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Abstract. We introduce Adversarial Logic, an extension of Incorrect-
ness Logic [1] with an explicit Dolev-Yao [2] adversary to statically ana-
lyze the severity of security vulnerabilities in the under-approximate set-
ting. Adversarial logic is built on the ability to separate logical facts
known to the adversary from facts solely known to the program under
analysis. This flavor of program incorrectness can be used to analyze
software in which error behavior occurs at deeper levels of interaction
between the program and its environment, such as subtle cases of infor-
mation disclosure requiring multiple program executions to be uncov-
ered. We introduce the Oscillating Bit Protocol, an example algorithm
where such a vulnerability can be detected using adversarial logic while
remaining elusive to other frameworks. We define a flavor of symbolic
execution in which the adversary guides the introduction of symbolic
variables and the checking of attack assertions. Additionally, we intro-
duce equivalence testing, an under-approximate version of program equiv-
alence only proven on specific program paths and used to extract differ-
ences between comparable implementations. We provide a denotational
semantics for adversarial logic and prove its soundness, thereby guaran-
teeing that extracted attack paths are true positives.

1 Introduction

The ever growing volume of software developed over the last several decades has
led to a situation where software vendors and open source projects are unable
to keep up with the sheer number of vulnerabilities found and disclosed by the
community every year. In just the Linux kernel, a single testing tool [3] identified
more than 3,000 bugs in two years, and thousands of others are regularly found in
mainstream projects [4]. A crucial problem in the presence of such large numbers
of bugs is to determine the practical security implications of each bug to inform
which bugs must get fixed first.

Particularly dangerous software attacks attempt to elevate privileges [5] or
steal secrets [6] using an adversarial program (or exploit) manually written by
a security expert. Determining the potential for compromise of a vulnerable
program is a time-consuming task of paramount importance, that has received
surprisingly little attention from the formal verification community. This is espe-
cially critical as (a) known bugs are left unremediated for a long time, (b) security
compromises are increasingly costly and (c) existing tools keep finding hundreds
of new bugs every month.
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This paper provides a logical foundation for exploit programming [7] ded-
icated to the static exploitability analysis of program bugs. Not all bugs are
considered equal from an exploitability perspective: Can it be used to divert the
program’s control flow or corrupt data [8]? Does it allow information disclosure
leading to password or private key compromise [6]? Does it allow untrusted code
execution as root, or other remote user [5]? Elaborate exploits often require mul-
tiple stages of probing the target for reconnaissance [9] or leverage several weak
bugs to build a complete attack. For example, an exploit may first attempt to
guess internal program addresses using an information disclosure vulnerability
to infer the location of sensitive data [10], and then use a subsequent array out of
bound access to tamper with said data. Analyzing such bug chaining currently
remains out of reach for existing program analysis frameworks.

Historically, program verification has focused on sound and over-approximate
analysis guaranteeing the absence of entire classes of bugs in analyzed soft-
ware [11,12] at the expense of false positives. To work around program analysis
undecidability, recent trends are focusing on under-approximate and complete
analyses in which findings are guaranteed to uncover real issues. Theoretical
underpinning of bug finding now enjoys a foundational theory of incorrectness
logic [1] (IL), a new logic focusing on uncovering true bugs rather than prov-
ing the absence of bugs. Fuzz testers [3,4] and other complete tools are indeed
immediately actionable in the software development life-cycle of large software
organizations, where the absence of false positives is critical to developer adop-
tion. Incorrectness logic was recently extended to include heap reasoning [13]
and concurrency checking [14] demonstrating its versatile nature. Adding an
explicit attack program to reason about adversarial behaviors of incorrectness is
a fundamentally under-approximate problem, and naturally extends IL.

We introduce adversarial logic (AL), a new under-approximate logic extend-
ing incorrectness logic (IL) to determine bug exploitability by leveraging accu-
mulated error in software programs. Adversarial reasoning can be used as a
theoretical basis to determine the existence of true attacks in buggy software.
The resulting logic gives rise to a notion of attack soundness that captures suf-
ficient conditions for an attack to be guaranteed satisfiable by an adversary. To
prove soundness, it is sufficient to demonstrate that some execution paths of
the program are exploitable. This differs from typical verification frameworks
which attempt to prove statements about all possible program paths. We prove
the main attack soundness result of this paper in Sect. 5. AL extends IL in the
following ways:

– We consider the system under analysis to be a parallel composition of the
analyzed program and an explicit adversarial program attempting to falsify
the program specification.

– We focus on proving the satisfiability of anattack contract rather than follow-
ing the usual methodology of checking code contracts in the program itself.

– We introduce adversarial preconditions, which allows for program errors to
accumulate transitively. IL has no error preconditions and only error post-
conditions.
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– We add channel communication rules to model that only explicitly shared
program output is visible to an external adversary.

– We introduce a new adversarial consequence rule to derive additional adver-
sarial knowledge otherwise remaining unobserved in program output.

– We generalize the backward variant rule of IL to the parallel case, so that AL
can determine the existence of attacks in interactive protocol loops without
unrolling the entire attack path.

The new adversarial consequence rule is of particular importance to the dis-
covery of indirect information disclosure attacks, as AL can model leaking of
internal program state without assuming its direct observability by the adver-
sary.

It is worth noting that adversarial logic does not encode root cause analy-
sis [15] as it does not attempt winding back to the source of bugs. Rather, it
provides a framework to analyze bug effects by considering unintended computa-
tions as first-class primitives, allowing the transitive tracking of error conditions
through the adversarial interpretation of the program.

The rest of the paper is organized as follow: we introduce a motivating exam-
ple of an information disclosure attack in the Oscillating Bit Protocol in Sect. 2.
We introduce the rules of Adversarial Logic in Sect. 3. We explore additional
examples demonstrating the usage of AL in Sect. 4. Among these new examples
is a technique to under-approximate program equivalence we call equivalence
testing. We give the denotational semantics of AL and prove soundness of AL
rules with respect to its semantics in Sect. 5. We briefly provide alternative pre-
sentations to adversarial logic based on the formalism of dynamic logic [16] and
information systems [17] in Sect. 6. Finally, we cover related work in Sect. 7 and
conclude on future work.

2 Motivation

Let us start with an example in Table 1 where an information disclosure attack
is performed in O(n) interactions with the program. Note how the value of the
secret variable is used to grant access to the function do_serve. Due to a discrep-
ancy in the return value of the server function, it is possible for an adversary to
determine the secret without reading it directly. The server’s observable return
value will be 0 (the adversary’s goal encoded in adv_assert on line 14), or 1
(the provided value was too big) or 2 (the provided value was too small). There-
fore, an adaptive search can guess the secret value in a maximum attempts of
O(n) instead of the naive brute-force algorithm in O(2n) where n is the size of
the secret in bits. The oscillating nature of checking the adversarial assertion is
represented as a finite state automaton in Table 2.
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Table 1. Oscillating bit protocol: target program (Left) and adversary (Right)

// pre: client socket established
1. uint8 secret = rand8();
2.
3. void server(int sock)
4. {
5. uint8 err = 0 in
6. uint8 cred = 0 in
7. while (true) do
8. read(sock, cred);
9. if (secret == cred)
10. err = 0;
11. else if (secret < cred)
12. err = 1;
13. else if (secret > cred)
14. err = 2;
15. if (!err) do_serve(sock);
16. write(sock, err);
17. done
18.}

// pre: socket established to server
1. int client(int sock)
2. {
3. uint8 ret = 1 in
4. uint8 guess = UINT8_MAX in
5. uint8 step = (UINT8_MAX / 2) + 1 in
6. while (true) do
7. write(sock, guess);
8. read(sock, ret);
9. if (ret == 1)
10. guess = guess - step;
11. else if (ret == 2)
12. guess = guess + step;
13. step = (step / 2) + 1;
14. adv_assert(ret == 0);
15. done
16.}

Table 2. OBT attack has initial state (I) and started state (S) then oscillates between
high (H) and low (L) before terminating in success (T ) or failure (F ).
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Since integer are represented with 8-bits in this example, the adversary would
need to consider only 8 + 1 = 9 values before it can successfully guess the
secret and satisfy the adversarial assertion. Note that width 8 is chosen for
simplicity, and this class of linear-complexity attacks scales very well when x
grows to 16, 32, 64, etc. Not all attacks are that simple in practice, and one can
imagine polynomial or more complex attack strategies up to infinite ones. The
full sequence of interactions in the oscillating bit protocol is given in appendix.

3 Adversarial Logic

Adversarial Logic (AL) marries under-approximate reasoning [1,18] with an
adversarial model [2] suitable for the study of complex software implementa-
tion attacks. We will work with this toy imperative language made of variables,
expressions, channels, predicates and commands.

Variables V ::= x | n | α

Expressions E ::= V | rand() | E + E | E - E | ...
Channels L ::= s | ∅ | (V::L) | (L::V) | (s \ V)
Predicates B ::= B ∧ B | B ∨ B | ¬B | E == E | E ≤ E | ...
Data types T ::= uint8 | uint32 | float
Commands C ::= skip | x := E | s := L | C1; C2 | C1 || C2

| if B then C1 else C2

| while B do C done
| read(s, x)
| write(s, E)
| adv_assert(B)
| T x = E in C
| Com(C1,C2)

Expressions are made of named variables x, concrete integers n, symbolic
values α, random values, and their arithmetic combinations. Channel variables
are named resources (s1, s2, etc.) whose values are ordered lists of scalar values.
In particular, the value (s::x) is the concatenation of values in channel s with
the value of variable x added to the end of s. The value (s\x) is the value of
channel s after removing the value of x from the head. The value of an empty
channel is an empty list.

For simplicity, a small set of scalar variable types T is available, which is
sufficient to cover all examples of this paper. Machine encoding of such data
types is not central to the logic and remains out of scope for this paper. We
will sometimes treat the rand() value as an uint8 (such as the oscillating bit
protocol in Table 5) and other times as a float (as in the equivalence testing
example of Table 7). We will adopt rand8() or randf() as needed to make precise
which version is used, or simply rand() when the version is obvious from context.

Predicates are built from the usual logical and, or, not, as well as equal-
ity and inequality tests. All commands can be used in program or adversarial
terms, except assertions which are limited to the adversary. The communication
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primitive Com is distinct from read and write, and Com can be applied at any
time after the corresponding write is completed and before the corresponding
read is performed. This flexibility makes AL able to encode any desired caching
strategy. Although studies of specific caching strategies are out of scope for this
paper, attacks leveraging caching behavior are now mainstream [19,20] and it is
critical to allow a spectrum of possibilities as to when communication effectively
happens on channels. As such, we leave Com implicit in our examples and apply
the corresponding proof rule when required to make progress.

Although AL can reason about the full adversarial term when available, it is
not required to be the case and a minimal template is often sufficient. Example
2 and 3 of Sect. 4 show how such templates can be leveraged to build attack
proofs. Additional syntactic sugar is defined for convenience purpose:

if P c
def
= if P then c else skip

T x = E1, y = E2 in C
def
= T x = E1 in (T y = E2 in C)

if P c1 else if Q c2 else c3
def
= if P then c1 else (if Q then c2 else c3)

AL inherits from incorrectness logic in that its semantics is defined using a
couple of relations ok and ad where ok is the program interpretation and ad is
the adversarial interpretation. We recall that inference triples in incorrectness
logic are written as:

[ok: P ] c [ok: Q][er: R]
def
=

[ok: P ]c[ok: Q] and [ok: P ]c[er: R].

Each code fragment c lifts precondition P to postcondition Q and error post-
condition R. We generalize erby ad so that inference triples are written as:

[ok: P1][ad: P2] c [ok: Q1][ad: Q2]
def
=

[ok: P1]c[ok: Q1] and [ad: P2]c[ad: Q2].

Program interpretation and adversarial interpretation are compositional and
allow independent reasoning over ok and ad. A novelty of adversarial logic is that
assertions are solely checked by the adversary. Rules Success and Failure check
the satisfiability of an attack contract rather than a program contract. Checking
of assertions augment adversarial knowledge, as both outcomes may inform the
choice of subsequent interactions with the program.

Success
[ad: Q ∧ (Q ⇒ B)] adv_assert(B) [ad: Q ∧ true]

Failure
[ad: Q ∧ (Q ⇒ ¬B)] adv_assert(B) [ad: Q ∧ ¬B]

More succinctly, rules in AL are written as:

[ε: P ] c [ε: Q]
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where ε ∈ {ok, ad} is a short notation to write two rules [ok : P ] c [ok : Q] and
[ad: P ] c [ad: Q] as one when the rule is valid in both program and adversarial
interpretations. This allows a much more succinct representation of adversarial
logic proof rules.

Basic operations such as reading and writing on channels require the use
of new Read and Write rules. I/O rules are defined as synchronous primi-
tives, where a read (resp. write) happens immediately if data is available on the
(potentially infinite) channel.

s ∈ Chan(P )
Read

[ε: P ] read(s, x) [ε: ∃v∃x′∃s′.P (s′/s, x′/x) ∧ s = (s′\v) ∧ x = v]

s ∈ Chan(P )
Write

[ε: ∃v.P ∧ x = v] write(s, x) [ε: ∃s′.P (s′/s) ∧ s = (s′::v)]

Access to channel are implemented using Floyd’s axiom of assignment as
applied to channel values (lists). Channels in AL are accessed first-in / first-out
and can be used to represent files, sockets, and other inter-process communica-
tion primitive of real systems. If an attempt is made to read data on an empty
channel, the Skip rule can be used to simulate a blocking read. Reads and writes
are performed one datum at a time. Operations on bigger data length can easily
be encoded using repetition of these base rules.

Parallel composition of a program cp and an adversary ca is constructed from
a program interpretation and an adversarial interpretation of parallel terms:

[ok: P1][ad: P2] cp || ca [ok: Q1][ad: Q2]

Two parallel terms may either be an adversarial term and a program term,
or two independent program terms, with ε1,ε2 ∈ {ok, ad} :

[ε1: P1]c1[ε1: Q1] [ε2: P2]c2[ε2: Q2]
Par ε1, ε2 ∈ {ok, ad}

[ε1: P1][ε2: P2] c1 || c2 [ε1: Q1][ε2: Q2]

The Par rule does not permit communication in itself. This follows from
the adversarial logic principle that no information is shared unless explicitly
revealed. This parallel rule is unusual as it uses two pre-conditions and two post-
conditions, enforcing variable separation without requiring an extra conjunctive
connector as done in separation logic [21].

When two parallel terms need to share information, AL requires to use the
communication rule Com on channel s. While program and adversary share
no local or free variables, shared channels are required for communication. To
preserve uniqueness of names, we may use sa in the adversarial interpretation,
and sp in the program interpretation to refer to channel s, although we will just
use s when the meaning is clear from context. Examples of Com usage can be
found in the simplest example of next section in Table 3.

s ∈ Chan(P ) ∩ Chan(A) ε1, ε2 ∈ {ok, ad}
Com

[ε1: P ][ε2: A] c1 || c2 [ε1: ∃v∃s′.P (s′/s) ∧ s = (s′\v)][ε2: ∃v∃s′.A(s′/s) ∧ s = (s′::v)]
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Applications of adversarial logic include cases where the adversary wishes
to infer hidden values of variables and predicates that have not been commu-
nicated. In these cases, the Adversarial Consequence rule can augment the
adversarial postcondition A′ if observable values communicated by the program
are consequences of hidden program conditions, represented as program predi-
cate Q). We require that Free(Q) = ∅ as free variables in Q are not defined in
the adversarial term. This can be guaranteed by creating fresh names during the
introduction of Q in the adversarial context, so that no names are shared. It is
assumed that s ∈ Chan(A)∩ Chan(P ). Basic usage of this rule can be found in
all examples of Sect. 4.

[ok: P : ∃w.v1 = w]cp : if(Q)write(s, v1)[ok: P ′ :Q ∧ ∃w.s = (ls::w)]

[ad: A : ∃w.s = (w::la)]ca : read(s, v2)[ad: A′ : ∃w.s = la ∧ v2 = w]
Adv.Cons.

[ok: P ][ad: A] cp || ca [ok: P ′][ad: A′ ∧ ∃v1.Q ∧ v1 = v2]

Adversarial logic generalizes the Backward variant rule of incorrectness
logic [1] for parallel composition of program and adversarial terms, which we
name the Parallel Backward Variant, or PBV.

[ok: P (n)][ad: A(m)] cp || ca [ok: P (n + i)][ad: A(m + j)]
PBV i, j ∈ {0, 1} ∧ i + j ≥ 1

[ok: P (0)][ad: A(0)] cn
p || cm

a [ok: ∃n.P (n)][ad: ∃m.A(m)]

AL’s backward variant rule is a parallel composition of a program fragment
cp repeated n times with an adversarial code fragment ca repeated m times. It is
not required for the number of program steps n and adversarial steps m to be the
same, as long as at least one step is taken at each iteration (i, j ∈ {0, 1}∧ i+ j ≥
1). This condition enforces that every extracted attack trace is finite. Examples
in this article show cases where n = m (the oscillating bit protocol), and others
where n �= m (equivalence testing).

The PBV rule cannot be expressed using two instances of IL’s original BV
rule, as PBV can express conditions where adversarial and program conditions
are subject to communication. It may also be useful to apply the original sequen-
tial BV rule in parallel when program and adversarial terms are independently
reducible, however this does not equate to using the parallel version of the rule
which can provide synchronization across terms. A practical example of PBV
usage is demonstrated in Table 5 of Sect. 4.

One notable incorrectness rule absent from AL is the sequential short-circuit.
In this rule, execution of the second term of a sequence is avoided if the first term
terminates by an error. As adversarial logic is meant to analyze consequences of
erroneous program executions, short-circuiting serves no benefit. This highlights
a key difference between IL’s original error relation er and AL’s adversarial
relation ad. All other rules of adversarial logic are similar to incorrectness logic
with the difference that either ok or ad can be used in the precondition, therefore
restoring a lost symmetry in incorrectness logic while preserving its meaning.
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(a) Adversarial logic core rules with restored symmetry from IL : ε ∈ {ok, ad}

Unit
[ε: P ] skip [ε: P ]

[ε: P ]c[ε : Q]
Constancy Mod(c) ∩ Free(F ) = ∅

[ε : P ∧ F ]c[ε: Q ∧ F ]

[ε: P ⇒ P ′] [ε: P ]c[ε: Q] [ε: Q′ ⇒ Q]
Consequence

[ε: P ′]c[ε: Q′]

Assume
[ε: P ] assume(B) [ε: P ∧ B]

Rand
[ε: P ] x = rand() [ε: ∃x′.P (x′/x) ∧ x = v]

Assign
[ε: P ] x = e [ε: ∃x′.P (x′/x) ∧ x = e(x′/x)]

[ε: P1]c[ε: Q1] [ε: P2]c[ε: Q2]
Disj

[ε: P1 ∨ P2]c[ε: Q1 ∨ Q2]

[ε: P ∧ x = e]c[ε: Q] x /∈ Free(P )
Local

[ε: P ] T x = e in c [ε: ∃x ∈ T.Q]

[ε: P ]c1[ε: Q] [ε: Q]c2[ε: R]
Seq

[ε: P ]c1; c2[ε: R]

[ε: P ]ci[ε: Q]
Choice i ∈ [1, 2]

[ε: P ]c1 + c2[ε: Q]

Iterate Zero
[ε: P ]c∗[ε: P ]

[ε: P ]c∗; c[ε: Q]
Iterate non-zero

[ε: P ]c∗[ε: Q]

while B do C done � (assume(B); C)∗; assume(¬B)

if B then C else C′ � (assume(B); C) + (assume(¬B); C′)

(b) Adversarial Logic : communication rules between program and adversary

s ∈ Chan(P )
Read

[ε: P ] read(s, x) [ε: ∃v∃x′∃s′.P (s′/s, x′/x) ∧ s = (s′\v) ∧ x = v]

s ∈ Chan(P )
Write

[ε: ∃v.P ∧ x = v] write(s, x) [ε: ∃v∃s′.P (s′/s) ∧ s = (s′::v)]

[ε1: P1]c1[ε1: Q1] [ε2: P2]c2[ε2: Q2]
Par ε1, ε2 ∈ {ok, ad}

[ε1: P1][ε2: P2] c1 || c2 [ε1: Q1][ε2: Q2]

s ∈ Chan(P ) ∩ Chan(A) ε1, ε2 ∈ {ok, ad}
Com

[ε1: P ][ε2: A] c1 || c2 [ε1: ∃v∃s′.P (s′/s) ∧ s = (s′\v)][ε2: ∃v∃s′.A(s′/s) ∧ s = (s′::v)]

(c) Adversarial Logic: knowledge rules between program and adversary

[ok: P (n)][ad: A(m)] cp || ca [ok: P (n + i)][ad: A(m + j)]
PBV i, j ∈ {0, 1} ∧ i + j ≥ 1

[ok: P (0)][ad: A(0)] cn
p || cm

a [ok: ∃n.P (n)][ad: ∃m.A(m)]

[ok: P : ∃w.v1 = w]cp : if(Q)write(s, v1)[ok: P ′ :Q ∧ ∃w.s = (ls::w)]

[ad: A : ∃w.s = (w::la)]ca : read(s, v2)[ad: A′ : ∃w.s = la ∧ v2 = w]
Adv.Cons.

[ok: P ][ad: A] cp || ca [ok: P ′][ad: A′ ∧ ∃v1.Q ∧ v1 = v2]

Success
[ad: Q ∧ (Q ⇒ B)] adv_assert(B) [ad: Q ∧ true]

Failure
[ad: Q ∧ (Q ⇒ ¬B)] adv_assert(B) [ad: Q ∧ ¬B]
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4 Reasoning with Adversarial Logic

In this section, we put AL to work with three distinct examples. The simplest
example of Table 3 is sufficient to explain symbolic variable introduction, adver-
sarial consequence and assertion checking by the adversary. The oscillating bit
protocol example from Table 1 of Sect. 2 is then proved step-by-step, including
a proof showing the use of the parallel backward variant (PBV) rule for the
determination of the existence of attacks. In example 3, two pricing functions
are under-approximated to find common price boundaries through adversarial
assertions and combines usage of the PBV rule and the adversarial consequence
rule to perform equivalence testing.

4.1 Example 1: Trivial Case

Let us consider the example in Table 3 where an adversary wants to capture a
flag win with an input value n reaching value 10 million (10M for short).

Table 3. Simple example implementation. The adversary wishes to discover conditions
on symbolic variable val to satisfy assertion (res == 1)

// Precond: s channel established
program(int s)
{
uint32 n, win in
read(s, n);
if (n > 10M) win = 1;
else win = 0;
write(s, win);

}

// Precond: s channel established
adversary(int s)
{
uint32 val = α in
uint32 res = 0 in
write(s, val);
read(s, res);
adv_assert(res == 1);

}

An adversarial proof such as the one in Table 4 may contain several proof
phases corresponding to non-blocking subsequences of program or adversarial
derivations. A proof is typically divided into the following phases:

1. The bootstrap phase (P0 to P3 and A0 to A3) where program and adversary
have yet to be composed.

2. The initial phase (P3, A3) to (P9, A9) typically starts with application of the
Par rule until composed terms fail to make more progress other than Skip

3. Optionally, one or more intermediate phases separated by applications of the
Com rule used to communicate and unblock stuck terms, interleaved with
calls to AdvAssert failing to satisfy the attack contract.

4. The final phase ends with a call to Success where the adversarial assertion
is satisfied (A12), or when the adversarial program terminate otherwise.
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Table 4. Simplest example in Adversarial Logic. Unlike traditional program symbolic
execution, assertions and symbolic variables can only be introduced in the adversarial
part of the system.

→ Local Program(int s) { Adversary(int s) {
P0 = {ok: ∃sp.sp = ∅} A0 = {ad: ∃sa.sa = ∅}

→ Local uint32 n in uint32 val = α in → Local

P1 = {ok: P0 ∧ ∃u.n = u} A1 = {ad: A0 ∧ ∃α.val = α}
→ Local uint32 win in uint32 res = 0 in → Local

P2 = {ok: P1 ∧ ∃v.win = v} A2 = {ad: A1 ∧ res = 0}
→ Skip read(s, n); write(s,val); → Write

P3 = {ok: P2} A3 = {ad: ∃s2
a.A2(s

2
a/sa) ∧ sa = (s2

a::α)}
→ Par (P3, A3) = {ok: P3}{ad: A3}
→ Com read(s,n) || read(s,res)

(P4, A4) = {ok: ∃α∃s2
p.P3(s

2
p/sp) ∧ sp = (s2

p::α)}{ad: ∃s2
a.A3(s

2
a/sa) ∧ sa = (s2

a\α)}
→ Read read(s,n) || read(s, res)

(P5, A5) = {ok: ∃α∃s3
p∃n2.P4(s

3
p/sp, n2/n) ∧ sp = (s3

p\α) ∧ n = α}{ad: A4}
→ If, Assn if (n > 10M) win = 1 || read(s, res)

(P6, A6) = {ok: ∃w2.P5(w2/win) ∧ n > 10M ∧ win = 1}{ad: A5}
→ If, Assn else win = 0 || read(s, res)

(P7, A7) = {ok: ∃w3.P5(w3/win) ∧ n ≤ 10M ∧ win = 0}{ad: A6}
→ Disj (P8, A8) = {ok: P6 ∨ P7}{ad: A7}
→ Write write(s, win) || read(s, res)

(P9, A9) = {ok: ∃w∃s4
p.P8(s

4
p/sp) ∧ sp = (s4

p::w) ∧ win = w}{ad: A8}
−− − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −→ Com skip || read(s,res)

(P10, A10) = {ok: ∃s5
p.P9(s

5
p/sp) ∧ sp = (s5

p\w)}
{ad: ∃w∃s3

a.A9(s
3
a/sa) ∧ sa = (s3

a::w)}
→ Read skip || read(s, res)

(P11, A11) = {ok: P10}{ad: ∃s4
a∃r2∃w.A10(s

4
a/sa, r2/res) ∧ sa = (s4

a\w) ∧ res = w}
→ Adv.C. skip || adv_assert(res == 1)

(P12, A12) = {ok: P11}{ad: A11 ∧ ∃n∃x.((n > 10M ∧ x = 1) ∨ (n ≤ 10M ∧ x = 0))

∧ n = α ∧ res = x}
→ Success skip || adv_assert(res == 1)

Note how symbolic variable α is introduced by the adversarial interpretation
(A1) and propagated to the program’s logic (P4) using the communication rule.
Program and adversarial interpretations remain independent until the parallel
rule is used to compose terms. Note how P9 in insufficient to prove the assertion
res == 1 thus requiring the application of the adversarial consequence rule to
obtain additional knowledge (n = α) ∧ (n > 10M).

4.2 Example 2: Oscillating Bit Protocol

We now analyze the motivating example presented in Sect. 2. It is possible to
prove existence of an information disclosure attack in the oscillating bit proto-
col with or without the parallel backward variant rule. As we will show, use of
the PBV rule allows to significantly shorten the proof. Without it, the adver-
sarial interpretation goes through several instances of adversarial failures where
adv_assert(retcode == 0) cannot be satisfied. After a sufficient number of
guesses are performed and constraints over the secret are learned, the adver-
sary finally provides a value that matches the secret. In the OBP example,
cred == 160 is the secret value which cannot be inferred without performing
O(n) steps.
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Table 5. Oscillating Bit Protocol (OBT) in AL using disjunction and parallel backward
variant rules. Introduction of the PBV rule cut the number of needed steps and can be
used to deduce the existence of an attack without guessing the secret.

P1 = {ok: ∅} A1 = {ad: ∅}
→ Rand uint8 secret = rand8() in uint8 ret = 1 in → Loc

P2 = {ok: ∃s.secret == s} A2 = {ad: A1 ∧ ret = 1}
→ Loc uint8 err = 0 in uint8 guess = UINT8_MAX in → Loc

P3 = {ok: P2 ∧ err = 0} A3 = {ad: A2 ∧ guess = UINT8_MAX}
→ Loc uint8 cred = 0 in uint8 step = (guess / 2) + 1 in → Loc

P4 = {ok: P3 ∧ cred = 0} A4 = {ad: A3 ∧ step = (guess/2) + 1}
→ Wh while (true) do while (true) do → Wh

P5 = {ok: true ∧ P4} A5 = {ad: true ∧ A4}
→ Skip read(sock, cred); write(sock,guess); → Wr

P6 = {ok: P5} A6 = {ad: ∃s1
a∃g.A5(s

1
a/sa) ∧ guess = g

∧ sa = (s1
a::g)}

→ Par (P7, A7) = {ok: P6}{ad: A6}
→ Com read(sock, cred) || read(sock,ret)

(P8, A8) = {ok: ∃w∃s1p.P7(s
1
p/sp) ∧ sp = (s1p\w)}

{ad: ∃w∃s1a.A7(s
1
a/sa) ∧ sa = (s1a::w)}

→ Read read(sock, cred) || read(sock,ret)
(P9, A9) = {ok: ∃c∃s2p.P8(s

2
p/sp, c/cred) ∧ sp = (s2p\c) ∧ cred = c}{ad: A8}

→ If, Disj if (secret == cred) err = 0 || read(sock,ret)
(P10, A10) = {ok: P9 ∨ (secret = cred ∧ ∃e.P9(e/err) ∧ err = 0)}{ad: A9}

→ If, Disj else if (secret < cred) err = 1 || read(sock,ret)
(P11, A11) = {ok: P10 ∨ (secret < cred ∧ ∃e.P10(e/err) ∧ err = 1)}{ad: A10}

→ If, Fra. if (err == 0) do_serve(sock) || read(sock,ret)
(P12, A12) = {ok: (P11 ∧ err 
= 0) ∨ (P11 ∧ err = 0)}{ad: A11}

→ Write write(sock, err) || read(sock, ret)
(P13, A13) = {ok: ∃e∃s3p.P12(s

3
p/sp) ∧ err = e ∧ sp = (s3p::e)}{ad: A12}

−− − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
→ Com read(sock, cred) || read(sock, ret)

(P14, A14) = {ok: ∃w∃s4p.P13(s
4
p/sp) ∧ sp = (s4p\w)}

{ad: ∃w∃s2a.A13(s
2
a/sa) ∧ sa = (s2a::w)}

→ Read read(sock, cred) || read(sock, ret)
(P15, A15) = {ok: P14}{ad: ∃r∃r2∃s3a.A14(s

3
a/sa, r2/ret) ∧ sa = (s3a\r) ∧ ret = r}

→ If, Disj read(sock, cred) || if (ret == 1) guess = guess - step
(P16, A16) = {ok: P15}

{ad: (ret = 1 ∧ ∃g.A15(g/guess) ∧ guess = g − step) ∨ (ret 
= 1 ∧ A15)}
→ If, Disj read(sock, cred) || if (ret == 1) guess = guess - step

(P17, A17) = {ok: P16}
{ad: (ret = 2 ∧ ∃g.A16(g/guess) ∧ guess = g + step) ∨ (ret 
= 2 ∧ A16)}

→ Assn read(sock, cred) || step = (step / 2) + 1
(P18, A18) = {ok: P17}{ad: ∃s.A17(s/step) ∧ step = s/2 + 1)}

→ Fail read(sock, cred) || attack_assert(ret == 0)
(P19, A19) = {ok: P18}{ad: A18 ∧ ret 
= 0)}

→ PBV (P20, A20) = {ok: ∃n.Pn : (secret = cred) ∧ (err = 0)}{ad: ∃n.An : (ret = 0)}
→ Succ read(sock, cred) || attack_assert(ret == 0)

For brevity, we provide analysis of the example using PBV rule in Table 5,
while the version without PBV is given in appendix. A combination of PBV and
disjunction rules allows the adversary to find an iteration where the secret is
correctly guessed without executing the loop O(n) times. Recall the form of the
PBV rule with cp the program term and ca the adversarial term:
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[ok: P (n)][ad: A(m)] cp || ca [ok: P (n + i)][ad: A(m + j)]
i, j ∈ {0, 1} ∧ i + j ≥ 1

[ok: P (0)][ad: A(0)] cnp || cma [ok: ∃n.P (n)][ad: ∃m.A(m)]

In the oscillating bit protocol example, the PBV rule takes a simpler form
where n = m and i = j = 1 for all values of (n,m). Applying the PBV rule for
this example proceeds as such: P (0) is secret = v1, A(0) is guess = v2, P (n)
is secret = v1, A(n) is guess = v1, P (n + 1) is secret = cred and A(n + 1) is
ret = 0. Note how P (0) and P (n) are both s == v1 as the secret value does
not change across iterations. This condition is not strictly required and may not
be guaranteed in more complex examples, such as if the secret variable value
changes over time.

[ok: secret = v1][ad: guess = v1] cp || ca [ok: secret = cred][ad: ret = 0]

[ok: secret = v1][ad: guess = v2] cn
p || cn

a [ok: ∃Pn.secret = v1][ad: ∃An.guess = v1]

We distinguish adversarial proofs which do not appeal to the parallel back-
ward variant rule from those using PBV since the use of PBV allows to reach
adversarial success without guessing the secret. Adversarial proofs with PBV are
not sufficient to build a concrete attack, but they are sufficient to prove that an
attack exists.

4.3 Example 3: Equivalence Testing

Equivalence properties are relevant to security to prove compatibility or indis-
tinguishability of two programs. For example, comparing multiple parsing imple-
mentations of a given input language (network headers, ASN.1, etc.) can uncover
subtle program behaviors allowing exploitation or fingerprinting of systems [22].

Equivalence results are generally established by showing that the labeled
transition system of a program implementation is equivalent to the LTS of its
specification [23]. Bisimulation requires two LTS to be observationally equiva-
lent for all transitions. Proving such equivalence is out of reach in the under-
approximate framework, in which only some program executions must be ana-
lyzed. Take for example the epsilon-delta definition of the limit of a function:

∀ε > 0∃δ > 0 : |x − c| < δ =⇒ |f(x) − L| < ε

Universary quantified propositions like this one are unprovable in IL and AL,
which restricts us to under-approximate equivalence testing for certain inputs.
This is useful to prove that two programs are equivalent sometimes, and find
values for which programs agree. For f1 and f2 : ∃x : f1(x) = f2(x). Let us
assume that f1(x) and f2(x) can be written as:

f1(x) = ∃x.(P1(x) ⇒ Q1(x)) ∧ ... ∧ (Pn(x) ⇒ Qn(x))
f2(x) = ∃x.(R1(x) ⇒ T1(x)) ∧ ... ∧ (Rm(x) ⇒ Tm(x))

We use this general form where P1 to Pn (resp. R1 to Rm) represent the path
conditions associated to output values Q1 to Qn (resp. T1 to Tm). Existence of
a crossing point between f1 and f2 can now be written as:
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EquTst(f1, f2) = ∃x∃i∃j : (Pi(x) ⇒ Qi(x))∧(Rj(x) ⇒ Tj(x))∧(Qi(x) ⇔ Tj(x))

Testing equivalence of f1 and f2 is computable in adversarial logic even when
internal program variables (possibly random ones) are involved in the calculation
of f1 or f2. Equivalence testing does not require proving Pi ⇔ Rj (as required in
bisimulation) as internal computations Pi and Rj may be hidden to the adver-
sary. Hence equivalence testing is neither a bisimulation nor a simulation.

Table 6. Two pricing functions with user-supplied order number and random initial
price.

// Preprocessor definitions
1. define V1MIL 1000000
2. define V9MIL (V1MIL*9)
3. define V18MIL (V1MIL*18)
4. define V10MIL (V1MIL*10)
5. define V20MIL (V1MIL*20)
// Shared initial service state
// Between GetPrice and GetPrice2
6. float initp = rand();

// Precond: chan s1 established
7. void GetPrice(int s1)
8. {
9. float curp in
10. uint32 ord in
11. float dec in
12. while (true) do
13. read(s1, ord);
14 dec = ord / V10MIL;
15. if (ord <= V9MIL)
16. curp = initp * (1 - dec);
17. else
18. curp = initp / 10;
19. write(s1, curp);
20. done
21. }

// Client: Adversarial software
// Precond: chan s1 and s2 established
1. void Adv(int s1, int s2)
2. {
3. float guess = 0 in
4. float guess2 = 0 in
5. uint32 num = α in // Sym
6. write(s1, num); // Test GP1
7. read(s1, guess1);
8. write(s2, num); // Test GP2
9. read(s2, guess2);
10. adv_assert(guess1 == guess2);
11. }

// Precond: channel s2 established
22. void GetPrice2(int s2)
23. {
24. float curp2 in
25. uint32 ord2 in
26. float dec2 in
27. while (true) do
28. read(s2, ord2);
29. dec2 = ord2 / V20MIL;
30. if (ord2 <= V18MIL)
31. curp2 = initp * (1 - dec2);
32. else
33. curp2 = initp / 10;
34. write(s2, curp2);
35. done
36. }

Consider the code in Table 6 where a pricing service contains two functions
GetPrice and GetPrice2 reading on channels s1 and s2 to compute market price
based on a globally initialized random market value initp and ordered quantities
num. The first function converges faster than the other due to a different current
price calculation.

Adversarial logic can be used to prove that functions GetPrice and GetPrice2
meet at the same limit price (a tenth of the initial price) for certain input order
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Table 7. Equivalence testing: PBV and adversarial consequence rules are combined to
find an input for which two pricing functions have the same output.

A0 = {ad: ∅}
float guess1; → Loc

P0 = {ok: ∅} A1 = {ad: ∃v1.guess1 = v1 ∧ A0}
→ Rand float initp = rand(); float guess2; → Loc

P1 = {ok: ∃f.initp = f ∧ P0} A2 = {ad: ∃v2.guess2 = v2 ∧ A1}

→ Par (P2, A2) = {ok: P1}{ad: A2}
→ Dup float curp || uint32 num = α

(P2, A2, Q2) = {ok: P2}{ad: A2}{ok: P2}
→ Loc(×3) float curp || uint32 num = α || float curp2

(P3, A3, Q3) = {ok: ∃c.curp = c ∧ P2}{ad: ∃α.num = α ∧ A2}{ok: ∃w.curp2 = w ∧ Q2}
→ Loc, Wri, Loc uint32 ord || write(s1, num) || uint32 ord2

(P4, A4, Q4) = {ok: ∃o.ord = o ∧ P3}
{ad: ∃α∃s12a.A3(s1

2
a/s1a) ∧ num = α ∧ s1a = (s12a::α)}

{ok: ∃o′.ord = o′ ∧ Q3}
→ Loc, Loc float dec || read(s1,guess1) || float dec2 {

(P5, A5, Q5) = {ok: ∃d.dec = d ∧ P4}{ad: A4}{ok: ∃d2.dec2 = d2 ∧ Q4}
→ Whi, Whi while (true) do || read(s1,guess1) || while (true) do

(P6, A6, Q6) = {ok: true ∧ P5}{ad: A5}{ok: true ∧ Q5}
→ Com read(s1, ord) || read(s1, guess1) { || read(s2, ord2)

(P7, A7, Q7) = {ok: ∃α∃s12p.P6(s1
2
p/s1p) ∧ s1p = (s12p::α)}

{ad: ∃α∃s13a.A6(s1
3
a/s1a) ∧ s1a = (s13a\α)}{ok: Q6}

→ Read read(s1, ord) || read(s1, guess1) || read(s2, ord2)
(P8, A8, Q8) = {ok: ∃α∃x∃s13p.P7(x/ord, s13p/s1p) ∧ s1p = (s13p\α) ∧ ord = α}

{ad: A7}{ok: Q7}
→ Assn dec = ord / V10MIL || read(s1, guess1) || read(s2, ord2)

(P9, A9, Q9) = {ok: ∃d2.P8(d
2/dec) ∧ dec = ord/V 10M}{ad: A8}{ok: Q8}

→ If if (ord <= 9MIL) curp = initp * (1 - dec) || read(s1, guess) || read(s2, ord2)
(P10, A10, Q10) = {ok: ∃c2.P9[c

2/curp] ∧ ord ≤ V 9M ∧ curp = initp ∗ (1 − dec)}
{ad: A9}{ok: Q9}

→ If else curp = initp / 10 || read(s1, guess1) || read(s2, ord2)
(P11, A11, Q11) = {ok: ∃c2.P10[c

2/curp] ∧ ord > V 9M ∧ curp = initp/10}{ad: A9}{ok: Q9}
→ Disj write(s1,curp) || read(s1, guess1) || read(s2, ord2)

(P12, A12, Q12) = {ok: P11 ∨ P10}{ad: A9}{ok: Q9}
→ Wri write(s1,curp) || read(s1, guess1) || read(s2, ord2)

(P13, A13, Q13) = {ok: ∃u∃s14p.P12(s1
4
p/s1p) ∧ curp = u ∧ s1p = (s14p::u)}

{ad: A12}{ok: Q12}
−− − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −→ Com read(s1,ord) || read(s1, guess1) || read(s2, ord2)

(P14, A14, Q14) = {ok: ∃u∃s15p.P13(s1
5
p/s1p) ∧ s1p = (s15p\u)}

{ad: ∃u∃s14a.A13(s1
4
a/s1a) ∧ s1a = (s14a::u)}{ok: Q13}

→ Read read(s1,ord) || read(s1, guess1) || read(s2, ord2)
(P15, A15, Q15) = {ok: P14}{ok: Q14}

{ad: ∃g∃u∃s15a.A14(g/guess1, s15a/s1a) ∧ s1a = (s15a\u) ∧ guess1 = u}
→ PBV read(s1,ord) || read(s1,guess1) || read(s2, ord2)

(P16, A16, Q16) = {ok: ∃α∃f.α > V 9M ∧ initp = f ∧ (curp = initp/10)}
{ad: ∃u.guess1 = u}{ok: Q15}

→ Adv.Cons. read(s1,ord) || read(s1,guess1) || read(s2, ord2)
(P17, A17, Q17) = {ok: P16}{ad: ∃α∃f∃u.guess1 = u ∧ u = f/10 ∧ α > V 9M}{ok: Q16}

→ Wri read(s1,ord) || write(s2,num) || read(s2, ord2)
(P18, A18, Q18) = {ok: P17}{ad: ∃α∃s22a.A17[s2

2
a/s2a] ∧ num = α ∧ s2a = (s22a::α)}

{ok: Q17}
−− − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −→ Com read(s1,ord) || read(s2,guess2) || read(s2, ord2)

(P19, A19, Q19) = {ok: P18}{ad: ∃α∃s23a.A18[s2
3
a/s2a] ∧ s2a = (s23a\α)}

{ok: ∃α∃s22q.Q18[s2
2
q/s2q] ∧ s2q = (s22q::α)}

→ Read read(s1,ord) || read(s2,guess2) || read(s2, ord2)
(P20, A20, Q20) = {ok: P19}{ad: A19}

{ok: ∃α∃o2∃s23q.Q19[s2
3
q/s2q, o2/ord2] ∧ s2q = (s23q\α) ∧ ord2 = α}

→ Assn read(s1,ord) || read(s2,guess2) || dec2 = ord2 / V20MIL
(P21, A21, Q21) = {ok: P20}{ad: A20}{ok: ∃d2.Q20[d2/dec2] ∧ dec2 = ord2/V 20M}

→ If read(s1,ord) || read(s2,guess2) || if (ord2 ≤ V18M) curp2 = initp * (1 - dec2)
(P22, A22, Q22) = {ok: P21}{ad: A21}

{ok: ∃c2.Q21[c2/curp2] ∧ (ord2 ≤ V 18M) ∧ curp2 = initp ∗ (1 − dec2)}
→ If read(s1,ord) || read(s2,guess2) || else curp2 = initp / 10

(P23, A23, Q23) = {ok: P22}{ad: A22}
{ok: ∃c2.Q21[c2/curp2] ∧ (ord2 > V 18M) ∧ (curp2 = initp/10)}

→ Disj read(s1,ord) || read(s2,guess2) || else curp2 = initp / 10
(P24, A24, Q24) = {ok: P23}{ad: A23}{ok: Q22 ∨ Q23}

→ Wri read(s1,ord) || read(s2,guess2) || write(s2,curp2)
(P25, A25, Q25) = {ok: P24}{ad: A24}

{ok: ∃c∃s22q.Q24[s2
2
q/s2q] ∧ (curp2 = c) ∧ s2q = (s22q::c)}

−− − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −→ Com read(s1,ord) || read(s2,guess2) || read(s2, ord2)
(P26, A26, Q26) = {ok: P25}{ad: ∃c∃s24a.A25[s2

4
a/s2a] ∧ s2a = (s24a::c)}

{ok: ∃c∃s23q.Q25[s2
3
q/s2q] ∧ s2q = (s23q\c)}

→ Read read(s1,ord) || read(s2, guess2) || read(s2, ord2)
(P27, A27, Q27) = {ok: P26}{ok: Q26}

{ad: ∃g2∃u2∃s25a.A26(g
2/guess2, s25a/s2a) ∧ s2a = (s25a\u2) ∧ guess2 = u2}

→ PBV read(s1,ord) || read(s2,guess2) || read(s2, ord2)
(P28, A28, Q28) = {ok: P27}{ad: ∃u2.guess2 = u2}

{ok: ∃α∃f.(α > V 18M) ∧ (initp = f) ∧ (curp2 = initp/10)}
→ Adv.Cons. read(s1,ord) || read(s2,guess2) || read(s2, ord2)

(P29, A29, Q29) = {ok: P28}{ad: ∃α∃f∃u2.(guess2 = u2) ∧ (u = f/10) ∧ (α > V 18M)}
{ok: Q28}

→ Succ read(s1,ord) || adv_assert(guess1 == guess2) || read(s2, ord2)
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quantities above which the price does not decrease anymore. In order to model
this example in adversarial logic, we define and use a derived rule Dup at step
(P2, A2) in Table 7. The Dup rule can be expressed solely based on the parallel
rule with parameters ε1= ε2= ok and P1 = P2 and Q1 = Q2 and c1 = c2.

[ok : P1]c1[ok : Q1] [ok : P1]c1[ok : Q1]Dup
[ok : P1][ok : P1] c1 || c1 [ok : Q1][ok : Q1]

The proof exhibits loop iterations at which the price converges, and symboli-
cally compares return values in the adversary. Combining the parallel backward
variant rule at (P16, A16, Q16) followed by the adversarial consequence rule at
(P17, A17, Q17) gather GetPrice conditions, while this happens at (P28, A28, Q28)
and (P29, A29, Q29) for function GetPrice2. This is possible without the adver-
sary having preliminary knowledge of internal program values and state (such
as the initial price), as long as the target program code is known.

5 Semantics

In this section, we develop a denotational semantics for adversarial logic. This
semantics is defined compositionally for each of the rules of AL (Table 8).

Table 8. Relational denotational semantics for AL with transitions from state pairs
(σp, σa) to (σq, σb) with ε, ε1, ε2 ∈ {ok, ad} and Σx ∈ {Σa, Σp}

�x = e�ok = {(σ, ((σp | x �→ �e�σp ), σa))}
�x = e�ad = {(σ, (σp, (σa | x �→ �e�σa )))}

�x = rand()�ok = {(σ, ((σp | x �→ v), σa))}
�x = rand()�ad = {(σ, (σp, (σa | x �→ v)))}

�adv_assert B�ok = ∅
�adv_assert B�ad = {((σp, σa), σ) | �B�σa = true } � {((σp, σa), σ) | �B�σa = false}

�skip�ε = {(σ, σ) | σ ∈ Π}
�assume B�ε = {(σ, σ) | �B�σ = true}

�C∗�ε = ∪i∈N�Ci�ε

�C1 + C2�ε = �C1�ε + �C2�ε

�local x = e in C�ok = {(((σp | x �→ �e�σp ), σa), ((σq | x �→ v), σa)) | x ∈ V ar, e ∈ Expr}
�local x = e in C�ad = {((σp, (σa | x �→ �e�σa )), (σp, (σb | x �→ v))) | x ∈ V ar, e ∈ Expr}

�C1;C2�ε = {(σ1, σ3) | (σ1,σ2) ∈ �C1�ε and (σ2,σ3) ∈ �C2�ε}
�C1||C2�(ε1, ε2) = {(σ1, σ′

1) | (σ1,σ′
1) ∈ �C1�ε1} ∪ {(σ2, σ′

2) | (σ2,σ′
2) ∈ �C2�ε2}

�read(s,x)�ε = {((σ | s �→ (l::v)), (σ | x �→ v, s �→ l)) | s ∈ Chan, x ∈ V ar}
�write(s,x)�ε = {((σ | s �→ l, x �→ v), (σ | s �→ (l::v))) | s ∈ Chan, x ∈ V ar}

�Com(C1,C2)�(ε1, ε2) = {(((σ1 | s �→ (v::l1)), (σ2 | s �→ l2)),

((σ1 | s �→ l1), (σ2 | s �→ (l2::v)))) | s ∈ Chan}

Σa : [V ariables → V alues]

Σp : [V ariables → V alues]

Π = Σp × Σa

�B� : Σx → Bool

σ = (σp, σa) : Π

�C� ⊂ Π × Π



438 J. Vanegue

We lay the groundwork to prove soundness of the logic and semantics by
reminding some standard definitions.

Definition 1 (Post Image and Semantic Triples). For any relation r ∈
Σ × Σ and predicate p ⊆ Σ:

– The post-image of r, post(r) ∈ P (Σ) → P (Σ): post(r)p = {(σ′ | ∃σ ∈
p. (σ, σ′) ∈ r}

– The over-approximate Hoare triple: {p}r{q} iff post(r)p ⊆ q
– The under-approximate incorrectness triple: [p]r[q] is true iff post(r)p ⊇ q

We then introduce adversarial semantic triples, which can be understood as
a composition of semantic relation between program states Σp and adversarial
states Σa where Π = Σp × Σa is the decomposed view of the state space.

Definition 2 (Adversarial Triples). For any composed relation (ok, ad) ∈
Π × Π and predicates (p, a) ⊆ Π with p the program predicate and a the adver-
sarial predicate:

– The post-image of (ok, ad) noted post((ok, ad)) ∈ P (Π) → P (Π):

post((ok, ad))(p, a) = {(σq, σb) | ∃(σp, σa) ∈ (p, a). ((σp, σa), (σq, σb)) ∈ (ok, ad)}

– The under-approximate adversarial triple:

[p][a](ok, ad)[q][b] is true iff post((ok, ad))(p, a) ⊇ (q, b)

Conditions for membership ((σp, σa), (σq, σb)) ∈ (ok, ad) are defined as:

1. (σp, σq) ∈ ok and (σa, σb) ∈ ad if V AR(σp) ∩ V AR(σa) = ∅
2. (ok, ad)((σp, σa)) = (σq, σb) otherwise.

The first formulation of membership is enough for the Par rule and all rules
where program and adversary are reduced independently. The second formu-
lation is needed for the Com, Backward variant and Adversarial conse-
quence rules as a channel s may ve involved to share information between
program and adversary.

Definition 3 (Incorrectness Principles in Adversarial Logic). Adversar-
ial logic preserves the symmetries of incorrectness logic:

– ∧∨ symmetry: [ε: p]c[ε: q1] ∧ [ε: p]c[ε: q2] ⇐⇒ [ε: p]c[ε: q1 ∨ q2]
– ⇑⇓ symmetry: [ε: p ⇒ p′] ∧ [ε: p]c[ε: q] ∧ [ε: q′ ⇒ q] ⇐⇒ [ε: p′]c[ε: q′]

Adversarial logic inherits the consequence and disjunction rules of incorrect-
ness logic, and therefore preserves incorrectness symmetries. Under-approximate
reasoning is similarly unchanged, preserving principles of agreement and
denial [1]. The central tool for soundness proof is the characterization lemma,
which relates the state transition system of the denotational semantics to the
inference system of adversarial logic.
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Lemma 1 (Characterization). The following statements are equivalent:

1. [pre_ok: p][pre_ad: a] C1 || C2 [post_ok: q][post_ad: b] is true.
2. Every state in the conclusion is reachable from a state in the premises:

∀(σq, σb) ∈ (q, b) ∃σp ∈ p ∃σa ∈ a : ((σp, σa), (σq, σb)) ∈ (ok, ad)

The characterization lemma in Adversarial Logic extends the one of Reverse
Hoare Logic of de Vries and Koutavas [18] as inherited by Incorrectness Logic [1].
Sufficient conditions for the characterization lemma to hold can be decomposed
into three subcases:

1. if σa = σb : ∀(σq, σb) ∈ (q, b) ∃σp ∈ p : (σp, σq) ∈ ok
2. if σp = σq : ∀(σq, σb) ∈ (q, b) ∃σa ∈ a : (σa, σb) ∈ ad
3. Otherwise: ∀(σq, σb) ∈ (q, b) ∃(σp, σa) ∈ (p, a) : ((σp, σa), (σq, σb)) ∈ (ok, ad)

Cases (1) and (2) yield from the fact that core incorrectness rules of adversar-
ial logic are the same as incorrectness logic. We shall provide additional proofs
for rules Read, Write, Success and Failure which are new to AL. Case (3)
is necessary when both program and adversary take steps together, as done in
parallel composition, communication, backward variant and adversarial conse-
quence rules.

Definition 4 (Interpretation of Specifications). [ok: p][ad: a](C1||C2)[ok:
q][ad: b] is true iff the adversarial triple [p][a](�C1||C2�(ok,ad))[q][b] holds.

Proving that this equivalence holds for AL requires proving the soundness
theorem of adversarial logic.

Theorem 1 (Soundness). Every adversarial logic proof is validated by the
rules of adversarial denotational semantics.

To prove soundness, we appeal to the following substitution lemma general-
ized from reverse hoare logic [18], which we hold true without proving it.

Lemma 2 (Substitution). σ ∈ P (n/x) ⇐⇒ (σ|x → n) ∈ P . That is:

– σp ∈ P (n/x) ⇐⇒ (σp|x → n) ∈ P if x ∈ σp

– σa ∈ A(n/x) ⇐⇒ (σa|x → n) ∈ A if x ∈ σa

The substitution lemma can be instantiated for the program relation as well
as the adversarial relation when x ∈ V ars. There is no ambiguity allowed since
AL forbids variable sharing. We also follow de Vries and Koutavas [18] by manag-
ing local variables using alpha-renaming, rather than using explicit substitution
like O’Hearn [1]. This changes the soundness proof for the local variable rule and
the assignment rule. For all symmetric cases involving ε, we may give the proof
one of these two cases and omit the identical proof for the other side.
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Proof. We prove soundness for each rule of Adversarial logic. For most cases,
we appeal to the characterization lemma of adversarial logic semantics to show
that for all post-states of semantic triples, there is a pre-state that satisfies the
adversarial precondition of the corresponding rule.

Proof (Unit). Assume (σp, σa) skip (σq, σb) and [ε : P ] skip [ε : Q]. Show that
∀(σq, σb) ∈ [ε: Q] ∃(σa, σp) ∈ [ε: P ] . By skip rule, P = Q, so [ε: P ] skip [ε: P ] is
true and (σp, σa) = (σq, σb). Since (σq, σb) ∈ [ε: P ] and (σp, σa) = (σq, σb) then
(σp, σa) ∈ [ε: P ].

Proof (Constancy). Show that ∀σ′ ∈ [ε: Q ∧ F ] ∃σ ∈ [ε: P ∧ F ]. By induction
hypothesis, ∃σ ∈ [ε : P ] such that σ → σ′ and [ε : σ′ ∈ Q]. Since Mod(c) ∩
Free(F ) = ∅, σ → σ′ preserves F . Therefore σ ∈ [ε: P ∧ F ].

Proof (Assume). Let (σp, σa) assume B (σp, σa) and [ε: P ] assume(B) [ε: P ∧B].
Show that ∀(σq, σb) ∈ [ε: P ∧ B] ∃(σp, σa) ∈ [ε: P ]. Since (σp, σa) = (σq, σb) by
assume rule, (σp, σa) ∈ P ∧ B. By consequence rule, (σp, σa) ∈ [ε: P ].

Proof (Rand). Assume (σp, σa) x = rand() (σq, σb) with (σq, σb) = (σp | x �→
r, σa). Let (σq, σb) ∈ [ε : P (x/x′) ∧ x = r] and show that ∀(σq, σb) ∃(σp, σa) ∈
[ε: P ]. Let us first cover the subcase where x ∈ σp and ε = ok. Take (σp | x �→
n) ∈ [ok : P ]. By the substitution lemma, σp ∈ [ok : P (n/x)]. By assign rule,
σq ∈ [ok: P (r/x)]. That is, σp ∈ [ok: ∃x′.P (x′/x) ∧ x′ = r]. The second subcase
where x ∈ σa and ε = ad can be proved similarly.

Proof (Assign). Take (σp, σa) x = e (σq, σb) with (σq, σb) = (σp | x �→ �e�σp
, σa).

Let (σq, σb) ∈ [ε : P (x/x′) ∧ x = e(x′/x)] and show that ∀(σq, σb) ∃(σp, σa) ∈
[ε : P ]. Let us first cover the subcase where x ∈ σp. Take (σp | x �→ n) ∈ [ok :
P ]. By the substitution lemma, σp ∈ [ok : P (n/x)]. By assign rule, σq ∈ [ok :
P (�e�σp|x�→n/x)]. Taking �e�σp|x�→n = m we obtain that σp ∈ [ok: ∃x′.P (x′/x) ∧
x′ = m]. The second subcase where x ∈ σa and ε = ad can be proved similarly.

Proof (Local). Let us first take the case where x ∈ σq. Show that ∀(σq | x �→
v, σa) ∈ [ok : ∃x.Q] there is (σp | x �→ �e�σp

, σa) ∈ [ok : P ]. By the substitution
lemma, σq ∈ [ok : ∃x.Q(v/x)], that is σq ∈ [ok : ∃x.Q] since x is bound. By
induction hypothesis and executing backward, we obtain σp ∈ [ok : P ∧ x = e].
By the substitution lemma, we have (σp | x �→ �e�σp

) ∈ [ok : P (e/x)]. Since
x /∈ Free(P ), we conclude (σp | x �→ �e�σp

) ∈ [ok: P ]. The second subcase where
x ∈ σb can be proved similarly.

Proof (Read). We first define σ′ = (σ | x �→ v, s �→ l) and prove that for all
σ′ ∈ [ε: ∃x′∃s′.P (s′/s, x′/x)∧(s = s′\v)∧x = v] there is (σ | s �→ (l::v)) ∈ [ε: P ].
By the substitution lemma: σ ∈ [ε : ∃x′∃s′.P (s′/s, x′/x) ∧ (s = s′\v) ∧ x =
v)(v/x)(l/s)] That is: σ ∈ [ε: ∃x′.∃s′.P (s′/s, x′/x) ∧ (l = (s′\v))]. By rewriting
s′, we obtain σ ∈ [ε : ∃x.P ((l::v)/s, x′/x)]. Executing read backward, we get
(σ | s �→ (l::v), x �→ x′) ∈ [ε : P ]. We can conclude since {σ | s �→ (l::v), x �→
x′} ⊆ {σ | s �→ (l::v)}
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Proof (Write). Let �write(s, x)�ε = {((σ | s �→ l, x �→ v), (σ | s �→ (l::v)))}
and [ε : P ∧ x = y ∧ s = l] write(s,x) [ε : ∃s′.P (s′/s) ∧ s = (s′::v)]. Define
σ′ = (σ | s �→ (l::v)) and show that ∀σ′ ∈ [ε : ∃s′.P (s′/s) ∧ s = (s′::v)] there
is a (σ | s �→ l, x �→ v) ∈ [ε: P ∧ x = v ∧ s = l] . By the substitution lemma,
σ ∈ [ε: ∃s′.P (s′/s)((l::v)/s) ∧ (l::v) = (s′::v)]. That is, σ ∈ [ε: P (s′/s) ∧ s′ = l].
By inlining s′ we get σ ∈ [ε: P (l/s) ∧ s = (l::v)]. By executing write backward,
we obtain σ ∈ [ε: P ∧ x = v ∧ s = l].

Proof (Com). Assume �Com(C1, C2)�ε1,ε2 = {(((σ1 | s �→ (v::l1)), (σ2 | s �→
l2)), (σ′

1, σ
′
2))} with ε1, ε2 ∈ {ok, ad} and σ′

1 = (σ1 | s �→ l1) and σ′
2 = (σ2 | s �→

(l2::v)). Prove for all (σ′
1, σ

′
2) ∈ [ε1 : ∃s′.P (s′/s)∧s = (s′\v)][ε2 : ∃s′.A(s′/s)∧s =

(s′::v)] there exists ((σ1 | s �→ (v::l1)), (σ2 | s �→ l2)) ∈ [ε1 : P ][ε2 : A]. By the
substitution lemma, ((σ1 | s �→ (v::l1)), (σ2 | s �→ l2)) ∈ [ε1 : P ((v::l1)/s)][ε2 :
A(l2/s)]. Introducing s′, we have ((σ1 | s �→ (v::l1)), (σ2 | s �→ l2)) ∈ [ε1 :
∃s′.P (s′/s) ∧ s′ = (v::l1)][ε2 : ∃s′.A(s′/s) ∧ s′ = l2]. By �Com(C1, C2)� rule,
(σ′

1, σ
′
2) ∈ [ε1 : ∃s′.P (s′/s) ∧ s′ = (v::l1) ∧ s = l1] [ε2 : ∃s′.A(s′/s) ∧ s′ = l2 ∧ s =

(l2::v)]. Rewriting s using s′ we now have: (σ′
1, σ

′
2) ∈ [ε1 : ∃s′.P (s′/s) ∧ s =

(s′\v)][ε2 : ∃s′.A(s′/s) ∧ s = (s′::v)].

Proof (Iterate). Immediate by semantic definitions and Iterate rules.

Proof (Sequencing). Immediate by semantic definition and induction hypotheses.

Proof (Choice). Immediate by semantic definition and induction hypotheses.

Proof (Disjunction). Immediate by logical definition and ∧∨ symmetry [1] of
AL.

Proof (Consequence). Immediate by logical definition and ⇑⇓ symmetry [1] of
AL.

Proof (Par). Immediate by semantic definitions and induction hypotheses.

Proof (Success). Assume (σp, σa) adv_assert(B) {(σq, σb) | �B�σa
= true} by

� left subset. Success rule gives us that [ad : P ∧ (P ⇒ B)] adv_assert(B)
[ad : P ∧ true]. Show that ∀(σq, σb) ∈ P ∧ true ∃(σp, σa) ∈ P ∧ (P ⇒ B).
Success rule does not modify any variable of (σp, σa), therefore (σp, σa) = (σq, σb)
and (σp, σa) ∈ P ∧ B. Since (P ∧ B) ⇐⇒ P ∧ (P ⇒ B), we conclude that
(σp, σa) ∈ P ∧ (P ⇒ B).

Proof (Failure). Assume (σp, σa) adv_assert(B) {(σq, σb) | �B�σa
= false} by

� right subset. Failure rule gives us that [ad : P ∧ (P ⇒ ¬B)] adv_assert(B)
[ad: P ∧ ¬B]. Show that ∀(σq, σb) ∈ P ∧ ¬B ∃(σp, σa) ∈ P ∧ (P ⇒ ¬B). Failure
rule does not modify any variable of (σp, σa), therefore (σp, σa) = (σq, σb) and
(σp, σa) ∈ P ∧ ¬B. Since (P ∧ ¬B) ⇐⇒ P ∧ (P ⇒ ¬B), we conclude that
(σp, σa) ∈ P ∧ (P ⇒ ¬B).
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Proof (Adversarial Consequence). We know that (A′ ∧ ∃v1.Q ∧ v1 = v2) ⇒ A′.
Applying the consequence rule backwards, σb ∈ [ad: A′∧∃v1.Q∧v1 = v2] implies
σb ∈ [ad: A′]. Therefore by induction hypothesis, we know ∃σa ∈ [ad: A]. By the
second induction hypothesis, we also know that ∀σq ∈ [ok : P ′] ∃σp ∈ [ok : P ].
Applying the parallel rule backward, we obtain that ∀(σq, σb) ∈ [ok : P ′][ad :
A′] ∃(σp, σa) ∈ [ok: P ][ad: A].

Proof (Parallel Backward Variant). We show that ∀(σq, σb) ∈ [ok: ∃n.P (n)][ad:
∃m.A(m)] there exists (σp, σa) such as (σp, σa) → (σq, σb) and (σp, σa) ∈ [ok :
P (0)][ad: A(0)].

Proof (Case n = m = 0). Immediate by definition of Iterate Zero rule, with
(σp, σa) = (σq, σb).

Proof (Case n = m and i = j = 1). By inductive hypothesis, it holds that [ok:
P (n−1)][ad: A(m−1)]c1||c2[ok: P (n)][ad: A(m)] and there is a (σp(n−1), σa(m−1))
∈ [ok: P (n − 1)][ad: A(m − 1)]. We reuse the induction hypothesis several times
going backward until we reach (σp0, σa0) ∈ [ok: P (0)][ad: A(0)]

Proof (Case n �= m). By inductive hypothesis, it holds that [ok : P (n)][ad :
A(m)]c1||c2[ok : P (n + i)][ad : A(m + j)]. Therefore, ∃(σq(n−i), σb(m−j)) ∈ [ok :
P (n−i)][ad: A(m−j)]. Define δ(n,m) : (N×N) → (B×B) the function mapping
values of (n,m) to their corresponding values (in, jm) where i, j ∈ {0, 1}. We have
three subcases:

– δ(n,m) = (0, 1) and ∃(σq(n), σb(m−1)) ∈ [ok: P (n)][ad: A(m − 1)].
– δ(n,m) = (1, 0) and ∃(σq(n−1), σb(m)) ∈ [ok: P (n − 1)][ad: A(m)].
– δ(n,m) = (1, 1) and ∃(σq(n−1), σb(m−1)) ∈ [ok: P (n − 1)][ad: A(m − 1)].

Recursively going backward using one of the three subcases, we eventually reach
one of the two following termination conditions:

– The program reaches its initial condition before the adversary:
• (σq0, σb(m−j)) ∈ [ok: P (0)][ad: A(m − j)].
• For all remaining (m − j) steps, we have δ(0,m) = (0, 1)
• (σp0, σa0)

m−j−−−→ (σp0, σb(m−j)) ∈ [ok: P (0)][ad: A(m − j)]
– The adversary reaches its initial condition before the program:

• (σq(n−i), σb0) ∈ [ok: P (n − i)][ad: A(0)].
• For all remaining n − i steps, we have δ(n, 0) = (1, 0)
• (σp0, σa0)

n−i−−→ (σq(n−i), σa0) ∈ [ok: P (n − i)][ad: A(0)]

6 Alternative Presentation

Different representations of program semantics can encode much of the same
concepts as adversarial logic, albeit at different levels of abstractions. We briefly
mention a couple of such representations without deep-diving into their respec-
tive theory.
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6.1 Dynamic Logic

Many of the concepts put forward in this article can be expressed using the
dynamic logic of Harel [16]. Let an adversarial system S = (W,m, π) and its
specification AS = [fs0 , fs1 , ..., fsn

] with F ∈ AS a list of formulae to be satisfied
in order. A structure S can be defined as a triple (W,m, π) where W is a non-
empty set of states, m is the state transition function, and π is a labeling function
indicating in which state formulae in F hold.

S = (W,m, π) =̂

⎧

⎪

⎨

⎪

⎩

W = P × A

m : W → 2W×W

π : F → 2W

(1)

Satisfiability S � AS can then be defined as conditions on the structure S.

∃zs0, s1, ..., snz=̂

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

s0 = (σp0 , σa0) ∈ π(fs0)
sn = (σpn

, σan
) ∈ π(fsn

)
∀j < n : ((σpj

, σaj
), (σpj+1 , σaj+1)) ∈ m(p, a)

∀fk ∈ AS : ∃ j1 < j2 < n :
−σj1 /∈ π(fk) ∧ σj1+1 ∈ π(fk)
−σj2 /∈ π(fk+1) ∧ σj2+1 ∈ π(fk+1)

(2)

The correspondence between dynamic logic [18] and incorrectness reasoning
was remarked by O’Hearn [1]. This correspondence is preserved in adversarial
logic with the change that every states is a couple (p, a) representing the product
of the program state and the adversary state.

6.2 Information Systems

We now express adversarial logic concepts in the framework of domain the-
ory [17]. In this formalism, we understand adversarial systems as a special kind
of Scott’s information system. We define an adversarial system E = {D, ConD,�
,⊥} where D = Ψa × Σ × Δ × Ψp is the adversarial domain, ConD is the set
of all finite subsets of D, ⊥ is the least informative element of D and � is an
entailment relation on D. The entailment relation operates on a set of contexts
Ψa, Ψp, Δ, and Σ, where (Fig. 1 and 2):

– Σ is the program input to execute the program with adversarial conditions.
– Ψp is the program context holding the symbolic program P .
– Δ is the program output produced by interpreting P with program input.
– Ψa is the adversarial context containing facts known by the adversary.
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Fig. 1. Entailment relations for adversarial systems with P the program and A the
adversary. Σ is the program input, Δ is the program output, Ψa is the adversarial
context and Ψp is the program context.

Fig. 2. Expected shape of proof tree in adversarial systems

We distinguish Ψa and Ψp to enforce that program knowledge is not shared
to the adversary unless explicitly done so through the Ψa context. Entailment
relation � is further partitioned into three sub-relations to distinguish each case
of inference:

– �δ: Σ × Ψa → Σ is the adversarial entailment relation.
– �φ: Σ × Ψp → Δ is the program entailment relation.
– �θ: Δ × Ψp → Ψa is the knowledge entailment relation.

Adversarial entailment Σ × Ψa �δ Σ derives next symbolic program input
based on the previous input and the adversarial knowledge in context Ψa. Pro-
gram entailment Σ × Ψp �φ Δ allows the program to compute an output value
based on adversarial input (or from the program itself in case of recursive or inter-
nal procedures). Knowledge entailment Δ × Ψp �θ Ψa is the only rule which can
increase adversarial knowledge Ψa. For example, adversarial knowledge of pred-
icate P (A,B) can be obtained based on an observable program output C ∈ Δ
where �θ C =⇒ P (A,B) holds with P (A,B) ∈ Ψp, A ∈ Σ and B ∈ Ψp.
Reachability on E is defined as computing the least fixed point of the transitive
closure of � to discover if the adversarial specification AS is satisfiable. Formally,
D � AS ⇐⇒ ∃ g ∈ D such as {g} ⊆ lfpD(⊥D) and g � AS. The oscillating bit
protocol logic can be encoded in formula P as:

P = (s = 160) ∧ ((rn = 0) ⇒ (vn = s)) ∧ ((rn = 1) ⇒ (vn < s))
∧ ((rn = 2) ⇒ (vn > s))

The initial adversarial term can be encoded in formula A0 as:

A0 = (o = 0128) ∧ (s < vn ⇒ (vn+1 = vn − on ∧ on+1 = on/2))

∧ (s > vn ⇒ (vn+1 = vn + on ∧ on+1 = on/2))

Modeling the oscillating bit protocol in this framework is done in appendix.
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7 Related Work

Related work in extended static checking and formal verification of software
comes with a dense prior art, We enumerate a small fraction of the literature
which directly influenced our thinking behind adversarial logic.

Incorrectness logic [1] is used as the starting point to formalize adversarial
reasoning. In particular, AL borrows the backward variant rule of incorrectness
logic and extend it to the parallel setting, a feature left out of scope of concurrent
separation incorrectness logic by Raad et al. [14]. In the other hand, AL drops
short-circuiting rules of IL, as program errors in AL must be carried transitively
to determine the existence of attack paths. The characterization lemma used
in under-approximate reasoning in IL and AL was introduced in reverse Hoare
logic [18] and take its root in dynamic Logic [16].

Abstract Interpretation is a program analysis framework pioneered by Cousot
and Cousot [12] and considered a reference technique in the verification of the
absence of bugs. Abstract interpretation is practical [24] and comes with a rich
legacy of applications including the creation of abstractions for theorem prov-
ing [25], model checking [26], worst-case execution time analysis [27], thread-
modular analysis for concurrent programs [28], and input data tracking [29]. In
comparison, adversarial logic (and incorrectness logic before it) cannot guarantee
the absence of bugs due to its fundamentally under-approximate nature focused
on eliminating false positives at the expense of false negatives. Incorrectness
principles have been captured in the abstract interpretation framework by the
local completeness logic LCL [30], and algebras of correctness and incorrectness
can provide a unified formalism to connect both approaches [31].

Process calculus [23] is a well-established formalism to reason about paral-
lel communicating programs and program equivalence using bisimulation. Abadi
and Blanchet [32] designed the spi-calculus to verify secrecy properties of crypto-
graphic protocols in the symbolic model. To the same goal, the proverif [33] tool
by Blanchet et al. implements the Dolev-Yao model [2] with explicit attacker.
It may be possible to extend proverif to include arithmetic in its specifications
language, which is required to implement the examples of this paper.

Separation logic is a well-established logic to encode heap reasoning in pro-
gram analysis. Separation logic comes in both over-approximate [21] and under-
approximate [13] flavors. Combined with parallel constructs, separation logic
leads to concurrent separation logics [34] and concurrent incorrectness separa-
tion logic [14]. Adversarial Logic provides a limited kind of separation between
variables of parallel processes without requiring an explicit separating conjunc-
tion. Encoding separation expressiveness without the star operator is not unseen,
and was previously implemented in the framework of linear maps [35]. Adding
support for heap reasoning is a natural next step for adversarial logic.

Automated bug finding by symbolic execution [36,37], white-box fuzz test-
ing [38], and extended static checkers [39] using SMT solvers [40] are often
used to maximize code coverage in static and dynamic program analysis. These
tools typically focus on checking sequential properties of non-interactive parser-
like code [41], leaving concurrency out of scope. Symbolic execution using SMT
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solvers have known scalability issues with path explosions in loops and constraint
tracking in deep paths. Adversarial logic addresses these issues by only requiring
a subset of paths to be analyzed sufficient to prove the presence of exploitable
bugs. AL implements a flavor of concurrent symbolic execution where symbolic
variables are introduced by the adversary to drive attack search without requir-
ing knowledge of internal program state. As such, AL can express adversarial
symbolic execution [42] as used to detect concurrency-related cache timing leaks.

Automated exploit generation (AEG [43]) leverages preconditioned symbolic
execution to craft a sufficient program condition to exploit stack-based buffer
overflow security vulnerabilities. Specific domains of heap vulnerabilities for
interpreted languages have been demonstrated practical to attack by Heelan
et al. [44]. Concepts of adversarial logic could possibly be added to extend AEG,
such as for tackling information disclosure vulnerabilities as illustrated by the
Oscillating Bit Protocol example in Sect. 2.

8 Conclusion and Future Work

Adversarial logic (AL) is a new under-approximate logic extending incorrectness
logic [1] to perform exploitability analysis of software bugs. Reasoning about
accumulated error in programs is critical to understand the severity of security
issues and prioritize bug fixing accordingly. This new logic can be used to discover
attacks which require a deeper level of interaction with the program, such as
subtle information disclosure attacks in interactive protocol loops. We provided
a denotational semantics and proved the soundness of adversarial logic showing
that all exhibited attack traces in AL are true positives. In the future, embedding
adversarial logic principles in concurrent incorrectness separation logic [14] will
extend adversarial logic with heap reasoning, so AL can also be used to perform
exploitability analysis of pointer bugs.

Acknowledgments. The author thanks Peter O’Hearn, Azalea Raad and Samantha
Gottlieb for their useful reviews of this paper.
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