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Abstract. This paper presents a key recovery attack on a rank metric
based cryptosystem proposed by Lau and Tan at ACISP 2018, which
uses Gabidulin codes as the underlying decodable code. This attack is
shown to cost polynomial time and therefore completely breaks the cryp-
tosystem. Specifically, we convert the problem of recovering the private
key into solving a multivariate linear system over the base field. We then
present a simple repair for this scheme, which is shown to require expo-
nential complexity for the proposed attack. Additionally, we apply this
attack to cryptanalyze another Gabidulin code based cryptosystem pro-
posed by Loidreau at PQCrypto 2017, and improve Loidreau’s result in
a talk at CBCrypto 2021.
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1 Introduction

In post-quantum era, public key cryptosystems based on number theoretic prob-
lems will suffer serious security threat due to Shor’s algorithm [37]. To prevent
attacks from quantum computers, people have paid much attention to seeking
alternatives for future use. Among these alternatives, code-based cryptography
is one of the most promising candidates, whose security depends on the NP-
completeness of decoding general linear codes [8]. The first cryptosystem of this
type was proposed by McEliece [30] in 1978 using Goppa codes as the underlying
linear code, which is now known as the McEliece cryptosystem. Although this
scheme remains secure, it has never been used in practical situations due to the
drawback of large key size. To tackle this problem, various improvements have
been proposed one after another. In general, these variants can be divided into
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two categories: one is to replace Goppa codes with other Hamming metric codes
[1,4,23,31], the other is to use codes endowed with other metric [2,22].

In 1991, Gabidulin et al. [15] proposed an encryption scheme based on rank
metric codes, namely the GPT cryptosystem based on Gabidulin codes. The
greatest advantage of rank metric based cryptosystems consists in their compact
representation of public keys. Some representative variants based on Gabidulin
codes can be found in [7,12,14,24,27,35]. Unfortunately, most of these variants
have been completely or partially broken due to the inherent structural weakness
of Gabidulin codes [9,11,16,20,32,34].

In [25], Lau and Tan proposed a public key cryptosystem based on Gabidulin
codes, which was later published in [26] with an extended version. In this pro-
posal, the public key consists of two parts, namely a generator matrix of the
disturbed Gabidulin code by a random code that has maximum rank weight
n and a vector of rank weight n. This technique of masking the structure of
Gabidulin codes, as claimed by Lau and Tan, can prevent some existing attacks
such as Frobenius weak attack [19], reduction attack [32], and Overbeck’s attack
[34]. Additionally, the recent Coggia-Couvreur attack [11] and Ghatak’s attack
[18] designed for Loidreau’s cryptosystem [27] do not work on this scheme either.

Our Contributions. Firstly, we show that all the generating vectors of a
Gabidulin code, together with the zero vector, form a 1-dimensional linear space.
In other words, for a fixed generating vector g of a Gabidulin code G ⊆ F

n
qm ,

any other generating vector must be of the form γg for some γ ∈ F
∗
qm . This

suggests that there are totally qm − 1 generating vectors for a Gabidulin code
over Fqm . Secondly, we introduce a different approach from the one in [20] to
compute the generating vector of Gabidulin codes from an arbitrary generator
matrix. Thirdly, this paper presents a simple yet efficient key recovery attack on
the Lau-Tan cryptosystem. Fourthly, we give a simple but effective repair for this
system, which is shown to be secure against the existing structural attacks and
have larger information transfer rate. Lastly, when applying this attack to ana-
lyze Loidreau’s cryptosystem, we get a reduction in the complexity of recovering
an equivalent private key.

The rest of this paper is organized as follows. Section 2 introduces basic
notions used throughout this paper, as well as the concept of Moore matrices
and Gabidulin codes. Section 3 gives a simple description of the Lau-Tan cryp-
tosystem. Section 4 mainly describes the principle of our attack. Specifically, we
first present some further results about Gabidulin codes that will be helpful for
explaining why our attack works. Then a detailed description of this attack will
be given in two steps. Lastly, we give a complexity analysis of this attack and
some experimental results. In Sect. 5, we propose a modification for this scheme,
investigate its security and give some practical parameters. In Sect. 6, we apply
this attack to cryptanalyze Loidreau’s cryptosystem. Section 7 concludes this
paper.
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2 Preliminaries

In this section, we first introduce some notations and basic concepts in coding
theory. After that, we recall the concept of Gabidulin codes, and present some
related results in the meanwhile.

2.1 Notations and Basic Concepts

For a prime power q, we denote by Fq the finite field with q elements, and Fqm an
extension field of Fq of degree m. Note that Fqm can be seen as a linear space over
Fq of dimension m. A vector a ∈ F

m
qm is called a basis vector if the components

of a form a basis of Fqm over Fq. Particularly, we call a a normal basis vector
if a has the form (αqm−1

, αqm−2
, . . . , α) for some α ∈ F

∗
qm = Fqm\{0}. For two

positive integers k and n, denote by Mk,n(Fq) the space of all k × n matrices
over Fq, and by GLn(Fq) the set of all invertible matrices in Mn,n(Fq). For a
matrix M ∈ Mk,n(Fq), denote by 〈M〉q the linear space spanned by the rows of
M over Fq.

An [n, k] linear code C over Fqm is a k-dimensional subspace of Fn
qm , and any

element in C is called a codeword of C. The dual code of C, denoted by C⊥, is the
orthogonal space of C under the usual inner product over Fn

qm . A k×n matrix G
is called a generator matrix of C if its row vectors form a basis of C over Fqm . A
generator matrix H of C⊥ is called a parity-check matrix of C. For a codeword
c ∈ C, the rank support of c, denoted by Supp(c), is the linear space spanned by
the components of c over Fq. The rank weight of c with respect to Fq, denoted
by rk(c), is defined to be the dimension of Supp(c) over Fq. The minimum rank
distance of C, denoted by rk(C), is defined to be the minimum rank weight of all
nonzero codewords in C. For a matrix M ∈ Mk,n(Fqm), the rank support of M ,
denoted by Supp(M), is defined to be the linear space spanned by entries of M
over Fq. The rank weight of M with respect to Fq, denoted by rk(M), is defined
as the dimension of Supp(M) over Fq.

2.2 Gabidulin Codes

This section recalls the concept of Gabidulin codes. Before doing this, we first
introduce the definition of Moore matrices and some related results.

Definition 1 (Moore matrices). For an integer i and α ∈ Fqm , we define
α[i] = αqi

to be the i-th Frobenius power of α. For a vector a = (α1, α2, . . . , αn) ∈
F

n
qm , we define a[i] = (α[i]

1 , α
[i]
2 , . . . , α

[i]
n ) to be the i-th Frobenius power of a. For

positive integers k � n, a k × n Moore matrix generated by a is defined as

Mrk(a) =

⎛
⎜⎜⎜⎝

α1 α2 · · · αn

α
[1]
1 α

[1]
2 · · · α

[1]
n

...
...

...
α
[k−1]
1 α

[k−1]
2 · · · α

[k−1]
n

⎞
⎟⎟⎟⎠ .
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For a positive integer l and a matrix M = (Mij) ∈ Mk,n(Fqm), we denote
by M [l] = (M [l]

ij ) the l-th Frobenius power of M . For a set V ⊆ F
n
qm , we denote

by V [l] = {v[l] : v ∈ V} the l-th Frobenius power of V. Particularly, for a linear
code C ⊆ F

n
qm , it is easy to verify that C[l] is also a linear code over Fqm .

The following proposition presents simple properties of Moore matrices.

Proposition 1.(1) For two k×n Moore matrices A,B ∈ Mk,n(Fqm), the sum
A + B is also a k × n Moore matrix.

(2) For a Moore matrix M ∈ Mk,n(Fqm) and a matrix Q ∈ Mn,l(Fq), the
product MQ forms a k × l Moore matrix.

(3) For a vector a ∈ F
n
qm with rk(a) = l, there exist a′ ∈ F

l
qm with rk(a′) = l

and Q ∈ GLn(Fq) such that a = (a′||0)Q. Furthermore, let A = Mrk(a)
and A′ = Mrk(a′), then A = [A′|0]Q.

(4) For positive integers k � n � m, let a ∈ F
n
qm be a vector such that rk(a) = n,

then the Moore matrix Mrk(a) has rank k.

Proof. Statements (1), (2) and (3) are trivial and the proof is omitted here.

(4) Let a = (α1, . . . , αn) ∈ F
n
qm . If Rank(Mrk(a)) < k, then there exists

λ = (λ0, . . . , λk−1) ∈ F
k
qm\{0} such that λMrk(a) = 0. Let f(x) =∑k−1

j=0 λjx
[j] ∈ Fqm [x], then f(αi) = 0 holds for any 1 � i � n. It fol-

lows that f(α) = 0 for any α ∈ 〈α1, . . . , αn〉q, which conflicts with the fact
that f(x) = 0 admits at most qk−1 roots.

In particular, we have the following proposition, which was once exploited by
Loidreau in [28] to cryptanalyze an encryption scheme [27] based on Gabidulin
codes.

Proposition 2 (Moore matrix decomposition). Let a be a basis vector of
Fqm over Fq. For a positive integer k � m, let M = Mrk(a) be a Moore matrix
generated by a. Then for any k ×n Moore matrix M ′ ∈ Mk,n(Fqm), there exists
Q ∈ Mm,n(Fq) such that M ′ = MQ.

Now we formally introduce the definition of Gabidulin codes.

Definition 2 (Gabidulin codes). For positive integers k < n � m, let a ∈
F

n
qm such that rk(a) = n. The [n, k] Gabidulin code generated by a, denoted by

Gabn,k(a), is defined as the linear space spanned by the rows of Mrk(a) over Fqm .
Mrk(a) is called a canonical generator matrix of Gabn,k(a), and a a generating
vector respectively.

Remark 1. Gabidulin codes can be seen as a rank metric counterpart of general-
ized Reed-Solomon (GRS) codes, both of which admit good algebraic properties.
The dual of an [n, k] Gabidulin code is an [n, n−k] Gabidulin code [16]. An [n, k]
Gabidulin code has minimum rank distance n−k+1 [21] and can therefore correct
up to

⌊
n−k
2

⌋
rank errors in theory. Efficient decoding algorithms for Gabidulin

codes can be found in [13,29,36].
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To reduce the public key size, Lau and Tan exploited the so-called partial
circulant matrix in the cryptosystem, which is defined as follows.

Definition 3 (Partial circulant matrices). For a = (α1, α2, . . . , αn) ∈ F
n
qm ,

the circulant matrix generated by a, denoted by Cirn(a), is defined to be a matrix
whose first row is a and i-th row is obtained by cyclically right shifting the i−1-
th row for 2 � i � n. The k × n partial circulant matrix generated by a, denoted
by Cirk(a), is defined to be the first k rows of Cirn(a).

Remark 2. Let a be a normal basis vector of Fqm over Fq, then it is easy to verify
that the k×m partial circulant matrix generated by a is exactly the k×m Moore
matrix generated by a. In other words, we have Cirk(a) = Mrk(a).

3 Lau-Tan Cryptosystem

In this section, we mainly give a simple description of the Lau-Tan cryptosystem
that uses Gabidulin codes as the underlying decodable code. For a given security
level, choose positive integers m > n > k > k′ and r such that k′ = �k

2 � and
r = �n−k

2 �. The Lau-Tan cryptosystem consists of the following three algorithms.

– Key Generation

Let G be an [n, k] Gabidulin code over Fqm , and G ∈ Mk,n(Fqm) be a genera-
tor matrix of G of canonical form. Randomly choose matrices S ∈ GLk(Fqm)
and T ∈ GLn(Fq). Randomly choose u ∈ F

n
qm such that rk(u) = n and set

U = Cirk(u). Let Gpub = SG + UT , then we publish (Gpub,u) as the public
key, and keep (S,G, T ) as the private key.

– Encryption

For a plaintext m ∈ F
k′
qm , randomly choose a vector ms ∈ F

k−k′
qm such

that rk((m||ms)U) > � 3
4 (n − k)	. Randomly choose e1,e2 ∈ F

n
qm such

that rk(e1) � r
2 and rk(e2) � r

2 . Compute c1 = (m||ms)U + e1 and
c2 = (m||ms)Gpub + e2. Then the ciphertext is c = (c1, c2).

– Decryption

For a ciphertext c = (c1, c2) ∈ F
2n
qm , compute c′ = c2 − c1T = (m||ms)SG+

e2 − e1T . Note that rk(e2 − e1T ) � rk(e2) + rk(e1T ) � r, decoding c′ with
the fast decoder of G will lead to m′ = (m||ms)S, then by computing m′S−1

one can recover the plaintext m.

4 Key Recovery Attack

This section discusses how to efficiently recover an equivalent private key of
the Lau-Tan cryptosystem. We point out that the knowledge of T is of great
importance for the security of the whole cryptosystem. Specifically, if one can
find the private T , then one is able to recover everything needed to decrypt an
arbitrary ciphertext in polynomial time. Before describing this attack, we first
introduce some further results about Gabidulin codes.
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4.1 Further Results About Gabidulin Codes

Similar to GRS codes in the Hamming metric, Gabidulin codes also have good
algebraic structure. For instance, if G is a Gabidulin code over Fqm , then its l-th
Frobenius power is also a Gabidulin code. Formally, we introduce the following
proposition.

Proposition 3. Let G be an [n, k] Gabidulin code over Fqm , with G ∈
Mk,n(Fqm) as a generator matrix. For any positive integer l, G[l] is also an
[n, k] Gabidulin code and has G[l] as a generator matrix.

Proof. Trivial from a straightforward verification.

For a proper positive integer l, the intersection of a Gabidulin code and its
l-th Frobenius power is still a Gabidulin code, as described in the following
proposition.

Proposition 4. For an [n, k] Gabidulin code G over Fqm , let g ∈ F
n
qm be a gen-

erating vector of G. For a positive integer l � min{k − 1, n− k}, the intersection
of G and its l-th Frobenius power is an [n, k − l] Gabidulin code with g[l] as a
generating vector. In other words, we have the following equality

G ∩ G[l] = Gabn,k−l(g[l]).

Proof. By Definition 2, G is an Fqm-span of g, . . . , g[k−1], i.e. G =
〈g, . . . , g[k−1]〉qm . By Proposition 3, we have G[l] = 〈g[l], . . . , g[k+l−1]〉qm . Note
that l � min{k − 1, n − k}, then k + l � n and g, . . . , g[k+l−1] are linearly inde-
pendent over Fqm . It follows that G ∩G[l] = 〈g[l], . . . , g[k−1]〉qm forms an [n, k− l]
Gabidulin code, having g[l] as a generating vector. This completes the proof.

Proposition 5. For positive integers k < n � m, let G ⊂ F
n
qm be an [n, k]

Gabidulin code, and A ∈ Mk,n(Fqm) a nonzero Moore matrix. If all the row
vectors of A are codewords in G, then A forms a generator matrix of G.
Proof. It suffices to prove Rank(A) = k. Suppose that A is generated by a ∈ F

n
qm ,

i.e. A = Mrk(a). Let l = rk(a), then there exist a′ ∈ F
l
qm with rk(a′) = l and

Q ∈ GLn(Fq) such that a = (a′||0)Q. Let A′ ∈ Mk,l(Fqm) be a Moore matrix
generated by a′, then it follows immediately that A = [A′|0]Q. If l > k, then
Rank(A) = Rank(A′) = k due to Proposition 1 and therefore the conclusion is
proved. Otherwise, there will be 〈A′〉qm = F

l
qm . From this we can deduce that

the minimum rank distance of G will be 1, which conflicts with the fact that
rk(G) = n− k+1 � 2. Hence l > k and Rank(A) = k. This completes the proof.

By Definition 2, a Gabidulin code is uniquely determined by its generating
vector. Naturally, it is important to make clear what all these vectors look like
and how many generating vectors there exist for a Gabidulin code.

Proposition 6. Let G be an [n, k] Gabidulin code over Fqm , with g ∈ F
n
qm as a

generating vector. Let g′ ∈ F
n
qm be a codeword in G, then g′ forms a generating

vector if and only if there exists γ ∈ F
∗
qm such that g′ = γg.
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Proof. Assume that g = (α1, . . . , αn) and g′ = (α′
1, . . . , α

′
n), let G = Mrk(g)

and G′ = Mrk(g′). The conclusion is trivial if g = g′. Otherwise, without loss
of generality we assume that α′

1 �= α1, then there exists γ ∈ F
∗
qm\{1} such that

α′
1 = γα1. Let

S =

⎛
⎜⎜⎜⎝

γ 0 · · · 0
0 γ[1] · · · 0
...

...
...

0 0 · · · γ[k−1]

⎞
⎟⎟⎟⎠ ,

then SG = Mrk(γg). Let g∗ = γg − g′ = (0, γα2 − α′
2, . . . , γαn − α′

n) and
G∗ = Mrk(g∗), then G∗ = SG − G′. Apparently all the row vectors of G∗ are
codewords in G. If g∗ �= 0, then G∗ forms a generator matrix of G of canonical
form due to Proposition 5. Together with rk(g∗) � n − 1, easily we can deduce
that rk(c) � n−1 for any c ∈ G, which clearly contradicts the fact that rk(g) = n.
Therefore there must be g∗ = 0, or equivalently g′ = γg. The opposite is obvious
from a straightforward verification.

The following corollary is drawn immediately from Proposition 6.

Corollary 1. An [n, k] Gabidulin code over Fqm admits qm −1 generator matri-
ces of canonical form, or equivalently qm − 1 generating vectors.

Remark 3. Let G ⊆ F
n
qm be an [n, k] Gabidulin code, and M ∈ Mk,m(Fqm) a

Moore matrix generated by a basis vector of Fqm over Fq. By Proposition 2, for
any canonical generator matrix G, there exists a unique Q ∈ Mm,n(Fq) such
that G = MQ. For a fixed M , there exist qm − 1 Q’s in Mm,n(Fq) such that
MQ forms a canonical generator matrix of G. Furthermore, all these Q’s together
with the zero matrix form an Fq-linear space of dimension m.

4.2 Recovering the Private T

This section mainly describes an efficient algorithm for recovering the private
T . The technique we adopt here is to convert the problem of recovering T into
solving a multivariate linear system, which clearly costs polynomial time. Before
doing this, we first introduce the so-called subfield expanding transform.

Subfield Expanding Transform. For β1, . . . , βn ∈ Fqm , we construct an
equation as

n∑
j=1

xjβj = 0, (1)

where xj ’s are underdetermined variables in Fq. Let a be a basis vector of Fqm

over Fq. For each 1 � j � n, there exists bj ∈ F
m
q such that βj = bja

T . It follows
that

∑n
j=1 xjβj =

∑n
j=1 xj(bja

T ) = (
∑n

j=1 xjbj)aT , and moreover, (1) holds if
and only if

n∑
j=1

xjbj = 0. (2)
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Obviously, the linear systems (1) and (2) share the same solution space. A trans-
form that derives (2) from (1) is called a subfield expanding transform (SET for
short).

In the Lau-Tan cryptosystem, let H ∈ Mn−k,n(Fqm) be a parity-check matrix
of G of canonical form. Let M ∈ Mn−k,m(Fqm) be a Moore matrix generated
by a basis vector of Fqm over Fq, then there exists an underdetermined matrix
X ∈ Mm,n(Fq) such that H = MX. On the other hand, there exists another
underdetermined matrix T ∗ ∈ GLn(Fq) such that Gpub −UT ∗ forms a generator
matrix of G. This leads to a parity-check matrix equation as follows

(Gpub − UT ∗)(MX)T = GpubX
T MT − UT ∗XT MT = 0. (3)

We therefore obtain a system of k(n− k) multivariate quadratic equations, with
n(m+ n) variables in Fq. This system admits at least qm solutions. Specifically,
we introduce the following proposition.

Proposition 7. The linear system (3) has at least qm solutions.

Proof. If T ∗ = T , then we can deduce from (3) that

(Gpub − UT ∗)(MX)T = (SG + UT − UT ∗)(MX)T = SG(MX)T = 0.

Note that SG ∈ Mk,n(Fqm) forms a generator matrix of G. By SG(MX)T = 0,
all the row vectors of MX are contained in G⊥, which is an [n, n − k] Gabidulin
code. On the other hand, it is clear that MX forms an (n−k)×n Moore matrix.
By Proposition 5, MX forms a canonical generator matrix of G⊥ for a nonzero
X. Then the conclusion is immediately proved from Corollary 1. Furthermore,
we have that X is an m × n matrix of full rank.

Note that solving a multivariate quadratic system generally requires expo-
nential time. Instead of solving the system (3) directly, the technique we exploit
here is to consider each entry of T ∗XT as a new variable in Fq and set Y = XT ∗T .
In other words, we rewrite (3) into a matrix equation as follows

GpubX
T MT − UY T MT = 0. (4)

This leads to a linear system of k(n − k) equations, with coefficients in Fqm and
2mn variables in Fq. To solve the system (4), we usually convert this problem
into an instance over the base field Fq. Applying SET to (4) leads to a linear
system of mk(n − k) equations over Fq, with 2mn variables to be determined.
For cryptographic use, generally we have mk(n − k) � 2mn.

Remark 4. With each solution (X,T ∗) of (3), one can obtain a solution of (4)
by computing Y = XT ∗T , which implies that (4) also has at least qm solutions.
Conversely, if (4) has exactly qm solutions, then these solutions must correspond
to those of (3) where T ∗ = T . In this situation, solving (4) for any nonzero
solution (X,Y ) enables us to recover the private T by solving the matrix equation
Y = XT ∗T .
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As for whether or not the system (4) has other types of solutions, we make
an Assumption that the answer is negative. According to our experimental
results in MAGMA [10], this assumption holds with high probability. To make it
easier, a simplified version of this problem is considered. Let G be an arbitrary
generator matrix of an [n, k] Gabidulin code and u ∈ F

n
qm such that rk(u) = n.

We then construct a matrix equation as

GXT MT + Cirk(u)Y T MT = 0,

where M ∈ Mn−k,m(Fqm) is a Moore matrix generated by a basis vector of Fqm

over Fq and X,Y ∈ Mm,n(Fq) are two underdetermined matrices. By applying
SET to this system above, we obtain a new system over Fq. By Remark 4, if
this newly obtained system admits a solution space of dimension m, then there
must be Y = 0. Finally, we ran 1000 random tests for q = 2,m = 25, n = 23, k =
10, and for q = 3,m = 18, n = 15, k = 7 respectively. It turns out that this
assumption holds in all of these random instances.

Algorithm 1 : T -Recovering Algorithm
Input: (Gpub, U)
Output: T

1: Let a be a basis vector of Fqm over Fq and set M = Mrn−k(a)
2: Let X, Y ∈ Mm,n(Fq) be two underdetermined matrices and set

GpubX
T MT − UY T MT = 0 (5)

3: Apply SET to (5) to obtain a linear system over Fq

4: Solve the system from Step 3 for any nonzero (X, Y )
5: Solve the matrix equation Y = XT ∗T for T ∗

6: return T = T ∗

4.3 Finding an Equivalent (S′, G′)

In Sect. 4.2, we have discussed how to efficiently recover T from (Gpub, U). With
the knowledge of T , one can recover SG by computing SG = Gpub − UT , which
forms a generator matrix of G. To decrypt a ciphertext as the legitimate receiver
does, one needs to recover a generator matrix G′ of G of canonical form and an
invertible matrix S′ such that S′G′ = SG, where (S′, G′) is called an equivalent
form of (S,G). Once such a G′ is obtained, then one can recover S′ by solving a
matrix equation.

Now we investigate how to derive a canonical generator matrix of a Gabidulin
code, or equivalently a generating vector, from an arbitrary generator matrix.
In [20] the authors presented an iterative method of computing the generating
vector. Here in this paper we present a different approach to do this.

An Approach to Compute the Generating Vector. For an [n, k] Gabidulin
code G over Fqm , let G ∈ Mk,n(Fqm) be an arbitrary generator matrix of G. We
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first compute a parity-check matrix of G from G, say H. Let M ∈ Mk,m(Fqm)
be a Moore matrix generated by a basis vector of Fqm over Fq, then there exists
an underdetermined matrix X ∈ Mm,n(Fq) such that MX forms a canonical
generator matrix of G. By setting (MX)HT = 0, we obtain a linear system of
k(n − k) equations, with coefficients in Fqm and mn variables in Fq. Applying
SET to this system leads to a new linear system over the base field Fq, with
mk(n−k) equations and mn variables. For cryptographic use, generally we have
mk(n − k) � mn. By Corollary 1, this newly obtained system admits qm − 1
nonzero solutions. And for any nonzero solution, say X, the first row of MX
will be a generating vector of G.

Algorithm 2 : (S′, G′)-Recovering Algorithm
Input: (Gpub, U, T )
Output: (S′, G′)
1: Let a be a basis vector of Fqm over Fq and set M = Mrk(a)
2: Compute SG = Gpub − UT and let G = 〈SG〉qm

3: Let H ∈ Mn−k,n(Fqm) be a parity-check matrix of G
4: Let X ∈ Mm,n(Fq) be an underdetermined matrix and set

(MX)HT = 0 (6)

5: Apply SET to (5) to obtain a linear system over Fq

6: Solve the system from Step 5 for any nonzero X
7: Compute G′ = MX
8: Compute S′ ∈ GLk(Fqm) such that S′G′ = SG
9: return (S′, G′)

4.4 Complexity of the Attack

Our attack consists of two phases: firstly, we manage to recover the private T
from the published information, as described in Algorithm 1; secondly, with the
knowledge of T and the public key, we compute a canonical generator matrix
G′ of the secret Gabidulin code and an invertible matrix S′, as described in
Algorithm 2. Hence the complexity analysis is done in the following two aspects.

Complexity of Algorithm 1. In Step 1 we construct a Moore matrix M ∈
Mn−k,m(Fqm) whose first row forms a basis vector of Fqm over Fq. To avoid
executing the Frobenius operation, here we choose a to be a normal basis vector,
then we set M = Cirn−k(a). In Step 2 we construct a multivariate linear system
by performing matrix multiplication, requiring O(mn3) operations in Fqm . The
subfield expanding transform performed to (5) requires O(m3n3) operations in
Fqm . Step 4 requires O(m3n3) operations to solve the linear system over Fq and
Step 5 requires O(n3) operations in Fq. The total complexity of Algorithm 1
consists of O(m3n3 + mn3) operations in Fqm and O(m3n3 + n3) operations in
Fq.
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Complexity of Algorithm 2. In Step 1 we still choose a normal basis vector
to construct M . To compute SG, we perform matrix addition and multiplication
with O(n3) operations in Fqm . Step 3 computes a parity-check H of G from SG,
requiring O(n3) operations in Fqm . Then we construct a linear system in Step 4,
which costs O(mn3) operations in Fqm . In Step 5 we apply SET to (6) to obtain
a new system over Fq, requiring O(m3n3) operations in Fqm . Solving this new
system in Step 6 costs O(m3n3) operations in Fq, and computing G′ = MX
in Step 7 requires O(mn2) operations in Fqm . In Step 8, we shall compute S′

from S′G′ with O(n3) operations. The total complexity of Algorithm 2 consists
of O(m3n3 + mn3 + n3) operations in Fqm and O(m3n3) operations in Fq.

Finally, the total complexity of the attack is O(m3n3 + mn3 + n3) in Fqm

plus O(m3n3 + n3) in Fq.

4.5 Implementation

This attack has been implemented in MAGMA and permits to recover the private
T . We tested this attack on a personal computer and succeeded for parameters as
illustrated in Table 1. For each parameter set, this attack has been run 100 times
and the last column gives the average timing (in seconds). Our implementation
is just a proof of feasibility of this attack and does not consider the proposed
parameters in [25,26].

Table 1. These tests were performed using MAGMA V2.11-1 on 11th Gen IntelR

CoreTM i7-11700 @ 2.5 GHz processor with 16 GB of memory.

q m n k t

2 22 18 9 8.6
2 28 22 9 40.7
2 35 26 12 173.2

5 A Repair

To prevent the proposed attack, we give a simple repair for the Lau-Tan cryp-
tosystem in this section. Then we explain why this repair can resist the existing
structural attacks, as well as the key recovery attack described in Sect. 4. After
that, practical security of this repair against generic attacks is investigated. Fol-
lowing this, we suggest parameters for the security of at least 128 bits, 192 bits,
and 256 bits. Public key sizes under these parameters are also given.

5.1 Description of the Repair

For a given security level, choose a field Fq and positive integers m,n, k, λ, r1, r2
such that r = �n−k

2 � and r1+λr2 � r. Our repair consists of the following three
procedures.
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– Key Generation
Let G be an [n, k] Gabidulin code over Fqm , and G ∈ Mk,n(Fqm) a generator
matrix of G of canonical form. Randomly choose matrices S ∈ GLk(Fqm)
and T ∈ GLn(V), where V ⊆ Fqm is a randomly chosen Fq-linear space
of dimension λ. Randomly choose u ∈ F

n
qm such that rk(u) = n and set

U = Cirk(u). Let Gpub = (SG + U)T−1, then we publish (Gpub,u) as the
public key, and keep (S,G, T ) as the private key.

– Encryption
For a plaintext m ∈ F

k
qm , randomly choose e1 ∈ F

n
qm with rk(e1) = r1 and

e2 ∈ F
n
qm with rk(e2) = r2. Compute c1 = mU + e1 and c2 = mGpub + e2,

then the ciphertext is c = (c1, c2).
– Decryption

For a ciphertext c = (c1, c2) ∈ F
2n
qm , compute c′ = c2T−c1 = mSG+e2T−e1.

Note that rk(e2T − e1) � rk(e2T ) + rk(e1) � λr2 + r1 � r. Decoding c′ with
the decoder of G leads to m′ = mS, then by computing m′S−1 one can
recover the plaintext m.

Remark 5. It is clear that the public key will degenerate into an instance of
the original system if λ = 1 and V = Fq, which has been completely broken
in the present paper. To achieve the IND-CPA security, the original encryption
procedure chooses an extra vector ms to concatenate m, which greatly reduces
the information transfer rate. To avoid this defect, we remove the use of ms in
the encrypting process. Consequently, a problem arises that the repaired scheme
only satisfies the security notion of One-Wayness. However, we can follow the
approach in [24] to convert this repair into an IND-CCA2 secured encryption
scheme.

5.2 Security Analysis

Now we investigate the security of this repair in the following three aspects.
Structural Attacks. Resistance of our repair against the existing structural

attacks [11,18,19,32,34] is apparent. In what follows, therefore, we only consider
the key recovery attack presented in Sect. 4. With a similar analysis, we construct
a matrix equation as follows

GpubY
T MT − UXT MT = 0. (7)

What differs from (4) is that X ∈ Mm,n(Fq) and Y ∈ Mm,n(Fqm) is taken in an
Fq-linear space of dimension λ. Applying SET to (7) will lead to a linear system
over Fq, with k(n − k)m equations and (λ+1)mn variables. Solving this system
generally requires O(

(λ + 1)3m3n3
)

operations. Note that we cannot presup-
pose Fq ⊆ V because of the additive structure, which suggests that one has to
enumerate λ-dimensional Fq-subspaces of Fqm with a complexity of O(

qλ(m−λ)
)
.

Finally the whole complexity of our attack on this repair can be evaluated as
O(

(λ + 1)3m3n3qλ(m−λ)
)
. It is easy to see that this repair can easily reach the

desired security for parameters of proper size.
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Generic Attacks. We first introduce the so-called rank syndrome decoding
(RSD) problem on which the security of most code-based cryptosystems relies.
An RSD problem with parameters (q,m, n, k, t) is to search for a vector e ∈ F

n
qm

such that rk(e) = t and s = eHT , where H ∈ Mn−k,n(Fqm) is a matrix of full
rank and s ∈ F

n−k
qm . Generic attacks on the RSD problem can be divided into

two categories, namely the combinatorial attacks as listed in Table 2 and the
algebraic attacks as listed in Table 3. The security of a code-based cryptosystem
under these attacks only relate to the practical parameters, and does not rely
on the algebraic structure of the underlying code.

Table 2. Best known combinatorial attacks on the RSD problem.

Attack Complexity

[33] O
(
min

{
m3t3q(t−1)(k+1), (k + t)3t3q(t−1)(m−t)

})

[17] O
(
(n − k)3m3q

min
{

t�mk
n �,(t−1)

⌈
m(k+1)

n

⌉})

[3] O
(
(n − k)3m3q

t
⌈
m(k+1)

n

⌉
−m

)

Table 3. Best known algebraic attacks on the RSD problem.

Attack Condition Complexity

[17]
⌈

(t+1)(k+1)−(n+1)
t

⌉
� k O

(
k3t3q

t
⌈
(t+1)(k+1)−(n+1)

t

⌉)

[6] m
(

n−k−1
t

)
�

(
n
t

) − 1 O
(
m

(
n−p−k−1

t

)(
n−p

t

)ω−1
)
, where ω = 2.81 and

p = min{1 � i � n : m
(

n−i−k−1
t

)
�

(
n−i

t

) − 1}
[5] O

((
((m+n)t)t

t!

)ω)

[6] m
(

n−k−1
t

)
<

(
n
t

) − 1 O
(
qatm

(
n−k−1

t

)(
n−a

t

)ω−1
)
, where a =

min{1 � i � n : m
(

n−k−1
t

)
�

(
n−i

t

) − 1}
[5] O

((
((m+n)t)t+1

(t+1)!

)ω)

Proposed Parameters. Now we consider the practical security of this repair
and propose some parameters for the security of at least 128 bits, 192 bits, and
256 bits. As illustrated in Table 4, we consider m = n and r1 = r2 = t = � n−k

2(λ+1)�.
The ciphertext of our repair consists of the following two parts

c1 = mU + e1, c2 = mGpub + e2,

which lead to an RSD instance of parameters (q,m, n, k, t). Meanwhile, it is easy
to see that

(c1||c2) = m[U |Gpub] + (e1||e2),
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and this results in another RSD instance of parameters (q,m, 2n, k, 2t). Addi-
tionally, we also consider the proposed key recovery attack described above,
which requires O(

(λ+ 1)3m3n3qλ(m−λ)
)

operations in Fq. Finally we give some
suggested parameters in Table 4, as well as the corresponding public-key sizes.

Table 4. Parameters and public-key size (in bytes).

Parameters Public-Key Size Security
q m n k λ r1 r2

2 79 79 37 2 7 7 29645 128
2 91 91 43 2 8 8 45546 193
2 110 110 50 2 10 10 77138 265

6 Cryptanalysis of Loidreau’s Cryptosystem

The success of our attack on the Lau-Tan cryptosystem relies on four points.
One is the fact of Moore matrix decomposition as described in Proposition 2,
the second is to construct a system of equations from the parity-check matrix
equation, the third is to reduce the problem of solving a multivariate quadratic
system into solving a multivariate linear system, and the last is any nonzero
solution of this linear system leads to an equivalent private key.

Based on Points 1, 2, and 4 described above, we provide another perspective
on the security of Loidreau’s cryptosystem [27], which has been completely bro-
ken for specific parameters [11,18]. Firstly, we give a simple description for the
principle of Loidreau’s cryptosystem. The public key in this cryptosystem is pub-
lished as Gpub = GP−1, where G is a generator matrix of an [n, k] Gabidulin code
G ⊆ Fqm and P ∈ GLn(Fqm) with entries contained in a small λ-dimensional
Fq-linear space V ⊆ Fqm . To encrypt a plaintext m ∈ F

k
qm , one first encodes m

by computing mGpub, then disguises this codeword by adding an error vector
e ∈ F

n
qm with rk(e) = �n−k

2λ �. To decrypt a ciphertext c = mGpub + e, one
first computes c′ = cP , then decodes c′ with the decoder of G to recover eP
due to rk(eP ) � �n−k

2 �. Then one can obtain m by solving the linear system
mG = c′ − eP .

In a talk [28] at CBCrypto 2021, Loidreau proposed an attack to recover
a polynomial-time decoder of the public code with a complexity of O(

(λn +
(n − k)2)3m3q(λ−1)m

)
for q = 2, which can be easily generalized to any field Fq.

Loidreau’s attack manages to recover Y ∈ Mm,n(V) such that Gpub(MY )T = 0,
where M ∈ Mn−k,m(Fqm) is a Moore matrix generated by a basis vector of
Fqm over Fq. Then with the knowledge of Y , one can decrypt any ciphertext
in polynomial time. Specifically, let c = mGpub + e be the received ciphertext,
then one computes s = c(MY )T = eY T MT . Note that rk(eY T ) � �n−k

2 �, then
one can recover e′ = eY T by using the syndrome decoder of an [m,m − n + k]
Gabidulin code that has M as a parity-check matrix. After that, one can recover
e by solving the linear system e′ = eY T .
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Now we apply the proposed attack to Loidreau’s cryptosystem. Let H ∈
Mn−k,n(Fqm) be a canonical parity-check matrix of G, and Gpub = 〈Gpub〉qm the
public code. It is clear that Hpub = HPT forms a parity-check matrix of Gpub.
Let M ∈ Mn−k,m(Fqm) be a Moore matrix generated by a basis vector of Fqm

over Fq, then there exists Y ∗ ∈ Mm,n(Fq) such that H = MY ∗. Let Y = Y ∗PT ,
then one can construct a linear system from the parity-check matrix equation
GpubH

T
pub = 0, which is equivalent to

Gpub(MY )T = GpubY
T MT = 0. (8)

While in Loidreau’s attack, the corresponding linear system is constructed from
SHpub = MY , which introduces extra variables from an underdetermined matrix
S ∈ GLn−k(Fqm). Applying SET to (8) leads to a linear system over Fq of
k(n−k)m equations and λmn variables. For cryptographic use, k(n−k)m � λmn
always holds in practical situations. And this system admits qm solutions when
V is correctly guessed, which has been validated through numerous experiments.
Solving this system for any nonzero solution permits us to obtain Y ′ ∈ Mm,n(V)
such that Gpub(MY ′)T = 0. On the other hand, one can always presuppose 1 ∈ V
since Gpub = α−1G(α−1P )−1 for any nonzero α ∈ V. Finally this attack requires
a complexity of O(

λ3n3m3q(λ−1)m
)

in Fq, which is clearly lower than Loidreau’s
attack.

7 Conclusion

Our attack has revealed the structural weakness of the Lau-Tan cryptosystem.
Although the first part of the public key hides the structure of Gabidulin codes
nicely, the second part reveals important information that can be used to design
a key recovery attack. Specifically, we convert the problem of recovering the pri-
vate key into solving a multivariate linear system over the base field. Extensive
experiments have been performed and the results accord with our theoretical
expectations. To prevent this attack, we give a simple but effective repair for
this cryptosystem, which is shown to be secure against all the existing structural
attacks. Furthermore, when applying this attack to analyze Loidreau’s cryptosys-
tem, we reduce the complexity of recovering a polynomial-time decoder of the
public code.
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