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Abstract. The division property proposed by Todo at EUROCRYPT
2015 as a generalized integral property has been applied to many sym-
metric ciphers. Automatic search methods of the division property
assisted by modeling technique, such as Mixed Integer Linear Program-
ming (MILP) and Boolean Satisfiability Problem (SAT), have become
the most popular approach to searching integral distinguishers. The accu-
racy of the model in searching algorithms has an effect on the search
results of integral distinguishers. For the block cipher, constructing an
accurate and efficient model of the division property propagation on
complex linear layers remains hard. This paper observes that the non-
independent propagations of the bit-based division property (BDP) on
complex linear layers can generate redundant division trails, which will
affect the accuracy of the model if it is not taken into account in model-
ing. Based on this, we propose a method that can build a more accurate
model by handling matrices containing non-independent propagations in
the linear layer. To verify the effectiveness of our method, we apply the
method to two block ciphers uBlock-128 and MIBS. For uBlock-128, our
results improve the previous 8-round integral distinguisher by more bal-
anced bits. For MIBS, a 9-round integral distinguisher is given for the
first time, which is 4 rounds longer than the previous best.

Keywords: Division property · Linear layer · Block cipher · MILP ·
Cryptanalysis

1 Introduction

Integral cryptanalysis was originally proposed by Knudsen et al. [1] at FSE 2002,
also known as Square attack [2], and is a powerful cryptanalysis method. Todo [3]
further generalized integral cryptanalysis as division property at EUROCRYPT
2015. At ASIACRYPT 2016, Xiang et al. [4] introduced the MILP technique into
bit-based division property for the first time, which improved the block size of
the block cipher that can be automatically searched. Since then, the automatic
modeling tool of integral cryptanalysis has been widely used in evaluating the
security of symmetric encryotions, and a series of remarkable results have been
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obtained [5–10]. Recently, Hebborn et al. [11] demonstrated the upper bound
on the round number of integral distinguishers on several block ciphers such as
PRESENT and SKINNY-64, using the automatic modeling method of BDP at
ASIACRYPT 2021.

The automatic search method with modeling technique mainly including
MILP and SAT for division property can be summarized as follows. At first,
the basic component model of block cipher needs to be established by following
the propagation rules of division property. Next, the r-round model is built and
the initial division property is given. At last, the entire model is solved with the
help of solving tools, such as Gurobi and SAT/SMT solvers. In the process, the
number of conditional constraints determines the time that it takes to solve and
the round number of the integral distinguisher that can be obtained. For the
linear component, it only needs to exchange the position of variables to build
constaints when the linear layer is simple, such as PRESENT, GIFT, etc. When
the linear layer is complex, such as AES, uBlock, MIBS, etc., it needs to follow
the propagation rules of COPY/XOR operations to build the constraints, which
often leads to redundancy and errors.

For the problem of how to model the complex linear layer, there are mainly
S method [12], ZR method [13] and HW method [14]. The S method is a general
method for modeling the division property propagation of complex linear layers.
However, the disadvantage is that it does not consider the cancellation between
terms, so it can easily introduce invalid division trails resulting in a quicker
loss of the balanced property than the cipher itself would. Both the ZR method
and HW method can create very accurate models, but their applications have
certain limitations. For example, the ZR method needs to construct a one-to-
one correspondence between the division trails of the invertible matrix M and
the invertible sub-matrices, so it is not suitable for the non-binary linear layer
and non-invertible matrices. The HW method can only be modeled by SAT and
cannot be applied to the MILP model. As far as the current modeling methods
of the division property for S-boxes, the accuracy of the SAT solving model is
weaker than that of the MILP model. Hence, the HW method is not suitable for
block ciphers with S-boxes.

Our Contribution. In this paper, we analyze why errors arise in the solving
model of division property propagations for the complex linear layer. In other
words, the non-independent division property propagation of variables in the lin-
ear layer will produce redundant division trails, which reduces the accuracy of
the model, and ultimately affects the judgment of integral distinguishers. Then,
we propose a strategy to effectively remove redundant division trails for the non-
independent division property propagation: replacing the original representation
of the linear layer with an equivalent one which only includes the independent
division property propagation. According to this strategy, an algorithm (Algo-
rithm 2) is proposed to construct the MILP model of BDP propagation for the
complex linear layer. Finally, we apply our method to two block ciphers uBlock-
128 and MIBS. For uBlock-128, we find an 8-round integral distinguisher where
all the 128 bits are balanced. For MIBS, we find a 9-round integral distinguisher
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with 32 balanced bits which is better than the best known result. We list all our
new BDP results obtained in Table 1.

Organization. The rest of this paper is organized as follows. Section 2 intro-
duces some notations of this paper and revisits the definition related to division
property. Section 3 presents our observations and the new method of this paper.
Section 4 mainly presents improved integral distinguishers on uBlock-128 and
MIBS by using our new method. Section 5 is the conclusion and outlook for
future work.

Table 1. Number of rounds of the best known integral distinuisher vs. our results on
the block cipher uBlock-128 and MIBS.

Cipher # Rounds log2 (Data) # Balanced bits Reference

uBlock 7 124 128 [16]

8 124 64 [17]

8 124 96 Sect. 4.1

8 127 128 Sect. 4.1

MIBS 5 8 8 [21]

5 12 32 Sect. 4.2

6 32 32 Sect. 4.2

7 52 32 Sect. 4.2

8 61 32 Sect. 4.2

8 63 64 Sect. 4.2

9 63 32 Sect. 4.2

2 Notations and Division Property

In this section, we are going to show some notations, and recall the fundamental
definitions and modeling techniques of division property.

For a block cipher, we use the following notation to represent the integral
property of a nibble in the plaintext and ciphertext.

– C: Each bit of the nibble at the plaintext is fixed to constant.
– A: All bits of the nibble at the plaintext are active.
– B: Each bit of the nibble at the ciphertext is balanced.
– U : A nibble at the ciphertext with unknown status.

For the integral property of a single bit in integral distinguishers, we use c, a, b,
and u denote a constant bit, an active bit, a balanced bit and an unknown bit,
respectively. For a matrix M ∈ F

m×n
2 , we use the notation M [i][j] to represent

the element of M located at the i-th row and j-th column, li = M [i] to represent
the i-th row, and M [∗][j] to represent the j-th column. A bold letter represents
a vector, e.g., u ∈ F

m
2 . Let k and k′ be two vectors in F

m
2 , we define k � k′ if

ki ≥ k′
i for all i.
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Bit Product Function [3]: Let πu : Fn
2 → F2 be a function for any u ∈ F

n
2 .

Let x ∈ F
n
2 be an input of πu , then πu (x) is defined as

πu (x) =
n−1∏

i=0

xui
i ,

where x0
i = 1 and x1

i = xi.

Definition 1 (Bit-based Division Property [15]). Let X be a multiset whose
elements take a value of Fm

2 , and k ∈ F
m
2 . When the multiset X has the division

property D1,m
K

, it fulfils the following conditions:

⊕

x∈X

πu (x) =

{
unknown, if there are k ∈ K s.t. u � k,

0, otherwise.

Definition 2 (Division Trail [4]). Let f be the round function of an iterated
block cipher. Assume the input multiset set to the block cipher has initial division
property D1,n

K0
, and denote the division property after i rounds through f by D1,n

Ki
.

Then we have the following chain of division property propagations:

{k} ≡ K0
f−→ K1

f−→ · · · f−→ Kr.

For any vector k∗
i+1 ∈ Ki+1, there must exist a vector k∗

i ∈ Ki such that k∗
i can

propagate to k∗
i+1. Furthermore, for (k0,k1, . . . ,kr) ∈ (K0×K1×K2×· · ·×Kr),

if for all i ∈ {0, 1, · · · , r − 1}, ki can propagate to ki+1, we call (k0 → k1 →
. . . → kr) a r-round division trail.

MILP Modeling Rule for COPY [12]. If a
COPY−−−−→ (b0, b1, · · · , bm−1) is a

division trail of COPY function, it is sufficient to describe the propagation using
the following inequalities

{
a − b0 − b1 − · · · − bm−1 = 0,

a, b0, b1, · · · , bm−1 are binaries.

MILP Modeling Rule for XOR [12]. If (a0, a1, · · · , am−1)
XOR−−−→ b is a divi-

sion trail of XOR function, it is sufficient to describe the propagation using the
following inequalities

{
a0 + a1 + · · · + am−1 − b = 0,

a0, a1, · · · , am−1, b are binaries.

The Judgment Condition of Division Property. If there exists a division
trail that satisfies k0

Ek−−→ kr = ej , where ej is a unit vector, j ∈ {0, · · · , n − 1},

then the j-th bit of ciphertext is unknown. If there is no division trail k0
Ek−−→

kr = ej , then the j-th bit of ciphertext is balanced.
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3 A Method to Reduce Redundant Division Trails
for Complex Linear Layers

With the help of the MILP modeling rules, the linear inequalities of the divi-
sion property propagation for the linear layer can be established. We can easily
observe the following rules: for the same linear layer, the more COPY/XOR
operations in MILP model are used, the lower accuracy achieved in character-
izing division property propagations. For example, obviously, if the linear layer
is a simple bit permutation, the model of the linear layer will not produce error
and redundancy, because we only need to exchange the position of variables
without adding extra constraints to model for describing the division property
propagation on linear layer. For complex linear layers, the situation becomes
different.

Assuming that L : (x0, x1, x2, x3, x4, x5) → (y0, y1, y2, y3, y4, y5) is a linear
transformation corresponding to a complex linear layer, and the equivalent linear
transformation matrix is M which always is a full rank matrix. In this paper,
“complex” also means that there are at least two rows in M that have the element
1 on at least two of the same columns, i.e., there exist i, j s.t.

∑
k M [i][k] ·

M [j][k] ≥ 2. If we establish constaints based on the original matrix M , then
at least two independent constraints about COPY on the input variables need
to be added to the MILP model. In fact, the two COPY constraints are not
independent since they occur simultaneously in the constraints about XOR for
two different output variables. At this point, an error occurs. Similarly, when∑
k

M [i][k] · M [j][k] = 4, we need to add 4 independent constraints on COPY

from M . Suppose M [1] = (0, 1, 1, 1, 1, 1) and M [2] = (1, 1, 0, 1, 1, 1). If we set
t1 = x1+x3 and t2 = x4+x5 using the method in [18], then only two independent
constraints on COPY and two independent constraints on XOR need to be
added. However, the two COPY constraints are still not independent in fact
because they appear in the XOR constraints of both y1 and y2. Errors in the
MILP model eventually lead to redundant division trails through L.

Generally speaking, when several output bits contain multiple common input
variables during propagations, the model established on some of the bits based
on the MILP modeling rule for COPY cannot accurately describe the correla-
tion between them. In other words, some non-independent bits are incorrectly
propagated as independent bits if we build the MILP model of linear layers
directly from the original matrix. As a result, the division property of multiple
outputs is 1 at the same time in places where it should not be. Thus, there will
be some redundant division trails. To this end, we give the following definition
and observation.

Definition 3. Let F : F
n
2 → F

m
2 be a linear transformation , defined as

F (x) = y, and M be the equivalent linear transformation matrix satisfying
M · x = y. The division property of x and y is denoted as a = (a0, a1, ..., an−1)
and b = (b0, b1, ..., bm−1), respectively. That is, a

F−→ b is a division trail through
F . We call ai1 , ai2 , ..., ais

F−→ bj1 , bj2 , ..., bjt is a non-independent division prop-
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erty propagation through F , if M [j∗][i∗] = 1 for all i∗ ∈ {i1, i2, ..., is}, j∗ ∈
{j1, j2, ..., jt}, n ≥ s ≥ 2, m ≥ t ≥ 2, i.e.,

∑n−1
k=0 M [j1][k]·M [j2][k]·...·M [jt][k] ≥

2, where {i1, i2, ..., is} and {j1, j2, ..., jt} are two index sets. Otherwise, it is called
an independent division property propagation.

Observation. When modeling the non-independent division property propaga-
tions, redundant division trails will be generated if we use the MILP model of
independent propagations to characterize that of non-independent propagations.
If all the common variables that lead to non-independent division property prop-
agations in the linear function F are all replaced at once by variables T1, · · · , TN

newly introduced, the propagation through F that are described in new expres-
sions containing variables T1, · · · , TN will be transformed into independent divi-
sion property propagations. In this way, the redundant division trails can be
effectively reduced.

Example 1. Assume that the linear transformation P : F8
2 → F

8
2 has following

expressions:

z0 = y0 + y1 + y3 + y4 + y6 + y7,

z1 = y1 + y2 + y3 + y4 + y5 + y6,

z2 = y0 + y1 + y2 + y4 + y5 + y7,

z3 = y1 + y2 + y3 + y6 + y7,

z4 = y0 + y2 + y3 + y4 + y7,

z5 = y0 + y1 + y3 + y4 + y5,

z6 = y0 + y1 + y2 + y5 + y6,

z7 = y0 + y2 + y3 + y5 + y6 + y7,

where (y0, y1, y2, y3, y4, y5, y6, y7) and (z0, z1, z2, z3, z4, z5, z6, z7) are the inputs
and outputs, respectively. Let the corresponding division property be (a0, a1, a2,
a3, a4, a5, a6, a7) and (b0, b1, b2, b3, b4, b5, b6, b7), respectively.

We take b1 and b3 as examples, and focus on division trails with the form
of (a0, a1, a2, a3, a4, a5, a6, a7) → (∗, b1, ∗, b3, ∗, ∗, ∗, ∗). Let the input division
property be (0, 1, 1, 1, 0, 0, 1, 0), so we only consider the output division property
with form (0, ∗, 0, ∗, 0, 0, 0, 0). According to traditional models,

b1 = a1 + a2 + a3 + a4 + a5 + a6,

b3 = a1 + a2 + a3 + a6 + a7.

a1, a2, a3, a6 need to establish constraints separately by using the MILP model-
ing rule for COPY, so the output division property is (0, 1, 0, 1, 0, 0, 0, 0), (0, 1, 0,
0, 0, 0, 0, 0), and (0, 0, 0, 1, 0, 0, 0, 0). For b1, when i (≤ 4) variables of a1, a2, a3, a6

take 1, the output division property (0, 1, 0, 1, 0, 0, 0, 0) will be obtained. How-
ever, since (0, 1, 0, 1, 0, 0, 0, 0) � (0, 1, 0, 0, 0, 0, 0, 0), (0, 1, 0, 1, 0, 0, 0, 0) is redun-
dant.

We noticed that (∗, a1, a2, a3, ∗, ∗, a6, ∗) → (∗, b1, ∗, b3, ∗, ∗, ∗, ∗) is the non-
independent division property propagation, and a1, a2, a3, a6 are the common
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variables of b1, b3. If we denote t = a1 + a2 + a3 + a6, then b1 = t + a4 + a5

and b3 = t + a7 are new expressions. At this point, we only need to do COPY
operation once on t. For b1, when any i variables of a1, a2, a3, a6 take 1, i < 4,
that is, the t contained in b1 takes 1, the other t contained in b3 must take
constant 0 after COPY operation, hence the output division property must be
(0, 1, 0, 0, 0, 0, 0, 0). After variable substitution, the output division property of
the form (0, ∗, 0, ∗, 0, 0, 0, 0) contains only (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0).
Similarly, redundant vectors like the above can be removed by updating the linear
layer expression using a series of variable substitutions.

Before building the constraints of the MILP model of the linear layer, we
first pair the rows of the implementation matrix that is a linear transformation
matrix so that we can extract the common variables for each pair. It is not
difficult to find that for the entire reduction process, the more common variable
that can be extracted, the better the effect of removing redundant trails and the
more accurate the model. Following the reduction idea, We present Algorithm 1
for screening and pairing the rows of the linear transformation matrix.

Algorithm 2 is used to build the MILP model of the BDP propagation for
the linear layer. Let the initial matrix of the linear layer be M , the matrix
corresponding to the new variable that are introduced by replacing the common
variable be B. A new matrix P with size n× (n+n/2) is generated in Algorithm
2 which is equivalent to M , and the last n/2 columns of P correspond to new
binary variable T1, · · · , TN . Additionally, we point out that Algorithm 2 can also
make models using SAT method based on Algorithm 1, and they are equivalent.

Algorithm 1. Row pairing algorithm for a linear transformation matrix

Input: An implementation matrix M of the linear layer
Output: A row partition of M
1: count = 0n×n //a n × n all-zero matrix
2: for i ∈ {0, n}, j ∈ {0, n} do
3: if i < j then

4: count[i][j] =
n−1∑
k=0

lki ∧ lkj

5: else
6: count[i][j] = 0
7: end if
8: end for
9: while True do

10: Global max = max(count)
11: if Global max = 0 then
12: break
13: end if
14: if row max = Global max then //the row row max is located
15: Row = (row max = Global max)[0]
16: end if
17: for j ∈ J = {j|count [Row] [j] = row max} do
18: if max(count[j]) < row max then//the column row max is located
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19: Col = j; break
20: end if
21: end for
22: if len(Col) = 0 then
23: Col = J [0]
24: end if
25: result ← (Row,Col)
26: count[Row] = 0, count[Col] = 0, count[∗][Row] = 0, count[∗][Col] = 0
27: end while
28: return result

Algorithm 2. Construct the MILP model of linear layer BDP propagation

Input: An Implementation matrix M of the linear layer
Output: The MILP model M of BDP propagation
1: Build an empty MILP model M
2: M.var ← ai, bi, ui //ai, bi denote the input and output BDP of linear

layer, ui denotes a new binary variable introduced by COPY
3: B = [ ] //a n × n

2 all-zero matrix
4: for (i, j) in result do
5: B[i][N ] = 1, B[j][N ] = 1
6: l =

(
l0i ∧ l0j , l

1
i ∧ l1j , . . . , l

n
i ∧ lnj

)

7: M [i] = M [i] + l,M [j] = M [j] + l

8: Constr ← TN =
n−1∑
k=0

xk · (
lki ∧ lkj

)

9: Constr ← yi = TN +
n−1∑
k=0

xk · (
lki

⊕
lk

)
, yj = TN +

n−1∑
k=0

xk · (
lkj

⊕
lk

)

10: M.con ← TN =
n−1∑
k=0

ak · (
lki ∧ lkj

)

11: end for
12: P = [M,B]
13: for j ∈ (0, n + n/2), i ∈ (0, n) do

14: M.con ← aj =
n−1∑
k=0

uk · P [i] [j]

15: end for
16: for i ∈ (0, n),j ∈ (0, n + n/2) do

17: M.con ← bi =
n−1∑
k=0

uk · P [i] [j]

18: end for
19: return M

Traditional models usually added the corresponding constraints based on
the initial expression of the linear layer and combined with the BDP model of
COPY/XOR operations. If there exist non-independent division property propa-
gations in it, then redundant vectors must be produced, for example the method
of [12]. Hong et al. [18] proposed a method using the optimal implementation
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of the linear layer to reduce the number of COPY/XOR constraints, and finally
obtained the same integral distinguisher as the best at the time. [18] is an exam-
ple of reducing errors caused by non-independent division property propagations,
and it also supports our observation in this section, but the method of [18] is
effective for the cipher like Midori-64, Skinny-64 and LED (because the non-
independent propagation in the linear layer of these ciphers contains at most
3 common variables, our model contains i common variables, i ≥ 2). In other
words, for the cipher with complex linear layers, such as uBlock and MIBS
(i ≥ 3), only a part of the redundancy can be reduced using method in [18].

4 Applications

In this section, for two block ciphers uBlock-128 and MIBS, we first briefly
introduce their encryption structures, then apply our new method to them, and
finally show the complete process of constructing MILP models for them.

4.1 Application to uBlock-128

uBlock-128. uBlock is a block cipher family proposed by Wu et al. [16]. It
adopts a SP network and supports 128-bit and 256-bit block lengths. Moreover,
uBlock-128 supports 128-bit and 256-bit key lengths, and the number of encryp-
tion rounds are 16 and 24, respectively. Let the round function of uBlock-128 be
f = P ◦ X ◦ S, where S represents the S layer, X represents the cyclic shift and
XOR operation in the middle, and P represents the last nibble-based permuta-
tion. The round function is shown in Fig. 1, where s represents a 4-bit nonlinear
S-box, and ≪ 4 represents that a block rotates 4 bits to the left in units of 32.
PL128 and PR128 represent two 8-byte vector permutations respectively, where
PL128 = {1, 3, 4, 6, 0, 2, 7, 5} and PR128 = {2, 7, 5, 0, 1, 6, 4, 3}.

uBlock is the winner in the National Cryptographic Algorithm Design Com-
petition held by the Chinese Association for Cryptologic Research in 2019
because of its adaptability to software and hardware platforms, simple and effec-
tive hardware implementations, and strong security. For the integral cryptanal-
ysis, based on Todo et al.’s conclusion on the division property of the (l, d,m)-
SPN in [3], the uBlock designers presented a 7-round integral distinguisher [16].
Besides, the current optimal integral distinguisher is the 8-round distinguisher
found by Tian et al. [17] by using the optimized representation of S-box in divi-
sion property propagation.

Searching the Integral Distinguisher of uBlock-128. Let the input of the
X layer be x = (x3, x2, x1, x0) and the output be y = (y3, y2, y1, y0). Then the
linear matrix corresponding to the transformation X can be expressed as the
juxtaposition of two nibble-based matrices M16×16, denoted as

M16×16 =
[
A8×16

B8×16

]
.
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Fig. 1. Round function of uBlock-128.

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 1 1 0 1 1 1 1 0 1 0 1 1 1
1 0 0 1 1 1 0 1 1 1 1 0 1 0 1 1
1 1 0 0 1 1 1 0 1 1 1 1 0 1 0 1
0 1 1 0 0 1 1 1 1 1 1 1 1 0 1 0
1 0 1 1 0 0 1 1 0 1 1 1 1 1 0 1
1 1 0 1 1 0 0 1 1 0 1 1 1 1 1 0
1 1 1 0 1 1 0 0 0 1 0 1 1 1 1 1
0 1 1 1 0 1 1 0 1 0 1 0 1 1 1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 1 0 1 1 1 1 0 1 1 0 0 1 1
1 1 1 0 1 0 1 1 1 1 0 1 1 0 0 1
1 1 1 1 0 1 0 1 1 1 1 0 1 1 0 0
1 1 1 1 1 0 1 0 0 1 1 1 0 1 1 0
0 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1
1 0 1 1 1 1 1 0 1 0 0 1 1 1 0 1
0 1 0 1 1 1 1 1 1 1 0 0 1 1 1 0
1 0 1 0 1 1 1 1 0 1 1 0 0 1 1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

In other words, the input x is transformed by the matrix A8×16 and then
output y2 and y3, and x is also transformed by the matrix B8×16 and then output
y0 and y1. It can be observed from the initial matrix A and B that any two of
the rows contain multiple common columns with a constant 1. Thus the division
property propagation of (x0, ∗, x2, ∗) → y0, y2 and (∗, x1, ∗, x3) → y1, y3 are both
non-independent. After operating on the linear transformation matrix A and B
by using Algorithm 1 and Algorithm 2, we get the new matrix representation
corresponding to the X transformation under the basis (x3, x2, x1, x0, T1, T0).
That is

A
′
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 0 0 1 1
0 0 0 1 0 1 0 0 0 1 1 0 0 0 1 0 1 0 0 0 1 0 0 1
0 0 0 0 1 0 1 0 0 0 1 1 0 0 0 1 1 1 0 0 0 1 0 0
0 0 0 0 0 1 0 1 1 0 0 1 1 0 0 0 0 1 1 0 0 0 1 0
1 0 0 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1 1 0 0 0 1
0 1 0 0 0 0 0 1 0 0 1 0 0 1 1 0 1 0 0 1 1 0 0 0
1 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 1 1 0 0
0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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B
′
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 1
0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1
0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 1 1 0 0 1 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 1 0
0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 1
0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 0
0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0
1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where T0 = x0 + x2, T1 = x1 + x3. The X transformation can be expressed as
follows

y0 = L2 · x0 + L1 · x2 + L5 · x2 + L0 · T0 + L3 · T0 + L6 · T0 + L7 · T0

y1 = L2 · x1 + L1 · x3 + L5 · x3 + L0 · T1 + L3 · T1 + L6 · T1 + L7 · T1

y2 = L0 · x0 + L1 · x0 + L5 · x0 + L2 · x2 + L4 · x2 + L3 · T0 + L6 · T0 + L7 · T0

y3 = L0 · x1 + L1 · x1 + L5 · x1 + L2 · x3 + L4 · x3 + L3 · T1 + L6 · T1 + L7 · T1

where Li is a 32 × 32 left cyclic shift matrix, e.g.

L2 =

⎡

⎢⎢⎢⎢⎢⎣

0 0 1 0 0 . . . 0 0 0 0
0 0 0 1 0 . . . 0 0 0 0
0 0 0 0 1 . . . 0 0 0 0
...

...
...

...
...

...
...

...
0 1 0 0 0 . . . 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎦
.

It is easy to observe that any two rows of A′ and B′ have at most one
common column with 1 in the first n columns. Therefore, the representation of
X is transformed into the new form which not contains non-independent division
property propagations.

Let the input division property of X be (a3, a2, a1, a0, U1, U0) ∈ (F32
2 )6 and

the output division property be (b3, b2, b1, b0) ∈ (F32
2 )4. We can easily obtain the

linear inequality constraints in terms of new expressions. Firstly, the following
constraints corresponding to the substitution variables need to be added to the
MILP model M:

⎧
⎪⎨

⎪⎩

U0 = a0 + a2,

U1 = a1 + a3,

U1, U0 are binaries.

Then, according to the linear matrices A
′
and B

′
with independent division

property propagations, we can easily write the corresponding constraints. For
example, for y0, y2, the first column of A

′
and B

′
corresponds to x7

2, then we
have the COPY constraint

{
a7
2 = A7

0 + A7
1 + · · · + A7

5,

A7
0, · · · , A7

5 are binaries.
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The last column of A
′

and B
′

corresponds to T 7
0 , then we have the COPY

constraint
{

U7
0 = u0

0 + u0
1 + · · · + u0

6,

u0
0, · · · , u0

6 are binaries.

The first row of B
′
corresponds to y7

0 , then we have the XOR constraint
{

b70 = A6
0 + A2

0 + · · · + t01 + t00,

b70 is binary.

For the nonlinear layer of uBlock-128, we need to use the SAGE tool to
convert division trails of the S-box into some linear inequalities, and then reduce
them through the Greedy Algorithm (refer to [4] for more details). Algorithm 3
describes the whole process of building a MILP model for the BDP of uBlock-
128. Based on Algorithm 3, for uBlock-128, we verified the 7-round integral
distinguisher in the design document and 6-, 7-, 8-round integral distinguishers
in [17], and obtained better results shown in the following.

8-Round Integral Distinguishers. When the least significant 4 bits of the
input are constant and other positions are active, the output after 8 rounds
has 96 balanced bits; when the most significant 4 bits of the input are constant
and other positions are active, the output after 8 rounds has 96 balanced bits;
when the least significant 1 bits of the input are constant and other positions
are active, the output after 8 rounds are all balanced.

⎡

⎢⎢⎣

C A A A A A A A
A A A A A A A A
A A A A A A A A
A A A A A A A A

⎤

⎥⎥⎦
8R−→

⎡

⎢⎢⎣

bubb bubb bubb bubb bubb bubb bubb bubb
bubb bubb bubb bubb bubb bubb bubb bubb
bubb bubb bubb bubb bubb bubb bubb bubb
bubb bubb bubb bubb bubb bubb bubb bubb

⎤

⎥⎥⎦

⎡

⎢⎢⎣

A A A A A A A A
A A A A A A A A
A A A A A A A A
A A A A A A A C

⎤

⎥⎥⎦
8R−→

⎡

⎢⎢⎣

bubb bubb bubb bubb bubb bubb bubb bubb
bubb bubb bubb bubb bubb bubb bubb bubb
bubb bubb bubb bubb bubb bubb bubb bubb
bubb bubb bubb bubb bubb bubb bubb bubb

⎤

⎥⎥⎦

⎡

⎢⎢⎣

A A A A A A A A
A A A A A A A A
A A A A A A A A
A A A A A A A aaac

⎤

⎥⎥⎦
8R−→

⎡

⎢⎢⎣

B B B B B B B B
B B B B B B B B
B B B B B B B B
B B B B B B B B

⎤

⎥⎥⎦
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Algorithm 3 A MILP model for BDP propagation of uBlock-128
Input: S-box, the linear layer
Output: A MILP model M for BDP propagation of uBlock-128.
1: Build an empty MILP model M.
2: M.var ← ai, bi, Ui, ui, Ai //ai, bi denote the input and output BDP of linear

layer, the rest are newly introduced binary variables
3: //Generating Constrained Inequalities for S-boxes
4: Call Algorithm 2 in [4] to calculate the division trail of S-box: V = {ai → bi}
5: Use inequality generator() in SAGE to generate inequalities of V : L (ai, bi)
6: Reduce L (ai, bi) to L′ (ai, bi) by using the Greedy Algorithm
7: M.con ← L′

(ai, bi)
8: //Generating Constraned Inequalities for Linear Layers
9: Write the implementation matrix M of linear layer

10: Call Algorithm 2 to generate constraints: L′′
(bi, ai, Ui, ui, Ai)

11: M.con ← L′′
(bi, ai, Ui, ui, Ai)

12: for i in range(0, n) do
13: M.con ← L′ (ai, bi)
14: M.con ← L′′

(bi, ai, Ui, ui, Ai)
15: M.con ← L′′′

(PL128 (bi, ai+1) , PR128 (bi, ai+1))
16: end for
17: Return M

4.2 Application to MIBS

MIBS. MIBS is a lightweight block cipher proposed by Izadi M et al. at CANS
2009 [19]. Its overall encryption structure uses the Feistel network, and the round
function adopts the SP network. The cipher has a 64-bit block length and sup-
ports 64-bit and 80-bit two key lengths. The number of iterative rounds is 32. All
iterative operations in MIBS are based on nibble. The round function includes a
XOR subkey, a S-box layer and a linear layer M denoted as M = L ◦ XOR ◦ P ,
where L represents the left and right permutations, XOR represents XOR with
the input of the right half, P represents the linear transformation in the middle.
The round function of MIBS is shown in Fig. 2.

MIBS has good resistance to differential cryptanalysis, linear cryptanalysis
and integral cryptanalysis. The current best cryptanalytic result for MIBS is the
18-round linear cryptanalysis on MIBS-80 with the time complexity 276.13, but
the success probability is only 72.14% [20]. The existing integral attacks on it
are mainly obtained by the derivation of the structure, and the known optimal
integral distinguisher is a 5-round one proposed by Li et al. [21].

Searching the Integral Distinguisher of MIBS. Let the input of transfor-
mation P be x = (x7, x6, x5, x4, x3, x2, x1, x0) and the output be y = (y7, y6, y5,
y4, y3, y2, y1, y0). The division property propagation is expressed as (a7, a6, a5,
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Fig. 2. Round function of MIBS.

a4, a3, a2, a1, a0)
P−→ (b7, b6, b5, b4, b3, b2, b1, b0). The transformation matrix of P

is expressed as follows:

M =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 1 1 0 1
0 1 1 0 0 1 1 1
0 0 1 1 1 0 1 1
1 0 0 1 1 1 0 1
1 1 0 0 1 1 1 0
1 0 1 1 0 1 1 1
0 1 1 1 1 1 1 0
1 1 0 1 1 0 1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

To convert the non-independent division property propagations involved in
transformation P into independent propagations, the following new variables are
introduced in using Algorithm 2.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

T0 = x0 + x3 + x4 + x7,

T1 = x1 + x2 + x3 + x6,

T2 = x0 + x1 + x4 + x5,

T3 = x0 + x2 + x5 + x6.

Transform the matrix into
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M ′ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 1 0 0 0 1 0 0
0 0 1 1 0 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0 0 0 1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Take x = (x7, x6, x5, x4, x3, x2, x1, x0, T3, T2, T1, T0) as new variables, and
y = (y7, y6, y5, y4, y3, y2, y1, y0) is the output. The division property propagation
is expressed as (a7, a6, a5, a4, a3, a2, a1, a0, U3, U2, U1, U0)

P−→ (b7, b6, b5, b4, b3,
b2, b1, b0). Create model constraints according to the new expression. The new
variable constraints that need to be added are

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

U0 = a0 + a3 + a4 + a7,

U1 = a1 + a2 + a3 + a6,

U2 = a0 + a1 + a4 + a5,

U3 = a0 + a2 + a5 + a6,

U3, · · · , U0 are binaries.

Using Algorithm 4, we can find an integral distinguisher up to 9 rounds with
63 active bits and 32 balanced bits. For the 8-round MIBS, the output of cipher-
text are all balanced if plaintexts are chosen as 63 active bits and one constant
bit. The following shows a list of integral distinguishers found by Algorithm 4.
In particular, the 6-, 7-, 8- and 9-round integral distinguisher of MIBS all have
longer rounds than the currently known ones.

[ C, C, C, C, C, C, C, C,
C, C, C, C, C,A,A,A

]
5R−→

[ B,B,B,B,B,B,B,B,
U ,U ,U ,U ,U ,U ,U ,U

]

[ C, C, C, C, C, C, C, C,
A,A,A,A,A,A,A,A

]
6R−→

[ B,B,B,B,B,B,B,B,
U ,U ,U ,U ,U ,U ,U ,U

]

[ C, C, C,A,A,A,A,A,
A,A,A,A,A,A,A,A

]
7R−→

[ B,B,B,B,B,B,B,B,
U ,U ,U ,U ,U ,U ,U ,U

]

[
ccca,A,A,A,A,A,A,A,
A,A,A,A,A,A,A,A

]
8R−→

[ B,B,B,B,B,B,B,B,
U ,U ,U ,U ,U ,U ,U ,U

]

[
caaa,A,A,A,A,A,A,A,

A,A,A,A,A,A,A,A
]

8R−→
[ B,B,B,B,B,B,B,B,

B,B,B,B,B,B,B,B
]

[
caaa,A,A,A,A,A,A,A,

A,A,A,A,A,A,A,A
]

9R−→
[ B,B,B,B,B,B,B,B,

U ,U ,U ,U ,U ,U ,U ,U
]
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Algorithm 4. A MILP model for BDP propagation of MIBS

Input: S-box, the linear layer
Output: A MILP model M for BDP propagation of MIBS
1: Build an empty MILP model M.
2: M.var ← ai, di, bi, ci, Ui, ui, Ai //ai, bi denote the input and output BDP of

linear layer, the rest are newly introduced binary variables
3: //COPY Operation in the Left of Feistel Structure
4: M.con ← L (ai = di + ai+1)
5: // Generating Constrained Inequalities for S-boxes
6: Use Algorithm 2 [4] to calculate the division trail of S-box: V = {di → bi}
7: Use inequality generator() in SAGE to generate inequalities of V : L (di, bi)
8: Reduce L (di, bi) to L′ (di, bi) by using the Greedy Algorithm
9: M.con ← L′

(di, bi)
10: //Generating Constraned Inequalities for transformation P
11: Write the implementation matrix M of P
12: Call Algorithm 2 to generate constraints: L′′

(bi, ci, Ui, ui, Ai)
13: M.con ← L′′

(bi, ci, Ui, ui, Ai)
14: // XOR Operation in the Right of Feistel Network
15: M.con ← L′′′

(ai + ci = ai+1)
16: for i in range(0, n) do
17: M.con ← L (ai = di + ai+1)
18: M.con ← L′ (di, bi)
19: M.con ← L′′

(bi, ci, Ui, ui, Ai)
20: M.con ← L′′′

(ai + ci = ai+1)
21: end for
22: Return M

5 Conclusion

In this paper, we proposed a method to improve the accuracy of modeling the
BDP propagation of complex linear layers using MILP model, which can also
make models using SAT, and showed the effectiveness of this approach by apply-
ing it to two block ciphers uBlock-128 and MIBS. For uBlock-128, we found an
integral distinguisher with the same round number as the longest known one,
but our results has more balance bits. For MIBS, our method can attack more
rounds than previous generic integral attacks. However, we cannot guarantee
that the number of active bits is a tight lower bound for the 6-, 7- and 8-round
integral distinguisher of MIBS due to the problem of solving time. Therefore,
continuing to optimize the entire MILP model and improve the solving efficiency,
and applying to other block ciphers with the complex linear layer are issues of
our further investigations.

Acknowledgement. The authors would like to thank Prof. Guomin Yang and the
anonymous reviewers for their detailed and very helpful comments and suggestions to
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A Linear Inequalities for S-Boxes in uBlock-128

The following inequalities are the 12 inequalities used to describe uBlock S-box
in MILP model of BDP, and (a3, a2, a1, a0) → (b3, b2, b1, b0) denotes a division
trail of S-box.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a3 + a2 + a1 + a0 − b3 − b2 − b1 − b0 ≥ 0
− 3a3 − a2 − 2a1 − 4a0 + 3b3 + b2 + 2b1 − b0 ≥ −5
2a3 − a0 − 2b3 − b2 − b1 + b0 ≥ −2
− 4a3 − 3a2 − 2a1 − 2a0 − b3 + 3b2 + b1 + 2b0 ≥ −6
− a1 + 2a0 − b3 − b2 + b1 − 2b0 ≥ −2
− a3 − a2 − 2a0 + b3 + 2b2 + 3b1 + 2b0 ≥ 0
a3 + a0 + b3 − 2b2 − 2b1 − b0 ≥ −2
a1 + 2a0 − b3 − b2 − b1 − b0 ≥ −1
a3 − b1 − b0 ≥ −1
− a3 − a1 + b3 + 2b2 + b1 + b0 ≥ 0
a1 − b3 − b1 ≥ −1
a2 − b2 − b1 ≥ −1

B Linear Inequalities for S-Boxes in MIBS

The following inequalities are the 12 inequalities used to describe MIBS S-box
in MILP model of BDP, and (d3, d2, d1, d0) → (b3, b2, b1, b0) denotes a division
trail of S-box.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d3 + d2 + 4d1 + d0 − 2b3 − 2b2 − 2b1 − 2b0 ≥ −1
3d2 − b3 − b2 − b1 − b0 ≥ −1
− d3 − 2d2 − 2d1 − d0 − b3 − 2b2 + 4b1 − b0 ≥ −6
− d3 − 2d2 − 2d1 − d0 + 5b3 + 4b2 + 5b1 + 5b0 ≥ 0
− d3 − d2 − d1 − b3 + 3b2 − 2b1 − b0 ≥ −4
− d3 − d0 − 2b3 − b2 − b1 + 3b0 ≥ −3
d3 + b3 − b2 − b1 − b0 ≥ −1
− d3 − d2 − d0 + b3 + 2b2 + 2b1 + b0 ≥ −1
− d1 − b3 − b2 + 2b1 − b0 ≥ −2
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