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Abstract. Jones-optimality determines whether a specializer improves
program performances. Reinterpreting this concept in terms of the preci-
sion of an abstract interpreter means to determine whether specializing
a source program is able to improve the precision of a given static anal-
ysis. In the opposite direction, a specializer failing optimality (disop-
timal) would decrease the precision of the analysis when applied to
the specialized code. In this paper, we exploit this reinterpretation of
Jones-optimality relatively to the precision of an abstract interpreter
with the aim of systematically deriving obfuscated code. In line with
the idea behind Futamura’s projections, we factorize the construction of
the obfuscated code by separating specialization and interpretation. An
interpreter specializer is then systematically made disoptimal by means
of language transduction. The result is a language agnostic code obfus-
cator which is able to foil any given static analyzer.

Keywords: Abstract interpretation · Code obfuscation · Program
interpretation · Jones-optimality

1 Introduction

Code obfuscation relies upon the idea of making security inseparable from code: a
program, or parts of it, are transformed in order to make them hard to understand
or analyze [10]. This technology is increasingly relevant in software security,
providing an effective way for facing the problem of code protection against
reverse engineering. This contributes to comprehensive digital asset protection,
with applications in DRM systems, IPP systems, tamper resistant applications,
watermarking and fingerprinting, and white-box cryptography [8,9].

Obfuscation [2] exploits, by a suitably designed program transformation, the
intensional nature of program analysis [4,24], namely the fact that the precision
of a program analysis algorithm depends upon the way the program is written
and on how data structures are used. The attack scenario here considers the
protection of a program—the asset, from an attacker which is implemented by
a program analysis algorithm—the so called hostile observer.

In this paper, we consider program analysis as implemented by an abstract
interpreter [13]. This is general enough to include most effective sound program
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analysis algorithms. The abstraction here plays the role of constraining the inter-
preter (i.e., a Universal Turing Machine) within the boundaries of expressivity as
given by the chosen abstract domain. On the one hand, this realizes a case prin-
ciple in computer security, where the security of a system (e.g., an encryption
protocol) is always proved relatively to a constrained attacker, (e.g., by compu-
tational complexity). On the other, because any effective attack on code cannot
avoid some form of automation of program analysis, this model can fruitfully
represent a relevant part of the action of code attack by reverse engineering.

It is known that, by transforming a code we can improve or reduce the pre-
cision of any analyzer. It is in general impossible to design a compiler that
automatically removes from any program all the false alarms produced by a non
straightforward abstract interpreter [4]. However it is instead always possible
to inject arbitrary many false alarms by compilation. One of such obfuscating
compilers can be simply designed by specializing a suitably designed (called dis-
torted) interpreter [20]. The key observation relies upon the semantic equivalence
between the source code and an interpreter specialized on this code. In this case,
[26]: (1) The transformed program (resulting from the specialization process)
inherits the programming style of the interpreter; (2) The transformed program
inherits the semantics of the original program. The reason for (1) is that the
transformed program is the result of the specialization of the code of the inter-
preter. The reason for (2) is that even though the transformed program may
be a disguised form of the source code P, a correct interpreter must faithfully
execute the operations that P specifies. It is therefore always possible to act on
the intensional properties of programs, and hence on the precision of program
analysis, by specializing a suitably designed interpreter [20].

Paper Contribution. In this paper we go deeper into building obfuscating com-
pilers by considering the role of the specializer and its interplay with the given
interpreter in the action of producing obfuscated code. The notion of Jones opti-
mality [25,27] helps to give us the compass for understanding the role of program
specialization in code obfuscation. Jones optimality was originally introduced to
prove whether by compilation it is possible to improve program performance
by removing the so called interpretational overhead [27]. We reinterpret Jones
optimality in the light of the accuracy of an abstract interpreter. In particular,
we show that obfuscating programs by specializing interpreters can be seen as a
peculiar, and non-standard, case of Jones-(dis)optimality [25,27], where, instead
of considering performances, we consider precision. We introduce a new notion of
optimality (Sect. 5) stating that a specializer is optimal w.r.t. an abstract inter-
preter if the abstract interpreter is complete (viz. precise [22]) for the resulting
program obtained by specializing the concrete interpreter with the source code.
Of course, optimal specializers removing all false alarms cannot exist for all
programs and non straightforward abstract interpreters, otherwise by the sec-
ond Futamura projection such compiler would exist [4]. However the degree of
optimality of the specializer shows how the specializer is able to remove the
imprecision injected by a distorted interpreter. In the case of code flattening,
the code obtained by specializing a vanilla interpreter with the source code
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produces a truly flattened code whenever the program counter is forced to be
a dynamic structure [20]. This inhibits a simple specializer to reconstruct the
source structure, hence forcing its disoptimal behavior.

On this basis, we derive a constructive technique for building obfuscating
compilers which are driven by the property to hide. The distortion phase is built
by means of suitable transducers (Sect. 3) that syntactically act on code in order
to make a fixed abstract interpreter incomplete for the property to hide. The
core structure of our property-driven obfuscating compilers (Sect. 6) is language
and property independent. The main conceptual innovation is in the correspon-
dence between a modified version of Jones optimality, where concrete execution
time is replaced by the precision of the abstract interpreter, and the process of
protecting a program from the analysis obtained by that abstract interpreter. In
order to formally characterize this correspondence we need to rethink program
interpretation by separating the syntactic parsing from the semantic interpreta-
tion ( Sect. 4). This allows us to perform the distortion process on the syntactic
phase only, without changing the semantic interpretation of code, hence further
separating distortion from interpretation.

Related Works. The most related work is [20], based on the seminal paper [19],
where obfuscation was formalized by means of completeness and interpreter spe-
cialization. Giacobazzi et al. [20] provide precisely the theoretical bases for obfus-
cating programs by interpreter specialization, in order to force intensional prop-
erties affecting the precision of a given static analysis. With respect to [20], we
focus the attention on what we want to protect rather than on what the attacker
can observe/analyze. Moreover, Giacobazzi et al. [20] did not provide any sys-
tematic approach for deriving the distorted interpreters. Our aim is to fill the
gap between the identification of the property to make obscure and the process
for building the distorted interpreter to specialize for obscuring the property.

Dalla Preda and Mastroeni [16] exploit the relation between obfuscation and
completeness to design property-driven obfuscation strategies as program trans-
formations revealing (preserving) some fixed semantic property while concealing
a property to protect. In this work, it is also shown that the obfuscation app-
roach based on distorted interpreters [20] is precisely a technique for revealing
the I/O program semantics while concealing a given property to protect. The
problem with this work is that it still does not provide a constructive method
for obfuscating programs, but only a theoretical framework for designing obfus-
cation strategies. Finally, Giacobazzi et al. [21] exploit the relation between
completeness and obfuscation for “measuring” obfuscation potency, namely the
obfuscator capability of hiding properties.

2 Background

2.1 The Language L and Control Flow Graphs

Following [5,30] (see also [37]) we consider the language L of regular commands
in Fig. 1 (where + denotes non-deterministic choice and ∗ is the Kleene closure),
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Fig. 1. Syntax of L

which is general enough to cover deterministic imperative languages. We com-
plete the Bruni et al. grammar [5] with an expressions grammar, and we make
some syntactic change in order to simplify the parsing and interpretation pro-
cesses. In particular, we use ; not for composing statements (composition is made
by concatenation of statements) but for delimiting the end of a statement. We
use delimiters +〈 and 〉+ for determining the action range of +, we use ∗〈 and 〉∗
for the range of ∗, and we use { and } for delimiting programs. Let L denote
also the set of programs in the language and V ar(P) the set of all the variables
in P ∈ L.

Programs will be graphically represented by means of their control flow
graphs (CFG for short). The definition is quite standard [33], but we recall it
here in order to fix the notation we use. The CFG of P ∈ L is the labeled directed
graph whose nodes are program points LabP and whose edge labels are in the lan-
guage Lsp � l ::= x := e | skip | b. In order to build the CFG, in the following,
we will use labeled programs in L, namely code in L where program points are
labeled with values in a set of labels Lab. The labels are not in the syntax since
they can be considered as program annotations added by a labeling function.
Formally, let P = {C} ∈ L its CFG is Cfg(C) def= Edges(q0Cq1) ⊆ LabC×Lsp×LabC,
where Edges(q0Cq1) is inductively defined on the structure of C (we ignore the
initial and final brackets).

Edges(q0skip; q1) = {〈q0, skip, q1〉}
Edges(q0x := e; q1) = {〈q0, x := e, q1〉}

Edges(q0
+〈q1C1

q2 + q3C2
q4〉+; q5) = Edges(q1C1

q2) ∪ Edges(q3C2
q4)∪

{〈q0, true, q1〉,〈q0, true, q3〉,〈q2, true, q5〉,〈q4, true, q5〉}
Edges(q0

∗〈q1Cq2〉∗ ; q3) = Edges(q1Cq2) ∪
{〈q0, true, q1〉, 〈q2, true, q0〉, 〈q0, true, q3〉}

Edges(q0C1
q1C2

q2) = Edges(q0C1
q1) ∪ Edges(q1C2

q2)

The nodes can be restricted to those involved in edges, i.e., Nodes(Cfg(C)) =
{q | ∃〈q, l, q′〉 ∈ Cfg(C) or 〈q′, l, q〉 ∈ Cfg(C), l ∈ Lsp}. In Fig. 2 we have, on the
right, an example of CFG extracted from a simple program and on the left we
have a simplified version, where all the true transitions are omitted and states
are relabeled.
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Fig. 2. Example of CFG construction.

2.2 The Language Semantics

Denotations are memories, i.e., partial functions m : V ar −→ V∪{$} ∈ M where
V is a domain of values, e.g., V def= Z ∪ {true, false} and $ denotes an uninstanti-
ated value. A memory assigns values in V only to a finite set of variables, i.e., it
is a variable finite memory [4]. We abuse notation by denoting as M precisely the
set of such memories. We define var(m) def= {x ∈ V ar | m(x) �= $} and for M ⊆ M,
we define var(M) =

⋃
m∈M var(m). As usual we will often represent a memory

m ∈ M as a tuple [x1/v1, . . . , xn/vn] of its defined variable/value pairs, i.e., such
that m(y) = $ if y /∈ {x1, . . . , xn} and m(y) = vi if y = xi for all i ∈ [1, n]. Mem-
ory update is written m[x �→ v] and it associates with x the value v, while all
the other associations remain the same. The concrete semantics of the program
can be computed by a fine-grain small-step execution deriving the set of all the
possible executions of programs. In the following, �P� ∈ ℘(M∗) denotes the set
of the (terminating) program computations modeled as finite traces of memories
[12], while (|e|)m denotes the concrete evaluation of e ∈ Exp in the memory m.

The Collecting Semantics. The collecting big-step semantics of programs in
L (denoted by the subscript C) is defined as the additive lift of the standard
I/O semantics and it is inductively defined on program’s syntax. We first define
the collecting semantics for a ∈ AExp, �a�C : ℘(M) −→ ℘(V), as additive lift to
sets of memories: �a�CM

def= {(|a|)m | m ∈ M}. Similarly, for boolean expressions
b ∈ BExp, �b�C : ℘(M) −→ ℘(M) is defined as �b�CM

def= {m ∈ M | (|b|)m = true}.
The semantics of P = {C} is �P�C = �C�C : ℘(M) −→ ℘(M) defined inductively as
follows [4]1 where �C�1CM

def= �C�CM and ∀n > 1. �C�n+1
C M

def= �C�CM◦�C�n
CM:

�skip; �CM; def= M

�x := e; �CM
def= M[x �→ �e�CM] def=

{
m[x �→ (|e|)m]

∣
∣m ∈ M

}

�+〈C1 + C2〉+; �CM
def= �C1�CM ∪ �C2�CM

�∗〈C〉∗ ; �CM
def=

⋃ {
�C�n

CM
∣
∣n ∈ N

}

�C1C2�CM
def= �C2�C(�C1�CM)

1 We avoid labels and initial and final brackets being not used in the semantics.



252 R. Giacobazzi and I. Mastroeni

Note that the collecting semantics of any non terminating program P is �P�C = ∅.
In this case, if ∅ denotes the undefined memory, then λM ⊆ M. �P�CM is the
collection of memories computed by P.

In the following we will use also the notion of store, allowing us to locally
denote collecting updates by associating, with each program point the collection
of memories reached at each point. This allows to define a collecting small-step
semantics abstracting �P� [1,12]. Let us define, S def= Lab → ℘(M)∪{$} such that
for any s ∈ S there exists a finite set of program labels q ∈ Lab such that s(q) �= $,
in particular, given a program P we have that SP = LabP → ℘(M) ∪ {$} (when
not necessary or when clear from the context, we will avoid the subscript P). In
the following, we will denote by sq the set of memories associated with q ∈ Lab,
i.e., s(q) ∈ ℘(M). For the sake of readability, we will also use the following update
notation: s[q �→ M](q′) def= M if q = q′, s(q′) otherwise. Moreover, we will denote
by s∅ the store mapping each program point to the emptyset, i.e., ∀q. s∅(q) = ∅.

The Abstract Semantics. The abstract semantics of programs is an abstrac-
tion of the concrete small-step semantics [12–14], also called trace semantics.
An abstract domain is a set of properties, here modeled as upper closure oper-
ators (uco for short), i.e., a monotone, extensive and idempotent operator on
℘(M) [14]. If A ∈ uco(℘(M∗)) is an abstraction of program traces, then we can
denote by �P�

A ⊇ A(�P�) the fix-point computation (inductively defined on the
language L) as the A observation of �P�. In static analysis, it is quite common
to define the semantic abstraction in terms of an abstraction of variable values
V. In general, if a program has n variables, then concrete values for the pro-
gram are n-tuples of values. Hence, abstract domains must be parametric on the
number n of variables of the program to analyze, i.e., we have to consider, as
abstract domains, families of abstractions {ρn ∈ uco(℘(Vn))}n∈N [4,15]. For the
sake of readability, in the following we simply denote this family of abstraction
as ρ, ignoring the technical aspect that it changes with the number of variables
of the program to analyze, and we denote the corresponding abstract seman-
tics as �P�

ρ. Given a value abstraction ρ, we can define a memory abstraction,
abstracting sets of memories in M in abstract memories in Mρ. Define the memory
abstraction as the tuple Aρ = 〈ρ,Mρ, αρ, γρ〉, where we define αρ : ℘(M) → Mρ

(αρ(M) def= λ〈x1, . . . , xn〉.ρ({〈v1, . . . , vn〉 | [x1/v1, . . . , xn/vn] ∈ M})), while the
concretization is the function γρ : Mρ → ℘(M) (defined on abstract collecting
memories as γρ(M) def= {[x1/v1, . . . , xn/vn] | 〈v1, . . . , vn〉 ∈ M(x1, . . . , xn)}).

In order to define the abstract semantics, we define the semantics of expres-
sions �e�ρ computing abstract operations in ρ, and then we define the abstract
semantics of basic instructions: Let {xi}i∈I be the set of defined variables ranging
over i in the set of indexes I = [1, n].

�xi := e�ρM
def
= λ〈x1, . . . , xn〉.

{
〈v1, . . . , vi, . . . , vn〉

∣∣∣∣∃v ∈ V.〈v1, . . . , v, . . . , vn〉 ∈
M(x1, . . . , xn), vi ∈ �e�ρM

}
def
= M[xi �→ �e�ρM]

�skip�ρM
def
= M
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In the assignment, we consider all the tupleswhere the potential relation among
all the variables different from xi remains unaltered, while xi may have any value
in �e�ρM. The abstract semantics, of a program P = {C} ∈ L, is simply denoted
as �P�

ρ = �C�ρ : Mρ −→ Mρ and it is inductively defined on the syntax of com-
mands (loops, conditionals and compositions) as the composition of the abstract
semantics of their components [4]. It is well known that abstract interpretation is
not compositional, namely the composition of two best correct approximation (bca
for short) semantics is not the bca semantics of the composition. This is indeed the
main source of imprecision in program analysis. Note that, also for abstract seman-
tics we can use (abstract) stores Sρ for defining abstract collecting rules where we
associate with program points abstract memories in Mρ.

Program Specialization. Program specialization is a source-to-source pro-
gram transformation also known as partial evaluation [26]. A specializer is a
program spec such that for P ∈ L with “static” input s ∈ D and “dynamic”
input d ∈ D S[P](s, d) = S[S[spec](P, s)]d where S[·] denotes generic semantics
associating I/O meaning to programs independently from the language, hence
distinguishing the I/O semantics from the collecting semantics �·�C. A special-
izer executes P in two stages: (1) P is specialized to its static input s yielding a
“residual program” spec(P, s) def= S[spec](P, s), (2) spec(P, s) can be run on P’s
dynamic input d [26].

A trivial specializer spec is easy to build by “freezing” the static input s
(Kleene’s s-m-n Theorem of the 1930s s did specialization in this way.) A num-
ber of practical program specializers exist. Published partial evaluation systems
include Tempo, Ecce, Logen, Unmix, Similix and PGG [11,28,29,32,34].

3 Symbolic Finite State Machines

In this section, we define a generic notion of symbolic machine and symbolic
transducer by generalizing the symbolic automata and transducers defined in
the literature [17,35]. The idea consists in generalizing the symbolic approach
(admitting potentially infinite alphabets) also to finite state machines/trans-
ducers equivalent to Turing Machines, namely with more than one stack and/or
with writable input tape, while simplifying the notation, for instance by avoid-
ing to introduce a further notion of interpretation for symbols. The following
machines are non deterministic with ε transitions, where as usual ε is a special
symbol used for executing transitions without reading symbols.

3.1 Finite State Machines

By finite state machines we mean any state machine with a finite number of states
that reads an input sequence of symbols. Each symbol allows the execution of
a transition, and final states decide which input sequences are accepted by the
machine, accepted when the input reading leads to a final state. The notion is
recalled only because we provide a unique parametric definition for automata
and Turing machines.
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Definition 1 (Finite state machines (FSM)). A FSM is the tuple M =
〈Q, qι, qf, Σ, Γ, S, δ〉 where

– Q is a finite set of states (qι ∈ Q initial state, qf ∈ Q final/accepting state)2;
– Σ and Γ are finite input and stack alphabets, respectively;
– S ⊆ {Stackn}∪{Input} is a set of tapes which may contain n ≥ 0 Stacks (if

n = 0 there are no stacks), i.e., LIFO tapes, and one Input tape, a writable
and readable input tape where we can stop or move left/right3;

– δ : Q × Σ × Γn → ℘(Q) × {R,L,H}{0,1} × (Γ ∗)n is the transition function.
The transition q → q′ labeled with ((s,M), {ti → γi}i∈[1,n]) (read s ∈ Σ in the
state q with the top (popped) elements of the stacks {ti}i∈[1,n], reach q′, push
{γi}i∈[1,n] on the n stacks, and move M ∈ {R,L,H})4 iff 〈q′,M, {γi}i∈[1,n]〉 ∈
δ(q, s, {ti}i∈[1,n]).

In order to make such a machine symbolic, we simply consider infinite alphabets
(both for input and stack) and a recursive enumerable set of decidable predicates
on the alphabet symbols. In this way, transitions are labeled with predicates
allowing all the symbols satisfying the property to be read in the transition (on
the input tape or on the stack).

Definition 2 (Symbolic finite state machines (SFSM)). A SFSM is the
tuple 〈Q, qι, qf, ΨΣ , ΨΓ , S, δ〉 where

– Q is a finite set of states (qι ∈ Q initial state, qf ∈ Q final/accepting state);
– Σ and Γ are infinite input and stack alphabets, respectively;
– ΨΣ ⊆ ℘(Σ) and ΨΓ ⊆ ℘(Γ ) are recursive enumerable sets of predicates on Σ

and Γ (closed under logic connectives)5;
– S ⊆ {Stackn} ∪ {Input} (n ≥ 0 number of stacks);
– δ : Q × ΨΣ × (ΨΓ )n → ℘(Q) × {R,L,H}{0,1} × (Γ ∗)n, where we have the

transition q → q′ labeled with ((s,M), {ti → γi}i∈[1,n]) iff ∃ΦΣ ∈ ΨΣ,
{Φi

Γ }i∈[1,n] ⊆ ΨΓ , γ ∈ Γn and M ∈ {R,L,H} such that 〈q′,M, {γi}i∈[1,n]〉 ∈
δ(q, ΦΣ, {Φi

Γ }i∈[1,n]), with s ∈ ΦΣ and ∀i ∈ [1, n]. ti ∈ Φi
Γ .

3.2 Finite State Transducers

Finite state transducers are finite state machine providing an output sequence
of symbols for each transition. The standard generalized notion is the following.

2 Being the machine non deterministic with ε-transition, w.l.g., we can suppose to
have only one final state.

3 Every FSM has a (only) readable input tape, where it is possible only to move right
after each step, a finite state pushdown automaton is an automaton with also one
stack, in any other cases we have a Turing Machine.

4 Where R stands for move-right, L for move-left, and H for halt, and {R, L, H}0

means there is no writable input tape.
5 We avoid the interpretation function [17] simply by denoting directly the predicates

extensionally, as the sets of the elements satisfying the predicate.
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Definition 3 (Finite state transducers (FST)). A finite state trans-
ducer is a FSM with an output language, i.e., a tuple 〈Q, qι, qf, Σ, Γ, S, δ̃, Ω〉,
where 〈Q, qι, qf, Σ, Γ, S, δ〉 is a FSM, Ω is a finite output alphabet, and
the transition function δ̃ : Q × Σ × Γn → ℘(Q) × {R,L,H}{0,1} ×
(Γ ∗)n × Ω∗ is δ extended by returning also an output string ω ∈ Ω∗

for each input symbol read, i.e., ∀(q, s, {ti}i∈[1,n]) ∈ Q × Σ × Γn. ∃ω ∈
Ω∗. δ̃(q, s, {ti}i∈[1,n])

def= 〈δ(q, s, {ti}i∈[1,n]), ω〉.
In this case, we have the transition q → q′ labeled with ((s/ω,M), {ti → γi}i∈[1,n])
(read s ∈ Σ in the state q with the top (popped) elements of the i-th stack ti ∈
Γ (i ∈ [1, n]) and reach state q′, push γi ∈ Γ ∗ on the i-th stack (i ∈ [1, n]),
move M and provide in output the sequence ω ∈ Ω) iff ∃〈q′,M, {γi}i∈[1,n]〉 ∈
δ(q, s, {ti}i∈[1,n]), and therefore 〈q′,M, {γi}i∈[1,n], ω〉 ∈ δ̃(q, s, {ti}i∈[1,n]).

In the symbolic extension, following the Veanes et al. [35], we simply consider a
function that for each input symbol read, provides a sequence of output symbols.

Definition 4 (Symbolic finite state transducers (SFST)).A symbolic finite
state transducers is a SFSM with an output language, i.e., it is defined as a tuple
〈Q, qι, qf, ΨΣ , ΨΓ , S, δ̃, Ω, f〉, where 〈Q, qι, qf, ΨΣ , ΨΓ , S, δ〉 is a SFSM, Ω is an infi-
nite output alphabet, f : Σ → Ω∗, and the transition function δ̃ is defined as 〈δ, f〉.
In this case, we have the transition q → q′ labeled with ((s/f(s),M), {ti →
γi}i∈[1,n]) (read s ∈ Σ in the state q with the top (popped) elements of the
i-th stack ti ∈ Γ (i ∈ [1, n]) and reach state q′, push γi ∈ Γ ∗ (i ∈ [1, n]),
move M and provide in output the symbols f(s) ∈ Ω∗) iff ∃〈q′,M, {γi}i∈[1,n]〉 ∈
δ(q, ΦΣ, {Φi

Γ }i∈[1,n]) and s ∈ ΦΣ, ∀i ∈ [1, n]. ti ∈ Φi
Γ .

When dealing with symbolic transducers we can characterize the correspond-
ing transduction function.

Definition 5 (Transduction). [35] The transduction of a symbolic transducer
T is the function TT : Σ∗ → ℘(Ω∗) where TT(σ) def=

{
γ ∈ Ω∗ ∣

∣ qι
σ/γ−→qf

}
6.

Note that a symbolic machine M = 〈Q, qι, qf, ΨΣ , ΨΓ , S, δ〉 can be always trans-
formed in the transducer TM

def= 〈Q, qι, qf, ΨΣ , ΨΓ , S, δ̃, Σ, id〉, where the output
language is precisely the input one.

We can compose transducers T1 and T2 by composing their transductions [35]
TT1 and TT2 as:

TT1 � TT2

def= λσ.
⋃

γ∈TT1
(σ)

TT2(γ)

3.3 Example: Parser as Symbolic Pushdown Automaton

Being the language generated by a context free grammar, the parser can be
modeled as a symbolic pushdown (non deterministic) automaton. In particular,
it is the automaton pars

def= 〈Q, qι, qf, ΨΣ , ΨΓ , {Stack}, δ〉, where

6 If σ = s0 · s1 · · · sn then q0
σ/γ−→q means that q0

s0/f(s0)−→ q1
s1/f(s1)−→ · · ·sn/f(sn)−→ q, and

γ
def
= f(s0) · f(s1) · · · f(sn) ∈ Ω∗ where · stands for string concatenation.
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Fig. 3. Parser

– Q
def= {qi}i∈[1,3] ∪ {qι, qf};

– Σ
def=

{
x := e

∣
∣ e ∈ Exp, x ∈ V ar

} ∪ {
b

∣
∣b ∈ BExp

} ∪ {skip,∗〈, 〉∗ ,+〈, 〉+,
+, ; , {, }};

– ΨΣ
def= {x := Exp,BExp} ∪ { {s} ∣

∣ s ∈ {∗〈, 〉∗ ,+〈, 〉+,+, ; , skip, {, }} }
;

– Γ
def= {+, ∗, •} and ΨΓ =

{ {t} ∣
∣ t ∈ Γ

}
7;

– δ : Q×ΨΣ ×Γ → Q×Γ ∗ is graphically defined in Fig. 3, where each transition
is labeled with (s ∈ φ, t → γ), meaning that φ is a predicate on Σ and s ∈ φ,
while from the stack we pop t ∈ Γ ∪ {ε} (t = ε means that we don’t pop
anything from the stack) and we push γ ∈ Γ ∗8.

This parser simply checks brackets balance, where + (∗) is pushed whenever a
bracket is opened, and the same symbol is popped when it is closed. We can
terminate only if the stack is empty (when on the top there is •).

4 Program (Re)Interpretation

As usual the interpretation of programs is specified in two phases: The pars-
ing phase of programs, where programs are viewed as sequences of statements,
and the semantic interpretation phase, i.e., the corresponding transformation of
memories/stores. The first phase is modeled as symbolic Turing Machine read-
ing in input the sequence of symbols corresponding to the program syntax, and
providing in output the precise sequences of single statements (skip and assign-
ments) to execute and of guards to evaluate. This resulting set of sequences corre-
sponds indeed to the CFG of the program, and on this structure we can perform
the semantic interpretation phase, whose rule definitions are indeed indepen-
dent from the sequence of statements/guards to execute/evaluate. Indeed, such
semantic interpretation phase may be defined on concrete memories, on collect-
ing memories of even on abstract memories, without affecting the computation
of the previous interpretation phase.

7 In this case the stack is not really symbolic.
8 For the sake of readability we write s for singleton predicates {s} and the empty

updates of the stack, i.e., ε → ε, are not depicted.
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Fig. 4. Execution sequence extractor

4.1 First Phase: The Execution Sequence Extractor

The parsing of the input program, aiming also at extracting the sequence of
executed statements and evaluated guards, is modeled as a symbolic Turing
machine equipped with a stack. It should be clear that the input language is the
language of the parser pars, that is indeed embedded in the interpreter. Hence
the first component is cfgEx

def= 〈Q, qι, qf, ΨΣ , ΨΓ , {Stack, Input}, δ̃, Ω, f〉
– Q

def= {qi}i∈[1,9] ∪ {qι, qf};
– Σ

def=
{

x := e
∣
∣ e ∈ Exp, x ∈ V ar

} ∪ {
b

∣
∣b ∈ BExp

} ∪ {skip,∗〈, 〉∗ ,+〈, 〉+,+,

; } and ΨΣ
def= {x := Exp,BExp} ∪ { {s} ∣

∣ s ∈ {∗〈, 〉∗ ,+〈, 〉+,+, ; , skip, {, }}} }
;

– Γ
def= {+, ∗, •} and ΨΓ =

{ {s} ∣
∣ s ∈ Γ

}
;

– Ω
def= Lsp =

{
b

∣
∣b ∈ BExp

} ∪ {
x := e

∣
∣ e ∈ Exp, x ∈ V ar

} ∪ {skip};
– δ : Q×ΨΣ ×Γ → Q×{R,L,H}×Γ ∗×Ω graphically defined in Fig. 4 together

with f : Σ → Ω, where each transition is labeled, as described before, with
((s ∈ φ/f(s),M), t → γ).

In particular, q2 handles the single statement execution or the guard evaluation.
q3 handles the non deterministic choice. In particular it moves to q1 for executing
the statement on the left of + (and when it finds the symbol + it skips, in q4, what
remains up to the closed parenthesis 〉+). q3 moves to q4 if it wants to execute
the statements on the right of +. In this case it skips all the statements up to +
again in q4. We use the stack for recognizing nested +. State q7 handles loops,
in particular it moves to q1 for executing the body (the statements between ∗〈
and 〉∗). In this case when we read 〉∗ it moves to q6 for returning back at the
beginning of the loop. q7 moves to q8 for skipping the loop, by looking for 〉∗ and
continuing the execution.

In this way, if the input is a legal program, then it is accepted and the output
sequences are the sequences of statements to execute and of guards to evaluate.
We can observe that if we keep also the graph structure of the output (intuitively,
ignoring ε-transitions and collapsing states recognizing the same language), then
we obtain a graph equivalent to the CFG of the program.

Definition 6 (Partial interpreter evaluation). The partial interpreter eval-
uation is the sequence/trace of statements/expressions to actually execute for
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Fig. 5. Examples of interpretation

a given program. Formally, given P ∈ L and the execution sequence extractor
cfgEx, 〈Q, qι, qf, ΨΣ , ΨΓ {Stack, Input}, δ̃, Ω, f〉 (P ∈ Σ∗), the partial evaluation
of P is TcfgEx(P).

Let us denote cfgEx[P] the automaton recognizing the output language
TcfgEx(P) of cfgEx transduction of the input sequence P. Then we can observe that
cfgEx[P] corresponds to the CFG (seen as SFSM) of P, i.e., cfgEx[P] ≈ Cfg(P)
(up to label renaming and minimization). Note that cfgEx[P] is a FSM (no more
symbolic), (the one of the statements in P) of the infinite Σ. Let us show this
correspondence on some examples.

Example 1. Consider the program P1,

{+〈x > 0;∗〈x > 0;x := x − 1; 〉∗ ;¬x > 0;x := −2; + ¬x > 0;x := x + 1; 〉+; }

In the picture we depict the whole path of interpretation by means of
the given interpreter: We obtain so far the automaton cfgEx[P1] generated
by the transduction of the interpreter on P1. Each transition is labeled with
((s/o,M), t → γ) meaning that we read s in input and we pop t from the stack,
while we move M we output ω and we push γ on the stack.

If we transitively collect the transitions with output ε and we collapse states
recognizing the same language, while keeping the branch and the final states, we
obtain the graph on the left of Fig. 5, which corresponds to the CFG of P1.

Consider now the program P2

{∗〈x > 0;x := x − 1;∗〈x < 0;x := x + 1; 〉∗ ;¬x < 0〉∗ ;¬x > 0;x := 0; }

the graph in the center of Fig. 5 corresponds to the automaton cfgEx[P2], where
the labels are the output symbols. Finally, consider the program P3

{+〈x > 0;x := x − 1; + +〈x < 0;x := x + 1; + ¬x < 0;x := 2; 〉+;x := 0; 〉+; }

The graph on the right of Fig. 5 corresponds to cfgEx[P3], where the labels are
the output symbols.
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Table 1. CollRsp: The collecting interpretation rules for Lsp.

〈〈q0, skip, q1〉, s〉 → s 〈〈q0, x := e, q1〉, s〉 → s[q1 �→ sq0 [x �→ �e�C sq0 ] ∪ sq1 ]

�b�C sq0 	= ∅

〈〈q0, b, q1〉, s〉 → s[q1 �→ �b�C sq0 ∪ sq1 ]

4.2 Second Phase: The Semantic Interpretation

The semantic interpretation is just an interpretation function depending on the
domain of denotations, and defined for each element of Lsp, the output sym-
bols to interpret. In general, given a graph G, with initial state qι whose labels
are in the language Lsp, and given a semantic rule system SemRsp defining the
small-step semantics for Lsp, namely determining how semantic denotations in
D (e.g., stores in S) are transformed by the execution of elements in Lsp, we can
interpret its paths on denotations D by using the following function on set of
graph configurations CG def= (Q × D) ∪ D, let C ⊆ CG, d, d′ ∈ D and qi ∈ Q

f G

SemRsp
(q0, d)

def=
{{d} (fix-point) if �〈q0, l, q1〉 ∈ G{ 〈q1, d′〉 ∣

∣∃l. 〈〈q0, l, q1〉, d〉 → d′ ∈ SemRsp

}
Otherwise

f G

SemRsp
(C) def=

⋃ {
f G

SemRsp
(c)

∣
∣ c ∈ C � D

}
∪

{⋃̇ {
d
∣
∣d ∈ C ∩ D

}}

where
⋃̇

denotes the least upper bound on D. Then, we can compute the fix-point
interpretation of the graph G, starting from an initial denotation dι as the least
fix-point9 of the extensive version of f G

SemRsp
, i.e., f

G

SemRsp

def= λC. f G

SemRsp
(C)∪C, defined

in terms of the semantic rule system SemRsp. This fix-point computes the set of
all the reachable configurations, hence in order to extract the final/terminating
ones, we have simply to consider, in this fix-point, only the configurations in D.

S[G] def= λdι. (lfp{〈qι, dι〉} f
G

SemRsp
) ∩ D

For instance, in order to define a collecting small-step semantics we have to define
a collecting rule system CollRsp interpreting Lsp (Table 1) on stores S, where,
given the set of initial memories M, the initial store is sM ∈ S, sM(q) def= s∅[qι �→
M], also denoted [qι �→ M], Note that, the interpretation of ε is simply like
interpreting true, and for this reason it is simply ignored.

Then the graph G collecting semantic interpretation is the following, where
being interested only in the memories reached at the end of the program execu-
tion, we consider only the store memories at the final point qf.

∀M ∈ ℘(M). �G�CM
def= ((lfp{〈qι, sM〉} f

G

CollRsp
) ∩ S)(qf).

9 Given an extensive and monotone function f , its least fix-point computation starting
from x is lfpx f

def
=

∨
n∈N fn(x), where f0(x) = x and fn+1(x) = f ◦fn(x).



260 R. Giacobazzi and I. Mastroeni

As observed before, when we consider an abstract semantics Aρ
10 we obtain an

abstract interpreter. The idea is simple, we can define a rule system AbsRρ
sp

which
is precisely CollRsp where the abstract semantics �·�ρ for interpreting expressions
is used instead of �·�C, and in terms of which we obtain, as before, a corresponding
interpretation function f

G

AbsR
ρ
sp
. Then we can define

∀M ∈ ℘(Mρ). �G�ρM
def= ((lfp{〈qι, s

M
〉} f

G

AbsR
ρ
sp
) ∩ Sρ)(qf)

4.3 Interpreting Programs

Finally we can compose the two phases and obtain the characterization of inter-
pretation for programs P ∈ L. In particular, as observed in the previous section,
cfgEx[P] returns precisely a graph with Lsp as label’s language, hence we can
use the above semantic interpretation on this resulting graph.

Definition 7 (Program interpreter). Given a semantic rule system SemRsp

for Lsp and S[G] def= λdι. (lfp{〈qι, dι〉} f
G

SemRsp
) ∩D inductively defined on its labels in

Lsp. A program interpreter for the language L is the pair int
def= 〈cfgEx,S[·]〉.

Hence, ∀P ∈ L the program interpretation is S[P] = S[int[P]] def= S[cfgEx[P]].

For instance, the collecting interpreter for L is 〈cfgEx, �·�C〉, while an abstract
interpreter w.r.t. the variable values abstraction ρ is 〈cfgEx, �·�ρ〉.

Combining all together, given P = {C} ∈ L, its collecting semantics starting
from initial memories M ∈ M is computed as follows. The following result holds
by construction and by the intuitive equivalence between the collecting program
semantics and the collecting interpretation of its CFG.

Proposition 1. Let P = {C} ∈ L, then we have �P�C = �int[P]�C, where by
construction ∀M ∈ M. �int[P]�CM = ((lfp{〈qι, sM〉} f

cfgEx[P]

CollRsp
)∩S)(qf). In the abstract

case, �P�
ρ = �int[P]�ρ, where ∀M ∈ Mρ. �int[P]�ρM

def= ((lfp{〈qι, s
M

〉} f
cfgEx[P]

AbsR
ρ
sp

) ∩
Sρ)(qf).

4.4 Specializing Interpreters

In classical computational theory [31] the interpreter is indeed a program with
two inputs, a fragment of code to execute and the set of initial memories from
which to start execution. Our model of program interpretation distinguishes pre-
cisely between the application to the first input (the program) and the second
input (the initial memories). In particular, the first phase consists precisely in
applying the interpreter to the program, and the second phase consists in apply-
ing the resulting structure to the set of initial memories. In other words, it should
be clear that the simple transduction cfgEx[P] is precisely the specialization of
the interpreter on the program, precomputing the interpretation computation
10 In this case, we consider directly the semantic abstraction induced by a memory

abstraction ρ since we are abstracting in the semantic interpretation phase.
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involving only the code, namely the characterization of the sequences of state-
ments to execute and of guards to evaluate. This corresponds precisely to design
the program CFG. The only interpretation steps that remain to perform are
those concerning the semantic interpretation, depending also on data (formally
on initial memories). Hence, we can write

spec(int,P) = spec(〈cfgEx, �·�〉,P) def= cfgEx[P]

Which is indeed a specializer because by construction we have:

∀M ∈ ℘(M). �spec(int,P)�M = �cfgEx[P]�M = �P�M.

5 Specializer (Dis)Optimality

In this section, we formally introduce specializer optimality, i.e., the specializer
property characterizing the analysis precision.

5.1 Abstract Jones Optimality and Completeness

We consider code specialization in the specific context of the specialization of
interpreters and abstract interpretation. Let A be a semantic abstraction and
let int be an interpreter. Note that, given the new definition of interpreter, a
semantic abstraction could be both an approximation of the CFG, providing
a CFG containing the concrete computations and/or an abstraction of data
manipulated by programs. The following definition reinterprets the notion of
Jones optimality where computation time is replaced by the precision of an
abstract interpreter.

Definition 8 (A-optimality). A specializer spec, implementing the function
spec, is A-optimal w.r.t the interpreter int if it does not lose precision w.r.t.
the semantic abstraction A, i.e., if �spec(int,P)�A � �P�

A.

Note that, if we replace �P �
A with time complexity of P , this definition boils

down precisely to Jones-optimality [25,27]. When applied to the case of abstract
interpretation, a stronger property is also important, as specified in the following
definition.

Definition 9 (A-suboptimality). A specializer spec implementing the func-
tion spec is A-suboptimal w.r.t. an interpreter int if it does not add precision,
i.e., ∀P ∈ L . �spec(int,P)�A = �P�

A.

While for straightforward abstractions A, such as the identity and the top
abstraction, A-suboptimality always holds, for non-straightforward abstractions
A, A-suboptimality depends upon the specializer spec and the interpreter int.

Proposition 2. Given a self-interpreter (written in the interpreted language)
int, there exists an A-(sub)optimal specializer.
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Proof. The idea is similar to the case of trivial Jones-optimal [25]. Being int a
self interpreter, there exists a trivial A-optimal specializer semantics spec, i.e.,

spec(P, x) def=
{

x if P = int
spec(P, x) otherwise

which is a (computable) specializer semantics, since �spec(int,P)�A = �P�
A.

Note that, when spec is not A-optimal, it may happen that we don’t have
any relation between the original program and the specialized one, or it may
happen that the specialized program is indeed less precise. In this case, namely
when ∃P ∈ L,∃M ⊆ M. �spec(int,P)�AM � �P�

AM, then we say that spec,
implementing the function spec, is A-disoptimal w.r.t. the interpreter int. Note
that, both the notions of optimality and disoptimality may happen on a specific
program, in particular we can say that spec is ρ-suboptimal/optimal/disoptimal
w.r.t. the interpreter int for the program P if the corresponding definition holds
for P, i.e., �spec(int,P)�A = �P�

A(resp. � or �).
Let us show the relation of optimality with precision in the abstract analy-

sis, namely w.r.t completeness. Completeness in abstract interpretation means
that the abstract computation �·�A is precise as the abstraction of the concrete
computation, i.e., ∀P ∈ L .�P�

A = A(�P�) [14,22]. In this case we say that A is
complete, while, if it holds for a program P, we say that A is complete for P.

Lemma 1. Let spec be a (concrete) specializer implementing spec, int a
collecting self interpreter and A a semantic abstraction. Let ∀P. Ps

int
def=

spec(int,P), then we have the following facts:

1. spec A-suboptimal w.r.t. int ⇒ ∀P. (A complete for P ⇔ A complete for
Ps
int);

2. ∀P. (A complete for P and Ps
int ⇒ spec A-suboptimal w.r.t. int and P);

3. spec A-optimal w.r.t. int ⇒ ∀P. (A complete for P ⇒ A complete for Ps
int);

4. ∀P. (A complete for Ps
int ⇒ spec A-optimal w.r.t. int and P).

Proof. Let us recall that, by construction �P�C = �Ps
int�C.

1. If spec is A-suboptimal then ∀P. �P�
A = �Ps

int�
A. Suppose A complete for

P, then it means that �P�
A = A(�P�), therefore we have �Ps

int�
A = �P�

A =
A(�P�C) = A(�Ps

int�C) hence we have completeness also for Ps
int Analogously

we can prove completeness for Pwhen we have completeness for Ps
int Intu-

itively, we have not the inverse implication since when A is both incomplete
for P and Ps

intwe cannot imply anything on the optimality of the specializer,
while when it is complete for both we can prove the following result.

2. If Ais complete for both P and Ps
intthen �P�

A = A(�P�)and �Ps
int�

A =
A(�Ps

int�C) Therefore �P�
A = A(�P�) = A(�Ps

int�) = �Ps
int�

A meaning sub-
optimality w.r.t. intand P

3. If spec is A-optimal then ∀P. �Ps
int�

A � �P�
A Suppose A complete for P,

then it means that �P�
A = A(�P�) therefore we have A(�Ps

int�) � �Ps
int�

A �
�P�

A = A(�P�) = A(�Ps
int�) Hence they are all equalities, and therefore we

have completeness of Ps
int
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4. If, given P ∈ L, we have A complete for Ps
intthen �Ps

int�
A = A(�Ps

int�) hence
we have ∀P. �Ps

int�
A = A(�Ps

int�) = A(�P�) � �P�
A.

Theorem 1. Let spec be a (concrete) specializer implementing spec, int a col-
lecting interpreter and A a semantic abstraction. Let ∀P. Ps

int
def= spec(int,P),

then we have that ∀P ∈ L if A complete for P then: spec A-optimal w.r.t. int
and P ⇔ A complete for Ps

int ⇔ spec A-suboptimal w.r.t. int and P.

Proof. Trivial by Lemma 1. In particular, if spec is A-optimal w.r.t. int and P,
then by the hypothesis of completeness on P and by Lemma 1(3) we have A is
complete for Ps

int, and by Lemma 1(4) we have spec A-suboptimal w.r.t. int and
P. Finally, by definition spec A-suboptimal is also A-optimal.

These results tell us that in order to obtain an obfuscator by specializing an
interpreter we have to use a specializer which is not optimal w.r.t. the observation
and the interpreter.

We now formalize the relation between the specializer optimality, w.r.t., a
given interpreter, and our capability of obfuscating the source program by spe-
cializing an interpreter. Our aim is to exploit this relation for driving the distor-
tion of the interpreter by means of the property we have to obfuscate, namely
by the property to hide from the analyzer.

Theorem 2. Given an interpreter int and a specializer spec (with semantics
spec), we define the program transformer O(P) def= spec(int,P). For any program
P, O(P) is an obfuscation of P w.r.t. the semantic abstraction A iff spec is
A-disoptimal w.r.t. int on P.

Proof. If spec is A-disoptimal w.r.t. int then �P�
A

� �spec(int,P)�A, and there-
fore we have �P�

A
� �O(P)�A by definition of O(P), meaning that O(P) is an obs-

fuscator for what we observed in previous sections. On the other hand, if �P�
A

�

�O(P)�A, then surely we have �P�
A

� �spec(int,P)�A (by definition of O(P))
meaning that the specializer is A-disoptimal.

At this point it should be clear why disoptimality is defined by keeping a
(strict) approximation relation and not by losing any relation. Indeed, in this
way it guarantees the semantics observed on the obfuscated program to be con-
servative w.r.t. the original semantics by containing it. In this way, while we force
to lose the property we aim at obfuscating, we also partially keep the semantics
of the original program by over approximating it.

Finally, since A-disoptimality depends on both the specializer and the inter-
preter, we can choose to force disoptimality by leaving the specializer unchanged,
and by acting only on the interpreter. We characterize a distortion of the inter-
preter able to make the specializer A-disoptimal. This idea is enforced by two
aspects: (1) Due to the construction proposed, the distortion can be simply char-
acterized as a parser inductively transforming the code in a semantically equiv-
alent program11; (2) Distortion can be driven by the notion of completeness,
which is a semantic property strongly related to optimality as shown before.
11 Note that semantic equivalence on single (atomic) statements is decidable.
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5.2 Distorting Interpreters

In order to understand how to distort interpreters for inducing incompleteness
we observe the following facts:

– For each (not straightforward) abstraction there always exists a program/code
whose abstract semantics is incomplete, hence we can always characterize
syntactic elements making an abstract semantics incomplete [23];

– We can think of transforming statements that will be executed in a semantic
preserving way, yet including these elements;

– Clearly, it is not decidable to determine which statements will be executed,
therefore in order to introduce incomplete syntactic elements in our code
that will be surely executed, in general, we need to transform all program
statements;

– A language parser transforming each statements by introducing incomplete
elements for a fixed abstraction A produces the required results.

– By composing this parser with the interpreter, we obtain a distorted inter-
preter for which the control flow graph interpretation, i.e., its specialization
w.r.t. the input program, is disoptimal, therefore obtaining an obfuscator
obscuring the property expressed by A on any input program.

We define a module that transforms the interpreter as a SFST accepting in
input the language of the parser and in output the required syntactic trans-
formation. This transducer is then composed with the interpreter, forcing the
distorter output language to be the input one of the interpreter, hence generating
a transformed CFG. This transformed CFG will be the source of interpretation.

Definition 10 (Interpreter Distorter). Let int = 〈cfgEx,S[·]〉 be an inter-
preter accepting in input the language L. An interpreter distorter D is a SFST
whose output language is a (strict) subset of L and preserving program seman-
tics, i.e., intD def= 〈D�cfgEx,S[·]〉 is the distorted interpreter if ∀P ∈ L .TD(P) ∈ L
and S[P] = S[TD(P)].

Note that, if Tpars is the trivial transducer associated with pars, then Tpars �
cfgEx = cfgEx.

Example: Trivial Syntactic Distorter. Suppose fb : BExp → BExp and fc :
Stm → Stm be semantic preserving transformers, i.e., ∀b ∈ BExp . �b� = �fb(b)�
and ∀c ∈ Stm. �c� = �fc(c)�, then the distorter in Fig. 6 is a trivial distorter,
where the empty stack update ε → ε and the R moves are omitted in the tran-
sitions. As the parser, it is a symbolic pushdown automaton, which transforms
the code while parsing it.

Theorem 3. Let int be a L interpreter and let intD be distorted by D. Then
∀P = {C ∈}L we have �int[P]� = �intD[P]�.

This result tells us that the semantics of the program obtained by specializing
the distorted interpreter is the same as the semantics of the original program,
providing so far a potential obfuscation. Whether it is an obfuscation depends on
the property we want to hide, and therefore it depends on the specific distortion
and on the specific program semantics.
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Fig. 6. The trivial distortion

6 Obfuscation by Specializing Distorted Interpreters

In this section we show some examples of interpreter distortion making the CFG
specializer disoptimal, therefore producing obfuscated code. As observed before,
the first step is to fix the property to hide by obfuscation and a syntactic element
making the analysis of this property incomplete. In other words, given a program
property A to hide, we define a A-distorting interpreter, namely an interpreter
for which the specializer implementing spec is A-disoptimal. This is obtained
by isolating a syntactic object producing imprecision and by embedding these
objects into the code in such a way the abstract interpretation on A of the
resulting program becomes incomplete.

As an example, in order to obfuscate the program control flow we observe
that incompleteness is obtained by injecting opaque predicates in the program
[20], hence by using the trivial interpreter distorter we can obfuscate CFG simply
by defining the following transformers where b ∈ BExp is an opaque predicate
(e.g., an always true predicate), b′ ∈ BExp and c′ ∈ Stms.12

fc(c)
def=

+
〈b; c + ¬b; c′〉+

fb(b)
def=

+
〈b; b + ¬b; b′〉+

Data Obfuscation: Parity Obfuscation. Suppose we aim at obfuscating
the parity Par (formalized as the well-known parity abstraction on numerical
values) observation of data [18], i.e., of variable integer values13. First of all
we provide a general data abstraction distorter, where we define an expression
transformers (fc and fb) executing a value transformation hiding the property
to obfuscate when storing data, and a complementary (i.e., which composed
returns the identity) transformation when accessing data [18]. For instance, for
obfuscating parity, when we store data we can multiply by 2 (hiding parity),
12 For space reasons, and being quite intuitive, we do not provide the whole formaliza-

tion of obfuscation by opaque predicates.
13 For the sake of simplicity we suppose, without losing generality, that variables can

only contain integer values, not boolean.
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Fig. 7. Data obfuscation interpreter distorter DData.

and therefore when we access data we have to divide by 2. In order to make
everything work, we have to make analogous transformations of variables values
at the beginning (f�) and at the end of the program (f�). Hence, a simple
pushdown automaton is not sufficient since, for these last variables updates, we
have to scan the whole program for collecting variable names. In particular, in
Fig. 7 we define DData, where q4 extracts all the variables accessed in the program
and put them on a stack (var(e) and var(b) are sequences of identifiers), q5 goes
back to beginning of the program and q6 adds, at the beginning, an assignment
involving each variable extracted to which we assign its transformation by f�.
While creating this assignments we keep in the stack ι the names of all the
variables for creating the final assignments at the end of the program (state q7)
assigning to each variable its transformation by f�.

Hence, we define DPar by defining the transformations fc, fb, f� and f� as
follows, where V ar(P) = {xi}i∈[1,n]

f�(x) def= 2 ∗ x f�(x) def= x/2

fc(c)
def=

{
2 ∗ fex(a) if c = x := a
skip if c = skip fb(b)

def= fex(b)

fex(x) def= x/2 fex(n) def= n

fex(e bop e) def= fex(e) bop fex(e) fex(¬b) def= ¬fex(b)

In Fig. 8, on the left, we have the parity obfuscation of the program whose CFG
is depicted in Fig. 2. The following theorem tells us that the so far designed
interpreter distorter provides us with a parity obfuscation technique by special-
izing the distorted interpreter. Intuitively, at the first access to each variable, by
dividing by 2 its value, we lose its parity, adding analysis imprecision and making
so far the abstract parity interpreter incomplete, the specializer disoptimal and
the resulting program obfuscated w.r.t. parity.
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Fig. 8. Obfuscated CFGs.

Theorem 4. Let intPar
def= 〈DPar � cfgEx, �·�C〉 be the distorted interpreter. It

is a Par-distorting interpreter, meaning that ∀P ∈ L . spec(intPar,P) is an
obfuscation of P w.r.t APar.

Control Obfuscation: CFG Flattening. The last example consists in obfus-
cating the CFG by flattening its structure [7,36]. For obfuscating programs by
flattening the CFG it is sufficient to make the program counter (pc) dynamic,
i.e., a variable of the program manipulated during execution. Indeed, in this way
the CFG observation (and therefore any CFG property) becomes imprecise [20].
Hence the idea is precisely to provide the transformers distorting the interpreter
by handling the program counter while executing the program.

Then, let us consider the new variable pc, we define the distorted parser by
inserting each statement in a branch of a non-deterministic choice, whose guard
is the value of pc, value that is created and updated during execution. Also this
distorter DFlat (Fig. 9) cannot be simply a pushdown automaton for two issues
to face. First, we have to count the number of deterministic choices we insert,
in order to know how many brackets 〉+ we have to insert at the end (q4). The
stack cl is used precisely with this purpose. The other issue to face, is the fact
that when we read ∗〈 or +〈 we cannot know how many statement we will have
respectively in the body or in the first branch, hence we cannot predict the value
for pc that we can use for skipping the loop or for the other branch. For this
reason we use two stacks p (principal) and s (secondary) in order to keep two
disjoint chains of values for pc (even and odd values). Finally we have another
stack c for keeping trace of the pc of the first statement of a loop and of the final
pc of a branch. Moreover, we consider a special value lf as final pc.

On the right of Fig. 8 the obfuscation of the program whose CFG is depicted
in Fig. 2.

Formally, let us characterize the semantic abstraction made incomplete by
flattening the program. Here we can simplify the previous characterization [20]
since it is sufficient to find an abstraction made incomplete by a dynamic pc
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Fig. 9. Flattening obfuscation interpreter distorter DFlat.

(we are not looking for an abstraction incomplete iff the pc is dynamic), and it
should be clear that such an abstraction is precisely the CFG: Let us define

AFlat def= λ�P�C. �Cfg(P)�C

where it is well known that program collecting semantics is an abstraction of its
small-step semantics and

�Cfg(P)�C
def=

{

σ ∈ S∗
∣
∣
∣
∣
∀i ∈ N. f cfgEx[P]

CollRsp
(qi, σi) ∈ {〈qi+1, σi+1〉, σi+1}

q0 = qι, σ0 = [qι �→ M]

}

In this way, it should be clear that Cfg(P) is an abstraction of P, since the
set of possible executions contains the set of executions14.

The following theorem tells us that in order to lose any property of the CFG
structure we need to handle the program counter (pc) deciding the next state-
ment to execute in the program. Intuitively in this way the semantic abstraction,
by abstracting the guards involving the pc, loses the CFG structure, and there-
fore any of its properties.

Theorem 5. Let intFlat
def= 〈DFlat � cfgEx, �·�C〉 be the distorted interpreter. It

is a F-distorting interpreter, meaning that ∀P ∈ L . spec(intFlat,P) is an obfus-
cation of P w.r.t AFlat.

7 Conclusions

Our paper shows that code transformations for anti reverse engineering, such as
code obfuscating transformations, can be designed systematically by specializ-
ing distorted interpreters. The idea proposed is to design an obfuscation starting
from the static property π to conceal and determining syntactic elements such
14 We can also let the computations start from a subset of initial memories.
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that the static analysis of π is imprecise/incomplete. Then we can build a dis-
torter D inductively embedding these elements in single statements of programs
without changing their semantics. Finally the distorted interpreter we obtain so
far becomes an obfuscator of π when specialized w.r.t. the program to obfuscate,
since for the resulting program the static analysis of π is forced to be incomplete.
The result is a systematic method for building obfuscating compilers as straight
applications of the well known Futamura’s projections, therefore going beyond
the very first approach [20].

On the Limits of the Approach. The main limit of the proposed approach con-
sists in the fact that it is built on a static model of attacker, namely aiming at
defeating reverse engineering techniques based on static program analyses. In
particular, on the one hand we believe that it is possible to capture any obfusca-
tion technique where the information to obfuscate is a (static) program property
that can be characterized as program/code abstraction, such as slicing obfusca-
tion and opaque predicate obfuscation, on the other hand there probably exist
dynamic obfuscation techniques that may not be modeled in the framework as
it is, such as self-modifying code and virtualization. Indeed, what we propose is
an interpreter distortion based on the distortion of the parser, which is a dis-
tortion limited to obfuscating properties strictly depending on how the code is
written, namely for deceiving static analyses. Nevertheless, the separation of the
static and the dynamic phases of the interpreter suggests us that we could try to
capture other obfuscation techniques by distorting the semantic interpretation
phase, where it is plausible to think of making possible to obfuscate dynamic
analyses, but this clearly needs further work.

Another limit of this work is that it is not yet evaluated by means of an
implementation. Anyway we believe that this will not represent a problem at
least as far as the computational impact is concerned, since once we have built
the interpreter depending on the property to obfuscate, then the complexity
of the specialization is linear on the length of the program (transformation is
performed while parsing the code). While, as far as the computational overhead
of the obfuscated program is concerned, it does not depend on the proposed
approach but on the way the code is transformed, and therefore on the specific
chosen transformation.

Future Works. The notion of Jones optimality can be seen in a wider perspective,
not just as a method for removing the overhead in time complexity, but as an
universal paradigm to determine when a specializer applied to an interpreter and
a program reestablish the initial conditions of the program relatively to some
measure [6]. Hence, the existence of Jones optimal specializers is a key aspect in
modern PL research (e.g., see the Brown and Palsberg striking result [3]). We
believe that widening the range of applicability of the notion of Jones optimality
to different (complexity) measures may provide the perfect theoretical framework
to understand how the intensional nature of code affects the way we analyze it.
Our paper provides a very first application to the case of the precision of an
abstract interpreter.
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