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Abstract. In the last couple of years, a new wave of results appeared,
proposing and exploiting new properties of round-reduced AES. In this
paper we survey and combine some of these results (namely, the multiple-
of-n property and the mixture differential cryptanalysis) in a systematic
way in order to answer more general questions regarding the probability
distribution of encrypted diagonal sets. This allows to analyze this special
set of inputs, and report on new properties regarding the probability dis-
tribution of the number of different pairs of corresponding ciphertexts are
equal in certain anti-diagonal(s) after 5 rounds.

An immediate corollary of the multiple-of-8 property is that the vari-
ance of such a distribution can be shown to be higher than for a ran-
dom permutation. Surprisingly, also the mean of the distribution is sig-
nificantly different from random, something which cannot be explained by
the multiple-of-8 property. We propose a theoretical explanation of this,
by assuming an APN-like assumption on the S-Box which closely resem-
bles the AES-Sbox. By combining the multiple-of-8 property, the mixture
differential approach, and the results just mentioned about the mean and
the variance, we are finally able to formulate the probability distribution
of the diagonal set after 5-round AES as a sum of independent binomial
distributions.

Keywords: AES · Truncated-differential cryptanalysis · Distinguisher

1 Introduction

AES (Advanced Encryption Standard) [9] is probably the most used and studied
block cipher. Since the development of cryptanalysis of AES and AES-like con-
structions in the late 1990s, the set of input which differ only in one diagonal has
special importance. Indeed, it appears in several attacks anddistinguishers, includ-
ing various (truncated) differential [16,17], integral [8], and impossible differential
attacks [4], among others. In particular, given a diagonal set of plaintexts and the
corresponding ciphertexts after 4 rounds, it is well known that the XOR-sum of
the ciphertexts is equal to zero [8], or that each pair of ciphertexts cannot be equal
in any of the four anti-diagonals, as shown by Biham and Keller in [5].
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Table 1. Expected properties of a diagonal set after 5-round encryption. Given a set of
232 chosen plaintexts all equal in three diagonals (that is, a diagonal set), we consider
the distribution of the number of different pairs of ciphertexts that are equal in one
anti-diagonal (equivalently, that lie in a particular subspace IDI for I ⊆ {0, 1, 2, 3}
fixed with |I| = 3). Expected values for mean and variance of these distributions are
given in this table for 5-round AES and for a random permutation. Practical results
on AES are close and are discussed in Sect. 7.2.

Random permutation 5-round AES

Mean� (Theorem 4) 2 147 483 647.5 ≈ 231 2 147 484 685.6 ≈ 231 + 210

Variance (Theorem 4) 2 147 483 647 ≈ 231 76 842 293 834.905 ≈ 236.161

Multiple-of-8 [14] ✓

·� ≡ assuming an “APN-like” S-Box (for the 5-round AES case).

While a lot is known about the encryption of a diagonal set of plaintexts –
that is, a set of plaintexts with one (or more) active diagonal(s) – for up to 4-
round AES, an analysis for 5 or more rounds AES is still missing. At Eurocrypt
2017, a new property which is independent of the secret key has been found
for 5-round AES [14]. By appropriate choices of a number of input pairs, it
is possible to make sure that the number of times that the difference of the
resulting output pairs lie in a particular subspace ID is always a multiple of 8.
Such a distinguisher has then been exploited in, e.g., [2,11] for setting up new
competitive distinguishers and key-recovery attacks on round-reduced AES.

At the same time, some open questions arise from the result provided in [14]:
does this property influence the average number of output pairs that lie in such a
particular subspace (i.e., the mean)? Are other parameters (including the vari-
ance and the skewness) affected by the multiple-of-8 property?

In this paper, given a diagonal set of plaintexts, we consider the probability
distribution of the corresponding number of pairs of ciphertexts that are equal
in one fixed anti-diagonal after 5-round AES (without the final MixColumns
operation) – equivalently, that belong to the same coset of a particular subspace
ID – denoted in the following as the “(average) number of collisions”.

1.1 Contributions

As the main contribution, we perform for the first time a differential analysis of
such distribution after 5-round AES, and find significant deviations from ran-
dom, supported by practical implementations and verification. For a theoretical
explanation we have to resort to an APN-like assumption on the S-Box, which
closely resembles the AES-Sbox. A numerical summary is given in Table 1. All
the results presented in this paper are independent of the secret-key.

Mean of 5-Round AES. Firstly, by an appropriate choice of 232 plaintexts in
a diagonal space D, we prove for the first time that the average number of times
that the resulting output pairs are equal in one fixed anti-diagonal (equivalently,
the average number of times that the difference of the resulting output pairs
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lie in a particular subspace ID) is (a little) bigger for 5-round AES than for a
random permutation, independently of the secret key. A complete proof of this
result – under an “APN-like” assumption on the S-Box which closely resembles
the AES S-Box – can be found in Sect. 6.

Variance of 5-Round AES. Secondly, we theoretically compute the variance
of the probability distribution just defined, and we show that it is higher (by a
factor of approximately 36) for 5-round AES than for a random permutation. As
we are going to show, this result is mainly due to the “multiple-of-8” result [14]
proposed at Eurocrypt 2017. For this reason, with respect to the mean value,
the variance is independent of the details of the S-Box.

Practical Verification and Influence of the S-Box Details on the Mean.
We practically verified the mean on small-scale 5-round AES (namely, AES
defined over F

4×4
24 as proposed in [7]), and the variance both for small-scale

and real 5-round AES. As discussed in Sect. 7, practical results are close to the
theoretical ones in both cases. Before going on, we mention that the theoretical
and the practical results regarding the mean (almost) match if the S-Box sat-
isfies an “APN-like” assumption on the S-Box which closely resembles the AES
S-Box, namely, if the solutions of the equality S-Box(·⊕ΔI)⊕S-Box(·) = ΔO are
uniformly distributed for each non-zero input/output differences ΔI ,ΔO �= 0. In
the case in which this assumption – also used in other related works as [1,3] –
is not satisfied, then a gap between the theoretical and the practical results can
occur, as showed and discussed in details in the extended version of this paper
– see [13, App. C].

Probability Distribution of 5-Round AES. By combining the multiple-of-
8 property presented in [14], the mixture differential cryptanalysis [11,12] and
the results just mentioned about the mean and the variance, in Sect. 3 we show
the following: given a diagonal space of 232 plaintexts with one active diago-
nal, the probability distribution of the number of different pairs of ciphertexts
which are equal in one fixed anti-diagonal after 5-round AES (without the final
MixColumns operation) with respect to (1st) all possible secret keys and (2nd)
all possible initial diagonal spaces is well described by a sum of independent
binomial distributions B(n, p), that is

23 × B(n3, p3) + 210 × B(n10, p10) + 217 × B(n17, p17)

where the values of n3, n10, n17 and p3, p10, p17 are provided in the following.

1.2 Follow-Up Works: Truncated Differentials for 5-/6-Round AES

Before going on, we recall the other results concerning truncated differentials for
5- or 6-round AES present in the literature.

In [1], Bao, Guo and List presented “extended expectation cryptanalysis”
(or “extended truncated differential”) on round-reduced AES. By making use
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of expectation-based distinguishers, they are able to show how to extend the
well-known 3-round integral distinguisher to truncated differential secret-key
distinguishers over 4, 5 and even 6 rounds. The technique exploited to derive
such a result is based on results by Patarin [20], who observed that the expected
(average) number of collisions differs slightly for a sum of permutations from
the ideal. At the same time, authors showed that their results (namely, the
expectation distinguishers over 4-, 5- and 6-round AES proposed in the main
part of [1]) can be derived exploiting the same technique/strategy that we are
going to propose in this paper in Sect. 6, as showed in details in [1, App. C].

Later on, in [3] Bardeh and Rønjom developed another technique in order
to set an equivalent truncated differential distinguishers for up to 6-round AES.
Such technique – called the “exchange equivalence attack” – resembles the yoyo
technique [21] and the mixture differential cryptanalaysis [11], and it allows to
give a precise estimation of the average number of pairs of ciphertexts that are
equal in fixed anti-diagonal(s), given a particular set of chosen plaintexts. The
corresponding secret-key distinguisher on 6-round AES has complexity of about
288.2 computations and chosen texts.

Remark. Before going on, we remark that all these results are valid only under
the “APN” assumption of the S-Box previously mentioned. Namely, both our
and the theoretical results proposed in [1,3] regarding the average number of
collisions after 5 or more rounds of AES hold only in the case in which the
solutions of the equality S-Box(·⊕ΔI)⊕S-Box(·) = ΔO are uniformly distributed
for each non-zero input/output differences ΔI ,ΔO �= 0, an assumption that is
(almost) satisfied by the AES S-Box. More details about this are provided in the
following.

2 Preliminary

2.1 Advanced Encryption Standard (AES)

AES [9] is a Substitution-Permutation network based on the “Wide Trail Design”
strategy [10], that supports key size of 128, 192 and 256 bits. The 128-bit plain-
text initializes the internal state as a 4× 4 matrix of bytes as values in the finite
field F28 . Depending on the version of AES, Nr rounds are applied to the state:
Nr = 10 for AES-128, Nr = 12 for AES-192 and Nr = 14 for AES-256. An AES
round applies four operations to the state matrix:

– SubBytes (S-Box) - applying the same 8-bit to 8-bit invertible S-Box 16 times
in parallel on each byte of the state (provides non-linearity in the cipher);

– ShiftRows (SR) - cyclic shift of each row to the left;
– MixColumns (MC) - multiplication of each column by a constant 4×4 invert-

ible matrix (MC and SR provide diffusion in the cipher);
– AddRoundKey (ARK) - XORing the state with a 128-bit subkey k.

One round of AES can be described as R(x) = k ⊕ MC ◦ SR ◦ S-Box(x). In
the first round an additional AddRoundKey operation (using a whitening key)
is applied, and in the last round the MixColumns operation is omitted.
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Notation Used in the Paper. Let x denote a plaintext, a ciphertext, an interme-
diate state or a key. Then, xi,j with i, j ∈ {0, . . . , 3} denotes the byte in the row
i and in the column j. We denote by R one round of AES (and Rf if the Mix-
Columns operation is omitted), while we denote r rounds of AES by Rr (where
we use the notation Rr

f in the case in which the last MixColumns operation is
omitted). We also define the diagonal and the anti-diagonal of a text as follows.
The i-th diagonal of a 4 × 4 matrix A is defined as the elements that lie on row
r and column c such that r − c ≡4 i. The i-th anti-diagonal of a 4 × 4 matrix A
is defined as the elements that lie on row r and column c such that r + c ≡4 i.

2.2 Properties of an S-Box

Given a bijective S-Box function on F2n , let ΔI ,ΔO ∈ F2n . Let NΔI ,ΔO
denotes

the number of solutions of the equation

S-Box(x ⊕ ΔI) ⊕ S-Box(x) = ΔO (1)

for each ΔI �= 0 and ΔO �= 0. Obviously, (i) x is a solution if and only if x ⊕ ΔI

is a solution, and (ii) if ΔO = 0, then any x ∈ F2n is a solution if and only if
ΔI = 0 (the S-Box is bijective).

Let’s analyze the probability distribution related to NΔI ,ΔO
.

Mean Value. Independently of the details of the S-Box, the mean value (or the
average value) of NΔI ,ΔO

is equal to E[NΔI ,ΔO
] = 2n

2n−1 . Indeed, observe that for
each x and for each ΔI �= 0 there exists ΔO �= 0 (since S-Box is bijective) that
satisfies Eq. (1). Thus, the average number of solutions is 2n·(2n−1)

(2n−1)2 = 2n

(2n−1)

independently of the details of the (bijective) S-Box.

Variance. The variance Var(NΔI ,ΔO
) depends on the details of the S-Box. For

the AES S-Box case, for each ΔI �= 0 there are 128 values of ΔO �= 0 for which
Eq. (1) has no solution, 126 values of ΔO �= 0 for which Eq. (1) has 2 solutions
(x̂ is a solution if and only if x̂ ⊕ ΔI is a solution) and finally 1 value of ΔO �= 0
for which Eq. (1) has 4 solutions. The variance for the AES S-Box is so equal to
VarAES(NΔI ,ΔO

) = 22 · 126
255 + 42 · 1

255 − (
256
255

)2 = 67 064
65 025 .

Maximum Differential Probability. The Maximum Differential Probability
DPmax of an S-Box is defined as

DPmax = 2−n · max
ΔI �=0,ΔO

NΔI ,ΔO
. (2)

Since maxΔI �=0,ΔO
NΔI ,ΔO

≥ 2, DPmax is always bigger than or equal to 2−n+1.
Permutations with DPmax = 2−n+1 are called Almost Perfect Nonlinear (APN).

“Homogeneous” S-Box. Finally, given ΔI �= 0 (respectively, ΔO �= 0), con-
sider the probability distribution of NΔI ,ΔO

with respect to ΔO �= 0 (respec-
tively, ΔI �= 0): we say that the S-Box is (differential) “homogeneous” if such
distribution is independent of ΔI (respectively, ΔO). As a concrete example,
the AES S-Box is differential “homogeneous”, since for each ΔI �= 0 (fixed),
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Pr(NΔI ,ΔO
= 2) = 126

255 and Pr(NΔI ,ΔO
= 4) = 1

255 . Other examples of S-Boxes
that are/are not differential “homogeneous” are given in the extended version of
this paper – see [13, App. C].

3 Probability Distribution for 5-Round AES

In this section, we first recall some results already published in the literature
about round-reduced AES. Then, given a diagonal space of 232 plaintexts with
one active diagonal, we present the probability distribution of the number of
different pairs of ciphertexts which are equal in one fixed anti-diagonal after
5-round AES (without the final MixColumns operation).

3.1 Truncated Differentials for 2-Round AES

Here we recall the truncated differential for 2-round AES using the subspace
trail notation introduced in [15]. In the following, we only work with vectors and
vector spaces over F

4×4
2n , and we denote by {e0,0, . . . , e3,3} the unit vectors of

F
4×4
2n (e.g., ei,j has a single 1 in row i and column j).

Definition 1. For each i ∈ {0, 1, 2, 3}:
– The column spaces Ci are defined as Ci = 〈e0,i, e1,i, e2,i, e3,i〉.
– The diagonal spaces Di are defined as Di = SR−1(Ci). Similarly, the inverse-

diagonal spaces IDi are defined as IDi = SR(Ci).
– The i-th mixed spaces Mi are defined as Mi = MC(IDi).

Definition 2. For each I ⊆ {0, 1, 2, 3}, let CI , DI , IDI and MI be defined as

CI =
⊕

i∈I

Ci , DI =
⊕

i∈I

Di , IDI =
⊕

i∈I

IDi , MI =
⊕

i∈I

Mi .

Definition 3. Let t ∈ F
4×4
2n be a text in a coset of a space X ⊆ F

4×4
2n such

that X = 〈x0, x1, . . . , xd−1〉 where dim(X ) = d, namely t ∈ X ⊕ γ. Given γ,
(t0, t1, . . . , td−1) ∈ F

d
2n are the generating variables of t if the following holds:

t ≡ (t0, t1, . . . , td−1) if and only if t = γ ⊕
d−1⊕

j=0

tj · xj .

As shown in detail in [15], for any coset DI ⊕ α there exists β ∈ F
4×4
28 such

that R(DI ⊕ α) = CI ⊕ β. In a similar way, for any coset CI ⊕ β there exists
γ ∈ F

4×4
28 such that R(CI ⊕ β) = MI ⊕ γ.

Theorem 1. ([15]). For each I ⊆ {0, 1, 2, 3} and for each α ∈ F
4×4
28 , there

exists β ∈ F
4×4
28 such that R2(DI ⊕ α) = MI ⊕ β. Equivalently:

Prob(R2(x) ⊕ R2(y) ∈ MI |x ⊕ y ∈ DI) = 1 . (3)
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3.2 Multiple-of-8 Property and Mixture Differential Cryptanalysis

As already recalled in the introduction, the first known property independent of
the secret-key for 5-round AES – called “multiple-of-8” property [14] – has been
presented at Eurocrypt 2017.

Theorem 2. ([14]). Let {pi}i∈{0,1,...,232·d−1} be 232·d plaintexts with 1 ≤ d ≤ 3
active diagonals, or equivalently in the same coset of a diagonal subspace DI for
a certain I ⊆ {0, 1, 2, 3} with |I| = d. Consider the corresponding ciphertexts
after 5 rounds (without the final MixColumns operation), that is, (pi, ci) for
i ∈ {0, . . . , 232·|I| − 1} where ci = R5

f (pi). The number of different pairs1 of
ciphertexts (ci, cj) that are equal in 1 ≤ a ≤ 3 anti-diagonals (i.e., that belong to
the same coset of a subspace IDJ for a certain J ⊆ {0, 1, 2, 3} with |J | = 4 − a)
is always a multiple of 8, independently of the secret key, of the details of the
S-Box and of the MixColumns matrix.

We refer to [6,11,14] for details. Such a result is strictly related to the mixture
differential cryptanalysis [11] proposed at FSE/ToSC’19.

Theorem 3. ([11]). Let t1, t2 be two texts in Ci ⊕γ for a certain i ∈ {0, 1, 2, 3},
namely two plaintexts that differ in the i-th column only. Let t1 ≡ (x1

0, x
1
1, x

1
2, x

1
3)

and t2 ≡ (x2
0, x

2
1, x

2
2, x

2
3) be their generating variables. Let s1, s2 ∈ Ci⊕γ be defined

as following:

– if x1
i �= x2

i for a certain i ∈ {0, 1, 2, 3}: the i-th generating variable s1i of s1 is
either x1

i or x2
i , and the i-th generating variable of s2 is {x1

i , x
2
i } \ s1i ;

– if x1
i = x2

i for a certain i ∈ {0, 1, 2, 3}: the i-th generating variable s1i of s1 is
equal to the i-th generating variable of s2 (no condition on the value).

The following holds:

1. R2(t1) ⊕ R2(t2) = R2(s1) ⊕ R2(s2);
2. for each J ⊆ {0, 1, 2, 3}:

R4(t1) ⊕ R4(t2) ∈ MJ if and only if R4(s1) ⊕ R4(s2) ∈ MJ .

3.3 Main Result: Probability Distribution for 5-Round AES

Given a set of 232·d plaintexts with 1 ≤ d ≤ 3 active diagonal(s), consider the
probability distribution of the number of pairs of ciphertexts which are equal in
1 ≤ a ≤ 3 fixed anti-diagonal(s) (without the final MixColumns operation):

– what can we say about the mean, the variance and the skewness of this
distribution?

– does the multiple-of-8 property influence the average number of output pairs
that lie in a particular subspace (i.e., the mean)? Are other parameters (as
the variance and the skewness) affected by the multiple-of-8 property?

1 Two pairs (s, t) and (t, s) are considered to be equivalent (i.e., they count per 1).
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Here we answer these questions.

Theorem 4. Given an AES-like cipher that works with texts in F
4×4
28 , assume

that (1st) the MixColumns matrix is an MDS matrix and that (2nd) the solutions
of the equation S-Box(x ⊕ ΔI) ⊕ S-Box(x) = ΔO are uniformly distributed for
each non-zero input/output difference ΔI �= 0 and ΔO �= 0.

Given 232 plaintexts {pi}i∈{0,1,...,232−1} with one active diagonal (i.e., in a
coset of a diagonal subspace Di for i ∈ {0, 1, 2, 3}), consider the number of
different pairs of ciphertexts (ch, cj) for h �= j that belong into the same coset
of IDJ for any fixed J ⊆ {0, 1, 2, 3} with |J | = 3. The corresponding probability
distribution – denoted in the following by D5-AES – with respect to

– all possible initial coset of the diagonal space Di, and
– all possible secret keys

is given by

D5-AES = 23 × B(n3, p3) + 210 × B(n10, p10) + 217 × B(n17, p17), (4)

where Bi ∼ B(ni, pi) for i ∈ {3, 10, 17} are binomial distributions, and where ni

and pi for i ∈ {3, 10, 17} are equal to

n3 = 228 · (28 − 1)4 , p3 = 2−32 + 2−53.983 ;

n10 = 223 · (28 − 1)3 , p10 = 2−32 − 2−45.989 ;

n17 = 3 · 215 · (28 − 1)2 , p17 = 2−32 + 2−37.986 .

Such distribution has mean value μ = 2147 484 685.6, and standard deviation
σ = 277 204.426.

In order to prove Theorem 4, we first derive the values ni for i = 3, 10, 17 and
prove the result given in Eq. (4). In the next sections, we formally compute the
probabilities pi for i ∈ {3, 10, 17}, the value of the mean and the variance.

4 Initial Considerations

About the S-Box: “Uniform Distribution of the Solutions of S-Box(·⊕
ΔI) ⊕ S-Box(·) = ΔO”. Before going further, we discuss the assumptions of
Theorem 4, focusing on the one related to the properties/details of the S-Box.
The fact that “the solutions of Eq. (1) are uniformly distributed for each ΔI �= 0
and ΔO �= 0” basically corresponds to an S-Box that satisfies the following
properties:

1. it is “homogeneous” (defined in Sect. 2.2);
2. its variance Var(NΔI ,ΔO

) is as “lower” as possible.2

2 Note that even if the variance Var(NΔI ,ΔO ) is related to DPmax, S-Boxes with equal
DPmax can have very different variance. Moreover, the variance of an S-Box S1 can be
bigger than the corresponding variance of an S-Box S2 even if DPmax of S1 is lower
than DPmax of S2.
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This is close to being true if the S-Box is APN, or if the S-Box is “close” to be
APN. Although much is known for (bijective) APN permutations in odd dimen-
sion, it is known that there is no APN permutation of dimension 4 [18], there
is at least one APN permutation, up to equivalence, of dimension 6 (that is,
the Dillon’s permutation), while the question of finding an APN bijective (n, n)-
function for even n ≥ 8 is still open. As a result, in the case of dimensions equal
to a power of 2 (e.g., F24 or F28), the only (known) S-Box that (approximately)
matches the assumptions of the Theorem in dimensions 4 or 8 is the one gener-
ated by the multiplicative-inverse permutation3, as for example the AES S-Box,
which is not APN but differentially 4-uniform [19] (e.g., note that the variance
of the AES S-Box is 67 064/65 025 vs 64 004/65 025 of an APN S-Box). As we are
going to show, our practical results on small-scale AES (for which the S-Box has
the same property as the full-size AES one) are very close to the one predicted
by the previous Theorem.

We remark that even if the assumptions on the S-Box of Theorem 4 are
restrictive, they match criteria used to design an S-Box which is strong against
differential and linear cryptanalysis. As a result, many ciphers in the literature
are built using S-Boxes which (are close to) satisfy the assumptions of Theorem 4.

Influence of the S-Box. If the S-Box does not satisfy the required properties
related to the assumption of the Theorem, then the average number of collisions
can be different from the one previously given. To be more concrete, in the
extended version of this paper [13, App. C], we provide several practical examples
of the dependency of the average number of collisions for small-scale AES-like
ciphers with respect to the properties of the S-Box. We also mention that, in the
case in which the assumption about the S-Box is not fulfilled, it turned out (by
practical tests) that also the details of the MixColumns matrix can influence the
average number of collisions.

Probability Distribution of a Random Permutation. Here we briefly com-
pare the probability distribution for 5-round AES and the one of a random
permutation. This fact can be used to set up new truncated differential distin-
guishers for 5-round AES, as we are going to show concretely in the extended
version of this paper [13, Sect. 8].

Proposition 1. Consider 232 plaintexts {pi}i∈{0,1,...,232−1} with one active
diagonal (equivalently, a coset of a diagonal space Di for i ∈ {0, 1, 2, 3}),
and the corresponding (cipher)texts generated by a random permutation Π,
that is ci = Π(pi). The probability distribution of the number of different
pairs of ciphertexts (ch, cj) that belong to the same coset of IDJ for any fixed
J ⊆ {0, 1, 2, 3} with |J | = 3 is given by a binomial distribution B(n, p), where
n =

(
232

2

)
= 231 · (232 − 1) and p = 296−1

2128−1 ≈ 2−32. The average number of

3 Variance, homogeneous differential property and DPmax of an S-Box S remain
unchanged if affine transformations are applied in the domain or co-domain of S.
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Fig. 1. Comparison between the theoretical probability distribution of the number of
collisions between 5-round AES (approximated – only here – by a normal distribution)
and a random permutation. Remark: since the AES probability distribution – in red –
satisfies the multiple-of-8 property, then the probability in the case in which the number
of collision n is not a multiple of 8 is equal to zero, namely Prob(n �= 8 ·n′) = 0. (Color
figure online)

collisions of such distribution is equal to 231 − 0.5 = 2 147 483 647.5, while its
variance is equal to 2 147 483 647 � 231.

It follows that:

– independently of the secret key, the average number of pairs of ciphertexts
which are equal in one fixed anti-diagonal is (a little) bigger for 5-round AES
than for a random permutation (approximately 1 038.1 more collisions);

– independently of the secret key, the variance of the probability distribution
of the number of collisions is much bigger for 5-round AES than for a random
permutation (approximately of a factor 36).

To highlight this difference, Fig. 1 proposes a comparison between the probability
distribution of the number of collisions for the AES case (approximated here for
simplicity by a normal distribution) in red and of the random case in blue.

5 Proof of Theorem4: Sum of Binomial Distributions

Consider a set of 232 plaintexts with one active diagonal and the corresponding
ciphertexts after 5-round AES (without the final MixColumns operation). As
shown by the multiple-of-8 property [14] and by the mixture differential crypt-
analysis [11], the corresponding pairs of ciphertexts of such set of plaintexts are
not independent/unrelated. In particular, these pairs of texts can be divided in
n3 + n10 + n17 + n24 sets defined as in [11] (recalled in Theorem 3) such that

1. for each i ∈ {3, 10, 17, 24}, exactly ni sets have cardinality 2i;
2. each one of these sets contains pairs of texts for which i out of the four gen-

erating variables are equal (and 4 − i are different) after 1-round encryption;
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3. given each one of such sets, it is not possible that some pairs of ciphertexts
are equal in 1 ≤ a ≤ 3 anti-diagonals (i.e., that belong to the same coset of
IDJ) after 5-round, while other pairs of ciphertexts in the same set are not
equal in those a anti-diagonals;

4. pairs of texts of different sets are independent (in the sense that pairs of texts
of different sets do not satisfy the property just given for the case of pairs of
texts that belong to the same set).

The values of n3, n10, n17, n24 are computed in details in the next paragraph.
Due to the impossible differential trail on 4-round AES [5,15], if three out

of the four generating variables of the input plaintexts are equal after 1-round
encryption, then the corresponding ciphertexts cannot be equal in any anti-
diagonal. In other words, the probability p24 is equal to zero. For this reason,
we will only focus on n3, n10, n17 in the following.

About the Values of n3, n10, n17. Given a set of 232 chosen texts with one
active column4, the number of pairs of texts with 0 ≤ v ≤ 3 equal generating
variables (and 4 − v different generating variables) after one round is given by

(
4
v

)
· 231 · (28 − 1)4−v . (5)

Indeed, note that if v variables are equal for the two texts of the given pair, then
these variables can take (28)v different values. For each one of the remaining
4 − v variables, the variables must be different for the two texts. Thus, these
4 − v variables can take exactly

[
28 · (28 − 1)

]4−v
/2 different values. The result

follows from the fact that there are
(
4
v

)
different combinations of v variables.

Due to Eq. (5), the number nv of the sets of pairs of texts with “no equal
generating variables” (namely, v = 0), the set of pairs of texts with “one equal
and three different generating variable(s)” (namely, v = 1) and finally the set of
pairs of texts with “two equal and two different generating variable” (namely,
v = 2) are given by:

∀v ∈ {0, 1, 2} : n7·v+3 =
(

4
v

)
· 231 · (28 − 1)4−v

27·v+3
. (6)

About Binomial Distributions Bi ∼ B(ni, pi) for i ∈ {3, 10, 17}. Due
to the previous facts, it follows that the probability of the event “n = 8 · n′

pairs of ciphertexts equal in one fixed anti-diagonal” for n′ ∈ N – equivalently,
“n = 8 · n′ collisions” in a coset of IDJ for J ⊆ {0, 1, 2, 3} with |J | = 3 –
corresponds to the sum of the probabilities to have “23 · k3 collisions in the first
set and 210 · k10 collisions in the second set and 217 · k17 collisions in the third
set” for each k3, k10, k17 such that 23 · k3 + 210 · k10 + 217 · k17 = n.

4 One active diagonal is mapped to one active column after 1-round AES encryption.
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Each one of these (independent) events is well characterized by a binomial
distribution. By definition, a binomial distribution with parameters n and p is
the discrete probability distribution of the number of successes in a sequence of
n independent yes/no experiments, each of which yields success with probability
p. In our case, given n pairs of texts, each one of them satisfies or not the above
property/requirement with the same probability p.

Probability Distribution. Due to all these initial considerations (based on the
multiple-of-8 property and on the mixture differential cryptanalysis), it follows
that the distribution 5-AES of the number of collisions for the AES case is well
described by

D5-AES = 23 × B3 + 210 × B10 + 217 × B17 ,

where Bi ∼ B(ni, pi) for i = 3, 10, 17 are independent binomial distributions. In
the following, we formally compute the values of ni and of pi.

Mean Value and Variance. Due to the results just presented, it follows that
the mean value μ of 5-AES is given by

μ =E[D5-AES] = E[23 × B3 + 210 × B10 + 217 × B17]

=23 · E[B3] + 210 · E[B10] + 217 · E[B17]

=23 · n3 · p3 + 210 · n10 · p10 + 217 · n17 · p17 ,

where E[a ·X + b ·Y + c] = a ·E[X] + b ·E[Y ] + c for each a, b, c ∈ R and for each
random variable X and Y . Similarly, the variance σ2 is given by

σ2 = Var(D5-AES) = Var(23 × B3 + 210 × B10 + 217 × B17)

= 26 · Var(B3) + 220 · Var(B10) + 234 · Var(B17)

= 26 · n3 · p3 · (1 − p3) + 210 · n10 · p10 · (1 − p10) + 217 · n17 · p17 · (1 − p17),

where Var(a ·X + b ·Y + c) = a2 · Var(X)+ b2 · Var(Y ) for each a, b, c ∈ R under
the assumption that X and Y are independent random variables (remember
that B3,B10,B17 are independent).

6 Proof of Theorem 4: About the Probabilities p3, p10, p17

6.1 Reduction to the Middle Round

In order to compute the probabilities p3, p10 and p17 given before for 5 rounds
AES, the idea is to work on an equivalent result on a single round. Due to the
2-round truncated differential with prob. 1 recalled in Sect. 3.1, we have that

Di ⊕ δ
R2(·)−−−−→
prob. 1

Mi ⊕ ω
R(·)−−→ DJ ⊕ δ′ R2

f (·)−−−−→
prob. 1

IDJ ⊕ ω′ . (7)

For this reason, it is sufficient to focus on the middle round Mi ⊕ω
R(·)−−→ DJ ⊕δ′

in order to compute the desired result.
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Sketch and Organization of the Proof. W.l.o.g., we limit ourselves to consider
plaintexts in the same coset of M0 and to count the number of texts which are
equal in the first diagonal after one round (the other cases are analogous). By
definition of M0, if p1, p2 ∈ M0 ⊕ ω, then there exist xi, yi, zi, wi ∈ F28 for
i ∈ {1, 2} such that:

pi = ω ⊕

⎡

⎢
⎢
⎣

2 · xi yi zi 3 · wi

xi yi 3 · zi 2 · wi

xi 3 · yi 2 · zi wi

3 · xi 2 · yi zi wi

⎤

⎥
⎥
⎦ ,

where 2 ≡ 0 × 02 and 3 ≡ 0 × 03. In the following, we say that p1 is
“generated” by the generating variables (x1, y1, z1, w1) and that p2 is “gener-
ated” by the generating variables (x2, y2, z2, w2). As before, we use the notation
pi ≡ (xi, yi, zi, wi). The proof is organized as follows:

1. first of all, we limit ourselves to consider a subset of 216 texts with only 2
active bytes. Since this case is much simpler to analyze than the generic one,
it allows us to highlight the crucial points of the proof;

2. we then present the complete proof for the case of 232 texts in the same coset
of M0. Roughly speaking, this case is split in various sub-cases: each one of
them is studied/analyzed independently of the others using the same strategy
proposed for the simplest case of 216 texts. The final result is obtained by
simply combining the results of each one of these sub-cases.

We emphasize that the following computations are not influenced by neither
the value of the secret key nor the value of the initial coset of the diagonal
subspace Di. That is, the following results are the average with respect to these
two values.

6.2 A “Simpler” Case: 216 Texts with Two Equal Generating
Variables

As a first case, we consider 216 texts for which two generating variables are equal,
e.g., z1 = z2 and w1 = w2. Given two texts p1 generated by (x1, y1, 0, 0) and p2

generated by (x2, y2, 0, 0), they are equal in the first diagonal after one round if
and only if the following four equations are satisfied

(R(p1) ⊕ R(p2))0,0 =2 · (S-Box(2 · x1 ⊕ a0,0) ⊕ S-Box(2 · x2 ⊕ a0,0))

⊕ 3 · (S-Box(y1 ⊕ a1,1) ⊕ S-Box(y2 ⊕ a1,1)) = 0 ,

(R(p1) ⊕ R(p2))1,1 =S-Box(3 · x1 ⊕ a3,0) ⊕ S-Box(3 · x2 ⊕ a3,0)

⊕ S-Box(y1 ⊕ a0,1) ⊕ S-Box(y2 ⊕ a0,1) = 0 ,

(R(p1) ⊕ R(p2))2,2 =2 · (S-Box(x1 ⊕ a2,0) ⊕ S-Box(x2 ⊕ a2,0))

⊕ 3 · (S-Box(2 · y1 ⊕ a3,1) ⊕ S-Box(2 · y2 ⊕ a3,1)) = 0 ,

(R(p1) ⊕ R(p2))3,3 =S-Box(x1 ⊕ a1,0) ⊕ S-Box(x2 ⊕ a1,0)

⊕ S-Box(3 · y1 ⊕ a2,1) ⊕ S-Box(3 · y2 ⊕ a2,1) = 0 ,
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where a·,· ∈ F28 depends on the initial key and on the constant ω ∈ F
4×4
28 that

defines the coset. Equivalently, four equations of the form

A · (
S-Box(B · x1 ⊕ a) ⊕ S-Box(B · x2 ⊕ a)

)

⊕C · (S-Box(D · y1 ⊕ c) ⊕ S-Box(D · y2 ⊕ c)
)

= 0
(8)

must be satisfied, where A,B,C,D ∈ F28 depend on the MixColumns matrix,
while a, c ∈ F28 depend on the secret key and on the initial constant ω.

Number of Solutions of Each Equation. Consider one of these four equations.
By simple observation, Eq. (8) is satisfied if and only if the following system of
equations is satisfied

S-Box(x̂ ⊕ ΔI) ⊕ S-Box(x̂) = ΔO

S-Box(ŷ ⊕ Δ′
I) ⊕ S-Box(ŷ) = Δ′

O

Δ′
O = C−1 · A · ΔO

(9)

for each value of ΔO, where x̂ = B · x1 ⊕ a, ΔI = B · (x1 ⊕ x2), ŷ = D · y1 ⊕ c
and Δ′

I = D · (y1 ⊕ y2). We emphasize that we exclude null solutions.
What is the number of different (not null) solutions {(x1, y1), (x2, y2)} of

Eq. ( 8)? Given ΔO �= 0, each one of the first two equations of (9) admits 256
different solutions (x̂,ΔI) (respectively, (ŷ, Δ′

I)), since for each value of x̂ ∈ F28 ,
there exists ΔI �= 0 that satisfies the first equation (similar for ŷ and Δ′

I).
It follows that the number of different solutions {(x1, y1), (x2, y2)} of Eq. (8)
considering all the 255 possible values of ΔO is exactly equal to

1
2

· 255 · (256)2 = 255 · 215 ,

Independent of the Details of the S-Box. The factor 1/2 is due to the fact that
we consider only different solutions, that is, two solutions of the form (p1 ≡
(x1, y1), p2 ≡ (x2, y2)) and (p2 ≡ (x1, y1), p1 ≡ (x2, y2)) are equivalent. In other
words, a solution {(x1, y1), (x2, y2)} is valid if x2 �= x1 and y1 < y2.

Probability of Common Solutions. Knowing the number of solutions of Eq. (8),
what is the number of common (different) solutions {(x1, y1), (x2, y2)} of four
equations of the form ( 8)? We have just seen that each equation of the form (8)
has exactly 255 · 215 different (not null) solutions {(x1, y1), (x2, y2)}. Assuming
the APN-like assumption on the S-Box and the fact that the MixColumns is
defined by an MDS matrix, the probability that two equations admit the same
solution (i.e., that {(x1, y1), (x2, y2)} – solution of one equation – is equal to
{(x̂1, ŷ1), (x̂2, ŷ2)} – solution of another equation) is

(256 · 255)−1 · (255 · 128)−1 = 255−2 · 2−15 . (10)

To explain this probability, the first term (256 · 255)−1 is due to the fact that
x1 = x̂1 with probability 256−1, while x2 = x̂2 with probability 255−1, since by
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assumption x2 (respectively, x̂2) cannot be equal to x1 (respectively, x̂1). The
second term (128 · 255)−1 is due to the assumption on the second variable, that
is y1 < y2. To explain it, note that the possible number of pairs (y1, y2) with
y1 < y2 is

∑255
i=0 i = 255·(255+1)

2 = 255 · 128.5 It follows that y1 and y2 are equal
to ŷ1 and ŷ2 with probability (128 · 255)−1.

Total Number of (Different) Common Solutions. In conclusion, the average num-
ber of common (different) solutions {(x1, y1), (x2, y2)} of 4 equations of the form
(8) is given by

(255 · 215)4 · (255−2 · 2−15)3 =
215

2552
� 0.503929258 � 2−1 + 2−7.992 .

For comparison, in the case in which the ciphertexts are generated by a random
permutation, the average number of pairs of ciphertexts that satisfy the previous
property is approximately given by

(
216

2

)
· (2−8)4 =

216 − 1
217

� 0.499992371 � 2−1 − 2−17 .

Remark: About the MDS Assumption. We highlight that the probability
( 10) strongly depends on the assumptions that

– the solutions of Eq. (1) – hence, the numbers NΔI ,ΔO
– are uniformly dis-

tributed for each ΔI �= 0 and ΔO �= 0;
– there is “no (obvious/non-trivial) relation” between the solutions of the stud-

ied system of four equations of the form (8). This means that the four Eqs. (8)
must be independent/unrelated, in the sense that the solution of one equation
is not a solution of another one with probability different than the one given
in (10).

Focusing here on this second requirement, a relation among solutions of different
equations can arise if some relations hold between the coefficients A,B,C,D
of different equations of the form (8). Since these are the coefficients of the
MixColumns matrix and since such matrix is MDS, no non-trivial linear relation
among the rows/columns of any submatrix exists.

6.3 Generic Case: 232 Texts

As next step, we adapt the strategy just presented in order to analyze the case
of 232 texts in the same coset of M0. Two texts p1, p2 are equal in one diagonal

5 E.g., if y1 = 0x0 then y2 can take 255 different values (all values except 0), if y1 = 0x1
then y2 can take 254 different values (all values except 0x0, 0x1) and so on. Given
y1 = d with 0 ≤ d ≤ 255, then y2 can take 255 − d different values.
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after one round if and only if four equations of the form

A · (
S-Box(B · x1 ⊕ b) ⊕ S-Box(B · x2 ⊕ b)

)

⊕C · (S-Box(D · y1 ⊕ d) ⊕ S-Box(D · y2 ⊕ d)
)

⊕E · (
S-Box(F · z1 ⊕ f) ⊕ S-Box(F · z2 ⊕ f)

)

⊕G · (S-Box(H · w1 ⊕ h) ⊕ S-Box(H · w2 ⊕ h)
)

= 0

(11)

are satisfied, where A,B,C,D,E, F,G,H ∈ F28 depend only on the MixColumns
matrix, while b, d, f, h ∈ F28 depend on the secret key and on the constant ω
that defined the initial coset, as before. Each one of these equations is equivalent
to a system of equations like (9), that is:

S-Box(x̂ ⊕ ΔI) ⊕ S-Box(x̂) = ΔO S-Box(ŷ ⊕ Δ′
I) ⊕ S-Box(ŷ) = Δ′

O

S-Box(ẑ ⊕ Δ
′′
I ) ⊕ S-Box(ẑ) = Δ

′′
O S-Box(ŵ ⊕ Δ

′′′
I ) ⊕ S-Box(ŵ) = Δ

′′′
O

together with one of the following conditions

1. Δ
′′′
O = Δ

′′
O = 0 and Δ′

O = C−1 · A · ΔO �= 0, or analogous (six possibilities in
total);

2. Δ
′′′
O = 0 and ΔO,Δ

′
O,Δ

′′
O �= 0 and Δ

′′
O = E−1 ·(A ·ΔO ⊕C ·Δ′

O), or analogous
(four possibilities in total);

3. ΔO,Δ
′
O,Δ

′′
O,Δ

′′′
O �= 0 and Δ

′′′
O = G−1 · (A · ΔO ⊕ C · Δ′

O ⊕ E · Δ
′′
O).

First Case. Since the first case (Δ
′′′
O = Δ

′′
O = 0) is analogous to the case in

which two generating variables are equal, we can limit ourselves to re-use the
previous computation. In the case Δ

′′′
O = Δ

′′
O = 0 and Δ′

O = C−1 · A · ΔO �= 0,
the only possible solutions of the third and fourth equations are of the form
(ẑ, Δ

′′
I = 0) and (ŵ,Δ

′′′
I = 0) for each possible value of ẑ, ŵ ∈ F28 . Using the

same computation as before, the average number of common solutions for this
case is (

4
2

)
· 2562 · 215

2552
=

232

21 675
� 198 153.047 . (12)

About Probability p17. By definition of probability, the probability p17 – given
in Theorem 4 – that pairs of texts with two equal (and two different) generating
variables are equal in one diagonal after one round is given by:

p17 =
1

217 × n17
· 232

21 675
= 2−32 + 2−37.98588 , (13)

where 217 × n17 is the total number of pairs of texts with two equal (and two
different) generating variables.
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Second Case. Consider now the case Δ
′′′
O = 0 and ΔO,Δ′

O,Δ
′′
O �= 0 (i.e.,

ΔI ,Δ
′
I ,Δ

′′
I �= 0). First of all, note that ΔO �= 0 can take 255 different values,

while Δ′
O �= 0 can take only 254 different values (since it must be different from

0 and from C−1 · A · ΔO).
Using the same argumentation given before, for each Eq. (11) the number

of different solutions {(x1, y1, z1, w1), (x2, y2, z2, w2)} – with z1 < z2 and where
w1 = w2 – is given by

(
4
1

) · 256 · (
1
2 · 255 · 254 · (256)3

)
= 210 · (

32 385 · 224
)
,

where the initial factor
(
4
1

) · 256 is due to the condition w1 = w2 and on the fact
that there are four analogous cases (namely, x1 = x2 or y1 = y2 or z1 = z2).
Similar to before, the probability that two equations of the form (11) – where
w1 = w2 – have a common solution is given by (256 · 255)−2 · (128 · 255)−1 =
2−23 · 255−3 under (1st) the assumption of uniform distribution of the solutions
nΔI ,ΔO

of Eq. (1) and (2nd) the assumption that there is “no (obvious/non-
trivial) relation” between the solutions of the studied system of four equations
of the form (11). It follows that the average number of common solutions for the
four equations of the form (11) is

(
4
1

)
· 256 · (32 385 · 224)4 · (2−23 · 255−3)3 =

1274 · 237

2555
� 33 160 710.047 . (14)

About Probability p10. As before, the probability p10 – given in Theorem 4 –
that pairs of texts with one equal (and three different) generating variable(s) are
equal in one diagonal after one round is given by:

p10 =
1

210 × n10
· 1274 · 237

2555
= 2−32 − 2−45.98874 . (15)

Third Case. We finally consider the case ΔO,Δ′
O,Δ

′′
O,Δ

′′′
O �= 0. By simple

computation, the number of different values that satisfy Δ
′′′
O = G−1 · (A · ΔO ⊕

C · Δ′
O ⊕ E · Δ

′′
O). is given by 2553 − (255 · 254) = 16 516 605. Indeed, the total

number of ΔO,Δ′
O,Δ

′′
O �= 0 is 2553, while 255 · 254 is the total number of values

ΔO,Δ′
O,Δ

′′
O �= 0 for which Δ

′′′
O is equal to zero (which is not possible since

Δ
′′′
O �= 0 by assumption). In more detail, firstly observe that for each value of

ΔO there is a value of Δ
′
O that satisfies A · ΔO = C · Δ′

O. For this pair of values
(ΔO,Δ′

O = C−1 · A · ΔO), the previous equation Δ
′′′
O = G−1 · E · Δ

′′
O is always

different from zero, since Δ
′′
O �= 0. Secondly, for each one of the 255 · 254 values

of the pair (ΔO,Δ′
O �= C−1 · A · ΔO), there is only one value of Δ

′′
O such that

the previous equation is equal to zero.
Hence, the total number of different solutions {(x1, y1, z1, w1), (x2, y2,

z2, w2)} with w1 < w2 of each equation corresponding to (11) is 1
2 · 16 516 605·

(256)4 = 16 516 605 · 231. Since the probability that two solutions {(x1, y1,
z1, w1), (x2, y2, z2, w2)} and {(x̂1, ŷ1, ẑ1, ŵ1), (x̂2, ŷ2, ẑ2, ŵ2)} are equal is (255 ·
256)−3 · (255 · 128)−1 = 255−4 · 2−31 under (1st) the assumption of uniform dis-
tribution of the solutions of Eq. (1) and (2nd) the assumption that there is “no
(obvious/non-trivial) relation” between the solutions of the studied system of
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four equations of the form (11), the average number of common solutions (with
no equal generating variables) is

(
16 516 605 · 231

)4·(255−4 · 2−31)3 =
64 7714 · 231

2558
� 2 114 125 822.5 . (16)

About Probability p3. As before, the probability p3 given in Theorem 4 that pairs
of texts with no equal generating variable are equal in one diagonal after one
round is given by:

p3 =
1

23 × n3
· 64 7714 · 231

2558
= 2−32 + 2−53.98306 . (17)

Total Number of (Different) Common Solutions. Based on the results just
proposed, given plaintexts in the same coset of M0, the number of different pairs
of ciphertexts that are equal in one fixed diagonal after 1-round (equivalently,
the number of collisions in DJ for |J | = 3) is

2 114 125 822.5+33 160 710.047+198 153.047 � 2 147 484 685.594 � 231 +210.02 .

Since the total number of pairs of texts is 231 · (232 − 1), the probability for the
AES case that a couple of ciphertexts (c1, c2) satisfies c1 ⊕ c2 ∈ DJ for |J | = 3
fixed is equal to

pAES � 2 147 484 685.594
231 · (232 − 1)

� 2−32 + 2−52.9803

versus ≈ 2−32 − 2−128 for the case of a random permutation.

7 Practical Results for 5-Round AES

We have practically verified the mean and the variance for 5-round AES given
above (in Theorem 4) using a C/C++ implementation6. In particular, we have
verified the mean value on a small-scale AES as proposed in [7], and the variance
value both on full-size and on the small-scale AES.

7.1 Probability Distribution of 5-Round AES over (F2n )4×4

Firstly, we generalize Theorem 4 for the case of 5-round AES defined over F4×4
2n .

Proposition 2. Consider an AES-like cipher that works with texts in F
4×4
2n ,

such that (1st) the MixColumns matrix is an MDS matrix and such that (2nd)
the solutions of Eq. (1) are uniformly distributed for each input/output difference
ΔI �= 0 and ΔO �= 0. Given 24n plaintexts {pi}i∈{0,1,...,24n−1} with one active
diagonal (equivalently, in a coset of a diagonal space Di for i ∈ {0, 1, 2, 3}), con-
sider the corresponding ciphertexts after 5 rounds without the final MixColumns
operation, that is, ci = R5

f (pi). Independently of

6 The source codes of the distinguishers/attacks can be found at https://github.com/
Krypto-iaik/TruncatedDiff5roundAES.

https://github.com/Krypto-iaik/TruncatedDiff5roundAES
https://github.com/Krypto-iaik/TruncatedDiff5roundAES
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– the initial coset of Di, and
– the value of the secret key,

the average number of different pairs of ciphertexts (ch, cj) for h �= j that belong
to the same coset of IDJ for any fixed J ⊆ {0, 1, 2, 3} with |J | = 3 is equal to

24n−1 · (22n − 3 · 2n + 3)4

(2n − 1)8
+

(2n−1 − 1)4 · 24n+5

(2n − 1)5
+ 3 · 24n

(2n − 1)2
, (18)

and the variance of such distribution is given by

24n+2 · (22n − 3 · 2n + 3)4

(2n − 1)8
+

(2n−1 − 1)4 · 25n+7

(2n − 1)5
+

3 · 26n+1

(2n − 1)2
. (19)

The proof is analogous to the one just given for F
4×4
28 .

7.2 Practical Results for 5-Round AES over F
4×4
2n for n ∈ {4, 8}

Practical Results: Variance of 5-round AES over F
4×4
28 . Our practical results

regarding the variance σ2 for full-size AES over 320 different initial cosets and
keys are

σ2
T = 76 842 293 834.905 � 236.161 versus σ2

P = 73 288 132 411.36 � 236.093 ,

where the subscript ·T denotes the theoretical value and the subscript ·P the
practical one.

Practical Results for 5-round AES over F
4×4
24 . Our practical results for small-

scale AES regarding the mean μ over 125 000 � 217 different initial cosets and
keys are

μT
AES = 32 847.124 versus μP

AES = 32 848.57 ;

μT
rand = 32 767.5 versus μP

rand = 32 768.2 .

Our practical results for small-scale AES regarding the standard deviation σ
over 100 different initial cosets and keys are

σT
AES = 1036.58 versus σP

AES = 1027.93 ;

σT
rand = 181.02 versus σP

rand = 182.42 .

The Probability Distribution for 5-Round AES Is not Symmetric.
Figure 2 highlights the difference between the practical probability distribution
of the number of collisions for small-scale AES and for a random permutation.

By Fig. 2, it turns out that small-scale 5-round AES distribution has a pos-
itive skew, while the skew of the random distribution is approximately equal
to zero. The skewness is the parameter that measures the asymmetry of the
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Fig. 2. Comparison between the probability distribution of the number of collisions
between theoretical small-scale 5-round AES (approximated by a normal distribution)
and the practical one. Remark: since the AES probability distribution satisfies the
multiple-of-8 property, then the probability in the case in which the number of collisions
n is not a multiple of 8 is equal to zero.

probability distribution of a real-valued random variable about its mean. We
practically derived the values of the skewness γ both for full-size AES and for
small-scale one using 29 initial cosets, and we got the following results:

γAES � 0.43786 and γAES
small-scale � 0.4687 ,

where the skew of a random permutation is close to zero. We leave the open
problem to theoretically compute the skew for small/real-size AES (and to set
up a corresponding distinguisher if possible) as a future work.
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