0 and

lbli,1 if the ith bit of ̂f(x) is 1. These labels are then used as inputs to the GC which
encodes the FHE decryption circuit, so that the decryptor can recover f(x) as desired.
Note that the usage of GC implies that the construction can only support a single func-
tion key, since otherwise the adversary can recover labels for multiple inputs, violating
GC security.

Following a similar template, we can construct 1-NA-SIM secure LOTFE using
ABE for NC1 (or NC), PIR and GC. We encrypt labels under attributes corresponding
to the PIR query and provide a key for the PIR answer function to recover the labels
corresponding to the PIR answer. These are subsequently fed into the garbled circuit to
recover the answer in the clear. We need that the PIR answer function is in NC1 so that
it fits ABE for NC1. Towards this, we show that PIR from QR or DDH has its answer
function in NC1 and thus can be combined with ABE for NC1. If we instantiate PIR
with an FHE-based scheme [17,27], the answer function is in NC and we need ABE for
NC, which can be instantiated with LWE with quasi-polynomial approximation factors.
Our LOTFE not only allows to use various assumptions other than LWE, which was not
possible before, but also allows us to remove the complexity leveraging required for the
LWE based construction described before, while achieving AD-SIM secure TMFE at
the end7. We need Sel-IND secure ABE as a building block to achieve 1-NA-SIM secure
LOTFE.

The reason why Sel-IND security suffices for our case is that the reduction algo-
rithm can guess the target attribute the adversary chooses only with polynomial guess.
Although there are exponentially many possible PIR queries, the reduction algorithm

7 We observe that the above construction when instantiated with LWE improves the first con-
struction we described. However, we still present the first construction because it is much
simpler.
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only has to guess an input that is encoded inside PIR.query. This is because the ran-
domness used for computing the query is not controlled by the adversary, but by the
reduction algorithm. Since there are only polynomial number of possible inputs to PIR
query function, the guessing can be done only with polynomial security loss. Please see
Sect. 5 for the complete description.

ABE for TM from LOT and IBE: Lastly, we construct ABE for Turing machines sup-
porting AD-SIM security with dynamic bounded collusions. Our construction relies on
LOT and IBE. In contrast to the construction of [34], we do not rely on the random
oracle and moreover, we support dynamic bounded collusions.

As before, we consider two cases, namely |(x, 1t)| ≤ |M | and the opposite
|(x, 1t)| > |M |. Observe that for the case of longer input, the LOT based CPFE
construction discussed above suffices since it implies TMFE where |(x, 1t)| > |M |
with dynamic bounded collusions as discussed above. Therefore we focus on the case
of shorter input. For this, our starting point is the single key, NA-IND secure (non-
adaptively indistinguishable) ABE for TM constructed by the recent work of Goyal et
al. [34], which relies on IBE. We upgrade this to adaptively (AD-SIM) secure ABE for
TM supporting dynamic bounded collusions of arbitrary size, when |(x, 1t)| ≤ |M |,
as follows. To begin, we observe that single key NA-IND security in fact implies sin-
gle key NA-SIM security in the context of ABE (see [3, Remark 2.5] for an argument).
Then, we combine the above single key NA-SIM ABE for Turing machines, denoted by
1-TMABE and AD-SIM secure BCPFE (for bounded circuits) with bounded dynamic
collusion similarly to [5, Sect. 4].

In more detail, the master public key and master secret key of the final ABE
scheme are those of BCPFE. To encrypt message m under attribute (x, 1t) for a col-
lusion bound 1Q, the encryptor first constructs a circuit 1-TMABE.Enc(·, x, 1t,m),
which is an encryption algorithm of the single-key abe for TM scheme, that takes
as input a master public key and outputs an encryption of the attribute (x, 1t) and
message m under the key. The encryptor then encrypts the circuit using the BCPFE
scheme with respect to the bound 1Q. To generate a secret key for a Turing machine
M , the key generator freshly generates a master key pair of 1-TMABE, namely
(1-TMABE.mpk, 1-TMABE.msk). It then generates a BCPFE secret key BCPFE.sk
corresponding to the string 1-TMABE.mpk and an ABE secret key 1-TMABE.skM

for the machine M . The final secret key is (BCPFE.sk, 1-TMABE.skM ). Decryp-
tion is done by first decrypting the BCPFE ciphertext using the BCPFE secret key
to recover 1-TMABE.Enc(1-TMABE.mpk, x, 1t,m) and then using the secret key
1-TMABE.skM to perform ABE decryption and recover the message m if M(x) = 1
within t steps. Security follows from the individual security of the two underlying
schemes and yields an AD-SIM secure ABE for TM for an a-priori bounded |(x, 1t)|
with bounded dynamic collusion.

To remove the restriction on |(x, 1t)|, we use the “generalized bundling” trick of
[5, Sect. 6.2.2], for the case of |(x, 1t)| < |M |. Thus, we obtain AD-SIM ABE for TM
where |(x, 1t)| < |M | with dynamic bounded collusions. Finally, we combine AD-SIM
ABE for TMwith |(x, 1t)| > |M | and one with |(x, 1t)| ≤ |M | as described above. The
transformation yields AD-SIM secure ABE for TM with dynamic bounded collusions,
which readily implies AD-IND security. Please see [3, Sec 6] for further details.
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2 Preliminaries

Here, we define functional encryption (FE) with dynamic bounded collusion, which
is introduced by [5,23]. The notion is stronger than conventional bounded collusion
FE [12,30] in that the collusion bound can be determined by an encryptor dynami-
cally, rather than being determined when the system is setup. We note that some of
the definitions here are taken verbatim from [5]. We refer to [3, Sect. 2] for additional
preliminaries.

2.1 Functional Encryption

Let R : X × Y → {0, 1}∗ be a two-input function where X and Y denote “message
space” and “key attribute space”, respectively. Ideally, we would like to have an FE
scheme that handles the relation R directly, where we can encrypt any message x ∈ X
and can generate a secret key for any key attribute y ∈ Y . However, in many cases,
we are only able to construct a scheme that poses restrictions on the message space
and key attribute space. To capture such restrictions, we introduce a parameter prm
and consider subsets of the domains Xprm ⊆ X and Yprm ⊆ Y specified by it and the
function Rprm defined by restricting the function R on Xprm × Yprm. An FE scheme for
{Rprm : Xprm × Yprm → {0, 1}∗}prm is defined by the following PPT algorithms:

Setup(1λ, prm) → (mpk,msk): The setup algorithm takes as input the security parame-
ter λ in unary and a parameter prm that restricts the domain and range of the function
and outputs the master public key mpk and a master secret key msk.

Encrypt(mpk, x, 1Q) → ct: The encryption algorithm takes as input a master public
keympk, a message x ∈ Xprm, and a bound on the collusion Q in unary. It outputs a
ciphertext ct.

KeyGen(msk, y) → sk: The key generation algorithm takes as input the master secret
key msk, and a key attribute y ∈ Yprm. It outputs a secret key sk. We assume that y
is included in sk.

Dec(ct, sk, 1Q) → m or ⊥: The decryption algorithm takes as input a ciphertext ct, a
secret key sk, and a bound Q associated with the ciphertext. It outputs the message
m or ⊥ which represents that the ciphertext is not in a valid form.

Remark 1. We also consider single collusion FE, which is a special case where Q is
always fixed to be Q = 1. In such a case, we drop 1Q from the input to the algorithms
for simplicity of the notation.

Definition 1 (Correctness). An FE scheme FE = (Setup,KeyGen,Enc,Dec) is cor-
rect if for all prm, x ∈ Xprm, y ∈ Yprm, and Q ∈ N,

Pr
[

(mpk,msk) ← Setup(1λ, prm) :
Dec

(

Enc(mpk, x, 1Q),KeyGen(msk, y), 1Q
)

�= R(x, y)

]

= negl(λ)

where probability is taken over the random coins of Setup, KeyGen and Enc.
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We define simulation-based security notions for FE in the following.

Definition 2 ( AD-SIM Security for FE with Dynamic Bounded Collusion). Let
FE = (Setup,KeyGen,Enc,Dec) be a (public key) FE scheme with dynamic bounded
collusion for the function family {Rprm : Xprm×Yprm → {0, 1}∗}prm. For every stateful
PPT adversary A and a stateful PPT simulator Sim = (SimEnc,SimKG), we consider
the experiments in Fig. 2.

Fig. 2. AD-SIM security for FE

We emphasize that the adversary A is stateful, even though we do not explicitly
include the internal state of it into the output above for the simplicity of the notation.
On the other hand, the above explicitly denotes the internal state of the simulator Sim
by st. In the experiments:

– The oracle O(msk, ·) = KeyGen(msk, ·) with 1 ≤ Q1 ≤ Q, and
– The oracle O′(st,msk, ·) takes as input the q-th key query y(q) for q ∈ [Q1+1, Q1+

Q2] and returns SimKG(st,msk, R(x, y(q)), y(q)), where Q1 + Q2 ≤ Q

The FE scheme FE is then said to be simulation secure for one message against
adaptive adversaries (AD-SIM-secure, for short) if there is a PPT simulator Sim such
that for every PPT adversary A, the following holds:

∣

∣

∣Pr[ExprealFE,A

(

1λ
)

= 1] − Pr[ExpidealFE,Sim

(

1λ
)

= 1]
∣

∣

∣ = negl(λ). (2.1)

Remark 2 (Non-adaptive security). We can consider a variant of the above security def-
inition where the adversary is not allowed to make a secret key query after the cipher-
text ct is given (i.e., Q1 = Q). We call the notion non-adaptive simulation security
(NA-SIM). In particular, when we consider single collusion FE, the notion is called
1-NA-SIM. We refer to [3, Sect. 2.4] for the formal definitions.
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Special Classes of FE. We define various kinds of FE by specifying the relation.

CPFE for Circuits. To define CPFE for circuits, we set X to be the set of all circuits
and Y = {0, 1}∗ and define R(C, x) = C(x) if the length of the string x and the input
length of C match and otherwise R(C, x) = ⊥. In this paper, we will consider the
circuit class Cinp that consists of circuits with input length inp := inp(λ). To do so, we
set prm = 1inp, Xprm = Cinp, and Yprm = {0, 1}inp.

Remark 3. In the definition of CPFE for circuits, even though the input length of the
circuits in Cinp is bounded, the size of the circuits is unbounded.

FE for Turing Machines. To define FE for Turing machines, we set X = {0, 1}∗, Y to
be set of all Turing machine, and define R : X × Y → {0, 1} as

R((x, 1t),M) =

{

1 if M accepts x in t steps

0 otherwise.
.

3 Gate-by-Gate Garbling with Pebbling-Based Simulation

We define a notion of gate-by-gate garbling and its pebbling-based simulation. This is
an abstraction of the backbone of the adaptive garbling by Garg and Srinivasan [24].

First, we define a syntax of a standard garbling scheme.8 A garbling scheme for a
circuit class C cosists of PPT algorithms GC = (GCkt,GInp,GEval) with the following
syntax:

GCkt(1λ, C) → ( ˜C, st): The circuit garbling algorithm takes as input the unary rep-
resentation of the security parameter λ and a circuit C ∈ C and outputs a garbled
circuit ˜C and state information st.

GInp(st, x) → x̃: The input garbling algorithm takes as input the state information st
and an input x and outputs a garbled input x̃.

GEval( ˜C, x̃) → y: The evaluation algorithm takes as input the garbled circuit ˜C and
garbled input x̃ and outputs an output y.

Definition 3 (Correctness). A garbling scheme GC = (GCkt,GInp,GEval) is correct
if for all circuits C ∈ C and its input x,

Pr[( ˜C, st) ← GCkt(1λ, C), x̃ ← GInp(st, x) : GEval( ˜C, x̃) = C(x)] = 1.

In addition to the security notion for a standard garbling scheme in [3, Definition
2.8], we introduce a new security notion specific to gate-by-gate garbling, which we call
pebbling-based security. For defining gate-by-gate garbling, we prepare some notations
about circuits.

8 Note that the syntax defined here is more general than that of Yao’s garbling defined in [3,
Definition 2.8].
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Notations. For a circuit C, we denote by Gates the set of all gates of C. We use inp and
out to mean the input-length and output-length of C, respectively. A unique index from
1 to N is assigned to each bit of input and gate where N is the sum of the input-length
and the number of gates of C. In particular, each bit of input is assigned by indices
from 1 to inp, each intermediate gate is assigned by indices from inp + 1 to N − out,
and each output gate is assigned by indices from N − out+ 1 to N . We assume that a
circuit has fan-in 2 and unbounded fan-out without loss of generality. A gate G ∈ Gates
is represented as (gG, iG, AG, BG) where gG : {0, 1} × {0, 1} → {0, 1} is a function
corresponding to G, iG is the index of G, and AG and BG are indices of the input bits or
gates whose values are passed to G as input. We assume AG < iG and BG < iG without
loss of generality. We call (iG, AG, BG) the topology of G and denote it by top(G). We
call the set of topology of all gates the topology of C and denote it by top(C).

Intuitively, gate-by-gate garbling is a garbling scheme whose circuit garbling algo-
rithm can be decomposed into gate garbling algorithms for each gate, whose efficiency
is independent of the size of the circuit. The formal definition is given below:

Definition 4 (Gate-by-Gate Garbling:). A garbling scheme GC = (GCkt,GInp,
GEval) for a circuit class C is said to be gate-by-gate garbling with Nrand =
Nrand(top(C)) randomness slots and randomness length � if GCkt can be decomposed
into PPT sub-algorithms (GSetup,GGate) as follows:

GCkt(1λ, C): The circuit garbling algorithm proceeds as follows:
1. Run GSetup(1λ, top(C)) to generate a public parameter pp.
2. For i ∈ [Nrand], generate a randomness Ri ← {0, 1}� for � = poly(λ) that does

not depend on C.
3. For G ∈ Gates, run GGate(pp,G, {Ri}i∈S(G)) to generate a garbled gate ˜G.

Here, S(G) ⊆ [Nrand] is a subset of size O(1) that is efficiently computable from
G and top(C).

4. Output a garbled circuit ˜C :=
(

pp, {˜G}G∈Gates

)

and the state information st :=
(pp, {Ri}i∈Sst) where Sst ⊆ [Nrand] is a subset of size O(inp + out) that is
efficiently computable from top(C).

We require GC to satisfy the following requirements.

1. GGate(pp,G, {Ri}i∈S(G)) runs in time poly(λ) independently of the size of C where
pp ← GSetup(1λ, top(C)) and Ri ← {0, 1}� for i ∈ [Nrand].

2. GInp(st, x) is deterministic and runs in time poly(λ, inp, out) independently of the
size of C where pp ← GSetup(1λ, top(C)), Ri ← {0, 1}� for i ∈ [Nrand], and
st := (pp, {Ri}i∈Sst).

We require gate-by-gate garbling to satisfy (M,T )-pebbling-based security for
some parameters M and T , which intuitively requires the following: There are three
modes of gate garbling algorithms, the white mode, black mode, and gray mode. The
white mode gate garbling algorithm is identical to the real gate garbling algorithm. The
black mode gate garbling algorithm is a “simulation” algorithm that simulates a garbled
gate without knowing the functionality of the gate. The gray mode garbling algorithm
is an “input-dependent simulation” algorithm that simulates a garbled gate by using
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both the circuit C and its input x that are being garbled. We call a sequence of modes
of each gate of C a configuration of C. There is a configuration-based input-garbling
algorithm that simulates a garbled input by using C and a configuration as additional
inputs. When the configuration is all-white, it corresponds to the real input garbling
algorithm, and when the configuration is all-black, it corresponds to a legitimate “sim-
ulation” algorithm that only uses C(x) instead of C and x. The security requires that
there is a sequence of configurations of length T that starts from the all-white configu-
ration, which corresponds to the real garbling algorithm, to the all-black configuration,
which corresponds to the simulation algorithm, such that:

1. the number of gates in the gray mode in any intermediate configuration is at most
M , and

2. garbled circuits and garbled inputs generated in neighboring configurations are com-
putationally indistinguishable even if the distinguisher can specify all the random-
ness needed for generating garbled gates whose modes are black or white in both of
those configurations.

We give the formal definition of pebbling-based security in [3, Sect. 3.1].

Instantiation. Our definition of gate-by-gate garbling with pebbling-based simulation
security captures the backbone of the proof technique of adaptive garbling in [24]. The
following lemma is implicit in their work. The lemma is proven in [3, Appendix A] for
completeness.

Lemma 1 (Implicit in [24]). If there exists LOT, which exists assuming either of CDH,
Factoring, or LWE, there exists a gate-by-gate garbling for all polynomial-size circuits
that satisfies (M,T )-pebbling-based simulation security for M = O(log size) and T =
poly(size) where size is the size of a circuit being garbled.

4 AD-SIM CPFE with Dynamic Bounded Collusion

In this section, we construct an AD-SIM secure CPFE scheme CPFE for unbounded
polynomial-size circuits with dynamic bounded collusion. CPFE supports the function
class Cinp,out for any polynomials inp = inp(λ) and out = out(λ) where Cinp,out is the
class of circuits with input-length inp and output-length out.

Ingredients. We now describe the underlying building blocks used to obtain CPFE:

1. A gate-by-gate garbling scheme GC = (GCkt,GInp,GEval) for Cinp,out with Nrand

randomness slots and randomness length � that satisfies (M,T )-pebbling-based sim-
ulation security for M = poly(λ) and T = poly(λ). By Lemma 1, such a scheme
exists under the existence of laconic OT, which in turn exists under either of CDH,
Factoring, or LWE. We denote by R the randomness space of GGate.

2. A PRF PRF = (PRF.Setup,PRF.Eval) from {0, 1}inp to {0, 1}�.
3. A PRF PRF′ = (PRF′.Setup,PRF′.Eval) from {0, 1}inp to R.
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Fig. 3. The description of GarbleCirc

4. An M -CT AD-SIM secure CPFE scheme with dynamic bounded collusion denoted
by BCPFE = (BCPFE.Setup,BCPFE.Enc,BCPFE.KeyGen,BCPFE.Dec) for
bounded polynomial-size circuits. Here, M -CT AD-SIM security roughly means
security against adversaries that see M challenge ciphertexts. Due to a technical
reason, however, our notion of M -CT AD-SIM security is slightly different from
the standard one e.g., [30, Appendix A]. Our definition is given in [3, Sec 4.1.2].
We construct a CPFE scheme for bounded polynomial-size circuits that satisfies this
security notion from IBE in [3, Appendix B.1].
We require BCPFE to support a circuit class CBCPFE.inp,BCPFE.out,BCPFE.size con-
sisting of circuits with input length BCPFE.inp, output length BCPFE.out, and
size at most BCPFE.size, where BCPFE.inp := inp + λ and BCPFE.out and
BCPFE.size are output-length and the maximum size of the circuit GarbleCirc
defined in Fig. 3, respectively. By the efficiency requirements of GC (Definition 4),
BCPFE.out = poly(λ, inp) and BCPFE.size = poly(λ, inp) independently of the
size of the circuit C being encrypted.

5. A (single-ciphertext) AD-SIM-secure CPFE scheme with dynamic bounded col-
lusion denoted by BCPFE′ = (BCPFE′.Setup,BCPFE′.Enc,BCPFE′.KeyGen,
BCPFE′.Dec) for bounded polynomial-size circuits. We require BCPFE′ to sup-
port a circuit class CBCPFE′.inp,BCPFE′.out,BCPFE′.size consisting of circuits with input
length BCPFE′.inp, output length BCPFE′.out, and size at most BCPFE′.size,
where BCPFE′.inp := inp + λ and BCPFE′.out and BCPFE′.size are the output
length and the maximum size of the circuit GarbleInp defined in Fig. 4, respectively.
By the efficiency requirements of GC (Definition 4), BCPFE′.out = poly(λ, inp)
and BCPFE′.size = poly(λ, inp) independently of the size of the circuit C being
encrypted.

Construction. In the construction, for a circuit C, we define the universal circuit UC

such that UC(x)=C(x). We define UC in such a way that the topology of UC does not
reveal anything beyond the size of C.9 The description of CPFE is given below.

Setup(1λ, prm): On input the security parameter λ and the parameter prm, do the fol-
lowing:
1. Run (BCPFE.mpk,BCPFE.msk) ← BCPFE.Setup(1λ,BCPFE.prm).
2. Run (BCPFE′.mpk,BCPFE′.msk) ← BCPFE′.Setup(1λ,BCPFE′.prm).

9 We explain how to construct such UC in [3, Sect. 2.1].
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Fig. 4. The description of GarbleInp

3. Output (mpk,msk):=((BCPFE.mpk,BCPFE′.mpk), (BCPFE.msk,BCPFE′.
msk)).

Enc(mpk, C, 1Q): On input the master public key mpk = (BCPFE.mpk,BCPFE′.
mpk), a circuit C ∈ Cinp,out, and the query bound 1 ≤ Q ≤ 2λ in unary form,
do the following:
1. Compute the universal circuit UC . In the following, we write Gates to mean the

set of gates of UC rather than C.
2. Run pp ← GSetup(1λ, top(UC)).
3. For i ∈ [Nrand], generate Ki ← PRF.Setup(1λ)
4. For G ∈ Gates generate K′

G ← PRF′.Setup(1λ).
5. For G ∈ Gates, run

BCPFE.ctG ← BCPFE.Enc(BCPFE.mpk,GarbleCirc[pp,G, S(G), {Ki}i∈S(G),K
′
G], 1

Q)

where GarbleCirc[pp,G, S(G), {Ki}i∈S(G),K
′
G] is the circuit as defined in

Fig. 3.
6. Run BCPFE′.ct ← BCPFE′.Enc(BCPFE′.mpk,GarbleInp[pp, {Ki}i∈Sst ])

where GarbleInp[pp, {Ki}i∈Sst ] is the circuit as defined in Fig. 4.
7. Output ct:=({BCPFE.ctG}G∈Gates,BCPFE

′.ct).
KeyGen(msk, x): On input the master secret key msk = (BCPFE.msk,BCPFE′.msk)

and an input x ∈ {0, 1}inp, do the following:
1. Generate r ← {0, 1}λ.
2. Run BCPFE.sk ← BCPFE.KeyGen(BCPFE.msk, (x, r)).
3. Run BCPFE′.sk ← BCPFE′.KeyGen(BCPFE′.msk, (x, r)).
4. Output sk:=(r,BCPFE.sk,BCPFE′.sk).

Dec(ct, sk, 1Q): On input a ciphertext ct = ({BCPFE.ctG}G∈Gates,BCPFE
′.ct) and a

secret key sk = (r,BCPFE.sk,BCPFE′.sk), do the following:
1. For G ∈ Gates, run ˜G ← BCPFE.Dec(BCPFE.ctG,BCPFE.sk, 1Q)
2. Run x̃ ← BCPFE′.Dec(BCPFE′.ct,BCPFE′.sk, 1Q).
3. Set ˜UC := (pp, {˜G}G∈Gates).
4. Compute and output GEval(˜UC , x̃).

Correctness. Let ct = ({BCPFE.ctG}G∈Gates,BCPFE
′.ct) be an honestly gener-

ated ciphertext for a circuit C and sk = (r,BCPFE.sk,BCPFE′.sk) be an hon-
estly generated secret key for an input x. By the correctness of BCPFE, for each
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G ∈ Gates, if we generate ˜G ← BCPFE.Dec(BCPFE.ctG,BCPFE.sk, 1Q), then we
have ˜G = GGate(pp,G, {Ri}i∈S(G);R′

G) where Ri ← PRF.Eval(Ki, r) for i ∈ S(G)
and R′

G ← PRF′.Eval(K′
G, r). Similarly, by the correctness of BCPFE′, if we generate

x̃ ← BCPFE′.Dec(BCPFE′.ct,BCPFE′.sk, 1Q), then we have x̃ = GInp(st, x) where
Ri ← PRF.Eval(Ki, r) for i ∈ Sst and st := (pp, {Ri}i∈Sst). Then, by the (perfect)
correctnes of GC, GEval(˜UC , x̃) = UC(x) = C(x) where ˜UC := (pp, {˜G}G∈Gates).
Security. The following theorem asserts the security of CPFE. The proof appears in [3,
Sec 4.2].

Theorem 1. If GC satisfies (M,T )-pebbling-based simulation security for M =
poly(λ) and T = poly(λ), BCPFE is M -CT AD-SIM-secure against dynamic bounded
collusion, BCPFE′ is AD-SIM-secure against dynamic bounded collusion, and PRF
and PRF′ are secure pseudorandom functions, then CPFE is AD-SIM-secure against
dynamic bounded collusion.

FE for Turing Machines. Agrawal et al. [5] (implicitly) showed that one can con-
struct FE for TM with AD-SIM security against dynamic bounded collusion based on
CPFE for unbounded polynomial-size circuits with AD-SIM security against dynamic
bounded collusion additionally assuming sub-exponential LWE. Since (even polyno-
mial) LWE implies LOT and IBE, by combining their result and Theorem 1, we obtain
the following theorem:

Theorem 2. Assuming sub-exponential LWE, we have FE for TM with AD-SIM secu-
rity against dynamic bounded collusion.

This improves one of the main results of [5] that constructed a similar scheme with
NA-SIM security based on the same assumption. Since this is further improved in regard
to assumptions in Sect. 5, we omit the details.

5 TMFEWithout Succinct FE

In this section, we propose an alternative route to construct FE for Turing machine that
does not use succinct FE. We refer to Sect. 1 for the overview.

5.1 FE for Laconic OT Functionality

Here, we define FE for LOT functionality by specifying the relationRLOTFE : XLOTFE×
YLOTFE → {0, 1}∗.
FE for Laconic OT Functionality. To define FE for LOT functionality, we set prm =
⊥, XLOTFE = N × N × {0, 1}∗ × {0, 1}∗, and YLOTFE = {0, 1}∗. An element in
XLOTFE is represented by (N, i, μ0, μ1) with N ∈ N, i ∈ [N ], and μ0, μ1 ∈ {0, 1}∗

with |μ0| = |μ1|. We assume that both i and N are represented in binary form. We then
define

RLOTFE((N, i, μ0, μ1),D) =

{

(N,μD[i]) if |D| = N

(N, 1|μ0|) otherwise
,

where |D| is the length of D as a binary string and D[i] is the i-th bit of D.
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Remark 4 (Succinctness). We note that the encryption algorithm should run in fixed
polynomial time in λ that is independent from N , since N is input to the encryption
algorithm in binary form. This in particular implies that the running time of the encryp-
tion algorithm is independent from the size of the database D supported by the scheme.
This property can be seen as an analogue of the efficiency requirements for the suc-
cinctness of FE [29] or laconic OT [18].

Remark 5. We also note that the above FE has similar functinality to that of LOT [18].
However, the important difference is that we intend to hide the index i while they do
not. This security requirement is captured by the definition of RLOTFE above, where i
is not part of the output.

Ingredients.We now describe the underlying building blocks used for our construction
of FE for LOT functionality. We need the following ingredients.

1. PIR scheme PIR = (PIR.query,PIR.Answer,PIR.Reconstruct) that satisfies the
efficiency requirements in [3, Definition 2.9]. In particular, we require that
PIR.Query and PIR.Reconstruct run in fixed polynomial time for any N ≤
2log

2 λ (even for super-polynomial N ). This implies that the lengths of PIR.query,
PIR.answer, and PIR.st are bounded by a fixed polynomial in the security parameter
that is independent of N . We use the uniform upper bound �PIR = poly(λ) for them
and assume that they are represented by binary strings of length �PIR. Additionally,
we require that the function PIR.Answer has shallow circuit implementations. As we
show in [3, Appendix C], we have the following instantiations:
(a) PIR constructions from (the polynomial hardness of) LWE [17,27] has imple-

mentation of the answer function in NC.
(b) For PIR constructions from DDH/QR [22], we have implementations of the

answer function in NC1. For DDH based construction, we have to use the mul-
tiplicative sub-group of Zq for prime q.

2. 1-Sel-IND
secure ABE scheme ABE = (ABE.Setup,ABE.KeyGen,ABE.Enc,ABE.Dec) for
circuits that can evaluate the answer function of PIR in the above. We consider two
types of instantiations:
(a) We can use general ABE for circuit [14,31]. If the answer function of PIR

is implemented in NC, we can base the security of the scheme on poly-
nomial hardness of LWE with quasi-polynomial approximation factors (i.e.,
O(λpoly(log λ))).

(b) We can use ABE for NC1 circuits. In more details, we need the scheme to sup-
port circuit with fixed input length and any depth d, where we allow the key
generation algorithm and the decryption algorithms to run in time poly(λ, 2d).
This effectively limits the class of the circuits to be NC1. We can instantiate
such an ABE from (the polynomial hardness of) LWE with super-polynomial
approximation factor [32] (i.e., O(λω(1))) or various assumptions on pairing
groups including DBDH or CBDH (the computational bilinear Diffie-Hellman
assumption) [35].

3. Selectively secure garbled circuit GC = (GC.Garble,GC.Sim). We can instantiate it
from any one-way function [39].
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Fig. 5. Circuit C[N,PIR.st, μ0, μ1]

4. IBE scheme IBE = (IBE.Setup, IBE.KeyGen, IBE.Enc, IBE.Dec) with AD-IND
security. Since IBE with AD-IND security is implied by IBE with Sel-IND [19] and
the latter is trivially implied by the ABE for NC1 circuit, this does not add a new
assumption.

We assume that all the ingredients above have perfect correctness for simplicity. We
consider correctness error only for PIR, because DDH based instantiation does not have
perfect correctness.

Construction. Here, we describe our scheme LOTFE = (Setup,KeyGen,Enc,Dec).
The construction is similar to that of succinct FE by [29] where FHE is replaced by
PIR. In the construction, we assume that N, |D| ≤ 2log

2 λ. This is sufficient for dealing
with unbounded size D, because 2log

2 λ = λlog λ is super-polynomial.

Setup(1λ): On input the security parameter λ, do the following:
1. Run (IBE.mpk, IBE.msk) ← IBE.Setup(1λ).
2. Run (ABE.mpk,ABE.msk) ← ABE.Setup(1λ, prm), where prm:=1�PIR+2λ.

This means that the ABE supports circuit with input length �PIR + 2λ.
3. Output mpk:=(ABE.mpk, IBE.mpk) and msk:=(ABE.msk, IBE.msk).

Enc(mpk, (N, i, μ0, μ1)): On input the master public keympk = (ABE.mpk, IBE.mpk)
and the message (N, i, μ0, μ1), do the following:
1. Run (PIR.query,PIR.st) ← PIR.Query(1λ, i, N).
2. Pick labk,b ← {0, 1}λ for k ∈ [�PIR], b ∈ {0, 1}.
3. For k ∈ [�PIR], b ∈ {0, 1}, compute

ABE.ctk,b ← ABE.Enc(ABE.mpk, (PIR.query, k, b), labk,b).

4. Construct circuit C[N,PIR.st, μ0, μ1] as Fig. 5.
5. Run ˜C ← GC.Garble

(

1λ, C[N,PIR.st, μ0, μ1]
)

.

6. Set msg:=
(

˜C,PIR.query, {ABE.ctk,b}k∈[�PIR],b∈{0,1}
)

.

7. Run IBE.ct ← IBE.Enc(IBE.mpk, N,msg).
8. Output ct:=(N, 1|μ0|, IBE.ct).

KeyGen(msk,D): On input the master secret keymsk = (ABE.msk, IBE.msk), an input
D ∈ {0, 1}∗ with |D| ≤ 2log

2 λ, do the following:
1. Construct the circuit F [D] as Fig. 6.
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Fig. 6. Circuit F [D]

2. Run
ABE.sk ← ABE.KeyGen(ABE.msk, F [D]).

3. Run IBE.sk ← IBE.KeyGen(IBE.msk, |D|).
4. Output sk:= (D,ABE.sk, IBE.sk).

Dec(ct, sk): On input a ciphertext ct = (N, 1|μ0|, IBE.ct), a secret key sk =
(D,ABE.sk, IBE.sk), do the following:
1. If |D| �= N , output (N, 1|μ0|).
2. Run msg ← IBE.Dec(IBE.sk, IBE.ct).
3. Parse msg → ( ˜C,PIR.query, {ABE.ctk,b}k∈[n],b∈{0,1}).
4. Run PIR.answer ← PIR.Answer(PIR.query,D, 1N ).
5. Run labk ← ABE.Dec(ABE.sk,ABE.ctk,PIR.answerk) for k ∈ [�PIR].
6. Compute μ:=GC.Eval( ˜C, {labk}k).
7. Output (N,μ).

Efficiency.We discuss the efficiency of the scheme. It is not hard to see that Setup and
Enc run in polynomial time in its input length. We note that Enc runs in polynomial
time in λ and |μ| even for super-polynomial N as large as 2log

2 λ by the efficiency
property of PIR.Query and PIR.Reconstruct. For evaluating the efficiency of KeyGen,
we consider two settings based on how we instantiate ABE and PIR. The first case is
the combination of ABE for circuits and any PIR, whereas the second case is ABE for
NC1 circuits and PIR with answer function in NC1. We focus on the latter case since
the former case is much simpler. Evaluating the efficiency of KeyGen in this case is a
bit subtle, because ABE.KeyGen used inside the algorithm runs in exponential time in
the depth of the input circuit. In order to bound the running time of the algorithm, we
evaluate the depth of F [D] by going over all the computation steps inside the circuit.
We observe that only the second and the third steps out of the five steps are non-trivial.
The second step can be implemented by a circuit of depth O(log �PIR) = O(log λ) by
checking k

?= i for all i ∈ [�PIR] in parallel and taking OR of all the outcomes. The third
step can be implemented by a circuit of depth O(log |D|) by our assumption on PIR.
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Overall, the depth of the circuit F [D] can be upper bounded by O(log λ+ log |D|) and
thus the key generation algorithm runs in time

2O(log λ+log |D|) = poly(λ, |D|)

as desired. We finally observe that the decryption algorithm runs in time polynomial
in the length of ct and sk, which are bounded by poly(λ, |D|) by the efficiency of the
encryption and key generation algorithms. Therefore, the decryption algorithm runs in
time poly(λ, |D|) as well.
Correctness. We focus on the case of |D| = N , since otherwise it is triv-
ial. By the correctness of IBE, msg is correctly recovered in the first step of the
decryption. Furthermore, since F [D](PIR.query, k,PIR.answerk) = PIR.answerk ⊕
PIR.answerk ⊕ 1 = 1, we observe that labk recovered in the 5-th step of the
decryption equals to labk,PIR.answerk by the correctness of ABE. Finally, by the cor-
rectness of GC and PIR, μ recovered in the 6-th step of the decryption equals to
C[N,PIR.st, μ0, μ1](PIR.answer) = μD[i] with overwhelming probability as desired.

Security. The following theorem addresses the security of LOTFE, whose proof is sim-
ilar to that of succinct FE by [29]. However, we need somewhat more careful analy-
sis in order to base the security of the scheme on Sel-IND security of the underlying
ABE rather than on AD-IND security. The reason why Sel-IND security suffices for
our case is that the reduction algorithm can guess the target attribute the adversary
chooses only with polynomial security loss. In more detail, we change ABE ciphertexts
encrypting labk,1−PIR.answerk for attribute (PIR.query, k, 1 − PIR.answerk) to be that
encrypting labk,PIR.answerk in the security proof. A naive way of guessing the attribute
(PIR.query, k, 1−PIR.answerk) ends up with exponential security loss, since there are
exponentially many possible PIR.query. However, the reduction algorithm only has to
guess (N, i) that is encoded inside PIR.query, because the randomness used for com-
puting the query is not controlled by the adversary, but by the reduction algorithm. Since
there are only polynomial number of possible (N, i, k, 1 − PIR.answerk), the guessing
can be done only with polynomial security loss.

Theorem 3. If IBE is AD-IND secure, ABE is Sel-IND secure, GC is selectively secure,
and PIR is private, then the above FE is 1-NA-SIM secure.

The proof of Theorem 3 appears in [3, Sec 5.1].

5.2 CPFE for Read only RAM

Here, we define CPFE for read only RAM by specifying the relation RCPRAMFE :
XCPRAMFE × YCPRAMFE → {0, 1}∗.

CPFE for Read only RAM Computation. To define CPFE for read only RAM, we
set YCPRAMFE = {0, 1}∗ and XCPRAMFE to be a set of read only RAM programs of the
form P = {P τ}τ∈[t]. We define RCPRAMFE(P,D) ∈ {0, 1}∗ to be the output obtained
by executing P with the RAM access to the data D. In our case, we consider RAM pro-
grams with some specific structure. To define this, we introduce the parameter prm =
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1�st and the set of RAM programs PT,size. We then constrain the domain as Xprm =
PT,size and Yprm = {0, 1}∗. A RAM program in PT,size is of the form P = {P τ}τ

where the step circuit P τ is of the form P τ : {0, 1}�st → {0, 1}�st−1 × {0, 1}log2 λ. For
D ∈ {0, 1}N and P = {P τ}τ∈[t], we define (stτ , Lτ ) ∈ {0, 1}�st−1 × {0, 1}log2 λ for
τ ∈ [2, t] by induction as

(stτ , Lτ ):=P τ−1(stτ−1,D[Lτ−1]) where (st1,D[L1]):=(0�st−1, 0). (5.1)

Here, stτ and Lτ ∈ {0, 1}log2 λ output by P τ−1 represent the state information and
the position Lτ to be read from the data D respectively. The state stτ and the read bit
D[Lτ ], which is the Lτ -th bit of D, is then input to the next step circuit P τ . In the above
computation, the initial state st1 and the initial read bit D[L1] are defined to be zero
strings. Note that the position to be read is assumed to be represented by a binary string
of {0, 1}log2 λ, which is interpreted as an integer in [0, 2log

2 λ]. Since 2log
2 λ = λlog λ is

super-polynomial, this is sufficient for pointing a position in any unbounded size data.
The output obtained by running P with the RAM access to the data D is denoted by
PD and is defined to be PD := stt+1.

Remark 6 (Succinctness). Similarly to the case of LOTFE, the running time of the
encryption algorithm is independent from the size of the database D supported by the
scheme. This property can be seen as an analogue of the efficiency requirements for the
succinctness of FE [29] or laconic OT [18].

Remark 7 (Efficiency). We note that we do not require the decryption time to be inde-
pendent of the size of the database D, while the encryption time is required to be so.
This is in contrast to ABE/FE for RAM efficiency in the literature [8,26], where the
decryption time is also required to be sublinear in the size of the database. However,
our weaker definition suffices for our purpose of constructing FE for TM.

Ingredients.We now describe the underlying building blocks used for our construction
of CPFE for read only RAM.

1. FE with laconic OT functionality LOTFE = (LOTFE.Setup, LOTFE.KeyGen,
LOTFE.Enc, LOTFE.Dec) with 1-NA-SIM security. This can be instantiated by
the scheme in Sect. 5.1. For simplicity, we assume that the encryption algorithm
of LOTFE only requires randomness of λ bits. This can be achieved by using the
randomness as a PRF key to derive longer pseudorandom string for example.

2. IBE scheme IBE = (IBE.Setup, IBE.KeyGen, IBE.Enc, IBE.Dec) with AD-IND
security. Since the construction of LOTFE in Sect. 5.1 already uses IBE, this does
not add new assumption.

3. Selectively secure garbled circuit GC = (GC.Garble,GC.Sim). We can instantiate it
from any one-way function [39].

Construction. Here, we describe our scheme CPRAMFE = (Setup,KeyGen,Enc,
Dec). The construction is inspired by the garbled RAM construction by [25], which
in turn is based on [37], where a sequence of garbled circuits read the memory stored
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Fig. 7. Circuit SCτ = SC[τ, P τ , LOTFE.mpk,Rτ , {labτ+1
k,b }k,b]

outside of the circuits via RAM access. Whereas they use the combination of IBE and
ORAM to enable the oblivious access to the memory, we use LOTFE for this purpose
instead. This change is crucial for us because ORAM is a secret key primitive and is
not compatible with our setting of public key FE.

Setup(1λ, prm): On input the security parameter λ, the parameter prm = 1�st , do the
following:
1. Run (IBE.mpk, IBE.msk) ← IBE.Setup(1λ).
2. Run (LOTFE.mpk, LOTFE.msk) ← LOTFE.Setup(1λ).
3. Output mpk:=(LOTFE.mpk, IBE.mpk) and msk:=(LOTFE.msk, IBE.msk).

Enc(mpk, P ): On input the master public key mpk = (LOTFE.mpk, IBE.mpk), a read
only RAM program P = {Pτ}τ∈[t] ∈ P�st , do the following:
1. Set n:= log2 λ + �st.
2. Pick labτ

k,b ← {0, 1}λ for τ ∈ [t], k ∈ [n], and b ∈ {0, 1}.
3. Pick Rτ ← {0, 1}λ for τ ∈ [t].
4. Construct circuit SCτ := SC[τ, P τ , LOTFE.mpk,Rτ , {labτ+1

k,b }k,b] for τ ∈ [t]
as Fig. 7, where we define labt+1

k,b = ⊥ for k ∈ [n], b ∈ {0, 1}.
5. For all τ ∈ [t], run

˜SC
τ

← GC.Garble
(

1λ,SCτ , {labτ
k,b}k,b

)

.

6. For all k ∈ [n], b ∈ {0, 1}, run

IBE.ctk,b ← IBE.Enc(IBE.mpk, (k, b), lab1k,b).

7. Output ct:=
(

{˜SC
τ
}τ∈[t], {IBE.ctk,b}k∈[n],b∈{0,1}

)

.

KeyGen(msk,D): On input the master secret key msk = LOTFE.msk, an input D ∈
{0, 1}N , where N ≤ 2log

2 λ, do the following:
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1. Run
LOTFE.sk ← LOTFE.KeyGen(LOTFE.msk,D).

2. Set X = N‖0n−log2 λ, where N is represented as a string in {0, 1}log2 λ.
3. For all k ∈ [n], run

IBE.skk,Xk
← IBE.KeyGen(IBE.msk, (k,Xk)).

4. Output sk:=
(

D, LOTFE.sk, {IBE.skk,Xk
}k∈[n]

)

.

Dec(ct, sk): On input a ciphertext ct = ({˜SC
τ
}τ , {IBE.ctk,b}k,b) and a secret key sk =

(D, LOTFE.sk, {IBE.skk,Xk
}k), do the following:

1. Run Set X:=N‖0n−log2 λ.
2. Run lab1k:=IBE.Dec(IBE.skk,Xk

, IBE.ctk,Xk
) for k ∈ [n].

3. Set label := {lab1k}k∈[n].
4. For τ = 1, . . . , t

(a) Compute gout := GC.Eval(˜SC
τ
, label).

(b) If τ = t, set y := gout and break out of the loop.
(c) Parse gout →

(

{labk}k∈[n−1], LOTFE.ct
)

.
(d) Compute (N, labn):=LOTFE.Dec(LOTFE.sk, LOTFE.ct).
(e) Set label := {labk}k∈[n].

5. Output y.

Correctness and Security. The correctness of CPRAMFE is shown in [3, Sec 5.2]. We
prove that CPRAMFE is 1-NA-SIM secure in [3, Sec 5.2].

Efficiency. By the efficiency of LOTFE and IBE, it is easy to see that Setup andKeyGen

run in time poly(λ) and poly(λ, |D|), respectively. We can also see that |˜SC
τ
| =

poly(λ, |P τ |) and thus the running time of Enc can be bounded by poly(λ, |P |).
Finally, Dec runs in polynomial time in its input length by the efficiency of the under-
lying primitives and thus run in time poly(λ, |P |, |D|).

5.3 FE for Turing Machines with Fixed Input Length

Here, we show that CPRAMFE we constructed in Sect. 5.2 can easily be converted into
FE for TM. The resulting construction can handle TM of unbounded size, but it is only
1-NA-SIM secure and can only handle the case where the length of (x, 1t) is bounded.
These limitations will be removed in the next subsection.

RAM Programs Reading Multi-bit at once. To simplify the description, we assume
that each step of RAM computation reads a block consisting of B(λ) = poly(λ) bits
at once instead of reading a single bit. Correspondingly, we assume that the database
contains B bits of data at a single location. This is without loss of generality because
a RAM program that reads single bit at once can be converted into that reads B bits
at once by making the length of step circuits B times longer and increasing the size of
each step circuit so that it can keep B bits inside it.

Representing Turing Machine Computation as RAMComputation. In order to rep-
resent the computation executed by a Turing machine as a computation by RAM pro-
gram, we introduce the following mappings:
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Fig. 8. Circuit P τ
(x,1t)

f : This mapping takes as input (x ∈ {0, 1}n, 1t) and then convert it into a read only
RAM program P(x,1t) = {P τ

(x,1t)}τ∈[t] defined as in Fig. 8. Here, we set B(λ) =
3λ. In the circuit, q, q′

0, and q′
1 are represented by strings in {0, 1}λ. In particular,

this means that the circuit can handle any size of Turing machines because we can
assume q ≤ Q < 2λ without loss of generality.

g : This mapping takes as input description of a Turing machine M = (Q, δ, F ) and
outputs a database DM that contains Q blocks each consisting of B bits. At its q-th
block, DM contains

DM [q] := (δ(q, 0), δ(q, 1), pre0, pre1),

where prec ∈ {0, 1} for c ∈ {0, 1} indicates whether q′
c defined by δ(q, c) =

(q′
c, b

′
c,Δic) is in the set of accepting states F or not. Since δ(q, b) ∈ [Q]×{0, 1}×

{0,±1} and Q < 2λ, each block can be represented by a binary string of length at
most B(λ) = 3λ.

We observe that the output of PDM

(x,1t) is the same as that obtained by running the
Turing machine M on input x for t steps. This is because each step circuit P τ

(x,1t) of
P(x,1t) is designed to emulate τ -th step of the computation done by the machine. This
means that by applying the above mappings, we can convert CPRAMFE into an FE
scheme for Turing machine with fixed input length. It is easy to see that the security
and correctness of the scheme are preserved. In particular, the resulting scheme inherits
the 1-NA-SIM security. We also observe that the size of the program P = {P τ

(x,1t)}τ is
bounded by a fixed polynomial in |(x, 1t)|.

5.4 Getting the Full-Fledged Construction

Here, we remove the restrictions from the consturction in Sect. 5.3 and obtain full-
fledged FE scheme for TM.
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Removing the Non-adaptive and Single Key Restriction. In the first step, we apply
the conversion in [3, Sect. 6.4], which is essentially the same as the conversion given by
Agrawal et. al [5, Sect. 4], to the scheme to upgrade the security. The resulting scheme
is AD-SIM secure against bounded dynamic collusion. We refer to [3, Sect. 6.4] for the
details.

Removing the Fixed Input Length Restriction. Our goal in the second step is con-
structing an FE scheme for R≤ : A × B → M ∪ {⊥}, where A = {0, 1}∗, B is the set
of all Turing machines, and

R≤((x, 1t),M) =

{

1 (if M accepts x in t steps) ∧ (|(x, 1t)| ≤ |M |)
0 otherwise.

This step is done in essentially the samemanner as [5, Sect. 6.2.2] using [3, Theorem
2.1]. We observe that the FE scheme that we obtained above can be seen as an FE
scheme for prm = 1i, Ri : Xi × Yi → {0, 1} where Xi = {0, 1}i and Yi is the set of
all Turing machines, and

Ri((x, 1t),M) =

{

1 (if M accepts x in t steps)

0 otherwise.

That is, |(x, 1t)| is a-priori bounded by i. We set S, T , f , and g as

S(i) = i, T (i) = {1, . . . , i}, f(x, 1t) = (x, 1t), g(M) = {M}i∈[|M |].

Here, we crucially rely on |(x, 1t)| ≤ |M |.
Recall that

Rbndl(x, y) = {Ri(f(x)i, g(y)i)}i∈S(|x|)∩T (|y|), (5.2)

where f(x)i ∈ Xi, and g(y)i ∈ Yi are the i-th entries of f(x) and g(x), respectively.
It is easy to see that Rbndl is equivalent to R≤ except for the case |(x, 1t)| > |M |.

In this case, the decryption outputs an empty set ∅. However, the output should be 0 in
FE for R>. This issue can be easily fixed as observed by Agrawal et al. [5, Sect. 6.2.2].
Namely, we modify the decryption algorithm so that it outputs 0 if the decryption result
is ∅. We note that the resulting scheme inherits AD-SIM security, which is guaranteed
by [3, Theorem 2.1].

Removing the Shorter Input Length Restriction. In the above construction, there
is a restriction that the decryption is possible only when |(x, 1t)| ≤ |M |. To remove
the restriction, we first construct an AD-SIM secure FE scheme for TM such that the
decryption is possible only when |(x, 1t)| > |M |. Such a scheme can be obtained by
applying the conversion by Agrawal et al. [5, Sects. 6.1 and 6.2.1] to AD-SIM secure
CPFE with dynamic bounded collusion for Cinp,out obtained in Sect. 4. We then combine
these two schemes to obtain the full-fledged scheme without the restriction by applying
the conversion by Agrawal et al. [5, Sect. 6.2.3]. Then, we obtain AD-SIM secure FE
for TM. Based on the discussion above, we obtain the following theorem:
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Theorem 4. Assuming IBE with AD-IND security, ABE for circuits with circuit class
C with Sel-IND security, updatable LOT (as per [3, Definition A.1]), and PIR (as per
[3, Definition 2.9] whose answer function is in C, we have FE for TM with AD-SIM
security against dynamic bounded collusion.
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Abstract. Attribute-based encryption (ABE) extends public-key
encryption to enable fine-grained control to encrypted data. However,
this comes at the cost of needing a central trusted authority to issue
decryption keys. A multi-authority ABE (MA-ABE) scheme decentral-
izes ABE and allows anyone to serve as an authority. Existing construc-
tions of MA-ABE only achieve security in the random oracle model.

In this work, we develop new techniques for constructing MA-ABE for
the class of subset policies (which captures policies such as conjunctions
and DNF formulas) whose security can be based in the plain model
without random oracles. We achieve this by relying on the recently-
proposed “evasive” learning with errors (LWE) assumption by Wee
(EUROCRYPT 2022) and Tsabury (CRYPTO 2022).

Along the way, we also provide a modular view of the MA-ABE scheme
for DNF formulas by Datta et al. (EUROCRYPT 2021) in the random ora-
cle model. We formalize this via a general version of a related-trapdoor
LWE assumption by Brakerski and Vaikuntanathan (ITCS 2022), which
can in turn be reduced to the plain LWE assumption. As a corollary, we
also obtain an MA-ABE scheme for subset policies from plain LWE with
a polynomial modulus-to-noise ratio in the random oracle model. This
improves upon the Datta et al. construction which relied on LWE with a
sub-exponential modulus-to-noise ratio. Moreover, we are optimistic that
the generalized related-trapdoor LWE assumption will also be useful for
analyzing the security of other lattice-based constructions.

1 Introduction

Attribute-based encryption (ABE) [SW05,GPSW06] extends classic public-
key encryption to support fine-grained access control on encrypted data. For
instance, in a ciphertext-policy ABE (CP-ABE) scheme, each ciphertext ct is
associated with a policy f together with a message μ while decryption keys sk
are associated with an attribute x. Decryption successfully recovers the message
μ when x satisfies f . Security requires that an adversary who only possesses
secret keys for a collection of attributes x1, . . . , xn that do not satisfy f does not
learn anything about the message. In this work, we are interested in systems that
are secure against unbounded collusions: that is, security holds against an adver-
sary that has any arbitrary (polynomial) number of non-satisfying attributes.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
E. Kiltz and V. Vaikuntanathan (Eds.): TCC 2022, LNCS 13747, pp. 651–679, 2022.
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Multi-authority ABE. In a traditional ABE scheme, there exists a central trusted
authority that generates and issues decryption keys. The central authority has
the ability to decrypt all ciphertexts encrypted using the system. To mitigate the
reliance on a single central trusted authority, a line of works [Cha07,LCLS08,
MKE08,CC09] have introduced and studied the notion of a “multi-authority”
ABE (MA-ABE) scheme where anyone can become an authority. In an MA-ABE
scheme, each authority controls different attributes and can independently issue
secret keys corresponding to the set of attributes under their control. Policies
in an MA-ABE system are formulated with respect to the attributes of one
or more authorities. To decrypt, a user combines the secret keys for attributes
from a set of authorities that satisfy the policy. Security is still required to hold
against users who possess an arbitrary number of unauthorized secret keys, with
an additional challenge that some subset of the authorities (associated with the
ciphertext policy) could now be corrupted and colluding with the adversary.

Earlier constructions of MA-ABE had various limitations in terms of func-
tionality or security (or both). The first construction that achieved the first fully
decentralized MA-ABE scheme was by Lewko and Waters [LW11]. Unlike previ-
ous schemes, the Lewko-Waters scheme allows any user to become an authority,
and moreover, the only coordination needed among users and authorities is a
one-time sampling of a set of global parameters. The Lewko-Waters construc-
tion supports any access policy computable by an NC1 circuit (i.e., a Boolean
formula) and security relies on assumptions on groups with bilinear maps and
in the random oracle model. Subsequently, a number of works have realized new
constructions for NC1 policies based on bilinear maps [RW15,DKW21b], and
recently, Datta et al. [DKW21a] showed how to construct an MA-ABE scheme
for access policies computable by DNF formulas (of a priori bounded size) from
the learning with errors (LWE) assumption [DKW21a]. All of these constructions
rely on the random oracle model. This motivates the following question:

Can we construct a multi-authority ABE scheme without random oracles?

1.1 Our Contributions

In this work, we show how to leverage the recently-introduced evasive LWE
assumption [Wee22,Tsa22] to obtain an MA-ABE scheme for subset policies
without random oracles. Subset policies capture DNF policies as in [DKW21a].1

Moreover, our MA-ABE construction supports subset policies and DNFs of arbi-
trary polynomial size which improves upon the previous lattice-based construc-
tion in the random oracle model [DKW21a]. We summarize this result in the
following informal theorem and provide the full details in Sect. 6:

1 As noted in [DKW21a, Remark 6.1], the MA-ABE scheme therein requires a mono-
tone secret-sharing scheme where reconstruction has small coefficients and the joint
distribution of the unauthorized shares are uniformly random; such a scheme is only
known for subset policies and DNFs.
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Theorem 1.1. (Informal). Assuming polynomial hardness of LWE and of
evasive LWE (both with a sub-exponential modulus-to-noise ratio), there exists a
statically-secure multi-authority ABE for subset policies (of arbitrary polynomial
size).

Understanding the Evasive LWE Assumption. While the evasive LWE assump-
tion is much less well-understood compared to the plain LWE assumption, our
construction provides a new avenue towards realizing MA-ABE without random
oracles. In particular, putting assumptions aside, our construction constitutes
the first heuristic MA-ABE without random oracles. In all previous construc-
tions of multi-authority ABE, the random oracle was used to hash a global user
identifier (denoted gid) to obtain common randomness that is used to bind dif-
ferent keys to a single user. For the particular case of [DKW21a], the random
oracle was used to hash an identifier to obtain a discrete Gaussian sample. Our
candidate replaces the random oracle with a subset product of public low-norm
matrices. To prove security of the resulting scheme, we rely on the fact that
under LWE, multiplying a secret key by a subset product of (public) low-norm
matrices yields a pseudorandom function [BLMR13] in addition to the evasive
LWE assumption.

A Modular Approach in the Random Oracle Model. The starting point of our
construction is the MA-ABE construction for (bounded-size) DNF policies by
Datta et al. [DKW21a]. Along the way to our construction without random ora-
cles (Theorem 1.1), we provide a more modular description of the Datta et al.
scheme. Specifically, we extract a new trapdoor sampling lemma that is implic-
itly used in their construction. This lemma can be viewed as a generalization
of the related trapdoor LWE lemma from the recent work of Brakerski and
Vaikuntanathan [BV22], and may prove useful for constructing other primitives
from the standard LWE assumption. We provide an overview of our generalized
related-trapdoor lemma in Sect. 2 and provide the full details in Sect. 4.

Using our generalized related-trapdoor LWE lemma, we in turn provide a
more modular description of the MA-ABE scheme of Datta et al. [DKW21a],
and moreover, base hardness on the plain LWE assumption with a polynomial
modulus-to-noise ratio in the random oracle model. Previously, Datta et al.
relied on noise smudging for trapdoor sampling in their security analysis2, and
consequently, could only reduce security to LWE with a sub-exponential modulus-
to-noise ratio. We summarize these results in the following (informal) theorem
and provide the full details in Sect. 5:

Theorem 1.2. (Informal). Let λ be a security parameter. Assuming poly-
nomial hardness of LWE with a polynomial modulus-to-noise ratio, there exists
a statically-secure multi-authority ABE scheme for subset policies of a priori
bounded length L = L(λ) in the random oracle model. The size of the ciphertext
is quasi-linear in the bound L.
2 See the descriptions of Hybrid 5 and the analysis of Lemmas 5.5 and 6.5 in

[DKW21a], where noise smuging is used for simulating secret keys.
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Like previous lattice-based MA-ABE constructions in the random oracle
model [DKW21a], the global public parameters in Theorem 1.2 imposes an a
priori bound L on the size of the policies that can be associated with cipher-
texts, and moreover, the ciphertext size increases as a function of L. We note
that our construction based on the stronger evasive LWE assumption (Theorem
1.1) supports policies of arbitrary polynomial size in the plain model.

1.2 Additional Related Work

Kim [Kim19] and Wang et al. [WFL19] also studied constructions of multi-
authority ABE (for bounded-depth circuits and Boolean formulas, respectively)
from lattice-based assumptions. However, both schemes operate in a model where
there is a single central authority that generates the public keys and secret keys
for each of the authorities in the system. Relying on a central trusted party runs
against the original goal of decentralizing trust. Moreover, these constructions
only ensure security against bounded collusions. In this work, we focus exclu-
sively on the fully decentralized setting introduced by Lewko and Waters [LW11]
that neither requires a centralized setup nor assumes an a priori bound on the
number of authorities or corruptions.

Recently, Tsabury [Tsa22] and Vaikuntanathan et al. [VWW22] showed how
to build witness encryption from a stronger variant of the evasive LWE assump-
tion with private-coin auxiliary input and sub-exponential hardness. In con-
trast, our multi-authority ABE construction in the standard model relies on
evasive LWE with public-coin auxiliary input and polynomial hardness with a
sub-exponential modulus-to-noise ratio; this was also the case for the optimal
broadcast encryption scheme by Wee [Wee22]. While vanilla witness encryption
implies single-authority ABE [GGSW13], we currently do not know how to con-
struct multi-authority ABE from vanilla witness encryption.

2 Technical Overview

In this section, we provide a technical overview of our lattice-based MA-ABE
constructions. Throughout this work, we focus exclusively on subset policies
(which suffices for supporting DNF formulas). In an ABE scheme for subset
policies, ciphertexts are associated with a set A and secret keys are associated
with a set B. Decryption succeeds if A ⊆ B.

Lattice Preliminaries. The learning with errors (LWE) assumption [Reg05] says
that the distribution (A, sTA + eT) is computationally indistinguishable from
(A,uT) where A r← Z

n×m
q , s r← Z

n
q , e ← Dm

Z,χ, and u r← Z
m
q , where n,m, q, χ are

lattice parameters and DZ,χ is the discrete Gaussian distribution with parame-
ter χ. To simplify the presentation in the technical overview, we will use curly
underlines in place of (small) noise terms. Namely, instead of writing sTA + eT,
we simply write sTA

���
.
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For a matrix A ∈ Z
n×m
q and a target vector y ∈ Z

n
q , we write A−1

χ (y) to
denote a random variable x ∈ Z

m
q whose distribution is a discrete Gaussian

distribution Dm
Z,χ conditioned on Ax = y. For ease of notation, we will drop

the subscript χ in this technical overview. A sequence of works [Ajt96,GPV08,
ABB10b,ABB10a,CHKP10,MP12] (see also Sect. 3.2) have shown how to sample
a matrix A ∈ Z

n×m
q together with a trapdoor tdA to enable efficient sampling

from the distribution A−1(y) for any target y ∈ Z
n
q .

In the following description, we write In ∈ Z
n×n
q to denote the n-by-n identity

matrix and G = In ⊗ gT ∈ Z
n×m
q , where gT = [1 | 2 | · · · | 2�log q�], to denote

the standard gadget matrix [MP12].

2.1 Starting Point: Single-Authority CP-ABE for Subset Policies

We start by describing a simple CP-ABE for subset policies that lies at the core
of our MA-ABE scheme. In the following, let [L] be the universe of attributes.
Each ciphertext is associated with a subset A ⊆ [L] and each secret key is
associated with a subset B ⊆ [L]; decryption succeeds as long as A ⊆ B.

– The master public key consists of (A1,B1,p1), . . . , (AL,BL,pL) r← Z
n×m
q ×

Z
n×m(2L−1)
q × Z

n
q .

– The master secret key consist of the trapdoors tdA1 , . . . , tdAL
for A1, . . . ,AL,

respectively.
– An encryption of a message bit μ ∈ {0, 1} with respect to a set X ⊆ [L] is a

tuple

ct =

⎛
⎜⎝{sTAi

����

}
i∈X

, sT
∑
i∈X

Bi

�������

, sT
∑
i∈X

pi

�������

+ μ · �q/2�

⎞
⎟⎠ ,

where s r← Z
n
q .

– A secret key for a set Y ⊆ [L] consists of a tuple

sk =
({

A−1
i (pi + Bir)

}
i∈Y

, r
)

,

where r ← D
m(2L−1)
Z,χ is sampled from a discrete Gaussian distribution.

Decryption uses the fact that

−
⎛
⎝sT

∑
i∈X

Bi

⎞
⎠

���������

· r+
∑
i∈X

sTAi
���

·A−1
i (pi +Bir) ≈ −sT

∑
i∈X

Bir+ sT
∑
i∈X

(pi +Bir) = sT
∑
i∈X

pi,

since r and A−1(·) are small. Looking ahead to our multi-authority construction,
observe that key generation can be carried out in a decentralized manner: given a
“public” Gaussian vector r, computing the secret-key components A−1

i (pi+Bir)
associated with index i only requires knowledge of Bi,pi and the trapdoor for
Ai, which are all specific to attribute i (and could be independently generated
by the ith authority).
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Selective Security. To argue that this CP-ABE scheme is selectively secure3, we
proceed as follows:

1. First, we show how to sample a secret key for a set Y ⊆ [L] given a trap-
door for BY , where BY ∈ Z

n|Y |×m(2L−1)
q is the matrix formed by vertically

concatenating Bi for all i ∈ Y .
2. Next, we show that under the LWE assumption, sT

∑
i∈X Bi

���������

is pseudorandom

even given an oracle for B−1
Y (·) for arbitrary Y ⊆ [L] of the adversary’s choos-

ing, provided that for each Y , it is the case that X �⊆ Y . Here, X ⊆ [L] is
the set associated with the challenge ciphertext. Technically, we additionally
require that sTAi

����
and sT

∑
i∈X pi

���������

are also pseudorandom, but these com-

ponents are easily handled by the standard LWE assumption. For ease of
exposition, we do not focus on these additional components in this overview
and refer instead to Sects. 4 and 5 for the full description.

For the second step, we prove a more general statement which generalizes the
related-trapdoor LWE lemma previously introduced by Brakerski and Vaikun-
tanathan [BV22] in the context of constructing compact CP-ABE for circuits.

Generalized Related-Trapdoor LWE. Our generalized related-trapdoor LWE
assumption asserts that for any non-zero vector u ∈ {0, 1}L, the vector
sT(uT ⊗ In)B
�����������

is pseudorandom given an oracle for the function (M, t) 	→
((M ⊗ In)B)−1(t), as long as the matrix M̄ =

[
M
uT

] ∈ Z
(k+1)×L
q is full rank

(and k < L).4 To show that the standard LWE assumption implies the gener-
alized related-trapdoor LWE assumption, we take an LWE matrix Â and the
vector u ∈ {0, 1}L, and we set the matrix B to be

B =
[
Â | ÂR + U⊥ ⊗ G

]

where R is a (random) low-norm matrix and U⊥ ∈ {0, 1}L×(L−1) is a full-rank
basis for the kernel of uT. By design, (u ⊗ In)B = [(u ⊗ In)Â | (u ⊗ In)ÂR]
which means we do not know a trapdoor for (u ⊗ In)B. On the other hand,

(M ⊗ In)B
[ −R
Im̂(L−1)

]

︸ ︷︷ ︸
R̃

= (M ⊗ In)(U⊥ ⊗ G) = MU⊥ ⊗ G.

When M̄ =
[
M
uT

]
is full rank, then MU⊥ is also full rank. Since R̃ is low-norm,

it is a trapdoor for (M ⊗ In)B (see [MP12] and Corollary 3.12).
3 In the selective security game, the adversary starts by committing to the set X

associated with the challenge ciphertext. The reduction algorithm is then allowed to
program X into the public parameters of the scheme.

4 Some restriction on M is also necessary. For instance, it is easy to distinguish
sT(u ⊗ In)B
���������

if M = uT, or more generally, if uT
0M = u for some u0 ∈ {0, 1}k.
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Returning to the proof of selective security for the above CP-ABE scheme,
observe that showing sT

∑
i∈X Bi

���������

given an oracle for B−1
Y (·) directly maps to an

instance of the related-trapdoor LWE assumption:

– Let B ∈ Z
nL×m(2L−1)
q be the matrix obtained by vertically stacking

B1, . . . ,BL ∈ Z
n×m(2L−1)
q .

– The vector u ∈ {0, 1}L is the indicator vector for the challenge set X. Namely,
ui = 1 if i ∈ X and 0 otherwise. Then, (u ⊗ In)B =

∑
i∈X Bi.

– The oracle B−1
Y (·) can be simulated by querying the related-trapdoor oracle

on matrix MY ∈ Z
|Y |×L
q formed by taking the rows of IL corresponding to

the indices in Y . In this case (M⊗ In)B = BY defined previously. Moreover,
by construction of MY , whenever X �⊆ Y , we have that uT is not in the
row-span of MY .

Finally, we remark here that the original version of the related-trapdoor
LWE assumption formulated by Brakerski and Vaikuntanathan [BV22] con-
sidered the special case where the matrix M is a row vector with a specific
structure.5 Our formulation considers a general matrix M which is useful for
constructing an ABE scheme with a distributed setup. We also note that this
type of trapdoor sampling was also implicit in the CP-ABE construction of
Datta et al. [DKW21a]; however, they critically relied on noise flooding to simu-
late the analog of the ((M⊗ In)B)−1(·) oracle. As a result, the security of their
scheme relied on LWE with a super-polynomial modulus-to-noise ratio in the
random oracle model. In this work, we both provide a modular description of
the core trapdoor sampling lemma (Sect. 4) and then show how to leverage it to
obtain a multi-authority ABE for subset policies using LWE with a polynomial
modulus-to-noise ratio in the random oracle model (Sect. 5). We are optimistic
that our generalized version of the related trapdoor LWE assumption will also
be useful for analyzing the security of other lattice-based constructions.

2.2 MA-ABE for Subset Policies in the Random Oracle Model

First, we observe that our core CP-ABE scheme naturally extends to yield a
MA-ABE scheme for subset policies in the random oracle model. We make the
following modifications to the base scheme:

– The authority associated with attribute i samples Ai,Bi,pi along with a
trapdoor tdAi

for Ai.
– To generate a key for a user with identifier gid, we derive r deterministically

from H(gid) and output A−1(pi + Bir).

Security of the core CP-ABE implies that the ensuing MA-ABE scheme remains
secure as long as no authority is corrupted. On the other hand, it is easy to see
5 Concretely, uT = [1 | xT] and M = [1 | yT] for some x,y ∈ {0, 1}L−1. The adversary

is restricted to queries y �= x, which is implied by our requirement that M̄ has full
rank.
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that the scheme is insecure if we allow authority corruptions, since we can use
an authority’s trapdoor to recover the LWE secret s from sTAi

����
.

Security with Authority Corruptions. To defend against corrupted authorities,
we modify the ciphertext structure. Instead of having a single LWE secret s
that is shared across authorities, we instead sample a fresh si for each attribute
i ∈ X. That is, the ciphertext is now given by:

ct =

⎛
⎜⎝{sT

iAi
����

}
i∈X

,
∑
i∈X

sT

iBi

�������

,
∑
i∈X

sT

ipi

�������

+ μ · �q/2�

⎞
⎟⎠

Key generation proceeds as before. Decryption still follows from a similar relation
as before:

−
(∑

i∈X

sT

iBi

)

����������

· r +
∑
i∈X

sT

iAi
����

· A−1
i (pi + Bir) =

∑
i∈X

sT

ipi.

Static Security with Authority Corruptions. We now argue that the resulting
MA-ABE scheme is statically secure.6 Let C denote the set of authorities that
are corrupted. The adversary gets to choose the public keys and secret keys for
authorities in C. In the multi-authority setting, a secret-key query consists of a
pair (Y, gid) where Y is a set of honest authorities (i.e., Y ∩ C = ∅) and gid is
the user identifier. Let X be the set of authorities associated with the challenge
ciphertext. The admissibility criterion is that X �⊆ Y ∪ C.

The proof of security proceeds similarly to that of our core CP-ABE, except
we replace the challenge set X with the set X \C. Since Y ∩C = ∅, the MA-ABE
admissibility criterion X �⊆ Y ∪C is equivalent to X\C �⊆ Y , which coincides with
the criterion from our CP-ABE analysis. In particular, the security reduction can
basically ignore the ciphertext components associated with corrupted authorities
(since the ciphertext component of each authority is associated with independent
LWE secrets si) and just focus on the attributes controlled by the honest author-
ities. The general argument again relies on our (generalized) related-trapdoor
LWE assumption:

1. First, we show how to sample a secret key for Y given a trapdoor for BY

(where BY ∈ Z
n|Y |×m(2L−1)
q is again the matrix formed by vertically stacking

the matrices Bi associated with the authorities i ∈ Y .
2. As in the analysis of the CP-ABE scheme, we use the oracle in the related-

trapdoor LWE assumption to compute B−1
Y (·) in the proof. Arguing the cor-

rectness of this step additionally requires the ability to “program” the random
6 In the static security model [RW15], we require the adversary to commit to the set of

corrupted authorities, the secret-key queries, and the challenge ciphertext query at
the beginning of the security game. Previous lattice-based MA-ABE constructions
were also analyzed in the static security model [DKW21a].
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oracle. This is because in the real scheme, the secret keys are sampled by com-
puting r ← H(gid) and then sampling ui ← Ai(pi + Bir) for each i ∈ X.
The reduction algorithm will instead sample ui ← Dm

Z,χ itself and then obtain

r ∈ Z
m(2L−1)
q using its oracle B−1

Y (·). In the random oracle model, the reduc-
tion then programs H(gid) to r. We refer to Sect. 5 for more details.

3. Finally, to simulate the challenge ciphertext, the reduction algorithm sam-
ples a random si

r← Z
n
q for each corrupted authority i ∈ C. For the honest

authorities i ∈ X \ C, the reduction sets the secret key to be ŝi and programs
si := s + ŝi, where s is the secret in the related-trapdoor

We provide the formal analysis in Sect. 5. This construction yields a MA-ABE
scheme for subset policies from the related-trapdoor LWE assumption in the
random oracle model. The related-trapdoor LWE assumption we rely on here
reduces to the standard LWE assumption with a polynomial modulus-to-noise
ratio. This yields Theorem 1.2.

2.3 Removing Random Oracles via Evasive LWE

To obtain an MA-ABE construction without random oracles, we describe a way
to concretely implement the hash function H in our basic construction above. Our
specific instantiation relies on computing a subset product of low-norm matrices.
Specifically, let D0,D1 ∈ Z

m×m
q be low-norm matrices. These are fixed public

matrices that will be included as part of the global parameters. For an input
x ∈ {0, 1}�, we define H(x) :=

(∏
i∈[�] Dxi

)
η ∈ Z

m
q , where η ∈ Z

m
q is the

first canonical basis vector. Previously, Boneh et al. [BLMR13] showed that for
any sequence of x1, . . . , xk ∈ {0, 1}� the values

{
sTH(xi)
������

}
i∈[k]

are pseudoran-

dom. While we do not know how to prove security of the MA-ABE construction
instantiated with this subset-product hash function using the plain learning with
errors assumption, we show how to do so using the recently-introduced evasive
LWE assumption by Wee [Wee22] and Tsabury [Tsa22].

Evasive LWE. We start by describing a variant of the evasive LWE assumption
introduced by Wee [Wee22] and refer to Sect. 3.2 for the formal description. Let
P1, . . . ,P� be drawn from some efficiently-sampleable distribution of matrices.
Roughly speaking, the evasive LWE assumption says that if the distribution
{Ai , sTPi

���
}i∈[�] is pseudorandom, then the distributions

{Ai , sTAi
����

, A−1
i (Pi)}i∈[�] and {Ai , uT

i , A−1
i (Pi)}i∈[�]

are computationally indistinguishable. Intuitively, the evasive LWE assumption
says that the presence of A−1

i (Pi) does not help break LWE so long as sTPi
���

is

pseudorandom. Indeed, if the distinguisher multiplied sTA
���

with A−1(P), then
it roughly obtains sTP

���
, which is pseudorandom by assumption.



660 B. Waters et al.

In the context of our MA-ABE scheme, the matrices A1, . . . ,A� will be
associated with the public keys for the honest authorities, and the columns
of Pi will consists of pi + Birgid for the user identifiers gid that appear in the
adversary’s secret-key queries. By setting Pi properly (see Sect. 6), the reduction
algorithm can in turn answer the secret-key queries without switching to using
a trapdoor for BY to answer key queries. We highlight the key differences in
reduction strategies here:

– Previously (Sect. 2.2), the reduction sampled ui itself and used the trapdoor
for BY to sample r = H(gid). This was necessary because the reduction did
not (and cannot) possess a trapdoor for each Ai to sample ui as in the real
scheme. If the reduction did possess such a trapdoor for every i that appears
in the challenge ciphertext, then it could trivially break security itself. Then,
to ensure consistency of the sampled key with respect to the outputs of H,
this requires the reduction to program the outputs of H. Hence, we model H
as a random oracle in this case.

– In contrast, when we use evasive LWE, the reduction computes r = H(gid)
normally and then directly constructs ui using the terms provided in the
evasive LWE challenge. These terms can be simulated without knowledge of
a trapdoor for Ai. Observe that this strategy only relies on the ability to
compute H(·), not the ability to program its outputs. In general, the evasive
LWE assumptions allows us to reduce the task of proving security to that
of reasoning about the pseudorandomness of LWE samples with respect to
correlated public matrices. In the latter distribution, there are no Gaussian
samples, and no need to implement any kind of trapdoor sampling.

When we use evasive LWE, the computation of sTP
���

essentially translates to com-

puting sTH(gid)
�������

, which is pseudorandom by the Boneh et al. [BLMR13] analysis.

We refer to Sect. 6 for the formal description.
While the evasive LWE assumption is much less well understood compared

to the classic LWE assumption, proving security under evasive LWE at the min-
imum indicates that replacing the random oracle with a subset-product hash
function is a sound heuristic for constructing an MA-ABE scheme in the plain
model. It is an interesting challenge to try and prove the security of our con-
struction from the plain LWE assumption; such a proof would provide the first
construction of MA-ABE from standard assumptions in the plain model. Alter-
natively, it is also interesting to further cryptanalyze the evasive LWE assump-
tion.

3 Preliminaries

We write λ to denote the security parameter. For a positive integer n ∈ N, we
write [n] to denote the set {1, . . . , n}. For a positive integer q ∈ N, we write
Zq to denote the integers modulo q. We use bold uppercase letters to denote
matrices (e.g., A,B) and bold lowercase letters to denote vectors (e.g., u, v).
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We use non-boldface letters to refer to their components: v = (v1, . . . , vn). For
matrices A1, . . . ,A� ∈ Z

n×m
q , we write diag(A1, . . . ,A�) ∈ Z

n�×m�
q to denote

the block diagonal matrix with blocks A1, . . . ,A� along the main diagonal (and
0s elsewhere).

We write poly(λ) to denote a function that is O(λc) for some c ∈ N and
negl(λ) to denote a function that is o(λ−c) for all c ∈ N. An algorithm is effi-
cient if it runs in probabilistic polynomial time in its input length. We say that
two families of distributions D1 = {D1,λ}λ∈N and D2 = {D2,λ}λ∈N are compu-
tationally indistinguishable if no efficient algorithm can distinguish them with
non-negligible probability. We denote this by writing D1

c≈ D2. We say they are
statistically indistinguishable if the statistical distance Δ(D1,D2) is bounded
by a negligible function in λ and denote this by writing D1

s≈ D2. We say a
distribution D is B-bounded if Pr[|x| ≤ B : x ← D] = 1.

3.1 Multi-authority Attribute-Based Encryption

In this section, we introduce the syntax of a multi-authority ABE scheme [LW11].
We start with the definition of a monotone access structure [Bei96].

Definition 3.1. (Access Structure [Bei96]). Let S be a set and let 2S denote
the power set of S (i.e., the set of all subsets of S). An access structure on S
is a set A ⊆ 2S \ ∅ of non-empty subsets of S. We refer to the elements of A

as the authorized sets and those not in A as the unauthorized sets. We say an
access structure is monotone if for all sets B,C ∈ 2S, if B ∈ A and B ⊆ C,
then C ∈ A.

Definition 3.2. (Multi-Authority ABE [LW11,RW15, adapted]). Let λ
be a security parameter, M be a message space, AU = {AUλ}λ∈N be the
universe of authority identifiers, and GID = {GIDλ}λ∈N be the universe of
global identifiers for users. To simplify the exposition, we follow the conven-
tion in [RW15,DKW21a] and assume that each authority controls a single
attribute; this definition generalizes naturally to the setting where each authority
controls an arbitrary polynomial number of attributes (see [RW15]). A multi-
authority attribute-based encryption scheme for a class of policies P = {Pλ}λ∈N

(each described by a monotone access structure on a subset of AU) consists
of a tuple of efficient algorithms ΠMA-ABE = (GlobalSetup,AuthSetup,KeyGen,
Encrypt,Decrypt) with the following properties:

– GlobalSetup(1λ) → gp: On input the security parameter λ, the global setup
algorithm outputs the global parameters gp.

– AuthSetup(gp, aid) → (pkaid,mskaid): On input the global parameters gp and
an authority identifier aid ∈ AU , the authority setup algorithm outputs a
public key pkaid and a master secret key mskaid.

– KeyGen(gp,msk, gid) → sk: On input the global parameters gp, the authority’s
master secret key msk, and the user identifier gid ∈ GID, the key-generation
algorithm outputs a decryption key sk.
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– Encrypt(gp, A, {pkaid}aid∈A, μ) → ct: On input the global parameters gp, an
access structure A ∈ P on a set of authorities A ⊆ AU , the set of public
keys pkaid associated with each authority aid ∈ A, and a message μ ∈ M, the
encryption algorithm outputs a ciphertext ct.

– Decrypt(gp, {skaid}aid∈A, ct) → μ: On input the global parameters gp, a collec-
tion of secret keys skaid issued by a set of authorities aid ∈ A, and a ciphertext
ct, the decryption algorithm outputs a message μ ∈ M ∪ {⊥}.

Moreover, ΠMA-ABE should satisfy the following properties:

– Correctness: The exists a negligible function negl(·) such that for every λ ∈
N, every message μ ∈ M, every identifier gid ∈ GIDλ, every set of authorities
A ⊆ AUλ, every access structure A ∈ Pλ on A, and every subset of authorized
authorities B ∈ A,

Pr

⎡
⎢⎢⎢⎢⎣

μ′ = μ :

gp ← GlobalSetup(1λ);
∀aid ∈ A : (pkaid,mskaid) ← AuthSetup(gp, aid);
∀aid ∈ B : skgid,aid ← KeyGen(gp,mskaid, gid);

ct ← Encrypt(gp, A, {pkaid}aid∈A, μ);
μ′ ← Decrypt(gp, {skgid,aid}aid∈B , ct)

⎤
⎥⎥⎥⎥⎦

= 1 − negl(λ).

– Static security: For a security parameter λ ∈ N, an adversary A, and a
bit b ∈ {0, 1}, we define the static security game for an multi-authority ABE
scheme as follows:

• Setup: The challenger starts by sampling gp ← GlobalSetup(1λ) and gives
gp to A.

• Attacker queries. The adversary A now specifies the following:
* A set C ⊆ AUλ of corrupt authorities together with a public key
pkaid for each corrupt authority aid ∈ C.
* A set N ⊆ AUλ of non-corrupt authorities, where N ∩ C = ∅.
* A set Q = {(gid, A)} of secret key queries where each query con-
sists of a global identifier gid ∈ GIDλ and a subset of non-corrupt
authorities A ⊂ N .
* A pair of challenge messages μ0, μ1 ∈ M, a set of authorities A∗ ⊆
C ∪ N , and an access structure A ∈ Pλ on A∗.

• Challenge. The challenger then sam-
ples (pkaid,mskaid) ← AuthSetup(gp, aid) for each authority aid ∈ N . It
responds to the adversary with the following:

* The public keys pkaid for the non-corrupted authority aid ∈ N .
* For each secret-key query (gid, A), the secret keys skgid,aid ←
KeyGen(gp,mskaid, gid) for each aid ∈ A.
* The challenge ciphertext ctb ← Encrypt(gp, A, {pkaid}aid∈A∗ , μb).

• Output phase: Finally, algorithm A outputs a bit b′ ∈ {0, 1}, which is
the output of the experiment.

We say an adversary A is admissible for the above security game if A∗∩C /∈ A

and moreover, for every secret key query (gid, A), it holds that (A∪C)∩A∗ /∈
A. Finally, we say ΠMA-ABE satisfies static security if for all efficient and
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admissible adversaries A, there exists a negligible function negl(·) such that
for all λ ∈ N, |Pr[b′ = 1|b = 0] − Pr[b′ = 1|b = 1]| = negl(λ) in the above
security game.

Remark 3.3 (Static Security in the Random Oracle Model). Following [RW15,
DKW21a], we also extend Definition 3.2 to the random oracle model [BR93].
In this setting, we assume that a global hash function H (modeled as a random
oracle) is published as part of the global public parameters and accessible to all
of the parties in the system. When extending static security to the random oracle
model, we require that the adversary submits its random oracle queries as part
of its initial query in the static security game. The challenger then includes the
responses to the random oracle queries as part of the challenge. We also allow
the adversary to further query the random oracle during the challenge phase of
the game.

Remark 3.4 (Security Notions). The static security requirement in Definition
3.2 requires that the adversary commits to all of its queries upfront. A stronger
notion of security is adaptive security under static corruptions [LW11] which
requires the adversary pre-commit to the set of corrupted authorities, but there-
after, the adversary can adaptively make secret-key queries both before and
after making its challenge ciphertext query. We can also consider intermedi-
ate notions where the adversary needs to commit to the policy associated with
the challenge ciphertext, but can then issue secret key queries adaptively (i.e.,
the analog of “selective security” in single-authority ABE). Achieving stronger
notions of security (beyond static security) for multi-authority ABE from lattice-
based assumptions is an interesting open problem.

Multi-authority ABE for Subset Policies. Our focus in this work is on construct-
ing multi-authority ABE for the class of subset policies. Here, the ciphertext is
associated with a set of authorities A and decryption succeeds whenever a user
possesses keys from a set of authorities B where A ⊆ B. We define this more
formally below.

Definition 3.5 (Multi-Authority ABE for Subset Policies). Let λ be a
security parameter and AU = {AUλ}λ∈N be the universe of authority identifiers.
We define the class of subset policies P = {Pλ}λ∈N to be the set

Pλ = {A : A = {B : A ⊆ B} where A ⊆ AUλ} .

Notably, an access structure A for a subset policy is fully determined by the set
A ⊆ AUλ. Thus, when describing an MA-ABE scheme ΠMA-ABE = (GlobalSetup,
AuthSetup,KeyGen,Encrypt,Decrypt) for the class of subset policies, we omit the
specification of A in the encryption algorithm and have the encryption algorithm
only take as input the public keys associated with the authorities in A. More
precisely, we modify the syntax of the encryption algorithm as follows:

– Encrypt(gp, {pkaid}aid∈A, μ) → ct: On input the global parameters gp, the set
of public keys pkaid associated with each authority aid ∈ A, and a message
μ ∈ M, the encryption algorithm outputs a ciphertext ct.
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Remark 3.6 (Multi-Authority ABE for DNFs). A multi-authority ABE scheme
for subset policies directly implies a multi-authority ABE scheme for access
structures that can be decided by a polynomial-size conjunction or a DNF for-
mula. First, we define the notion of an access structure decidable by a Boolean
formula. Let A be an access structure on a set A = {a1, . . . , an}. For a subset
B ⊆ A, we define indicator bits b1, . . . , bn where bi = 1 if ai ∈ B and 0 otherwise.
We say that A can be computed by a Boolean formula ϕ if there exists a Boolean
formula ϕ : {0, 1}n → {0, 1} such that B ∈ A if and only if ϕ(b1, . . . , bn) = 1.
It is straightforward to use an MA-ABE scheme for subset policies to construct
MA-ABE schemes for policies computable by either a conjunction or a DNF:

– Conjunction: Let A be an access structure on A that is computable by a
conjunction on variables bi1 , . . . , bid

. This is equivalent to a subset policy for
the set {ai1 , . . . , aid

}.
– DNF formulas: Let A be an access structure on A that is computable by

a DNF ϕ : {0, 1}n → {0, 1}. By construction, we can write ϕ(x1, . . . , xn) =∨
i∈[t] ϕi(x1, . . . , xn), where each ϕi is a conjunction. In this case, decryption

succeeds as long as at least one of the ϕi is satisfied. In this case, we simply
concatenate t ciphertexts together, where the ith ciphertext is an encryption
to the ith conjunction ϕi. Correctness follows by construction while security
follows by a standard hybrid argument.

Remark 3.7 (Multi-Authority ABE for k-CNFs). In the single-authority setting,
ABE for subset policies implies an ABE scheme for k-CNF formulas for constant
k ∈ N [Tsa19,GLW21]. However, this generic approach does not easily trans-
late to the multi-authority setting. Here, a k-CNF formula ϕ : {0, 1}n → {0, 1}
can be written as ϕ(x1, . . . , xn) =

∧
i∈[t] ϕi(x1, . . . , xn), where each clause

ϕi(x1, . . . , xn) is a disjunction on up to k variables. To support k-CNF for-
mulas ϕ : {0, 1}n → {0, 1} on a set A = {a1, . . . , an}, the approach is to
first define a universe U of size |U | = O(knk), where each element u ∈ U is
associated with a distinct subset of Su ⊆ A of size |Su| ≤ k. A secret key
for ai consists of secret keys for all u ∈ U where ai ∈ Su. A k-CNF pol-
icy ϕ(x1, . . . , xn) =

∧
i∈[t] ϕi(x1, . . . , xn) where each clause ϕi depends on a

set Ti ⊆ A of at most k variables corresponds to a subset policy for the set
{uT1 , . . . , uTt

}.
In the multi-authority setting, different authorities own the different

attributes a1, . . . , an. To implement k-CNF policies as subset policies via the
above transformation, we require a multi-authority ABE scheme that supports
subset policies where the basic attributes are combinations of attributes from dif-
ferent authorities. This conflicts with the requirement that authorities be inde-
pendent in the multi-authority setting. It is an interesting question to construct
a multi-authority ABE scheme capable of supporting k-CNF formulas from one
that supports subset policies.
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3.2 Lattice Preliminaries

Throughout this work, we always use the �∞ norm for vectors and matrices.
Specifically, for a vector u, we write ‖u‖ := maxi |xi|, and for a matrix A, we
write ‖A‖ = maxi,j |Ai,j |. For a dimension k ∈ N, we write Ik ∈ Z

k×k
q to denote

the k-by-k identity matrix.

Discrete Gaussians. We write DZ,χ to denote the (centered) discrete Gaussian
distribution over Z with parameter χ ∈ R

+. For a matrix A ∈ Z
n×t
q , and a vector

v ∈ Z
n
q , we write A−1

χ (v) to denote a random variable x ← Dm
Z,χ conditioned on

Ax = v mod q. We extend A−1
s to matrices by applying A−1

s to each column of
the input. Throughout this work, we will use the following standard tail bound
on Gaussian distributions:

Fact 3.8 (Gaussian Tail Bound). Let λ be a security parameter and s = s(λ)
be a Gaussian width parameter. Then, for all polynomials n = n(λ), there exists
a negligible function negl(λ) such that for all λ ∈ N,

Pr
[‖v‖ >

√
λs : v ← Dn

Z,s

]
= negl(λ).

Assumption 3.9 (Learning with Errors [Reg05]). Let λ be a security
parameter and let n = n(λ), m = m(λ), q = q(λ), χ = χ(λ) be integers.
Then, the decisional learning with errors assumption LWEn,m,q,χ states that for
A r← Z

n×m
q , s r← Z

n
q , e ← Dm

Z,χ, and u r← Z
m
q ,

(A, sTA + eT)
c≈ (A,u).

The Gadget Matrix. We recall the definition of the gadget matrix [MP12]. For
positive integers n, q ∈ N, let Gn = In ⊗gT ∈ Z

n×m
q be the gadget matrix where

gT = [1, 2, . . . , 2log q−1] and m = n �log q�. The inverse function G−1
n : Z

n×t
q →

Z
m×t
q expands each entry x ∈ Zq into a column of size �log q� consisting of

the bits in the binary representation of x. By construction, for every matrix
A ∈ Z

n×t
q , it follows that Gn ·G−1

n (A) = A mod q. When the lattice dimension
n is clear, we will omit the subscript and simply write G and G−1(·) to denote
Gn and G−1

n (·).

Lattice Trapdoors. In this work, we use the gadget trapdoors introduced by Mic-
ciancio and Peikert [MP12]. Our description below follows many of the notational
conventions from [BTVW17].

Theorem 3.10 (Lattice Trapdoors
[Ajt96,GPV08,ABB10b,ABB10a,CHKP10,MP12]). Let n,m, q be lattice
parameters. Then there exist efficient algorithms (TrapGen,SamplePre) with the
following syntax:

– TrapGen(1n, q,m) → (A, tdA): On input the lattice dimension n, the modu-
lus q, the number of samples m, the trapdoor-generation algorithm outputs a
matrix A ∈ Z

n×m
q together with a trapdoor tdA.
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– SamplePre(A, tdA,v, s) → u: On input a matrix A, a trapdoor tdA, a target
vector v, and a Gaussian width parameter s, the preimage-sampling algorithm
outputs a vector u.

Moreover, there exists a polynomial m0 = m0(n, q) = O(n log q) such that for all
m ≥ m0, the above algorithms satisfy the following properties:

– Trapdoor distribution: The matrix A output by TrapGen(1n, q,m) is sta-
tistically close to uniform. Specifically, if (A, tdA) ← TrapGen(1n, q,m) and
A′ r← Z

n×m
q , then Δ(A,A′) ≤ 2−n.

– Trapdoor quality: The trapdoor tdA output by TrapGen(1n, q,m) is a τ -
trapdoor where τ = O

(√
n log q log n

)
. We refer to the parameter τ as the

quality of the trapdoor.
– Preimage sampling: Suppose tdA is a τ -trapdoor for A. Then, for all s ≥

τ · ω(
√

log n) and all target vectors v ∈ Z
n
q , the statistical distance between

the following distributions is at most 2−n:

{u ← SamplePre(A, tdA,v, s)} and {u ← A−1
s (v)}.

Gadget Trapdoors. In this work, we will work with the gadget trapdoors intro-
duced by Micciancio and Peikert [MP12]. We recall the key properties of gadget
trapdoors from [MP12] and then state a direct corollary that we will use in this
work (Corollary 3.12).

Theorem 3.11 (Gadget Trapdoors [MP12]). The gadget matrix G ∈ Z
n×m
q

has a public τ -trapdoor tdG where τ = O(1). In addition, if AR = HG where
A ∈ Z

n×m′
q , R ∈ Z

m′×m
q , m = n �log q�, and H ∈ Z

n×n
q is invertible, then

tdA = (R,H) can be used as a τ -trapdoor (by extending SamplePre from Theorem
3.10 accordingly) for A where τ = s1(R) and s1(R) ≤ √

mm′‖R‖ denotes the
largest singular value of R.

Corollary 3.12 (Gadget Trapdoors). Let H ∈ Z
k×t
q be a full rank matrix

where k ≤ t (i.e., H has full row rank). Suppose AR = H⊗G. Let A ∈ Z
kn×m′
q

and R ∈ Z
m′×mt
q with m = n �log q�. Then, tdA = (R,H) can be used as a

τ -trapdoor for A where τ ≤ √
kmm′ · mt‖R‖.

Proof We can write H ⊗ G = (H ⊗ In)(It ⊗ G) = (H ⊗ In)Gnt. Since H is
full rank (with k ≤ t), there exists a matrix H∗ ∈ Z

t×k
q such that HH∗ = Ik.

Correspondingly, (H ⊗ In)(H∗ ⊗ In) = Ikn. Let R̄ = RG−1
nt ((H∗ ⊗ In)Gkn) ∈

Z
m′×km
q . Now, we can write

AR̄ = ARG−1
nt ((H∗ ⊗ In)Gkn) = (H ⊗ In)GntG−1

nt ((H∗ ⊗ In)Gkn) = Gkn,

and so R̄ is a trapdoor for A (Theorem 3.11). Moreover, ‖R̄‖ ≤ mt‖R‖, and
the claim follows.
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Preimage Sampling. We will also use the following property of discrete Gaussian
distributions which follows from [GPV08]:

Lemma 3.13 (Preimage Sampling [GPV08, adapted]). Let n,m, q be lat-
tice parameters. There exists polynomials m0(n, q) = O(n log q) and χ0(n, q) =√

n log q · ω(
√

log n) such that for all m ≥ m0(n, q) and χ ≥ χ0(n, q), the statis-
tical distance between the following distributions is negl(n):
{
(A,x,Ax) : A r← Z

n×m
q ,x ← Dm

Z,χ

}
and

{
(A,x,y) : A r← Z

n×m
q ,y r← Z

n
q ,x ← A−1

χ (y)
}
.

Lemma 3.14 (Leftover Hash Lemma [ABB10a]). Let n,m, q be lattice
parameters where q > 2 is prime. There exists a polynomial m0(n, q) = O(n log q)
such that for all m ≥ m0(n, q), all vectors e ∈ Z

m
q , and all polynomials k = k(n),

the statistical distance between the following distributions is negl(n):

{(A,AR, eTR) : A r← Z
n×m
q ,R r← {−1, 1}m×k}

and
{(A,B, eTR) : A r← Z

n×m
q ,B r← Z

n×k
q ,R r← {−1, 1}m×k}.(3.1)

Smudging Lemma. We will also use the following standard smudging lemma
(see [BDE+18] for a proof):

Lemma 3.15 (Smudging Lemma). Let λ be a security parameter. Take any
e ∈ Z where |e| ≤ B. Suppose χ ≥ B ·λω(1). Then, the statistical distance between
the distributions {z : z ← DZ,χ} and {z + e : z ← DZ,χ} is negl(λ).

The Evasive LWE Assumption. We now state a variant of the evasive LWE
assumption introduced by Wee [Wee22] and Tsabury [Tsa22]. We compare our
formulation with the original version by Wee in Remark 3.18.

Assumption 3.16 (Evasive LWE). Let λ be a security parameter, and let
n = n(λ),m = m(λ), q = q(λ), χ = χ(λ), s = s(λ) with s ≥ O(

√
m log q). Let

Samp be an algorithm that takes the security parameter 1λ as input and outputs
a matrix B ∈ Z

n�×m′
q , a set of � target matrices P1 ∈ Z

n×N1
q , . . . ,P� ∈ Z

n×N�
q ,

and auxiliary information aux ∈ {0, 1}∗. Then, for adversaries A0 and A1, we
define advantage functions

Adv
(pre)
A0

(λ) :=
∣∣Pr [A0({(Ai, s

T
iAi + eT

1,i)}i∈[�],B, sTB+ eT
2, {sTiPi + eT

3,i}i∈[�], aux) = 1
]

− Pr
[A0({(Ai,u

T
1,i)}i∈[�],B,uT

2, {uT
3,i}i∈[�], aux) = 1

]∣∣
Adv

(post)
A1

(λ) :=
∣∣Pr [A1({(Ai, s

T
iAi + eT

1,i)}i∈[�],B, sTB+ eT
2, {Ki}i∈[�], aux) = 1

]

− Pr
[A1({(Ai,u

T
1,i)}i∈[�],B,uT

2, {Ki}i∈[�], aux) = 1
]∣∣,

where
(B,P1, . . . ,P�, aux) ← Samp(1λ) ,
A1, . . . ,A�

r← Z
n×m
q ,

s1, . . . , s�
r← Z

n
q , sT ← [sT

1 | · · · | sT

�] ∈ Z
n�
q ,

u1,i
r← Z

m
q , e1,i ← Dm

Z,χ ∀i ∈ [�],
u2

r← Z
m′
q , e2 ← Dm′

Z,χ,

u3,i
r← Z

Ni
q , e3,i ← DNi

Z,χ ∀i ∈ [�],
Ki ← (Ai)−1

s (Pi) ∀i ∈ [�].
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We say that the evasive LWE assumption holds if for every efficient sampler
Samp and every efficient adversary A1, there exists an efficient algorithm A0,
polynomial poly(·), and negligible function negl(·) such that for all λ ∈ N,

Adv
(pre)
A0

(λ) ≥ Adv
(post)
A1

(λ)/poly(λ) − negl(λ).

Remark 3.17 (Auxiliary Input Distribution). As in [Wee22], we only require that
the assumption holds for samplers where aux additionally contains all of the coin
tosses used by Samp (i.e., public-coin samplers). This avoids obfuscation-based
counter-examples where aux contains an obfuscation of a program related to
a trapdoor for matrix B or Pi. This is a weaker assumption compared to the
evasive LWE assumptions needed to realize witness encryption (which rely on
security of evasive LWE to hold for private-coin samplers) [Tsa22,VWW22].

Remark 3.18 (Comparison with [Wee22]). The original formulation of the eva-
sive LWE assumption by Wee [Wee22] corresponds to the special case where � = 1
(i.e., there is just a single matrix A1 and single target P1). When constructing
multi-authority ABE, we rely on multiple independent matrices A1, . . . ,A� (one
associated with each authority). It is an interesting question to reduce Defini-
tion 3.16 to the simpler setting of � = 1. We note that the justification given in
[Wee22] for evasive LWE are equally applicable to this setting.

4 Generalized Related-Trapdoor LWE Assumption

In this section, we introduce a generalized variant of the related-trapdoor robust
LWE assumption of Brakerski and Vaikuntanathan [BV22] and then show that
its hardness can be based on the standard LWE assumption (Theorem 4.2). As
described in Sect. 2, the generalized related-trapdoor LWE assumption essen-
tially asserts that given a vector u ∈ {0, 1}L, an LWE sample with respect to
(u ⊗ In)B is pseudorandom (where B ∈ Z

n×mL
q ) given an oracle that takes as

input (M, t) and outputs (M ⊗ In)B)−1(t) whenever M̄ =
[
M
uT

] ∈ Z
(k+1)×L
q is

full rank. The original formulation of the related trapdoor assumption in [BV22]
(for the setting of single-authority ciphertext-policy ABE) considered the spe-
cial case where the matrix M ∈ Z

1×L
q is a row vector. Here, we consider the

case where M can be an arbitrary matrix. This generalization will be useful for
distributing the setup in an ABE scheme to obtain a multi-authority ABE (see
Sect. 5).

A similar approach is also implicit in the ciphertext-policy ABE scheme by
Datta et al. [DKW21a]. Their approach relied on noise smudging to simulate
the preimage-sampling oracle, and as such, security relied on a super-polynomial
modulus. In this work, we abstract out the core technique through the related-
trapdoor LWE assumption and then show a direct reduction to LWE without
relying on noise smudging. This allows us to base security on LWE with a poly-
nomial modulus.
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Assumption 4.1 (Generalized Related-Trapdoor LWE). Let λ ∈ N be
a security parameter, and n = n(λ), m = m(λ), m̂ = m̂(λ), and χ = χ(λ)
be lattice parameters. Let q = q(λ) be a prime modulus. Let L = L(λ) be
a length parameter. For a bit b ∈ {0, 1}, we define the related-trapdoor LWE
game between a challenger and an adversary A:

1. The adversary A starts by choosing a non-zero vector u ∈ {0, 1}L.
2. The challenger samples matrices A r← Z

n×m
q and B r← Z

nL×m̂(2L−1)
q and

constructs the challenge as follows:
– If b = 0, the challenger samples s r← Z

n
q , R r← {−1, 1}m̂L×m̂(L−1), e ←

Dm
Z,χ, ê0 ← Dm̂L

Z,χ , êT ← êT
0[Im̂L | R] ∈ Z

m̂(2L−1)
q , and gives

(
A, B, sTA+

eT, sT(uT ⊗ In)B + êT
)

to A.
– If b = 1, the challenger samples v r← Z

m
q , v̂ r← Z

m̂(2L−1)
q and gives

(A,B,vT, v̂T) to A.
3. Adversary A can now make queries of the form (M, t) where M ∈ Z

k×L
q

where k < L and t ∈ Z
kn
q .

– Define the matrix M̄ =
[
M
uT

]
. If M̄ is not full rank (over Zq), the chal-

lenger replies with ⊥.
– If t is not in the column span of (M ⊗ In)B, then the challenger also

replies with ⊥.
– Otherwise, it samples and replies with y ← ((M ⊗ In)B)−1

χ (t). Namely,

y ∈ Z
m(2L−1)
q is sampled from the distribution D

m(2L−1)
Z,χ conditioned on

(M ⊗ In)By = t.
4. At the end of the game, algorithm A outputs a bit b′ ∈ {0, 1}, which is also

the output of the experiment.

We say that the RTLWEn,m,m̂,q,χ,L assumption holds if for all efficient adver-
saries A, there exists a negligible function negl(·) such that for all λ ∈ N,
|Pr[b′ = 1 | b = 0] − Pr[b′ = 1 | b = 1]| = negl(λ) in the above security game.

The generalized related-trapdoor LWE assumption reduces to the vanilla
LWE assumption. We state the formal theorem below and refer to the full version
of this paper [WWW22] for a proof.

Theorem 4.2 (Generalized Related-Trapdoor LWE). Let λ be a security
parameter, and let n = n(λ), q = q(λ), m = m(λ), m̂ = m̂(λ), and χ = χ(λ) be
lattice parameters. Suppose that q > 2 is a prime and χ > 2m̂2L2 · ω(

√
log n).

Then, there exists a fixed polynomial m0(n, q) = O(n log q) such that for all
m̂ > m0(n, q) and under the LWEn,m+m̂L,q,χ assumption, the RTLWEn,m,m̂,q,χ,L

assumption holds.

5 Multi-Authority ABE from LWE in the Random
Oracle Model

In this section, we describe our construction of multi-authority ABE for the
family of subset policies in the random oracle model. Our construction follows a
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similar structure as the multi-authority ABE scheme of Datta et al. [DKW21a]
except we provide a direct reduction to the (generalized) related trapdoor LWE
problem (Sect. 4). Notably, this allows us to base security on polynomial hard-
ness of the plain LWE assumption with a polynomial modulus. The previous
construction of Datta et al. relied on LWE with a super-polynomial modulus-to-
noise ratio.

Construction 5.1 (Multi-Authority ABE in the Random Oracle
Model). Let λ be a security parameter, and n = n(λ), m = m(λ), q = q(λ),
and χ = χ(λ) be lattice parameters. Let L = L(λ) be a bound on the number
of attributes associated with a ciphertext. Let GID = {0, 1}λ be the set of user
identifiers and AU = {0, 1}λ be the set of authority identifiers. The construction
will rely on a hash function H : GID → Z

m(2L−1)
q , which will be modeled as a

random oracle as follows:

– For ease of exposition in the following description, we will start by assuming
that the outputs of the random oracle H are distributed according to a discrete
Gaussian distribution. Specifically, on every input gid ∈ GID, the output
H(gid) is a sample from the distribution D

m(2L−1)
Z,χ . In Sect. 5.1 and Remark

5.7, we show that using inversion sampling, we can implement H using a
standard random oracle H′ : GID → {0, 1}λm(2L−1), where the outputs of
H′(gid) are distributed uniformly over {0, 1}λm(2L−1) as usual.

We construct a multi-authority ABE scheme for subset policies with message
space M = {0, 1} as follows:

– GlobalSetup(1λ): Output the global parameters gp = (λ, n,m, q, χ, L,H).
– AuthSetup(gp, aid): On input the global parameters gp and an authority iden-

tifier aid ∈ AU , sample (Aaid, tdaid) ← TrapGen(1n, q,m), paid
r← Z

n
q , and

Baid
r← Z

n×m(2L−1)
q . Output the authority public key pkaid ← (Aaid,Baid,paid)

and the authority secret key mskaid = tdaid.
– KeyGen(gp,msk, pk, gid): On input the global parameters gp = (λ, n,m, q,

χ, L,H), the master secret key msk = td, the public key pk = (A,B,p), and
the user identifier gid, the key-generation algorithm computes r ← H(gid) ∈
Z

m(2L−1)
q and uses td to sample u ← A−1

χ (p + Br). It outputs skaid,gid = u.
– Encrypt(gp, {pkaid}aid∈A, μ): On input the global parameters gp =

(λ, n,m, q, χ, L,H), a set of of public keys pkaid = (Aaid,Baid,paid) associated
with a set of authorities A, and the message μ ∈ {0, 1}, the encryption algo-
rithm samples said r← Z

n
q , e1,aid ← Dm

Z,χ, R r← {0, 1}mL×m(L−1), ê2 ← DmL
Z,χ ,

and eT
2 ← êT

2[ImL | R], and e3 ← DZ,χ for each aid ∈ A. It outputs the
ciphertext

ct =

⎛
⎝{

sTaidAaid + eT
1,aid

}
aid∈A

,
∑

aid∈A

sTaidBaid + eT
2 ,

∑
aid∈A

sTaidpaid + e3 + μ · �q/2�
⎞
⎠ .

– Decrypt(gp, {skaid,gid}aid∈A, ct, gid): On input the global parameters gp =
(λ, n,m, q, χ, L,H), a set of secret keys skaid,gid = uaid,gid associated with
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authorities aid ∈ A and user identifier gid, and a ciphertext ct =({cT

1,aid}aid∈A , cT
2 , c3

)
, the decryption algorithm computes r ← H(gid) and

outputs ⌊
2
q

·
(

c3 + cT

2r −
∑
aid∈A

cT

1,aiduaid,gid mod q

)⌉
.

We now state the correctness and security theorems for Construction 5.1,
but defer their formal proofs to the full version of this paper [WWW22].

Theorem 5.2 (Correctness). Suppose the conditions of Theorem 3.10 and
Lemma 3.13 hold (i.e., m ≥ m0(n, q) = O(n log q) and χ > χ0(n, q) =

√
n log q ·

ω(
√

log n)). Then, there exists a polynomial q0 = O(λχ2m2L2) such that for all
q > q0, Construction 5.1 is correct.

Theorem 5.3 (Static Security). Suppose the conditions of Theorem 3.10
and Lemma 3.13 hold (i.e., m ≥ m0(n, q) = O(n log q) and χ > χ0(n, q) =√

n log q · ω(
√

log n)). Then, under the RTLWEn,Lm+1,m,q,χ,L assumption and
modeling H : GID → Z

m(2L−1)
q as a random oracle (with outputs distributed

according to D
m(2L−1)
Z,χ ), Construction 5.1 is statically secure.

Parameter Setting. Let λ be a security parameter. We can now instantiate Con-
struction 5.1 as follows:

– We set the lattice dimension n = λ.
– To rely on Theorem 5.3, we rely on the RTLWEn,Lm+1,m,q,χ,L assumption. By

Theorem 4.2, this reduces to LWEn,2Lm+1,q,χ if we set m = O(n log q), q > 2
to a prime, and χ = O(m2L2 log n).

– For correctness (Theorem 5.2), we additionally require q = O(λχ2m2L2).

In particular, this means we can choose m, q, χ to be polynomials in λ, and thus,
base hardness on LWE with a polynomial modulus-to-noise ratio. We summarize
the instantiation below:

Corollary 5.4 (Multi-Authority ABE for Subset Policies in the Ran-
dom Oracle Model). Let λ be a security parameter. Assuming polyno-
mial hardness of LWE with a polynomial modulus-to-noise ratio, there exists
a statically-secure multi-authority ABE scheme for subset policies of a priori
bounded length L = L(λ) in the random oracle model. The size of the ciphertext
scales quasi-linearly with the bound L.

5.1 Instantiating Using a Random Oracle with Uniform Outputs

As described, Construction 5.1 and Corollary 5.4 relies on a random oracle
H : GID → Z

m(2L−1)
q whose output distribution is the discrete Gaussian dis-

tribution D
m(2L−1)
Z,χ . Since χ = poly(λ) in our setting, we describe a simple way

to instantiate H using a random oracle H′ : GID → {0, 1}λm(2L−1) whose out-
put distribution is the uniform distribution via inversion sampling. The function
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H′ coincides with the usual way we model the output distribution of a random
oracle [BR93].

Previously, Brakerski et al. [BCTW16] sketched an alternative approach for
instantiating a random oracle outputting samples from a discrete Gaussian dis-
tribution by adapting the rejection sampler of Lyubashevsky and Wichs [LW15].
Datta et al. [DKW21a] rely on noise smudging in their setting (which would in
turn necessitate using a super-polynomial modulus-to-noise ratio). In our set-
ting where we have a distribution with polynomial-size support, we describe a
simple alternative based on inversion sampling. This is a simple approach used
in concrete implementations of lattice-based cryptography [BCD+16].

Lemma 5.5 (Inversion Sampling). Let λ be a security parameter, t = t(λ)
be an input length, and D be a discrete B-bounded distribution with an efficiently-
computable cumulative distribution function. Then, there exists a pair of efficient
algorithms (Project,SampleR) with the following properties:

– Project(x) → y: On input an input x ∈ {0, 1}t, the projection algorithm
outputs a sample y ∈ [−B,B]. The projection algorithm is deterministic.

– SampleR(y) → x: On input a value y ∈ [−B,B], the reverse sampling algo-
rithm outputs an x ∈ {0, 1}t.

In addition, the following properties hold:

– Correctness: For all y ∈ [−B,B], Pr[Project(SampleR(y)) = y] = 1.
– Reverse-sampleability: For all t > log B + ω(log λ), the following two dis-

tributions are statistically indistinguishable:

{(x,Project(x)) : x r← ({0, 1}t)} and {(SampleR(y), y) : y ← D}.

Proof. We take (Project,SampleR) to be the standard inversion sampling algo-
rithm. Let f : [−B − 1, B] → [0, 1] be the cumulative distribution function for
D, and let T = 2t − 1. We construct the two algorithms as follows:

– Project(x): On input x ∈ {0, 1}t, let X ∈ [0, T ] be the integer whose binary
representation is x. Output y ∈ [−B,B] where T · f(y − 1) < X ≤ T · f(y).

– SampleR(y): On input y ∈ [−B,B], let x0 ← T · f(y − 1) and x1 ← T · f(y).
Output the binary representation of the element x r← (x0, x1] ∩ Z.

Since the cumulative distribution function f is efficiently-computable and the
Project algorithm can be computed with polylog(B) calls to f (e.g., using binary
search), the Project algorithm is efficiently-computable. The SampleR algorithm
only requires making two calls to f and is likewise efficient. Next, correctness
of the algorithm follows by construction. Finally, for the reverse-sampleability
property, take any Y ∈ [−B,B]. Then,

Pr[Project(x) = Y : x r← {0, 1}t] =
�T · f(Y )� − �T · f(Y − 1)�

T
= f(Y ) − f(Y − 1) + e

= Pr[y = Y : y ← D] + e

where |e| ≤ 2/T . Thus, the statistical distance between {Project(x) : x r←
{0, 1}t} and D is at most 2(2B + 1)/T = negl(λ). Finally, on input y ∈ [−B,B],
SampleR(y) outputs a uniform x r← {0, 1}t conditioned on Project(x) = y.
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Remark 5.6 (Extending to Product Distributions). We can extend (Project,
SampleR) to sample from a product distribution Dn in the natural way. The
projection algorithm takes as input a vector of bit-strings x ∈ ({0, 1}t)n and
applies the projection operator component-wise. The reverse sampling algorithm
is defined analogously. Correctness and reverse-sampleability then follow via a
standard hybrid argument.

Remark 5.7 (Implementing the Random Oracle in Corollary 5.4). We can now
implement the random oracle H : GID → Z

m(2L−1)
q in Corollary 5.4 (whose out-

puts are distributed according to D
m(2L−1)
Z,χ ) with a random oracle H′ : GID →

{0, 1}λm(2L−1) whose outputs are uniform as follows:

– Let D̃Z,χ be the discrete Gaussian distribution DZ,χ truncated to the interval
[−√

λχ,
√

λχ]. Namely, to sample x̃ ← D̃Z,χ, we first sample x ← DZ,χ and
output x if x ∈ [−√

λχ,
√

λχ] and output 0 otherwise. By Fact 3.8, D̃Z,χ is
statistically indistinguishable from DZ,χ. In addition, D̃Z,χ is B-bounded for
B =

√
λχ.

– Let (Project,SampleR) be the inversion sampling algorithm from Lemma 5.5
and Remark 5.6 for the product distribution D̃

m(2L−1)
Z,χ . We now define

H(gid) := Project(H′(gid)).

Since χ = χ(λ) is polynomially-bounded, the cumulative distribution function
of D̃Z,χ is efficiently-computable. Then, by Lemma 5.5 and Remark 5.6, for all
polynomial-size collections of distinct inputs gid1, . . . , gid� ∈ GID, the joint
distributions of

{H(gidi)}i∈[�] and
{
ri ← D

m(2L−1)
Z,χ

}
i∈[�]

are statistically indistinguishable.
– Finally, the proof of Theorem 5.3 critically relies on the ability to program the

outputs of the random oracle in the reduction. Here, we rely on the SampleR

algorithm. Namely, to program H(gid) to a vector rgid ← D
m(2L−1)
Z,χ , the reduc-

tion algorithm would sample xgid ← SampleR(rgid) and program H′(gid) to
xgid. This induces the correct distribution by Lemma 5.5 and Remark 5.6.

6 Multi-authority ABE Without Random Oracles

We now give our construction of a multi-authority ABE scheme without random
oracles. Specifically, we instantiate the hash function from Construction 5.1 with
a subset-product construction (i.e., the lattice-based PRF from Theorem 6.1)
and then prove security under the evasive LWE assumption (Assumption 3.16)
and lattice-based PRFs [BPR12,BLMR13].
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Lattice-Based PRFs. Our analysis will rely on an unrounded lattice-based PRF.
We state the theorem and provide a proof sketch below, and refer readers to
[BPR12, Theorem 5.2] for a more formal exposition. Our presentation here is
adapted from the work of Chen et al. [CVW18, Lemma 7.4] who use a similar
theorem for analyzing the security of their private constrained PRF construction.
We state the theorem here and refer to [BPR12,BLMR13,CVW18] for the proof.

Theorem 6.1 (Lattice-Based PRFs [BPR12,BLMR13]). Let λ be a security
parameter and let n = n(λ), q = q(λ), χ = χ(λ), k = k(λ) be integers. Let
χsmudge = χsmudge(λ) be a noise parameter that will used for noise smudging. Let
η ∈ Z

k
q be the first elementary basis vector (i.e., η1 = 1 and ηi = 0 for all i �= 1).

For a bit b ∈ {0, 1}, an input length τ = τ(λ), and an adversary A, define the
following pseudorandomness game between a challenger and A:

1. The challenger begins by sampling (D0,D1) r← Dk×k
Z,χ and a secret key s r← Z

k
q .

It gives D0 and D1 to A.
2. Algorithm A can now adaptively submit queries x ∈ {0, 1}τ to the challenger.

If b = 0, the challenger samples ex
r← DZ,χsmudge

and outputs

fD0,D1,s(x) := sT

⎛
⎝∏

i∈[τ ]

Dxi

⎞
⎠η + ex ∈ Zq. (6.1)

Otherwise, if b = 1, the challenger replies with y r← Zq.
3. After A is done making queries, it outputs a bit b′ ∈ {0, 1}, which is the

output of the experiment.

An adversary A is admissible if all of the queries it submits are distinct. Then, for
all polynomials τ = τ(λ), q = q(λ), parameters k ≥ 6n log q, χ = Ω(

√
n log q),

χsmudge > λτ+ω(1) · (kχ)τ , and assuming the LWEn,m,q,χ assumption for some
m = poly(k, τ,Q), for all efficient and admissible adversaries A making up to
Q queries, there exists a negligible function negl(·) such that for all λ ∈ N,
|Pr[b′ = 1 : b = 0] − Pr[b′ = 1 : b = 1]| = negl(λ).

MA-ABE for Subset Policies Without Random Oracles. We now give the full
construction of our MA-ABE scheme without random oracles. As described in
Sect. 2, our construction essentially instantiates the random oracle in Construc-
tion 5.1 with a subset-product of low-norm matrices (which can be used as the
basis for constructing a PRF according to Theorem 6.1). Arguing security in
turn relies on the evasive LWE assumption (Assumption 3.16). Using the eva-
sive LWE assumption to argue security has the extra benefit of allowing support
for policies of arbitrary (polynomial) length (recall that Construction 5.1 as well
as the previous lattice-based construction of Datta et al. [DKW21a] required
imposing an a priori bound on the policy length, and the size of the ciphertext
in turn grew with the maximum length).
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Construction 6.2 (Multi-Authority ABE without Random Oracles).
Let λ be a security parameter, and n = n(λ), m = m(λ), q = q(λ), and χ = χ(λ)
be lattice parameters. Let χPRF = χPRF(λ) be a Gaussian width parameter used
to define the hash function. Let τ = τ(λ) be the bit-length of identities and
let GID = {0, 1}τ be the set of user identifiers. Let AU = {0, 1}λ be the set
of authorities. We construct an MA-ABE scheme for subset policies (Definition
3.5) with message space M = {0, 1} as follows:

– GlobalSetup(1λ): Sample D0,D1 ← Dm×m
Z,χPRF

. Define the hash function

H : {0, 1}τ → Z
m
q by the function H(x) :=

(∏
i∈[τ ] Dxi

)
η where η ∈ Z

m
q

is the first canonical basis vector (i.e., η1 = 1 and ηi = 0 for all i �= 1).
Output

gp = (λ, n,m, q, χ, χPRF, τ,D0,D1).

For ease of exposition, whenever we write H(·) in the following, we refer to
the hash function defined by the matrices D0,D1 in the global parameters.

– AuthSetup(gp, aid): On input the global parameters gp = (λ, n,m, q, χ, χPRF,
τ,D0,D1) and an authority identifier aid ∈ AU , sample (Aaid, tdaid) ←
TrapGen(1n, q,m), paid

r← Z
n
q , and Baid

r← Z
n×m
q . Output the authority public

key pkaid ← (Aaid,Baid,paid) and the authority secret key mskaid = tdaid.
– KeyGen(gp,msk, pk, gid): On input the global parameters gp = (λ, n,m, q,

χ, χPRF, τ,D0,D1), the master secret key msk = td, the public key pk =
(A,B,p), the user identifier gid ∈ {0, 1}τ , the key-generation algorithm com-
putes r ← H(gid) ∈ Z

m
q and uses td to sample u ← A−1

χ (p + Br). It outputs
skaid,gid = u.

– Encrypt(gp, {pkaid}aid∈A, μ): On input the global parameters gp = (λ, n,m,
q, χ, χPRF, τ,D0,D1), a set of of public keys pkaid = (Aaid,Baid,paid) associ-
ated with a set of authorities A, and the message μ ∈ {0, 1}, the encryption
algorithm samples said r← Z

n
q , e1,aid ← Dm

Z,χ, e2 ← Dm
Z,χ, and e3 ← DZ,χ for

each aid ∈ A. It outputs the ciphertext

ct =

⎛
⎝{

sTaidAaid + eT
1,aid

}
aid∈A

,
∑

aid∈A

sTaidBaid + eT
2 ,

∑
aid∈A

sTaidpaid + e3 + μ · �q/2�
⎞
⎠ .

– Decrypt(gp, {skaid,gid}aid∈A, ct, gid): On input the global parameters gp =
(λ, n,m, q, χ, χPRF, τ,D0,D1), a set of secret keys skaid,gid = uaid,gid asso-
ciated with authorities aid ∈ A and user identifier gid, a ciphertext ct =({cT

1,aid}aid∈A , c2 , c3
)
, the decryption algorithm computes r ← H(gid) and

outputs ⌊
2
q

·
(

c3 + cT

2r −
∑
aid∈A

cT

1,aiduaid,gid mod q

)⌉
.

Correctness and Security Analysis. We now state the correctness and security
properties of Construction 6.2, but due to space limitations, defer their proofs
to the full version of this paper [WWW22].
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Theorem 6.3 (Correctness). Let L = L(λ) be a bound on the number of
attributes associated with a ciphertext. Suppose the conditions of Theorem 3.10
and 3.13 hold (i.e., m ≥ m0(n, q) = O(n log q) and χ > χ0(n, q) =

√
n log q ·

ω(
√

log n)). Then, there exists q0 = O
(
Lmλχ2 + (

√
λmχPRF)τ+1χ

)
such that

for all m > m0, q > q0, and χ > χ0, Construction 6.2 is correct.

Theorem 6.4 (Static Security). There exists a polynomial m0(n, q) =
O(n log q) such that under the following conditions and assumptions, Construc-
tion 6.2 is statically secure:

– The number of samples m satisfies m ≥ m0.
– Let χsmudge = χsmudge(λ) be a smudging parameter where χsmudge >

λτ+ω(1)(mχPRF)τ+1.
– The noise parameter χ satisfies χ > λω(1)�χsmudge.
– The LWEn,m′,q,χPRF

assumption holds where m′ = poly(m, τ,Q) and Q is a
bound on the number of secret-key queries the adversary makes.

– The evasive LWE assumption with parameters n,m, q, χ, s = χ holds (in par-
ticular, the preimages K ← A−1(P) are distributed according to a discrete
Gaussian with parameter s = χ).

Parameter setting. Let λ be a security parameter. We now instantiate Construc-
tion 6.2 as follows:

– Let the lattice dimension be n = λ1/ε for some constant ε > 0.
– We can set the length of the identities gid to be τ = λ.
– For security (Theorem 6.4), we require that χsmudge > λλ+ω(1)(mχPRF)λ+1

and χ > λω(1)�χsmudge. Each of � = �(λ),m = m(λ), χPRF = χPRF(λ) are
polynomially-bounded. Thus, we can set χ = 2Õ(nε) to satisfy these require-
ments, where Õ(·) suppresses constant and logarithmic factors.

– To support arbitrary polynomial-size ciphertext policies, we set the bound
L = 2λ in Theorem 6.3. To ensure correctness, we can set m = O(n log q) and
q = O(2λmλχ2 + (λmχPRF)λ+1χ). Setting q = 2Õ(nε) suffices to satisfy these
requirements.

This yields the following corollary:

Corollary 6.5 (Multi-Authority ABE for Subset Policies from Eva-
sive LWE). Assuming polynomial hardness of LWE and of the evasive LWE
assumption (both with a sub-exponential modulus-to-noise ratio), there exists a
statically-secure multi-authority ABE for subset policies (of arbitrary polynomial
size).
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Abstract. An important theme in the research on attribute-based
encryption (ABE) is minimizing the sizes of secret keys and ciphertexts.
In this work, we present two new ABE schemes with constant-size secret
keys, i.e., the key size is independent of the sizes of policies or attributes
and dependent only on the security parameter λ.

– We construct the first key-policy ABE scheme for circuits with
constant-size secret keys, |skf | = poly(λ), which concretely consist
of only three group elements. The previous state-of-the-art scheme
by [Boneh et al., Eurocrypt ’14] has key size polynomial in the max-
imum depth d of the policy circuits, |skf | = poly(d, λ). Our new
scheme removes this dependency of key size on d while keeping the
ciphertext size the same, which grows linearly in the attribute length
and polynomially in the maximal depth, |ctx| = |x| poly(d, λ).

– We present the first ciphertext-policy ABE scheme for Boolean
formulae that simultaneously has constant-size keys and succinct
ciphertexts of size independent of the policy formulae, namely,
|skf | = poly(λ) and |ctx| = poly(|x|, λ). Concretely, each secret key
consists of only two group elements. Previous ciphertext-policy
ABE schemes either have succinct ciphertexts but non-constant-size
keys [Agrawal–Yamada, Eurocrypt ’20, Agrawal–Wichs–Yamada,
TCC ’20], or constant-size keys but large ciphertexts that grow
with the policy size as well as the attribute length. Our second
construction is the first ABE scheme achieving double succinctness,
where both keys and ciphertexts are smaller than the corresponding
attributes and policies tied to them.

Our constructions feature new ways of combining lattices with pair-
ing groups for building ABE and are proven selectively secure based
on LWE and in the generic (pairing) group model. We further show that
when replacing the LWE assumption with its adaptive variant introduced
in [Quach–Wee–Wichs FOCS ’18], the constructions become adaptively
secure.

1 Introduction

Attribute-based encryption (ABE) [24,37] is a novel generalization of public-key
encryption for enforcing fine-grained access control. In this work, we focus on
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improving the efficiency of ABE schemes, especially on minimizing the sizes of
secret keys while keeping ciphertexts small. In key-policy (KP) ABE, a secret
key skf is tied to a policy f and a ciphertext ctx encrypting a message μ is
tied to an attribute x, so that a secret key is only “authorized” to decrypt a
ciphertext if the associated attribute x satisfies the policy f . At first glance,
since a secret key specifies the associated policy f , it appears that the size of
the secret key would have to depend at least linearly on the (description) size
of f . Similarly, a ciphertext would have to grow linearly with the length of the
associated attribute x. Secret keys and ciphertexts with linear dependency of
their sizes on the policies and attributes they are tied to are said to be compact,
and most ABE schemes are indeed compact.

However, upon closer examination, as ABE does not guarantee privacy of
the policies nor the attributes, it is possible to give a description of the policy f
in the clear in the secret key, and the non-trivial part of the secret key may
be smaller than the policy. In this case, the right measure of efficiency should
be the size of the non-trivial part (i.e., the overhead), which we now view as
the secret key. We can now aim for secret keys of size smaller than that of the
policy — i.e., |skf | = o(|f |) — referred to as succinct keys, or even keys of size
independent of that of the policy — i.e., |skf | = O(1) — referred to as constant-
size keys.1 Similarly, succinct ciphertexts have size smaller than the length of
the attributes, |ctx| = o(|x|), and constant-size ciphertexts satisfy |ctx| = O(1).
We further examine the efficiency of ciphertext-policy (CP) ABE [10], which
enables instead the ciphertexts ctf to specify the policies, so that only secret
keys skx with attributes satisfying the policies can decrypt them. Naturally, suc-
cinct keys and ciphertexts have size |skx| = o(|x|) and |ctf | = o(|f |), and con-
stant size means the same as in KP-ABE.

How close can we get to the ideal efficiency of having both constant-size keys
and ciphertexts? Despite tremendous effort, the state-of-the-art is still far from
the ideal. Current ABE schemes with either succinct keys or succinct ciphertexts
can be broadly classified as follows (see Figs. 1 and 2):

– The work of [11] built KP-ABE based on LWE for polynomial-size circuits
with succinct keys |skf | = poly(d) and ciphertexts of size |ctx| = |x|poly(d),
where d is the depth of the circuit.

– Several works [5–7,32,38,42,43] constructed KP-ABE and CP-ABE for low-
depth computations with either constant-size secret keys or constant-size
ciphertexts from pairing, i.e., either |sk| = O(1) or |ct| = O(1), at the cost of
the other component being much larger, of size Ω(|f | · |x|).

– The recent works of [3,4] constructed CP-ABE for Boolean formulae with
succinct ciphertexts |ctf | = Θ(|x|) and compact keys |skx| = Θ(|x|). These
schemes are based on LWE and strong assumptions on pairing groups —
either the generic (pairing) group model [4] or knowledge assumptions [3].

In this work, we set out to improve the state-of-the-art towards the direction of
ideal efficiency. We observe that though there are ABE schemes for low-depth

1 We always ignore polynomial factors in the security parameter.
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Fig. 1. Efficiency comparison for KP-
ABE schemes. The pink region highlights
succinctness for |ctx| and |skf |. This work
and [BGG+14] are KP-ABE schemes for
circuits, while the rest of the schemes are
for low-depth computation (Color figure
online).

Fig. 2. Efficiency comparison for CP-
ABE schemes. The pink region highlights
succinctness for |ctf | and |skx|. All the
included schemes are CP-ABE for low-
depth computation (Color figure online).

computations with constant-size keys, we do not have such ABE for general
circuits. We ask:

Can we construct ABE for circuits with constant-size keys?

Furthermore, all of the above schemes either have succinct keys or succinct
ciphertexts, but never both at the same time. If we were to eventually achieve
ideal efficiency, we would have to first overcome the intermediate barrier of simul-
taneously having succinct keys and ciphertexts — we refer to this as double
succinctness. We thus ask:

Can we construct ABE for expressive policies with
both succinct keys and succinct ciphertexts?

We note that the above questions are unanswered even when assuming the strong
primitive of indistinguishability obfuscation (iO). Several works [17,18,27] con-
structed ABE for circuits (or even functional encryption for circuits) using indis-
tinguishability obfuscation or related primitives. However, they all have large
secret keys of size poly(|f |). The only work that manages to obtain ABE for
RAM with constant-size keys [20] rely on a strong primitive called extractable
witness encryption, which however lacks provably secure instantiation.

Our Results. We address both questions. For the former, we construct the first
KP-ABE scheme for circuits with constant-size keys while keeping the cipher-
text size the same as in [11]. Concretely, each secret key consists of only 3 group
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elements. For the latter, we present the first CP-ABE scheme for Boolean for-
mulae achieving double succinctness — it has constant-size keys and succinct
ciphertexts. Concretely, each secret key consists of only 2 group elements. Both
constructions rely on LWE and the generic (pairing) group model, similar to [4].

Theorem (KP-ABE). Assuming LWE, in the generic (pairing) group model,
there is a KP-ABE for circuits (Construction 2) that achieves selective security
and has key size |skC | = poly(λ) (concretely, containing 3 group elements) and
ciphertext size |ctx| = |x|poly(λ, d), where d is the maximum depth of the policy
circuits.

Theorem (CP-ABE). Assuming LWE, in the generic (pairing) group model,
there is a CP-ABE for Boolean formulae [31] that achieves very selective secu-
rity, and has constant-size keys |skx| = poly(λ) (concretely, containing 2 group
elements) and ciphertexts of size |ctf | = |x|2 poly(λ) independent of the formula
size |f |.

Additional Contribution — Adaptive Security. The standard security
property of ABE is collusion resistance, which stipulates that no information of
the message μ encrypted in a ciphertext should be revealed even when multiple
secret keys are issued, as long as none of the keys alone is authorized to decrypt
the ciphertext. Adaptive security requires collusion resistance to hold even when
attributes and policies tied to the challenge ciphertext and the secret keys are
chosen adaptively by the adversary. The weaker selective security restricts the
adversary to commit to the attribute (in KP-ABE) or the policy (in CP-ABE)
associated with the challenge ciphertext before seeing any parameters of the
system, and very selective security further requires all attributes and policies in
both the challenge ciphertext and the secret keys to be chosen statically.

Adaptive security guards against more powerful adversaries than selective
security. It is known that the latter can be generically lifted to the former via
complexity leveraging, at the cost of subexponential hardness assumptions. How-
ever, complexity leveraging is undesirable not only because it requires subexpo-
nential hardness, but also because it requires scaling the security parameter to
be polynomial in the length of the information to be guessed, λ = poly(|x|) in
KP-ABE or λ = poly(|f |) in CP-ABE. As a result, complexity leveraging is not
a viable solution when aiming for constant-size keys, as key size poly(λ) would
already depends on |x| or |f |.

Instead, we show that in our constructions of KP- and CP-ABE, if assume
adaptive LWE instead of plain LWE, then they achieve adaptive security and our
reduction only incurs a polynomial amount of security loss. The adaptive LWE
assumption [36] postulates that LWE samples of the form {sT(Ai − x[i]G) + eT

i}i

are pseudorandom, even if the adversary adaptively chooses x depending on the
random matrices {Ai}i.

Theorem (adaptive security). Assuming the polynomial hardness of adaptive
LWE (instead of LWE), in the generic (pairing) group model, the KP-ABE
scheme (Construction 2) and the CP-ABE scheme [31] are adaptively secure.
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In the literature, the ABE schemes for circuits based on lattices [11,21]
achieve only selective security (without complexity leveraging). Adapting it to
have adaptive security has remained a technical barrier, except for very limited
classes of policies such as 3-CNF [39]. Alternatively, there are schemes based
on indistinguishability obfuscation or functional encryption for all circuits that
are adaptively secure [27,40], but requiring stronger assumptions. Our technique
can be viewed as making the lattice-based schemes adaptively secure when com-
bined with pairing. Note that this is not trivial, for instance, the recent CP-ABE
schemes in [3,4] that combine [11] with pairing groups inherit the selective secu-
rity of the former (even if assuming adaptive LWE).

Organization. In Sect. 2, we present an overview of our techniques. In Sect. 3,
we introduce preliminaries. In Sect. 4, we define nearly linear secret sharing
schemes and non-annihilability, and construct such a scheme for bounded-depth
circuits based on the adaptive LWE assumption. In Sect. 5, we present our adap-
tively secure KP-ABE for bounded-depth circuits. Due to space constraints, we
refer the readers to the full version [31] for our doubly succinct CP-ABE as well
as the secret sharing scheme and our new analysis of IPFE of [1] for that.

2 Technical Overview

High-Level Ideas. Let’s focus on our KP-ABE scheme for circuits first. The
first known construction of KP-ABE for circuits from LWE [22] has keys of
size |f |poly(d, λ). The scheme of [11] reduces the key size to poly(d, λ). Both
schemes achieve only selective security because they rely on the lattice trapdoor
simulation techniques. Consider the BGG+ scheme. Its ciphertext encodes the
attributes x and message μ as follows.

BGG : sTA + eT, sT
(

B︷ ︸︸ ︷
(A1|| · · · ||A�) − x ⊗ G

)
+ (e′)T, sTv + e′′ + μ�q/2�.

One can homomorphically evaluate any circuit f on the attribute encoding to
obtain sT(Bf − f(x)G) + eT

f . To decrypt, the secret key skf simply is a short
vector rA,f satisfying (A||Bf )rA,f = v, which can be sampled using a trapdoor
TA for A. This approach however has two drawbacks:

– Difficulty towards Constant-Size Keys. The short vector rA,f contained in the
secret key skf has size poly(d, λ). This is because it has dimension m = n log q
for log q = poly(d, λ) and entries of magnitude exponential in d.

– Difficulty towards Adaptive Security. The security proof relies on the ability
to simulate trapdoors for these matrices A||Bf corresponding to secret keys
that are unauthorized to decrypt the challenge ciphertext with attribute x∗,
that is f(x∗) = 1. However, to do so, current technique plants x∗ in the public
matrices Ai’s (contained in mpk), leading to selective security. Note that even
with the stronger adaptive LWE assumption, it is unclear how to simulate
these trapdoors in another way.
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Towards constant-size keys and adaptive security, our construction circumvents
the use of lattice trapdoors all together. At a high level, we turn attention to a
much weaker lattice primitive called attribute-based laconic function evaluation
(AB-LFE) [36], and lifts it to a KP-ABE scheme for circuits using pairing. AB-
LFE is an interactive protocol where a receiver sends a digest of a function,
which is exactly the matrix Bf in BGG. The sender then encodes the attribute
x and message μ as follows.

AB-LFE : sT
(
(A1|| · · · ||A�) − x ⊗ G

)
+ (e′)T, sTBfr + e′′ + μ�q/2�.

where r = G−1(a) is the bit decomposition of a random vector a. Security
guarantees that the encoding reveals only the output f(x). At a first glance, the
LFE encoding appears the same as BGG, but the novelty is in details. Since the
LFE encoding depends on Bf (and hence f), it can be generated without using
lattice trapdoors — the short vector r sampled first, and Bfr computed next.
When f(x) = 1, the hiding of μ follows directly from the pseudorandomness of
LWE samples sT((A1|| · · · ||A�)−x⊗G))+e′ and sTa+e′′′. When x is adaptively
chosen, security follows naturally from adaptive LWE.

However, AB-LFE is able to avoid lattice trapdoor only because it is signifi-
cantly weaker than ABE, or even 1-key ABE: 1) its message encoding depends
on Bf (unknown at ABE encryption time), and 2) it is only secure for a single
function. Our next challenge is lifting AB-LFE back to full ABE, for which we
use pairing.

More specifically, we first modify the AB-LFE scheme of [36] to obtain a
nearly linear secret sharing scheme for circuits. It contains two parts.

Our LSS encoding: Lx = sT
(
(A1|| · · · ||A�) − x ⊗ G

)
+ (e′)T mod q,

Lf = sTRound(Bfr) + e′′ + μ�p/2� mod p.

Note that we round Bfr from modulus q of poly(d) length to p of poly(λ) length
so that the component Lf in the secret sharing that depends on f and μ has
constant size, which is the key towards constant-size ABE keys. To solve the
problem that Lf requires knowledge of Bf unknown at encryption time, we use
a pairing-based inner-product functional encryption (IPFE) to compute Lf in
the exponent, by viewing it as inner product Lf = 〈sT||μ�p/2�,Round(Bfr)||1〉,
where the two vectors are known respectively at ABE encryption and key gener-
ation time. To overcome that AB-LFE only guarantees security for a single Lf .
We follow the idea of [3,4] to compute δf ·Lf in the exponent instead, where δf is
an independent and random scalar chosen at key generation time. In GGM, the
presence of δf prevents adversaries from meaningfully “combining” information
from multiple Lf for different f .

Comparison with [3,4]. Our way of combining lattice-based LSS with pairing-
based IPFE differs from that of [3,4], in order to address unique technical difficul-
ties. To start with, they use an LSS scheme based on the BGG ABE and inherits
the selective security. Second, our KP-ABE scheme reveals part of the secret h Lx

in the clear (in ciphertext), and only compute Lf in the exponent, whereas [3,4]
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computes the entire LSS in the exponent. This is because the decryptor needs to
perform the non-linear rounding operation on the result of homomorphic eval-
uation on Lx, in order to obtain Round(sT(Bf − f(x)G)r + eT

f ) for decryption.
Keeping Lx in the clear allows rounding, but renders security harder to prove.

Furthermore, the security proof of AB-LFE relies on noise flooding — their
technique can only show that Lf + ẽ is secure for a super-polynomially large
ẽ. But noise flooding is incompatible with computing Lf in the exponent, since
we must keep noises polynomially small in order for decryption to be efficient
(which performs discrete logarithm). Without noise flooding, we cannot prove
that unauthorized shares are pseudorandom as in [36]. Nevertheless, we show
that unauthorized shares are “entropic”, captured by a new notion called non-
annihilability, and that the “entropic” Lf computed in the exponent still hides
the message μ. The proof of non-annihilability combines techniques from AB-
LFE and leakage simulation [16,25]. The work of [3,4] does not encounter issues
with super-polynomial noises.

We add a note on our doubly succinct CP-ABE for Boolean formulae. It is
closer to the CP-ABE scheme of [3,4]. However, to obtain constant-size keys,
we rely on an IPFE scheme with strong (selective) simulation security — it
enables simultaneously simulating a polynomial number k of ciphertexts, by
programming k inner products for every secret key, while keeping the secret key
constant-size (independent of k). Such strong simulation is impossible in the
standard model following an incompressibility argument. We show that this is
possible in GGM, in particular, the IPFE scheme of [1] satisfies it. IPFE with
such strong simulation may find other applications.

Next, we explain our ideas in more details.

Combining LSS with IPFE. An IPFE scheme enables generating keys isk(vj)
and ciphertexts ict(ui) associated with vectors vj ,ui ∈ Z

N
p such that decryption

reveals only their inner products 〈ui,vj〉 and hides all other information about
ui encrypted in the ciphertexts (whereas vj associated with the keys are public).
It can be based on a variety of assumptions such as MDDH, LWE, or DCR [1,2].

A nearly linear secret sharing scheme enables generating shares Lf , L0, {Lb
i}

associated with a policy f and some secret μ, such that for any input x ∈ {0, 1}�,
its corresponding subset of shares Lx = (L0, {L

x[i]
i }), together with Lf can be

used to approximately reconstruct the secret μ if and only if f(x) = 0:

(Lf , L0, {Lb
i}i∈[�],b∈{0,1}) ← Share(f, μ; r)

f(x) = 0 =⇒ μ ≈ Recon(f,x, Lf , Lx).

Near linearity means that Recon is linear in the shares Lf , Lx and that its output
is close to the secret μ.

How can we combine these two primitives to construct a KP-ABE? We
require L0, {Lb

i} to be independent of f and μ, and Lf to be linear in μ and the
randomness r of Share. The first requirement allows us to simply put Lx in the
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ciphertext. The second requirement allows us to encode μ, r into ict’s and the
coefficients (of Lf as a function of μ, r) into isk’s, so that their inner product is
exactly Lf . For convenience, we write [[x]]i for gx

i and use additive notation for
the groups. The idea is as follows:

kp.skf : [[δ]]2, isk(coefficients of δLf )
kp.ctx : Lx, ict(μ, r)

}

[[δLf ]]T and Lx. (1)

If f(x) = 0, the linear reconstruction can be carried out in the exponents
to approximately obtain [[δμ]]T. Decryption enumerates all possible errors to
recover μ exactly. We stress again that different from [3,4], we keep Lx in the
clear (in the ciphertext), instead of computing the entire secret sharing Lx, Lf

in the exponent, which is important for achieving constant-size keys, but makes
proving security more difficult.

We construct a secret sharing scheme that features Lf of constant size, which
translates to KP-ABE with constant-size secret keys.

Combining secret sharing and IPFE to construct CP-ABE is similar. We can
encode L0, {Lb

i} in ict’s, and a “selection” vector according to x in isk’s, so that
their inner products are exactly Lx:

cp.skx : [[δ]]2, isk(δ · selection vector for x)

cp.ctf : [[Lf ]]1, ict(L0, {Lb
i}).

}

[[δLf ]]T and [[δLx]]T.

(2)

We use an IPFE scheme with secret keys of constant size, independent of the
vector dimension or the number of ciphertexts, and a secret sharing scheme
whose Lf , Lx grows only with the input length |x|. This translates to CP-ABE
with double succinctness.

Lattice-Based Nearly Linear Secret Sharing. The BGG+ ABE scheme
introduces an important homomorphic evaluation procedure: Given public matri-
ces B = (A1|| · · · ||A|x|), and the following encoding of an input x, one can
homomorphically evaluate any circuit f on the encodings to obtain an encoding
of the output.

cT = sT(B − (1,x) ⊗ G) + eT

2,

EvalCX(c2, f,x) = cT

f = sT(Bf − f(x)G) + eT

f , where EvalC(B, f) = Bf . (3)

As discussed before, the BGG+ ABE scheme uses lattice trapdoor simulation
technique, which we try to avoid in order to get constant-size key and adaptive
security.

We hence turn to using the weaker primitive of AB-LFE scheme introduced
by [36]. It is a two-party protocol between a sender and a receiver who share
the LWE public matrix B as the common reference string. The receiver first
computes a digest Bf = EvalC(B, f) for a function f and sends it to the sender.
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Upon receiving the digest, the sender masks a message μ by an LWE sample
c0 = sTvf + e + μ�q/2�, where r = G−1(a) and vf = Bfr are analogues of
rA,f and v in BGG+. It also encodes an attribute x into LWE samples c1 as
described below.

AB-LFE.crs : B

AB-LFE.digest : Bf = EvalC(B, f)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

AB-LFE.ctf,x(μ) :

a $← Z
n
q

c0 = sT BfG−1(a)
︸ ︷︷ ︸

vf

+μ�q/2� + e

cT

1 = sT(B − (1,x) ⊗ G) + eT

1

To decrypt, first run EvalCX(c1, f,x) to obtain cf = sT(Bf − f(x)G) + eT

f . If
f(x) = 0, the decryptor can compute c0 − cT

fr = μ�q/2� + (e − eT

fr) and round
it to recover μ.

Observe that the above scheme can be viewed as a nearly linear secret sharing
scheme, where the shares chosen by x are exactly Lx = c1 and the shares depen-
dent on f and μ is Lf = c0. At the moment, the bit-length of Lf is Θ(log q).
Since the noise growth during the homomorphic evaluation is exponential to the
depth of the computation, q is a poly(d, λ)-bit modulus in order to accommo-
date for the noise growth. We next turn to reducing the size of Lf to a constant
independent of d.

Rounding to Make Lf Constant-Size. Since the encrypted message is only
a single bit, we can afford to lose a lot of precision in the above decryption
process. In particular, the scheme is still correct if we round down the digest Bf

to a much smaller, depth-independent, modulus p � q, and change c0 to use the
rounded digest (while keeping cT

1 unchanged):

c′
0 = sT�BfG−1(a)�p + μ�p/2� + e over Zp.

During decryption, one now computes, over Zp,

c′
0 − �cT

fG
−1(a)�p = c′

0 − �sTBfG−1(a) + f(x)sTa + eT

fG
−1(a)�p

= c′
0 − (

sT�BfG−1(a)�p + f(x)�sTa�p + �eT

fG
−1(a)�p

︸ ︷︷ ︸
e′

f

+ es

)

= μ�p/2� − f(x)�sTa�p + (e − e′
f − es), (4)

where the rounding error es is of magnitude |es| = Θ(‖s‖1). As long as the error
terms are much smaller than p/2, when f(x) = 0, one can still recover μ. We can
now recast the above rounded AB-LFE scheme into a secret sharing scheme with
Lf of bit-length Θ(log p), independent of depth d. (Only the larger modulus q
will, and thus ef itself can, grow with d.)

SS.pp : a,B mod q;

Lf : c′
0 = sT�BfG−1(a)�p + μ�p/2� + e mod p � q;

Lx : cT

1 = sT
(
B − (1,x) ⊗ G

)
+ eT

1 mod q.
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As shown in Eq. (1), to obtain KP-ABE, we will use a pairing-based IPFE
to compute Lf in the exponent. Specifically, the IPFE secret key isk encodes
(�BfG−1(a)�p, �p/2�), and the IPFE ciphertext ict encodes (sT, μ). Together,
they decrypt to exactly [[Lf ]]T. Since both vectors live in Zp, the KP-ABE key,
consisting of only isk, is of size independent of d. Our secret sharing scheme
is summarized below. It turns out that arguing security is actually tricky and
requires additional modification.

Our Secret Sharing Scheme for KP-ABE

Setup(1λ) : pp = LFE.pp = (a,B) = (a,A0,A1, . . . ,A�).
ShareX(pp) : Compute LWE samples

L0 = sTA0 + e0, Lb
i = sT(Ai − bG) + eT

i .

Output (L0, {Lb
i}, s).

ShareF(pp, f, μ, s) : Compute Bf = EvalC(B, f).

Output Lf = sT�BfG−1(a)�p + μ�p/2�.

∀x ∈ {0, 1}� : Lx =
(
L0,L

x[1]
1 , . . . ,Lx[�]

�

)

Recon(pp, f, Lf ,x,Lx) : If f(x) = 1, output ⊥.

Otherwise, compute cf = EvalCX(Lx, f,x), and

recover μ from Lf − �cT

fG
−1(a)�p ≈ μ�p/2�.

Non-Annihilability by Leakage Simulation. However, using AB-LFE cre-
ates a further complication, as its security relies on flooding the e′

f , es terms
(which may contain information of s and x) with e, in order to prove pseudo-
randomness of Lf . By Eqs. (3, 4), when f(x) = 1 we have

Lf = �EvalCX(Lx, f,x)TG−1(a)�p

− �sTa + ea�p + μ�p/2� + (e − e′
f − es). (5)

Observe that in the above, for later convenience, an additional polynomial LWE
noise ea is introduced in the term �sTa+ ea�p (which by rounding simply equals
to �sTa�p).

At this point, in order to show that Lf is pseudorandom, given that x is
selected before Setup, one could program the public matrices as Ai = A′

i + xiG
according to x, where B′ = (A′

0, ..,A
′
�) are sampled at random. And one would

hope to apply LWE to argue that

Lx = sT(B + (1,x) ⊗ G) + eT

1 = sTB′ + eT

1,

and (sTa + ea) are jointly pseudorandom. However, the noise terms e′
f and es

may leak information about e2 and s.
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The solution in [36] is noise flooding. By setting e to be super-polynomially
larger than (e′

f + es), we have e − e′
f − es ≈s e. By LWE, we can now switch Lx

and (sTa + ea) to random and conclude that Lf is pseudorandom.
However, the unique challenge here is that Lf is going to be computed in the

exponent of the pairing group, and decryption only recovers (μ�p/2� + e) in the
exponent. When e is super-polynomial, we can no longer extract μ out of the
exponent. Our solution is avoiding flooding altogether and remove the noise e
from Lf . As such, we cannot prove pseudorandomness of Lf , but only a weaker
security notion that we call non-annihilability (for Lf ). This notion captures
that Lf is still entropic.

Non-Annihilability. Non-annihilability requires that no adversary, after seeing
Lx (but not Lf ) can come up with an affine function γ such that γ(Lf ) = 0. As
we will see, this security notion, combined with GGM, suffices for our proof.

Towards proving non-annihilability, we want to show that Lf is highly
entropic (even without e). Our idea is to view the noises e′

f , es as leakage of the
randomness that generates Lx and (sTa + ea) as well as the other information,
and simulate e′

f , es using leakage simulation [16,25]. Crucially, because e′
f , es

have polynomial range, the simulation can run in polynomial time. More pre-
cisely, the leakage simulation lemma of [16] states that for any joint distribution
(X,Z) ∼ D (Z viewed as leakage of randomness for generating X), adversary
size bound s, and error bound ε, there is a simulator h simulating Z as h(X)
such that (X,Z) and (X,h(X)) are (s, ε)-indistinguishable. Furthermore, the
running time of h is O(sε−22|Z|). Suppose for contradiction that there is an
adversary A of size s = poly(λ) winning the non-annihilability game with prob-
ability 2ε ≥ 1/poly(λ). Consider the joint distribution D of running the game
with A, defined in the first line below:

D → {X = (pp,x,Lx, f, μ, γ, ψ = sTa + ea), Z = e′
f + es}

s,ε≈ Hybrid 1 → {X = (pp,x,Lx, f, μ, γ, ψ = sTa + ea), Z = h(X)}
≈ Hybrid 2 → {X = (pp,x,Lx random, f, μ, γ, ψ random), Z = h(X)}.

Using (X,Z), one can emulate Lf as (cf. Eq. (5) with e removed and (e′
f + es)

replaced by Z)

Lf = �EvalCX(Lx, f,x)G−1(a)�p − �ψ�p + μ�p/2� − Z.

Since Z = e′
f + es, and s, ε−1 are all polynomially bounded, we can simulate Z

by h(X) in polynomial time (Hybrid 1). Now, we can apply LWE to switch Lx,
ψ = sTa + ea to random (Hybrid 2). At this point, it seems that Lf is just pseudo-
random by the pseudorandomness of ψ. However, there is a subtle issue: Z = h(X)
depends on ψ contained in X, and hence (�ψ�p − Z) may not be pseudorandom,
and neither may be Lf . Despite this dependency, thanks again to (e′

f + es), thus
h(X), being polynomially bounded, (−�ψ�p + h(X)) still has almost full entropy
(up to a logarithmic loss). Therefore, the probability that Lf is annihilated by
an affine function γ chosen by A before ψ is randomly sampled is negligible. This
gives a contradiction and concludes the proof of non-annihilability.
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Multi-Key Security of KP-ABE in GGM. Our KP-ABE scheme combines
an IPFE scheme with the secret sharing scheme described above. As described
before, in our KP-ABE scheme, we only compute the Lf part of secret sharing
using IPFE, and leave the Lx part in the clear so that rounding can be performed.
To achieve multi-key security, we further employ the idea from [3,4] to “isolate”
each ABE secret key in GGM by multiplying it with a fresh random element δ.

kp.sk : [[δ]]2, isk
(
[[δ(�BfG−1(a)�p, �p/2�)]]2

)

kp.ct : Lx, ict([[(s, μ)]]1)

}

decrypt to [[δLf ]]T.

The decryption algorithm first computes IPFE decryption to recover [[δLf ]]T. It
then computes (homomorphically in the exponent of gT)

[[δLf ]]T − [[δ]]T�cT

fG
−1(a)�p = [[δ

(
μ�p/2� − (e′

f + es)
)
]]T.

Since the noise (e′
f + es) has a polynomial range, the decryption algorithm enu-

merates all its possible values to recover μ.
Multi-key security, at a high level, relies on the fact that in GGM, an adver-

sary can only learn information about [[δLf ]]T by submitting zero-test queries of
affine functions. When the adversary attacks multiple keys, it essentially submits
zero-test queries over the terms {δjLfj

}. Let γ({δjLfj
}) be any zero-test query

submitted by A, we can view it as a degree-1 polynomial over δj ’s:

γ({δjLfj
}) =

∑

j

γj(Lfj
)δj + γ0,

where γj(Lfj
) is the coefficient of δj . Since each δj is sampled independently at

random, by Schwartz–Zippel, with all but negligible probability, γ evaluates to
zero only if all γj ’s evaluate to zero. In other words, the adversary is effectively
constrained to annihilate each Lfj

individually. By the non-annihilability for Lf ,
if γj is not the zero function, it evaluates to non-zero with overwhelming prob-
ability. Hence the adversary learns no information of each Lfj

and the message
μ encoded in them.

Our KP-ABE Scheme

Setup(1λ) : Output mpk = impk for IPFE, pp for secret sharing
and msk = imsk for IPFE.

KeyGen(msk, C) : Sample δ $← Zp and compute Bf = EvalC(B, f).

Output sk = ([[δ]]2, isk([[δ(�BfG−1(a)�p, �p/2�)]]2)).
Enc(mpk,x, μ) : Compute (L0, {Lb

i}, s) $← ShareX(pp).
Output ct = (Lx, ict([[s, μ]]1)).

Dec(mpk, sk, C, ct,x) : Run IPFE decryption to recover [[δLf ]]T.

Compute cf = EvalCX(Lx, f,x) and find μ from

[[δLf ]]T − [[δ]]T�cT

fG
−1(a)�p = [[δ(μ�p/2� − es − e′

f )]]T.



692 H. Li et al.

Summary of Our KP-ABE. Combining the above secret sharing scheme
with an IPFE scheme, we obtain a KP-ABE scheme for bounded-depth circuits
as summarized above.

We note that our KP-ABE scheme achieves the same asymptotic ciphertext
compactness as the BGG+ scheme. Let d be an upper bound on the depth of the
policy f , then |ct| = poly(λ, d)|x|. The secret keys of our scheme contains only
O(1) group elements, in fact only three using the IPFE scheme of [2] in a group
of order p. We set log p = poly(λ) and hence obtain constant size keys.

Security Sketch for KP-ABE. Finally, for completeness, we add a security
sketch that puts the previous ideas together. We emphasize that we only use
GGM in the last argument, when we need to isolate the share Lfj

for each f .
The selective security game of ABE (summarized in H0 below) at a high

level is as follows: The adversary A first decides a challenge attribute x∗ before
receiving a master public key mpk and a ciphertext ct∗ from the challenger
C. It is then allowed to repeatedly query secret keys skj for functions fj . The
adversary wins if every queried function fj satisfies fj(x∗) �= 0, and if it guesses
the encrypted bit μ correctly.

H0

C A
x∗

mpk, ct∗ = Lx∗
, ict([[s, μ]]1)

fj

skj =
(
[[δj ]]2,

isk([[δj(�BfG
−1

(a)�p, �p/2�)]]2)
) repeat

H1

C A
x∗

mpk, ct∗ = Lx∗
, ˜ict(⊥)

fjIPFE===⇒
skj =

(
[[δj ]]2,

ĩsk([[δjLfj
]]2)

) repeat

Note that we can generate the IPFE ciphertext ict([[s, μ]]1) before any IPFE
secret keys isk([[δ(�Bfj

G−1(a)�p, �p/2�)]]2). Relying on the selective simulation
security of IPFE, we can (as summarized in H1 above) replace ict([[s, μ]]1) with
a simulated ciphertext ĩct(⊥), and each isk([[δj(�Bfj

G−1(a)�p, �p/2�)]]2) with a
simulated secret key ĩsk([[δjLfj

]]2) using their inner products.
In GGM, we can now argue that A only learns information about μ through

zero-test queries over {δjLfj
}. As argued before, by the non-annihilability of Lf ,

the adversary learns no information of μ.

Building Doubly Succinct CP-ABE. To build a CP-ABE scheme we need
a different secret sharing construction, because the previous rounding solution
does not work anymore. As described in Eq. (2), in the CP case, we use IPFE
to compute Lx in the exponent, hence cannot perform rounding on it. With-
out rounding, the ef term, as a result of EvalCX, in Eq. (4) becomes super-
polynomial. This again makes the ABE decryption inefficient.

Fortunately, for Boolean formulae, the work of [23] develops specialized homo-
morphic evaluation procedures EvalF,EvalFX that ensure the evaluation noise ef
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has a polynomial range. Therefore, our secret sharing scheme for CP removes
the rounding and replaces EvalC,EvalCX by EvalF,EvalFX. We summarize our
modified secret sharing scheme below (Setup,ShareX are kept the same).

Modified Secret Sharing Scheme for CP-ABE

ShareF′(pp, f, μ, s) : Compute Bf = EvalF(B, f).

Output Lf = sTBfG−1(a) + μ�p/2� + e.

Recon′(pp, f, Lf ,x,Lx) : If f(x) = 1, output ⊥.

Otherwise, compute cf = EvalFX(Lx, f,x),

and find μ from Lf − cT

fG
−1(a) = μ�p/2� + (e − e′

f ).

As noted before, in our CP-ABE scheme we use IPFE to compute Lx.
To achieve double succinctness, we carefully implement a pair of functions
Sel,Encode using an IPFE with constant-size isk’s, such that Sel([[x]]2) and
Encode([[L0, {Lb

i}]]1) decrypts exactly to [[Lx]]T. We obtain a CP-ABE scheme
for Boolean formulae as summarized below.

Our CP-ABE Scheme

Setup(1λ) : Output mpk = impk for IPFE and pp for secret sharing,
and msk = imsk for IPFE.

KeyGen(msk,x) : Sample δ $← Zp.

Output sk = ([[δ]]2,Sel([[δx]]2)).

Enc(mpk, f, μ) : Compute (L0, {Lb
i}, s) $← ShareX(pp)

and Lf
$← ShareF′(pp, f, μ, s).

Output ct = ([[Lf ]]1,Encode([[L0, {Lb
i}]]1)).

Dec(mpk, sk,x, ct, f) : Run IPFE decryption to recover [[δLx]]T.

Compute [[δcf ]]T = EvalFX([[δLx]]T, f,x),
and find μ from

[[Lf ]]1[[δ]]2 − [[δcT

f ]]TG−1(a) = [[δ(μ�p/2� + (e − e′
f ))]]T.

We now describe the Sel,Encode functions. Let � = |x| denote the length of
x. The Sel algorithm first computes the “selection vector” for x as

v = (1, 1 − x[1],x[1], . . . , 1 − x[i],x[i], . . . ),



694 H. Li et al.

and then computes an IPFE secret key isk([[v]]2). The Encode algorithm places
input shares in the matrix

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

L0 0 0 · · · 0 0 · · · 0 0
0 L0

1 L1
1 · · · 0 0 · · · 0 0

0
...

...
. . .

...
...

. . .
...

...
0 0 0 · · · L0

i L1
i · · · 0 0

0
...

...
. . .

...
...

. . .
...

...
0 0 0 · · · 0 0 · · · L0

� L1
�

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and computes one IPFE ciphertext for each row ul of the matrix. Our CP-ABE
has both succinct keys and ciphertexts: |sk| = O(1) and |ct| = poly(λ)|x|2.

Simulation Security for IPFE in GGM. Similar to the security proof for
KP-ABE, our security proof for CP-ABE requires selective simulation security
of IPFE.

Sel : isk([[v]]2)
Encode : ∀l ict([[ul]]1)

∣
∣
∣
∣
∣

c≈ ĩsk([[Lx]]2)

ĩct(⊥)

Note that above we need to simulate multiple IPFE ciphertexts and program
all their decryption outcome Lx in each secret key. This is possible using exist-
ing IPFE schemes [2,32], but at the cost of having the secret key size propor-
tional to the number k = |Lx| of ciphertexts to be simulated. However, we aim
for constant-size secret keys (independent of k). Unfortunately, in the standard
model, it is impossible to achieve simulation security for k ciphertexts if the
secret key is shorter than k bits by an incompressibility argument [12]. We show
that simulation security for unbounded polynomially many ciphertexts can nev-
ertheless be achieved with constant-size secret keys in the GGM. In particular,
the IPFE scheme of [1], whose secret key contains a single group element, satisfies
it. Roughly speaking, in the GGM, an adversary only learns information about
values in the exponent through zero-test queries over the pairings of keys and
ciphertexts, which the simulator can answer by translating them into zero-test
queries over the inner products. As a side note, we can in fact prove adaptive
simulation security for the [1] IPFE scheme, though our ABE scheme only relies
on selective simulation security.

Achieving Adaptive Security. Examining the security sketch for KP-ABE,
we observe that in our construction, the ict([[s, μ]]1) component of ciphertext ct∗

doesn’t depend on the challenge attribute x∗. This means that even in the adap-
tive KP-ABE game, where x∗ is decided after some key queries, the ict([[s, μ]]1)
component of ct∗ can be fixed at the beginning of the game, before any key
queries. Therefore, we can still rely on selective simulation security of IPFE for
the first proof step.
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However, when we next need to invoke non-annihilability for Lf , we run into
a problem: the security for Lf only holds when x∗ is chosen before the LWE
public matrix B is revealed in the public parameter pp of the secret sharing. To
achieve adaptive security, what we need is adaptive non-annihilability property,
which allows x∗ to be chosen adaptively dependent on pp. We show that this is
implied by the adaptive LWE assumption formulated in [36].

In summary, we obtain adaptively secure KP-ABE for circuits and CP-ABE
for Boolean formulae both with constant-size keys from GGM and Adaptive
LWE.

3 Preliminaries

Let λ be the security parameter, which runs through N. Except in the definitions,
we suppress λ for brevity. We write [a..b] for the set {a, a + 1, . . . , b} and [n] for
[1..n]. Vectors and matrices are written in boldface, and are always indexed
using [·], i.e., A[i, j] is the (i, j)-entry of A. The infinity norm of a vector and
its induced operator norm of a matrix are denoted by ‖·‖∞. We will use the
following lemma for various proofs:

Lemma 1 (Schwartz–Zippel). Let P (z) be a non-zero polynomial with Z inde-
terminates of degree at most d over Zp, then Pr

[
z $← Z

Z
p : P (z) = 0

] ≤ d/p.

3.1 Attribute-Based Encryption

Definition 1 (ABE [24]). Let P = {Pλ}λ∈N be a sequence of predicate families
with Pλ =

{
P : XP × YP → {0, 1}}

. An attribute-based encryption scheme for
P consists of 4 efficient algorithms:

– Setup(1λ, P ) takes as input the security parameter 1λ and a predicate P ∈ Pλ,
and outputs a pair of master public/secret keys (mpk,msk).

– KeyGen(msk, y) takes as input the master secret key msk and some y ∈ YP ,
and outputs a secret key sk.

– Enc(mpk, x, μ) takes as input the master public key mpk, some x ∈ XP , and
a message μ ∈ {0, 1}, and it outputs a ciphertext ct.

– Dec(mpk, sk, y, ct, x) takes as input the master public key mpk, a secret key sk,
its associated y, a ciphertext ct, and its associated x, and is supposed to
recover the message if P (x, y) = 1.

The scheme is required to be correct, i.e., for all λ ∈ N, P ∈ Pλ, x ∈ XP , y ∈ YP ,
μ ∈ {0, 1} such that P (x, y) = 1, it holds that

Pr

⎡

⎢
⎣

(mpk,msk) $← Setup(1λ, P )

sk $← KeyGen(msk, y)

ct $← Enc(mpk, x, μ)

: Dec(mpk, sk, y, ct, x) = μ

⎤

⎥
⎦ = 1.

In KP-ABE, each y ∈ YP describes a function from XP to {0, 1}, each x ∈ XP

is an input (bit-string) to the functions, and P (x, y) evaluates y on x. When we
want to emphasize x (resp. y) is a bit-string (resp. circuit), we write x (resp. C)
instead.
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Security. Due to space constraints, we refer the readers to [4,29,31] for the
definitions of adaptive, selective, and very selective security for ABE.

Computation Model. We will consider KP-ABE for bounded-depth circuits
for any polynomial bound. Our CP-ABE for NC1 can be found in the full ver-
sion [31].

Definition 2 (KP-ABE for circuits). A KP-ABE for (bounded-depth) circuits
is ABE for PCkt:2

XCkt
λ,�,d = {0, 1}�

, Y Ckt
λ,�,d =

{
Booleancircuit C : {0, 1}� → {0, 1} of depth d

}
,

PCkt
λ,�,d(x, C) = ¬C(x), PCkt

λ =
{
PCkt

λ,�,d

∣
∣�, d ∈ N, d ≤ Dλ

}
, PCkt =

{PCkt
λ

}
λ∈N

.

Here, Dλ is a super-polynomial function (specified by the constructions). As an
input to Setup, the predicate PCkt

λ,�,d is represented by (1�, 1d).

Note that since Setup takes the unary representation of �, d, which will be poly-
nomial in λ, as input, they are bounded by that polynomial once the system
is set up. However, d can be up to Dλ, which is super-polynomial in λ, so one
can set up the system for any polynomial depth, i.e., our KP-ABE for circuits
supports bounded-depth circuits for arbitrary polynomial depth bound.

Compactness and Succinctness. Since KeyGen,Enc run in polynomial time,
the lengths of key and ciphertext could grow polynomially in |y|, |x|, respectively.
Moreover, the input length is an argument passed into Setup, so both keys and
ciphertexts could have polynomial size dependency on it. We are interested in
ABE schemes with short keys and ciphertexts:

Definition 3 (ABE efficiency). A KP-ABE for circuits (of depth at most d)
has

– succinct keys if |sk| = poly(λ, d) is independent of |C|, |x|;
– compact ciphertexts if |ct| = |x|poly(λ, d) is independent of |C|.
We remark that an ideally succinct component should be of length poly(λ).
Nevertheless, our version defined above is still meaningful as the circuit size can
be much larger than its depth.

3.2 Lattice Tools

Homomorphic Evaluation. We use the following abstraction of homomorphic
evaluation for ABE over lattices, developed in a series of works [11,19,23] with
the syntax in [13,14]. The actual algorithm we use is a slightly changed version
of that for ABE for circuits in [11]. In our version, instead of using G as the
2 When working with lattices, it is more convenient to indicate authorization of decryp-

tion by zero, thus the negation of C(x).
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gadget matrix, we consider QG for any invertible Q. Note that G−1(Q−1 ×·) is
a right inverse of QG with binary output. We replace any invocation of G−1(·)
in the original algorithms by G−1(Q−1 × ·) to obtain the following:

Lemma 2 (homomorphic evaluation for circuits, adapted from [11]). EvalC and
EvalCX are two efficient deterministic algorithms. Let n, �, q be positive integers,
m = n�log2 q�, G the gadget matrix, B a matrix over Zq of shape n × (� + 1)m,
Q an invertible matrix over Zq of shape n × n, x an �-bit string (row vector),
and C a circuit of depth d with input length �. The algorithms work as follows:

– EvalC(B,Q, C) outputs HC ∈ Z
(�+1)m×m;

– EvalCX(B,Q, C,x) outputs ĤC,x ∈ Z
(�+1)m×m.

The outputs satisfy

‖HT

C‖∞, ‖ĤT

C,x‖∞ ≤ (m + 1)d,
(
B − (1,x) ⊗ QG

)
ĤC,x = BHC − C(x)QG.

Gadget Matrix [33]. Let n, q be positive integers and m = n�log2 q�. The gad-
get matrix is G = gT ⊗ In, where gT = (20, 21, . . . , 2
log2 q�−1). There exists an
efficiently computable function G−1 : Z

n
q → {0, 1}m such that G · G−1(u) = u

for all u ∈ Z
n
q .

Assumption. We rely on the following assumption, a small-secret version of
adaptive learning with errors (LWE), which itself is a natural variant of LWE
first proposed in [36]:

Definition 4 (small-secret adaptive LWE). We suppress the security param-
eter λ and all the parameters are dependent on λ. Let n be the dimen-
sion, q the modulus, χ the error distribution, m = n�log2 q�, and G the gad-
get matrix. The small-secret adaptive LWE assumption sALWEn,q,χ statesthat
Exp0

sALWE ≈ Exp1
sALWE, where Expb

sALWE(1n, q, χ) with adversary A proceeds as
follows:

– Setup. The challenger launches A and receives (1�, 1m′
) from it. The chal-

lenger samples A $← Z
n×m′
q , B $← Z

n×(�+1)m
q , and a uniformly random invert-

ible Q ∈ Z
n×n
q . It sends A,B,Q to A.

– Challenge. A submits x ∈ {0, 1}�. Depending on b,

if b = 0: s $← χn , e $← χm′
, f $← χ(�+1)m,

cT = sTA + eT, dT = sT
(
B − (1,x) ⊗ QG

)
+ f T;

if b = 1: cT $← Z
m′
q , dT $← Z

(�+1)m
q .

The challenger sends c,d to A.
– Guess A outputs a bit, which is the outcome of the experiment.

Lemma 3 (small-secret adaptive LWE). The small-secret adaptive LWE
assumption holds if the adaptive LWE assumption [36] holds for the same param-
eters.

The proof of Lemma 3 can be found in the full version [31].
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Parameter Settings. We rely on the hardness of small-secret LWE with subex-
ponential modulus-to-noise ratio. For some 0 < δ < 1

2 , the small-secret LWE
assumption is assumed to be hard when the dimension is n = poly(λ), the prime
modulus is q = O(2nδ

), and the error distribution χ is the discrete Gaussian
over Z of width B/λ truncated within [−B..B] for B = poly(λ).3 Hereafter we
default to these parameters.

3.3 Pairing Groups and Generic Asymmetric Pairing Group Model

We construct our ABE using pairing groups and prove its security in the generic
pairing group model.

Pairing Groups. Throughout the paper, we use a sequence of pairing groups

G = {(pλ, Gλ,1, Gλ,2, Gλ,T, gλ,1, gλ,2, gλ,T, eλ)}λ∈N,

where Gλ,1 (resp. Gλ,2, Gλ,T) is a cyclic group generated by gλ,1 (resp. gλ,2, gλ,T)
of prime order pλ = 2λΘ(1)

and eλ : Gλ,1 × Gλ,2 → Gλ,T is the pairing operation,
satisfying eλ(ga

λ,1, g
b
λ,2) = gab

λ,T for all integers a, b. We require the group opera-
tions as well as the pairing operation to be efficiently computable.

For a fixed security parameter λ, we denote gx
λ,i by [[x]]i for i ∈ {1, 2,T}.

The notation extends to matrices, [[A]]i = gAλ,i, where exponentiation is done
component-wise. With these notations, the group operations are written addi-
tively and the pairing operation multiplicatively. For example, [[A]]1−B[[C]]1D =
[[A − BCD]]1 and [[X]]2[[Y]]1 = [[XY]]T.

Generic Asymmetric Pairing Group. The security of our ABE scheme holds
in the generic asymmetric pairing group model (GGM), where the pairing groups
can only be accessed via (non-unique) handles representing group elements and
oracles for operating the handles. Due to space constraints, we refer the readers
to the full version [31] for the formal definition of the version we use in this work.

3.4 Inner-Product Functional Encryption

Inner-product functional encryption schemes enable generating keys and cipher-
texts tied to vectors. Decryption reveals the inner product and nothing more
about the plaintext vector. In this work, we consider IPFE schemes based on
pairing, where keys and ciphertexts are encoded in the two source groups and
decryption recovers inner products encoded in the target group.

Definition 5 (group-based IPFE). Let G be a sequence of pairing groups of
order {pλ}λ∈N. An inner-product functional encryption (IPFE) scheme based
on G consists of 4 efficient algorithms:

3 This truncation only introduces an exponentially small statistical error.
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– Setup(1λ, 1N ) takes as input the security parameter 1λ and the vector dimen-
sion 1N . It outputs a pair of master public/secret keys (impk, imsk).

– KeyGen(imsk, [[v]]2) takes as input the master secret key and a vector (encoded
in G2), and outputs a secret key isk.

– Enc(impk, [[u]]1) takes as input the master public key and a vector (encoded
in G1), and outputs a ciphertext ict.

– Dec(isk, [[v]]2, ict) takes a secret key, the vector in the secret key, and a cipher-
text as input, and is supposed to compute the inner product encoded in GT.

The scheme is required to be correct, meaning that for all λ,N ∈ N,u,v ∈ Z
N
pλ

,

Pr

⎡

⎢
⎣

(impk, imsk) $← Setup(1λ, 1N )

isk $← KeyGen(imsk, [[v]]2)

ict $← Enc(impk, [[u]]1)

: Dec(isk, [[v]]2, ict) = [[uTv]]T

⎤

⎥
⎦ = 1.

Definition 6 (key-succinct IPFE). An IPFE scheme (Definition 5) is (key-
)succinct if the length of isk is a fixed polynomial in λ, independent of N .

Security. Our basic security notion is selective simulation:

Definition 7 (selective simulation [32,41]). A simulator for an IPFE scheme
(Definition 5) consists of 3 efficient algorithms:

– S̃etup(1λ, 1N ) takes the same input as Setup, and outputs simulated
keys ( ˜impk, ˜imsk).

– K̃eyGen( ˜imsk, [[v]]2, [[zi]]2) takes as input the simulated master secret key, a vec-
tor encoded in G2, and an inner product encoded in G2. It outputs a simulated
key ĩsk.

– Ẽnc( ˜imsk) takes as input the simulated master secret key. It outputs a simu-
lated ciphertext ĩct.

The IPFE scheme is selectively simulation-secure if there exists a simulator
such that Expreal ≈ Expsim, where Expreal(1λ) or Expsim(1λ) with A proceeds as
follows:

– Challenge. The challenger launches A(1λ) and receives from it the vector
dimension 1N and the challenge vector u ∈ Z

N
p .

– Setup. The challenger runs

in Expreal: (impk, imsk) $← Setup(1λ, 1N ), ict $← Enc(impk, [[u]]1);

in Expsim: (impk, ˜imsk) $← S̃etup(1λ, 1N ), ict $← Ẽnc( ˜imsk);

and sends impk, ict to A.
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– Query. The following is repeated for arbitrarily many rounds determined
by A: In each round, A submits a vector [[vj ]]2 encoded in G2. Upon receiving
the query, the challenger runs

in Expreal: iskj
$← KeyGen(imsk, [[vj ]]2);

in Expsim: iskj
$← K̃eyGen( ˜imsk, [[vj ]]2,uT[[vj ]]2);

and sends iskj to A.
– Guess A outputs a bit b, which is the output of the experiment.

Lemma 4 ([2,41]). Assuming the MDDH assumption (true in GGM), there
exists a succinct selectively simulation-secure IPFE scheme. Its components have
sizes

|impk| = k(k + 1 + N)|G1|, |imsk| = (k + 1)N log2 p,

|isk| = (k + 1)|G2|, |ict| = (k + 1 + N)|G1|,

where p is the modulus, k is the MDDH parameter (can be 1 in GGM), N is the
dimension, and |Gi| is the bit-length of an element in Gi.

4 Computational Secret Sharing with Adaptive Security

Secret sharing schemes have been used extensively to construct ABE schemes.
The seminal work of [24] and a long line of follow-up works ( [5,28–30,35] to
name a few) used linear secret sharing schemes to construct ABE schemes in
pairing groups. Policies with polynomial-sized shares and information-theoretic
security are in NC [8,9,15,26,34].

The works of [3,4] introduced the notion of nearly linear secret sharing with
computational security. The relaxations enabled greater expressiveness and bet-
ter efficiency. Assuming LWE, such a scheme exists for all polynomial-sized cir-
cuits [3,4,11,23] and the shares are succinct, i.e., they only grow with the circuit
depth, but not the circuit size. However, the scheme is only selectively secure.
Furthermore, due to technical reasons, when combined with pairing to obtain
ABE, it only applies to Boolean formulae (equivalent to 5-PBP).

This work follows the blueprint of [3,4] for the notions of secret sharing
schemes, but departs from them in three important aspects. First, we consider a
different security notion, adaptive non-annihilability, which is incomparable4 to
selective pseudorandomness considered in [3,4] and enables us to prove adaptive
security of ABE. Second, we further relax the linearity requirement so that it
could apply to KP-ABE for polynomial-sized circuits. Third, we refine the syntax
to separate encodings of input and function.

4 It is stronger in that it is adaptive, but weaker in that the shares are not necessarily
pseudorandom.
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Definition 8 (secret sharing). Let F = {Fλ,�,param}λ,�∈N,param be an ensem-
ble of Boolean function families such that for all λ, � ∈ N and param, every
f ∈ Fλ,�,param is a function mapping {0, 1}� to {0, 1}. A secret sharing scheme
for F consists of 4 efficient algorithms:

– Setup(1λ, 1�, param) takes the security parameter 1λ, the input length 1�, and
additional parameters param as input. It outputs some public parameter pp.

– ShareX(pp) takes the public parameter pp as input. It outputs 1 + 2� shares,
L0, {Lb

i}b∈{0,1}
i∈[�] , and some shared randomness r. For x ∈ {0, 1}�, we denote

by Lx the set of shares L0, {L
x[i]
i }i∈[�].

– ShareF(pp, f, μ, r) takes the public parameter pp, a function f ∈ Fλ,�,param, a
secret μ ∈ {0, 1}, and the shared randomness r (output by ShareX) as input.
It outputs a share Lf .

– Recon(pp, f,x, Lf , Lx) takes the public parameter pp, the Boolean function
f ∈ Fλ,�,param, the input x ∈ {0, 1}� to f , and the shares Lf , Lx as input. It
is supposed to recover the secret μ if f(x) = 0. 5

The scheme is required to be correct, i.e., for all λ, � ∈ N, param, x ∈ {0, 1}�,
f ∈ Fλ,�,param, μ ∈ {0, 1} such that f(x) = 0, it holds that

Pr

⎡

⎢
⎢
⎣

pp $← Setup(1λ, 1�, param)

(L0, {Lb
i}b∈{0,1}

i∈[�] , r) $← ShareX(pp)

Lf
$← ShareF(pp, f, μ, r)

: Recon(pp, f,x, Lf , Lx) = μ

⎤

⎥
⎥
⎦ = 1.

Definition 9 (succinct shares). A secret sharing scheme is succinct if the size
of each share output by ShareX,ShareF is a fixed polynomial in λ, indepen-
dent of the length of x or the description size of f , i.e., |Lf |, |L0|, |Lb

i | are all
poly(λ, |param|), where i ∈ [�], b ∈ {0, 1}.6

While correctness (Definition 8) and succinctness (Definition 9) are defined sim-
ilarly to that of [3], our linearity and security notions are different.

4.1 Secret Sharing for Bounded-Depth Circuits from Adaptive
LWE

In our KP-ABE construction, we need a secret sharing scheme with two linearity
properties. The first is a relaxation of the nearly linear reconstruction require-
ment in [3]. requirement on reconstruction. Our relaxed version (Definition 10)
only stipulates it to be linear in Lf (and possibly non-linear in Lx).

Definition 10 (weakly nearly linear reconstruction). A secret sharing scheme
(Definition 8) is weakly nearly linear if it satisfies the following requirements:

– Let {pλ}λ∈N be a sequence of prime numbers. Lf = Lf is a vector over Zpλ
.

5 We use f(x) = 0 to express authorization.
6 There are 2|x| + 2 shares, so the total share size is linear in the length of x.
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– There is an efficient coefficient-finding algorithm FindCoef(pp, f,x, Lx), tak-
ing as input the public parameter pp, a Boolean function f ∈ Fλ,�,param, an
input x ∈ {0, 1}� to f , and the shares Lx. It outputs an affine function γ and
a noise bound 1B. For all λ, � ∈ N, param,x ∈ {0, 1}�

, f ∈ Fλ,�,param, μ ∈ {0, 1}
such that f(x) = 0, it holds that

Pr

⎡

⎢
⎢
⎢
⎢
⎣

pp $← Setup(1λ, 1�, param)

(L0, {Lb
i}b∈{0,1}

i∈[�] , r) $← ShareX(pp)

Lf ← ShareF(pp, f, μ, r)

(γ, 1B) $← FindCoef(pp, f,x, Lx)

:
4B + 1 < pλ and
∃e ∈ [−B..B]s.t.
γ(Lf ) = μ�p/2� + e

⎤

⎥
⎥
⎥
⎥
⎦

= 1.

The second is an additional linearity requirement on ShareF.

Definition 11 (linear function sharing). Let {pλ}λ∈N be a sequence of primes.
A secret sharing scheme (Definition 8) has linear function sharing if r = r is a
vector over Zpλ

and ShareF(pp, f, μ, r) is deterministic and linear in (μ, r).

A (weakly) nearly linear scheme is by definition correct. Given FindCoef, we let
Recon call FindCoef to obtain γ,B and output the unique μ ∈ {0, 1} satisfying
γ(Lf ) − μ�p/2� ∈ [−B..B]. The constructed Recon is efficient and correct. Since
Recon is implied by FindCoef, we will only specify FindCoef and omit Recon when
constructing (weakly) nearly linear secret sharing schemes.

Security. We consider a new security notion called non-annihilability. Unlike [3],
which fixes the choice of policy f before Setup is run, we allow the adversary
to adaptively choose f after seeing the public parameters pp and the input
shares Lx. Another difference is that instead of requiring all shares (Lf , Lx) to
look random, we only require that efficient adversaries cannot find a non-trivial
affine function (potentially dependent on Lx) that evaluates to zero on Lf . This
notion suffices for the security proofs of our KP-ABE scheme.

Definition 12 (non-annihilability for Lf ). Let {pλ}λ∈N be a sequence of prime
numbers. A secret sharing scheme (Definition 8) is adaptively non-annihilable
for Lf if the output Lf of ShareF is a vector over Zpλ

and all efficient adversary
wins ExpANN−f with negligible probability, where in ExpA

ANN−f(1
λ), the adversary

A interacts with the challenger as follows:

– Setup. The challenger launches A(1λ) and receives from it the input length 1�

and the additional parameter param. The challenger sets up the system by
running pp $← Setup(1λ, 1�, param), and sends pp to A.

– Share. A first submits an input x ∈ {0, 1}�. Upon receiving it, the challenger
creates the input shares by running

(
L0, {Lb

i}b∈{0,1}
i∈[�] , r

)
$← ShareX(pp) and

sends Lx to A.
– Challenge. A outputs a Boolean function f ∈ Fλ,�, a message bit μ ∈

{0, 1}, and an affine function γ. Upon receiving them, the challenger runs
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Lf
$← ShareF(pp, f, μ, r) and determines the outcome of the experiment. A

wins if i) f(x) = 1; ii) γ is not the zero function; and iii) γ(Lf ) = 0. Other-
wise, A loses.

Furthermore, a secret sharing scheme is selectively non-annihilable if it satisfies
the above conditions, with the change that the adversary must choose the input
x before receiving pp.

We now construct a succinct secret sharing scheme, satisfying the above
linearity and adaptive annihilability for bounded-depth circuits from small-secret
adaptive LWE. Our construction is based on the attribute-based laconic function
evaluation scheme [11,36].

Construction 1 (secret sharing for circuits). Let n be the LWE dimension,
p = 2ω(log λ) a fixed prime modulus, (the LWE parameters will be chosen during
Setup). We construct a weakly nearly linear and succinct secret sharing scheme,
with linear function sharing, for the family of bounded-depth circuits (see Defi-
nition 2):

Cktλ,�,d =
{

Boolean circuit C : {0, 1}� → {0, 1} of depth at most d
}
,

where d ≤ pδ/4−log2 p
(1+δ−1)Θ(1) . Let (EvalC,EvalCX) be the algorithms in Lemma 2.

– Setup(1λ, 1�, 1d) takes the input length � in unary as input. It sets

n = B =
(
(d + 1)(δ−1 + 1) + log2 p + O(d)

)2/δ
, q = 2nδ

, m = n�log2 q�,

and picks χ to be B-bounded. It next samples and sets

a $← Z
n
q , A0,A1, . . . ,A�

$← Z
n×m
q , B = (A0,A1, . . . ,A�).

It finally samples a random invertible matrix Q ∈ Z
n×n
q , and outputs

pp = (n, q,m,B, χ,a,B,Q).
Note: Recall that δ is a constant depending on the underlying adaptive LWE
assumption. The choice of n,B, q are subject to the requirement of the under-
lying adaptive LWE assumption as well as correctness and efficiency of the
scheme. They satisfy q/B ≥ (m + 1)d+1 and 4((n + 1)B + 3) + 1 < p.

– ShareX(pp) takes the public parameter pp as input. It samples and sets

s $← χn, e0, e1, . . . , e�
$← χm,

L0 = sT(A0 − QG) + eT

0, {Lb
i = sT(Ai − bQG) + eT

i}b∈{0,1}
i∈[�] ,

and outputs (L0, {Lb
i}b∈{0,1}

i∈[�] , s).
– ShareF(pp, f, μ, s) takes as input the public parameter pp, some f ∈ Cktλ,�,d,

a secret bit μ ∈ {0, 1}, and the shared randomness s. It runs Hf ←
EvalC(B,Q, f), and sets and outputs

Lf = sT�BHfG−1(a)�p + μ�p/2�, where �x�p = �px/q�.
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Note: The scheme indeed has linear function sharing (Definition 11) because
ShareF is a deterministic linear function over μ, s with coefficients �p/2�,
�BHfG−1(a)�p. The scheme is also succinct as Lf contains 1 element in Zp,
and each share output by ShareX contains m elements in Zq. Note that m is
a fixed polynomial in λ, d and is independent of the description size of f and
the input length �.

– FindCoef(pp, f,x,Lx) takes as input the public parameter pp, some
x ∈ {0, 1}�, some f ∈ Cktλ,�,d, and the shares Lx. If f(x) = 1, it outputs ⊥
and terminates. Otherwise, it runs Ĥf,x ← EvalCX(B,Q, f,x), and defines

γ
(
Lf

)
= Lf − �LxĤf,xG−1(a)�p, B = (n + 1)B + 3,

The algorithm outputs (γ, 1B).
Note: The procedure is indeed efficient since n,B are polynomials in λ, d.
We show that FindCoef is correct, i.e., if f(x) = 0, then 4B + 1 ≤ p and
γ(Lf ) = μ�p/2� + e for some e ∈ [−B,B]. First, by the choice of n,B,

4B + 1 = 4((n + 1)B + 3) + 1 ≤ p.

Next, by construction we have

γ(Lf ) = Lf − �LxĤf,xG−1(a)�p

= sT�BHfG−1(a)�p + μ�p/2�
︸ ︷︷ ︸

Lf

− �(sT(B − (1,x) ⊗ QG) + (eT

0, e
T

1, . . . , e
T

�)︸ ︷︷ ︸
Lx

)
Ĥf,xG−1(a)�p

(Lemma 2) = sT�BHfG−1(a)�p + μ�p/2�
− �sT(BHf − f(x)

︸︷︷︸
=0

QG)G−1(a) + (eT

0, e
T

1, . . . , e
T

�)Ĥf,xG−1(a)
︸ ︷︷ ︸

=ef

�p

= sT�BHfG−1(a)�p + μ�p/2� − �sTBHfG−1(a) + ef�p

Since G−1(a) ∈ {0, 1}m, by the definition of EvalCX (Lemma 2), we have

|ef | ≤ m · ‖ĤT

f,x‖∞ · ‖(eT

0, e
T

1, . . . , e
T

�)
T‖∞ ≤ (m + 1)(d+1)B

Note that we can break a rounded sum into a sum of individually rounded
terms, at the expense of some rounding errors:

�sTBHfG−1(a) + ef� = �sTBHfG−1(a)�p + �ef�p + ε, where |ε| ≤ 3,

�sTBHfG−1(a)�p = sT�BHfG−1(a)�p + es, where |es| ≤ n · ‖s‖∞ ≤ nB.

Finally, we have

γ(Lf ) = μ�p/2� + sT�BHfG−1(a)�p − �sTBHfG−1(a) + ef�p

= μ�p/2� + sT�BHfG−1(a)�p − �sTBHfG−1(a)�p − �ef�p − ε

= μ�p/2� − es − �ef�p − ε
︸ ︷︷ ︸

=e

.



ABE for Circuits with Constant-Size Keys and Adaptive Security 705

By the definition of ef , es, ε, and the setting of q, we have

|e| ≤ |es| + |�ef�p| + |ε| ≤
⌈

(m + 1)(d+1)

q/p
B

⌉
+ nB + 3 ≤ B.

Efficiency. In the above construction, the public parameters pp mainly consists
of three matrices a ∈ Z

n
q ,B ∈ Z

n×(m�)
q ,Q ∈ Z

n×n
q , where n = poly(λ, d), q =

2nδ

, and m = n�log q� = poly(λ, d). Therefore, the bit length of pp is |pp| =
poly(λ, d) · �. The shares L0 and {Lb

i} are 2�+1 vectors in Z
m
q . Therefore |L0| =

|Lb
i | = poly(λ, d). Finally, Lf is a single element in Zp, where p = 2ω(log λ).

Therefore, |Lf | = poly(λ).
We next state non-annihilability security for Lf of the scheme. The proof

can be found in the full version [31].

Proposition 5. Assuming the small-secret adaptive LWE assumption, Con-
struction 1 is non-annihilable for Lf .

5 KP-ABE for Bounded-Depth Circuits

In this section, we combine a succinct and weakly nearly linear secret shar-
ing scheme that has linear function sharing, with a succinct and selectively
simulation-secure IPFE scheme to obtain a compact and adaptively secure KP-
ABE scheme.

Construction 2 (KP-ABE). All variables xλ are indexed by λ. For simplicity
of notations, we suppress λ in subscripts. Our construction uses the following
two ingredients:

– A group based IPFE scheme (IPFE.Setup, IPFE.KeyGen, IPFE.Enc, IPFE.Dec)
with modulus p given by Lemma 4.

– A secret sharing scheme (SS.Setup,SS.ShareX,SS.ShareF,SS.FindCoef) for
bounded-depth circuits as in Construction 1. Recall that the scheme has three
properties. First, the shares are succinct: L0 and Lb

i are vectors in Zq of length
m = poly(λ, d), and LC is a single element in Zp. Second, the scheme has
weakly nearly linear reconstruction: the algorithm SS.FindCoef outputs an
affine function γ over LC that approximately evaluates to μ�p/2�. Third, the
scheme has linear function sharing: SS.ShareFSS.pp,C(·, ·) is a deterministic
linear function over Zp.

Our KP-ABE for circuits (see Definition 2) works as follows:

– Setup(1λ, P ) takes as input the security parameter λ in unary, and a predicate
P ∈ Ckt. Let �, d be the attribute length and depth for P . The algorithm runs
and sets

SS.pp $← SS.Setup(1λ, 1�, 1d),

(impk, imsk) $← IPFE.Setup(1λ, 1N ) fordimension N = n + 1,

mpk = (SS.pp, impk), msk = imsk.
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It outputs mpk,msk.
– KeyGen(msk, C) takes as input the master secret key msk and a policy

C ∈ Ckt�,d. Since the secret sharing scheme has linear function sharing (Defi-
nition 11), the SS.ShareFSS.pp,C(·, ·) function is a deterministic linear function
with coefficients c = (cμ, cr). The KeyGen algorithm samples δ $← Zp\{0},
runs

isk $← IPFE.KeyGen(imsk, [[δc]]2),

and outputs sk = ([[δ]]2, isk) as the secret key for C.
– Enc(mpk,x, μ) takes as input the master public key mpk, an attribute x ∈

{0, 1}�, and a message μ ∈ {0, 1}. The algorithm runs

(
L0, {Lb

i}b∈{0,1}
i∈[�] , r

)
$← SS.ShareX(SS.pp), ict $← IPFEEnc(impk, [[(μ, r)]]1),

and outputs ct = (Lx, ict).
– Dec(mpk, sk, C, ct,x) takes as input the master public key mpk, a secret key
sk, its associated policy C, a ciphertext ct, and its associated attribute
x. If P (x, C) = 0, the algorithm outputs ⊥ and terminates. Otherwise,
it parses sk = ([[δ]]2, isk), and computes the coefficients c = (cμ, cr) for
ShareFSS.pp,C(·, ·) as in KeyGen. The algorithm next parses ct into Lx, ict,
and runs

ΛC
$← IPFE.Dec(isk, [[δ]]2c, ict), (γ, 1B) $← SS.FindCoef(SS.pp, C,x,Lx).

The algorithm applies the affine function γ homomorphically in the exponent
of GT to compute γ(ΛC). It then finds and outputs the unique μ′ ∈ {0, 1}
(as the decrypted message) such that γ(ΛC) = [[μ′�p/2� + e]]1[[δ]]2, for some
e ∈ [−B..B], by enumerating over all possible e. Note: We show that the
scheme is correct. By the correctness of IPFE and by linear function sharing
of the secret sharing scheme, we have

ΛC = [[δ(cμ · μ + cr · r)]]T = [[δSS.ShareFSS.pp,C(μ, r)]]T = [[δLC ]]T.

Therefore, γ(ΛC) = [[δγ(LC)]]T = [[γ(LC)]]1[[δ]]2. By the correctness of the
weakly nearly linear secret sharing scheme, the decryption algorithm outputs
the correct bit μ′ = μ.

Efficiency. By Lemma 4, for MDDH dimension k = poly(λ) and input vector
length N = n + 1, the IPFE components have bit lengths |impk|, |imsk|, |ict| =
poly(λ, d), |isk| = poly(λ). Also recall that the secret sharing components have
bit lengths |SS.pp| = poly(λ, d) · �, |L0| = |Lb

i | = poly(λ, d), |LC | = poly(λ). In
the above construction,

– the master public key consists of SS.pp and impk, hence has bit length
|mpk| = |SS.pp| + |impk| = poly(λ, d) · �.
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– The master secret key consists of imsk, hence has bit length
|msk| = |imsk| = poly(λ, d).

– A secret key consists of a single isk, and [[δ]]2 in G2, hence has bit length
|sk| = |isk| + |G2| = poly(λ).

– A ciphertext consists of a single ict, and � + 1 shares, hence has bit length
|ct| = |ict| + (� + 1)|L0| = poly(λ, d) · �.

We now state adaptive IND-CPA security of the scheme. The proof can be found
in the full version [31].

Proposition 6. Suppose in Construction 2, the IPFE scheme is selectively
simulation-secure, and the secret sharing scheme is non-annihilable for Lf . Then
the constructed KP-ABE scheme is adaptively IND-CPA in GGM.
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Abstract. Multi-input functional encryption, MIFE, is a powerful
generalization of functional encryption that allows computation on
encrypted data coming from multiple different data sources. In a recent
work, Agrawal, Goyal, and Tomida (CRYPTO 2021) constructed MIFE
for the class of quadratic functions. This was the first MIFE construc-
tion from bilinear maps that went beyond inner product computation.
We advance the state-of-the-art in MIFE, and propose new constructions
with stronger security and broader functionality.

– Stronger Security: In the typical formulation of MIFE security, an
attacker is allowed to either corrupt all or none of the users who can
encrypt the data. In this work, we study MIFE security in a stronger
and more natural model where we allow an attacker to corrupt any
subset of the users, instead of only permitting all-or-nothing cor-
ruption. We formalize the model by providing each user a unique
encryption key, and letting the attacker corrupt all non-trivial sub-
sets of the encryption keys, while still maintaining the MIFE security
for ciphertexts generated using honest keys. We construct a secure
MIFE system for quadratic functions in this fine-grained corruption
model from bilinear maps. Our construction departs significantly
from the existing MIFE schemes as we need to tackle a more general
class of attackers.

– Broader Functionality: The notion of multi-client functional encryp-
tion, MCFE, is a useful extension of MIFE. In MCFE, each encryp-
tor can additionally tag each ciphertext with appropriate metadata
such that ciphertexts with only matching metadata can be decrypted
together. In more detail, each ciphertext is now annotated with a
unique label such that ciphertexts encrypted for different slots can
now only be combined together during decryption as long as the
associated labels are an exact match for all individual ciphertexts.
In this work, we upgrade our MIFE scheme to also support cipher-
text labelling. While the functionality of our scheme matches that of
MCFE for quadratic functions, our security guarantee falls short of
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the general corruption model studied for MCFE. In our model, all
encryptors share a secret key, therefore this yields a secret-key ver-
sion of quadratic MCFE, which we denote by SK-MCFE. We leave
the problem of proving security in the general corruption model as
an important open problem.

1 Introduction

Functional encryption (FE) [18,19,31] is a generalization of public key encryp-
tion that enables fine grained control over access to encrypted data. In FE, the
secret key is associated with a function f , the ciphertext is associated with an
input x from the domain of f , and decryption enables recovery of f(x) and
nothing else. Importantly, no information about x is revealed beyond what is
revealed by {fi(x)}i for any set of secret decryption keys corresponding to func-
tions {fi}i in possession of the adversary. This collusion resistance property
of FE makes it very suitable for computing on encrypted data – a ciphertext
encrypting the genomic data of hundreds of individuals can now be decrypted
using function keys corresponding to various statistical functionalities study-
ing correlations between genomic sequences and disease, while guaranteeing pri-
vacy of individual genomic sequences. Motivated by several important applica-
tions, including the construction of the powerful notion of indistinguishability
obfuscation (iO) [12,16], FE has received an enormous amount of attention in
the community, with scores of elegant constructions from diverse assumptions,
achieving various useful functionalities and satisfying assorted notions of secu-
rity [3,6,14,15,20,24,25,34].

Multi-Input Functional Encryption. Functional encryption was first gen-
eralized to support aggregated computation over multiple input sources by the
celebrated work of Goldwasser et al. [26]. The premise of multi-input FE, denoted
by MIFE, is that in many natural applications of FE it is essential to support
generalized functionalities where arity is greater than one. For instance, in the
above example of genome wide association studies, the ciphertext must encrypt
genomic data of multiple individuals for it to be useful for the statistical stud-
ies in question, but this suggests that this data must be encrypted all at once
by a single entity, which is an unreasonable assumption in practice. Genomic
data is highly sensitive information and it is much more meaningful to allow
every individual to encrypt their own data locally and generalize the construc-
tion to support functions of large arity that can process several ciphertexts at a
time. This constraint is organically captured by MIFE, where n independent
encryptors may individually generate ciphertexts for vectors {xj

i}i∈[n],j∈[poly]

and a secret key for function f allows to compute f(xj1
1 ,xj2

2 , . . . ,xjn
n ) for any

j1, . . . , jn ∈ [poly].
Since its inception, MIFE received substantial attention which quickly bifur-

cated into two parallel branches – (i) the first builds on top of powerful primitives
such as iO or compact single-input FE for general models of computation, like
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circuits or Turing machines and uses these to construct MIFE for circuits or Tur-
ing machines [11,12,16], (ii) the second focuses on efficient direct constructions
for restricted functionalities from simple assumptions such as pairings or learn-
ing with errors [1,2,4,5,9,21,23,29,32]. In this work, we continue development
of the second branch by making advances to the recently proposed construction
of MIFE for quadratic functions by Agrawal, Goyal, and Tomida [9].

Modelling Security. Given the tension between functionality and security,
where functionality seeks to reveal partial information about the input, while
security seeks to protect privacy of the input, the question of modelling security
in functional encryption has turned out to be subtle, and has been examined in
multiple works [7,8,18,30]. For the setting of unbounded collusion, namely where
the adversary can obtain any polynomial number of function keys, in the security
game, the indistinguishability based definition of security has emerged as the gold
standard (due to impossibilities that plague the alternative simulation-based
security [7,8,18]). In the single-input setting, both symmetric and public key FE
have been studied and are relevant for different applications. In the multi-input
setting, it was observed by Goldwasser et al. [26] that the symmetric key setting,
where the encryptor requires a secret key to compute a ciphertext, is much
more relevant for applications. This is to prevent the primitive from becoming
meaningless due to excessive leakage occurring by virtue of functionality. In more
detail, let us consider a two input scheme where a given first slot ciphertext hides
a challenge bit b. Now, in the public key setting, an adversary can compute an
unbounded encryptions for slot 2 herself and match these with the challenge
ciphertext of slot 1 to learn a potentially unbounded amount of information. This
unrestricted information leakage can be prevented by requiring the encryption
algorithm to require a secret key.

However, in the symmetric key multi-input setting, an additional subtlety
emerges related to the uniqueness of each user’s encryption key. For instance,
if we consider the application of encrypting genomic data discussed above, it
quickly becomes apparent that having all users share the same encryption key is
problematic – if the genomic data is encrypted and stored in a central repository,
then any malicious insider, who has contributed data and is hence in possession
of the master encryption key, can download and decrypt data belonging to any
other user! As data is supposed to span hundreds of users, the master encryption
key will become widely distributed and the privacy of honest user data can very
quickly and easily get compromised. Hence, it is crucial for security that encryp-
tion keys be unique to users, and the adversary gaining control of a particular
user’s key does not compromise the security of other users’ data.

Multi-Input FE for Quadratic Functions. Recently, Agrawal, Goyal, and
Tomida (AGT) [9] provided the first construction of multi-input functional
encryption for quadratic functions. In more detail, they construct an n-input
MIFE scheme for the function class Fm,n, which is defined as follows. Each func-
tion f ∈ Fm,n is represented by a vector c ∈ Z

(mn)2 . For inputs x1, . . . ,xn ∈ Z
m,

f is defined as f(x1, . . . ,xn) = 〈c,x ⊗ x〉 where x = (x1|| · · · ||xn) and ⊗ denotes
the Kronecker product. In their quadratic MIFE scheme for Fm,n, a user can
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encrypt xi ∈ Z
m to CTi for slot i ∈ [n], a key generator can compute a secret

key SK for c ∈ Z
(mn)2 , and decryption of CT1, . . . ,CTn with SK reveals only

〈c,x ⊗ x〉 and nothing else.
However, while this result makes exciting progress in the domain of direct

constructions for MIFE by providing the first candidate supporting quadratic
functions, it suffers from the severe drawback that all the encryptors must share
the same master key for encryption. As described above, this limits the applica-
bility of the construction for many meaningful practical applications, e.g. when
the system is susceptible to insider attacks. Moreover, having a single master key
for all users creates a single point of failure which makes the system vulnerable
to not only attack but also inadvertent leakage/misuse. Decentralizing trust is an
overarching goal in cryptography, and this motivates to design a scheme where
users have unique encryption keys and the adversarial model is strong enough
to capture corruption of some subset of these.

Multi-Client Functional Encryption. A generalization of multi-input func-
tional encryption is the notion of multi-client functional encryption (MCFE)
where the ciphertext is additionally associated with a label. In more detail,
encryptor i now encrypts not only the input xi but also a public label �i to
obtain CT(i,xi, �i). A functional key SKf for any n-ary function f can be used
to decrypt {CT(i,xi, �i)}i∈[n] if and only if all the labels match, i.e. �i = � for
all i ∈ [n]. Note that setting all labels to a single value (say “TRUE”) recov-
ers the notion of MIFE, which allows unrestricted combinations of ciphertexts
across slots. The more expressive MCFE provides additional control over allow-
able combinations of ciphertexts, which is very useful for several applications –
for instance, in the example of computing on encrypted genomic data discussed
above, being able to filter records based on some label such as ethnicity = African
may help to substantially reduce the number of inputs that participate in the
study, making the process more efficient.

We emphasize that regardless of the security model (all-or-nothing or fine-
grained), the motivation of labelling functionality is to better control the decryp-
tion pattern to reduce the information that a decrypter can learn. In the plain
n input MIFE setting, where Q ciphertexts per slot are available, the decrypter
can potentially compute Qn function values, which reveal a large amount of
information about the underlying plaintexts. However, using Q distinct labels to
label every ciphertext in each slot, we can reduce the number of function values
revealed to as little as Q. Thus, the labelling functionality is quite useful for
controlling the amount of information that a decrypter learns.

It is worth noting that for an MIFE construction supporting general circuits,
MCFE can easily be captured by adding an additional check in the function
key to verify that all the labels are equal, but for restricted function classes
like linear or quadratic functions, MCFE is more powerful than MIFE. In the
arena of direct constructions from simple assumptions, the notion of MCFE has
been studied for the case of linear functions [1,2,21,26,29] but not for quadratic
functions, to the best of our knowledge.
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Our Results. We advance the state-of-the-art in MIFE, and propose new
constructions with stronger security and broader functionality.

– Stronger Security: Typically, in the MIFE security game, an attacker is
allowed to either corrupt all or none1 of the users who can encrypt the data.
Here we study MIFE security in a “fine-grained” corruption model where an
attacker can corrupt even non-trivial subset of the users, instead of only the
trivial subsets.

We formalize such a fine-grained corruption model by providing each user
a unique encryption key, and letting the attacker corrupt any subset of the
encryption keys. We require that, even after corruption of any non-trivial sub-
set of encryption keys, the scheme still satisfies the MIFE-style security for all
ciphertexts generated using honest encryption keys. We give a construction
for a MIFE system whose security can be proven in this fine-grained cor-
ruption model, instead of the standard all-or-nothing corruption model. Our
construction departs significantly from the existing AGT quadratic MIFE
scheme [9] as we need to tackle a more general class of attackers.

We observe that while several inner product MIFE schemes already have
stronger security in the context of MCFE [1,10,22], achieving it in quadratic
MIFE is much more difficult. Intuitively, a decrypter in a quadratic MIFE
system is allowed to learn a function value on cross terms derived from dif-
ferent slots, and achieving this without heavy machinery such as obfuscation
seems to require the encryption keys to be correlated with each other (this is
also the case for the AGT scheme). Due to the correlation, the corruption of
even a single encryption key affects the security of ciphertexts for all the other
slots. This is in contrast to inner product MIFE, which is basically obtained
by running independent single-input inner product FE instances in parallel.

– Broader Functionality: In MCFE, each encryptor can specify a special label,
to tag each ciphertext with appropriate metadata, such that ciphertexts with
only exactly matching metadata/labels can be decrypted together. Here we
upgrade our MIFE scheme to additionally support ciphertext labelling. While
the functionality of our upgraded MIFE scheme matches that of MCFE for
quadratic functions, our security guarantee falls short of the general corrup-
tion model studied for MCFE. In our model, all encryptors share a secret
key, therefore this yields a secret-key version of quadratic MCFE, which we
denote by SK-MCFE. We leave the problem of proving security in the general
corruption model as an important open problem.

1.1 Technical Overview

The starting point for both of our MIFE and SK-MCFE schemes for quadratic
functions is the recent AGT scheme [9]. The AGT construction necessitates that

1 An MIFE scheme where corruption of all encrypting users is allowed is more com-
monly regarded as public-key MIFE, while disallowing corruption of any encrypting
user is regarded as secret-key MIFE.
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all encryptors share the same master secret key, thus throughout the sequel we
will refer to it as the “SK-MIFE” scheme.

A Simplified Overview of the AGT SK-MIFE Scheme. The AGT scheme
uses three building blocks – (i) SK-FE for inner product (IPFE), (ii) SK-FE
for predicate inner product (pIPFE), and (iii) SK-MIFE for mixed-group inner
product. The mixed-group property of (iii) is necessary for a technical reason
in the security proof, but for now we can consider it as SK-MIFE for inner
product (IP-MIFE). And, for security, all of the underlying schemes are required
to satisfy the corresponding function-hiding security property. Concretely, the
required MIFE schemes are summarized in Table 1.2

Table 1. Description of input and function classes for IPFE, pIPFE, IP-MIFE.

Scheme type No. of
inputs

Input class(es) Function class Description of functions

IPFE 1 X = Z
m
p F = Z

m
p fy(x) = 〈x,y〉

pIPFE 1 X = Z
m1
p × Z

m2
p F = Z

m1
p × Z

m2
p fy1,y2(x1,x2) =

{
〈x2,y2〉 if 〈x1,y1〉 = 0,

⊥ otherwise.

IP-MIFE n X1 = · · · Xn = Z
m
p F = Z

mn
p fy(x1, . . . ,xn) = 〈(x1|| . . . ||xn),y〉

Notation. We denote IPFE ciphertexts of v by iCT[v], pIPFE ciphertexts of
(v1,v2) by pCT[(v1,v2)] and IP-MIFE ciphertexts of v for slot i by miCTi[v]
under some master secret keys iMSK, pMSK, miMSK, respectively. Similarly
we denote IPFE secret keys of v by iSK[v], pIPFE secret keys of (v1,v2) by
pSK[(v1,v2)] and IP-MIFE secret keys for v by miSK[v] under the same master
secret keys iMSK, pMSK, miMSK, respectively.

AGT Scheme Description. Let us start by recalling the structure of ciphertexts
and secret keys in the AGT SK-MIFE scheme. At a high level, an AGT ciphertext
CTi of x ∈ Z

m and SK for c ∈ Z
(mn)2

p are of the following form:

CTi =
({

pCT[(h,bj)], pSK[(h̃, b̃j)]
}

j∈[m]
, iCT[d], iSK[d̃], miCTi[f ]

)
(1)

SK =
(
{σi,k}i,k∈[n] ,miSK[̃f ]

)
(2)

for some Zp vectors bj , b̃j ,d, d̃, f , f̃ ,h, h̃ and Zp elements σi,k.
Now a message vector x is encoded in the vectors bj , b̃j , and the remaining

vectors in the ciphertext are only added to either tie together separate com-
ponents of different AGT ciphertexts, or randomize a portion of a single AGT
ciphertext. We refer the reader to [9] for a more detailed overview, but for our
purposes, it is enough to understand how the decryption algorithm works.
2 Formally, the inner product functionalities defined need to involve group elements as

it is necessary for the proof. However, for simplicity of the overview, we use directly
define them over Zp.
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Consider a sequence of n AGT ciphertexts CT1, . . . ,CTn and a corresponding
secret key SK. The decryptor first runs the decryption algorithm for the pIPFE
scheme for all possible input combinations. That is, for all i, k ∈ [n] and j, � ∈ [m],
it computes

zi,j,k,� = pDec(pCT[(hi,bi,j)], pSK[(h̃k, b̃k,�)]). (3)

As it turns out, the underlying encoding procedure used in AGT ensures that
each such term is of the form zi,j,k,� = xi[j]xk[�] + ui,j,k,�, where ui,j,k,� is a
pseudorandom masking term such that

∑
c[(i, j, k, �)]ui,j,k,� = 〈c,u〉 can be

computed by combining the remaining portions of the ciphertexts and secret
key. That is, the decryptor first computes

∑
c[(i, j, k, �)]zi,j,k,� =

∑
c[(i, j, k, �)]xi[j]xk[�] +

∑
c[(i, j, k, �)]ui,j,k,�

where
∑

c[(i, j, k, �)]xi[j]xk[�] is the desired output, and then it computes∑
c[(i, j, k, �)]ui,j,k,� = 〈c,u〉 by combining the (iCT[d], iSK[d̃],miCTi[f ]) por-

tion of each ciphertext amongst themselves and also with the secret key
({σi,k}i,k∈[n] ,miSK[̃f ]).

Achieving Strong Fine-Grained Security. Recall that in the stronger fine-
grained corruption model, each encryptor has a unique encryption key, and the
adversary is allowed to corrupt any subset of encryption keys in the security
game. Throughout the sequel, we refer to such a scheme as plain MIFE in con-
trast to SK-MIFE.

Before describing our main ideas, we highlight the reason as to why AGT is
not already secure in this stronger corruption model. Observe that each compo-
nent of the AGT ciphertext CTi is generated under the same master secret key
of the corresponding scheme over all slots. In other words, it is essential that
all encryption keys include the same IPFE, pIPFE, and IP-MIFE master secret
keys. As it turns out, this is one of the main barriers to proving the SK-MIFE
construction of AGT to be strongly secure. This is because the scheme ends up
being completely insecure if encryption keys for any slot are revealed! Basically,
revealing only the underlying pIPFE master secret key allows one to completely
decrypt any ciphertexts of the AGT scheme.

While this seems like a major technical barrier at first, we observe that there
is a very elegant way to get around this problem by relying on the underlying
homomorphic properties satisfied by the SK-MIFE scheme. Although, the AGT
SK-MIFE construction can not be used as is since the usage of the pIPFE scheme
prevents any useful type of ciphertext homomorphism, we are able to simplify
the underlying SK-MIFE construction that not only avoids the usage of pIPFE
completely, but also leads to an interesting homomorphism property that we
show is very useful in upgrading any weakly secure SK-MIFE into a strongly
secure MIFE scheme.
The Special Property. Let us start by describing the special homomorphism prop-
erty P that we crucially rely on. It states that there exists an explicit and efficient
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algorithm Ẽnc, and a sequence of public elementary messages ei,1, . . . , ei,d ∈ Xi

(∀i ∈ [n]) such that – for every slot i ∈ [n] and message xi ∈ Xi, the following
two distributions are statistically indistinguishable:

{(
PP, {CTi,j}j∈[d],CTi

)
: CTi ← Enc(MSK, i, xi)

}
,{(

PP, {CTi,j}j∈[d],CTi

)
: CTi ← Ẽnc({CTi,j}j , xi)

}

where (PP,MSK) ← Setup(1λ) and CTi,j ← Enc(MSK, i, ei,j) for j ∈ [d].
Property P to MIFE. Assuming there exists an SK-MIFE scheme satisfy-

ing property P, our main observation is that there exists a generic compiler to
upgrade it to a MIFE for the same function class in which an attacker can cor-
rupt any arbitrary set of encryption keys. That is, consider any SK-MIFE scheme
(Setup′,Enc′,KeyGen′,Dec′) for some function class F satisfying property P, our
compiler upgrades it to an MIFE scheme (Setup,Enc,KeyGen′,Dec′) for F as
follows:

Setup(1λ, 1n): It computes PP,MSK ← Setup′(1λ) and CTi,j ← Enc′(MSK, i, ei,j)
for all i ∈ [n], j ∈ [d], and sets EKi = {CTi,j}j for all i ∈ [n]. Then, it outputs
the parameters as PP, {EKi}i,MSK.

Enc(EKi, x): It computes CTi ← Ẽnc({CTi,j}j , x) and outputs CTi.

The correctness follows directly from the correctness of the underlying SK-MIFE
scheme and the statistical closeness of the output distributions between Enc

and Ẽnc. And, the proof of security also follows via a hybrid argument. The
main idea is to first switch how each challenge ciphertext is generated. That is,
instead of computing it as Ẽnc({CTi,j}j , xβ), the challenger computes it directly
as Enc(MSK, i, xβ) (where β ∈ {0, 1} and x0, x1 are the challenge messages).
Note that this readily follows from the statistical closeness, and thus, by relying
on the regular security of the underlying SK-MIFE scheme, we can prove the
stronger security for our MIFE scheme. This is because the reduction algorithm
can simulate a corrupted encryption key EKi = {CTi,j}j∈[d] by querying its own
oracle on the elementary messages ei,1, . . . , ei,d. For more details, we refer the
reader to the main body.

Building SK-MIFE with Property P. In order to obtain our final result, we need to
instantiate the above generic compiler with an SK-MIFE scheme for quadratic
functions with property P. As mentioned earlier, our core idea in this part is
to rely on the homomorphic structure of the AGT SK-MIFE scheme. Recall
that a ciphertext in the AGT scheme consists of bilinear source group elements.
Thus, we can define a group operation over the AGT ciphertexts by element-wise
multiplication of group elements (and we use addition for the group operation
in what follows). Let CTi[x] be a slot-i encryption of x in the AGT scheme. Our
observation is that if for any a1, a2 ∈ Zp, we have

a1CTi[x1] + a2CTi[x2] = CTi[a1x1 + a2x2], (4)
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then we can achieve P by simply setting the elementary messages to be e1, . . . , en,
where ej is the one-hot vector with the j-th element being one, and defining Ẽnc
using the appropriate group operations. Unfortunately, this is not the case!

Insufficiency of AGT. To better understand the reason for failure, we need to
open up the encryption abstractions used in AGT to their underlying bilin-
ear form. Informally, an AGT ciphertext CTi for x ∈ Z

m
p looks like CTi =

([vMi]1, [wNi]2). Here [·]1, [·]2 denote element-wise group exponentiation in
bilinear groups G1, G2, and Mi,Ni are common matrices shared among all
ciphertexts for slot i. Also, each element of v,w depends on x and the ran-
dom tape used in encryption. Concretely, each element of v,w is one of the
following four types — (i) 1; (ii) x[j] for some j ∈ [m]; (iii) a fresh random Zp

element; or (iv) an element of the tuple (b, c, b�, c�) where b, c, � are fresh random
Zp elements.

From the viewpoint of well-formedness of a homomorphically operated
ciphertext, it is not hard to see that the elements (ii) and (iii) will stay con-
sistent with the homomorphism Eq. (4), while the elements (i) and (iv) will
no longer be well-formed after the group operations. This is because, after the
homomorphic addition as Eq. (4), the element (i) becomes a1 + a2, while the
element (iv) become an elements of the tuple (a1b1 + a2b2, a1c1 + a2c2, a1b1�1 +
a2b2�2, a1c1�1 + a2c2�2). While an element (i) can still be well-formed as long as
a1 + a2 = 1, an element (iv) will never be well-formed (unless �1 = �2, which
occurs with only negligible probability).

Stripping Away pIPFE from AGT. Diving a bit further into the structure and
semantics of the AGT SK-MIFE scheme, we find out that the elements (iv)
are derived from the pIPFE scheme. So, a natural thought is if we can remove
the pIPFE scheme from AGT, then we can eliminate the elements (iv) thereby
solving the above problem. However, the usage of the pIPFE scheme in the AGT
template was crucial as replacing it with a (non-predicate) IPFE scheme enabled
a mix-and-match attack wherein an attacker can illegally combine portions of two
different ciphertexts for the same slot. Concretely, for two ciphertexts CT1

i ,CT
2
i

in the same slot, pIPFE prevents decryptor from computing pDec(pCT1
i,j , pCT

2
i,�)

in the decryption process as in Eq. (3) (meaning that 〈h1, h̃2〉 �= 0 if h1 and h̃2

are vectors derived from two different ciphertexts for the same slot i).
Although this seems to be a major bottleneck at first, we make an important

observation that if each encryptor computes and encrypts all possible quadratic
terms between its own message vector at the time of encryption, then a decryptor
does not need to generate the quadratic terms derived from the same slot via the
pIPFE decryption. Therefore, the mix-and-match problem can be rather easily
solved by replacing pIPFE with a plain (non-predicate) IPFE scheme. And,
since this new encryption method only increases the length of the underlying
encrypted vector from m to m2, thus it is still efficient. We refer to Definition
2.6 and 2.7 for more details.

Final Rerandomization Trick. While it seems that we are done at this point,
unfortunately this is still not sufficient. And, the reason is the fact that even after
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removing elements (iv), we cannot achieve the property P by using e1, . . . , en as
the public elementary messages from two reasons. First,

∑
j x[j] is not necessarily

1, and thus elements (i) may not be 1 after the homomorphic addition. Second,
elements (iii) depend on x and the random tape used to generate the ciphertexts
of ei, and thus not independently random after the homomorphic addition. The
second reason can be visualized as the resulting ciphertext containing far less
entropy than a freshly sampled ciphertext.

However, we solve these issues by the following rerandomization trick. Our
idea is to additionally include a large sequence of 0 vectors to the list of ele-
mentary messages, and sample a fresh sequence of random elements which will
be used to homomorphically add each encryption of 0 to the underlying homo-
morphically computed ciphertext such that the resulting ciphertext has suf-
ficient entropy. That is, for a sufficiently large D, we define Ẽnc as follows:
Ẽnc

(
({CTi[ej ]}j∈[m], {CTi,j [0]}j∈[D]),x

)
computes CTi[x] as

CTi[x] = CTi,1[0] +
∑

j∈[m]

xi[j]
(
CTi[ej ] − CTi,1[0]

)
+

∑

j∈[ D−1
2 ]

γj(CTi,2j [0] − CTi,2j+1[0]),

where γ1, . . . , γ(D−1)/2 ← Zp.
This solves the second problem as now the elements (iii) are distributed

randomly if D is sufficiently large due to the fresh entropy introduced by
γ1, . . . , γ(D−1)/2. And, since we have

∑
j∈[m](xi[j] − xi[j]) +

∑
j∈[(D−1)/2](γj −

γj) = 0, thus element (i) is also equal to 1 in CTi[x]. Hence, the above rerandom-
ization trick combined with the pIPFE removal strategy gives us our SK-MIFE
scheme for quadratic functions with property P, which in turn gives us our
quadratic MIFE scheme secure in the stronger fine-grained corruption model.

Supporting the Ciphertext Labelling Functionality. Finally, we provide
a rather simple yet incredibly useful mechanism to annotate labels with SK-
MIFE ciphertexts. This adds the feature of multi-client style encryption to the
quadratic SK-MIFE scheme. To this end, we look back at the existing techniques
to achieve desired labelling for IP-MIFE schemes (that is, the ideas used to
obtain IP-MCFE, or in other words, MCFE for inner product), but find that
all techniques are rather specific to inner product. The prior works basically use
the following blueprint [1,10,21,22]. The MCFE schemes use a (single-input)
IPFE scheme as a building block, and a ciphertext of the MCFE for the i-th
slot message xi with a label lab is simply a ciphertext of the IPFE scheme for
some vector x̃i related to xi and lab. A secret key of the MCFE scheme for
c = (c1|| . . . ||cn) contains IPFE secret keys for some vector c̃i related to c for
i ∈ [n], and decryption for slot-i reveals

〈x̃i, c̃i〉 = 〈xi, ci〉 + ui

where ui is a masking term such that
∑

i∈[n] ui is equal to 0 (or a computable
value by the decryptor) only when x̃i is associated with the same label for all i.
Hence, the decryptor can learn only

∑
i〈xi, ci〉 as desired. However, the structure

of the only known MIFE scheme for quadratic functions by AGT, as observed,
is quite different from this blueprint, and thus we need a new approach.
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Our starting point is again the AGT MIFE scheme where recall the ciphertext
has the form as described in Eq. (1). A natural first thought is to try to replace
all the three underlying IPFE, pIPFE, and IP-MIFE schemes with their labelled
counterparts. After a quick glance, it appears that this would be a viable strategy
since if we could annotate each component in the AGT ciphertext with a label,
then the entire AGT ciphertext will be labelled as well.

As we elaborated during the description of our MIFE construction, the appli-
cation of pIPFE in the AGT template can be replaced with any IPFE scheme
(ignoring the quadratic increase in the overall ciphertext size). Concretely, we
showed that the ciphertext CT of the modified AGT scheme can be written as

CTi =
({

iCT(1)[bj ], iSK(1)[b̃j ]
}

j∈[m]
, iCT(2)[d], iSK(2)[d̃], miCTi[f ]

)
,

where (iCT(1), iSK(1)) and (iCT(2), iSK(2)) are generated by two separate master
secret keys iMSK(1) and iMSK(2), respectively. Thus, it seems like if we can
annotate both, the IPFE and the IP-MIFE, components of the modified AGT
scheme with the same label, then the resulting quadratic MIFE scheme will also
support ciphertext labelling functionality.

Now to annotate the IP-MIFE component of the ciphertext, we need a
labelled version of the SK-MIFE scheme for mixed-group inner products with
function-hiding security as a counterpart. Although such a scheme for inner
product is not already known, we were able to construct a new scheme with
the desired properties by combining ideas from the SK-MIFE scheme for mixed-
group inner product in [9] and the MCFE scheme for inner product in [10]. We
refer the reader to Sect. 3 for the exact details.

Finally, to get the desired result, we simply need a mechanism to annotate the
IPFE component of the AGT ciphertexts with labels such that ciphertexts with
different labels can no longer be combined. Our idea is to simply keep a PRF key
K as part of the overall system master key, and use the PRF key K to sample a
label-dependent IPFE key at the time of encryption. That is, the setup no longer
samples the IPFE keys used during the encryption, but instead the encryptor
first samples the IPFE keys using PRF(K, lab) as the randomness where lab is the
specified label, and then uses those keys to compute the appropriate ciphertext
components. Clearly, ciphertexts encrypted w.r.t. different labels can no longer
be combined since the underlying ciphertext components are now incompatible
(as they are sampled using independent IPFE keys). And, basically by iterating
the hybrid sequence of the SK-MIFE scheme for quadratic functions in [9] per
queried label, we can also prove security in the secret-key MCFE setting.

Open Problems. We conclude the introduction by discussing some open prob-
lems. To the best of our knowledge, this is the first work proposing a technique to
convert SK-MIFE to MIFE with stronger security. Since our technique is appli-
cable to all SK-MIFE schemes with property P, exploring other classes of MIFE
to which our technique is applicable is an interesting open problem. We observe
that this conversion does seem applicable to group-based SK-MIFE schemes for
inner product in [4,5] since they enjoy a nice homomorphic property. However,
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MIFE schemes for inner product with the stronger security are already known
so this does not yield a new result. Nevertheless it does give a new pathway
to obtaining these results since known MCFE schemes for inner product are
constructed without going through SK-MIFE.

The second open question is the construction of a (public-key) MCFE scheme
for quadratic functions. Interestingly, while the above ideas are sufficient for SK-
MCFE for quadratic functions, we were unable to prove security in the public-key
setting. First, in the above abstraction, the usage of PRFs to annotate the IPFE
portion of the modified AGT ciphertext requires the encryption key for each slot
to contain the secret PRF key K. Thus, corruption of even one encryption key
completely breaks down the scheme. An approach is to sample a separate PRF
key for each pair of encryption slots, however, even that does not seem to suffice
as corrupting even a single secret key for a particular encryption slot seems
to provide an attacker a mechanism to maul the labels from honest ciphertexts,
thereby breaking security. Other natural approaches run into similar roadblocks.
We leave the question full fledged MCFE as an exciting open problem.

We remark that the approach of providing generic compilers to “upgrade”
security notions of primitives can be very useful in enabling new constructions
since it simplifies the minimum building block that must be instantiated. For
the case of restricted functionalities like linear [1] or quadratic functions (this),
such compilers have required the underlying scheme to satisfy “nice” algebraic
properties. Can this requirement be removed? Given current techniques, it seems
difficult to remove such requirements without relying on strong tools like obfusca-
tion. However, exploring this question more fully is a promising line of research.

Finally, it is evidently a fascinating question whether we can “lift” the degree
of the underlying function class beyond 2 without relying on strong tools like
compact functional encryption or obfuscation. Currently, we have results from
single assumptions in the arena of degree ≤ 2 [1,2,4,5,9,21,23,29,32] and results
from combinations of assumptions for classes like NC1 and beyond [27,28] even in
the single input setting. While compact functional encryption can be generalized
to the multi-input setting [13,17], can we have constructions of MIFE and MCFE
for bigger classes of functions without relying on obfustopia primitives?

2 Preliminaries

Notation. We begin by defining the notation that we will use throughout the
paper. We use bold letters to denote vectors and the notation [a, b] to denote the
set of integers {k ∈ N | a ≤ k ≤ b}. We use [n] to denote the set [1, n]. For vector
v, v[i] denotes the i-th element of v. For (in, . . . , i1) ∈ [Nn] × · · · × [N1] ⊂ N

n,
we sometimes identify (in, . . . , i1) as

∑
j∈[2,n]

(
(ij − 1)

∏
�∈[j−1] N�

)
+ i1, which

is an element in [N1N2 · · · Nn]. This identification is used to introduce an order
in the elements in [N1] × · · · × [Nn]. For a matrix A = (aj,�)j,� over Zp, [A]i
denotes a matrix over Gi whose (j, �)-th entry is g

aj,�

i , and we use this notation
for vectors and scalars similarly. Throughout the paper, we use λ to denote the
security parameter.
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We will use a pseudorandom function (PRF) and standard cryptographic
bilinear groups where the matrix decisional Diffie-Hellman (MDDH) assumption
holds.

2.1 Multi-Input Functional Encryption

Syntax. Let n be the number of encryption slots, and F = {Fn}n∈N be a function
family such that, for all f ∈ Fn, f : X1×· · ·×Xn → Y. Here Xi and Y be the input
and output spaces (respectively). A multi-input functional encryption (MIFE)3

scheme for function family F consists of following algorithms.

Setup(1λ, 1n) → (PP, {EKi}i,MSK). It takes a security parameter 1λ, number
of slots 1n, and outputs public parameters PP, n encryption keys {EKi}i∈[n],
a master secret key MSK. (The remaining algorithms implicitly take PP as
input.)

Enc(EKi, x) → CTi. It takes the i-th encryption key EKi and an input x ∈ Xi,
and outputs a ciphertext CTi.

KeyGen(MSK, f) → SK. It takes the master key MSK and a function f ∈ F as
inputs, and outputs a decryption key SK.

Dec(CT1, . . . ,CTn,SK) → y. It takes n ciphertexts CT1, . . . ,CTn and decryption
key SK, and outputs a decryption value y ∈ Y or a special abort symbol ⊥.

Correctness. An MIFE scheme for function family F is correct if for all λ, n ∈
N, (x1, . . . , xn) ∈ X1 × · · · × Xn, f ∈ Fn, we have

Pr

⎡
⎢⎢⎣y = f(x1, . . . , xn) :

(PP, {EKi}i,MSK) ← Setup(1λ, 1n)
{CTi ← Enc(i,EKi, xi)}i

SK ← KeyGen(MSK, f)
y = Dec(CT1, . . . ,CTn,SK)

⎤
⎥⎥⎦ = 1.

Definition 2.1. For security, we define two indistinguishability-based security
definitions: message-hiding security and function-hiding security. An MIFE
scheme is sel-XX-YY-IND-secure (XX ∈ {pos, any},YY ∈ {mh, fh})4 if for any
stateful admissible PPT adversary A, there exists a negligible function negl(n)(·)
such that for all λ, n ∈ N, the following probability is negligibly close to 1/2 in
λ:

3 When n = 1, we call MIFE just functional encryption (FE).
4 “sel” stands for “selective” meaning that the adversary has to select the challenge

elements at the beginning of the security game. The opposite notion is “adaptive”.
“pos” stands for “positive”. In MCFE, a user can decrypt ciphertexts only when
it has ciphertexts for all slots with the same label, and a portion of them is use-
less for decryption. “pos” prohibits the adversary from querying the oracle on such
useless challenge elements. “mh” and “fh” stand for “message-hiding” and “function-
hiding”, respectively.
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Pr

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A({EKi}i∈CS , {CTμ}μ, {SKν}ν) = β :

β ← {0, 1}
PP, {EKi}i∈[n],MSK ← Setup(1λ, 1n)

(CS, MS, FS) ← A(1λ,PP) s.t.
CS ⊆ [n]
MS = {iμ, xμ,0, xμ,1}μ∈[qc]

FS = {fν,0, fν,1}ν∈[qk]

{CTμ ← Enc(iμ,EKiμ , xμ,β)}μ

{SKν ← KeyGen(MSK, fν,β)}ν

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where the adversary A is said to be admissible if and only if:

1. f0(x0
1, . . . , x

0
n) = f1(x1

1, . . . , x
1
n) for all sequences (x0

1, . . . , x
0
n, x1

1, . . . , x
1
n,

f0, f1) such that:
– For all i ∈ [n], [(i, x0

i , x
1
i ) ∈ MS] or [i ∈ CS and x0

i = x1
i ],

– (f0, f1) ∈ FS.
2. When XX = pos, qc[i] > 0 for all i ∈ [n], where qc[i] denotes the number of

elements of the form (i, ∗, ∗) in MS.
3. When YY = mh, fν,0 = fν,1 for all ν ∈ [qk].

MIFE security in secret-key setting. We say an MIFE scheme is secret-key MIFE
(SK-MIFE) scheme if all the n encryption keys EKi are basically the master
secret key MSK. The security of an SK-MIFE scheme is defined the same way
as an MIFE scheme except that the adversary has to set CS = ∅.

2.2 Multi-Client Functional Encryption

A multi-client functional encryption (MCFE) scheme is an extension of MIFE
where each ciphertext is now annotated with a unique label such that cipher-
texts encrypted for different slots can now only be combined together during
decryption as long as the associated labels match for all individual ciphertext
pieces. We first define its syntax where we highlight in terms of changes, how
MCFE compares with MIFE.

Syntax. An MCFE system is associated with a label space L, in addition to
the number of encryption slots n and function class F as in MIFE. A multi-
client functional encryption scheme for function family F consists of following
algorithms.

Setup,KeyGen,Dec have the same syntax as in MIFE.
Enc(EKi, lab, x) → CT. The encryption algorithm takes the i-th encryption key

EKi, a label lab, and an input x ∈ Xi, and outputs a ciphertext CTi.

Correctness. An MCFE scheme for function family F is correct if for all λ, n ∈
N, (x1, . . . , xn) ∈ X1 × · · · × Xn, f ∈ F , and label lab ∈ L, we have

Pr

⎡
⎢⎢⎣y = f(x1, . . . , xn) :

(PP, {EKi}i,MSK) ← Setup(1λ, 1n)
{CTi ← Enc(i,EKi, lab, xi)}i

SK ← KeyGen(MSK, f)
y = Dec(CT1, . . . ,CTn,SK)

⎤
⎥⎥⎦ = 1.

That is, if all the ciphertexts are encrypted for the same label, then the decryp-
tion works as in MIFE.
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MCFE Security in Secret-key Setting. In this work we are mostly interested
in the secret-key setting. The intuition behind security for secret-key MCFE is
similar to that for secret-key MIFE, with the difference that the admissibility
constraint for ciphertexts is defined for each label individually. Below we define
it formally.

Definition 2.2. An SK-MCFE scheme is sel-XX-YY-IND-secure (XX ∈ {pos,
any}],YY ∈ {mh, fh}) if for any stateful admissible PPT adversary A, there
exists a negligible function negl(n)(·) such that for all λ, n ∈ N, the following
probability is negligibly close to 1/2 in λ:

Pr

⎡
⎢⎢⎢⎢⎢⎢⎣

A({CTμ}μ, {SKν}ν) = β :

(PP,MSK) ← Setup(1λ, 1n), β ← {0, 1}
(MS,FS) ← A(1λ,PP) s.t.

MS = {iμ, labμ, xμ,0, xμ,1}μ∈[qc]

FS = {fν,0, fν,1}ν∈[qk]

{CTμ ← Enc(MSK, iμ, labμ, xμ,β)}μ

{SKν ← KeyGen(MSK, fν,β)}ν

⎤
⎥⎥⎥⎥⎥⎥⎦

where the adversary A is said to be admissible if and only if:

1. f0(x0
1, . . . , x

0
n) = f1(x1

1, . . . , x
1
n) for all sequences (x0

1, . . . , x
0
n, x1

1, . . . , x
1
n,

f0, f1, lab) such that:
– For all i ∈ [n], (i, lab, x0

i , x
1
i ) ∈ MS,

– (f0, f1) ∈ FS.
2. When XX = pos, for any label lab queried by the adversary, qc[i, lab] > 0

for all i ∈ [n], where qc[i, lab] denotes the number of elements of the form
(i, lab, ∗, ∗) in MS.

3. When YY = mh, fν,0 = fν,1 for all ν ∈ [qk].

Remark 2.3. In this paper, we only consider pos-security since a sel-pos-YY-
secure MIFE/MCFE scheme can be generically transformed into a sel-any-YY-
secure MIFE/MCFE scheme [1,2,5,23].

2.3 Functionalities

In this section, we define basic function classes for MIFE/SK-MCFE that is used
in this paper.

Definition 2.4 (Inner Product over Bilinear Groups). Let G = (p,G1,
G2, GT , g1, g2, e) be bilinear groups. A function family F IP

m,n,G for inner products
over bilinear groups consists of functions f : (Gm

1 )n → GT . Each f ∈ F IP
m,n,G is

specified by [(y1, . . . ,yn)]2 where yi ∈ Z
m
p and defined as f([x1]1, . . . , [xn]1) =

[
∑

i∈[n]〈xi,yi〉]T . We call MIFE/SK-MCFE for F IP
m,n,G MIFE/SK-MCFE for

inner product. Especially, we sometimes call FE for F IP
m,1,G inner product func-

tional encryption (IPFE).

Note that constructions of IPFE and SK-MCFE for inner product with
function-hiding (sel-any-fh) security are already known [10,33].
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Definition 2.5 (Mixed-Group Inner Products). Let G = (p,G1, G2, GT ,
g1, g2, e) be bilinear groups. A function family FMG

m1,m2,n,G for mixed-group inner
products consists of functions f : (Gm1

1 × Gm2
2 )n → GT . Each f ∈ FMG

m1,m2,n,G is
specified by ([y1,1]2, [y1,2]1, . . . , [yn,1]2, [yn,2]1) where yi,1 ∈ Z

m1
p and yi,2 ∈ Z

m2
p

and defined as f(([x1,1]1, [x1,2]2), . . . , ([xn,1]1, [xn,2]2)) = [〈x,y〉]T where x =
(x1,1,x1,2, . . . ,xn,1,xn,2) and y = (y1,1,y1,2, . . . ,yn,1,yn,2). We call MIFE/SK-
MCFE for FMG

m1,m2,n,G MIFE/SK-MCFE for mixed-group inner product.

Definition 2.6 (Bounded-Norm Quadratic functions over Z). A func-
tion family FQF

m,n,X,C for bounded-norm multi-input quadratic functions consist
of functions f : (X m)n → Z where X = {i ∈ Z | |i| ≤ X}. Each f ∈ FQF

m,n,X,C

is specified by c ∈ Z
(mn)2 s.t. ||c||∞ ≤ C and c[(i, j, k, �)] = 0 if i ≥ k. Then, f

specified by c is defined as f(x1, . . . ,xn) =
∑

i,k∈[n],j,�∈[m] c[(i, j, k, �)]xi[j]xk[�].
We call MIFE/SK-MCFE for FQF

m,n,X,C MIFE/SK-MCFE for quadratic func-
tions.

Remark 2.7. The original definition of quadratic functions in [9] provides that
c is a vector s.t. c[(i, j, k, �)] = 0 if (i, j) > (k, �) instead of i ≥ k. Actually,
the functionality in Definition 2.6 implies the original functionality by defining
g(x1, . . . ,xn) = f(x′

1, . . . ,x
′
n) where x′

i = (xi ⊗ xi,xi, 1) and f ∈ FQF
m,n,X,C .

Formally, our contribution in this paper is the constructions of MIFE and
SK-MCFE for quadratic functions from pairings. Note that only an SK-MIFE
scheme for quadratic functions based on pairings [9] is know prior to our work.

3 SK-MCFE for Mixed-Group Inner Product

In this section, we provide our construction for function-hiding SK-MCFE for
mixed-group inner-product (Definition 2.5), which is used as a building block of
our MIFE and SK-MCFE schemes for quadratic functions. The construction is
similar to the function-hiding SK-MIFE for mixed-group inner-product in [9] by
Agrawal, Goyal, and Tomida (AGT). Recall that the AGT SK-MIFE for mixed-
group inner-product is obtained by combining a function-hiding SK-MIFE for
inner-product and a function-hiding SK-FE for inner product. Our SK-MCFE
for mixed-group inner-product is obtained by replacing a function-hiding SK-
MIFE for inner-product in the AGT scheme with a function-hiding SK-MCFE
for inner-product. Note that a function-hiding SK-MCFE for inner product can
be obtained from a function-hiding MCFE scheme for inner product in [10] since
SK-MCFE is the special case of MCFE. Additionally, while the MCFE scheme
in [10] uses a hash function modeled as a random oracle in encryption, we can
replace it with a PRF in the secret-key setting. The function-hiding SK-MCFE
scheme for inner product without a random oracle is presented in Fig. 2.

Formally, we construct a function-hiding SK-MCFE scheme for FMG
m1,m2,n,G

with label space L from a function-hiding SK-MCFE scheme for F IP
m,n,G with the

same label space L and a function-hiding FE scheme for F IP
m,1,G in a generic way.
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Let icFE = (icSetup, icEnc, icKeyGen, icDec) be a function-hiding SK-MCFE for
F IP

m,n,G, and iFE = (iSetup, iEnc, iKeyGen, iDec) be a function-hiding IPFE scheme
(SK-FE for F IP

m,1,G). Then, our function-hiding SK-MCFE for mixed-group inner
product FMG

m1,m2,n,G is constructed as shown in Fig. 1.

Fig. 1. Our mixed-group IP-MIFE scheme.

Due to the limit of the space, we present the correctness and the security
proof in the full version.

4 SK-MCFE for Quadratic Functions

As explained in the technical overview, i) our MIFE scheme for quadratic func-
tions can be generically obtained from the modified AGT SK-MIFE scheme for
quadratic functions, which does not use a SK-FE scheme for predicate inner
product; ii) the modified SK-MIFE scheme can be seen as the special case of our
SK-MCFE scheme, where the label space consists of one element. Considering
the above two facts, we first present our SK-MCFE scheme for quadratic func-
tions to save the effort of presenting the security proof of the modified SK-MIFE
scheme in the construction of our MIFE scheme.

4.1 Construction

Let mgFE = (mgSetup,mgEnc,mgKeyGen,mgDec) be an SK-MCFE scheme
for mixed-group inner product (Sect. 3) with label space L, and iFE =
(iSetup, iEnc, iKeyGen, iDec) be a function-hiding IPFE scheme. Also, let PRF =
{PRFλ}λ∈N

be a PRF family where PRFλ : {0, 1}λ ×L → {0, 1}λ and G be bilin-
ear groups. Below we provide an SK-MCFE scheme for function class FQF

m,n,X,C
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with the same label space L. Similarly to [9], we can construct our SK-MCFE
scheme from MDDHk, while it makes the construction and security proof far
more complicated as we can see in [9]. Thus, we present the construction based
on MDDH1 for better readability in this paper.

Setup(1λ, 1n) samples a random PRF key K ← {0, 1}λ and the master keys
for the underlying IPFE and SK-MCFE scheme as (iPP(2), iMSK(2)) ←
iSetup(1λ), (mgPP,mgMSK) ← mgSetup(1λ, 1n) where the vector length of
iFE is set as 2, and the vector length of mgFE is set as m2n + 2 and 1. Note
that iPP(2) = mgPP = G. It also samples a sequence of randomization terms
as:

∀ i, k ∈ [n], j, � ∈ [m], w(i,j,k,�) ← Zp

∀ i ∈ [n], j ∈ [m], ui,j , ũi,j , vi,j , ṽi,j ← Zp

It outputs the public parameters and master key as

PP = G, MSK =
(
K, iMSK(2),mgMSK, {w(i,j,k,�)}i,j,k,�, {ui,j , ũi,j , vi,j , ṽi,j}i,j

)
.

Enc(MSK, i, lab,x) parses MSK as above, and using the PRF key K, it samples
a IPFE master key of vector length mn + 3m + 4 as (iPP(1), iMSK(1)) ←
iSetup(1λ;PRF(K, lab)). Here we assume (w.l.o.g.) that the MIFE setup
algorithm takes λ bits as random coins. It then samples random elements
s, s̃, r, t ← Zp. And, it sets vectors bj , b̃j for j ∈ [m] as follows:

bj = (x[j], 0, se(i,j), rui,j , vi,j ,03m), b̃j = (x[j], 0, s̃w(∗,∗,i,j), ũi,j , tṽi,j ,03m).

where e(i,j) is the mn-dimensional one-hot vector with the (i, j)-th element
being 1, and vector w(∗,∗,i,j) ∈ Z

mn
p is defined as follows:

∀ j ∈ [m], w(∗,∗,i,j) = (w(1,1,i,j), w(1,2,i,j), . . . , w(n,m,i,j))

The encryptor encodes the vectors bj , b̃j under MIFE as follows:

∀ j ∈ [m], iCTj ← iEnc(iMSK(1), [bj ]1), iSKj ← iKeyGen(iMSK(1), [b̃j ]2).

It also encodes the random elements s, s̃ as follows:

iCT ← iEnc(iMSK(2), [(s, 0)]1), iSK ← iKeyGen(iMSK(2), [(s̃, 0)]2).

Lastly, it sets f = (r, t,0m2n), h = 0, and encrypts elements f , h as

mgCT ← mgEnc(mgMSK, i, lab, ([f ]1, [h]2)).

And the resulting ciphertext is set as below:

CT = ({iCTj}j , {iSKj}j , iCT, iSK,mgCT) .
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KeyGen(MSK, c) parses MSK as above, and the key vector c lies in the space
Z

(mn)2 . Let the vector f̃i ∈ Z
(2+m2n)
p be the following vector: for all i ∈ [n],

f̃i[1] =
∑

j,�∈[m],k∈[n]

c[(i, j, k, �)]ui,j ũk,�, f̃i[2] =
∑

j,�∈[m],k∈[n]

c[(k, �, i, j)]vk,�ṽi,j

and f̃i is zeros at all other places. It also sets h̃i = 0 for all i ∈ [n]. The key
generator samples a SK-MCFE secret key corresponding to vectors {f̃i, h̃i}i as
mgSK ← mgKeyGen(mgMSK, {[̃fi]2, [h̃i]1}i∈[n]), and partial derandomization
terms:

∀ i, k ∈ [n], σi,k =
∑

j,�∈[m]

c[(i, j, k, �)]w(i,j,k,�)

And, it outputs the secret key as

SK = (c,mgSK, {σi,k}i,k) .

Dec(CT1, . . . ,CTn,SK) parses the ciphertexts and secret key as:

CTi = ({iCTi,j}i,j , {iSKi,j}i,j , iCTi, iSKi,mgCTi) , SK = (c,mgSK, {σi,k}i,k) .

It runs the MIFE decryption algorithm as:

[z1]T =
∏

i,k∈[n]
j,�∈[m]

iDec(iCTi,j , iSKk,�)c[(i,j,k,�)], [z2]T =
∏

i,k∈[n]

iDec(iCTi, iSKk)σi,k

It also runs the SK-MCFE decryption algorithm as:

[z3]T = mgDec(mgCT1, . . . ,mgCTn,mgSK)

Finally it outputs z where [z]T = [z1 − z2 − z3]T by searching for z within the
range of z ≤ |m2n2CX2|.

Correctness. Let si, s̃i, ri, ti for i ∈ [n] be random elements used to generate
CTi. Due to the correctness of iFE,mgFE, in decryption, we have

z1 =
∑

i,k∈[n],j,�∈[m]

c[(i, j, k, �)](xi[j]xk[�] + sis̃kw(i,j,k,�) + riui,j ũk,� + tkvi,j ṽk,�)

z2 =
∑

i,k∈[n],j,�∈[m]

c[(i, j, k, �)]sis̃kw(i,j,k,�)

z3 =
∑

i,k∈[n],j,�∈[m]

c[(i, j, k, �)](riui,j ũk,� + tkvi,j ṽk,�).

Therefore, we have z =
∑

i,k∈[n],j,�∈[m] c[(i, j, k, �)]xi[j]xk[�].
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4.2 Security

For security, we have the following theorem.

Theorem 4.1. If iFE and mgFE are sel-pos-fh-IND-secure, and the MDDH1

assumption holds in G, then the proposed SK-MCFE for quadratic functions is
sel-pos-mh-IND-secure.

Due to the limit of the space, we present the security proof in the full version.

5 MIFE for Quadratic Functions

In this section, we provide our construction for MIFE for quadratic functions.

5.1 Homomorphism in Underlying Schemes

For the construction of our MIFE for quadratic functions, we use the same
building blocks as SK-MCFE for quadratic functions Sect. 4, namely, a function-
hiding SK-MCFE scheme mgFE for mixed-group inner product and a function-
hiding IPFE scheme iFE. Additionally, we require them to have homomorphism
for the construction of MIFE for quadratic functions. Precisely iFE needs to
have homomorphism for both encryption and key generation while mgFE needs
to have homomorphism for only encryption.

Homomorphism of iFE. We use function-hiding IPFE in [33] for iFE with homo-
morphism. In their construction from MDDH1, the setup algorithm chooses a
bilinear group G and a random matrix B in Z

(m+3)×(m+3)
p , and sets PP =

G,MSK = (B,B∗) where B∗ = (B−1)�. Encryption of [x]1 ∈ Gm
1 chooses

r ← Zp and outputs iCT = [(x, r, 0, 0)B]1. Similarly, key generation of [y]2 ∈ Gm
2

chooses s ← Zp and outputs iSK = [(y, 0, s, 0)B∗]2. Thus, the random-tape space
of iEnc and iKeyGen can be seen as Zp and, for all x1,x2,y1,y2 ∈ Z

m
p , a1, a2, r1,

r2, s1, s2 ∈ Zp we have the following homomorphism of Zp-module with respect
to encryption and key generation:

a1iEnc(iMSK, [x1]1; r1) + a2iEnc(iMSK, [x2]1; r2)
= iEnc(iMSK, [a1x1 + a2x2]1; a1r1 + a2r2)

a1iKeyGen(iMSK, [y1]2; s1) + a2iKeyGen(iMSK, [y2]2; s2)
= iKeyGen(iMSK, [a1y1 + a2y2]2; a1s1 + a2s2)

We can confirm this as follows:

a1[(x1, r1, 0, 0)B]1 + a2[(x2, r2, 0, 0)B]1 = [(a1x1 + a2x2, a1r1 + a2r2, 0, 0)B]1

a1[(y1, 0, s1, 0)B∗]2 + a2[(y2, 0, s2, 0)B∗]2 = [(a1y1 + a2y2, 0, a1s1 + a2s2, 0)B∗]2.



Multi-Input Quadratic Functional Encryption 731

Homomorphism of mgFE. As shown in Sect. 3, our SK-MCFE scheme mgFE
for mixed-group inner product uses a function-hiding SK-MCFE scheme icFE
for inner product and function-hiding FE scheme iFE for inner product as a
building block. For a function-hiding SK-MCFE scheme for inner product, we
use a slightly modified function-hiding MCFE scheme for inner product proposed
in [10], which is described in Fig. 2. The modification lies in the way of generating
t in encryption, which is generated via a random oracle in the MCFE scheme in
[10], but PRF suffices in the secret-key setting. Since an icFE ciphertext consists
of a iFE ciphertext, a mgFE ciphertext of ([x1]1, [x2]2) ∈ Gm1

1 × Gm2
2 can be

generated as

r1, r2 ← Zp, z ← Z
k
p, t = PRF(K, lab)

iEnc(iMSK(1), ([(x1, 0m2 , z, 0, 0m1+m2+k+1, t, 0)]1); r1)

iKeyGen(iMSK(2), ([(x2,−z, 0, )]2); r2)

for some master secret keys iMSK(1), iMSK(2) and PRF key K. Thus, the random-
tape space of mgEnc can be set as Z

k+2
p , and by using the homomorphism of

iFE, we can obtain the following homomorphism of ciphertexts in mgFE. For all
N ∈ N, i ∈ [n], lab ∈ L, a1, . . . , aN ∈ Zp s.t.

∑
j∈[N ] aj = 1, x1,1, . . . ,xN,1 ∈

Z
m1
p , x1,2, . . . ,xN,2 ∈ Z

m2
p , r1, . . . , rN ∈ Z

k+2
p , we have

∑
j∈[N ]

ajmgEnc(mgMSK, i, lab, ([xj,1]1, [xj,2]2); rj)

= mgEnc(mgMSK, i, lab, ([
∑

j∈[N ]

ajxj,1]1, [
∑

j∈[N ]

ajxj,2]2);
∑

j∈[N ]

ajrj)

5.2 Construction

Let mgFE = (mgSetup,mgEnc,mgKeyGen,mgDec) be an SK-MCFE scheme
for mixed-group inner product (Sect. 3) with label space L, and iFE =
(iSetup, iEnc, iKeyGen, iDec) be a function-hiding IPFE scheme. Also, let PRF =
{PRFλ}λ∈N

be a PRF family where PRFλ : {0, 1}λ × L → {0, 1}λ. Let lab0 be
a fixed label in L and D = 4m + 2k + 17 where k is the parameter for the
bilateral MDDH assumption used for mgFE. Below we provide an MIFE scheme
for function class FQF

m,n,X,C . Note that MstEnc is a subroutine algorithm used in

Setup, which corresponds to Ẽnc of property P in the technical overview.
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Fig. 2. Function-Hiding SK-MCFE for inner product

Setup(1λ, 1n) samples a random PRF key K ← {0, 1}λ and the master keys
for the underlying IPFE and SK-MCFE scheme as (iPP(2), iMSK(2)) ←
iSetup(1λ), (mgPP,mgMSK) ← mgSetup(1λ, 1n) where the vector length of
iFE is set as 2, and the vector length of mgFE is set as m2n + 2 and 1. Note
that iPP(2) = mgPP = G. It also samples a sequence of randomization terms
as:

∀ i, k ∈ [n], j, � ∈ [m], w(i,j,k,�) ← Zp

∀ i ∈ [n], j ∈ [m], ui,j , ũi,j , vi,j , ṽi,j ← Zp

It sets the public parameters and master key as

PP = G, MSK =
(
K, iMSK(2),mgMSK, {w(i,j,k,�)}i,j,k,�, {ui,j , ũi,j , vi,j , ṽi,j}i,j

)
.

It runs MstEnc described below to generate master ciphertexts, which forms
encryption keys, as

∀ i ∈ [n], j ∈ [m], MCT1,i,j ← MstEnc(MSK, i, ej)
∀ i ∈ [n], j ∈ [D], MCT0,i,j ← MstEnc(MSK, i,0m).
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Finally it output encryption keys together with the public key and master
secret key as

∀ i ∈ [n], EKi = ({MCT1,i,j}j∈[n], {MCT0,i,j}j∈[D]).

MstEnc(MSK, i,x) parses MSK as above, and using the PRF key K, it samples
a IPFE master key of vector length mn + 3m + 4 as:

(iPP(1), iMSK(1)) ← iSetup(1λ;PRF(K, lab0))

It then samples random elements s, s̃, r, t ← Zp. And, it sets vectors bj , b̃j

for j ∈ [m] as follows:

bj = (x[j], 0, se(i,j), rui,j , vi,j ,03m), b̃j = (x[j], 0, s̃w(∗,∗,i,j), ũi,j , tṽi,j ,03m).

where where e(i,j) is the mn-dimensional one-hot vector with the (i, j)-th
element being 1, and vector w(∗,∗,i,j) ∈ Z

mn
p is defined as follows:

∀ j ∈ [m], w(∗,∗,i,j) = (w(1,1,i,j), w(1,2,i,j), . . . , w(n,m,i,j))

The encryptor encodes the vectors bj , b̃j under MIFE as follows:

∀ j ∈ [m], iCTj ← iEnc(iMSK(1), [bj ]1), iSKj ← iKeyGen(iMSK(1), [b̃j ]2).

It also encodes the random elements s, s̃ as follows:

iCT ← iEnc(iMSK(2), [(s, 0)]1), iSK ← iKeyGen(iMSK(2), [(s̃, 0)]2).

Lastly, it sets f = (r, t,0m2n), h = 0, and encrypts elements f , h with respect
to label lab0 as

mgCT ← mgEnc(mgMSK, i, lab0, ([f ]1, [h]2)).

The resulting ciphertext is set as MCT = ({iCTj}j , {iSKj}j , iCT, iSK,mgCT) .
Enc(EKi,x) parses EKi as above. It then samples random elements

γ1, . . . , γ(D−1)/2 ← Zp. And, it encrypts x to CT by homomorphic addition
of master ciphertexts as follows:

CT =
∑

j∈[m]

x[j]MCT1,i,j −
⎛
⎝∑

j∈[m]

x[j] − 1

⎞
⎠MCT0,i,1

+
∑

j∈[(D−1)/2]

γj(MCT0,i,2j − MCT0,i,2j+1)

where the above is the component-wise homomorphic addition with respect
to ciphertexts of iFE and mgFE. Then, it outputs CT.
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KeyGen(MSK, c) parses MSK as above, and the key vector c lies in the space
Z

(mn)2

p . Let the vector f̃i ∈ Z
(2+m2n)
p be the following vector: for all i ∈ [n]

f̃i[1] =
∑

j,�∈[m],k∈[n]

c[(i, j, k, �)]ui,j ũk,�, f̃i[2] =
∑

j,�∈[m],k∈[n]

c[(k, �, i, j)]vk,�ṽi,j

and f̃i is zeros at all other places. It also sets h̃i = 0 for all i ∈ [n]. The key
generator samples a SK-MCFE secret key corresponding to vectors {f̃i, h̃i}i as
mgSK ← mgKeyGen(mgMSK, {[̃fi]2, [h̃i]1}i∈[n]), and partial derandomization
terms:

∀ i, k ∈ [n], σi,k =
∑

j,�∈[m]

c[(i, j, k, �)]w(i,j,k,�)

And, it outputs the secret key as SK = (c,mgSK, {σi,k}i,k) .
Dec(CT1, . . . ,CTn,SK) parses the ciphertexts and secret key as:

CTi = ({iCTi,j}i,j , {iSKi,j}i,j , iCTi, iSKi,mgCTi) ,

SK = (c,mgSK, {σi,k}i,k) .

It runs the MIFE decryption algorithm as:

[z1]T =
∏

i,k∈[n],
j,�∈[m]

iDec(iCTi,j , iSKk,�)c[(i,j,k,�)], [z2]T =
∏

i,k∈[n]

iDec(iCTi, iSKk)σi,k

It also runs the SK-MCFE decryption algorithm as:

[z3]T = mgDec(mgCT1, . . . ,mgCTn,mgSK)

Finally it outputs z where [z]T = [z1 − z2 − z3]T by searching for z within the
range of z ≤ |m2n2CX2|.

Correctness. Let sb,i,j , s̃b,i,j , rb,i,j , tb,i,j for b ∈ {0, 1}, i ∈ [n], j ∈ [D] be random
elements used to generate MCTb,i,j in EKi. Thanks to the homomorphism of iFE
and mgFE, Enc(EKi,x) outputs CTi = ({iCTi,j}j , {iSKi,j}j , iCTi, iSKi,mgCTi),
which are encryption of

[b]1 = [(xi[j], 0, sie(i,j), riui,j , vi,j ,03m)]1

[b̃]2 = [(xi[j], 0, s̃iw(∗,∗,i,j), ũi,j , tiṽi,j ,03m)]2
[(si, 0)]1, [(s̃i, 0)]2, ([f ]1, [h]2) = ([(ri, ti,0m2n)]1, [0]2) for label lab0

(5)
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respectively, where

si =
∑

j∈[m]

xi[j]s1,i,j −
⎛
⎝∑

j∈[m]

xi[j] − 1

⎞
⎠ s0,i,1 +

∑
j∈[(D−1)/2]

γj(s0,i,2j − s0,i,2j+1)

s̃i =
∑

j∈[m]

xi[j]s̃1,i,j −
⎛
⎝∑

j∈[m]

xi[j] − 1

⎞
⎠ s̃0,i,1 +

∑
j∈[(D−1)/2]

γj(s̃0,i,2j − s̃0,i,2j+1)

ri =
∑

j∈[m]

xi[j]r1,i,j −
⎛
⎝∑

j∈[m]

xi[j] − 1

⎞
⎠ r0,i,1 +

∑
j∈[(D−1)/2]

γj(r0,i,2j − r0,i,2j+1)

ti =
∑

j∈[m]

xi[j]t1,i,j −
⎛
⎝∑

j∈[m]

xi[j] − 1

⎞
⎠ t0,i,1 +

∑
j∈[(D−1)/2]

γj(t0,i,2j − t0,i,2j+1).

(6)

Hence, similarly to the correctness of our SK-MCFE for quadratic functions
(Sect. 4), in decryption, we have

z1 =
∑

i,k∈[n],j,�∈[m]

c[(i, j, k, �)](xi[j]xk[�] + sis̃kw(i,j,k,�) + riui,j ũk,� + tkvi,j ṽk,�)

z2 =
∑

i,k∈[n],j,�∈[m]

c[(i, j, k, �)]sis̃kw(i,j,k,�)

z3 =
∑

i,k∈[n],j,�∈[m]

c[(i, j, k, �)](riui,j ũk,� + tkvi,j ṽk,�).

Since c[(i, j, k, �)] = 0 for i ≥ k, we have z =
∑

i,k∈[n],j,�∈[m] c[(i, j, k, �)]
xi[j]xk[�].

5.3 Security

For security, we have the following theorem. Let qcFE be SK-MCFE scheme for
quadratic functions in Sect. 4.

Theorem 5.1. If qcFE are sel-pos-mh-IND-secure, then the proposed MIFE for
quadratic functions is sel-pos-mh-IND-secure.

Proof. Wlog, in the pos setting, we can denote challenge messages by {i,
xμ,0

i ,xμ,1
i }i∈[n],μ∈[qc] for some qc instead of {iμ,xμ,0

iμ ,xμ,1
iμ }μ∈[q′

c]
. For notational

convenience, we use the former notation in this proof. We prove Theorem 5.1
via a series of hybrids Hβ

1 ,Hβ
f . We show that Hβ

0 ≈c Hβ
1 ≈c Hβ

f , where Hβ
0 is the

original security game for MIFE defined in Definition 2.1. Each hybrid is defined
as described in Fig. 3, where the reply for the ciphertext query is computed by
MstEnc instead of Enc. We denote the probability that A outputs β in hybrid
Hβ by P(A,Hβ) in what follows.

Theorem 5.1 directly follows from Lemma 5.2 and Lemma 5.3 since A does
not obtain the information on β in Hβ

f . �
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Fig. 3. Description of hybrids

Lemma 5.2. For all PPT adversaries A, we have |P(A,Hβ
0 ) − P(A,Hβ

1 )| ≤
2−Ω(λ).

Proof. The difference between Hβ
0 and Hβ

1 lies in the way of generating chal-
lenge ciphertexts. That is, the challenge ciphertexts are generated by Enc in
Hβ

0 while they are generated by MstEnc in Hβ
1 . Recall that the random ele-

ments used in MstEnc are s, s̃, r, t ∈ Zp and the random tapes used to generate({iCT�}�∈[m], {iSK�∈[m]}�, iCT, iSK,mgCT
)
. Since iEnc, iKeyGen can use a random

element in Zp, and mgEnc can use a random element in Z
k+2
p as a random tape,

we can use a random element in Z
2m+k+8
p as a random tape of MstEnc. Due

to the homomorphism of iFE and mgFE, for all N ∈ N, i ∈ [n], a1, . . . , aN ∈
Zp s.t.

∑
j∈[N ] aj = 1, x1, . . . ,xN ∈ Z

m
p , r1, . . . , rN ∈ Z

2m+k+8
p , we have the

following homomorphism of MstEnc:
∑

j∈[N ]

ajMstEnc(MSK, i,x; rj) = MstEnc(MSK, i,
∑

j∈[N ]

ajxj ;
∑

j∈[N ]

ajrj).

Parse EKi = ({MCT1,i,j}i∈[n],j∈[m], {MCT0,i,j}i∈[n],j∈[D]) and let rb,i,j ∈
Z

2m+k+8
p be the random tape used to generate MCTb,i,j for b ∈ {0, 1}, i ∈

[n], j ∈ [D]. In other words,

MCTb,i,j =

{
MstEnc(MSK, i, ej); rb,i,j) b = 1
MstEnc(MSK, i,0m); rb,i,j) b = 0

From the homomorphism of MstEnc and the fact that Enc can use γ =
(γ1, . . . , γ(D−1)/2) ∈ Z

(D−1)/2
p for a random tape, we have

Enc(EKi,x : γ) = MstEnc(MSK, i,
∑

j∈[m]

x[j]ej ; r)
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where

r =
∑

j∈[m]

xi[j]r1,i,j −
⎛
⎝∑

j∈[m]

xi[j] − 1

⎞
⎠ r0,i,1 +

∑
j∈[(D−1)/2]

γj(r0,i,2j − r0,i,2j+1).

(7)

Here, we use the equality:
∑

j∈[m] xi[j]−
(∑

j∈[m] xi[j] − 1
)

+
∑

j∈[(D−1)/2](γj −
γj) = 1. Hence, to prove the lemma, it suffices to show that the following distri-
butions are statistically close for all i ∈ [n]:{

(r, {r1,i,j}j∈[m], {r0,i,j}j∈[D]) : ∀(b, i, j), rb,i,j ← Z
2m+k+8
p , γ ← Z

(D−1)/2
p

r is defined as Eq. (7)

}

and{
(r, {r1,i,j}j∈[m], {r0,i,j}j∈[D]) : ∀(b, i, j), rb,i,j ← Zp, r ← Z

2m+k+8
p

}
This can be shown as follows. For all j ∈ [(D − 1)/2], r̃j = r0,i,2j −
r0,i,2j+1 is uniformly distributed in Z

2m+k+8
p , and thus r̃1, . . . , r̃(D−1)/2 span

Z
2m+k+8
p with overwhelming probability if (D − 1)/2 ≥ 2m + k + 8. Hence,∑
j∈[(D−1)/2] γj(r0,i,2j − r0,i,2j+1) =

∑
j∈[(D−1)/2] γj r̃j is randomly distributed

even given ({r1,i,j}j∈[m], {r0,i,j}j∈[D]). This concludes the proof.

Lemma 5.3. For all PPT adversaries A, there exists a PPT adversary B
against qcFE in Sect. 4 such that |P(A,Hβ

1 ) − P(A,Hβ
f )| ≤ AdvqcFEB (λ).

Proof. The difference of these hybrids is whether CTμ
i is encryption of xμ,β

i or
xμ,0

i . We can construct B as follows.

1. B is given qcPP and gives it to A.
2. A outputs (CS, {i,xμ,0

i ,xμ,1
i }i∈[n],μ∈[qc],FS = {cν}ν∈[qk]), and B chooses β ←

{0, 1} and queries its own oracle on MS,FS where

MS =

( {i, lab0, ej , ej}i∈CS,j∈[m], {(i, lab0,0m,0m) × D}i∈CS

{i, lab0,x
μ,β
i ,xμ,0

i }i∈[n],μ∈[qc]

)
.

3. B is given({cCT1,i,j}i∈CS,j∈[m], {cCT0,i,j}i∈CS,j∈[D], {cCTμ
i }i∈[n],μ∈[qc], {cSKν}ν∈[qk]

)
where cCT1,i,j , cCT0,i,j , cCT

μ
i are ciphertexts of qcFE for (i, lab0, ej),

(i, lab0,0m), (i, lab0,x
μ,β/0
i ), respectively, and gives it to A by setting EKi =

({cCT1,i,j}j∈[m], {cCT0,i,j}j∈[D]).
4. A outputs β′, and B outputs β′ as it is.

We can confirm the above simulation of B is valid from the three observations.
First, B’s query satisfies the game condition (recall that the adversary can query
any pair of the same messages for corrupted slot). Second, qcPP = iPP(1) =
G where qcPP is the public parameter of qcFE. Third, MstEnc(MSK, ·, ·) and
qcEnc(cMSK, ·, lab0, ·) (the encryption algorithm of qcFE) are the exactly the
same.
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