
Khoa Nguyen
Guomin Yang
Fuchun Guo
Willy Susilo (Eds.)

LN
CS

 1
34

94

Information Security
and Privacy
27th Australasian Conference, ACISP 2022
Wollongong, NSW, Australia, November 28–30, 2022
Proceedings

Lecture Notes in Computer Science 13494

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

More information about this series at https://link.springer.com/bookseries/558

https://springerlink.bibliotecabuap.elogim.com/bookseries/558

Khoa Nguyen · Guomin Yang · Fuchun Guo ·
Willy Susilo (Eds.)

Information Security
and Privacy
27th Australasian Conference, ACISP 2022
Wollongong, NSW, Australia, November 28–30, 2022
Proceedings

Editors
Khoa Nguyen
University of Wollongong
Wollongong, NSW, Australia

Fuchun Guo
University of Wollongong
Wollongong, NSW, Australia

Guomin Yang
University of Wollongong
Wollongong, NSW, Australia

Willy Susilo
University of Wollongong
Wollongong, NSW, Australia

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-22300-6 ISBN 978-3-031-22301-3 (eBook)
https://doi.org/10.1007/978-3-031-22301-3

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-8555-638X
https://orcid.org/0000-0001-6939-7710
https://orcid.org/0000-0002-4949-7738
https://orcid.org/0000-0002-1562-5105
https://doi.org/10.1007/978-3-031-22301-3

Preface

The 27th Australasian Conference on Information Security and Privacy (ACISP 2022)
was held during November 28–30, 2022, in Wollongong, Australia. The conference had
a hybrid format, with some presentations made in person, and some delivered virtually.
The conference was hosted by the Institute of Cybersecurity and Cryptology (IC2) at
the University of Wollongong.

The Program Committee consisted of 79 members from all over the world. In
response to the call for papers, 62 papers were submitted to the conference. The papers
were reviewed in a double-blind manner. Each paper was carefully evaluated by three
to five reviewers, and then discussed among the Program Committee. Finally, 25 papers
were selected for presentation at the conference. The selection processwas assisted by 67
external reviewers. This volume contains the revised versions of the 25 papers that were
selected, together with the abstracts of three keynote talks. The final revised versions of
papers were not reviewed again and the authors are responsible for their contents.

The program of ACISP 2022 featured three excellent keynote talks. HuaxiongWang
delivered a Jennifer Seberry Lecture on “Combinatorial Cryptography”, JingChen spoke
on “Technical Challenges in Blockchains”, and Yuval Yarom gave a talk entitled “Just
About Time.”

Based on the reviews and votes by Program Committee members, the following two
papers were given the Best Paper Awards:

• “Key Structures: Improved Related-Key Boomerang Attack against the Full AES-
256”, by Jian Guo, Ling Song, and Haoyang Wang; and

• “CCOM: Cost-Efficient and Collusion-Resistant Oracle Mechanism for Smart Con-
tracts”, by Xiaofei Wu, Hao Wang, Chunpeng Ge, Lu Zhou, Qiong Huang, Lanju
Kong, Lizhen Cui, and Zhe Liu.

Many people contributed to the success of ACISP 2022. We would like to thank the
authors for submitting their research results to the conference and the keynote speakers
for delivering their excellent talks. We are very grateful to the Program Committee
members and external reviewers for contributing their knowledge and expertise, and for
the tremendous amount of work that was done with reading papers and contributing to
the discussions. We thank the local organizers for their great efforts in planning and
executing this event. We are very grateful to the Publication Chairs, Yudi Zhang and
Xueqiao Liu, for their valuable helps in the preparation of the proceedings and the
conference website administration.

We would like to give special thanks to the Abelian Foundation for their generous
sponsorship for ACISP 2022.

vi Preface

Last but not least, we would like to thank the LNCS editorial team at Springer for
handling the publication of this volume.

November 2022 Khoa Nguyen
Guomin Yang
Fuchun Guo
Willy Susilo

Organization

General Chairs

Willy Susilo University of Wollongong, Australia
Fuchun Guo University of Wollongong, Australia

Program Chairs

Guomin Yang University of Wollongong, Australia
Khoa Nguyen University of Wollongong, Australia

Publication Chairs

Yudi Zhang University of Wollongong, Australia
Xueqiao Liu University of Wollongong, Australia

Program Committee

Masayuki Abe NTT, Japan
Cristina Alcaraz University of Malaga, Spain
Man Ho Au The University of Hong Kong, Hong Kong
Shi Bai Florida Atlantic University, USA
Zhenzhen Bao Nanyang Technological University, Singapore
Carsten Baum Aarhus University, Denmark
Rishiraj Bhattacharyya NISER, India
Anupam Chattopadhyay Nanyang Technological University, Singapore
Jinjun Chen Swinburne University of Technology, Australia
Liqun Chen University of Surrey, UK
Rongmao Chen National University of Defense Technology,

China
Xiaofeng Chen Xidian University, China
Chitchanok Chuengsatiansup The University of Adelaide, Australia
Mauro Conti University of Padua, Italy
Hui Cui Murdoch University, Australia
Xuhua Ding Singapore Management University, Singapore
Josep Domingo-Ferrer Universitat Rovira i Virgili, Spain
Rafael Dowsley Monash University, Australia
Keita Emura National Institute of Information and

Communications Technology, Japan

viii Organization

Ernest Foo Griffith University, Australia
Debin Gao Singapore Management University, Singapore
Clémentine Gritti University of Canterbury, New Zealand
Jingnan He Institute of Information Engineering, CAS, China
Xiaolu Hou Slovak University of Technology, Slovakia
Qiong Huang South China Agricultural University, China
Angelos Keromytis Georgia Institute of Technology, USA
Dongseong Kim The University of Queensland, Australia
Veronika Kuchta The University of Queensland, Australia
Fabien Laguillaumie LIRMM, Université de Montpellier, France
Hyung Tae Lee Chung-Ang University, South Korea
Jason LeGrow University of Auckland, New Zealand
Qinyi Li Griffith University, Australia
Yannan Li University of Wollongong, Australia
Shujun Li University of Kent, UK
Yingjiu Li University of Oregon, USA
Shengli Liu Shanghai Jiao Tong University, China
Zhe Liu Nanjing University of Aeronautics and

Astronautics, China
Zhen Liu Shanghai Jiao Tong University, China
Eleonora Losiouk University of Padua, Italy
Rongxing Lu University of New Brunswick, Canada
Xianhui Lu Institute of Information Engineering, CAS, China
Xiapu Luo The Hong Kong Polytechnic University,

Hong Kong
Weizhi Meng Technical University of Denmark, Denmark
Alexander Miranda Georgia Institute of Technology, USA
Chris Mitchell Royal Holloway, University of London, UK
Kirill Morozov University of North Texas, USA
Khoa Nguyen University of Wollongong, Australia
Ngoc Khanh Nguyen IBM Research - Zurich and ETH Zurich,

Switzerland
Dimitrios Papadopoulos Hong Kong University of Science and

Technology, Hong Kong
Josef Pieprzyk CSIRO/Data61, Australia
Federico Pintore University of Bari, Italy
Elizabeth A. Quaglia Royal Holloway, University of London, UK
Carla Ràfols Universitat Pompeu Fabra, Spain
Adeline Roux-Langlois CNRS/IRISA, France
Sushmita Ruj CSIRO/Data61, Australia
Reihaneh Safavi-Naini University of Calgary, Canada
Amin Sakzad Monash University, Australia

Organization ix

Pierangela Samarati Università degli Studi di Milano, Italy
Leonie Simpson Queensland University of Technology, Australia
Daniel Slamanig Austrian Institute of Technology, Austria
Bing Sun National University of Defense Technology,

China
Atsushi Takayasu The University of Tokyo, Japan
Benjamin Hong Meng Tan Institute for Infocomm Research, A*STAR,

Singapore
Qiang Tang The University of Sydney, Australia
Viet Cuong Trinh Hong Duc University, Vietnam
Vijay Varadharajan University of Newcastle, Australia
Damien Vergnaud Sorbonne Université, France
Ding Wang Peking University, China
Huaxiong Wang Nanyang Technological University, Singapore
Yanhong Xu Shanghai Jiao Tong University, China
Guomin Yang University of Wollongong, Australia
Yuval Yarom The University of Adelaide, Australia
Xun Yi RMIT University, Australia
Zuoxia Yu The University of Hong Kong, Hong Kong
Tsz Hon Yuen The University of Hong Kong, Hong Kong
Mingwu Zhang Hubei University of Technology, China
Cong Zhang University of Maryland, USA
Liangfeng Zhang Shanghai Tech University, China
Kehuan Zhang The Chinese University of Hong Kong,

Hong Kong

External Reviewers

Sanidhay Arora
Anubhab Baksi
Enkeleda Bardhi
Cyril Bouvier
Alessandro Brighente
Andrea Caforio
Kwan Yin Chan
Jinrong Chen
Xin Chen
Xinjian Chen
Cristòfol Daudén-Esmel
Zhili Dong
Rami Haffar
Sara Jafarbeiki
Corentin Jeudy

Huang Jianye
Floyd Johnson
Huang Junhao
Kallol Krishna Karmakar
Pengzhen Ke
Mustafa Khairallah
Andrea Lesavourey
Hongbo Li
Nan Li
Xinyu Li
Yongqiang Li
Ziyi Li
Chao Lin
Jiahao Liu
Jing Liu

x Organization

Qinju Liu
Xueqiao Liu
Xingye Lu
Junwei Luo
Qian Mei
Arash Mirzaei
Tran Ngo
Shimin Pan
Simeone Pizzi
Maxime Plancon
Sebastian Ramacher
Simon Rastikian
Arnab Roy
Rahul Saha
Abiola Salau
Hwajeong Seo
Jun Shen
Danping Shi

Hanh Tang
Guohua Tian
Uday Tupakula
Hao Wang
Ruida Wang
Yi Wang
Yunling Wang
Yuzhu Wang
Zhe Xia
Qiaoer Xu
Haiyang Xue
Hailun Yan
Yingfei Yan
Xin Yin
Jiaming Yuan
Jipeng Zhang
Yudi Zhang
Yanwei Zhou

Keynote Talks

Combinatorial Cryptography

Huaxiong Wang

School of Physical and Mathematical Sciences, Nanyang Technological University,
Singapore

hxwang@ntu.edu.sg

Abstract.Combinatorics has been playing an active role in cryptography,
from the designs of cryptographic constructions, security proofs to crypt-
analysis. Combinatorial cryptography refers to a sub-field of cryptogra-
phy where combinatorics and cryptography are interacted significantly.
In this talk, I will present several concrete examples to illustrate how
combinatorial objects and techniques are applied to the constructions of
cryptographic schemes such as in secret sharing, threshold cryptography
and secure multiparty computation.

Part of this research was funded by Singapore Ministry of Education under Research Grant
MOE2019-T2-2-083.

Technical Challenges in Blockchains

Jing Chen

Algorand

Abstract. In the past decade blockchain technology has attracted tremen-
dous attention from both academia and industry. It is the technology of
choice to realize decentralized ledgers that are transparent, autonomous,
and tamperproof. It reduces the dependence on intermediaries and intro-
duces a new trust structure in transaction systems, so that entities from
all over the world can transact directly.

The development of blockchains has been enabled by and has in
turn triggered research in many fields such as distributed computation,
cryptography, and programming languages, just to name a few. In this
talk I’ll discuss several important technical challenges and research topics
brought up by blockchains.

Just About Time

Yuval Yarom

School of Computer Science, University of Adelaide, Australia

Abstract. When multiple programs execute on the same computer, they
share the use of the microarchitectural resources. Because program exe-
cution affects the state of the microarchitecture and the state of the archi-
tecture affects program execution time, measuring execution time can
reveal information on the state of the microarchitecture, and with it on
prior execution of other programs. Thus, such micoroarchitectural timing
attacks leak information by measuring variations in program execution
time.

As these attacks often measure minute variations, at the order of few
nanoseconds, multiple proposed defences aim at depriving attackers of
high-resolution clocks. In response, counter-proposals that show how to
overcome these defences have been published. In this talk we look at
the ensuing armed-race and explore techniques for limiting timer reso-
lution and for carrying out attacks with restricted timers. We will take a
close look at the impact of low-resolution clocks on microarchitectural
attacks, explore techniques for amplifying signals by over six orders of
magnitude, and demonstrate how attackers can perform high-frequency,
high-resolution attacks without using high-resolution clocks.

Contents

Symmetric-Key Cryptography

Key Structures: Improved Related-Key Boomerang Attack Against
the Full AES-256 . 3
Jian Guo, Ling Song, and Haoyang Wang

Truncated Differential Properties of the Diagonal Set of Inputs for 5-Round
AES . 24
Lorenzo Grassi and Christian Rechberger

PNB-Focused Differential Cryptanalysis of ChaCha Stream Cipher 46
Shotaro Miyashita, Ryoma Ito, and Atsuko Miyaji

Improved Differential Attack on Round-Reduced LEA . 67
Yuhan Zhang, Wenling Wu, and Lei Zhang

Implementing Grover Oracle for Lightweight Block Ciphers Under Depth
Constraints . 85
Subodh Bijwe, Amit Kumar Chauhan, and Somitra Kumar Sanadhya

Improved Division Property for Ciphers with Complex Linear Layers 106
Yongxia Mao, Wenling Wu, Bolin Wang, and Li Zhang

Fast Skinny-128 SIMD Implementations for Sequential Modes of Operation . . . 125
Alexandre Adomnicai, Kazuhiko Minematsu, and Maki Shigeri

Public-Key Cryptanalysis

Handle the Traces: Revisiting the Attack on ECDSA with EHNP 147
Jinzheng Cao, Yanbin Pan, Qingfeng Cheng, and Xinghua Li

Hybrid Dual and Meet-LWE Attack . 168
Lei Bi, Xianhui Lu, Junjie Luo, and Kunpeng Wang

Cryptanalysis and Repair of a Gabidulin Code Based Cryptosystem
from ACISP 2018 . 189
Wenshuo Guo and Fang-Wei Fu

xviii Contents

Public-Key Cryptography

Chosen Ciphertext Secure Keyed Two-Level Homomorphic Encryption 209
Yusaku Maeda and Koji Nuida

Structure-Preserving Linearly Homomorphic Signature with Designated
Combiner for Subspace . 229
Yumei Li, Mingwu Zhang, and Futai Zhang

TIDE: A Novel Approach to Constructing Timed-Release Encryption 244
Angelique Faye Loe, Liam Medley, Christian O’Connell,
and Elizabeth A. Quaglia

Multi-signatures for ECDSA and Its Applications in Blockchain 265
Shimin Pan, Kwan Yin Chan, Handong Cui, and Tsz Hon Yuen

Post-quantum Cryptography

Fiat-Shamir Signatures Based on Module-NTRU . 289
Shi Bai, Austin Beard, Floyd Johnson, Sulani K. B. Vidhanalage,
and Tran Ngo

Speeding-Up Parallel Computation of Large Smooth-Degree Isogeny
Using Precedence-Constrained Scheduling . 309
Kittiphon Phalakarn, Vorapong Suppakitpaisarn, and M. Anwar Hasan

An Injectivity Analysis of Crystals-Kyber and Implications on Quantum
Security . 332
Xiaohui Ding, Muhammed F. Esgin, Amin Sakzad, and Ron Steinfeld

Cryptographic Protocols

Verifiable Decryption in the Head . 355
Kristian Gjøsteen, Thomas Haines, Johannes Müller, Peter Rønne,
and Tjerand Silde

Resumable Zero-Knowledge for Circuits from Symmetric Key Primitives 375
Handong Zhang, Puwen Wei, Haiyang Xue, Yi Deng, Jinsong Li,
Wei Wang, and Guoxiao Liu

On Security of Fuzzy Commitment Scheme for Biometric Authentication 399
Donghoon Chang, Surabhi Garg, Munawar Hasan, and Sweta Mishra

SoK: Decentralized Randomness Beacon Protocols . 420
Mayank Raikwar and Danilo Gligoroski

Contents xix

Blockchain

CCOM: Cost-Efficient and Collusion-Resistant Oracle Mechanism
for Smart Contracts . 449
Xiaofei Wu, Hao Wang, Chunpeng Ge, Lu Zhou, Qiong Huang,
Lanju Kong, Lizhen Cui, and Zhe Liu

DeChain: A Blockchain Framework Enhancing Decentralization
via Sharding . 469
Shenwei Chen, Zhen Liu, Yu Long, and Dawu Gu

Garrison: A Novel Watchtower Scheme for Bitcoin . 489
Arash Mirzaei, Amin Sakzad, Jiangshan Yu, and Ron Steinfeld

Shoot Before You Escape: Dynamic Behavior Monitor of Bitcoin Users
via Bi-Temporal Network Analytics . 509
Chen Zhao, Jianing Ding, Zhenzhen Li, Zhen Li, Gang Xiong,
and Gaopeng Gou

Author Index . 529

Symmetric-Key Cryptography

Key Structures: Improved Related-Key
Boomerang Attack Against the Full

AES-256

Jian Guo1, Ling Song2, and Haoyang Wang3(B)

1 Nanyang Technological University, Singapore, Singapore
guojian@ntu.edu.sg

2 Jinan University, Guangzhou, China
songling.qs@gmail.com

3 Shanghai Jiao Tong University, Shanghai, China

haoyang.wang@sjtu.edu.cn

Abstract. This paper introduces structure to key, in the related-key
attack settings. While the idea of structure has been long used in key-
recovery attacks against block ciphers to enjoy the birthday effect, the
same had not been applied to key materials due to the fact that key struc-
ture results in uncontrolled differences in key and hence affects the valid-
ity or probabilities of the differential trails. We apply this simple idea to
improve the related-key boomerang attack against AES-256 by Biryukov
and Khovratovich in 2009. Surprisingly, it turns out to be effective, i.e.,
both data and time complexities are reduced by a factor of about 28, to 292

and 291 respectively, at the cost of the amount of required keys increased
from 4 to 219. There exist some tradeoffs between the data/time complex-
ity and the number of keys. To the best of our knowledge, this is the first
essential improvement of the attack against the full AES-256 since 2009. It
will be interesting to see if the structure technique can be applied to other
AES-like block ciphers, and to tweaks rather than keys of tweakable block
ciphers so the amount of required keys of the attack will not be affected.

Keywords: AES · Differential · Boomerang · Key structure · Related
key

1 Introduction

The Birth of AES. After the Data Encryption Standard (DES) was attacked
by differential cryptanalysis due to Biham and Shamir [7,8] and later by linear
cryptanalysis due to Matsui [29,30], the U.S. National Institute of Standards
and Technology (NIST) initiated the public AES competition (1997–2000), out
of which Rijndael [16] designed by Daemen and Rijmen won the competition and
became officially the Advanced Encryption Standard in 2001. There are three
variants, i.e., AES-k with k ∈ {128, 192, 256} denoting the key sizes in bits. AES
became de facto the most popular and important block cipher in the world now
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
K. Nguyen et al. (Eds.): ACISP 2022, LNCS 13494, pp. 3–23, 2022.
https://doi.org/10.1007/978-3-031-22301-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22301-3_1&domain=pdf
https://doi.org/10.1007/978-3-031-22301-3_1

4 J. Guo et al.

for data protection, widely adopted by both industry and government agencies.
The computation power nowadays is still far from breaking AES by bruteforce,
even against the smallest variant AES-128, and due to the existence of AES-256,
it will remain sound even under attack by the future quantum computers. Hence,
a much longer lifespan is expected if no security flaw is discovered.

The Security. Since the design of Rijndael, AES has attracted tremendous
efforts from the research community in security analysis. One of the most impor-
tant security features of AES is its proven resistance against differential and lin-
ear cryptanalysis, which were applied to its predecessor—DES. It achieved this by
the so-called wide trail strategy [15], e.g., the minimum number of active S-boxes
(those with non-zero differences) in 4 consecutive AES rounds for any differen-
tial characteristic in the single-key setting is 25. It has been analyzed by many
cryptanalysis techniques1, just to name a few here. Biryukov, Khovratovich, and
Nikolić gave the first key-recovery attack against AES-256 by differentials [11]
in 2009, the complexity of which was later improved in [10] by using related-key
boomerang attack. In [28], Lu et al. gave 7-round attacks against AES-128 and
AES-192, and 8-round against AES-256 by using impossible differentials. Lever-
aging integral cryptanalysis, Ferguson et al. [20] gave a practical attack against
6-round AES and then the first attack against 7-round AES. In terms of com-
plexities of the key-recovery attacks in the single-key setting, the best attacks
up to date are due to the Demirci-Selçuk meet-in-the-middle attack [17–19]. The
meet-in-the-middle attack, which was previously known to be powerful for find-
ing preimages of hash functions, led to attacks against 7-round AES in some
hashing modes [31]. Many more attacks were found under other attack settings
e.g., single-key, related-key, hashing modes, for various security aspects, e.g.,
key-recovery, collision/preimage finding in hashing modes, distinguisher, etc. Up
to date, the most successful key-recovery2 attack against AES-128/192/256 is for
7, 9, and 9 out of 10, 12, and 14 rounds respectively in the single-key setting,
due to Derbez et al. [18] and an improvement by Li et al. [27].

The Boomerang Attack. To the best of our knowledge, the best attack against
AES, in terms of number of attacked rounds, is due to Biryukov et al. [10,11]
which dates back to 2009, where the key of the full version of AES-256 and AES-
192 can be recovered under the related (sub-)key setting. While the bound given
by the wide trail strategy could not be overcome in the differential attack under
the single-key setting, differential characteristics with much higher probability
exist in the related-key settings, where the differences from round keys and the
data path can be cancelled out. Also, the boomerang attack is able to utilize
two high-probability differential characteristics for small number of rounds. The
attack succeeds due to these two properties.

1 Only a few papers are cited here as examples since there are simply too many results.
2 Besides those optimized brute-force style attacks, such as [12].

Key Structures: Improved Related-Key Boomerang Attack 5

Our Contributions. Biryukov et al.’s works remain as the best publicly known
key-recovery attack against the full version of AES-256, and there exists no
essential improvement since 2009. In this paper, we try to improve their attack, in
terms of data and time complexities, under the same related-subkey boomerang
attack framework. The core idea comes from the observation that, while structure
has been used in plaintext to enjoy the birthday effect and improve cryptanalysis,
the same could potentially be applied to key material as well, even though this
has not been tried yet. It is necessary to note that similar expressions to “key
structure” already existed in some papers before, such as [6]. Their purpose is to
generate some required subkey differences from key structure, due to non-linear
key schedule of their targeted ciphers. However, our aim in this paper is to make
further improvement by enjoying birthday effect of a key structure. There are
many technical difficulties to overcome in the key structure boomerang attack
framework, before the idea can eventually work out.

– Firstly, when structure rather than a fixed or chosen difference is introduced
in the key material, one has to ensure that the uncontrollable difference in
the key will not affect the validity of the two differential characteristics in the
data path of the boomerang attack.

– Secondly, when structure is applied to the key, one has to ensure that the
two differentials are neutral to each other in two halves of the key schedule,
i.e., the differential characteristics in the key schedule in one half will not
affect the other half regardless of the actual key difference chosen from the
structure.

– Thirdly, one has to ensure that the key difference will not affect the probability
of the differential characteristics. Note that Biryukov et al. chose the high
probability difference transition of the S-box (those with 2−6, rather than the
2−7 ones for the AES S-box) in order to increase the overall probability of the
differential characteristics. In our case of structure, we only utilize those 2−6

difference pairs to achieve the same optimization. Although this only happens
once in every 28 difference pairs (so we lose most of the pairs), we gain back
by enforcing the high probability 2−6 transition once, and re-use it multiple
times in the differential characteristics.

The final result, presented in Sect. 4, turns out to improve both the time
and data complexities of Biyukov et al. attack by a factor of about 28, at the
expense of the number of required keys being increased from 4 to 219. A detailed
comparison is provided in Table 1.

Organization. The rest of the paper is organized as follows. Section 2 gives
the necessary preliminaries for understanding the attack, and Sect. 3 explains
the ideas behind key structures. The details of the improved attack are given in
Sect. 4. Finally, Sect. 5 concludes the paper.

6 J. Guo et al.

Table 1. Comparison with previous key-recovery attacks on full AES-256

Attack Time Data Memory # keys Reference

Related-Key Differential 2131 2131 265 235 [11]

Related-Key Boomerang 299.5 299.5 277 4 [10]

Key-Structure Boomerang 292.5+s 292+s 289−s 217−s Ours

292+s 291+s 289−s 219−s

Note: 0 ≤ s ≤ 7.5

2 Preliminaries

2.1 Description of AES

The Advanced Encryption Standard (AES) [16] is an iterated block cipher which
encrypts 128-bit plaintext with secret key of sizes 128, 192, and 256 bits. Its
internal state can be represented as a 4 × 4 matrix whose elements are byte
value (8 bits) in a finite field of GF (28). The round function consists of four
basic transformations in the following order:

– SubBytes (SB) is a nonlinear substitution that applies the same S-box to
each byte of the internal state.

– ShiftRows (SR) is a cyclic rotation of the i-th row by i bytes to the left, for
i = 0, 1, 2, 3.

– MixColumns (MC) is a multiplication of each column with a Maximum Dis-
tance Separable (MDS) matrix over GF (28).

– AddRoundKey (AK) is an exclusive-or with the round key.

Fig. 1. AES round function

At the very beginning of the encryption, an additional whitening key addition
is performed, and the last round does not contain MixColumns. AES-128, AES-
192, and AES-256 share the same round function with different number of rounds:
10, 12, and 14, respectively.

The key schedule of AES transforms the master key into subkeys which are
used in each of the rounds. Here, we describe the key schedule of AES-256. The
256-bit master key is divided into 8 32-bit words (W [0],W [1], ...,W [7]), then

Key Structures: Improved Related-Key Boomerang Attack 7

W [i] for i � 8 is computed as

W [i] =

⎧
⎪⎨

⎪⎩

W [i − 8] ⊕ SB(RotByte(W [i − 1])) ⊕ Rcon[i/8] i ≡ 0 mod 8,

W [i − 8] ⊕ SB(W [i − 1]) i ≡ 4 mod 8,

W [i − 8] ⊕ W [i − 1] otherwise

The i-th subkey is of size 256-bit denoted by Ki, K0 is the master key.
RotByte is a cyclic shift by one byte to the left, and Rcon is the round constant.
The key schedule of AES-128 and AES-192 is slightly different due to the different
key sizes, since this paper does not focus on these two variants, we refer to [16]
for details.

Property of the AES S-box. The details of the S-box and the Difference
Distribution Table (DDT) could be found in [16]. For any input difference Δin �=
0, there exists exactly one Δout such that DDT(Δin,Δout) = 4 (this results in
the highest probability 2−6 for the AES S-box transition), 126 values of Δout

such that DDT(Δin,Δout) = 2 (i.e., probability 2−7), and the rest 129 values of
Δout with DDT(Δin,Δout) = 0. Those (Δin,Δout)’s with DDT(Δin,Δout) �= 0 are
called compatible, and others are incompatible. These statistics will be used in
our attack later.

2.2 Boomerang Attack

The boomerang attack was introduced in [33]. It regards the target cipher as
a composition of two sub-ciphers E0 and E1. The first sub-cipher is supposed
to have a differential α → β, and the second one to have a differential γ → δ,
with probabilities p and q, respectively. The basic boomerang attack requires
an adaptive chosen plaintext/ciphertext scenario, and plaintext pairs result in a
right quartet with probability p2q2. It works with four plaintext/ciphertext pairs
(P1, C1), (P2, C2), (P3, C3), (P4, C4), and the basic attack procedure is as follows.
The attacker queries the encryption oracle with the input P1 and P2 = P1 ⊕α to
obtain C1 and C2, and calculate C3 = C1 ⊕ δ and C4 = C2 ⊕ δ, which are sent to
the decryption oracle to obtain P3 and P4. Later, Kelsey et al. [24] developed the
amplified boomerang which is pure chosen-plaintext attack and a right quartet
is obtained with probability p2q22−n. Further, it was pointed out in [4,5,33] that
any value of β and γ is allowed as long as β �= γ. As a result, the probability

of the right quartet is increased to 2−np̂2q̂2, where p̂ =
√

ΣiPr2(α −→ βi) and

q̂ =
√

ΣjPr2(γj −→ δ). This improved attack framework is named the rectangle
attack.

Related-Key Boomerang Attack. Boomerang and rectangle attacks under
related-key setting were formulated in [6,25,26]. Let ΔK and ∇K be the key

8 J. Guo et al.

differences for E0 and E1, respectively. The attacker needs to access four related-
key oracles with K1 ∈ K, where K is the key space, K2 = K1 ⊕ ΔK, K3 =
K1⊕∇K and K4 = K1⊕ΔK⊕∇K. In the related-key boomerang attack, paired
plaintexts P1, P2 such that P1 ⊕P2 = α are queried to K1 encryption oracle and
K2 encryption oracle, and the attacker receives ciphertexts C1 and C2. Then C3

and C4 are calculated by C3 = C1 ⊕ δ and C4 = C2 ⊕ δ, and then queried to K3

decryption oracle and K4 decryption oracle. The resulting plaintext difference
P3 ⊕ P4 equals to α with probability p2q2. Related-key rectangle attacks can be
similarly formulated.

Boomerang Switch and Boomerang Connectivity Table. The boomerang
switch was used to gain free rounds in the middle of the cipher in the attacks
against the full AES-192 and AES-256 [10]. The idea was to optimize the transi-
tion between the differential characteristics of E0 and E1 in order to minimize the
overall complexity of the distinguisher. In [10], three types of switch were intro-
duced which are the Feistel switch, the ladder switch and the S-box switch. These
switches were further generalized in the boomerang connectivity table (BCT) [14].

In this paper, we utilize the ladder switch to optimize our attack. The idea of
the ladder switch is to realize that a cipher can be decomposed into smaller par-
allel transformations instead of rounds by default. The principle can be explained
in the framework of BCT, see Fig. 2 with the case when Δ �= 0 and ∇ = 0. For
any values of x1 and x2, with difference Δ, their outputs after S-box application
are y1 and y2, respectively. Since the boomerang shift happens when ∇ = 0, we
have y3 = y1 ⊕ ∇ = y1 and y4 = y2 ⊕ ∇ = y2. Thus, after the inversed S-box is
applied, the paired values (x3, x4) is equal to (x1, x2) with probability 1, i.e., the
returned pair will always have difference Δ. The same also holds when Δ = 0
and ∇ �= 0.

Fig. 2. The ladder switch on a single S-box

2.3 Notations

The byte at i-th row, j-th column of an internal state a is denoted by ai,j , as
illustrated in Fig. 1, where i and j start from 0. We refer to the byte of plaintext

Key Structures: Improved Related-Key Boomerang Attack 9

by pi,j , the byte of the r-th subkey by kr
i,j , and the byte of the r-th internal

state after SubBytes by xr
i,j . For the differential characteristics of boomerang

distinguisher, we denote the difference used in E0 by Δ and the difference in E1

by ∇.

3 Key Structures

In differential cryptanalysis as [8], the attacker tries to find a distinguisher of a
cipher so that he can distinguish the cipher from a random permutation. Then,
key recovery attacks can be mounted based on the distinguisher directly, or with
additional rounds added before and/or after the distinguisher. In this paper, we
focus on the latter one.

We assume that there is a distinguisher which consists of a differential α → β
with probability p covering the last r1 rounds of the target cipher. In order to
launch a full-round attack (r rounds), (r − r1) rounds should be prepended to
the distinguisher. The aim of the attacker is to obtain enough ciphertext pairs
with difference β by querying the encryption oracle with pre-chosen plaintexts.
We define V to be the space spanned by all the plaintext differences that may
lead to the difference α after the first (r − r1) rounds, and let m = log2|V |.

Structure from Plaintext. The first step of the attack is to generate pairs
of plaintexts whose output differences after the first (r − r1) rounds are the
expected input difference α of the differential. The way to improve the efficiency
of this step is to build a structure of plaintexts which consists of P ⊕vi, where P
is chosen randomly and vi ∈ V . The XOR difference between any two elements
of the structure belongs to V . In this way, at most 22m−1 unordered plaintext
pairs (Pi, Pj) (the order of i, j does not matter) can be composed from a single
structure, while the data and time complexity to prepare this structure is only
2m. We refer to the ratio between the number of pairs generated and the size
of structure as gain (this is also called birthday effect in other places), quanti-
tatively it is 2(2m−1)−m = 2m−1 here. If more plaintext pairs are needed for the
attack, another new structure can be constructed in the same way by selecting
another random value of P . However, this would not increase the overall gain. As
can be seen, the gain only depends on the structure size. Thus, if the structure
size could be increased, the attack complexity would be reduced accordingly.

Structure from Key. In the related-key setting [3], the attacker is allowed
to choose a desired relation between keys. The most common form is: for an
unknown key K1, the attacker uses a XOR difference D to produce another
key K2 = K1 ⊕ D. Then, the subkey additions in round functions can be used
to cancel some differences in the differential attack in order to obtain better
differential characteristics. Compared with the single-key setting, the related-
key setting provides additional freedom in choosing the key difference D. In our
case, this fact enlightens us that a key structure utilizing the key difference could
be used to improve the attack.

10 J. Guo et al.

For a related-key differential characteristic with key difference D, we can
build a key structure from the original secret key K1, and let {K1⊕vi | vi ∈ VD}
be the set of keys inside the structure, where VD is the space consisting of the
differences that have the same truncated difference as that of D. Similarly, we
define mk = log2|VD|. Together with a plaintext structure, at most a total of
22(m+mk)−1 unordered pairs of ((Pi,Ki), (Pj ,Kj)) can be obtained, while only
2m+mk data/queries are used. Thus, the gain increases to 22(m+mk)−1−(m+mk) =
2m+mk−1, compared to the use of plaintext structure alone.

The Use of Key Structure. Key structure should be applied together with
plaintext structure to provide additional advantage. However, compared to plain-
text structure, key structure has more constraints in its application. Due to the
fact that each plaintext in the plaintext structure will be encrypted with each
key in the key structure during an attack, the difference between the pairs of keys
will not be fixed, thus the subkey differences in the whole rounds are difficult to
control and are unlikely to match the exact differential characteristic α → β.

Hence, in order to have as many valid key pairs as possible, the key schedule
is better to be linear or the proportion of the non-linear part is small, and the
key difference should not have strong impact on the truncated differential char-
acteristic, which means that the truncated differential characteristic should be
able to be instantiated with many differences. Otherwise, if the differential char-
acteristic is valid with only a small proportion of key pairs, smaller than 2−mk ,
the use of key structure will only weaken the attack. On the other hand, the dis-
tinguisher obtained with key structure might not be as good as the original one
without key structure, because the probability of the differential characteristic
will vary according to key difference since the propagation of non-linear part in
the internal state will be different. All in all, in order to make good use of key
structure, the extra data and time consumption of it should be lower than the
gain it offers.

Last but not least, it is necessary to mention that at most one key structure
can be constructed in an attack as the key structure is created from the original
secret key which is fixed.

4 Improved Boomerang Attack on AES-256

In this section, we apply key structure to the related-key boomerang attack on
AES-256, which is based on the attack in [10]. We will first give an overview of
the boomerang distinguisher, then describe the construction of the key structure,
and finally explain the details of the attack.

The differential characteristics used in our boomerang attack are depicted in
Fig. 3. The differential characteristic of E1 is fixed, while the differential charac-
teristic of E0 has a lot of candidates. In Fig. 3, different colors refer to different
values. The differentials for all the active S-boxes of the differential characteris-
tic of E1 are set to be (0x01, 0x1f), which holds with probability 2−6. For the
differential characteristic of E0, the red and blue hashed cells are not fixed but

Key Structures: Improved Related-Key Boomerang Attack 11

always pass the S-box differential with the maximal probability 2−6, and the
green cells are unknown. The switching position of the boomerang distinguisher
is pointed by the green ovals.

The differences in the key schedule are given in Table 2. Since the differential
characteristic of E0 is not fixed, we use the variables R, B and Gi to represent
its truncated pattern, i = 1, 2, 3, 4. Given the value of R, B is then derived from
the table DDT with the requirement that DDT(R,B) = 4, lastly the value of Gi is
uniquely determined by B through the MixColumns transformation:

⎛

⎜
⎜
⎝

0
B
0
0

⎞

⎟
⎟
⎠

MixColumns======⇒

⎛

⎜
⎜
⎝

G1

G2

G3

G4

⎞

⎟
⎟
⎠ .

Table 2. Key schedule difference for the boomerang attack on AES-256. The values
are given in hexadecimal notation.

ΔKi

0 ? 00 00 00 G1 G1 G1 G1 1 00 00 00 00 G1 00 G1 00 2 00 00 00 00 G1 G1 00 00

? R R R ? G2 G2 G2 00 R 00 R G2 00 G2 00 00 R R 00 G2 G2 00 00

? 00 00 00 G3 G3 G3 G3 00 00 00 00 G3 00 G3 00 00 00 00 00 G3 G3 00 00

? 00 00 00 G4 G4 G4 G4 00 00 00 00 G4 00 G4 00 00 00 00 00 G4 G4 00 00

3 00 00 00 00 G1 00 00 00 4 00 00 00 00 G1 G1 G1 G1

00 R 00 00 G2 00 00 00 00 R R R ? ? ? ?

00 00 00 00 G3 00 00 00 00 00 00 00 G3 G3 G3 G3

00 00 00 00 G4 00 00 00 00 00 00 00 G4 G4 G4 G4

∇Ki

0 ? ? ? ? ? 00 ? 00 1 ? 01 ? 00 ? ? 00 00 2 ? ? 00 00 ? 00 00 00

X X X X 1f 00 1f 00 X 00 X 00 1f 1f 00 00 X X 00 00 1f 00 00 00

? ? ? ? 1f 00 1f 00 ? 00 ? 00 1f 1f 00 00 ? ? 00 00 1f 00 00 00

? ? ? ? 21 00 21 00 ? 00 ? 00 21 21 00 00 ? ? 00 00 21 00 00 00

3 ? 01 01 01 3e 3e 3e 3e 4 01 00 01 00 3e 00 3e 00 5 01 01 00 00 3e 3e 00 00

X 00 00 00 1f 1f 1f 1f 00 00 00 00 1f 00 1f 00 00 00 00 00 1f 1f 00 00

? 00 00 00 1f 1f 1f 1f 00 00 00 00 1f 00 1f 00 00 00 00 00 1f 1f 00 00

? 00 00 00 21 21 21 21 00 00 00 00 21 00 21 00 00 00 00 00 21 21 00 00

6 01 00 00 00 3e 00 00 00 7 01 01 01 01 ? ? ? ?

00 00 00 00 1f 00 00 00 00 00 00 00 1f 1f 1f 1f

00 00 00 00 1f 00 00 00 00 00 00 00 1f 1f 1f 1f

00 00 00 00 21 00 00 00 00 00 00 00 21 21 21 21

4.1 Construction of the Key Structure

The key relation used in our attack is a complex form that allows the attacker
to choose a desired XOR difference of a subkey at any round. This setting is also
defined as the related-subkey setting in [9].

12 J. Guo et al.

Fig. 3. The differential characteristics of the boomerang attack against AES-256

Key Structures: Improved Related-Key Boomerang Attack 13

Now, we describe how to construct the key structure, denoted by Sk. The
key structure is generated from the second subkey K1. One can observe in Fig. 3
that the difference of the second 256-bit subkey has 10 active bytes, but the
difference cannot be chosen randomly. The differential characteristic of E0, as
well as the one of E1, is constructed following the idea of local collision [13],
that is, once a subkey difference is added to the internal state, the next subkey
difference will try to cancel it in the next round. Therefore, in order to generate
such a differential characteristic for E0, the two active bytes in the first half of
ΔK1 must take the same difference value, thus it can choose 28 values at most.
Besides, for the second half of ΔK1, the differences of the two active columns are
also required to be the same value, because the two active columns are supposed
to cancel the two active columns in the internal state according to the differential
characteristic of E0, and each active column in the internal state is computed
from a single active byte through MixColumns and the two active bytes are equal.
Furthermore, this relation also implies that the two active columns of ΔK1 can
only choose 28 values at most. To sum up, there are 216 valid values for ΔK1,
each of which is denoted by ΔK1

i , 1 ≤ i ≤ 216.
For a secret key K0, the key structure Sk is generated by adding the non-zero

difference ΔK1
i to the second subkey of K0, from which a new secret key Ki can

be uniquely determined, see Fig. 4(a). Finally, the key structure consists of 216

keys, from which 231 unordered key pairs can be composed.
Note that the keys in the key structure are used in the encryption side of the

boomerang attack. For the key K ′
i used in the decryption side, they are computed

by adding the fixed difference ∇K to the jointed state of the second half of K3
i

and the first half of K4
i , then the full K ′

i can be uniquely determined by the
obtained eight consecutive columns, see Fig. 4(b). By doing so, the differential
characteristic of E1 will be fixed. The actual value of ∇K can be found in Table 2,
it will make sure that the differential characteristic of E1 is the optimal one i.e.,
all S-box transitions happen with probability 2−6.

Given a pair of keys (KA,KB) chosen from the key structure Sk, together
with the corresponding key pair (K ′

A,K ′
B) used in the decryption side, the four

keys form a key quartet. For a key quartet, the differences in the key schedule
for both the differential characteristics of E0 and E1 can be found in Table 2. In
particular, for the differential characteristic of E1 (where the key pair (KA,K ′

A)
or (KB ,K ′

B) is applied), some byte in ∇Ki for i = 1, 2, 3 can even be determined
due to the slow diffusion of the key schedule. These values will play an important
role in the following key recovery attack. Last but not least, we note that only
one key structure is used in our attack.

4.2 Boomerang Distinguisher

Let us compute the probability of the boomerang distinguisher covering rounds
2–14. For the differential characteristic of E0 which covers rounds 2–8, there
are 5 active S-boxes and the differentials (Δin,Δout) for all of them are the
same. Because of the use of key structure, the values for both Δin and Δout

are not fixed, but they are directly related to the subkey differences, which are

14 J. Guo et al.

Fig. 4. Key generation

determined by the key pair used in the differential characteristic. Among the
total of 231 key pairs that can be composed from the key structure, (27 − 2)/28

of it will make the differential (Δin,Δout) happen with probability 2−7, while
a proportion of 1/28 will lead the probability to 2−6. Accordingly, the 5 active
S-boxes in rounds 2–8 are passed with probability 2−7×5 = 2−35 for the first
case and 2−6×5 = 2−30 for the second case.

The boomerang is switched in round 9. Although the differential characteris-
tic of E0 is not fixed, its truncated pattern is uniquely determined. Accordingly,
we can ensure that there is no overlapped active S-box in round 9 between
the differential characteristics of E0 and E1. Thus, according to the BCT, the
two differential characteristics are compatible for the boomerang attack and the
switching probability is 1. Besides, it was reported recently that the boomerang
switch can actually happen in multiple rounds in [32,34], so we have also verified
the switching effect in rounds 8–10, and it matches our evaluation.

For the differential characteristic of E1, there are 3 active S-boxes in rounds
10–14. Note that only one differential characteristic is used for E1 and the differ-
entials for all the active S-boxes are optimal with probability 2−6, thus the prob-
ability of the differential characteristic of E1 of rounds 10–14 is 2−6×3 = 2−18.

Finally, the probability of the boomerang distinguisher is either
22×(−35−18) = 2−106 or 22×(−30−18) = 2−96, depending on the key pair from
the key structure.

4.3 A Detailed Description of the Attack

One round is added at the beginning of the boomerang distinguisher to launch
the full-round attack. The plaintext difference pattern, as show in Fig. 3, is
deduced from both the first subkey difference and the internal state difference
in the second round. The attack procedure is described in Algorithm 1.

Key Structures: Improved Related-Key Boomerang Attack 15

For each key pair, we can compose 2144 plaintext pairs from 1 plaintext
structure, out of which 2144−72 = 272 will pass through the first round with
the desired input difference of the boomerang distinguisher. In total, 2103 pairs
pass the first round for all the 231 key pairs. The probability of the boomerang
distinguisher is 2−106 for a proportion of (27 − 2)/28 key pairs, thus around
2103 · (27 − 2)/28 · 2−106 ≈ 2−4 right quartets are expected. On the other hand,
2103 · 1/28 · 2−96 = 2−1 right quartets are expected when the probability of the
boomerang distinguisher is 2−96 for 1/28 of key pairs. Compared to the first
case, the boomerang distinguisher in the second case is much better, so we will
only adopt the second one in our attack. Therefore, in order to obtain 4 right
quartets, 23 plaintext structures are required. We need to repeat Algorithm 1 23

times with different plaintext structures and the same key structure.
In the following, we will explain how to gradually filter out wrong quartets

and recover key bits. Let us compute the number of quartet candidates after
Algorithm 1. Firstly, there is a 56-bit filter at the output of the boomerang.
Then, observe in Table 2 that ∇k0

i,7 = 0 for i > 1, so Δk0
i,0 should be equal for

both pairs (KA,KB) and (K ′
A,K ′

B) in a key quartet, which implies that Δpi,0
should be equal for both plaintext pairs (P1, P2) and (P ′

1, P
′
2) for the right quartet

as well, because Δk0
i,0 is equal to Δpi,0 according to the differential characteristic

of E0. This is a 16-bit filter. So there are on average 272+16−56−16 = 216 collisions
for each index of the hash table H, from which 231 quartets can be composed.
In total, 231+72 = 2103 quartet candidates are left for all the 272 indices of the
hash table, and thus 2106 quartet candidates for all the 23 plaintext structures.
These candidates are further filtered by the following steps. The key bytes that
can be recovered are listed in Fig. 5.

16 J. Guo et al.

Fig. 5. The AES-256 key state with key information obtained at each step. Digits stand
for the sub-steps in step II, “D” means difference.

Step I. Note that the key pairs of a right quartet must meet the requirement
that the active S-boxes in the differential characteristic of E0 are passed with
probability 2−6. The requirement is satisfied with probability 2−8, thus 2106−8 =
298 quartet candidates are eligible. Now we explain how to obtain the 298 quartet
candidates. The differential of the active S-boxes can be deduced by the difference
in the key schedule. For example, Δk1

1,1 is the input difference of the S-box at
the position (1, 1) in the third round, and Δk1

2,4 is the corresponding output
difference due to the ShiftRows and MixColumns. Thus, we can simply check
whether the differential (Δk1

1,1,Δk1
2,4) is optimal for the AES S-box. Once it is

confirmed, the differentials of the 5 active S-boxes will also be determined. Note
that the differential characteristics of E0 used in both sides of the boomerang
are the same, thus we only need to check the encryption side, the details are
given in Algorithm 2.

Algorithm 2: Filtration in Step I
for each index of the hash table H do

Insert the 216 collisions into a new hash table H ′ indexed by the difference
of k1

1,1 between the current key and the original key K0.
for each index i of H ′ do

Insert the 216−8 = 28 collisions (on average) into a new hash table H ′′
i

indexed by the difference of k1
2,4 between the current key and the

original key K0.
end
for index i of H ′ from 0 to 28 − 2 do

for index j of H ′ from i+1 to 28 − 1 do
Compute Δk1

1,1 = i ⊕ j, and find the value of Δk1
2,4 such that

DDT(Δk1
1,1, Δk1

2,4) = 4.
for each index s of H ′′

i do
Compute t = s ⊕ Δk1

2,4. Check whether t is in H ′′
j . If yes, the

pairs of H ′′
i and H ′′

j compose quartet candidates.

end

end

end

end

Key Structures: Improved Related-Key Boomerang Attack 17

Step II. There are 231−8 = 223 key quartets remaining after Step I, and each
has on average 298−23 = 275 quartet candidates. In the following steps, we will
proceed with each key quartet independently, and use KA, KB , K ′

A and K ′
B to

denote the four keys.

1) There is a 2-bit filter at Δp1,2 and Δp1,3 due to the S-box compatibility, thus
4-bit at both sides of the boomerang in total. Besides, there is also a 2-bit
filter at Δp2,0 and Δp3,0 due the S-box compatibility in the key schedule.
Thus, the number of quartets is reduced to 275−6 = 269.

2) Each quartet proposes 22 candidates of k0
1,2 and k0

1,3 for KA and K ′
A each,

thus there are in total 24 candidates. As can be seen from Table 2 , the four
“X” of ∇K0 are equal and take only 27 values. Hence, the differences Δk0

1,2

and Δk0
1,3 between KA and K ′

A have to be equal to X, which is a 16-bit filter
for the key candidates. Thus, 269+4+7−16 = 264 quartet candidates are left,
and the values of k0

1,2 and k0
1,3 are suggested.

3) Observe that the value of Δk0
1,0 is determined by k0

2,7 and ∇k0
2,7 = 0 from

Table 2, the values of Δk0
1,0 should be the same for both the key pairs

(KA,KB) and (K ′
A,K ′

B). Since Δk0
2,7 is known, Δk0

1,0 can take 27 values. For
each guess of Δk0

1,0, it has to be compatible with Δp1,0 and Δx0
1,0 through

the S-box, which is a 2-bit filter for both sides of the boomerang. After that,
each quartet proposes two candidates of k0

1,0 for KA and K ′
A, respectively.

Moreover, there is an 8-bit filter because the difference ∇k0
1,0 between KA

and K ′
A should be equal to X. In the end, the number of quartet candidates

is reduced to 264+7−2+2−8 = 263, and the value of k0
1,0 is suggested.

4) Notice that ∇k1
1,3 = 0, a reasoning similar to the one above can be applied

to Δk0
1,4, which can take 27 values. For each guess of Δk0

1,4, the values
of Δx0

0,0,Δx0
1,1,Δx0

2,2,Δx0
3,3 can be uniquely computed by inverting the

MixColumns transformation. There is a 1-bit filter on Δx0
1,1,Δx0

2,2,Δx0
3,3 each

due to the S-box compatibility, then 6-bit filter in total on both sides of the
boomerang. Each quartet proposes two candidates of k0

1,1, k
0
2,2, k

0
3,3 for KA

and K ′
A, respectively. However, the difference ∇k0

1,1 between KA and K ′
A is

restricted to X, which results in an 8-bit filter. To summarize, the number of
quartets is reduced to 263+7−6+6−8 = 262 and the values of k0

1,1, k0
2,2, k0

3,3 as
well as Δk0

1,4 are suggested.
5) Since Δk0

1,0, Δk0
2,0 and Δk0

3,0 are known, it will provide 2 guesses for each
of k0

2,7, k0
3,7 and k0

0,7. However, these guesses for KA and K ′
A are the same

because the differences ∇k0
2,7, ∇k0

3,7 and ∇k0
0,7 between KA and K ′

A are all 0.
Thus, in this step, the number of key candidates is increased to 262+3 = 265,
and the values of k0

2,7, k0
3,7 and k0

0,7 are suggested.
6) Note that the key bytes k0

2,7, k0
1,0, k0

1,1, k0
1,2, k0

1,3 and the difference Δk0
1,4

have been derived in the above steps. On the other hand, we notice that
Δk0

1,4 can be computed from k0
2,7, k0

1,0, k0
1,1, k0

1,2 and k0
1,3 according to the

key schedule. This constraint can provide an 8-bit filter, and thus the number
of key proposals is reduced to 257.

18 J. Guo et al.

7) Make a guess of k0
1,7 of KA, which has 28 choices, then k0

1,7 will be known for
all the four keys and Δk0

0,0 can be computed. After that, for each side of the
boomerang there is a 1-bit filter on Δk0

0,0 due to the S-box compatibility, then
each quartet will propose 2 candidates of k0

0,0 for KA and K ′
A, respectively.

Thus 257+8−2+2 = 265 key proposals are obtained.

In the end, 265 key candidates are proposed and 11 key bytes for each of
KA, KB , K ′

A and K ′
B are suggested. However, many bytes are strongly related

according to Table 2. Among them, at least k0
0,0, k0

1,1, k0
2,2 and k0

3,3 of KA and
K ′

A are independent, so we can recover 15 bytes with 265 proposals for each
key quartet, and thus 288 proposals for all the 223 key quartets. Additionally,
differences of 3 bytes are recovered: Δk0

1,4,Δk0
2,0,Δk0

3,0, where Δk0
2,0 and Δk0

3,0

can be directly obtained from plaintext difference, but they can not be used to
derive the corresponding key bytes.

Recover the Key. Recall that 4 right quartets are expected for the attack,
which are supposed to be distinguishable from other wrong quartets. However,
the 4 right quartets are very likely to be combined with different key pairs due
to the key structure, thus the correct key bytes proposed by them will belong to
different keys, which is hard to be distinguished. So we have to deduce all the
proposed key bytes to the original keys K0 and K ′

0. Looking at Table 2, we can
see that most bytes of the first subkey difference between K0 and all the other
keys are known, except Δk0

1,4 and Δk0
i,0 where 0 ≤ i ≤ 3. Hence, for those key

bytes whose differences are known, all the proposals can be deduced to K0. The
same reasoning applies to K ′

0. As for the two unknown differences Δk0
0,0 and

Δk0
1,0, since the value of k0

1,7 was derived and the difference of Δk0
1,7 is known,

the difference Δk0
0,0 can be easily computed through the key schedule. Same

trick holds for Δk0
1,0, it can be computed from k0

2,7 and Δk0
2,7. Then, we can

deduce the proposals of the two bytes to K0 and K ′
0.

In the end, all the proposed key bytes can be deduced to K0 and K ′
0. We

have 288 proposals for 120 key bits, and the correct proposal is supposed to
appear 4 times. The probability that a wrong key is suggested 4 times is

(
288

4

) ·
(2−120)4 · (1 − 2−120)2

88−4 ≈ 2−138.5, thus the expect number of such a key is
2120−138.5 = 2−18.5, while the 4 right quartets would always vote for the correct
one. Therefore, no wrong key will survive and the correct 120 key bits will be
recovered. With the knowledge of the recovered key bits, the remaining part of
the key can be found with many approaches, which will not dominate the cost
of the whole attack.

Complexity. In our attack, a total of 292 plaintexts and ciphertexts are gener-
ated, thus the data complexity is 292. In Algorithm 1, there are 288 encryption
oracle calls, 288 XOR operations, and 288 decryption oracle calls. As the plain-
texts are added into the hash table, each plaintext requires one memory access,
thus 288 memory accesses in total. Thus, for the 23 plaintext structures, the total
time complexity of Algorithm 1 is 292 encryption/decryption oracle calls and 291

memory accesses.

Key Structures: Improved Related-Key Boomerang Attack 19

In Algorithm 2, the plaintext pairs (P, P ′) in H are added into many new
hash tables, which requires 272×(216+216) = 289 memory accesses. The lookups
in DDT require 272+15 = 287 memory accesses. The lookups in the hash table
H ′′

i require 272+23 = 295 memory accesses, which dominates the algorithm. In
sum, for the entire 23 plaintext structures, Step I requires 295+3 = 298 memory
accesses.

For Step II 1), it requires 1 memory access for each quartet to check whether
these bytes are compatible. Therefore, the time complexity of this step is 298

memory accesses.
After Step II 1), the number of remaining quartets is 292, and the number is

continuously decreasing in the following steps, thus the following computation
will not dominate the cost of the whole attack.

Following the idea from [5,9,20], where memory access can be converted to
equivalent amount of encryption/decryption oracle calls, one AES-256 encryp-
tion/decryption is equivalent to roughly 28 memory accesses by counting the
number of S-box lookups. Therefore, the 298 memory accesses to the hash table
H ′′

i in Step I can be converted to 290 encryptions/decryptions, and the same can
be done for the 298 memory accesses in Step II 1). Finally, we conclude that the
whole attack requires 292 plaintexts and ciphertexts, the time complexity being
equivalent to 292.5 encryptions (292 encryptions/decryptions and 299 memory
accesses ≈ 291 encryptions), and the memory complexity is 289.

Further Improvement. In the attack, the key structure is only added in KA

and KB in E0, the same idea could be extended to the K ′
A and K ′

B in E1.
However, this attempt could not work. For a right quartet, the differentials of
E0 in both sides of the boomerang should be the same, which determines that
the differential characteristic in the key schedule of (K ′

A,K ′
B) must be the same

as that of (KA,KB). In order to meet this condition, the switch in the key
schedule should be the same for a quartet, i.e., the differences ∇K added to KA

and KB at the middle of the fourth and fifth subkey should be the same. Even
if we use a structure of ∇K, we still need to find right quartets for each value
of ∇K separately. Thus, this method does not provide additional improvement
to the attack.

Although the potential key structure is a failure, it can also be used to
improve the attack slightly. As discussed above, the functionality of the key
structure is equivalent to plaintext structure: using a different ∇K leads to a
different set of (P ′

1, P
′
2). In our attack, 23 plaintext structures are required to pro-

duce 4 right quartets. Instead of choosing 23 plaintext structures, we could also
choose 23 ∇K (There are 28−1 values of ∇K to produce the optimal differential
characteristic of E1). In this way, 288 encryptions and 288+3 = 291 decryptions
are needed, thus the number of decryptions dominates the complexity. The time
and data complexity is reduced to 292 and 291, respectively. The number of keys
will increase to 216+3 = 219.

20 J. Guo et al.

More Tradeoffs. One key structure consists of 216, and hence the total number
of keys required in this attack is 217 (216 for the encryption and decryption
oracles each). There is a tradeoff between the number of keys required, and the
time and data complexities, by reducing the size of the key structure, i.e., with a
216−s key structures, the resulted complexities of the attack will be: Time 292+s,
Data 291+s, and # Keys 217−s, for 0 ≤ s ≤ 16. Further to note, when s ≥ 7.5
the time complexity becomes higher than that in [10], and our attack offers no
more advantage, so the tradeoff makes sense only for 0 ≤ s ≤ 7.5.

5 Conclusion

In this paper, we brought the idea of structures to key materials, and successfully
applied it to the related-key boomerang attack against AES-256. This improved
the best known attack against AES-256 by reducing the data/time complexities
by a factor of about 28, at the cost of more required keys. While the general
principle is simple, its deployment contains many details and it is important
to ensure that the introduction of key structure will not invalidate or signifi-
cantly reduce the probability of the differential characteristics. More tradeoffs
are provided between time/data complexity and the number of required keys.

Other Potential Applications. We note that our structure technique was
applied to key material, and hence increases the number of required keys for
the attack to succeed. However, this may be avoided when the attack is applied
to AES-based tweakable block ciphers so that the structure is applied to tweak,
rather than keys. There are two such cases: TAES [1] and the TBCs following
TWEAKEY framework [22]. TAES is basically AES-256 with the concatena-
tion of a 128-bit secret key and a 128-bit tweak as the 256-bit key input. The
TWEAKEY framework treats the key and tweak in the same way and names
the combined input “tweakey”. Following it, there are several dedicated AES-like
proposals such as the Deoxys-BC in the Deoxys AE design [23], SKINNY [2], and
Kiasu [21]. Users will have the choice to decide which are the bits to be used as
key or tweak material. The potential application of our technique is that, when
the structure is applied to the tweak of either TAES or AES-based TWEAKEY
designs, the increased requirement applies to the tweak only, and that of keys
remains un-affected.

Inapplicability to AES-192 [10] and Differential Attack [11]. The
boomerang attack was applied to AES-192 as well in [10], so the idea of key struc-
ture naturally applies. However, looking into the details, the key bytes recovered
in the AES-192 attack falls in two different locations, in both the pre- and post-
whitening keys. Note that in our improved attack on AES-256, we are able to
deduce the count of key suggestions of all keys to the original key K0 and K ′

0,
however this becomes impossible for both pre- and post-whitening keys simulta-
neously in case of AES-192. The direct application of the idea of key structure
to the differential attack in [11] seems difficult, as the probability of the differ-
entials will drop significantly, which overrules the potential gain key structures

Key Structures: Improved Related-Key Boomerang Attack 21

might brings. It will be interesting to see if these technical difficulties could be
overcome and find more applications of key structures.

Acknowledgements. This research is partially supported by the Nanyang Techno-
logical University in Singapore under Grant 04INS000397C230, Singapores Ministry of
Education under Grants RG91/20 and MOE2019-T2-1-060, the National Natural Sci-
ence Foundation of China (Grants 62022036, 62132008, 62172410, 61732021), and the
National Key Research and Development Program of China (Grant 2018YFA0704704).

References

1. Bao, Z., Guo, J., Iwata, T., Minematsu, K.: ZOCB and ZOTR: Tweakable Blockci-
pher modes for authenticated encryption with full absorption. IACR Trans. Sym-
metric Cryptol. 2019(2), 1–54 (2019)

2. Beierle, C., et al.: The SKINNY family of block ciphers and its low-latency variant
MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp.
123–153. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-
5 5

3. Biham, E.: New types of cryptanalytic attacks using related keys. J. Cryptol. 7(4),
229–246 (1994)

4. Biham, E., Dunkelman, O., Keller, N.: The rectangle attack — rectangling the
serpent. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 340–
357. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6 21

5. Biham, E., Dunkelman, O., Keller, N.: New results on boomerang and rectangle
attacks. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 1–16.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45661-9 1

6. Biham, E., Dunkelman, O., Keller, N.: Related-key boomerang and rectangle
attacks. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 507–525.
Springer, Heidelberg (2005). https://doi.org/10.1007/11426639 30

7. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In:
Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21.
Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-38424-3 1

8. Biham, E., Shamir, A.: Differential cryptanalysis of the full 16-round DES. In:
Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 487–496. Springer, Hei-
delberg (1993). https://doi.org/10.1007/3-540-48071-4 34

9. Biryukov, A., Dunkelman, O., Keller, N., Khovratovich, D., Shamir, A.: Key recov-
ery attacks of practical complexity on AES-256 variants with up to 10 rounds. In:
Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 299–319. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 15

10. Biryukov, A., Khovratovich, D.: Related-key cryptanalysis of the full AES-192
and AES-256. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 1–18.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7 1

11. Biryukov, A., Khovratovich, D., Nikolić, I.: Distinguisher and related-key attack on
the full AES-256. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 231–249.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 14

12. Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique cryptanalysis of the full
AES. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp.
344–371. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-
0 19

https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/3-540-44987-6_21
https://doi.org/10.1007/3-540-45661-9_1
https://doi.org/10.1007/11426639_30
https://doi.org/10.1007/3-540-38424-3_1
https://doi.org/10.1007/3-540-48071-4_34
https://doi.org/10.1007/978-3-642-13190-5_15
https://doi.org/10.1007/978-3-642-10366-7_1
https://doi.org/10.1007/978-3-642-03356-8_14
https://doi.org/10.1007/978-3-642-25385-0_19
https://doi.org/10.1007/978-3-642-25385-0_19

22 J. Guo et al.

13. Chabaud, F., Joux, A.: Differential collisions in SHA-0. In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462, pp. 56–71. Springer, Heidelberg (1998). https://
doi.org/10.1007/BFb0055720

14. Cid, C., Huang, T., Peyrin, T., Sasaki, Yu., Song, L.: Boomerang connectivity
table: a new cryptanalysis tool. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT
2018. LNCS, vol. 10821, pp. 683–714. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-78375-8 22

15. Daemen, J.: Cipher and Hash function design strategies based on linear and differ-
ential cryptanalysis. Ph.D. thesis, Doctoral Dissertation, March 1995, KU Leuven
(1995)

16. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography. Springer, Heidelberg (2002).
https://doi.org/10.1007/978-3-662-04722-4

17. Demirci, H., Selçuk, A.A.: A meet-in-the-middle attack on 8-round AES. In:
Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 116–126. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-71039-4 7

18. Derbez, P., Fouque, P.-A., Jean, J.: Improved key recovery attacks on reduced-
round , in the single-key setting. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 371–387. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9 23

19. Dunkelman, O., Keller, N., Shamir, A.: Improved single-key attacks on 8-round
AES-192 and AES-256. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp.
158–176. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-
8 10

20. Ferguson, N., et al.: Improved cryptanalysis of Rijndael. In: Goos, G., Hartmanis,
J., van Leeuwen, J., Schneier, B. (eds.) FSE 2000. LNCS, vol. 1978, pp. 213–230.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44706-7 15

21. Jean, J., Nikolić, I., Peyrin, T.: KIASU v1. Additional first-round candidates of
CAESAR compeition (2014)

22. Jean, J., Nikolić, I., Peyrin, T.: Tweaks and keys for block ciphers: the TWEAKEY

framework. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp.
274–288. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-
8 15

23. Jean, J., Nikolić, I., Peyrin, T., Seurin, Y.: Deoxys-II. Finalist of CAESAR com-
peition (2014)

24. Kelsey, J., Kohno, T., Schneier, B.: Amplified boomerang attacks against reduced-
round MARS and serpent. In: Goos, G., Hartmanis, J., van Leeuwen, J., Schneier,
B. (eds.) FSE 2000. LNCS, vol. 1978, pp. 75–93. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44706-7 6

25. Kim, J., Hong, S., Preneel, B., Biham, E., Dunkelman, O., Keller, N.: Related-key
boomerang and rectangle attacks: theory and experimental analysis. IEEE Trans.
Inf. Theory 58(7), 4948–4966 (2012)

26. Kim, J., Kim, G., Hong, S., Lee, S., Hong, D.: The related-key rectangle attack
– application to SHACAL-1. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.)
ACISP 2004. LNCS, vol. 3108, pp. 123–136. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-27800-9 11

27. Li, L., Jia, K., Wang, X.: Improved single-key attacks on 9-Round AES-192/256. In:
Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 127–146. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46706-0 7

https://doi.org/10.1007/BFb0055720
https://doi.org/10.1007/BFb0055720
https://doi.org/10.1007/978-3-319-78375-8_22
https://doi.org/10.1007/978-3-319-78375-8_22
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/978-3-540-71039-4_7
https://doi.org/10.1007/978-3-642-38348-9_23
https://doi.org/10.1007/978-3-642-38348-9_23
https://doi.org/10.1007/978-3-642-17373-8_10
https://doi.org/10.1007/978-3-642-17373-8_10
https://doi.org/10.1007/3-540-44706-7_15
https://doi.org/10.1007/978-3-662-45608-8_15
https://doi.org/10.1007/978-3-662-45608-8_15
https://doi.org/10.1007/3-540-44706-7_6
https://doi.org/10.1007/978-3-540-27800-9_11
https://doi.org/10.1007/978-3-540-27800-9_11
https://doi.org/10.1007/978-3-662-46706-0_7

Key Structures: Improved Related-Key Boomerang Attack 23

28. Lu, J., Dunkelman, O., Keller, N., Kim, J.: New impossible differential attacks on
AES. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS,
vol. 5365, pp. 279–293. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-89754-5 22

29. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48285-7 33

30. Matsui, M.: The first experimental cryptanalysis of the data encryption standard.
In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 1–11. Springer, Hei-
delberg (1994). https://doi.org/10.1007/3-540-48658-5 1

31. Sasaki, Yu.: Meet-in-the-middle preimage attacks on AES hashing modes and an
application to whirlpool. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 378–
396. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21702-9 22

32. Song, L., Qin, X., Hu, L.: Boomerang connectivity table revisited. Application to
SKINNY and AES. IACR Trans. Symmetric Cryptol. 2019(1), 118–141 (2019)

33. Wagner, D.: The boomerang attack. In: Knudsen, L. (ed.) FSE 1999. LNCS, vol.
1636, pp. 156–170. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48519-8 12

34. Wang, H., Peyrin, T.: Boomerang switch in multiple rounds. Application to AES
variants and deoxys. IACR Trans. Symmetric Cryptol. 2019(1), 142–169 (2019)

https://doi.org/10.1007/978-3-540-89754-5_22
https://doi.org/10.1007/978-3-540-89754-5_22
https://doi.org/10.1007/3-540-48285-7_33
https://doi.org/10.1007/3-540-48658-5_1
https://doi.org/10.1007/978-3-642-21702-9_22
https://doi.org/10.1007/3-540-48519-8_12
https://doi.org/10.1007/3-540-48519-8_12

Truncated Differential Properties
of the Diagonal Set of Inputs for 5-Round

AES

Lorenzo Grassi1,2(B) and Christian Rechberger2

1 Digital Security Group, Radboud University, Nijmegen, The Netherlands
l.grassi@science.ru.nl

2 IAIK, Graz University of Technology, Graz, Austria

christian.rechberger@iaik.tugraz.at

Abstract. In the last couple of years, a new wave of results appeared,
proposing and exploiting new properties of round-reduced AES. In this
paper we survey and combine some of these results (namely, the multiple-
of-n property and the mixture differential cryptanalysis) in a systematic
way in order to answer more general questions regarding the probability
distribution of encrypted diagonal sets. This allows to analyze this special
set of inputs, and report on new properties regarding the probability dis-
tribution of the number of different pairs of corresponding ciphertexts are
equal in certain anti-diagonal(s) after 5 rounds.

An immediate corollary of the multiple-of-8 property is that the vari-
ance of such a distribution can be shown to be higher than for a ran-
dom permutation. Surprisingly, also the mean of the distribution is sig-
nificantly different from random, something which cannot be explained by
the multiple-of-8 property. We propose a theoretical explanation of this,
by assuming an APN-like assumption on the S-Box which closely resem-
bles the AES-Sbox. By combining the multiple-of-8 property, the mixture
differential approach, and the results just mentioned about the mean and
the variance, we are finally able to formulate the probability distribution
of the diagonal set after 5-round AES as a sum of independent binomial
distributions.

Keywords: AES · Truncated-differential cryptanalysis · Distinguisher

1 Introduction

AES (Advanced Encryption Standard) [9] is probably the most used and studied
block cipher. Since the development of cryptanalysis of AES and AES-like con-
structions in the late 1990s, the set of input which differ only in one diagonal has
special importance. Indeed, it appears in several attacks anddistinguishers, includ-
ing various (truncated) differential [16,17], integral [8], and impossible differential
attacks [4], among others. In particular, given a diagonal set of plaintexts and the
corresponding ciphertexts after 4 rounds, it is well known that the XOR-sum of
the ciphertexts is equal to zero [8], or that each pair of ciphertexts cannot be equal
in any of the four anti-diagonals, as shown by Biham and Keller in [5].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
K. Nguyen et al. (Eds.): ACISP 2022, LNCS 13494, pp. 24–45, 2022.
https://doi.org/10.1007/978-3-031-22301-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22301-3_2&domain=pdf
https://doi.org/10.1007/978-3-031-22301-3_2

Truncated Differential Properties of the Diagonal Set of Inputs 25

Table 1. Expected properties of a diagonal set after 5-round encryption. Given a set of
232 chosen plaintexts all equal in three diagonals (that is, a diagonal set), we consider
the distribution of the number of different pairs of ciphertexts that are equal in one
anti-diagonal (equivalently, that lie in a particular subspace IDI for I ⊆ {0, 1, 2, 3}
fixed with |I| = 3). Expected values for mean and variance of these distributions are
given in this table for 5-round AES and for a random permutation. Practical results
on AES are close and are discussed in Sect. 7.2.

Random permutation 5-round AES

Mean� (Theorem 4) 2 147 483 647.5 ≈ 231 2 147 484 685.6 ≈ 231 + 210

Variance (Theorem 4) 2 147 483 647 ≈ 231 76 842 293 834.905 ≈ 236.161

Multiple-of-8 [14] ✓

·� ≡ assuming an “APN-like” S-Box (for the 5-round AES case).

While a lot is known about the encryption of a diagonal set of plaintexts –
that is, a set of plaintexts with one (or more) active diagonal(s) – for up to 4-
round AES, an analysis for 5 or more rounds AES is still missing. At Eurocrypt
2017, a new property which is independent of the secret key has been found
for 5-round AES [14]. By appropriate choices of a number of input pairs, it
is possible to make sure that the number of times that the difference of the
resulting output pairs lie in a particular subspace ID is always a multiple of 8.
Such a distinguisher has then been exploited in, e.g., [2,11] for setting up new
competitive distinguishers and key-recovery attacks on round-reduced AES.

At the same time, some open questions arise from the result provided in [14]:
does this property influence the average number of output pairs that lie in such a
particular subspace (i.e., the mean)? Are other parameters (including the vari-
ance and the skewness) affected by the multiple-of-8 property?

In this paper, given a diagonal set of plaintexts, we consider the probability
distribution of the corresponding number of pairs of ciphertexts that are equal
in one fixed anti-diagonal after 5-round AES (without the final MixColumns
operation) – equivalently, that belong to the same coset of a particular subspace
ID – denoted in the following as the “(average) number of collisions”.

1.1 Contributions

As the main contribution, we perform for the first time a differential analysis of
such distribution after 5-round AES, and find significant deviations from ran-
dom, supported by practical implementations and verification. For a theoretical
explanation we have to resort to an APN-like assumption on the S-Box, which
closely resembles the AES-Sbox. A numerical summary is given in Table 1. All
the results presented in this paper are independent of the secret-key.

Mean of 5-Round AES. Firstly, by an appropriate choice of 232 plaintexts in
a diagonal space D, we prove for the first time that the average number of times
that the resulting output pairs are equal in one fixed anti-diagonal (equivalently,
the average number of times that the difference of the resulting output pairs

26 L. Grassi and C. Rechberger

lie in a particular subspace ID) is (a little) bigger for 5-round AES than for a
random permutation, independently of the secret key. A complete proof of this
result – under an “APN-like” assumption on the S-Box which closely resembles
the AES S-Box – can be found in Sect. 6.

Variance of 5-Round AES. Secondly, we theoretically compute the variance
of the probability distribution just defined, and we show that it is higher (by a
factor of approximately 36) for 5-round AES than for a random permutation. As
we are going to show, this result is mainly due to the “multiple-of-8” result [14]
proposed at Eurocrypt 2017. For this reason, with respect to the mean value,
the variance is independent of the details of the S-Box.

Practical Verification and Influence of the S-Box Details on the Mean.
We practically verified the mean on small-scale 5-round AES (namely, AES
defined over F

4×4
24 as proposed in [7]), and the variance both for small-scale

and real 5-round AES. As discussed in Sect. 7, practical results are close to the
theoretical ones in both cases. Before going on, we mention that the theoretical
and the practical results regarding the mean (almost) match if the S-Box sat-
isfies an “APN-like” assumption on the S-Box which closely resembles the AES
S-Box, namely, if the solutions of the equality S-Box(·⊕ΔI)⊕S-Box(·) = ΔO are
uniformly distributed for each non-zero input/output differences ΔI ,ΔO �= 0. In
the case in which this assumption – also used in other related works as [1,3] –
is not satisfied, then a gap between the theoretical and the practical results can
occur, as showed and discussed in details in the extended version of this paper
– see [13, App. C].

Probability Distribution of 5-Round AES. By combining the multiple-of-
8 property presented in [14], the mixture differential cryptanalysis [11,12] and
the results just mentioned about the mean and the variance, in Sect. 3 we show
the following: given a diagonal space of 232 plaintexts with one active diago-
nal, the probability distribution of the number of different pairs of ciphertexts
which are equal in one fixed anti-diagonal after 5-round AES (without the final
MixColumns operation) with respect to (1st) all possible secret keys and (2nd)
all possible initial diagonal spaces is well described by a sum of independent
binomial distributions B(n, p), that is

23 × B(n3, p3) + 210 × B(n10, p10) + 217 × B(n17, p17)

where the values of n3, n10, n17 and p3, p10, p17 are provided in the following.

1.2 Follow-Up Works: Truncated Differentials for 5-/6-Round AES

Before going on, we recall the other results concerning truncated differentials for
5- or 6-round AES present in the literature.

In [1], Bao, Guo and List presented “extended expectation cryptanalysis”
(or “extended truncated differential”) on round-reduced AES. By making use

Truncated Differential Properties of the Diagonal Set of Inputs 27

of expectation-based distinguishers, they are able to show how to extend the
well-known 3-round integral distinguisher to truncated differential secret-key
distinguishers over 4, 5 and even 6 rounds. The technique exploited to derive
such a result is based on results by Patarin [20], who observed that the expected
(average) number of collisions differs slightly for a sum of permutations from
the ideal. At the same time, authors showed that their results (namely, the
expectation distinguishers over 4-, 5- and 6-round AES proposed in the main
part of [1]) can be derived exploiting the same technique/strategy that we are
going to propose in this paper in Sect. 6, as showed in details in [1, App. C].

Later on, in [3] Bardeh and Rønjom developed another technique in order
to set an equivalent truncated differential distinguishers for up to 6-round AES.
Such technique – called the “exchange equivalence attack” – resembles the yoyo
technique [21] and the mixture differential cryptanalaysis [11], and it allows to
give a precise estimation of the average number of pairs of ciphertexts that are
equal in fixed anti-diagonal(s), given a particular set of chosen plaintexts. The
corresponding secret-key distinguisher on 6-round AES has complexity of about
288.2 computations and chosen texts.

Remark. Before going on, we remark that all these results are valid only under
the “APN” assumption of the S-Box previously mentioned. Namely, both our
and the theoretical results proposed in [1,3] regarding the average number of
collisions after 5 or more rounds of AES hold only in the case in which the
solutions of the equality S-Box(·⊕ΔI)⊕S-Box(·) = ΔO are uniformly distributed
for each non-zero input/output differences ΔI ,ΔO �= 0, an assumption that is
(almost) satisfied by the AES S-Box. More details about this are provided in the
following.

2 Preliminary

2.1 Advanced Encryption Standard (AES)

AES [9] is a Substitution-Permutation network based on the “Wide Trail Design”
strategy [10], that supports key size of 128, 192 and 256 bits. The 128-bit plain-
text initializes the internal state as a 4× 4 matrix of bytes as values in the finite
field F28 . Depending on the version of AES, Nr rounds are applied to the state:
Nr = 10 for AES-128, Nr = 12 for AES-192 and Nr = 14 for AES-256. An AES
round applies four operations to the state matrix:

– SubBytes (S-Box) - applying the same 8-bit to 8-bit invertible S-Box 16 times
in parallel on each byte of the state (provides non-linearity in the cipher);

– ShiftRows (SR) - cyclic shift of each row to the left;
– MixColumns (MC) - multiplication of each column by a constant 4×4 invert-

ible matrix (MC and SR provide diffusion in the cipher);
– AddRoundKey (ARK) - XORing the state with a 128-bit subkey k.

One round of AES can be described as R(x) = k ⊕ MC ◦ SR ◦ S-Box(x). In
the first round an additional AddRoundKey operation (using a whitening key)
is applied, and in the last round the MixColumns operation is omitted.

28 L. Grassi and C. Rechberger

Notation Used in the Paper. Let x denote a plaintext, a ciphertext, an interme-
diate state or a key. Then, xi,j with i, j ∈ {0, . . . , 3} denotes the byte in the row
i and in the column j. We denote by R one round of AES (and Rf if the Mix-
Columns operation is omitted), while we denote r rounds of AES by Rr (where
we use the notation Rr

f in the case in which the last MixColumns operation is
omitted). We also define the diagonal and the anti-diagonal of a text as follows.
The i-th diagonal of a 4 × 4 matrix A is defined as the elements that lie on row
r and column c such that r − c ≡4 i. The i-th anti-diagonal of a 4 × 4 matrix A
is defined as the elements that lie on row r and column c such that r + c ≡4 i.

2.2 Properties of an S-Box

Given a bijective S-Box function on F2n , let ΔI ,ΔO ∈ F2n . Let NΔI ,ΔO
denotes

the number of solutions of the equation

S-Box(x ⊕ ΔI) ⊕ S-Box(x) = ΔO (1)

for each ΔI �= 0 and ΔO �= 0. Obviously, (i) x is a solution if and only if x ⊕ ΔI

is a solution, and (ii) if ΔO = 0, then any x ∈ F2n is a solution if and only if
ΔI = 0 (the S-Box is bijective).

Let’s analyze the probability distribution related to NΔI ,ΔO
.

Mean Value. Independently of the details of the S-Box, the mean value (or the
average value) of NΔI ,ΔO

is equal to E[NΔI ,ΔO
] = 2n

2n−1 . Indeed, observe that for
each x and for each ΔI �= 0 there exists ΔO �= 0 (since S-Box is bijective) that
satisfies Eq. (1). Thus, the average number of solutions is 2n·(2n−1)

(2n−1)2 = 2n

(2n−1)

independently of the details of the (bijective) S-Box.

Variance. The variance Var(NΔI ,ΔO
) depends on the details of the S-Box. For

the AES S-Box case, for each ΔI �= 0 there are 128 values of ΔO �= 0 for which
Eq. (1) has no solution, 126 values of ΔO �= 0 for which Eq. (1) has 2 solutions
(x̂ is a solution if and only if x̂ ⊕ ΔI is a solution) and finally 1 value of ΔO �= 0
for which Eq. (1) has 4 solutions. The variance for the AES S-Box is so equal to
VarAES(NΔI ,ΔO

) = 22 · 126
255 + 42 · 1

255 − (
256
255

)2 = 67 064
65 025 .

Maximum Differential Probability. The Maximum Differential Probability
DPmax of an S-Box is defined as

DPmax = 2−n · max
ΔI �=0,ΔO

NΔI ,ΔO
. (2)

Since maxΔI �=0,ΔO
NΔI ,ΔO

≥ 2, DPmax is always bigger than or equal to 2−n+1.
Permutations with DPmax = 2−n+1 are called Almost Perfect Nonlinear (APN).

“Homogeneous” S-Box. Finally, given ΔI �= 0 (respectively, ΔO �= 0), con-
sider the probability distribution of NΔI ,ΔO

with respect to ΔO �= 0 (respec-
tively, ΔI �= 0): we say that the S-Box is (differential) “homogeneous” if such
distribution is independent of ΔI (respectively, ΔO). As a concrete example,
the AES S-Box is differential “homogeneous”, since for each ΔI �= 0 (fixed),

Truncated Differential Properties of the Diagonal Set of Inputs 29

Pr(NΔI ,ΔO
= 2) = 126

255 and Pr(NΔI ,ΔO
= 4) = 1

255 . Other examples of S-Boxes
that are/are not differential “homogeneous” are given in the extended version of
this paper – see [13, App. C].

3 Probability Distribution for 5-Round AES

In this section, we first recall some results already published in the literature
about round-reduced AES. Then, given a diagonal space of 232 plaintexts with
one active diagonal, we present the probability distribution of the number of
different pairs of ciphertexts which are equal in one fixed anti-diagonal after
5-round AES (without the final MixColumns operation).

3.1 Truncated Differentials for 2-Round AES

Here we recall the truncated differential for 2-round AES using the subspace
trail notation introduced in [15]. In the following, we only work with vectors and
vector spaces over F

4×4
2n , and we denote by {e0,0, . . . , e3,3} the unit vectors of

F
4×4
2n (e.g., ei,j has a single 1 in row i and column j).

Definition 1. For each i ∈ {0, 1, 2, 3}:
– The column spaces Ci are defined as Ci = 〈e0,i, e1,i, e2,i, e3,i〉.
– The diagonal spaces Di are defined as Di = SR−1(Ci). Similarly, the inverse-

diagonal spaces IDi are defined as IDi = SR(Ci).
– The i-th mixed spaces Mi are defined as Mi = MC(IDi).

Definition 2. For each I ⊆ {0, 1, 2, 3}, let CI , DI , IDI and MI be defined as

CI =
⊕

i∈I

Ci , DI =
⊕

i∈I

Di , IDI =
⊕

i∈I

IDi , MI =
⊕

i∈I

Mi .

Definition 3. Let t ∈ F
4×4
2n be a text in a coset of a space X ⊆ F

4×4
2n such

that X = 〈x0, x1, . . . , xd−1〉 where dim(X) = d, namely t ∈ X ⊕ γ. Given γ,
(t0, t1, . . . , td−1) ∈ F

d
2n are the generating variables of t if the following holds:

t ≡ (t0, t1, . . . , td−1) if and only if t = γ ⊕
d−1⊕

j=0

tj · xj .

As shown in detail in [15], for any coset DI ⊕ α there exists β ∈ F
4×4
28 such

that R(DI ⊕ α) = CI ⊕ β. In a similar way, for any coset CI ⊕ β there exists
γ ∈ F

4×4
28 such that R(CI ⊕ β) = MI ⊕ γ.

Theorem 1. ([15]). For each I ⊆ {0, 1, 2, 3} and for each α ∈ F
4×4
28 , there

exists β ∈ F
4×4
28 such that R2(DI ⊕ α) = MI ⊕ β. Equivalently:

Prob(R2(x) ⊕ R2(y) ∈ MI |x ⊕ y ∈ DI) = 1 . (3)

30 L. Grassi and C. Rechberger

3.2 Multiple-of-8 Property and Mixture Differential Cryptanalysis

As already recalled in the introduction, the first known property independent of
the secret-key for 5-round AES – called “multiple-of-8” property [14] – has been
presented at Eurocrypt 2017.

Theorem 2. ([14]). Let {pi}i∈{0,1,...,232·d−1} be 232·d plaintexts with 1 ≤ d ≤ 3
active diagonals, or equivalently in the same coset of a diagonal subspace DI for
a certain I ⊆ {0, 1, 2, 3} with |I| = d. Consider the corresponding ciphertexts
after 5 rounds (without the final MixColumns operation), that is, (pi, ci) for
i ∈ {0, . . . , 232·|I| − 1} where ci = R5

f (pi). The number of different pairs1 of
ciphertexts (ci, cj) that are equal in 1 ≤ a ≤ 3 anti-diagonals (i.e., that belong to
the same coset of a subspace IDJ for a certain J ⊆ {0, 1, 2, 3} with |J | = 4 − a)
is always a multiple of 8, independently of the secret key, of the details of the
S-Box and of the MixColumns matrix.

We refer to [6,11,14] for details. Such a result is strictly related to the mixture
differential cryptanalysis [11] proposed at FSE/ToSC’19.

Theorem 3. ([11]). Let t1, t2 be two texts in Ci ⊕γ for a certain i ∈ {0, 1, 2, 3},
namely two plaintexts that differ in the i-th column only. Let t1 ≡ (x1

0, x
1
1, x

1
2, x

1
3)

and t2 ≡ (x2
0, x

2
1, x

2
2, x

2
3) be their generating variables. Let s1, s2 ∈ Ci⊕γ be defined

as following:

– if x1
i �= x2

i for a certain i ∈ {0, 1, 2, 3}: the i-th generating variable s1i of s1 is
either x1

i or x2
i , and the i-th generating variable of s2 is {x1

i , x
2
i } \ s1i ;

– if x1
i = x2

i for a certain i ∈ {0, 1, 2, 3}: the i-th generating variable s1i of s1 is
equal to the i-th generating variable of s2 (no condition on the value).

The following holds:

1. R2(t1) ⊕ R2(t2) = R2(s1) ⊕ R2(s2);
2. for each J ⊆ {0, 1, 2, 3}:

R4(t1) ⊕ R4(t2) ∈ MJ if and only if R4(s1) ⊕ R4(s2) ∈ MJ .

3.3 Main Result: Probability Distribution for 5-Round AES

Given a set of 232·d plaintexts with 1 ≤ d ≤ 3 active diagonal(s), consider the
probability distribution of the number of pairs of ciphertexts which are equal in
1 ≤ a ≤ 3 fixed anti-diagonal(s) (without the final MixColumns operation):

– what can we say about the mean, the variance and the skewness of this
distribution?

– does the multiple-of-8 property influence the average number of output pairs
that lie in a particular subspace (i.e., the mean)? Are other parameters (as
the variance and the skewness) affected by the multiple-of-8 property?

1 Two pairs (s, t) and (t, s) are considered to be equivalent (i.e., they count per 1).

Truncated Differential Properties of the Diagonal Set of Inputs 31

Here we answer these questions.

Theorem 4. Given an AES-like cipher that works with texts in F
4×4
28 , assume

that (1st) the MixColumns matrix is an MDS matrix and that (2nd) the solutions
of the equation S-Box(x ⊕ ΔI) ⊕ S-Box(x) = ΔO are uniformly distributed for
each non-zero input/output difference ΔI �= 0 and ΔO �= 0.

Given 232 plaintexts {pi}i∈{0,1,...,232−1} with one active diagonal (i.e., in a
coset of a diagonal subspace Di for i ∈ {0, 1, 2, 3}), consider the number of
different pairs of ciphertexts (ch, cj) for h �= j that belong into the same coset
of IDJ for any fixed J ⊆ {0, 1, 2, 3} with |J | = 3. The corresponding probability
distribution – denoted in the following by D5-AES – with respect to

– all possible initial coset of the diagonal space Di, and
– all possible secret keys

is given by

D5-AES = 23 × B(n3, p3) + 210 × B(n10, p10) + 217 × B(n17, p17), (4)

where Bi ∼ B(ni, pi) for i ∈ {3, 10, 17} are binomial distributions, and where ni

and pi for i ∈ {3, 10, 17} are equal to

n3 = 228 · (28 − 1)4 , p3 = 2−32 + 2−53.983 ;

n10 = 223 · (28 − 1)3 , p10 = 2−32 − 2−45.989 ;

n17 = 3 · 215 · (28 − 1)2 , p17 = 2−32 + 2−37.986 .

Such distribution has mean value μ = 2147 484 685.6, and standard deviation
σ = 277 204.426.

In order to prove Theorem 4, we first derive the values ni for i = 3, 10, 17 and
prove the result given in Eq. (4). In the next sections, we formally compute the
probabilities pi for i ∈ {3, 10, 17}, the value of the mean and the variance.

4 Initial Considerations

About the S-Box: “Uniform Distribution of the Solutions of S-Box(·⊕
ΔI) ⊕ S-Box(·) = ΔO”. Before going further, we discuss the assumptions of
Theorem 4, focusing on the one related to the properties/details of the S-Box.
The fact that “the solutions of Eq. (1) are uniformly distributed for each ΔI �= 0
and ΔO �= 0” basically corresponds to an S-Box that satisfies the following
properties:

1. it is “homogeneous” (defined in Sect. 2.2);
2. its variance Var(NΔI ,ΔO

) is as “lower” as possible.2

2 Note that even if the variance Var(NΔI ,ΔO) is related to DPmax, S-Boxes with equal
DPmax can have very different variance. Moreover, the variance of an S-Box S1 can be
bigger than the corresponding variance of an S-Box S2 even if DPmax of S1 is lower
than DPmax of S2.

32 L. Grassi and C. Rechberger

This is close to being true if the S-Box is APN, or if the S-Box is “close” to be
APN. Although much is known for (bijective) APN permutations in odd dimen-
sion, it is known that there is no APN permutation of dimension 4 [18], there
is at least one APN permutation, up to equivalence, of dimension 6 (that is,
the Dillon’s permutation), while the question of finding an APN bijective (n, n)-
function for even n ≥ 8 is still open. As a result, in the case of dimensions equal
to a power of 2 (e.g., F24 or F28), the only (known) S-Box that (approximately)
matches the assumptions of the Theorem in dimensions 4 or 8 is the one gener-
ated by the multiplicative-inverse permutation3, as for example the AES S-Box,
which is not APN but differentially 4-uniform [19] (e.g., note that the variance
of the AES S-Box is 67 064/65 025 vs 64 004/65 025 of an APN S-Box). As we are
going to show, our practical results on small-scale AES (for which the S-Box has
the same property as the full-size AES one) are very close to the one predicted
by the previous Theorem.

We remark that even if the assumptions on the S-Box of Theorem 4 are
restrictive, they match criteria used to design an S-Box which is strong against
differential and linear cryptanalysis. As a result, many ciphers in the literature
are built using S-Boxes which (are close to) satisfy the assumptions of Theorem 4.

Influence of the S-Box. If the S-Box does not satisfy the required properties
related to the assumption of the Theorem, then the average number of collisions
can be different from the one previously given. To be more concrete, in the
extended version of this paper [13, App. C], we provide several practical examples
of the dependency of the average number of collisions for small-scale AES-like
ciphers with respect to the properties of the S-Box. We also mention that, in the
case in which the assumption about the S-Box is not fulfilled, it turned out (by
practical tests) that also the details of the MixColumns matrix can influence the
average number of collisions.

Probability Distribution of a Random Permutation. Here we briefly com-
pare the probability distribution for 5-round AES and the one of a random
permutation. This fact can be used to set up new truncated differential distin-
guishers for 5-round AES, as we are going to show concretely in the extended
version of this paper [13, Sect. 8].

Proposition 1. Consider 232 plaintexts {pi}i∈{0,1,...,232−1} with one active
diagonal (equivalently, a coset of a diagonal space Di for i ∈ {0, 1, 2, 3}),
and the corresponding (cipher)texts generated by a random permutation Π,
that is ci = Π(pi). The probability distribution of the number of different
pairs of ciphertexts (ch, cj) that belong to the same coset of IDJ for any fixed
J ⊆ {0, 1, 2, 3} with |J | = 3 is given by a binomial distribution B(n, p), where
n =

(
232

2

)
= 231 · (232 − 1) and p = 296−1

2128−1 ≈ 2−32. The average number of

3 Variance, homogeneous differential property and DPmax of an S-Box S remain
unchanged if affine transformations are applied in the domain or co-domain of S.

Truncated Differential Properties of the Diagonal Set of Inputs 33

Fig. 1. Comparison between the theoretical probability distribution of the number of
collisions between 5-round AES (approximated – only here – by a normal distribution)
and a random permutation. Remark: since the AES probability distribution – in red –
satisfies the multiple-of-8 property, then the probability in the case in which the number
of collision n is not a multiple of 8 is equal to zero, namely Prob(n �= 8 ·n′) = 0. (Color
figure online)

collisions of such distribution is equal to 231 − 0.5 = 2 147 483 647.5, while its
variance is equal to 2 147 483 647 � 231.

It follows that:

– independently of the secret key, the average number of pairs of ciphertexts
which are equal in one fixed anti-diagonal is (a little) bigger for 5-round AES
than for a random permutation (approximately 1 038.1 more collisions);

– independently of the secret key, the variance of the probability distribution
of the number of collisions is much bigger for 5-round AES than for a random
permutation (approximately of a factor 36).

To highlight this difference, Fig. 1 proposes a comparison between the probability
distribution of the number of collisions for the AES case (approximated here for
simplicity by a normal distribution) in red and of the random case in blue.

5 Proof of Theorem4: Sum of Binomial Distributions

Consider a set of 232 plaintexts with one active diagonal and the corresponding
ciphertexts after 5-round AES (without the final MixColumns operation). As
shown by the multiple-of-8 property [14] and by the mixture differential crypt-
analysis [11], the corresponding pairs of ciphertexts of such set of plaintexts are
not independent/unrelated. In particular, these pairs of texts can be divided in
n3 + n10 + n17 + n24 sets defined as in [11] (recalled in Theorem 3) such that

1. for each i ∈ {3, 10, 17, 24}, exactly ni sets have cardinality 2i;
2. each one of these sets contains pairs of texts for which i out of the four gen-

erating variables are equal (and 4 − i are different) after 1-round encryption;

34 L. Grassi and C. Rechberger

3. given each one of such sets, it is not possible that some pairs of ciphertexts
are equal in 1 ≤ a ≤ 3 anti-diagonals (i.e., that belong to the same coset of
IDJ) after 5-round, while other pairs of ciphertexts in the same set are not
equal in those a anti-diagonals;

4. pairs of texts of different sets are independent (in the sense that pairs of texts
of different sets do not satisfy the property just given for the case of pairs of
texts that belong to the same set).

The values of n3, n10, n17, n24 are computed in details in the next paragraph.
Due to the impossible differential trail on 4-round AES [5,15], if three out

of the four generating variables of the input plaintexts are equal after 1-round
encryption, then the corresponding ciphertexts cannot be equal in any anti-
diagonal. In other words, the probability p24 is equal to zero. For this reason,
we will only focus on n3, n10, n17 in the following.

About the Values of n3, n10, n17. Given a set of 232 chosen texts with one
active column4, the number of pairs of texts with 0 ≤ v ≤ 3 equal generating
variables (and 4 − v different generating variables) after one round is given by

(
4
v

)
· 231 · (28 − 1)4−v . (5)

Indeed, note that if v variables are equal for the two texts of the given pair, then
these variables can take (28)v different values. For each one of the remaining
4 − v variables, the variables must be different for the two texts. Thus, these
4 − v variables can take exactly

[
28 · (28 − 1)

]4−v
/2 different values. The result

follows from the fact that there are
(
4
v

)
different combinations of v variables.

Due to Eq. (5), the number nv of the sets of pairs of texts with “no equal
generating variables” (namely, v = 0), the set of pairs of texts with “one equal
and three different generating variable(s)” (namely, v = 1) and finally the set of
pairs of texts with “two equal and two different generating variable” (namely,
v = 2) are given by:

∀v ∈ {0, 1, 2} : n7·v+3 =
(

4
v

)
· 231 · (28 − 1)4−v

27·v+3
. (6)

About Binomial Distributions Bi ∼ B(ni, pi) for i ∈ {3, 10, 17}. Due
to the previous facts, it follows that the probability of the event “n = 8 · n′

pairs of ciphertexts equal in one fixed anti-diagonal” for n′ ∈ N – equivalently,
“n = 8 · n′ collisions” in a coset of IDJ for J ⊆ {0, 1, 2, 3} with |J | = 3 –
corresponds to the sum of the probabilities to have “23 · k3 collisions in the first
set and 210 · k10 collisions in the second set and 217 · k17 collisions in the third
set” for each k3, k10, k17 such that 23 · k3 + 210 · k10 + 217 · k17 = n.

4 One active diagonal is mapped to one active column after 1-round AES encryption.

Truncated Differential Properties of the Diagonal Set of Inputs 35

Each one of these (independent) events is well characterized by a binomial
distribution. By definition, a binomial distribution with parameters n and p is
the discrete probability distribution of the number of successes in a sequence of
n independent yes/no experiments, each of which yields success with probability
p. In our case, given n pairs of texts, each one of them satisfies or not the above
property/requirement with the same probability p.

Probability Distribution. Due to all these initial considerations (based on the
multiple-of-8 property and on the mixture differential cryptanalysis), it follows
that the distribution 5-AES of the number of collisions for the AES case is well
described by

D5-AES = 23 × B3 + 210 × B10 + 217 × B17 ,

where Bi ∼ B(ni, pi) for i = 3, 10, 17 are independent binomial distributions. In
the following, we formally compute the values of ni and of pi.

Mean Value and Variance. Due to the results just presented, it follows that
the mean value μ of 5-AES is given by

μ =E[D5-AES] = E[23 × B3 + 210 × B10 + 217 × B17]

=23 · E[B3] + 210 · E[B10] + 217 · E[B17]

=23 · n3 · p3 + 210 · n10 · p10 + 217 · n17 · p17 ,

where E[a ·X + b ·Y + c] = a ·E[X] + b ·E[Y] + c for each a, b, c ∈ R and for each
random variable X and Y . Similarly, the variance σ2 is given by

σ2 = Var(D5-AES) = Var(23 × B3 + 210 × B10 + 217 × B17)

= 26 · Var(B3) + 220 · Var(B10) + 234 · Var(B17)

= 26 · n3 · p3 · (1 − p3) + 210 · n10 · p10 · (1 − p10) + 217 · n17 · p17 · (1 − p17),

where Var(a ·X + b ·Y + c) = a2 · Var(X)+ b2 · Var(Y) for each a, b, c ∈ R under
the assumption that X and Y are independent random variables (remember
that B3,B10,B17 are independent).

6 Proof of Theorem 4: About the Probabilities p3, p10, p17

6.1 Reduction to the Middle Round

In order to compute the probabilities p3, p10 and p17 given before for 5 rounds
AES, the idea is to work on an equivalent result on a single round. Due to the
2-round truncated differential with prob. 1 recalled in Sect. 3.1, we have that

Di ⊕ δ
R2(·)−−−−→
prob. 1

Mi ⊕ ω
R(·)−−→ DJ ⊕ δ′ R2

f (·)−−−−→
prob. 1

IDJ ⊕ ω′ . (7)

For this reason, it is sufficient to focus on the middle round Mi ⊕ω
R(·)−−→ DJ ⊕δ′

in order to compute the desired result.

36 L. Grassi and C. Rechberger

Sketch and Organization of the Proof. W.l.o.g., we limit ourselves to consider
plaintexts in the same coset of M0 and to count the number of texts which are
equal in the first diagonal after one round (the other cases are analogous). By
definition of M0, if p1, p2 ∈ M0 ⊕ ω, then there exist xi, yi, zi, wi ∈ F28 for
i ∈ {1, 2} such that:

pi = ω ⊕

⎡

⎢
⎢
⎣

2 · xi yi zi 3 · wi

xi yi 3 · zi 2 · wi

xi 3 · yi 2 · zi wi

3 · xi 2 · yi zi wi

⎤

⎥
⎥
⎦ ,

where 2 ≡ 0 × 02 and 3 ≡ 0 × 03. In the following, we say that p1 is
“generated” by the generating variables (x1, y1, z1, w1) and that p2 is “gener-
ated” by the generating variables (x2, y2, z2, w2). As before, we use the notation
pi ≡ (xi, yi, zi, wi). The proof is organized as follows:

1. first of all, we limit ourselves to consider a subset of 216 texts with only 2
active bytes. Since this case is much simpler to analyze than the generic one,
it allows us to highlight the crucial points of the proof;

2. we then present the complete proof for the case of 232 texts in the same coset
of M0. Roughly speaking, this case is split in various sub-cases: each one of
them is studied/analyzed independently of the others using the same strategy
proposed for the simplest case of 216 texts. The final result is obtained by
simply combining the results of each one of these sub-cases.

We emphasize that the following computations are not influenced by neither
the value of the secret key nor the value of the initial coset of the diagonal
subspace Di. That is, the following results are the average with respect to these
two values.

6.2 A “Simpler” Case: 216 Texts with Two Equal Generating
Variables

As a first case, we consider 216 texts for which two generating variables are equal,
e.g., z1 = z2 and w1 = w2. Given two texts p1 generated by (x1, y1, 0, 0) and p2

generated by (x2, y2, 0, 0), they are equal in the first diagonal after one round if
and only if the following four equations are satisfied

(R(p1) ⊕ R(p2))0,0 =2 · (S-Box(2 · x1 ⊕ a0,0) ⊕ S-Box(2 · x2 ⊕ a0,0))

⊕ 3 · (S-Box(y1 ⊕ a1,1) ⊕ S-Box(y2 ⊕ a1,1)) = 0 ,

(R(p1) ⊕ R(p2))1,1 =S-Box(3 · x1 ⊕ a3,0) ⊕ S-Box(3 · x2 ⊕ a3,0)

⊕ S-Box(y1 ⊕ a0,1) ⊕ S-Box(y2 ⊕ a0,1) = 0 ,

(R(p1) ⊕ R(p2))2,2 =2 · (S-Box(x1 ⊕ a2,0) ⊕ S-Box(x2 ⊕ a2,0))

⊕ 3 · (S-Box(2 · y1 ⊕ a3,1) ⊕ S-Box(2 · y2 ⊕ a3,1)) = 0 ,

(R(p1) ⊕ R(p2))3,3 =S-Box(x1 ⊕ a1,0) ⊕ S-Box(x2 ⊕ a1,0)

⊕ S-Box(3 · y1 ⊕ a2,1) ⊕ S-Box(3 · y2 ⊕ a2,1) = 0 ,

Truncated Differential Properties of the Diagonal Set of Inputs 37

where a·,· ∈ F28 depends on the initial key and on the constant ω ∈ F
4×4
28 that

defines the coset. Equivalently, four equations of the form

A · (
S-Box(B · x1 ⊕ a) ⊕ S-Box(B · x2 ⊕ a)

)

⊕C · (S-Box(D · y1 ⊕ c) ⊕ S-Box(D · y2 ⊕ c)
)

= 0
(8)

must be satisfied, where A,B,C,D ∈ F28 depend on the MixColumns matrix,
while a, c ∈ F28 depend on the secret key and on the initial constant ω.

Number of Solutions of Each Equation. Consider one of these four equations.
By simple observation, Eq. (8) is satisfied if and only if the following system of
equations is satisfied

S-Box(x̂ ⊕ ΔI) ⊕ S-Box(x̂) = ΔO

S-Box(ŷ ⊕ Δ′
I) ⊕ S-Box(ŷ) = Δ′

O

Δ′
O = C−1 · A · ΔO

(9)

for each value of ΔO, where x̂ = B · x1 ⊕ a, ΔI = B · (x1 ⊕ x2), ŷ = D · y1 ⊕ c
and Δ′

I = D · (y1 ⊕ y2). We emphasize that we exclude null solutions.
What is the number of different (not null) solutions {(x1, y1), (x2, y2)} of

Eq. (8)? Given ΔO �= 0, each one of the first two equations of (9) admits 256
different solutions (x̂,ΔI) (respectively, (ŷ, Δ′

I)), since for each value of x̂ ∈ F28 ,
there exists ΔI �= 0 that satisfies the first equation (similar for ŷ and Δ′

I).
It follows that the number of different solutions {(x1, y1), (x2, y2)} of Eq. (8)
considering all the 255 possible values of ΔO is exactly equal to

1
2

· 255 · (256)2 = 255 · 215 ,

Independent of the Details of the S-Box. The factor 1/2 is due to the fact that
we consider only different solutions, that is, two solutions of the form (p1 ≡
(x1, y1), p2 ≡ (x2, y2)) and (p2 ≡ (x1, y1), p1 ≡ (x2, y2)) are equivalent. In other
words, a solution {(x1, y1), (x2, y2)} is valid if x2 �= x1 and y1 < y2.

Probability of Common Solutions. Knowing the number of solutions of Eq. (8),
what is the number of common (different) solutions {(x1, y1), (x2, y2)} of four
equations of the form (8)? We have just seen that each equation of the form (8)
has exactly 255 · 215 different (not null) solutions {(x1, y1), (x2, y2)}. Assuming
the APN-like assumption on the S-Box and the fact that the MixColumns is
defined by an MDS matrix, the probability that two equations admit the same
solution (i.e., that {(x1, y1), (x2, y2)} – solution of one equation – is equal to
{(x̂1, ŷ1), (x̂2, ŷ2)} – solution of another equation) is

(256 · 255)−1 · (255 · 128)−1 = 255−2 · 2−15 . (10)

To explain this probability, the first term (256 · 255)−1 is due to the fact that
x1 = x̂1 with probability 256−1, while x2 = x̂2 with probability 255−1, since by

38 L. Grassi and C. Rechberger

assumption x2 (respectively, x̂2) cannot be equal to x1 (respectively, x̂1). The
second term (128 · 255)−1 is due to the assumption on the second variable, that
is y1 < y2. To explain it, note that the possible number of pairs (y1, y2) with
y1 < y2 is

∑255
i=0 i = 255·(255+1)

2 = 255 · 128.5 It follows that y1 and y2 are equal
to ŷ1 and ŷ2 with probability (128 · 255)−1.

Total Number of (Different) Common Solutions. In conclusion, the average num-
ber of common (different) solutions {(x1, y1), (x2, y2)} of 4 equations of the form
(8) is given by

(255 · 215)4 · (255−2 · 2−15)3 =
215

2552
� 0.503929258 � 2−1 + 2−7.992 .

For comparison, in the case in which the ciphertexts are generated by a random
permutation, the average number of pairs of ciphertexts that satisfy the previous
property is approximately given by

(
216

2

)
· (2−8)4 =

216 − 1
217

� 0.499992371 � 2−1 − 2−17 .

Remark: About the MDS Assumption. We highlight that the probability
(10) strongly depends on the assumptions that

– the solutions of Eq. (1) – hence, the numbers NΔI ,ΔO
– are uniformly dis-

tributed for each ΔI �= 0 and ΔO �= 0;
– there is “no (obvious/non-trivial) relation” between the solutions of the stud-

ied system of four equations of the form (8). This means that the four Eqs. (8)
must be independent/unrelated, in the sense that the solution of one equation
is not a solution of another one with probability different than the one given
in (10).

Focusing here on this second requirement, a relation among solutions of different
equations can arise if some relations hold between the coefficients A,B,C,D
of different equations of the form (8). Since these are the coefficients of the
MixColumns matrix and since such matrix is MDS, no non-trivial linear relation
among the rows/columns of any submatrix exists.

6.3 Generic Case: 232 Texts

As next step, we adapt the strategy just presented in order to analyze the case
of 232 texts in the same coset of M0. Two texts p1, p2 are equal in one diagonal

5 E.g., if y1 = 0x0 then y2 can take 255 different values (all values except 0), if y1 = 0x1
then y2 can take 254 different values (all values except 0x0, 0x1) and so on. Given
y1 = d with 0 ≤ d ≤ 255, then y2 can take 255 − d different values.

Truncated Differential Properties of the Diagonal Set of Inputs 39

after one round if and only if four equations of the form

A · (
S-Box(B · x1 ⊕ b) ⊕ S-Box(B · x2 ⊕ b)

)

⊕C · (S-Box(D · y1 ⊕ d) ⊕ S-Box(D · y2 ⊕ d)
)

⊕E · (
S-Box(F · z1 ⊕ f) ⊕ S-Box(F · z2 ⊕ f)

)

⊕G · (S-Box(H · w1 ⊕ h) ⊕ S-Box(H · w2 ⊕ h)
)

= 0

(11)

are satisfied, where A,B,C,D,E, F,G,H ∈ F28 depend only on the MixColumns
matrix, while b, d, f, h ∈ F28 depend on the secret key and on the constant ω
that defined the initial coset, as before. Each one of these equations is equivalent
to a system of equations like (9), that is:

S-Box(x̂ ⊕ ΔI) ⊕ S-Box(x̂) = ΔO S-Box(ŷ ⊕ Δ′
I) ⊕ S-Box(ŷ) = Δ′

O

S-Box(ẑ ⊕ Δ
′′
I) ⊕ S-Box(ẑ) = Δ

′′
O S-Box(ŵ ⊕ Δ

′′′
I) ⊕ S-Box(ŵ) = Δ

′′′
O

together with one of the following conditions

1. Δ
′′′
O = Δ

′′
O = 0 and Δ′

O = C−1 · A · ΔO �= 0, or analogous (six possibilities in
total);

2. Δ
′′′
O = 0 and ΔO,Δ

′
O,Δ

′′
O �= 0 and Δ

′′
O = E−1 ·(A ·ΔO ⊕C ·Δ′

O), or analogous
(four possibilities in total);

3. ΔO,Δ
′
O,Δ

′′
O,Δ

′′′
O �= 0 and Δ

′′′
O = G−1 · (A · ΔO ⊕ C · Δ′

O ⊕ E · Δ
′′
O).

First Case. Since the first case (Δ
′′′
O = Δ

′′
O = 0) is analogous to the case in

which two generating variables are equal, we can limit ourselves to re-use the
previous computation. In the case Δ

′′′
O = Δ

′′
O = 0 and Δ′

O = C−1 · A · ΔO �= 0,
the only possible solutions of the third and fourth equations are of the form
(ẑ, Δ

′′
I = 0) and (ŵ,Δ

′′′
I = 0) for each possible value of ẑ, ŵ ∈ F28 . Using the

same computation as before, the average number of common solutions for this
case is (

4
2

)
· 2562 · 215

2552
=

232

21 675
� 198 153.047 . (12)

About Probability p17. By definition of probability, the probability p17 – given
in Theorem 4 – that pairs of texts with two equal (and two different) generating
variables are equal in one diagonal after one round is given by:

p17 =
1

217 × n17
· 232

21 675
= 2−32 + 2−37.98588 , (13)

where 217 × n17 is the total number of pairs of texts with two equal (and two
different) generating variables.

40 L. Grassi and C. Rechberger

Second Case. Consider now the case Δ
′′′
O = 0 and ΔO,Δ′

O,Δ
′′
O �= 0 (i.e.,

ΔI ,Δ
′
I ,Δ

′′
I �= 0). First of all, note that ΔO �= 0 can take 255 different values,

while Δ′
O �= 0 can take only 254 different values (since it must be different from

0 and from C−1 · A · ΔO).
Using the same argumentation given before, for each Eq. (11) the number

of different solutions {(x1, y1, z1, w1), (x2, y2, z2, w2)} – with z1 < z2 and where
w1 = w2 – is given by

(
4
1

) · 256 · (
1
2 · 255 · 254 · (256)3

)
= 210 · (

32 385 · 224
)
,

where the initial factor
(
4
1

) · 256 is due to the condition w1 = w2 and on the fact
that there are four analogous cases (namely, x1 = x2 or y1 = y2 or z1 = z2).
Similar to before, the probability that two equations of the form (11) – where
w1 = w2 – have a common solution is given by (256 · 255)−2 · (128 · 255)−1 =
2−23 · 255−3 under (1st) the assumption of uniform distribution of the solutions
nΔI ,ΔO

of Eq. (1) and (2nd) the assumption that there is “no (obvious/non-
trivial) relation” between the solutions of the studied system of four equations
of the form (11). It follows that the average number of common solutions for the
four equations of the form (11) is

(
4
1

)
· 256 · (32 385 · 224)4 · (2−23 · 255−3)3 =

1274 · 237

2555
� 33 160 710.047 . (14)

About Probability p10. As before, the probability p10 – given in Theorem 4 –
that pairs of texts with one equal (and three different) generating variable(s) are
equal in one diagonal after one round is given by:

p10 =
1

210 × n10
· 1274 · 237

2555
= 2−32 − 2−45.98874 . (15)

Third Case. We finally consider the case ΔO,Δ′
O,Δ

′′
O,Δ

′′′
O �= 0. By simple

computation, the number of different values that satisfy Δ
′′′
O = G−1 · (A · ΔO ⊕

C · Δ′
O ⊕ E · Δ

′′
O). is given by 2553 − (255 · 254) = 16 516 605. Indeed, the total

number of ΔO,Δ′
O,Δ

′′
O �= 0 is 2553, while 255 · 254 is the total number of values

ΔO,Δ′
O,Δ

′′
O �= 0 for which Δ

′′′
O is equal to zero (which is not possible since

Δ
′′′
O �= 0 by assumption). In more detail, firstly observe that for each value of

ΔO there is a value of Δ
′
O that satisfies A · ΔO = C · Δ′

O. For this pair of values
(ΔO,Δ′

O = C−1 · A · ΔO), the previous equation Δ
′′′
O = G−1 · E · Δ

′′
O is always

different from zero, since Δ
′′
O �= 0. Secondly, for each one of the 255 · 254 values

of the pair (ΔO,Δ′
O �= C−1 · A · ΔO), there is only one value of Δ

′′
O such that

the previous equation is equal to zero.
Hence, the total number of different solutions {(x1, y1, z1, w1), (x2, y2,

z2, w2)} with w1 < w2 of each equation corresponding to (11) is 1
2 · 16 516 605·

(256)4 = 16 516 605 · 231. Since the probability that two solutions {(x1, y1,
z1, w1), (x2, y2, z2, w2)} and {(x̂1, ŷ1, ẑ1, ŵ1), (x̂2, ŷ2, ẑ2, ŵ2)} are equal is (255 ·
256)−3 · (255 · 128)−1 = 255−4 · 2−31 under (1st) the assumption of uniform dis-
tribution of the solutions of Eq. (1) and (2nd) the assumption that there is “no
(obvious/non-trivial) relation” between the solutions of the studied system of

Truncated Differential Properties of the Diagonal Set of Inputs 41

four equations of the form (11), the average number of common solutions (with
no equal generating variables) is

(
16 516 605 · 231

)4·(255−4 · 2−31)3 =
64 7714 · 231

2558
� 2 114 125 822.5 . (16)

About Probability p3. As before, the probability p3 given in Theorem 4 that pairs
of texts with no equal generating variable are equal in one diagonal after one
round is given by:

p3 =
1

23 × n3
· 64 7714 · 231

2558
= 2−32 + 2−53.98306 . (17)

Total Number of (Different) Common Solutions. Based on the results just
proposed, given plaintexts in the same coset of M0, the number of different pairs
of ciphertexts that are equal in one fixed diagonal after 1-round (equivalently,
the number of collisions in DJ for |J | = 3) is

2 114 125 822.5+33 160 710.047+198 153.047 � 2 147 484 685.594 � 231 +210.02 .

Since the total number of pairs of texts is 231 · (232 − 1), the probability for the
AES case that a couple of ciphertexts (c1, c2) satisfies c1 ⊕ c2 ∈ DJ for |J | = 3
fixed is equal to

pAES � 2 147 484 685.594
231 · (232 − 1)

� 2−32 + 2−52.9803

versus ≈ 2−32 − 2−128 for the case of a random permutation.

7 Practical Results for 5-Round AES

We have practically verified the mean and the variance for 5-round AES given
above (in Theorem 4) using a C/C++ implementation6. In particular, we have
verified the mean value on a small-scale AES as proposed in [7], and the variance
value both on full-size and on the small-scale AES.

7.1 Probability Distribution of 5-Round AES over (F2n)4×4

Firstly, we generalize Theorem 4 for the case of 5-round AES defined over F4×4
2n .

Proposition 2. Consider an AES-like cipher that works with texts in F
4×4
2n ,

such that (1st) the MixColumns matrix is an MDS matrix and such that (2nd)
the solutions of Eq. (1) are uniformly distributed for each input/output difference
ΔI �= 0 and ΔO �= 0. Given 24n plaintexts {pi}i∈{0,1,...,24n−1} with one active
diagonal (equivalently, in a coset of a diagonal space Di for i ∈ {0, 1, 2, 3}), con-
sider the corresponding ciphertexts after 5 rounds without the final MixColumns
operation, that is, ci = R5

f (pi). Independently of

6 The source codes of the distinguishers/attacks can be found at https://github.com/
Krypto-iaik/TruncatedDiff5roundAES.

https://github.com/Krypto-iaik/TruncatedDiff5roundAES
https://github.com/Krypto-iaik/TruncatedDiff5roundAES

42 L. Grassi and C. Rechberger

– the initial coset of Di, and
– the value of the secret key,

the average number of different pairs of ciphertexts (ch, cj) for h �= j that belong
to the same coset of IDJ for any fixed J ⊆ {0, 1, 2, 3} with |J | = 3 is equal to

24n−1 · (22n − 3 · 2n + 3)4

(2n − 1)8
+

(2n−1 − 1)4 · 24n+5

(2n − 1)5
+ 3 · 24n

(2n − 1)2
, (18)

and the variance of such distribution is given by

24n+2 · (22n − 3 · 2n + 3)4

(2n − 1)8
+

(2n−1 − 1)4 · 25n+7

(2n − 1)5
+

3 · 26n+1

(2n − 1)2
. (19)

The proof is analogous to the one just given for F
4×4
28 .

7.2 Practical Results for 5-Round AES over F
4×4
2n for n ∈ {4, 8}

Practical Results: Variance of 5-round AES over F
4×4
28 . Our practical results

regarding the variance σ2 for full-size AES over 320 different initial cosets and
keys are

σ2
T = 76 842 293 834.905 � 236.161 versus σ2

P = 73 288 132 411.36 � 236.093 ,

where the subscript ·T denotes the theoretical value and the subscript ·P the
practical one.

Practical Results for 5-round AES over F
4×4
24 . Our practical results for small-

scale AES regarding the mean μ over 125 000 � 217 different initial cosets and
keys are

μT
AES = 32 847.124 versus μP

AES = 32 848.57 ;

μT
rand = 32 767.5 versus μP

rand = 32 768.2 .

Our practical results for small-scale AES regarding the standard deviation σ
over 100 different initial cosets and keys are

σT
AES = 1036.58 versus σP

AES = 1027.93 ;

σT
rand = 181.02 versus σP

rand = 182.42 .

The Probability Distribution for 5-Round AES Is not Symmetric.
Figure 2 highlights the difference between the practical probability distribution
of the number of collisions for small-scale AES and for a random permutation.

By Fig. 2, it turns out that small-scale 5-round AES distribution has a pos-
itive skew, while the skew of the random distribution is approximately equal
to zero. The skewness is the parameter that measures the asymmetry of the

Truncated Differential Properties of the Diagonal Set of Inputs 43

Fig. 2. Comparison between the probability distribution of the number of collisions
between theoretical small-scale 5-round AES (approximated by a normal distribution)
and the practical one. Remark: since the AES probability distribution satisfies the
multiple-of-8 property, then the probability in the case in which the number of collisions
n is not a multiple of 8 is equal to zero.

probability distribution of a real-valued random variable about its mean. We
practically derived the values of the skewness γ both for full-size AES and for
small-scale one using 29 initial cosets, and we got the following results:

γAES � 0.43786 and γAES
small-scale � 0.4687 ,

where the skew of a random permutation is close to zero. We leave the open
problem to theoretically compute the skew for small/real-size AES (and to set
up a corresponding distinguisher if possible) as a future work.

Acknowledgements. This work was accomplished when L. Grassi was at IAIK, Graz
University of Technology, Austria. Authors thank also anonymous reviewers for their
valuable comments and suggestions. L. Grassi is currently supported by the European
Research Council under the ERC advanced grant agreement under grant ERC-2017-
ADG Nr. 788980 ESCADA.

References

1. Bao, Z., Guo, J., List, E.: Extended truncated-differential distinguishers on round-
reduced AES. IACR Trans. Symmetric Cryptol. 2020(3), 197–261 (2020)

2. Bar-On, A., Dunkelman, O., Keller, N., Ronen, E., Shamir, A.: Improved key
recovery attacks on reduced-round AES with practical data and memory complex-
ities. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp.
185–212. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 7

3. Bardeh, N.G., Rønjom, S.: The exchange attack: how to distinguish six rounds
of AES with 288.2 chosen plaintexts. In: Galbraith, S.D., Moriai, S. (eds.) ASI-
ACRYPT 2019. LNCS, vol. 11923, pp. 347–370. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-34618-8 12

https://doi.org/10.1007/978-3-319-96881-0_7
https://doi.org/10.1007/978-3-030-34618-8_12
https://doi.org/10.1007/978-3-030-34618-8_12

44 L. Grassi and C. Rechberger

4. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of skipjack reduced to 31
rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS,
vol. 1592, pp. 12–23. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48910-X 2

5. Biham, E., Keller, N.: Cryptanalysis of reduced variants of Rijndael (2001). Unpub-
lished. http://csrc.nist.gov/archive/aes/round2/conf3/papers/35-ebiham.pdf

6. Boura, C., Canteaut, A., Coggia, D.: A general proof framework for recent AES
distinguishers. IACR Trans. Symmetric Cryptol. 2019(1), 170–191 (2019)

7. Cid, C., Murphy, S., Robshaw, M.J.B.: Small scale variants of the AES. In: Gilbert,
H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 145–162. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11502760 10

8. Daemen, J., Knudsen, L., Rijmen, V.: The block cipher square. In: Biham, E. (ed.)
FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997). https://doi.
org/10.1007/BFb0052343

9. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryp-
tion Standard, Ser. Information Security and Cryptography. Springer, Heidelberg
(2002). https://doi.org/10.1007/978-3-662-04722-4

10. Daemen, J., Rijmen, V.: Security of a wide trail design. In: Menezes, A., Sarkar, P.
(eds.) INDOCRYPT 2002. LNCS, vol. 2551, pp. 1–11. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-36231-2 1

11. Grassi, L.: Mixture differential cryptanalysis: a new approach to distinguishers
and attacks on round-reduced AES. IACR Trans. Symmetric Cryptol. 2018(2),
133–160 (2018)

12. Grassi, L.: Probabilistic mixture differential cryptanalysis on round-reduced AES.
In: Paterson, K.G., Stebila, D. (eds.) SAC 2019. LNCS, vol. 11959, pp. 53–84.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38471-5 3

13. Grassi, L., Rechberger, C.: Truncated Differential Properties of the Diagonal Set
of Inputs for 5-round AES (Extended Version), Cryptology ePrint Archive, Report
2018/182 (2018). https://ia.cr/2018/182

14. Grassi, L., Rechberger, C., Rønjom, S.: A new structural-differential property of
5-round AES. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10211, pp. 289–317. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-56614-6 10

15. Grassi, L., Rechberger, C., Rønjom, S.: Subspace trail cryptanalysis and its appli-
cations to AES. IACR Trans. Symmetric Cryptol. 2016(2), 192–225 (2017)

16. Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) FSE
1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995). https://doi.org/
10.1007/3-540-60590-8 16

17. Lai, X.: Higher order derivatives and differential cryptanalysis. In: Blahut, R.E.,
Costello, D.J., Maurer, U., Mittelholzer, T. (eds.) Communications and Cryptogra-
phy. The Springer International Series in Engineering and Computer Science, vol.
276, pp. 227–233. Springer, Boston (1994). https://doi.org/10.1007/978-1-4615-
2694-0 23

18. Leander, G., Poschmann, A.: On the classification of 4 bit S-boxes. In: Carlet, C.,
Sunar, B. (eds.) WAIFI 2007. LNCS, vol. 4547, pp. 159–176. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73074-3 13

19. Nyberg, K.: Perfect nonlinear S-boxes. In: Davies, D.W. (ed.) EUROCRYPT 1991.
LNCS, vol. 547, pp. 378–386. Springer, Heidelberg (1991). https://doi.org/10.1007/
3-540-46416-6 32

https://doi.org/10.1007/3-540-48910-X_2
https://doi.org/10.1007/3-540-48910-X_2
http://csrc.nist.gov/archive/aes/round2/conf3/papers/35-ebiham.pdf
https://doi.org/10.1007/11502760_10
https://doi.org/10.1007/BFb0052343
https://doi.org/10.1007/BFb0052343
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/3-540-36231-2_1
https://doi.org/10.1007/978-3-030-38471-5_3
https://ia.cr/2018/182
https://doi.org/10.1007/978-3-319-56614-6_10
https://doi.org/10.1007/978-3-319-56614-6_10
https://doi.org/10.1007/3-540-60590-8_16
https://doi.org/10.1007/3-540-60590-8_16
https://doi.org/10.1007/978-1-4615-2694-0_23
https://doi.org/10.1007/978-1-4615-2694-0_23
https://doi.org/10.1007/978-3-540-73074-3_13
https://doi.org/10.1007/3-540-46416-6_32
https://doi.org/10.1007/3-540-46416-6_32

Truncated Differential Properties of the Diagonal Set of Inputs 45

20. Patarin, J.: Generic attacks for the Xor of k random permutations. In: Jacobson,
M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol.
7954, pp. 154–169. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38980-1 10

21. Rønjom, S., Bardeh, N.G., Helleseth, T.: Yoyo tricks with AES. In: Takagi, T.,
Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 217–243. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70694-8 8

https://doi.org/10.1007/978-3-642-38980-1_10
https://doi.org/10.1007/978-3-642-38980-1_10
https://doi.org/10.1007/978-3-319-70694-8_8

PNB-Focused Differential Cryptanalysis
of ChaCha Stream Cipher

Shotaro Miyashita1, Ryoma Ito2(B), and Atsuko Miyaji1,3

1 Osaka University, Suita, Japan
miyashita@cy2sec.comm.eng.osaka-u.ac.jp, miyaji@comm.eng.osaka-u.ac.jp

2 National Institute of Information and Communications Technology,
Koganei, Japan

itorym@nict.go.jp
3 Japan Advanced Institute of Science and Technology, Nomi, Japan

Abstract. This study focuses on differential cryptanalysis of the
ChaCha stream cipher. In the conventional approach, an adversary first
searches for an input/output differential pair with the highest differential
bias and then analyzes the probabilistic neutral bits (PNB) based on the
obtained input/output differential pair. However, although the time and
data complexities for the attack can be estimated by the differential bias
and PNB obtained by this approach, the combination of the differential
bias and PNB is not always optimal. In addition, the existing studies
have not performed a comprehensive analysis of the PNB; thus, they
have not provided an upper bound on the number of rounds required
for a differential attack that uses a single-bit truncated differential to
be successful. To address these limitations, we propose a PNB-focused
differential attack on reduced-round ChaCha by first comprehensively
analyzing the PNB for all possible single-bit truncated output differences
and then searching for the input/output differential pair with the highest
differential bias based on the obtained PNB. The best existing attack on
ChaCha, proposed by Beierle et al. at CRYPTO 2020, works on up to 7
rounds, whereas the most extended attack we observed works on up to
7.25 rounds using the proposed PNB-focused approach. The time com-
plexity, data complexity, and success probability of the proposed attack
are 2255.62, 248.36, and 0.5, respectively. Although the proposed attack
is less efficient than a brute force attack, it is the first dedicated attack
on the target and provides both a baseline and useful components (i.e.,
differential bias and PNB) for improved attacks.

Keywords: Stream cipher · ChaCha · Differential cryptanalysis · PNB

1 Introduction

ChaCha [4] is a stream cipher designed by Bernstein in January 2008. It was moti-
vated by the ECRYPT Stream Cipher Project (eSTREAM)1 finalist, Salsa [5],

1 http://www.ecrypt.eu.org/stream.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
K. Nguyen et al. (Eds.): ACISP 2022, LNCS 13494, pp. 46–66, 2022.
https://doi.org/10.1007/978-3-031-22301-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22301-3_3&domain=pdf
http://www.ecrypt.eu.org/stream
https://doi.org/10.1007/978-3-031-22301-3_3

PNB-Focused Differential Cryptanalysis of ChaCha Stream Cipher 47

which was proposed by the same designer in April 2005. After the release of
Salsa and ChaCha, several studies performed the security evaluations of both
ciphers [1,3,6–16,18]. One of the most relevant of these evaluations is the differ-
ential attack based on the concept of probabilistic neutral bits (PNB), proposed by
Aumasson et al. at FSE 2008 [1]. The PNB concept is to divide secret key bits into
two sets – a set of significant key bits and a set of non-significant key bits – and to
use a neutral measure as an evaluation indicator to distinguish them. The fewer the
elements in the set of significant key bits, the lower the time complexity required
for an adversary to recover the unknown secret key; thus, it is crucial to analyze
the PNB concept for the differential attacks on Salsa and ChaCha.

Aumasson et al. [1] first searched for the input/output differential pair with
the highest differential bias; then, based on this pair, they divided the secret
key bits into two sets using the PNB concept; finally, they performed a dif-
ferential attack on the 7-round version of ChaCha, ChaCha20/7, with time and
data complexities of 2248 and 227, respectively. Several researchers later reported
improvements to this attack [3,6–9,16,18]. To the best of our knowledge, the
best key recovery attack on ChaCha works on up to seven rounds with time and
data complexities of 2230.86 and 248.80, respectively, proposed by Beierle et al. at
CRYPTO 2020 [3].

The existing studies [1,3,6–9,16,18] have focused on searching for the
input/output differential pair with the highest differential bias; however, no
study focusing on PNB analysis has been conducted thus far. For this reason, the
combination of differential biases and PNB obtained from the existing attacks
may not always be optimal. The theoretical time and data complexities for the
attacks can be estimated from the combination of differential biases and PNB. In
addition, the differential biases and PNB can be analyzed independently; there-
fore, focusing on the PNB analysis may help provide an upper bound on the
number of rounds required for a differential attack that uses a single-bit trun-
cated differential to be successful. The above suggests that PNB-focused analysis
has the potential to improve the existing attacks.

Our Contributions. In this study, we propose a PNB-focused differential
attack. The proposed attack targets reduced-round ChaCha by first analyzing
the PNB for all possible single-bit truncated output differences (ODs) and then
searching for the input difference (ID) bit position with the highest differential
bias in the obtained OD bit position. The primary aims of the proposed attack
are to identify the best combination of the differential bias and PNB through
PNB-focused analysis and to provide an upper bound on the number of rounds
required for a differential attack that uses a single-bit truncated differential to
be successful. Our contributions can be summarized as follows.

Comprehensive Analysis of PNB. By focusing on PNB analysis, we first
clarify the distribution of the number of non-significant key bits in each
round. Furthermore, we demonstrate that the number of non-significant key
bits varies significantly depending on the OD bit position. In particular,
all 0-th single-bits (i.e., all the least significant bits) of each word in all

48 S. Miyashita et al.

intermediate rounds of reduced-round ChaCha are OD bit positions with a
large number of non-significant key bits.

Upper Bound on the Number of Rounds for the Attacks. Based on the
comprehensive analysis of the PNB, we examine the values of the average
neutral measure for each round of the inverse round function. Consequently,
we determine that the PNB-focused differential attack on reduced-round
ChaCha should work on up to 7.25 rounds. In addition, our investigation
suggests that the number of intermediate rounds must be at least 3.5 to
improve the existing attacks [1,3,6–9,16,18].

Best Combinations of Differential Bias and PNB. Let Δ
(r)
i [j] be a single-

bit difference for the j-th bit of the i-th word in the r-round internal
state. By analyzing the differential biases at the obtained OD bit posi-
tions (i.e., all 0-th single-bit positions of each word in 3.5 intermediate
rounds), we report the ID-OD pairs with a high differential bias to use in
the attack, such as (Δ(0)

15 [6],Δ(3.5)
0 [0]), (Δ(0)

12 [6],Δ(3.5)
1 [0]), (Δ(0)

13 [6],Δ(3.5)
2 [0]),

and (Δ(0)
14 [6],Δ(3.5)

3 [0]). Our investigation suggests that at least one of these
ID-OD pairs should yield the best combination of the differential bias and
PNB.

Differential Attacks on Reduced-Round ChaCha. Based on the combi-
nations of the differential bias and PNB, we present a differential attack on
ChaCha20/7 with a time complexity of 2231.63, data complexity of 249.58,
and success probability of 0.5 using the ID-OD pair of (Δ(0)

14 [6],Δ(3.5)
3 [0]).

Furthermore, by using the ID-OD pair of (Δ(0)
15 [6],Δ(3.5)

0 [0]), we present a
differential attack on ChaCha20/7.25 with a time complexity of 2255.62, data
complexity of 248.36, and success probability of 0.5.

Table 1 summarizes our proposed attack as well as existing attacks on reduced-
round ChaCha2. As illustrated in this table, our attack does not offer an improve-
ment over the best existing attack on ChaCha20/7. However, we demonstrate that
the PNB-focused differential attack on reduced-round ChaCha should work on up
to 7.25 rounds. There have been no studies focusing on attacks on ChaCha20/7.25
thus far. It is crucial to thoroughly analyze the security evaluations of symmetric-
key ciphers while gradually increasing the nonlinear operations, such as S-boxes
and modular additions. In other words, it is important to thoroughly analyze the
security of reduced-round ChaCha for each 0.25 round since the round function in
ChaCha adds four wordwise modular additions every 0.25 round.

In conventional attacks on ChaCha, if the time complexity for the attack is
beyond that of an exhaustive search for the unknown secret key, cryptanalysts

2 According to [8], Coutinho and Neto stated that their initial results presented at
EUROCRYPT 2021 [9] were erroneous. That is, a differential attack on ChaCha20/7
with time and data complexities of 2228.51 and 280.51, respectively, is infeasible. Fur-
thermore, Coutinho and Neto presented a differential attack on ChaCha20/7 with
time and data complexities of 2224 and 2224, respectively [8]. This was similar to the
best attacks on ChaCha20/7; however, verification is beyond the scope of this study
because this was a distinguishing attack, not a key recovery attack.

PNB-Focused Differential Cryptanalysis of ChaCha Stream Cipher 49

Table 1. Summary of the proposed and existing key recovery attacks.

Target Time Data Reference

ChaCha20/6 2139 230 [1]

2136 228 [18]

2127.5 227.5 [6]

2102.2 256 [7]

277.4 258 [3]

ChaCha20/7 2248 227 [1]

2246.5 227 [18]

2242.59 269.58 [8]

2238.9 296 [16]

2237.7 296 [6]

2231.9 250 [7]

2231.63 249.58 This work

2230.86 248.8 [3]

ChaCha20/7.25 2255.62 248.36 This work

utilize an approach that reduces the number of target rounds for the attack or
selects an ID-OD pair with a higher differential bias. In our approach, we focus
on the fact that the PNB concept has a strong influence on the theoretical time
complexity. We demonstrate the relevance of the comprehensive analysis of PNB
for ChaCha for the first time and conclude that it is crucial to analyze not only
differential biases but also PNB.

Organization. The rest of this paper is organized as follows. In Sect. 2, we
briefly describe the ChaCha specification. In Sect. 3, we review generic tech-
niques for the existing attack based on the PNB concept. In Sect. 4, we present
and discuss the experimental results of the comprehensive analysis of PNB. In
Sect. 5, we examine the differential bias at the OD bit position obtained in
Sect. 4 and perform a differential attack on ChaCha20/7, ChaCha20/7.25, and
ChaCha20/7.5. Finally, we summarize related works in Sect. 6 and conclude this
study in Sect. 7.

2 Specification of ChaCha

ChaCha [4] performs the following three steps to generate a keystream block of
16 words, where the size of each word is 32 bits:

Step 1. The initial state matrix X(0) of order 4 × 4 is initialized from a 256-
bit secret key k = (k0, k1, . . . , k7), a 96-bit nonce v = (v0, v1, v2), a 32-
bit block counter t0, and four 32-bit constants c = (c0, c1, c2, c3), such as

50 S. Miyashita et al.

c0 = 0x61707865, c1 = 0x3320646e, c2 = 0x79622d32, and c3 = 0x6b206574.
After initialization, the following initial state matrix is obtained:

X(0) =

⎛
⎜⎜⎜⎝

x
(0)
0 x

(0)
1 x

(0)
2 x

(0)
3

x
(0)
4 x

(0)
5 x

(0)
6 x

(0)
7

x
(0)
8 x

(0)
9 x

(0)
10 x

(0)
11

x
(0)
12 x

(0)
13 x

(0)
14 x

(0)
15

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎝

c0 c1 c2 c3
k0 k1 k2 k3
k4 k5 k6 k7
t0 v0 v1 v2

⎞
⎟⎟⎠ .

Step 2. The round function of ChaCha comprises four simultaneous compu-
tations of the quarterround function. According to the procedure, a vector
(x(r)

a , x
(r)
b , x

(r)
c , x

(r)
d) in the internal state matrix X(r) is updated by sequen-

tially computing the following:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x
(r)
a′ = x

(r)
a + x

(r)
b ; x

(r)
d′ = x

(r)
d ⊕ x

(r)
a′ ; x

(r)
d′′ = x

(r)
d′ ≪ 16;

x
(r)
c′ = x

(r)
c + x

(r)
d′′ ; x

(r)
b′ = x

(r)
b ⊕ x

(r)
c′ ; x

(r)
b′′ = x

(r)
b′ ≪ 12;

x
(r+1)
a = x

(r)
a′ + x

(r)
b′′ ; x

(r)
d′′′ = x

(r)
d′′ ⊕ x

(r+1)
a ; x

(r+1)
d = x

(r)
d′′′ ≪ 8;

x
(r+1)
c = x

(r)
c′ + x

(r+1)
d ; x

(r)
b′′′ = x

(r)
b′′ ⊕ x

(r+1)
c ; x

(r+1)
b = x

(r)
b′′′ ≪ 7;

where the symbols “+”, “⊕”, and “≪” represent wordwise modular addi-
tion, bitwise XOR, and bitwise left rotation, respectively. For odd-numbered
rounds, which are called columnrounds, the quarterround function is applied to
the following four column vectors: (x(r)

0 , x
(r)
4 , x

(r)
8 , x

(r)
12), (x(r)

1 , x
(r)
5 , x

(r)
9 , x

(r)
13),

(x(r)
2 , x

(r)
6 , x

(r)
10 , x

(r)
14), and (x(r)

3 , x
(r)
7 , x

(r)
11 , x

(r)
15). For even-numbered rounds,

which are called diagonalrounds, the quarterround function is applied to the
following four diagonal vectors: (x(r)

0 , x
(r)
5 , x

(r)
10 , x

(r)
15), (x(r)

1 , x
(r)
6 , x

(r)
11 , x

(r)
12),

(x(r)
2 , x

(r)
7 , x

(r)
8 , x

(r)
13), and (x(r)

3 , x
(r)
4 , x

(r)
9 , x

(r)
14).

Step 3. A 512-bit keystream block is computed as Z = X(0) + X(R), where R
is the final round. The original version of ChaCha has R = 20 rounds, and
the reduced-round version of ChaCha is denoted as ChaCha20/R.

The round function of ChaCha is reversible. In other words, an input vector
(x(r+1)

a , x
(r+1)
b , x

(r+1)
c , x

(r+1)
d) in the internal state matrix X(r+1) is backdated

by sequentially computing the following:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x
(r)
b′′′ = x

(r+1)
b ≪ 25; x

(r)
b′′ = x

(r)
b′′′ ⊕ x

(r+1)
c ; x

(r)
c′ = x

(r+1)
c − x

(r+1)
d ;

x
(r)
d′′′ = x

(r+1)
d ≪ 24; x

(r)
d′′ = x

(r)
d′′′ ⊕ x

(r+1)
a ; x

(r)
a′ = x

(r+1)
a − x

(r)
b′′ ;

x
(r)
b′ = x

(r)
b′′ ≪ 20; x

(r)
b = x

(r)
b′ ⊕ x

(r)
c′ ; x

(r)
c = x

(r)
c′ − x

(r)
d′′ ;

x
(r)
d′ = x

(r)
d′′ ≪ 16; x

(r)
d = x

(r)
d′ ⊕ x

(r)
a′ ; x

(r)
a = x

(r)
a′ − x

(r)
b ;

where the symbol “−” represents wordwise modular subtraction.
For a more accurate analysis of the round function, we further divide it

into four rounds: 0.25, 0.5, 0.75, and 1 round. For example, the 0.25 round
signifies that all quarterround functions in the round function have 0.25 round.

PNB-Focused Differential Cryptanalysis of ChaCha Stream Cipher 51

The 0.25-round quarterround function comprises one wordwise modular addition,
one bitwise XOR, and one bitwise left rotation; thus, the ChaCha round function
adds four wordwise modular additions every 0.25 round.

3 Differential Cryptanalysis of ChaCha

In this section, we review generic techniques for a differential attack based on
the PNB concept, proposed by Aumasson et al. at FSE 2008 [1]. This attack
comprises precomputation and online phases. In the precomputation phase, we
examine single-bit differential biases and PNB and perform a probabilistic back-
ward computation (PBC). Subsequently, we execute the online phase to recover
the unknown key.

3.1 Precomputation Phase

Single-Bit Differential Biases. Let x
(r)
i [j] be the j-th bit of the i-th word in

the r-round internal state matrix X(r) for 0 ≤ i ≤ 15 and 0 ≤ j ≤ 31, and let
x

′(r)
i [j] be an associated bit with the difference Δ

(r)
i [j] = x

(r)
i [j] ⊕ x

′(r)
i [j]. Based

on the difference Δ
(0)
i [j] = 1 to the initial state matrix X(0), which is called

the input difference or ID, we obtain the corresponding initial state matrix
X ′(0). Then, we execute the round function of ChaCha using these initial state
matrices X(0) and X ′(0) as inputs and obtain Δ

(r)
p [q] = x

(r)
p [q] ⊕ x

′(r)
p [q] from

the r-round output internal state matrices X(r) and X ′(r), which is called the
output difference or OD. For a fixed key and all possible choices of nonces and
block counters, the single-bit differential probability is defined as

Pr
(
Δ(r)

p [q] = 1 | Δ
(0)
i [j] = 1

)
=

1
2
(1 + εd), (1)

where εd denotes the OD bias. Note that we use the specified 1-bit ID and then
obtain the truncated 1-bit OD.

To estimate the number of samples to distinguish two distributions of ran-
dom bit strings, we use the following theorem provided by Baignères et al. at
ASIACRYPT 2004 [2].

Theorem 1 ([2, Theorem 6]). Let Z1, . . . , Zn be independent and identically
distributed random variables over the set Z of distribution D, D0 and D1 be two
distributions of same support which are close to each other, and n be the number
of samples of the best distinguisher between D = D0 or D = D1. Let d be a real
number such that

n =
d∑

z∈Z
ε2z
pz

, (2)

where pz and pz + εz are probabilities of a random variable z following D0 and
D1, respectively. Then, the overall probability of error is Pe ≈ Φ(−√

d/2), where
Φ(·) is the distribution function of the standard normal distribution.

52 S. Miyashita et al.

Let D0 and D1 be the uniform distribution and a distribution of the truncated
OD bit strings obtained from the internal state of ChaCha, respectively. In this
case, the target event occurs in D0 and D1 with probabilities of 1

2 and 1
2 ·(1+εd),

respectively (i.e., p0 = p1 = 1
2 and |ε0| = |ε1| = εd

2). Based on this, the number of
samples of the best distinguisher between D = D0 and D = D1 can be estimated
as 4

ε2d
with an overall probability of error of Pe ≈ Φ(−√

4/2) = Φ(−1).

PNB. The PNB divides secret key bits into sets of m-bit significant and n-bit
non-significant key bits. To differentiate between the sets, Aumasson et al. [1]
focused on the degree of influence of each secret key bit on the OD. The degree
of influence is called the neutral measure and is defined as follows:

Definition 1 ([1, Definition 1]). The neutral measure of the key bit position κ
with respect to the OD is defined as γκ, where 1

2 (1 + γκ) is the probability that
complementing the key bit κ does not change the OD.

For example, we have the following singular cases of neutral measure:

– γi = 1: OD does not depend on the i-th key bit (i.e., it is non-significant).
– γi = 0: OD is statistically independent of the i-th key bit (i.e., it is signifi-

cant).
– γi = −1: OD linearly depends on the i-th key bit.

By performing the following steps, we compute the neutral measure and
divide the secret key bits into two sets – a set of m-bit significant key bits and
a set of n-bit non-significant key bits:

Step 1. Compute the R-round internal state matrix pair (X(R),X ′(R)) corre-
sponding to the input pair (X(0),X ′(0)) with Δ

(0)
i [j] = 1, and derive the

keystream blocks Z = X(0) + X(R) and Z ′ = X ′(0) + X ′(R), respectively.
Step 2. Prepare a new input pair (X

(0)
,X ′(0)) with the key bit position κi of

the original input pair (X(0),X ′(0)) flipped by one bit.
Step 3. Compute the r-round internal state matrix pair (Y (r), Y ′(r)) for r < R

with Z − X
(0)

and Z ′ − X ′(0) as inputs to the inverse round function of
ChaCha.

Step 4. Compute Γ
(r)
p [q] = y

(r)
p [q] ⊕ y

′(r)
p [q] for the fixed OD bit, where y

(r)
p [q]

and y
′(r)
p [q] denote the q-th bit of the p-th word of Y (r) and Y ′(r), respectively.

Step 5. Repeat Steps 1–4 using different initial state matrices with the same
Δ

(0)
i [j] = 1, and compute the neutral measure as Pr(Δ(r)

p [q] = Γ
(r)
p [q] |

Δ
(0)
i [j] = 1) = 1

2 (1 + γi), where Δ
(r)
p [q] is the OD obtained when searching

for single-bit differential biases.
Step 6. Set a threshold γ and place all key bits with γκ < γ into the set of m-bit

significant key bits and those with γκ ≥ γ into the set of n-bit non-significant
key bits.

PNB-Focused Differential Cryptanalysis of ChaCha Stream Cipher 53

PBC. As explained at the beginning of this subsection, we obtain r-round
single-bit differential biases from the initial state matrices with the selected ID,
indicating that these biases can be obtained by performing forward computation
in the target cipher. Moreover, we can obtain the r-round single-bit differential
biases for ChaCha20/R from the obtained keystream by performing the following
backward computation, which is called PBC:

Step 1. Compute the R-round internal state matrix pair (X(R),X ′(R)) corre-
sponding to the input pair (X(0),X ′(0)) with Δ

(0)
i [j] = 1, and derive the

keystream blocks Z = X(0) + X(R) and Z ′ = X ′(0) + X ′(R), respectively.
Step 2. Prepare a new input pair (X̂(0), X̂ ′(0)) with only non-significant key bits

reset to a fixed value (e.g., all zeros) from the original input pair (X(0),X ′(0)).
Step 3. Compute the r-round internal state matrix pair (Ŷ (r), Ŷ ′(r)) for r < R

with Z − X̂(0) and Z ′ − X̂ ′(0) as inputs to the inverse round function of
ChaCha.

Step 4. Compute Γ̂
(r)
p [q] = ŷ

(r)
p [q] ⊕ ŷ

′(r)
p [q] for the fixed OD bit, where ŷ

(r)
p [q]

and ŷ
′(r)
p [q] are the q-th bit of the p-th word of Ŷ (r) and Ŷ ′(r), respectively.

Step 5. Repeat Steps 1–4 using different initial state matrices with the same
Δ

(0)
i [j] = 1. Compute the r-round bias εa as Pr(Δ(r)

p [q] = Γ̂
(r)
p [q] | Δ

(0)
i [j] =

1) = 1
2 (1+εa), where Δ

(r)
p [q] is the OD obtained when searching for single-bit

differential biases.

The bias of Γ̂
(r)
p [q] is denoted by ε, that is, Pr(Γ̂ (r)

p [q] = 1 | Δ
(0)
i [j] = 1) =

1
2 (1 + ε). According to [1], the bias ε is approximated as εd · εa and is used to
compute the overall complexity of the attack on the R-round target cipher.

3.2 Online Phase

After the precomputation phase, we perform the following steps to recover an
unknown key:

Step 1. For an unknown key, collect N keystream block pairs where each pair
is generated by a random input pair satisfying the relevant ID.

Step 2. For each choice of the subkey (i.e., m-bit significant key bits), the
following steps should be performed:
Step 2–1. Derive the r-round single-bit differential biases from the obtained

N keystream block pairs by performing backward computation.
Step 2–2. If the optimal distinguisher legitimates the subkeys candidate as

(possibly) correct, perform an additional exhaustive search over the n-bit
non-significant key bits to confirm the correctness of the filtered subkey
and identify the n-bit non-significant key bits.

Step 2–3. Stop if the correct key is reported and output the recovered key.

54 S. Miyashita et al.

Complexity Estimation. Given N keystream block pairs and a false alarm
probability of Pfa = 2−α, the time complexity of the attack is

2m(N + 2nPfa) = 2mN + 2256−α, where N ≈
(√

α log 4 + 3
√

1 − ε2

ε

)2

,

for a probability of non-detection Pnd = 1.3 × 10−3. In practice, α and thus N
are selected to minimize the time complexity of the attack. Based on an existing
study [1], we use the median bias ε in our attack; therefore, we note that our
attack has a success probability of approximately 0.5.

4 Analysis of PNB

4.1 Search for PNB with High Neutral Measures

Typically, differential attacks on Salsa and ChaCha first determine the ID-
OD pair with a higher differential bias and then explore neutral measures of
the target OD bit position. The existing studies [1,3,6–9,16,18] analyzed the
differential bias and optimized the combination of the differential bias and PNB,
as this combination can be used to determine the time and data complexities for
the attack. Optimizing this combination by focusing on PNB analysis may help
improve differential attacks on Salsa and ChaCha.

In this section, we perform a comprehensive analysis of the PNB and examine
the conditions that produce a large number of non-significant key bits because
the size of the PNB directly influences the theoretical time complexity of an
attack, as described in Sect. 3.2. No study focusing on analyzing PNB has been
conducted. If the conditions that produce a large number of non-significant key
bits can be clarified, it can be claimed that existing attacks require improvement.

We perform the following procedure to search for conditions that produce a
large number of non-significant key bits:

Step 1. Generate a known key k = (k0, . . . , k7) uniformly at random.
Step 2. Select the ID bit position Δ

(0)
i [j], nonce, and block counter uniformly at

random. Then, generate the initial state matrix X(0) and the corresponding
initial matrix X ′(0) = X(0) ⊕ Δ

(0)
i [j].

Step 3. From the input pair (X(0),X ′(0)), compute the r-round internal
state matrix pair (X(r),X ′(r)) and R-round internal state matrix pair
(X(R),X ′(R)), where R is the target round for the attack on ChaCha20/R.

Step 4. From the r-round internal state matrix pair (X(r),X ′(r)), compute the
OD for each bit, such as Δ

(r)
p [q] = X

(r)
p [q] ⊕ X

′(r)
p [q] for all possible choices

of p and q.
Step 5. From the R-round internal state matrix pair (X(R),X ′(R)), obtain

keystream blocks Z = X(0) + X(R) and Z ′ = X ′(0) + X ′(R).
Step 6. Complement a particular key bit position κ (κ ∈ {0, . . . , 255}) to yield

states X
(0)

and X ′(0). Then, compute the r-round internal state matrix pair

PNB-Focused Differential Cryptanalysis of ChaCha Stream Cipher 55

(Y (r), Y ′(r)) with Z − X
(0)

and Z ′ − X ′(0) as inputs to the inverse round
function of ChaCha, and derive Γ

(r)
p [q] = Y

(r)
p [q] ⊕ Y

′(r)
p [q] for all possible

choices of p and q.
Step 7. Increase the counter for each p, q, and κ only if Δ

(r)
p [q] = Γ

(r)
p [q].

Step 8. Repeat Steps 2–7 for the required number of samples.

After completing multiple trials with the above steps, we compute the neu-
tral measures γκ for each key bit position and then count the number of non-
significant key bits for each OD bit position with a specified threshold value γ.
We note that the number of trials represents the number of different keys used in
our experiments, while the number of samples represents the number of different
initial state matrices generated from a fixed ID bit in each trial.

4.2 Experimental Results

This subsection presents our experimental results based on the search procedure
described in Sect. 4.1. The following is our experimental environment: five Linux
machines with 40-core Intel Xeon CPU E5-2660 v3 (2.60 GHz), 128.0 GB of main
memory, a gcc 7.2.0 compiler, and the C programming language. We use the
Mersenne Twister3, which is a pseudorandom number generator proposed by
Matsumoto and Nishimura [17], to generate the secret keys and samples used in
all our experiments, and thus did not reuse secret keys and samples in any of
the experiments.

To search for the conditions that produce a large number of non-significant
key bits, we conduct experiments with 28 trials using 221 samples for each of the
possible 27 IDs (i.e., 228 total samples). Based on Theorem 1, let D0 and D1 be
the uniform distribution and a distribution of Δ

(r)
p [q] = Γ

(r)
p [q] obtained from the

r-round internal state matrices of ChaCha20/R, respectively. The target event
occurs in D0 and D1 with probabilities of 1

2 and 1
2 · (1 + γκ), respectively; thus,

the number of samples of the best distinguisher between D = D0 and D = D1 can
be estimated as 4

γ2
κ
. Our results are reliable when the derived neutral measures

γκ are greater than 2−13 (≈ 0.000122), as 228 samples are used.

ChaCha20/7. Figure 1 presents the number of non-significant key bits for each
OD bit position in ChaCha20/7. In this figure, the vertical axis represents the
number of non-significant key bits at each OD bit position, the horizontal axis
represents the OD bit position, and the auxiliary lines on the vertical axis sepa-
rate the OD word positions (i.e., the word positions are 0, 1, . . . , 15 in order from
left to right). The blue (top), orange (center), and green (bottom) lines represent
the number of non-significant key bits when the number of intermediate rounds
r is 3, 3.5, and 4, respectively.

3 The source code is available at https://github.com/omitakahiro/omitakahiro.github.
io/blob/master/random/code/MT.h.

https://github.com/omitakahiro/omitakahiro.github.io/blob/master/random/code/MT.h
https://github.com/omitakahiro/omitakahiro.github.io/blob/master/random/code/MT.h

56 S. Miyashita et al.

Fig. 1. Number of non-significant key bits for each OD bit position when the number
of intermediate rounds r is 3, 3.5, and 4 in ChaCha20/7. We use γ = 0.35 as the
threshold value. (Color figure online)

Figure 1 indicates that the number of non-significant key bits tends to be
larger at all 0-th OD bit positions (i.e., all least significant OD bit positions) of
each word regardless of the number of intermediate rounds. Therefore, optimizing
the combination of the differential bias and PNB by focusing on all 0-th OD bit
positions may improve the differential attack on ChaCha20/7. Referring to the
existing studies [1,16,18], the 0-th OD bit positions with a high average neutral
measure were selected in the third round (i.e., Δ

(3)
11 [0]); thus, it is difficult to

improve the differential attack on ChaCha20/7 even for 3 intermediate rounds r.
This is because the smaller the number of the intermediate rounds r, the smaller
the number of non-significant key bits. Therefore, to improve the differential
attack on ChaCha20/7, we should focus on more than 3 intermediate rounds.

The PNB analysis in this subsection cannot be directly compared with that
in existing studies (e.g., [3,6,11]) because a multi-bit differential or differential-
linear technique was employed in the existing studies, whereas we focus solely
on the single-bit differential technique. From a computational complexity per-
spective, we have searched for the number of non-significant key bits for only a
single-bit OD bit position. Similarly, we should search for the number of non-
significant key bits for multi-bit OD bit positions, which is left for future work.

ChaCha20/7.25, ChaCha20/7.5, and ChaCha20/7.75. Figure 2 presents
the number of non-significant key bits for each 3.5-round OD bit position when
the number of target rounds R is 7, 7.25, 7.5, and 7.75. In this figure, the vertical
and horizontal axes and the auxiliary lines on the vertical axis are the same as
in Fig. 1. The blue (top), orange (second from the top), green (second from the
bottom), and yellow (bottom) lines represent the number of non-significant key

PNB-Focused Differential Cryptanalysis of ChaCha Stream Cipher 57

Fig. 2. Number of non-significant key bits for each OD bit position when the number
of intermediate rounds r is 3.5 and number of target rounds R is 7, 7.25, 7.5, and 7.75.
We use γ = 0.35 as the threshold value. (Color figure online)

bits when the number of intermediate rounds r is 3.5 and number of target
rounds R is 7, 7.25, 7.5, and 7.75, respectively.

Similar to the experimental results for ChaCha20/7, the number of non-
significant key bits tends to be larger at all 0-th OD bit positions of each word
regardless of the number of target rounds. Therefore, optimizing the combination
of the differential bias and PNB by focusing on all 0-th OD bit positions may be
effective for performing a differential attack on ChaCha20/7.25, ChaCha20/7.5,
and ChaCha20/7.75.

4.3 Discussion

Relationship Between PNB and Inverse Round Function. We discuss
the relationship between the PNB (or the number of non-significant key bits) and
inverse round function of ChaCha. To this end, we investigate the relationship
between the input word position to the inverse quarterround function and the
cumulative number of wordwise modular subtractions. This is because wordwise
modular addition/subtraction plays a crucial role in ensuring the security of
ARX ciphers. In our investigation, the cumulative number of wordwise modular
subtractions is counted as follows:

Wordwise modular subtraction. The cumulative number of wordwise mod-
ular subtractions is counted only when wordwise modular subtraction is exe-
cuted. Moreover, we calculate the sum of the cumulative number of wordwise
modular subtractions in two input words to wordwise modular subtraction.
For example, when the wordwise modular subtraction, A′ = A − B, is exe-
cuted and the cumulative number of wordwise modular subtractions in the

58 S. Miyashita et al.

Table 2. Relationship between the input word position to the inverse quarterround
function and the cumulative number of modular subtractions when the number of
target rounds R is 7 or 7.5.

Input Cumulative number of modular subtractions for R − r rounds.

Word 3 rounds 3.25 rounds 3.5 rounds 3.75 rounds 4 rounds

position (r = 4 or 4.5) (r = 3.75 or 4.25) (r = 3.5 or 4) (r = 3.25 or 3.75) (r = 3 or 3.5)

A 70 70 156 156 349

B 37 85 85 192 192

C 48 107 107 236 236

D 58 128 128 128 284

Table 3. Relationship between the input word position to the inverse quarterround
function and the cumulative number of modular subtractions when the number of
target rounds R is 7.25 or 7.75.

Input Cumulative number of modular subtractions for R − r rounds.

Word 3 rounds 3.25 rounds 3.5 rounds 3.75 rounds 4 rounds

position (r = 4.25 or 4.75) (r = 4 or 4.5) (r = 3.75 or 4.25) (r = 3.5 or 4) (r = 3.25 or 3.75)

A 48 107 107 236 236

B 58 58 128 128 284

C 70 70 156 156 349

D 37 85 85 192 192

two input words A and B are 70 and 85, respectively, 156 is the cumulative
number of wordwise modular subtractions in the output word A′.

Bitwise XOR. We calculate only the sum of the cumulative number of wordwise
modular subtractions in two input words to bitwise XOR. For example, when
the bitwise XOR operation, B′ = B ⊕ C, is executed and the cumulative
number of wordwise modular subtractions in the two input words B and C
are 37 and 48, respectively, 85 is the cumulative number of wordwise modular
subtractions in the output word B′.

Bitwise left rotation. The cumulative number of wordwise modular subtrac-
tions did not change after the execution of bitwise left rotation.

Tables 2 and 3 present the results of examining the cumulative number of
wordwise modular subtractions. In Table 2, the number of target rounds R is
7 or 7.5, whereas in Table 3, the number of target rounds R is 7.25 or 7.75. In
these tables, the input word position column contains the word positions, such
as a vector (A,B,C,D), input to the inverse quarterround function. Note that
each input word position always transitions to the same input word position in
the next round (refer to Sect. 2 for more details).

Tables 2 and 3 indicate that the cumulative number of wordwise modular
subtractions differ depending on the input word position relative to the inverse
round function and the number of intermediate rounds r. In particular, the
cumulative number of wordwise modular subtractions is smaller in the order
of the input word positions B, C, D, and A when the number of intermediate
rounds r is 3, 3.5, 4, and 4.5. In contrast, the cumulative number of wordwise
modular subtractions is smaller in the order of the input word positions D, A,

PNB-Focused Differential Cryptanalysis of ChaCha Stream Cipher 59

Table 4. Maximum, minimum, average, and median values of the average neutral
measures γ̂κ for each target round R when r = 3.5, where p and q are the word and
bit positions of the OD, respectively (i.e., Δ

(r)
p [q]).

R Maximum Minimum Average Median

γ̂κ p q γ̂κ p q

7 0.382 11 0 0.050 2 13 0.169 0.174

7.25 0.282 6 0 0.018 3 13 0.097 0.087

7.5 0.151 4 0 0.004 0 13 0.034 0.016

7.75 0.075 9 0 0.001 0 13 0.011 0.005

B, and C when the number of intermediate rounds r is 3.25, 3.75, 4.25, and 4.75.
We now compare the experimental results presented in Fig. 2 with the results
when r = 3.5, as illustrated in Tables 2 and 3. Note that the range of input
word positions A, B, C, and D corresponds to the OD bit positions 0 to 127,
128 to 255, 256 to 383, and 384 to 511, respectively. From Fig. 2, the number of
non-significant key bits is larger in the order of the input word positions B, C,
D, and A when the number of intermediate rounds r is 3.5 (all 0-th bit positions
are exceptions); thus, the smaller the cumulative number of wordwise modular
subtractions, the larger the number of non-significant key bits. The 0-th bit
position is uninfluenced by the carry-in wordwise modular subtraction (i.e., it is
uninfluenced by the ID/OD). This has been suggested to be a special case.

In summary, the number of non-significant key bits depends on the input
word position relative to the inverse round function and is affected by the cumu-
lative number of wordwise modular subtractions. Specifically, the conditions that
produce the number of non-significant key bits depend on the OD bit position,
particularly all 0-th OD bit positions.

Upper Bound on the Number of Rounds for the Attacks. We discuss the
upper bound on the number of rounds required for a PNB-focused differential
attack that uses a single-bit truncated differential to be successful. To this end,
we investigate the value of the average neutral measures γ̂κ for each round of the
inverse round function. Table 4 presents the maximum, minimum, average, and
median values of the average neutral measures γ̂κ for each target round R when
the number of intermediate rounds r is 3.54. These findings can be obtained by a
detailed analysis of the experimental results described in Sect. 4.2. The R column
in Table 4 lists the number of target rounds for our attack, and the number of
rounds of the inverse round function can be calculated as R − r.

Our experimental results are reliable when the derived average neutral mea-
sures γ̂κ are greater than 2−13 (≈ 0.000122), as 228 samples are used. As illus-

4 The latest study presented by Coutinho and Neto at EUROCRYPT 2021 [9] used

Δ
(3.5)
5 [0] (= Δ

(4)
5 [7] ⊕ Δ

(4)
10 [0]) as the OD to perform a differential attack on

ChaCha20/7. Accordingly, we focused solely on r = 3.5.

60 S. Miyashita et al.

trated in Table 4, all values of γ̂κ are reliable when the number of target rounds R
is 7, 7.25, 7.5, and 7.75; thus, the upper bound on the number of rounds required
for a PNB-focused differential attack that uses a single-bit truncated differential
to be successful is at most 7.75 rounds. However, given that the threshold γ used
in the existing attacks, such as [3,6,9], was γ = 0.27 or 0.35, it is practically
difficult to perform a differential attack when the number of target rounds R
is 7.5 or 7.75 because γ̂κ is too small; thus, our results suggest that a PNB-
focused differential attack on reduced-round ChaCha should work on up to 7.25
rounds. To verify this claim, we perform a PNB-focused differential attack on
reduced-round ChaCha with target rounds of 7, 7.25, and 7.5.

5 PNB-Focused Differential Attack

In this section, we describe a PNB-focused differential attack on reduced-round
ChaCha. First, based on the PNB analysis described in Sect. 4, we determine the
target OD bit position for the proposed attack. Next, we analyze the differential
biases at the target OD bit positions and then obtain the ID bit position with
the best differential bias at the target OD bit positions. Finally, we estimate
the time and data complexities for our attack using the combination of the
differential bias and PNB.

5.1 Analysis of Single-Bit Differential Biases

In Sect. 4, we comprehensively analyze the PNB for all possible single-bit trun-
cated ODs. Accordingly, by analyzing the ID bit position with the highest dif-
ferential bias at the target OD bit position, we can determine the ID-OD pair
to use for our attack.

To identify the ID bit position with the highest differential bias |εd| at the
target OD bit positions, we conduct experiments with 26 trials using 228 sam-
ples for a fixed ID; thus, the results are reliable when the derived differen-
tial biases |εd| are greater than 2−13 (≈ 0.000122), as 228 samples are used.
In our experiments, the target ODs are Δ

(3.5)
0 [0], Δ

(3.5)
1 [0], Δ

(3.5)
2 [0], Δ

(3.5)
3 [0],

Δ
(3.5)
12 [0], Δ

(3.5)
13 [0], Δ

(3.5)
14 [0], and Δ

(3.5)
15 [0]. Consequently, our results are reliable

at Δ
(3.5)
0 [0], Δ

(3.5)
1 [0], Δ

(3.5)
2 [0], and Δ

(3.5)
3 [0] because these absolute biases are

at least 0.000430, but not at Δ
(3.5)
12 [0], Δ

(3.5)
13 [0], Δ

(3.5)
14 [0], and Δ

(3.5)
15 [0] because

these absolute biases are at most 0.000028. Moreover, these results lead to unreli-
able at other 0-th OD bit positions, such as Δ

(3.5)
4 [0], Δ

(3.5)
5 [0], Δ

(3.5)
6 [0], Δ

(3.5)
7 [0],

Δ
(3.5)
8 [0], Δ

(3.5)
9 [0], Δ

(3.5)
10 [0], and Δ

(3.5)
11 [0], because the results are affected by the

unreliable results at Δ
(3.5)
12 [0], Δ

(3.5)
13 [0], Δ

(3.5)
14 [0], and Δ

(3.5)
15 [0] according to the

computations of the quarterround function (see Sect. 2 for details). Consequently,
we determine the following ID-OD pairs to use for our attack: (Δ(0)

15 [6],Δ(3.5)
0 [0]),

(Δ(0)
12 [6],Δ(3.5)

1 [0]), (Δ(0)
13 [6],Δ(3.5)

2 [0]), and (Δ(0)
14 [6],Δ(3.5)

3 [0]).
To obtain more precise single-bit differential biases for the derived ID-OD

pairs, we conduct additional experiments with 28 trials using 234 samples for a

PNB-Focused Differential Cryptanalysis of ChaCha Stream Cipher 61

Table 5. Best single-bit differential biases |εd| at the 0-th OD bit positions of each
word for 3.5 rounds of ChaCha. Experiments are conducted with 28 trials using 234

samples for a fixed ID; thus, the results are reliable when the derived differential biases
|εd| are greater than 2−16 (≈ 0.000015), as 234 samples are used.

ID OD |εd|
Δ

(0)
15 [6] Δ

(3.5)
0 [0] 0.000469

Δ
(0)
12 [6] Δ

(3.5)
1 [0] 0.000478

Δ
(0)
13 [6] Δ

(3.5)
2 [0] 0.000504

Δ
(0)
14 [6] Δ

(3.5)
3 [0] 0.000478

fixed ID; thus, the results are reliable when the derived differential biases |εd|
are greater than 2−16 (≈ 0.000015), as 234 samples are used. Table 5 lists the
additional experimental results of the best differential biases |εd| at the target
OD bit positions: Δ

(3.5)
0 [0], Δ

(3.5)
1 [0], Δ

(3.5)
2 [0], and Δ

(3.5)
3 [0]. As displayed in

this table, we can obtain reliable results at the target positions; then, we use the
listed biases |εd| to estimate the time and data complexities for our attack.

5.2 Complexity Estimation

To estimate the time and data complexities for the PNB-focused differential
attack on the target rounds of ChaCha (i.e., 7, 7.25, and 7.5 rounds), the remain-
ing steps should be performed as follows (see Sect. 3 for details):

Step 1. Recalculate the neutral measures corresponding to the derived ID-OD
pairs and divide the secret key bits into two sets – a set of m-bit significant
and a set of n-bit non-significant key bits.

Step 2. By performing PBC, obtain the biases |εa| for each threshold γ from
the obtained keystream and approximate the overall bias ε ≈ εd · εa for the
attack on the target rounds of ChaCha.

Step 3. Perform the online phase and estimate the time and data complexities
to recover the unknown key, as described in Sect. 3.2.

To perform the above-mentioned steps, we conduct experiments with 28 trials
using 230 samples for the fixed ID; thus, the results are reliable when the derived
biases |εa| are greater than 2−14 (≈ 0.000061), as 230 samples are used.

ChaCha20/7. Table 6 presents the best parameters for each target ID-OD pair
to estimate the time and data complexities for our attack on ChaCha20/7. The
threshold γ is set from 0.10 to 0.95 at intervals of 0.05 (i.e., total 18 patterns),
n represents the number of non-significant key bits, |εd| is derived from Table 5,
|εa| is obtained by performing PBC for each threshold γ, and α is selected to
minimize the time complexity of our attack.

Consequently, we can perform our attack on ChaCha20/7 with time and data
complexities of 2231.63 and 249.58, respectively, using the best parameters, where

62 S. Miyashita et al.

Table 6. Best parameters for the proposed attack on ChaCha20/7.

ID OD γ n |εd| |εa| α Time Data

Δ
(0)
15 [6] Δ

(3.5)
0 [0] 0.35 74 0.000469 0.000662 29 2231.74 249.68

Δ
(0)
12 [6] Δ

(3.5)
1 [0] 0.35 74 0.000478 0.000556 29 2232.17 250.13

Δ
(0)
13 [6] Δ

(3.5)
2 [0] 0.35 74 0.000504 0.000615 29 2231.74 249.69

Δ
(0)
14 [6] Δ

(3.5)
3 [0] 0.35 74 0.000478 0.000674 29 2231.63 249.58

Table 7. Best parameters for the proposed attack on ChaCha20/7.25.

ID OD γ n |εd| |εa| α Time Data

Δ
(0)
15 [6] Δ

(3.5)
0 [0] 0.30 49 0.000469 0.000564 3 2255.62 248.36

Δ
(0)
12 [6] Δ

(3.5)
1 [0] 0.35 45 0.000478 0.002200 3 2255.64 244.38

Δ
(0)
13 [6] Δ

(3.5)
2 [0] 0.35 45 0.000504 0.001783 2 2256.02 244.61

Δ
(0)
14 [6] Δ

(3.5)
3 [0] 0.35 45 0.000478 0.002186 3 2255.65 244.40

the ID-OD pair is (Δ(0)
14 [6],Δ(3.5)

3 [0]), γ is 0.35, n is 74, α is 29, and the list of
PNB is {6, 7, 8, 9, 10, 11, 12, 13, 14, 19, 27, 28, 29, 30, 31, 34, 35, 36, 37, 46,
71, 79, 80, 83, 98, 99, 100, 101, 102, 103, 104, 105, 106, 109, 110, 111, 112, 113,
114, 115, 116, 117, 118, 119, 122, 123, 127, 128, 129, 130, 148, 149, 150, 159, 187,
188, 189, 190, 191, 200, 223, 224, 225, 231, 232, 239, 240, 243, 244, 251, 252, 253,
254, 255}.

ChaCha20/7.25 and ChaCha20/7.5. Similar to the complexity estimation
for ChaCha20/7, we present the best parameters for each target ID-OD pair to
estimate the time and data complexities for our attack on ChaCha20/7.25 and
ChaCha20/7.5 in Tables 7 and 8, respectively.

As illustrated in Table 7, our attack on ChaCha20/7.25 can be performed with
time and data complexities of 2255.62 and 248.36, respectively, using the best param-
eters, where the ID-OD pair is (Δ(0)

15 [6],Δ(3.5)
0 [0]), γ is 0.30, n is 49, α is 3, and the

list of PNB is {2, 3, 10, 13, 14, 19, 20, 26, 27, 31, 40, 44, 45, 46, 51, 59, 60, 61, 62,
63, 128, 129, 130, 135, 136, 143, 144, 147, 148, 155, 156, 157, 158, 159, 160, 161,
162, 180, 181, 182, 191, 219, 220, 221, 222, 223, 224, 232, 255}. ChaCha provides
a 256-bit security level against key recovery attacks. Given that the success prob-
ability is approximately 0.5, our attack on ChaCha20/7.25 is slightly less efficient
than a brute force attack; however, it is the first dedicated attack on the target to
be reported. It provides both a baseline and useful components (i.e., differential
bias and PNB) for improved attacks.

In addition, as displayed in Table 8, our attack on ChaCha20/7.5 can be
performed with time and data complexities of 2273.49 and 237.49, respectively,
using the best parameters, where the ID-OD pair is (Δ(0)

15 [6],Δ(3.5)
0 [0]), γ is

0.30, n is 20, α is 1, and the list of PNB is {6, 7, 14, 22, 25, 31, 39, 40, 41, 42,
56, 57, 58, 63, 191, 219, 220, 221, 222, 223}. Thus, our attack on ChaCha20/7.5
is inefficient because this is beyond the security level of ChaCha.

PNB-Focused Differential Cryptanalysis of ChaCha Stream Cipher 63

Table 8. Best parameters for the proposed attack on ChaCha20/7.5.

ID OD γ n |εd| |εa| α Time Data

Δ
(0)
15 [6] Δ

(3.5)
0 [0] 0.30 20 0.000469 0.020269 1 2273.49 237.49

Δ
(0)
12 [6] Δ

(3.5)
1 [0] 0.30 20 0.000478 0.014840 1 2274.33 238.33

Δ
(0)
13 [6] Δ

(3.5)
2 [0] 0.30 20 0.000504 0.017594 1 2273.69 237.69

Δ
(0)
14 [6] Δ

(3.5)
3 [0] 0.30 20 0.000478 0.018693 1 2273.67 237.67

6 Related Works

Aumasson et al. [1] proposed a framework for a differential attack based on
the PNB concept and applied it to reduced-round Salsa, ChaCha, and Rumba.
They first obtained an ID-OD pair, (Δ(0)

13 [13],Δ(3)
11 [0]), with a high differential

bias using a single-bit differential technique. Then, they determined the PNB
at the target OD bit position and estimated the time and data complexities for
their attack on ChaCha20/7. Their attack can be performed with time and data
complexities of 2248 and 227, respectively.

Shi et al. [18] proposed new techniques, called the column chaining dis-
tinguisher (CCD) and probabilistic neutral vector (PNV) concept, to improve
Aumasson et al.’s attack. They used the same ID-OD pair, (Δ(0)

13 [13],Δ(3)
11 [0]),

obtained by Aumasson et al., constructed a 4-step CCD, determined the PNV
at the target OD bit position, and estimated the time and data complexities as
well as the success probability for their attack on ChaCha20/7. Their attack can
be performed with time and data complexities of 2246.5 and 227, respectively,
and a success probability of approximately 0.43.

Maitra [16] further improved Aumasson et al.’s attack by using the chosen-IV
technique. Maitra used the same ID-OD pair, (Δ(0)

13 [13],Δ(3)
11 [0]), obtained by

Aumasson et al. and explored how to appropriately select IVs corresponding to
the secret keys, given the target ID, Δ

(0)
13 [13]. This attack can be performed on

ChaCha20/7 with the time and data complexities of 2238.94 and 223.89, respec-
tively.

Choudhuri and Maitra [6] used a differential-linear technique to extend the
existing 3-round single-bit differential, (Δ(0)

13 [13],Δ(3)
11 [0]), to 4-, 4.5-, and 5-round

multi-bit differentials, such that the 4.5-round OD is Δ
(4.5)
0 [0] ⊕ Δ

(4.5)
0 [8] ⊕

Δ
(4.5)
1 [0] ⊕ Δ

(4.5)
5 [12] ⊕ Δ

(4.5)
11 [0] ⊕ Δ

(4.5)
9 [0] ⊕ Δ

(4.5)
15 [0] ⊕ Δ

(4.5)
12 [16] ⊕ Δ

(4.5)
12 [24].

Using such multi-bit differentials, their attack on ChaCha20/7 can be performed
with time and data complexities of 2237.65 and 231.6, respectively.

Beierle et al. [3] presented a generic framework for differential-linear attacks
with a special focus on ARX ciphers. Then, they applied this framework to

64 S. Miyashita et al.

ChaCha20/7 and improved the best existing attacks. To perform a differential-
linear attack on ChaCha20/7, the target cipher is divided into a differential part
covering 1 round, a middle part covering 2.5 rounds, a linear part covering 2.5
rounds, and a key guessing part covering 1 round. As a result, their attack can
be performed on ChaCha20/7 with time and data complexities of 2230.86 and
248.83, respectively.

As summarized above, the best existing attack on reduced-round ChaCha
works on up to 7 rounds with time and data complexities of 2230.86 and 248.83,
respectively. Our attack has the time and data complexities of 2231.63 and 249.58,
respectively; thus, it is not an improvement over the best existing attack on
ChaCha20/7. However, our analysis suggests that a PNB-focused differential
attack on reduced-round ChaCha should work on up to 7.25 rounds. No study
focusing on attacks on ChaCha20/7.25 has been conducted until now. Although
the proposed attack on ChaCha20/7.25 is less efficient than a brute force attack,
it is the first dedicated attack on the target. It provides both a baseline and useful
components (i.e., differential bias and PNB) for improved attacks.

7 Conclusion

In this study, we have proposed a new approach for differential cryptanalysis
against the ChaCha stream cipher. Our approach focuses on analyzing PNB rather
than searching for differential biases; therefore, we refer to the proposed app-
roach as a PNB-focused differential attack. The proposed approach allows us to
perform the most effective differential attack on the 7.25-round ChaCha (i.e.,
ChaCha20/7.25) with a time complexity of 2255.62, a data complexity of 248.36,
and a success probability of 0.5. Although this attack is less efficient than a brute
force attack, it is the first dedicated attack on the target. It provides both a baseline
and useful components (i.e., differential bias and PNB) for improved attacks.

Our work can be extended in the following directions in the future. First, in
this study, we have focused solely on the truncated single-bit differential tech-
nique. However, it may be possible to improve the proposed attack by employing
multi-bit differential or differential-linear techniques, especially in the framework
proposed by Beierle et al. [3]. In addition, our analysis have not fully consid-
ered both the differential bias and PNB to obtain the best combination because
these characteristics can be analyzed independently. The next step is thus to con-
sider these characteristics together to obtain stricter evaluation results. Finally,
the PNB-focused differential attack can be used to improve existing differential
attacks on the Salsa stream cipher.

Acknowledgment. We would like to thank the reviewers for their valuable feedback
that helped improve the quality of our paper. This work is partially supported by
JSPS KAKENHI Grant Number JP21H03443, and Innovation Platform for Society 5.0
at MEXT.

PNB-Focused Differential Cryptanalysis of ChaCha Stream Cipher 65

References

1. Aumasson, J.-P., Fischer, S., Khazaei, S., Meier, W., Rechberger, C.: New features
of Latin dances: analysis of Salsa, ChaCha, and Rumba. In: Nyberg, K. (ed.) FSE
2008. LNCS, vol. 5086, pp. 470–488. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-71039-4 30

2. Baignères, T., Junod, P., Vaudenay, S.: How far can we go beyond linear crypt-
analysis? In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 432–450.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30539-2 31

3. Beierle, C., Leander, G., Todo, Y.: Improved differential-linear attacks with appli-
cations to ARX ciphers. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020.
LNCS, vol. 12172, pp. 329–358. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-56877-1 12

4. Bernstein, D.J.: ChaCha, a variant of Salsa20. In: Workshop Record of SASC, vol.
8 (2008)

5. Bernstein, D.J.: The Salsa20 family of stream ciphers. In: Robshaw, M., Billet, O.
(eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 84–97. Springer, Heidel-
berg (2008). https://doi.org/10.1007/978-3-540-68351-3 8

6. Arka Rai Choudhuri and Subhamoy Maitra: Significantly improved multi-bit dif-
ferentials for reduced round Salsa and ChaCha. IACR Trans. Symmetric Cryptol.
2016(2), 261–287 (2016)

7. Coutinho, M., Souza Neto, T.C.: New multi-bit differentials to improve attacks
against ChaCha. IACR Cryptology ePrint Archive, p. 350 (2020)

8. Coutinho, M., Souza Neto, T.C.: Improved linear approximations to ARX ciphers
and attacks against ChaCha. IACR Cryptology ePrint Archive, p. 224 (2021)

9. Coutinho, M., Souza Neto, T.C.: Improved linear approximations to ARX ciphers
and attacks against ChaCha. In: Canteaut, A., Standaert, F.-X. (eds.) EURO-
CRYPT 2021. LNCS, vol. 12696, pp. 711–740. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-77870-5 25

10. Deepthi, K.K.C., Singh, K.: Cryptanalysis of Salsa and ChaCha: revisited. In: Hu,
J., Khalil, I., Tari, Z., Wen, S. (eds.) MONAMI 2017. LNICST, vol. 235, pp. 324–
338. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-90775-8 26

11. Dey, S., Sarkar, S.: Improved analysis for reduced round Salsa and Chacha. Discret.
Appl. Math. 227, 58–69 (2017)

12. Dey, S., Sarkar, S.: Proving the biases of Salsa and ChaCha in differential attack.
Des. Codes Crypt. 88(9), 1827–1856 (2020). https://doi.org/10.1007/s10623-020-
00736-9

13. Dey, S., Sarkar, S.: A theoretical investigation on the distinguishers of Salsa and
ChaCha. Discret. Appl. Math. 302, 147–162 (2021)

14. Ishiguro, T., Kiyomoto, S., Miyake, Y.: Latin dances revisited: new analytic results
of Salsa20 and ChaCha. In: Qing, S., Susilo, W., Wang, G., Liu, D. (eds.) ICICS
2011. LNCS, vol. 7043, pp. 255–266. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-25243-3 21

15. Ito, R.: Rotational cryptanalysis of salsa core function. In: Susilo, W., Deng, R.H.,
Guo, F., Li, Y., Intan, R. (eds.) ISC 2020. LNCS, vol. 12472, pp. 129–145. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-62974-8 8

16. Maitra, S.: Chosen IV cryptanalysis on reduced round ChaCha and Salsa. Discret.
Appl. Math. 208, 88–97 (2016)

https://doi.org/10.1007/978-3-540-71039-4_30
https://doi.org/10.1007/978-3-540-71039-4_30
https://doi.org/10.1007/978-3-540-30539-2_31
https://doi.org/10.1007/978-3-030-56877-1_12
https://doi.org/10.1007/978-3-030-56877-1_12
https://doi.org/10.1007/978-3-540-68351-3_8
https://doi.org/10.1007/978-3-030-77870-5_25
https://doi.org/10.1007/978-3-030-77870-5_25
https://doi.org/10.1007/978-3-319-90775-8_26
https://doi.org/10.1007/s10623-020-00736-9
https://doi.org/10.1007/s10623-020-00736-9
https://doi.org/10.1007/978-3-642-25243-3_21
https://doi.org/10.1007/978-3-642-25243-3_21
https://doi.org/10.1007/978-3-030-62974-8_8

66 S. Miyashita et al.

17. Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidis-
tributed uniform pseudo-random number generator. ACM Trans. Model. Comput.
Simul. 8(1), 3–30 (1998)

18. Shi, Z., Zhang, B., Feng, D., Wu, W.: Improved key recovery attacks on reduced-
round Salsa20 and ChaCha. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC
2012. LNCS, vol. 7839, pp. 337–351. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-37682-5 24

https://doi.org/10.1007/978-3-642-37682-5_24
https://doi.org/10.1007/978-3-642-37682-5_24

Improved Differential Attack
on Round-Reduced LEA

Yuhan Zhang1,2, Wenling Wu1,2(B), and Lei Zhang1,2

1 Trusted Computing and Information Assurance Laboratory, Institute of Software
Chinese Academy of Science, Beijing 100190, China

{yuhan2019,wenling}@iscas.ac.cn
2 University of Chinese Academy of Sciences, Beijing 100049, China

Abstract. LEA is both the national standard of the Republic of Korea
and an ISO/IEC standard. In this paper, we focus on differential attack
on LEA with the automatic analysis technique and improve the previ-
ous searching strategy in ARX ciphers. For new strategy, we no longer
just pay attention to the internal difference with only one active bit. By
studying the differential property of modular addition, we choose the
proper difference in the middle round. We construct a 13-round differ-
ential characteristic whose probability is better than the best previous
one with a factor of about 2. Furthermore, We take the differential effect
into consideration and obtain a 13-round differential whose probability
is better than the best previous one with a factor of about 4. Moreover,
we mount key-recovery on 14-round LEA-128, 14-round LEA-192 and
15-round LEA-256. Utilizing the property for key schedule, we obtain
the lower time complexity than that evaluated by Dinur’s method.

Keywords: Differential cryptanalysis · Key-recovery attack ·
Automatic search · MILP · ARX · LEA

1 Introduction

In symmetric cryptography, ARX ciphers with excellent performance in soft-
ware are a large class of symmetric-key primitives consisting of three opera-
tions: modular addition, bit rotations and XOR. For example: the block ciphers
SPECK [3], LEA [15], HIGHT [16], SPARX [12], TEA [24], the stream ciphers
Salsa20 [7], ChaCha [6], and the SHA-3 finalists Skein [11] and Blake [1]. Some
other examples are: message authentication code algorithm Chaskey [19], ARX-
box Alzette [4] and authenticated encryption with associated data SPARKLE [5],
which is one of the 10 finalists to move forward to the final round of the selection
process in NIST Lightweight Cryptography Standardization process(LWC).

Differential cryptanalysis introduced by Biham and Shamir in [8] is an impor-
tant method in evaluating security of symmetric-key cryptographic algorithms.
As for S-boxes based ciphers, there exist many automatic search algorithms such
as the work in [23]. The security against differential is evaluated by the number

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
K. Nguyen et al. (Eds.): ACISP 2022, LNCS 13494, pp. 67–84, 2022.
https://doi.org/10.1007/978-3-031-22301-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22301-3_4&domain=pdf
https://doi.org/10.1007/978-3-031-22301-3_4

68 Y. Zhang et al.

of active S-boxes. However, modular addition, the non-linear operation in ARX
ciphers, is very different from the S-boxes. It is difficult to evaluate the security
for ARX ciphers against differential in a similar way. To fill this gap, a variety
of methods have been proposed and they can be divided into the following three
classes.

The first category of the automatic methods for differential cryptanalysis
is based on Matsui’s branch and bound algorithm. In [9,10], Biryukov et al.
proposed an automatic differential cryptanalysis method using partial difference
distribution tables. Many best differential characteristics for ARX ciphers, such
as SPECK, are found with their method. However, with the round increasing, it
is infeasible to find the best characteristics in a reasonable time. Another impor-
tant branch of the automatic searching algorithms is the methods using mixed
integer linear programming(MILP). In [14], Fu et al., proposed a MILP-based
method to search for the best differential characteristics for SPECK. However,
when the number of rounds or the block size is large, the optimal character-
istics cannot be found. In [2], Bagherzadeh et al. extend Fu’s method. They
show how to construct the MILP model of modular addition with one constant
and search for the long-round characteristics by connecting two short-round dif-
ferential characteristics. The search method based on the boolean satisfiability
problem(SAT) [22] also plays an crucial role in automatic searching algorithm.
In [20], Mouha et al. proposed a framework to search for the best differential char-
acteristics for Salsa20. They use some logical equations in Conjunctive Normal
Form(CNF) to describe the differential propagations through round function of
ARX ciphers and add the logical equation system to SAT solver STP to find the
best differential characteristics for ARX ciphers. In [21], Song et al. extend the
Mouha’s algorithm by connecting two short-round characteristics to construct a
long-round differential characteristic. In the first place, they choose an internal
difference with one active bit, then search forward and backward. Consequently,
they obtained the improved results for LEA and SPECK. However, the way of
choosing internal difference is limited, which may miss the better differential
characteristics.

Our Contributions. In this paper, we pay attention to the automatic dif-
ferential cryptanalysis of LEA with respect to XOR-difference. Our searching
method is based on Fu’s framework using MILP. We improved the Song’s and
Bagherzadeh’s work by proposing a new method to choose the proper inter-
nal difference based on the differential property for modular addition. The new
searching strategy helps us find the better differential characteristics for LEA.
For round-reduced LEA, we find a new 13-round differential characteristic whose
probability is twice as large as the best previous results. We take the differential
effect into consideration and obtain a more powerful 13-round differential than
the previous best one. What’s more, we improve the key-recovery attack. We
extract the property in key schedule. Using the relations between round keys,
we mount the key-recovery on 14-round LEA-128, 14-round LEA-192 and 15-
round LEA-256. We obtain the lower complexity than that evaluated by Dinur’s
method [13].

Improved Differential Attack on Round-Reduced LEA 69

Outline. The rest of this paper is organized as follows. In Sect. 2, we review
Fu’s MILP model of ARX ciphers. In Sect. 3, we show the details of our improved
searching strategy. The application to round-reduced LEA are detailed in Sect. 4.
Finally, we conclude our work in Sect. 5.

2 Fu’s MILP Model for Differential Characteristics
of ARX Ciphers

In this section, we first present Fu et al.’s algorithm, we can refer to [14] for
detailed work. We first give some definitions and theorems.

Definition 1. Let α, β and γ be fixed n-bit XOR differences. The XOR-
differential probability (DP) of addition modular 2n(xdp+) is the probability with
which α and β propagate to γ through the ADD operation, computed over all pairs
of n-bit inputs (x, y) :

xdp+(α, β → γ) = 2−2n · # {(x, y) : ((x ⊕ α) � (y ⊕ β)) ⊕ (x � y) = γ} (1)

Theorem 1 ([18]). The differential (α, β → γ) is possible iff (α[0] ⊕ β[0] ⊕
γ[0]) = 0 and α[i − 1] = β[i − 1] = γ[i − 1] = α[i] ⊕ β[i] ⊕ γ[i] for α[i − 1] =
β[i − 1] = γ[i − 1], i ∈ [1, n − 1].

Theorem 2 ([18]). Assume that (α, β → γ) is a possible differential character-
istic, then the differential probability xdp+ = 2− ∑n−2

i=0 ¬eq(α[i],β[i],γ[i]), where

eq(α[i], β[i], γ[i]) =
{

1, α[i] = β[i] = γ[i]
0, others

(2)

Note, the 0-th bit is the least significant bit and the ¬ means logical negation.

Next, we describe the constraints for XOR and modular addition operation
and objective function in Fu’s MILP model.

Constraints of XOR Operation. Assume that a, b and c are two input dif-
ferences and output difference for XOR operation, respectively. Then we can
use the following inequalities to describe the differential propagation for XOR
operation ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a + b + c ≥ 2d
d ≥ a
d ≥ b
d ≥ c
a + b + c ≤ 2

(3)

where d is a dummy bit variable, the value of d is 0 if a = 0, b = 0 and c = 0, 1
otherwise.

70 Y. Zhang et al.

Constraints of Modular Addition Operation. According to Theorem 1
and Theorem 2, all 65 possible vectors (α[i], β[i], γ[i], α[i + 1], β[i + 1], γ[i +
1],¬eq(α[i], β[i], γ[i])) for modular addition can be obtained. With the inequal-
ity generator() function in the sage.geometry and the greedy algorithm
in [23], the following inequalities can describe the differential propagation for
modular addition⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β[i] − γ[i] + (¬eq(α[i], β[i], γ[i])) ≥ 0
α[i] − β[i] + (¬eq(α[i], β[i], γ[i])) ≥ 0
−α[i] + γ[i] + (¬eq(α[i], β[i], γ[i])) ≥ 0
−α[i] − β[i] − γ[i] − (¬eq(α[i], β[i], γ[i])) ≥ −3
α[i] + β[i] + γ[i] − (¬eq(α[i], β[i], γ[i])) ≥ 0
−β[i] + α[i + 1] + β[i + 1] + γ[i + 1] + (¬eq(α[i], β[i], γ[i])) ≥ 0
β[i] + α[i + 1] − β[i + 1] + γ[i + 1] + (¬eq(α[i], β[i], γ[i])) ≥ 0
β[i] − α[i + 1] + β[i + 1] + γ[i + 1] + (¬eq(α[i], β[i], γ[i])) ≥ 0
α[i] + α[i + 1] + β[i + 1] − γ[i + 1] + (¬eq(α[i], β[i], γ[i])) ≥ 0
γ[i] − α[i + 1] − β[i + 1] − γ[i + 1] + (¬eq(α[i], β[i], γ[i])) ≥ −2
−β[i] + α[i + 1] − β[i + 1] − γ[i + 1] + (¬eq(α[i], β[i], γ[i])) ≥ −2
−β[i] − α[i + 1] + β[i + 1] − γ[i + 1] + (¬eq(α[i], β[i], γ[i])) ≥ −2
−β[i] − α[i + 1] − β[i + 1] + γ[i + 1] + (¬eq(α[i], β[i], γ[i])) ≥ −2

(4)

Besides, we can easily get the inequalities corresponding α[0] ⊕ β[0] = γ[0] by
constraints of XOR operation.

Objective Function of Differential Model. Based on the computation of
xdp+, the objective function is to minimize

∑n−2
i=0 ¬eq(α[i], β[i], γ[i]) .

3 Automatic Search for Characteristics and Differentials
for Round-Reduced LEA

In this section, we propose an improved strategy for searching for long-round
differential characteristics for ARX cipher. In the previous searching methods
for ARX ciphers, authors prefer to choose the input difference in the middle
round with one active bit to find the high probability differential characteristics.
In this section, we extend the previous work and propose an improved searching
strategy to long-round characteristics. We first study the differential property
for modular addition i.e. which input difference may lead to the high differential
probability. Then, we choose the input difference in the middle round based on
the above property to search for long-round differential characteristics with high
probability.

3.1 Differential Property for Modular Addition

Lipmaa and Moriai prove that the differential probability through modular addi-
tion can be computed by

xdp+ = 2− ∑n−2
i=0 ¬eq(α[i],β[i],γ[i]) (5)

Improved Differential Attack on Round-Reduced LEA 71

when the differential (α, β → γ) is possible. According to the definition of
¬eq(x, y, z),

eq(x, y, z) = (¬x ⊕ y)(¬x ⊕ z) (6)

we can easily get that the value of eq(x, y, z) is 1 if and only if x = y = z. In
order to obtain the high differential probability through modular addition, we
hope that the value of

∑n−2
i=0 ¬eq(α[i], β[i], γ[i]) is small. To achieve this goal, the

number of bits that satisfy eq(α[i], β[i], γ[i]) = 1 should be as many as possible,
i.e. the number of bits which satisfy α[i] = β[i] = γ[i] should be covered large
scale.

Besides, considering the diffusion, the input difference with few active bits
may be easier to lead to high differential probability, so if we want to find the
good differential for modular addition, the number of active bits in input differ-
ence should be as fewer as possible. The above phenomenon can be summarized
as the following two observations,

Observation 1. To get high differential probability in modular addition, the
number of bits in α, β having the same value should be as many as possible.

Observation 2. To get high differential probability in modular addition, the
number of non-active bits in α, β should be as many as possible.

Based on the above observations, we try various input differences and com-
pute its best differential probability P through modular addition. As a con-
sequence, we obtain the three classes of input difference which will lead to
high probability and less active bits in the output difference. Assuming that
x = (xn−1, ..., x1, x0), y = (yn−1, ..., y1, y0) are input differences for modular
addition, #Ac represents the number of active bits in input difference and the
ID is the input difference set corresponding to the certain class. The three
classes are summarized in Table 1. According to the input difference in Table 1,
we desire to decide the input difference which may lead to better differential
characteristics in the middle round.

Table 1. The classes for input difference for nodular addition with high probability

Class #Ac Input difference set

P = 1 1 ID = {(x, y)|xn−1 = 1, yn−1 = 0, xi = yi = 0, i = 0, 1, ..., n − 2}
2 ID = {(x, y)|xn−1 = 1, yn−1 = 1, xi = yi = 0, i = 0, 1, ..., n − 2}

P = 1
2 1 ID = {(x, y)|xi = 1, yi = 0, xj = yj = 0, i = 0, 1, ..., n − 2, j �= i}

2 ID = {(x, y)|xi = 1, yi = 1, xj = yj = 0, i = 0, 1, ..., n − 2, j �= i}
ID = {(x, y)|xi = 1, xi−k = 1, xj = 0, j �= i, i − k, y = 0, i = n − 1, k − 1}
ID = {(x, y)|xi = 1, yi−k = 1, xj = 0, j �= i, yl = 0, l �= i − k, i = n − 1, k − 1}

P = 1
4 2 ID = {(x, y)|xi = 1, xi−k = 1, xj = 0, j �= i, i − k, y = 0, i �= n − 1, k − 1}

ID = {(x, y)|xi = 1, yi−k = 1, xj = 0, j �= i, yl = 0, l �= i − k, i �= n − 1, k − 1}

72 Y. Zhang et al.

3.2 Improved Searching Strategy for Long-Round Differential
Characteristics

With the number of rounds increasing, the solving time for MILP model increases
sharply. As a result, it is infeasible to find the best long-round differential charac-
teristics. Inspired by the phenomenon that many optimal characteristics have a
special input difference which has few active bits in the middle round, we search
for the long-round differential characteristics by Algorithm 1, where S is the set
of internal difference corresponding to the input difference for modular addition
in Table 1, and E = E2 ◦ E1. Our searching process is based on the Markov
cipher assumption [17]. The details are as follow.

Firstly, we choose one value of internal difference diff in S.

Secondly, we build MILP model M1 and add linear inequalities with respect
to XOR-difference for every modular addition, XOR and rotation of r1-round
E1 as constraints into M1 . Then we add constraints to fix the value of out-
put difference for r1-round E1 to diff to M1. The constraints corresponding
to output difference can help us connect two short-round characteristics per-
fectly. Besides, we set the objective function according to Theorem 2. Next,
we solve M1 and obtain the best differential characteristic and the corre-
sponding probability p1 under the above constraints.

Thirdly, MILP model M2 is built to search r2-round best differential char-
acteristic and probability p2 for E2 under the constraints: the value of input
difference is fixed to diff .

Finally, r-round differential characteristic can be obtained by connecting r1-
round characteristic with r2-round characteristic, and the probability p can
be computed by p1 · p2.

We traverse the value of internal difference diff in S to get the max probability
p corresponding r-round differential characteristic for E. Generally, we choose
r1 = r2 = r/2 when r is even and we choose |r1 − r2| = 1 when r is odd.

We use Algorithm 1 to SPECK to search for the long-round characteristics.
The results show that more powerful differential characteristics can be found
effectively, i.e. if we choose the proper internal difference and search for the
short-round differential characteristic forward and backward, we will obtain the
good long-round differential characteristics for SPECK family. The experiment
results are summarized in Table 2. The results illustrate that it is possible to find
good long-round differential characteristics for ARX ciphers in a feasible time
with the improved searching strategy. Note the probability in the Table 2 are all
the best differential probability for SPECK.

Improved Differential Attack on Round-Reduced LEA 73

Algorithm 1. Searching good long-round differential characteristics

Input: number of rounds r for E, number of rounds r1 for E1 , number of rounds r2 for E2

Output: differential characteristic DC, differential probability p

1: p = 0

2: DC ← ∅
3: for diff in S:

4: /*search backward r1-round characteristic*/

5: Construct the MILP model M1 for r1-round E1

6: Add constraints fixed the r1-round output difference equal to diff

7: Solving M1 and get the best r1-round differential probability p1

8: /*search forward r2-round characteristic*/

9: Construct the MILP model M2 for r2-round E2

10: Add constraints fixed the input difference equal to diff

11: Solving M2 and get the best r2-round differential probability p2

12: if p1 · p2 > p:

13: p = p1 · p2

14: DC ← r1 − round characteristic||r2 − round characteristics

15: end if

16:end for

17:return p, DC

Table 2. The experiment results for SPECK .

Variant Rounds Internal difference r1, r2, p1, p2 Probability

SPECK32 9 x15 = y8 = 1 r1 = 4, r2 = 5, p1 = 2−13, p2 = 2−17 2−30

SPECK48 10 x23 = y16 = 1 r1 = 4, r2 = 6, p1 = 2−15, p2 = 2−25 2−40

SPECK128 9 x63 = y56 = 1 r1 = 5, r2 = 5, p1 = 2−27, p2 = 2−2 2−49

4 Application to Round-Reduced LEA

In this section, we apply the improved searching strategy in Sect. 3 to round-
reduced LEA. We would like to find the longer characteristics with higher
probability. Note that all of the characteristics are searched with MILP solver
Gurobi on a personal computer(Intel(R) Core(TM) i7-6700 CPU @ 3.40 GHz
3.41 GHz,16 GB RAM).

4.1 Description of LEA

LEA is an ARX block cipher designed by Hong et al. [15]. The block size of
LEA is 128 bits, the key size has three visions, i.e. 128bits, 192bits and 256
bits. We denote the algorithms by LEA-128, LEA-192 and LEA-256 respectively
according to key size.

74 Y. Zhang et al.

The encryption rounds r is 24, 28 and 32 for LEA-128, LEA-192 and LEA-256
respectively. Assume that the input of the i-th round is (xi, yi, wi, zi) , output is
(xi+1, yi+1, wi+1, zi+1), and the round key is rki = (rki

0, rk
i
1, rk

i
2, rk

i
3, rk

i
4, rk

i
5),

xi, yi, wi, zi, rki
0, rk

i
1, rk

i
2, rk

i
3, rk

i
4, rk

i
5 ∈ F 32

2 . The round function for round
i, 0 ≤ i < r is defined as follows:

xi+1 ← ((xi ⊕ rki
0) � (yi ⊕ rki

1)) ≪ 9,

yi+1 ← ((yi ⊕ rki
2) � (wi ⊕ rki

3)) ≫ 5,

wi+1 ← ((wi ⊕ rki
4) � (zi ⊕ rki

5)) ≫ 3,

zi+1 ← xi.

We take LEA-256 as an example to illustrate the key schedule. Let k =
(k0, k1, ..., k7) be a 256-bit key. We set ti = ki, 0 ≤ i < 8. Round key
rki = (rki

0, rk
i
1, rk

i
2, rk

i
3, rk

i
4, rk

i
5), 0 ≤ i < 32 are computed by the following

relations:

t6imod8 ← (t6imod8 � δimod8 ≪ i) ≪ 1
t6i+1mod8 ← (t6i+1mod8 � δimod8 ≪ i + 1) ≪ 3
t6i+2mod8 ← (t6i+2mod8 � δimod8 ≪ i + 2) ≪ 6
t6i+3mod8 ← (t6i+3mod8 � δimod8 ≪ i + 3) ≪ 11
t6i+4mod8 ← (t6i+4mod8 � δimod8 ≪ i + 4) ≪ 13
t6i+5mod8 ← (t6i+5mod8 � δimod8 ≪ i + 5) ≪ 17

rki = (t6imod8, t6i+1mod8, t6i+2mod8, t6i+3mod8, t6i+4mod8, t6i+5mod8)

where δi, 0 ≤ i < 8 are the constant for generating round keys, which are defined
as follows.

δ0 = 0xc3efe9db, δ1 = 0x44626b02,

δ2 = 0x79e27c8a, δ3 = 0x78df30ec,

δ4 = 0x715ea49e, δ5 = 0xc785da0a,

δ6 = 0xe04ef22a, δ7 = 0xe5c40957.

The relations between round keys play an important role in reducing complexity
in key-recovery process. Figure 1 provides a schematic view on the round function
of LEA.

4.2 Characteristics and Differentials of Round-Reduced LEA

Characteristics of Round-Reduced LEA. According to the Algorithm 1 in
Sect. 3, we search for the 13-round differential characteristics. In the searching
process, we first generate the internal difference set S according to the high
probability differential through modular addition in Table 1. Then we divide
13-round LEA denoted by E into 6-round E1 and 7-round E2. Traversing the
internal difference in S, we found a better 13-round differential characteristic

Improved Differential Attack on Round-Reduced LEA 75

Fig. 1. Round function of LEA

Table 3. The new 13-round differential characteristic for LEA

Rounds Δx Δy Δw Δz
∑

log2p

0 0x00000900 0x80000900 0x80402900 0x80402100

1 0x00000100 0x00020100 0x00000100 0x00000900

2 0x04000000 0x00001000 0x00000100 0x00000100

3 0x00600008 0x000001f8 0x00000000 0x04000000

4 0x40040001 0x40000001 0x00800000 0x00600008

5 0x08000000 0x0ffc0000 0x00040001 0x40040001

6 0x08000000 0x08000000 0x08000000 0x08000000 −83

7 0x00000000 0x00000000 0x00000000 0x08000000

8 0x00000000 0x00000000 0x01000000 0x00000000

9 0x00000000 0x00080000 0x00400000 0x00000000

10 0x10000000 0x0001e000 0x00040000 0x00000000

11 0x00800020 0x00000200 0x00008000 0x10000000

12 0x00044001 0x00000410 0x02001000 0x00100020

13 0x08882400 0x801000a0 0x00500204 0x00044001 −126

than the best previous results with the following internal difference:

Δxm = 0x08000000
Δym = 0x08000000
Δwm = 0x08000000
Δzm = 0x08000000

where (Δxm,Δym,Δwm,Δzm) is the internal difference, i.e. it represents the
output difference for 6-round E1 and the input difference for 7-round E2. With
this internal difference, we can get the following 13-round differential charac-
teristic with probability of 2−126, which is connected by 6-round characteristic
with probability of 2−83 and 7-round characteristic with probability of 2−43. The
details of this characteristic are shown in Table 3.

76 Y. Zhang et al.

Table 4. The results for differential

Differenctial characteristic probability the number of solutions

2−126 8

2−127 16

2−128 108

2−129 354

2−130 1186

2−131 3660

2−132 10713

2−133 29270

2−134 77503

2−135 196884

2−136 481462

2−137 1146163

2−138 2649128

2−139 5967464

2−140 13142204

2−141 28328269

Differential probability 2−113.59

Differentials of Round-Reduced LEA. Besides, we analyse the differential
probability for 13-round LEA. Based on the above 13-round differential char-
acteristic connecting by 6-round characteristic with 7-round characteristic with
the internal difference (0x08000000, 0x08000000, 0x08000000, 0x08000000), We
fix the input difference, internal difference and output difference to search for
all 13-round differential characteristics satisfied the above constraints. The dif-
ferential probability can be obtained by the following step,

Step 1: Adding the constraints to fix the input difference and output differ-
ence equal to the input difference for 13-round differential characteristic, i.e.
(0x00000900, 0x80000900, 0x80402900, 0x80402100) and internal difference ,
i.e. (0x08000000, 0x08000000, 0x08000000, 0x08000000) respectively to the 6-
round MILP model M1. Then, adding constraints to limit the differential
probability which is equal to 2−83−N and searching all the solutions satisfy-
ing above constraints by Gurobi and recording the number of solutions.

Step 2: Adding constraints to fix input difference and output difference to 7-
round MILP model M2 similarly to step1. Then, adding constraints to limit
the differential probability which is equal to 2−43−N , searching and recording
the number of solutions. In our searching process, we take the value of N
from 0 to 15.

Step 3: Connecting two short-round characteristics to obtain the 13-round
characteristics and recording the number of 13-round characteristics satisfying

Improved Differential Attack on Round-Reduced LEA 77

the certain probability. The details of our searching results are shown in
Table 4.

Comparison. Table 5 compares the differential of round-reduced LEA we found
with the previous results. We find a 13-round differential with the probability
2−113.59 higher than the previous best result.

Table 5. Comparison of our differential of LEA with previous best one

#Rounds characteristic probability differential probability Reference

13 2−127 2−115.86 [2]

13 2−126 2−113.59 This paper

4.3 Differential Attacks on Round-Reduced LEA

According to the round function and the output difference for new 13-round
differential, we can easily obtain the representation of the output difference of
14-round and 15-round for LEA, and the details are shown in Fig. 2, where the
0x represents hexadecimal, 0b is binary and ∗ represent the value of this bit can
take value 0or1, (Δxi,Δyi,Δwi,Δzi) is the input difference of the i-th round.

14-Round Key-Recovery for LEA-128 and LEA-192. For convenience,
we first refine relations between (x13, y13, w13, z13) and (x14, y14, w14, z14) from
round function. Then, we mount the key-recovery on 14-round LEA-128 and
14-round LEA-192.

Relations in Round Function. From the round function of LEA, we can
easily gain the following relations.

L1 : x13 = z14

L2 : y13 ⊕ rk13
1 = (x14 ≫ 9 � (x13 ⊕ rk13

0))

L3 : w13 ⊕ rk13
3 = (y14 ≪ 5 � (y13 ⊕ rk13

1 ⊕ (rk13
1 ⊕ rk13

2)))

L4 : z13 ⊕ rk13
5 = (w14 ≪ 3 � (w13 ⊕ rk13

3 ⊕ (rk13
3 ⊕ rk13

4)))

Key-Recovery. The key-recovery is divided into collection phase and key-
guessing phase. The details of 14-round key-recovery are as follows,

Collection Phase:

1. Choose 2N pairs (Pi, P
′
i) such that their difference is Pi ⊕ P ′

i = (Δx0,Δy0,
Δw0,Δz0).

78 Y. Zhang et al.

Fig. 2. Two rounds of LEA

2. Encrypt 2N pairs (Pi, P
′
i) to ciphertext pairs (Ci, C

′
i) with a 14-round

LEA encryption oracle, where Ci = Ek(Pi), C ′
i = Ek(P ′

i). Derive the out-
put difference and check whether the difference meets the representation
of (Δx14,Δy14,Δw14,Δz14), i.e. Δx14 = 0b ∗ ... ∗ 100000 ∗ ...∗, Δy14 =
0b ∗ ... ∗ 100 ∗ ...∗, Δw14 = 0b ∗ ... ∗ 1 ∗ ...∗ and Δz14 = 0x08882400. If it
is not satisfied the above difference form, we discard the corresponding pairs
and store the remaining pairs in a list C0. Through this step, the number of
remaining pairs is 2N−42.

Key-Guessing Phase:

In the following, we focus on recovering the key bits: (rk13
0)5−31, (rk13

1 ⊕
rk13

2)2−31, rk13
3 ⊕ rk13

4 .

Initialize a list of 289counters.
1. Guess the 27 bits (rk13

0)5−31,
– Partially decrypt (Ci, C

′
i) in list C0 to the state of y13 keyed by rk13

1

by L1 and L2, and derive the value of Δy13. If Δy13 = 0x801000a0
is not hold, the corresponding pairs should be discarded. Then, store

Improved Differential Attack on Round-Reduced LEA 79

the remaining pairs in a list C1 and the number of remaining pairs is
2N−42−26 = 2N−68.

2. Guess the value of 30 bits (rk13
1 ⊕ rk13

2)2−31,
– Partially decrypt (Ci, C

′
i) in list C1 to the state of w13 keyed by rk13

3

by L3, and derive the value of Δw13. If Δw13 = 0x00500204 is not
hold, the corresponding pairs should be discarded. Then, store the
remaining pairs in a list C2 and the number of remaining pairs is
2N−68−29 = 2N−97.

3. Guess the value of the 32 bits rk13
3 ⊕ rk13

4 ,
– Partially decrypt (Ci, C

′
i) in list C2 to the state of z13 keyed by rk13

5

by L4, and derive the value of Δz13. If Δz13 = 0x00044001 is hold,
then increment the counter for the current key candidate. Otherwise,
the corresponding pairs should be discarded.

The differential probability for 13-round LEA is 2−113.59. We hope that the
key as potentially correct has a counter of at least two, so we take the value of
N as 114.59.

Complexity. When the value of N is 114.59, our attack require 2114.59 chosen
plaintext pairs. So the data complexity is 2114.59. The time complexity can be
computed as follows. In the collection phase, 2N 14-round LEA encryptions are
needed, then in the key-guessing phase 2N−42 ·227 · 1

14 14-round LEA encryptions,
2N−68 · 257 · 1

14 14-round LEA encryptions and 2N−97 · 289 · 1
14 14-round LEA

encryptions are needed in step 1, 2 and 3 respectively. When N = 114.59, the
total time complexity is about 2114.59 14-round LEA encryptions. In the key-
guessing phase, 289 counters are needed, so the memory complexity is 289.

15-Round Key-Recovery for LEA-256. In key-recovery for 15-round LEA-
256, some properties in key schedule help us saving 32-bit key guessing. In the
following, we first extract the relations between round keys and summarize the
relations between (x13, y13, w13, z13), (x14, y14, w14, z14) and (x15, y15, w15, z15).
Then, we introduce the details for key-recovery.

Property in Key Schedule. We study the property in key schedule for LEA
and obtain the relations between round key rk13 and round key rk14. We can
easily obtain the following relations from the key schedule of LEA-256, when
i = 13,

t6 ← (t7 � δ5 ≪ 13) ≪ 1
t7 ← (t6 � δ5 ≪ 14) ≪ 3
t0 ← (t0 � δ5 ≪ 15) ≪ 6
t1 ← (t1 � δ5 ≪ 16) ≪ 11
t2 ← (t2 � δ5 ≪ 17) ≪ 13
t3 ← (t3 � δ5 ≪ 18) ≪ 17

rk13 = (t6, t7, t0, t1, t2, t3)

80 Y. Zhang et al.

when i = 14,

t4 ← (t4 � δ6 ≪ 14) ≪ 1
t5 ← (t5 � δ6 ≪ 15) ≪ 3
t6 ← (t6 � δ6 ≪ 16) ≪ 6
t7 ← (t7 � δ6 ≪ 17) ≪ 11
t0 ← (t0 � δ6 ≪ 18) ≪ 13
t1 ← (t1 � δ6 ≪ 19) ≪ 17

rk14 = (t4, t5, t6, t7, t0, t1)

We obtain that rk14
2 , rk14

3 , rk14
4 , rk14

5 can be computed by rk13
0 , rk13

1 , rk13
2 , rk13

3 .

From the round function, we get the following relations,

L5 : x14 = z15

L6 : y14 ⊕ rk14
1 = (x15 ≫ 9 � (x14 ⊕ rk14

0))

L7 : w14 ⊕ rk14
3 = (y15 ≪ 5 � (y14 ⊕ rk14

1 ⊕ (rk14
1 ⊕ rk14

2)))

L8 : z14 ⊕ rk14
5 = (w15 ≪ 3 � (w14 ⊕ rk14

3 ⊕ (rk14
3 ⊕ rk14

4)))

L9 : x13 = z14

L10 : y13 ⊕ rk13
1 = (x14 ≫ 9 � (z14 ⊕ rk14

5 ⊕ (rk14
5 ⊕ rk13

0)))

L11 : w13 ⊕ rk13
3 = (((y14 ⊕ rk14

1) ⊕ rk14
1) ≪ 5 � (y13 ⊕ rk13

1 ⊕ (rk13
1 ⊕ rk13

2)))

L12 : z13 ⊕ rk13
5 = (((w14 ⊕ rk14

3) ⊕ rk14
3) ≪ 3 � (w13 ⊕ rk13

3 ⊕ (rk13
3 ⊕ rk13

4)))

Key-Recovery. The details of 15-round key-recovery for LEA-256 are as fol-
lows. We use Δi0,i1,...,ip to represent the difference whose active bits are in i0-th,
i1-th,...,ip-th bit.

Collection Phase:

1. Choose 2N pairs (Pi, P
′
i) such that their difference is Pi ⊕ P ′

i = (Δx0,Δy0,
Δw0,Δz0).

2. Encrypt 2N pairs (Pi, P
′
i) to ciphertext pairs (Ci, C

′
i) with a 15 round

LEA encryption oracle, where Ci = Ek(Pi), C ′
i = Ek(P ′

i). Derive the out-
put difference and check whether the difference meets the representation of
(Δx15,Δy15,Δw15,Δz15), i.e. Δz15 = 0b ∗ ... ∗ 100000 ∗ ...∗. If it is not satis-
fied the above difference form, we discard the corresponding pairs. Then store
the remaining pairs in a list D0. Through this step, the number of remaining
pairs is 2N−6.

Key-Guessing Phase:

In the following, we focus on recovering the key bits: rk14
0 , rk14

1 ⊕ rk14
2 , rk14

1 ,
rk14

3 ⊕ rk14
4 , (rk14

5 ⊕ rk13
0)5−31, (rk13

1 ⊕ rk13
2)2−31, rk13

3 ⊕ rk13
4 .

Improved Differential Attack on Round-Reduced LEA 81

Initialize a list of 2217counters.

1. Guess the value of the 32 bits rk14
0 ,

Partially decrypt (Di,D
′
i) in list D0 to the state of y14 keyed by rk14

1

by L5 and L6, and derive the value of Δy14. If Δy14 = Δ26,27,28 is
not hold, the corresponding pairs should be discarded. Then, store
the remaining pairs in a list D1 and the number of remaining pairs is
2N−6−3 = 2N−9.

2. Guess the value of the 32 bits rk14
1 ⊕ rk14

2 ,
Partially decrypt (Di,D

′
i) in list D1 to the state of w14 keyed by

rk14
3 by L7, and derive the value of Δw14. If Δw14 = Δ28 is not

hold, the corresponding pairs should be discarded. Then, store the
remaining pairs in a list D2 and the number of remaining pairs is
2N−9−1 = 2N−10.

3. Guess the value of the 32 bits rk14
3 ⊕ rk14

4 ,
Partially decrypt (Di,D

′
i) in list D2 to the state of z14 keyed by rk14

5

by L8, and derive the value of Δz14. If Δz14 = 0x08882400 is not
hold, the corresponding pairs should be discarded. Then, store the
remaining pairs in a list D3 and the number of remaining pairs is
2N−10−32 = 2N−42.

4. Guess the value of the 27 bits (rk14
5 ⊕ rk13

0)5−31,
Partially decrypt (Di,D

′
i) in list D3 to the state of y13 keyed by rk13

1

by L10, and derive the value of Δy13. If Δy13 = 0x801000a0 is not
hold, the corresponding pairs should be discarded. Then, store the
remaining pairs in a list D4 and the number of remaining pairs is
2N−42−26 = 2N−68.

5. Guess the value of the 30 bits (rk13
1 ⊕ rk13

2)2−31 and 32 bits rk14
1 ,

Partially decrypt (Di,D
′
i) in list D4 to the state of w13 keyed by rk13

3

by L11, and derive the value of Δw13. If Δw13 = 0x00500204 is not
hold, the corresponding pairs should be discarded. Then, store the
remaining pairs in a list D5 and the number of remaining pairs is
2N−68−29 = 2N−97.

6. Guess the value of the 32 bits rk13
3 ⊕ rk13

4 ,
Partially decrypt (Di,D

′
i) in list D5 to the state of z13 keyed by rk13

5

by L12, and derive the value of Δz13. If Δz13 = 0x00044001 is hold,
then increment the counter for the current key candidate. Otherwise,
the corresponding pairs should be discarded.

In the above procedure, the following should be noted: when the value of
z13 ⊕ rk13

5 are guessed, the value of key rk14
3 is needed. Next, we explain why

the guess of rk14
3 is omitted. Using the property extracted from key schedule,

we can see that rk14
3 can be deduced by the value of rk13

1 and rk14
4 can be

computed by rk13
2 . Before the value of z13 are guessed, we have obtained the

82 Y. Zhang et al.

value of rk13
1 ⊕ rk13

2 and rk14
3 ⊕ rk14

4 .

rk14
3 = (rk13

1 � δ6 ≪ 17) ≪ 11

rk14
4 = (rk13

2 � δ6 ≪ 18) ≪ 13

keyguess1 = rk14
3 ⊕ rk14

4

keyguess2 = rk13
1 ⊕ rk13

2

δ6 = 0xe04ef22a

where keyguess1, keyguess2 are the value that have been guessed. So we have
obtained four equations with four variables. As a result, the value of rk14

3 can
be easily determined, which allows saving the guessing of a 32-bit key world
directly.

The differential probability for 13-round LEA is 2−113.59. We hope that the
key as potentially correct has a counter of at least two, so we take the value of
N as 114.59.

Complexity . When the value of N is 114.59, our attack require 2114.59 chosen
plaintext pairs. So the data complexity is 2114.59. The time complexity can be
computed as follows. In the collection phase, 2N 15-round LEA encryption are
needed, then in the key-guessing phase 2N−6 ·232 · 1

15 15-round LEA encryptions,
2N−9 ·264 · 1

15 15-round LEA encryptions , 2N−10 ·296 · 1
15 15-round LEA encryp-

tions, 2N−42 ·2123 · 2
15 15-round LEA encryptions, 2N−68 ·2185 · 2

15 15-round LEA
encryptions, 2N−97 · 2217 · 2

15 15-round LEA encryptions, are needed in step 1, 2,
3, 4, 5 and 6 respectively. When N = 114.59, the total time complexity is about
2231.69 15-round LEA encryptions. In the key-guessing phase, 2217 counters are
needed, so the memory complexity is 2217.

The time, data and memory complexity of key-recovery for 14-round LEA-
128, 14-round LEA-192 and 15-round LEA-256 are shown in Table 6.

Table 6. Comparison of our attack complexity of LEA with the previous one

Variant #Rounds Time complexity Data complexity Memory complexity Reference

LEA-128 14 2124.79 2124.79 222 [21]

LEA-128 14 2114.59 2114.59 289 This paper

LEA-192 14 2124.79 2124.79 222 [21]

LEA-192 14 2114.59 2114.59 289 This paper

LEA-256 15 2252.79 2124.79 222 [21]

LEA-256 15 2231.69 2114.59 2217 This paper

5 Conclusion

In this paper, we apply Fu’s MILP framework to search for differential character-
istics of ARX ciphers. We extend the Song’s long-round differential characteris-
tics searching strategy. Compared to selecting the input difference of the middle

Improved Differential Attack on Round-Reduced LEA 83

round with only one active bit in previous work, we carefully choose the internal
difference depending on the differential property for modular addition. Using our
improved searching strategy, we find a better 13-round differential characteristic
for LEA with probability of 2−126. Furthermore, we obtain a more powerful 13-
round differential with probability 2−113.59. Moreover, using the relations derived
by the key schedule of LEA, we mount key-recovery on 14-round LEA-128, 14-
round LEA-192 and 15-round LEA-256.

Acknowledgement. The authors would like to thank Dr. Rishiraj Bhattacharyya
and the anonymous reviewers for their detailed and very helpful comments and sugges-
tions to improve this article. This work is supported by the National Natural Science
Foundation of China (No. 62072445).

References

1. Andreeva, E., Mennink, B., Preneel, B., Škrobot, M.: Security analysis and compar-
ison of the SHA-3 finalists BLAKE, Grøstl, JH, Keccak, and Skein. In: Mitrokotsa,
A., Vaudenay, S. (eds.) AFRICACRYPT 2012. LNCS, vol. 7374, pp. 287–305.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31410-0 18

2. Bagherzadeh, E., Ahmadian, Z.: Milp-based automatic differential search for LEA
and HIGHT block ciphers. IET Inf. Secur. 14(5), 595–603 (2020)

3. Beaulieu, R., Shors, D., Smith, J., Clark, S.T., Weeks, B., Wingers, L.: The SIMON
and SPECK familiies of lightweight block ciphers. Technical report, Cryptology
ePrint Archive, Report 2013/404, (2013)

4. Beierle, C., et al.: Alzette: a 64-Bit ARX-box. In: Micciancio, D., Ristenpart, T.
(eds.) CRYPTO 2020. LNCS, vol. 12172, pp. 419–448. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-56877-1 15

5. Beierle, C., et al.: Lightweight AEAD and hashing using the sparkle permutation
family. IACR Trans. Symmetric Cryptol. 2020(S1), 208–261 (2020)

6. Bernstein, D.J.: The salsa20 family of stream ciphers. In: Robshaw, M., Billet, O.
(eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 84–97. Springer, Heidel-
berg (2008). https://doi.org/10.1007/978-3-540-68351-3 8

7. Bernstein, D.J.: The salsa20 family of stream ciphers. In: Robshaw, M., Billet, O.
(eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 84–97. Springer, Heidel-
berg (2008). https://doi.org/10.1007/978-3-540-68351-3 8

8. Biham, E., Shamir, A.: Differential cryptanalysis of des-like cryptosystems. J.
Cryptol. 4(1), 3–72 (1991)

9. Biryukov, A., Velichkov, V.: Automatic search for differential trails in ARX ciphers.
In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 227–250. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-04852-9 12

10. Biryukov, A., Velichkov, V., Le Corre, Y.: Automatic search for the best trails in
ARX: application to block cipher Speck. In: Peyrin, T. (ed.) FSE 2016. LNCS,
vol. 9783, pp. 289–310. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-52993-5 15

11. Aumasson, J.-P., Çalık, Ç., Meier, W., Özen, O., Phan, R.C.-W., Varıcı, K.:
Improved cryptanalysis of skein. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS,
vol. 5912, pp. 542–559. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-10366-7 32

https://doi.org/10.1007/978-3-642-31410-0_18
https://doi.org/10.1007/978-3-030-56877-1_15
https://doi.org/10.1007/978-3-540-68351-3_8
https://doi.org/10.1007/978-3-540-68351-3_8
https://doi.org/10.1007/978-3-319-04852-9_12
https://doi.org/10.1007/978-3-662-52993-5_15
https://doi.org/10.1007/978-3-662-52993-5_15
https://doi.org/10.1007/978-3-642-10366-7_32
https://doi.org/10.1007/978-3-642-10366-7_32

84 Y. Zhang et al.

12. Dinu, D., Perrin, L., Udovenko, A., Velichkov, V., Großschädl, J., Biryukov, A.:
Design strategies for ARX with provable bounds: Sparx and LAX. In: Cheon, J.H.,
Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 484–513. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6 18

13. Dinur, I.: Improved differential cryptanalysis of round-reduced speck. In: Joux,
A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 147–164. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-13051-4 9

14. Fu, K., Wang, M., Guo, Y., Sun, S., Hu, L.: MILP-based automatic search algo-
rithms for differential and linear trails for speck. In: Peyrin, T. (ed.) FSE 2016.
LNCS, vol. 9783, pp. 268–288. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-52993-5 14

15. Hong, D., Lee, J.-K., Kim, D.-C., Kwon, D., Ryu, K.H., Lee, D.-G.: LEA: a 128-
bit block cipher for fast encryption on common processors. In: Kim, Y., Lee, H.,
Perrig, A. (eds.) WISA 2013. LNCS, vol. 8267, pp. 3–27. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-05149-9 1

16. Hong, D., et al.: HIGHT: a new block cipher suitable for low-resource device. In:
Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 46–59. Springer,
Heidelberg (2006). https://doi.org/10.1007/11894063 4

17. Lai, X., Massey, J.L., Murphy, S.: Markov ciphers and differential cryptanalysis.
In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 17–38. Springer,
Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6 2

18. Lipmaa, H., Moriai, S.: Efficient algorithms for computing differential properties of
addition. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 336–350. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45473-X 28

19. Mouha, N., Mennink, B., Herrewege, A.V., Watanabe, D., Preneel, B., Ver-
bauwhede, I.: Chaskey: an efficient MAC algorithm for 32-bit microcontrollers.
In: IACR Cryptology. ePrint Arch., pp. 386 (2014)

20. Nicky Mouha and Bart Preneel. Towards finding optimal differential characteristics
for ARX. Technical report, Cryptology ePrint Archive, Report 2013/328 (2013)

21. Song, L., Huang, Z., Yang, Q.: Automatic differential analysis of ARX block ciphers
with application to SPECK and LEA. In: Liu, J.K., Steinfeld, R. (eds.) ACISP
2016. LNCS, vol. 9723, pp. 379–394. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-40367-0 24

22. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic prob-
lems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–257. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2 24

23. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security eval-
uation and (related-key) differential characteristic search: application to SIMON,
PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In: Sarkar, P.,
Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 158–178. Springer, Hei-
delberg (2014). https://doi.org/10.1007/978-3-662-45611-8 9

24. Kaps, J.-P.: Chai-tea, cryptographic hardware implementations of xTEA. In:
Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol.
5365, pp. 363–375. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-89754-5 28

https://doi.org/10.1007/978-3-662-53887-6_18
https://doi.org/10.1007/978-3-319-13051-4_9
https://doi.org/10.1007/978-3-662-52993-5_14
https://doi.org/10.1007/978-3-662-52993-5_14
https://doi.org/10.1007/978-3-319-05149-9_1
https://doi.org/10.1007/11894063_4
https://doi.org/10.1007/3-540-46416-6_2
https://doi.org/10.1007/3-540-45473-X_28
https://doi.org/10.1007/978-3-319-40367-0_24
https://doi.org/10.1007/978-3-319-40367-0_24
https://doi.org/10.1007/978-3-642-02777-2_24
https://doi.org/10.1007/978-3-662-45611-8_9
https://doi.org/10.1007/978-3-540-89754-5_28
https://doi.org/10.1007/978-3-540-89754-5_28

Implementing Grover Oracle
for Lightweight Block Ciphers Under

Depth Constraints

Subodh Bijwe1, Amit Kumar Chauhan2(B), and Somitra Kumar Sanadhya2

1 Independent Researcher, Mumbai, India
2 Indian Institute of Technology Jodhpur, Jodhpur, India

akcindia.macs@gmail.com, somitra@iitj.ac.in

Abstract. Grover’s search algorithm allows a quantum attack against
block ciphers by searching for an n-bit secret key in time O(2n/2). In
the PQC standardization process, NIST defined the security categories
by imposing the upper bound on the depth of the quantum circuit of
the Grover oracle. In this work, we study quantum key search attacks on
lightweight block ciphers under depth constraints. We design optimized
quantum circuits for GIFT, SKINNY, and SATURNIN and enumerate
the quantum resources to implement the Grover oracle in terms of the
number of qubits, Clifford+T gates, and circuit depth. We also give the
concrete cost of Grover oracle for these ciphers in both the gate-count
and depth-times-width cost models. We then present the cost estimates
of Grover-based key search attacks on these ciphers under NIST’s depth
constraints. We also release Q# implementations of the full Grover oracle
for all the variants of GIFT, SKINNY, and SATURNIN to automatically
reproduce our quantum resource estimates.

Keywords: Quantum cryptanalysis · Grover’s algorithm · Lightweight
block ciphers · GIFT · SKINNY · SATURNIN · Q#

1 Introduction

The seminal work by Shor [25] shows that a sufficiently large quantum com-
puter would solve the problems of integer factorization and discrete logarithm in
a polynomial time. Consequently, the hugely deployed asymmetric cryptosystems
such as RSA, ECDSA, and ECDH would become insecure. In contrast, symmet-
ric cryptosystems like block ciphers and hash functions are widely considered
post-quantum secure. Grover’s algorithm [10] provides a quadratic speedup to
exhaustive key search attacks against an ideal block cipher. The conventional
wisdom suggests that doubling the key size of the block cipher will make it post-
quantum secure. However, this only gives a rough idea of the security penalties
that quantum computers impose on symmetric cryptographic primitives, mainly
because the cost of evaluating Grover’s oracle is often ignored. It is thus essential
to know the actual cost of quantum algorithms for the specific parameters that
provide concrete security measurements.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
K. Nguyen et al. (Eds.): ACISP 2022, LNCS 13494, pp. 85–105, 2022.
https://doi.org/10.1007/978-3-031-22301-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22301-3_5&domain=pdf
https://doi.org/10.1007/978-3-031-22301-3_5

86 S. Bijwe et al.

In its call for proposals to PQC standardization process [22], NIST proposes
security categories based on the concrete cost of quantum resources(quantum
gates, and circuit depth and width) for exhaustive key search on the block cipher
AES and collision search for the hash function SHA-3. Since the total gate count
of Grover’s algorithm increases with parallelization, NIST imposes a restriction
on the maximum depth of a quantum circuit, called MAXDEPTH (ranges from
240 to 296). For a meaningful definition of the security categories, NIST derives
gate cost estimates from the gate-level descriptions of the Grover oracle for key
search on AES by Grassl et al. [9]. They gave Grover’s key search cost estimates
on AES by minimizing the circuit width, i.e., the number of qubits needed.
Almazrooie et al. [1] improved the quantum circuit of AES-128 by reducing
the total number of Toffoli gates. Langenberg et al. [20] proposed an optimized
quantum circuit of AES S-box based on the work by Boyar and Peralta [6] that
further reduces the total number of Toffoli gates. Zou et al. [29] further reduced
the number of qubits needed to design the quantum circuit of AES by introducing
an optimized implementation of the inverse S-box operation.

Recently, block ciphers other than AES have also been considered.
Schlieper [23] presents the in-place implementation of Gimli cipher by conduct-
ing XOR operations after performing ANDs and ORs. Anand et al. [3] studied
SIMON intending to verify the implementation via quantum simulations. Jang
et al. [13] estimated quantum resources required for running Grover on SPECK.
Jang et al. [12] evaluated quantum resources for Korean block ciphers, including
HIGHT, LEA, and CHAM. Anand et al. [2] studied the quantum search attacks
on the feedback shift register based ciphers like Grain, TinyJambu, LIZARD.
Jang et al. [14] studied the block cipher PRESENT and GIFT by applying
Grover’s algorithm to its quantum circuit. However, they provided the cost of
Grover-based key search attacks without considering the depth restriction.

In a nutshell, most previous works focus on reducing the number of T gates
and qubits in their quantum circuit implementation. In a different direction of
work, Kim et al. [19] discussed time-space trade-offs of quantum resources needed
for key search on block ciphers and applied their methods on AES as an example.
Recently, Jaques et al. [15] studied the quantum key-search attacks on AES under
NIST’s MAXDEPTH constraint [22] at the cost of a few qubits. Finally, they
proposed a circuit that minimizes the (a) gate-count and (b) depth-times-width
cost metrics under the MAXDEPTH constraint. As a working example, they
implemented the full Grover’s oracle for key search on AES and LowMC in Q#
quantum programming language developed by Microsoft [26].

1.1 Our Contributions

In this paper, we present quantum implementations of the full Grover oracle
for key search on lightweight block ciphers such as GIFT, SKINNY, and SAT-
URNIN in Q#. We first design quantum circuits for each of the operations in
the block ciphers, primarily focusing on the S-box and the invertible linear map
(permutation). We use an in-place PLU decomposition method for implement-
ing invertible linear maps. We then derive the cost estimates for the full ciphers

Implementing Grover Oracle for Lightweight Block Ciphers 87

regarding the number of qubits, Clifford+T gates, and overall circuit depth,
including T-depth.

Our quantum circuit implementations do not aim for the lowest possible
number of qubits. Instead, following the work [15], we focus on minimizing
the gate-count and depth-times-width cost metrics for the quantum circuit
under depth constraints. The gate-count metric is relevant for security categories
defined by NIST in the PQC competition. When the quantum error correction is
deployed, the depth-times-width cost metric is a more realistic measure of quan-
tum resources. Zalka [28] showed that Grover’s algorithm does not parallelize
well. Therefore, minimizing depth rather than width is crucial to make the most
out of the available depth.

We then present our results for quantum key search attacks against
all the variants of GIFT, SKINNY, and SATURNIN ciphers under NIST’s
MAXDEPTH constraints. The source code of Q# implementations of Grover
oracles for all the variants of GIFT, SKINNY, and SATURNIN will be publicly
available1 under a free license. It allows independent verification of our results,
further investigation of different trade-offs and cost models, and re-costing as
the Q# compiler improves further.

1.2 Organization of the Paper

In Sect. 2, we review basic facts concerning quantum computation and cost met-
rics for the quantum circuit. In Sect. 3, we examine how the Grover search works
with parallelization improving upon the generic Grover-based attacks. Sections 4,
5 and 6 describe the quantum circuits for block ciphers GIFT, SKINNY and
SATURNIN, and Sect. 7 provides the resource estimates for their full encryption
circuits. In Sect. 8, we estimate the resources needed for quantum key search
attack against GIFT, SKINNY, and SATURNIN in both the gate count and
depth-time-width cost models. Section 9 concludes this work.

2 Preliminaries

Throughout this paper, we assume that readers have basic knowledge about
quantum computation (see textbooks such as [21] for an introduction).

2.1 Fault-Tolerant Gate Set

We adopt the computation model presented in [16]. The quantum circuits oper-
ating on qubits are composed of Clifford+T gates, which form a commonly
used universal fault-tolerant set of gates by several families of quantum error-
correcting codes. The primitive gates consist of single-qubit Clifford (denoted as
1qClifford) gates, controlled-NOT (CNOT) gates, T gates, and measurements.
We make the standard assumption of full parallelism, meaning that a quantum

1 https://github.com/amitcrypto/LWC-Q.

https://github.com/amitcrypto/LWC-Q

88 S. Bijwe et al.

circuit can apply any number of gates simultaneously as long as these gates act
on disjoint sets of qubits [11].

All quantum circuits for GIFT, SKINNY, and SATURNIN described in this
paper are designed and tested in the Q# programming language [26]. Q# allows
to describe circuits in terms of single-qubit gates (the Pauli gates X, Y , Z,
the Hadamard gate H, the phase gate S, the T gate, general rotation gates),
and controlled gates. Furthermore, it makes classical control logic around quan-
tum operations transparent so that loops and conditional statements based on
measurement output can be easily expressed. The Q# compiler allows us to
compute circuit depth automatically by moving gates around through a circuit
if the qubits it acts on were previously idle. Further, Q# enables the circuit
to allocate auxiliary qubits as needed, which adds new qubits initialized to |0〉.
If an auxiliary qubit is returned to state |0〉 after it has been operated on, the
circuit can release it. Such a qubit is no longer entangled with the state used for
computation, and the circuit can now maintain or measure it.

The asymptotic cost of Grover’s algorithm for searching an n-bit secret key
is O(2n/2). However, it is not easy to translate the asymptotic cost to an exact
number for any practical design. This is further complicated due to the different
costs of quantum gates used in implementing Grover’s oracle. In particular, most
of the previous works [1,9,20] assumed that T gates constitute the main cost.
However, Fowler [8] argued that T gates are exceptionally expensive for a surface
code. It is quite possible that T gates might be cheaper for some other error-
correcting code families.

In implementing the S-box, we often use Toffoli gates to realize the func-
tionality of the classical AND gate. The Toffoli gate can be implemented using
Selinger’s approach [24] which requires 7 T gates, 16 CNOT gates, 2 single-qubit
Clifford gates, and 4 ancillae with an overall depth of 7. For implementation
of quantum AND gate in terms of Clifford+T gates, we use a combination of
Selinger’s [24] and Jones’ [18] circuits. Quantum circuit of AND gate uses 4 T
gates and 11 Clifford gates in T -depth 1 and total depth 8 [15].

2.2 Cost Metrics for Quantum Circuit

For meaningful cost analysis, we assume an adversary has fixed constraints on
their total available resources and a specific cost metric they wish to mini-
mize. In this work, we use two cost metrics that are considered by Jaques and
Schanck [16]. The first cost metric is called G-cost which counts the total number
of gates. It assumes non-volatile (passive) quantum memory. Therefore it mod-
els quantum circuits that incur some cost with every gate, but where no cost is
incurred in time units during which a qubit is not operated on.

The second cost metric is the product of circuit depth and width, called DW-
cost. This is a more realistic model when quantum error correction is necessary.
It assumes a volatile (active) memory, which incurs some cost to correct errors
on every qubit in each time step, i.e., each layer of the total circuit depth. In
this cost model, a released auxiliary qubit would not require error correction,
and the cost to correct it could be omitted.

Implementing Grover Oracle for Lightweight Block Ciphers 89

For both cost metrics, we can choose to count only T gates towards gate
count and depth, or count all gates equally.

3 Finding Key for Block Cipher with Grover’s Algorithm

Given plaintext-ciphertext pairs created by encrypting a small number of mes-
sages with a block cipher under a common key, Grover’s search algorithm [10]
can be used to find such key.

3.1 Key Search Problem for Block Cipher

Let E : {0, 1}k × {0, 1}n → {0, 1}n be a block cipher with block size n and a
key size k for a key K ∈ {0, 1}k. Given r plaintext-ciphertext pairs {(Pi, Ci)}r

i=1

with Ci = E(K,Pi), our goal is to apply Grover’s algorithm to find the unknown
key K. The Boolean function f for the Grover oracle takes a key K as input,
and is defined as

fr(K) =

{
1, if E(K,Pi) = Ci for all 1 ≤ i ≤ r

0, otherwise.
(1)

so that we can evaluate f upon elements of the domain {0, 1}k until we find
the unique element (the user’s key) for which we are searching. However, other
possible keys could exist than K that encrypt the known plaintexts to the same
ciphertexts. Such keys are called spurious keys. If there are M − 1 such spurious
keys, then the M -solution version of Grover’s algorithm has the same probability
of measuring such spurious keys as of measuring the correct key K.

The probability that K is the unique key consistent with r plaintext-
ciphertext pairs can be approximated as e−2k−rn

. Thus, we can choose r such
that rn is slightly larger than k, i.e., rn = k + 10 gives the probability 0.999.
In a block cipher where k = b · n is a multiple of n, taking r = b + 1 will give
the unique key K with probability at least 1 − 2−n, which is negligibly close to
1 for typical block sizes. If rn < k, then K is almost certainly not unique. Even
rn = k − 3 gives less than a 1% chance of a unique key. Hence, r must be at
least � k

n� (see Sect. 2.2 of [15]).

3.2 Grover’s Algorithm

We briefly recall the interface that we need to provide for realizing a key search,
namely Grover’s algorithm [10]. Given a search space of 2k elements, say {x : x ∈
{0, 1}k} and a Boolean function or predicate f : {0, 1}n → {0, 1}, the Grover’s
algorithm requires about O(

√
2k) evaluations of the quantum oracle Uf that

outputs
∑

x ax |x〉 |y ⊕ f(x)〉 upon input of
∑

x ax |x〉 |y〉. First, we construct a
uniform superposition of states

|ψ〉 = 1√
2k

∑
x∈{0,1}k

|x〉 ,

90 S. Bijwe et al.

by applying the Hadamard transformation H⊗k to |0〉⊗k. We prepare the joint
state |ψ〉⊗ |φ〉 with |ψ〉 and |φ〉 = (|0〉− |1〉)/√2. We define the Grover operator
G as

G = (2 |ψ〉 〈ψ| − I)Uf ,

where (2 |ψ〉 〈ψ| − I) can be viewed as an inversion about the mean amplitude.
We then iteratively apply the Grover operator (2 |ψ〉 〈ψ| − I)Uf to |ψ〉 such that
the amplitudes of those values x with f(x) = 1 are amplified. Each iteration
can be viewed as a rotation of the state vector in the plane spanned by two
orthogonal vectors; the superposition of all indices corresponding to solutions
and non-solutions, respectively. The operator G rotates the vector by a constant
angle towards the superposition of solution indices. Let 1 ≤ M ≤ N be the
number of solutions and let 0 < θ ≤ π/2 such that sin2(θ) = M/N .

When measuring the first qubits after j > 0 iterations of G, the success
probability p(j) for obtaining one of the solutions is p(j) = sin2((2j + 1)θ),

which is close to 1 for j ≈ π
4θ . Hence, after

⌈
π
4

√
N
M

⌉
iterations, measurement

yields a solution with overwhelming probability of at least 1 − N
M . The exact

complexity of the Grover search can be estimated by implementing the oracle
circuit efficiently. It is thus essential to have a precise estimate of the quantum
resources needed to implement the oracle.

3.3 Cost Metrics for Grover’s Algorithm with Parallelization

Suppose a single Grover oracle call G costs GG gates, has depth GD, and uses GW

qubits. Let S = 2s be the number of parallel machines that are used with inner
parallelization method by dividing the search space into S disjoint subsets. In
order to achieve a certain success probability p, the required number of iterations
j can be deduced from p ≤ sin2((2j +1)θ) which yields j = 1

2 · �(arcsin(√p)/θ −
1)� ≈ 1

2 · arcsin(√p) · √
N/S.

Let cp := 1
2 · arcsin(√p), then the total depth of a j-fold Grover iteration is

D = j · GD ≈ cp ·
√

N/S · GD = cp · 2 k−s
2 · GD cycles. (2)

Note that for p ≈ 1, we have cp ≈ c1 = π/4. Each machines uses j · GG ≈
cp ·√N/S ·GG = cp · 2 k−s

2 ·GG gates, i.e., the total G-cost over all S machines is

G = S · j · GG ≈ cp ·
√

N · S · GG = cp · 2 k+s
2 · GG gates. (3)

Finally, the total width is W = S ·GW = 2s ·GW qubits, which leads to a DW-cost

DW ≈ cp ·
√

N.S · GDGW = cp · 2 k+s
2 · GDGW qubit-cycles. (4)

The cost expressions given in (3) and (4) show that minimizing the number
S = 2s of parallel machines reduces both G-cost and DW-cost. Hence, under fixed
limits on depth, width, and the number of gates, the adversary’s best course of
action is to use the entire depth budget and parallelize as little as possible. Under
this premise, the depth limit fully determines the optimal attack strategy for a
given Grover oracle. For more details, Sect. 3.4 in [15] may be referred.

Implementing Grover Oracle for Lightweight Block Ciphers 91

3.4 Cost Metrics for Grover’s Algorithm with Parallelization Under
a Depth Limit

Let Dmax be a fixed depth limit of the circuit. Given the depth GD of the oracle,
we need to run jmax = Dmax/GD� Grover iterations of the oracle G in order
to find a solution. For a target success probability p = sin2((2jmax + 1)

√
S/N),

we obtain the number S of parallel instances as

S =

⌈
N · arcsin2(√p)

(2 · Dmax/GD� + 1)2

⌉
≈ c2p · 2k · G2

D

D2
max

. (5)

Using this in equation (3) gives the total gate count of

G = c2p · 2k · GDGG

Dmax
gates. (6)

Equation (6) suggests that for reducing the cost G, we should aim to minimize
the product GDGG. Similarly, the total DW cost under the depth limit is

DW = c2p · 2k · G
2
DGW

Dmax
qubit-cycles. (7)

In equation (7), the higher power on GD suggests that minimizing depth should
be prioritized over minimizing GW . Therefore, we focus on reducing G2

DGW cost
of the oracle circuit to minimize total DW (see Sect. 3.4 in [15]).

4 Quantum Circuit of GIFT

GIFT [4] is a family of lightweight block ciphers with SPN structure. It consists of
two ciphers, namely GIFT-64/128 and GIFT-128/128, where GIFT-n/k operates
on n-bit plaintexts and k-bit secret key. The smaller version has 28 rounds while
the larger version uses 40 rounds.

Next, we describe GIFT cipher’s round function and key scheduling with the
required number of quantum resources for their circuit implementation.

4.1 Round Function

Each round of GIFT-64/128 and GIFT-128/128 consists of there major subrou-
tines in the following order: SubCells, PermBits and AddRoundKey, which are
described as follows.

– SubCells: The S-box is applied to each nibble of the cipher state X. The
GIFT S-box is given in Table 1.
The quantum circuit implementation of GIFT S-box requires 4 Toffoli gates,
2 CNOT gates, and 6 Pauli-X gates. We ignore the SWAP gate as it can
be implemented freely via reshuffling of wires. The quantum circuit for 4-bit
S-box is shown in Fig. 1.

92 S. Bijwe et al.

Table 1. Specifications of the 4-bit S-box of GIFT.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

GS(x) 1 10 4 12 6 15 3 9 2 13 11 7 5 0 8 14

Fig. 1. In-place implementation of 4-bit S-box of GIFT.

– PermBits: The bit permutation P64 (resp. P128) used in GIFT-64/128 (resp.
GIFT-128/128) map bit position i of the cipher state to bit position P (i).
The quantum circuit implementation of PermBits operation requires no quan-
tum gates, since it is just a permutation of qubits which can be done by
shifting the wires.

– AddRoundKey: This step consists of adding the round key and round con-
stants. An n/2-bit round key RK is extracted from the key state. It is fur-
ther partitioned into 2 s-bit words RK = U ||V = u31 . . . u0||v31 . . . v0, where
s = 16 (resp. 32) for GIFT-64/128 (resp. GIFT-128/128).
For GIFT-64/128, U and V are XOR’ed to b4i+1 and b4i of cipher state.

b4i+1 ← b4i+1 ⊕ ui, b4i ← b4i ⊕ vi,∀i ∈ {0, . . . , 15}.

For GIFT-128/128, U and V are XOR’ed to b4i+2 and b4i+1 of cipher state.

b4i+2 ← b4i+2 ⊕ ui, b4i+1 ← b4i+1 ⊕ vi,∀i ∈ {0, . . . , 31}.

Furthermore, a single bit “1” and a 6-bit round constant C = c5 . . . c0 are
XOR’ed into the cipher state at bit position 127, 23, 19, 15, 11, 7 and 3.
The quantum circuit implementation of AddRoundKey operation requires 32
CNOT gates for one round of GIFT-64/128 and 64 CNOT gates for one round
of GIFT-128/128.

4.2 Key Schedule and Round Constants

The key schedule and round constants are the same for both versions of GIFT,
the only difference is the round key extraction. A round key is first extracted
from the key state before updating it. The key state is then updated as follows:

k7||k6|| . . . ||k0 ← (k1 ≫ 2)||(k0 ≫ 12)||k7|| . . . ||k2,

where ≫ i is an i bits right rotation within a 16-bit word.

Implementing Grover Oracle for Lightweight Block Ciphers 93

The round constants (c5, c4, c3, c2, c1, c0) for GIFT are updated as follows:

(c5, c4, c3, c2, c1, c0) ← (c4, c3, c2, c1, c0, c5 ⊕ c4 ⊕ 1).

The quantum circuit implementation of updating the key state requires no quan-
tum gates since it is just a permutation of wires. We pre-compute the round
constants, and hence adding them to appropriate qubits in each round requires
only a few Pauli-X gates. The number of Pauli-X gates depends on the number
of 1’s in the binary representation of round constants.

5 Quantum Circuit of SKINNY

SKINNY [5] is a family of lightweight tweakable block ciphers which follows
the TWEAKEY framework by Jean et al. [17]. The term ‘tweakey’ refers to an
input that can be both tweak and/or key material. SKINNY consists of 64-bit
and 128-bit block versions with three different tweakey sizes. For a block size n,
the tweakey size is defined as t = n, t = 2n or t = 3n. The number of rounds
for SKINNY depends upon the size of the block and tweakey. SKINNY-64/64,
SKINNY-64/128, and SKINNY-64/192 consist of 32, 36, and 40 rounds, respec-
tively. SKINNY-128/128, SKINNY-128/256, and SKINNY-128/384 consist of
40, 48, and 56 rounds, respectively.

The internal state of SKINNY can be viewed as a 4× 4 square array of cells,
where each cell is a nibble (when n = 64) or a byte (when n = 128). The tweakey
size t to block size n ratio is denoted by z.

Next, we describe the round function of SKINNY with the required number
of quantum resources for their circuit implementation.

5.1 Round Function

One encryption round of SKINNY is composed of five operations in the fol-
lowing order: SubCells, AddConstants, AddRoundTweakey, ShiftRows and Mix-
Columns. These operations are described as follows.

– SubCells: An s-bit S-box is applied to every cell of the cipher internal state.
For s = 4, the SKINNY-64 cipher uses an S-box S4, while for s = 8, the
SKINNY-128 cipher uses an S-box S8. The Sbox is applied to every cell of
the internal state X.

The S-box S4: A 4-bit S-box S4 can be described with four NOR and four
XOR operations. If x0, . . . , x3 represent the eight input bits then the S-box
applies the following transformation on the 4-bit state:

(x3, x2, x1, x0) → (x3, x2, x1, x0 ⊕ (x3 ∨ x2)),

followed by a left shift bit rotation. This process is repeated four times, except
for the last iteration where the bit rotation is omitted.

94 S. Bijwe et al.

The S-box S8: A 8-bit S-box S8 is applied to every cell of the internal state X.
If x0, . . . , x7 represent the eight input bits then the Sbox applies the following
transformation on the 8-bit state:

(x7, x6, x5, x4, x3, x2, x1, x0) → (x7, x6, x5, x4 ⊕ (x7 ∨ x6), x3, x2, x1, x0 ⊕ (x3 ∨ x2)),

followed by the bit permutation:

(x7, x6, x5, x4, x3, x2, x1, x0) → (x2, x1, x7, x6, x4, x3, x3, x5),

repeating this process 4 times, except the last iteration where there is just a
bit swap between x1 and x2.

The quantum circuit for 4-bit S-box and 8-bit S-box are shown in Figs. 2 and
3, respectively. The quantum circuit implementation of 4-bit S-box operation
requires 4 Toffoli gates and 10 Pauli-X gates. The quantum circuit implemen-
tation of 8-bit S-box operation requires 8 Toffoli gates and 22 Pauli-X gates.
We ignore the count of SWAP gates as these can be implemented freely via
simple reshuffling of wires.

Fig. 2. In-place implementation of S4. Fig. 3. In-place implementation of S8.

– AddConstants: A 6-bit affine LFSR, whose state is denoted as
(rc5, rc4, rc3, rc2, rc1, rc0), is used to generate round constants. Its update
function is defined as

(rc5, rc4, rc3, rc2, rc1, rc0) → (rc4, rc3, rc2, rc1, rc0, rc4 ⊕ rc4 ⊕ 1).

The six bits are initialized to zero, and updated before use in a given round.
The round constants are combined with the state, respecting array position-
ing, using bitwise exclusive-or. We precompute all the round constants, and
hence adding constants to appropriate qubits in each round requires only
Pauli-X gates. The number of Pauli-X gates depends on the the number of
1’s in the binary representation of round constants.

– AddRoundTweakey: The first and second rows of all tweakey arrays
TK1, TK2 and TK3 are extracted and bitwise exclusive-xored to the cipher
internal state X. More formally, for i = {0, 1} and j = {0, 1, 2, 3}, we have:

• Xi,j = Xi,j ⊕ TK1i,j when z = 1,
• Xi,j = Xi,j ⊕ TK1i,j ⊕ TK2i,j when z = 2,
• Xi,j = Xi,j ⊕ TK1i,j ⊕ TK2i,j ⊕ TK3i,j when z = 3.

Implementing Grover Oracle for Lightweight Block Ciphers 95

Tweakey array TK1 is updated according to a fixed permutation, while TK2

and TK3 are individually updated with an LFSR.

Observe that the AddRoundTweakey operation uses only XOR operations to
update the state. Hence, its quantum circuit implementation requires CNOT
gates only.

– ShiftRows: The rows of the cipher state array are rotated to the right. The
second, third, and fourth cell rows are rotated by 1, 2, and 3 positions to the
right, respectively. This operation is similar to AES.
The quantum circuit implementation of ShiftRows operation is free since it
is just a permutation of qubits.

– MixColumns: Each column of the cipher internal state array is multiplied
by the following binary matrix:

M =

⎛
⎜⎜⎝
1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0

⎞
⎟⎟⎠ .

The PLU decomposition of matrix M implemented in SageMath [27] gives⎛
⎜⎜⎝
1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
1 0 1 0
1 0 0 1

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝
1 0 1 1
0 1 1 0
0 0 1 1
0 0 0 1

⎞
⎟⎟⎠ .

The permutation P does not require any quantum gates in its implementa-
tion, as it can be realized by appropriately rewiring. The lower- and upper-
triangular components L and U of the decomposition can be implemented
using CNOT gates only. The quantum circuit implementation of binary
matrix M requires 4 × 6 = 24 CNOT gates, and 8 × 6 = 48 CNOT gates
for SKINNY-64 and SKINNY-128, respectively. As for the full MixColumns
operation, we need to apply M four times on each column. Therefore, we need
(4× 24) = 96 and (4× 48) = 192 CNOT gates for the MixColumns operation
of SKINNY-64 and SKINNY-128, respectively.

6 Quantum Circuit of SATURNIN

SATURNIN [7] is an SPN-based 256-bit block cipher with an even number of
rounds. It uses a 256-bit internal state X and a 256-bit key state K, and both
are represented as a 4 × 4 × 4 cube of nibbles.

Next, we describe the round function and key scheduling of SATURNIN with
the required number of quantum resources for their circuit implementation.

96 S. Bijwe et al.

6.1 Round Function

Each round consists of five transformations in the following order: S-box layer,
Nibble permutation, Linear layer, Inverse of nibble permutation, and AddRound-
Key. These operations are described as follows.

Table 2. Specifications of 4-bit S-boxes of SATURNIN-256.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

σ0(x) 0 6 14 1 15 4 7 13 9 8 12 5 2 10 3 11
σ1(x) 0 9 13 2 15 1 11 7 6 4 5 3 8 12 10 14

Fig. 4. In-place implementation of σ0.

Fig. 5. In-place implementation of σ1.

– Sbox layer: An Sbox layer applies a 4-bit S-box σ0 to all nibbles with an
even index, and a 4-bit S-box σ1 to all nibbles with an odd index. These two
S-boxes are defined in Table 2, and their quantum circuit implementations
are shown in Figs. 4 and 5.
The quantum circuit implementation of SATURNIN S-boxes requires 10 Tof-
foli gates, 4 CNOT gates, and 24 Pauli-X gates. Additionally, we need 4 qubits
and 1 ancilla to implement the S-boxes. We ignore the count of SWAP gates
as these can be implemented freely via simple reshuffling of the wires.

– Nibble permutation: A nibble permutation SRr depends on the round
number r. For all even rounds, SRr is an identity function. For odd rounds
with index r where r mod 4 = 1, SRr = SRslice maps (x, y, z) to (x + y
mod 4, y, z). For odd rounds with index r where r mod 4 = 3, SRr = SRsheet
maps (x, y, z) to (x, y, z + y mod 4).
No quantum gate is required to implement the nibble permutation since it is
just a reshuffling of the wires in the implementation.

Implementing Grover Oracle for Lightweight Block Ciphers 97

– Linear layer: A linear layer MC is composed of 16 copies of a linear operation
M over (F4

2)
4 which is applied in parallel to each column of the internal state.

The transformation M is defined as

M :

⎛
⎜⎜⎝

a
b
c
d

⎞
⎟⎟⎠ �→

⎛
⎜⎜⎝

α2(a) ⊕ α2(b) ⊕ α(b) ⊕ c ⊕ d
a ⊕ α(b) ⊕ b ⊕ α2(c) ⊕ c ⊕ α2(d) ⊕ α(d) ⊕ d

a ⊕ b ⊕ α2(c) ⊕ α2(d) ⊕ α(d)
α2(a) ⊕ a ⊕ α2(b) ⊕ α(b) ⊕ b ⊕ c ⊕ α(d) ⊕ d

⎞
⎟⎟⎠

where a is the nibble with the lowest index, and α transforms the four bits
(x0, x1, x2, x3) of each nibble by the following multiplication

α :

⎛
⎜⎜⎝

x0

x1

x2

x3

⎞
⎟⎟⎠ �→

⎛
⎜⎜⎝
0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

x0

x1

x2

x3

⎞
⎟⎟⎠ .

The PLU decomposition of the above binary matrix gives⎛
⎜⎜⎝
0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝
1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ .

One CNOT gate is required to implement the transformation α, and two
CNOT gates are required to implement the transformation α2. Overall, only
(8 × 4 + 2 × 1 + 2 × 2) = 38 CNOT gates are required to implement one
transformation M . As the linear layer needs 16 parallel copies of M , we need
a total of (16 × 38) = 608 CNOT gates to implement MC.

– Inverse of nibble permutation: Apply SR−1
r .

The quantum circuit implementation of the inverse of nibble permutation is
free, i.e., no quantum gates are required.

– AddRoundKey: The sub-key addition is performed at odd rounds only.
The quantum circuit implementation of key addition requires 256 CNOT
gates for every two consecutive rounds (one super-round) of SATURNIN-256.

6.2 Key Schedule and Round Constants

The subkey is composed of XOR of a round constant and either the master key,
or a rotated version of the master key.

– Round constant: The round constants RC0 and RC1 are updated by clocking
two independent LFSRs in Galois mode 16 times.
We precompute the round constants on a classical computer, and hence the
quantum circuit implementation of adding round constants to the current
states requires 16 Pauli-X gates.

98 S. Bijwe et al.

– Round key: If the round index r is such that r mod 4 = 3, the master key is
XOR’ed to the internal state; otherwise a rotated version of the key is added
instead. The nibble with index i receives the key nibble with index (i + 20)
mod 64 for 0 ≤ i ≤ 63.
The quantum circuit implementation of subkey generation requires CNOT
gates for XOR operations or no quantum gates for rotations of key bits.

7 Quantum Resource Estimates for Implementing
the Circuits of GIFT, SKINNY, and SATURNIN

In this section, we give concrete cost estimates for the quantum circuits of
GIFT, SKINNY, and SATURNIN based on their Q# implementation. The total
cost estimates of full GIFT-64/128, GIFT-128/128, SKINNY-64/64, SKINNY-
64/128, SKINNY-64/192, SKINNY-128/128, SKINNY-128/256, SKINNY-
128/384, and SATURNIN-256 encryption circuits are given in Table 3.

We stress that the numbers given in Table 3 include the cost estimates for
two encryption calls as used in Grover oracle since we need to reverse all the
operations executed on the wires (refer to Fig. 6).

Table 3. Cost of the full encryption circuits of GIFT, SKINNY, and SATURNIN.

Operation #Quantum gates Depth #Qubits
CNOT 1qClifford T M T -depth full depth (full width)

GIFT-64/128 61056 12768 25088 0 224 1851 260

GIFT-128/128 174336 36160 71680 0 320 2643 388

SKINNY-64/64 73792 18720 28672 0 256 2537 196

SKINNY-64/128 85888 21054 32256 0 288 2851 260

SKINNY-64/192 98624 23396 35840 0 320 3176 324

SKINNY-128/128 184448 48996 71680 0 320 3243 388

SKINNY-128/256 228224 58772 86016 0 384 3891 516

SKINNY-128/384 254720 63666 93184 0 416 4215 644

SATURNIN-256 455168 112960 179200 0 400 3763 773

8 Grover Oracles and Key Search Resource Estimates

This section describes the Q# implementations of full Grover oracles for
lightweight block ciphers: GIFT, SKINNY, and SATURNIN. Based on the cost
estimates obtained automatically from these Q# Grover oracles, we provide
quantum resource estimates for full key search attacks via Grover’s algorithm.
We emphasize evaluating algorithms with respect to a total depth limit, for
which we consider NIST’s values for MAXDEPTH from [22]. This means that
we must parallelize. We use inner parallelization method via splitting up the
search space as considered by Kim et al. [19].

Implementing Grover Oracle for Lightweight Block Ciphers 99

8.1 Grover Oracle

As discussed in Sect. 3, we must determine the parameter r, the number of
known plaintext-ciphertext pairs that are required for a successful key recovery
attack. The main idea of the key-search algorithm is as follows. For a message-
ciphertext pair (m, c), the Grover oracle first encrypts m under different keys
and checks if the ciphertext obtained matches with c. If this match fails then
this particular key is wrong. On the other hand, when the match succeeds, it
does not guarantee that the key is correct. This could be due to spurious keys.
To eliminate spurious keys and get the right candidate, we require a few (i.e., r
many) plaintext-ciphertext pairs. When r > 1, the Grover oracle will encrypt all
the r plaintexts under the candidate keys and will match with the corresponding
ciphertexts. The construction of Grover oracle is shown in Fig. 6 for r = 2.

Fig. 6. Grover oracle construction for block cipher using two message-ciphertext pairs.
Enc represents the Encryption operator. The operator (=) compares the output of Enc
with given ciphertexts and flips the target qubit if they are equal.

Cost of Grover Oracle for GIFT. Table 4 shows the resources needed for
our implementations of the full GIFT Grover oracles for r ∈ {1, 2}.

Table 4. Cost estimates for the GIFT Grover oracle operator for r plaintext-ciphertext
pairs. All operations are performed in-place.

Operation r #CNOT #1qClifford #T #M T -depth full depth width

GIFT-64/128 1 61567 13288 25340 63 224 1850 2049

GIFT-128/128 1 175365 37204 72188 127 320 2642 5505

GIFT-64/128 2 123387 26560 50684 127 224 1851 4097

GIFT-128/128 2 350951 74328 144380 255 320 2644 11009

Cost of Grover Oracle for SKINNY. The resources for our implementations
of the full SKINNY Grover oracles for r ∈ {1, 2, 3} are shown in Table 5.

Cost of Grover Oracle for SATURNIN. Table 6 shows the resources needed
for our implementation of the full SATURNIN Grover oracle for r ∈ {1, 2}.

100 S. Bijwe et al.

Table 5. Cost estimates for the SKINNY Grover oracle operator for r plaintext-
ciphertext pairs. All operations are performed in-place.

Operation r #CNOT #1qClifford #T #M T -depth full depth width

SKINNY-64/64 1 74289 19212 28924 63 256 2536 2241

SKINNY-64/128 1 86381 21538 32508 63 288 2850 2561

SKINNY-64/192 1 99113 23872 36092 63 320 3176 2881

SKINNY-128/128 1 185487 50060 72188 127 320 3242 5505

SKINNY-128/256 1 229245 59800 86524 127 384 3890 6657

SKINNY-128/384 1 275311 69560 100860 127 448 4538 7809

SKINNY-64/64 2 148731 38464 57852 127 256 2536 4481

SKINNY-64/128 2 173027 43084 65020 127 288 2850 5121

SKINNY-64/192 2 198657 47828 72188 127 320 3176 5761

SKINNY-128/128 2 371195 100040 144380 255 320 3242 11009

SKINNY-128/256 2 458999 119584 173052 255 384 3890 13313

SKINNY-128/384 2 551421 139172 201724 255 448 4538 15617

SKINNY-64/64 3 223175 57720 86780 191 256 2536 6721

SKINNY-64/128 3 259693 64670 97532 191 288 2850 7681

SKINNY-64/192 3 298137 71656 108284 191 320 3176 8641

SKINNY-128/128 3 556909 150032 216572 383 320 3242 16503

SKINNY-128/256 3 688749 179360 259580 383 384 3890 19969

SKINNY-128/384 3 827499 208720 302588 383 448 4538 23425

Table 6. Cost estimates for the SATURNIN Grover oracle operator for r plaintext-
ciphertext pairs. All operations are performed in-place.

Operation r #CNOT #1qClifford #T #M T -depth full depth width

SATURNIN-256 1 457197 114980 180220 255 400 3762 5889

SATURNIN-256 2 914655 229960 360444 511 400 3764 11777

8.2 Cost Estimates for Lightweight Block Cipher Key Search

Based on the cost estimates for the GIFT, SKINNY, and SATURNIN Grover ora-
cles given in Sect. 8.1, this section provides cost estimates for quantum key search
attacks on lightweight block ciphers. Firstly, we provide cost estimates without
any depth limit and parallelization requirements. Table 7 shows cost estimates for
a full run of Grover’s algorithm when using

⌊
π
4 2

k/2
⌋

iterations of the GIFT Grover
operator without parallelization. We only consider the costs imposed by the uni-
tary operator Uf and ignore the cost of the operator 2 |ψ〉 〈ψ|−I. The G-cost is the
total number of gates which is the sum of the first four columns in the table. These
columns correspond to the numbers of single-qubit Clifford and CNOT gates, T
gates, and measurements M . The DW -cost is the product of full circuit depth and
width, corresponding to columns 6 and 7 in the table.

Tables 8 and 9 show cost estimates for SKINNY and SATURNIN, respectively
in the same setting as GIFT.

Implementing Grover Oracle for Lightweight Block Ciphers 101

Table 7. Cost estimates for Grover’s algorithm with
⌊

π
4
2k/2

⌋
GIFT oracle iterations

for attacks with high success probability ps, without depth restrictions.

Scheme r #CNOT #1qClifford #T #M T -depth full depth width G-cost DW -cost ps

GIFT-64/128 1 1.47 · 279 1.27 · 277 1.21 · 278 1.54 · 269 1.37 · 271 1.41 · 274 2049 1.19 · 280 1.41 · 285 1/e

GIFT-64/128 2 1.47 · 280 1.27 · 278 1.21 · 279 1.55 · 270 1.37 · 271 1.41 · 274 4097 1.19 · 281 1.41 · 286 1
GIFT-128/128 1 1.05 · 281 1.78 · 278 1.73 · 279 1.55 · 270 1.96 · 271 1.01 · 275 5505 1.70 · 281 1.35 · 288 1/e

GIFT-128/128 2 1.05 · 282 1.78 · 279 1.73 · 280 1.56 · 271 1.96 · 271 1.01 · 275 11009 1.70 · 282 1.35 · 288 1

Table 8. Cost estimates for Grover’s algorithm with
⌊

π
4
2k/2

⌋
SKINNY oracle iterations

for attacks with high success probability ps, without depth restrictions.

Scheme r #CNOT #1qClifford #T #M T -depth full depth width G-cost DW -cost ps

SKINNY-64/64 1 1.78 · 247 1.84 · 245 1.38 · 246 1.54 · 237 1.57 · 239 1.94 · 242 2241 1.46 · 248 1.06 · 254 1/e

SKINNY-64/64 2 1.78 · 248 1.84 · 246 1.38 · 247 1.55 · 238 1.57 · 239 1.94 · 242 4481 1.46 · 249 1.06 · 255 1
SKINNY-64/128 2 1.03 · 281 1.03 · 279 1.55 · 279 1.55 · 270 1.76 · 271 1.09 · 275 5121 1.67 · 281 1.36 · 287 1/e

SKINNY-64/128 3 1.55 · 281 1.55 · 279 1.16 · 280 1.17 · 271 1.76 · 271 1.09 · 275 7681 1.25 · 282 1.02 · 288 1
SKINNY-64/192 2 1.19 · 2113 1.14 · 2111 1.73 · 2111 1.55 · 2102 1.96 · 2103 1.21 · 2107 5761 1.90 · 2113 1.70 · 2119 1/e

SKINNY-64/192 3 1.78 · 2113 1.71 · 2111 1.29 · 2112 1.17 · 2103 1.96 · 2103 1.21 · 2107 8641 1.42 · 2113 1.27 · 2120 1
SKINNY-128/128 1 1.11 · 281 1.19 · 279 1.73 · 279 1.55 · 270 1.96 · 271 1.24 · 275 5505 1.84 · 281 1.66 · 287 1/e

SKINNY-128/128 2 1.11 · 282 1.19 · 280 1.73 · 280 1.56 · 271 1.96 · 271 1.24 · 275 11009 1.84 · 281 1.66 · 288 1
SKINNY-128/256 2 1.37 · 2146 1.43 · 2144 1.03 · 2145 1.56 · 2135 1.17 · 2136 1.49 · 2139 13313 1.12 · 2147 1.21 · 2153 1/e

SKINNY-128/256 3 1.03 · 2147 1.07 · 2145 1.55 · 2145 1.17 · 2136 1.17 · 2136 1.49 · 2139 19969 1.68 · 2147 1.81 · 2153 1
SKINNY-128/384 2 1.65 · 2210 1.66 · 2208 1.20 · 2209 1.56 · 2199 1.37 · 2200 1.74 · 2203 15617 1.33 · 2211 1.65 · 2217 1/e

SKINNY-128/384 3 1.23 · 2211 1.25 · 2209 1.81 · 2209 1.17 · 2200 1.37 · 2200 1.74 · 2203 23425 1.99 · 2211 1.23 · 2218 1

Table 9. Cost estimates for Grover’s algorithm with
⌊

π
4
2k/2

⌋
SATURNIN oracle iter-

ations for attacks with high success probability ps, without depth restrictions.

Scheme r #CNOT #1qClifford #T #M T -depth full depth width G-cost DW -cost ps

SATURNIN-256 1 1.37 · 2146 1.38 · 2144 1.08 · 2145 1.56 · 2135 1.22 · 2136 1.44 · 2139 5889 1.13 · 2147 1.03 · 2152 1/e

SATURNIN-256 2 1.37 · 2147 1.38 · 2145 1.08 · 2146 1.56 · 2136 1.22 · 2136 1.44 · 2139 11777 1.13 · 2148 1.03 · 2153 1

8.3 Cost Estimates for Grover Search Under MAXDEPTH Limit

Tables 10, 11, 12 and 13 show the cost estimates for running Grover’s algorithm
against GIFT, SKINNY and SATURNIN under a given depth limit, respectively.
Imposing a depth restriction forces the parallelization of Grover’s algorithm.

In Tables 10, 11, 12 and 13, MD is the MAXDEPTH, r is the number of
plaintext-ciphertext pairs used in the Grover oracle, S is the number of subsets
in which the key-space is divided, SKP is the probability that spurious keys
are present in the subset holding the target key, W is the qubit width of the
full circuit, D is the full depth. After the execution of the Grover oracle is
completed, each of S measured candidate keys is classically checked against a
sufficient number of plaintext-ciphertext pairs.

102 S. Bijwe et al.

Table 10. Circuit sizes for parallel Grover key search against GIFT-64 and GIFT-128
under a depth limit MAXDEPTH with inner parallelization.

scheme MD r S log2 (SKP) D W G-cost DW -cost

GIFT-64/128 240 1 1.01 · 269 −69.01 1.00 · 240 1.01 · 280 1.70 · 2114 1.01 · 2120
GIFT-128/128 240 1 1.03 · 270 −70.04 1.00 · 240 1.38 · 282 1.73 · 2116 1.38 · 2122
GIFT-64/128 264 1 1.01 · 221 −21.01 1.00 · 264 1.01 · 232 1.70 · 290 1.01 · 296
GIFT-128/128 264 1 1.03 · 222 −22.04 1.00 · 264 1.38 · 234 1.73 · 292 1.38 · 298
GIFT-64/128 296 2 1.00 · 20 −128.00 1.42 · 274 1.00 · 212 1.20 · 281 1.42 · 286
GIFT-128/128 296 2 1.00 · 20 −128.00 1.01 · 275 1.34 · 213 1.71 · 282 1.36 · 288

Table 11. Circuit sizes for parallel Grover key search against SKINNY-64 under a
depth limit MAXDEPTH with inner parallelization.

scheme MD r S log2 (SKP) D W G-cost DW -cost

SKINNY-64/64 240 1 1.91 · 25 −69.93 1.00 · 240 1.04 · 217 1.43 · 251 1.03 · 257
SKINNY-64/128 240 1 1.19 · 270 −70.26 1.00 · 240 1.49 · 281 1.84 · 2115 1.49 · 2121
SKINNY-64/192 240 1 1.48 · 2134 −70.57 1.00 · 240 1.04 · 2146 1.16 · 2180 1.04 · 2186
SKINNY-64/64 264 1 1.00 · 20 −64.00 1.95 · 242 1.09 · 211 1.47 · 248 1.06 · 254
SKINNY-64/128 264 1 1.19 · 222 −22.26 1.00 · 264 1.49 · 233 1.84 · 291 1.49 · 297
SKINNY-64/192 264 1 1.48 · 286 −22.57 1.00 · 264 1.04 · 298 1.16 · 2156 1.04 · 2162
SKINNY-64/64 296 1 1.00 · 20 −64.00 1.95 · 242 1.09 · 211 1.47 · 248 1.06 · 254
SKINNY-64/128 296 2 1.00 · 20 −128.00 1.09 · 275 1.25 · 212 1.69 · 281 1.37 · 287
SKINNY-64/192 296 2 1.48 · 222 −86.57 1.00 · 296 1.04 · 235 1.16 · 2125 1.04 · 2131

Table 12. Circuit sizes for parallel Grover key search against SKINNY-128 under a
depth limit MAXDEPTH with inner parallelization.

scheme MD r S log2 (SKP) D W G-cost DW -cost

SKINNY-128/128 240 1 1.55 · 270 −70.63 1.00 · 240 1.04 · 283 1.15 · 2117 1.04 · 2123
SKINNY-128/256 240 1 1.11 · 2199 −71.15 1.00 · 240 1.81 · 2211 1.68 · 2245 1.81 · 2251
SKINNY-128/384 240 1 1.51 · 2327 −71.60 1.00 · 240 1.44 · 2340 1.16 · 2374 1.44 · 2380
SKINNY-128/128 264 1 1.55 · 222 −22.63 1.00 · 264 1.04 · 235 1.15 · 293 1.04 · 299
SKINNY-128/256 264 1 1.11 · 2151 −23.15 1.00 · 264 1.81 · 2163 1.68 · 2221 1.81 · 2227
SKINNY-128/384 264 1 1.51 · 2279 −23.60 1.00 · 264 1.44 · 2292 1.16 · 2350 1.44 · 2356
SKINNY-128/128 296 2 1.00 · 20 −128.00 1.24 · 275 1.34 · 213 1.85 · 282 1.67 · 288
SKINNY-128/256 296 2 1.11 · 287 −87.15 1.00 · 296 1.81 · 2100 1.68 · 2190 1.81 · 2196
SKINNY-128/384 296 2 1.51 · 2215 −87.60 1.00 · 296 1.44 · 2229 1.16 · 2319 1.44 · 2325

Implementing Grover Oracle for Lightweight Block Ciphers 103

Table 13. Circuit sizes for parallel Grover key search against SATURNIN-256 under
a depth limit MAXDEPTH with inner parallelization.

Scheme MD r S log2 (SKP) D W G-cost DW -cost

SATURNIN-256 240 1 1.04 · 2199 −199.06 1.00 · 240 1.50 · 2211 1.63 · 2246 1.50 · 2251
SATURNIN-256 264 1 1.04 · 2151 −151.06 1.00 · 264 1.50 · 2163 1.63 · 2222 1.50 · 2227
SATURNIN-256 296 1 1.04 · 287 −87.06 1.00 · 296 1.50 · 299 1.63 · 2190 1.50 · 2195

9 Conclusion

We explored the resource estimates for Grover key search on lightweight block
ciphers such as GIFT, SKINNY, and SATURNIN under MAXDEPTH limi-
tations as proposed by NIST’s PQC standardization process. First, we imple-
mented the Grover oracle for GIFT, SKINNY, and SATURNIN in Q# quantum
programming language. We then presented concrete costs of quantum circuits
for these ciphers. We also provided concrete cost estimations for all variants of
these ciphers while parallelizing Grover’s algorithm under NIST’s MAXDEPTH
limit. As a future work, it would be interesting to implement other ciphers in
Q# for estimating resources against Grover-based attacks.

Acknowledgment. We would like to thank the anonymous reviewers of ACISP 2022
for their insightful comments and suggestions, which has significantly improved the
presentation and technical quality of this work. The second author would also like to
thank MATRICS grant 2019/1514 by the Science and Engineering Research Board
(SERB), Dept. of Science and Technology, Govt. of India for supporting the research
carried out in this work.

References

1. Almazrooie, M., Samsudin, A., Abdullah, R., Mutter, K.N.: Quantum reversible
circuit of AES-128. Quantum Inf. Process. 17(5), 112 (2018)

2. Anand, R., Maitra, A., Maitra, S., Mukherjee, C.S., Mukhopadhyay, S.: Quantum
resource estimation for fsr based symmetric ciphers and related grover’s attacks.
In: Adhikari, A., Küsters, R., Preneel, B. (eds.) INDOCRYPT 2021. LNCS, vol.
13143, pp. 179–198. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
92518-5_9

3. Anand, R., Maitra, A., Mukhopadhyay, S.: Grover on SIMON. Quantum Inf. Pro-
cess. 19(9), 340 (2020)

4. Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Yu., Sim, S.M., Todo, Y.: GIFT: a small
present. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 321–
345. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_16

5. Beierle, C., et al.: The SKINNY family of block ciphers and its low-latency variant
MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp.
123–153. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-
5_5

https://doi.org/10.1007/978-3-030-92518-5_9
https://doi.org/10.1007/978-3-030-92518-5_9
https://doi.org/10.1007/978-3-319-66787-4_16
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5

104 S. Bijwe et al.

6. Boyar, J., Peralta, R.: A small depth-16 circuit for the aes s-box. In: Gritzalis,
D., Furnell, S., Theoharidou, M. (eds.) SEC 2012. IAICT, vol. 376, pp. 287–298.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30436-1_24

7. Canteaut, A., et al.: Saturnin: a suite of lightweight symmetric algorithms for post-
quantum security. IACR Trans. Symmetric Cryptol. 2020(S1), 160–207 (2020)

8. Fowler, A.G., Mariantoni, M., Martinis, J.M., Cleland, A.N.: Surface codes:
towards practical large-scale quantum computation. Phys. Rev. A 86, 032324
(2012)

9. Grassl, M., Langenberg, B., Roetteler, M., Steinwandt, R.: Applying grover’s algo-
rithm to aes: quantum resource estimates. In: Takagi, T. (ed.) PQCrypto 2016.
LNCS, vol. 9606, pp. 29–43. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-29360-8_3

10. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Com-
puting, pp. 212–219. ACM, Pennsylvania, USA (1996)

11. Grover, L.K., Rudolph, T.: How significant are the known collision and element
distinctness quantum algorithms? Quantum Inf. Comput. 4(3), 201–206 (2004)

12. Jang, K., Choi, S., Kwon, H., Kim, H., Park, J., Seo, H.: Grover on korean block
ciphers. Appl. Sci. 10, 1–25 (2020)

13. Jang, K., Choi, S., Kwon, H., Seo, H.: Grover on SPECK: quantum resource esti-
mates. IACR Cryptol. ePrint Arch, p. 640 (2020)

14. Jang, K., Song, G., Kim, H., Kwon, H., Kim, H., Seo, H.: Efficient implementation
of PRESENT and GIFT on quantum computers. Appl. Sci. 11(11), 4776 (2021)

15. Jaques, S., Naehrig, M., Roetteler, M., Virdia, F.: Implementing Grover oracles for
quantum key search on AES and LowMC. In: Canteaut, A., Ishai, Y. (eds.) EURO-
CRYPT 2020. LNCS, vol. 12106, pp. 280–310. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-45724-2_10

16. Jaques, S., Schanck, J.M.: Quantum cryptanalysis in the ram model: claw-finding
attacks on SIKE. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11692, pp. 32–61. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26948-7_2

17. Jean, J., Nikolić, I., Peyrin, T.: Tweaks and keys for block ciphers: the TWEAKEY
framework. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp.
274–288. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-
8_15

18. Jones, C.: Low-overhead constructions for the fault-tolerant toffoli gate. Phys. Rev.
A 87, 022328 (2013)

19. Kim, P., Han, D., Jeong, K.C.: Time-space complexity of quantum search algo-
rithms in symmetric cryptanalysis: applying to AES and SHA-2. Quantum Inf.
Process. 17(12), 339 (2018)

20. Langenberg, B., Pham, H., Steinwandt, R.: Reducing the cost of implementing the
advanced encryption standard as a quantum circuit. IEEE Trans. Quantum Eng.
1, 1–12 (2020)

21. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information:
10th anniversary edition. Cambridge University Press (2010)

22. NIST: Submission requirements and evaluation criteria for the post-quantum
cryptography standardization process (2016). https://csrc.nist.gov/CSRC/media/
Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-
2016.pdf/

23. Schlieper, L.: In-place implementation of quantum-gimli (2020). https://arxiv.org/
abs/2007.06319

https://doi.org/10.1007/978-3-642-30436-1_24
https://doi.org/10.1007/978-3-319-29360-8_3
https://doi.org/10.1007/978-3-319-29360-8_3
https://doi.org/10.1007/978-3-030-45724-2_10
https://doi.org/10.1007/978-3-030-45724-2_10
https://doi.org/10.1007/978-3-030-26948-7_2
https://doi.org/10.1007/978-3-030-26948-7_2
https://doi.org/10.1007/978-3-662-45608-8_15
https://doi.org/10.1007/978-3-662-45608-8_15
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf/
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf/
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf/
https://arxiv.org/abs/2007.06319
https://arxiv.org/abs/2007.06319

Implementing Grover Oracle for Lightweight Block Ciphers 105

24. Selinger, P.: Quantum circuits of t-depth one. Phys. Rev. A 87, 042302 (2013)
25. Shor, P.W.: Polynomial time algorithms for discrete logarithms and factoring on a

quantum computer. In: Adleman, L.M., Huang, M.-D. (eds.) ANTS 1994. LNCS,
vol. 877, pp. 289–289. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-
58691-1_68

26. Svore, K.M., et al.: Q#: Enabling scalable quantum computing and development
with a high-level DSL. In: Proceedings of the Real World Domain Languages Work-
shop, pp. 7:1–7:10. ACM, Austria (2018)

27. William Stein et al.: Sagemath, the sage mathematics software system version 8.1
(2017). https://www.sagemath.org

28. Zalka, C.: Grover’s quantum searching algorithm is optimal. Phys. Rev. A 60(4),
2746–2751 (1999)

29. Zou, J., Wei, Z., Sun, S., Liu, X., Wu, W.: Quantum circuit implementations of
AES with fewer qubits. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS,
vol. 12492, pp. 697–726. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-64834-3_24

https://doi.org/10.1007/3-540-58691-1_68
https://doi.org/10.1007/3-540-58691-1_68
https://www.sagemath.org
https://doi.org/10.1007/978-3-030-64834-3_24
https://doi.org/10.1007/978-3-030-64834-3_24

Improved Division Property for Ciphers
with Complex Linear Layers

Yongxia Mao1,2, Wenling Wu1,2(B), Bolin Wang1,2, and Li Zhang1,2

1 Trusted Computing and Information Assurance Laboratory, Institute of Software
Chinese Academy of Sciences, Beijing 100190, China

{yongxia2018,wenling,bolin2018,zhangli2021}@iscas.ac.cn
2 University of Chinese Academy of Sciences, Beijing 100049, China

Abstract. The division property proposed by Todo at EUROCRYPT
2015 as a generalized integral property has been applied to many sym-
metric ciphers. Automatic search methods of the division property
assisted by modeling technique, such as Mixed Integer Linear Program-
ming (MILP) and Boolean Satisfiability Problem (SAT), have become
the most popular approach to searching integral distinguishers. The accu-
racy of the model in searching algorithms has an effect on the search
results of integral distinguishers. For the block cipher, constructing an
accurate and efficient model of the division property propagation on
complex linear layers remains hard. This paper observes that the non-
independent propagations of the bit-based division property (BDP) on
complex linear layers can generate redundant division trails, which will
affect the accuracy of the model if it is not taken into account in model-
ing. Based on this, we propose a method that can build a more accurate
model by handling matrices containing non-independent propagations in
the linear layer. To verify the effectiveness of our method, we apply the
method to two block ciphers uBlock-128 and MIBS. For uBlock-128, our
results improve the previous 8-round integral distinguisher by more bal-
anced bits. For MIBS, a 9-round integral distinguisher is given for the
first time, which is 4 rounds longer than the previous best.

Keywords: Division property · Linear layer · Block cipher · MILP ·
Cryptanalysis

1 Introduction

Integral cryptanalysis was originally proposed by Knudsen et al. [1] at FSE 2002,
also known as Square attack [2], and is a powerful cryptanalysis method. Todo [3]
further generalized integral cryptanalysis as division property at EUROCRYPT
2015. At ASIACRYPT 2016, Xiang et al. [4] introduced the MILP technique into
bit-based division property for the first time, which improved the block size of
the block cipher that can be automatically searched. Since then, the automatic
modeling tool of integral cryptanalysis has been widely used in evaluating the
security of symmetric encryotions, and a series of remarkable results have been

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
K. Nguyen et al. (Eds.): ACISP 2022, LNCS 13494, pp. 106–124, 2022.
https://doi.org/10.1007/978-3-031-22301-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22301-3_6&domain=pdf
https://doi.org/10.1007/978-3-031-22301-3_6

Improved Division Property for Ciphers with Complex Linear Layers 107

obtained [5–10]. Recently, Hebborn et al. [11] demonstrated the upper bound
on the round number of integral distinguishers on several block ciphers such as
PRESENT and SKINNY-64, using the automatic modeling method of BDP at
ASIACRYPT 2021.

The automatic search method with modeling technique mainly including
MILP and SAT for division property can be summarized as follows. At first,
the basic component model of block cipher needs to be established by following
the propagation rules of division property. Next, the r-round model is built and
the initial division property is given. At last, the entire model is solved with the
help of solving tools, such as Gurobi and SAT/SMT solvers. In the process, the
number of conditional constraints determines the time that it takes to solve and
the round number of the integral distinguisher that can be obtained. For the
linear component, it only needs to exchange the position of variables to build
constaints when the linear layer is simple, such as PRESENT, GIFT, etc. When
the linear layer is complex, such as AES, uBlock, MIBS, etc., it needs to follow
the propagation rules of COPY/XOR operations to build the constraints, which
often leads to redundancy and errors.

For the problem of how to model the complex linear layer, there are mainly
S method [12], ZR method [13] and HW method [14]. The S method is a general
method for modeling the division property propagation of complex linear layers.
However, the disadvantage is that it does not consider the cancellation between
terms, so it can easily introduce invalid division trails resulting in a quicker
loss of the balanced property than the cipher itself would. Both the ZR method
and HW method can create very accurate models, but their applications have
certain limitations. For example, the ZR method needs to construct a one-to-
one correspondence between the division trails of the invertible matrix M and
the invertible sub-matrices, so it is not suitable for the non-binary linear layer
and non-invertible matrices. The HW method can only be modeled by SAT and
cannot be applied to the MILP model. As far as the current modeling methods
of the division property for S-boxes, the accuracy of the SAT solving model is
weaker than that of the MILP model. Hence, the HW method is not suitable for
block ciphers with S-boxes.

Our Contribution. In this paper, we analyze why errors arise in the solving
model of division property propagations for the complex linear layer. In other
words, the non-independent division property propagation of variables in the lin-
ear layer will produce redundant division trails, which reduces the accuracy of
the model, and ultimately affects the judgment of integral distinguishers. Then,
we propose a strategy to effectively remove redundant division trails for the non-
independent division property propagation: replacing the original representation
of the linear layer with an equivalent one which only includes the independent
division property propagation. According to this strategy, an algorithm (Algo-
rithm 2) is proposed to construct the MILP model of BDP propagation for the
complex linear layer. Finally, we apply our method to two block ciphers uBlock-
128 and MIBS. For uBlock-128, we find an 8-round integral distinguisher where
all the 128 bits are balanced. For MIBS, we find a 9-round integral distinguisher

108 Y. Mao et al.

with 32 balanced bits which is better than the best known result. We list all our
new BDP results obtained in Table 1.

Organization. The rest of this paper is organized as follows. Section 2 intro-
duces some notations of this paper and revisits the definition related to division
property. Section 3 presents our observations and the new method of this paper.
Section 4 mainly presents improved integral distinguishers on uBlock-128 and
MIBS by using our new method. Section 5 is the conclusion and outlook for
future work.

Table 1. Number of rounds of the best known integral distinuisher vs. our results on
the block cipher uBlock-128 and MIBS.

Cipher # Rounds log2 (Data) # Balanced bits Reference

uBlock 7 124 128 [16]

8 124 64 [17]

8 124 96 Sect. 4.1

8 127 128 Sect. 4.1

MIBS 5 8 8 [21]

5 12 32 Sect. 4.2

6 32 32 Sect. 4.2

7 52 32 Sect. 4.2

8 61 32 Sect. 4.2

8 63 64 Sect. 4.2

9 63 32 Sect. 4.2

2 Notations and Division Property

In this section, we are going to show some notations, and recall the fundamental
definitions and modeling techniques of division property.

For a block cipher, we use the following notation to represent the integral
property of a nibble in the plaintext and ciphertext.

– C: Each bit of the nibble at the plaintext is fixed to constant.
– A: All bits of the nibble at the plaintext are active.
– B: Each bit of the nibble at the ciphertext is balanced.
– U : A nibble at the ciphertext with unknown status.

For the integral property of a single bit in integral distinguishers, we use c, a, b,
and u denote a constant bit, an active bit, a balanced bit and an unknown bit,
respectively. For a matrix M ∈ F

m×n
2 , we use the notation M [i][j] to represent

the element of M located at the i-th row and j-th column, li = M [i] to represent
the i-th row, and M [∗][j] to represent the j-th column. A bold letter represents
a vector, e.g., u ∈ F

m
2 . Let k and k′ be two vectors in F

m
2 , we define k � k′ if

ki ≥ k′
i for all i.

Improved Division Property for Ciphers with Complex Linear Layers 109

Bit Product Function [3]: Let πu : Fn
2 → F2 be a function for any u ∈ F

n
2 .

Let x ∈ F
n
2 be an input of πu , then πu (x) is defined as

πu (x) =
n−1∏

i=0

xui
i ,

where x0
i = 1 and x1

i = xi.

Definition 1 (Bit-based Division Property [15]). Let X be a multiset whose
elements take a value of Fm

2 , and k ∈ F
m
2 . When the multiset X has the division

property D1,m
K

, it fulfils the following conditions:

⊕

x∈X

πu (x) =

{
unknown, if there are k ∈ K s.t. u � k,

0, otherwise.

Definition 2 (Division Trail [4]). Let f be the round function of an iterated
block cipher. Assume the input multiset set to the block cipher has initial division
property D1,n

K0
, and denote the division property after i rounds through f by D1,n

Ki
.

Then we have the following chain of division property propagations:

{k} ≡ K0
f−→ K1

f−→ · · · f−→ Kr.

For any vector k∗
i+1 ∈ Ki+1, there must exist a vector k∗

i ∈ Ki such that k∗
i can

propagate to k∗
i+1. Furthermore, for (k0,k1, . . . ,kr) ∈ (K0×K1×K2×· · ·×Kr),

if for all i ∈ {0, 1, · · · , r − 1}, ki can propagate to ki+1, we call (k0 → k1 →
. . . → kr) a r-round division trail.

MILP Modeling Rule for COPY [12]. If a
COPY−−−−→ (b0, b1, · · · , bm−1) is a

division trail of COPY function, it is sufficient to describe the propagation using
the following inequalities

{
a − b0 − b1 − · · · − bm−1 = 0,

a, b0, b1, · · · , bm−1 are binaries.

MILP Modeling Rule for XOR [12]. If (a0, a1, · · · , am−1)
XOR−−−→ b is a divi-

sion trail of XOR function, it is sufficient to describe the propagation using the
following inequalities

{
a0 + a1 + · · · + am−1 − b = 0,

a0, a1, · · · , am−1, b are binaries.

The Judgment Condition of Division Property. If there exists a division
trail that satisfies k0

Ek−−→ kr = ej , where ej is a unit vector, j ∈ {0, · · · , n − 1},

then the j-th bit of ciphertext is unknown. If there is no division trail k0
Ek−−→

kr = ej , then the j-th bit of ciphertext is balanced.

110 Y. Mao et al.

3 A Method to Reduce Redundant Division Trails
for Complex Linear Layers

With the help of the MILP modeling rules, the linear inequalities of the divi-
sion property propagation for the linear layer can be established. We can easily
observe the following rules: for the same linear layer, the more COPY/XOR
operations in MILP model are used, the lower accuracy achieved in character-
izing division property propagations. For example, obviously, if the linear layer
is a simple bit permutation, the model of the linear layer will not produce error
and redundancy, because we only need to exchange the position of variables
without adding extra constraints to model for describing the division property
propagation on linear layer. For complex linear layers, the situation becomes
different.

Assuming that L : (x0, x1, x2, x3, x4, x5) → (y0, y1, y2, y3, y4, y5) is a linear
transformation corresponding to a complex linear layer, and the equivalent linear
transformation matrix is M which always is a full rank matrix. In this paper,
“complex” also means that there are at least two rows in M that have the element
1 on at least two of the same columns, i.e., there exist i, j s.t.

∑
k M [i][k] ·

M [j][k] ≥ 2. If we establish constaints based on the original matrix M , then
at least two independent constraints about COPY on the input variables need
to be added to the MILP model. In fact, the two COPY constraints are not
independent since they occur simultaneously in the constraints about XOR for
two different output variables. At this point, an error occurs. Similarly, when∑
k

M [i][k] · M [j][k] = 4, we need to add 4 independent constraints on COPY

from M . Suppose M [1] = (0, 1, 1, 1, 1, 1) and M [2] = (1, 1, 0, 1, 1, 1). If we set
t1 = x1+x3 and t2 = x4+x5 using the method in [18], then only two independent
constraints on COPY and two independent constraints on XOR need to be
added. However, the two COPY constraints are still not independent in fact
because they appear in the XOR constraints of both y1 and y2. Errors in the
MILP model eventually lead to redundant division trails through L.

Generally speaking, when several output bits contain multiple common input
variables during propagations, the model established on some of the bits based
on the MILP modeling rule for COPY cannot accurately describe the correla-
tion between them. In other words, some non-independent bits are incorrectly
propagated as independent bits if we build the MILP model of linear layers
directly from the original matrix. As a result, the division property of multiple
outputs is 1 at the same time in places where it should not be. Thus, there will
be some redundant division trails. To this end, we give the following definition
and observation.

Definition 3. Let F : F
n
2 → F

m
2 be a linear transformation , defined as

F (x) = y, and M be the equivalent linear transformation matrix satisfying
M · x = y. The division property of x and y is denoted as a = (a0, a1, ..., an−1)
and b = (b0, b1, ..., bm−1), respectively. That is, a

F−→ b is a division trail through
F . We call ai1 , ai2 , ..., ais

F−→ bj1 , bj2 , ..., bjt is a non-independent division prop-

Improved Division Property for Ciphers with Complex Linear Layers 111

erty propagation through F , if M [j∗][i∗] = 1 for all i∗ ∈ {i1, i2, ..., is}, j∗ ∈
{j1, j2, ..., jt}, n ≥ s ≥ 2, m ≥ t ≥ 2, i.e.,

∑n−1
k=0 M [j1][k]·M [j2][k]·...·M [jt][k] ≥

2, where {i1, i2, ..., is} and {j1, j2, ..., jt} are two index sets. Otherwise, it is called
an independent division property propagation.

Observation. When modeling the non-independent division property propaga-
tions, redundant division trails will be generated if we use the MILP model of
independent propagations to characterize that of non-independent propagations.
If all the common variables that lead to non-independent division property prop-
agations in the linear function F are all replaced at once by variables T1, · · · , TN

newly introduced, the propagation through F that are described in new expres-
sions containing variables T1, · · · , TN will be transformed into independent divi-
sion property propagations. In this way, the redundant division trails can be
effectively reduced.

Example 1. Assume that the linear transformation P : F8
2 → F

8
2 has following

expressions:

z0 = y0 + y1 + y3 + y4 + y6 + y7,

z1 = y1 + y2 + y3 + y4 + y5 + y6,

z2 = y0 + y1 + y2 + y4 + y5 + y7,

z3 = y1 + y2 + y3 + y6 + y7,

z4 = y0 + y2 + y3 + y4 + y7,

z5 = y0 + y1 + y3 + y4 + y5,

z6 = y0 + y1 + y2 + y5 + y6,

z7 = y0 + y2 + y3 + y5 + y6 + y7,

where (y0, y1, y2, y3, y4, y5, y6, y7) and (z0, z1, z2, z3, z4, z5, z6, z7) are the inputs
and outputs, respectively. Let the corresponding division property be (a0, a1, a2,
a3, a4, a5, a6, a7) and (b0, b1, b2, b3, b4, b5, b6, b7), respectively.

We take b1 and b3 as examples, and focus on division trails with the form
of (a0, a1, a2, a3, a4, a5, a6, a7) → (∗, b1, ∗, b3, ∗, ∗, ∗, ∗). Let the input division
property be (0, 1, 1, 1, 0, 0, 1, 0), so we only consider the output division property
with form (0, ∗, 0, ∗, 0, 0, 0, 0). According to traditional models,

b1 = a1 + a2 + a3 + a4 + a5 + a6,

b3 = a1 + a2 + a3 + a6 + a7.

a1, a2, a3, a6 need to establish constraints separately by using the MILP model-
ing rule for COPY, so the output division property is (0, 1, 0, 1, 0, 0, 0, 0), (0, 1, 0,
0, 0, 0, 0, 0), and (0, 0, 0, 1, 0, 0, 0, 0). For b1, when i (≤ 4) variables of a1, a2, a3, a6

take 1, the output division property (0, 1, 0, 1, 0, 0, 0, 0) will be obtained. How-
ever, since (0, 1, 0, 1, 0, 0, 0, 0) � (0, 1, 0, 0, 0, 0, 0, 0), (0, 1, 0, 1, 0, 0, 0, 0) is redun-
dant.

We noticed that (∗, a1, a2, a3, ∗, ∗, a6, ∗) → (∗, b1, ∗, b3, ∗, ∗, ∗, ∗) is the non-
independent division property propagation, and a1, a2, a3, a6 are the common

112 Y. Mao et al.

variables of b1, b3. If we denote t = a1 + a2 + a3 + a6, then b1 = t + a4 + a5

and b3 = t + a7 are new expressions. At this point, we only need to do COPY
operation once on t. For b1, when any i variables of a1, a2, a3, a6 take 1, i < 4,
that is, the t contained in b1 takes 1, the other t contained in b3 must take
constant 0 after COPY operation, hence the output division property must be
(0, 1, 0, 0, 0, 0, 0, 0). After variable substitution, the output division property of
the form (0, ∗, 0, ∗, 0, 0, 0, 0) contains only (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0).
Similarly, redundant vectors like the above can be removed by updating the linear
layer expression using a series of variable substitutions.

Before building the constraints of the MILP model of the linear layer, we
first pair the rows of the implementation matrix that is a linear transformation
matrix so that we can extract the common variables for each pair. It is not
difficult to find that for the entire reduction process, the more common variable
that can be extracted, the better the effect of removing redundant trails and the
more accurate the model. Following the reduction idea, We present Algorithm 1
for screening and pairing the rows of the linear transformation matrix.

Algorithm 2 is used to build the MILP model of the BDP propagation for
the linear layer. Let the initial matrix of the linear layer be M , the matrix
corresponding to the new variable that are introduced by replacing the common
variable be B. A new matrix P with size n× (n+n/2) is generated in Algorithm
2 which is equivalent to M , and the last n/2 columns of P correspond to new
binary variable T1, · · · , TN . Additionally, we point out that Algorithm 2 can also
make models using SAT method based on Algorithm 1, and they are equivalent.

Algorithm 1. Row pairing algorithm for a linear transformation matrix

Input: An implementation matrix M of the linear layer
Output: A row partition of M
1: count = 0n×n //a n × n all-zero matrix
2: for i ∈ {0, n}, j ∈ {0, n} do
3: if i < j then

4: count[i][j] =
n−1∑
k=0

lki ∧ lkj

5: else
6: count[i][j] = 0
7: end if
8: end for
9: while True do

10: Global max = max(count)
11: if Global max = 0 then
12: break
13: end if
14: if row max = Global max then //the row row max is located
15: Row = (row max = Global max)[0]
16: end if
17: for j ∈ J = {j|count [Row] [j] = row max} do
18: if max(count[j]) < row max then//the column row max is located

Improved Division Property for Ciphers with Complex Linear Layers 113

19: Col = j; break
20: end if
21: end for
22: if len(Col) = 0 then
23: Col = J [0]
24: end if
25: result ← (Row,Col)
26: count[Row] = 0, count[Col] = 0, count[∗][Row] = 0, count[∗][Col] = 0
27: end while
28: return result

Algorithm 2. Construct the MILP model of linear layer BDP propagation

Input: An Implementation matrix M of the linear layer
Output: The MILP model M of BDP propagation
1: Build an empty MILP model M
2: M.var ← ai, bi, ui //ai, bi denote the input and output BDP of linear

layer, ui denotes a new binary variable introduced by COPY
3: B = [] //a n × n

2 all-zero matrix
4: for (i, j) in result do
5: B[i][N] = 1, B[j][N] = 1
6: l =

(
l0i ∧ l0j , l

1
i ∧ l1j , . . . , l

n
i ∧ lnj

)

7: M [i] = M [i] + l,M [j] = M [j] + l

8: Constr ← TN =
n−1∑
k=0

xk · (
lki ∧ lkj

)

9: Constr ← yi = TN +
n−1∑
k=0

xk · (
lki

⊕
lk

)
, yj = TN +

n−1∑
k=0

xk · (
lkj

⊕
lk

)

10: M.con ← TN =
n−1∑
k=0

ak · (
lki ∧ lkj

)

11: end for
12: P = [M,B]
13: for j ∈ (0, n + n/2), i ∈ (0, n) do

14: M.con ← aj =
n−1∑
k=0

uk · P [i] [j]

15: end for
16: for i ∈ (0, n),j ∈ (0, n + n/2) do

17: M.con ← bi =
n−1∑
k=0

uk · P [i] [j]

18: end for
19: return M

Traditional models usually added the corresponding constraints based on
the initial expression of the linear layer and combined with the BDP model of
COPY/XOR operations. If there exist non-independent division property propa-
gations in it, then redundant vectors must be produced, for example the method
of [12]. Hong et al. [18] proposed a method using the optimal implementation

114 Y. Mao et al.

of the linear layer to reduce the number of COPY/XOR constraints, and finally
obtained the same integral distinguisher as the best at the time. [18] is an exam-
ple of reducing errors caused by non-independent division property propagations,
and it also supports our observation in this section, but the method of [18] is
effective for the cipher like Midori-64, Skinny-64 and LED (because the non-
independent propagation in the linear layer of these ciphers contains at most
3 common variables, our model contains i common variables, i ≥ 2). In other
words, for the cipher with complex linear layers, such as uBlock and MIBS
(i ≥ 3), only a part of the redundancy can be reduced using method in [18].

4 Applications

In this section, for two block ciphers uBlock-128 and MIBS, we first briefly
introduce their encryption structures, then apply our new method to them, and
finally show the complete process of constructing MILP models for them.

4.1 Application to uBlock-128

uBlock-128. uBlock is a block cipher family proposed by Wu et al. [16]. It
adopts a SP network and supports 128-bit and 256-bit block lengths. Moreover,
uBlock-128 supports 128-bit and 256-bit key lengths, and the number of encryp-
tion rounds are 16 and 24, respectively. Let the round function of uBlock-128 be
f = P ◦ X ◦ S, where S represents the S layer, X represents the cyclic shift and
XOR operation in the middle, and P represents the last nibble-based permuta-
tion. The round function is shown in Fig. 1, where s represents a 4-bit nonlinear
S-box, and ≪ 4 represents that a block rotates 4 bits to the left in units of 32.
PL128 and PR128 represent two 8-byte vector permutations respectively, where
PL128 = {1, 3, 4, 6, 0, 2, 7, 5} and PR128 = {2, 7, 5, 0, 1, 6, 4, 3}.

uBlock is the winner in the National Cryptographic Algorithm Design Com-
petition held by the Chinese Association for Cryptologic Research in 2019
because of its adaptability to software and hardware platforms, simple and effec-
tive hardware implementations, and strong security. For the integral cryptanal-
ysis, based on Todo et al.’s conclusion on the division property of the (l, d,m)-
SPN in [3], the uBlock designers presented a 7-round integral distinguisher [16].
Besides, the current optimal integral distinguisher is the 8-round distinguisher
found by Tian et al. [17] by using the optimized representation of S-box in divi-
sion property propagation.

Searching the Integral Distinguisher of uBlock-128. Let the input of the
X layer be x = (x3, x2, x1, x0) and the output be y = (y3, y2, y1, y0). Then the
linear matrix corresponding to the transformation X can be expressed as the
juxtaposition of two nibble-based matrices M16×16, denoted as

M16×16 =
[
A8×16

B8×16

]
.

Improved Division Property for Ciphers with Complex Linear Layers 115

Fig. 1. Round function of uBlock-128.

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 1 1 0 1 1 1 1 0 1 0 1 1 1
1 0 0 1 1 1 0 1 1 1 1 0 1 0 1 1
1 1 0 0 1 1 1 0 1 1 1 1 0 1 0 1
0 1 1 0 0 1 1 1 1 1 1 1 1 0 1 0
1 0 1 1 0 0 1 1 0 1 1 1 1 1 0 1
1 1 0 1 1 0 0 1 1 0 1 1 1 1 1 0
1 1 1 0 1 1 0 0 0 1 0 1 1 1 1 1
0 1 1 1 0 1 1 0 1 0 1 0 1 1 1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 1 0 1 1 1 1 0 1 1 0 0 1 1
1 1 1 0 1 0 1 1 1 1 0 1 1 0 0 1
1 1 1 1 0 1 0 1 1 1 1 0 1 1 0 0
1 1 1 1 1 0 1 0 0 1 1 1 0 1 1 0
0 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1
1 0 1 1 1 1 1 0 1 0 0 1 1 1 0 1
0 1 0 1 1 1 1 1 1 1 0 0 1 1 1 0
1 0 1 0 1 1 1 1 0 1 1 0 0 1 1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

In other words, the input x is transformed by the matrix A8×16 and then
output y2 and y3, and x is also transformed by the matrix B8×16 and then output
y0 and y1. It can be observed from the initial matrix A and B that any two of
the rows contain multiple common columns with a constant 1. Thus the division
property propagation of (x0, ∗, x2, ∗) → y0, y2 and (∗, x1, ∗, x3) → y1, y3 are both
non-independent. After operating on the linear transformation matrix A and B
by using Algorithm 1 and Algorithm 2, we get the new matrix representation
corresponding to the X transformation under the basis (x3, x2, x1, x0, T1, T0).
That is

A
′
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 0 0 1 1
0 0 0 1 0 1 0 0 0 1 1 0 0 0 1 0 1 0 0 0 1 0 0 1
0 0 0 0 1 0 1 0 0 0 1 1 0 0 0 1 1 1 0 0 0 1 0 0
0 0 0 0 0 1 0 1 1 0 0 1 1 0 0 0 0 1 1 0 0 0 1 0
1 0 0 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1 1 0 0 0 1
0 1 0 0 0 0 0 1 0 0 1 0 0 1 1 0 1 0 0 1 1 0 0 0
1 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 1 1 0 0
0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

116 Y. Mao et al.

B
′
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 1
0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1
0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 1 1 0 0 1 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 1 0
0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 1
0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 0
0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0
1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where T0 = x0 + x2, T1 = x1 + x3. The X transformation can be expressed as
follows

y0 = L2 · x0 + L1 · x2 + L5 · x2 + L0 · T0 + L3 · T0 + L6 · T0 + L7 · T0

y1 = L2 · x1 + L1 · x3 + L5 · x3 + L0 · T1 + L3 · T1 + L6 · T1 + L7 · T1

y2 = L0 · x0 + L1 · x0 + L5 · x0 + L2 · x2 + L4 · x2 + L3 · T0 + L6 · T0 + L7 · T0

y3 = L0 · x1 + L1 · x1 + L5 · x1 + L2 · x3 + L4 · x3 + L3 · T1 + L6 · T1 + L7 · T1

where Li is a 32 × 32 left cyclic shift matrix, e.g.

L2 =

⎡

⎢⎢⎢⎢⎢⎣

0 0 1 0 0 . . . 0 0 0 0
0 0 0 1 0 . . . 0 0 0 0
0 0 0 0 1 . . . 0 0 0 0
...

...
...

...
...

...
...

...
0 1 0 0 0 . . . 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎦
.

It is easy to observe that any two rows of A′ and B′ have at most one
common column with 1 in the first n columns. Therefore, the representation of
X is transformed into the new form which not contains non-independent division
property propagations.

Let the input division property of X be (a3, a2, a1, a0, U1, U0) ∈ (F32
2)6 and

the output division property be (b3, b2, b1, b0) ∈ (F32
2)4. We can easily obtain the

linear inequality constraints in terms of new expressions. Firstly, the following
constraints corresponding to the substitution variables need to be added to the
MILP model M:

⎧
⎪⎨

⎪⎩

U0 = a0 + a2,

U1 = a1 + a3,

U1, U0 are binaries.

Then, according to the linear matrices A
′
and B

′
with independent division

property propagations, we can easily write the corresponding constraints. For
example, for y0, y2, the first column of A

′
and B

′
corresponds to x7

2, then we
have the COPY constraint

{
a7
2 = A7

0 + A7
1 + · · · + A7

5,

A7
0, · · · , A7

5 are binaries.

Improved Division Property for Ciphers with Complex Linear Layers 117

The last column of A
′

and B
′

corresponds to T 7
0 , then we have the COPY

constraint
{

U7
0 = u0

0 + u0
1 + · · · + u0

6,

u0
0, · · · , u0

6 are binaries.

The first row of B
′
corresponds to y7

0 , then we have the XOR constraint
{

b70 = A6
0 + A2

0 + · · · + t01 + t00,

b70 is binary.

For the nonlinear layer of uBlock-128, we need to use the SAGE tool to
convert division trails of the S-box into some linear inequalities, and then reduce
them through the Greedy Algorithm (refer to [4] for more details). Algorithm 3
describes the whole process of building a MILP model for the BDP of uBlock-
128. Based on Algorithm 3, for uBlock-128, we verified the 7-round integral
distinguisher in the design document and 6-, 7-, 8-round integral distinguishers
in [17], and obtained better results shown in the following.

8-Round Integral Distinguishers. When the least significant 4 bits of the
input are constant and other positions are active, the output after 8 rounds
has 96 balanced bits; when the most significant 4 bits of the input are constant
and other positions are active, the output after 8 rounds has 96 balanced bits;
when the least significant 1 bits of the input are constant and other positions
are active, the output after 8 rounds are all balanced.

⎡

⎢⎢⎣

C A A A A A A A
A A A A A A A A
A A A A A A A A
A A A A A A A A

⎤

⎥⎥⎦
8R−→

⎡

⎢⎢⎣

bubb bubb bubb bubb bubb bubb bubb bubb
bubb bubb bubb bubb bubb bubb bubb bubb
bubb bubb bubb bubb bubb bubb bubb bubb
bubb bubb bubb bubb bubb bubb bubb bubb

⎤

⎥⎥⎦

⎡

⎢⎢⎣

A A A A A A A A
A A A A A A A A
A A A A A A A A
A A A A A A A C

⎤

⎥⎥⎦
8R−→

⎡

⎢⎢⎣

bubb bubb bubb bubb bubb bubb bubb bubb
bubb bubb bubb bubb bubb bubb bubb bubb
bubb bubb bubb bubb bubb bubb bubb bubb
bubb bubb bubb bubb bubb bubb bubb bubb

⎤

⎥⎥⎦

⎡

⎢⎢⎣

A A A A A A A A
A A A A A A A A
A A A A A A A A
A A A A A A A aaac

⎤

⎥⎥⎦
8R−→

⎡

⎢⎢⎣

B B B B B B B B
B B B B B B B B
B B B B B B B B
B B B B B B B B

⎤

⎥⎥⎦

118 Y. Mao et al.

Algorithm 3 A MILP model for BDP propagation of uBlock-128
Input: S-box, the linear layer
Output: A MILP model M for BDP propagation of uBlock-128.
1: Build an empty MILP model M.
2: M.var ← ai, bi, Ui, ui, Ai //ai, bi denote the input and output BDP of linear

layer, the rest are newly introduced binary variables
3: //Generating Constrained Inequalities for S-boxes
4: Call Algorithm 2 in [4] to calculate the division trail of S-box: V = {ai → bi}
5: Use inequality generator() in SAGE to generate inequalities of V : L (ai, bi)
6: Reduce L (ai, bi) to L′ (ai, bi) by using the Greedy Algorithm
7: M.con ← L′

(ai, bi)
8: //Generating Constraned Inequalities for Linear Layers
9: Write the implementation matrix M of linear layer

10: Call Algorithm 2 to generate constraints: L′′
(bi, ai, Ui, ui, Ai)

11: M.con ← L′′
(bi, ai, Ui, ui, Ai)

12: for i in range(0, n) do
13: M.con ← L′ (ai, bi)
14: M.con ← L′′

(bi, ai, Ui, ui, Ai)
15: M.con ← L′′′

(PL128 (bi, ai+1) , PR128 (bi, ai+1))
16: end for
17: Return M

4.2 Application to MIBS

MIBS. MIBS is a lightweight block cipher proposed by Izadi M et al. at CANS
2009 [19]. Its overall encryption structure uses the Feistel network, and the round
function adopts the SP network. The cipher has a 64-bit block length and sup-
ports 64-bit and 80-bit two key lengths. The number of iterative rounds is 32. All
iterative operations in MIBS are based on nibble. The round function includes a
XOR subkey, a S-box layer and a linear layer M denoted as M = L ◦ XOR ◦ P ,
where L represents the left and right permutations, XOR represents XOR with
the input of the right half, P represents the linear transformation in the middle.
The round function of MIBS is shown in Fig. 2.

MIBS has good resistance to differential cryptanalysis, linear cryptanalysis
and integral cryptanalysis. The current best cryptanalytic result for MIBS is the
18-round linear cryptanalysis on MIBS-80 with the time complexity 276.13, but
the success probability is only 72.14% [20]. The existing integral attacks on it
are mainly obtained by the derivation of the structure, and the known optimal
integral distinguisher is a 5-round one proposed by Li et al. [21].

Searching the Integral Distinguisher of MIBS. Let the input of transfor-
mation P be x = (x7, x6, x5, x4, x3, x2, x1, x0) and the output be y = (y7, y6, y5,
y4, y3, y2, y1, y0). The division property propagation is expressed as (a7, a6, a5,

Improved Division Property for Ciphers with Complex Linear Layers 119

Fig. 2. Round function of MIBS.

a4, a3, a2, a1, a0)
P−→ (b7, b6, b5, b4, b3, b2, b1, b0). The transformation matrix of P

is expressed as follows:

M =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 1 1 0 1
0 1 1 0 0 1 1 1
0 0 1 1 1 0 1 1
1 0 0 1 1 1 0 1
1 1 0 0 1 1 1 0
1 0 1 1 0 1 1 1
0 1 1 1 1 1 1 0
1 1 0 1 1 0 1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

To convert the non-independent division property propagations involved in
transformation P into independent propagations, the following new variables are
introduced in using Algorithm 2.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

T0 = x0 + x3 + x4 + x7,

T1 = x1 + x2 + x3 + x6,

T2 = x0 + x1 + x4 + x5,

T3 = x0 + x2 + x5 + x6.

Transform the matrix into

120 Y. Mao et al.

M ′ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 1 0 0 0 1 0 0
0 0 1 1 0 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0 0 0 1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Take x = (x7, x6, x5, x4, x3, x2, x1, x0, T3, T2, T1, T0) as new variables, and
y = (y7, y6, y5, y4, y3, y2, y1, y0) is the output. The division property propagation
is expressed as (a7, a6, a5, a4, a3, a2, a1, a0, U3, U2, U1, U0)

P−→ (b7, b6, b5, b4, b3,
b2, b1, b0). Create model constraints according to the new expression. The new
variable constraints that need to be added are

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

U0 = a0 + a3 + a4 + a7,

U1 = a1 + a2 + a3 + a6,

U2 = a0 + a1 + a4 + a5,

U3 = a0 + a2 + a5 + a6,

U3, · · · , U0 are binaries.

Using Algorithm 4, we can find an integral distinguisher up to 9 rounds with
63 active bits and 32 balanced bits. For the 8-round MIBS, the output of cipher-
text are all balanced if plaintexts are chosen as 63 active bits and one constant
bit. The following shows a list of integral distinguishers found by Algorithm 4.
In particular, the 6-, 7-, 8- and 9-round integral distinguisher of MIBS all have
longer rounds than the currently known ones.

[C, C, C, C, C, C, C, C,
C, C, C, C, C,A,A,A

]
5R−→

[B,B,B,B,B,B,B,B,
U ,U ,U ,U ,U ,U ,U ,U

]

[C, C, C, C, C, C, C, C,
A,A,A,A,A,A,A,A

]
6R−→

[B,B,B,B,B,B,B,B,
U ,U ,U ,U ,U ,U ,U ,U

]

[C, C, C,A,A,A,A,A,
A,A,A,A,A,A,A,A

]
7R−→

[B,B,B,B,B,B,B,B,
U ,U ,U ,U ,U ,U ,U ,U

]

[
ccca,A,A,A,A,A,A,A,
A,A,A,A,A,A,A,A

]
8R−→

[B,B,B,B,B,B,B,B,
U ,U ,U ,U ,U ,U ,U ,U

]

[
caaa,A,A,A,A,A,A,A,

A,A,A,A,A,A,A,A
]

8R−→
[B,B,B,B,B,B,B,B,

B,B,B,B,B,B,B,B
]

[
caaa,A,A,A,A,A,A,A,

A,A,A,A,A,A,A,A
]

9R−→
[B,B,B,B,B,B,B,B,

U ,U ,U ,U ,U ,U ,U ,U
]

Improved Division Property for Ciphers with Complex Linear Layers 121

Algorithm 4. A MILP model for BDP propagation of MIBS

Input: S-box, the linear layer
Output: A MILP model M for BDP propagation of MIBS
1: Build an empty MILP model M.
2: M.var ← ai, di, bi, ci, Ui, ui, Ai //ai, bi denote the input and output BDP of

linear layer, the rest are newly introduced binary variables
3: //COPY Operation in the Left of Feistel Structure
4: M.con ← L (ai = di + ai+1)
5: // Generating Constrained Inequalities for S-boxes
6: Use Algorithm 2 [4] to calculate the division trail of S-box: V = {di → bi}
7: Use inequality generator() in SAGE to generate inequalities of V : L (di, bi)
8: Reduce L (di, bi) to L′ (di, bi) by using the Greedy Algorithm
9: M.con ← L′

(di, bi)
10: //Generating Constraned Inequalities for transformation P
11: Write the implementation matrix M of P
12: Call Algorithm 2 to generate constraints: L′′

(bi, ci, Ui, ui, Ai)
13: M.con ← L′′

(bi, ci, Ui, ui, Ai)
14: // XOR Operation in the Right of Feistel Network
15: M.con ← L′′′

(ai + ci = ai+1)
16: for i in range(0, n) do
17: M.con ← L (ai = di + ai+1)
18: M.con ← L′ (di, bi)
19: M.con ← L′′

(bi, ci, Ui, ui, Ai)
20: M.con ← L′′′

(ai + ci = ai+1)
21: end for
22: Return M

5 Conclusion

In this paper, we proposed a method to improve the accuracy of modeling the
BDP propagation of complex linear layers using MILP model, which can also
make models using SAT, and showed the effectiveness of this approach by apply-
ing it to two block ciphers uBlock-128 and MIBS. For uBlock-128, we found an
integral distinguisher with the same round number as the longest known one,
but our results has more balance bits. For MIBS, our method can attack more
rounds than previous generic integral attacks. However, we cannot guarantee
that the number of active bits is a tight lower bound for the 6-, 7- and 8-round
integral distinguisher of MIBS due to the problem of solving time. Therefore,
continuing to optimize the entire MILP model and improve the solving efficiency,
and applying to other block ciphers with the complex linear layer are issues of
our further investigations.

Acknowledgement. The authors would like to thank Prof. Guomin Yang and the
anonymous reviewers for their detailed and very helpful comments and suggestions to

122 Y. Mao et al.

improve this article. This work is supported by the National Natural Science Founda-
tion of China (No. 62072445).

A Linear Inequalities for S-Boxes in uBlock-128

The following inequalities are the 12 inequalities used to describe uBlock S-box
in MILP model of BDP, and (a3, a2, a1, a0) → (b3, b2, b1, b0) denotes a division
trail of S-box.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a3 + a2 + a1 + a0 − b3 − b2 − b1 − b0 ≥ 0
− 3a3 − a2 − 2a1 − 4a0 + 3b3 + b2 + 2b1 − b0 ≥ −5
2a3 − a0 − 2b3 − b2 − b1 + b0 ≥ −2
− 4a3 − 3a2 − 2a1 − 2a0 − b3 + 3b2 + b1 + 2b0 ≥ −6
− a1 + 2a0 − b3 − b2 + b1 − 2b0 ≥ −2
− a3 − a2 − 2a0 + b3 + 2b2 + 3b1 + 2b0 ≥ 0
a3 + a0 + b3 − 2b2 − 2b1 − b0 ≥ −2
a1 + 2a0 − b3 − b2 − b1 − b0 ≥ −1
a3 − b1 − b0 ≥ −1
− a3 − a1 + b3 + 2b2 + b1 + b0 ≥ 0
a1 − b3 − b1 ≥ −1
a2 − b2 − b1 ≥ −1

B Linear Inequalities for S-Boxes in MIBS

The following inequalities are the 12 inequalities used to describe MIBS S-box
in MILP model of BDP, and (d3, d2, d1, d0) → (b3, b2, b1, b0) denotes a division
trail of S-box.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d3 + d2 + 4d1 + d0 − 2b3 − 2b2 − 2b1 − 2b0 ≥ −1
3d2 − b3 − b2 − b1 − b0 ≥ −1
− d3 − 2d2 − 2d1 − d0 − b3 − 2b2 + 4b1 − b0 ≥ −6
− d3 − 2d2 − 2d1 − d0 + 5b3 + 4b2 + 5b1 + 5b0 ≥ 0
− d3 − d2 − d1 − b3 + 3b2 − 2b1 − b0 ≥ −4
− d3 − d0 − 2b3 − b2 − b1 + 3b0 ≥ −3
d3 + b3 − b2 − b1 − b0 ≥ −1
− d3 − d2 − d0 + b3 + 2b2 + 2b1 + b0 ≥ −1
− d1 − b3 − b2 + 2b1 − b0 ≥ −2

Improved Division Property for Ciphers with Complex Linear Layers 123

References

1. Knudsen, L., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V. (eds.)
FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45661-9 9

2. Daemen, J., Knudsen, L., Rijmen, V.: The block cipher Square. In: Biham, E. (ed.)
FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997). https://doi.
org/10.1007/BFb0052343

3. Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 287–314. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 12

4. Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying MILP method to searching inte-
gral distinguishers based on division property for 6 lightweight block ciphers. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 648–678.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6 24

5. Wang, Q., Hao, Y., Todo, Y., Li, C., Isobe, T., Meier, W.: Improved division prop-
erty based cube attacks exploiting algebraic properties of superpoly. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 275–305. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 10

6. Liu, M., Yang, J., Wang, W., Lin, D.: Correlation cube attacks: from weak-key
distinguisher to key recovery. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT
2018. LNCS, vol. 10821, pp. 715–744. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-78375-8 23

7. Wang, S., Hu, B., Guan, J., Zhang, K., Shi, T.: MILP-aided method of search-
ing division property using three subsets and applications. In: Galbraith, S.D.,
Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11923, pp. 398–427. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-34618-8 14

8. Hao, Y., Leander, G., Meier, W., Todo, Y., Wang, Q.: Modeling for three-subset
division property without unknown subset. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020. LNCS, vol. 12105, pp. 466–495. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45721-1 17

9. Hebborn, P., Lambin, B., Leander, G., Todo, Y.: Lower bounds on the degree
of block ciphers. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol.
12491, pp. 537–566. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
64837-4 18

10. Hu, K., Sun, S., Wang, M., Wang, Q.: An algebraic formulation of the division
property: revisiting degree evaluations, cube attacks, and key-independent sums.
In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp. 446–476.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64837-4 15

11. Hebborn, P., Lambin, B., Leander, G., Todo, Y.: Strong and tight security guaran-
tees against integral distinguishers. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT
2021. LNCS, vol. 13090, pp. 362–391. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-92062-3 13

12. Sun, L., Wang, W., Wang, M.Q.: MILP-aided bit-based division property for prim-
itives with non-bit-permutation linear layers. IET Inf. Secur. 14, 12–20 (2020)

13. Zhang, W.Y., Rijmen, V.: Division cryptanalysis of block ciphers with a binary
diffusion layer. IET Inf. Secur. 13, 87–95 (2019)

14. Hu, K., Wang, Q.J., Wang, M.Q.: Finding bit-based division property for ciphers
with complex linear layers. IACR Trans. Symmetric Cryptol. 2020, 396–424 (2020)

https://doi.org/10.1007/3-540-45661-9_9
https://doi.org/10.1007/3-540-45661-9_9
https://doi.org/10.1007/BFb0052343
https://doi.org/10.1007/BFb0052343
https://doi.org/10.1007/978-3-662-46800-5_12
https://doi.org/10.1007/978-3-662-53887-6_24
https://doi.org/10.1007/978-3-319-96884-1_10
https://doi.org/10.1007/978-3-319-78375-8_23
https://doi.org/10.1007/978-3-319-78375-8_23
https://doi.org/10.1007/978-3-030-34618-8_14
https://doi.org/10.1007/978-3-030-45721-1_17
https://doi.org/10.1007/978-3-030-64837-4_18
https://doi.org/10.1007/978-3-030-64837-4_18
https://doi.org/10.1007/978-3-030-64837-4_15
https://doi.org/10.1007/978-3-030-92062-3_13
https://doi.org/10.1007/978-3-030-92062-3_13

124 Y. Mao et al.

15. Todo, Y., Morii, M.: Bit-based division property and application to Simon family.
In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 357–377. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-52993-5 18

16. Wu, W.L., Zhang, L., Zheng, Y.F., Li, L.C.: The block cipher uBlock. J. Cryptol.
Res. 6(6), 690–703 (2019). (in Chinese)

17. Tian, W., Hu, B.: Integral cryptanalysis on two block ciphers Pyjamask and
uBlock. IET Inf. Secur. 14, 572–579 (2020)

18. Hong, C., Zhang, S., Chen, S., Lin, D., Xiang, Z.: More accurate division property
propagations based on optimized implementations of linear layers. In: Yu, Yu.,
Yung, M. (eds.) Inscrypt 2021. LNCS, vol. 13007, pp. 212–232. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-88323-2 11

19. Izadi, M., Sadeghiyan, B., Sadeghian, S.S., Khanooki, H.A.: MIBS: a new
lightweight block cipher. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS
2009. LNCS, vol. 5888, pp. 334–348. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-10433-6 22

20. Bay, A., Nakahara, J., Vaudenay, S.: Cryptanalysis of reduced-round MIBS block
cipher. In: Heng, S.-H., Wright, R.N., Goi, B.-M. (eds.) CANS 2010. LNCS, vol.
6467, pp. 1–19. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
17619-7 1

21. Li, Y.J., Sun, Q., Ou, H.W., et al.: Improved integral attacks on MIBS-64 block
cipher. J. Cryptol. Res. 8(4), 669–679 (2021). (in Chinese)

https://doi.org/10.1007/978-3-662-52993-5_18
https://doi.org/10.1007/978-3-030-88323-2_11
https://doi.org/10.1007/978-3-642-10433-6_22
https://doi.org/10.1007/978-3-642-10433-6_22
https://doi.org/10.1007/978-3-642-17619-7_1
https://doi.org/10.1007/978-3-642-17619-7_1

Fast Skinny-128 SIMD Implementations
for Sequential Modes of Operation

Alexandre Adomnicai1(B), Kazuhiko Minematsu2,3(B), and Maki Shigeri4(B)

1 CryptoNext Security, Paris, France
alex.adomnicai@gmail.com
2 NEC, Kawasaki, Japan
k-minematsu@nec.com

3 Yokohama National University, Yokohama, Japan
4 NEC Solution Innovators, Hokuriku, Japan

m-shigeri pb@nec.com

Abstract. This paper reports new software implementation results for
the Skinny-128 tweakable block ciphers on various SIMD architectures.
More precisely, we introduce a decomposition of the 8-bit S-box into four
4-bit S-boxes in order to take advantage of vector permute instructions,
leading to significant performance improvements over previous constant-
time implementations. Since our approach is of particular interest when
Skinny-128 is used in sequential modes of operation, we also report how
it benefits to the Romulus authenticated encryption scheme, a finalist of
the NIST LWC standardization process.

Keywords: Skinny · Romulus · NIST LWC · SIMD

1 Introduction

The Internet of Things (IoT) does not come without its challenges, and security
concerns remain a major barrier to its adoption. One of the technical considera-
tions is the efficiency/security trade-off of cryptographic implementations on IoT
devices. The restrictions in terms of power and memory introduce challenges that
do not exist when using cryptography in more conventional IT platforms. More-
over, environments in which IoT devices are deployed make these devices vulnera-
ble to unforeseen physical threats where attackers may tamper with them directly.
It implies that cryptographic implementations must show some resilience against
physical attacks to avoid key recoveries that might lead to a compromised net-
work, as already demonstrated in practice [27]. Therefore, numerous symmetric-
key ciphers have been proposed by taking all these aspects into consideration at the
design level. They are categorized as lightweight cryptography, aiming at providing
better hardware and/or software implementation properties on embedded devices.
In this context, the National Institute of Standards and Technology (NIST) initi-
ated a process that started in 2018, with the goal of selecting the future Authenti-
cated Encryption with Associated Data (AEAD) standard(s) for constrained envi-
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
K. Nguyen et al. (Eds.): ACISP 2022, LNCS 13494, pp. 125–144, 2022.
https://doi.org/10.1007/978-3-031-22301-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22301-3_7&domain=pdf
https://doi.org/10.1007/978-3-031-22301-3_7

126 A. Adomnicai et al.

ronments [23]. AEAD algorithms ensure confidentiality, integrity, and authentic-
ity of data in a single primitive. Romulus [19] is one of the ten proposals currently
competing for standardization in the final round. It is based on Skinny [7], a tweak-
able block cipher standardized in ISO/IEC 18033-7. If Skinny shows outstanding
results when implemented in hardware, the picture is more mixed when it comes
to software. Although recent works have been undertaken to optimize its perfor-
mance on 32-bit microcontrollers, for example by Adomnicai and Peyrin [2], it
is not clear what is the best implementation strategy on more advanced archi-
tectures. Although the main goal of lightweight cryptography is to provide opti-
mized encryption and authentication solutions for resource-constrained devices
(e.g. low-cost microcontrollers), it will be inevitably deployed on more sophisti-
cated platforms for interoperability purposes. For instance, many IoT networks
adopt a star topology where numerous low-end devices communicate with a sin-
gle server that has to decrypt received data. Mobile devices (e.g. smartphones,
tablets) are also commonly used for network monitoring purposes, requiring to
handle secure communications with many nodes simultaneously. Therefore, soft-
ware performance of lightweight cryptography does matter on mid-range to high-
end microprocessors as well. Most of these platforms are now equipped with single
instruction multiple data (SIMD) units whose goal is to vectorize calculations by
performing the same operation on multiple data operands concurrently. On Intel
processors, SIMD units have been available since the advent of the MMX instruc-
tion set architecture extension, initially designed to speed up the performance of
multimedia applications. Similarly, ARM introduced SIMD extensions with the
NEON technology being implemented on all ARM Cortex-A series processors. To
date, the best softwareSkinny-128 implementation results reported on SIMD archi-
tectures are obtained by processing many 128-bit blocks in parallel (e.g. 64 using
AVX2 [7]) thanks to bitslicing. While relying on implementations that operate on
a large amount of data at once is not necessarily relevant in the context of IoT,
where payloads are usually a few dozen of bytes only, it is even less of interest for
sequential (i.e. non-parallelizable) modes of operation as in Romulus.

Our Contributions. In this paper, we optimize the performance of Skinny-128 for
sequential modes of operation on SIMD platforms, with a focus on ARM proces-
sors with NEON technology. First, we briefly review various publicly available
software implementations of Skinny-128 and highlight that the 8-bit S-box com-
ponent is the most-time consuming part of the encryption process. To address
this issue, we propose an optimization trick which consists in decomposing the S-
box into smaller ones so that we can take advantage of SIMD-specific vector per-
mute instructions to reach competitive performance without introducing secret-
dependent timing variations. While it has already been shown that lightweight
ciphers with 4-bit S-boxes can highly benefit from such instructions [5,8], it is
less trivial for designs with larger (e.g. 8-bit) S-boxes. Still, a similar implemen-
tation trick has been first proposed by Hamburg for AES on Intel processors [18].
Our work shows that this is also quite effective for Skinny-128 by introducing
a novel decomposition of its 8-bit S-box into 4 tables. As a result, we observe
a speedup by a factor that ranges from 1.5 to 3.5 depending on the computing

Fast Skinny-128 SIMD Implementations for Sequential Modes of Operation 127

platform, compared to the fixsliced implementation strategy [2], which is cur-
rently the fastest option for Skinny-128 when used in non-parallelizable operating
modes. We also port our implementations on Intel platforms, improving the per-
formance by a factor of 4. These results straightforwardly apply to Romulus as
shown by our benchmarks. Finally, our software implementations are released
into the public domain at https://github.com/aadomn/skinny.

2 Skinny in Software

2.1 The Skinny-128 Tweakable Block Ciphers

A tweakable block cipher is family of permutations where both key and tweak are
used to select a permutation. Skinny follows the tweakey framework [21] which
treats the tweak and the key in the same way in a structure called tweakey. It
is up to the user what part of this tweakey will be key material and/or tweak
material. The internal state of Skinny-128 as well as the tweakey states consist
of a 4 × 4 square arrays of bytes. The number of tweakey states ranges from one
to three (namely TK1, TK2 and TK3), and is directly linked to the quantity
of tweakey material which is either 128, 256, or 384 bits. The corresponding
versions are denoted by Skinny-128-128, Skinny-128-256, and Skinny-128-384, and
are composed of 40, 48, and 56 encryption rounds, respectively. One encryption
round is itself composed of five operations in the following order: SubCells,
AddConstants, AddRoundTweakey, ShiftRows and MixColumns as illustrated in
Fig. 1.

Fig. 1. The Skinny round function (from [20])

SubCells refers to the non-linear layer and consists in applying an 8-bit
S-box, depicted in Fig. 2, to each byte individually.

AddConstants consists in combining three round constants c0, c1, c2 with the
three topmost bytes in the first state column using bitwise exclusive-OR (XOR).
The round constants are defined as below:

c0 = 0 ‖ 0 ‖ 0 ‖ 0 ‖ rc3 ‖ rc2 ‖ rc1 ‖ rc0

c1 = 0 ‖ 0 ‖ 0 ‖ 0 ‖ 0 ‖ 0 ‖ rc5 ‖ rc4

c2 = 0 ‖ 0 ‖ 0 ‖ 0 ‖ 0 ‖ 0 ‖ 1 ‖ 1

where rci are defined by the following 6-bit LFSR

(rc5 ‖ rc4 ‖ rc3 ‖ rc2 ‖ rc1 ‖ rc0) → (rc4 ‖ rc3 ‖ rc2 ‖ rc1 ‖ rc0 ‖ rc5 ⊕ rc4 ⊕ 1) .

https://github.com/aadomn/skinny

128 A. Adomnicai et al.

Fig. 2. The Skinny-128 S-box (from [20])

AddRoundTweakey extracts the two topmost rows of each tweakey array and
adds them to the internal state using bitwise XOR. Then all tweakey arrays are
updated by applying a byte permutation to the state and an 8-bit LFSR to each
byte, as illustrated in Fig. 3. Finally, ShiftRows and MixColumns refer to the
linear layer, ensuring diffusion within the state.

Fig. 3. Tweakey state update (from [20])

2.2 Publicly Available Software Implementations

The original publication of Skinny reports efficient bitsliced implementations1

with Skinny-128-128 running at 3.78 and 3.43 cycles per byte (cpb) on Haswell
and Skylake architectures respectively, by taking advantage of Intel AVX2
instructions. However, it requires to process 64 blocks in parallel which makes
it quite inefficient for sequential modes of operation since it would basically
decrease computation speed by a factor of 64.

Regarding 32-bit implementations, as for the AES T-tables, it is possible
to combine multiple steps of the round function into table lookups. This has
1 https://github.com/kste/skinny avx.

https://github.com/kste/skinny_avx

Fast Skinny-128 SIMD Implementations for Sequential Modes of Operation 129

been investigated in [14] in order to optimize ForkAE [3], which is based on
the Skinny round function, but there are no implementation results reported for
Skinny itself. For platforms where cache-based attacks are a concern, one should
favor constant-time implementations to avoid timing side-channels that could
leak information about the secret key. An application of the fixslicing technique
to Skinny-128 was recently proposed in this regard [2]. Fixslicing is a specific
instance of bitslicing where at least one slice remains fixed (potentially leading
to an alternative representation for a few rounds), with the aim of optimizing the
diffusion layer. It was originally proposed by Adomnicai, Najm and Peyrin [1]
with an application to GIFT-COFB, a NIST LWC finalist based on the GIFT block
cipher [6] and the COFB mode of operation [13]. According to [2], fixsliced Skinny-
128-128 runs around 191 cpb on ARMv7-M when processing a single block at a
time (with precomputed round tweakeys). Note that there is also a constant-time
implementation from Weatherley which stores the internal state in a byte-wise
fashion but implements the S-box in a bitsliced manner by means of bitmasks
and bitwise operations [31]. While it is around 2.5 times slower than the fixsliced
version on ARMv7-M when processing a single block at time [2], it requires
half RAM to store the round tweakeys. Still, the improvement factor should be
significantly reduced on 64-bit platforms since the byte-wise representation can
benefit from larger registers to apply the S-box on only two 64-bit words instead
of four 32-bit words.

There has also been work on Skinny-128 optimizations using the ARM
NEON extension, with the objective to enhance the performance of the ForkAE
lightweight encryption scheme [14]. The implementation strategy is the same
as [31]: the authors use a single 128-bit NEON register to store the entire inter-
nal state and rely on a bitsliced approach for the S-box, requiring 63 instruc-
tions in total2. Because no implementation results are reported for Skinny-128
itself, it is not clear how it performs compared to the fixsliced3 and byte-wise4

implementations. To clarify this point, we performed a simple benchmark on the
following three ARM CPUs implementing the NEON extension: the Cortex-A7,
Cortex-A53 and Cortex-A72 processors briefly described hereafter. We used the
SUPERCOP benchmarking suite [9] using gcc 8.3.0. The results are reported
in Table 1.

ARM Cortex-A7. The Cortex-A7 is an in-order pipeline CPU core with moderate
performance but an extremely small die size and very low power consumption.
It was initially introduced for entry-level smartphones and now progressively
finds its place in system-on-chips dedicated to the IoT [22]. It is based on the
32-bit ARMv7-A architecture which has 16 32-bit general-purpose ARM reg-
isters R0-R15 and 32 64-bit NEON registers D0-D31. These NEON registers can

2 https://github.com/ArneDeprez1/ForkAE-SW/blob/master/Neon SIMD/sbox
neon.S.

3 https://github.com/aadomn/skinny/tree/master/crypto tbc/skinny128/1 block/
opt32.

4 https://github.com/rweather/skinny-c.

https://github.com/ArneDeprez1/ForkAE-SW/blob/master/Neon_SIMD/sbox_neon.S
https://github.com/ArneDeprez1/ForkAE-SW/blob/master/Neon_SIMD/sbox_neon.S
https://github.com/aadomn/skinny/tree/master/crypto_tbc/skinny128/1_block/opt32
https://github.com/aadomn/skinny/tree/master/crypto_tbc/skinny128/1_block/opt32
https://github.com/rweather/skinny-c

130 A. Adomnicai et al.

also be manipulated as 16 128-bit registers Q0-Q15 where each Qi maps to the
pair (D2i, D2i+1). For our benchmarks, we use the Raspberry Pi 2 Model B fea-
turing the 900 MHz quad-core Cortex-A7 Broadcom BCM2836 chipset running
Raspbian 10 (buster).

ARM Cortex-A53. The Cortex-A53 is one of the first two processors implement-
ing the ARMv8-A architecture and is typically found in entry-level smartphone
and other embedded devices. ARMv8-A introduces a new 64-bit instruction set
known as A64 which operates in the 64-bit execution state called AArch64. It
also provides a 32-bit execution state called AArch32 to ensure backward com-
patibility with ARMv7-A. While AArch32 has the same number of registers as
ARMv7-A, AArch64, by comparison, has 31 64-bit ARM registers X0-X30 and
32 128-bit NEON registers V0-V31. For our benchmarks, we use the Raspberry
Pi 3 Model B featuring the 1.2 GHz quad-core Cortex-A53 Broadcom BCM2837
chipset running Debian 10 (buster).

ARM Cortex-A72. Finally, the Cortex-A72 is based on the ARMv8-A architec-
ture and is designed for the mobile market. It is considered as a high performant
core which is often combined with lower performance processors such as the
Cortex-A53 to achieve better tradeoffs between energy and performance. For
our benchmarks, we use the Raspberry Pi 4 Model B featuring the 1.5 GHz
quad-core Cortex-A72 Broadcom BCM2711 chipset running Debian 10 (buster).

Table 1. Performance comparison between three Skinny-128 implementations. Best
results are bolded.

Algorithm Implementation
Speed (clock cycles)

A7 A53 A72

Fixsliced [2] 5492 2814 2655

Byte-wise [31] 10 328 3 055 2 993Skinny-128-384 block encryption

ARMv7-A NEON [14] 10 563 - -

Fixsliced [2] 3901 3 210 2 082

Byte-wise [31] 7 855 2294 1568Skinny-128-384 tweakey schedule

ARMv7-A NEON [14] 4 127 - -

As expected, fixslicing appears as the most efficient implementation strategy
for the encryption round function. While the byte-wise approach shows better
performance for the tweakey schedule on 64-bit platforms, we decide to take
the fixsliced implementation as a reference in terms of performance since many

Fast Skinny-128 SIMD Implementations for Sequential Modes of Operation 131

operation modes leave some tweakey states unchanged across calls to Skinny-128.
Another observation that stems from our benchmark is that the use of NEON
on the Cortex-A7 outperforms the non-vectorized byte-wise implementation for
the tweakey schedule only, resulting in similar performance for the encryption
round function. This is likely due to the fact that, on the Cortex-A7, while
most NEON instructions have a throughput of either 1 and 2 instructions per
clock cycle when operating on doubleword and quadword registers, respectively,
latencies are typically 4 cycles or more [28]. Therefore, directly using the result
of the previous instruction will cause a stall. While the ARMv7-A NEON S-box
implementation tries to mitigate such additional costs by carefully scheduling
instructions, its sequential aspect makes it impossible to completely avoid it.
The performance bottleneck of the encryption round function is clearly the 8-
bit S-box, which is responsible for about 60% of the clock cycles in the fixsliced
setting, versus 80% in the byte-wise setting. Therefore, optimizing this operation
would significantly enhance the overall Skinny-128 performance.

3 Optimizing the S-Box Layer

3.1 NEON Vector Permute Instructions

NEON instruction set features a vector permute instruction named tbl which
performs a table lookup at byte level. As originally introduced in ARMv7-A, it
operates on doubleword registers providing a 64-bit output at a time. The table
can be specified from 1 to 4 double-word registers, allowing up to 32 bytes. While
the tbl instruction insert zeroes for out-of-bounds indices, its sister instruction
tbx leaves the destination unchanged instead. In ARMv8-A, these instructions
are operating on 128-bit wide registers allowing to specify a table of up to 64
bytes. Therefore, a single instruction is enough to compute an S-box up to either
5-bit or 6-bit on ARMv7-A and ARMv8-A, respectively. It is also possible to go
further by combining several tbl/tbx calls. For instance, on ARMv8-A, given
an 8-bit S-box one can split it into four 6-bit S-boxes: the first one covering
bytes from 0 to 63, the second one covering bytes from 64 to 127, etc. First,
a tbl instruction with the first 6-bit S-box is performed. If a byte is out-of-
bounds the result is set to 0, or the final S-box output otherwise. Then, 64 is
subtracted to each byte before applying the second 6-bit S-box using the tbx
instruction (so that non-zero bytes calculated in the previous instruction are not
affected). The same reasoning applies for the two remaining 6-bit S-boxes as
detailed in Listing 1.1. This technique was actually applied to the AES S-box
in order to boost its performance for ARMv8-A processors that do not include
the optional Cryptography Extension [11,15]. Although the same trick applies
to ARMv7-A as well, the limited number of registers coupled with the fact that
permute instructions operate on 64-bit doublewords makes it inefficient for an
8-bit S-box, as it would occupy all the 32 NEON registers available. It would
be still possible to store it in memory and perform loads during the calculation,
but it would have a significant impact on performance. Another drawback of this
technique is its inefficiency in some processors. It has been observed that tbl/tbx

132 A. Adomnicai et al.

performance can greatly vary from one platform to another [4]. For instance, in
AArch64 mode, a tbl instruction with 4 input registers has a latency of 15
cycles on the A72 compared to only 5 on the A53, as summarized in Table 2.
Those latency issues can be mitigated by executing several instances in parallel.
However, because the internal state fits in a single 128-bit register, it is only of
interest for parallelizable modes of operation. Another potential solution would
be to use a clever decomposition of the S-box rather than simply splitting it into
several parts.

1 tbl v1.16b, {v16.16b - v19.16b}, v0.16b // S-box for bytes in [0,63]

2 sub v0.16b, v0.16b, v15.16b // Subtracts 64 to each byte

3 tbx v1.16b, {v20.16b - v23.16b}, v0.16b // S-box for bytes in [64,127]

4 sub v0.16b, v0.16b, v15.16b // Subtracts 64 to each byte

5 tbx v1.16b, {v24.16b - v27.16b}, v0.16b // S-box for bytes in [128,191]

6 sub v0.16b, v0.16b, v15.16b // Subtracts 64 to each byte

7 tbx v1.16b, {v28.16b - v31.16b}, v0.16b // S-box for bytes in [192,255]

Listing 1.1. ARMv8-A NEON implementation of an 8-bit S-box stored in v16-v31.
The input register is v0 and while the output register is v1. v15 is supposed to contain
0x40...40.

Table 2. Effective execution latency and throughput for Neon vector permute instruc-
tions.

Execution
Instructions

Throughput (ops/cycle) Latency (cycles)

Mode A7 A53 A72 A7 A53 A72

vtbl/vtbx from 1/2 sources (64-bit wide) 1 1 2 4 2 3
Aarch32

vtbl/vtbx from 3/4 sources (64-bit wide) 1/2 1/2 1 5 3 6

tbl/tbx from n sources (64-bit wide) - 1/n 2/n - n + 1 3n
Aarch64

tbl/tbx from n sources (128-bit wide) - 1/n 1/(2n − 1) - n + 1 3n + 3

3.2 S-Box Decomposition

The decomposition of an S-box into smaller ones is a well-known technique to
achieve compact hardware implementations. Building large S-boxes from smaller
ones is actually a design strategy that has been used in many ciphers (e.g.
Whirlpool [30], CLEFIA [29], Streebog and Kuznyechik [25]). This is also useful for
side-channel countermeasures such as threshold implementations, where having
a decomposition into functions with lower algebraic degrees allows to reach a
secure implementation with fewer shares. Note that improvements for first-order

Fast Skinny-128 SIMD Implementations for Sequential Modes of Operation 133

threshold implementations of Skinny-128 have been recently proposed thanks
to novel S-box decompositions [12]. Such decompositions are also of interest
in software, as it allows to build S-boxes that combine strong cryptanalytic
properties and efficient bitsliced implementations (see e.g. Scream [17], Robin
and Fantomas [16]). More closely related to our case study, a decomposition of
the AES S-box has been proposed to achieve a constant-time implementation on
Intel SIMD architectures [18]. It consists in representing F28 as a degree-2 field
extension of F24 which allows computation of the AES S-box using small look-up
tables that fit in pshufb instructions.

In the case of Skinny-128, we aim at finding an S-box decomposition that
minimizes the number of inner S-boxes as well as their input size. Limiting the
number of inner S-boxes will reduce the number of vector permute instructions
while limiting their input size will reduce the number of input registers for these
instructions (which has an impact on latency). Note that their output size can
be anything between 1 and 8 bits since vector permute instructions operate at
byte level. Another criterion to take into account is the way the input bits are
positioned within bytes. Indeed for vector permute instructions, we want to be
able to extract these input bits easily in order to store them in a contiguous
manner. The ideal instruction to do so would be an SIMD equivalent of Intel
pext which, for each byte, would apply a bitmask and pack the selected bits
(either contiguous or non-contiguous) into contiguous low-order bit positions, as
illustrated in Fig. 4.

Fig. 4. Byte-wise SIMD parallel bit extract instruction. Each cell refers to a bit.

Unfortunately, there is no such instruction on ARM and replicating it in pure
software is non-trivial as it would require many bit manipulations. To avoid such
additional costs, we considered decompositions such that input bits of the inner
S-boxes are always stored contiguously so that they can be extracted using a
single bitmask or bitshift. We naturally started our investigations by looking at
what can be done when applying a 4-bit S-box to each nibble individually. As
highlighted in Fig. 5, it appears that a single output term, namely y6, exclusively
depends on the most significant nibble while two output terms, namely y5 and y3,
exclusively depend on the less significant nibble. It implies that additional inner
S-boxes are necessary to compute the remaining five terms, with their inputs
consisting of output terms from both previous 4-bit S-boxes. Because those S-
box outputs will be stored in two distinct registers, we will inevitably spend some

134 A. Adomnicai et al.

cycles to end up with output terms from both S-boxes in the same register. To
mix up these output bits, we suggest taking advantage of the fact that the output
size of inner S-boxes is up to 8 bits. Therefore, without additional cost, we can do
some bit rearrangement with the next inner S-boxes in mind before merging both
outputs in the same register using a bitwise XOR. This way we can simply extract
the input bits using a single bitmask or bitshift as done previously. Note that a
clever merge of both outputs using a bitwise XOR also allows computing some
logic gates for free. This is typically the case for the XOR required to compute the
output term y2 = ¬(x2∨x1)⊕x6, which means that after the merge, we now have
four (instead of three) output terms among eight: y2, y3, y5, y6 as highlighted in
Fig. 5. As a result, we are not simply interested in pure table decompositions, but
rather in decompositions with potential additional bitwise operations. In order
to investigate what would be the best strategy for the remaining four terms, we
give a more formal definition of the 8-bit S-box in Eq. (1).

S : {0, 1}8 → {0, 1}8

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x7

x6

x5

x4

x3

x2

x1

x0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y7
y6
y5
y4
y3
y2
y1
y0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(x7 ∨ x6 ⊕ x4) ∧ (x3 ∨ x2 ⊕ x0) ⊕ x5

¬(x7 ∨ x6) ⊕ x4

¬(x3 ∨ x2) ⊕ x0

¬((¬(y6 ∨ y5) ⊕ x5) ∨ y6) ⊕ x3

¬(y5 ∨ x3) ⊕ x1

¬(x2 ∨ x1) ⊕ x6

¬(y7 ∨ y2) ⊕ x7

¬(y1 ∨ y3) ⊕ x2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1)

In all logic, the four output terms that require only two inner S-boxes are
defined by the component functions with the lowest algebraic degree. Among
the four remaining terms, y7 and y4 are of degree 4, y1 is of degree 5 and y0 is of
degree 6. Without considering y0, which is the output term of the highest degree,
another single inner S-box with four input bits would be sufficient. Indeed, one
can see that y7, y4 and y1 can be partially computed from y6, y5, y2 and x5

which are all available after the first layer of inner S-boxes (including the merge
step). Note that we would actually need x7 and x3 as well for additional bitwise
XORs, but we assume that they can be included in the computation for free with
a clever merge as detailed above. However, y0 makes things more complicated
as it requires to consider two additional terms: x7 and y3. Therefore, we could
theoretically get the remaining four output terms with a single 6-bit S-box call,
but this option is only worth consideration for the ARMv8-A architecture since
ARMv7-A vtbl and Intel SSSE3 pshufb instructions do not support such sizes.
Instead, we suggest to slightly decompose the last output term as detailed in
Eq. (2) so that each operand of the bitwise XOR can be computed separately
and then merged together. It still requires to consider y3 as additional input,
resulting in a 5-bit S-box.

Fast Skinny-128 SIMD Implementations for Sequential Modes of Operation 135

Fig. 5. The Skinny-128 S-box. Two inner S-boxes with 4-bit input (respectively high-
lighted in red and blue) are sufficient to get four output terms (including XOR when
merging outputs, highlighted in black). (Color figure online)

y0 = ¬(y1 ∨ y3) ⊕ x2

= ¬((¬(y7 ∨ y2) ⊕ x7) ∨ y3) ⊕ x2

= (y7 ∨ y2 ⊕ x7) ∧ ¬y3 ⊕ x2

=
[
(y7 ∨ y2) ∧ ¬y3

] ⊕ [
x7 ∧ ¬y3 ⊕ x2

]
(2)

In order to achieve a version with 4-bit inner S-boxes only, one can use an addi-
tional bitwise AND operation at the cost of latency cycles. Both approaches,
namely D4444 and D4454, are formally defined in Appendixes A and B, respec-
tively. Note that those decompositions are not the only possible ones, and other
similar solutions surely exist. Still, given the restriction on the contiguous storage
of the input bits, we believe that it is not possible to reach less than four inner
S-box calls when limiting the number of input bits to 4 or 5. As shown in Table 3,
our decompositions make the S-box layer faster on all processors, except on the
A72 where they reach the same performance as the fixsliced version. According
to the performance, it seems that one should favor D4454 over D4444. However,
the fact that the 5-bit inner S-box S2 requires an additional 128-bit register
is troublesome on the ARMv7-A architecture. We suggest to keep this register
free on ARMv7-A as it allows to avoid stack usage during the entire Skinny-128
encryption as detailed in Sect. 4.2.

136 A. Adomnicai et al.

Table 3. Performance comparison of various software implementations of the Skinny-
128 S-box.

Implementation Ref
Speed (clock cycles)

A7 A53 A72

Fixsliced [2] 40 32 33

Byte-wise [31] 169 62 70

ARMv7-A NEON [14] 163 - -

ARMv8-A tbl/tbx split [11] - 26 64

D4444 Ours 34 14 33

D4454 Ours 30 13 33

4 Other Optimizations

4.1 Linear Layer

The linear layer consists of the ShiftRows followed by the MixColumns. The
main complication with our representation, i.e. the 128-bit internal state stored
row-wise in a 128-bit register, is that XORs within the MixColumns are per-
formed row-wise. In order to avoid additional bitmasks and bitshifts to add the
corresponding rows together, our implementations take again advantage of vec-
tor permute instructions by expressing the MixColumns as the XOR of three
operands as detailed in Eq. (3).

MixColumns

⎛

⎜
⎜
⎝

r0
r1
r2
r3

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

r0 ⊕ r2 ⊕ r3
r0

r1 ⊕ r2
r0 ⊕ r2

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

r3
r0
r1
r2

⎞

⎟
⎟
⎠ ⊕

⎛

⎜
⎜
⎝

r2
0
r2
r0

⎞

⎟
⎟
⎠ ⊕

⎛

⎜
⎜
⎝

r0
0
0
0

⎞

⎟
⎟
⎠ (3)

Since the operands are just different rows reordering of the internal state,
they can be easily computed using a table lookup instruction. We also include
the ShiftRows calculation within those instructions as it comes at no cost. Note
that because the third operand only consists of the first row, whose bytes are not
shifted by the ShiftRows, we simply perform a bitwise AND instead of a table
lookup instruction. Therefore, the entire linear layer can be computed using 2
128-bit wide vector permute instructions, 1 bitwise AND, and 2 XORs. This
translates to 6 and 5 instructions on ARMv7-A and ARMv8-A architectures,
respectively.

Fast Skinny-128 SIMD Implementations for Sequential Modes of Operation 137

4.2 Tweakey Schedule

When it comes to the tweakey expansion, two options are left to the implementer:
precalculation versus on-the-fly computation. It usually refers to a time-memory
trade-off as on-the-fly computations allow to reduce memory usage at the cost of
additional operations, and vice-versa. In our case, we decided to consider both
approaches depending on the target platform. For instance, as highlighted in
Table 3, our implementations suffer from many stall cycles on the A7 and A72
processors due to the latency of vector permute instructions on those platforms.
Therefore, we suggest to take advantage of these stall cycles in order to compute
the round tweakeys on-the-fly, in the background. We naturally implement the
byte permutation using vector permute instructions while using bitwise opera-
tions for the LFSRs. On the ARMv8-A architecture, we compute double updates
at once as illustrated in Fig. 6 so that we can divide by a factor of two the number
of instructions. Thanks to the large number of registers available in the NEON
SIMD unit, we can fit all the working variables in the NEON bank register with-
out additional usage of the stack, even for Skinny-128-384 which requires three
128-bit tweakey states. This is what motivates us to use the D4444 decomposi-
tion on ARMv7-A since it requires two fewer 64-bit registers than D4454 (which
would imply additional loads/stores on the stack).

Fig. 6. Tweakey state double update

5 Implementation Results

5.1 ARM NEON

Table 4 reports benchmark results on the selected ARM NEON processors for
Skinny-128-384+ and Romulus using the SUPERCOP benchmarking suite [9].
Skinny-128-384+ is a round-reduced version of Skinny-128-384 (decreased from
56 to 40) used in Romulus in order to enhance the performance while pre-
serving a high security margin5. The latest specification of Romulus includes
a nonce-based AE (Romulus-N), a nonce-misuse-resistant AE [26] (Romulus-M),

5 https://groups.google.com/a/list.nist.gov/g/lwc-forum/c/5 mqi9irD0U.

https://groups.google.com/a/list.nist.gov/g/lwc-forum/c/5_mqi9irD0U

138 A. Adomnicai et al.

a leakage-resilient AE (Romulus-T) based on TEDT [10], and a hash function
(Romulus-H) based on MDPH [24]. We implemented and benchmarked all these
members in order to compare our work with the fixsliced approach, which defines
the most efficient software implementation available on this platform as high-
lighted in Sect. 2. For the sake of completeness, we considered both alternatives
with precalculated and on-the-fly calculated round tweakeys. On top of running
faster, a clear advantage of our NEON implementations over previous work is
the RAM usage, which is smaller by a factor of 4 when computing the tweakey
schedule on the fly. As expected, taking advantage of stall cycles on the A7 and
A72 to compute the tweakey schedule in the background allows to reach the
best performance on those platforms. Still, precomputing the round tweakeys is
the most efficient approach on the A53. This is not only because there are fewer
cycles latency for vector permute instructions on this platform: in each variant
of Romulus, the tweakey is only differing from a byte or so across many calls
to Skinny-128-384+ (see the Romulus specification for more details [19]). There-
fore, it is possible to run some precalculations since the tweakeys TK2 and TK3
remain fixed. In the end, the improvement factor of our NEON implementations
over fixslicing differs significantly depending on the processor. For Skinny-128-
384+ (including the tweakey schedule) and Romulus, it is roughly 1.5, 2, and 3.5
on the A72, A7, and A53, respectively.

5.2 Intel Streaming SIMD Extensions

We also ported our implementations on Intel using Supplemental Streaming
SIMD Extensions 3 (SSSE3) intrinsics. To do so, we naturally opted for the D4444

decomposition since the vector permute instruction pshufb operates on 16-byte
vectors only. In order to save 1 instruction per S-box call, we simply reordered
the output bits of S0 and S1 so that we can extract y3 using a single bitmask
instead of a shift (there is no mm srli epi8 so we would need mm srli epi16
followed by mm and si128 to discard the bits from adjacent bytes). Because
there are no high latency issues related to pshufb and because the amount of
RAM usage is relatively small for such platforms, we only considered the variant
with precalculation of the round tweakeys in order to reach the best perfor-
mance. As reported in Table 5, the improvement in terms of performance ranges
between 4 and 5 on Whiskey Lake and Comet Lake microarchitectures. Note that
the advanced vector extension AVX2 should not lead to significant enhance-
ments since its vpshufb instruction operates within 128-bit lanes. The only

Fast Skinny-128 SIMD Implementations for Sequential Modes of Operation 139

Table 4. Benchmark on ARM Cortex-A processors. Results are given when processing
4096 bytes for Romulus (2048-byte additional data and 2048-byte message) and a single
block (i.e. 16 bytes) for Skinny-128-384+. The function ‘encryption only’ takes as input
the round tweakeys fully precomputed while ‘encryption + tweakey schedule’ simply
requires the 48-byte tweakey.

Algorithm Implementation
Speed (cycles/byte) RAM

A7 A53 A72 (bytes)

Skinny-128-384+

Fixsliced [2] 254 129 123 -
encryption only

Ours 127 57 111 -

Fixsliced [2] 431 321 201 736

Ours (precalculate) 177 84 148 368encryption + tweakey schedule

Ours (on-the-fly) 143 85 112 16

Romulus

Fixsliced [2] 239 165 137 1 088

Ours (precalculate) 112 48 94 544
Romulus-N

nonce-based AEAD
Ours (on-the-fly) 110 64 85 240

Fixsliced [2] 337 245 199 1 136

Ours (precalculate) 153 69 130 640
Romulus-M

nonce misuse-resistant AEAD
Ours (on-the-fly) 144 83 113 272

Fixsliced [2] 705 551 387 1 136

Ours (precalculate) 321 145 273 640
Romulus-T

leakage-resilient AEAD
Ours (on-the-fly) 289 158 226 272

Fixsliced [2] 318 227 187 1 104

Ours (precalculate) 161 71 138 544
Romulus-H

hash function
Ours (on-the-fly) 150 85 116 224

advantage is to either (1) process two blocks in parallel (which is only of interest
for Romulus-H that rely on the MDPH mode) or (2) to use a sparse representa-
tion by storing bytes within 16-bit words in order to use a single mm srli epi16
instruction when extracting topmost nibbles for the S-box decomposition. Still,
the vpshufb instruction in AVX512 allows to handle permutations across entire
512-bit registers, making possible to implement the D4454 decomposition on Intel
as well.

140 A. Adomnicai et al.

Table 5. Benchmark on Intel processors. Results are given when processing 4096 bytes
for Romulus (2048-byte additional data and 2048-byte message) and a single block (i.e.
16 bytes) for Skinny-128-384+. The function ‘encryption only’ takes as input the round
tweakeys fully precomputed while ‘encryption + tweakey schedule’ simply requires the
48-byte tweakey. Benchmarks were run by carefully disabling the TurboBoost technol-
ogy.

Algorithm Implementation

Speed (cycles/byte)

i5-8365U i7-10510U

(Whiskey Lake) (Comet Lake)

Skinny-128-384+

Fixsliced [2] 150 165
encryption only

Ours 44 47

Fixsliced [2] 282 305
encryption + tweakey schedule

Ours 58 62

Romulus

Fixsliced [2] 161 175Romulus-N
nonce-based AEAD Ours 37 40

Fixsliced [2] 234 252Romulus-M
nonce misuse-resistant AEAD Ours 51 55

Fixsliced [2] 453 491Romulus-T
leakage-resilient AEAD Ours 109 118

Fixsliced [2] 220 238Romulus-H
hash function Ours 54 58

6 Conclusion and Future Work

We introduced SIMD implementations of Skinny-128 whose performance out-
perform previous work by up to a factor of 4 on various platforms. The main
optimization consists in decomposing the 8-bit S-box in smaller S-boxes with
4/5-bit inputs in order to take advantage of vector permute instructions. It is
very likely that other S-boxes in the literature may benefit from a similar imple-
mentation technique, and developing a generic tool that would list the relevant
decompositions regarding vector permute instructions could be useful for other
designs. More generally, we believe that the design of large S-boxes with effi-
cient decompositions could provide attractive trade-offs between security and
performance on SIMD platforms. Our work also highlights that performance
can greatly vary from a microarchitecture to another, due to possible design dis-
crepancies regarding vector permute instructions. Finally, we did not discuss the
integration of countermeasures against power side-channel attacks but studying
the relevance of lookup table masking schemes combined with vector permute
instructions might be an interesting direction for future research.

Fast Skinny-128 SIMD Implementations for Sequential Modes of Operation 141

Acknowledgements. We are grateful to Thomas Peyrin as well as the anonymous
reviewers for their comments that improved the quality of this article.

Appendix

This appendix formally defines the S-box decompositions D4444 and D4454 intro-
duced in Sect. 3.

A D4444 Decomposition

S0

⎛
⎜⎜⎝

x7

x6

x5

x4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
x7

x5

¬(x7 ∨ x6) ⊕ x4

0
x6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

S1

⎛
⎜⎜⎝

x3

x2

x1

x0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

¬(
(¬(x3 ∨ x2) ⊕ x0) ∨ x3

) ⊕ x1

x3

x2

0
0
0

¬(x3 ∨ x2) ⊕ x0

¬(x2 ∨ x1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

S2

⎛
⎜⎜⎝

x7

x6

x5

x4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
x6

x7

0
x4

(x7 ∨ ¬x4) ⊕ x5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

S3

⎛
⎜⎜⎝

x3

x2

x1

x0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

¬(x2 ∨ x1) ⊕ x3

x2

x1

¬(
(¬(x2 ∨ x1) ⊕ x3) ∨ x2

)
0
x0

¬(
(¬(x2 ∨ x1) ⊕ x3) ∨ x0

)
¬(

(¬(x2 ∨ x1) ⊕ x3) ∨ x0

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

S0

⎛
⎜⎜⎝

x7

x6

x5

x4

⎞
⎟⎟⎠ ⊕ S1

⎛
⎜⎜⎝

x3

x2

x1

x0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y3
x3

x2

x7

x5

y6
y5
y2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

S2

⎛
⎜⎜⎝

y3
x3

x2

x7

⎞
⎟⎟⎠ ⊕ S3

⎛
⎜⎜⎝

x5

y6
y5
y2

⎞
⎟⎟⎠ ∨

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
0
y3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y7
y6
y5
y4
y3
y2
y1
y0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

142 A. Adomnicai et al.

B D4454 Decomposition

S0

⎛
⎜⎜⎝

x7

x6

x5

x4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x5

¬(x7 ∨ x6) ⊕ x4

0
x6

0
0
0
x7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

S1

⎛
⎜⎜⎝

x3

x2

x1

x0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0

¬(x3 ∨ x2) ⊕ x0

¬(x2 ∨ x1)
¬(

(¬(x3 ∨ x2) ⊕ x0) ∨ x3

) ⊕ x1

x3

x2

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

S2

⎛
⎜⎜⎜⎜⎝

x7

x6

x5

x4

x3

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

¬(x6 ∨ x5) ⊕ x7

x6

x5

¬(
(¬(x6 ∨ x5) ⊕ x7) ∨ x6

)
0
x4

¬(
(¬(x6 ∨ x5) ⊕ x7) ∨ x4

)
¬(

(¬(x6 ∨ x5) ⊕ x7) ∨ x4

) ∨ x3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

S3

⎛
⎜⎜⎝

x3

x2

x1

x0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
x2

x3

0
x0

(x3 ∨ ¬x0) ⊕ x1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

S0

⎛
⎜⎜⎝

x7

x6

x5

x4

⎞
⎟⎟⎠ ⊕ S1

⎛
⎜⎜⎝

x3

x2

x1

x0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x5

y6
y5
y2
y3
x3

x2

x7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

S2

⎛
⎜⎜⎜⎜⎝

x5

y6
y5
y2
y3

⎞
⎟⎟⎟⎟⎠

⊕ S3

⎛
⎜⎜⎝

y3
x3

x2

x7

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y7
y6
y5
y4
y3
y2
y1
y0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

References

1. Adomnicai, A., Najm, Z., Peyrin, T.: Fixslicing: a new GIFT representation fast
constant-time implementations of GIFT and GIFT-COFB on ARM cortex-m.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020(3), 402–427 (2020)

2. Adomnicai, A., Peyrin, T.: Fixslicing AES-like ciphers: new bitsliced AES speed
records on ARM-Cortex M and RISC-V. IACR Trans. Cryptogr. Hardw. Embed.
Syst. 2021(1), 402–425 (2020). https://tches.iacr.org/index.php/TCHES/article/
view/8739

3. Andreeva, E., Lallemand, V., Purnal, A., Reyhanitabar, R., Roy, A., Vizár, D.:
ForkAE v.1. Submission to the NIST Lightweight Cryptography Project (2019)

4. Aufranc, J.L.: How ARM Nerfed NEON Permute Instructions in ARMv8 (2017).
https://www.cnx-software.com/2017/08/07/how-arm-nerfed-neon-permute-
instructions-in-armv8. Accessed 25 Nov 2021

5. Banik, S., et al.: WARP: revisiting GFN for lightweight 128-bit block cipher. In:
Dunkelman, O., Jacobson, Jr., M.J., O’Flynn, C. (eds.) SAC 2020. LNCS, vol.
12804, pp. 535–564. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
81652-0 21

https://tches.iacr.org/index.php/TCHES/article/view/8739
https://tches.iacr.org/index.php/TCHES/article/view/8739
https://www.cnx-software.com/2017/08/07/how-arm-nerfed-neon-permute-instructions-in-armv8
https://www.cnx-software.com/2017/08/07/how-arm-nerfed-neon-permute-instructions-in-armv8
https://doi.org/10.1007/978-3-030-81652-0_21
https://doi.org/10.1007/978-3-030-81652-0_21

Fast Skinny-128 SIMD Implementations for Sequential Modes of Operation 143

6. Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Yu., Sim, S.M., Todo, Y.: GIFT: a
small present - towards reaching the limit of lightweight encryption. In: Fischer,
W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 321–345. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66787-4 16

7. Beierle, C., et al.: The SKINNY family of block ciphers and its low-latency variant
MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp.
123–153. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-
5 5

8. Benadjila, R., Guo, J., Lomné, V., Peyrin, T.: Implementing lightweight block
ciphers on x86 architectures. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC
2013. LNCS, vol. 8282, pp. 324–351. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-43414-7 17

9. Bernstein, D.J., Lange, T.: eBACS: ECRYPT Benchmarking of Cryptographic
Systems. https://bench.cr.yp.to. Accessed 25 Feb 2022

10. Berti, F., Guo, C., Pereira, O., Peters, T., Standaert, F.: TEDT, a leakage-
resist AEAD mode for high physical security applications. IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2020(1), 256–320 (2020)

11. Biesheuvel, A.: Accelerated AES for the Arm64 Linux kernel (2017). https://www.
linaro.org/blog/accelerated-aes-for-the-arm64-linux-kernel/. Accessed 25 Oct
2021

12. Caforio, A., Collins, D., Glamocanin, O., Banik, S.: Improving First-Order Thresh-
old Implementations of SKINNY. Cryptology ePrint Archive, Report 2021/1425
(2021). https://ia.cr/2021/1425

13. Chakraborti, A., Iwata, T., Minematsu, K., Nandi, M.: Blockcipher-based authen-
ticated encryption: how small can we go? In: Fischer, W., Homma, N. (eds.) CHES
2017. LNCS, vol. 10529, pp. 277–298. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-66787-4 14

14. Deprez, A., Andreeva, E., Mera, J.M.B., Karmakar, A., Purnal, A.: Optimized soft-
ware implementations for the lightweight encryption scheme ForkAE. In: Liardet,
P.-Y., Mentens, N. (eds.) CARDIS 2020. LNCS, vol. 12609, pp. 68–83. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-68487-7 5

15. Fujii, H., Rodrigues, F.C., López, J.: Fast AES implementation using ARMv8
ASIMD without cryptography extension. In: Seo, J.H. (ed.) ICISC 2019. LNCS,
vol. 11975, pp. 84–101. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
40921-0 5

16. Grosso, V., Leurent, G., Standaert, F.-X., Varıcı, K.: LS-designs: bitslice encryption
for efficient masked software implementations. In: Cid, C., Rechberger, C. (eds.)
FSE 2014. LNCS, vol. 8540, pp. 18–37. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-46706-0 2. https://hal.inria.fr/hal-01093491/document

17. Grosso, V., Varici, A.K., Gaspar, L.: Scream - side-channel resistant authenticated
encryption with masking (2015). https://competitions.cr.yp.to/round2/screamv3.
pdf

18. Hamburg, M.: Accelerating AES with vector permute instructions. In: Clavier,
C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 18–32. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-04138-9 2

19. Iwata, T., Khairallah, M., Minematsu, K., Peyrin, T.: Duel of the titans: the romu-
lus and remus families of lightweight AEAD algorithms. IACR Trans. Symmetric
Cryptol. 2020(1), 43–120 (2020). https://tosc.iacr.org/index.php/ToSC/article/
view/8560

20. Jean, J.: TikZ for Cryptographers (2016). https://www.iacr.org/authors/tikz/

https://doi.org/10.1007/978-3-319-66787-4_16
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-43414-7_17
https://doi.org/10.1007/978-3-662-43414-7_17
https://bench.cr.yp.to
https://www.linaro.org/blog/accelerated-aes-for-the-arm64-linux-kernel/
https://www.linaro.org/blog/accelerated-aes-for-the-arm64-linux-kernel/
https://ia.cr/2021/1425
https://doi.org/10.1007/978-3-319-66787-4_14
https://doi.org/10.1007/978-3-319-66787-4_14
https://doi.org/10.1007/978-3-030-68487-7_5
https://doi.org/10.1007/978-3-030-40921-0_5
https://doi.org/10.1007/978-3-030-40921-0_5
https://doi.org/10.1007/978-3-662-46706-0_2
https://doi.org/10.1007/978-3-662-46706-0_2
https://hal.inria.fr/hal-01093491/document
https://competitions.cr.yp.to/round2/screamv3.pdf
https://competitions.cr.yp.to/round2/screamv3.pdf
https://doi.org/10.1007/978-3-642-04138-9_2
https://tosc.iacr.org/index.php/ToSC/article/view/8560
https://tosc.iacr.org/index.php/ToSC/article/view/8560
https://www.iacr.org/authors/tikz/

144 A. Adomnicai et al.

21. Jean, J., Nikolic, I., Peyrin, T.: Tweaks and keys for block ciphers: the TWEAKEY
framework. In: ASIACRYPT (2014)

22. Mauro, A.D., Fatemi, H., de Gyvez, J.P., Benini, L.: Idleness-aware dynamic power
mode selection on the i.MX 7ULP IoT edge processor. J. Low Power Electron. Appl.
10(2), 19 (2020), https://www.mdpi.com/2079-9268/10/2/19

23. McKay, K., Bassham, L., Turan, M.S., Mouha, N.: Report on Lightweight Cryp-
tography (2017). https://tsapps.nist.gov/publication/get pdf.cfm?pub id=922743

24. Naito, Y.: Optimally indifferentiable double-block-length hashing without post-
processing and with support for longer key than single block. In: Schwabe, P.,
Thériault, N. (eds.) LATINCRYPT 2019. LNCS, vol. 11774, pp. 65–85. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-30530-7 4

25. Perrin, L.: Partitions in the S-Box of Streebog and Kuznyechik. IACR Trans. Sym-
metric Cryptol. 2019(1), 302–329 (2019). https://tosc.iacr.org/index.php/ToSC/
article/view/7405

26. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390.
Springer, Heidelberg (2006). https://doi.org/10.1007/11761679 23

27. Ronen, E., Shamir, A., Weingarten, A.O., O’Flynn, C.: IoT goes nuclear: creating
a ZigBee chain reaction. In: 2017 IEEE Symposium on Security and Privacy (SP),
pp. 195–212 (2017)

28. Rullgard, M.: Cortex-A7 instruction cycle timings (2014). https://hardwarebug.
org/2014/05/15/cortex-a7-instruction-cycle-timings. Accessed 25 Oct 2021

29. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-bit blockci-
pher CLEFIA (extended abstract). In: Biryukov, A. (ed.) FSE 2007. LNCS, vol.
4593, pp. 181–195. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-74619-5 12

30. S.L.M, P., Rijmen, V.: The Whirlpool Hashing Function (2003)
31. Weatherley, R.: SKINNY tweakable block cipher (2017). https://github.com/

rweather/skinny-c

https://www.mdpi.com/2079-9268/10/2/19
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=922743
https://doi.org/10.1007/978-3-030-30530-7_4
https://tosc.iacr.org/index.php/ToSC/article/view/7405
https://tosc.iacr.org/index.php/ToSC/article/view/7405
https://doi.org/10.1007/11761679_23
https://hardwarebug.org/2014/05/15/cortex-a7-instruction-cycle-timings
https://hardwarebug.org/2014/05/15/cortex-a7-instruction-cycle-timings
https://doi.org/10.1007/978-3-540-74619-5_12
https://doi.org/10.1007/978-3-540-74619-5_12
https://github.com/rweather/skinny-c
https://github.com/rweather/skinny-c

Public-Key Cryptanalysis

Handle the Traces: Revisiting the Attack
on ECDSA with EHNP

Jinzheng Cao1 , Yanbin Pan2, Qingfeng Cheng1(B) , and Xinghua Li3

1 Strategic Support Force Information Engineering University,
Zhengzhou 450001, China
qingfengc2008@sina.com

2 Key Laboratory of Mathematics Mechanization, Academy of Mathematics
and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

3 Xidian University, Xi’an 710071, China

Abstract. The Elliptic Curves Digital Signature Algorithm (ECDSA)
is a standard public key signature protocol. It has become essential to the
security of blockchain, digital currency, and many more Internet appli-
cations. Currently, it is still one of the most popular algorithms used
for digital signing and SSL/TLS transport. Among the possible attacks
on ECDSA, side-channel attack poses a serious threat against hardware
and software implementations. In particular, Extended Hidden Number
Problem can be used when ECDSA leaks side-channel information about
the double-and-add chains. The problem is then converted to the short-
est vector problem and solved with lattice algorithms. In this paper, we
analyze the Extended Hidden Number Problem and present an improved
EHNP lattice attack on ECDSA implementations that adopt leaky scalar
multiplication. Our attack requires information of double-and-add chains
or traces extracted from side-channel results. In addition to methods such
as elimination and merging that have been introduced, we make further
improvements according to the specific structure of the lattice basis. In
fact, the specific property of EHNP allows us to find a sublattice that
contains the target vector. We simulate the attack to the secp256k1,
and the result shows that three signatures are enough to lead to a success
rate greater than 0.8. When 4 or 5 traces are known, the success rate is
close to 1. The new algorithm significantly improves the performance of
attacks using EHNP methods.

Keywords: ECDSA · Side-channel attack · Lattice · Extended hidden
number problem

1 Introduction

The Elliptic Curves Digital Signature Algorithm (ECDSA) algorithm is essen-
tial to many practical cryptographic protocols, such as TLS and SSH, and is
a necessary part of the security of IoT communication, blockchain, and crypto
currencies. However, to protect privacy and unforgeability, the signatures should
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
K. Nguyen et al. (Eds.): ACISP 2022, LNCS 13494, pp. 147–167, 2022.
https://doi.org/10.1007/978-3-031-22301-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22301-3_8&domain=pdf
http://orcid.org/0000-0001-9168-2438
http://orcid.org/0000-0001-6149-4807
https://doi.org/10.1007/978-3-031-22301-3_8

148 J. Cao et al.

be carefully generated. The security of ECDSA is based on the computational
intractability of the elliptic curve discrete logarithm problem (ECDLP). The sig-
nature requires a point P on a certain elliptic curve to be multiplied by a scalar
nonce k. To accelerate the time-consuming procedure of scalar multiplication,
the windowed Non-Adjacent Form (wNAF) is introduced as the representation
of the nonce k. This method involves fewer executions of scalar multiplication
compared with binary representation, thus improving the efficiency [12]. The
wNAF representation is implemented in Bitcoin, Cryptlib, Apple’s Common-
Crypto, and more than one branch of OpenSSL. This multiplication method,
however, makes the signature vulnerable to side-channel attacks.

Initiated by Kocher et al. [16], the side-channel attack has recently become
a useful approach to analyzing possible vulnerabilities of implementations of
ECDSA. Side-channel attacks have been mounted against numerous schemes
[6,17] and pose a serious threat to the security of Internet protocols and mobile
devices. Among the vulnerable protocols, ECDSA is one of the essential signature
schemes [14]. Currently, constant-time and constant-memory implementations
can avoid some side-channel attacks, but wNAF is still relevant, especially in
some old versions of libraries that are not updated in time. Genkin et al. were
able to extract traces from Android and iOS devices via physical side-channels
[11]. A recent survey [15] shows that wNAF is still implemented in SunEC, Intel
PP Crypto, Crypto++ libraries. Different types of side information determine
what method should be chosen to recover the secret. If the most significant bits
of nonce are known, recovering the key can be reduced to the Hidden Number
Problem (HNP) [4] using the method proposed by Nguyen and Shparlinski [19].
Dall et al. [7] considered errors in the traces and showed that the HNP attack is
still possible with erroneous information. The attack has been mounted in the
wild on systems such as Bitcoin by Breitner et al. [5]. With biased nonces, the
attackers are able to compute hundreds of Bitcoin private keys.

An alternative side-channel detection, Flush+Reload [25,26], was pro-
posed by Yarom and Falkner as a cache side-channel attack that enables the
attacker to observe the scalar multiplication process of ECDSA. The attack
extracts the sequence of double-and-add (referred to as DA chain or trace) in
the execution of scalar multiplication. Van de Pol et al. [21] derived an effec-
tive way of extracting information from 13 traces, but still used the HNP to
recover the key. This method omitted much of the side information. To make
the full use of the traces, new tools are required. Such a lattice-based attack on
ECDSA was proposed by Fan, Wang, and Cheng [10]. Their attack relies on the
positions of non-zero coefficients in the wNAF or other presentations. Based on
the information, an instance of the Extended Hidden Number Problem (EHNP)
can be constructed. The authors solved the EHNP instances by lattice reduction
algorithm and successfully recovered the key with four traces. This attack was
optimized by De Micheli et al. [8], who introduced preselecting of data to make
sure traces of smaller weight are taken as input to construct a lattice basis. With
optimized parameters, they improved the probability of success of key recovery

Handle the Traces: Revisiting the Attack on ECDSA with EHNP 149

and reduced the time cost. The authors successfully recovered a key from three
traces but with very low probability.

Our Contributions: In this paper, we try to analyze the factors that affect the
success probability of the EHNP attack on ECDSA. The result of our work is
an improved algorithm for recovering the key from the EHNP lattice. We also
experimentally demonstrate the performance of our algorithms in the context of
ECDSA signatures with wNAF information about nonces. Our work improves
on previous research in multiple ways.

– Analysis: In order to estimate the success condition, we analyze the structure
of the EHNP lattice and propose a new observation of the target vector. For
example, a new estimation on the norm of the target vector is given, based on
probabilities and the average case of the problem. Further, we illustrate that
the target vector can be found in a sublattice of smaller dimension, which
cancels the effect of parameters such as δ and reduces the dimension of the
lattice.

– Algorithm: Based on the observations, we propose a strategy to efficiently
recover the target vector. For example, we restrict the target vector in a
sublattice. Also, it is possible to improve the chance of success by modifying
and selecting the traces used to construct the instance and control the size of
the lattice. An extended attack algorithm is proposed based on our analysis.

We carry out experiments to test the efficiency of our attack compared with
previous algorithms. With up to 5 traces, our attack can reach a success rate
close to 1, significantly higher than previous attacks. With 3 traces, the algo-
rithm allows us to achieve a success probability > 0.5. This is a remarkable
improvement compared with [8] that only achieved a lower probability (0.002).

2 Preliminaries

2.1 ECDSA

Let E be an elliptic curve on finite field Fp, where p is prime. G is a known
point on E of a large prime order q. H is a hash function. The secret key is an
integer 0 < α < q. The public key is the point Q = αG. The main steps to sign
a message m are as follows:

1) Choose nonce 0 < k < q randomly.
2) Compute (x, y) = kG, let r ≡ x mod q; go back to step 1) if r = 0.
3) Compute s = k−1(H(m) + r · α) mod q; if s = 0, then go to step (1).

The pair (r, s) is an ECDSA signature of message m. Given k and public
information (s, r,m), the secret key can be recovered by computing

α = r−1(s · k − H(m)) mod q. (1)

150 J. Cao et al.

2.2 ECDSA Scalar Multiplication and Side-Channel Attack

Definition 1 (windowed Non-Adjacent Form). Consider a window size w,
the windowed Non-Adjacent Form (wNAF) of a scalar k is a sequence of digits
{mi}, where mi ∈ {0,±1,±3, . . . ,±(2w − 1)}. When we denote the non-zero
digits among {mi} as {ki}l

i=1, k can be rewritten as

k =
∑l

j=1 kj2λj ,

where |ki| ≤ 2w − 1, l is the number of non-zero digits kj, and λj the position of
the digit kj in the wNAF representation. Every non-zero digit must be followed by
at least w zeros. In this way, the scalar k is converted to the wNAF, represented
by a sequence of digits.

Algorithm 1: kG using wNAF
Input: wNAF representation for k, m0, m1, . . . , mv, precomputed points

±G, ±3G, . . . , ±(2w − 1)G, window size w
Output: kG
Q = G;
for i = v, v − 1, . . . , 0 do

Q = 2Q;
if mi �= 0 then

Q = Q + miG;
end

end

Algorithm 1 shows the scalar multiplication kG using wNAF. According to
the structure of multiplication, if an attacker is able to detect whether the if-
then block is executed in the for loop, then he can determine whether mi is
zero. The double-and-add chain or trace can be presented as a sequence of “A”
and “D”, where “A” represents an add operation in the if-then block, and “D” a
double operation. We refer to the Hamming weight or number of non-zero digits
of the trace as length. From side-channel information, we can only decide if a
digit is zero or not, yet the exact values of the non-zero digits are not revealed.

2.3 EHNP

The Extended Hidden Number Problem (EHNP) was initially introduced to
study DSA signatures [13]. We will use the problem to attack ECDSA.

Definition 2 (Extended Hidden Number Problem). Let N be a prime,
given u congruences

βix +
li∑

j=1

ai,jki,j ≡ ci mod N, 1 ≤ i ≤ u,

where ki,j and x are unknown. 0 ≤ ki,j ≤ 2εi,j . βi, ai,j , ci, li and known. The
EHNP is to find the hidden number x that satisfies the conditions above.

Handle the Traces: Revisiting the Attack on ECDSA with EHNP 151

The EHNP can be reduced to an approximate SVP instance with suitable
parameters.

2.4 Lattice

We will provide basic concepts about lattices, necessary assumptions, and hard
problems. More details about lattice can be seen in [20].

Definition 3 (Lattice). Let b1,b2, . . . ,bd ∈ R
d be linearly independent vec-

tors. We define the lattice basis as B = [b1,b2, . . . ,bd]. The lattice generated by
B is L(B) = {∑d

i=1 xibi : xi ∈ Z}.
We refer to L as the full lattice compared with the sublattice generated by

the submatrix of full basis B.
For a given basis B, πi are the projections orthogonal to the span

of b1,b2, . . . , bi and the Gram-Schmidt orthogonalization of B is B∗ =
[b∗

1,b
∗
2, . . . ,b

∗
d], where b∗

i = πi(bi). The determinant of L denotes the volume
of the fundamental area, detL = det B = ‖b∗

1‖‖b∗
2‖ . . . ‖b∗

d‖.

Definition 4 (Shortest Vector Problem). Given a basis B of a lattice L,
find a non-zero lattice vector v ∈ L of minimal length λ1 (L) = min0 �=w∈L ‖w‖.

There are a variety of algorithms to solve the SVP, such as enumeration,
sieve and lattice reduction (LLL or BKZ).

Gaussian Heuristic: To describe the quality of the lattice, we use the Gaussian
heuristic [18] to estimate the norm of the shortest vector in the lattice. Let
K ⊂ R

d be a measurable body, then |K ∩ L| ≈ vol(K)/det (L). When applying
the heuristic to a d-dimension ball of volume det (L) we get

λ1 (L) =
Γ
(

d
2 + 1

) 1
d det (L)

1
d

√
π

≈
√

d

2πe
det (L)1/d

.

We denote the heuristic length by gh (L) or GH(L) in short. In a random
lattice L, we assume the shortest vector will have norm GH(L).

3 Framework of EHNP Attack

In this section, we introduce the main point of the EHNP attack against ECDSA
initiated by [10]. With the information obtained from Flush+Reload, one can
set up an EHNP instance to recover the secret key. We produce many ECDSA
signatures (r, s), each one with a different nonce k. We assume that the trace of
every nonce is known to the attacker, but the values of the non-zero coefficients
are unknown. Our goal is to recover α with the traces.

152 J. Cao et al.

3.1 Preparation

In the attack, we assume the entire chain is known after Flush+ Reload or
other attacks. Suppose that there are l different ‘A’s, whose positions are shown
as λi(1 ≤ i ≤ l), then k is rewritten as k =

∑l
i=1 ki2λi , where ki ∈ {±1,±3, . . . ,

±(2w − 1)}. Obviously the i-th non-zero digit ki is odd, so we rewrite it as
ki = 1 + 2 · k′

i, where k′
i ∈ [−2w−1, 2w−1 − 1]. Let di = k′

i + 2w−1 ∈ [0, 2w − 1],
so k can be rewritten as

k =
l∑

i=1

ki2λi =
l∑

i=1

(1 + 2 · k′
i) · 2λi = k +

l∑

i=1

di2λi+1, (2)

where k =
∑l

i=1 2λi − ∑l
i=1 2λi+w. On average, every trace of a 257-bit nonce

k + q has (
log2 q� + 1)/(w + 2) − 1 = 50.4 non-zero digits [10].

3.2 Formulating EHNP

According to the ECDSA algorithm, we have αr − sk + H(m) ≡ 0 mod q. With
information about k and (2), we know that there is a t ∈ Z such that

αr −
l∑

j=1

(2λi+1 · s)dj − (sk − H(m)) + tq = 0, (3)

where 0 < α < q, 0 ≤ dj ≤ 2w − 1 and t are unknown.
With u signatures (ri, si) of message mi(1 ≤ i ≤ u) using one secret key α,

we can build following equations:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

αr1−
l1∑

j=1

(2λ1,j+1 ·s1)d1,j − (s1k1 − H(m1)) + t1q=0,

. . .

αru−
lu∑

j=1

(2λu,j+1 ·su)du,j − (siku − H(mu)) + tuq=0,

(4)

where li denotes the number of non-zero digits of nonce ki, λi,j is the position of
the j-th non-zero digit ki,j . The definition of ki and di,j are discussed as above.
The value of α, di,j and hi are unknown. To reduce the complexity of solving the
EHNP instance, eliminating and merging are introduced.

Merging: The technique of merging minimizes the number of unknown bits in
a trace, reducing the number of non-zero digits of each nonce [8]. The main
operation is to merge consecutive non-zero digits into one. After merging, the
distance of two adjacent non-zero digits is λi+1 − λi ≥ w + 1(1 ≤ i ≤ l − 1).
From literature, we have the following conclusion ([10], Theorem 1):

Handle the Traces: Revisiting the Attack on ECDSA with EHNP 153

Theorem 1. For h ≥ 1, suppose h+1 consecutive digits di, . . . , di+h are merged
as a new digit d′

i. Then we have 0 ≤ d′
i ≤ 2μi − 1, where μi = λi+h − λi + w is

the window size of d′
i.

This result gives the upper bound of the unknown d′. In addition, λi+h −
λi + w = w +

∑h
j=1(λi+j − λi+j−1) ≥ h(w + 1) + w. The equality holds if

and only if λi+j − λi+j−1 = w + 1, 1 ≤ j ≤ h. In this case, we can minimize
the number of unknown bits. We adopt the merging technique from [10], in
which the consecutive non-zero digits whose distance is w + 1 are merged. This
strategy ensures that we can reduce about half the number of non-zero digits
while keeping the number of unknown bits as small as possible.

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

q
. . .

q
τ1,2 · · · τ1,u δ/2μ1,1

...
...

. . .
τl1,2 τl1,u δ/2μ1,l1

σ2,1 δ/2μ2,1

...
. . .

σ2,l2 δ/2μ2,l2

.
σu,1 δ/2μu,1

...
. . .

σu,lu δ/2μu,lu

γ2 · · · γu δ/2 · · · δ/2 δ/2 · · · δ/2 · · · δ/2 · · · δ/2 δ/2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
[
qIu−1 0

A δB

]

(5)

Eliminating α: One straightforward improvement is to eliminate α from the
equations, thus reducing the dimension by 1 [10]. We denote the i-th equation
in (4) as Ei. To eliminate α, we compute r1Ei − riE1 for 1 < i ≤ u. As a result,
we have the following equations:

l1∑

j=1

(2
λ1,j+1

s1ri)︸ ︷︷ ︸
τj,i

d1,j +

li∑

j=1

(−2
λi,j+1

sir1)
︸ ︷︷ ︸

σi,j

di,j − [r1(siki − H(mi)) − ri(s1k1 − H(m1))]
︸ ︷︷ ︸

γi

+tiq = 0,

where 0 ≤ d1,j , di,j ≤ 2μi,j − 1 and ti are unknown.

154 J. Cao et al.

3.3 Lattice Basis

With the information extracted from traces, we can construct a lattice L spanned
by the basis M to solve the EHNP instance. The basis matrix is shown in (5).
In fact, let T =

∑u
i=1 li, then M is a (T + u) × (T + u) matrix. The row vectors

in M form a basis of a lattice L(M) of dimension d = T + u, and there exists a
vector

z = [t2, . . . , tu, d1,1, . . . , d1,l1 , . . . , du,1, . . . , du,lu ,−1] · M

= (0, . . . , 0,
d1,1

2μ1,1
δ − δ

2
, . . . ,

d1,l1

2μ1,l1
δ − δ

2
, . . . ,

du,1

2μu,1
δ

− δ

2
, . . . ,

du,lu

2μu,lu
δ − δ

2
,−δ

2
) ∈ L.

The determinant of L is vol(L) = qu−1δT+1/2U+1, U =
∑u

i=1

∑lu
j=1 μi,j . The

vector z has norm ‖z‖ ≤ δ
2

√
T + 1. When a small δ is chosen, x will be short

enough to be found by lattice reduction algorithms. In this work, the choice of
δ follows the instructions of [10] and [8]. After finding the vector, k and α can
be recovered by (4).

4 New Analysis of ECDSA-EHNP

Section 3 introduces the general idea of EHNP attack of ECDSA with wNAF
information. However, previous works leave several problems unsolved. For exam-
ple, the relatively loose upper bound for ‖z‖, the lack of analysis of the EHNP-
lattice basis, and most importantly, whether the target vector is short enough to
be found by LLL or BKZ. In this section, we try to shed light on the structure
of the basis and provide possible strategies to improve the attack.

4.1 New Estimation for ‖z‖
Estimating the norm of target vector z helps the attacker evaluate the suc-
cess condition and optimize the parameters. Generally, a shorter vector is easier
to find with SVP algorithms. Prior work used an upper bound for ‖z‖ as the
estimated norm [8,10]. In many practical cases, however, the target vector is
shorter. When instances are randomly sampled, we can use the expected norm
of a uniformly oriented vector instead of the loose upper bound for the target.
The length of the target vector z can be estimated with the expected value of
its norm [3].

E(‖z‖2) = E

⎡

⎣
∑

1≤i≤u, 1≤j≤lu

(
di,j

2μi,j
δ − δ

2

)2

+
(

δ

2

)2
⎤

⎦

= δ2 · T · E
[(

di,j

2μi,j
− 1

2

)2
]

+
δ2

4
.

Handle the Traces: Revisiting the Attack on ECDSA with EHNP 155

Assuming di,j is distributed uniformly in [0, 2μi,j − 1], we have

E

[(
di,j − 2μi,j−1

)2]
=

1
2μi,j

2μi,j −1∑

k=0

(
k − 2μi,j−1

)2
=

22μi,j

12
+

1
6
,

E

[(
di,j

2μi,j
− 1

2

)2
]

=
1

22μi,j
E

[(
di,j − 2μi,j−1

)2]
=

1
12

+
1

6 · 22μi,j
,

and

E(‖z‖2) = E

⎡

⎣
∑

1≤i≤u, 1≤j≤lu

(
di,j

2μi,j
δ − δ

2

)2

+
(

δ

2

)2
⎤

⎦

≈ δ2
(

T

12
+

1
4

)

.

In fact, we have μi,j ≥ 3 after merging, so

E(‖z‖2) ≤ δ2
(

T

12
+

1
4

+
T

6 · 26

)

= δ2
(

3T

32
+

1
4

)

<
δ2

8
(T + 1) (when T > 16).

The new expected norm is shorter than the upper bound ‖z‖ ≤ δ
√

T + 1/2.
Therefore, some problems previously seen as difficult can possibly be solved.
Taking a larger block size for BKZ or calling SVP solvers can help find the short
vector z.

4.2 Sublattice Analysis

Previous attacks tend to use Gaussian heuristic to estimate parameters such as
δ. However, the lattice basis M contains special structures, which allow extended
analysis of the EHNP instance generated from ECDSA. We divide M into blocks
as shown in (5), where A ∈ Z

(T+1)×(u−1), B ∈ Z
(T+1)×(T+1). The analysis of

sublattices allows us to find more specific structures. The target vector z can be
rewritten as z = [t,d] · M = [0u−1,b], where t ∈ Z

u−1,d ∈ Z
T+1,b ∈ Z

T+1.
From the equation, we have

0u−1 = t · qIu−1 + d · A,

b = d · B.
(6)

Therefore, the target vector can be described with additional conditions,
which lead to a smaller space. Here we introduce the definition of sublattice,
which contains the target b.

156 J. Cao et al.

Definition 5. For a (T +u)×(T +u)-EHNP basis M =
[

qIu−1 0
A δB

]

as defined

in 5, the sublattice of M is L′ = Lsub(M) = {d · δB ∈ L(δB) : d · A = 0u−1

(mod q)}.
The target vector b is a short vector in the sublattice L′ = {d · δB ∈ L(δB) :

d ·A = 0u−1 (mod q)}. An interesting finding is that z must have consecutively
u − 1 zeros at the left end. Therefore, vectors with non-zero elements at the left
will not contribute to the target.

Theorem 2. At least u − 1 vectors in the basis of L are independent to the
target vector z = [0u−1,b].

Proof. To solve the equation d · A = 0u−1 (mod q) is equivalent to solving

t · qIu−1 + d · A = 0u−1,

where t and d are integer vectors. So vector [t,d] is in the left kernel of block[
qIu−1

A

]

∈ Z
(T+u)×(u−1). The kernel of the block has rank T + 1. Therefore,

there exist u − 1 independent vectors b′ such that d′ · A = 0u−1 (mod q).

In fact, we can compute the shape of the u−1 irrelevant vectors. Recall that
q is a prime number, so gcd(q, τi,j) = gcd(q, σi′,j′) = 1. Thus, after some linear
combination, there is a vector with a 1 element in the first u − 1 positions.

ci = [0, . . . , 1, 0, . . .
︸ ︷︷ ︸

u−1

, c′
i︸︷︷︸

T+1

].

Take c1 (corresponding to the first column of M) as an example. There exist
integers m, g1, . . . , gl1 , h1, . . . , hl2 such that mq +

∑l1
i=1 giτi,2 +

∑l2
i=1 hiσ2,i =

gcd(q, τ1,2, . . . , σ2,1, . . .). It is obvious that gcd(q, τ1,2, . . . , σ2,1, . . .) = 1 (for q is
prime). Therefore, there is a lattice vector

c1 = [m, 0, . . . , 0, g1, . . . , gl1 , h1, . . . , hl2 , 0, . . .] · M

=[1, 0, . . . , 0,
δg1
2μ1,1

, . . . ,
δgl1

2μ1,l1
,

δh1

2μ2,1
, . . . ,

δhl2

2μ2,l2
, 0, . . .].

This vector is independent to target vector, which has the form (0, . . . , 0, ∗, ∗, . . .).
Our aim is to construct the basis of sublattice L′ that doesn’t contain ci. The
target in the sublattice is b. Further, we show that the different δ parameters
proposed in [13] actually lead to isomorphic sublattices.

Theorem 3. For two basis Mδ1 ,Mδ2 generated by the same EHNP instance and
two δ values δ1, δ2, they contain sublattices Lsub(Mδ1) and Lsub(Mδ2) which
are isomorphic.

Handle the Traces: Revisiting the Attack on ECDSA with EHNP 157

Proof. We first give the basis of Lsub(Mδ1) and Lsub(Mδ2). From the definition

of M , Mδ1 and Mδ2 share the same left block
[

qIu−1

A

]

. As a q-ary matrix, the

block has the Hermite Normal Form Iu−1. Therefore, there is a unimodular

matrix R such that R

[
qIu−1

A

]

=
[

Iu−1

0

]

. Similarly, RM =
[

Iu−1 C ′

0 δB′

]

, and

δb1, . . . , δbT+1 are the basis vectors of sublattice Lsub(Mδ), where b1, . . . , bT+1

are the rows of B′.
Define a homomorphic map

φ : Lsub(Mδ1) → Lsub(Mδ2)

[δ1a1, δ1a2, . . . , δ1aT+1] → [δ2a1, δ2a2, . . . , δ2aT+1].

For every basis δ1bi ∈ Lsub(Mδ1), φ(δ1bi) = δ2bi is a corresponding basis vector
in Lsub(Mδ1). Therefore, φ is an isomorphic map.

By extracting the sublattice, we reduce the dimension of the basis from T +u
to T +1. What’s more, putting the target vector in the sublattice eliminates the
influence of δ on solving EHNP. In the previous method, the attacker uses δ
to empirically balance the size of sublattice L′ and the full basis, expecting the
target vector appears in the reduced basis. However, Theorem 3 constructs a
sublattice basis, which will generate the target vector. In the following sections,
we just assume δ = 1 and cancel its effect.

4.3 Evaluating the Instance

In the previous subsection, we show that the target vector can be found in a
sublattice L′. In this part, we discuss the factors that affect the quality of the
sub-basis, and the shortness of the target vector.

We first compute det(L′). Theorem 3 introduces unimodular R such that

RM =
[

Iu−1 C ′

0 B′

]

. Therefore, we have |M | = |RM | = |Iu−1||B′|.
det(L′) = |B′| = |M | = qu−12−U−1, where U =

∑u
i=1

∑lu
j=1 μi,j . We usually

use the merging technique to shorten the traces, or reduce the number of non-zero
coefficients. As a side effect, this operation will increase U . The merging algo-
rithm only merges two digits when their distance is w+1. Suppose k0, k1, . . . , km

are consecutive non-zero digits to be merged of position λ0, λ1, . . . , λm, where
λi+1 − λi = 4, i = 0, 1, . . . ,m. The original μ0, μ1, . . . , μm are all 3 (the window
size w). After m merging operations, the m digits are merged into new digit with
μ′
0 = 3 + λm − λ0 = 3 + 4m =

∑m
i=−0 μi + m.

Before merging, U = 3T , where T is the total length of u. After x mergings,
T ′ = T − x,U ′ = U + x. In fact, if we assume the traces have the average length
l, then T = lu. Recall that in Subsect. 4.1, we estimate that E(‖z‖) <

√
T+1√
8

.
On the other hand, the Gaussian Heuristic of L′ can be computed as

GH =

√
T ′ + 1
2πe

q
u−1
T ′+1 2− U′+1

T ′+1 .

158 J. Cao et al.

To find the secret key, we expect that the target vector is significantly shorter
than the Gaussian heuristic. In other words, GH/E(‖z‖) should be as large

as possible. Based on our analysis, GH/E(‖z‖) = Ω(q
u−1
T ′+1 2− U′+1

T ′+1). We define

f = log2(q
u−1
T ′+1 2− U′+1

T ′+1) = u−1
T−x+1 log2 q − U+x+1

T−x+1 log2 2.
For easier analysis, we can approximate log2 q as 256 and replace T,U with

lu, 3lu. Thus, we use the scoring function

f =
u − 1

lu − x + 1
256 +

3lu + x + 1
lu − x + 1

(7)

to evaluate the ECDSA-EHNP instance and estimate the chance of recovering
the target vector.

Fig. 1. f(x, l) for different u

To describe the shape and tendency of f , we compute its partial derivatives.

∂f

∂x
=

256u − 256
(lu − x + 1)2

− x + 3lu + 1
(lu − x + 1)2

− 1
lu − x + 1

,

∂f

∂l
=

u(x + 3lu + 1)
(lu − x + 1)2

− 3u

lu − x + 1
− u(256u − 256)

(lu − x + 1)2
.

(8)

With u fixed, f only has a singular point (x, l) = (64u − 63.5, 64 − 64.5/u) but
no extreme point in S = {0 ≤ x ≤ 3u, l > 0}. In fact, for u ≥ 2, ∂f

∂l < 0, which
makes f continuously drop with l increasing. As shown in Fig. 1, larger u also
has a significant improvement on f . To ensure a short target vector, traces with
smaller l and larger x should be used to construct an EHNP instance.

4.4 Short Vectors

We have constructed a sublattice L′ where b is the desired target vector. How-
ever, b may not be the shortest vector in L(B). For example, the rows of subma-
trix A are not linearly independent, which leads to a set of non-unique solutions

Handle the Traces: Revisiting the Attack on ECDSA with EHNP 159

to the equation x·A = 0u−1 (mod q). Consider in B’s row vectors corresponding
to λi,j and λi,j+1, or in other words, the (u − 1 +

∑i−1
k=1 lk + j)-th row vi,j and

(u +
∑i−1

k=1 lk + j)-th row vi,j+1 of M , 0 ≤ j ≤ li − 1. To compare the two rows,
one can take σi,j and σi,j+1 as an example. Here we assume the traces have been
merged and T,U are properly updated. By definition of σ we have

σi,j+1 = −2λi,j+1+1 · sir1 = 2λi,j+1−λi,j · σi,j ,

so we can get a short vector by vi,j+1 minus 2λi,j+1−λi,j times vi,j :

v = (0, . . . , 0,− · 2λi,j+1−λi,j−μi,j , ·2−μi,j+1 , 0, . . . , 0). (9)

Fig. 2. log ‖v‖ − log ‖z‖ in different conditions

After merging, in 3/4 of the cases, the distance between two consecutive non-
zero digits is larger than 2w. We expect v to be relatively long compared with
vol(L)1/(T+u), which requires T/u to be large. This (again) means longer traces
(traces with more non-zero digits) are required.

Measuring Vectors: Knowing μi,j and μi,j+1 allows more accurate discussion
on the length of v and z. In fact, the value of μi,j has a significant effect on the
length of v, then we have

log ‖v‖ − log ‖z‖ ≈ 1
2

log(24w · 2−2μi,j + 2−2μi,j+1)

− 1
2

log(T/12 + 1/4).

Figure 2 shows the estimated log ‖v‖− log ‖z‖. When μi,j = 3, ‖z‖ is shorter
than 0.5‖v‖ when T < 200. After merging, we get μi,j = 3 in more than half of
the cases. Therefore, we expect T < 200 will make z shorter than half of the v
vectors, enough to be found by SVP solvers. In particular, the average Hamming
weight (number of ‘A’s) of a trace falls between 25 and 30, so expect to use fewer
than 10 traces to recover the key.

160 J. Cao et al.

5 Algorithms

This subsection summarizes our method of attacking ECDSA and provides our
algorithms for recovering the private key. We begin with the basic procedures of
our attack.

5.1 Strategy

Choice of Traces: According to [10], at least 3 traces are required to recover
a 256-bit secret key. To improve the probability of recovering the secret with
3 traces, we preselect the traces to construct a better basis. For every possible
EHNP instance, we compute the score f and choose the instance with the highest
possible score. Finding proper traces is particularly important for u = 3, for the
average success rate is low. According to Sect. 4, we need fewer merged digits,
so we expect longer traces after merging. This differs from [8], which asks for
shorter traces.

Describing Target Vector with Predicate: We have described the existence
of short vectors. However, this condition does not lead to a unique-SVP instance.
In fact, the target vector may be far from the unique shortest vector, for many
shorter vectors are also generated by the basis.

Similar to the work of Albrecht et al. [3], we introduce the α-SVP with
predicate to describe the problem.

α-Shortest Vector Problem with Predicate: Given a basis B of a lattice
L, a parameter 0 < α and predicate g(·), find the non-zero lattice vector v ∈ L
satisfying GH(L) > α · ‖v‖ and g(v) = 1.

For an EHNP instance generated from traces, the {μi,j} and basis matrix M
are known. Therefore, we can define a predicate to find vector z as in Algorithm 2.

Algorithm 2: Predicate g(·)
Input: Vector v = [v1, v2, . . . , vd]
Output: g(z)
if v1, . . . , vu−1 �= 0 then

return FALSE ;
end
Compute u = v · M−1 = [t2, . . . , tu, d1,1, . . . , d1,l1 , . . . , du,1, . . . , du,lu , n];
if n �= −1 then

return FALSE ;
end

Solve equation αri − ∑l
j=1(2

λi,j+1 · si)di,j − (siki −H(mi)) + tiq = 0, get α′;
if Q == α′ · G then

return TRUE ;
end
else

return FALSE ;
end

Handle the Traces: Revisiting the Attack on ECDSA with EHNP 161

5.2 The Attack

In addition to BKZ, our main algorithm adopts sieving as the SVP solver. The
BKZ reduction is still included in the procedure at the preprocess stage. To
accelerate the process, we may use the BKZ 2.0 implementation. According to
previous work, we make use of the set of relatively short vectors or “database”
that a sieve call outputs on a projected block [2]. In fact, after a sieve call
terminates, it will output a database L that contains all vectors shorter than√

4/3vol(L). After the sieve call, we run a predicate check to find the target
vector.

Algorithm 3: Sieving attack
Input: Lattice basis M , dimension d, block size βmax, predicate g(·)
Output: Vector z = (0, v) such that g(z) = 1
Extract sublattice basis M ′ from M with LLL;
Set β to be the number of quasi-reduced rows in M ′;
while β < βmax do

BKZ tour on M ′ with block size β;
Increase β;
if row vector v in M ′ satisfies g(v) = 1 then

return (0,v)
end

end
Run sieving algorithm on projected sublattice of M ′, denote output list by L′;
Lift the vectors in L′, get list of vectors L;
for v ∈ L do

if g(0,v) = 1 then
return (0,v)

end

end

Implementation: Several detailed modifications are made to the algorithm.
First, according to the work of Albrecht [1], parameters such as size of database
and saturation ratio need to be modified to find the required vector. Second, we
preprocess the basis with BKZ-(d − 30) before sieving. The effect of sieving is
significantly affected by the quality of the input basis. Therefore, BKZ reduction
is necessary before sieve is called. We use a progressive algorithm to gradually
update the basis.

Using Subsieve: Currently, the most efficient sieve variants benefit from the
“dimensions for free technique”. This technique makes use of all vectors that
a sieve call can output. In fact, Subsieve solves SVP in dimension d with a
sieve in dimension d′ = d − Θ(d/ log d). Assuming the projected lattice Ld−d′

contains a short vector ‖πd−d′(v)‖ ≤ √
4/3vol(Ld−d′), it can be obtained by a

sieve call. The entire vector v can be found by Babai’s Nearest Plane Algorithm.

162 J. Cao et al.

Lucas proposed d′ = d− d log(4/3)
log(d/(2πe)) for random lattice [9]. In practice, our target

vector may be longer than the Gaussian heuristic, so we can empirically choose
the dimensions for free.

6 Simulation Analysis

We test our attack on the elliptic curve secp256k1 and show our new results of
attacking with at least 3 traces. We used the personal computer on an Intel Core
i7-10750H CPU running at 2.60 GHz in six threads. Recall that Fan et al. used
an Intel Core i7-3770 CPU running at 3.40 GHz while De Micheli et al. used the
cluster Grid’5000 on a single core of an Intel Xeon Gold 6130. The implementation
of BKZ and Sieve functions are based on FPLLL [22,23] and G6K [24].

6.1 Attacking with 3 Traces

Our algorithm is able to attack ECDSA with 3 traces. Fan et al. conjectured that
3 independent traces are enough to recover the secret key, but did not mount a
successful attack with 3 traces. In 2019, De Micheli et al. were able to reach a
success probability of 0.002. Based on the discussion in Subsect. 4.2, the traces
should not have too few non-zero digits. In the attack, we adopt the preselecting
technique. We compare the success rate and time cost of attacking different
traces in Table 1. The T is the sum of weight of the traces. The dimension of
the EHNP-lattice is T + u = T + 3. Time is in CPU-seconds. Using 3 traces, we
achieved a success probability up to 0.85, significantly superior to [8].

Table 1. Key recovery with 3 traces

T Probability Time

BKZ stage Sieve stage

T > 110 0.59 3 min 19.7 min

105 < T ≤ 110 0.85 2.3 min 18.3 min

95 < T ≤ 105 0.36 1.5 min 15.3 min

Table 2. New record of attacking ECDSA

u Our attack De Micheli’s attack Fan’s attack van de Pol’s attack

Probability Time Probability Time Probability Time Probability Time

3 0.85a 24 min 0.002 39h 0 – 0 –

4 0.91 14 min 0.04 25 h 28 min 0.08 88min 0 –

5 0.99 6 min 0.20 1 h 4 min 0.38 102min 0 –

10 – – – – – – 0.07 0.04 min

15 – – – – – – 0.54 0.19 min
a We use preselecting technique only for u = 3. In fact, more than 3 traces are enough
to recover the key with probability > 0.5.

Handle the Traces: Revisiting the Attack on ECDSA with EHNP 163

Effect of Preselecting: Via selecting the traces according to Subsect. 4.2, we
are able to confine the dimension of EHNP instances we build, thus controlling
the hardness. Contrary to the intuitive idea, traces with smaller weight won’t
contribute to the success probability, while heavier traces add to the success
rate. This is a surprising result, for [8] indicates that smaller traces are desired
for all attacks. As we discussed in Sect. 4.2, fewer merged digits lead to higher
scores for an average trace. As the results show, the value of T must balance the
running time and the success rate. For the algorithm we use, the success rate is
higher when T ∈ (105, 110]. However, the time cost decreases with smaller T .
The results also illustrate that the computation is mostly consumed by sieving.
Recall that previous EHNP attacks only use BKZ as the SVP solver. Compared
with the 0.002 probability of success, our sieve attack is more efficient.

6.2 Attacking with More Traces

When we use more than 3 traces to attack ECDSA, we also enjoy an advantage
compared with previous attacks. As the results show, with more information,
the probability of success rises. In particular, with 5 traces the probability is
close to 1, far more than the probability that previous attacks can reach with 7
or 8 traces. Table 2 shows our new result.

The total time is the average time of a single attack multiplied by the number
of trials necessary to recover the key. Recall that De Micheli et al.’s attack can
reach the maximum success probability 0.45 with 7 traces while Fan et al. can
reach the probability 0.68 with 7 traces. When attacking with more than 3
traces, we did not implement the preselecting technique. In fact, using randomly
generated traces proves enough to recover the key k. Our method is able to get
a significantly improved success rate with a smaller number of traces. It also
requires less time compared with other attacks. On average, the running time of
the new approach is 97% shorter than De Micheli’s attack.

6.3 Handling Errors

It is expected to obtain traces with errors in practice. The errors usually occur
when an “A” in the trace is wronged as “D” or “D” wronged as “A”. Figure 3(a)
shows the result of attacks with different number of errors. In the experiments
we set d′ = 70 when calling Subsieve. The two experiments use the same setting
of block size and free dimensions. When 5 traces are used, the success rate is
close to 1 with no more than 4 errors. When 5 or more errors are added, the
success rate significantly drops. Attacking with 4 traces is slightly better when
handling more errors, for the dimension of the lattice is still not too large.

Changing Parameters: With more errors, the algorithm needs to be opti-
mized. For example, our attack relies on the “dimensions for free” technique [9]
to save computational resources. In the existence of errors, however, the free
dimension should decrease to maximize the success probability. Figure 4 shows

164 J. Cao et al.

Fig. 3. New estimation of ‖z‖

Fig. 4. Result of attacks on 5 traces with errors

the result of attacking 5 traces with different settings. The algorithm is stronger
when d′ increases, and the attack is more likely to succeed.

Figure 4 illustrates the result of attacking 5 erroneous traces with different
settings for sieving. When d′ increases, the attack is able to reach a higher
probability of success.

We also carry out experiments of attacking 3 traces with errors. The results
are shown in Fig. 3(b). For the attack we preselect the traces to make T ∈
[95, 105]. This case is more likely to appear in practical scenario. Adding errors
to the traces has an explicit influence on the success rate, which is not very high
even without errors.

7 Conclusion

Previous EHNP attacks of ECDSA already gain remarkable advantage against
the HNP method. In this work, we continue to improve the success probability
to nearly 100% with only 4 or 5 traces from Flush+Reload attack, while
previous EHNP attacks need 7 traces to reach similar result. With 3 traces, we
significantly improve the success probability by more than 400 times. The attack
also recovers the key with 3 traces when attacking with erroneous information,
at the cost of success probability.

Handle the Traces: Revisiting the Attack on ECDSA with EHNP 165

The new attack is based on the analysis and observation of the ECDSA-
EHNP problem. Using a more accurate expected value of the target vector, we
can decide the condition for successful attacks. The attack algorithm combines
BKZ reduction and sieve. Unlike previous works, in this attack, BKZ serves as
preprocessing, and sieve is the main SVP solver. With suitable parameters, the
target vector will appear in the output set of vectors. The attack is tested on
the secp256k1 curve in experiments, but the attack does not rely on special
structure of curves and can be mounted on any curve.

To avoid being attacked by this kind of technique, one can simply choose
a new key every transaction. This would prevent the attacker from obtaining
enough information of the changing key. Another possible way is to switch to
other scalar multiplications to mitigate side-channel leakage. For example, new
versions of OpenSSL libraries have use constant-time implementations for curves
such as secp256k1.

Acknowledgments. This work was supported by the National Natural Science Foun-
dation of China (Nos. 61872449, 62125205).

References

1. Albrecht, M.R., Ducas, L., Herold, G., Kirshanova, E., Postlethwaite, E.W.,
Stevens, M.: The general sieve kernel and new records in lattice reduction. In:
Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 717–746.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3 25

2. Albrecht, M.R., Göpfert, F., Virdia, F., Wunderer, T.: Revisiting the expected cost
of solving uSVP and applications to LWE. In: Takagi, T., Peyrin, T. (eds.) ASI-
ACRYPT 2017. LNCS, vol. 10624, pp. 297–322. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-70694-8 11

3. Albrecht, M.R., Heninger, N.: On bounded distance decoding with predicate:
breaking the “lattice barrier” for the hidden number problem. In: Canteaut,
A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 528–558.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5 19

4. Boneh, D., Venkatesan, R.: Hardness of computing the most significant bits of
secret keys in Diffie-Hellman and related schemes. In: Koblitz, N. (ed.) CRYPTO
1996. LNCS, vol. 1109, pp. 129–142. Springer, Heidelberg (1996). https://doi.org/
10.1007/3-540-68697-5 11

5. Breitner, J., Heninger, N.: Biased nonce sense: lattice attacks against weak ECDSA
signatures in cryptocurrencies. In: Goldberg, I., Moore, T. (eds.) FC 2019. LNCS,
vol. 11598, pp. 3–20. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
32101-7 1

6. Dachman-Soled, D., Ducas, L., Gong, H., Rossi, M.: LWE with side information:
attacks and concrete security estimation. In: Micciancio, D., Ristenpart, T. (eds.)
CRYPTO 2020. LNCS, vol. 12171, pp. 329–358. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-56880-1 12

7. Dall, F., et al.: Cachequote: efficiently recovering long-term secrets of SGX EPID
via cache attacks (2018)

https://doi.org/10.1007/978-3-030-17656-3_25
https://doi.org/10.1007/978-3-319-70694-8_11
https://doi.org/10.1007/978-3-319-70694-8_11
https://doi.org/10.1007/978-3-030-77870-5_19
https://doi.org/10.1007/3-540-68697-5_11
https://doi.org/10.1007/3-540-68697-5_11
https://doi.org/10.1007/978-3-030-32101-7_1
https://doi.org/10.1007/978-3-030-32101-7_1
https://doi.org/10.1007/978-3-030-56880-1_12
https://doi.org/10.1007/978-3-030-56880-1_12

166 J. Cao et al.

8. De Micheli, G., Piau, R., Pierrot, C.: A tale of three signatures: practical attack
of ECDSA with wNAF. In: Nitaj, A., Youssef, A. (eds.) AFRICACRYPT 2020.
LNCS, vol. 12174, pp. 361–381. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-51938-4 18

9. Ducas, L.: Shortest vector from lattice sieving: a few dimensions for free. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 125–
145. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9 5

10. Fan, S., Wang, W., Cheng, Q.: Attacking OpenSSL implementation of ECDSA
with a few signatures. In: Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pp. 1505–1515 (2016)

11. Genkin, D., Pachmanov, L., Pipman, I., Tromer, E., Yarom, Y.: ECDSA key extrac-
tion from mobile devices via nonintrusive physical side channels. In: Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Secu-
rity, CCS 2016, pp. 1626–1638. Association for Computing Machinery, New York
(2016). https://doi.org/10.1145/2976749.2978353

12. Hai, H., Ning, N., Lin, X., Zhiwei, L., Bin, Y., Shilei, Z.: An improved wNAF
scalar-multiplication algorithm with low computational complexity by using prime
precomputation. IEEE Access 9, 31546–31552 (2021)

13. Hlaváč, M., Rosa, T.: Extended hidden number problem and its cryptanalytic
applications. In: Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp.
114–133. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74462-
7 9

14. Howgrave-graham, N.A., Smart, N.P.: Lattice attacks on digital signature schemes.
Des. Codes Crypt. 23, 283–290 (2001)

15. Jancar, J., Sedlacek, V., Svenda, P., Sys, M.: Minerva: the curse of ECDSA
nonces systematic analysis of lattice attacks on noisy leakage of bit-length of
ECDSA nonces. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020(4), 281–
308 (2020). https://doi.org/10.13154/tches.v2020.i4.281-308. https://tches.iacr.
org/index.php/TCHES/article/view/8684

16. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

17. Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J., Buch-
mann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 147–191. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-540-88702-7 5

18. Micciancio, D., Walter, M.: Practical, predictable lattice basis reduction. In: Fis-
chlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 820–849.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3 31

19. Nguyen, P.Q., Shparlinski, I.E.: The insecurity of the elliptic curve digital signature
algorithm with partially known nonces. Des. Codes Crypt. 30(2), 201–217 (2003)

20. Nguyen, P.Q., Vallée, B.: The LLL algorithm: survey and applications. Information
Security and Cryptography. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-02295-1. https://hal.archives-ouvertes.fr/hal-01141414

21. van de Pol, J., Smart, N.P., Yarom, Y.: Just a little bit more. In: Nyberg, K. (ed.)
CT-RSA 2015. LNCS, vol. 9048, pp. 3–21. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-16715-2 1

22. The FPLLL development team: fplll, a lattice reduction library, Version: 5.4.1
(2021). https://github.com/fplll/fplll/

23. The FPLLL development team: fpylll, a Python wraper for the fplll lattice reduc-
tion library, Version: 0.5.6 (2021). https://github.com/fplll/fpylll

https://doi.org/10.1007/978-3-030-51938-4_18
https://doi.org/10.1007/978-3-030-51938-4_18
https://doi.org/10.1007/978-3-319-78381-9_5
https://doi.org/10.1145/2976749.2978353
https://doi.org/10.1007/978-3-540-74462-7_9
https://doi.org/10.1007/978-3-540-74462-7_9
https://doi.org/10.13154/tches.v2020.i4.281-308
https://tches.iacr.org/index.php/TCHES/article/view/8684
https://tches.iacr.org/index.php/TCHES/article/view/8684
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-540-88702-7_5
https://doi.org/10.1007/978-3-662-49890-3_31
https://doi.org/10.1007/978-3-642-02295-1
https://doi.org/10.1007/978-3-642-02295-1
https://hal.archives-ouvertes.fr/hal-01141414
https://doi.org/10.1007/978-3-319-16715-2_1
https://doi.org/10.1007/978-3-319-16715-2_1
https://github.com/fplll/fplll/
https://github.com/fplll/fpylll

Handle the Traces: Revisiting the Attack on ECDSA with EHNP 167

24. The FPLLL development team: The general sieve kernel (g6k) (2021). https://
github.com/fplll/fpylll

25. Yarom, Y., Benger, N.: Recovering openssl ECDSA nonces using the flush+ reload
cache side-channel attack. IACR Cryptol. ePrint Arch. 2014, 140 (2014)

26. Yarom, Y., Falkner, K.: Flush+reload: a high resolution, low noise, L3 cache side-
channel attack. In: 23rd USENIX Security Symposium (USENIX Security 2014),
pp. 719–732 (2014)

https://github.com/fplll/fpylll
https://github.com/fplll/fpylll

Hybrid Dual and Meet-LWE Attack

Lei Bi1,2(B), Xianhui Lu1,2,3, Junjie Luo4, and Kunpeng Wang1,2

1 KLOIS, Institute of Information Engineering, CAS, Beijing 100093, China
{bilei,luxianhui,wangkunpeng}@iie.ac.cn

2 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing 100049, China

3 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China
4 Nanyang Technological University, Singapore 639798, Singapore

junjie.luo@ntu.edu.sg

Abstract. The Learning with Errors (LWE) problem is one of the most
prominent problems in lattice-based cryptography. Many practical LWE-
based schemes, including Fully Homomorphic encryption (FHE), use
sparse ternary secret for the sake of efficiency. Several (hybrid) attacks
have been proposed that benefit from such sparseness, thus researchers
believe the security of the schemes with sparse ternary secrets is not well-
understood yet. Recently, May [Crypto 2021] proposed an efficient meet-
in-the-middle attack named Meet-LWE for LWE with ternary secret,
which significantly improves Odlyzko’s algorithm. In this work, we gen-
eralize May’s Meet-LWE and then introduce a new hybrid attack which
combines Meet-LWE with lattice dual attack. We implement our algo-
rithm to FHE-type parameters of LWE problem and compare it with
the previous hybrid dual attacks. The result shows that our attack out-
performs other attacks in a large range of parameters. We note that our
attack has no impact on the LWE-based schemes in the PQC Standard-
ization held by NIST as their secrets are not sparse and/or ternary.

Keywords: LWE · Meet-in-the-middle · Dual attack · Hybrid attack

1 Introduction

For decades, the Learning with Errors (LWE) problem [28] has brought large
number of cryptographic applications in lattice-based cryptography, from public-
key encryptions [6,17] and digital signatures [5,18] to homomorphic encryptions
(HE) [15,22,29]. Informally, for a fixed secret s sampled from some fixed distri-
bution over Z

n
q , a set of LWE instances is defined as (A,b = As + e mod q) ∈

Z
m×n
q × Z

m
q , where A is uniformly sampled from Z

m×n
q and e is a short error

vector sampled from a small discrete Gaussian distribution. The search-version
LWE is to recover s given the instances above and the decision-version LWE
asks to distinguish LWE instances from uniform ones.

The secret in originally proposed LWE-based schemes is uniform over Z
n
q ,

while recently many practical constructions diverted the choice of secret dis-
tribution for the sake of efficiency. For instance, as one of the most popular
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
K. Nguyen et al. (Eds.): ACISP 2022, LNCS 13494, pp. 168–188, 2022.
https://doi.org/10.1007/978-3-031-22301-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22301-3_9&domain=pdf
https://doi.org/10.1007/978-3-031-22301-3_9

Hybrid Dual and Meet-LWE Attack 169

implementation of LWE, most HE schemes including HElib [22], SEAL [29] and
HEAAN [15] use ternary secret. Even more, the fully HE (FHE) schemes [11,
12,14,21,23] use sparse ternary secrets as it depends on a key technique named
bootstrapping which needs the sparsity of the secret. Another well-known lattice-
based hard problem NTRU [9] also uses small/sparse1 secrets.

The concrete security of these LWE-based (NTRU-based) schemes with
small/sparse secrets is still not well-understood [1]. Many works [2,4,16] show
that they are less secure than those with non-small/sparse secrets, but it is still
inconclusive whether they are unsafe.

Recently, May [27] introduced a new combinatorial attack, named Meet-
LWE, on ternary LWE that significantly improves over Odlyzko’s Meet-in-the-
Middle (MitM) attack [24]. Compared with Odlyzko’s algorithm of runtime S0.5,
Meet-LWE runs in time roughly S0.25, where S is the size of the search-space.

The main open problem proposed by May [27] is whether Meet-LWE can
improve lattice hybrid attacks. We remark that the “lattice hybrid attack” in [27]
means specifically hybrid decoding attack that combines the Nearest Plane (NP)
algorithm [7] used in decoding attack and exhaustive-search, which is initialed
by Howgrave-Graham [25] against NTRU. From the point of view of attacks
against NTRU, hybrid decoding attack is presumably the best-known attack.

For FHE schemes, which are based on LWE with sparse ternary secret, there
are two types of hybrid attacks that are usually better than hybrid decoding
attack: hybrid primal attack [20,30,31,33,34] and hybrid dual attack [2,10,16,
19,32]. We note that hybrid primal attack is essentially the same as hybrid
decoding attack as it also needs NP algorithm to solve a decoding problem (in
a different lattice), while hybrid dual attack is different from them.

Therefore, except for the open problem proposed by May [27], another prob-
lem follows from [27] is whether Meet-LWE can be used to improve hybrid dual
attack for LWE with sparse ternary secret. We study this problem in this paper.

1.1 Related Work

Hybrid dual attack is an efficient attack against LWE, especially LWE with
small/sparse secrets. Albrecht [2] introduced the first hybrid dual attack on LWE
with small/sparse secret, which is a combination of dual attack and exhaustive-
search. Accordingly, the hybrid dual attack consists of two phases, which we name
them as the lattice-phase and the guess-phase, where the first phase uses dual
attack to construct a new LWE instance and the second phase uses exhaustive-
search to solve the new instance.

The works following [2] improve the attack by accelerating the guess-
phase. Espitau-Joux-Kharchenko [19] proposed an efficient matrix multiplication
method to accelerate exhaustive-search. Bi-Lu-Luo-Wang-Zhang [10] generalized
Albrecht’s hybrid dual attack to arbitrary secret and error by using both optimal

1 In this paper, when we refer to “small”, we mean that the secret is binary/ternary and
has no fixed Hamming weight, i.e., uniform in {0, 1} or {0, ±1}. While for “sparse”,
we mean that the secret is binary/ternary with a small fixed Hamming weight w.

170 L. Bi et al.

pruning and generalized efficient matrix multiplication. Cheon-Hhan-Hong-Son
[16] replaced the exhaustive-search with MitM technique in [25] and showed that
the resulting hybrid attack outperforms other attacks for sparse ternary LWE
with large modulus. Our attack follows a similar strategy as in [16] but we replace
the exhaustive-search with the more efficient algorithm Meet-LWE.

1.2 Contributions

In this paper, we combine Meet-LWE with dual attack and introduce a new
hybrid dual attack, which we call hybrid dual Meet-LWE attack. The idea is
to replace the exhaustive-search for sub-secret in hybrid dual attack by Meet-
LWE. One key step in Meet-LWE is to guess k coordinates of error e such that
we can get k LWE equations without error. These equations will then be used
to decrease the size of the candidate set of secrets in the MitM step. The main
difficulty in replacing the exhaustive-search by Meet-LWE in hybrid decoding
attacks (and also hybrid primal attacks) is that we cannot use the k error-free
LWE equations on the projected sub-secret anymore [27].

Fig. 1. Comparison of our attack, Hybrid1 [10], Hybrid2 [16] for different LWE
parameters settings (log n, log q, w). For each case, the color indicates the best attack
and its bit security.

However, this is not a problem for hybrid dual attacks, since we can view the
lattice-phase of hybrid dual attacks as a dimension-error trade-off, as observed
by Albrecht [2]. More precisely, in hybrid dual attacks, the lattice-phase pro-
duces a new LWE instance that has a smaller dimension but a larger error. Our
attack solves the new LWE instance by a generalized version of Meet-LWE. One
feature of this generalization is that the secret of the new LWE instance follows

Hybrid Dual and Meet-LWE Attack 171

an atypical ternary distribution while the original Meet-LWE is performed on
ternary secret with exactly w/2 entries of 1 and w/2 entries of −1. In addition,
the large error of the new LWE instance makes the analysis of Meet-LWE dif-
ferent from the original setting. We generalize Meet-LWE for the new setting in
hybrid dual attacks and give a rigorous analysis for it.

We also compare our attack with previous hybrid dual attacks on sparse
ternary LWE problems with FHE-type parameters and find out that our attack
outperforms those attacks in a large range of parameters, especially when the
Hamming weight of secret is small and the modulus q is not too large. See Fig. 1
for an overview of the comparison. The main advantage of our attack is its high
efficiency in the guess-phase due to Meet-LWE.

We remark that our result does not invalidate the security claims of the
schemes in PQC Standardization held by NIST since their secrets are not
sparse/ternary or they use large enough Hamming weight.

1.3 Roadmap

In Sect. 2, we give some notations and a brief introduction of lattice reduction
algorithms and LWE problem. We recall May’s Meet-LWE in Sect. 3 and recall
previous hybrid dual attacks in Sect. 4. Our new hybrid dual Meet-LWE attack is
given in Sect. 5. In Sect. 6, we compare the complexity of our algorithm with pre-
vious hybrid dual attacks on LWE problem with FHE-type parameters. Finally,
in Sect. 7 we present the conclusion of this paper.

2 Preliminaries

2.1 Notations

Denote log short for log2 and denote ln for the natural logarithm. Denote vectors
in bold, e.g. v. The Euclidean norm of v is ||v||. Denote 〈·, ·〉 the product of
two vectors. Matrices are denoted in upper-case bold, e.g. A. Denote hm(·)
the Hamming weight of a vector. For a compact set S ∈ R

n, denote U(S) the
uniform distribution over S. Denote Gc,s the Gaussian distribution of center c
and deviation s, and denote Gs short for G0,s. Denote the combinatorial number(

M
N1

)(
M−N1

N2

)
as

(
M

N1,N2

)
.

2.2 Lattice and Lattice Reduction

Lattice. A lattice of dimension m is a discrete additive subgroup of R
m for

some m ∈ N. A basis B of a lattice Λ is a set of n linearly independent vectors
{b1, . . . ,bn} ⊂ R

m satisfies Λ = Λ(B) = B ·Zm =
{∑

i∈[n] zi · bi : zi ∈ Z

}
. We

call n the rank of the lattice. If n = m, Λ is called a full-rank lattice. Denote
det(Λ) =

√
det (BTB) the determinant of Λ = Λ(B). The shortest vector of Λ

is a non-zero vector in a lattice Λ that has the minimum norm. Denote λ1(Λ)

172 L. Bi et al.

the norm of the shortest non-zero vector, i.e., λ1(Λ) = minv∈Λ,v �=0 ||v||.

Lattice Reduction Algorithm. Given a basis of a lattice as input, the lattice
reduction algorithm outputs a new basis of the lattice that consists of relatively
shorter and relatively pairwise not so skew vectors. The quality of basis outputted
by a lattice reduction algorithm is characterized by the root-Hermite factor δ0

which satisfies δm
0 = ||b1||

det(Λ)
1
m

, where b1 is the first and shortest vector in the

output basis.
The BKZ algorithm [13], which is a successful generalization of the famous

LLL algorithm, is now a commonly used lattice reduction algorithm. The most
important parameter for BKZ is the blocksize β, whose relation with δ0 is given
in the following heuristic.

Heuristic 1. BKZ with blocksize β yields a basis with root-Hermite factor

δ0 ≈
(

β

2πe
(πβ)

1
β

) 1
2(β−1)

.

This heuristic is experimentally verified by Chen [13].

2.3 The Learning with Errors Problem

Definition 1 (LWE [28]). Let n, q ∈ N. S is the secret distribution over Z
n
q

and χ is a small error distribution over Z. For a secret s ← S, denote LWEn,q,s,χ

the probability distribution on Z
n
q × Zq obtained by sampling a ∈ Z

n
q uniformly

random, sampling e
$← χ and returning (a, 〈a, s〉 + e) ∈ Z

n
q × Zq. Given access

to the outputs from LWEn,q,s,χ, we define two versions of LWE problem:

• Decision-LWE. Given m instances, distinguish LWEn,q,s,χ from U(Zn
q × Zq)

for a fixed s ← S.
• Search-LWE. Given m instances sampled from LWEn,q,s,χ with a fixed s ← S,
recover s.

The LWE instances can be rewrite in matrix form as follows:

(A,b = As + e mod q)

with s ← S,A $← Z
m×n
q , e $← χm,b ∈ Z

m
q .

In this paper, we focus on LWE with sparse ternary secrets. We consider three
different distributions of sparse ternary s, where the last type of distribution
characterizes the error of the new LWE instance in the guess-phase of hybrid
dual attacks.

– Ternary-0: T n
0 (w) =

{
s ∈ {0,±1}n : s has w

2 (±1)-entries each
}

– Ternary-1: T n
1 (w) = {s ∈ {0,±1}n : s has w non-zero entries}

– Ternary-2: T n
2 (w) =

∑w
h=0 ps(h)T n

1 (h), where
∑w

h=0 ps(h) = 1, i.e., T n
2 (w)

is a mixture distribution of T n
1 (h) with weight ps(h) for h ≤ w.

Hybrid Dual and Meet-LWE Attack 173

2.4 Lemma

Lemma 1 ([8]). For any real s > 0 and C > 0, and any x ∈ R
d, we have

Pr [|〈x,Gs〉| ≥ C · s||x||] < 2 · exp
(

−C2

2

)
.

3 May’s Meet-LWE Attack

In this section, we review May’s Meet-LWE [27] attack on LWE with s ∈ T n
0 (w)

and e ∈ {0,±1}m, and show that it can be straightforwardly generalized to the
case with s ∈ T n

1 (w).

3.1 Ternary-0

We recall May’s Meet-LWE in its simplest form (Rep-0 in [27]). Given LWE
instance (A,b =As + e mod q) ∈ Z

m×n
q × Z

m
q , where s ∈ T n

0 (w) and e ∈
{0,±1}m, a typical MitM works by splitting the secret into s = s1+s2, rewriting
the LWE equation as

As1 = b − As2 − e mod q,

and hashing As1 and b − As2 for all enumerated s1, s2 ∈ T n
0 (w/2). Then for

each pair of s1 and s2 with colliding hash values, we check whether

b − A(s1 + s2) mod q ∈ {0 ± 1}m.

In order to reduce the number of doing hash, which is the main runtime of the
process, Meet-LWE chooses only a subset of T n

0 (w/2) for s1 and s2 as follows.
Notice that the number of representations s = s1 + s2 is R =

(
w/2
w/4

)2
. We

define the mapping

πm
k : Zm

q → Z
k
q ,x = (x1, · · · , xm) → (x1, · · · , xk)

and fix a random target t ∈ Z
k
q and then look for s1 and s2 satisfying

πm
k (As1 + e1) = t mod q and πm

k (b − As2 + e2) = t mod q, (1)

where e1, e2 ∈ {0,±1}m satisfies e1 − e2 = e. To ensure that there is at least
one couple of s1 and s2 satisfying Eq. (1), we choose k such that k = �logq R�
and therefore we have qk ≤ R. Note that the probability that Eq. (1) holds for

at least one representation of s1 + s2 is pπ =
(
1 − 1

qk

)R

≈ 1
e . In order to find

such s1 and s2, we make up two lists

L
(1)
1 = {(s1, ϕ (As1)) : πm

k (As1 + e1) = t mod q} ,

L
(1)
2 = {(s2, ϕ(b − As2)) : πm

k (b − As2 + e2) = t mod q},

where the hash function ϕ : Zm
q → {0, 1}m is defined as

174 L. Bi et al.

Algorithm 1. Meet-LWE on LWE with Ternary-0 Secret
Require: (A,b = As + e mod q) ∈ Z

m×n
q × Z

m
q with s ∈ T n

0 (w) and e ∈ {0, ±1}m

Ensure: s ∈ T n
0 (w) satisfying As − b mod q ∈ {0, ±1}m

1: compute the number R of representations of s = s1 + s2 where s1, s2 ∈ T n
0 (w/2)

2: compute k = �logq(R)�
3: sample a random t ∈ Z

k
q

4: for all πm
k (e1) ∈ {0, ±1}k/2 × 0k/2 do

5: construct L
(1)
1 = {(s1, ϕ(As1)) : πm

k (As1 +e1) = t mod q} via a standard MitM
on u1 ∈ T n/2

0 (w/4) × 0n/2 and u2 ∈ 0n/2 × T n/2
0 (w/4) .

6: for all πm
k (e2) ∈ 0k/2 × {0, ±1}k/2 do

7: construct L
(1)
2 = {(s2, ϕ(b − As2)) : πm

k (b − As2 + e2) = t mod q} analogously
8: for all matched of (s1, ·) and (s2, ·) in the second component of L

(1)
1 and L

(2)
2 do

9: if s = s1 + s2 ∈ {±1, 0}n has weight w and As − b mod q ∈ {0, ±1}m then
10: return s

ϕ(x)i =

⎧
⎪⎨

⎪⎩

0 if xi ∈
[
− q

2 ,−1
)

1 if xi ∈
[
0, q

2 − 1
)

0, 1 if xi ∈ [−1, 0) ∪
[

q
2 − 1, q

2

)
.

Notice that for entries in the two border ranges [−1, 0) and
[

q
2 − 1, q

2

)
, we assign

both 0 and 1 to them. The lists L
(1)
1 , L

(1)
2 can be constructed in a standard

MitM manner, i.e., enumerate s1 as the sum of u1 ∈ T n/2
0 (w/4)×0n/2 and u2 ∈

0n/2 × T n/2
0 (w/4) . Analogously, we proceed with s2 = u3 + u4.

To summarize, we first compute a number k based on the number of repre-
sentations R. Next for each enumeration of the first k coordinates of e (via some
standard MitM approach as e = e1 + e2), we construct lists L

(1)
1 and L

(1)
2 and

then search for a representation s1 + s2 of s based on the second component of
L

(1)
1 and L

(1)
2 . The full algorithm is listed in Algorithm 1.

Analysis. The size of lists L
(1)
1 and L

(1)
2 is L(1) = S(1)

qk ≈ S(1)

R =
(

n
w/4,w/4

)(
w/2
w/4

)−2
,

where S(1) =
(

n
w/4,w/4

)
is the search-space of s1 and s2. Notice that L(1) is much

smaller than S(1) and this is the main advantage of Meet-LWE. We remark
that here we only count one in L(1) for each element in the lists L

(1)
1 and L

(1)
2 ,

and omit possible multiple labels for elements, since the expected number of
labels for each element is 2

q · m = Θ(1). However, in Sect. 5 when we study our
hybrid attack we cannot omit this as the error becomes much larger. We will
discuss this in more detail in Sect. 5. The size of the four lists for u1,u2,u3,u4

is L(2) = S(2) =
(

n/2
w/8,w/8

)
, where S(2) is the search-space of u1,u2,u3,u4.

The time T (1) to construct list L
(1)
1 (respectively L

(1)
2) is

T (1) = max
{

L(1), L(2)
}

.

Hybrid Dual and Meet-LWE Attack 175

Finding a representation s1 +s2 from L
(1)
1 and L

(1)
2 can be realized via Odlyzko’s

hash function on the m − k coordinates in time

T (0) = max
{

L(1), 2−(m−k)
(
L(1)

)2
}

= L(1).

Here we assume that L(1) ≤ 2m−k, otherwise we can modify Odlyzko’s hash
function by assigning more than two labels to ensure this.

Then the time complexity of list construction is Ts = max{T (1), T (0)} =
max{L(1), L(2)}. In addition, the time of enumerating

πm
k (e1) ∈ {0,±1}k/2 × 0k/2 and πm

k (e2) ∈ 0k/2 × {0,±1}k/2

is Te = 3k/2. We summarize these results in Lemma 2.

Lemma 2. The runtime of Meet-LWE attack on LWE with Ternary-0 secret
shown in Algorithm 1 is computed as

TMitM-0 = Ts · Te = max

{(
n

w/4, w/4

)(
w/2
w/4

)−2

,

(
n/2

w/8, w/8

)}

· 3k/2,

and the success probability is pMitM-0 = pπ = 1
e .

3.2 Ternary-1

Recall that T n
1 (w) contains s ∈ {0,±1}n with w non-zero entries. This type of

secret is very similar to Ternary-0. Given LWE instance with secret s ∈ T n
1 (w),

we can split s into s1 +s2 with s1, s2 ∈ T n
1 (w/2). The number of representations

is R =
(

w
w/2

)
. The two levels of lists is constructed similarly as Sect. 3.1. Accord-

ingly, we can compute the size of the lists as L(1) = S(1)

R =
(

n
w/2

)
· 2w/2/

(
w

w/2

)

and L(2) = S(2) =
(

n/2
w/4

)
· 2w/4. The total runtime is

TMitM-1 = Ts · Te = max
{(

n

w/2

)
· 2w/2/

(
w

w/2

)
,

(
n/2
w/4

)
· 2w/4

}
· 3k/2,

where k = �logq R�, and the success probability is also pMitM-1 = pπ = 1
e .

4 Hybrid Dual Attacks

In this section, we review previous hybrid dual attacks [2,10,16,19]. Hybrid dual
attacks have two phases: the lattice-phase and the guess-phase. The lattice-phase
is the same for all hybrid dual attacks and we can view it as a dimension-error
trade-off, i.e., after the first phase, we get a new decision-LWE instance with a
smaller dimension but a larger error. In the guess-phase, there are two different
approaches to solve the new instance. A detailed description follows.

176 L. Bi et al.

Lattice-Phase. In order to distinguish whether the given instance (A,b) is sam-
pled from U(Zm×n

q ×Z
m
q) or LWEn,q,s,Gσ

with s ∈ T n
1 (w), we divide A into two

parts: A = (A1,A2) ∈ Z
m×r
q ×Z

m×(n−r)
q . Accordingly, we also divide s into two

parts: s = (s1, s2) ∈ {0,±1}r × {0,±1}n−r. In this phase, the attack constructs
the dual lattice over A2:

Λ(A2) =

{

(w,v) ∈ Z
m ×

(
1
c

· Z
)n−r

: w · A2 = c · v mod q

}

with scale factor c = σ ·
√

m
wn−r

, where wn−r is the expected hamming weight

of s2. If the given instance follows LWEn,q,s,Gσ
, by obtaining short vector (w,v)

from Λ(A2), we compute 〈w,b〉 mod q as

〈w,b〉 = w(As + e)
= wA1s1 + wA2s2 + 〈w, e〉
= wA1s1 + c · 〈v, s2〉 + 〈w, e〉 mod q.

This can be viewed as a new LWE instance
(
ā, b̄ = 〈ā, s1〉 + ē mod q

)
, where

b̄ = 〈w,b〉 mod q,

ā = wA1 mod q,

ē = c · 〈v, s2〉 + 〈w, e〉 mod q.

(2)

Denote M the number of short vectors (w,v) ∈ Λ(A2). We write Eq. (2) in the
matrix form as b̄ = Ās1 + ē mod q, where b̄, ē ∈ Z

M
q and Ā ∈ Z

M×r
q . This

instance follows distribution LWEr,q,s1,Gρ
with ρ =
σ where
 = ||(w,v)|| [6]. If

the given instance is from U
(
Z

m×n
q × Z

m
q

)
, then the new instance

(
Ā, b̄

)
is also

uniform over Z
M×r
q ×Z

M
q . So next we are going to solve this new decision-LWE

instance in the second phase.

Guess-Phase. The difference between different hybrid dual attacks is the method
of solving the new instance in this phase.

The first method works by checking the distribution of b̄−Ās̃1 mod q, where
s̃1 is some guessed candidate of s1. By enumerating s̃1 in some way, we can
compute b̄−Ās̃1 mod q. It equals to a Gaussian error ē if (Ā, b̄) ∼ LWEr,q,s1,Gρ

,
otherwise it is uniform over Z

M
q . We can compute the statistical distance to

distinguish LWEn,q,s1,Gρ
from U

(
Z

M×r
q × Z

M
q

)
. This method is used in the first

hybrid dual attack [2] and also in [10,19]. Note that [19] defined the distance by
themselves instead of using statistical distance while the results are similar.

The second method is to check whether all entries of b̄ − Ās̃1 mod q are
in some range [−B,B] for a chosen B. If this holds for one enumerated s̃1, we
decide the original instance is from LWEn,q,s,Gσ

. The hybrid dual attack in [16]
uses this method and it additionally accelerates the guessing of s1 by a MitM
approach. Notice that compared with the first method, the second method has a
stricter requirement on the error size of the new LWE instance, and thus shorter
vectors from the dual lattice are required in the lattice-phase.

Hybrid Dual and Meet-LWE Attack 177

5 Combine Meet-LWE with Dual Attack

We are now ready to present our hybrid dual Meet-LWE attack. The idea is
to replace the exhaustive-search in the guess-phase of hybrid dual attacks by
Meet-LWE. That is, in the guess-phase, we use generalized Meet-LWE to solve
the new instance

(
Ā, b̄

)
∈ Z

M×r
q × Z

M
q .

There are two problems we need to overcome when applying Meet-LWE to
the new setting. The first one is that the secret of the new LWE instance has
a different distribution, which will influence the choices of k and the analysis of
success probability. The second one is that the error of the new LWE instance
becomes large. For this we need to re-analyze the runtime of Meet-LWE as some
constant omitted in the original setting with ternary error now becomes too large
to be omitted. We solve these two problems in Sect. 5.1 and Sect. 5.2 respectively,
and then present the complete algorithm and analysis in Sect. 5.3.

5.1 Meet-LWE on Ternary-2 LWE

We first consider the secret distribution of the new instance
(
Ā, b̄ = Ās1 + ē

mod q) ∈ Z
M×r
q × Z

M
q . Note that in this subsection, we follow May [27] to

set the error ternary and defer the discussion of the Gaussian error to the next
subsection.

As the secret s1 ∈ {0,±1}r is part of the original secret s, we have hm(s1) ≤
wr := min(r, w). Thus s1 ∈ T r

2 (wr) and for each h ≤ wr the probability ps(h)

for s1 to have weight h is ps(h) = (w
h)(n−w

r−h)
(n

r)
.

To apply Meet-LWE attack to this type of secret, we first need to choose
a weight parameter ŵ ≤ wr and use u1,u2 ∈ T r

1 (ŵ/2) to form s1. Then the
search-space of u1,u2 is S(1) =

(
r

ŵ/2

)
·2ŵ/2. Notice that for a fixed parameter ŵ,

we can only form the secrets in
⋃ŵ/2

h=0 T r
1 (2h), and hence the success probability

is at most
∑ŵ/2

h=0 ps(2h).
The next step is to identify the dimension k of the random target t ∈ Z

k
q .

Recall that in Sect. 3.1 and Sect. 3.2, we just set k = �logq R� based on the
number of representations R. However, for T r

2 (wr) we cannot identify k directly
as we have different number of representations for different cases of s1 with
different weights. More precisely, for each h ≤ ŵ/2, the number of representations
of u1 + u2 for s1 with hm(s1) = 2h is R(h) =

(
2h
h

)(
r−2h

ŵ/2−h

)
· 2ŵ/2−h. Notice that

since hm(s1) = 2h and u1,u2 ∈ T r
1 (ŵ/2), there are ŵ/2 − h non-zero entries

of u1 and ŵ/2 − h non-zero entries of u2 that cancel each other out among the
r − 2h 0-entries of s1, and for each cancel out entry, we have two possibilities
1+(−1) = 0 or (−1)+1 = 0. This gives us

(
r−2h

ŵ/2−h

)
·2ŵ/2−h. For the 2h non-zero

entries of s1, there are ŵ/2− (ŵ/2−h) = h entries from u1 and u2 respectively,
which gives us

(
2h
h

)
.

For each R(h), let k(h) = �logq(R(h))�. Thus we need to choose

k ∈ [min
h

(k(h)),max
h

(k(h))].

178 L. Bi et al.

Algorithm 2. Generalized Meet-LWE on LWE with Ternary-2 Secret
Require:

(
Ā, b̄

)
∈ Z

M×r
q × Z

M
q , ŵ

Ensure: s1 ∈ T r
2 (ŵ) satisfying Ās1 − b̄ mod q ∈ {0, ±1}M or ⊥

1: for each h ∈ [0, ŵ/2] do
2: compute the number R(h) of representations of s1 = u1 + u2 where u1,u2 ∈

T r
1 (ŵ/2)

3: compute k(h) = �logq(R)�
4: choose a k ∈ [minh(k(h), maxh(k(h))] (we will brute-force all possible values for k

and choose the optimal one in Section 6)
5: sample a random t ∈ Z

k
q

6: for all πM
k (e1) ∈ {0, ±1}k/2 × 0k/2 do

7: construct L
(1)
1 =

{(
u1, ϕ

(
Āu1

))
: πM

k

(
Āu1 + e1

)
= t mod q

}
via a standard

MitM
8: for all πM

k (e2) ∈ 0k/2 × {0, ±1}k/2 do
9: construct L

(1)
2 =

{(
u2, ϕ

(
b̄ − Āu2

))
: πM

k

(
b̄ − Āu2 + e2

)
= t mod q

}
analo-

gously
10: for all matched of (u1, ·) and (u2, ·) in the second component of L

(1)
1 and L

(1)
2 do

11: if s1 = u1 + u2 ∈ T r
2 (ŵ) and Ās1 − b̄ mod q ∈ {0, ±1}M then

12: return s1
13: return ⊥

For a fixed k, if hm(s1) = 2h, then

πM
k

(
Āu1 + e1

)
= t mod q and πM

k

(
b̄ − Āu2 + e2

)
= t mod q

holds with probability pπ(h) = 1 −
(
1 − 1

qk

)R(h)

, where ē = e1 − e2. Then
overall success probability is

ŵ/2∑

h=0

ps(2h) · pπ(h) =
ŵ/2∑

h=0

ps(2h) ·
(

1 −
(

1 − 1
qk

)R(h)
)

. (3)

The remaining part of the algorithm is the same as before. We give the
pseudo-code of the generalized Meet-LWE on LWE with Ternary-2 Secret in
Algorithm 2.

Analysis. The runtime analysis is similarly as before. The sizes of the lists
are L(1) = S(1)

qk and L(2) = S(2) =
(

r/2
ŵ/4

)
· 2ŵ/4. The time T (1) to construct

list L
(1)
1 , respectively L

(1)
2 , is T (1) = max

{
L(1), L(2)

}
, and the time T (0) of

approximately matching on the M − k coordinates via Odlyzko’s hash function
is T (0) = max

{
L(1), 2−(M−k)

(
L(1)

)2
}

= L(1). The time of list construction is

Ts = max
{

T (1), T (0)
}

= max
{

L(1), L(2)
}

.

The time of enumerating πM
k (e1) and πM

k (e2) is Te = 3k/2.

Hybrid Dual and Meet-LWE Attack 179

Combining the runtime and the success probability given in Eq. (3), we con-
clude with the following lemma.

Lemma 3. The runtime of Meet-LWE algorithm in Algorithm 2 is

TMitM-2 = Ts · Te = max
{(

r

ŵ/2

)
· 2ŵ/2/qk,

(
r/2
ŵ/4

)
· 2ŵ/4

}
· 3k/2,

and the success probability is pMitM-2 =
∑ŵ/2

h=0 ps(2h) · pπ(h).

5.2 The Larger Error

When performing Meet-LWE in the guess-phase of hybrid dual attack, the error
of the new LWE instance is Gaussian instead of in {0,±1}M . In this case, we
need to reconsider the runtime of the attack. We first choose a boundary B to
cover the new error with a high probability2 as in the following lemma, which
can be proved by using Lemma 1.

Lemma 4. Error ē of the new LWE instance given in Eq. (2) satisfies

Pr [|ē| < B] ≥ 1 − 2 · exp(−4π),

where B = (2
√

2π + 1) ·
√

m
m+n−r ·
σ and
 is the length of (w,v) ∈ Λ(A2).

Thus, we have that

pM := Pr
[
ē ∈ [−B,B]M

]
≥ (1 − 2 · exp(−4π))M .

Now we have to enumerate πM
k (e1) and πM

k (e2) in a larger range [−B,B]
using time Te = (2B + 1)k/2.

Note that for the estimation in Sect. 6 we usually have k = 1 as q and B are
large. In this case we can still use MitM for πM

1 (e1) and πM
1 (e2) in one dimension

to get time Te. We note that this case is not considered in [27] as the parameter
k in [27] is large, which is different from ours.

Specifically, now we can use

πM
1 (e1) ∈ [0, c) and πM

1 (e2) ∈ {c · i − B | i ∈ [0, c)}

to form πM
1 (ē) ∈ [−B,B], where c =

⌈√
2B + 1

⌉
. For example, to enumerate

e ∈ [−40, 40] we can split it into e = e1 + e2 by taking e1 ∈ [0, 9) and e2 ∈
{9 · i − 40 | i ∈ [0, 9)} where 9 =

⌈√
40 × 2 + 1

⌉
. This method can also be used

to deal with the situation when k is odd.

2 In Lemma 4, we follow [16] to choose the value of B such that the probability for
|ē| < B is close to 1. Our experimental results show that the overall attack complexity
is not sensitive on B and the current choice of B in Lemma 4 is almost optimal.

180 L. Bi et al.

The second difference is that when constructing lists

L
(1)
1 =

{(
u1, ϕ

(
Āu1

))
: πM

k

(
Āu1 + e1

)
= t mod q

}
,

L
(1)
2 =

{(
u2, ϕ

(
b̄ − Āu2

))
: πM

k

(
b̄ − Āu2 + e2

)
= t mod q

}
,

we will use a different hash function ϕ : ZM
q → {0, 1}M defined as

ϕ(x)i =

⎧
⎪⎨

⎪⎩

0 if xi ∈
[
− q

2 ,−B
)

1 if xi ∈
[
0, q

2 − B
)

0, 1 if xi ∈ [−B, 0) ∪
[

q
2 − B, q

2

)
.

Recall that in Sect. 3.1, when we compute the size L(1) of lists L
(1)
1 and L

(1)
2 , we

count each element once in L(1) as each element has only a constant number of
labels in expectation. However, this does not hold for the current setting, since
now the expected number of labels for each element is 2B+1

q M , which is not
small anymore if B is large.

To figure out this difference, we introduce a new notation L(1) to represent
the overall number of labels for all elements in lists L

(1)
1 and L

(1)
2 , and we still

use L(1) to represent the number of elements in the lists. For a given M , we have

L(1) = L(1) · 2
2B+1

q M .

Since L(1) will influence the runtime, we need to be careful when choosing the
dimension M for the new LWE instance to optimize the runtime of Meet-LWE.

5.3 Our Attack

Now we are ready to give our attack. For given guessing dimension r, blocksize
β and weight parameter ŵ ≤ wr, the pseudo-code of our attack is shown in
Algorithm 3. Line 1–4 is the lattice-phase of our attack, which is the same as
other hybrid dual attacks. After this phase, we get a new instance

(
Ā, b̄

)
∈

Z
M×r
q ×Z

M
q and solve it by using Algorithm 4. Then according to the output of

Algorithm 4, Algorithm 3 outputs the result of the decision-LWE problem.
Note that Algorithm 4 is essentially the same as Algorithm 2, except that

in Algorithm 4, the scope of exhaustive-searching πM
k (e1), πM

k (e2) in line 6, 8
and the final judgment condition in line 11 are both changed to adapt to the
situation of large error in hybrid dual attack.

Analysis. We represent s1 = u1 + u2 with u1,u2 ∈ T r
1 (ŵ/2). The sizes of the

two level lists are L(1) = S(1)

qk =
(

r
ŵ/2

)
· 2ŵ/2 · 1

qk , L(2) = S(2) =
(

r/2
ŵ/4

)
· 2ŵ/4.

Then the time T (1) to construct list L
(1)
1 (respectively L

(1)
2) is computed as

T (1) = max
{
L(1), L(2)

}
. Finding a representation u1 + u2 from L

(1)
1 and L

(1)
2

can be realized via Odlyzko’s hash function on the M − k coordinates in time

Hybrid Dual and Meet-LWE Attack 181

Algorithm 3. Hybrid Dual Meet-LWE Attack
Require: (A,b) ∈ Z

m×n
q × Z

m
q , r, β, ŵ, σ

Ensure: LWE or Uniform
1: divide A into two parts (A1,A2) ∈ Z

m×r
q × Z

m×(n−r)
q

2: construct lattice Λ(A2) =
{
(w,v) ∈ Z

m × Z
n−r : w · A2 = v mod q

}

3: perform BKZ algorithm with blocksize β on Λ(A2) to obtain M short vectors (w,v)
of length �

4: construct new instance
(
Ā, b̄

)
∈ Z

M×r
q × Z

M
q by computing each row/entry of Ā

and b̄ as ā = wA1 mod q and b̄ = 〈w,b〉 mod q
5: set B as Lemma 4
6: run Algorithm 4 on input

(
Ā, b̄

)
, B and ŵ

7: if Algorithm 4 outputs a secret vector then
8: return LWE
9: else

10: return Uniform

T (0) = max
{

L(1), 2−(M−k)
(
L(1)

)2
}

where L(1) = L(1) ·2
2B+1

q M . Then the time

of list construction is
Ts = max

{
T (1), T (0)

}
. (4)

And the time of enumerating πM
k (e1) and πM

k (e2) is

Te = (2B + 1)k/2. (5)

Combining Eq. (4), Eq. (5) and Lemma 4, we get the following theorem.

Theorem 1. The runtime of our hybrid dual Meet-LWE attack in Algorithm 3
is

TDUAL-MEET = Treduction + Tmeet,

where Treduction = TBKZ(β), Tmeet = Ts · Te and Ts, Te are defined as Eq. (4),
Eq. (5) respectively. The success probability of the attack is

pDUAL-MEET = pMitM-2 · pM ,

where pMitM-2 =
∑ŵ/2

h=0 ps(2h) · pπ(h), and pM = (1 − 2 · exp(−4π))M .

6 Complexity Estimation and Comparison

In this section, we present a detailed comparison of our attack with the other
two hybrid dual attacks in [10] and [16]3 (we refer to them as Hybrid1 and
Hybrid2 respectively) by estimating the bit-security of various parameter set-
tings of sparse ternary LWE.

3 Notice that [10] and [16] are the representatives of existing two different categories
of hybrid dual attacks and [10] improves the attack in [2] with additional tricks.

182 L. Bi et al.

Algorithm 4. Generalized Meet-LWE on LWE with Ternary-2 Secret and large
error
Require:

(
Ā, b̄

)
∈ Z

M×r
q × Z

M
q , B, ŵ

Ensure: s1 ∈ T r
2 (ŵ) satisfying Ās1 − b̄ mod q ∈ {0, · · · , ±B}M or ⊥

1: for each h ∈ [0, ŵ/2] do
2: compute the number R(h) of representations of s1 = u1 + u2 where u1,u2 ∈

T r
1 (ŵ/2)

3: compute k(h) = �logq(R)�
4: choose a k ∈ [minh(k(h), maxh(k(h))] (we will choose the optimal value of k to

optimize the complexity in Section 6)
5: sample a random t ∈ Z

k
q

6: for all πM
k (e1) ∈ {0, · · · , ±B}k/2 × 0k/2 do

7: construct L
(1)
1 =

{(
u1, ϕ

(
Āu1

))
: πM

k

(
Āu1 + e1

)
= t mod q

}
via a standard

MitM
8: for all πM

k (e2) ∈ 0k/2 × {0, · · · , ±B}k/2 do
9: construct L

(1)
2 =

{(
u2, ϕ

(
b̄ − Āu2

))
: πM

k

(
b̄ − Āu2 + e2

)
= t mod q

}
analo-

gously
10: for all matched of (u1, ·) and (u2, ·) in the second component of L

(1)
1 and L

(1)
2 do

11: if s1 = u1 + u2 ∈ T r
2 (ŵ) and Ās1 − b̄ mod q ∈ {0, · · · , ±B}M then

12: return s1
13: return ⊥

Our estimators take LWE parameters as input and find optimal parameters
for the attack to get the optimal (lowest) bit-security. The estimation of bit-
security is computed as log Tattack − log pattack [4]. The concrete formulas for our
attack are given in Theorem 1.

The runtime of each hybrid attack Tattack consists of two parts: Treduction and
Tguess, where Treduction is the time of lattice reduction, and Tguess corresponds
to the guess-phase for searching the correct sub-secret in dimension r (which is
denoted as Tmeet in our attack as we use MitM technique to accelerate guessing).
Under the optimal parameters we usually have Treduction ≈ Tguess. The main
parameter to balance Treduction and Tguess is the dimension r. Since we focus
on sparse ternary LWE problems, in the guess-phase we usually only cover part
of the search-space, which incurs a loss in pattack but reduces Tguess. The final
estimation is a trade-off between the three components: Treduction, Tguess, and
pattack. Note that in this paper we assume that TBKZ(d, β) = 8d · 20.292β+16.4,
where d is the dimension of the lattice and β is the blocksize of BKZ, and use
the amortizing model [2] for BKZ performed in dual attack.

We perform the attacks on LWE with FHE-type parameters. Before present-
ing the complete picture of the comparison, we first analyze 3 typical cases in
detail to get a close look into the inner parts of the attacks.

Hybrid Dual and Meet-LWE Attack 183

Table 1. log n = 12, log q = 50, w = 128, σ = 3.2

Attack Dual Hybrid1 Hybrid2 OURS
Cost (bit) attack 302 215 221 202

reduction 302 166 183 172
guess – 166 181 170 = 147+23
prob. – 49 38 30

Parameter r – 1839 2247 2245
β 925 460 520 483
k – – – 1

Table 2. log n = 10, log q = 20, w = 192, σ = 3.2

Attack Dual Hybrid1 Hybrid2 OURS
Cost (bit) attack 188 175 285 220

reduction 188 169 267 204
guess – 169 267 203 = 156 + 47
prob. – 5 19 16

Parameter r – 161 357 432
b 539 475 810 595
k – – – 5

Table 3. log n = 13, log q = 200, w = 128, σ = 3.2

Attack Dual Hybrid1 Hybrid2 OURS
Cost (bit) attack 140 124 120 206

reduction 140 112 112 198
guess – 110 112 199 = 120 + 79
prob. – 12 9 7

Parameter r – 1650 2050 1637
b 365 270 269 563
k – – – 1

6.1 Case 1

We begin with a case for which our attack works the best. We set log n = 12,
log q = 50, w = 128, σ = 3.2. The results for the standalone dual attack,
Hybrid1, Hybrid2, and our attack are shown in Table 1. In addition to
log Treduction, log Tguess, and − log pattack, we also give the guessing dimension

184 L. Bi et al.

r and blocksize β for each attack. For our attack, we additionally give the enu-
meration dimension k for the error and we split Tguess into Ts and Te.

All three hybrid attacks achieve lower complexity than the standalone dual
attack due to the sparse ternary secret. Our attack achieves the lowest complexity
due to its high efficiency in the guessing. Compared with Hybrid1, our attack
guesses in a larger dimension (2245 vs 1839) in a slightly longer time (170 vs
166) but achieves a much higher success probability (30 vs 49). Compared with
Hybrid2, our attack guesses in a similar dimension with a shorter time (170 vs
181) and achieves a higher success probability (30 vs 38).

Notice that the time of guessing Tguess for our attack is close to Hybrid1
and shorter than Hybrid2 even if the time Te = 223 for enumerating e1, e2

is included. Recall that reference [27] deals with schemes with ternary secrets
and the time for enumeration is Te = 3k/2. For us, the new LWE instance after
the lattice-phase has a large error range B, which could make Te = (2B +
1)k/2 very large. At first glance, it may look strange that here our Te is still
so small. However, notice that in our case q is large enough for the number
of representations R such that we just need to fix a random target t in one
dimension, i.e., k = 1, thus Te = (2B + 1)0.5 is not too large.

6.2 Case 2

Next, we look at a different case with a larger weight ratio w
n , where Hybrid1

works the best. We choose log n = 10, log q = 20, w = 192, σ = 3.2. The results
are shown in Table 2. Different from the first case, now Hybrid1 achieves the
lowest complexity. The main reason for the bad performance of our attack is the
larger Te = 247 due to the larger weight ratio w

n ≈ 0.177. Recall that for case
1 we have w

n ≈ 0.031. The large weight ratio results in a larger number R of
representations, which increases the dimension k for the random target t and
then increases Te.

It may look weird that our attack and Hybrid2, which use the MitM tech-
nique, are even worse than the standalone dual attack. This is due to the fun-
damental difference between the two different categories of hybrid dual attacks
discussed in Sect. 4. For dual attack and Hybrid1, they need to find short vec-
tors in the lattice-phase such that in the guess-phase the distribution of the new
error with range B can be differentiated from the uniform distribution. While
for our attack and Hybrid2, we have to guarantee a smaller B

q such that we can
recognize the correct solution by checking each entry of b̄ − Ās1 mod q. There-
fore, we have to find shorter vectors in the lattice-phase, which makes Treduction
large, especially when w

n is large.

6.3 Case 3

We consider the last case with a very large q = 2200, with which Hybrid2 works
best. We set log n = 13, log q = 200, w = 128, and σ = 3.2. The results are shown
in Table 3. We can see that Hybrid1 and Hybrid2 have similar complexity that

Hybrid Dual and Meet-LWE Attack 185

are smaller than dual attack, while our attack has a much larger complexity than
all of them since we have a very large Te = 279. Since k = 1, the main reason
for the large Te = (2B + 1)k/2 is that when q is large, the range B of the error
after the lattice reduction also becomes large. On the other hand, Hybrid1
and Hybrid2 are mainly influenced by the relative value of B

q instead of the
absolute value of B. Notice that in this case with large q and small w

n , Hybrid2
outperforms Hybrid1 while in the first two cases Hybrid2 cannot compete with
Hybrid1.

6.4 Overview

To summarize, our attack outperforms Hybrid1 and Hybrid2 when the weight
ratio w

n is small and q is not too large. When the ratio w
n is large, our attack

and Hybrid2 are both worse than Hybrid1, sometimes even worse than dual
attack. When q is very large, our attack suffers from the large Te, and Hybrid2
achieves the best performance if the ratio w

n is small enough.
To give an overview of the different advantages of the three hybrid dual

attacks, we consider a series of sparse ternary LWE problems with FHE-type
parameters. For each log n = 10, 11, 12, 13, we choose appropriate q such the
corresponding scheme with ternary secret has bit-security around 128 to 256.
For each considered case of n and q, we consider three different values of w =
64, 128, 192 and fix σ = 8/

√
2π ≈ 3.2.

The comparison results are shown in Fig. 1. For each case we give the estima-
tion result of the best attack together with a color indicating the best attack for
this case. The figure can be roughly partitioned into three regions, corresponding
to the three cases considered above. Our attack is the best for most cases when
log n = 12. For log n = 10, 11, as the weight ratio w

n becomes larger, Hybrid1
is the best for most cases and our attack is the best for cases with small weight
(e.g., all cases for w = 64 and log n = 11). When log n = 13, the corresponding
values of q become large. In this case, Hybrid2 becomes the best attack for
most cases while our attack is the best for cases with smaller q.

Based on Fig. 1, some FHE implementations (e.g., HElib [22] and HEAAN
[15]) with parameters that fall within the advantage area of our attack should re-
estimate their parameters. Our results do not make any impact on the schemes
in Round 3 of Post-Quantum Cryptography Standardization held by NIST since
for the LWE-based schemes, they do not adopt sparse ternary secret terms
(except for NTRULPrime, however for these schemes, Hybrid1 works better),
and for NTRU-based schemes, dual attacks cannot be applied to estimate the
bit-security of them [3].

Remark 1. We do not include dual attack as Hybrid1 always works no worse
than dual attack [10]. In addition, we also compare these three attacks with
the primal attack and the comparison shows that the hybrid dual attacks work
better than the primal attack in most cases. Due to the space limitation, we do
not give the specific comparison results here.

186 L. Bi et al.

7 Conclusion

In this work, we introduce and analyze a new hybrid dual attack named hybrid
dual Meet-LWE attack, which combines dual attack and a generalization of Meet-
LWE attack [27]. We compare our attack with previous hybrid dual attacks on
LWE with FHE-type parameters. The result shows that our attack outperforms
those attacks in a large range of parameters. According to our results, some FHE
implementations should update their parameters.

For future works, we note that the main drawback of our attack is the
additional time of guessing k coordinates of the errors, which increases with
q. Recently, [26] introduced a locality sensitive hashing (LSH) technique that
avoids the guessing of the errors in Meet-LWE. It is interesting to study whether
this technique can improve the performance of our attack.

Acknowledgement. This work is supported by the National Natural Science Founda-
tion of China (No. 61972391) and the Open Project Program of State Key Laboratory
of Cryptology (MMKFKT201810).

References

1. Albrecht, M., et al.: Homomorphic encryption standard (2018)
2. Albrecht, M.R.: On dual lattice attacks against small-secret LWE and parameter

choices in HElib and SEAL. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT
2017. LNCS, vol. 10211, pp. 103–129. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-56614-6_4

3. Albrecht, M.R., Curtis, B.R., Deo, A., Davidson, A., Player, R., Postlethwaite,
E.W., Virdia, F., Wunderer, T.: Estimate all the LWE, NTRU schemes! In: Cata-
lano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 351–367. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-98113-0_19

4. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. J. Math. Cryptol. 9(3), 169–203 (2015)

5. Alkim, E., Barreto, P.S.L.M., Bindel, N., Krämer, J., Longa, P., Ricardini, J.E.:
The lattice-based digital signature scheme qtesla. In: ACNS (2020)

6. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange
- a new hope. In: 25th USENIX, pp. 327–343 (2016)

7. Babai, L.: On lovász’lattice reduction and the nearest lattice point problem. Com-
binatorica 6(1), 1–13 (1986)

8. Banaszczyk, W.: Inequalities for convex bodies and polar reciprocal lattices in r∧n
II: application of k-convexity. Discret. Comput. Geom. (1996)

9. Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C.: NTRU prime:
reducing attack surface at low cost. In: Adams, C., Camenisch, J. (eds.) SAC 2017.
LNCS, vol. 10719, pp. 235–260. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-72565-9_12

10. Bi, L., Lu, X., Luo, J., Wang, K., Zhang, Z.: Hybrid dual attack on LWE with
arbitrary secrets. IACR Cryptol. ePrint Arch. 2021, 152 (2021)

11. Chen, H., Chillotti, I., Song, Y.: Improved bootstrapping for approximate homo-
morphic encryption. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS,
vol. 11477, pp. 34–54. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17656-3_2

https://doi.org/10.1007/978-3-319-56614-6_4
https://doi.org/10.1007/978-3-319-56614-6_4
https://doi.org/10.1007/978-3-319-98113-0_19
https://doi.org/10.1007/978-3-319-72565-9_12
https://doi.org/10.1007/978-3-319-72565-9_12
https://doi.org/10.1007/978-3-030-17656-3_2
https://doi.org/10.1007/978-3-030-17656-3_2

Hybrid Dual and Meet-LWE Attack 187

12. Chen, H., Han, K.: Homomorphic lower digits removal and improved FHE boot-
strapping. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol.
10820, pp. 315–337. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
78381-9_12

13. Chen, Y.: Réduction de réseau et sécurité concrete du chiffrement completement
homomorphe. Ph.D. thesis, Paris 7 (2013)

14. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: Bootstrapping for approximate
homomorphic encryption. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018.
LNCS, vol. 10820, pp. 360–384. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78381-9_14

15. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: Snucrypto HEAAN (2019).
http://github.com/homenc/HElib

16. Cheon, J.H., Hhan, M., Hong, S., Son, Y.: A hybrid of dual and meet-in-the-middle
attack on sparse and ternary secret LWE. IEEE Access (2019)

17. Cheon, J.H., Kim, D., Lee, J., Song, Y.: Lizard: cut off the tail! a practical post-
quantum public-key encryption from LWE and LWR. In: Catalano, D., De Prisco,
R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 160–177. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-98113-0_9

18. Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehlé,
D.: Crystals-dilithium: a lattice-based digital signature scheme. IACR Trans. Cryp-
togr. Hardw. Embed. Syst. 2018(1), 238–268 (2018)

19. Espitau, T., Joux, A., Kharchenko, N.: On a dual/hybrid approach to small secret
LWE. In: Bhargavan, K., Oswald, E., Prabhakaran, M. (eds.) INDOCRYPT 2020.
LNCS, vol. 12578, pp. 440–462. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-65277-7_20

20. Göpfert, F., van Vredendaal, C., Wunderer, T.: A hybrid lattice basis reduction
and quantum search Attack on LWE. In: Lange, T., Takagi, T. (eds.) PQCrypto
2017. LNCS, vol. 10346, pp. 184–202. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-59879-6_11

21. Halevi, S., Shoup, V.: Bootstrapping for HElib. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9056, pp. 641–670. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46800-5_25

22. Halevi, S., Shoup, V.: (2019). https://github.com/homenc/HElib
23. Han, K., Ki, D.: Better bootstrapping for approximate homomorphic encryption.

In: Jarecki, S. (ed.) CT-RSA 2020. LNCS, vol. 12006, pp. 364–390. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-40186-3_16

24. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryp-
tosystem. In: ANTS (1998)

25. Howgrave-Graham, N.: A hybrid lattice-reduction and meet-in-the-middle attack
against NTRU. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 150–
169. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5_9

26. Kirshanova, E., May, A.: How to find ternary LWE keys using locality sensitive
hashing. In: Paterson, M.B. (ed.) IMACC 2021. LNCS, vol. 13129, pp. 247–264.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92641-0_12

27. May, A.: How to meet ternary LWE keys. In: Malkin, T., Peikert, C. (eds.)
CRYPTO 2021. LNCS, vol. 12826, pp. 701–731. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-84245-1_24

28. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM (JACM) (2009)

29. Microsoft SEAL: (2019). https://github.com/Microsoft/SEAL

https://doi.org/10.1007/978-3-319-78381-9_12
https://doi.org/10.1007/978-3-319-78381-9_12
https://doi.org/10.1007/978-3-319-78381-9_14
https://doi.org/10.1007/978-3-319-78381-9_14
http://github.com/homenc/HElib
https://doi.org/10.1007/978-3-319-98113-0_9
https://doi.org/10.1007/978-3-030-65277-7_20
https://doi.org/10.1007/978-3-030-65277-7_20
https://doi.org/10.1007/978-3-319-59879-6_11
https://doi.org/10.1007/978-3-319-59879-6_11
https://doi.org/10.1007/978-3-662-46800-5_25
https://github.com/homenc/HElib
https://doi.org/10.1007/978-3-030-40186-3_16
https://doi.org/10.1007/978-3-540-74143-5_9
https://doi.org/10.1007/978-3-030-92641-0_12
https://doi.org/10.1007/978-3-030-84245-1_24
https://doi.org/10.1007/978-3-030-84245-1_24
https://github.com/Microsoft/SEAL

188 L. Bi et al.

30. Son, Y., Cheon, J.H.: Revisiting the hybrid attack on sparse secret LWE and
application to HE parameters. In: WAHC@CCS 2019, pp. 11–20 (2019)

31. Wunderer, T.: Revisiting the hybrid attack: improved analysis and refined security
estimates. IACR Cryptol. ePrint Arch. 2016, 733 (2016)

32. Wunderer, T.: On the Security of Lattice-Based Cryptography Against Lattice
Reduction and Hybrid Attacks. Ph.D. thesis, Darmstadt University of Technology,
Germany (2018)

33. Wunderer, T.: A detailed analysis of the hybrid lattice-reduction and meet-in-the-
middle attack. J. Math. Cryptol. 13(1), 1–26 (2019)

34. Wunderer, T., Burger, M., Nguyen, G.N.: Parallelizing the hybrid lattice-reduction
and meet-in-the-middle attack. In: CSE 2018, pp. 185–193 (2018)

Cryptanalysis and Repair of a Gabidulin
Code Based Cryptosystem

from ACISP 2018

Wenshuo Guo(B) and Fang-Wei Fu

Chern Institute of Mathematics and LPMC, Nankai University, Tianjin, China
ws_guo@mail.nankai.edu.cn, fwfu@nankai.edu.cn

Abstract. This paper presents a key recovery attack on a rank metric
based cryptosystem proposed by Lau and Tan at ACISP 2018, which
uses Gabidulin codes as the underlying decodable code. This attack is
shown to cost polynomial time and therefore completely breaks the cryp-
tosystem. Specifically, we convert the problem of recovering the private
key into solving a multivariate linear system over the base field. We then
present a simple repair for this scheme, which is shown to require expo-
nential complexity for the proposed attack. Additionally, we apply this
attack to cryptanalyze another Gabidulin code based cryptosystem pro-
posed by Loidreau at PQCrypto 2017, and improve Loidreau’s result in
a talk at CBCrypto 2021.

Keywords: Post-quantum cryptography · Code-based cryptography ·
Gabidulin codes · Key recovery attack

1 Introduction

In post-quantum era, public key cryptosystems based on number theoretic prob-
lems will suffer serious security threat due to Shor’s algorithm [37]. To prevent
attacks from quantum computers, people have paid much attention to seeking
alternatives for future use. Among these alternatives, code-based cryptography
is one of the most promising candidates, whose security depends on the NP-
completeness of decoding general linear codes [8]. The first cryptosystem of this
type was proposed by McEliece [30] in 1978 using Goppa codes as the underlying
linear code, which is now known as the McEliece cryptosystem. Although this
scheme remains secure, it has never been used in practical situations due to the
drawback of large key size. To tackle this problem, various improvements have
been proposed one after another. In general, these variants can be divided into

This research was supported by the National Key Research and Development Pro-
gram of China (Grant No. 2018YFA0704703), the National Natural Science Foun-
dation of China (Grant No. 61971243), the Natural Science Foundation of Tianjin
(20JCZDJC00610), and the Fundamental Research Funds for the Central Universities
of China (Nankai University).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
K. Nguyen et al. (Eds.): ACISP 2022, LNCS 13494, pp. 189–205, 2022.
https://doi.org/10.1007/978-3-031-22301-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22301-3_10&domain=pdf
https://doi.org/10.1007/978-3-031-22301-3_10

190 W. Guo and F.-W. Fu

two categories: one is to replace Goppa codes with other Hamming metric codes
[1,4,23,31], the other is to use codes endowed with other metric [2,22].

In 1991, Gabidulin et al. [15] proposed an encryption scheme based on rank
metric codes, namely the GPT cryptosystem based on Gabidulin codes. The
greatest advantage of rank metric based cryptosystems consists in their compact
representation of public keys. Some representative variants based on Gabidulin
codes can be found in [7,12,14,24,27,35]. Unfortunately, most of these variants
have been completely or partially broken due to the inherent structural weakness
of Gabidulin codes [9,11,16,20,32,34].

In [25], Lau and Tan proposed a public key cryptosystem based on Gabidulin
codes, which was later published in [26] with an extended version. In this pro-
posal, the public key consists of two parts, namely a generator matrix of the
disturbed Gabidulin code by a random code that has maximum rank weight
n and a vector of rank weight n. This technique of masking the structure of
Gabidulin codes, as claimed by Lau and Tan, can prevent some existing attacks
such as Frobenius weak attack [19], reduction attack [32], and Overbeck’s attack
[34]. Additionally, the recent Coggia-Couvreur attack [11] and Ghatak’s attack
[18] designed for Loidreau’s cryptosystem [27] do not work on this scheme either.

Our Contributions. Firstly, we show that all the generating vectors of a
Gabidulin code, together with the zero vector, form a 1-dimensional linear space.
In other words, for a fixed generating vector g of a Gabidulin code G ⊆ F

n
qm ,

any other generating vector must be of the form γg for some γ ∈ F
∗
qm . This

suggests that there are totally qm − 1 generating vectors for a Gabidulin code
over Fqm . Secondly, we introduce a different approach from the one in [20] to
compute the generating vector of Gabidulin codes from an arbitrary generator
matrix. Thirdly, this paper presents a simple yet efficient key recovery attack on
the Lau-Tan cryptosystem. Fourthly, we give a simple but effective repair for this
system, which is shown to be secure against the existing structural attacks and
have larger information transfer rate. Lastly, when applying this attack to ana-
lyze Loidreau’s cryptosystem, we get a reduction in the complexity of recovering
an equivalent private key.

The rest of this paper is organized as follows. Section 2 introduces basic
notions used throughout this paper, as well as the concept of Moore matrices
and Gabidulin codes. Section 3 gives a simple description of the Lau-Tan cryp-
tosystem. Section 4 mainly describes the principle of our attack. Specifically, we
first present some further results about Gabidulin codes that will be helpful for
explaining why our attack works. Then a detailed description of this attack will
be given in two steps. Lastly, we give a complexity analysis of this attack and
some experimental results. In Sect. 5, we propose a modification for this scheme,
investigate its security and give some practical parameters. In Sect. 6, we apply
this attack to cryptanalyze Loidreau’s cryptosystem. Section 7 concludes this
paper.

Cryptanalysis and Repair of a Gabidulin Code 191

2 Preliminaries

In this section, we first introduce some notations and basic concepts in coding
theory. After that, we recall the concept of Gabidulin codes, and present some
related results in the meanwhile.

2.1 Notations and Basic Concepts

For a prime power q, we denote by Fq the finite field with q elements, and Fqm an
extension field of Fq of degree m. Note that Fqm can be seen as a linear space over
Fq of dimension m. A vector a ∈ F

m
qm is called a basis vector if the components

of a form a basis of Fqm over Fq. Particularly, we call a a normal basis vector
if a has the form (αqm−1

, αqm−2
, . . . , α) for some α ∈ F

∗
qm = Fqm\{0}. For two

positive integers k and n, denote by Mk,n(Fq) the space of all k × n matrices
over Fq, and by GLn(Fq) the set of all invertible matrices in Mn,n(Fq). For a
matrix M ∈ Mk,n(Fq), denote by 〈M〉q the linear space spanned by the rows of
M over Fq.

An [n, k] linear code C over Fqm is a k-dimensional subspace of Fn
qm , and any

element in C is called a codeword of C. The dual code of C, denoted by C⊥, is the
orthogonal space of C under the usual inner product over Fn

qm . A k×n matrix G
is called a generator matrix of C if its row vectors form a basis of C over Fqm . A
generator matrix H of C⊥ is called a parity-check matrix of C. For a codeword
c ∈ C, the rank support of c, denoted by Supp(c), is the linear space spanned by
the components of c over Fq. The rank weight of c with respect to Fq, denoted
by rk(c), is defined to be the dimension of Supp(c) over Fq. The minimum rank
distance of C, denoted by rk(C), is defined to be the minimum rank weight of all
nonzero codewords in C. For a matrix M ∈ Mk,n(Fqm), the rank support of M ,
denoted by Supp(M), is defined to be the linear space spanned by entries of M
over Fq. The rank weight of M with respect to Fq, denoted by rk(M), is defined
as the dimension of Supp(M) over Fq.

2.2 Gabidulin Codes

This section recalls the concept of Gabidulin codes. Before doing this, we first
introduce the definition of Moore matrices and some related results.

Definition 1 (Moore matrices). For an integer i and α ∈ Fqm , we define
α[i] = αqi

to be the i-th Frobenius power of α. For a vector a = (α1, α2, . . . , αn) ∈
F

n
qm , we define a[i] = (α[i]

1 , α
[i]
2 , . . . , α

[i]
n) to be the i-th Frobenius power of a. For

positive integers k � n, a k × n Moore matrix generated by a is defined as

Mrk(a) =

⎛
⎜⎜⎜⎝

α1 α2 · · · αn

α
[1]
1 α

[1]
2 · · · α

[1]
n

...
...

...
α
[k−1]
1 α

[k−1]
2 · · · α

[k−1]
n

⎞
⎟⎟⎟⎠ .

192 W. Guo and F.-W. Fu

For a positive integer l and a matrix M = (Mij) ∈ Mk,n(Fqm), we denote
by M [l] = (M [l]

ij) the l-th Frobenius power of M . For a set V ⊆ F
n
qm , we denote

by V [l] = {v[l] : v ∈ V} the l-th Frobenius power of V. Particularly, for a linear
code C ⊆ F

n
qm , it is easy to verify that C[l] is also a linear code over Fqm .

The following proposition presents simple properties of Moore matrices.

Proposition 1.(1) For two k×n Moore matrices A,B ∈ Mk,n(Fqm), the sum
A + B is also a k × n Moore matrix.

(2) For a Moore matrix M ∈ Mk,n(Fqm) and a matrix Q ∈ Mn,l(Fq), the
product MQ forms a k × l Moore matrix.

(3) For a vector a ∈ F
n
qm with rk(a) = l, there exist a′ ∈ F

l
qm with rk(a′) = l

and Q ∈ GLn(Fq) such that a = (a′||0)Q. Furthermore, let A = Mrk(a)
and A′ = Mrk(a′), then A = [A′|0]Q.

(4) For positive integers k � n � m, let a ∈ F
n
qm be a vector such that rk(a) = n,

then the Moore matrix Mrk(a) has rank k.

Proof. Statements (1), (2) and (3) are trivial and the proof is omitted here.

(4) Let a = (α1, . . . , αn) ∈ F
n
qm . If Rank(Mrk(a)) < k, then there exists

λ = (λ0, . . . , λk−1) ∈ F
k
qm\{0} such that λMrk(a) = 0. Let f(x) =∑k−1

j=0 λjx
[j] ∈ Fqm [x], then f(αi) = 0 holds for any 1 � i � n. It fol-

lows that f(α) = 0 for any α ∈ 〈α1, . . . , αn〉q, which conflicts with the fact
that f(x) = 0 admits at most qk−1 roots.

In particular, we have the following proposition, which was once exploited by
Loidreau in [28] to cryptanalyze an encryption scheme [27] based on Gabidulin
codes.

Proposition 2 (Moore matrix decomposition). Let a be a basis vector of
Fqm over Fq. For a positive integer k � m, let M = Mrk(a) be a Moore matrix
generated by a. Then for any k ×n Moore matrix M ′ ∈ Mk,n(Fqm), there exists
Q ∈ Mm,n(Fq) such that M ′ = MQ.

Now we formally introduce the definition of Gabidulin codes.

Definition 2 (Gabidulin codes). For positive integers k < n � m, let a ∈
F

n
qm such that rk(a) = n. The [n, k] Gabidulin code generated by a, denoted by

Gabn,k(a), is defined as the linear space spanned by the rows of Mrk(a) over Fqm .
Mrk(a) is called a canonical generator matrix of Gabn,k(a), and a a generating
vector respectively.

Remark 1. Gabidulin codes can be seen as a rank metric counterpart of general-
ized Reed-Solomon (GRS) codes, both of which admit good algebraic properties.
The dual of an [n, k] Gabidulin code is an [n, n−k] Gabidulin code [16]. An [n, k]
Gabidulin code has minimum rank distance n−k+1 [21] and can therefore correct
up to

⌊
n−k
2

⌋
rank errors in theory. Efficient decoding algorithms for Gabidulin

codes can be found in [13,29,36].

Cryptanalysis and Repair of a Gabidulin Code 193

To reduce the public key size, Lau and Tan exploited the so-called partial
circulant matrix in the cryptosystem, which is defined as follows.

Definition 3 (Partial circulant matrices). For a = (α1, α2, . . . , αn) ∈ F
n
qm ,

the circulant matrix generated by a, denoted by Cirn(a), is defined to be a matrix
whose first row is a and i-th row is obtained by cyclically right shifting the i−1-
th row for 2 � i � n. The k × n partial circulant matrix generated by a, denoted
by Cirk(a), is defined to be the first k rows of Cirn(a).

Remark 2. Let a be a normal basis vector of Fqm over Fq, then it is easy to verify
that the k×m partial circulant matrix generated by a is exactly the k×m Moore
matrix generated by a. In other words, we have Cirk(a) = Mrk(a).

3 Lau-Tan Cryptosystem

In this section, we mainly give a simple description of the Lau-Tan cryptosystem
that uses Gabidulin codes as the underlying decodable code. For a given security
level, choose positive integers m > n > k > k′ and r such that k′ = �k

2 � and
r = �n−k

2 �. The Lau-Tan cryptosystem consists of the following three algorithms.

– Key Generation

Let G be an [n, k] Gabidulin code over Fqm , and G ∈ Mk,n(Fqm) be a genera-
tor matrix of G of canonical form. Randomly choose matrices S ∈ GLk(Fqm)
and T ∈ GLn(Fq). Randomly choose u ∈ F

n
qm such that rk(u) = n and set

U = Cirk(u). Let Gpub = SG + UT , then we publish (Gpub,u) as the public
key, and keep (S,G, T) as the private key.

– Encryption

For a plaintext m ∈ F
k′
qm , randomly choose a vector ms ∈ F

k−k′
qm such

that rk((m||ms)U) > � 3
4 (n − k)	. Randomly choose e1,e2 ∈ F

n
qm such

that rk(e1) � r
2 and rk(e2) � r

2 . Compute c1 = (m||ms)U + e1 and
c2 = (m||ms)Gpub + e2. Then the ciphertext is c = (c1, c2).

– Decryption

For a ciphertext c = (c1, c2) ∈ F
2n
qm , compute c′ = c2 − c1T = (m||ms)SG+

e2 − e1T . Note that rk(e2 − e1T) � rk(e2) + rk(e1T) � r, decoding c′ with
the fast decoder of G will lead to m′ = (m||ms)S, then by computing m′S−1

one can recover the plaintext m.

4 Key Recovery Attack

This section discusses how to efficiently recover an equivalent private key of
the Lau-Tan cryptosystem. We point out that the knowledge of T is of great
importance for the security of the whole cryptosystem. Specifically, if one can
find the private T , then one is able to recover everything needed to decrypt an
arbitrary ciphertext in polynomial time. Before describing this attack, we first
introduce some further results about Gabidulin codes.

194 W. Guo and F.-W. Fu

4.1 Further Results About Gabidulin Codes

Similar to GRS codes in the Hamming metric, Gabidulin codes also have good
algebraic structure. For instance, if G is a Gabidulin code over Fqm , then its l-th
Frobenius power is also a Gabidulin code. Formally, we introduce the following
proposition.

Proposition 3. Let G be an [n, k] Gabidulin code over Fqm , with G ∈
Mk,n(Fqm) as a generator matrix. For any positive integer l, G[l] is also an
[n, k] Gabidulin code and has G[l] as a generator matrix.

Proof. Trivial from a straightforward verification.

For a proper positive integer l, the intersection of a Gabidulin code and its
l-th Frobenius power is still a Gabidulin code, as described in the following
proposition.

Proposition 4. For an [n, k] Gabidulin code G over Fqm , let g ∈ F
n
qm be a gen-

erating vector of G. For a positive integer l � min{k − 1, n− k}, the intersection
of G and its l-th Frobenius power is an [n, k − l] Gabidulin code with g[l] as a
generating vector. In other words, we have the following equality

G ∩ G[l] = Gabn,k−l(g[l]).

Proof. By Definition 2, G is an Fqm-span of g, . . . , g[k−1], i.e. G =
〈g, . . . , g[k−1]〉qm . By Proposition 3, we have G[l] = 〈g[l], . . . , g[k+l−1]〉qm . Note
that l � min{k − 1, n − k}, then k + l � n and g, . . . , g[k+l−1] are linearly inde-
pendent over Fqm . It follows that G ∩G[l] = 〈g[l], . . . , g[k−1]〉qm forms an [n, k− l]
Gabidulin code, having g[l] as a generating vector. This completes the proof.

Proposition 5. For positive integers k < n � m, let G ⊂ F
n
qm be an [n, k]

Gabidulin code, and A ∈ Mk,n(Fqm) a nonzero Moore matrix. If all the row
vectors of A are codewords in G, then A forms a generator matrix of G.
Proof. It suffices to prove Rank(A) = k. Suppose that A is generated by a ∈ F

n
qm ,

i.e. A = Mrk(a). Let l = rk(a), then there exist a′ ∈ F
l
qm with rk(a′) = l and

Q ∈ GLn(Fq) such that a = (a′||0)Q. Let A′ ∈ Mk,l(Fqm) be a Moore matrix
generated by a′, then it follows immediately that A = [A′|0]Q. If l > k, then
Rank(A) = Rank(A′) = k due to Proposition 1 and therefore the conclusion is
proved. Otherwise, there will be 〈A′〉qm = F

l
qm . From this we can deduce that

the minimum rank distance of G will be 1, which conflicts with the fact that
rk(G) = n− k+1 � 2. Hence l > k and Rank(A) = k. This completes the proof.

By Definition 2, a Gabidulin code is uniquely determined by its generating
vector. Naturally, it is important to make clear what all these vectors look like
and how many generating vectors there exist for a Gabidulin code.

Proposition 6. Let G be an [n, k] Gabidulin code over Fqm , with g ∈ F
n
qm as a

generating vector. Let g′ ∈ F
n
qm be a codeword in G, then g′ forms a generating

vector if and only if there exists γ ∈ F
∗
qm such that g′ = γg.

Cryptanalysis and Repair of a Gabidulin Code 195

Proof. Assume that g = (α1, . . . , αn) and g′ = (α′
1, . . . , α

′
n), let G = Mrk(g)

and G′ = Mrk(g′). The conclusion is trivial if g = g′. Otherwise, without loss
of generality we assume that α′

1 �= α1, then there exists γ ∈ F
∗
qm\{1} such that

α′
1 = γα1. Let

S =

⎛
⎜⎜⎜⎝

γ 0 · · · 0
0 γ[1] · · · 0
...

...
...

0 0 · · · γ[k−1]

⎞
⎟⎟⎟⎠ ,

then SG = Mrk(γg). Let g∗ = γg − g′ = (0, γα2 − α′
2, . . . , γαn − α′

n) and
G∗ = Mrk(g∗), then G∗ = SG − G′. Apparently all the row vectors of G∗ are
codewords in G. If g∗ �= 0, then G∗ forms a generator matrix of G of canonical
form due to Proposition 5. Together with rk(g∗) � n − 1, easily we can deduce
that rk(c) � n−1 for any c ∈ G, which clearly contradicts the fact that rk(g) = n.
Therefore there must be g∗ = 0, or equivalently g′ = γg. The opposite is obvious
from a straightforward verification.

The following corollary is drawn immediately from Proposition 6.

Corollary 1. An [n, k] Gabidulin code over Fqm admits qm −1 generator matri-
ces of canonical form, or equivalently qm − 1 generating vectors.

Remark 3. Let G ⊆ F
n
qm be an [n, k] Gabidulin code, and M ∈ Mk,m(Fqm) a

Moore matrix generated by a basis vector of Fqm over Fq. By Proposition 2, for
any canonical generator matrix G, there exists a unique Q ∈ Mm,n(Fq) such
that G = MQ. For a fixed M , there exist qm − 1 Q’s in Mm,n(Fq) such that
MQ forms a canonical generator matrix of G. Furthermore, all these Q’s together
with the zero matrix form an Fq-linear space of dimension m.

4.2 Recovering the Private T

This section mainly describes an efficient algorithm for recovering the private
T . The technique we adopt here is to convert the problem of recovering T into
solving a multivariate linear system, which clearly costs polynomial time. Before
doing this, we first introduce the so-called subfield expanding transform.

Subfield Expanding Transform. For β1, . . . , βn ∈ Fqm , we construct an
equation as

n∑
j=1

xjβj = 0, (1)

where xj ’s are underdetermined variables in Fq. Let a be a basis vector of Fqm

over Fq. For each 1 � j � n, there exists bj ∈ F
m
q such that βj = bja

T . It follows
that

∑n
j=1 xjβj =

∑n
j=1 xj(bja

T) = (
∑n

j=1 xjbj)aT , and moreover, (1) holds if
and only if

n∑
j=1

xjbj = 0. (2)

196 W. Guo and F.-W. Fu

Obviously, the linear systems (1) and (2) share the same solution space. A trans-
form that derives (2) from (1) is called a subfield expanding transform (SET for
short).

In the Lau-Tan cryptosystem, let H ∈ Mn−k,n(Fqm) be a parity-check matrix
of G of canonical form. Let M ∈ Mn−k,m(Fqm) be a Moore matrix generated
by a basis vector of Fqm over Fq, then there exists an underdetermined matrix
X ∈ Mm,n(Fq) such that H = MX. On the other hand, there exists another
underdetermined matrix T ∗ ∈ GLn(Fq) such that Gpub −UT ∗ forms a generator
matrix of G. This leads to a parity-check matrix equation as follows

(Gpub − UT ∗)(MX)T = GpubX
T MT − UT ∗XT MT = 0. (3)

We therefore obtain a system of k(n− k) multivariate quadratic equations, with
n(m+ n) variables in Fq. This system admits at least qm solutions. Specifically,
we introduce the following proposition.

Proposition 7. The linear system (3) has at least qm solutions.

Proof. If T ∗ = T , then we can deduce from (3) that

(Gpub − UT ∗)(MX)T = (SG + UT − UT ∗)(MX)T = SG(MX)T = 0.

Note that SG ∈ Mk,n(Fqm) forms a generator matrix of G. By SG(MX)T = 0,
all the row vectors of MX are contained in G⊥, which is an [n, n − k] Gabidulin
code. On the other hand, it is clear that MX forms an (n−k)×n Moore matrix.
By Proposition 5, MX forms a canonical generator matrix of G⊥ for a nonzero
X. Then the conclusion is immediately proved from Corollary 1. Furthermore,
we have that X is an m × n matrix of full rank.

Note that solving a multivariate quadratic system generally requires expo-
nential time. Instead of solving the system (3) directly, the technique we exploit
here is to consider each entry of T ∗XT as a new variable in Fq and set Y = XT ∗T .
In other words, we rewrite (3) into a matrix equation as follows

GpubX
T MT − UY T MT = 0. (4)

This leads to a linear system of k(n − k) equations, with coefficients in Fqm and
2mn variables in Fq. To solve the system (4), we usually convert this problem
into an instance over the base field Fq. Applying SET to (4) leads to a linear
system of mk(n − k) equations over Fq, with 2mn variables to be determined.
For cryptographic use, generally we have mk(n − k) � 2mn.

Remark 4. With each solution (X,T ∗) of (3), one can obtain a solution of (4)
by computing Y = XT ∗T , which implies that (4) also has at least qm solutions.
Conversely, if (4) has exactly qm solutions, then these solutions must correspond
to those of (3) where T ∗ = T . In this situation, solving (4) for any nonzero
solution (X,Y) enables us to recover the private T by solving the matrix equation
Y = XT ∗T .

Cryptanalysis and Repair of a Gabidulin Code 197

As for whether or not the system (4) has other types of solutions, we make
an Assumption that the answer is negative. According to our experimental
results in MAGMA [10], this assumption holds with high probability. To make it
easier, a simplified version of this problem is considered. Let G be an arbitrary
generator matrix of an [n, k] Gabidulin code and u ∈ F

n
qm such that rk(u) = n.

We then construct a matrix equation as

GXT MT + Cirk(u)Y T MT = 0,

where M ∈ Mn−k,m(Fqm) is a Moore matrix generated by a basis vector of Fqm

over Fq and X,Y ∈ Mm,n(Fq) are two underdetermined matrices. By applying
SET to this system above, we obtain a new system over Fq. By Remark 4, if
this newly obtained system admits a solution space of dimension m, then there
must be Y = 0. Finally, we ran 1000 random tests for q = 2,m = 25, n = 23, k =
10, and for q = 3,m = 18, n = 15, k = 7 respectively. It turns out that this
assumption holds in all of these random instances.

Algorithm 1 : T -Recovering Algorithm
Input: (Gpub, U)
Output: T

1: Let a be a basis vector of Fqm over Fq and set M = Mrn−k(a)
2: Let X, Y ∈ Mm,n(Fq) be two underdetermined matrices and set

GpubX
T MT − UY T MT = 0 (5)

3: Apply SET to (5) to obtain a linear system over Fq

4: Solve the system from Step 3 for any nonzero (X, Y)
5: Solve the matrix equation Y = XT ∗T for T ∗

6: return T = T ∗

4.3 Finding an Equivalent (S′, G′)

In Sect. 4.2, we have discussed how to efficiently recover T from (Gpub, U). With
the knowledge of T , one can recover SG by computing SG = Gpub − UT , which
forms a generator matrix of G. To decrypt a ciphertext as the legitimate receiver
does, one needs to recover a generator matrix G′ of G of canonical form and an
invertible matrix S′ such that S′G′ = SG, where (S′, G′) is called an equivalent
form of (S,G). Once such a G′ is obtained, then one can recover S′ by solving a
matrix equation.

Now we investigate how to derive a canonical generator matrix of a Gabidulin
code, or equivalently a generating vector, from an arbitrary generator matrix.
In [20] the authors presented an iterative method of computing the generating
vector. Here in this paper we present a different approach to do this.

An Approach to Compute the Generating Vector. For an [n, k] Gabidulin
code G over Fqm , let G ∈ Mk,n(Fqm) be an arbitrary generator matrix of G. We

198 W. Guo and F.-W. Fu

first compute a parity-check matrix of G from G, say H. Let M ∈ Mk,m(Fqm)
be a Moore matrix generated by a basis vector of Fqm over Fq, then there exists
an underdetermined matrix X ∈ Mm,n(Fq) such that MX forms a canonical
generator matrix of G. By setting (MX)HT = 0, we obtain a linear system of
k(n − k) equations, with coefficients in Fqm and mn variables in Fq. Applying
SET to this system leads to a new linear system over the base field Fq, with
mk(n−k) equations and mn variables. For cryptographic use, generally we have
mk(n − k) � mn. By Corollary 1, this newly obtained system admits qm − 1
nonzero solutions. And for any nonzero solution, say X, the first row of MX
will be a generating vector of G.

Algorithm 2 : (S′, G′)-Recovering Algorithm
Input: (Gpub, U, T)
Output: (S′, G′)
1: Let a be a basis vector of Fqm over Fq and set M = Mrk(a)
2: Compute SG = Gpub − UT and let G = 〈SG〉qm

3: Let H ∈ Mn−k,n(Fqm) be a parity-check matrix of G
4: Let X ∈ Mm,n(Fq) be an underdetermined matrix and set

(MX)HT = 0 (6)

5: Apply SET to (5) to obtain a linear system over Fq

6: Solve the system from Step 5 for any nonzero X
7: Compute G′ = MX
8: Compute S′ ∈ GLk(Fqm) such that S′G′ = SG
9: return (S′, G′)

4.4 Complexity of the Attack

Our attack consists of two phases: firstly, we manage to recover the private T
from the published information, as described in Algorithm 1; secondly, with the
knowledge of T and the public key, we compute a canonical generator matrix
G′ of the secret Gabidulin code and an invertible matrix S′, as described in
Algorithm 2. Hence the complexity analysis is done in the following two aspects.

Complexity of Algorithm 1. In Step 1 we construct a Moore matrix M ∈
Mn−k,m(Fqm) whose first row forms a basis vector of Fqm over Fq. To avoid
executing the Frobenius operation, here we choose a to be a normal basis vector,
then we set M = Cirn−k(a). In Step 2 we construct a multivariate linear system
by performing matrix multiplication, requiring O(mn3) operations in Fqm . The
subfield expanding transform performed to (5) requires O(m3n3) operations in
Fqm . Step 4 requires O(m3n3) operations to solve the linear system over Fq and
Step 5 requires O(n3) operations in Fq. The total complexity of Algorithm 1
consists of O(m3n3 + mn3) operations in Fqm and O(m3n3 + n3) operations in
Fq.

Cryptanalysis and Repair of a Gabidulin Code 199

Complexity of Algorithm 2. In Step 1 we still choose a normal basis vector
to construct M . To compute SG, we perform matrix addition and multiplication
with O(n3) operations in Fqm . Step 3 computes a parity-check H of G from SG,
requiring O(n3) operations in Fqm . Then we construct a linear system in Step 4,
which costs O(mn3) operations in Fqm . In Step 5 we apply SET to (6) to obtain
a new system over Fq, requiring O(m3n3) operations in Fqm . Solving this new
system in Step 6 costs O(m3n3) operations in Fq, and computing G′ = MX
in Step 7 requires O(mn2) operations in Fqm . In Step 8, we shall compute S′

from S′G′ with O(n3) operations. The total complexity of Algorithm 2 consists
of O(m3n3 + mn3 + n3) operations in Fqm and O(m3n3) operations in Fq.

Finally, the total complexity of the attack is O(m3n3 + mn3 + n3) in Fqm

plus O(m3n3 + n3) in Fq.

4.5 Implementation

This attack has been implemented in MAGMA and permits to recover the private
T . We tested this attack on a personal computer and succeeded for parameters as
illustrated in Table 1. For each parameter set, this attack has been run 100 times
and the last column gives the average timing (in seconds). Our implementation
is just a proof of feasibility of this attack and does not consider the proposed
parameters in [25,26].

Table 1. These tests were performed using MAGMA V2.11-1 on 11th Gen IntelR

CoreTM i7-11700 @ 2.5 GHz processor with 16 GB of memory.

q m n k t

2 22 18 9 8.6
2 28 22 9 40.7
2 35 26 12 173.2

5 A Repair

To prevent the proposed attack, we give a simple repair for the Lau-Tan cryp-
tosystem in this section. Then we explain why this repair can resist the existing
structural attacks, as well as the key recovery attack described in Sect. 4. After
that, practical security of this repair against generic attacks is investigated. Fol-
lowing this, we suggest parameters for the security of at least 128 bits, 192 bits,
and 256 bits. Public key sizes under these parameters are also given.

5.1 Description of the Repair

For a given security level, choose a field Fq and positive integers m,n, k, λ, r1, r2
such that r = �n−k

2 � and r1+λr2 � r. Our repair consists of the following three
procedures.

200 W. Guo and F.-W. Fu

– Key Generation
Let G be an [n, k] Gabidulin code over Fqm , and G ∈ Mk,n(Fqm) a generator
matrix of G of canonical form. Randomly choose matrices S ∈ GLk(Fqm)
and T ∈ GLn(V), where V ⊆ Fqm is a randomly chosen Fq-linear space
of dimension λ. Randomly choose u ∈ F

n
qm such that rk(u) = n and set

U = Cirk(u). Let Gpub = (SG + U)T−1, then we publish (Gpub,u) as the
public key, and keep (S,G, T) as the private key.

– Encryption
For a plaintext m ∈ F

k
qm , randomly choose e1 ∈ F

n
qm with rk(e1) = r1 and

e2 ∈ F
n
qm with rk(e2) = r2. Compute c1 = mU + e1 and c2 = mGpub + e2,

then the ciphertext is c = (c1, c2).
– Decryption

For a ciphertext c = (c1, c2) ∈ F
2n
qm , compute c′ = c2T−c1 = mSG+e2T−e1.

Note that rk(e2T − e1) � rk(e2T) + rk(e1) � λr2 + r1 � r. Decoding c′ with
the decoder of G leads to m′ = mS, then by computing m′S−1 one can
recover the plaintext m.

Remark 5. It is clear that the public key will degenerate into an instance of
the original system if λ = 1 and V = Fq, which has been completely broken
in the present paper. To achieve the IND-CPA security, the original encryption
procedure chooses an extra vector ms to concatenate m, which greatly reduces
the information transfer rate. To avoid this defect, we remove the use of ms in
the encrypting process. Consequently, a problem arises that the repaired scheme
only satisfies the security notion of One-Wayness. However, we can follow the
approach in [24] to convert this repair into an IND-CCA2 secured encryption
scheme.

5.2 Security Analysis

Now we investigate the security of this repair in the following three aspects.
Structural Attacks. Resistance of our repair against the existing structural

attacks [11,18,19,32,34] is apparent. In what follows, therefore, we only consider
the key recovery attack presented in Sect. 4. With a similar analysis, we construct
a matrix equation as follows

GpubY
T MT − UXT MT = 0. (7)

What differs from (4) is that X ∈ Mm,n(Fq) and Y ∈ Mm,n(Fqm) is taken in an
Fq-linear space of dimension λ. Applying SET to (7) will lead to a linear system
over Fq, with k(n − k)m equations and (λ+1)mn variables. Solving this system
generally requires O(

(λ + 1)3m3n3
)

operations. Note that we cannot presup-
pose Fq ⊆ V because of the additive structure, which suggests that one has to
enumerate λ-dimensional Fq-subspaces of Fqm with a complexity of O(

qλ(m−λ)
)
.

Finally the whole complexity of our attack on this repair can be evaluated as
O(

(λ + 1)3m3n3qλ(m−λ)
)
. It is easy to see that this repair can easily reach the

desired security for parameters of proper size.

Cryptanalysis and Repair of a Gabidulin Code 201

Generic Attacks. We first introduce the so-called rank syndrome decoding
(RSD) problem on which the security of most code-based cryptosystems relies.
An RSD problem with parameters (q,m, n, k, t) is to search for a vector e ∈ F

n
qm

such that rk(e) = t and s = eHT , where H ∈ Mn−k,n(Fqm) is a matrix of full
rank and s ∈ F

n−k
qm . Generic attacks on the RSD problem can be divided into

two categories, namely the combinatorial attacks as listed in Table 2 and the
algebraic attacks as listed in Table 3. The security of a code-based cryptosystem
under these attacks only relate to the practical parameters, and does not rely
on the algebraic structure of the underlying code.

Table 2. Best known combinatorial attacks on the RSD problem.

Attack Complexity

[33] O
(
min

{
m3t3q(t−1)(k+1), (k + t)3t3q(t−1)(m−t)

})

[17] O
(
(n − k)3m3q

min
{

t�mk
n �,(t−1)

⌈
m(k+1)

n

⌉})

[3] O
(
(n − k)3m3q

t
⌈
m(k+1)

n

⌉
−m

)

Table 3. Best known algebraic attacks on the RSD problem.

Attack Condition Complexity

[17]
⌈

(t+1)(k+1)−(n+1)
t

⌉
� k O

(
k3t3q

t
⌈
(t+1)(k+1)−(n+1)

t

⌉)

[6] m
(

n−k−1
t

)
�

(
n
t

) − 1 O
(
m

(
n−p−k−1

t

)(
n−p

t

)ω−1
)
, where ω = 2.81 and

p = min{1 � i � n : m
(

n−i−k−1
t

)
�

(
n−i

t

) − 1}
[5] O

((
((m+n)t)t

t!

)ω)

[6] m
(

n−k−1
t

)
<

(
n
t

) − 1 O
(
qatm

(
n−k−1

t

)(
n−a

t

)ω−1
)
, where a =

min{1 � i � n : m
(

n−k−1
t

)
�

(
n−i

t

) − 1}
[5] O

((
((m+n)t)t+1

(t+1)!

)ω)

Proposed Parameters. Now we consider the practical security of this repair
and propose some parameters for the security of at least 128 bits, 192 bits, and
256 bits. As illustrated in Table 4, we consider m = n and r1 = r2 = t = � n−k

2(λ+1)�.
The ciphertext of our repair consists of the following two parts

c1 = mU + e1, c2 = mGpub + e2,

which lead to an RSD instance of parameters (q,m, n, k, t). Meanwhile, it is easy
to see that

(c1||c2) = m[U |Gpub] + (e1||e2),

202 W. Guo and F.-W. Fu

and this results in another RSD instance of parameters (q,m, 2n, k, 2t). Addi-
tionally, we also consider the proposed key recovery attack described above,
which requires O(

(λ+ 1)3m3n3qλ(m−λ)
)

operations in Fq. Finally we give some
suggested parameters in Table 4, as well as the corresponding public-key sizes.

Table 4. Parameters and public-key size (in bytes).

Parameters Public-Key Size Security
q m n k λ r1 r2

2 79 79 37 2 7 7 29645 128
2 91 91 43 2 8 8 45546 193
2 110 110 50 2 10 10 77138 265

6 Cryptanalysis of Loidreau’s Cryptosystem

The success of our attack on the Lau-Tan cryptosystem relies on four points.
One is the fact of Moore matrix decomposition as described in Proposition 2,
the second is to construct a system of equations from the parity-check matrix
equation, the third is to reduce the problem of solving a multivariate quadratic
system into solving a multivariate linear system, and the last is any nonzero
solution of this linear system leads to an equivalent private key.

Based on Points 1, 2, and 4 described above, we provide another perspective
on the security of Loidreau’s cryptosystem [27], which has been completely bro-
ken for specific parameters [11,18]. Firstly, we give a simple description for the
principle of Loidreau’s cryptosystem. The public key in this cryptosystem is pub-
lished as Gpub = GP−1, where G is a generator matrix of an [n, k] Gabidulin code
G ⊆ Fqm and P ∈ GLn(Fqm) with entries contained in a small λ-dimensional
Fq-linear space V ⊆ Fqm . To encrypt a plaintext m ∈ F

k
qm , one first encodes m

by computing mGpub, then disguises this codeword by adding an error vector
e ∈ F

n
qm with rk(e) = �n−k

2λ �. To decrypt a ciphertext c = mGpub + e, one
first computes c′ = cP , then decodes c′ with the decoder of G to recover eP
due to rk(eP) � �n−k

2 �. Then one can obtain m by solving the linear system
mG = c′ − eP .

In a talk [28] at CBCrypto 2021, Loidreau proposed an attack to recover
a polynomial-time decoder of the public code with a complexity of O(

(λn +
(n − k)2)3m3q(λ−1)m

)
for q = 2, which can be easily generalized to any field Fq.

Loidreau’s attack manages to recover Y ∈ Mm,n(V) such that Gpub(MY)T = 0,
where M ∈ Mn−k,m(Fqm) is a Moore matrix generated by a basis vector of
Fqm over Fq. Then with the knowledge of Y , one can decrypt any ciphertext
in polynomial time. Specifically, let c = mGpub + e be the received ciphertext,
then one computes s = c(MY)T = eY T MT . Note that rk(eY T) � �n−k

2 �, then
one can recover e′ = eY T by using the syndrome decoder of an [m,m − n + k]
Gabidulin code that has M as a parity-check matrix. After that, one can recover
e by solving the linear system e′ = eY T .

Cryptanalysis and Repair of a Gabidulin Code 203

Now we apply the proposed attack to Loidreau’s cryptosystem. Let H ∈
Mn−k,n(Fqm) be a canonical parity-check matrix of G, and Gpub = 〈Gpub〉qm the
public code. It is clear that Hpub = HPT forms a parity-check matrix of Gpub.
Let M ∈ Mn−k,m(Fqm) be a Moore matrix generated by a basis vector of Fqm

over Fq, then there exists Y ∗ ∈ Mm,n(Fq) such that H = MY ∗. Let Y = Y ∗PT ,
then one can construct a linear system from the parity-check matrix equation
GpubH

T
pub = 0, which is equivalent to

Gpub(MY)T = GpubY
T MT = 0. (8)

While in Loidreau’s attack, the corresponding linear system is constructed from
SHpub = MY , which introduces extra variables from an underdetermined matrix
S ∈ GLn−k(Fqm). Applying SET to (8) leads to a linear system over Fq of
k(n−k)m equations and λmn variables. For cryptographic use, k(n−k)m � λmn
always holds in practical situations. And this system admits qm solutions when
V is correctly guessed, which has been validated through numerous experiments.
Solving this system for any nonzero solution permits us to obtain Y ′ ∈ Mm,n(V)
such that Gpub(MY ′)T = 0. On the other hand, one can always presuppose 1 ∈ V
since Gpub = α−1G(α−1P)−1 for any nonzero α ∈ V. Finally this attack requires
a complexity of O(

λ3n3m3q(λ−1)m
)

in Fq, which is clearly lower than Loidreau’s
attack.

7 Conclusion

Our attack has revealed the structural weakness of the Lau-Tan cryptosystem.
Although the first part of the public key hides the structure of Gabidulin codes
nicely, the second part reveals important information that can be used to design
a key recovery attack. Specifically, we convert the problem of recovering the pri-
vate key into solving a multivariate linear system over the base field. Extensive
experiments have been performed and the results accord with our theoretical
expectations. To prevent this attack, we give a simple but effective repair for
this cryptosystem, which is shown to be secure against all the existing structural
attacks. Furthermore, when applying this attack to analyze Loidreau’s cryptosys-
tem, we reduce the complexity of recovering a polynomial-time decoder of the
public code.

References

1. Aguilar-Melchor, C., Blazy, O., Deneuville, J.-C., Gaborit, P., Zémor, G.: Efficient
encryption from random quasi-cyclic codes. IEEE Trans. Inform. Theory 64(5),
3927–3943 (2018)

2. Aragon, N., Gaborit, P., Hauteville, A., Ruatta, O., Zémor, G.: Low rank parity
check codes: new decoding algorithms and applications to cryptography. IEEE
Trans. Inform. Theory 65(12), 7697–7717 (2019)

204 W. Guo and F.-W. Fu

3. Aragon, N., Gaborit, P., Hauteville, A., Tillich, J.-P.: A new algorithm for solving
the rank syndrome decoding problem. In: Proceedings of 2018 IEEE International
Symposium on Information Theory (ISIT 2018), pp. 2421–2425. IEEE (2018)

4. Baldi, M., Chiaraluce, F., Garello, R.: On the usage of quasi-cyclic low-density
parity-check codes in the McEliece cryptosystem. In: Proceedings of 2007 IEEE
International Conference on Communications (ICC 2007), pp. 951–956. IEEE
(2007)

5. Bardet, M., Briaud, P., Bros, M., Gaborit, P., Neiger, V., Ruatta, O., Tillich, J.-P.:
An algebraic attack on rank metric code-based cryptosystems. In: Canteaut, A.,
Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp. 64–93. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-45727-3_3

6. Bardet, M., Bros, M., Cabarcas, D., Gaborit, P., Perlner, R., Smith-Tone, D.,
Tillich, J.-P., Verbel, J.: Improvements of algebraic attacks for solving the rank
decoding and MinRank problems. In: Moriai, S., Wang, H. (eds.) ASIACRYPT
2020. LNCS, vol. 12491, pp. 507–536. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-64837-4_17

7. Berger, T., Loidreau, P.: Designing an efficient and secure public-key cryptosys-
tem based on reducible rank codes. In: Canteaut, A., Viswanathan, K. (eds.)
INDOCRYPT 2004. LNCS, vol. 3348, pp. 218–229. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-30556-9_18

8. Berlekamp, E.R., McEliece, R.J., Van Tilborg, H.: On the inherent intractability
of certain coding problems. IEEE Trans. Inform. Theory 24(3), 384–386 (1978)

9. Bombar, M., Couvreur, A.: Decoding supercodes of gabidulin codes and applica-
tions to cryptanalysis. In: Cheon, J.H., Tillich, J.-P. (eds.) PQCrypto 2021 2021.
LNCS, vol. 12841, pp. 3–22. Springer, Cham (2021). https://doi.org/10.1007/978-
3-030-81293-5_1

10. Bosma, W., Cannon, J., Playoust, C.: The MAGMA algebra system I: the user
language. J. Symbolic Comput. 24(3–4), 235–265 (1997)

11. Coggia, D., Couvreur, A.: On the security of a Loidreau rank metric code based
encryption scheme. Des. Codes Crypt. 88(9), 1941–1957 (2020). https://doi.org/
10.1007/s10623-020-00781-4

12. Faure, C., Loidreau, P.: A new public-key cryptosystem based on the problem of
reconstructing p–polynomials. In: Ytrehus, Ø. (ed.) WCC 2005. LNCS, vol. 3969,
pp. 304–315. Springer, Heidelberg (2006). https://doi.org/10.1007/11779360_24

13. Gabidulin, E.M.: Theory of codes with maximum rank distance. Prob. Peredachi
Inf. 21(1), 3–16 (1985)

14. Gabidulin, E.M., Ourivski, A.V., Honary, B., Ammar, B.: Reducible rank codes
and their applications to cryptography. IEEE Trans. Inform. Theory 49(12), 3289–
3293 (2003)

15. Gabidulin, E.M., Paramonov, A.V., Tretjakov, O.V.: Ideals over a non-
commutative ring and their application in cryptology. In: Davies, D.W. (ed.)
EUROCRYPT 1991. LNCS, vol. 547, pp. 482–489. Springer, Heidelberg (1991).
https://doi.org/10.1007/3-540-46416-6_41

16. Gaborit, P., Otmani, A., Kalachi, H.T.: Polynomial-time key recovery attack on
the Faure-Loidreau scheme based on Gabidulin codes. Des. Codes Cryptogr. 86(7),
1391–1403 (2018)

17. Gaborit, P., Ruatta, O., Schrek, J.: On the complexity of the rank syndrome decod-
ing problem. IEEE Trans. Inf. Theory 62(2), 1006–1019 (2016)

18. Ghatak, A.: Extending Coggia-Couvreur attack on Loidreau’s rank-metric cryp-
tosystem. Des. Codes Cryptogr. 90, 215–238 (2022)

https://doi.org/10.1007/978-3-030-45727-3_3
https://doi.org/10.1007/978-3-030-64837-4_17
https://doi.org/10.1007/978-3-030-64837-4_17
https://doi.org/10.1007/978-3-540-30556-9_18
https://doi.org/10.1007/978-3-030-81293-5_1
https://doi.org/10.1007/978-3-030-81293-5_1
https://doi.org/10.1007/s10623-020-00781-4
https://doi.org/10.1007/s10623-020-00781-4
https://doi.org/10.1007/11779360_24
https://doi.org/10.1007/3-540-46416-6_41

Cryptanalysis and Repair of a Gabidulin Code 205

19. Horlemann-Trautmann, A.-L., Marshall, K., Rosenthal, J.: Considerations for rank-
based cryptosystems. In: Proceedings of 2016 IEEE International Symposium on
Information Theory (ISIT 2016), pp. 2544–2548. IEEE (2016)

20. Horlemann-Trautmann, A.-L., Marshall, K., Rosenthal, J.: Extension of overbeck’s
attack for Gabidulin-based cryptosystems. Des. Codes Cryptogr. 86(2), 319–340
(2018)

21. Horlemann-Trautmann, A.-L., Marshall, K.: New criteria for MRD and Gabidulin
codes and some rank-metric code constructions. arXiv:1507.08641 [cs.IT] (2015)

22. Horlemann-Trautmann, A.-L., Werger, V.: Information set decoding in the Lee
metric with applications to cryptography. Adv. Math. Commun. 15(4), 677–699
(2021)

23. Janwa, H., Moreno, O.: McEliece public key cryptosystems using algebraic-
geometric codes. Des. Codes Cryptogr. 8(3), 293–307 (1996)

24. Lau, T.S.C., Tan, C.H.: New rank codes based encryption scheme using partial
circulant matrices. Des. Codes Crypt. 87(12), 2979–2999 (2019). https://doi.org/
10.1007/s10623-019-00659-0

25. Lau, T.S.C., Tan, C.H.: A new encryption scheme based on rank metric codes. In:
Susilo, W., Yang, G. (eds.) ACISP 2018. LNCS, vol. 10946, pp. 750–758. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-93638-3_43

26. Lau, T.S.C., Tan, C.H.: A new technique in rank metric code-based encryption.
Cryptography 2(4), 32 (2018)

27. Loidreau, P.: A new rank metric codes based encryption scheme. In: Lange, T.,
Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 3–17. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-59879-6_1

28. Loidreau, P.: Analysis of a rank metric codes based encryption scheme. https://
drive.google.com/file/d/1FuMgqm0NfGMJOxaZyrIrI1OWn0UICwPo/view.
Accessed 1 July 2021

29. Loidreau, P.: A welch–berlekamp like algorithm for decoding gabidulin codes. In:
Ytrehus, Ø. (ed.) WCC 2005. LNCS, vol. 3969, pp. 36–45. Springer, Heidelberg
(2006). https://doi.org/10.1007/11779360_4

30. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. Jet
Propuls. Lab. DSN Progr. Rep. 42–44, 114–116 (1978)

31. Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Prob.
Contr. Inform. Theory 15(2), 157–166 (1986)

32. Otmani, A., Kalachi, H.T., Ndjeya, S.: Improved cryptanalysis of rank metric
schemes based on Gabidulin codes. Des. Codes Cryptogr. 86(9), 1983–1996 (2018)

33. Ourivski, A.V., Johansson, T.: New technique for decoding codes in the rank met-
ric and its cryptography applications. Problems Inform. Transm. 38(3), 237–246
(2002)

34. Overbeck, R.: Structural attacks for public key cryptosystems based on Gabidulin
codes. J. Cryptology 21(2), 280–301 (2008)

35. Renner, J., Puchinger, S., Wachter-Zeh, A.: LIGA: a cryptosystem based on the
hardness of rank-metric list and interleaved decoding. Des. Codes Cryptogr. 89(6),
1279–1319 (2021). Springer

36. Richter, G., Plass, S.: Error and erasure decoding of rank-codes with a modified
Berlekamp-Massey algorithm. ITG FACHBERICHT, pp. 203–210 (2004)

37. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1994)

http://arxiv.org/abs/1507.08641
https://doi.org/10.1007/s10623-019-00659-0
https://doi.org/10.1007/s10623-019-00659-0
https://doi.org/10.1007/978-3-319-93638-3_43
https://doi.org/10.1007/978-3-319-59879-6_1
https://drive.google.com/file/d/1FuMgqm0NfGMJOxaZyrIrI1OWn0UICwPo/view
https://drive.google.com/file/d/1FuMgqm0NfGMJOxaZyrIrI1OWn0UICwPo/view
https://doi.org/10.1007/11779360_4

Public-Key Cryptography

Chosen Ciphertext Secure Keyed
Two-Level Homomorphic Encryption

Yusaku Maeda1 and Koji Nuida2,3(B)

1 The University of Tokyo, Tokyo, Japan
2 Institute of Mathematics for Industry (IMI), Kyushu University, Fukuoka, Japan

nuida@imi.kyushu-u.ac.jp
3 National Institute of Advanced Industrial Science and Technology (AIST),

Tokyo, Japan

Abstract. Homomorphic encryption (HE) is a useful variant of pub-
lic key encryption (PKE), but it has a drawback that HE cannot fully
achieve IND-CCA2 security, a standard security notion for PKE. Emura
et al. (PKC 2013) proposed a “keyed” version of HE, called KH-PKE,
which introduces a separate key for homomorphic evaluation and then
achieves security close to IND-CCA2. Current KH-PKE schemes are clas-
sified into ones supporting only a single kind of homomorphic operation
(addition or multiplication) and others that are fully homomorphic but
are consequently not very efficient; no intermediate schemes with both
efficiency and richer functionality are known so far. In this paper, we
propose a “two-level” KH-PKE scheme for evaluating degree-two poly-
nomials, by cleverly combining Emura et al.’s generic framework with a
recent efficient two-level HE by Attrapadung et al. (ASIACCS 2018).

1 Introduction

1.1 Background

Homomorphic encryption (HE) is a cryptographic primitive first introduced in
[16], which allows one to compute on encrypted data without a secret key. The
most basic and efficient HE are additively HE (AHE), which only allows addition
between ciphertexts, and multiplicative HE, which only allows multiplication. On
the other hand, fully homomorphic encryption (FHE) can carry out arbitrary com-
putations on encrypted data, but efficiency of FHE is still not sufficiently practical.
To take the advantages of both types of HE, somewhat homomorphic encryption
(SHE) allows one to compute unlimited number of addition and a limited num-
ber of multiplication. Among them, two-level homomorphic encryption (2LHE)
schemes [3,5,11], which enables a single multiplication (as well as unlimited num-
ber of addition), have significantly better efficiency. The state-of-the-art 2LHE
scheme at the present is the one by Attrapadung et al. in 2018 [3] based on prime-
order pairing group and practical computational assumption (SXDH assumption).

Although HE is useful, it has a drawback that an HE scheme cannot in
principle satisfy IND-CCA2 security, a standard security notion for public key

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
K. Nguyen et al. (Eds.): ACISP 2022, LNCS 13494, pp. 209–228, 2022.
https://doi.org/10.1007/978-3-031-22301-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22301-3_11&domain=pdf
https://doi.org/10.1007/978-3-031-22301-3_11

210 Y. Maeda and K. Nuida

encryption (PKE). Roughly speaking, this is because enabling computation
over ciphertexts is equivalent to allowing alteration of ciphertexts, the latter
being contradictory to IND-CCA2 security. To overcome this issue, Emura et al.
pointed out that the property that anyone could perform homomorphic oper-
ation was the main obstacle for achieving IND-CCA2 security, and proposed
keyed-homomorphic PKE (KH-PKE) [9,10]1. In KH-PKE, the homomorphic
operation is administrated by an evaluation key ek. They also proposed a new
security notion called KH-CCA security for KH-PKE. KH-CCA security achieves
IND-CCA1 security against adversaries possessing ek from the beginning, and
IND-CCA2 security against those not possessing ek at all (and some intermedi-
ate security if ek is leaked during the security game). They also gave a concrete
construction of KH-PKE schemes using hash proof systems (HPSs) [7,8].

Emura et al.’s KH-PKE scheme is practically efficient, but it realizes the
functionality of AHE only. There are also other KH-PKE schemes with single
kind of functionality [12,14]. On the other hand, fully homomorphic KH-PKE
schemes are proposed in [13] using indistinguishability obfuscation (iO) and
recently in [17] without iO; but these are not very efficient similarly to ordinary
(i.e., non-keyed) FHE. In contrast to ordinary HE, the existing KH-PKE schemes
in the literature have no counterparts of SHE (such as 2LHE) that have stronger
functionality than [9,10,12,14] and are significantly more efficient than [13,17].

1.2 Our Contributions

In this paper, we introduce new type of KH-PKE named keyed two-level homo-
morphic encryption (Keyed-2LHE), which can handle unlimited number of addi-
tion and a single multiplication over ciphertexts administrated by an evaluation
key. We also give a concrete construction of Keyed-2LHE schemes. Although
our Keyed-2LHE scheme has some overhead compared to the KH-PKE scheme
by Emura et al. [9,10] and to the 2LHE scheme by Attrapadung et al. [3], the
underlying setting (prime-order pairing groups and SXDH assumption) is the
same as [3] and the overhead is within a feasible range (e.g., our public key and
ciphertext sizes are only up to four times larger than those of [3]). This is the first
KH-PKE that allows both addition and multiplication with practical efficiency.

The very first idea for constructing our Keyed-2LHE scheme is simple; it
is a kind of abstraction of Attrapadung et al.’s 2LHE scheme that can then
be interpreted in the context of Emura et al.’s generic framework for realizing
KH-PKE. We emphasize, however, that it was never a straightforward task to
successfully combine the two schemes. In detail, the generic construction by
Emura et al. uses three kinds of HPSs P , ̂P , and ˜P . Here P is for masking
the plaintext, and ˜P is for achieving IND-CCA2 security when the evaluation
key is not used. The role of ̂P is most complicated; it should simultaneously

1 The notion of KH-PKE was proposed in 2013 [10]. A construction for concrete KH-
PKE schemes was also given in that paper, but its security proof was not correct
and their scheme was actually not secure. The issue was then fixed in 2018 [9] by
modifying the construction as well as the security proof.

Chosen Ciphertext Secure Keyed Two-Level Homomorphic Encryption 211

take care of having (additive) homomorphic property and achieving IND-CCA1
security when the evaluation key is available. In our proposed scheme, there
are two levels of ciphertexts, and hence 3 × 2 = 6 HPSs are used in total.
Among them, the constructions of five HPSs except ̂P for level-2 ciphertexts are
relatively simple; these are, in some sense, direct products of HPSs where the
underlying HPSs follow known constructions already used by Emura et al. [9].
On the other hand, for the ̂P in level-2 part, it is not sufficient to take care
of additive homomorphic property and IND-CCA1 security; it should also be
related in an appropriate manner to the HPSs in level-1 part in order to realize
multiplicative homomorphic property. For simultaneously achieving these three
requirements, the known construction of HPSs used in [9] was not enough, and we
had to develop a new tailor-made HPS to fill in the last piece of our construction.
We also note that our resulting scheme fortunately shares a key property (called
source ciphertext hiding property) with Emura et al.’s construction, which makes
the security proof of our proposed scheme just analogous to the proof in [9].

1.3 Related Work

There are also several researches on achieving security close to IND-CCA2 while
allowing computation over ciphertexts [2,6,15]. However, they differ from KH-
PKE in that they are not equipped with an evaluation key and they only achieve
security strictly weaker than IND-CCA2 (in contrast to our scheme achieving
IND-CCA2 security against adversaries not possessing the evaluation key).

1.4 Organization of the Paper

In Sect. 2, we review some basic notions and prepare notations. In Sect. 3, we
describe hash proof systems. In Sect. 4, we define syntax and security notion for
Keyed-2LHE, and give a concrete description of our proposed scheme. Finally,
we evaluate the efficiency of our proposed scheme in Sect. 5.

2 Preliminaries

Throughout the paper, “PPT” stands for “probabilistic polynomial-time”. For
a probabilistic algorithm A, we write a ← A to represent that a is obtained as
an output of A. Similarly, for a set A, we write a ← A to represent that a is
chosen from A uniformly at random. We say that a non-negative function f(λ)
in an integer λ is negligible if f(λ) ∈ λ−ω(1). We write Z/NZ simply as ZN .

Let X = {Xn}n∈N and Y = {Yn}n∈N be families of random variables defined
on a finite set Ω. X and Y are said to be ε-close if the statistical distance satisfies

Δ(Xn, Yn) =
1
2

∑

ω∈Ω

|Pr[Xn = ω] − Pr[Yn = ω]| ≤ ε .

Furthermore, when ε = ε(n) is negligible in n, we say that X and Y are statis-
tically indistinguishable, denoted by X

s≈ Y . On the other hand, X and Y are

212 Y. Maeda and K. Nuida

said to be computationally indistinguishable, denoted by X
c≈ Y , if for any PPT

algorithm A, we have |Pr[A(Xn) = 1]−Pr[A(Yn) = 1]| ≤ negl(n) where negl(n)
denotes a negligible function in n.

Definition 1 (approximate samplability). For a finite set Bn and its subset
B′

n indexed by n ∈ N, we say B′
n is approximately samplable relative to Bn if

there exists a sequence of random variables on Bn that is statistically indistin-
guishable from the uniform distribution on B′

n and polynomial-time samplable.

Definition 2 (collision resistant hash function).. Let {fi}i∈I be a family
of hash functions indexed by i ∈ I, specified by the security parameter 1�. {fi}i∈I

is said to be collision resistant (CR) if for any PPT algorithm A, the probability

Pr[x �= x∗ ∧ fi(x) = fi(x∗) | i ← I; (x, x∗) ← A(1�, i)]

is negligible in �.

2.1 Pairings

Definition 3 (bilinear group generation algorithm). A bilinear group gen-
eration algorithm GenBG takes a security parameter 1� as input, and outputs
(p, G1, G2, GT , g1, g2, e). Here, G1, G2, and GT are cyclic groups of prime order
p = Θ(2�), while g1, g2 are generators of G1, G2, respectively, and e : G1 × G2 →
GT is a non-degenerate bilinear map called pairing.

Definition 4 (SXDH assumption). We say that Symmetric External
Diffie–Hellman (SXDH) assumption holds in GenBG, when for pp =
(p, G1, G2, GT , g1, g2, e) ← GenBG(1�) and i = 1, 2, we have

{(pp, gα
i , gβ

i , gαβ
i) | α, β ← Zp} c≈ {(pp, gα

i , gβ
i , gγ

i) | α, β, γ ← Zp} .

2.2 Notation

From now on, all operations on cyclic groups will be written additively, unless
otherwise noted. Also for simplicity, for x ∈ G1 and y ∈ G2, we write x ⊗ y :=
e(x, y). We will extend this notation to matrices in the following manner. We
define the tensor product between x ∈ G1 and a matrix Y = (yij) ∈ G

k×�
2 as

x ⊗ Y :=

⎡

⎢

⎣

x ⊗ y11 . . . x ⊗ y1�

...
. . .

...
x ⊗ yk1 . . . x ⊗ yk�

⎤

⎥

⎦ ∈ G
k×�
T

and for a matrix X = (xij) ∈ G
m×n
1 , we define the tensor product between X

and Y as

X ⊗ Y :=

⎡

⎢

⎣

x11 ⊗ Y . . . x1n ⊗ Y
...

. . .
...

xm1 ⊗ Y . . . xmn ⊗ Y

⎤

⎥

⎦ ∈ G
mk×n�
T .

Chosen Ciphertext Secure Keyed Two-Level Homomorphic Encryption 213

Note that this definition satisfies (X ⊗Y)� = X� ⊗Y �, where
 represents the
trasposition of a matrix.

Furthermore, we define the tensor product between two elements a, b ∈ Zp as
a⊗b := ab, and extend it to matrices over Zp in a similar manner as above. Also,
multiplication of a matrix over Zp to a matrix with components in G1, G2, or GT

is defined in the same way as the usual matrix multiplication where the scalar
multiplication to group elements plays the role of multiplication between matrix
components. Note that these definitions satisfy (AX)⊗ (BY) = (A⊗B)(X ⊗Y)
(assuming that the matrix sizes are consistent to multiplication), where A and
B are matrices over Zp, X is a matrix over G1, and Y is a matrix over G2.

Under the notations, SXDH assumption can be rewritten as follows.

Proposition 1. SXDH assumption is equivalent to the following statement: for
pp = (p, G1, G2, GT , g1, g2, e) ← GenBG(1�), g′

1 ← G1, g′
2 ← G2, g1 = (g1, g′

1) ∈
G

2
1, and g2 = (g2, g′

2) ∈ G
2
2, we have for both i = 1, 2

{(pp, gi,x) | x ← 〈gi〉} c≈ {(pp, gi,x) | x ← G
2
i } .

Proof. Two distributions in the statement can be rewritten as

{(pp, gi,x) | x ← 〈gi〉} = {(pp, (gi, αgi), (βgi, αβgi)) | α, β ← Zp} ,

{(pp, gi,x) | x ← G
2
i } = {(pp, (gi, αgi), (βgi, γgi)) | α, β, γ ← Zp} ,

which are obviously equivalent to the distributions in Definition 4. �

3 Hash Proof Systems

Definition 5 (hash proof system). Let X,Π be finite sets and ∅ �= L ⊂
X. We assume that any x ∈ L has a witness w to ensure that x ∈ L, and
that a random element of L can be efficiently sampled together with its witness.
Then Hash Proof System (HPS) P = (X,L,Π) consists of the following five
algorithms.

– SetUp(1�), with security parameter 1�, outputs public parameter pp, which
includes descriptions of sets X and L.

– HashKG(pp) outputs a secret key hk.
– ProjKG(hk) outputs the corresponding public key hp.
– Hash(hk, x), with x ∈ X, outputs the corresponding hash value π ∈ Π.
– ProjHash(hp, x, w), with x ∈ L and its witness w, outputs the corresponding

hash value π ∈ Π.

We define W , K, S to be the sets consisting of all the possible values of witness
w, secret keys hk, and public keys hp, respectively.

We may omit input hk in the algorithm Hash or inputs hp, w in ProjHash when
they are obvious from the context. Also, when we give concrete constructions of
the above algorithms, we may omit the description on SetUp if it is obvious.

214 Y. Maeda and K. Nuida

HPS is required to satisfy the correctness: for pp ← SetUp(1�), hk ←
HashKG(pp), hp ← ProjKG(hk), and for any x ∈ L and its witness w, we have
Hash(hk, x) = ProjHash(hp, x, w).

Definition 6 (smoothness). HPS is said to be ε-smooth relative to X ′ ⊂ X
if for pp ← SetUp(1�), hk ← HashKG(pp), and hp ← ProjKG(hk), the following
two distributions

{(hp, x,Hash(x)) | x ← X ′ \ L}, {(hp, x, π) | x ← X ′ \ L, π ← Π}

are ε-close. When ε is negligible in �, we simply say that the HPS is smooth.

Definition 7 (universal1). HPS is said to be ε-universal1 if for any hp ∈ S,
x ∈ X \ L, and π ∈ Π, we have

Pr
hk←K

[Hash(hk, x) = π ∧ ProjKG(hk) = hp] ≤ ε · Pr
hk←K

[ProjKG(hk) = hp] .

When ε is negligible in �, we simply say that the HPS is universal1.

Definition 8 (universal2). HPS is said to be (information-theoretically) ε-
universal2 if for any hp ∈ S, x, x∗ ∈ X \ L (x �= x∗), and π, π∗ ∈ Π, we have

Pr
hk←K

[Hash(hk, x) = π ∧ Hash(hk, x∗) = π∗ ∧ ProjKG(hk) = hp]

≤ ε · Pr
hk←K

[Hash(hk, x∗) = π∗ ∧ ProjKG(hk) = hp] .

When ε is negligible in �, we simply say that the HPS is universal2.

Its computational variant was also defined in [9] as follows.

Definition 9 (first-adaptive computationally universal2). Let P be a
HPS. We define the following game between a challenger and an adversary A:

1. The challenger randomly picks pp ← SetUp(1�) and hk ← K, computes hp ←
ProjKG(hk), and sends pp, hp to A.

2. A queries to Hash oracle. Hash oracle takes x ∈ X as input and returns
Hash(hk, x) if x ∈ L, and returns ⊥ otherwise.

3. At an arbitrary point of the game, A submits x∗ ∈ X to the challenger. The
challenger responds by sending π∗ = Hash(hk, x∗) back to A. A is allowed to
continue Hash queries even after the submission.

4. A outputs x ∈ X \ L and π ∈ Π.

A wins the game if the output of the game satisfies x �= x∗ and Hash(hk, x) = π.
We say that P is first-adaptive computationally universal2, if the probability for
winning the game is negligible in � for any PPT algorithm A.

Definition 10 (hardness of a subset membership problem). We say that
subset membership problem of the HPS is hard relative to X ′ ⊂ X if for pp ←
SetUp(1�), we have {(pp, x) | x ← L} c≈ {(pp, x) | x ← X ′ \ L}.

Chosen Ciphertext Secure Keyed Two-Level Homomorphic Encryption 215

This intuitively means that an element of L and an element of X ′\L cannot be
distinguished in polynomial time. We note that there are cases where distinction
is possible given an additional information, formalized as follows.

Definition 11 (trapdoor subset membership problem). When HPS has
the following two PPT algorithms in addition to the five algorithms in Defini-
tion 5, we say that the subset membership problem associated to the HPS has a
trapdoor:

– TrapdoorSetUp(1�) takes security parameter 1� as input, and outputs public
parameter pp together with a trapdoor τ .

– Distinguish(x, τ) takes x ∈ X and a trapdoor τ as inputs and decides whether
x ∈ L or not.

3.1 Construction of HPS Based on Diverse Vector Space

As a generic construction of HPS, a construction based on a diverse group system
is proposed in [8]. However, since we only deal with the construction based on
cyclic groups, it is more convenient to think about the special case of diverse
group system called diverse vector space [1,4]. All the HPSs used for our proposed
scheme are based on this framework.

The definition of a diverse vector space is given below, which is slightly
modified from the definition in [1] in order to make our argument simpler.

Definition 12 (diverse vector space). Let G be a cyclic group of prime order
p, X = G

n, and L = 〈g1, . . . , gd〉 ⊂ X. Now any homomorphism φ : X → Π = G

can be represented as φ(x) = k�x for some k ∈ Z
n
p . Therefore, Hom(X,Π) can

be identified with K = Z
n
p . We call the tuple (K,X,L,Π) a diverse vector space.

In the remaining part of this section, we assume d = 1 for simplicity.
Given a diverse vector space (K,X,L,Π), we can construct an HPS as fol-

lows. Note that the witness for x ∈ L can be set as w ∈ Zp that satisfies x = wg.

– HashKG(pp), with public parameter pp, outputs hk = k ← K.
– ProjKG(hk), with secret key hk = k, outputs a public key hp = s := k�g.
– Hash(hk,x), with hk = k and x ∈ X, outputs a hash value π = k�x.
– ProjHash(hp,x, w), with public key hp = s and x ∈ L together with its witness

w, outputs a hash value π = ws.

The correctness of the above construction can be shown by checking

Hash(x) = k�x = k�(wg) = w(k�g) = ws = ProjHash(x, w).

Proposition 2. The above HPS is 0-smooth and (1/p)-universal1. Also, the
subset membership problem associated to the HPS has a trapdoor.

Proof. The smoothness and the universal1 property follow from Example 1 in
Section 7.4.1 of [8]. On the other hand, we can check that the subset membership
problem has a trapdoor, by giving two algorithms in Definition 11 as follows:

216 Y. Maeda and K. Nuida

– TrapdoorSetUp(1�) generates a generator g of L by calculating

g = (g, τ1 · g, τ2 · g, . . . , τn−1 · g) where g ← G \ {0}, τ1, . . . , τn−1 ← Zp

and outputs τ := (τ1, . . . , τn−1) as a trapdoor.
– Distinguish(x, τ) takes x = (x0, . . . , xn−1) ∈ X and τ = (τ1, . . . , τn−1) as

inputs, and check if xi = τi ·x0 holds for i = 1, . . . , n− 1. If all the conditions
are satisfied, the algorithm decides x ∈ L, and otherwise decides x /∈ L.

Hence the claim holds. �
Also, we can construct universal2 HPS by combining the above construction

with a hash function. Let E be a finite set, and modify the definitions of X and
L by X = G

n ×E, L = 〈g〉×E. In addition, let Γ : X → Z
m
p be a hash function.

– HashKG(pp) outputs hk = (k0, . . . ,km) ← (Zn
p)m+1.

– ProjKG(hk) outputs hp = (s0, . . . , sm) := (k�
0 g, . . . ,k�

mg).
– Hash(hk, (x, e)), with (x, e) ∈ X, calculates Γ (x, e) = (γ1, . . . , γm) and out-

puts

π = k�
0 x +

m
∑

i=1

γik
�
i x .

– ProjHash(hp, (x, e), w) with (x, e) ∈ L and the corresponding witness w, cal-
culates Γ (x, e) = (γ1, . . . , γm) and outputs

π = ws0 +
m

∑

i=1

γiwsi .

Proposition 3. For the HPS above, if Γ is injective, then the HPS is information-
theoretically universal2. If Γ is sampled from a family of collision resistant hash
functions, then the HPS is first-adaptive computationally universal2.

Proof. The statement follows immediately from Proposition 1 of [9]. �

3.2 Direct Product of HPS

In this section, we define direct product of HPS, and describe some properties.
We note that a notion of direct product of HPS is also defined in [1], but their
definition slightly differs from ours.

Suppose that two HPSs P1 = (X1, L1,Π1), P2 = (X2, L2,Π2) are given. We
denote algorithms and sets related to each HPS by putting the corresponding
subscript. In this situation, we can construct a new HPS P = (X1 × X2, L1 ×
L2,Π1 × Π2) in the following manner.

– HashKG(pp) calculates hki ← HashKGi(pp) (i = 1, 2), and outputs hk =
(hk1, hk2).

– ProjKG(hk) takes hk = (hk1, hk2) as input, calculates hpi ← ProjKGi(hki)
(i = 1, 2), and outputs hp = (hp1, hp2).

Chosen Ciphertext Secure Keyed Two-Level Homomorphic Encryption 217

– Hash(hk, x) takes hk = (hk1, hk2) and x = (x1, x2) ∈ X1 × X2 as inputs,
calculates πi ← Hashi(hki, xi) (i = 1, 2), and outputs π = (π1, π2).

– ProjHash(hp, x, w) takes hp = (hp1, hp2), x = (x1, x2) ∈ L1 × L2 and the
pair of the corresponding witnesses w = (w1, w2) as inputs, calculates πi ←
ProjHashi(hpi, xi, wi) (i = 1, 2), and outputs π = (π1, π2).

Proposition 4. The HPS P constructed as above satisfies the following:

1. If P1 and P2 are smooth, then P is smooth relative to X ′ = (X1 \L1)× (X2 \
L2).

2. If P1 and P2 are universal1, then P is universal1.
3. If P1 and P2 are universal2, then P is universal2.

Proof (Sketch). For Part 1, for pp ← SetUp(1�), hk ← HashKG(pp), and hp ←
ProjKG(hk), the two components of Hash(x) = (Hash1(x1),Hash2(x2)) given hp
and x ← X ′ \ L can be replaced in a statistically indistinguishable manner
with random elements of Π1 and Π2 owing to the smoothness of P1 and P2,
respectively. This implies the smoothness of P .

For Part 2, if x = (x1, x2) ∈ X \L, then we have xi ∈ Xi \Li for at least one
i ∈ {1, 2}. Now the desired bound for the probability of Hash(x) = (π1, π2) is
given by a bound for the probability of Hashi(xi) = πi implied by the universal1
property for Pi. This implies the universal1 property for P . The case of Part 3
is similar. �
Proposition 5. If both P1 and P2 are first-adaptive computationally universal2
and the subset membership problem for each of P1 and P2 has a trapdoor, then P
is first-adaptive computationally universal2 and its subset membership problem
also has a trapdoor.

Proof (Sketch). The statement for the existence of a trapdoor for P holds
obviously. For the first-adaptive computationally universal2 property, intuitively
speaking, if a PPT adversary were able to break this property for P , then the
adversary could also break this property for either P1 or P2. �

4 Keyed Two-Level Homomorphic Encryption

4.1 Syntax and Security Notion

The syntax and security notion for KH-PKE defined in [9,10] can be naturally
extended to the case of 2LHE as follows.

Definition 13 (syntax of Keyed-2LHE). Let M be a message space of the
form M = {(i,m) | i ∈ {1, 2},m ∈ M′}, where M′ is a ring. We set Mi =
{i}×M′ for i = 1, 2. A keyed two-level homomorphic encryption (Keyed-2LHE)
is defined by five algorithms below.

– ParamGen(1�), with security parameter 1�, outputs public parameter pp.
– KeyGen(pp) takes pp as input and outputs three keys (pk, sk, ek).

218 Y. Maeda and K. Nuida

– Enc(pk,m) takes pk and m ∈ M as inputs and outputs ciphertext C.
– Dec(sk, C) takes sk and a ciphertext C as inputs and outputs plaintext m ∈ M

or ⊥, which represents a failure of decryption.
– Eval(ek, f, C,C ′) takes evaluation key ek, operation f : M2 → M and two

ciphertexts C,C ′ as inputs and outputs a ciphertext C ′′ or ⊥, which represents
a failure of evaluation. Here f is one of Add(1) : M2

1 → M1, Add(2) : M2
2 →

M2, and Mult : M2
1 → M2, which represent the following operations:

Add(i) : (i,m), (i,m′) �→ (i,m + m′) for i ∈ {1, 2},

Mult : (1,m), (1,m′) �→ (2,mm′).

In a Keyed-2LHE scheme, we refer to a ciphertext corresponding to a plaintext
with i = 1 as level-1 ciphertext. Level-2 ciphertext is defined similarly.

Definition 14 (KH-CCA secure Keyed-2LHE). We say that a Keyed-
2LHE scheme is KH-CCA secure if for any PPT adversary A, its advantage
given by

∣
∣
∣
∣
∣
Pr[pp ← ParamGen(1�); (pk, sk, ek) ← KeyGen(pp); (i∗,m∗

0,m
∗
1, st) ← AO(find, pk);

b ← {0, 1};C∗ ← Enc(pk, (i∗,m∗
b)); b

′ ← AO(guess, st, C∗) : b = b′] − 1

2

∣
∣
∣
∣
∣

is negligible in �. Here O denotes oracles RevEK, Dec, Eval described below, and
we suppose that a list List is used throughout the KH-CCA game, which is set to
∅ in the find stage and set to List = (C∗) at the beginning of the guess stage.

– RevEK returns evaluation key ek.
– Dec takes a ciphertext C as input and returns ⊥ if C ∈ List, and Dec(sk, C)

if C /∈ List.
– Eval takes two ciphertexts C,C ′ and an operation f as inputs and returns

C ′′ = Eval(ek, f, C,C ′). If C ′′ �= ⊥ and either C or C ′ is in List, Eval appends
C ′′ to List.

We also have the following constraints: RevEK can be queried only once; Eval
cannot be queried after RevEK has been queried; and Dec cannot be queried if
RevEK is already queried and A has already received C∗ from the challenger.

As in the original KH-CCA security in [9,10], the list List was introduced
for avoiding the following trivial attack: generate a ciphertext C ′ from the chal-
lenge ciphertext C∗ by using Eval, send C ′ to the oracle Dec, and determine the
plaintext of C∗ by using its relation to the plaintext of C ′.

4.2 Overview of Our Construction

When focusing on each level, our scheme mostly follows the generic construction
in [10], i.e., there are three HPSs (corresponding to P , ̂P , ˜P in [10]) for each
level. Therefore, we require six HPSs in total to construct our scheme.

Chosen Ciphertext Secure Keyed Two-Level Homomorphic Encryption 219

Intuitively, P is used to hide information of the plaintext. The smoothness
and the hardness of the subset membership problem of P guarantee that the hash
value used to mask the plaintext is indistinguishable from a uniformly random
value. Also, ̂P guarantees security against an adversary who has ek, and ˜P
guarantees security against an adversary who does not have ek. The universal
property of ̂P and ˜P means that the adversary cannot forge a hash value for a
ciphertext calculated in a correct manner.

Compared to the construction in [10], the message space in our scheme is
changed to M′ = Zp, and the construction of the ciphertext is slightly mod-
ified (in a way similar to so-called lifted-ElGamal cryptosystem). To apply
this modification, a restriction on the message space is required; see Remark
1 below. Another difference is that for HPSs P and ̂P , key generation algo-
rithms HashKG,ProjKG are common in both levels, and a hash value for the
level-2 HPS can be calculated from those for the level-1 HPS by applying pair-
ings. These properties are necessary for computing multiplications.

From now on, when we want to specify levels of HPS or the corresponding
sets and algorithms, we denote this by using superscripts “(1)” and “(2)”.

4.3 Construction of Hash Proof System

In this section, we give concrete constructions of HPSs for the proposed scheme.
All the HPSs described here computes (p, G1, G2, GT , g1, g2, e) ← GenBG(1�),

chooses g′
1 ← G1, g′

2 ← G2 and sets g1 := (g1, g′
1) ∈ G

2
1, g2 := (g2, g′

2) ∈ G
2
2.

Then, as pp, SetUp(1�) outputs these together with gT := g1 ⊗g2, h1 := g1 ⊗g2,
h2 := g1 ⊗g2, and h3 := g1 ⊗g2. For universal2 HPSs, we assume that the setup
algorithm also outputs hash functions necessary for the construction.

HPS (Level-1). Let X = G
2
1 × G

2
2 and L = 〈g1〉 × 〈g2〉. The witness for

x = (x1,x2) ∈ L is w = (w1, w2) ∈ Z
2
p that satisfies (x1,x2) = (w1g1, w2g2).

Furthermore, let X ′ = (G2
1 \ 〈g1〉) × (G2

2 \ 〈g2〉), Π = ̂Π = ˜Π = G1 × G2. In
this situation, we define three HPSs for level-1 ciphertexts P (1) = (X,L,Π),
̂P (1) = (X,L, ̂Π), ˜P (1) = (X × Π × ̂Π,L × Π × ̂Π, ˜Π) as in Fig. 1.

Proposition 6. P (1) satisfies the following:

1. P (1) is smooth relative to X ′.
2. Under SXDH assumption, the subset membership problem of P (1) is hard

relative to X ′ and has a trapdoor.
3. X ′ \ L is approximately samplable relative to X.

Proof. Since P (1) can be interpreted as the direct product of two HPSs con-
structed via generic construction based on a diverse vector space, the smoothness
follows from Proposition 4. The hardness of the subset membership problem and
the trapdoor property follow from Propositions 1 and 2, respectively.

The approximate samplability can be deduced from the fact that the uni-
form distribution on X ′ \ L is statistically indistinguishable from the uniform
distribution on X, as |X ′ \ L| = p2(p − 1)2 and |X| = p4. �

220 Y. Maeda and K. Nuida

Fig. 1. HPSs for level-1 ciphertexts, where Γ1 : G
4
1 → Z

n
p and Γ2 : G

4
2 → Z

n
p are hash

functions

Proposition 7. ̂P (1) is universal1.

Proof. Since ̂P (1) can be interpreted as the direct product of two (1/p)-universal1
HPSs constructed by applying generic construction based on a diverse vector
space, the statement follows from Proposition 4. �
Proposition 8. ˜P (1) satisfies the following:

1. If Γ1 and Γ2 are injective, then ˜P (1) is information-theoretically universal2.
2. If Γ1 and Γ2 are sampled from a family of collision resistant hash functions,

then ˜P (1) is first-adaptive computationally universal2.

Proof. Since ˜P (1) can be interpreted as the direct product of two HPSs con-
structed by applying generic construction based on a diverse vector space, the
statement follows from Propositions 4 and 5. �

HPS (Level-2). Let X = G
4
T × G

2
T × G

2
T and L = 〈h1〉 × 〈h2〉 × 〈h3〉. A witness

for x = (x1,x2,x3) ∈ L is w = (w1, w2, w3) ∈ Z
3
p satisfying (x1,x2,x3) =

(w1h1, w2h2, w3h3). Moreover, let X ′ = 〈h1〉 × 〈h2〉 × G
2
T ⊂ X, Π = GT , ̂Π =

˜Π = G
3
T . Now we define three HPSs for level-2 ciphertexts P (2) = (X,L,Π),

̂P (2) = (X,L, ̂Π), ˜P (2) = (X × Π × ̂Π,L × Π × ̂Π, ˜Π) as in Fig. 2.

Chosen Ciphertext Secure Keyed Two-Level Homomorphic Encryption 221

Fig. 2. HPSs for level-2 ciphertexts, where Γ1 : G
6
T → Z

n
p , Γ2 : G

4
T → Z

n
p , and Γ3 : G

4
T →

Z
n
p are hash functions

Proposition 9. P (2) satisfies the following:

1. P (2) is smooth relative to X ′.
2. Under SXDH assumption, the subset membership problem of P (2) is hard

relative to X ′ and has a trapdoor.
3. X ′ \ L is approximately samplable relative to X.

Proof. Smoothness: For pp ← SetUp(1�), hk ← HashKG(pp), and any fixed
hp = (s1, s2) ← ProjKG(hk), we have

{(x,Hash(hk, x)) | x ← X
′ \ L}

= {((x1,x2,x3), −(k1 ⊗ k2)
�
x1 + k

�
1 x2 + k

�
2 x3) | x1 ← 〈h1〉,x2 ← 〈h2〉,x3 ← G

2
T \ 〈h3〉}

= {((w1h1, w2h2, g1 ⊗ x
′
2), −w1(s1 ⊗ s2) + w2(s1 ⊗ g2) + (g1 ⊗ k

�
2 x

′
2))

| w1, w2 ← Zp,x
′
2 ← G

2
2 \ 〈g2〉}

= {((w1h1, w2h2, g1 ⊗ x
′
2), −w1(s1 ⊗ s2) + w2(s1 ⊗ g2) + (g1 ⊗ π

′
2))

| w1, w2 ← Zp,x
′
2 ← G

2
2 \ 〈g2〉, π

′
2 ← G2}

(as the conditional distribution of k�
2 x

′
2 conditioned on a given s2 = k�

2 g2 is
uniformly random over G2, by the linear independence of g2 and x′

2)

= {((x1,x2,x3), π) | x1 ← 〈h1〉,x2 ← 〈h2〉,x3 ← G
2
T \ 〈h3〉, π ← GT }

= {(x, π) | x ← X ′ \ L, π ← Π} .

222 Y. Maeda and K. Nuida

Hardness of the Subset Membership Problem: For any given pp ←
SetUp(1�), a uniformly random element of L is of the form x = (x1,x2,x3) with
each xj ← 〈hj〉. Now the component x3 is equivalent to g1 ⊗x′

2 with x′
2 ← 〈g2〉,

which is computationally indistinguishable from choosing x′
2 ← G

2
2 \ 〈g2〉 owing

to the SXDH assumption. For the latter, x3 becomes uniformly random over
G

2
T \ 〈h3〉, therefore x becomes uniformly random over X ′ \ L.

Trapdoor of the Subset Membership Problem: This is deduced by defining
two algorithms in Definition 11 in the following manner:

– TrapdoorSetUp(1�) chooses g1, g2 in the SetUp by computing g1 = (g1, τ1 ·g1),
g2 = (g2, τ2 · g2) where τ1, τ2 ← Zp and outputs τ = (τ1, τ2) as a trapdoor.

– Distinguish(x, τ) takes x = (x1,x2,x3) ∈ X and τ = (τ1, τ2) as inputs. For
x1 = (x11, x12, x13, x14), x2 = (x21, x22), and x3 = (x31, x32), if all of

x12 = τ2 · x11, x13 = τ1 · x11, x14 = τ1τ2 · x11, x22 = τ1 · x21, x32 = τ2 · x31

hold, then the algorithm decides that x ∈ L; otherwise decides that x /∈ L.

Approximate Samplability: This follows from the fact that the uniform dis-
tributions over X ′ \ L and over X ′ are statistically indistinguishable, and the
fact that the elements of X ′ are efficiently samplable. �
Proposition 10. ˜P (2) satisfies the following:

1. If Γ1, Γ2, and Γ3 are injective, then ˜P (2) is information-theoretically
universal2.

2. If Γ1, Γ2, and Γ3 are sampled from a family of collision resistant hash func-
tions, then ˜P (2) is first-adaptive computationally universal2.

Proof. ˜P (2) can be represented as the direct product of three HPSs based on
diverse vector spaces (except that the set E is common in all three HPSs). Hence
the universal2 property can be shown similarly to Propositions 4 and 5. �
Proposition 11. ̂P (2) is ((2p − 1)/p2)-universal1.

Proof. Let ̂hp = (ŝ1, ŝ2) ∈ G1 × G2, x = (x1,x2,x3) ∈ X \ L, and π̂ =
(π̂1, π̂2, π̂3) ∈ G

3
T be chosen randomly. The goal of the proof is to show that

Pr
̂hk← ̂K

[Ĥash(x) = π̂ | P̂rojKG(̂hk) = ̂hp]

is at most (2p − 1)/p2. Here, x can be represented as

x1 = w1(g1 ⊗ g2) + w′
1(g1 ⊗ g′

2) + w′′
1 (g′

1 ⊗ g2) + w′′′
1 (g′

1 ⊗ g′
2) ,

x2 = w2(g1 ⊗ g2) + w′
2(g

′
1 ⊗ g2) ,

x3 = w3(g1 ⊗ g2) + w′
3(g1 ⊗ g′

2) ,

where elements g′
1 and g′

2 are linearly independent from g1 and g2, respectively.
We note that at least one of w′

1, w′′
1 , w′′′

1 , w′
2, and w′

3 is non-zero, since x ∈ X \L.

Chosen Ciphertext Secure Keyed Two-Level Homomorphic Encryption 223

Under the condition that P̂rojKG(̂hk) = ̂hp, i.e., (̂k�
1 g1,

̂k�
2 g2) = (ŝ1, ŝ2), the

condition Ĥash(x) = π̂ is equivalent to

w1(ŝ1 ⊗ ŝ2) + w′
1(ŝ1 ⊗ ̂k�

2 g
′
2) + w′′

1 (̂k�
1 g

′
1 ⊗ ŝ2) + w′′′

1 (̂k�
1 g

′
1 ⊗ ̂k�

2 g
′
2) = π̂1 ,

w2(ŝ1 ⊗ g2) + w′
2(̂k

�
1 g

′
1 ⊗ g2) = π̂2 ,

w3(g1 ⊗ ŝ2) + w′
3(g1 ⊗ ̂k�

2 g
′
2) = π̂3 .

Moreover, since g′
1, g

′
2 are linearly independent from g1, g2, respectively, ̂k�

1 g
′
1

and ̂k�
2 g

′
2 take uniformly random values over G1 and G2 independently from ŝ1

and ŝ2, respectively, assuming ̂k1, ̂k2 ← Z
2
p. If we write these values as π′

1, π
′
2,

the conditions above can be rewritten as

w1(ŝ1 ⊗ ŝ2) + w′
1(ŝ1 ⊗ π′

2) + w′′
1 (π′

1 ⊗ ŝ2) + w′′′
1 (π′

1 ⊗ π′
2) = π̂1 , (1)

w2(ŝ1 ⊗ g2) + w′
2(π

′
1 ⊗ g2) = π̂2 , (2)

w3(g1 ⊗ ŝ2) + w′
3(g1 ⊗ π′

2) = π̂3 . (3)

Now if (w′
1, w

′′
1) �= (0, 0) (respectively, w′

2 �= 0, or w′
3 �= 0), then as π′

1, π
′
2

are uniformly random, the left-hand side of Equation (1) (respectively, (2), or
(3)) takes a uniformly random value, therefore the condition above holds with
probability at most 1/p ≤ (2p − 1)/p2. In the remaining case, we have w′′′

1 �= 0.
In this case, Eq. (1) can be rewritten as (π′

1 + v′
1ŝ1) ⊗ (π′

2 + v′′
1 ŝ2) = π̂′

1, where
v′
1 := w′

1w
′′′−1
1 , v′′

1 := w′′
1w′′′−1

1 , and π̂′
1 := w′′′−1

1 (π̂1−w1(ŝ1⊗ŝ2))+v′
1v

′′
1 (ŝ1⊗ŝ2).

Furthermore, as π′
1, π

′
2 are uniformly random, π′′

1 := π′
1+v′

1ŝ1 and π′′
2 := π′

2+v′
1ŝ2

are also uniformly random. Now the given condition is equivalent to π′′
1⊗π′′

2 = π̂′
1.

This holds with probability at most 1/p when π̂′
1 �= 0, and with probability

(2p − 1)/p2 when π̂′
1 = 0. Hence the statement also holds in this case. �

4.4 Concrete Construction of the Proposed Scheme

Our proposed scheme except the multiplication, which mostly follows the generic
construction in [10], is given in Fig. 3.

For the multiplication algorithm taking ek, f = Mult, and level-1 ciphertexts
C = (1, x, e, π̂, π̃), C ′ = (1, x′, e′, π̂′, π̃′) as inputs, it computes the following:

1. If π̃ �= H̃ash
(1)

(x, e, π̂) or π̃′ �= H̃ash
(1)

(x′, e′, π̂′), output ⊥.
2. Sample x0 ∈ L(2) together with its witness w0.
3. Set x′′ = (x1 ⊗ x′

2,x1 ⊗ e′
2, e1 ⊗ x′

2) + x0.
4. Set e′′ ← e1 ⊗ e′

2 + ProjHash(2)(x0, w0).

5. Set π̂′′ ← (π̂1 ⊗ π̂′
2, π̂1 ⊗ e′

2, e1 ⊗ π̂′
2) + ̂ProjHash

(2)
(x0, w0).

6. Set π̃′′ ← H̃ash
(2)

(x′′, e′′, π̂′′) .
7. Output (2, x′′, e′′, π̂′′, π̃′′).

224 Y. Maeda and K. Nuida

Fig. 3. Proposed Keyed-2LHE scheme (except homomorphic multiplication)

Let us confirm the correctness of the multiplication. Let C and C ′ be level-1
ciphertexts of plaintexts m and m′, respectively. The operation of adding x0 or
its hash values does not affect correctness (since it is just for rerandomization),
therefore we ignore it here. In Steps 3 and 4, the second and the third components
of x′′ and the value of e′′ can be represented as

x1 ⊗ e′
2 = x1 ⊗ (m′g2 + k�

2 x
′
2) ,

e1 ⊗ x′
2 = (mg1 + k�

1 x1) ⊗ x′
2 ,

e1 ⊗ e′
2 = (mg1 + k�

1 x1) ⊗ (m′g2 + k�
2 x

′
2) .

Hence, when we apply Dec to the evaluated ciphertext, we indeed obtain

(e′′ − Hash(2)(x1 ⊗ x′
2,x1 ⊗ e′

2, e1 ⊗ x′
2))/gT

= (e1 ⊗ e′
2 + (k1 ⊗ k2)�(x1 ⊗ x′

2) − k�
1 (x1 ⊗ e′

2) − k�
2 (e1 ⊗ x′

2))/gT

= ((mg1 + k�
1 x1) ⊗ (m′g2 + k�

2 x
′
2) + (k�

1 x1) ⊗ (k�
2 x

′
2)

− (k�
1 x1) ⊗ (m′g2 + k�

2 x
′
2) − (mg1 + k�

1 x1) ⊗ (k�
2 x

′
2))/gT

= ((mg1) ⊗ (m′g2))/gT = mm′ .

The remaining task to confirm the correctness is to see that π̂′′ is a correct hash
value, and this can be checked from

π̂1 ⊗ π̂′
2 = (̂k�

1 x1) ⊗ (̂k�
2 x

′
2) = (̂k1 ⊗ ̂k2)�(x1 ⊗ x′

2) ,

π̂1 ⊗ e′
2 = (̂k�

1 x1) ⊗ e′
2 = ̂k�

1 (x1 ⊗ e′
2) ,

e1 ⊗ π̂′
2 = e1 ⊗ (̂k�

2 x
′
2) = ̂k�

2 (e1 ⊗ x′
2) .

Chosen Ciphertext Secure Keyed Two-Level Homomorphic Encryption 225

Remark 1. In our Dec algorithm, we need to compute division by group element
g1 or gT , which corresponds to computing the discrete logarithm when the groups
are written multiplicatively. To execute decryption efficiently, restriction of the
plaintext space for input ciphertexts is essential (which also was the case with
2LHE in [3] and DDH-based KH-PKE in [9]). For the concrete method regarding
the discrete logarithm computation, we refer to the previous paper [3].

Theorem 1. The Keyed-2LHE scheme constructed above is KH-CCA secure
under SXDH assumption.

Proof (Sketch). The underlying idea of the security proof is the same as the one
in [9]; we basically want to perform the following game-hopping:

1. For the challenge ciphertext C∗ = (i∗, x∗, e∗, π̂∗, π̃∗), replace the component
x∗ ← L with x∗ ← X ′ \ L (owing to the hardness of the subset membership
problem relative to X ′ ⊂ X).

2. Replace the component e∗ with a uniformly random element (owing to the
smoothness of P relative to X ′ ⊂ X).

3. Replace x∗ ← X ′ \ L back to x∗ ← L (owing to the hardness of the subset
membership problem relative to X ′ ⊂ X).

If this is successfully done, the challenge ciphertext C∗ in the resulting game
will be independent of the challenge plaintext m∗, which will imply the security
of the scheme. However, the use of decryption/evaluation oracles may be an
obstacle to Step 2 of the game-hopping.

For explanation, we suppose that given the challenge ciphertext C∗, the
adversary uses oracle Eval(C∗, C) with another valid ciphertext C to obtain
a resulting ciphertext C† and no more oracles are used. When the component x∗

of C∗ is changed to x∗ ← X ′ \ L, the response C† to the query Eval(C∗, C) may
leak some information on secret keys for HPSs, which is not suitable for Step 2
of the game-hopping. The idea in [9] to resolve this issue is to perform another
game-hopping before the main game-hopping above, which changes the response
to the query Eval(C∗, C) in a way that the oracle first generates a fresh cipher-
text C∗ of m∗ (independent of C∗) and then return the result C† of Eval(C∗, C).
In the case of [9], a certain “source ciphertext hiding property” shown in [9]
guarantees that this preliminary game-hopping does not change the distribution
of C†. And after the preliminary game-hopping, the ciphertext C† is not depen-
dent on C∗ anymore, therefore the change of x∗ to x∗ ← X ′\L causes no leakage
of information on secret keys of HPSs (where the precise proof requires universal
properties of ̂P and ˜P), as desired. We note that similar recursive replacements
of challenge ciphertext by fresh ciphertexts (like C∗ above) have to be performed
when the list of oracle queries by the adversary is more complicated.

In the case of our proposed scheme, we can extend the source ciphertext
hiding property, which was the key property in the case of [9], to the present case
as follows. For a ciphertext C = (i, x, e, π̂, π̃), we say that C is ˜P (i)-consistent,

if π̃ = H̃ash
(i)

(x, e, π̂) holds. (Similarly for ̂P (i).)

226 Y. Maeda and K. Nuida

Lemma 1 (source ciphertext hiding property). Let i ∈ {1, 2}. Assume
that level-i ciphertexts C = (i, x, e, π̂, π̃) and C ′ = (i, x′, e′, π̂′, π̃′) satisfy:

(*) C and C ′ are ̂P (i)-consistent and ˜P (i)-consistent ciphertexts for the same
plaintext, and the distributions of C and C ′ are identical and independent
with each other.

Moreover, let C ′′ = (i, x′′, e′′, π̂′′, π̃′′) be a ̂P (i)-consistent and ˜P (i)-
consistent level-i ciphertext. Under these assumptions, for any operation f ∈
{Add(1),Add(2),Mult}, the outputs of Eval(f, C,C ′′) and Eval(f, C ′, C ′′) satisfy
the condition (∗) (unless the evaluation is not rejected).

Based on this property, the security of our proposed scheme is proved in a way
analogous to [9] as outlined above. (See the full version for the details.) �

Remark 2. In our scheme, if a party has only the part ˜hk
(1)

of the evaluation

key ek = (˜hk
(1)

, ˜hk
(2)

), then the party can only compute addition between level-1
ciphertexts but not the other homomorphic operations. This feature to partially
allow operations by giving the evaluation key partially is a new feature that
previous schemes did not possess, though we are leaving the formal definition
for security with such partial key exposure as a future research topic.

Table 1. Comparison of key and ciphertext sizes (numbers of elements in Zp, G1, G2,
GT in this order)

Ours 2LHE [3] KH-PKE [9]

sk 32, 0, 0, 0 2, 0, 0, 0 8, 0, 0, 0

pk 0, 4, 4, 9 0, 2, 2, 4 0, 4, –, –

ek 0, 2, 2, 6 - 0, 2, –, –

Level-1 Ciphertext 0, 5, 5, 0 0, 2, 2, 0 0, 5, –, –

Level-2 Ciphertext 0, 0, 0, 15 0, 0, 0, 4 -

Table 2. Numbers of operations in our proposed scheme; here “Op” and “Exp” denote
addition and scalar multiplication, respectively, over additive groups G1, G2, GT in this
order, and “DL” denotes computation of discrete logarithm (with restricted exponent)

Op Exp Pairing DL

KeyGen 4, 4, 15 8, 8, 24 0 0

Enc Level-1 2, 2, 0 7, 7, 0 0 0

Level-2 0, 0, 6 0, 0, 21 0 0

Dec Level-1 4, 2, 0 6, 4, 0 0 1

Level-2 0, 0, 18 0, 0, 24 0 1

Eval Add(1) 11, 11, 0 10, 10, 0 0 0

Add(2) 0, 0, 41 0, 0, 38 0 0

Mult 2, 2, 19 4, 4, 22 12 0

Chosen Ciphertext Secure Keyed Two-Level Homomorphic Encryption 227

5 Efficiency Evaluations

In this section, we evaluate the efficiency of our proposed scheme for the case
where hash functions Γ in ˜P (1) and ˜P (2) are collision resistant (i.e., the case
where ˜P is first-adaptive computationally universal2), and the case where n =
1 in ˜P (1) and ˜P (2) (similarly to the DDH-based instantiation of KH-PKE in
[9]). Also, we assume that all the necessary values of pairings between secret
keys, public keys, or public parameters are computed in advance during the key
generation, and the resulting values are involved in secret keys or public keys.

A comparison of key and ciphertext sizes among our scheme, the state-of-the-
art 2LHE scheme [3], and the original KH-PKE scheme [9] (precisely, its DDH-
based instantiation in Section 5.3 of [9]) is shown in Table 1. The four numbers
in each cell denote the numbers of elements in Zp, G1, G2, and GT , respectively.
It is natural that our scheme is less efficient than the other two schemes, since
our scheme achieves stronger security than [3] and realizes stronger functionality
than [9]. We expect that the overhead of our scheme compared to the other two
schemes is within an acceptable range from practical viewpoints.

Table 2 shows the numbers of addition and scalar multiplication (note that
now G1, G2, and GT are regarded as additive groups), pairing, and computation
of discrete logarithm (with restricted exponent; see Remark 1) in each algorithm
for our proposed scheme. Here the three numbers in each cell for “Op” and
“Exp” are those for G1, G2, and GT . Note that operations on Zp are omitted
here, since they are much faster than operations over G1, G2, and GT .

Acknowledgement. This research was partially supported by the Ministry of Inter-
nal Affairs and Communications SCOPE Grant Number 182103105, JST CREST
JPMJCR19F6, and JSPS KAKENHI Grant Number 19H01109.

References

1. Abdalla, M., Benhamouda, F., Pointcheval, D.: Disjunctions for hash proof sys-
tems: new constructions and applications. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9057, pp. 69–100. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46803-6 3

2. An, J.H., Dodis, Y., Rabin, T.: On the security of joint signature and encryp-
tion. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7 6

3. Attrapadung, N., Hanaoka, G., Mitsunari, S., Sakai, Y., Shimizu, K., Teruya, T.:
Efficient two-level homomorphic encryption in prime-order bilinear groups and A
fast implementation in WebAssembly. In: Proceedings of AsiaCCS 2018, pp. 685–
697. ACM (2018)

4. Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: New
techniques for SPHFs and efficient one-round PAKE protocols. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 449–475. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-40041-4 25

https://doi.org/10.1007/978-3-662-46803-6_3
https://doi.org/10.1007/3-540-46035-7_6
https://doi.org/10.1007/978-3-642-40041-4_25

228 Y. Maeda and K. Nuida

5. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005). https://doi.org/10.1007/978-3-540-30576-7 18

6. Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing chosen-ciphertext security. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 565–582. Springer, Heidel-
berg (2003). https://doi.org/10.1007/978-3-540-45146-4 33

7. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0055717

8. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46035-7 4

9. Emura, K., Hanaoka, G., Nuida, K., Ohtake, G., Matsuda, T., Yamada, S.: Cho-
sen ciphertext secure keyed-homomorphic public-key cryptosystems. Des. Codes
Cryptogr. 86(8), 1623–1683 (2018)

10. Emura, K., Hanaoka, G., Ohtake, G., Matsuda, T., Yamada, S.: Chosen ciphertext
secure keyed-homomorphic public-key encryption. In: Kurosawa, K., Hanaoka, G.
(eds.) PKC 2013. LNCS, vol. 7778, pp. 32–50. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-36362-7 3

11. Freeman, D.M.: Converting pairing-based cryptosystems from composite-order
groups to prime-order groups. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 44–61. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-13190-5 3

12. Jutla, C.S., Roy, A.: Dual-system simulation-soundness with applications to UC-
PAKE and more. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS,
vol. 9452, pp. 630–655. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48797-6 26

13. Lai, J., Deng, R.H., Ma, C., Sakurai, K., Weng, J.: CCA-secure keyed-fully homo-
morphic encryption. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y.
(eds.) PKC 2016. LNCS, vol. 9614, pp. 70–98. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49384-7 4

14. Libert, B., Peters, T., Joye, M., Yung, M.: Non-malleability from malleability:
simulation-sound quasi-adaptive NIZK proofs and CCA2-secure encryption from
homomorphic signatures. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 514–532. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5 29

15. Prabhakaran, M., Rosulek, M.: Homomorphic encryption with CCA security. In:
Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 667–678. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-70583-3 54

16. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomor-
phisms. Found. Secure Comput. 4(11), 169–180 (1978)

17. Sato, S., Emura, K., Takayasu, A.: Keyed-fully homomorphic encryption without
indistinguishability obfuscation. In ACNS 2022 (to appear)

https://doi.org/10.1007/978-3-540-30576-7_18
https://doi.org/10.1007/978-3-540-45146-4_33
https://doi.org/10.1007/BFb0055717
https://doi.org/10.1007/BFb0055717
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/978-3-642-36362-7_3
https://doi.org/10.1007/978-3-642-36362-7_3
https://doi.org/10.1007/978-3-642-13190-5_3
https://doi.org/10.1007/978-3-642-13190-5_3
https://doi.org/10.1007/978-3-662-48797-6_26
https://doi.org/10.1007/978-3-662-48797-6_26
https://doi.org/10.1007/978-3-662-49384-7_4
https://doi.org/10.1007/978-3-662-49384-7_4
https://doi.org/10.1007/978-3-642-55220-5_29
https://doi.org/10.1007/978-3-642-55220-5_29
https://doi.org/10.1007/978-3-540-70583-3_54

Structure-Preserving Linearly
Homomorphic Signature with Designated

Combiner for Subspace

Yumei Li1(B) , Mingwu Zhang1,3,4, and Futai Zhang2

1 Hubei University of Technology, Wuhan 430068, China
leamergo@gmail.com

2 Fujian Normal University, Fuzhou 350117, China
3 Guangxi Key Laboratory of Cryptography and Information Security, Guilin, China

4 Xiangyang Industrilal Institute of Hubei University of Technology,
Xiangyang, China

Abstract. Linearly homomorphic signature allows signature holders
to perform arbitrary linear computation on signed vectors. The spe-
cial “function” makes linearly homomorphic signature suitable for many
applications. However, publicly combinable is not advisable in some spe-
cific scenarios. Although some schemes with designated combiners have
been proposed, they break the homomorphism of the combined signa-
ture. The combined vectors cannot be combined again. In this paper, we
put forth the notion of structure-preserving linearly homomorphic signa-
tures with the designated combiner. The combined signature is indistin-
guishable from signatures generated by the signer. Only the signer and
the designated entity can generate a valid signature for any combined
vector. Finally, we prove our scheme is secure under the CDH problem
assumption and show it is efficient.

Keywords: Structure-preserving and linearly homomorphic
signature · Designated combiner

1 Introduction

Digital signature is a cryptographic tool that can be used to guarantee the
authenticity and integrity of messages. However, some extra properties should
be added to satisfy the requirements in specific scenarios, such as network coding
and cloud auditing. Composability is an important cryptographic design notion
for building systems and protocols. Homomorphic signature as a class of special
digital signatures, provides a special function called “Combine”, which allows
any entity with the signer’s public key to compute on the signed messages. The
function is very useful in network coding and cloud storage auditing.

A secure traditional digital signature scheme requires that the adversary must
be unable to generate even one signature on a message unsigned by the signer.
Unlike the traditional digital signatures, the signature object of homomorphic

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
K. Nguyen et al. (Eds.): ACISP 2022, LNCS 13494, pp. 229–243, 2022.
https://doi.org/10.1007/978-3-031-22301-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22301-3_12&domain=pdf
http://orcid.org/0000-0002-0591-5061
https://doi.org/10.1007/978-3-031-22301-3_12

230 Y. Li et al.

signature is the linear vector space. A valid vector signature either comes directly
from the signer or is derived from the signed vectors. Therefore, the security
requirement of this technique is that the adversary cannot forge a signature on a
vector unsigned by the signer, an additional condition is that the vector cannot
be derived from the signed vector.

Linearly homomorphic signature (LHS) [3] allows any entity to evaluate linear
functions over the signed messages. It is used to prevent pollution attacks in the
network coding routing mechanisms [7,20,23]. Any entity with the signer’s public
key can generate a valid combined signature from some signed message by linear
homomorphic operation. However, in some specific mechanisms, such as cloud
computing, the signer wants the server to be the only entity that can combine
the signatures. An intuitive method is that the signer sends vector/signature pair
to a designed server via a reliable secret channel. It is obviously unreasonable.
Some related works have been proposed to solve this problem [17,18]. However,
the existing schemes only support a one-time homomorphic combination, where
a combined vector cannot be an input of the combine algorithm. The reason
is that the structure of the signature has been changed. Besides, to achieve
public verification, the combine algorithm in [18] needs to compute at least l
(the number of vectors to be combined) times of hash to group and bilinear map
operations which will require a significant cost overhead.

This paper considers structure-preserving linearly homomorphic schemes
with the designated combiner (SPS-LHSDC) and all vectors (generated by the
signer or combiner) to support public verification. In 2010, Abe et al. proposed
the first instantiation of structure-preserving signatures [1]. In their definitions,
structure-preserving means its verification keys, signatures, and messages are
elements in a bilinear group, and the verification equation is a conjunction of
pairing-product equations. Unlike the definition proposed by Abe et al., in our
work, structure-preserving is mainly used to illustrate the structure of signatures
generated by the signer and the designated combiner are the same. Besides, our
construction does not require these elements (including verification keys, signa-
tures, and messages) in a bilinear group.

1.1 Our Contribution

In this paper, we put forth the notion of structure-preserving linearly homo-
morphic signatures with the designated combiner. The combined signature is
indistinguishable from the signature generated by the signer, i.e., both signa-
tures can be verified by the verifier using the verification algorithm. That is
to say, the structure of the signature keeps unchanged after being combined.
Besides, this work only allows the designated entity to compute a combined
signature on signed vectors (basis vectors or combined vectors). Other entities
except for the signer and the designated entity cannot generate a valid signature
for any vector. Finally, we propose a detailed SPS-LHSDC scheme and prove it
is secure under the CDH problem assumption. Analysis shows that the combine
algorithm in our scheme is efficient.

Structure-Preserving LHS with Designated Combiner for Subspace 231

1.2 Related Work

The notion of the homomorphic signature can be traced back to Desmedt [10]. Its
formal definition has not been proposed until the work of Jonson et al. [14]. After
that, various homomorphic signature schemes have been proposed. For instance,
linearly homomorphic signature schemes [3,8,15,19,21], polynomial homomor-
phic signature schemes [5,6], fully homomorphic signature schemes [13] and the
homomorphic aggregate signature schemes [22]. Significantly, linearly homomor-
phic signature schemes are particularly useful in many applications such as net-
work coding or proof of storage.

The linearly homomorphic signature is at first proposed to prevent pollution
attacks in network coding. Boneh et al. [3] in 2009 first introduced the formal
definition and security model of linearly homomorphic signature, and proposed
two different instantiations. In their scheme, the computational cost of signature
generation and verification depends on the size of the vector. In 2010, Gennaro
et al. [12] proposed a linearly homomorphic signature scheme based on the RSA
assumption. The scheme requires low computational overhead since the linear
combination can be achieved by choosing smaller integer coefficients. Boneh et
al. [4] proposed the first lattice-based linearly homomorphic signature scheme,
which verifies vectors in the binary domain and is resistant to quantum attacks.
In 2011, Attrapadung et al. [2] first proposed a linearly homomorphic signature
scheme that is secure under the standard model, which allows a single vector
to be dynamically signed with a constant length of the signature. Attrapadung
et al. [3] proposed a linearly homomorphic signature scheme that can achieve
complete content hiding under the standard model. Li et al. [16] proposed an
efficient identity-based linearly homomorphic network coding signature scheme.
The signature cost of this scheme is independent of the size of the vector.

Inspired by the open problem proposed by Rivest in 2000, Lin et al. [17] pro-
posed a linearly homomorphic signature scheme with designated entities based
on the idea of key agreement. Only the designated combiner can perform homo-
morphic operations, and only the designated verifier can verify the integrity
and authenticity of the signature. In 2021, Lin et al. [18] proposed a linearly
homomorphic signature scheme with designated combiner that supports pub-
lic verification. Fuchsbauer et al. [11] used the idea of equivalence class to con-
struct a randomization structure-preserving homomorphic signature scheme, the
signature of any message is indistinguishable from the signature generated by
randomization of the signature.

1.3 Organization

The overall structure of the rest of this paper is as follows. In Sect. 2, we present
some preliminaries as well as the formal definition and security model of SPS-
LHSDC. Then, we present a specific SPS-LHSDC in Sect. 3 and prove its security
in Sect. 4. Subsequently, we give the theoretical evaluation in Sect. 5. Finally, we
conclude this paper in Sect. 6.

232 Y. Li et al.

2 Preliminaries and Definitions

2.1 Mathematic Background

Definition 1 [Bilinear map]. Suppose G1,G2 are cyclic groups with sizeable
prime order q. A map e : G1 × G1 → G2 is called a bilinear map if it satisfies
the following properties:

1. Bilinearity: for any a, b ∈ Zq and g ∈ G1, we have e(ga, gb) = e(g, g)ab.
2. Non-degeneracy: if g is a generator of G1, then e(g, g) is a generator of G2.
3. Computability: for any g ∈ G1, e(g, g) is efficiently computable.

Definition 2 [Computational Diffie-Hellman Problem (CDH)]. Suppose
G1 is a cyclic group with sizeable prime order q. Given g, ga, gb ∈ G1, the CDH
problem is to compute gab for some randomly chosen a, b ∈ Z

∗
q .

The advantage of an algorithm A in solving CDH problem in G1 is defined
as

Pr[A(g, ga, gb) = gab : a, b ∈ Z
∗
q]

Definition 3 [CDH Assumption]. We say that the CDH assumption holds
in G1 if there is no probabilistic polynomial-time algorithm can solve the CDH
problem in G1 with non-negligible advantage.

2.2 The Augmented Basis Vectors

A linearly homomorphic signature scheme is a technique that signs a subspace
V ⊂ F

N
q , so that only vectors w ∈ V can be accepted as valid. To sign a

subspace V described with a set of basis vectors, the signer only needs to sign
these basis vectors and other vectors’ signatures can be derived from these basis
vectors’ signatures. Before signing, a file can be divided into an ordered sequence
of n-dimensional vectors m̄1, . . . , m̄k ∈ F

n
q . In order to guarantee these vectors

linearly independent, the signer augments m̄1, . . . , m̄k and makes them just like
basis vectors. The signer appends a unit vector of length k to the vectors mi

before signing them. Let N = n + k, the k original vectors m̄1, . . . , m̄k are
transformed into k augmented vectors m1, . . . ,mk as follows:

ml = (−m̄l−,ml(n+1), . . . , mlN)

where

ml(n+j) =

⎧
⎨

⎩

1, l = j
l, j = 1, 2, . . . , k

0, l �= j

The data component of the vector mi is its left-most n items and the aug-
mentation component of mi is the right-most k items. The augmented vec-
tors m1, . . . ,mk are clearly independent and can be viewed as a basis of a k-
dimensional subspace V ⊂ F

N
q .

Structure-Preserving LHS with Designated Combiner for Subspace 233

2.3 The Formal Definition

A structure-preserving linearly homomorphic signature scheme with designed
combiner (SPS-LHSDC) consists of a set of probabilistic polynomial-time algo-
rithms (Setup, KeyGen, Sign, Verify) with the following functionality:

– Setup (1λ, N) → pp. On input security parameters 1λ and an integer N
denoting the dimension of vectors to be signed, this algorithm outputs the
public parameters pp. The public parameters pp include a prime field Fq which
the vector subspace for signing is based on.

– KeyGen (pp) → (sk, pk). On input the public parameters pp, this algorithm
outputs a private key sk and the corresponding public key pk.

– Sign (pp, sku, pkc, id,m) → (τ, σ). On input the public parameters pp, a
signer’s private key sku, a combiner’s public key pkc, a subspace identifier
id ∈ {0, 1}λ and a vector m = (m1, . . . , mN) ∈ F

N
q , this algorithm outputs

the tag τ = (id, pkc) of the subspace and the signature σ of m. (Note that to
sign a subspace V, the signer should generate all signatures for a set of basis
vectors m1, . . . ,mk ∈ V .)

– Combine (pp, pku, skc, τ, {βl,ml, σl}k
l=1) → (m̂, σ̂). On input the public

parameters pp, a signer’s public key pku, a combiner’s secret key skc, a tag
τ of the subspace, and a tuple {βl,ml, σl}k

l=1 with βl ∈ Fq, this algorithm
outputs a vector/signature pair (m̂, σ̂).

– Verify (pp, pku, τ,w, σ) → 0 or 1. On input the public parameters pp, a user
public key pku, a tag τ of subspace V , a vector w ∈ V and its signature σ,
this algorithm outputs either 0 (reject) or 1 (accept).

A secure SPS-LHSDC scheme must satisfy the following requirement of cor-
rectness. For each output pp by the Setup algorithm and (sk, pk) by the Key-
Gen, it holds that:

– For all τ and all w ∈ F
N
q , if σ ← Sign(pp, sku, pkc, id,w) then Verify

(pp, pku, τ,w, σ) = 1.
– For all id ∈ {0, 1}λ and all sets of triples {βl,ml, σl}k

l=1, for all l, if Verify
(pp, pku, τ,ml, σl) = 1, then

Verify(pp, pku, τ,Combine(pp, pku, skc, τ, {βl,ml, σl}k
l=1)) = 1.

2.4 Security Model

We analyze the ability of an adversary A and define security of a SPS-LHSDC
scheme. In a SPS-LHSDC scheme, a successful attack means that an adversary
A outputs a successful forgery that pass the verification. A forgery is successful
if it belongs to one of the following three types of forgery.

– Type 1 forgery: A never queried the signature of vector subspace V and
generates a valid signature for a non-zero vector w∗ ∈ V .

234 Y. Li et al.

– Type 2 forgery: A never queried the signature of vector subspace V with
the tag τ∗ and generates a valid signature for a non-zero vector w∗ ∈ V , but
A has queried the signature of vector subspace V marked by the same tag
τ∗.

– Type 3 forgery: A has queried the signature of vector subspace V and
generates a combined signature by the basis vectors’ signatures, while the
combiner’s secret key is unknown to A.

Definition 4. A SPS-LHSDC scheme Ω = (Setup, KeyGen, Sign, Com-
bine, Verify) is secure if the advantage of any probabilistic, polynomial-time
adversary A in the following security game is negligible in the security parameter
λ:

Initialization: The challenger C chooses a positive integer N and runs Setup
(1λ, N) to obtain pp, and KeyGen (pp) to get pku. C sends pp, pku to A.

Queries: A adaptively issues the following queries.

– Combiner-Key Generation Query: Proceeding adaptively, on receiving a
combiner-key generation query from A, C runs KeyGen algorithm to pro-
duce the public key pkc and private key skc for a new combiner, and sends
the public key to A.

– Combiner Corruption Query: Proceeding adaptively, C is given a combiner’s
public pkc, and returns the corresponding private key skc to A.

– Sign Query: Proceeding adaptively, A specifies a sequence of vector subspace
Vi ⊂ F

N
q described by basis vector mi1, . . . ,mik, C does as follows:

1. Chooses an identifier idi ∈ {0, 1}λ at randomly, and sets the tag τi =
(idi, pkc) for the subspace Vi.

2. Generates basis vectors’ signatures σi1, . . . , σik by running Sign algo-
rithm.

3. Sends the tag τi and basis vectors’ signatures σi1, . . . , σik to A.
– Combine Query: Proceeding adaptively, C is given τi, {βil,mil, σil}k

l=1,
and runs Combine (pp, pku, skc, τi, {βil,mil, σil}k

l=1) to generate a vec-
tor/signature pair (m̂i, σ̂i), where m̂i =

∑k
l=1 βilmil.

Output: A outputs the signer’s public key pk∗
u, the combiner’s public key pk∗

c ,
a tag τ∗, a non-zero vector w∗ ∈ F

N
q , and a signature σ∗.

The adversary A wins if Verify (pp, pk∗
u, τ∗,w∗, σ∗) = 1, and either(1) τ∗ �=

τi for any i (Type 1 forgery), or (2) τ∗ = τi for some i but w∗ /∈ Vi (Type 2
forgery), or (3) τ∗ = τi for some i but w∗ ∈ Vi − {mi1, . . . ,mik}, and A knows
nothing about the combiner’s secret key sk∗

c (Type 3 forgery). We require A to
output a non-zero vector w∗ since the zero vector lies in every linear subspace.

Structure-Preserving LHS with Designated Combiner for Subspace 235

3 Our Construction

This section shows the construction of a structure-preserving linearly homomor-
phic signature scheme with the designated combiner. The construction is based
on the network coding signature schemes proposed by Boneh et al. [3] and Lin
et al. [18].

– Setup (1λ) → (pp). Given security parameter 1λ and a positive integer N ,
this algorithm works as follows:
1. Generates two cyclic groups G1,G2 with prime order q > 2λ and a sym-

metric bilinear map e : G1 × G1 → G2.
2. Chooses generators g, g1, . . . , gN ∈ G1\{1} randomly.
3. Lets H1 : {0, 1}∗ → G1.
4. Outputs the public parameters pp = (q,G1,G2, e, g, g1, . . . , gN ,H1).

– KeyGen (pp) → (sk, pk). Given the public parameters pp, the signer ran-
domly picks a private key sku = x ∈ Z

∗
q and sets pku = gx as his/her public

key. Similarly, the (skc = y, pkc = gy) is the private/public key pair of the
designated combiner.

– Sign (pp, sku, pkc, id,m) → σ. Taking the public parameters pp, a signer’s
private key sku, a combiner’s public key pkc, an identifier id ∈ {0, 1}λ and a
vector m = (m1, · · · ,mN) ∈ V as input, the signer sets the tag τ = (id, pkc)
of the subspace and computes the signature

σ = (
k∏

j=1

H1(j, τ)mn+j

n∏

i=1

gmi
i · pkc)x

where N = n+k, and n is data component’s length and k is the augmentation
component’s length.

– Combine (pp, τ, pku, skc, id, {βl,ml, σl}k
l=1) → (m̂, σ̂). Given a public

parameters pp, a signer’s public key pku, a combiner’s private key skc, a
tag τ of subspace and {βl,ml, σl}k

l=1 with βl ∈ Z
∗
q , the combiner computes

r = y(
∑k

l=1 βl − 1) mod q,R = pkr
u, and outputs:

m̂ =
k∑

l=1

βlml = (m̂1, ..., m̂N) ∈ V,

σ =
k∏

l=1

σl
βl/R

– Verify (pp, pku, τ,w, σ) → (0, 1). Given public parameters pp, a signer’s pub-
lic key pku, a tag τ = (id, pkc) of subspace, a vector w and a signature σ,
if

e(σ, g) = e(
k∏

j=1

H1(j, τ)wn+j

n∏

i=1

gwi
i · pkc, pku),

the algorithm outputs 1; otherwise it outputs 0.

236 Y. Li et al.

4 Correctness and Security Analysis

4.1 Correctness Analysis

Assuming that all the entities faithfully follow the above algorithms, the cor-
rectness of the signature can be checked from the following two aspects.

1. For the signature σ generated by Sign algorithm, we have:

e (σ, g) = e((
k∏

j=1

H1(j, τ)mn+j

n∏

i=1

gmi
i · pkc)x, g)

= e(
k∏

j=1

H1(j, τ)mn+j

n∏

i=1

gmi
i · pkc, pku)

2. For the vector/signature pair (m̂, σ̂) with the tag τ generated by the algorithm
Combine, we have σ̂ is equivalent to the output of Sign algorithm, that is:

U =
k∏

l=1

σβl

l

=
k∏

l=1

((
k∏

j=1

H1(ID, j)ml(n+j)

n∏

i=1

gmli
i · pkc)x)βl

=
k∏

l=1

(
k∏

j=1

H1(ID, j)(βlml(n+j))
n∏

i=1

gβlmli

i · pkβl
c)x

= (
k∏

j=1

H1(ID, j)
∑k

l=1 βlml(n+j)

n∏

i=1

g
∑k

l=1 βlmli

i · pk
∑k

l=1 βl
c)x

= (
k∏

j=1

H1(ID, j)m̂n+j

n∏

i=1

gm̂i
i · pk

∑k
l=1 βl

c)x

⇒ σ̂ = U/R

= (
k∏

j=1

H1(ID, j)m̂n+j

n∏

i=1

gm̂i
i · pk

∑k
l=1 βl

c)x/pk
y(

∑k
l=1 βl−1)

u

= (
k∏

j=1

H1(ID, j)m̂n+j

n∏

i=1

gm̂i
i · pk

∑k
l=1 βl

c)x/pk
x(

∑k
l=1 βl−1)

c

= (
k∏

j=1

H1(ID, j)m̂n+j

n∏

i=1

gm̂i
i · pkc)x

= Sign(pp, sku, pkc, id, m̂).

Structure-Preserving LHS with Designated Combiner for Subspace 237

4.2 Security Analysis

Theorem 1. If the adversary can break the proposed scheme with non-negligible
advantage ε, the CDH problem can be solved with non-negligible advantage ε

′ ≥
e2(1− 1

qs·qh
)(1− 1

q)ε, where qh, qs are the times of queries made to the H1 Query
and Sign Query.

Proof. Given some public parameters pp = (q,G1,G2, e, g). Suppose there is an
adversary A, we construct another polynomial-time algorithm B to solve the
CDH problem by interacting with A.

Let a, b ∈ Z
∗
q be a random input of CDH problem instance ga, gb, the algo-

rithm B is required to output gab.

Initialization. B chooses a positive integer N , then does the following:

1. Chooses sj ∈ Z
∗
q and sets gj = (gb)sj for j ∈ [1, N].

2. Lets pku = ga, and pp = (q,G1,G2, e, g, g1, . . . , gN).
3. Sends the public parameters pp and the user public key pku to A.

Combiner-Key Generation Query. Suppose A issues at most qk combiner-
key generation queries. B denotes t-th combiner-key generation query as (pk

(t)
c ,

sk
(t)
c), and guesses the T -th query is the challenge designated combiner, where

T ∈ [1, qk]. B maintains a list Lk that consists of tuples (t, sk(t)
c , pk

(t)
c), then

does:

1. If t �= T , B selects a random value yt ∈ Z
∗
q as the private key sk

(t)
c and

computes the public key pk
(t)
c = gyt .

2. If t = T , B selects a random value yt and sets the combiner’s public key
pk

(t)
c = gbyt . The private key sk

(T)
c is unknown to both B and A.

B inserts (t, sk(t)
c , pk

(t)
c) into the list Lk and returns pk

(t)
c to A.

Combiner Corruption Query. B is given a combiner’s public key pk
(t)
c , B

aborts the simulation if t = T , otherwise, B looks up the list Lk and returns the
corresponding private key sk

(t)
c to A.

H1 Query. B maintains a list LH that consists of tuples (τ, {ζi,H1(i, τ)}k
i=1).

When A requests the value of H1(i, τ), B:

1. If τ has already been queried, B returns H1(i, τ), i ∈ [1, k].
2. Otherwise, B randomly chooses ζi ∈ Z

∗
q , computes H1(i, τ) = (gb)ζi , adds

(τ, {ζi,H1(i, τ)}k
i=1) into the LH list and returns {H1(i, τ)}k

i=1 to A.

Sign Query. A requests the signature on the vector subspace V ⊂ Z
N
q , described

by properly augmented basis vectors m1, . . . ,mk ∈ Z
N
q (mi = (m1, . . . , mN)).

The algorithm B does the following:

1. Chooses a random id ← {0, 1}λ and sets the tag τ = (id, pk
(t)
c) for subspace.

If H1(·, τ) has already been queried, the simulation is aborted.

238 Y. Li et al.

2. Lets k = N − n, computes ζi = −∑n
j=1 sjmij for i = 1, . . . , k.

3. Chooses a random value zi ∈ Z
∗
q , and sets H1(i, τ) =

gzi ·(gb)ζi

pkc

(t)

.
4. Computes

σi = (ga)zi

5. Outputs the tag τ and signatures (σ1, . . . σk).

Combine Query. When A submits (pk
(t)
c , τ, {βi,mi, σi}k

i=1), B aborts the sim-
ulation if t = T . Otherwise, B checks whether the tag τ already appears in the
sign queries, then B proceeds as follows:

1. Computes r = yt(
∑k

i=1 βi − 1) mod q and R = pkr
u.

2. Computes m̂ =
∑k

i=1 βimi = (m̂1, ..., m̂N).

3. Computes σ̂ =
k∏

i=1

σi
βi/R.

4. Outputs the tag τ and vector/signature pair (m̂, σ̂)

Output. If B does not abort, then A outputs a combiner’s public key pk∗
c , a tag

τ∗, a non-zero vector w∗ and a valid signature σ∗.
If τ∗ is not the tag used to answer a previous signature query, then B com-

putes H1(·, τ∗) as above, in this case H1(i, τ∗) = (gb)ζi for i = 1, . . . , k. B
computes ω = (σ∗

gay)
1

s·w∗ , and outputs ω, where s = (s1, . . . sn, ζ1, . . . , ζk).
The responses to all hash queries are independent and uniformly random in

G1. We also observe that g1, . . . , gN are random group elements, and the public
key pku output by B is distributed identically to the public key produced by the
real KeyGen algorithm.

Next, we show that the signature σ output by B is identical to the signature
that would be produced by the real Sign algorithm computed by B. In fact,
setting the public key pku and hash query as above, we have

σ = (
k∏

i=1

(H1(i, τ)mn+i

n∏

j=1

g
mj

j · pk(t)
c)a = (ga)z

where σ = (
k∏

i=1

(H1(i, τ)mn+i

n∏

j=1

g
mj

j ·pk
(t)
c)a is the “real” signature and σ = (ga)z

is the signature computed by B. The “real” signature is equal to

σ = (
gz · (gb)ζ

pkc
·

n∏

j=1

g
mj

j · pkc)a = gaz · gab(s·m)

From the construction of ζ in signature, we have s · m = 0, and σ = gaz.
Therefore, the Sign algorithm has been correctly simulated by B.

Probability Analysis. We next analyze the probability that B does not
abort the simulation. Let qk, qr, qh, qs, qc be the times of queries made to the
Combiner-Key Generation Query, Combiner corruption Query, H1

Structure-Preserving LHS with Designated Combiner for Subspace 239

Query, Sign Query and Combine Query, respectively. The conditions that
B does not abort the simulation includes the following three aspects: (1) A
has never issued a combiner corruption query on the challenge combiner. This
probability is (1 − 1

qk
)qr . (2) A has never issued a combine corruption query on

the challenge combiner. This probability is (1 − 1
qk
)qc . (3) B never aborts the

simulation in sign query phase. This probability is 1 − 1
qs·qh

.
The probability of the simulation does not abort is (1 − 1

qk
)qr (1 − 1

qk
)qc(1 −

1
qs·qh

) ≥ e2(1− 1
qs·qh

). Besides, we assume that the probability that of A outputs
a valid signature successfully is ε.

Suppose the simulation is not aborted and A outputs a tag τ∗, a non-zero
vector w∗ and a signature σ∗. If Verify(pp, pku,w∗, w∗, σ∗) = 1, we have

e(σ∗, g) = e(
k∏

i=1

H1(i, τ)wn+i

n∏

j=1

g
wj

j · pk(t)
c , pku)

Because of the same reasoning as above, we have

e(gb(
∑k

j=1 ζjwn+j+
∑n

i=1 sjwj)+y, pku) = e(gab(s·w∗) · gay, g)

According to the non-degeneracy property of e, we have

σ∗ = gab(s·w∗) · gay

It follows that if s ·w∗ �= 0 mod q then the element ω = (σ∗
gay)

1
s·w∗ output by B

is equal to gab.
B cannot compute gab if s · w∗ = 0 mod q even if the forgery belongs to

one of the three types of forgery. In the following cases, the probability of s ·
w∗ = 0 mod q is as follows: (1) A has not queried the signature with the
tag τ∗. All elements of the vector s are uniformly distributed over Zq and A
knows nothing about them. Since the vector w∗ is a non-zero vector, s · w∗ is
uniformly distributed over Zq, which indicates that the probability of s ·w∗ = 0
is at most 1/q. (2) A has queried a signature query under the tag τ , but the
vector w∗ /∈ V . All elements of the vector s above are uniformly distributed
over Zq, implying that s is uniformly distributed over V ⊥. Therefore, for any
w∗ /∈ V , s · w∗ is uniformly distributed over Zq. Obviously, the probability of
s · w∗ = 0 is also at most 1/q. (3) A has queried a signature query under the
tag τ , the vector w∗ ∈ V − {m1, . . . ,mk}. Since m1, . . . ,mk is a set of basis
vectors of V , all of them are none-zero vectors. All elements of the vector s
above uniformly distributed over Zq, implying that s is uniformly distributed in
V . For any mi, i ∈ [1, k] we see that s ·mi satisfies uniformly distributed over Zq.
Thus, for any w∗ /∈ V −{m1, . . . ,mk}, s ·w∗ is uniformly distributed over Zq−k.
Obviously, the probability of s ·w∗ = 0 is 1

q−k . Since q >> k, the probability of
s · w∗ = 0 is close to 1/q.

According to the three above situations, the probability of s ·w∗ �= 0 mod q
is 1 − 1

q . Overall, the simulator B can output ω = gab with the probability

ε
′ ≥ e2(1 − 1

qs · qh
)(1 − 1

q
)ε.

240 Y. Li et al.

Since the CDH assumption holds, the advantage of solving the CDH problem
is negligible, i.e. ε

′
is negligible, we say the probability ε of A forging a valid

signature is negligible. Therefore, there exists no probabilistic polynomial-time
adversary A that can break the proposed scheme.

The proof is completed.

5 Theoretical Analysis

Table 2 shows the comparison among our SPS-LHSDC scheme, Boneh et al.’s [3]
NCS1 scheme and Lin et al.’s [18] scheme over signature generation, combination
and verification.

Computation Cost: Using a personal computer (PC) with an Intel i5 3.2GHz
quad-cores processor, 4 GB RAM, we evaluate each operation under the Java
Pairing-Based Cryptography Library (JPBC) [9]. The parameter a.param pro-
vides a symmetric pairing. The running time of different pairing-based operations
is listed in Table 1. We omit the map to Zq hash operation and additive operation
in Zq, since the cost of these operations is negligible.

Table 1. Operations and time consumption

Operation Time

TE Exponential operation in G1 9 ms
TP Bilinear map operation 6 ms
TH Map-to-point hash operation 21 ms
TM Multiplicative operation in G1 5 × 10−2 ms
TI Inverse operation in G1 5 × 10−3 ms

Table 2. Comparison of computation cost

Scheme
Algorithm [3] [18] Our scheme

Sign (n+ 2)TE + 1TH +
nTM ≈ 9n+ 39 ms

(n+2)TE+1TP +3TH+
(n+1)TM ≈ 9n+87 ms

(n+2)TE +1TH + (n+
1)TM ≈ 9n+ 39 ms

Combine kTE + (k − 1)TM ≈
9k ms

(k + 3)TE + 1TP +
1TH + kTI + 2kTM ≈
9k + 54 ms

(k+1)TE+(k−1)TM ≈
9k + 9 ms

Verify NTE + 2TP + kTH +
(N − 1)TM ≈
9N + 21k + 12 ms

(N +1)TE +2TP +(k+
1)TH + 1TI +NTM ≈
9N + 21k + 42 ms

NTE + 2TP + kTH +
NTM ≈
9N + 21k + 12 ms

Designated combiner No Yes Yes

Structure-Preserving LHS with Designated Combiner for Subspace 241

In order to facilitate comparison, we assume that there are k vectors and
each vector has n sectors. Let N = (n + k) is the dimension of the augmented
vector. From Table 2, we see that our scheme requires lower computation cost
than Lin et al.’s [18] scheme, and slightly higher computation cost than Boneh
et al.’s [3] scheme in signature generation, combination and verification phases.

6 Conclusion

In this paper, we formalize the definition as well as the security model for
structure-preserving linearly homomorphic signature scheme with designated
combiner for subspace. In this work, the combined signature is indistinguishable
from signatures generated by the signer, and only the designated entity can run
the combine algorithm. Other entities except for the signer and the designated
entity cannot generate a valid signature for any vector in the signed subspace.
Finally, we propose an efficient structure-preserving linearly homomorphic sig-
nature scheme with designated combiner and prove it is secure under the CDH
problem assumption. The theoretical analysis shows that the combine algorithm
in our scheme needs a lower cost compared to other schemes with designated
combiner.

Acknowledgement. We thank the anonymous reviewers of ACISP 2022 for their
useful comments. This work is supported by the National Natural Science Foundation of
China under grants (62172096, 62072134, U2001205), and the Key projects of Guangxi
Natural Science Foundation under grant 2019JJD170020, and the Key Research and
Development Program of Hubei Province under Grant 2021BEA163.

References

1. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14623-7_12

2. Attrapadung, N., Libert, B.: Homomorphic network coding signatures in the stan-
dard model. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011.
LNCS, vol. 6571, pp. 17–34. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-19379-8_2

3. Attrapadung, N., Libert, B., Peters, T.: Efficient completely context-hiding
quotable and linearly homomorphic signatures. In: Kurosawa, K., Hanaoka, G.
(eds.) PKC 2013. LNCS, vol. 7778, pp. 386–404. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36362-7_24

4. Boneh, D., Freeman, D.M.: Linearly homomorphic signatures over binary fields
and new tools for lattice-based signatures. In: Catalano, D., Fazio, N., Gennaro,
R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 1–16. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19379-8_1

5. Boneh, D., Freeman, D., Katz, J., Waters, B.: Signing a linear subspace: signature
schemes for network coding. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS,
vol. 5443, pp. 68–87. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-00468-1_5

https://doi.org/10.1007/978-3-642-14623-7_12
https://doi.org/10.1007/978-3-642-19379-8_2
https://doi.org/10.1007/978-3-642-19379-8_2
https://doi.org/10.1007/978-3-642-36362-7_24
https://doi.org/10.1007/978-3-642-19379-8_1
https://doi.org/10.1007/978-3-642-00468-1_5
https://doi.org/10.1007/978-3-642-00468-1_5

242 Y. Li et al.

6. Catalano, D., Fiore, D., Warinschi, B.: Homomorphic signatures with efficient ver-
ification for polynomial functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014. LNCS, vol. 8616, pp. 371–389. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-44371-2_21

7. Chang, J., Ji, Y., Shao, B., Xu, M., Xue, R.: Certificateless homomorphic signature
scheme for network coding. IEEE/ACM Trans. Netw. 28(6), 2615–2628 (2020)

8. Cheng, C., Lee, J., Jiang, T., Takagi, T.: Security analysis and improvements on
two homomorphic authentication schemes for network coding. IEEE Trans. Inf.
Forensics Secur. 11(5), 993–1002 (2016)

9. De Caro, A., Iovino, V.: jPBC: Java pairing based cryptography. In: Proceedings
of the 16th IEEE Symposium on Computers and Communications, ISCC 2011, pp.
850–855. IEEE (2011)

10. Desmedt, Y.: Computer security by redefining what a computer is. In: Proceedings
on the 1992–1993 Workshop on New Security Paradigms, pp. 160–166. ACM (1993)

11. Fuchsbauer, G., Hanser, C., Slamanig, D.: Structure-preserving signatures on
equivalence classes and constant-size anonymous credentials. J. Cryptol. 32(2),
498–546 (2019). https://doi.org/10.1007/s00145-018-9281-4

12. Gennaro, R., Katz, J., Krawczyk, H., Rabin, T.: Secure network coding over the
integers. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp.
142–160. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13013-
7_9

13. Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic signa-
tures from standard lattices. In: Proceedings of the Forty-Seventh Annual ACM
on Symposium on Theory of Computing, STOC 2015, pp. 469–477. ACM (2015)

14. Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature schemes.
In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer, Hei-
delberg (2002). https://doi.org/10.1007/3-540-45760-7_17

15. Li, T., Chen, W., Tang, Y., Yan, H.: A homomorphic network coding signature
scheme for multiple sources and its application in IoT. Secur. Commun. Netw.
2018, 9641273:1–9641273:6 (2018)

16. Li, Y., Zhang, F., Liu, X.: Secure data delivery with identity-based linearly homo-
morphic network coding signature scheme in IoT. IEEE Trans. Serv. Comput.
15(4), 2202–2212 (2022). https://doi.org/10.1109/TSC.2020.3039976

17. Lin, C.-J., Huang, X., Li, S., Wu, W., Yang, S.-J.: Linearly homomorphic signatures
with designated entities. In: Liu, J.K., Samarati, P. (eds.) ISPEC 2017. LNCS, vol.
10701, pp. 375–390. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
72359-4_22

18. Lin, C., Xue, R., Huang, X.: Linearly homomorphic signatures with designated
combiner. In: Huang, Q., Yu, Yu. (eds.) ProvSec 2021. LNCS, vol. 13059, pp. 327–
345. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90402-9_18

19. SadrHaghighi, S., Khorsandi, S.: An identity-based digital signature scheme to
detect pollution attacks in intra-session network coding. In: 13th International
Iranian Society of Cryptology Conference on Information Security and Cryptology,
ISCISC 2016, pp. 7–12. IEEE (2016)

20. Yu, H., Li, W.: A certificateless signature for multi-source network coding. J. Inf.
Secur. Appl. 55, 102655 (2020)

21. Yu, Z., Wei, Y., Ramkumar, B., Guan, Y.: An efficient signature-based scheme for
securing network coding against pollution attacks. In: INFOCOM 2008. 27th IEEE
International Conference on Computer Communications, Joint Conference of the
IEEE Computer and Communications Societies, pp. 1409–1417. IEEE (2008)

https://doi.org/10.1007/978-3-662-44371-2_21
https://doi.org/10.1007/978-3-662-44371-2_21
https://doi.org/10.1007/s00145-018-9281-4
https://doi.org/10.1007/978-3-642-13013-7_9
https://doi.org/10.1007/978-3-642-13013-7_9
https://doi.org/10.1007/3-540-45760-7_17
https://doi.org/10.1109/TSC.2020.3039976
https://doi.org/10.1007/978-3-319-72359-4_22
https://doi.org/10.1007/978-3-319-72359-4_22
https://doi.org/10.1007/978-3-030-90402-9_18

Structure-Preserving LHS with Designated Combiner for Subspace 243

22. Zhang, P., Yu, J., Wang, T.: A homomorphic aggregate signature scheme based on
lattice. Chin. J. Electron. 21(4), 701–704 (2012)

23. Zhang, Y., Jiang, Y., Li, B., Zhang, M.: An efficient identity-based homomorphic
signature scheme for network coding. In: Barolli, L., Zhang, M., Wang, X.A. (eds.)
EIDWT 2017. LNDECT, vol. 6, pp. 524–531. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-59463-7_52

https://doi.org/10.1007/978-3-319-59463-7_52
https://doi.org/10.1007/978-3-319-59463-7_52

TIDE: A Novel Approach to Constructing
Timed-Release Encryption

Angelique Faye Loe1(B), Liam Medley1, Christian O’Connell2,
and Elizabeth A. Quaglia1

1 Royal Holloway, University of London, Egham, UK
angelique.loe.2016@live.rhul.ac.uk

2 Egham, UK

Abstract. In ESORICS 2021, Chvojka et al. introduced the idea of tak-
ing a time-lock puzzle and using its solution to generate the keys of a
public key encryption (PKE) scheme [12]. They use this to define a timed-
release encryption (TRE) scheme, in which the secret key is encrypted ‘to
the future’ using a time-lock puzzle, whilst the public key is published.
This allows multiple parties to encrypt a message to the public key of the
PKE scheme. Then, once a solver has spent a prescribed length of time
evaluating the time-lock puzzle, they obtain the secret key and hence
can decrypt all of the messages.

In this work we introduce TIDE (TIme Delayed Encryption), a novel
approach to constructing timed-release encryption based upon the RSA
cryptosystem, where instead of directly encrypting the secret key to the
future, we utilise number-theoretic techniques to allow the solver to fac-
tor the RSA modulus, and hence derive the decryption key. We imple-
ment TIDE on a desktop PC and on Raspberry Pi devices validating
that TIDE is both efficient and practically implementable. We provide
evidence of practicality with an extensive implementation study detailing
the source code and practical performance of TIDE.

Keywords: Auctions · Time-lock puzzle · Timed-release encryption ·
Public key cryptography

1 Introduction

In 1996, Rivest et al. introduced the notion of sending a message ‘to the future’
using a time-lock puzzle [35]. This seminal paper is the basis of modern-day
delay-based cryptography. Delay-based cryptography is a prominent and wide-
ranging subject built around the notion of associating standard ‘wall-clock time’
with an iterated sequential computation. In modern times, delay-based cryptog-
raphy is used in the classical sense of encrypting a message to the future using
various primitives such as time-lock puzzles [18,29], timed-release encryption
[11,12] and delay encryption [10]; as well as in alternative applications such as

Independent.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
K. Nguyen et al. (Eds.): ACISP 2022, LNCS 13494, pp. 244–264, 2022.
https://doi.org/10.1007/978-3-031-22301-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22301-3_13&domain=pdf
https://doi.org/10.1007/978-3-031-22301-3_13

TIDE: A Novel Approach to Constructing Timed-Release Encryption 245

providing a computational proof-of-age of a document, and building a public
randomness beacon [8,32,38].

In this paper, we introduce TIDE, a novel construction of timed-release
encryption. TIDE is particularly suited to the application of sealed-bid auc-
tions, providing a practical and efficient solution to Vickrey auctions, as we shall
explore next.

1.1 Sealed-Bid Auctions

Sealed-bid auctions allow bidders to secretly submit a bid for some goods with-
out learning the bids of any other party involved until the end of the auction.
In a sealed-bid second-price auction, known as a Vickrey auction, the highest
bidder wins the goods but pays the price of the second highest bid [1,6,37].
The challenge of building a fair, efficient, and cryptographically secure Vickrey
auction has been of interest for decades [4,9,10,21,25]. A common approach to
constructing sealed-bid auctions is to implement a commit and reveal solution
using an append-only bulletin board, e.g., a blockchain [21]. Such solutions con-
sist of two phases: a bidding phase, where parties commit to a bid and post their
commitment on the bulletin board; and an opening phase where parties reveal
their bids. However, the main drawback of this approach is that parties are not
obliged to open their bids, which is particularly problematic in the example of
Vickrey auctions as it is necessary to learn the second highest bid as well as the
first [1,6]. For an auction to be transparent and fair it is desirable that each party
must open their commitments to the bid once the bidding phase has ended.

By replacing the commitments with time-lock puzzles one can obtain an
elegant method of solving this problem [35]. Each party encrypts their bid as
the solution to a time-lock puzzle. Therefore, in the opening phase if a party
does not reveal their bid it can instead be opened by computing the solution to
the puzzle. However, this method does not scale well becaue it leads to many
different time-lock puzzles being solved, which is computationally expensive.
Recently there has been research into solving this problem more efficiently.

At CRYPTO 2019 [29], Malavolta et al. suggest that each party encrypts
their bid as a time-lock puzzle, as in the classical method suggested by Rivest
et al. Their insight is that the tallyer then uses techniques from homomorphic
encryption to evaluate a computation over the set of puzzles to determine the
winning bidder. This leads to only the relevant puzzle being solved rather than
the entire set of puzzles. Whilst this is a very elegant solution the application
relies on fully homomorphic TLP constructions and all current constructions of
homomorphic TLPs are based on indistinguishability obfuscation (IO) [10,29].
IO aims to obfuscate programs to make them unintelligible whilst retaining
their original functionality [2]. However, IO is known to be impractical with no
construction efficiently implementable at the time of writing [24].

At EUROCRYPT 2021 Burdges et al. introduce Delay Encryption [10], a
primitive which offers an alternative approach to solving this problem, using
a delay-based analogue to identity-based encryption. Where time-lock puzzles
require each bidder to encrypt their bid against a unique time-lock puzzle, Delay
Encryption instead requires bidders to encrypt their bid to a public session ID.

246 A. F. Loe et al.

This session ID acts as a bulletin board, meaning anyone who knows this session
ID can efficiently encrypt messages to it. All messages encrypted to the session
ID can be efficiently decrypted by any party who knows a secret session key.
The key feature of DE is a slow and sequential Extract algorithm, which outputs
a session key after a prescribed amount of time. This time delay defines the
bidding phase of the auction in which parties may encrypt bids to the session
ID. Once the session key has been extracted all bids can be decrypted, thus
replacing the opening phase described in the commit-and-reveal paradigm. This
works well in the context of auctions as in the opening phase. In DE rather
than solving multiple time-lock puzzle the Extract algorithm is run once which
outputs a session key.

This seems to be an ideal solution, however the construction of DE pre-
sented in [10] comes with two significant practical disadvantages: (i) The storage
requirements needed to compute the decryption key is huge - a delay of one hour
requires 12 TiB of storage; (ii) The time taken to run setup grows proportionally
to the delay, which is very expensive. These two factors make this construction
problematic from a practical standpoint.

The goal of the approaches outlined above is to utilise a time-delay to solve
the auction problem in a scalable manner. This improves upon the efficiency of
Rivest’s solution by ensuring that at most two sequential computation (namely
the puzzles containing the two highest bids in [29], and Extract in [10]) needs
to be run, rather than one for each bid. However, the approaches so far have
practical problems with the instantiation of their proposed candidate.

At ESORICS 2021 Chvojka et al. introduce the idea of taking a TLP and
using its solution in the key generation of a public key encryption (PKE) scheme
[12]. They use this to define a timed-release encryption (TRE) scheme where
multiple parties encrypt a message to the public key of the PKE scheme. Then
upon solving the puzzle they can reconstruct the secret key and decrypt all of
the messages. The authors explain how to achieve this generically using standard
TLP and PKE primitives, but no concrete instantiation is provided.

In this work we present TIDE, a novel, efficient and easily implementable
approach to building a TRE scheme to solve the scalability problems in Vickrey
auctions. TIDE seamlessly integrates RSA encryption into a TLP using powerful
results from number theory. On top of being a concrete construction, TIDE
subtly differs in its approach to that in [12] in the way the secret key is derived.
We provide further insights on how TIDE works next.

1.2 Technical Overview

TIDE relies on the RSW time-lock assumption, which states that it is hard to
compute x2t

mod N in fewer than t sequential steps [35], for an RSA modu-
lus N . This assumption was first introduced in 1996 by Rivest et al. [35], and
has been used to build a variety of cryptographic constructions [8,18,29,32,38].
TIDE deviates from previous literature by using number theoretic techniques to
utilise the output x2t

mod N in a novel way. Previous approaches used squaring
solely for its sequential properties, i.e., the final output is used only to guarantee

TIDE: A Novel Approach to Constructing Timed-Release Encryption 247

a delay. For example, in time-lock puzzles, the solution to the puzzle is precom-
puted using a trapdoor, in order to hide a message as the product of the solution
and the message [18,29,35]. This allows one to trivially obtain the message upon
computing the delay, and hence solving the puzzle.

In the context of verifiable delay functions, the RSW assumption is used to
prove that a certain amount of clock time has taken place. This is achieved by
the solver computing repeated squarings upon a randomly sampled element of
Z

∗
N , and computing a proof in order to mathematically prove to a verifier that

t squarings have taken place [8,32,38].
In TIDE the output of the computation expands beyond guaranteeing a

delay. Namely TIDE provides exactly the information required to factor the
RSA modulus N . TIDE achieves this by incorporating a theorem of Fermat and
Rabin, which states that if x and x′ are known such that x2 ≡ x′2 mod N , where
x �≡ ±x′ mod N , then the non-trivial factors of N can be recovered in polynomial
time [33]. By carefully setting up the system we provide the user with value x
and ensure that the output of the squaring reveals x′. Therefore knowledge of
x and x′ can be used to factor N in polynomial time. Then we combine this
with a standard RSA encryption scheme using N and a encryption exponent
as the public key. Once a solving party computes the delay they can derive the
secret key and hence can decrypt all messages. Therefore, our construction can
be seen as a natural integration of an RSW-based time-lock puzzle and the RSA
encryption scheme. We formalise this in terms of syntax and security definitions
in Sect. 4, where we follow the definition of TRE by Chvojka et al. [12].

The key insight of TIDE is contained in the generation of the public key and
puzzle, as this allows us to use the relevant theorem of Rabin [33]. N is chosen
to be a particular class of RSA modulus known as a Blum integer N = pq,
which has the property that p ≡ q ≡ 3 mod 4. The puzzle consists of three
different elements, P = (x, x0, x−t). First, the element x is efficiently sampled
such that JN (x) = −1, where JN (x) is the Jacobi symbol [26]. Next, the seed
x0 is calculated as x0 ≡ x2 mod N . Crucial to TIDE is the term x−t, where
x2t

−t ≡ x0 mod N .
Now, any party wishing to solve the puzzle sequentially calculates the term

x−1 := x′ ≡ √
x0 by repeated squaring. The term x′ has the property JN (x′) =

+1. This is crucial, as in Gen x was chosen such that JN (x) = −1. Therefore,
the solving party obtains the term x2 ≡ x′2 ≡ x0 mod N , where x �= x′ mod N .
Thus, the party obtains all four square roots of x0. Therefore, Solve can recover
the non-trivial factors of N in polynomial time using the result from Rabin [33].

The simplicity of RSA encryption and decryption makes TIDE a conceptually
simple approach to sealed-bid auctions, whilst the underlying number theoretic
techniques allow the functionality to be very efficient and practical.

1.3 Related Work

Alternatives to Vickrey Auctions. The most common style of auction is
the sealed first-bid auction in which the highest bidder wins and pays the
amount they bid for the goods. From a cryptographic perspective this is more
straightforward to implement, making it easier to include additional properties

248 A. F. Loe et al.

in such schemes. For example, research has been done into sealed first-bid auc-
tion schemes where the bids of losers remain hidden, by requiring bidders to run
a protocol computing the highest bid, and ensuring that only the highest bid is
opened [4,36].

In a well-known paper ‘Secure Multiparty Computation Goes Live’ [7], tech-
niques from multi-party computation were used to implement a nation wide
double auction in Denmark. In a double auction, sellers indicate how much of
an item they are willing to sell at certain price points, whilst buyers indicate
how much of the same item they are willing to buy at each price point. Using
this information, the market clearing price, i.e., the price per unit of this item is
computed, allowing transactions to be made at this price point.

Both of these examples rely on a very different framework to that of TIDE:
they requires multiple parties being online at the same time carrying out a
protocol. As such, whilst linked by the application of auctions, we view such
work as tangential. We now turn our attention to delay-based cryptography
which is more closely related to our work.

Encrypting a Message to the Future. Time-lock puzzles (TLPs) were first
introduced in the seminal paper of Rivest et al. [35] as a way to encrypt messages
to the future. They suggested various applications for this, including sealed-
bid auctions and key escrow schemes. The method they use to build the delay
is sequentially squaring in a finite group of unknown order, which is known
as the RSW time-lock assumption. Recently, there have been some alternative
approaches to building TLPs. Rather than using repeated squaring new TLPs
include using witness encryption and bitcoin [27], randomised encodings [3], and
random isogeny walks over elliptic curves [17].

The RSW time-lock assumption has been used as the base of various con-
structions of verifiable delay functions (VDFs) [8,32,38]. In a VDF a solver
computes a delay similarly to a time-lock puzzle, but rather than decrypting a
message at the end, the solver instead proves that they have spent the prescribed
amount of time on the computation. This proof of elapsed time has primarily
found use in randomness beacons which are used in blockchain design [13].

In 2019 De Feo et al. introduced a VDF based upon isogeny walks [17], which
in 2021 they extended to a delay encryption (DE) scheme. DE is similar to a
time-lock puzzle, but rather than proving that time has elapsed, instead a session
key is derived. This can be seen as similar to the decryption key described in the
technical overview of TIDE, in Sect. 1.2. Indeed DE as a primitive is very similar
to the notion of timed-release encryption where we align our TIDE construction.
The key difference between the two primitives is that DE uses notions from
identity-based encryption and thus avoids using a trapdoor in the setup phase.

Recall in Sect. 1.1 that timed-release encryption (TRE) is another delay-
based primitive, whose traditional definition combines public-key encryption
with a time-server [11,30]. Messages can be encrypted to a public key and decryp-
tion requires a trapdoor which is kept confidential by a time-server until at an
appointed time. In a recent paper by Chvojka et al. [12] TRE was defined gener-
ically with a view to improving versatility and functionality. Whilst we build a

TIDE: A Novel Approach to Constructing Timed-Release Encryption 249

timed-release encryption scheme following the definitions of Chvojka et al., our
scheme does not require a time-server.

1.4 Contributions

In our work we design a novel and theoretically efficient variant of a time-lock
puzzle by utilising RSA encryption and decryption to obtain a simple and effi-
cient construction. We provide a security and efficiency analysis of our construc-
tion, proving that TIDE is cryptographically secure under the TRE notions [12].
We analyse the theoretical and practical efficiency of our scheme, proving that
it has concrete theoretical advantages over the alternative proposals for Vickrey
auctions and demonstrate that it is significantly more practical than current
candidates. We present evidence of the practicality of our scheme by providing
an implementation study using Raspberry Pi devices and a desktop PC, show-
ing that TIDE can be run efficiently on consumer grade hardware. In particular,
we show that when using a 2048-bit modulus, TIDE takes approximately one
second to setup on a desktop PC and 30 s on a Raspberry Pi.

2 Preliminaries: Assumptions and Number Theory

In this section we review the time-lock assumption and number theory required
to construct TIDE. For well-known theorems we refer to the relevant sources
and we prove the other theorems in Sect. 4 and Appendix B of our full paper
[28].

The RSW time-lock assumption [35] is core to a number of notable construc-
tions using a cryptographic delay in the latest literature [8,16,18,29,32,38].

Definition 1. RSW time-lock assumption: Let N = pq where p and q
are distinct odd primes. Uniformly select x ∈ Z

∗
N , where Z

∗
N = {x |x ∈

(0, N) ∧ gcd(x,N) = 1}. Then set the seed term as x0 := x2 mod N . If a prob-
abilistic polynomial time (PPT) adversary A does not know the factorisation of
N or group order φ(N) then calculating xt ≡ x2t

0 mod N is a non-parallelizable
calculation that will require t sequential modular exponentiations calculated with
the Algorithm 2.1 Square and Multiply [35].

Secondly we note that the modulus used in our TIDE will be a Blum integer
[5]. A Blum integer N = pq, is the product of two Gaussian primes. A Gaussian
prime has the property p ≡ 3 mod 4.

Next, we provide the definition of quadratic residues.

Definition 2. Quadratic Residues in Z
∗
N are numbers r that satisfy congru-

ences of the form:
x2 ≡ r mod N (1)

If an integer x exists such that the preceding congruence is satisfied, we say that
r is a quadratic residue of N . If no such x exists we say that r is a quadratic
non-residue of N .

250 A. F. Loe et al.

Algorithm 2.1: Square and Multiply [14]

input : (a, b, N), // a, b, N ∈ N, ab mod N
1 d := 1
2 B := bin(b) // b in binary

3 for j ∈ B do
4 d := d2 mod N
5 if j = 1 then
6 d := da mod N
7 end

8 end
output: d

The Jacobi symbol, denoted JN (r), is a function which defines the quadratic
character of r in Eq. 1. The Jacobi Symbol can be calculated in polynomial time
using Euler’s Criterion.

Theorem 1. Euler’s Criterion can be used to calculate the Jacobi Symbol of the
number r in Eq. 1 for a prime modulus p. If gcd(r, p) = 1, then:

Jp(r) = r
p−1
2 =

{
+1, if r ∈ QRp

−1, if r ∈ QNRp

(2)

where r ∈ QRp indicates that r is a quadratic residue of p and r ∈ QNRp

indicates that r is a quadratic non-residue of p.

When the modulus is a prime number if the Jacobi symbol evaluates to +1
then r is always a quadratic residue and if the Jacobi symbol evaluates to −1
then r is always a quadratic non-residue. The Jacobi symbol is more complex
when the modulus is a composite number N = pq.

Corollary 1 (of Theorem 1). Euler’s Criterion can be used to calculate the
Jacobi Symbol of the number r in Eq. 1 for a composite modulus N if the fac-
torisation of N is known.

Algorithm 2.2 shows how to determine the quadratic character of r for com-
posite N using Theorem 1 and Corollary 1. When N is composite the quadratic
character of r can take three formats. If the Jacobi symbol evaluates to −1 then
r is always a quadratic non-residue, denoted QNR−1

N . However, if the Jacobi
symbol evaluates to +1 then r can either be a quadratic residue, denoted QRN

or a quadratic non-residue denoted QNR+1
N .

Quadratic residues and quadratic non-residues for composite N have a dis-
tinct distribution in Z

∗
N .

TIDE: A Novel Approach to Constructing Timed-Release Encryption 251

Algorithm 2.2: Calculating JN (r) for composite N .
input : (r, p, q)

1 Jp(r) := r
p−1
2 mod p

2 Jq(r) := r
q−1
2 mod q

3 if Jp(r) = 1 ∧ Jq(r) = 1 then
4 x := QRN

5 else if Jp(r) = −1 ∧ Jq(r) = −1 then
6 x := QNR+1

N

7 else
8 x := QNR−1

N

9 end
output: x

Theorem 2. The cardinality of QRN , QNR+1
N , and QNR−1

N for composite
N = pq, where p and q are distinct primes is as follows:

∣∣QRN

∣∣ =

∣∣Z∗
N

∣∣
4

=
φ(N)

4
.

∣∣QNR+1
N

∣∣ =

∣∣Z∗
N

∣∣
4

=
φ(N)

4
.

∣∣QNR−1
N

∣∣ =

∣∣Z∗
N

∣∣
2

=
φ(N)

2
.

(3)

where,
∣∣Z∗

N

∣∣ = φ(N) = (p − 1)(q − 1), and φ(N) is Euler’s totient function.

Next, we discuss how to calculate preceding terms of the seed term x0 ∈ QRN

in an RSW time-lock sequence. To calculate the subsequent term of x0 in the
sequence evaluate x1 ≡ x21

0 mod N by inputting (x0, 21, N) into Algorithm 2.1.
If the factorisation of N is known Theorem 1 can be used in conjunction with

the Chinese Remainder Theorem (CRT) to calculate the term x−1 in polynomial
time. The CRT can be found in our Auxiliary material.

Theorem 3. Let p be a Gaussian prime. For any r ∈ Z
∗
p, if Jp(r) = +1, then

finding α such that α ≡ √
r mod p can be found by calculating α ≡ r

p+1
4 mod p.

Example 1. Let N = 67 · 139 = pq = 9313. Given the seed x0 = 776 ∈ QRN ,
the square root of x0 mod N , denoted by x−1 =

√
x0, can be found as follows:

– calculate α ≡ x
p+1
4

0 ≡ x17
0 ≡ 21 mod p

– calculate β ≡ x
q+1
4

0 ≡ x35
0 ≡ 9 mod q

– calculate x−1 = αq(q−1 mod p) + βp(p−1 mod q) = 128862

Then α and β are calculated using Theorem 3 and x−1 is calculated using the
CRT. Note that (q−1 mod p) and (p−1 mod q) are calculated using Euclid’s
Extended Algorithm. To verify correctness, note that 1288622 ≡ 776 ≡
x0 mod N . We provide formal analysis of this in Sect. 4.

252 A. F. Loe et al.

If r ∈ QRN then the CRT implies that there are four distinct solutions to
Eq. 1.

Theorem 4. For all N = pq, where p and q are distinct odd primes, each r ∈
QRN has four distinct solutions.

If N is a Blum integer, then the four square roots of each r ∈ QRN has
specific properties. That is, two of the square roots of r are quadratic non-
residues with Jacobi symbol −1, one square root is a quadratic non-residue with
Jacobi symbol +1, and one square root is a quadratic residue.

Theorem 5. Let N be a Blum integer. Then for all r ∈ QRN , if x2 ≡ x′2 ≡
r mod N , where x �= ±x′, then without loss of generality JN (±x) = −1, and
JN (±x′) = +1. That is ±x ∈ QNR−1

N , x′ ∈ QRN and −x′ ∈ QNR+1
N . We

refer to x′ ∈ QRN as the principal square root of r mod N .

Finally, we discuss a method to factor a Blum integer N in polynomial time
if specific information is provided.

Fermat’s factorisation method is a technique to factor an odd composite
number N = pq in exponential time [15]. The method requires finding x and x′

such that x2 − x′2 = N is satisfied. Then the left-hand side can be expressed as
a difference of squares (x − x′)(x + x′) = N .

Fermat’s method can be extended to finding x and x′ to satisfy the following
weaker congruence of squares condition x2 ≡ x′2 mod N , where x �≡ ±x′. This
congruence can be expressed as (x−x′)(x+x′) ≡ 0 mod N . Finding a congruence
of squares forms the basis for several sub-exponential sieving-based factorisation
algorithms [15]. However, if x and x′ in a congruence of squares are known, then
factoring N can be done in polynomial time.

Theorem 6. Let N be a Blum integer. If x and x′ are known such that x2 ≡
x′2 mod N , where x �≡ ±x′ mod N , then the non-trivial factors of N can be
recovered in polynomial time.

Proof. Proofs for Theorems 1, 2, 4, and Corollary 1 can be found in [26]. Proofs
for Theorems 3 and 6 can be found in Sect. 4. The proof for Theorem 5 can be
found in Appendix B of our full paper [28].

3 Our Construction

In this section we give the concrete details of our construction TIDE. Formally,
TIDE is a TRE scheme and we provide a formal exposition of its security prop-
erties in Sect. 4. In our TRE scheme C is the Challenger, S is the Solver, and
A is the Adversary. In the context of Vickery auctions, C can be though of as
the auctioneer and S can be thought of as a Bidder. As is customary, multiple
bidders are participate in an auction.

A TRE scheme consists of four algorithms: Gen, Solve, Encrypt, Decrypt. Gen
and Solve provide the time-lock element of the scheme: Gen generates a secret key,

TIDE: A Novel Approach to Constructing Timed-Release Encryption 253

public key and a puzzle, Solve takes the puzzle and recovers the corresponding
secret key. Encrypt can be ran by multiple parties (bidders) simultaneously using
the public key. Solve can be run by any party i.e. any bidder or third party can
run this algorithm. Once Solve has terminated, the Solver can then use the
secret key to decrypt all of the bids encrypted with Encrypt by using the Decrypt
algorithm. We now outline the details of the four TIDE algorithms.

– (sk, pk, P, t) ← Gen(1κ, t) takes as input a security parameter 1κ and time
parameter t and ouputs a secret key sk, public key pk, puzzle P , and time
parameter. The secret key consists of the factors of sk := (p, q) and the
public key consists of an RSA modulus N and fixed encryption exponent
e := 216 + 1 = 65537. The puzzle is set to P := (x, x0, x−t), where x2 ≡
x0 mod N , JN (x) = −1, and where x2t

−t ≡ x0 mod N .
– sk ← Solve(pk, P, t) takes as input the public key pk, puzzle P , and time

parameter t and outputs the secret key sk := (p, q), where N = pq.
– c ← Encrypt(pk,m) takes as input a public key pk := (N, e) and a message

m and outputs a ciphertext c.
– {m,⊥} ← Decrypt(sk, c) takes as input the secret key sk := (p, q) and a

ciphertext c as input and outputs a message m or error ⊥.

Algorithm 3.1: Gen run on security parameter 1κ and time parameter t
to create the secret key sk, public key pk and puzzle P .
input : 1κ, t

1 p, q := 1
2 while p = q do
3 p := prime(κ

2
)

4 q := prime(κ
2
)

5 end
6 N := pq
7 Jp(x), Jq(x) := 1
8 while ¬(Jp(x) = 1 ∧ Jq(x) �= 1) ∧ ¬(Jp(x) �= 1 ∧ Jq(x) = 1) do
9 x := U(2, N)

10 Jp(x) := x
p−1
2 mod p

11 Jq(x) := x
q−1
2 mod q

12 end
13 x0 := x2 mod N

14 αt := x
p+1
4

t
mod p−1

0 mod p

15 βt := x
q+1
4

t
mod q−1

0 mod q
16 x−t := αtq(q

−1 mod p) + βtp(p−1 mod q) mod N
17 P := (x, x0, x−t)

output: (sk, pk, P, t)

254 A. F. Loe et al.

1) C runs (sk, pk, P, t)←R Gen(1κ, t) to generate the secret key, public key, and
puzzle as seen on Algorithm 3.1 Gen. The function prime(j) on lines 3 and 4 is the
Miller-Rabin Monte Carlo algorithm [31] which generates j bit Gaussian primes.
That is, p ←R prime(j). This guarantees that N , which is calculated on line 6,
is a Blum integer. Gen then enters a while loop. The purpose of the while loop is
to find an x such that x ∈ QNR−1

N . The logic statement on line 8 condenses the
conditional statements in lines 3, 5 and 7 of Algorithm 2.2 using De Morgan’s
laws [22]. Once a suitable x is found x0 is set to x2 mod N . Once x is sampled
and x0 is computed the term x−t is calculated, where x2t

−t ≡ x0 mod N . To
calculate x−t in polynomial time, Euler’s Criterion, the Fermat-Euler Theorem
and the Chinese Remainder Theorem (CRT) must be applied.

Next, αt is calculated, where αt is the tth square root of x0 mod p. To
complete the calculation of the term x−t, the CRT is used on line 16, where
the terms (q−1 mod p) and (p−1 mod q) are calculated using Euclid’s Extended
Algorithm (EEA). Theorem 3 tells us that α ≡ √

x0 ≡ xω
0 mod p, where

ω = p+1
4 . Let αt be the tth square root of x0 mod p. For example, if t = 2,

then α2 ≡ √√
x0 ≡ (xω

0)ω ≡ xω2

0 . Therefore, αt ≡ xωt

0 mod p. Note that the
exponent ωt, for large t will make calculating xωt

0 mod p computationally infea-
sible. Therefore, the Fermat-Euler Theorem is used so the exponent ωt can be
reduced mod(p − 1). Next, βt is calculated, where βt is the tth square root of
x0 mod q. βt is calculated in a similar fashion as αt, except ω is set to q+1

4 .
The puzzle P is set to the tuple (x, x0, x−t) and then C securely stores sk

and passes (pk, P, t) to S who must solve:

Given (pk := (N, e), P := (x, x0, x−t), t), find the factors of N .

Algorithm 3.2: Solve runs on the public key, puzzle, and time parameter
pk, P, t to recover the secret key sk.
input : pk := (N, e), P = (x, x0, x−t), t

1 x′ := x2t−1

−t mod N
2 p′ := gcd(x − x′, N)

3 q′ := N
p′

4 sk := (p′, q′)
output: sk

2) S (or any party) runs sk ← Solve(pk, P, t) to solve the challenge, as seen
on Algorithm 3.2 Solve. First Solve calculates the term x′ in t−1 sequential steps
by evaluating x2t−1

−t mod N . This is where the sequential calculation takes place
using Algorithm 2.1 with inputs (x−t, 2t−1, N). The term x′ is guaranteed to be
in QRN by Definition 2. S now has x ∈ QNR−1

N and x′ ∈ QRN . Therefore, x

must be distinct from x′, and we have x2 ≡ x′2 ≡ x0 mod N . Finally, using the
result from Theorem 6, Solve calculates gcd(x−x′, N) to recover one factor p′ of

TIDE: A Novel Approach to Constructing Timed-Release Encryption 255

N using Euclid’s Extended Algorithm. Next, N
gcd(x−x′,N) is calculated to recover

the other factor q′.
3) S runs c ← Encrypt(pk,m) as seen in Algorithm 3.3 Encrypt. Encrypt

inputs the public key pk := (N, e) and encrypts a message m using RSA-OEAP
encryption and outputs the ciphertext c. First Encrypt outputs the RSA-OAEP
parameters k0, k1, G,H, where k0 and k1 are constants used for padding and G
and H are hashing algorithms modelled as random oracles. Using RSA-OAEP,
parties can encrypt messages to this modulus and encryption exponent. This
means that messages can only be decrypted using the Decrypt algorithm only
after Solve has recovered the secret key sk. Note that the Solve and Encrypt
algorithms are not sequential. The Encrypt algorithm can be run by any Solver
(Bidder) using pk prior to the Solve algorithm recovering the sk.

Algorithm 3.3: Encrypt runs on a message public key pk and message
m, to produce ciphertext c.
input : pk := (N, e), m

1 k0, k1, G, H ← params(1κ) // OAEP parameters

2 m′ := m || 0k1 // Zero pad to n − k0 bits

3 r := rand(k0) // Generate a random k0 bit number

4 X := m′ ⊕ Gn−k0(r) // Hash r to length n − k0

5 Y := r ⊕ Hk0(X) // Hash X to length k0

6 m′′ := X || Y // Create message object

7 c := m′′e mod N // RSA encrypt

output: c

4) S runs {m,⊥} ← Decrypt(sk, c) as seen in Algorithm 3.4 Decrypt. Decrypt
inputs the secret key sk := (p, q) and decrypts ciphertext c using RSA-OEAP
encryption and recovers the message m or outputs an error ⊥. Decrypt also
outputs the same RSA-OAEP parameters k0, k1, G,H as Encrypt. Next, Decrypt
recovers the decryption exponent d on lines 2, 3, 4, where Euclids Extended Algo-
rithm is used. Finally, the RSA-OEAP decrypt algorithm removes the padding
and randomness added during the encryption to recover the message m.

Implementation and Performance Analysis. We implement TIDE on a
desktop PC and a cluster of raspberry Pis. We show how the timings of Algorithm
3.2 Solve grows linearly with the time parameter t, whilst the other algorithms
grow by O(1) in the time parameter. We provide timings with several RSA
moduli of practical relevance, and note in particular that with a modulus size of
2048, the average time to run Solve was one second on a desktop PC. The full
description of the implementation and our results can be found in Appendix A
of our full paper [28].

256 A. F. Loe et al.

Algorithm 3.4: Decrypt runs on secret key sk and ciphertext c, to pro-
duce message m.
input : sk := (p′, q′), c

1 k0, k1, G, H ← params(1κ) // OAEP parameters

2 N := p′q′

3 φ(N) := (p′ − 1)(q′ − 1)
4 d := e−1 mod φ(N) // recover d using EEA

5 m′′ := cd mod N

6 X :=
⌊
c′′ · 2−k0

⌋
// Extract X

7 Y := m′′ mod 2k0 // Extract Y
8 r := Y ⊕ Hk0(X) // Recover r
9 m′ := X ⊕ Gn−k0(r) // Recover padded message

10 m := m′ · 2−k1 // Remove padding

output: m

4 Security

We provide a security analysis of our construction. To this end, we recall the
formal definition of Timed-Release Encryption (TRE), following Chvojka et al.
[12]1, along with the definitions of correctness and security for a TRE scheme.

Definition 3. A timed-release encryption scheme with message space M is a
tuple of algorithms TRE = (Gen, Solve, Encrypt, Decrypt) defined as follows.

– (pk,sk, P, t) ← Gen (1κ, t) is a probabilistic algorithm which takes as input a
security parameter 1κ and a time hardness parameter t, and outputs a public
encryption parameter pk, a secret key sk, and a puzzle P. We require that Gen
runs in time poly ((log t) , κ).

– sk ←Solve(pk, P, t) is a deterministic algorithm which takes as input a public
key pk, a puzzle P , and a time parameter t, and outputs a secret key sk. We
require that Solve runs in time at most t · poly(κ).

– c ← Encrypt (pk,m) is a probabilistic algorithm that takes as input public
encryption parameter pk and message m ∈ M, and outputs a ciphertext c.

– m/ ⊥← Decrypt (sk, c) is a deterministic algorithm which takes as input a
secret key sk and a ciphertext c, and outputs m ∈ M or ⊥.

Definition 4 (Correctness)
A TRE scheme is correct if for all κ ∈ N and hardness parameter t, it holds

that

Pr
[
m = m′ :

(pk,sk, P, t) ← Gen (1κ, t) , sk ← Solve (pk, P, t)
m′ ← Decrypt (sk,Encrypt (pk,m))

]
= 1

1 In [12] they offer a generalised version of this definition, to incorporate what they
define sequential timed-release encryption. This is beyond the scope of this work,
and we instead specify the “non-sequential” case.

TIDE: A Novel Approach to Constructing Timed-Release Encryption 257

Definition 5 (Security). A timed-release encryption scheme is secure with
gap 0 < ε < 1 if for all polynomials n in κ there exists a polynomial t̃(·) such
that for all polynomials t fulfilling that t(·) ≥ t̃(·), and every polynomial-size
adversary A = {(A1,κ,A2,κ)}κ∈N

there exists a negligible function negl(·) such
that for all κ ∈ N it holds

AdvTRE
A =

∣∣∣∣∣∣∣∣
Pr

⎡
⎢⎢⎣

pk, P ← Gen (1κ, t)
(m0,m1, st) ← A1,κ(pk, P)

b = b′ : b
s← {0, 1}; c ← Encrypt (pk,mb)

b′ ← A2,κ(c, st)

⎤
⎥⎥⎦ − 1

2

∣∣∣∣∣∣∣∣
≤ negl(κ)

It is required that |m0| = |m1| and that the adversary Aκ = (A1,κ,A2,κ) consists
of two circuits with total depth at most tε(κ) (i. e., the total depth is the sum of
the depth of A1,κ and A2,,κ).

In what follows, we will refer to algorithms ‘taking t time to compute’, and
‘bounding computation time by t’. In both cases, we are referring to evaluating
a polynomial sized arithmetic circuit of depth at most t.

In order to prove the security of TIDE, we must first define a new hard-
ness assumption. Informally, this states that the terms x, x0 and x−t provide a
negligible advantage to factoring a Blum integer N , or distinguishing between
ciphertexts encrypted to a Blum integer N , when the computational time is
bounded by t.

Definition 6 (BBS Shortcut Assumption). Let the RSA Assumption be
that for any N ← RGen (1κ) and e = 65537, it is hard for any probabilistic
polynomial-time algorithm to find the e-th root modulo N of a random y ←R Z

∗
N

[34].
The BBS Shortcut Assumption states that given (N ′, e) and terms

(x, x0, x−t), where N ′ ← RGen (1κ) is a randomly sampled Blum integer, e =
65537, x is a randomly sampled integer such that x ∈ QNR−1

N , x0 := x2 mod N ,
and x−t is the term t + 1 steps before x0 in a BBS CSPRNG sequence, it is no
easier to find the e-th root of a random y′ ←R Z

∗
N ′ than to find the e-th root

modulo N of a random y ←R Z
∗
N in a standard RSA instance, without first

factoring N ′.

We now analyse this security assumption, in order to relate it to the RSA
assumption that RSA with OAEP relies on [20].

Recall P = (x, x0, x−t) consists of a randomly sampled integer x, and two
terms x0, x−t which by construction are part of the BBS-CSPRNG sequence,
and hence are pseudorandom. As we will see in Lemma 1, the relation between
these integers exactly relates to the evaluation of the BBS-CSPRNG sequence,
which allows N ′ to be factored, and cannot be evaluated in time less than t, for
some t ∈ N. The crux of the assumption is that x−t is only related to the terms
x and x0 by the repeated squaring property, which allows the Blum integer N ′

to be factored. By the RSW time-lock assumption, we know that this will take
t time to evaluate, and hence we assume that P = (x, x0, x−t) are only useful
when factoring N ′.

258 A. F. Loe et al.

Theorem 7. TIDE is correct.

Proof. First, consider the following statement:
For any message m ∈ {0, 1}∗, Decrypt

(
Encrypt

(
N,m

)
, (p, q)

)
outputs m,

where Encrypt and Decrypt are described in Algorithms 3.3 Encrypt and Algo-
rithm 3.4 Decrypt respectively.

This corresponds to the statement that the RSA cryptosystem with OAEP
is correct, which is known to be true [20].

Now suppose Algorithm 3.1 Gen has been run, such that the following param-
eters have been generated: a public key N , puzzle P = (x, x0, x−t) and time
parameter t, and a secret key sk = (p, q). What remains is to prove that Solve
outputs sk = (p, q). This proof will require a sequence of arguments based on
the Theorems outlined in Sect. 2.

First we must prove that Algorithm 3.1 Gen correctly selects the term x such
that x ∈ QNR−1

N .

Corollary 2 (of Theorem 2). The while loop on lines 8–12 of Algorithm 3.1
Gen selects x ∈ QNR−1

N with overwhelming probability.

Proof. The while loop on lines 8–12 of Algorithm 3.1 Gen selects a quadratic
non-residue with Jacobi Symbol equal to −1 by running a series of Bernoulli
trials with probability P

(
x = QNR−1

N

)
= 1

2 . This forms a geometric distribution
G ∼ Geo(12). Therefore, we can expect to find x ∈ QNR−1

N in E{G} = 2 trials.

Second we prove that Algorithm 3.1 Gen correctly calculates the term x−t,
which is the tth principal square root of x0. This proof begins by proving Theorem
3, and subsequently uses the Chinese Remainder Theorem for the final proof.

Proof. (Theorem 3). Let α = r
p+1
4 mod p. Then α2 ≡ (r

p+1
4)2 ≡ r

2p+2
4 ≡

r
p+1
2 mod p. Next, let p+1

2 = 1 + p−1
2 . Therefore, by Euler’s Criterion (Theo-

rem 1) α2 ≡ r1r
p−1
2 ≡ r mod p. We refer to α as the principal square root of

r mod p.

Theorem 8. The Algorithm 3.1 Gen correctly calculates the tth principal square
root x−t of the seed x0.

Proof. Let ω = p+1
4 . If Algorithm 3.1 Gen provides the seed term x0 ∈ QRN ,

then, by Theorem 3, the tth principal square root of x0 mod p is αt := xωt

0 mod p

and the tth principal square root of x0 mod q is βt := xωt

0 mod q. Then, the
Chinese Remainder Theorem is used to calculate:
x−t := [αtq(q−1 mod p) + βtp(p−1 mod q)] mod N .

Third we must prove that the Algorithm 3.2 Solve correctly calculates the
term x′ ∈ QRN using Algorithm 2.1.

Theorem 9. Algorithm 2.1 Square and Multiply correctly calculates the term
xi, where xi ≡ x2i

0 mod N .

TIDE: A Novel Approach to Constructing Timed-Release Encryption 259

Proof. The input to calculate the term xi in Algorithm 2.1 Square and Multiply
is (x0, 2i, N), where x0 ∈ QRN is the seed term, and N = pq, where p and q
are distinct odd primes. By Definition 2, selecting x0 ∈ QRN can be done by
uniformly selecting x ∈ Z

∗
N and setting x0 ≡ x2 mod N . Consider the base case

when i := 1. The algorithm proceeds as follows: d is set to 1 and the exponent
b := 21 is set to the binary string B = 10. Next, the algorithm enters the for
loop on the first iteration. On the first iteration j is the first digit of B, which
is 1. Next d := 1 is squared to output 1. Then the first conditional if statement
is met as j = 1, therefore d := 1 · x0 = x0 mod N , and the first iteration of
the loop is done. On the second iteration j is the second digit of B, which is
0. Next, as d was set to x0 on the first iteration d is now set to x2

0 mod N on
the second iteration. The first conditional if statement is not met, and the loop
terminates as the final digit of B was processed. The algorithm then returns
d := x1 ≡ x2

0 ≡ x21

0 mod N , as required. Therefore, the base case is true.
By the inductive hypothesis we claim that for any i := k, the loop invariant

of Algorithm 2.1 returns the term x2k

0 mod N after k iterations. Therefore after
k iterations, where b was set to 2k+1, Algorithm 2.1 will have d := x2k

0 mod N ,
and j will be the final digit of B := 10 . . . 0. For any k, the variable B will be a
binary string starting with the digit 1 followed by a trail of k digits equal to 0.
This means after the first iteration of the for loop all remaining j ∈ B will be
0. Thus, at the k + 1 iteration of the for loop d will be set to x2

k mod N , and by
definition x2

k ≡ xk+1 ≡ x2k+1

0 mod N . Finally, Algorithm 2.1 will terminate at
the k + 1 iteration as the final digit of B was processed, and the algorithm will
return d := x2k+1

0 mod N .

Finally, Theorem 6 is proven to show that Algorithm 3.2 Solve calculates
gcd(x′ − x,N) to recover a non-trivial factor of N [33].

Proof (Theorem 6). As x and x′ are distinct we have x2 ≡ x′2 mod N . This
implies that pq | x2 − x′2. As p and q are both prime this indicates that p | (x −
x′)(x + x′) and q | (x − x′)(x + x′). Also, because p is prime it must be the case
that p | (x − x′) or p | (x + x′). Similarly, it must be the case that q | (x − x′)
or q | (x + x′). Without loss of generality, assume that p | (x − x′) is true and
that q | (x − x′) is true. This implies that pq | (x − x′), which indicates that
x ≡ x′ mod N . This is a contradiction because x and x′ are distinct. Then it
must be the case that p | (x − x′) and q � (x − x′). Therefore, one of the
factors of N can be recovered by calculating p′ := gcd(x − x′, N) using Euclid’s
Extended Algorithm, and the other factor of N can be recovered by calculating
q′ := N

gcd(x−x′,N) = N
p′ .

We now prove that Solve outputs sk = (p, q), and hence Theorem 7: the
correctness of TIDE.

Proof (Theorem 7). For any pk, sk, and puzzle generated by Gen, we show that
sk can be recovered by Solve. More precisely, let N = pq, P := (x, x0, x−t), t be
output by Gen, before being input into Algorithm 3.2 Solve. Algorithm 3.2 Solve
will calculate the term x′ by entering the following parameters (x−t, 2t−1, N) into

260 A. F. Loe et al.

Algorithm 2.1, which will output x′ := x2t−1

−t mod N . The term x′ is guaranteed
to be correct by Theorem 9 and is guaranteed to be in QRN by Definition 2, and
hence we have that x ∈ QNR−1

N and x′ ∈ QRN . This guarantees that x must
be distinct from x′. Therefore, by Theorem 6, calculating p′ = gcd(x − x′, N)
will recover one factor of N using Euclid’s Extended Algorithm, and the other
factor can be recovered by calculating q′ = N

gcd(x−x′,N) .

Theorem 10. TIDE is a secure TRE scheme under the RSW, RSA and BBS-
shortcut assumptions.

To prove TIDE secure, we show that two messages encrypted using public key
(N, e) are indistinguishable under a chosen plaintext attack, where the adversary
is bounded by t computation time. We first note that the underlying encryption
scheme is RSA with OAEP padding, which is IND-CPA secure [20]. In our proof
we provide a reduction from the TRE security of TIDE to IND-CPA security
of RSA with OAEP. Explicitly, this requires proving that giving an adversary
the additional parameters of P and t, and bounding their computation time by
t offers a negligible advantage over the standard RSA-OAEP game.

We first prove the following statement.

Lemma 1. Given any (N,P, t) output by Algorithm 3.1 Gen, the RSA modulus
N cannot be factored in time less than t, with more than negligible probability.

Proof. Let N be a random Blum integer and P be a puzzle output by Algorithm
3.1 Gen. Note from Algorithm 3.1 that P = (x, x0, x−t), where x ∈ QNR−1

N ,
x0 ≡ x2 mod N , and x−t is the tth square root of x0. To factor N in time less
than t, a pair of integers (p∗, q∗) must be computed, such that p∗ �= 1, q∗ �= 1,
and p∗q∗ = N , in less than t sequential steps.

We split the proof into two parts: i) Attempts to compute an x′, where
x′ ≡ √

x0 mod N and x′ ∈ QRN , in less than t sequential steps, and ii) Attempts
to recover the non-trivial factors of N using a method that does not use x′.

We start by proving part (i): that computing x′ in time less than t reduces to
the RSW time-lock assumption. Specifically, if Solve is honestly run, then x′ :=
x2t−1

0 mod N is calculated using Algorithm 2.1 with the input (x−t, 2t−1, N). By
the RSW time-lock assumption calculating x′ using Algorithm 2.1 requires t− 1
sequential steps. Once x′ is calculated, Algorithm 3.2 Solve recovers the factors
of N by calculating p′ := gcd(x − x′, N) and q′ = N

p′ .
Next, suppose there exists a PPT algorithm E<t to evaluate x′ in less than

t − 1 sequential steps. Finding such an x′ using E<t reduces to the RSW time-
lock assumption and we obtain a contradiction. Therefore, it is not possible
to recover p∗ := gcd(x − x′, N) without sequentially evaluating x′ with non-
negligible probability.

Next, we prove part (ii): that factoring N faster than sequential squaring
reduces to an open problem. First note that N is a Blum integer, which is an
RSA modulus that is the product of Gaussian primes. Therefore, we assume N
cannot be factored by any PPT algorithm with more than negligible probability.

TIDE: A Novel Approach to Constructing Timed-Release Encryption 261

Next, giving A either (N,x, x0, t) or (N,x−t, t) also reduces to a standard
factoring assumption, as seen in Sect. 4 of Rabin [33]. What remains is to show
that giving an adversary all of the puzzle P does not allow them to factorise
N . To see this, note that x0 can be trivially obtained from x, and that by
construction x−t and x0 are terms in a BBS CSPRNG sequence [5]. Knowledge
of these terms does not allow factorisation of N faster than sequential squaring
unless x2λ(λ(N))

−t mod N is calculated efficiently. This is an open problem given by
Theorem 9 of Blum et al. [5,19,23].

Therefore, the only way a PPT algorithm could factorise N given (pk, P, t)
with non-negligible probability is to sequentially evaluate x′ and subsequently
recover the factors by calculating p′ := gcd(x − x′, N) and q′ = N

p′ .

We now use this result to obtain a reduction from the TRE security of TIDE
to the standard RSA IND-CPA security.

Proof (sketch) (Theorem 10). We start by assuming that there exists an adver-
sary A = (A1,κ,A2,κ) who can gain a non-negligible advantage in the AdvTRE

A
game defined in Definition 5.

We use Lemma 1 and Definition 6 to show that if the adversary wins the
game by factoring N we obtain a contradiction based on the RSW assumption,
and if they win the game without factoring N , we obtain a contradiction based
on the RSA and BBS-shortcut assumptions.

Recall from Lemma 1 that if the adversary A factors a Blum integer N output
by Algorithm 3.1 in time less than t with more than negligible probability, then
the RSW time-lock assumption is broken, and hence we have a contradiction.

Now, recall that RSA with OAEP padding is IND-CPA-secure under the RSA
assumption [20]. Suppose A gained a non-negligible advantage in the TRE secu-
rity game without factoring. As the underlying encryption scheme is IND-CPA
secure, to distinguish between the messages m and m′ with any advantage would
require decrypting one of the messages, and hence taking an e-th root modulo
N . By the BBS shortcut assumption presented in Definition 6, any adversary
who gains an advantage in the TRE security game could also gain the same
non-negligible advantage in the standard IND-CPA game for RSA-OAEP, and
hence break the RSA assumption. This gives us another contradiction. Therefore
TIDE is secure under the RSW, RSA and BBS-shortcut assumptions.

5 Conclusion

In this work we introduced TIDE, a new TRE construction which seamlessly
integrates the RSA cryptosystem into a time-lock puzzle using powerful number-
theoretic concepts. TIDE challenges a solver to factor a special class of RSA
modulus, known as a Blum integer. Parties may encrypt to this RSA modulus,
and any solver who factors the modulus may easily decrypt all encrypted mes-
sages. We demonstrated that this property makes TIDE well-suited to sealed-bid
auctions: We compared TIDE to the most recent constructions for sealed-bid
auctions, showing that TIDE has advantages both in terms of practicality and

262 A. F. Loe et al.

efficiency. We proved security of TIDE in the TRE framework introduced by
Chvojka et al., and we implemented TIDE on both a Raspberry Pi and on a
desktop PC, showing that it is indeed a practical construction.

References

1. Ausubel, L.: A generalized Vickrey auction. Econo0 metrica (1999)
2. Barak, B., et al.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)

CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8 1

3. Bitansky, N., Goldwasser, S., Jain, A., Paneth, O., Vaikuntanathan, V., Waters, B.:
Time-lock puzzles from randomized encodings. In: Proceedings of the 2016 ACM
Conference on Innovations in Theoretical Computer Science (2016)

4. Blass, E., Kerschbaum, F.: BOREALIS: building block for sealed bid auctions on
blockchains. In: Proceedings of the 15th ACM Asia Conference on Computer and
Communications Security (2020)

5. Blum, L., Blum, M., Shub, M.: A simple unpredictable pseudo-random number
generator. J. Comput. 15(2), 364–383 (1986)

6. Blume, A., Heidhues, P.: All equilibria of the Vickrey auction. J. Econ. Theory
114(1), 170–177 (2004)

7. Bogetoft, P., et al.: Secure multiparty computation goes live. In: Dingledine, R.,
Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03549-4 20

8. Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 757–
788. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 25

9. Brandt, F.: Auctions. In: Handbook of Financial Cryptography and Security. Chap-
man and Hall/CRC (2010)

10. Burdges, J., De Feo, L.: Delay encryption. In: Canteaut, A., Standaert, F.-X.
(eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 302–326. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-77870-5 11

11. Cathalo, J., Libert, B., Quisquater, J.-J.: Efficient and non-interactive timed-
release encryption. In: Qing, S., Mao, W., López, J., Wang, G. (eds.) ICICS 2005.
LNCS, vol. 3783, pp. 291–303. Springer, Heidelberg (2005). https://doi.org/10.
1007/11602897 25

12. Chvojka, P., Jager, T., Slamanig, D., Striecks, C.: Versatile and sustainable
timed-release encryption and sequential time-lock puzzles (extended abstract). In:
Bertino, E., Shulman, H., Waidner, M. (eds.) ESORICS 2021. LNCS, vol. 12973,
pp. 64–85. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88428-4 4

13. Cohen, B., Pietrzak, K.: The chia network blockchain (2019)
14. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms. MIT

Press, Cambridge (2009)
15. Crandall, R., Pomerance, C.: Prime Numbers: A Computational Perspective.

Springer, New York (2005). https://doi.org/10.1007/0-387-28979-8
16. Ephraim, N., Freitag, C., Komargodski, I., Pass, R.: Continuous verifiable delay

functions. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107,
pp. 125–154. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3 5

https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/978-3-642-03549-4_20
https://doi.org/10.1007/978-3-319-96884-1_25
https://doi.org/10.1007/978-3-030-77870-5_11
https://doi.org/10.1007/11602897_25
https://doi.org/10.1007/11602897_25
https://doi.org/10.1007/978-3-030-88428-4_4
https://doi.org/10.1007/0-387-28979-8
https://doi.org/10.1007/978-3-030-45727-3_5

TIDE: A Novel Approach to Constructing Timed-Release Encryption 263

17. De Feo, L., Masson, S., Petit, C., Sanso, A.: Verifiable delay functions from super-
singular isogenies and pairings. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT
2019. LNCS, vol. 11921, pp. 248–277. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-34578-5 10

18. Freitag, C., Komargodski, I., Pass, R., Sirkin, N.: Non-malleable time-lock puzzles
and applications. In: Nissim, K., Waters, B. (eds.) TCC 2021. LNCS, vol. 13044, pp.
447–479. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90456-2 15

19. Friedlander, J., Pomerance, C., Shparlinski, I.: Period of the power generator and
small values of Carmichael’s function. Math. Comput. 70, 1591–1605 (2000)

20. Fujisaki, E., Okamoto, T., Pointcheval, D., Stern, J.: RSA-OAEP is secure under
the RSA assumption. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp.
260–274. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 16

21. Galal, H.S., Youssef, A.M.: Verifiable sealed-bid auction on the ethereum
blockchain. In: Zohar, A., et al. (eds.) FC 2018. LNCS, vol. 10958, pp. 265–278.
Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-58820-8 18

22. Goodstein, R.L.: Boolean Algebra. Dover Publications (2007)
23. Griffin, F., Shparlinski, I.: On the linear complexity profile of the power generator.

IEEE Trans. Inf. Theory 46(6), 2159–2162 (2000)
24. Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-founded

assumptions. In: Proceedings of the 53rd Annual ACM SIGACT Symposium on
Theory of Computing (2021)

25. Juels, A., Szydlo, M.: A two-server, sealed-bid auction protocol. In: Blaze, M. (ed.)
FC 2002. LNCS, vol. 2357, pp. 72–86. Springer, Heidelberg (2003). https://doi.org/
10.1007/3-540-36504-4 6

26. Katz, J., Lindell, Y.: Introduction to Modern Cryptography, 2nd edn. CRC Press
(2014)

27. Liu, J., Garcia, F., Ryan, M.: Time-release protocol from bitcoin and witness
encryption for sat. Korean Circ. J. 40(10), 530–535 (2015)

28. Loe, A.F., Medley, L., O’Connell, C., Quaglia, E.A.: TIDE: a novel approach to
constructing timed-release encryption. Cryptology ePrint Archive (2021)

29. Malavolta, G., Thyagarajan, S.A.K.: Homomorphic time-lock puzzles and applica-
tions. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692,
pp. 620–649. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-
7 22

30. Mao, W.: Timed-release cryptography. In: Vaudenay, S., Youssef, A.M. (eds.) SAC
2001. LNCS, vol. 2259, pp. 342–357. Springer, Heidelberg (2001). https://doi.org/
10.1007/3-540-45537-X 27

31. Miller, G.: Riemann’s hypothesis and tests for primality. J. Comput. Syst. Sci.
13(3), 300–317 (1976)

32. Pietrzak, K.: Simple verifiable delay functions. In: 10th Innovations in Theoretical
Computer Science Conference, ITCS 2019 (2019)

33. Rabin, M.: Digitalized signatures and public-key functions as intractable as fac-
torization. In: MIT/LCS/TR-212. MIT Laboratory for Computer Science (1979)

34. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1983)

35. Rivest, R., Shamir, A., Wagner, D.: Time-lock puzzles and timed-release crypto.
In: MIT/LCS/TR-684. MIT Laboratory for Computer Science (1996)

36. Sako, K.: An auction protocol which hides bids of losers. In: Imai, H., Zheng,
Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 422–432. Springer, Heidelberg (2000).
https://doi.org/10.1007/978-3-540-46588-1 28

https://doi.org/10.1007/978-3-030-34578-5_10
https://doi.org/10.1007/978-3-030-34578-5_10
https://doi.org/10.1007/978-3-030-90456-2_15
https://doi.org/10.1007/3-540-44647-8_16
https://doi.org/10.1007/978-3-662-58820-8_18
https://doi.org/10.1007/3-540-36504-4_6
https://doi.org/10.1007/3-540-36504-4_6
https://doi.org/10.1007/978-3-030-26948-7_22
https://doi.org/10.1007/978-3-030-26948-7_22
https://doi.org/10.1007/3-540-45537-X_27
https://doi.org/10.1007/3-540-45537-X_27
https://doi.org/10.1007/978-3-540-46588-1_28

264 A. F. Loe et al.

37. Vickrey, W.: Counterspeculation, auctions, and competitive sealed tenders. J.
Finance 16(1), 8–37 (1961)

38. Zhandry, M.: On ELFs, deterministic encryption, and correlated-input security.
In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 3–32.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4 1

https://doi.org/10.1007/978-3-030-17659-4_1

Multi-signatures for ECDSA and Its
Applications in Blockchain

Shimin Pan(B), Kwan Yin Chan, Handong Cui, and Tsz Hon Yuen

The University of Hong Kong, Hong Kong, China
{smpan,kychan,hdcui,thyuen}@cs.hku.hk

Abstract. Multi-signatures enable a group of t signers to sign a mes-
sage jointly and obtain a single signature. Multi-signatures help validat-
ing blockchain transactions, such as transactions with multiple inputs or
transactions from multisig addresses. However, multi-signatures schemes
are always realised naively in most blockchain systems by directly con-
catenating t ECDSA signatures.

In this paper, we give the first multi-signature scheme for ECDSA.
Technically, we design a new ephemeral group public key for the set of
signers and introduce an interactive signing protocol to output a single
ECDSA signature. The signature can be validated by the ephemeral
group public key. Then, we instantiate the ECDSA multi-signature
scheme with class group, for which we design a secret exchanging mech-
anism that ensures the hiding content is well-constructed. Moreover, our
scheme is able to identify the malicious party in the signing phase and
help to minimize unnecessary resource consumption. This ECDSA multi-
signatures can be used in blockchain to reduce the transaction cost and
provide accountability for signers and backward compatibility with exist-
ing ECDSA addresses.

Keywords: Multi-signatures · ECDSA · Signature

1 Introduction

1.1 Motivation

Multi-signatures [16] have been widely used in different scenarios in the
blockchain. This cryptographic primitive allows any group S of parties to jointly
sign a message and produce a signature, for which verifiers are convinced that
each group member S participated in the signing. It can also be used to divide
up responsibility for possession of signing keys among multiple players and avoid
a single point of failure. There are two major uses of the functionality of multi-
signatures. The first use case is formatting a transaction with multiple inputs
relative to different addresses. The owner of each input can sign on all of the
outputs in this transaction1 and present a signature for this input. In Bitcoin,
1 This is the default setting in Bitcoin for the signature hash, called SIGHASH ALL.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
K. Nguyen et al. (Eds.): ACISP 2022, LNCS 13494, pp. 265–285, 2022.
https://doi.org/10.1007/978-3-031-22301-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22301-3_14&domain=pdf
https://doi.org/10.1007/978-3-031-22301-3_14

266 S. Pan et al.

signatures for each input are concatenated. Protocols, such as Taproot, Coin-
Join, and PayJoin2, use multiple inputs and outputs transactions to improve
the privacy of Bitcoin transactions. The second use case is the multisig address
in Bitcoin (and some other blockchain), which contains n public keys. A trans-
action is valid when there are t valid ECDSA signatures attached relative to
public keys among the key list. Each ECDSA signature is verified against one
corresponding public key, and these t signers are accountable for generating this
multi-signature accordingly.

The efficiency of the naive approach for multi-signatures currently used in
Bitcoin is extremely poor. We need k signatures for a transaction with k inputs,
or t signatures for a multisig account with a threshold t. Let us consider a
transaction with two inputs and two outputs. For the first use case (P2PKH),
the transaction size is 374 bytes, and two ECDSA signatures account for 39%
(144 bytes) in it. For the second use case (P2SH 2-of-3 multi-signature), the
transaction size is 668 bytes, and four ECDSA signatures account for 43% (288
bytes) in it. Therefore, it is important to design a cryptographic solution to
reduce the signature size and lower the transaction cost.

1.2 Contribution

We design a new ECDSA multi-signature scheme by introducing the concept of
ephemeral group public key for a group of signers S. Furthermore, it is integrated
with the signing protocol of threshold ECDSA in [15]. The ephemeral group
public key is defined during the interactive signing and is different for each
signing instance. Our new scheme is significantly different from existing schemes
(e.g., no group public key for [3], or one static group public key for each S
[2,4,5,18,19]).

We recall that, in ECDSA, the secret key is x and the public key is Y = xG
where G is the group generator. To sign a message m, the signer picks a random
k, computes the x-coordinate of R = k−1G as r and calculates s = k(H(m)+rx)
for some hash function H. The signature is (r, s).

A Strawman Protocol. When there are t parties with their keys (xi, Yi), a
simple multi-signature is setting the group public key as Y =

∑
i Yi. However,

this strawman protocol is not secure. For example, an adversary can set Y2 =
−Y1 + x2G, where Y1 is the public key of an honest party. Then group key
becomes Y = Y1 + Y2 = x2G. Hence the adversary can generate a signature
using x2 only. This attack is known as the rogue public key attack.

Designing the Group Public Key. In order to deal with the rogue public
key attack, the pairing-based multi-signatures [5] and the Schnorr-based multi-
signatures [19] defined the group public key as Y =

∑
aiYi where ai = H1(S, Yi)3.

2 Taproot: https://en.bitcoin.it/wiki/BIP 0341. CoinJoin: https://coinjoin.io.
PayJoin: https://en.bitcoin.it/wiki/PayJoin.

3 The function H1 is defined in this way for the ease of presentation in the security
proof. In practice, we can simply set ai = H1(i, r, S, m) for all i.

https://en.bitcoin.it/wiki/BIP_0341
https://coinjoin.io
https://en.bitcoin.it/wiki/PayJoin

Multi-signatures for ECDSA and Its Applications in Blockchain 267

Table 1. Comparison of signatures using multiple secret keys.

SK # PK Size Accountability Keygen

Threshold signature t 1 O(1) No Involve n parties

Threshold ring signature t n O(log n) No No interaction

Bitcoin native multi-signatures t t O(t) Yes No interaction

Multi-signatures t t O(1) Yes No interaction

This static group public key is fixed for all signatures signed by the group of
signers S. However, this structure cannot be applied to ECDSA multi-signatures
because of the security proof. We instead design a new key structure such that
the ephemeral group public key is different for each signature (r, s):

Y =
∑

aiYi, where (a1|| . . . ||at) = H(r,S,m).

In the security proof, we show that the unforgeability is reduced to the
unforgeability of the standard ECDSA signature with a public key Ŷ .

1.3 Related Work

Threshold ECDSA and Threshold Ring Signatures. In threshold signa-
tures [11], a signing key is distributed among n parties, and a message can be
signed only by a sufficiently large subgroup (Table 1). There are three main dif-
ferences between threshold signatures and multi-signatures. Firstly, threshold
signatures are verified by one public key, while multi-signatures are verified by a
set of keys. Secondly, an interactive key generation protocol is needed for thresh-
old signatures, making it hard to cover existing keys and generate new keys.
Thirdly, anonymity is a property of threshold signatures while accountability is
only offered by multi-signatures. The property of anonymity or accountability
may be good for different applications.

Threshold ring signature [6] differs from threshold signature as the group
G can be dynamically formed, and there is no interactive setup phase. The
drawback of threshold ring signatures is that the verification involves all n public
keys in G, and the state-of-the-art signature size is O(log n).

Multi-signatures. There are two approaches to construct multi-signatures.
One is naively implemented by concatenating |S| signatures signed by S signing
keys. Alternatively, researchers designed cryptographic algorithms to compress
these |S| signatures into a single one, such as Schnorr-based multi-signatures
[3,19,20] and pairing-based multi-signatures [4,5,18]. Multi-signatures with a
predefined key range G such that S ⊂ G is also named Accountable-Subgroup
Multi-signatures (ASM) [20]. The accountability means that the subgroup S of
actual signers is known to the verifiers.

268 S. Pan et al.

Recent researches on Schnorr follow the paper [19] known as MuSig. MuSig
has been proved to be insecure in [13], which states that there is no OMDL
reduction to the MuSig. Later in Crypto 2021, other multi-signatures were pro-
posed [1,21]. The recent attractive Schnorr multi-signatures results could not
be adapted to ECDSA setting directly due to the complexity of the inversion
computation.

An ECDSA-based multi-signature scheme is proposed in [17]. Their scheme
relies on a trusted group manager to generate the ECDSA signature from t − 1
parties. Moreover, the secret keys of the t−1 parties are all derived by the group
manager. Apparently, it is not secure in the security model given by [19]. It is
also not secure against the rogue public key attack. Konstantinos et al. tried
to do signature compression in 2021 [10] but their scheme only compresses t
signatures into (t + 1)/2 and reached a relatively large signature size.

As an ECDSA multi-signature, our scheme requires no trusted party and the
signature requires only the same size as the standard ECDSA. Consequently,
this scheme shows superiority in functionality and the optimal signature size.
Compared to Schnorr multi-signatures, it has better compatibility with current-
used ECDSA key pairs in most blockchain systems.

1.4 Paper Organization

This paper is organized as the following. Section 2 shows notations and the multi-
signature primitive. Section 3 introduces a modified multiplicative-to-additive
scheme. Section 4 presents the generic multi-signature scheme and the secu-
rity proof. Section 5 shows a scheme instance, which utilizes the Castagnos-
Laguillaumie encryption. Section 6 shows the implementation of the previous
instance with Rust and the bandwidth analysis. Section 7 shows details of how
our scheme interacts with the Bitcoin system. Section 8 draws some conclusions.

2 Preliminaries

We define notations and the multi-signature primitive in this section. Other
building components are listed in Appendix A.

Notation x←$ S is uniformly sampling an element x from the set S and
[n] denotes the set {1, . . . , n}. PPT stands for probabilistic polynomial time
and negl(n) is a negligible function on n. GECC = (G, G, q) is the ECC group
generated by G with order q.

For the definition of multi-signature, we consider that given in [19], where
multi-signature is a tuple of four PPT algorithms (Setup,KeyGen,Sign,Verify):

– Setup(1λ) → params: it generates system parameters from the security param-
eter.

– KeyGen(params) → (sk, pk): it is the key generation protocol which, on input
parameters, outputs a pair of keys (pk, sk) where pk is the public key and sk
is the secret one.

Multi-signatures for ECDSA and Its Applications in Blockchain 269

– Sign(params, {sk1, . . . , skt},S = {pk1, . . . , pkt} ,m) → σ/⊥: it is an interactive
protocol. Parties keep their ski secret and work with others in S to sign a
message m. The protocol outputs either a signature or ⊥.

– Verify(params, S = {pk1, . . . , pkt} ,m, σ) → {0, 1}: it checks whether the sig-
nature σ is valid or not.

Correctness. For all messages m, if σ ← Sign(params, {sk1, . . . , skt},S = {pk1, . . . ,
pkt},m) where ski is the secret key corresponding to the public key pki for i ∈ [t],
then 1 ← Verify(params,S,m, σ).

Security model. We use the game-based security definition for multi-signatures
[19]. The security game involves one honest party, and all other parties are
corrupted by an adversary A. After calling the signing oracle on inputs of the
form (mi,Si) and getting back valid signatures σi, the adversary A wins the
game by outputting a valid signature σ involving the public key of the honest
party. A formal definition is given below.
1. The system setups based on the security parameters params ← Setup(1λ).
2. The honest party generates a key pair (sk∗, pk∗) ← KeyGen(params) and the

adversary A receives pk∗ as input.
3. For any adversary-specified message m and public-key set S = {pk1, . . . , pkt}

containing pk∗, the honest party runs Sign(params, sk∗,S,m) interactively
with A and works as the signing oracle for A. It could be abort when wrong
messages discovered.

4. Finally, A returns a message m∗, a public key set S∗ and a signature σ∗ such
that the tuple (m∗,S∗) has not been queried previously. A wins the game if
pk∗ ∈ S∗ and the signature is valid, i.e. Verify(params,S∗,m∗, σ∗) = 1.

A multi-signature scheme is said to be unforgeable if no PPT adversary wins the
game with non-negligible probability.

3 Multiplicative-to-Additive Share Conversion Protocol

Multiplicative-to-additive (MtA) protocol [14] was introduced as a building block
for threshold ECDSA. The MtA protocol involves two parties {P1, P2} having
messages a ∈ Zp and b ∈ Zp as their private input respectively. The protocol
turns a multiplicative result ab mod q to an additive result α+β mod q, where
P1 and P2 outputs α and β respectively.

3.1 Definition

Generic MtA Protocol. The original MtA scheme [14] is constructed with
the Paillier encryption, and it requires a range proof. We give a 3 round generic
MtA protocol, abstracted from the construction in [7]. This generic protocol relies
on any additive homomorphic encryption (Setup,KeyGen,Enc,Dec,EvalSum,
EvalScal) with a message space equal to Zq

4.
4 If the message space of the additive homomorphic encryption is larger than q (e.g.,

Paillier encryption), then an extra zero-knowledge range proof is needed for all cipher-
texts, to ensure that α = ab − β in Step 2 is still within the message space.

270 S. Pan et al.

Setup Phase. For preset system parameters params ← Setup(1λ), P1 generates
keys by running (ek, dk) ← KeyGen(params).

Conversion Phase

1. P1 encrypts a and generates a zero-knowledge (ZK) proof for it.
– P1 computes the encryption cA = Encek(a; ρ) using a randomness ρ.
– P1 creates a zero-knowledge (ZK) proof πA, relative to the relation REnc,

that cA is well-formed, where REnc = {(cA, ek) : (a, ρ)|cA = Encek(a; ρ)}.
– P1 sends cA and πA to P2.

2. P2 manipulates cA to the ciphertext of α = ab − β mod q, where β is the
randomness.

– P2 picks a random β in Zq.
– P2 computes cB = EvalSumek(EvalScalek(cA, b),Encek(−β; ρ′)).
– P2 gives the ZK proof πB , relative to relation RB, that cB is calculated

from (b, β) and is consistent with H = bG where G is the ECC generator.

RB =

{
(H, G, cA, cB , ek) : (b, β, ρ′)| H = bG ∧ cB =

EvalSumek(EvalScalek(cA, b), Encek(−β, ρ′))

}

– P2 sends cB and πB to P1.
3. P1 checks πB and then computes α = Decdk(cB).

MtAwc Protocol. The standard MtA protocol does not include the underlined
steps. If we further want to check b in cB is consistent with value H, these steps
are retained and the protocol is named as MtAwc (Multiplicative-to-additive
with check). The MtA(wc) ptotocol could be proved secure even without any ZK
proof as shown in [14]. Both MtA and MtAwc are used in our multi-signature.

4 Multi-signatures for ECDSA

In this section, we give a new ECDSA multi-signature scheme. In the naive
approach of concatenating t ECDSA signatures, all parties can determine who
is not signing correctly. Hence, we choose to build our ECDSA multi-signatures
upon the interactive signing protocol with identifiable abort in [15]. Moreover,
the new proposed ZK proof technique is detailed in Appendix C.

4.1 Construction

We denote a non-malleable equivocable commitment scheme a tuple of 5 algo-
rithms (KeyGene,Come,Decome,KeyGen′

e,Equive) and a trapdoor commitment
scheme with efficient ZK proof by (KeyGenz,Comz,Decomz,KeyGen′

z,TComz,
TDecomz).

Our protocol contains 4 algorithms (Setup,KeyGen,Sign,Verify).

Multi-signatures for ECDSA and Its Applications in Blockchain 271

– Setup(1λ) → params: On security parameter λ, this algorithm generates an
ECC group GECC = (G, G, q). It chooses hash functions H : {0, 1}∗ → Zq, and
H1 : {0, 1}∗ → {0, 1}∗. It runs pke ← KeyGene(1λ) and pkz ← KeyGenz(1λ).
It outputs params = (G, G, q,H,H1, pke, pkz).

– KeyGen(params) → (sk, pk): Each party picks a random secret key xi ←$Zq

and generates its own public key as Y = xG. Each party additionally runs
the setup phase of the MtA protocol. This algorithm will finally output the
key pair for the current party (x, Y). The key generation is identical to the
standard ECDSA.

– Sign(params, {sk1, . . . , skt},S = {pk1, . . . , pkt} ,m) → σ/⊥: On input a group
of public keys S of size t and a message m, player Pi with secret key xi generate
and share its MtA public key, then runs the following steps interactively.

• Phase 1. Each player Pi picks ki, γi ←$Zq. All players broadcast their
commitment Ci to γiG, where (Ci,Di) ← Come(pke, γiG).

• Phase 2. For convenience, we define the quantities k =
∑

i∈[t] ki, γ =
∑

i∈[t] γi. As a result kγ =
∑

i,j∈[t] kiγj mod q. Each pair of players Pi

and Pj runs MtA together for ki and γj and respectively receives back
the result αij with βij , such that kiγj = αij + βij mod q. Upon receiving
αij and βji, Pi constructs δi = kiγi +

∑
i�=j αij +

∑
i�=j βji mod q.

• Phase 3. All parties broadcast their own δi and reconstruct δ =
∑

i∈[t] δi =
∑

i,j∈[t] kiγj mod q.
• Phase 4. Each party Pi broadcasts the decommitment Di. Pi obtains

γjG = Decome(pke, Cj ,Dj) for all j �= i and constructs R =
δ−1(

∑
i∈[t] γiG) = (kγ)−1(

∑
i∈[t] γiG) = k−1G and gets r as the x-

coordinate of R.
• Phase 5. Each party broadcasts R̄i = kiR and gives a consistency proof πki

between R̄i and Enc(ki) which is the first message sent in MtA protocol
in Phase 2. The protocol aborts if the following check fails

G =
∑

i∈[t]

R̄i. (1)

• Phase 6. All players compute (a1|| . . . ||at) = H1(r,S,m), in which ai

stands for the masks of all parties’ public keys. The group public key
is denoted as Y =

∑
Yi∈S aiYi. Consequently, the corresponding secret

key is x =
∑

i∈[t] aixi, and it could not be controlled by any single party.
As a result, k

∑
i∈[t] aixi =

∑
i,j∈[t] ki(ajxj) mod q.

Each pair of players Pi and Pj runs MtAwc together for ki and ajxj , with
the public value B = ajYj . The return values are respectively marked as
μij for Pi and νij for Pj . Hence ki(ajxj) = μij + νij mod q.
Upon receiving μij and νji, Pi constructs σi = kiaixi+

∑
i�=j μij+

∑
i�=j νji

mod q
• Phase 7. All parties broadcast Ti, where (Ti, ·) ← Comz(pkz, σi), with a

zero-knowledge proof πTi
of σi.

272 S. Pan et al.

Table 2. Identify abortion

Phase Failure Detecting adversary

2 MtA Detect directly

4 Decommitment Detect directly

5 R̄i consistency Detect directly

5 Equation (1) a. Pi publishes ki, γi, αij and βij

b. All compute δ′
i and check δi = δ′

i

6 MtAwc Detect directly

7 Ti consistency Detect directly

8 Si consistency Detect directly

8 Equation (2) a. Pi publishes ki and μij

b. Pj computes
σiG = kiaixiG +

∑
i�=j μijG +

∑
i�=j νjiG

c. Pi prove σiG and Si consistent

9 σ invalid Detect by checking siR = H(m)R̄i + rSi

• Phase 8. Each party gives the ZK proof πσi
on the consistency between

Ti in Phase 7 and the newly generated value Si = σiR. Upon receiving
all Si, parties aborts when

Y �=
∑

i∈[t]

Si. (2)

• Phase 9. All parties broadcast si = kiH(m) + σir and reconstruct s as
s =

∑
i∈[t] si. The protocol aborts if (r, s) is not a valid ECDSA signature

for the message m and the public key y.
– Verify(params, S = {pk1, . . . , pkt} ,m, σ) → {0, 1}: The algorithm takes as

inputs the public keys of signers as S = {Yi}, the message m and the signature
(r, s). The verification is done in two steps.

• Generate ephemeral group public key. Compute (a1|| . . . ||at) = H1(r,S,m)
and Y =

∑
i∈[t] aiYi.

• Verify ECDSA signature. Verify σ = (r, s) using Y , by computing R′ =
H(m) · s−1G + rs−1Y and checking if the x-coordinate of R′ mod q is r.

Note: Steps with underlining are optional. With these steps, one is able to deter-
mine which party did not collaborated properly by referring to Table 2, which
uses the technique given by [15]. Otherwise, the protocol will give anonymous
abort. We could prevent intentionally anonymous aborting by identifying the
malicious party.

4.2 Security Proof

Theorem 1. Our ECDSA multi-signature is unforgeable in the random oracle
model if the standard ECDSA is unforgeable.

Multi-signatures for ECDSA and Its Applications in Blockchain 273

Proof. In the bird’s eyes, we prove the standard ECDSA is forgeable with non-
negligible probability if our multi-signature is threaten by an adversary A with
non-negligible advantage ε. The forger F internally invokes adversary A for and
tries to break the standard ECDSA scheme with the power it.

Without loss of generality, the proof assumes only 1 honest party, named P1

corresponding to public key pk1, and other parties {Pi}i>1 are all corrupted. We
assume the adversary to be a rushing adversary, which means corrupted parties
always send their messages after the honest party in each round.

Simulation of Setup. The simulator S picks GECC and runs key generation
(pke, tke) ← KeyGen′

e(1
λ) and (pkz, tkz) ← KeyGen′

z(1
λ) honestly.

Simulation of KeyGen. The key generation procedure needs to embed the stan-
dard ECDSA public key p̂k = Ŷ into the multi-signature scheme. The simulator
sets the public key for P1, i.e. the simulated party, to Y1 = Ŷ .

Simulation of H and H1. S forwards whatever the standard ECDSA hash func-
tion returns for H and simulates H1 as a normal random oracle query.

Simulation of Sign. For signing on message m, S firstly queries the ECDSA
instance with a random message m̂ ←$Zq and gets back the signature (r̂, ŝ).

They are expected to fulfill the equation R̂ = H(m̂)ŝ−1G + r̂ŝ−1Ŷ where r̂
is the x-coordinate of R̂. Denote Δ = H(m̂) − H(m). S picks random numbers
d1, d2 ∈ Zq such that:

(ŝ/d2)(d2R̂ + d1d2/ŝG) = H(m̂)G + r̂Ŷ + d1G = H(m)G + r̂Y1 + (d1 + Δ)G.

Now suppose R′ = d2R̂ + d1d2/ŝG and its x-coordinate as r′, and denote s′ =
ŝ/d2. Then we have:

s′(R′) = H(m)G + r′(r̂/r′Y1 + (d1 + Δ)/r′G).

(r′, s′) is a valid ECDSA signature on a message m and the corresponding group
public key is r̂/r′Y1 + (d1 + Δ)/r′G. To form such a group public key, we set
a1 = r̂/r′ with

∑
j>1 ajxj = (d1+Δ)/r′ in Phase 6 by the random oracle model.

The interaction messages will be given on how to simulate the real protocol
with the previous p̂k instance.

– Phase 1. P1 runs the protocol and broadcasts C1 as required. All other players
also broadcast the commitment Ci for γiG.

– Phase 2. S interactively runs MtA with other parties using the MtA encryp-
tion keys as the following.

• Initiator for MtA with k1 and γj . S runs correctly for P1 using k1. S extracts
Pj ’s value γj and β1j and computes α1j = k1γj − β1j mod q.

• Respondent for MtA with kj and γ1. S runs correctly for P1 using γ1. S
extracts Pj ’s value kj and computes αj1 = kjγ1 − βj1 mod q using its
own share βj1.

– Phase 3. S broadcasts δ1 according to the scheme and receives back δi for
i > 1. S reconstructs δ =

∑
i∈[t] δi.

274 S. Pan et al.

– Phase 4a. Party Pi reveals Di to decommit γiG. S computes R =
δ−1(

∑
i∈[t] γiG).

S checks whether the published values are consistent. Using the value ki

extracted in MtA, S can also validate whether
∑

i∈[t] kiR = G. We say that an
execution is fail-1 if this checking does not passed. If it is fail-1, S runs Phase 5
of the protocol as required using k1 and one of the adversary’s ZK proofs will
fail and the protocol aborts. If it is not fail-1, then:

– Phase 4b. S rewinds A to the decommitment step and computes Γ1 = δR′ −∑
j>1 γjG using γj extracted from Phase 2. Then S runs D′

1 ← Equive(pke,
tke, C1, Γ1). Then S reveals D′

1 as the decommitment instead.
All parties can compute R′ = δ−1(Γ1 +

∑
j>1 γjG) and get r′ as the x-

coordinate of R′.
– Phase 5. S computes R̄1 = G − ∑

j>1 kj(R′) using the extracted kj . S simu-
lates the consistency proof and outputs R̄1.

– Phase 6. All players compute (a1|| . . . ||at) = H1(r′,S,m).
S interactively runs MtAwc with other parties using the MtAwc encryption
keys as the following.

• Initiator for MtAwc with k1 and ajxj . S runs correctly for P1 using k1. S
extracts xj and ν1j from πB and computes μ1j = k1(ajxj) − ν1j mod q.

• Respondent for MtAwc with kj and a1x1. S does not have sk1 = x1 of P1.
S just randomly picks x̃1 ←$Zq and interacts with Pi as if it is x1.

Now S has already obtained the values x2, . . . , xt. S rewinds H1(r′, S,m)
and sets a1 = r̂/r′ and a2 such that

∑
j>1 ajxj = (d1 + Δ)/r′. S sets new

(a1||a2|| . . .) as the output of H1(r′,S,m). We first consider the distribution of a2.
Since a3, . . . , an are randomly chosen from Zp, a2 itself is uniformly distributed
from Zp. The values of all ai satisfy the relation r̂/a1 = (d1 + Δ)/

∑
j>1 ajxj .

The relation is hidden by S’s random choice of d1 and Δ.
The value a1 is calculated from r̂ (the x-coordinate of R̂ generated for a

random message m̂) and r′ (the x-coordinate of R′, calculated from the random
number d1, d2). Assume that the division of the two x-coordinates is uniformly
distributed in Zp, then a1 is also uniformly distributed from Zp. Hence rewinding
will succeed with non-negligible probability.

We remark that S cannot get x1 so it will never get the complete σ1 by itself.
S can only compute another value: σA =

∑
i,j>1 kiajxj +

∑
i>1 μi1 +

∑
i>1 ν1i

mod q using the values extracted from MtAwc.

– Phase 7. S computes (T1, auxT1) ← TComz(pkz, tkz) and uses a simulator of
the ZK proof to generate πT1 . S broadcasts T1 and πT1 .

S can detect if the values published by the adversary are consistent. Using
the extractor of πTi

, S can extract σi and check if σA =
∑

i>1 σi. We say that
an execution is fail-2 if this checking is incorrect.

If it is fail-2, then in Phase 8, S sets S1 = (k1a1x̃1 +
∑

j>1 μ1j +
∑

j>1 νj1)R′,
simulates a consistency proof using the simulator of the ZK proof, and outputs
S1. At least one of the adversary’s ZK proofs will fail and the protocol will abort.

If it is not fail-2, then:

Multi-signatures for ECDSA and Its Applications in Blockchain 275

– Phase 8. S computes S1 = Y − ∑
j>1 σiR

′. S simulates a consistency proof
using the simulator of the ZK proof and outputs S1.

– Phase 9. As the simulator S already knew ki, aixi for all i > 1, it could
compute sA =

∑
i>1 si = H(m)

∑
i>1 ki + σAr, and outputs s1 = s′ − sA.

Attacking Standard ECDSA. In the final step of the security game, A is required
to present a valid signature (r∗, s∗) on a message m∗ such that the honest party’s
public key Y1 is inside the public key set S∗ = (y∗

1 , . . . , y
∗
t∗). WLOG, suppose

Y ∗
1 = Y1. Since the signature is valid, we have (a∗

1|| . . . ||a∗
t∗) = H1(r∗,S∗,m∗),

Y ∗ =
∑

i∈[t∗] a
∗
i Y

∗
i ,

s∗(R∗) = H(m∗)G + r∗Y ∗, (3)

and the x-coordinate of R∗ mod q is r∗.
S rewinds A to the query of H1(r∗,S∗,m∗) and returns another fresh random

(ã1
∗||ã2

∗|| . . . ||ãt∗ ∗) instead. Now A returns the signature (r∗, s̃∗), and

s̃∗(R∗) = H(m∗)G + r∗Ỹ ∗. (4)

By dividing Eq. (3) and (4), we have:

(s∗ − s̃∗)kG = (s∗ − s̃∗)(R∗) = r∗(a∗
i − ãi

∗)
∑

Yi = r∗((a∗
1 − ã1

∗)Y1 +
∑
i>1

(a∗
i − ãi

∗)xiG)

Hence S can extract the discrete logarithm of Y1 i.e. x1 from the final equa-
tion, which helps itself to generate a valid signature for the underlying standard
ECDSA. By the random choice of m̂ in the signing oracle query, m∗ is different
from all existing m̂ with an overwhelming probability.

Analysis. The differences between the real and the simulated views can be listed
as the following. In Phase 2, the MtA protocol the values ci = Enceki(ki) are
published. In the real protocol R =

∑
i kiG and in the simulated protocol we have

R∗ instead. The views are indistinguishable as the encryption scheme secure is
IND-CPA secure. In Phase 4b of the simulated protocol, the decommitment D′

1

is returned. By the non-malleability property of the equivocable commitment,
it is indistinguishable from the real decommitment D1. By the zero-knowledge
property of the ZK proofs, the simulation of Phase 5 and 8 are correct. In Phase
6, a2 is set to

∑
j>1 ajxj = (d1 + Δ)/r′. It is uniformly distributed in Zq by

the random choice of d1 ∈ Zq. Also, a1 is set to r̂/r′. Note that r̂ is related to
ŝ = s′d2, which is uniformly distributed in Zp by the random choice of d2 ∈ Zq.

5 Instantiating with Class Group

We use the additive homomorphic encryption introduced by Castagnos and
Laguillaumie [9] defined on a group with hard subgroup membership (HSM).

276 S. Pan et al.

5.1 Hard Subgroup Membership Group

HSM Group. It is an abstract group introduced in [5] and named as HSM
for the hard subgroup membership assumption [22], which constructs a sub-
group where the discrete logarithm (DL) is easy. The generation algorithm
takes security parameter 1λ as input and it outputs the group as GHSM =
(G,Gq,F, g, gq, f, s̃, q). Specifically, the primary group is (G, ·) generated by g,
in which the real order q · ŝ is unknown but we can determine the prime factor q
with s̃ as the upper bound of ŝ. The subgroup (F, ·) with generator f and order q
could be determined. And the subgroup G

q of order ŝ could be generated by gq.
Apparently, we have G = G

q × F. The DL problem in the subgroup F is easy to
solve by a PPT algorithm Solve without any trapdoor. Given the group descrip-
tion GHSM = (G,Gq,F, g, gq, f, s̃, q) and input y = fx, the algorithm computes
discrete logarithm x ← SolveGHSM(y) in polynomial time.

HSM Group from Class Group. The HSM group could by instantiated by
class groups of imaginary quadratic order. The GGenHSM first picks a random
prime q̃ such that qq̃ ≡ 1 (mod 4) and (q/q̃) = −1. For fundamental discriminant
ΔK = −qq̃ and non-maximal order of discriminant Δq = q2ΔK , class group
G̃ = Cl(Δq) orders h(Δq) = q ·h(ΔK) where h(ΔK) is the order of Cl(ΔK). Let
I be the ideal lying above small prime r and φ−1

q be the Algorithm 1 in [8]. The
generators f and gq for the subgroup F = 〈f〉 and G

q = 〈gq〉 can be computed
by gq = [φ−1

q (I2)]q and f = [(q2, q)]. Accordingly, g = f · gq generates G = 〈g〉.
The algorithm outputs GHSM = (G,Gq,F, g, gq, f, s̃, q).

5.2 CL Encryption for HSM Group

We review the additive homomorphic encryption raised by Castagnos and Laguil-
laumie [9], in which message space is a cyclic group with prime order q.

– Setup(1λ) → params: it calls group generation algorithm GGenHSM described
previously, then outputs system parameters as params = (G,Gq,F, g, gq, f, s̃,
q). Moreover, we define the statistical distance εd with constant S = s̃ · 2εd .

– KeyGen(params) → (ek, dk): it picks dk ←$ [0, S] and sets public key ek = gdk
q .

– Encek(m) → C: it picks random number in ρ←$ [0, S]. It composes the cipher-
text C = (C1, C2) where C1 = fmekρ and C2 = gρ

q .
– Decdk(C) → m: it computes M = C1/Cdk

2 and calls Solve for m ←
SolveGHSM(M).

– EvalSumek(C,C ′) → Ĉ: it computes the addition by Ĉ = (C1C
′
1, C2C

′
2) for

C = (C1, C2) and C ′ = (C ′
1, C

′
2).

– EvalScalek(C, s) → C ′: it scales the message with the scalar s by computing
C ′ = (Cs

1 , C
s
2) for inputted ciphertext C = (C1, C2).

5.3 ZK Proof with CL Encryption

Instantiating the MtA protocol with CL encryption, the relation REnc turns to be
{(m, ρ)|pk ∈ G

q, ρ ∈ [0, S] : C1 = fmpkρ ∧ C2 = gρ
q}. And the relation RB turns

Multi-signatures for ECDSA and Its Applications in Blockchain 277

to be {(H,G, cA, cB , ek) : (b, β, ρ) : H = bG ∧ C1 = Ĉ1
b
pkρf−β ∧ C2 = Ĉ2

b
gρ

q}
where G is the ECC generator. Consequently, the ZK proof for REnc follows
immediately the Algorithm 5 in [22]. And we give the ZK protocol for RB and
its security analysis in Appendix C where the relation is formally named RAffwc.

Table 3. Bandwidth (bytes) and running time (ms) of each party for a t-party signing

Phase Sent size Receive size Running time

1 32 32 (t − 1) 0.00t + 0.20

2a 4899 4899 (t − 1) 2397.24t + 1832.19

2b 5292 (t − 1) 5292 (t − 1) 588.15t − 2.81

3 32 32 (t − 1) 0.01t + 0.00

4 64 64 (t − 1) 0.03t + 0.37

5 4049 4049 (t − 1) 2749.42t + 1548.67

6 5356 (t − 1) 5356 (t − 1) 584.92t + 5.08

7 128 128 (t − 1) 0.54t + 0.80

8 160 160 (t − 1) 0.92t + 0.70

9 32 32 (t − 1) 0.25t + 0.49

Total 10648t + 9396 20044t − 20044 6321.48t + 3385.70

Fig. 1. Total running time of each party for a t-party signing

6 Implementation

We implement the multi-signature with Rust language5 relying on a modified
class group and the related curve library6 Our implementation targets at 128-bit
security and picks the SHA-256 hash function, the Secp256k1 ECC curve and

5 https://github.com/multisig-ecdsa/multisig-ecdsa.
6 https://github.com/ZenGo-X/class and https://github.com/ZenGo-X/curv.

https://github.com/multisig-ecdsa/multisig-ecdsa
https://github.com/ZenGo-X/class
https://github.com/ZenGo-X/curv

278 S. Pan et al.

a class group with ||ΔK || = 3392 [12] accordingly. The message size and band-
width requirement analysis are given theoretically, and all broadcast messages
are consider as sending it once (Fig. 1 and Table 3). Benchmark is performed on
an AMD Ryzen 7 5800H @3.20 GHz computer with 8 GB RAM.

7 Applications in Blockchain

Nowadays, blockchain plays an increasingly essential role among decentralized
cryptocurrencies and many of them rely on the ECDSA signatures. In Bitcoin,
a flexible way to check the ownership is adopted, which is known as the Bitcoin
script. But the Bitcoin script is not Turing-complete and prevents our scheme
to work fully native. We discusses how to adapt our scheme to the Bitcoin here.

Advantages for Using ECDSA Multi-signatures. (1) The signature size
is minimized in our scheme and could be extremely bandwidth efficient. (2)
Compared to the Schnoor-based or pairing-based multi-signatures, our ECDSA
multi-signatures could better fit into the current blockchains. (3) Compared to
the threshold ECDSA, our scheme does not require interactive key generation.

Construction of t-of-n Multi-signature. In the multisig address in Bitcoin,
an address can be associated with a set of n public keys G and a threshold value
t ≤ n. Any set of t signers S can authorize a transaction on behalf of G.

From the current method of forming group public key in our ECDSA multi-
signature, we could also construct a m-of-n multi-signature. The idea is to replace
the key aggregation protocol in Phase 6 to (a1|| . . . ||at) = H1(r,S, G,m).

Combining with Mixing Service. Currently, cryptocurrencies utilizes mix-
ing services to make transaction anonymous but these services always takes a
high transaction fee. With our ECDSA multi-signature scheme, users could col-
laborate by themselves and form a mixing transaction with a single ECDSA
signature. Moreover, users don’t need to generate auxiliary information when
signing the message, because we require nothing other than the original keys.

8 Conclusion

In this paper, we give the first multi-signatures for ECDSA by designing a novel
ephemeral group public key for the set of signers and using a generic MtA pro-
tocol for signing. This scheme can identify the malicious party and is adaptable
to the class group, which minimizes the communication cost maximally. As it
only produces a single signature, this scheme can be used in blockchain to save
transaction cost with the accountability for signers and backward-compatibility
with existing addresses.

Multi-signatures for ECDSA and Its Applications in Blockchain 279

A Definition for Building Blocks

A.1 ECDSA

ECDSA is a variant of DSA scheme over elliptic curve. It contains a tuple of 4
algorithms (Setup,KeyGen,Sign,Verify). Setup(1λ) → params generates parame-
ters and calls GGenECC = (G, G, q) and picks a hash function H : {0, 1}∗ → Zq. It
returns params = (G, G, q,H). KeyGen(params) → (sk, pk) takes security param-
eter params as input and returns a secret key sk = x←$Zq with a public key
pk = xG. Sign(sk,m) → σ computes R = k−1G and takes the x coordinate
of R mod q as r. It computes s = k(H(m) + xr) mod q and returns signature
σ = (r, s). Verify(pk, σ) → b outputs the verification result b ∈ {0, 1} according
to whether R′ = H(m) · s−1G + rs−1pk and the x coordinate of R′ mod q is r.

A.2 Additive Homomorphic Encryption

An additive homomorphic encryption allows users to compute the sum of two
message in ciphertext. It contains (Setup,KeyGen,Enc,Dec,EvalSum,EvalScal).
Setup(1λ) → params takes security parameters and outputs the system param-
eter params. KeyGen(params) → (ek, dk) computes an encryption key and a
decryption key from the system parameters. Encek(m) → C gets the encryption
of a message m under the encryption key ek as the ciphertext C. Decdk(C) → m
recovers the plaintext m from the decryption key dk. EvalSumek(C,C ′) → Ĉ
evaluates the ciphertext Ĉ = Encek(a + b) for C = Encek(a) and C ′ = Encek(b).
EvalScalek(C, s) → C ′ scales C = Encek(a) to C ′ = Encek(s · a).

The security of the additive homomorphic encryption follows the standard
definition of indistinguishability against chosen plaintext attack (IND-CPA).

A.3 Trapdoor Commitment

A commitment scheme contains a algorithms tuple as (KeyGen,Com,Decom).
KeyGen(1λ) → pk generates a public key pk. Com(pk,M) → (C,D) takes the
public key pk with a message M then outputs the commitment string C and
decommitment string D. Decom(pk, C,D) → {M,⊥} takes the public key pk,
the commitment string C, the decommitment string D as input and outputs M
if it succeeds and ⊥ otherwise.

A commitment scheme is considered secure if it fulfills the correctness, hiding
and binding properties. For correctness, it requires that for all messages M and
pk ← KeyGen(1λ), then M ← Decom(pk,Com(pk,M)). Hiding means that every
message M1 and M2 and pk ← KeyGen(1λ), Com(pk,M1) and Com(pk,M2) is
statistically indistinguishable. The binding property holds if adversary A wins
the game with probability Pr[A wins binding game] ≤ negl(λ).

280 S. Pan et al.

Trapdoor Commitment with Efficient ZK Proof. A commitment scheme
has the additional algorithms (KeyGen′,TCom,TDecom) fulfilling the follow-
ing. KeyGen′(1λ) → (pk, tk) generates a public key pk and a trapdoor
tk. TCom(pk, tk) → (C, aux) gives commitment C and auxiliary informa-
tion aux such that TDecom could open it with any message specified.
TDecom(C, aux,M) → D give out the decommitment D by using aux.

The additional algorithm is required to be trapdoorness. We say a commit-
ment scheme fulfilling the trapdoorness property if for all messages M , the fol-
lowing distributions: {(pk,M,C,D) : pk ← KeyGen(1λ), (C,D) ← Com(pk,M)}
and {(pk,M,C,D) : (pk, tk) ← KeyGen′(1λ), (C, aux) ← TCom(pk, tk);D ←
TDecom(C, aux,M)} are computationally indistinguishable.

Non-malleable Equivocable Commitment Scheme. The equivocable com-
mitment scheme additionally contains KeyGen′ and Equiv. KeyGen′(1λ) →
(pk, tk) generates a public key pk and a trapdoor tk. Equiv(pk, tk, C,M ′) →
D′ generates decommitment string D′ using trapdoor tk such that
Decom(pk, C,D′) = M ′.

The additional algorithm is required to be equivocable and non-malleable. A
commitment scheme is called for equivocable if for all messages M,M ′, (pk, tk) ←
KeyGen′(1λ), (C,D) ← Com(pk,M) and D′ ← Equiv(pk, tk, C, M ′), then M ′ ←
Decom(pk, C,D′). Non-malleable means that no adversary A could generate C ′

related to C such that the decommitment of C ′ is computed from M .

B Trapdoor Commitments and Its ZK Proofs

We instantiate the trapdoor commitment Comz as the Pedersen commitment
Com(pk,m) → (C,D) for C = mG + rH and D = (m, r). The ZK proof in
Phase 5 could be instantiated directly following the Algorithm 6 of [22]. The ZK
proofs in Phase 7 and 8 follow the ZK proof in Sect. 3.3 of [15].

C Zero-Knowledge Proof for MtA(wc)

We give an informal description of assumptions used in HSM group here and
refer to [22] for the complete definition. These hard assumptions are defined
on prime number q > 2λ and HSM group GHSM = (G,Gq,F, g, gq, f, s̃, q) for
GHSM ← GGenHSM(1λ). If we denote H as a generator in the ECC group with
prime order q, then

RAffwc =

{
(pk, C1, C2, C̃1, C̃2);

(γ, β, ρ)

∣
∣
∣
∣
∣

pk, C2 ∈ Gq, C1 ∈ G \ F, γβ ∈ Zq, ρ ∈ [0, S] :

C̃1 = Cγ
1 fβpkρ ∧ C̃2 = Cγ

2 gρ
q ∧ H ′ = γH

}

.

Multi-signatures for ECDSA and Its Applications in Blockchain 281

We have 2 important facts in HSM group. The first one if Adaptive root subgroup
hardness. Given q and HSM group GHSM, it’s hard to find u� = w and wq �= 1 for
specific � ← Primes(λ). The other one is Non-trivial order hardness, which states
that given q and GHSM, it’s hard to find h �= 1 ∈ G such that hd = 1 and d < q.

Theorem 2. The protocol ZKPoKAffwc is an argument of knowledge in the
generic group model.

Proof. We rewind the adversary on fresh challenges � so that each accepting tran-
script outputs an (Q1, Q2, R1, R2, P1, rρ, rγ , �). Recall that we have C2 ∈ Gq.
By the PoKRepS protocol in [22], with overwhelming probability there exists
ρ∗, γ∗ ∈ Z s.t. ρ∗ = rρ mod � and γ∗ = rγ mod �, and gρ∗

q Cγ∗
2 = S2C̃

c
2. Since

S2C̃
c
2 = (D2E2)qg

eρ
q C

eγ

2 , it implies ρ∗ = eρ mod q and γ∗ = eγ mod q. Consid-
ering 2 cases, pkρ∗

Cγ∗
1 fuβ = S1C̃

c
1 is at overwhelming probability.

Next we consider the rewinding of c. The extractor obtains a pair of accept-
ing transcripts with (ρ∗, γ∗, uβ , c) and (ρ′, γ′, u′

β , c′). The extractor can compute
Δρ = ρ∗−ρ′, Δγ = γ∗−γ′ and Δuβ

= uβ−u′
β mod q. We denote ρ = Δρ

Δc
, γ = Δγ

Δc

and β =
Δuβ

Δc
mod q. Hence we have C̃Δc

1 = (pkρCγ
1 fβ)Δc . If C̃1 �= pkρCγ

1 fβ ,

then pkρfβCγ
1

C̃1
is a non-trivial element of order Δc < q which contradicts with the

non-trivial element and its order in the generic group model.
As our scheme includes a sub-protocol ZKPoKRepS on input C̃2 w.r.t. bases

gq ∈ G \ F . Since ZKPoKRepS is an argument of knowledge, there exists an
extractor to extract the same (γ, ρ) such that C̃2 = Cγ

2 gρ
q . Similar argument

applies to H. There exists an extractor to extract the sameγ such that H ′ = γH.
Hence the extractor can output (β, γ, ρ) such that C̃1 = Cγ

1 fβpkρ, C̃2 = Cγ
2 gρ

q

and H ′ = γH. �
Theorem 3. The protocol ZKPoKAffwc is an honest-verifier statistically zero-
knowledge argument of knowledge for relation RAffwc in the generic group model.

Proof. The simulator Sim randomly picks a challenge c′ ∈ [0, q − 1] and a prime
�′ ∈ Prime(λ). It picks a random u′

β ∈ Zq, q′
ρ, q

′
γ ∈ [0, B−1] and r′

ρ, r
′
γ ∈ [0, �′−1].

It finds d′
ρ, d

′
γ ∈ Z and e′

ρ, e
′
γ ∈ [0, q−1] such that d′

ρq+e′
ρ = q′

ρ�
′+r′

ρ, d′
γq+

e′
γ = q′

γ�′ + r′
γ .

It computes:

D′
1 = pkd′

ρ , D′
2 = g

d′
ρ

q , E′
1 = C

d′
γ

1 , E′
2 = C

d′
γ

2 ,

Q′
1 = pkq′

ρ , Q′
2 = g

q′
ρ

q , R′
1 = C

q′
γ

1 , R′
2 = C

q′
γ

2 , P ′
1 = q′

γH,

S′
1 = (Q′

1R
′
1)

�′
pkr′

ρC
r′

γ

1 fu′
β C̃−c′

1 , S′
2 = (Q′

2R
′
2)

�′
g

r′
ρ

q C
r′

γ

2 C̃−c′
2 ,

S′
3= �′P ′

1 + r′
γH + −c′H ′.

282 S. Pan et al.

We argue that The simulated transcript is indistinguishable from a real one
(S1, S2, S3, c, uβ ,D1,D2, E1, E2, eρ, �, Q1, Q2, R1, R2, P1, rρ, rγ) between a prover
and a verifier. Sim chooses (�′, c′) identically to the honest verifier. Both uβ and
u′

β are uniformly distributed in Zq. (S′
1, S

′
2, S

′
3,D

′
1,D

′
2, E

′
1, E

′
2, e

′
ρ, e

′
γ) is uniquely

defined by the other values such that the verification holds.
We compare the simulated transcript (Q′

1, Q
′
2, R

′
1, R

′
2, P

′
1, r

′
ρ, r

′
γ) and the

real transcript (Q1, Q2, R1, R2, P1, rρ, rγ). We need to prove that, in the
real protocol, independent of � and c, the either rρ or rγ has a negligi-
ble statistical distance from the uniform distribution over [0, � − 1] and each
one of pkqρ , g

qρ
q , C

qγ

1 , C
qγ

2 , qγH has negligible statistical from uniform over
Gk = 〈pk〉, Gq, G1 = 〈C1〉, G2 = 〈C2〉, 〈h〉 respectively. In addition, each of
Q1, Q2, R1, R2, P1, rρ, rγ are independent from others. Then, the simulator pro-
duces statistically indistinguishable transcripts. The complete proof is as follows.

Consider fixed values of c, ρ and �. In the real protocol, the prover computes
uρ = cρ + sρ where sρ is uniform in [−B,B] and sets rρ = uρ mod �. By Fact
1, the value of uρ is distributed uniformly over a range of 2B + 1 consecutive
integers, thus rρ has a statistical distance at most �/(2B + 1) from uniform over
[0, � − 1]. This bounds the distance between the real rρ and the simulated r′

ρ,
which is uniform over [0, � − 1]. Similarly, �/(2B + 1) also bounds the distance
between rγ and r′

γ

Next, g
qρ
q is statistically indistinguishable from uniform in Gq. By the triangle

inequality, the statistical distance of qρ mod |Gq| from uniform is at most 2λ+1

B +
2λ−1|Gq|
B+1−2λ . We consider the joint distribution of (pkqρ , g

qρ
q) and rρ. Consider the

conditional distribution of qρ|rρ. Note that qρ = z if (sρ − rρ)/� = z. We repeat
a similar argument as above for bounding the distribution of qρ from uniform.
For each possible value of z, there always exists a unique value of sρ such that⌊ sρ

�

⌋
= z and sρ = 0 mod �, except possibly at the two endpoints E1, E2 of the

range of qρ. When rρ disqualifies the two points E1 and E2, then each of the
remaining points z /∈ {E1, E2} still have equal probability mass, and thus the
probability Pr(qρ = z|rρ) increases by at most 1

|Y | − �
2B+1 , which also applies to

the variable (pkqρ , g
qρ
q)|rρ. Similarly, the probability Pr(qγ = z|rγ) increases by

at most 1
|Y | − �

2B+1 , which also applies to the variable (pkqγ , g
qγ
q , hqγ)|rγ .

We can compare the joint distributions X ′
ρ = (pkqρ , g

qρ
q , rρ) to the simulated

distribution Y ′
ρ = (pkq′

ρ , g
q′

ρ
q , r′

ρ) using Fact 3.

Multi-signatures for ECDSA and Its Applications in Blockchain 283

Algorithm 1: Protocol ZKPoKAffwc for the relation RAff(wc)

Param: GHSM ← GGenHSM,q(1
λ), B = 2εd+λ+3qs̃, where εd = 80.

Input: C1, C2, C̃1, C̃2, pk ∈ Gq.
Witness: ρ ∈ [0, S], β ∈ Zq, γ ∈ Zq, where S = s̃ · 2εd .

1 Prover chooses sρ, sγ
$←− [−B, B], sβ

$←− Zq and computes:

S1 = C
sγ

1 fsβpksρ , S2 = C
sγ

2 g
sρ
q , S3 = hsγ .

Prover sends (S1, S2, S3) to the verifier.

2 Verifier sends c
$←− [0, q − 1] and

$←− Primes(λ) to the prover.
3 Prover computes:

uβ = sβ + cβ mod q, uρ = sρ + cρ, uγ = sγ + cγ.

Prover finds dρ ∈ Z and eρ, eγ ∈ [0, q − 1] s.t. uρ = dρq + eρ and uγ = dγq + eγ .
Prover computes:

D1 = pkdρ , D2 = g
dρ
q , E1 = C

dγ

1 , E2 = C
dγ

2 .

Prover sends (uβ , D1, D2, E1, E2, eρ, eγ) to the verifier.
4 Verifier check if eρ, eγ ∈ [0, q − 1] and:

(D1E1)
qpkeρC

eγ

1 fuβ = S1C̃
c
1 , (D2E2)

qg
eρ
q C

eγ

2 = S2C̃
c
2 ,

heγ = S3H
c.

If so, the verifier sends

$←− Primes(λ).

5 Prover finds qρ ∈ Z and rρ, rγ ∈ [0,
 − 1] s.t. uρ = qρ
 + rρ and uγ = qγ
 + rγ .
Prover computes:

Q1 = pkqρ , Q2 = g
qρ
q , R1 = C

qγ

1 , R2 = C
qγ

2 , P1 = hqγ .

Prover sends (Q1, Q2, R1, R2, P1, rρ, rγ) to the verifier.
6 Verifier accepts if rρ, rγ ∈ [0,
 − 1] and:

(Q1R1)
�pkrρC

rγ

1 fuβ = S1C̃
c
1 , (Q2R2)

�g
rρ
q C

rγ

2 = S2C̃
c
2 ,

P �
1hrγ = S3H

c.

References

1. Kılınç Alper, H., Burdges, J.: Two-round trip Schnorr multi-signatures via delin-
earized witnesses. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol.
12825, pp. 157–188. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
84242-0 7

2. Bagherzandi, A., Cheon, J.H., Jarecki, S.: Multisignatures secure under the discrete
logarithm assumption and a generalized forking lemma. In: Ning, P., Syverson,
P.F., Jha, S. (eds.) CCS 2008, pp. 449–458. ACM (2008)

https://doi.org/10.1007/978-3-030-84242-0_7
https://doi.org/10.1007/978-3-030-84242-0_7

284 S. Pan et al.

3. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general
forking lemma. In: Juels, A., Wright, R.N., di Vimercati, S.D.C. (eds.) CCS 2006,
pp. 390–399. ACM (2006)

4. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based
on the gap-Diffie-Hellman-group signature scheme. In: Desmedt, Y.G. (ed.) PKC
2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-36288-6 3

5. Boneh, D., Drijvers, M., Neven, G.: Compact multi-signatures for smaller
blockchains. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol.
11273, pp. 435–464. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03329-3 15

6. Bresson, E., Stern, J., Szydlo, M.: Threshold ring signatures and applications to
ad-hoc groups. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 465–480.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9 30

7. Castagnos, G., Catalano, D., Laguillaumie, F., Savasta, F., Tucker, I.: Two-party
ECDSA from hash proof systems and efficient instantiations. In: Boldyreva, A.,
Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 191–221. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26954-8 7

8. Castagnos, G., Laguillaumie, F.: On the security of cryptosystems with quadratic
decryption: the nicest cryptanalysis. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 260–277. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-01001-9 15

9. Castagnos, G., Laguillaumie, F.: Linearly homomorphic encryption from DDH. In:
Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 487–505. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-16715-2 26

10. Chatzigiannis, P., Chalkias, K.: Proof of assets in the diem blockchain. In: Zhou,
J., et al. (eds.) ACNS 2021. LNCS, vol. 12809, pp. 27–41. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-81645-2 3

11. Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, New York (1990). https://
doi.org/10.1007/0-387-34805-0 28

12. Dobson, S., Galbraith, S.D.: Trustless groups of unknown order with hyperelliptic
curves. IACR Cryptology ePrint Archive, p. 196 (2020). https://eprint.iacr.org/
2020/196

13. Drijvers, M., et al.: On the security of two-round multi-signatures. In: 2019 IEEE
Symposium on Security and Privacy, SP 2019, San Francisco, CA, USA, 19–23
May 2019, pp. 1084–1101. IEEE (2019). https://doi.org/10.1109/SP.2019.00050

14. Gennaro, R., Goldfeder, S.: Fast multiparty threshold ECDSA with fast trustless
setup. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) CCS 2018, pp. 1179–
1194. ACM (2018)

15. Gennaro, R., Goldfeder, S.: One round threshold ECDSA with identifiable abort.
Cryptology ePrint Archive, Report 2020/540 (2020). https://eprint.iacr.org/2020/
540

16. Itakura, K., Nakamura, K.: A public-key cryptosystem suitable for digital mul-
tisignatures. NEC Res. Dev. 71, 1–8 (1983)

17. Khali, H., Farah, A.: DSA and ECDSA-based multi-signature schemes. Int. J.
Comput. Sci. Netw. Secur. 7(7), 11–19 (2007)

18. Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential aggregate
signatures and multisignatures without random oracles. In: Vaudenay, S. (ed.)
EUROCRYPT 2006. LNCS, vol. 4004, pp. 465–485. Springer, Heidelberg (2006).
https://doi.org/10.1007/11761679 28

https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/978-3-030-03329-3_15
https://doi.org/10.1007/978-3-030-03329-3_15
https://doi.org/10.1007/3-540-45708-9_30
https://doi.org/10.1007/978-3-030-26954-8_7
https://doi.org/10.1007/978-3-642-01001-9_15
https://doi.org/10.1007/978-3-642-01001-9_15
https://doi.org/10.1007/978-3-319-16715-2_26
https://doi.org/10.1007/978-3-030-81645-2_3
https://doi.org/10.1007/0-387-34805-0_28
https://doi.org/10.1007/0-387-34805-0_28
https://eprint.iacr.org/2020/196
https://eprint.iacr.org/2020/196
https://doi.org/10.1109/SP.2019.00050
https://eprint.iacr.org/2020/540
https://eprint.iacr.org/2020/540
https://doi.org/10.1007/11761679_28

Multi-signatures for ECDSA and Its Applications in Blockchain 285

19. Maxwell, G., Poelstra, A., Seurin, Y., Wuille, P.: Simple Schnorr multi-signatures
with applications to Bitcoin. Des. Codes Cryptogr. 87(9), 2139–2164 (2019).
https://doi.org/10.1007/s10623-019-00608-x

20. Micali, S., Ohta, K., Reyzin, L.: Accountable-subgroup multisignatures: extended
abstract. In: Reiter, M.K., Samarati, P. (eds.) CCS 2001, pp. 245–254. ACM (2001)

21. Nick, J., Ruffing, T., Seurin, Y.: MuSig2: simple two-round Schnorr multi-
signatures. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12825, pp.
189–221. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84242-0 8

22. Yuen, T.H., Cui, H., Xie, X.: Compact zero-knowledge proofs for threshold ECDSA
with trustless setup. In: Garay, J.A. (ed.) PKC 2021. LNCS, vol. 12710, pp. 481–
511. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75245-3 18

https://doi.org/10.1007/s10623-019-00608-x
https://doi.org/10.1007/978-3-030-84242-0_8
https://doi.org/10.1007/978-3-030-75245-3_18

Post-quantum Cryptography

Fiat-Shamir Signatures Based on
Module-NTRU

Shi Bai(B), Austin Beard(B), Floyd Johnson(B), Sulani K. B. Vidhanalage(B),
and Tran Ngo(B)

Department of Mathematical Sciences, Florida Atlantic University, Boca Raton, USA
{sbai,abeard2019,johnsonf2017,kthakshila2017,ngot2018}@fau.edu

Abstract. Module-NTRU lattices, as a generalization of versatile NTRU
lattices, were introduced by Cheon, Kim, Kim and Son (IACR ePrint
2019/1468), andChuengsatiansup, Prest, Stehlé,Wallet andXagawa (ASI-
ACCS ’20). The Module-NTRU lattices possess the benefit of being more
flexible on the underlying ring dimension. They also show how to efficiently
construct trapdoors based on Module-NTRU lattices and apply them to
trapdoor-based signatures and identity-based encryption. In this paper,we
construct Fiat-Shamir signatures based on variant Module-NTRU lattices.
Further generalizing Module-NTRU, we introduce the inhomogeneous
Module-NTRU problem. Under the assumption that a variation of the
search and decisional problems associated with Module-NTRU and inho-
mogeneous Module-NTRU are hard, we construct two signature schemes.
The first scheme is obtained from a lossy identification scheme via the Fiat-
Shamir transform that admits tight security in the quantum random ora-
cle model (QROM), following the framework of Kiltz, Lyubashevsky and
Schaffner (EUROCRYPT ’18). The second scheme is a BLISS-like (Ducas
et al., CRYPTO ’13) signature scheme based on the search Module-NTRU
problem using the bimodal Gaussian for the rejection sampling. At last, we
analyze known attacks and propose concrete parameters for the lossy sig-
nature scheme. In particular, the signature size is about 4400 bytes, which
appears to be the smallest provably secure signature scheme in the QROM
achieving 128-bit security.

Keywords: Lattice-based signature · Module-NTRU Lattice ·
Fiat-Shamir

1 Introduction

Lattices have attracted considerable research interest as they can be used to
construct efficient cryptographic schemes which are believed to be quantum-
resistant. As evidence, many promising candidates submitted to the NIST post-
quantum standardization process are based on lattices. Fundamental computa-
tional problems in lattice-based cryptography include the Short Integer Solution
problem (SIS) [2,35], the Learning With Errors problem (LWE) [11,32,40,41]
and the NTRU problem [22,24].

S. Bai—This work was supported in part by NIST award 60NANB18D216 and by the
National Science Foundation under Grant No. 2044855 and 2122229.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
K. Nguyen et al. (Eds.): ACISP 2022, LNCS 13494, pp. 289–308, 2022.
https://doi.org/10.1007/978-3-031-22301-3_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22301-3_15&domain=pdf
https://doi.org/10.1007/978-3-031-22301-3_15

290 S. Bai et al.

Ajtai’s seminal work [2] established the worst-to-average connection for
the lattice-based primitives based on the SIS problem. It serves as a security
foundation for many cryptographic primitives such as hash functions and sig-
natures [2,20,29]. The LWE problem, introduced by Regev [40,41], is exten-
sively used as a security foundation for encryption, signatures and many oth-
ers [15,20,29,41]. For efficiency, many practical lattice-based cryptosystems are
based on assumptions on structured lattices such as the Ring-LWE [32,44], Ring-
SIS[31,33,37] and the NTRU problems [23,25]. Introduced by Hoffstein, Pipher
and Silverman [23,25], the NTRU assumption is stated informally as follows:
given a polynomial h in Rq := Zq[x]/(φ(x)), for a cyclotomic polynomial φ(x)
and a positive integer q, where h is the result of dividing one small element
by another, find two polynomials f, g ∈ Rq with small magnitudes such that
h ≡ g/f (mod q). Following the pioneer work [23,25], the NTRU assumption
has been used extensively in various cryptographic constructions such as encryp-
tion, signature and many others [15,16,22]. Little is known on the complexity
reduction aspects of the NTRU problem (see also [36,38] for progress on this), yet
the NTRU assumption with standard parameters remains essentially unbroken
after decades of cryptanalysis.

1.1 Previous Work

As an important application, SIS/LWE/NTRU problems have been used exten-
sively to obtain post-quantum digital signatures such as [10,15,18,20,29]. There
are two main paradigms for constructing practical lattice-based signature
schemes in the literature. The first is to use trapdoor sampling algorithms
and the hash-and-sign framework, following the work of Gentry, Peikert, and
Vaikuntanathan in [20] (GPV). The second framework, proposed by Lyuba-
shevsky [28,29], utilizes the Fiat-Shamir [17] with aborts for transforming identi-
fication schemes into signature schemes using variants of SIS/LWE assumptions.
We describe related work for both directions.

Computing a short preimage solution for the SIS and ISIS problems has been
proven to be as hard as solving certain lattice problems in the worst case [2]. How-
ever, with a trapdoor for the matrix A one can efficiently derive short solutions.
In the pioneer work of GPV [20], they show how to efficiently construct a trap-
door for the ISIS problem; more specifically, they give a provable way to sample
short solutions without leaking information about the trapdoor. This leads to
a natural way for constructing signatures using the hash-then-sign paradigm in
the random oracle model (ROM). More efficient trapdoor constructions based
on the SIS and LWE problem have been further proposed in [6,34]. These lattice
trapdoors require that the trapdoor dimension to be about m ≈ Θ(n log q) for
achieving the optimal trapdoor quality. In work [16], the authors instantiate the
GPV framework using the NTRU lattices, which only requires m = 2n. It thus
leads to a more efficient Identity-Based Encryption (IBE) (and signature scheme).
In practice, a power-of-two is usually used for the underlying ring dimension in
NTRU, which leads to inflexibility on the parameter selection for desired security
level. To overcome such inflexibility, the Module-NTRU (MNTRU) problem was

Fiat-Shamir Signatures Based on Module-NTRU 291

proposed in [13,14] as a generalization of the NTRU problem. The MNTRU takes
the equation F ·h = g, where h,g are vectors of polynomials in Rd−1

q and F is an
invertible matrix of dimension d−1 with elements in Rq. The elements in F,g are
small for the MNTRU problem to be well-defined. The work [13,14] constructed
trapdoors and proposed instantiations of the hash-then-sign paradigm using the
MNTRU assumption. Concrete instantiations of the hash-then-sign signatures
include the NIST PQC submissions Falcon [39], pqNTRUSign [45], etc.

The signatures discussed above use the trapdoor functions with the hash-
and-sign paradigm. A second paradigm to construct lattice-based signatures is
to use the Fiat-Shamir transform [17]. In [28,29], Lyubashevsky utilizes Fiat-
Shamir for transforming identification schemes into provably secure signature
schemes using variants of SIS/LWE assumptions. In particular, the rejection
sampling in Fiat-Shamir is proposed to ensure the distribution of the signatures
is independent from the private key and hence preventing the leakage of private
keys. An improvement, the so-called BLISS scheme [15], is obtained by using the
bimodal Gaussian distribution in the rejection sampling. This leads to a much
smaller rejection area for signatures. For practical instantiation, BLISS [15] also
devised an efficient signature scheme using the NTRU assumption. Follow-up
work such as [5,7,15,21] uses a compression technique to further reduce the
signatures size: the common idea is to throw away some bits of the vector to be
hashed. The security proofs in these works remain non-tight due to the use of
the Forking Lemma [8] with the reprogramming of random oracles. Furthermore,
their security is usually studied in the random oracle model.

To construct signature schemes with tight security, Abdalla, Fouque, Lyuba-
shevsky and Tibouchi [1] proposed the lossy identification scheme, and proved
that the signatures obtained from Fiat-Shamir admit a tight security in the ROM
model. A similar approach has been used in the TESLA signature scheme [4,5].
The general idea is to start with a lossy identification scheme which adopts two
security properties, e.g. key indistinguishability and lossiness: it admits a lossy
key generation algorithm that produces a lossy public key which is computation-
ally indistinguishable to the genuine public keys, yet it is statistically impossible
to win the impersonation game when the public key is lossy. The signature
derived from such an identification scheme [1] was known to be secure only in
the random oracle model, which does not automatically imply security in the
quantum random oracle model (QROM). Kiltz, Lyubashevsky and Schaffner [26]
presented a generic Fiat-Shamir framework from lossy identification schemes [1]
to obtain tight secure signatures in the QROM. By adaptively re-programming of
the random oracle, the same tight security result in the QROM has been obtained
for the TESLA signature scheme [4,5]. A concrete instantiation of [26] is to adapt
and to modify the Dilithium signature scheme [30], which has tight secure reduc-
tions from Module-SIS (MSIS) and Module-LWE (MLWE). A concrete instanti-
ation of the techniques in [4,5] is given in the qTESLA signature [10], whose
existential unforgeability under chosen message attack (EUF-CMA) security is
reduced from the underlying decisional Ring-LWE problem.

292 S. Bai et al.

To our knowledge, the minimum signature size that achieves near 128-bit
security in the QROM model is from [26] with a pair of parameter sets given.
The first set has a signature size of 5690 bytes and public key size 7712 bytes
whose public key prevents a BKZ reduction of block size up to 480. The second
set admits a larger key security (BKZ block size of 600) has signature size 7098
bytes and public key size 9632 bytes.

1.2 Contributions

In this work we present two Fiat-Shamir signature schemes based on some vari-
ant Module-NTRU problems. The first scheme follows the framework of [26],
starting from an identification scheme and applying the Fiat-Shamir transform.
The second scheme is analogous to the BLISS [15] scheme, but built on the
variant Module-NTRU problem, with a fixed q being part of the public key.
Thus, they may be viewed as variants of the signatures from [26] and BLISS [15],
instantiated with the (inhomogeneous) Module-NTRU assumptions.

We first generalize the Module-NTRU problem proposed in [13,14] to the
inhomogeneous MNTRU (iMNTRU) problem and formalize the hardness assump-
tions used. Briefly, the iMNTRU consists of the equation F · h + g = t, where
t comes from a certain distribution. In our signature, essentially the F and g
serve as small secrets, while the h and t are public keys. The first signature
scheme follows the lossy key identification paradigms of [26] using a uniform
distribution for nonce generation. We prove the identification scheme achieves
completeness of normal keys, simulatability of transcripts, lossy keys, sufficient
entropy and computational unique response properties, thus possessing a tight
security in the quantum random oracle model to the inhomogeneous Module-
NTRU problem. Our second construction is a signature scheme based on the vari-
ant MNTRU assumption with a fixed q being part of the public key, and with the
bimodal Gaussian distribution. The construction follows a similar framework as
the BLISS signature [15], but uses the variant MNTRU assumption, which admits
extra flexibility in the choice of parameters for the underlying ring dimension.
With these proposed schemes, we analyze known attacks and their efficacy.

We discuss several related works. In [19], Genise et al. described inhomoge-
neous variants of NTRU problem named MiNTRU. In matrix form, the problem
is defined as A := S−1(G−E) (mod q) where G is a gadget matrix of the form
G = (0 | I | 2I | · · · | 2log q−1I). The secret matrices S and E are sampled
from distributions of small magnitudes and the search MiNTRU problem asks
an adversary to recover S and E from A. In this paper, we introduce a somewhat
different assumption by sampling uniformly a vector of polynomials t ∈ Rd−1

q ,
an invertible matrix of small polynomials F ∈ R

(d−1)×(d−1)
q and a vector of small

polynomials g ∈ Rd−1
q so that h = F−1(t − g). In our second BLISS-like signa-

ture scheme, we also consider the case where t is pre-fixed. A work from Chen,
Genise and Mukherjee [12] introduced the approximated ISIS trapdoor and used
it to construct signatures using the hash-and-sign framework, which resulted in
reduced sizes on the trapdoor and signature from [34]. For certain distributions,

Fiat-Shamir Signatures Based on Module-NTRU 293

the approximate ISIS problem is shown to be as hard as the standard ISIS prob-
lem. The approximate ISIS problem of a given matrix A ∈ Z

n×m
q and a vector

y ∈ Z
n
q asks to find a short vector x from Z

m
q so that Ax = y + z where z is a

small shift. Note the public matrix A is drawn uniformly, while in our iMNTRU
the public vector h is computed as h = F−1(t − g). Thus, when F and g con-
sist of sufficiently small polynomials, the distribution (h, t) cannot be uniform,
yet depending on the distribution of t, the marginal distribution of h might be
uniform.

Existing signature schemes built on the Fiat-Shamir paradigms such as
Dilithium [30] and qTESLA [10] are quite efficient and practical. Our scheme
further optimizes the scheme parameters such as the signature size. In particular,
we achieve a 128-bit security with a signature size of 4400 bytes and a public key
size of 10272 bytes for BKZ block size 490. This appears to be smallest provably
secure signature scheme in the QROM achieving 128-bit security. We also have
a signature size of 9264 bytes and a public key size of 18464 bytes for BKZ block
size 669. In addition to parameter optimization, we think it is also beneficial to
investigate a more diverse selection of the underlying hardness assumption. One
notes that the schemes [30] and qTESLA [10] are both built on the Module-LWE
assumptions.

Finally, compared to the BLISS signature [15], the use of the Module-NTRU
enjoys the extra flexibility in the choice of parameters for the underlying ring
dimension, since many applications require the NTRU lattice to be defined on the
power-of-two cyclotomic rings. Thus, sometimes when a higher security level is
needed, the dimension of the NTRU lattice needs to be doubled. Recent progress
on the complexity aspects of the NTRU problem [38] may shed light on the
hardness of the inhomogeneous Module-NTRU problem used in this work.

2 Preliminaries

We present the notation and definitions used to construct our signatures. Let q
be an integer, which is usually a prime in this paper. Let Zq be the set of all
integers modulo q in the range (− q

2 , q
2] when q is even and [−� q

2�, � q
2�] when q

is odd. We will refer to it as the balanced representation mod q. We denote R
and Rq as the rings Z[x]/(xn + 1) and Zq[x]/(xn + 1), respectively. The integer
n is usually a power of 2, where q ≡ 1 (mod 2n). In this case, the polynomial
Xn+1 splits completely in Zq. Throughout, regular font letters such as v denote
ring elements in R, Rq and Z,Zq. We use bold lower-case letters such as v to
represent vectors of elements from their respective fields. For a vector v, we
denote by vt its transpose, we also denote 0 to be the zero vector. Bold upper
case letters denote matrices. A matrix B = (b1, · · · ,bn) is also presented in a
column-wise way. Abusing notation, we sometimes also use lower-case letters to
identify the coefficients of ring elements in R and Rq.

For a polynomial f =
∑n−1

i=0 aix
i ∈ Rq, we identify its coefficient embedding

as its vector of coefficients f := (a0, . . . , an−1)T . For a vector of polynomials
f = (f1, . . . , fn) ∈ Rn

q , we may use vf as a coefficient vector (f1, . . . , fn)T . A

294 S. Bai et al.

polynomial f in Rq can be associated with an acyclic matrix Mf . Multiplying
f(x) by g(x) =

∑n−1
i=0 gix

i ∈ Rq identifies with the product of Mf · g. For a
vector x, we use ‖x‖ to denote its �2-norm and ‖x‖∞ = maxi(|xi|) to denote
its �∞-norm. The �2-norm and �∞-norm of polynomial f are defined as the
corresponding norms on the corresponding coefficient vector. Given a vector f
consisting of polynomials fi, the norm notation extends naturally, i.e., ‖f‖∞ =
maxi(‖fi‖∞). The inner product of two vectors x and y is denoted by 〈x,y〉.
For convenience, we define some notations for rounding.

For an integer c ∈ Z, we denote [c]r to be the unique integer in the range
(−2r−1, 2r−1] such that [c]r ≡ c (mod 2r). We denote c = �c
r · 2r + [c]r, where
�c
r extracts the higher bits of c. In this paper, the inputs c will be in balanced
representation mod q. For a polynomial f =

∑n−1
i=0 aix

i we extend [.]r and �.
r

to f on its coefficients coordinate-wise. We define Bn,κ to be the set of ternary
(or binary) vectors of length n with Hamming weight κ. When the length n is
clear in the context, we may write Bκ for short.

We will use the rejection sampling lemma from [29] to ensure the output
signature does not leak information about the secret key. We review the definition
of various distributions and rejection sampling lemma, and the background on
lattices (see full version of this work).

2.1 (Inhomogeneous) Module-NTRU

As a generalization of NTRU, the Module-NTRU (MNTRU) problem was intro-
duced in [13,14], which enables the dimension and parameter flexibility. It was
used to construct trapdoors for lattice signatures and identity-based encryption
(IBE). Intuitively, given a vector h such that the inner product of (1,h) and some
“small” secret vector f is zero, the Module-NTRU problem asks to recover the
secret f or close. In this paper, we will use a natural variant of the Module-NTRU,
which we denote as the inhomogeneous Module-NTRU (iMNTRU) problem. We
formalize the problem as follows.

Definition 1 (iMNTRUq,n,d,B instance). Let n, d ≥ 2 be integers, and q be
a prime. Let B be a positive real number. Denote Rq = Zq[x]/(xn + 1). An
iMNTRUq,n,d,B instance consists of a vector h ∈ Rd−1

q and t ∈ Rd−1
q such that

there exists an invertible matrix F ∈ R
(d−1)×(d−1)
q and a vector g ∈ Rd−1

q with
F · h + g = t (mod q) and ‖F‖, ‖g‖ ≤ B. The (F,g) is called a trapdoor of
the MNTRUq,n,d,B instance h. An MNTRUq,n,d,B instance corresponds to an
iMNTRUq,n,d,B instance for the case when t = 0.

Definition 2 (iMNTRUq,n,d,D1,D2,T distribution). Let n, d be positive integers,
and q be a prime. Let D1,D2, T be distributions defined over R

(d−1)×(d−1)
q , Rd−1

q

and Rd−1
q respectively. An iMNTRUq,n,d,D1,D2,T sampler is a polynomial-time

algorithm that samples matrix F from D1, vector g from D2, vector t from T and
then computes h in F·h+g = t (mod q). The sampler outputs a tuple (h,F,g, t).
An iMNTRUq,n,d,D1,D2,T distribution is the induced marginal distribution of (h, t)

Fiat-Shamir Signatures Based on Module-NTRU 295

from an iMNTRUq,n,d,D1,D2,T sampler. For the distribution to be meaningful, we
usually assume D1,D2 are B-bounded distributions and D1 turns out to be an
distribution defined on invertible elements F. An MNTRUq,n,d,D1,D2 distribution
corresponds to the case of an iMNTRUq,n,d,D1,D2,T distribution when the support
of T is always 0.

In the schemes presented in this work, we will make several different choices for
the distribution T , depending on the design and functionality. The decisional
variant and search variant of the MNTRU are defined as follows:

Definition 3 (Decisional iMNTRUq,n,d,D1,D2,T,B). Let n, d be positive inte-
gers, and q be a prime. Let D1,D2 be B-bounded distributions defined over
R

(d−1)×(d−1)
q and Rd−1

q respectively, and T be a distribution over Rd−1
q . Let N

be an iMNTRUq,n,d,D1,D2,T distribution. The decisional iMNTRUq,n,d,D1,D2,T,B

problem asks to distinguish between samples from N and from U(Rd−1
q) × T .

The decisional MNTRUq,n,d,D1,D2,B is defined similarly when the support of T is
always 0.

Definition 4 (Search iMNTRUq,n,d,D1,D2,T,B). Let n, d be positive integers,
and q be a prime. Let D1,D2 be B-bounded distributions defined over
R

(d−1)×(d−1)
q and Rd−1

q respectively, and T be a distribution over Rd−1
q . Let N

denote the iMNTRUq,n,d,D1,D2,T,B distribution. Given samples (h, t) from N , the
search iMNTRUq,n,d,D1,D2,T,B problem is to recover an invertible F and g such
that F · h+ g = t (mod q) and ‖F‖, ‖g‖ ≤ B. The search MNTRUq,n,d,D1,D2,B

is defined similarly when the support of T is always 0. Given an iMNTRUq,n,d,B

instance (h, t), the worst-case search iMNTRUq,n,d,B problem is to recover an
invertible F and g such that F ·h+g = t (mod q) and ‖F‖, ‖g‖ ≤ B. The worst-
case search MNTRUq,n,d,B problem is defined when t is 0. Clearly, the worst-case
search MNTRUq,n,d,B problem reduces to worst-case search iMNTRUq,n,d,B prob-
lem.

We are not aware of any reduction between MNTRU and the average cases of
inhomogeneous MNTRU assumptions where the t is sampled from a distribution.
However, one can reduce from MNTRU to inhomogeneous MNTRU by assum-
ing a worst-case oracle on the inhomogeneous MNTRU problem. We will make
the assumption that the average-case inhomogeneous MNTRU assumption is as
hard as the MNTRU assumption. Our signature scheme relies on an additional
assumption that solving a single row of the iMNTRU assumption is as hard as
the iMNTRU assumption. Namely, our signature schemes only use a single row
f of F and hence the vectors g, t are just two polynomials, thus the equation
becomes 〈h, f〉+ g = t (mod q). The variant search and decisional problems are
defined correspondingly and we require that f is non-zero.

Our first signature scheme reduces from this variant search and decisional
inhomogeneous Module-NTRU assumptions, which we assumed hard to invert
and indistinguishable from uniform respectively. Our second signature scheme is
based on the variant search Module-NTRU assumption, which is assumed hard
to invert as in [13,14].

296 S. Bai et al.

Remark 1. In the key generation presented in this work, one actually just starts
with a single vector f and pick up an element h in the left kernel of t − g w.r.t.
f . One can pick up h by choosing hi for i ≤ d − 2 first and then computing
hd−1 in the end. We note here that the distributions of the public keys for our
assumption and iMNTRU are not the same. We will make the assumption that
this variant assumption is as hard as the iMNTRU assumption. This variant
assumption turns out to be analogous to “low-density” inhomogeneous Ring-SIS
problem [29]. We leave for future work to study its average-case hardness.

3 Signature Based on iMNTRU in the QROM

In this section, we present a lossy identification scheme based on the variant of
inhomogeneous Module-NTRU assumption. Our construction follows the design
and paradigm proposed in [1,4,26] via the Fiat-Shamir transformation and thus
leads to a tightly-secure signature in the quantum random-oracle model. In this
work, the random oracle H takes inputs from Rq × M, where M denotes the
message space, and outputs a polynomial in Rq. We restrict the output polyno-
mials to be ternary (or binary) and have κ non-zero coefficients, e.g. those can
be identified as vectors from Bn,κ. We refer to [15] for efficient instantiation of
random oracles.

3.1 A Lossy Identification Scheme

As in [1,26], we start by constructing a lossy identification scheme ID, given
in Fig. 1. The key generation algorithm starts by choosing parameters d ∈ N

as the rank, n as the ring dimension and a prime q as the modulus. Sim-
ilar to the key generation of [13,14], one can sample (h′,F,g, t) from an
iMNTRUq,n,d,D1,D2,U(Rq) distribution, where D1 and D2 are two distributions
for sampling the secret keys. Here we sample each f in F from Un

β and each g
in g from Un

β independently. Note that it is possible to sample them from other
“small” distributions such as discrete Gaussian, but we use uniform distribution
here. After we sample g, t and an invertible F, we compute h′ = {hi}d−1

i=1 in
F · h′ + g = t (mod q). Note that for cryptographically sized parameters the
probability that a randomly selected matrix of polynomials F is invertible is
close to one.

As previously mentioned, one can only use a single row (f1, . . . , fd−1) from
F and let g, t be corresponding polynomials in g, t, respectively. Abusing nota-
tion, we denote fd := g and f = (f1, . . . , fd−1, fd), which is the secret key for
our identification scheme. We also denote h = (h1, . . . , hd−1, 1) and set (h, t)
as the public key. With this rewrite, we see that 〈h, f〉 = t. We use balanced
representation mod q in the following algorithm.

Fiat-Shamir Signatures Based on Module-NTRU 297

In the first step of the identification, the prover samples a vector of polyno-
mials y := (y1, . . . , yd), where each yi is from the distribution Un

γ , and computes

the commitment u :=
⌊∑d−1

i=1 hiyi (mod q)
⌉

r
. The prover then sends u to the

verifier. The verifier generates a random challenge c from the distribution Bκ

(here we define it to be the set of ternary vectors of length n with weight κ)
and sends c to the prover. The number of nonzero coefficients in c is κ, thus the
infinity norm of fi · c is bounded by β · κ. The prover computes zi := yi + c · fi

and returns z if, for all 1 ≤ i ≤ d − 1, ‖zi‖∞ ≤ γ − β · κ, and |[∑d−1
i=1 hiyi − c · fd

(mod q)]r| < 2r−1 − β · κ together with ‖w‖∞ < �q/2� − β · κ. Otherwise, it

Fig. 1. A lossy identification scheme based on variant of iMNTRU

298 S. Bai et al.

returns ⊥. Verifier accepts (z, u) if, for all i, we have ‖zi‖∞ ≤ γ − β · κ and⌊∑d−1
i=1 hizi − t · c (mod q)

⌉

r
equals u. Otherwise, it rejects. To optimize slightly,

it is possible to record
∑d−1

i=1 hiyi as a state for the prover in Algorithm P1 and
re-use in Algorithm P2.

In this section, we present the lossy identification scheme in Fig. 1. We show
the scheme admits properties including na-HVZK, correctness, lossy, min-entropy
and computational unique response (CUR). The proof follows a similar frame-
work as in [26]. For Lemmas 1 to 5, we state them and sketch the proofs in the
full version of this work.

We first show that the ID scheme is perfectly na-HVZK. Following the defi-
nition of na-HVZK, we set two algorithms Sim(.) and Trans(.), shown in Fig. 2.
We will show that the distribution of outputs of Sim(.) and Trans(.) is identical.
For convenience, we denote B := β · κ.

Lemma 1. The identification scheme of Fig. 1 is perfect na-HVZK.

We now prove that the identification is correct, up to some rejection rate. We
stress that such a bound is not rigorous, as we assumed a specific distribution
on the rounded numbers, yet it is sufficient to use in practice. One can get a
more accurate rejection rate from a simulation.

Lemma 2. Under the variant decisional iMNTRU assumption, the identifica-
tion scheme has correctness error

δ ≈ 1 − exp
(

−βκn

(
d − 1

γ
+

1
2r−1

+
1
q

))

.

We now show that the identification scheme is lossy. We first define a lossy key
generation algorithm LossyIGen(q, n, d, β), shown in Fig. 3, which samples hi’s
and t from uniform. First, the public keys generated by LossyIGen and IGen are
indistinguishable due to the variant decisional iMNTRU assumption. It remains
to show the scheme admits εls-lossy soundness; that is, for any quantum adver-
sary, the probability of impersonating the prover is bounded by εls.

Lemma 3. The identification scheme admits εls-lossy soundness for

εls ≤ 1
|Bκ| + 2 · |Bκ|2 · (4(γ − B) + 1)n(d−1) · (2r+1 + 1)n

qn
.

This bound essentially says q should be larger than γd asymptotically. This
condition is natural, since otherwise, it is intuitive to see there exist many solu-
tions z, c for u =

⌊∑d−1
i=1 hizi − t · c

⌉

r
.

Fiat-Shamir Signatures Based on Module-NTRU 299

Fig. 2. Transcript algorithm and simulation algorithm

Fig. 3. Lossy key generation algorithm LossyIGen

300 S. Bai et al.

We now prove that the u sent by the prover in Algorithm P1 is very likely
to be distinct across every run of the protocol. We first remark that the public
key h′ ←↩ IGen (i.e. recall that h = (h′, 1)) has a marginal distribution which
is uniform in Rd−1

q . This is because h′ is computed in equation F · h′ + g = t
(mod q) where t is uniform and F is invertible. Note that the joint distribution
(h′, t) is not uniform for our choice of parameters, but in Algorithm P1, only h′

is used to produce the commitment.

Lemma 4. The identification scheme has α := n · logE bits of min-entropy,
where

E = min
{

(2γ + 1)d−1,
q

(4γ + 1)(d−1)(2r+1 + 1)

}

.

In the end, we sketch that our scheme satisfies the computational unique
response (CUR) property for the strong unforgeability of the signature scheme
after the Fiat-Shamir transform.

Lemma 5. For any adversary on the identification scheme, the success prob-
ability of producing two valid transcripts (u, c, z) and (u, c, z′), such that z �= z′,
is bounded by (4(γ − B) + 1)n(d−1) · (2r+1 + 1)n · q−n.

In the end, we give the signature scheme constructed from the lossy iden-
tification scheme (see full version of this work). Theorem 3.1 of [26] concludes
that the signature scheme admits a tight security in the QROM. The concrete
parameters for the signature scheme will be given in Sect. 5.1.

4 A BLISS-Like Signature Based on MNTRU

In this section, we propose a signature scheme based on the variant MNTRU
assumption with a fixed t and the bimodal Gaussian distribution. The construc-
tion follows a similar framework as the BLISS signature [15], but uses the variant
MNTRU assumption, which admits the extra flexibility in the choice of parame-
ters for the underlying ring dimension.

4.1 Signature Scheme

We give the signature scheme in Fig. 4 and describe the key generation, sign-
ing and verification procedure here. In Algorithm Gen, used for key generation,
one chooses the following parameters: rank d ∈ N, a prime modulus q, an inte-
ger n as the ring dimension, and a positive odd integer β < q. We sample
(h′,F,g) from the MNTRUq,n,d,D1,D2 distribution, where D1 is Un

β and D2 is
Un

�β/2� are distributions of secret keys F and g, respectively. It is sufficient to
take a single row {fi}d−1

i=1 from F and we denote s = (f1, . . . , fd−1, fd) where
fd := 2g + 1. Note the coefficients of fd also lie uniformly in [−β, β]. We denote
h = (h1, . . . , hd−1,−1) and hence 〈h, s〉 = 0 (mod q). In the scheme, we use the
vector a = (2h1, · · · , 2hd−1, q − 2) ∈ Rd

2q as the public key and vector s ∈ Rd
2q as

the private key. It can be checked that we have 〈a, s〉 ≡ q (mod 2q), since

Fiat-Shamir Signatures Based on Module-NTRU 301

〈a, s〉 ≡
d−1∑

i=1

2hifi − 2fd ≡ 0 (mod q),

〈a, s〉 ≡ q · (2g + 1) ≡ 1 (mod 2).

To sign a message μ, the signer chooses a vector y := (y1, . . . , yd), where
each yi is sampled from the discrete Gaussian Dn

Z,σ. The signer then computes
c := H(〈a,y〉 (mod 2q), μ) and z := y + (−1)bc · s for a uniform random bit
b ∈ {0, 1}. With rejection sampling, the signature (c, z) is outputted with prob-
ability 1/M exp(− ‖c · s‖2 /(2σ2)) cosh(〈z, c · s〉/σ2), where the constant M is
the repetition rate for each signing. Upon receiving the signature (c, z), the
verification will succeed if ‖z‖∞ < q/4, ‖z‖ ≤ ησ

√
nd, and H(〈a, z〉 + q · c

(mod 2q), μ) = c. For convenience, we did not use compression in the presented
scheme, but mention it should be similar to [15] to compress the signature.

Rejection Sampling. The rejection sampling follows the same as [15]. Consider
z = (−1)b · s · c + y. Abusing notation, we denote s · c as the concatenated
coefficient vector as well as a vector of polynomials. The distribution of z is the
bimodal discrete Gaussian distribution 1

2DZnd,σ,s·c + 1
2DZnd,σ,−s·c. To prevent

signatures from leaking the private key, we use rejection sampling that finds a
positive integer M such that for all supports except a negligible fraction:

DZnd,σ ≤ M ·
(
1
2
DZnd,σ,s·c +

1
2
DZnd,σ,−s·c

)

It is thus sufficient to choose M ≥ exp(‖s · c‖2 /(2σ2)). Now we bound ‖s · c‖.
The random oracle H outputs a binary vector c with length n and weight κ (here
we define Bκ to be the set of ternary vectors of length n with weight κ), and
‖s‖∞ is bounded by β, so ‖s · c‖ ≤ (κ ·β)√nd. Hence, the number of repetitions
M is approximately exp(κ2β2nd/(2σ2)).

Correctness. Let (z, c) be a valid signature for message μ. The rejection sampling
shows that z follows a discrete Gaussian DZnd,σ. By [29, Lemma 4.4], we have
‖z‖ ≤ η ·σ√

nd, except with probability ≈ ηndend/2(1−η2) for some small constant
η > 1. In the security proof, we will also need ‖z‖∞ < q/4. This is usually
satisfied whenever ‖z‖ ≤ ησ

√
nd. Finally, check that 〈a, z〉 + q · c = 〈a,y〉 +

(−1)b · c · 〈a, s〉 + q · c (mod 2q).

4.2 Security Proof

We sketch the proof that the signature in Fig. 4 is secure under existential forgery
using the Forking Lemma of Bellare-Neven [8] which follows similarly to [15]. We
reduce the security of the signature to the variant MNTRU problem.

We construct two games, Hybrid 1 and Hybrid 2, as in Fig. 5, and use them
to simulate the genuine signature scheme. The distributions of outputs in Hybrid
1 and outputs in Hybrid 2 are the same due to rejection sampling. Thus, it is
sufficient to show the genuine signature is statistically close to Hybrid 1.

302 S. Bai et al.

Fig. 4. A BLISS-like signature scheme based on MNTRU

Lemma 6. Let D be an algorithm with the goal to distinguish the outputs of the
genuine signing algorithm in Fig. 4 and Hybrid 1 in Fig. 5. Let D have access
to two oracles: OH and OSign. OH is the hash oracle which, given an input x,
outputs H(x). OSign is the oracle which, given an input, returns either the output
of the signing algorithm or the output of Hybrid 1. If D makes at most qH calls
to OH and qS calls to OSign, then Adv(D) ≤ qS(qH + qS)2−n.

We now prove the BLISS-like signature scheme in Fig. 4 admits security
against existential forgery under adaptive chosen-message attacks. First, we
observe that if there exists an adversary capable of forging Hybrid 2 with advan-
tage δ in polynomial time, then by the previous lemma, the adversary is capable
of forging the genuine signature of Fig. 4 with probability ≈ δ in polynomial
time. Thus, it is sufficient to reduce the variant MNTRU to the forging problem
on Hybrid 2. We sketch it in the following theorem.

Theorem 1. If there exists a polynomial-time algorithm A to forge the signature
of Hybrid 2 with at most qS signing queries to Hybrid 2 and qH hash queries
to the random oracle H, and it succeeds with probability δ, then there exists
a polynomial-time algorithm that solves the variant MNTRUq,n,d,D1,D2,B search
problem with advantage ≈ δ2/(qS + qH), where distributions D1 and D2 sample
each coordinate-wise polynomial from Dn

Z,σ and B := 2ησ
√

nd.

We sketch the proof of Lemma 6 and Theorem 1 in the full version of this
work.

Fiat-Shamir Signatures Based on Module-NTRU 303

Fig. 5. Hybrid games of Fig. 4

5 Security Analysis and Parameters

In this section, we discuss known attacks for the MNTRU assumptions based
on lattice reduction [42,43] for MNTRU lattices. We assume that the variant
iMNTRU problem used in our signatures admits a similar security of the same
dimension. Let N be an MNTRUq,n,d,B distribution, and a vector of polynomials
h ∈ Rd−1

q be a sample from N . The lattice associated to h is defined as

Λh :=
{
(x1, . . . , xd) ∈ Rd

q : x1h1 + . . . + xd−1hd−1 + xd = 0 (mod q)
}

.

It has a basis generated by the columns of

B :=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

In 0n . . . 0n 0n

0n In . . . 0n 0n

...
...

. . .
...

...
0n 0n · · · In 0n

−Mh1 −Mh2 . . . −Mhd−1 qIn

⎤

⎥
⎥
⎥
⎥
⎥
⎦

The lattice L(B) has rank d × n and determinant qn. Let (f , g) from Rd−1
q × Rq

be a solution of a search MNTRUq,n,d,B problem. One can verify that (f , g) is a

short vector of Λh by the relation B ·
[
vf
0

]

=
[
vf
g

]

. Thus if one can solve the SVP

problem in Λh, one can find a solution for the corresponding MNTRU problem.
We review the methodology for estimating the Core-SVP security in the full

version of this work and use them to develop the concrete parameters in Table 1.

304 S. Bai et al.

5.1 Concrete Instantiation

Table 1. Concrete parameters for signature in Sect. 3

I II III IV V VI

Ring dimension n 2048 1024 4096 2048 1283 2003

Module rank d 2 4 2 3 3 2

Ring modulus log2(q) 39.93 78.68 53.47 71.37 55.89 38.95

κ 32 37 28 32 35 32

r 21 22 34 33 18 20

γ 47668 80205 79918 91335 71583 48041

Acceptance rate 0.237 0.238 0.238 0.238 0.202 0.233

Block-size b 490 500 839 669 494 492

Public key pk (bytes) 10272 10144 27680 18464 9013 9797

Signature size z (bytes) 4400 6963 9262 9264 5824 4305

We propose the concrete parameters for our signature scheme in Sect. 3, with
an 128-bit security level achieved by using Theorem 3.1 of [26]. The size of the
public key is n · �log q
 + 256 bits when using a 256-bit seed to generate the
randomness. The signature size is n · (d − 1) · �log 2(γ − β · κ)
 + κ(log(n) + 1)
bits. For all parameters, the rejection rate is chosen such that the repetition
rate is approximately 4.2–4.3, which is comparable to the rejection rate of the
127 bit security scheme in [26] which has the smallest signature size for schemes
provable in the QROM. The secret key is taken to be ternary in all cases, that
is to say that β = 1 in all columns in the table. Columns I-IV are arranged
with increasing signature size. These four columns are proven secure in Sect. 3
of this work. Columns I and II have BKZ block sizes close to the bound of
128 bit security while columns III and IV have block sizes suitable for higher
security considerations. Note that columns II and IV have very large prime
moduli, making them potentially weak to subfield attacks [3,27]. To heuristically
combat this, one may change β to increase the space of valid secret keys at the
cost of signature and public key sizes. Updated choices for β resilient to subfield
attacks are left to future works. The optimal provably secure signature size in [26]
is 5690 bytes and has public key size 7712 bytes. Comparing this to column I in
the table we see that our scheme achieves comparable security and acceptance
rates with a signature 77% the size of theirs at the expense of having public
key 133% the size. This tradeoff makes their scheme have better overall channel
weight if one message is to be signed, but if more than one is to be sent, then
our parameter set in column I has a lower overall channel weight.

Columns V and VI use the NTRU-prime [9] like polynomials with irreducible
polynomials xn−x−1 for prime n; thus the underlying rings do not correspond to

Fiat-Shamir Signatures Based on Module-NTRU 305

power-of-two cyclotomics. The flexibility of choosing n leaves room for improve-
ment on provable parameters, as one sees that NTRU-prime constructions give
the smallest signature size (VI) and smallest public key size (V). We remark
that the security of these two columns is not proven here since our proofs (e.g.
Lemma 3) use the underlying ring structure. We leave them to future works.

For the BLISS-like signature scheme in Sect. 4, the public key and the secret
key are vectors of polynomials in Ud−1

Rq
and Und

β , thus amounting to n · (d − 1) ·
�log q
 bits and n · d · �log 2β
 bits, respectively. The signature is (z, c), where
z ∈ Rd

q with ‖z‖∞ < q/4, and c sampled from the set of binary vectors of length
n with Hamming weight κ. Thereby, the size of signature is (n ·d ·�log (q/4)
+n)
bits. The signature in Sect. 4 utilizes the same framework as the BLISS signature.
We expect it yields more flexibility in selecting parameters due to the usage of
module lattices. It remains an interesting question to understand whether the
BLISS-like signature is secure in the QROM, and thus we leave the parameter
selection for future work.

Acknowledgement. The authors thank the reviewers for their helpful discussions
and remarks.

References

1. Abdalla, M., Fouque, P.-A., Lyubashevsky, V., Tibouchi, M.: Tightly-secure signa-
tures from lossy identification schemes. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 572–590. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29011-4_34

2. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:
28th ACM STOC, pp. 99–108. ACM Press (May 1996)

3. Albrecht, M., Bai, S., Ducas, L.: A subfield lattice attack on overstretched NTRU
assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp.
153–178. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-
4_6

4. Alkim, E., Barreto, P.S.L.M., Bindel, N., Krämer, J., Longa, P., Ricardini, J.E.:
The lattice-based digital signature scheme qTESLA. In: Conti, M., Zhou, J.,
Casalicchio, E., Spognardi, A. (eds.) ACNS 2020. LNCS, vol. 12146, pp. 441–460.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57808-4_22

5. Alkim, E., et al.: Revisiting TESLA in the Quantum Random Oracle Model. In:
Lange, T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 143–162.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59879-6_9

6. Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. Theor.
Comp. Syst. 48(3), 535–553 (2011)

7. Bai, S., Galbraith, S.D.: An improved compression technique for signatures based
on learning with errors. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp.
28–47. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04852-9_2

8. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general
forking lemma. In: Juels, A., Wright, R.N., De Capitani di Vimercati, S. (eds.)ACM
CCS 2006, October/November 2006, pp. 390–399. ACM Press (2006)

https://doi.org/10.1007/978-3-642-29011-4_34
https://doi.org/10.1007/978-3-662-53018-4_6
https://doi.org/10.1007/978-3-662-53018-4_6
https://doi.org/10.1007/978-3-030-57808-4_22
https://doi.org/10.1007/978-3-319-59879-6_9
https://doi.org/10.1007/978-3-319-04852-9_2

306 S. Bai et al.

9. Bernstein, D.J., et al.: NTRU Prime. Technical report, National Institute of
Standards and Technology (2020). https://csrc.nist.gov/projects/post-quantum-
cryptography/round-3-submissions

10. Bindel, N., et al.: qTESLA. Technical report, National Institute of Standards and
Technology (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/
round-2-submissions

11. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of
learning with errors. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th
ACM STOC, pp. 575–584. ACM Press (June 2013)

12. Chen, Y., Genise, N., Mukherjee, P.: Approximate trapdoors for lattices
and smaller hash-and-sign signatures. In: Galbraith, S.D., Moriai, S. (eds.) ASI-
ACRYPT 2019. LNCS, vol. 11923, pp. 3–32. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-34618-8_1

13. Cheon, J.H., Kim, D., Kim, T., Son, Y.: A new trapdoor over module-NTRU lattice
and its application to ID-based encryption. Cryptology ePrint Archive, Report
2019/1468 (2019). https://eprint.iacr.org/2019/1468

14. Chuengsatiansup, C., Prest, T., Stehlé, D., Wallet, A., Xagawa, K.: ModFalcon:
compact signatures based on module-NTRU lattices. In: Sun, H.-M., Shieh, S.-P.,
Gu, G., Ateniese, G. (eds.) ASIACCS 2020, pp. 853–866. ACM Press (October
2020)

15. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and
bimodal gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol.
8042, pp. 40–56. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
40041-4_3

16. Ducas, L., Lyubashevsky, V., Prest, T.: Efficient identity-based encryption over
NTRU lattices. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol.
8874, pp. 22–41. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-
45608-8_2

17. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12

18. Fouque, P.-A., et al.: FALCON: fast-Fourier lattice-based compact signatures over
NTRU (2017). https://falcon-sign.info/

19. Genise, N., Gentry, C., Halevi, S., Li, B., Micciancio, D.: Homomorphic encryption
for finite automata. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS,
vol. 11922, pp. 473–502. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-34621-8_17

20. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC,
pp. 197–206. ACM Press (May 2008)

21. Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based cryptogra-
phy: a signature scheme for embedded systems. In: Prouff, E., Schaumont, P. (eds.)
CHES 2012. LNCS, vol. 7428, pp. 530–547. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-33027-8_31

22. Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte, W.:
NTRUSign: digital signatures using the NTRU lattice. In: Joye, M. (ed.) CT-RSA
2003. LNCS, vol. 2612, pp. 122–140. Springer, Heidelberg (2003). https://doi.org/
10.1007/3-540-36563-X_9

23. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a new high speed public key
cryptosystem, 1996. Draft Distributed at Crypto’96. http://web.securityinnovation.
com/hubfs/files/ntru-orig.pdf

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://doi.org/10.1007/978-3-030-34618-8_1
https://doi.org/10.1007/978-3-030-34618-8_1
https://eprint.iacr.org/2019/1468
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-662-45608-8_2
https://doi.org/10.1007/978-3-662-45608-8_2
https://doi.org/10.1007/3-540-47721-7_12
https://falcon-sign.info/
https://doi.org/10.1007/978-3-030-34621-8_17
https://doi.org/10.1007/978-3-030-34621-8_17
https://doi.org/10.1007/978-3-642-33027-8_31
https://doi.org/10.1007/978-3-642-33027-8_31
https://doi.org/10.1007/3-540-36563-X_9
https://doi.org/10.1007/3-540-36563-X_9
http://web.securityinnovation.com/hubfs/files/ntru-orig.pdf
http://web.securityinnovation.com/hubfs/files/ntru-orig.pdf

Fiat-Shamir Signatures Based on Module-NTRU 307

24. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054868

25. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-
tem. In: ANTS, pp. 267–288 (1998)

26. Kiltz, E., Lyubashevsky, V., Schaffner, C.: A concrete treatment of Fiat-Shamir
signatures in the Quantum Random-Oracle model. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 552–586. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78372-7_18

27. Kirchner, P., Fouque, P.-A.: Revisiting lattice attacks on overstretched NTRU
parameters. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol.
10210, pp. 3–26. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-
7_1

28. Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
598–616. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-
7_35

29. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_43

30. Lyubashevsky, V., et al.: CRYSTALS-DILITHIUM. Technical report, National
Institute of Standards and Technology (2020). https://csrc.nist.gov/projects/post-
quantum-cryptography/round-3-submissions

31. Lyubashevsky, V., Micciancio, D.: Generalized compact knapsacks are collision
resistant. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP
2006. LNCS, vol. 4052, pp. 144–155. Springer, Heidelberg (2006). https://doi.org/
10.1007/11787006_13

32. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1

33. Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and efficient one-
way functions from worst-case complexity assumptions. In: 43rd FOCS, pp. 356–
365. IEEE Computer Society Press (November 2002)

34. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4_41

35. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian
measures. In: 45th FOCS, pp. 372–381. IEEE Computer Society Press (October
2004)

36. Peikert, C.: A decade of lattice cryptography. Found. Trends Theor. Comput. Sci.
10(4) (2016). http://eprint.iacr.org/

37. Peikert, C., Rosen, A.: Lattices that admit logarithmic worst-case to average-case
connection factors. In: Johnson, D.S., Feige, U. (eds.) 39th ACM STOC, pp. 478–
487. ACM Press (June 2007)

38. Pellet-Mary, A., Stehlé, D.: On the hardness of the NTRU problem. Cryptology
ePrint Archive, Report 2021/821 (2021). https://ia.cr/2021/821

39. Prest, T., et al.: FALCON. Technical report, National Institute of Standards and
Technology (2020). https://csrc.nist.gov/projects/post-quantum-cryptography/
round-3-submissions

https://doi.org/10.1007/BFb0054868
https://doi.org/10.1007/978-3-319-78372-7_18
https://doi.org/10.1007/978-3-319-56620-7_1
https://doi.org/10.1007/978-3-319-56620-7_1
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-29011-4_43
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.1007/11787006_13
https://doi.org/10.1007/11787006_13
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
http://eprint.iacr.org/
https://ia.cr/2021/821
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

308 S. Bai et al.

40. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography.
In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press (May
2005)

41. Regev, O.: Lattice-based cryptography. In: Dwork, C. (ed.) CRYPTO 2006. LNCS,
vol. 4117, pp. 131–141. Springer, Heidelberg (2006). https://doi.org/10.1007/
11818175_8

42. Schnorr, C.-P.: A hierarchy of polynomial time lattice basis reduction algorithms.
Theor. Comput. Sci. 53, 201–224 (1987)

43. Schnorr, C.-P., Euchner, M.: Lattice basis reduction: improved practical algorithms
and solving subset sum problems. Math. Program. 66, 181–199 (1994)

44. Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryp-
tion based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol.
5912, pp. 617–635. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-10366-7_36

45. Zhang, Z., Chen, C., Hoffstein, J., Whyte, W.: pqNTRUSign. Technical report,
National Institute of Standards and Technology (2017). https://csrc.nist.gov/
projects/post-quantum-cryptography/round-1-submissions

https://doi.org/10.1007/11818175_8
https://doi.org/10.1007/11818175_8
https://doi.org/10.1007/978-3-642-10366-7_36
https://doi.org/10.1007/978-3-642-10366-7_36
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions

Speeding-Up Parallel Computation
of Large Smooth-Degree Isogeny Using
Precedence-Constrained Scheduling

Kittiphon Phalakarn1(B), Vorapong Suppakitpaisarn2, and M. Anwar Hasan1

1 University of Waterloo, Ontario, Canada
{kphalakarn,ahasan}@uwaterloo.ca

2 The University of Tokyo, Tokyo, Japan
vorapong@is.s.u-tokyo.ac.jp

Abstract. Although the supersingular isogeny Diffie-Hellman (SIDH)
protocol is one of the most promising post-quantum cryptosystems, it
is significantly slower than its main counterparts due to the underly-
ing large smooth-degree isogeny computation. In this work, we address
the problem of evaluating and constructing a strategy for computing the
large smooth-degree isogeny in the multi-processor setting by formulat-
ing them as scheduling problems with dependencies. The contribution of
this work is two-fold. For the strategy evaluation, we transform strategies
into task dependency graphs and apply precedence-constrained schedul-
ing algorithms to them in order to find their costs. For the strategy con-
struction, we construct strategies from smaller parts that are optimal
solutions of integer programming representing the problem. We show via
experiments that the proposed two techniques together offer more than
13% reduction in the strategy costs compared to the best current results
by Hutchinson and Karabina presented at Indocrypt 2018.

Keywords: SIDH · Isogeny-based cryptography · Parallel computing ·
Precedence-constrained scheduling

1 Introduction

The supersingular isogeny Diffie-Hellman (SIDH) protocol is a post-quantum key
exchange protocol introduced by De Feo, Jao, and Plût in 2011 [13], where its
security is based on the hardness of supersingular isogeny problems. SIDH was
parameterized as the supersingular isogeny key encapsulation (SIKE) protocol
[5] and was submitted to the NIST post-quantum cryptography standardization
project in 2017 [2]. As announced in 2020, SIKE was selected as one of the
alternate candidates [1].

SIDH requires relatively smaller public keys but takes more computation
time compared to other schemes [4]. This is because SIDH requires both parties
to perform large smooth-degree (i.e., all factors of the degree are small primes)
isogeny computations, which are the bottleneck of the protocol. To reduce the
computation time of SIDH, an abstraction of large smooth-degree isogeny com-
putation called strategy was proposed in [13]. In that paper, the authors gave
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
K. Nguyen et al. (Eds.): ACISP 2022, LNCS 13494, pp. 309–331, 2022.
https://doi.org/10.1007/978-3-031-22301-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22301-3_16&domain=pdf
https://doi.org/10.1007/978-3-031-22301-3_16

310 K. Phalakarn et al.

a method to compute the cost of a strategy, an abstraction for the computa-
tion time. Intuitively, a low-cost strategy will lead to a fast implementation of
SIDH. The paper also presented how to construct an optimal strategy, a strategy
giving the lowest cost among all possible strategies. These optimal strategies
are then utilized to implement SIDH and SIKE in order to reduce computation
time. Apart from this, several other works were proposed towards lowering the
computation time of SIDH [12,14,22,25].

The aforementioned techniques, however, do not consider parallelism and are
targeted towards the single-processor setting. When we can utilize more than one
core or processor, which is the case in many situations these days, we have multi-
processor setting. Since multiple operations can be performed simultaneously
in this setting, we can finish the computation faster. For example, under the
multi-processor setting, the SIDH hardware architecture in [21] performed up to
42% faster than previous works. Recently, another fast parallel architecture was
introduced in [20].

Apart from strategy construction, another important aspects of the isogeny
computation in the multi-processor setting is strategy evaluation: the cost of
a strategy now depends on how it is evaluated. And to achieve the least cost,
both strategy construction and evaluation have to be designed specifically for
the number of processors provided. In the works of [20] and [21] mentioned ear-
lier, both implementations evaluate strategies designed for the single-processor
setting. Hence, those computation times are not necessarily optimal for the multi-
processor setting.

To the best of our knowledge, the only works that construct and evaluate
strategies specifically for the multi-processor setting are the work of Hutchinson
and Karabina [18], and that of Cervantes-Vázquez et al. [9], where the latter is
a software implementation of the former. The two evaluation techniques for the
multi-processor setting proposed in [18] are per-curve parallel (PCP) and con-
secutive curve parallel (CCP) (see Subsect. 2.4). The results of [18] show that,
in the multi-processor setting, strategies constructed specifically for the multi-
processor setting lead to lower costs than strategies constructed for the single-
processor setting. Moreover, under SIKEp751 parameters with eight processors,
their multi-processor setting based approach can achieve more than 50% reduc-
tion in the strategy cost compared to the single-processor setting. For two, three,
and four processors, the reductions in strategy costs are 30%, 40%, and 46%,
respectively. And, the maximum cost reduction achieved when we have arbitrary-
many processors is 74%. When utilizing strategies and evaluations from [18] in
the implementation of SIKEp751 with three processors, together with other opti-
mizations, [9] could achieve more than 30% speedups in the computation time
compared to the single-processor setting.

Nonetheless, the strategy costs reported in [18] are not the least we can
achieve as their evaluations do not fully utilize available processors. (We will
discuss this in Sect. 3.) In this work, we follow a different approach and formulate
this problem as precedence-constrained scheduling problems. To our knowledge,
our work is the first for this approach to be applied in reducing the strategy

Speeding-Up Isogeny Computation using Precedence-Constrained Scheduling 311

cost for the computation of large smooth-degree isogenies. Our contribution is
two-fold and consists of a novel strategy evaluation and construction techniques
leading to lower strategy costs:

1. For the strategy evaluation (Sect. 3), we transform strategies into task depen-
dency graphs and then apply two precedence-constrained scheduling algo-
rithms, Hu’s [17] and Coffman-Graham’s [10] algorithms, to them in order to
calculate the cost of strategies.

2. For the strategy construction (Sect. 4), we formalize the problem as an integer
linear program (ILP) and then construct efficient strategies as a combination
of optimal solutions to the ILP by structures of PCP.

We list techniques for strategy evaluation and construction of related works in
Table 1. Our experimental results show that the application of our proposed
techniques leads to more than 13% reduction in strategy cost compared to those
reported by [18] under the same parameter sets.

Table 1. Strategy evaluation and construction techniques used in various works.

Works Strategy evaluation Strategy construction

[13] Single operation at a time Optimal for single-processor setting

[20,21] PCP Optimal for single-processor setting

[9,18] PCP and CCP Optimal under PCP (multi-processor)

Ours Precedence-constrained scheduling Using ILP and PCP

2 Preliminaries

In this section, we review some preliminaries on SIDH, strategies for comput-
ing large smooth-degree isogeny, how strategies can be evaluated in the single-
processor and multi-processor settings, and precedence-constrained scheduling
algorithms.

2.1 SIDH

Let E and E′ be elliptic curves over a field F where their identity elements are
∞ and ∞′, respectively. An isogeny from E to E′ is a morphism φ : E → E′

satisfying φ(∞) = ∞′. When specifying an elliptic curve E and a point R ∈
E(F), one can compute the unique isogeny φ : E → E′ = E/〈R〉 satisfying
ker φ = 〈R〉 using Vélu’s [27] or

√
élu’s [6] formulas. The degree of φ is equal to

the order of R. Using these notations, SIDH can be described as follows.

Setup: Alice and Bob agree on the following set of public parameters:

– a prime p of the form �eA

A �eB

B · f ± 1 where �A, �B are small primes, eA, eB are
exponents giving �eA

A ≈ �eB

B , and f is a positive integer,
– a supersingular elliptic curve E0 over Fp2 with #E0(Fp2) = (�eA

A �eB

B · f)2,
– bases {PA, QA} of E0[�eA

A] and {PB , QB} of E0[�eB

B].

312 K. Phalakarn et al.

Key Exchange:

1. Alice randomly chooses mA ∈ Z�
eA
A

. She computes an isogeny φA : E0 → EA

with kernel 〈RA〉 where RA = PA + [mA]QA, and then sends EA, φA(PB),
φA(QB) to Bob.

2. Similarly, Bob randomly chooses mB ∈ Z�
eB
B

. He computes φB : E0 → EB

with kernel 〈RB〉 where RB = PB +[mB]QB , and sends EB , φB(PA), φB(QA)
to Alice.

3. Upon receiving EB , φB(PA), φB(QA) from Bob, Alice computes an isogeny
φ′

A : EB → EAB with kernel 〈R′
A〉 where R′

A = φB(PA) + [mA]φB(QA).
4. Similarly, upon receiving EA, φA(PB), φA(QB) from Alice, Bob computes φ′

B :
EA → EBA with kernel 〈R′

B〉 where R′
B = φA(PB) + [mB]φA(QB).

5. The shared secret is the j-invariant of the resulting elliptic curves: j(EAB) =
j(EBA), where j(E) = 1728 4a3

4a3+27b2 for E : y2 = x3 + ax + b.

2.2 Large Smooth-Degree Isogeny Computation and Strategies

SIDH requires several computations of isogenies of the form φ : E → E′ with
kernel 〈R〉 and degree �e. Theoretically, the degree of isogenies in SIDH can be
any sufficiently large integer, but we have not found an efficient way to compute
them using Vélu’s or

√
élu’s formulas. For large smooth-degree (e.g., degree-�e

for small � and large e) isogenies, an efficient way exists, which is to decompose
φ as a chain of degree-� isogenies [13]:

φ : E = E0
φ0−−−→ E1

φ1−−−→ E2
φ2−−−→ · · · φe−2−−−→ Ee−1

φe−1−−−→ Ee = E/〈R〉
where, for 0 ≤ i < e, Ei+1 = Ei/〈[�e−i−1]Ri〉, Ri+1 = φi(Ri), and R0 = R. We
note that R′

i = [�e−i−1]Ri is required in order to compute φi and Ei+1. This sug-
gests the following procedure given in Algorithm1 for computing φ0, . . . , φe−1.

We can describe Algorithm 1 using a graph with e(e+1)
2 vertices arranged

in e columns and e rows as shown in Fig. 1(a). Each vertex represents a point
where points in each column are on the same elliptic curve. The vertex at the
upper left corner represents the point R0 and the leftmost column are points on
E0. The top-to-bottom arrows depict point multiplications by [�] in Line 4 of
the algorithm and the left-to-right arrows depict isogeny evaluations in Line 6.
Here, φe−1, Ee, and Re are omitted as they are not relevant for analysis.

In Fig. 1(a), one might notice that R′
1 can also be computed by R′

1 =
φ0([�e−2]R0). This gives other possible ways of computing large smooth-degree
isogenies. By considering how each point in the graph can be computed from
other points, we define the graph Te following [13] which shows all possible point
multiplications by [�] and isogeny evaluations among all vertices. For simplicity,
vertices are referred to by pairs of their column and row numbers, i.e., vertex
(i, j) refers to the point [�j]Ri in column i and row j. Vertices representing R′

i,
i.e., vertices (i, e − i − 1) for 0 ≤ i < e, are called leaves.

Definition 1. The graph showing all possible operations for computing degree-�e

isogeny is defined as a directed graph Te = (Ve, Ee) where

Speeding-Up Isogeny Computation using Precedence-Constrained Scheduling 313

Algorithm 1: An algorithm for computing degree-�e isogeny.
Input : A supersingular elliptic curve E and a point R of order �e

Output: φ0, . . . , φe−1 and E/〈R〉
1 E0 ← E, R0 ← R
2 for i = 0 to e − 1 do
3 R′

i ← Ri

4 for j = 1 to e − i − 1 do R′
i ← [�]R′

i

5 Use Vélu’s or
√

élu’s formulas to compute φi and Ei+1 from Ei and 〈R′
i〉

6 Ri+1 ← φi(Ri)

7 return φ0, . . . , φe−1, Ee

Fig. 1. (a) The graph representing Algorithm 1 and (b) the graph Te when e = 6.

– the set of vertices Ve = {(i, j) : 0 ≤ i, j < e; i + j < e},
– the set of directed edges Ee = ↓e ∪ →e,
– the set of point multiplication edges ↓e = {〈(i, j), (i, j + 1)〉 : i + j < e − 1},
– the set of isogeny evaluation edges →e = {〈(i, j), (i + 1, j)〉 : i + j < e − 1}.

Next, we define a strategy for computing degree-�e isogeny as follows.

Definition 2. A strategy S for computing degree-�e isogeny is a subgraph of Te

containing the vertex (0, 0) and all leaves where there are paths from the vertex
(0, 0) to each leaf. A strategy S is well-formed if removing any edge from S
results in a graph that is not a strategy.

An example of a strategy is the graph in Fig. 1(a). By the definition, one
can use a strategy to compute a degree-�e isogeny by first performing operations
along a path from (0, 0) to R′

0, then a path from (0, 0) to R′
1, and so on. Since

strategies that are not well-formed have some unnecessary edges, we will consider
only well-formed strategies in order to find an efficient strategy.

314 K. Phalakarn et al.

Now we look at how a strategy can be evaluated which defines the cost of a
strategy. We will define the strategy cost using the cost of a single point multi-
plication by [�]: Q ← [�]P , and the cost of a single degree-� isogeny evaluation:
Q ← φ(P). We denote their costs as c↓ and c→, respectively.

2.3 Single-Processor Setting

When only a single processor is provided, we have to perform all operations
sequentially. Formally, given a strategy S, one can compute a degree-�e isogeny
using Algorithm 2.

Algorithm 2: Strategy evaluation in the single-processor setting.
Input : A strategy S = (VS , ES), a curve E, and a point R
Output: φ0, . . . , φe−1 and E/〈R〉

1 E0 ← E, R(0,0) ← R
2 for i = 0 to e − 1 do
3 for j = 0 to e − i − 2 do
4 if 〈(i, j), (i, j + 1)〉 ∈ ES then R(i,j+1) ← [�]R(i,j)

5 R′ ← R(i,e−i−1)

6 Use Vélu’s or
√

élu’s formulas to compute φi and Ei+1 from Ei and 〈R′〉
7 for j = 0 to e − i − 2 do
8 if 〈(i, j), (i + 1, j)〉 ∈ ES then R(i+1,j) ← φi(R(i,j))

9 return φ0, . . . , φe−1, Ee

From the above algorithm, we can define the cost of a strategy in the single-
processor setting. For a strategy S, let #↓S denote the number of point multi-
plication edges in S and #→S denote the number of isogeny evaluation edges.
Then, the cost of a strategy S in the single-processor setting, denoted by C1(S),
is computed by

C1(S) = #↓S · c↓ + #→S · c→.

We emphasize that the strategy cost is only an abstraction for the SIDH com-
putation time since we do not account for the cost of Vélu’s or

√
élu’s formulas

(Line 6 of Algorithm 2) nor other operations required in SIDH (e.g., the cost of
Alice computing RA ← PA + [mA]QA, etc.). Nevertheless, the strategy cost is a
useful measure in order to reduce the computation time of an implementation.

The problem of constructing a least-cost strategy given e, c↓, and c→ has been
extensively studied in [13]. That work analyzed a particular type of strategies
called canonical strategies and proved that a least-cost strategy in the single-
processor setting must be in this form. A canonical strategy is defined below.

Definition 3. A canonical strategy for computing degree-�e isogeny is defined
recursively as follows:

– If e = 1, then T1 is canonical.

Speeding-Up Isogeny Computation using Precedence-Constrained Scheduling 315

– Otherwise, let Sn, where 1 ≤ n < e, be a canonical strategy for computing
degree-�n isogeny. If S = (VS , ES) is constructed from Sn = (VSn

, ESn
) and

Se−n = (VSe−n
, ESe−n

) by the following steps, then S is canonical.
1. Rename all vertices (i, j) in Sn to (i, j + (e − n)).
2. Rename all vertices (i, j) in Se−n to (i + n, j).
3. Construct VS = VSn

∪VSe−n
∪{(0, j) : 0 ≤ j < e−n}∪{(i, 0) : 0 ≤ i < n}

and ES = ESn
∪ESe−n

∪{〈(0, j), (0, j +1)〉 : 0 ≤ j < e−n}∪{〈(i, 0), (i+
1, 0)〉 : 0 ≤ i < n}.

In brief, a canonical strategy with e leaves can be split into two canonical
strategies with n leaves and e − n leaves. Figure 2 depicts the process explained
in Definition 3.

Fig. 2. A canonical strategy.

By exploiting the optimal substructure of the problem, the cost of a least-cost
strategy for computing degree-�e isogeny in the single-processor setting can be
calculated by the following recurrence [13]. We abuse the notation C1 by defining
C1(e) as the cost of a least-cost strategy with e leaves.

C1(e) = min
1≤n<e

{C1(n) + C1(e − n) + (e − n) · c↓ + n · c→}, C1(1) = 0.

2.4 Multi-processor Setting

In this setting, we are provided with K ≥ 2 processors. At first, a K-time
improvement from the single-processor setting might be expected. However, since
we need to compute R′

i in order to continue to the next column, the computation
is quite restricted and we are not able to fully utilize all processors at all times
during the computation. Nevertheless, having multiple processors helps us reduce
the cost as discussed next.

Before getting into the strategy cost, we review the implicit restrictions of
the degree-�e isogeny computation. Unlike the single-processor setting, timing
plays a crucial role here. Because now we can perform more than one operations
at the same time, we have to be careful of which operations are performed first

316 K. Phalakarn et al.

and when they are finished, as they depend closely on each other. This is very
important for achieving the least cost in this setting. In this work, we consider
two restrictions of how a strategy is evaluated in parallel:

1. To perform a point multiplication by [�] corresponding to a directed edge
〈(i, j), (i, j +1)〉, the vertex (i, j) corresponding to the point [�j]Ri must have
been computed.

2. To perform an isogeny evaluation corresponding to a directed edge 〈(i, j), (i+
1, j)〉, two vertices (i, j) and (i, e − i − 1) corresponding to the point [�j]Ri

and R′
i, respectively, must have been computed. Here, the latter vertex R′

i is
required to construct φi.

Even though the computation is restricted, there are still several ways of
evaluating a strategy in parallel. To have a clearer picture of the problem, we
consider the following example of how a strategy is evaluated. In order to specify
which operations are performed at which time, each edge is labeled with its finish
time. The cost of evaluating a strategy is then labeled on the edge 〈(e−2, 0), (e−
1, 0)〉, which must be performed as the last operation.

Example 1. Suppose K = 2 and c↓ = c→ = 1. At time 0, although we have two
processors, the only operation we are able to perform is the edge 〈(0, 0), (0, 1)〉.
Again, at time 1, we can only take the edge 〈(0, 1), (0, 2)〉. We continue until the
edge 〈(0, 3), (0, 4)〉 is done at time 4. This part is illustrated in Fig. 3(a).

Fig. 3. Examples of parallel evaluations of a strategy with K = 2.

At time 5, we now have three options: 〈(0, 0), (1, 0)〉, 〈(0, 2), (1, 2)〉, and
〈(0, 3), (1, 3)〉. Because we have two processors, we can choose up to two oper-
ations. Figure 3(b) chooses the last two. After performing the remaining oper-
ations, the last operation is done at time 10. Thus, the cost of the evaluation
in Fig. 3(b) is 10. On the other hand, Fig. 3(c) chooses operations 〈(0, 0), (1, 0)〉
and 〈(0, 3), (1, 3)〉. By this evaluation, its cost is only 9. We point out that this
is the least possible cost from any strategy we can achieve when e = 5, K = 2,
c↓ = c→ = 1. (Thus, a strategy giving the least cost in the multi-processor
setting does not have to be canonical.)

Speeding-Up Isogeny Computation using Precedence-Constrained Scheduling 317

From the above example, the multi-processor setting is much more compli-
cated compared to the single-processor setting. In the rest of this subsection,
we present the result of Hutchinson and Karabina [18] on constructing low-cost
strategies and evaluations under some constraints called per-curve parallel (PCP)
and consecutive-curve parallel (CCP).

Per-curve Parallel. Hutchinson and Karabina started with a simple evaluation
of a strategy called per-curve parallel (PCP). Under PCP, two rules apply:

1. only operations of the form 〈(i, j), (i+1, j)〉 and 〈(i, j′), (i+1, j′)〉 (i.e., isogeny
evaluations from the same elliptic curve Ei) can be performed in parallel, and

2. point multiplications cannot be done in parallel. In other words, if one pro-
cessor performs the edge 〈(i, j), (i, j + 1)〉, other processors must be left idle.

The algorithm representing the strategy evaluation under PCP is similar
to Algorithm 2, except that we can simultaneously perform up to K isogeny
evaluations in Lines 7–8, i.e., when there are n isogeny evaluations from Ei,
the cost of performing these isogeny evaluations is � n

K � · c→. Let #→S,i denote
the number of isogeny evaluation edges from Ei in a strategy S, the cost of
evaluating S under PCP having K processors is

CPCP
K (S) = #↓S · c↓ +

e−2∑

i=0

⌈
#→S,i

K

⌉
· c→.

Even though the evaluation under PCP does not provide the least cost in the
multi-processor setting, it allows an extensive analysis to construct a strategy
with smallest CPCP

K (S). While not stated in [18], the lemma below can be proved.

Lemma 1. There exists a canonical strategy providing the least cost under PCP.

Proof (sketch). Suppose we have a least-cost strategy under PCP that is not
canonical, we can modify it to have a least-cost canonical strategy. First, we con-
sider the leftmost leaf (i′, e−i′−1) connecting to (0, 0) via the edge 〈(0, 0), (1, 0)〉.
If it is not connected to (0, 0) via the vertex (i′, 0), we can remove the existing
path and change it to the path (0, 0) → (i′, 0) → (i′, e − i′ − 1). By this mod-
ification, #↓S and #→S,i for 0 ≤ i < i′ do not increase. We perform similar
actions with the rightmost leaf connecting to (0, 0) via the edge 〈(0, 0), (0, 1)〉.
The modified strategy now has the same structure as a canonical strategy (Fig. 2)
except that two smaller strategies might not be canonical. We can apply the same
technique recursively to those smaller strategies to convert them into canonical
strategies without increasing the cost. Therefore, we have a least-cost canonical
strategy under PCP.

318 K. Phalakarn et al.

By the above lemma, we can construct a least-cost strategy under PCP by
finding a least-cost canonical strategy. The optimal substructure of the problem
allowed [18] to present a recurrence describing the least cost under PCP. Let
CPCP

K (e, k) denote the least cost of a strategy with e leaves where, in the first
iteration of executing Lines 7–8 of Algorithm2 in parallel for each curve, we can
perform isogeny evaluations of only up to k points (instead of K points). Also,
let n′ = e − n. The recurrence for CPCP

K (e, k) can be described as

CPCP
K (e, k) =⎧

⎪⎪⎨

⎪⎪⎩

0 if e = 1,

CPCP
K (e,K) + (e − 1) · c→ if e > 1 and k = 0,

min
1≤n<e

{CPCP
K (n, k − 1) + CPCP

K (n′, k) + n′ · c↓ + c→} otherwise.

The following theorem describes the least possible cost of a strategy under PCP.

Theorem 1 ([18]). Let K, c↓, and c→ be fixed. The least cost of a strategy
under PCP for computing degree-�e isogeny with K processors is CPCP

K (e,K)
(i.e., evaluating the above recurrence at k = K).

We refer the interested readers to [18] for the detailed proof and explanation
of the theorem.

Consecutive-Curve Parallel. Under PCP, we cannot perform any operation
in different columns, even though it is allowed to do so and some processors are
idle. By this observation, [18] considered another constraint called consecutive-
curve parallel (CCP). Let ↓S,i denote the set of point multiplication by [�] edges
for points in Ei in a strategy S and →S,i denote that of isogeny evaluation edges.
Under CCP, while performing operations in →S,i, we are allowed to perform
operations in →S,i+1 and ↓S,i+1 if they are ready to be done.

Because it is more flexible to perform operations in parallel under CCP, it
is thus harder to analyze a strategy under this constraint. For this reason, [18]
decided to consider only canonical strategies under CCP. As discussed before,
operations in →S,i+1 can be performed after R′

i+1 is computed. In the case that
R′

i+1 is computed by point multiplication edges in ↓S,i+1, all operations in ↓S,i+1

must be done first to obtain R′
i+1. By this, CCP uses a greedy heuristic to choose

which operations will be performed as described in the following rules:

1. Operations in →S,i are performed from bottom to top.
2. If an operation in ↓S,i+1 is available, then perform one operation in ↓S,i+1

and K − 1 operations in →S,i.
3. If operations in ↓S,i+1 are all done or there is no operation in ↓S,i+1, start

performing operations in →S,i+1 as soon as all in →S,i is finished.
4. If operations in →S,i are all done before ↓S,i+1 is exhausted, then perform

the remaining operations in ↓S,i+1 before starting →S,i+1.

Speeding-Up Isogeny Computation using Precedence-Constrained Scheduling 319

The algorithm for computing the cost under CCP of a canonical strategy S,
denoted by CCCP

K (S), is given in [18, Algorithm 1]. Nonetheless, Hutchinson and
Karabina stated that, under CCP, they could find no algorithm for constructing
least-cost strategies and no formula for the cost of a least-cost strategy.

We must note that, although performing operations in consecutive columns
are allowed, performing operations in other columns are not. Thus, this heuristic
could make the cost under CCP larger than the least possible.

2.5 Precedence-Constrained Scheduling Algorithms

The problem of scheduling a set of tasks to processors has been studied for a long
time and has many applications in various fields. For a given set of tasks, we need
to specify which processor performs which task and the goal is to minimize the
time that the last task is finished. In this work, we are interested in the problem
of precedence-constrained scheduling: we are given, for each task, a list of tasks
need to be completed in order to start that task. Thus, we also have to specify the
order in which tasks are performed by each processor. The dependency between
tasks for this problem is usually specified using a task dependency graph defined
as follows.

Definition 4. Given a set of tasks T = {t1, ..., tn}, the task dependency graph
for T is a directed acyclic graph (DAG) DT = (VDT

, EDT
) where VDT

= T and
〈ti, tj〉 ∈ EDT

if ti must be performed and finished before tj can begin.

There are several variants of this problem, but we restrict ourselves to the case
of the graphs DT with all tasks are of unit-length (i.e., all tasks take the same
amount of time to be performed), the number of processors is constant through-
out the scheduling, all processors are identical (i.e., no processor performs tasks
faster or slower than others) and preemption is not allowed (i.e., tasks cannot be
paused and then resumed later). We formally give the definitions of a schedule
and the precedence-constrained scheduling problem as follows.

Definition 5. Let DT = (VDT
, EDT

) be a task dependency graph, and let K be
a positive integer. Suppose that all tasks require one unit of time to complete.
A scheduling of DT using K processors is a sequence S = 〈s1, . . . , sn〉 of non-
empty sets of tasks where si is a set of tasks executed at time i such that (i)
s1, . . . , sn form a partition of VDT

, (ii) |si| ≤ K, and (iii) for all 〈t, t′〉 ∈ EDT
,

if t ∈ si and t′ ∈ sj then i < j. The finished time of S is n, the size of S, and
is denoted by t(S).

A scheduling S is optimal if t(S) ≤ t(S ′) for any possible scheduling S ′ of
DT using K processors. The (precedence-constrained) scheduling problem is to
find an optimal scheduling for given DT and K.

For general DAGs, Ullman [26] proved that the problem is NP-complete,
and Garey and Johnson [16] mentioned that complexity remains open when the
number of processors K ≥ 3 is fixed.

320 K. Phalakarn et al.

In the rest of this subsection, we look at two algorithms. The first algorithm
by Hu [17] outputs an optimal scheduling for K ≥ 1 when the task dependency
graph is tree-like. The second algorithm by Coffman and Graham [10] produces
an optimal scheduling when K = 2. When K ≥ 3, no efficient algorithm has
been proposed. Nonetheless, there are many approximation algorithms solving
this problem with various approximation ratios [15,24].

Hu’s Algorithm. The first algorithm applies with a task dependency graph
which is tree-like, i.e., all vertices has out-degrees of at most one. For u ∈ VDT

,
let �(u) denote the length of a longest path started at u. In a tree-like graph,
the longest path started from each vertex is unique since all vertices has at most
one out-going edge.

Hu’s algorithm can be described as Algorithm 3. In short, the algorithm
chooses up to K available tasks with largest �(·) in each iteration until all tasks
are performed. The chosen tasks and their edges are then removed from the
graph in order to show new available tasks.

Algorithm 3: Hu’s algorithm [17].
Input : A tree-like task dependency graph DT = (VDT , EDT) and the number

of provided processors K
Output: An optimal scheduling S = 〈s1, . . . , st〉

1 Compute �(u) for all u ∈ VDT

2 t ← 0
3 while VDT �= ∅ do
4 t ← t + 1
5 V ′ ← {u ∈ VDT : in-degree of u = 0}
6 Sort V ′ by �(u) in an decreasing order, break ties arbitrarily
7 if |V ′| ≤ K then st ← V ′

8 else st ← {the first K vertices in V ′}
9 Remove all vertices in st and their associated edges from DT

10 return S = 〈s1, . . . , st〉

Coffman-Graham’s Algorithm. Instead of using �(·), Coffman and Graham
[10] presented another way to label vertices for DAGs of any structure with-
out transitive edges defined as follows. After all vertices are labeled, the same
technique as in Hu’s algorithm is then applied, starting at Line 2.

Definition 6. Given a directed graph G = (V,E), an edge e = 〈u, v〉 ∈ E is
transitive if there exists a vertex w �∈ {u, v} in V such that u reaches w and w
reaches v.

The labeling process of Coffman and Graham is described as Algorithm4.
We give an example of the function c(·) in Lines 7–8 as follows: Suppose u has

Speeding-Up Isogeny Computation using Precedence-Constrained Scheduling 321

three children v1, v2, v3 and all are labeled with �CG(v1) = 4, �CG(v2) = 3, and
�CG(v3) = 8. Then, c(u) is the list [8, 4, 3] as it is sorted in decreasing order.
In Line 8, lists are compared lexicographically, e.g., [4, 2, 1] < [4, 3], [5, 4, 2] <
[5, 4, 2, 1], and [] < [3, 2].

At first, one vertex with no out-going edge is assigned a label of 1. In each
iteration, one vertex is labeled. V ′′ in Line 5 is the set of unlabeled vertices with
all children labeled. By the definition of V ′′, c(·) is well-defined for all vertices
in V ′′. The next vertex to be assigned a label is u ∈ V ′′ with smallest c(u). The
label is assigned from 1 up to |VDT

|.
Coffman and Graham proved that, by using �CG(u) instead of �(u) in Algo-

rithm3, the output scheduling is optimal when K = 2 for a task dependency
graph of any structure. Few years later, Lam and Sethi [23] showed that, when
applying Coffman-Graham’s algorithm with K ≥ 2, the algorithm is (2 − 2

K)-
approximation. When K is small, the approximation ratio is close to 1.

Algorithm 4: Coffman-Graham’s labeling algorithm [10].
Input : A task dependency graph DT = (VDT , EDT)
Output: Coffman-Graham’s label �CG(u) for all u ∈ VDT

1 Choose any vertex u with out-degree of 0 and assign �CG(u) ← 1
2 idx ← 1
3 while there is a vertex without a label do
4 idx ← idx + 1
5 V ′′ ← {u ∈ VDT : u is not labeled and all its children are labeled}
6 for u ∈ V ′′ do
7 c(u) ← the list of all labels of u’s children, sorted in decreasing order
8 Choose u ∈ V ′′ with smallest c(u) in lexicographical order, break ties

arbitrarily
9 �CG(u) ← idx

3 Proposed Strategy Evaluation Technique

To the best of our knowledge, the evaluation of a canonical strategy under CCP
gives the least cost among all existing techniques. In this section, we take a
closer look at the problem and propose a new approach to evaluate strategies
that gives lower costs. To this end, first we give an example showing that the
cost under CCP of a canonical strategy is not the least cost we can achieve.

Example 2. Let e = 9, K = 3, and c↓ = c→ = 1. Below shows a canonical
strategy which gives the least cost under PCP. When calculating its cost using
[18, Algorithm 1], the cost under CCP is 20. The times at which each operation
is finished are shown on the corresponding edges as in Fig. 4(a).

Consider another way of evaluating this strategy in Fig. 4(b). Here, the com-
putation is not restricted by CCP. For instance, three isogeny evaluations φ0, φ1,

322 K. Phalakarn et al.

Fig. 4. A strategy giving a cost of 20 under CCP and 19 under another evaluation.

and φ2 are performed in parallel at time 11. As another example, during time
14, two isogeny evaluations φ2, φ3, and a point multiplication on E4 are done
at the same time. These are not permitted under CCP or PCP. As a result, we
achieve a lower cost of 19 for this strategy and evaluation.

It is important to note that, unlike the single-processor setting, a strategy in
the multi-processor setting does not uniquely correspond to how it is evaluated.
This does mean that, in order to obtain the least cost possible, we need to search
for a strategy and its evaluation that give the least cost as a pair. Evaluating a
good strategy in a wrong way might not give us a low cost. On the other hand,
starting with a bad strategy will not give us a low cost under any evaluation.
This makes it a challenging problem. Moreover, since it is possible that the least-
cost strategy may not be canonical, we might not be able to utilize the recursive
structure of canonical strategies to solve the problem.

In this section, we propose a new technique to evaluate strategies. The first
part of the technique is to construct the task dependency graph of a strategy,
and the second part is to evaluate a strategy by using its task dependency graph
and precedence-constrained scheduling algorithms. We tackle the problem of
constructing efficient strategies in Sect. 4.

3.1 Task Dependency Graphs of Strategies

Without loss of generality, we assume that for a given strategy S = (VS , ES), all
vertices in VS that are unreachable from (0, 0) are removed since they are not
related to the cost computation. For any well-formed strategy, there is a unique
path from (0, 0) to any vertices in a strategy. This implies that every vertex in a
well-formed strategy that can be reached from (0, 0), except for (0, 0), must have
only one incoming edge. Thus, for a point (i, j) to be available, the operation
representing the incoming edge to the point (i, j) must be completed. Therefore,

Speeding-Up Isogeny Computation using Precedence-Constrained Scheduling 323

in a strategy, a point and its incoming edge represent the same thing. This
concept is important in constructing the task dependency graphs of a strategy.

The task dependency graph of a strategy is defined as follows.

Definition 7. The task dependency graph of a strategy S = (VS , ES = ↓S ∪→S)
is a directed acyclic graph DS = (VDS

, EDS
) where VDS

= VS \ {(0, 0)} and

EDS
= (ES ∪ {〈(i, e − i − 1), (i + 1, j)〉 : 〈(i, j), (i + 1, j)〉 ∈ →S})

\ {〈(0, 0), (0, 1)〉, 〈(0, 0), (1, 0)〉}.
A vertex (i, j) ∈ VDS

should be thought as a “task” of computing the point
(i, j), but it can be thought as the point as well following our discussion earlier.
For each isogeny evaluation edge 〈(i, j), (i + 1, j)〉 in S, we add an edge 〈(i, e −
i − 1), (i + 1, j)〉 to DS to explicitly specify the dependency that we need to
have R′

i before we can evaluate φi. We also remove (0, 0), since (0, 0) is available
from the start and we do not have to perform any task to produce it. The next
example depicts this process.

Example 3. Consider a strategy from Example 1 as in Fig. 5(a). The first step
of constructing the task dependency graph of a strategy is to add a diagonal
directed edge for each isogeny evaluation edge to show the dependency described
above. The result of the first step is in Fig. 5(b). The second step is to remove
the point (0, 0) and two edges from it. The task dependency graph DS is shown
in Fig. 5(c).

Fig. 5. Constructing the task dependency graph of a strategy.

3.2 Efficient Algorithm for Removing Transitive Edges

In the second part of the technique, we require that task dependency graphs
must not have any transitive edge (Definition 6). We give an example below
describing transitive edges in the task dependency graph of a strategy.

Example 4. In Fig. 5(c), the edge 〈(0, 2), (1, 2)〉 is transitive as (0, 2) reaches
(0, 4) and (0, 4) reaches (1, 2). The edge 〈(0, 3), (1, 3)〉 is also transitive. These
two edges are the only transitive edges in the graph. Figure 5(d) shows the graph
with all transitive edges removed.

324 K. Phalakarn et al.

Aho, Garey, and Ullman [3] presented that, for a general directed graph, the
task of removing all transitive edges from a graph, called transitive reduction,
can be done in O(|V |log2 7) steps. For DS , it can be done in a more efficient way
using the following lemma.

Lemma 2. All transitive edges in a graph DS must be of the form 〈(i, j), (i +
1, j)〉. Also, the edge 〈(i, j), (i + 1, j)〉 is transitive if and only if (i, j) reaches
(i, e − i − 1).

Proof. For an edge 〈u, v〉 to be transitive in a directed acyclic graph, the out-
degree of u and the in-degree of v must be more than 1. Therefore, all point
multiplication edges of the form 〈(i, j), (i, j + 1)〉 cannot be transitive.

Next, consider a diagonal edge of the form 〈(i, e − i − 1), (i + 1, j)〉. If there
exists another diagonal edge coming out of (i, e − i − 1), its end point must be
(i + 1, j′) with j′ �= j. If j′ > j, it is impossible that (i + 1, j′) reaches (i + 1, j).
If j′ < j, (i + 1, j′) can reach (i + 1, j) by going through a sequence of point
multiplication edges. However, (i + 1, j) is the end point of the diagonal edge
implies that it is the end point of the isogeny evaluation edge 〈(i, j), (i + 1, j)〉.
Thus, there is no point multiplication edges coming to (i + 1, j). By both cases,
all diagonal edges cannot be transitive.

By Definition 7, for an isogeny evaluation edge of the form 〈(i, j), (i + 1, j)〉,
there must exist the diagonal edge 〈(i, e−i−1), (i+1, j)〉. These are only incoming
edges to (i + 1, j). Therefore, if this isogeny evaluation edge is transitive, (i, j)
must reach (i, e − i − 1). This concludes the proof.

In order to remove all transitive edges from DS , Lemma 2 suggests that we
can only go through all isogeny evaluation edges once and remove 〈(i, j), (i+1, j)〉
if (i, j) reaches (i, e−i−1). Verifying that there is a path from (i, j) to (i, e−i−1)
can be simply done by checking if all edges 〈(i, j), (i, j + 1)〉, 〈(i, j + 1), (i, j +
2)〉, . . . , 〈(i, e − i − 2), (i, e − i − 1)〉 exist, since both points are in the same
column. When implemented as in Algorithm 5, the transitive reduction of DS

can be performed in O(|V |) steps since each vertex (i, j) is visited at most once.

Algorithm 5: Transitive reduction algorithm for DS .
Input : The task dependency graph DS = (VDS , EDS) of a strategy S
Output: DS with all transitive edges removed

1 for i = 0 to e − 2 do
2 for j = e − i − 2 down to 0 do
3 if 〈(i, j), (i, j + 1)〉 �∈ EDS then break
4 if 〈(i, j), (i + 1, j)〉 ∈ EDS then EDS ← EDS \ {〈(i, j), (i + 1, j)〉}
5 return DS

Speeding-Up Isogeny Computation using Precedence-Constrained Scheduling 325

3.3 Proposed Strategy Evaluation Technique

After we construct the task dependency graph from a strategy and remove
all transitive edges, precedence-constrained scheduling algorithms (Hu’s and
Coffman-Graham’s algorithms) described in Subsect. 2.5 can be applied to obtain
a scheduling. Although both algorithms assume that all tasks are of unit-length
when scheduling, which is not the case for SIDH since c↓ �= c→, they can be
used as an approximation algorithm in our settings. And even though our task
dependency graphs DS are not tree-like, we get interesting results when evalu-
ating (or scheduling) a strategy using Hu’s algorithm, where in our technique
�(u) is the length of a longest path starting at u. We describe our experiments
in Sect. 5.

Because both scheduling algorithms are designed for unit-length tasks, we
calculate the cost of a strategy evaluation from a scheduling as shown in Algo-
rithm6: for each 1 ≤ i ≤ t(S), if all tasks in si are point multiplications, the cost
of si is c↓. If all tasks in si are isogeny evaluations, its cost is c→. Otherwise, its
cost is max{c↓, c→}. The costs of a strategy S when using Hu’s and Coffman-
Graham’s algorithms with K processors are denoted by CHu

K (S) and CCG
K (S),

respectively.

Algorithm 6: Computing CHu
K (S) and CCG

K (S) of a strategy S.
Input : A strategy S = (VS , ES) for computing degree-�e isogeny and the

number of provided processors K
Output: The cost CHu

K (S) or CCG
K (S)

1 Construct DS from S following Definition 7
2 Remove all transitive edges from DS following Algorithm 5
3 Label all vertices with �(·) or �CG(·) (Algorithm 4)
4 Construct a scheduling S from (DS , K) using Algorithm 3
5 cost ← 0
6 for k = 1 to t(S) do
7 costk ← 0
8 for (i, j) ∈ sk do
9 if 〈(i, j − 1), (i, j)〉 ∈ ES then costk ← max{costk, c↓}

10 else costk ← max{costk, c→}
11 cost ← cost + costk
12 return cost

Example 5. We explain how CHu
K (S) and CCG

K (S) are computed for the strat-
egy shown in Fig. 5(a). First, its DS with all transitive edges removed is as
Fig. 5(d). Next, vertices in DS are labeled. The values of �(·) and �CG(·)
are provided in Figs. 6(a) and 6(b), respectively. Let K = 2, both Hu’s and
Coffman-Graham’s algorithms give the same scheduling S = 〈s1, . . . , s9〉 where
s1 = {(0, 1)}, . . . , s4 = {(0, 4)}, s5 = {(1, 3), (1, 0)}, s6 = {(1, 2), (2, 0)},

326 K. Phalakarn et al.

s7 = {(2, 2), (2, 1)}, s8 = {(3, 1), (3, 0)}, and s9 = {(4, 0)}. In s5, (1, 3) and
(1, 0) are computed by isogeny evaluations, thus cost5 = c→. In s7, (2, 2)
is computed by isogeny evaluation and (2, 1) is computed by point multipli-
cation, hence cost7 = max{c↓, c→}. The cost CHu

K (S) and CCG
K (S) is thus

4c↓+4c→+max{c↓, c→}. The evaluation when c↓ = c→ = 1 is shown in Fig. 6(c).

Fig. 6. The process of computing CHu
K (S) and CCG

K (S) of a strategy S: (a) the values
of �(·), (b) the values of �CG(·), and (c) the evaluation when K = 2 and c↓ = c→ = 1.

4 Proposed Strategy Construction Technique

In addition to an evaluation technique that gives us a low cost from a strategy, we
also need efficient strategies that would provide low costs. As discussed earlier, a
strategy for the multi-processor setting have to be carefully constructed specifi-
cally for the parameter set (e, c↓, c→,K). To construct those efficient strategies,
we first formalize the problem mathematically as an integer linear program (ILP)
and then use optimal solutions of the ILP to generate strategies.

4.1 Optimal Strategies and Evaluations

The problem of constructing a strategy and its evaluation is clearly an optimiza-
tion problem. We call a pair of a strategy and its evaluation that provides the
least cost as optimal. In this subsection, we will construct an optimal strategy
and evaluation in the simplest case of c↓ = c→ = 1, which can be generalized to
the case that c↓ = c→.

Let xi,j,t ∈ {0, 1} be a decision variable such that xi,j,t = 1 if the point
represented by the vertex (i, j) is computed and is available no later than time t
and 0 otherwise. A discrete optimization problem of finding an optimal strategy

Speeding-Up Isogeny Computation using Precedence-Constrained Scheduling 327

and its evaluation can be formalized as an ILP as follows:

minimize
xi,j,t

T + 1 −
T∑

t′=0

xe−1,0,t′

subject to x0,0,0 = 1
xi,j,0 = 0 (i, j) �= (0, 0)
xi,j,t ≥ xi,j,t−1

xi,j,t ≤ xi,j−1,t−c↓ +
xi−1,j,t−c→ + xi−1,e−i,t−c→

2∑

i,j

(xi,j,t+1 − xi,j,t) ≤ K

xi,j,t ∈ {0, 1}

The initial conditions for xi,j,0 are x0,0,0 = 1, since it is available at the
start of the isogeny computation, and xi,j,0 = 0 for (i, j) �= (0, 0). If (i, j) is
available no later than time t − 1, then it is also available no later than time t.
Hence, we have the constraint xi,j,t ≥ xi,j,t−1. Our objective is thus to minimize
t′ such that xe−1,0,t′ = 1, the time that (e − 1, 0) is finished. However, we
cannot straightforwardly use this as an objective function because t′ is not a
decision variable. We instead consider the sum of xe−1,0,t′ for 0 ≤ t′ ≤ T for
some sufficiently large T . The earliest time t′ at which xe−1,0,t′ = 1 can now be
expressed by T + 1 − ∑

0≤t′≤T xe−1,0,t′ , which is our objective function.
The fourth constraint comes from two restrictions of the isogeny computation

discussed in Subsect. 2.4: xi,j,t can become 1 by one of these two cases: (i) (i, j−1)
is ready at time t − c↓ and (i, j) is computed by a point multiplication, or (ii)
(i − 1, j) and (i − 1, e − i) are available at time t − c→ and (i, j) is computed
by an isogeny evaluation. The first case is possible only if xi,j−1,t−c↓ = 1. For
the second case, both xi−1,j,t−c→ and xi−1,e−i,t−c→ must be 1. Hence, we can
perform the second case only if 1

2 (xi−1,j,t−c→ +xi−1,e−i,t−c→) = 1. Because xi,j,t

can become 1 by either of the two cases, the value of xi,j,t is restricted to

xi,j,t ≤ xi,j−1,t−c↓ +
xi−1,j,t−c→ + xi−1,e−i,t−c→

2
.

The fifth constraint is the number of processors given. Since we are interested
in the case that c↓ = c→ = 1, there can be up to K decision variables that
change from 0 to 1 at each time, those represent points computed at that time.
Therefore, we have

∑
i,j(xi,j,t+1 − xi,j,t) ≤ K.

Given the integer linear program of the problem, we can use a solver to
find an optimal strategy and its evaluation. However, even in the case of small
e < 15, the solver can take more than 30 min to produce a solution. This is
expected due to the nature of integer linear programming which is NP-complete
[19]. Although it is not practical to construct optimal strategies and evaluations
for large e directly using ILP, we will use solutions for small e to construct a
low-cost strategy for large e in the next subsection.

328 K. Phalakarn et al.

4.2 Proposed Strategy Construction Technique

In Subsect. 2.4, we state Theorem 1 from [18] for computing the cost of a least-
cost (canonical) strategy under PCP. The theorem implicitly describes how this
least-cost canonical strategy is constructed: a strategy with e leaves is divided
into two smaller strategies with n and e−n leaves, and the construction performs
recursively until the base case e = 1 is reached. With the ILP we obtain in the
previous subsection, we propose a new way of constructing a strategy which is
by precomputing optimal strategies and evaluations for some e and then using
them as base cases. We need to slightly modify the ILP in order to find optimal
strategies and evaluations corresponding to CPCP

K (e, k), but the main idea is the
same. Strategies constructed by our proposed technique can then be viewed as
a mixture of a canonical part when e is larger than the base case and a possibly
non-canonical part when e is one of the base cases.

Similar to the proposed strategy evaluation technique in the previous section,
we assume that c↓ = c→ when we formulate the ILP, which is not the case for
SIDH. Also, we only solve the ILP for up to some value of e and combine them for
large e. Hence, strategies resulted from our construction technique are considered
as approximations of a least-cost strategy.

5 Experiments and Results

For each parameter set (e, c↓, c→,K), we conduct two experiments using our
proposed strategy evaluation (Sect. 3) and construction (Sect. 4) techniques as
follows:

– Experiment A: We use Theorem 1 to construct least-cost canonical strate-
gies under PCP. Since there are many such strategies, we randomly sampled
100,000 of them for evaluation. The cost of strategy S is then computed as
min{CHu

K (S), CCG
K (S)}.

– Experiment B: We randomly constructed 100,000 strategies using our pro-
posed strategy construction technique described in Sect. 4, where we precom-
puted solutions for ILP for all e ≤ 14. The cost of strategy S is also computed
as min{CHu

K (S), CCG
K (S)}.

We conduct experiments under two sets of parameters from [21], which
are also used by [18], for the purpose of comparison. Table 2 compares costs
obtained by [18] and our experiments under the parameter set (e, c↓, c→) =
(186, 25.8, 22.8). Rows 3 and 5 show the smallest min{CHu

K (S), CCG
K (S)} among

all randomly sampled strategies in Experiment A and B, respectively. Table 3
reports the results under the parameter set (e, c↓, c→) = (239, 27.8, 17). The cost
reductions in both tables are compared to the costs under CCP.

The experimental results show the reductions of more than 10% in several
cases, which is significant due to the fact that CCP has already improved the cost
of PCP and the single-processor setting. Our strategy construction technique
(Experiment B) works very well when c↓ ≈ c→ as seen in Table 2. We expect
greater reductions when we precompute solutions of ILP for more values of e.

Speeding-Up Isogeny Computation using Precedence-Constrained Scheduling 329

Table 2. The cost of best strategies under PCP, CCP, and in our experiments under
the parameter set (e, c↓, c→) = (186, 25.8, 22.8). The cost C1(e) for K = 1 is 34256.4.

K 2 3 4 5 6 7 8

PCP Cost 25942.2 22521.6 20373.0 19197.0 17941.2 16978.8 16617.0

CCP Cost 23890.2 20515.2 18252.6 17555.4 16482.0 16021.2 15294.6

Exp. Cost 22203.0 18622.8 16337.4 15708.6 15091.2 14949.6 14063.4

A % reduction 7.06 9.22 10.49 10.52 8.44 6.69 8.05

Exp. Cost 22081.2 18340.2 16400.4 15269.4 14973.6 14999.4 14184.0

B % reduction 7.57 10.60 10.15 13.02 9.15 6.38 7.26

Table 3. The cost of best strategies under PCP, CCP, and in our experiments under
the parameter set (e, c↓, c→) = (239, 27.8, 17). The cost C1(e) for K = 1 is 41653.8.

K 2 3 4 7 8

PCP Cost 31886.0 27858.0 25328.8 21572.6 20851.2

CCP Cost 29931.0 25835.0 23390.8 20399.6 19814.2

Exp. Cost 28265.0 23625.0 21282.8 19073.6 18641.2

A % reduction 5.57 8.55 9.01 6.50 5.92

Exp. Cost 28574.6 23731.0 21337.8 19319.0 18900.4

B % reduction 4.53 8.14 8.78 5.30 4.61

In addition, we point out that CHu
K (S) and CCG

K (S) of the same strategy S
are equal for all (canonical) strategies sampled in Experiment A, but these costs
can be slightly different for some (possibly non-canonical) strategies sampled in
Experiment B. When both costs are not equal, CHu

K (S) are smaller for some K
and strategies, while CCG

K (S) are smaller for some others. This shows that none
of the algorithms provides the least cost for strategy evaluation.

6 Conclusion

We have studied the problem of constructing a strategy for computing degree-�e

isogeny and evaluating it to achieve the least cost possible in the multi-processor
setting. The proposed strategy evaluation technique transforms a strategy into
a task dependency graph, where we apply precedence-constrained scheduling
algorithms to it. Moreover, we have proposed a strategy construction technique
which utilizes solutions of ILP for small e. Via experimental results, we have been
able to obtain costs that are lower than those under PCP and CCP [18], which
already improve the cost of an optimal strategy under the single-processor setting
[13]. The improvements can get up to 13.02% under some specific parameter sets.

Although our results outperform those that currently exist in the literature,
we note that the proposed strategy evaluation and construction techniques are
yet to produce optimal strategy and evaluation. This is because there are several

330 K. Phalakarn et al.

layers of approximation in our techniques: (i) the ILP is formulated only for
c↓ = c→, (ii) we combine optimal solutions of small e to have strategies for large
e, and (iii) the scheduling algorithms also assume c↓ = c→. One may need to
remove these approximation layers to further reduce the cost.

It is also interesting to apply our techniques to other isogeny-based cryptosys-
tems such as B-SIDH [11], CSIDH [7], and eSIDH [8]. We expect our techniques
to be applicable to all schemes but with different degrees of reduction in costs:
the techniques may work well with eSIDH as the isogeny degree is quite smooth,
but might not work well with B-SIDH and CSIDH as the isogeny degrees are less
smooth and they involve several primes with different costs of point multiplica-
tions and isogeny evaluations. Moreover, we are yet to implement or benchmark
our techniques in hardware or software. These are parts of our future work.

Acknowledgement. The authors would like to thank Jason LeGrow and the review-
ers for their constructive comments on improving the manuscript. The first author
would like to thank Francisco Rodŕıguez-Henŕıquez and Kittiphop Phalakarn for their
valuable feedback. The first author is supported by the Ripple Impact Fund through
a Ripple Graduate Fellowship. The second author is supported by JSPS Grant-in-Aid
for Transformative Research Areas A grant number JP21H05845.

References

1. NIST PQC standardization process: third round candidate announcement. https://
csrc.nist.gov/News/2020/pqc-third-round-candidate-announcement. Accessed 2
Feb 2022

2. NIST PQC standardization project. https://csrc.nist.gov/projects/post-quantum-
cryptography/post-quantum-cryptography-standardization. Accessed 2 Feb 2022

3. Aho, A.V., Garey, M.R., Ullman, J.D.: The transitive reduction of a directed graph.
SIAM J. Comput. 1(2), 131–137 (1972)

4. Alagic, G., et al.: Status report on the second round of the NIST post-quantum
cryptography standardization process. US Department of Commerce, NIST (2020)

5. Azarderakhsh, R., et al.: Supersingular isogeny key encapsulation. Submission to
the NIST Post-Quantum Standardization project, vol. 152, pp. 154–155 (2017)

6. Bernstein, D.J., De Feo, L., Leroux, A., Smith, B.: Faster computation of isogenies
of large prime degree. Open Book Ser. 4(1), 39–55 (2020)

7. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient
post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018. LNCS, vol. 11274, pp. 395–427. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03332-3 15

8. Cervantes-Vázquez, D., Ochoa-Jiménez, E., Rodŕıguez-Henŕıquez, F.: Extended
supersingular isogeny Diffie-Hellman key exchange protocol: revenge of the SIDH.
IET Inf. Secur. 15, 364–374 (2021)

9. Cervantes-Vazquez, D., Ochoa-Jimenez, E., Rodriguez-Henriquez, F.: Parallel
strategies for SIDH: towards computing SIDH twice as fast. IEEE Trans. Com-
put. 71, 1249–1260 (2021)

10. Coffman, E.G., Graham, R.L.: Optimal scheduling for two-processor systems. Acta
Informatica 1(3), 200–213 (1972)

https://csrc.nist.gov/News/2020/pqc-third-round-candidate-announcement
https://csrc.nist.gov/News/2020/pqc-third-round-candidate-announcement
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15

Speeding-Up Isogeny Computation using Precedence-Constrained Scheduling 331

11. Costello, C.: B-SIDH: supersingular isogeny Diffie-Hellman using twisted torsion.
In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp. 440–463.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3 15

12. Costello, C., Longa, P., Naehrig, M.: Efficient algorithms for supersingular isogeny
Diffie-Hellman. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol.
9814, pp. 572–601. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53018-4 21

13. De Feo, L., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from super-
singular elliptic curve isogenies. J. Math. Cryptol. 8(3), 209–247 (2014)

14. Faz-Hernández, A., López, J., Ochoa-Jiménez, E., Rodŕıguez-Henŕıquez, F.: A
faster software implementation of the supersingular isogeny Diffie-Hellman key
exchange protocol. IEEE Trans. Comput. 67(11), 1622–1636 (2017)

15. Gangal, D., Ranade, A.: Precedence constrained scheduling in (2 − 7
3p+1

)-optimal.
J. Comput. Syst. Sci. 74(7), 1139–1146 (2008)

16. Garey, M.R., Johnson, D.S.: Computers and Intractability, vol. 174. Freeman San
Francisco (1979)

17. Hu, T.C.: Parallel sequencing and assembly line problems. Oper. Res. 9(6), 841–848
(1961)

18. Hutchinson, A., Karabina, K.: Constructing canonical strategies for parallel imple-
mentation of isogeny based cryptography. In: Chakraborty, D., Iwata, T. (eds.)
INDOCRYPT 2018. LNCS, vol. 11356, pp. 169–189. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-05378-9 10

19. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations.
The IBM Research Symposia Series. Springer, Boston (1972). https://doi.org/10.
1007/978-1-4684-2001-2 9

20. Koziel, B., Ackie, A.B., Khatib, R.E., Azarderakhsh, R., Kermani, M.M.: SIKE’d
up: fast hardware architectures for supersingular isogeny key encapsulation. IEEE
Trans. Circ. Syst. I Regul. Pap. 67(12), 4842–4854 (2020). https://doi.org/10.
1109/TCSI.2020.2992747

21. Koziel, B., Azarderakhsh, R., Mozaffari-Kermani, M.: Fast hardware architectures
for supersingular isogeny Diffie-Hellman key exchange on FPGA. In: Dunkelman,
O., Sanadhya, S.K. (eds.) INDOCRYPT 2016. LNCS, vol. 10095, pp. 191–206.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49890-4 11

22. Koziel, B., Jalali, A., Azarderakhsh, R., Jao, D., Mozaffari-Kermani, M.: NEON-
SIDH: efficient implementation of supersingular isogeny Diffie-Hellman key
exchange protocol on ARM. In: Foresti, S., Persiano, G. (eds.) CANS 2016. LNCS,
vol. 10052, pp. 88–103. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
48965-0 6

23. Lam, S., Sethi, R.: Worst case analysis of two scheduling algorithms. SIAM J.
Comput. 6(3), 518–536 (1977)

24. Levey, E., Rothvoss, T.: A (1 + ε)-approximation for makespan scheduling with
precedence constraints using LP hierarchies. SIAM J. Comput. 50(3), 201–217
(2019)

25. Seo, H., Liu, Z., Longa, P., Hu, Z.: SIDH on ARM: faster modular multiplications
for faster post-quantum supersingular isogeny key exchange. IACR Trans. Crypto.
Hardware Embed. Syst. 2018, 1–20 (2018)

26. Ullman, J.D.: NP-complete scheduling problems. J. Comput. Syst. Sci. 10(3), 384–
393 (1975)

27. Vélu, J.: Isogénies entre courbes elliptiques. CR Acad. Sci. Paris Sér. AB 273,
A238–A241 (1971)

https://doi.org/10.1007/978-3-030-64834-3_15
https://doi.org/10.1007/978-3-662-53018-4_21
https://doi.org/10.1007/978-3-662-53018-4_21
https://doi.org/10.1007/978-3-030-05378-9_10
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1109/TCSI.2020.2992747
https://doi.org/10.1109/TCSI.2020.2992747
https://doi.org/10.1007/978-3-319-49890-4_11
https://doi.org/10.1007/978-3-319-48965-0_6
https://doi.org/10.1007/978-3-319-48965-0_6

An Injectivity Analysis of Crystals-Kyber
and Implications on Quantum Security

Xiaohui Ding1(B), Muhammed F. Esgin1,2(B), Amin Sakzad1(B),
and Ron Steinfeld1(B)

1 Faculty of Information Technology, Monash University, Melbourne, Australia
xdin0011@student.monash.edu,

{muhammed.esgin,amin.sakzad,ron.steinfeld}@monash.edu
2 CSIRO’s Data61, Sydney, Australia

Abstract. The One-Way to Hiding (O2H) Lemma proposed by Bindel
et al. (TCC ’19) is a central component of proofs of chosen-ciphertext
attack (CCA) security of practical public-key encryption schemes in
the Quantum Random Oracle Model (QROM). Recently, Kuchta et al.
(EUROCRYPT ’20) introduced a new technique, called measure-rewind-
measure, improving upon the O2H lemma. The latter gives a new security
reduction that does not suffer from a squared security loss as in Bindel
et al. (TCC ’19) but has the number of queries Q as a multiplicative
factor. This result is based on an injectivity assumption that requires
the probability of two different messages generating the same ciphertext
being negligible. The injectivity analysis of concrete schemes was left as
an open problem by Kuchta et al. (EUROCRYPT ’20).

In this paper, we complement the previous work by investigating the
injectivity of a particular scheme in the third round National Institute of
Standards and Technology (NIST) Post-Quantum Cryptography (PQC)
standardization process. More precisely, we apply the techniques and
constructions by Nguyen (ASIACRYPT ’19), along with the approach
of calculating decryption error by Bos et al. (EuroS&P ’18), to obtain
theoretical and numerical bounds on the injectivity of Crystals-Kyber,
which points out a direction of resolving injectivity assumption of con-
crete scheme in the previous work. Our bounds also give the tightest
concrete security guarantees for the QROM CCA security of Crystals-
Kyber to date, based on the Module LWE hardness assumption.

Keywords: Post-quantum cryptography · Crystals-Kyber · One-way
to hiding · Tight security

1 Introduction

Post-quantum cryptography (PQC) has been considered crucial and been con-
stantly developed for the last two decades since the fast database search algo-
rithm by Grover [10] and the fast integer factorization algorithm by Shor [17] on
quantum computers were introduced. When a quantum processor with enough
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
K. Nguyen et al. (Eds.): ACISP 2022, LNCS 13494, pp. 332–351, 2022.
https://doi.org/10.1007/978-3-031-22301-3_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22301-3_17&domain=pdf
https://doi.org/10.1007/978-3-031-22301-3_17

An Injectivity Analysis of Crystals-Kyber and Implications 333

qubits is built, it would put many current public-key cryptosystems in danger.
That is why in 2016, NIST announced the first round PQC standardization pro-
cess [13]. Now it is the third and the final round, and several cryptographic
schemes have been selected to be the finalists. Crystals-Kyber [7], which utilises
module learning with errors (MLWE) as its underlying mathematical problem,
is one of the lattice-based cryptographic schemes in the final. There have been
many applications of it in real world. For example, it was integrated in the
CIRCL cryptography library of Cloudflare [18] and is also supported as one of
the post-quantum Transport Layer Security (TLS) protocols in Amazon Web
Services (AWS) key management service [20]. Our paper will focus on Kyber
and investigate the injectivity of its key encapsulation mechanism.

Crystals-Kyber uses cryptographic hash functions to achieve indistinguish-
able chosen-ciphertext attack (IND-CCA) security. We model classical (respec-
tively, quantum) attacks on schemes using these hash functions in the Random
Oracle Model (respectively, the Quantum Random Oracle Model, QROM). First
defined by Bellare and Rogaway in 1993 [4], ROM gives the attacker a mecha-
nism (oracle) O that takes input query x ∈ {0, 1}∗ and generates random output
O(x) ∈ {0, 1}n. If query x has appeared before, then O will return the same result
as the first output. This is in contrast to a QROM Oq, which was first introduced
by Boneh et al. [6]. QROM replaces the query x and the output O with the qubit
query |ψ〉 =

∑
i αi |ψi〉 and the qubit output Oq |ψ〉 =

∑
i αi |Oq (ψi)〉, where

αi ∈ C are the complex coefficients of the superposition such that
∑

i |αi|2 = 1.
One way to measure if a security reduction is tight is to calculate the reduc-

tion loss. Assume that the success probability of an adversary A taking time
t to break an algorithm C is ε, and the success probability of a mathemati-
cian B taking time t′ to solve the underlying hard mathematical problem of the
algorithm C is ε′. The reduction cost and reduction loss are defined by [11] as
T := t − t′ and L := ε/ε′. If L is a constant number or is small, we say the secu-
rity reduction is tight. The concept is widely used in proving the security reduc-
tions from indistinguishable chosen-plaintext attack (IND-CPA) of a Public-Key
Encryption (PKE) to indistinguishable chosen-ciphertext attack (IND-CCA) of
a Key-Encapsulation Mechanism (KEM). By applying Fujisaki-Okamoto (FO)
Transformation [8,9], the IND-CCA security of a KEM can be reduced to the
IND-CPA security of its underlying PKE in the ROM. However, when the adver-
sary has quantum access, the QROM should be taken into consideration.

Providing a tight security proof of FO transform under QROM has been
the goal of a number of recent studies. In 2015, Unruh [19] introduced an app-
roach called One Way to Hiding (O2H) lemma for (tighter) security proof. Sev-
eral variants of O2H have been developed to investigate different aspects in the
advantage of an adversary with the help of various assumptions. Ambainis et al.
[2] put forward a semi-classical O2H to mitigate the problem of measuring in
QROM. Adapting this work, Bindel et al. [5] introduced another O2H variant
called ‘double-sided’, which has some additional assumptions than the original
O2H [19] but also has a tighter security proof in some particular parameters.
Later, Kuchta et al. [12] introduced and applied a novel measure-rewind-measure
technique on this double-sided O2H lemma to a deterministic PKE (dPKE)

334 X. Ding et al.

introduced by Saito et al. [16] to obtain a result that does not suffer a square-
root loss of advantage. In [12], Corollary 4.7, they summarise the advantage
inequality as below:

AdvIND−CCA
FO�⊥(P,F,G,H)(A) ≤ Q2 · AdvIND−CPA

P (B1) + Q2 · (δ +
√

η) + Q · η + AdvPRFF (B2),

where A is the IND-CCA adversary against security under FO �⊥ transform -
an implicit rejection variant of FO transform, B1 is the IND-CPA adversary
against the dPKE P scheme, and B2 is the Pseudo-Random Function (PRF)
adversary against function F. In this equation, Q is the total number of QROM
queries, δ is the decryption failure error, and η is the injectivity. This remains
an open problem of how to calculate η injectivity of concrete schemes, which is
the collision probability of two different messages generating the same ciphertext
by the scheme. To achieve the goal of λ-bit security guarantee for small Q, we
need the bound on the adversary advantage in the right hand side of the above
equation to be in the order of 2−λ for small Q. Due to the square-root term

√
η,

this implies that we need an injectivity bound in the order of η ≤ 2−2λ.

1.1 Our Contribution

Following the work done by Kuchta et al. [12], we initiate the investigation of the
injectivity of concrete schemes. We present both theoretical and numerical upper
bounds of η-injectivity of Crystals-Kyber giving the tightest concrete QROM
security guarantees for the QROM CCA of Crystals-Kyber to date, based on
the Module LWE hardness assumption. Our contributions are summarized as
follows:

– We divide the injectivity analysis into three parts contributed by centered
binomial distribution, module short integer solution (MSIS) problem, and
law product and convolution. We then give a theoretical bound on injectivity
of Kyber KEM as a combination of probability of these separated parts. A
detailed theoretical bound is given in Theorem 2.

– We calculated numerical injectivity bound for Kyber512 to be 2−90, for
Kyber768 to be 2−433, and for Kyber1024 to be 2−784. The values of lat-
ter two are suitable for our assumption on η ≤ 2−2λ, which implies that the
effect of injectivity in FO transformed KEM schemes is mild for Kyber768 and
Kyber1024. The injectivity bound for Kyber512 is not as small as desired, and
we leave it future work to study whether the bound can be further tightened.

2 Preliminaries

Rings, Matrices and Vectors. We use R to represent Z[X]/(Xn + 1) and
Rq to represent Zq[X]/(Xn + 1). The degree n of the monic polynomial is fixed
to 256 in Kyber. Matrices and vectors are represented as bold upper-case and
lower-case letters, respectively. We use vT to represent the transpose of v. We
also set [β] = {−β,−β + 1, . . . , 0, . . . , β − 1, β} ⊆ Zq, where β ≥ 0, to represent
a symmetrical integer set.

An Injectivity Analysis of Crystals-Kyber and Implications 335

Norm and Cardinality. For an element w ∈ Zq, we set l∞-norm of w to be
‖w‖∞ =

∣
∣w mod± q

∣
∣, where mod± q is the modulo operation that takes w to

the range
[

q
2

]
. For a polynomial element w = w0 + w1X + · · · + wn−1X

n−1 ∈ R,
the l2 and l∞ norm can be defined as the followings:

‖w‖∞ = max
i

‖wi‖∞ , ‖w‖ =
√

‖w0‖2∞ + · · · + ‖wn−1‖2∞.

For vector w = (w1, . . . , wk) ∈ Rk, the norms are defined as:

‖w‖∞ = max
1≤i≤k

‖wi‖∞ , ‖w‖ =
√

‖w1‖2 + · · · + ‖wk‖2.

As for a finite set S ⊆ Rk, we define |S| as the cardinality of S and we have that
that:

‖S‖∞ = max
w∈S

‖w‖∞ , ‖S‖ = max
w∈S

‖w‖ .

Sampling. Let X be a probability distribution. Then X ∼ X represents random
variable X following distribution X , and x ← X represents value x being sampled
from this distribution. For a polynomial f ∈ Rq or a vector of such polynomials,
this notation is defined coefficient-wise. Particularly, we denote β2η as the central
binomial distribution.

Rounding. Let x ∈ R be a real number, then �x� means rounding to the closet
integer with ties rounded up. We also use �x to represent round up and �x� as
rounding down.

Compress and Decompress. Let x ∈ Zq and d ∈ Z be such that d < �log2(q).
Adapted from [7], the Compress and Decompress functions are:

Compressq(x, d) =
⌈(

2d/q
) · x

⌋
mod+2d,

Decompressq(x, d) =
⌈(

q/2d
) · x

⌋
.

2.1 Injectivity

Adapted from Definition 6 of [5] and Definition 4.3 of [12], the injectivity that
we will investigate is defined as below:

Definition 1 (Injectivity of a dPKE [5,12]). Let η � 0. A dPKE scheme
P = (KeyGen,Encr,Decr) is η-injective if

Pr
(
Encr(pk, ·) is not injective: (pk, sk) ← KeyGen(1λ),H $← H

)
≤ η,

where H
$← H is sampling a random element H uniformly from a finite set H of

random function, and a dPKE means PKE that has a deterministic encryption
scheme.

336 X. Ding et al.

2.2 Crystals-Kyber Scheme

The PQC scheme that we are going to investigate is Crystals-Kyber [7]. Let
n, k, dt, du, dv be positive integers and M denotes the message spaces with 256-
bit message. We put the PKE algorithms of Kyber here as a reference.

Sam. Let x be a bit string and S be a distribution taking x as the input, then
y ∼ S := Sam (x) represents that the output y generated by distribution S and
input x can be extended to any desired length.

Algorithm 1. Kyber.CPA.KeyGen(1λ): key generation [7], pg.5, Algorithm 1
1: ρ, σ ← {0, 1}256

2: A ∼ Rk×k
q := Sam(ρ)

3: (s, e) ∼ βk
η × βk

η := Sam(σ)
4: t := Compressq(As + e, dt)
5: return (pk := (t, ρ), sk := s)

Algorithm 2. Kyber.CPA.Enc (pk = (t, ρ),m ∈ M) [7], pg. 5, Algorithm 2
1: r ← {0, 1}256

2: t := Decompressq(t, dt)

3: A ∼ Rk×k
q := Sam(ρ)

4: (r, e1, e2) ∼ βk
η × βk

η × βk
η := Sam(r)

5: u := Compressq(A
T r + e1, du)

6: v := Compressq(t
T r + e2 +

⌈
q
2

⌋ · m, dv)
7: return c := (u, v)

Algorithm 3. Kyber.CPA.Dec(sk = s, c = (u, v))[7], pg.5, Algorithm 3
1: u := Decompressq(u, du)
2: v := Decompressq(v, dv)

3: return Compressq(v − sTu, 1)

2.3 Methodologies and Techniques

2.3.1 Operations on Probability
Adapted from [14], we present some techniques of calculating probability as the
multiplication of polynomials.

Law Convolution. Suppose A and B are random variables over [α] and [β],
respectively. Let ai, bj be the probability of A,B being equal to i, j for all i ∈ [α]
and j ∈ [β]. Then we generate two polynomials

A(X) =
α∑

i=−α

aiX
i, B(X) =

β∑

j=−β

bjX
j

An Injectivity Analysis of Crystals-Kyber and Implications 337

to represent the probability of all possible outcomes of A and B. Now, define

C(X) = A(X) · B(X) =
α+β∑

k=−(α+β)

ckXk

to be the product of A(X) and B(X), where k = i + j for each i, j. One can
observe that the coefficient ck is actually the probability of the sum of two
independent random variables A and B being equal to k, i.e.,

Pr (A + B = k) = Ck.

Thus, C(X) in fact can be used to represent the probability distribution of
A+B. If we want to investigate the probability of independent multivariate, we
can simply repeat the multiplication.

Law Product. Now we want to calculate the probability of the product of two
independent random variables A and B. Let A(X), B(X) to be the polynomials
as above. Then, define

D(X) =
α∑

i=−α

β∑

j=−β

aibjX
ij =

αβ∑

k=−αβ

dkXk

to be the law product of the two distribution, which represents probability dis-
tribution of A · B.

Union Bound. Let {A1, A2, . . .} be a finite set of events (don’t have to be
independent), then the probability of at least one happens is less or equal to the
the summarized probability of every events as described below:

Pr (∪∞
i=1Ai) ≤

∞∑

i=1

Pr (Ai) .

This is also called Boole’s inequality.

2.3.2 Operations on Rq

Adapted from [14], an efficient way to calculate polynomial multiplication over
the module quotient ring Rq is converting the coefficients in the polynomials
into a matrix and a vector in the original integer commutative ring. Let a, b ∈
Rq, and f denotes the monic polynomial f(X) as the quotient of the ring. For
convenience, we set the degree to be d for both a and b. The multiplication of a
and b can be written as:

a · b mod f = a ·
(

d−1∑

i=0

biX
i

)

mod f =
d−1∑

i=0

(aXi mod f) · bi.

We now define Vb ∈ Z
d×1
q ,Ma ∈ Z

d×d
q as below:

Vb =

⎛

⎜
⎜
⎜
⎝

b0
b1
...

bd−1

⎞

⎟
⎟
⎟
⎠

, Ma =
[Va VaX mod f . . . VaXd−1 mod f

]
.

338 X. Ding et al.

The multiplication a · b then can be represented as MaVb ∈ Z
d×1
q . Similarly, if

we expand this technique and apply it on vector a, b ∈ Rk
q , the rotated vector

and matrix can also be defined as:

Vb =

⎛

⎜
⎜
⎜
⎝

Vb0

Vb1
...

Vbk−1

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

b0,0

...
b0,d−1

...
bk−1,d−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ Z
dk×1
q ,

and

MaT =
[Ma0 Ma1 . . . Mak−1

]

=
[Va0 Va0X mod f . . . Va0Xd−1 mod f . . . Vak−1Xd−1 mod f

] ∈ Z
d×dk
q .

Now, if we want to calculate aT · b ∈ Rq, the representation on the integer ring
will be:

MaT · Vb = VaT ·b ∈ Z
d×1
q .

Special Coefficients. Even with the algebraic representation of a polynomial,
the modulo operation on each polynomial is still difficult to calculate. Thus, the
monic polynomial f can be set to Xn ± 1 with special property that the integer
elements of the matrix and vector are consistent with the original coefficients
in the polynomial. For example, the quotient polynomial is set to be Xn + 1
in Kyber, where n = 256. Let a, b ∈ Rq, the multiplication of a and b can be
represented the same way above:

Ma · Vb =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

a0 −an−1 . . . −a2 −a1

a1 a0 . . . −a3 −a2

...
...

. . .
...

...
an−2 an−3 . . . a0 −an−1

an−1 an−2 . . . a1 a0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

·

⎛

⎜
⎜
⎜
⎜
⎜
⎝

b0
b1
...

bn−2

bn−1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=
(
R0 R1 . . . Rn−2 Rn−1

) ⊗

⎛

⎜
⎜
⎜
⎜
⎜
⎝

a0

a1

...
an−2

an−1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

·

⎛

⎜
⎜
⎜
⎜
⎜
⎝

b0
b1
...

bn−2

bn−1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

where R0 = In, Ri =
(

0 −Ii

In−i 0

)

for i = 1, ..., n − 1. It can be easily seen that

all the columns in Ma are transformation of the first column with coefficients 1
or −1. This is also why most cryptographic schemes operate on Zq[X]/(Xn ±1).
This property will also be used in our later proof.

An Injectivity Analysis of Crystals-Kyber and Implications 339

2.3.3 Centred Binomial Distribution
The coefficient of xk in the binomial expansion (x + 1)η0 is given by

(
η0
k

)
=

η0!
k!(η0−k)! . When sampled symmetrically around 0, the coefficient becomes:
(
2η0
i

)
= (2η0)!

(η0+i)!(η0−i)! , where i ∈ [η0]. Therefore, we give the definition of a
centred binomial distribution as below:

Definition 2 (Centred Binomial Distribution). Let X ∼ β2η0 represent
random variable X sampled from integer range [η0] that follows centered binomial
distribution (CBD), where η0 > 0. The probability of each outcome of X can be
defined as:

Pr (X = i) =
(2η0)!

(η0 + i)!(η0 − i)!
· 2−2η0 .

If we represent the probability of all outcomes of X in one polynomial:

Pr (X) =
η0∑

i=−η0

(2η0)!
(η0 + i)!(η0 − i)!

· 2−2η0 · Xi,

the polynomial then can be used to calculate the probability of the difference
between 2 independent random variables X1, X2 being some value by combining
technique in Sect. 2.3.1. Let X1,X2 ∼ β2η0 , the probability distribution of X1 −
X2 can be written as:

Pr(X1 − X2) = Pr(X1) · Pr(X2) =
2η0∑

i=−2η0

piX
i. (1)

2.3.4 Module Short Integer Solution Problem
The short integer solution (SIS) problem can be briefly described as finding
a short vector in a random lattice. When the lattice is defined on a module
polynomial ring Rq, we call finding a short vector in such a lattice as module
short integer solution (MSIS) problem. We adapt Theorem 1.1 and Corollary 3.9
of [15] for calculating the probability of MSIS problem.

Theorem 1. [Adapted from [15], Theorem 1.1 and Corollary 3.9] Denote Sα :=
{y ∈ Rq : ‖y‖∞ ≤ α} and let l, k, α1, α2 ∈ N. q is a prime number with no further
assumption. d is the degree of splitting the quotient polynomial f(X) = Xn + 1.
Also, for i = 1, ..., d, define Wi ⊆ Rq to be a set of polynomials st. ∀u, v ∈ Wi,

340 X. Ding et al.

|Zero(u − v)| < i. Then

Pr
A←Rk×l

q

[∃(z1,z2) ∈ Sl
α1

\ {0} × Sk
α2

: Az1 + z2 = 0]

≤ |Sα1 |l · |Sα2 |k
qnk

+
e∑

i=1

(
d
i

) · ∣∣Sα1+‖Wi‖∞

∣
∣l · ∣∣Sα2+‖Wi‖∞

∣
∣k

|Wi|l+k · qnk(1−i/d)
,

where e is the largest number such that α1
√

n ≥ qe/d, and |Zero(y)| is a finite
set such that:

Zero (y) := {i : y ≡ 0 (mod (fi (X) , q))} .

3 Theoretical Bounds for Crystals-Kyber

Now we give details of calculating the η-injectivity of Kyber.

3.1 Main Result

We first give a theorem for Kyber injectivity as below and later demonstrate
some essential lemmas for calculating the final equation.

Theorem 2 (η-injectivity of Kyber). Let k, η1, η2 be positive integer param-
eters. Let n represent the number of coefficients in a polynomial in the ring Rq, d
represent the splitting degree, and du, dv < �log2 (q) be compression parameters.
The injectivity defined in Definition 1 of Kyber is upper bounded by:

η ≤
(

2n

2

)

·
⎡

⎣r0 ·
∑

j∈[γu]

ej + (1 − r0) ·
{(

(4η1 + 1) (4η2 + 2γu + 1)
q

)nk

+
e∑

i=1

(
d

i

)

· 1

|Wi|2k
·
{

(4η1 + 2 ‖Wi‖∞ + 1) (4η2 + 2γu + 2 ‖Wi‖∞ + 1)
q(1−i/d)

}nk
}]

· n ·
γm+γv∑

i=γm−γv

pi, (2)

where e =
⌊
d · logq(2η1

√
n)
⌋
, r0, ej and pi are from (9), (10), and (14), respec-

tively. The set Wi is constructed from (12). The integers γu, γv, γm are defined
as γu :=

⌊
q

2du

⌋
, γv :=

⌊
q

2dv

⌋
, and γm := ± ⌈

q
2

⌋
.

Proof. Let m,m′ ∈ B32 be 32-byte (256-bit) stream messages. According to
Algorithm 2, Definition 1, if we want to find η-injectivity for Kyber KEM, we
have to calculate the upper bound of the probability of at least one pair of 2
different messages such that the output ciphertexts of them are the same. We
first apply union bound on the total message space:

η = Pr (∪m �=m′c(m) = c(m′)) ≤
∑

m �=m′
Pr(∃m �= m′ s.t. c(m) = c(m′))

= M · max
m �=m′

[Pr(c(m) = c(m′))] ,

An Injectivity Analysis of Crystals-Kyber and Implications 341

where M is the total number of pairs m �= m′. Since each message has 256 bits,
M takes the value of

(
2n

2

)
, where n = 256. Then, we plug in definitions of c1 and

c2 from line 5 and 6 of Algorithm 2, respectively:

η ≤ M · max
m �=m′

[Pr(c1 = c′
1 and c2(m) = c2(m′))]

= M · max
m �=m′

[Pr (ΔCompressq(u, du) = 0 and ΔCompressq(v, dv) = 0)] ,

where

ΔCompressq(u, du) := Compressq(u, du) − Compressq(u
′, du), (3)

ΔCompressq(v, dv) := Compressq(v, dv) − Compressq(v
′, dv). (4)

From Algorithm 1 and Algorithm 2, we can clearly see that v and u are depen-
dent. Thus, if we define the compression of u and u′ being equal as event U and
the compression of v and v′ being equal as V , we can further write the injectivity
as:

η ≤ M · [Pr (U ∩ V)] = M · [Pr (U) · Pr (V | U)] . (5)

We first look at Pr (U). By applying Lemma 1, we get the coefficient-wise
equation below:

ΔCompressq(u, du) = 0 ⇒ ‖u − u′‖∞ <
q

2du

for (3). By line 5, Algorithm 2, we substitute u := ATr+e1 ∈ Rk
q into the above

equation to obtain:
∥
∥
∥
(
ATr + e1

)
−
(
ATr′ + e′

1

)∥
∥
∥

∞
=
∥
∥
∥AT Δr + Δe1

∥
∥
∥

∞
<

q

2du
.

It is also noticed that the numbers are all integers. Thus, we get:

Pr
(∥
∥
∥AT Δr + Δe1

∥
∥
∥

∞
<

q

2du

)
= Pr

(
AT Δr + Δe1 ∈ [γu]

)
,

where γu :=
⌊

q
2du

⌋
, and the equation is also coefficient-wise. We can further split

this probability into two parts by letting Δr = 0 or Δr �= 0. This defines:

PCBD := Pr
(
AT Δr + Δe1 ∈ [γu] ∩ Δr = 0

)

and
PMSIS := Pr

(
AT Δr + Δe1 ∈ [γu] ∩ Δr �= 0

)
.

with this, we have: Pr(U) = PCBD + PMSIS . By adapting Lemma 2, we have:

PCBD = r0 ·
∑

j∈[γu]

ej ,

342 X. Ding et al.

where r0 is the probability of Δr = 0, and ej is the probability of Δe1 = j, for
all coefficients of j in range [γu]. Now using Lemma 3 gives:

PMSIS ≤ (1 − r0) ·
{(

(4η1 + 1) (4η2 + 2γu + 1)
q

)nk

+
e∑

i=1

(
d

i

)

· 1

|Wi|2k

·
{

(4η1 + 2 ‖Wi‖∞ + 1) · (4η2 + 2γu + 2 ‖Wi‖∞ + 1)
q(1−i/d)

}nk
}

.

We now look at Pr (V | U). Similarly as U part, we have:

ΔCompressq(v, dv) = 0 ⇒ ‖v − v′‖∞ <
q

2dv
.

We substitute Line 4 in Algorithm 1 to obtain:

Δv =
(
tTr + e2 +

⌈q

2

⌋
m
)

−
(
tTr′ + e′

2 +
⌈q

2

⌋
m′

)

= tT Δr + Δe2 +
⌈q

2

⌋
Δm =

(
sTAT + eT

)
Δr + Δe2 +

⌈q

2

⌋
Δm. (6)

It can be calculated on the condition that U part holds AT Δr = eu−Δe1, where
eu is a polynomial vector whose coefficients are all in range [γu]. Therefore, (6)
can be written as:

Δv = sTeu − sT Δe1 + eT Δr + Δe2 +
⌈q

2

⌋
Δm.

In fact, let PV := Pr (V | U). Later, we calculate PV ≤ n ·
γm+γv∑

i=γm−γv

pi, where all

parameters and pi are defined in Lemma 4.
Finally, we summarise the above steps to obtain the theoretical bound of

Kyber injectivity:

η ≤ M · [Pr (U) · Pr (V | U)] ≤ M · [PCBD + PMSIS] · PV ,

which results in (2). ��

3.2 Associated Lemmas and Their Proofs

Now we demonstrate several lemmas to help us compute each component of
η-injectivity.

Lemma 1 (Compressq Equality Condition). Let x, x′ ∈ Zq and d ∈ Z be such
that d < �log2(q), then we have:

Compressq(x, d) − Compressq(x
′, d) = 0 ⇒ |x − x′| <

q

2d
. (7)

An Injectivity Analysis of Crystals-Kyber and Implications 343

Proof. We first look at the rounding of x, x′. If �x� − �x′� = 0, then we have
|x − x′| < 1. If x, x′ are multiplied by a constant c, this can be further written
as:

�cx� − �cx′� = 0 ⇒ |cx − cx′| < 1 ⇐⇒ |x − x′| <
1
|c| .

Now, we look at the equation defined by [3]:

Compressq(x, d) =
⌈(

2d/q
) · x

⌋
mod+2d.

Since ⌈(
2d/q

) · x
⌋ ∈ [

0, . . . , 2d
)

for ∀x ∈ Zq,

the mapping is one-to-one. Therefore, the difference between two compressed
inputs is calculated by:

ΔCompressq(x, d) := Compressq(x, d) − Compressq(x
′, d)

=
⌈(

2d/q
) · x

⌋
mod+2d − ⌈(

2d/q
) · x′⌋mod+2d

=
⌈(

2d/q
) · x

⌋− ⌈(
2d/q

) · x′⌋ .

This is the condition for two compressed inputs being equal as in (7). This results
can be generalised to vectors in a component-wise fashion. ��
Lemma 2 (CBD Injectivity). Let r, r′ ∈ Rk

q be samples from β2η1 and
e1,e

′
1 ∈ Rk

q be samples from β2η2 . Let du be a positive integer that du <
�log2 (q). The probability PCBD of CBD part injectivity is given by:

PCBD = r0 ·
∑

j∈[γu]

ej , (8)

where γu :=
⌊

q
2du

⌋
, and

2nkη1∑

j=−2nkη1

rjX
j =

⎛

⎝
η1∑

i=−η1

(2η1)!
(η1 + i)!(η1 − i)!

· 2−2η1 · Xi

⎞

⎠

2nk

, (9)

2nkη2∑

j=−2nkη2

ejX
j =

⎛

⎝
η2∑

i=−η2

(2η2)!
(η2 + i)!(η2 − i)!

· 2−2η2 · Xi

⎞

⎠

2nk

. (10)

Proof. The probability is an intersection of two independent events, which can
be written as:

PCBD = Pr (Δr = 0) · Pr (Δe1 ∈ [γu]) .

Let R,R′, E1, E
′
1 be random variables which represent single coefficient of r, r′,

e1, e′
1. By applying (1), the probability polynomials of Δr and Δe1 are given

by:

Pr (Δr) = (Pr(R) · Pr(R′))nk = Pr(R)2nk

=

⎛

⎝
η1∑

i=−η1

(2η1)!
(η1 + i)!(η1 − i)!

· 2−2η1 · Xi

⎞

⎠

2nk

=
2nkη1∑

j=−2nkη1

rjX
j .

344 X. Ding et al.

and Pr (Δe1) =

(
η2∑

i=−η2

(2η2)!
(η2+i)!(η2−i)! · 2−2η2 · Xi

)2nk

=
2nkη2∑

j=−2nkη2

ejX
j .

Thus, we obtain the total probability of CBD injectivity as (8), where r0 is
from (9) by setting j = 0 and ej is from (10). ��
Lemma 3 (MSIS Injectivity). Let r, r′ ∈ Rk

q be samples from β2η1 and
e1,e

′
1 ∈ Rk

q be samples from β2η2 . Let du be a positive integer such thatdu <
�log2 (q). The probability PMSIS of MSIS part injectivity is given by:

PMSIS ≤ (1 − r0) ·
{(

(4η1 + 1) (4η2 + 2γu + 1)
q

)nk

+
e∑

i=1

(
d

i

)

· 1

|Wi|2k

·
{

(4η1 + 2 ‖Wi‖∞ + 1) · (4η2 + 2γu + 2 ‖Wi‖∞ + 1)
q(1−i/d)

}nk
}

, (11)

where γu :=
⌊

q
2du

⌋
, r0 is the probability of Δr being 0 in (9), e is the largest

number such that 2η1
√

n ≥ qe/d, and Wi is a finite set constructed by [15].

Proof. The probability of Δr �= 0 and AT Δr+Δe1 ∈ [γu] can be calculated by
using Theorem 1 on concrete Kyber parameters. Assume AT Δr + Δe1 = eu ,
then eu is a vector of polynomials whose coefficients are in the finite set [γu].
This equation then can be written as

AT Δr + (Δe1 − eu) = 0.

We want to replace z1,z2 in Theorem 1 by our Δr, (Δe1 − eu) so that we can
have:

Pr
A←Rk×k

q

[
∃(Δr,Δe1 − eu) ∈ Sk

θ1
\ {0} × Sk

θ2
: AT Δr + (Δe1 − eu) = 0

]

≤ |Sθ1 |k · |Sθ2 |k
qnk

+
e∑

i=1

(
d
i

) · ∣∣Sθ1+‖Wi‖∞

∣
∣k · ∣∣Sθ2+‖Wi‖∞

∣
∣k

|Wi|k+k · qnk(1−i/d)

≤
(|Sθ1 | · |Sθ2 |

qn

)k

+
e∑

i=1

(
d

i

)

·
(∣
∣Sθ1+‖Wi‖∞

∣
∣ · ∣∣Sθ2+‖Wi‖∞

∣
∣

|Wi|2 · qn(1−i/d)

)k

,

where θ1, θ2 ∈ N represent the maximum value of coefficients of polynomials in
set Sθ1 , Sθ2 . We first construct the sets Sθ1 and Sθ2 , then calculate the cardinality
of the finite sets. By definition in Theorem 1, Sα := {y ∈ Rq : ‖y‖∞ ≤ α}. Thus,
we have:

S2η1 :=
{
Δr ∈ Rk

q : ‖Δr‖∞ ≤ 2η1
}

,
S2η2+γu

:=
{
Δe1 − eu ∈ Rk

q : ‖Δe1 − eu‖∞ ≤ 2η2 + γu

}
.

The cardinality of Sα is:
|Sα| = (2α + 1)n

,

An Injectivity Analysis of Crystals-Kyber and Implications 345

where n is the number of coefficients. Thus, the first component becomes:
(|Sθ1 | · |Sθ2 |

qn

)k

=
(|S2η1 | · |S2η2+γu

|
qn

)k

=
(

(4η1 + 1) (4η2 + 2γu + 1)
q

)nk

.

The second component is dependent on the size of set Wi. We use the con-
struction from Sect. 3.3 of [15]:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i = 1,

{
|W1| = 2n,

‖W1‖∞ = 1

i ≥ 2,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t <
√

n,

{
|Wi| =

∑t2

j=0

(
n
j

) · 2j ,

‖Wi‖∞ = 1

t ≥ √
n

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Set 1

{
|Wi| ≥ Vn(12qi/d − √

n),
‖Wi‖∞ =

⌊
1
2qi/d

⌋

Set 2

⎧
⎨

⎩

|Wi| = (2
⌊

t√
n

⌋
+ 1)n,

‖Wi‖∞ =
⌊

t√
n

⌋

(12)

where Vn(R) is the volume of n-dim ball with radius r, which can be calculated

by Vn(R) = (π/2)�n
2 �

n!! (2R)n. For t ≥ √
n, we choose the one which can produce

smaller bound from Set 1 and Set 2.
Therefore, the second component is simplified as:

e∑

i=1

(
d

i

)

·
(∣
∣Sθ1+‖Wi‖∞

∣
∣ · ∣∣Sθ2+‖Wi‖∞

∣
∣

|Wi|2 · qn(1−i/d)

)k

=
e∑

i=1

(
d

i

)

·
[∣
∣S2η1+‖Wi‖∞

∣
∣ · ∣∣S2η2+γu+‖Wi‖∞

∣
∣

|Wi|2 · qn(1−i/d)

]k

=
e∑

i=1

(
d

i

)

· 1

|Wi|2k
·
{

(4η1 + 2 ‖Wi‖∞ + 1) · (4η2 + 2γu + 2 ‖Wi‖∞ + 1)
q(1−i/d)

}nk

.

Now, we summarize the two components to generate our result for MSIS injec-
tivity:

Pr
A←Rk×k

q

[
∃(Δr,Δe1 − eu) ∈ Sk

θ1
\ {0} × Sk

θ2
: AT Δr + (Δe1 − eu) = 0

]

=
(

(4η1 + 1) (4η2 + 2γu + 1)
q

)nk

+
e∑

i=1

(
d

i

)

· 1

|Wi|2k

·
{

(4η1 + 2 ‖Wi‖∞ + 1) · (4η2 + 2γu + 2 ‖Wi‖∞ + 1)
q(1−i/d)

}nk

.

Finally, the probability of MSIS part is calculated by probability of Δr �= 0
multiplying probability above:

PMSIS = [1 − Pr (Δr = 0)] · Pr
A←Rk×k

q

[
AT Δr + (Δe1 − eu) = 0

]
,

346 X. Ding et al.

which is (11) in Lemma 3. ��
Lemma 4 (Δv Injectivity). Let s,e, r, r′ ∈ Rk

q be samples from β2η1 and
e1,e

′
1 ∈ Rk

q , e2, e
′
2 ∈ Rq be samples from β2η2 . Let eu ∈ Rk

q and both du and dv

be positive integers such that du, dv < �log2 (q). All coefficients in eu are in the
range [γu], where γu :=

⌊
q

2du

⌋
. And let Δv = sTeu − sT Δe1 + eT Δr + Δe2 +⌈

q
2

⌋
Δm. The probability of ΔCompressq (v, dv) being zero is calculated by:

Pr (V | U) ≤ n ·
γm+γv∑

i=γm−γv

pi, (13)

where n stands for 256 coefficients in one polynomial, γv :=
⌊

q
2dv

⌋
, γm := ± ⌈

q
2

⌋
,

and pi is the ith coefficient of V (X) from:

V (X) =
∑

i

pi · Xi =

⎧
⎨

⎩
4−η1

η1∑

i=−η1

(
2η1

η1 + i

)

· Xi+eu

⎫
⎬

⎭

·
⎧
⎨

⎩
16−2η2

η2∑

i=−η2

η2∑

j=−η2

(
2η2

η2 + i

)(
2η2

η2 + j

)

· Xi+j

⎫
⎬

⎭

·
⎧
⎨

⎩
64−(η1+2η2)

η1∑

a=−η1

η2∑

b=−η2

η2∑

c=−η2

(
2η1

η1 + a

)(
2η2

η2 + b

)(
2η2

η2 + c

)

· Xa(b+c)

⎫
⎬

⎭

nk

·
⎧
⎨

⎩
64−3η1

η1∑

i=−η1

η1∑

j=−η1

η1∑

k=−η1

(
2η1

η1 + i

)(
2η1

η1 + j

)(
2η1

η1 + k

)

· Xi(j+k)

⎫
⎬

⎭

nk

(14)

Proof. We first move the constant parts to one side:

Δv −
⌈q

2

⌋
Δm = sTeu − sT Δe1 + eT Δr + Δe2.

Since we want to calculate different messages, the left-hand side can be further
simplified as Δv ∓ ⌈

q
2

⌋
.

Then we try to find the matrix-vector representation of the polynomial multi-
plication, then we find the polynomial representation of probability distribution,
and finally we calculate the probability of the coefficients locating at the range
[γv]. Let us first look at the structure of multiplication of two polynomial vector
with same dimension. The matrix representation for eT Δr is:

MeT · VΔr = VeT Δr ∈ Z
n×nk
q × Z

nk×1
q = Z

n×1
q ,

where n = 256 is the total number of coefficients of polynomial eT Δr. Since the
quotient polynomial of Rq is Xn + 1, which meets the condition of special case,
the nk entries in each row of the matrix will have the same distribution. The
dependency of the total matrix vector multiplication is complicated to calculate,

An Injectivity Analysis of Crystals-Kyber and Implications 347

but we can adapt a similar technique as in calculating decryption error rate,
which is applying union bound on a single coefficient.

Let A (X) , B (X) , C (X) ,D (X) represent the distribution of one coefficient
of sTeu , sT Δe1,e

T Δr,Δe2, respectively. We then obtain:

A (X) = 4−η1

η1∑

i=−η1

(
2η1

η1 + i

)

· Xi+γu ,

B (X) = 64−(η1+2η2)

η1∑

i=−η1

η2∑

j=−η2

η2∑

k=−η2

(
2η1

η1 + i

)(
2η2

η2 + j

)(
2η2

η2 + k

)

· Xi(j+k),

C (X) = 64−3η1

η1∑

i=−η1

η1∑

j=−η1

η1∑

k=−η1

(
2η1

η1 + i

)(
2η1

η1 + j

)(
2η1

η1 + k

)

· Xi(j+k),

D (X) = 16−2η2

η2∑

i=−η2

η2∑

j=−η2

(
2η2

η2 + i

)(
2η2

η2 + j

)

· Xi+j .

Here the notation γu represents an iteration in range [γu]. Combining nk entries
together, let V (X) be the total probability distribution of one particular coeffi-
cient, which can be written as:

V (X) = A (X) D (X) {B (X) C (X)}nk =
∑

i

pi · Xi.

We want to sum the probability where the value of the coefficient falls in the
range of Δv ∓ ⌈

q
2

⌋
. Thus, the range of i should be in two intervals

[⌊
q

2dv

⌋]
+
⌈

q
2

⌋

and
[⌊

q
2dv

⌋] − ⌈
q
2

⌋
. Finally, we apply union bound on the total n coefficients to

get an upper bound of v as described in (13) and (14). ��

4 Numerical Result and Analysis

We now calculate the numerical bounds of injectivity of Kyber1. As mentioned
in Sect. 2, n = 256 is the fixed degree of the quotient polynomial, q is the mod-
ule number of the module ring Rq, and d is the degree of splitting Table 1. The
scheme uses k to represent dimension of secrete key vector, η1 and η2 to represent
the sampling parameters for s, e, r and e1, e2 respectively. From security estima-
tion perspective, δ is for δ-correctness, which is the probability of decryption
failure attack successfully happening. The security levels λ defined by Call for
Proposals [1] of the three parameter sets are consistent with AES128 against 2170

MAXDEPTH quantum gates or 2143 classical gates as level 1, AES192 against
2233 MAXDEPTH quantum gates or 2207 classical gates as level 3, and AES256
against 2298 MAXDEPTH quantum gates or 2272 classical gates as level 5.

We first analyze the total injectivity. Overall, our result in Table 2 indicates
the injectivity assumption in [12] holds for Kyber768 and Kyber1024 by showing
1 The code can be accessed at: https://github.com/RdWeirdo981/Injectivity-paper-

codes.

https://github.com/RdWeirdo981/Injectivity-paper-codes
https://github.com/RdWeirdo981/Injectivity-paper-codes

348 X. Ding et al.

Table 1. Third Round Kyber Parameters from specification [3]

n d q k η1 η2 (du, dv) δ Bit security (λ)

Kyber512 256 128 3329 2 3 2 (10, 4) 2−139 128

Kyber768 256 128 3329 3 2 2 (10, 4) 2−164 192

Kyber1024 256 128 3329 4 2 2 (11, 5) 2−174 256

Table 2. Kyber η-Injectivity

M PCBD PMSIS PV η
√

η
√

η + δ

Kyber512 2511 2−1105 2−354 2−338 2−181 2−90 2−90

Kyber768 2511 2−1445 2−937 2−440 2−867 2−433 2−164

Kyber1024 2511 2−2419 2−1687 2−392 2−1569 2−784 2−174

that
√

η ≤ 2−λ. As for Kyber512, we only obtain a loose upper bound which
doesn’t meet the requirement but still is good enough for practical uses. Thus,
we take a further look at Table 2 to analyze the separated components.

Again, M,PCBD, PSIS , PV are consistent with previous definitions, and η is
calculated from η ≤ M · [PCBD + PMSIS] · PV . The square-root values of η are
also calculated because we want to investigate the injectivity assumption in [12]:

AdvIND−CCA
FO�⊥(P,F,G,H)(A) ≤ Q2 · AdvIND−CPA

P (B1) + Q2 · (δ +
√

η) + Q · η + AdvPRFF (B2).

Since 2−90 > 2−128, the bound on
√

η is not as small as desired. We leave it
to future work to determine if the bound can be further improved below 2−128.
Some interesting observations are also summarized as below.

Fig. 1. Output of τ Function in MSIS Part

– It was initially considered that only U part is enough for proving the injec-
tivity assumption. The CBD part for these parameters are all small which

An Injectivity Analysis of Crystals-Kyber and Implications 349

are not our concern, but the numerical result of MSIS part in Kyber512 with
total message space is M · PMSIS = 2511 · 2−354, which is even larger than 1.
The reason why Kyber512 has really large injectivity in MSIS part should be
investigated to better understand the huge difference.

– Theorem 1 of [15] constructs 4 sets of Wi as summarized in (12). In the numer-
ical calculation, for t ≥ √

n, Set 2 will always minimize the probability result
rather than Set 1. This is because Set 1 uses the volume of n-dimensional ball
with radius 1

2qi/d − √
n. If we take a further look at the equation of the vol-

ume, it can be calculated that the constant part (π/2)�n
2 �

n!! is really big, which
makes Set 1 to always generate the larger result than Set 2. When the itera-
tion of the sum goes up to about 62, we will obtain the largest single round
result as seen in Fig. 1a. And that is why the final cumulative result goes
large in Fig. 1b. But Kyber768 and Kyber1024 don’t have this issue because
they have larger vector dimensions, i.e. larger k. Since k is the exponent in
the MSIS part, it will cause exponentially huge influence.

– Therefore, V part is involved for further analysis. It can be seen that the
differences between different parameter sets in V part are not as significant
as before. This is because the probability distribution of Δv nearly follows
normal distribution that is symmetrical around 0, and ± ⌈

q
2

⌋
is far away

from 0. Thus, there would be no big difference comparing other parts in the
total injectivity. The relatively small difference of V part between Kyber512
and Kyber768 mainly comes from the values of η1, and the injectivity will
decrease as η1 decreases. The result of Kyber1024 is also larger than the
one of Kyber768, which is mainly caused by the different choices of k. This
indicates that k is positively correlated to the injectivity. The effects of k
and η1 are approximately cancelling out each other as k increases and η1
decreases. It would be useful to investigate the theoretical correlation between
these parameters by improving the estimation technique of V part.

– The result of Table 2 does not indicate the injectivity assumption fails in
Kyber512, in general. Looking at the last two columns of Table 2 and the
advantage equation given above, for small Q (e.g. highly parallelised attacks
with small number of QROM queries) the overall bound differs by at most
≈ 2−90 from the advantage against MLWE and PRF hardness assumptions,
which is nearly optimal. The main reason for the loose bound is the use of
union bound over one coefficient of the resulting polynomial being equal.
If the total probability of 256 coefficients being zero can be calculated, the
bound would be more tight.This dependency refinement might be tackled by
using multi-variate distributions.

5 Conclusion

We have followed the work of [12] and taken a step further to investigate and ana-
lyze the injectivity of Crystals-Kyber, which uses FO transformation to convert
an IND-CPA public key encryption into IND-CCA key encapsulation mecha-
nism. The theoretical bound and corresponding numerical results are provided

350 X. Ding et al.

and have shown that Kyber768 and Kyber1024 are reasonably safe with respect
to the injectivity assumption in [5,12], which means that the collision proba-
bility of two different messages having the same output ciphertext is negligible
in these two parameter sets. The analysis method for Kyber512 still needs to
be further improved/refined. The columns of the corresponding matrices over
the special quotient polynomial Xn + 1 are all rotated version of the original
coefficients, which means, to calculate the combined probability for the total 256
coefficients, more advanced mathematical techniques like probability of multi-
variate and random matrix distribution should be utilised. We leave this as an
open problem.

Other schemes using the FO transformation like Saber can be investigated by
similar method. The reason why we cannot retake the steps for calculating Kyber
injectivity for Saber is that it uses 2n module number. It makes the approach
in [15] not valid to be adapted for Saber. Also, the error of Saber is given by
rounding and module switching rather than sampling directly from a centered
binomial distribution of noises, which is another difference from Kyber, hence
needs further analysis and investigation requiring totally different techniques
used in our paper.

References

1. Submission requirements and evaluation criteria for the post-quantum cryptogra-
phy standardization process. Tech. rep., National Institute of Standards and Tech-
nology, Gaithersburg, MD (2017). https://csrc.nist.gov/CSRC/media/Projects/
Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf

2. Ambainis, A., Hamburg, M., Unruh, D.: Quantum security proofs using semi-
classical oracles. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11693, pp. 269–295. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-26951-7 10

3. Avanzi, R., et al.: Algorithm specifications and supporting documentation (version
3.0). Tech. Rep., Submission to the NIST postquantum project (2020). https://
pq-crystals.org/

4. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Proceedings of the 1st ACM Conference on Computer and
Communications Security, pp. 62–73 (1993)

5. Bindel, N., Hamburg, M., Hövelmanns, K., Hülsing, A., Persichetti, E.: Tighter
proofs of CCA security in the quantum random oracle model. In: Hofheinz, D.,
Rosen, A. (eds.) TCC 2019. LNCS, vol. 11892, pp. 61–90. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-36033-7 3

6. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-25385-0 3

7. Bos, J., et al.: CRYSTALS-Kyber: a CCA-secure module-lattice-based KEM. In:
2018 IEEE European Symposium on Security and Privacy (EuroS&P), pp. 353–
367. IEEE (2018)

https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://doi.org/10.1007/978-3-030-26951-7_10
https://doi.org/10.1007/978-3-030-26951-7_10
https://pq-crystals.org/
https://pq-crystals.org/
https://doi.org/10.1007/978-3-030-36033-7_3
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3

An Injectivity Analysis of Crystals-Kyber and Implications 351

8. Fujisaki, E., Okamoto, T.: How to enhance the security of public-key encryption
at minimum cost. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560, pp.
53–68. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49162-7 5

9. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 34

10. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing,
pp. 212–219. STOC ’96, Association for Computing Machinery. https://doi.org/
10.1145/237814.237866

11. Guo, F., Susilo, W., Mu, Y.: Introduction to Security Reduction. Springer (2018).
https://doi.org/10.1007/978-3-319-93049-7

12. Kuchta, V., Sakzad, A., Stehlé, D., Steinfeld, R., Sun, S.-F.: Measure-Rewind-
Measure: tighter quantum random oracle model proofs for one-way to hiding and
CCA security. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol.
12107, pp. 703–728. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
45727-3 24

13. Lily, C.N., et al.: Report on post-quantum cryptography. Tech. Rep., National
Institute of Standards and Technology, Gaithersburg, MD (2016). https://doi.org/
10.6028/NIST.IR.8105

14. Lyubashevsky, V.: Basic lattice cryptography: encryption and fiat-shamir signa-
tures (2019)

15. Nguyen, N.K.: On the non-existence of short vectors in random module lattices.
In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11922, pp.
121–150. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34621-8 5

16. Saito, T., Xagawa, K., Yamakawa, T.: Tightly-secure key-encapsulation mechanism
in the quantum random oracle model. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10822, pp. 520–551. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78372-7 17

17. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

18. Sullivan, N.: Securing the post-quantum world (2021). https://blog.cloudflare.
com/securing-the-post-quantum-world/

19. Unruh, D.: Revocable quantum timed-release encryption. J. ACM (JACM) 62(6),
1–76 (2015)

20. Weibel, A.: Round 2 post-quantum TLS is now supported in AWS
KMs (2020). https://aws.amazon.com/blogs/security/round-2-post-quantum-tls-
is-now-supported-in-aws-kms/

https://doi.org/10.1007/3-540-49162-7_5
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866
https://doi.org/10.1007/978-3-319-93049-7
https://doi.org/10.1007/978-3-030-45727-3_24
https://doi.org/10.1007/978-3-030-45727-3_24
https://doi.org/10.6028/NIST.IR.8105
https://doi.org/10.6028/NIST.IR.8105
https://doi.org/10.1007/978-3-030-34621-8_5
https://doi.org/10.1007/978-3-319-78372-7_17
https://doi.org/10.1007/978-3-319-78372-7_17
https://blog.cloudflare.com/securing-the-post-quantum-world/
https://blog.cloudflare.com/securing-the-post-quantum-world/
https://aws.amazon.com/blogs/security/round-2-post-quantum-tls-is-now-supported-in-aws-kms/
https://aws.amazon.com/blogs/security/round-2-post-quantum-tls-is-now-supported-in-aws-kms/

Cryptographic Protocols

Verifiable Decryption in the Head

Kristian Gjøsteen1 , Thomas Haines1,2, Johannes Müller3 ,
Peter Rønne3,4 , and Tjerand Silde1(B)

1 Norwegian University of Science and Technology, Trondheim, Norway
{kristian.gjosteen,tjerand.silde}@ntnu.no

2 Australian National University, Canberra, Australia
thomas.haines@anu.edu.au

3 University of Luxembourg, Esch-sur-Alzette, Luxembourg
johannes.mueller@uni.lu

4 Université de Lorraine, CNRS, LORIA, Vanduvre-lés-Nancy, France

Abstract. In this work we present a new approach to verifiable decryp-
tion which converts a 2-party passively secure distributed decryption pro-
tocol into a 1-party proof of correct decryption. This leads to an efficient
and simple verifiable decryption scheme for lattice-based cryptography,
especially for large sets of ciphertexts; it has small size and lightweight
computations as we reduce the need of zero-knowledge proofs for each
ciphertext. We believe the flexibility of the general technique is interest-
ing and provides attractive trade-offs between complexity and security,
in particular for the interactive variant with smaller soundness.

Finally, the protocol requires only very simple operations, making it
easy to correctly and securely implement in practice. We suggest concrete
parameters for our protocol and give a proof of concept implementation,
showing that it is highly practical.

Keywords: Verifiable decryption · Distributed decryption ·
Lattice-based crypto · MPC-in-the-head · Zero-knowledge proof ·
Implementation

1 Introduction

There are many applications where we not only need to decrypt a ciphertext, but
also prove that we have decrypted the ciphertext correctly without revealing the
secret key. This is called verifiable decryption. Examples include mix-nets used
for anonymous communication [42], decryption of ballots in electronic voting [29],
and various uses of verifiable fully homomorphic encryption [35]. In particular,
such applications usually require the decryption of a large number of ciphertexts.

It is well-known how to do verifiable decryption for public-key encryption
schemes based on discrete logarithms (for ElGamal, proving the equality of two
discrete logarithms [19] will do). Except for the recent publication by Lyuba-
shevsky et al. [38] (which provides a rather complicated decryption proof by

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
K. Nguyen et al. (Eds.): ACISP 2022, LNCS 13494, pp. 355–374, 2022.
https://doi.org/10.1007/978-3-031-22301-3_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22301-3_18&domain=pdf
http://orcid.org/0000-0001-7317-8625
http://orcid.org/0000-0003-2134-3099
http://orcid.org/0000-0002-2785-8301
http://orcid.org/0000-0002-5455-0409
https://doi.org/10.1007/978-3-031-22301-3_18

356 K. Gjøsteen et al.

combining proofs of linear relations, multiplications and range proofs), no effi-
cient and straight-forward zero-knowledge proofs of correct decryption are known
for lattice-based cryptography or other post-quantum encryption schemes. This
state-of-affairs is unsatisfying, in particular because many applications that
require zero-knowledge proofs of correct decryption should also be secure in
the face of quantum computers which are becoming increasingly more powerful.
For example, the electronic voting system Helios [1] and the Estonian voting
protocol [30] are using classical encryption schemes and decryption proofs with
corresponding quantum threats to the long-term privacy of the voters.

On the contrary, there do exist efficient and straightforward passively secure
lattice-based encryption schemes with distributed decryption. In such a scheme,
the decryption key is shared among several players. Decryption is done in a
distributed fashion by each player creating a decryption share, which can be
individually verified, and a reconstruction algorithm can recover the message
from the decryption shares. Distributed decryption allows more general methods
to recover the message, such as general multi-party computation. There are many
useful and efficient lattice-based threshold cryptosystems and distributed decryp-
tion schemes [11,13,16,21,22,24]. In particular, if the security requirements are
relaxed, lattice-based distributed decryption can be very straight-forward.

Our main idea is to use MPC-in-the-head [31] in conjunction with a 2-party
passively secure distributed decryption scheme to construct a very simple veri-
fiable decryption scheme; however, we shall see that there are various technical
challenges. To achieve the desired level of security, we run the 2-party decryption
scheme on the ciphertexts many times locally, and then reveal a random subset
of keys, one for each run, allowing others to verify that it was done correctly.

1.1 Contribution

Our main contribution is a transformation from a 2-party passively secure dis-
tributed decryption scheme to a 1-party verifiable decryption scheme. To achieve
this, we use MPC-in-the-head with the 2-party decryption scheme. The idea is
that the prover runs the 2-party decryption protocol many times and reveals the
resulting decryption shares. The interactive verifier will then, for each run of the
decryption scheme, ask to see one of the two decryption keys and any randomness
involved in creating the corresponding decryption shares. With this information,
it is straight-forward for the verifier to ensure that half of the decryption shares
were generated honestly.

As usual, the idea is that if the prover cheats, the verifier will have probability
(close to) 1/2 of detecting this in each round. If a cheating prover is consistently
successful, we can use rewinding to extract both secret shares. Furthermore, if
the 2-party decryption scheme is passively secure, revealing one share will not
reveal anything about the secret key itself.

There are four remaining obstacles, two easy and two somewhat trickier.
The first easy obstacle is that in a threshold public key encryption scheme or
distributed decryption scheme, the decryption key shares are generated as part
of key generation. We already have a decryption key, but we need to create

Verifiable Decryption in the Head 357

many independent sharings of that key. For discrete logarithm-based schemes
like ElGamal, this is usually trivial. For the schemes we consider, it is still not
hard, but it follows that we do not have a fully general reduction from 2-party
distributed decryption to (1-party) verifiable decryption. The second easy obsta-
cle is that given both secret key shares we want to recover the secret key. We
solve this by extending the notation of a distributed decryption function with
a function which recovers the key from the shares. This is easy to satisfy in
practice.

The third obstacle is that the verifier needs to make sure that the revealed
key share is correct. For ordinary threshold decryption schemes, this can often
be avoided, either because the dealer is trusted or replaced by some multi-party
computation. Therefore, we need to use a non-generic solution here. For batched
decryption, the main observation is that we only verify the key once for each
run of the 2-party decryption scheme, not once per ciphertext in the batch. The
number of runs essentially corresponds to the security parameter, which in many
applications will be significantly smaller than the number of ciphertexts.

The final obstacle is related to our security proof. We need to simulate shares
of the decryption key, any auxiliary information related to them, and decryption
shares. Although similar techniques are common in the construction of threshold
public key encryption scheme, the security definitions do not actually require
their presence. Since we need them, our approach is again somewhat non-generic.

On the other hand, since we intend to verify correctness of decryption shares
by revealing decryption key shares and any randomness involved, we can make
do with a passively secure distributed decryption scheme, simplifying our work.

The result is a construction from a somewhat specialized 2-party distributed
decryption scheme to a verifiable decryption scheme. Since the security require-
ments for the distributed decryption scheme are shifted compared to traditional
threshold decryption schemes, this will allow us to use very simple threshold
decryption. This means that it can be very efficient, both with respect to com-
putational time and size of the decryption shares. Even though the decryption
is run many times, the result will still be efficient compared to the alternatives.

Note that in an interactive setting, it may make sense to use a very small
security parameter, making the protocol extremely cheap. For instance, in any
system where detected cheating will have a significant penalty, rational actors
will be deterred by even a small chance of detection. However, when the protocol
is made non-interactive, this clearly does not work.

In the full version we prove in the interactive theorem prover Coq [12] a sim-
plified variant of our transform and an ElGamal toy example. Regrettably, we
are unable to prove the full transform and the lattice example due to limitations
in the interactive theorem prover. Indeed, to our knowledge, no interactive the-
orem prover exists which provides adequate support. Nevertheless, the proof of
the simplified variant increases confidence in the result.

It is worth emphasizing that our protocol is very simple to implement (using
Stern-based zero-knowledge proofs [32,34] to ensure that key-shares are well-
formed), lowering the bar for deploying our scheme in practice. We note that

358 K. Gjøsteen et al.

lattice-based zero-knowledge proofs in general can be very complicated, involving
a combination of proofs of linear relations, proofs of shortness and range proofs,
in addition to Gaussian sampling, rejection sampling and optimizations exploit-
ing partially splitting rings and automorphisms [6,38]. Correctly and securely
implementing voting systems using primitives based on discrete logarithms is
hard [28], and lattice-based primitives makes it harder. In our protocol we only
need to sample uniformly random or short elements in any ring of our choice,
and use standard cut-and-choose techniques to open committed values, making
it easy to use in practice. Concretely, this means that we are not vulnerable to
side-channel attacks against Gaussian sampling [18] or rejection sampling [25].

Combined with the main contribution, this gives us a verifiable decryption
scheme for a lattice-based public key encryption scheme that is very efficient
when the number of ciphertexts is much larger than the security parameter.
The protocol is fast and simple, and the proof size is small. We give concrete
parameters and a proof of concept implementation of our protocol in Sect. 6.

1.2 Related Work

Verifiable decryption for ElGamal can be done by proving the equality of two dis-
crete logarithms [19], and can be batched for significantly improved performance
when decrypting many ciphertexts [27,40].

The “dual” Regev system [39] can be used by making the randomness public.
However, this is not zero-knowledge and opens for so-called “tagging-attacks” to
de-anonymize users in privacy-preserving applications (e.g., e-voting).

Threshold encryption schemes [23] and distributed decryption schemes are
now well-understood, and many constructions exist [11], in particular those
related to SPDZ [20,22,33]. When only passive security is required, these schemes
can be quite efficient. Threshold decryption with active security implies verifiable
decryption when the verification of decryption shares is a public operation. The
problem is that it is often costly to provide a threshold decryption scheme with
active security. Our approach gives away a decryption key share and randomness
involved, and it is trivial to verify that the key share has been used correctly.

We compare more in detail with recently developed verifiable decryption
protocols [11,15,38,44] in Sect. 7.

2 Passively Secure 2-Party Decryption

A distributed decryption scheme enables a set of players to distribute the decryp-
tion of ciphertexts, in such a way that only authorized subsets of players can
do the decryption. Usually, the decryption key shares are created once during
key generation. As discussed in the introduction, we will generate independent
decryption key sharings repeatedly, so we need to define the syntax of our variant
of distributed decryption schemes precisely.

Consider a public key cryptosystem with key generation algorithm KeyGen,
encryption algorithm Enc and decryption algorithm Dec. We extend the notation

Verifiable Decryption in the Head 359

with a predicate KeyM for key-matching which takes as input a public and secret
key. We require for all matching public and secret keys pk, sk and all messages
m, that Dec(sk,Enc(pk,m)) = m (with overwhelming probability).

A distributed decryption protocol for this public key cryptosystem consists of
four algorithms, a dealer algorithm, a verify algorithm, a player algorithm, and
a reconstruction algorithm. We consider only two parties where both decrypt.

The dealer algorithm (Deal) takes as input a public key and corresponding
secret key and outputs two secret key shares and some auxiliary data aux.

The verify algorithm (Verify) takes as input a public key, auxiliary data, an
index and a secret key share and outputs yes (1) or no (0).

The player algorithm (Play) takes as input a secret key share and a ciphertext
and outputs a decryption share ds.

The reconstruction algorithm (Rec) takes as input a ciphertext and two
decryption shares and outputs either ⊥ or a message.

Intuitively, the protocol is correct if Play and Rec collectively recover the
encrypted message and verification accepts when the dealer is honest.

Definition 1 (Correctness). A distributed decryption protocol is correct if for
any key pair (pk, sk) s.t. KeyM(pk, sk) = 1, all c = Enc(pk,m), any (sk0, sk1, aux)
output by Deal(pk, sk), then, for i = 0, 1, Verify(pk, aux, i, ski) = 1, and

Pr [m ← Dec(sk, c);Rec(c,Play(sk0, c),Play(sk1, c)) = m] ≥ 1 − negl.

For a distributed decryption protocol, we must trust the dealer for privacy,
but not for integrity. The integrity property below says that if both secret shares
given by the dealer are valid (according to the Verify algorithm), then the Play
and Rec will collectively recover the encrypted message.

Definition 2 (Integrity). A distributed decryption protocol has integrity if
there exists an efficient algorithm (named FindKey which takes as input the public
key, the two secret key shares and the auxiliary information, and returns a secret
key) such that for all public keys pk, ciphertexts c = Enc(pk,m), secret key shares
(sk1, sk2), and auxiliary data aux and sk output by FindKey(pk, sk0, sk1, aux) sat-
isfying Verify(pk, aux, i, ski) = 1, for i = 0, 1, we have that

Pr [KeyM(pk, sk) ∧ Rec(c,Play(sk0, c),Play(sk1, c)) = Dec(sk, c)] ≥ 1 − negl.

For threshold cryptosystems and distributed decryption, security is typically
defined through the usual security games for public key cryptosystem, allowing
the adversary access to the decryption key shares through decryption share ora-
cles. This security notion is not very convenient for us, so we shall instead rely on
a variant of simulatability, namely we must be able to simulate both decryption
key shares and decryption shares in a consistent fashion.

360 K. Gjøsteen et al.

Fig. 1. The passively secure experiment for distributed decryption protocols.

Definition 3 (Simulatability). Consider a pair of algorithms DealSim and
PlaySim and an adversary A playing the experiments from Fig. 1, where A always
outputs c = (c0, ..., cτ),m = (m0, ...,mτ) such that {mj = Dec(sk, cj)}τ

j=1. The
simulatability advantage of A is

Advddp−sim(A, pk, sk) =

|Pr[Expddp−sim−0
A (pk, sk) = 1] − Pr[Expddp−sim−1

A (pk) = 1]|,

where the probability is taken over the random tapes and (pk, sk) output by
KeyGen. We say that a distributed decryption protocol is (t, ε)-simulatable (or
just simulatable) if no t-time algorithm A has advantage greater than ε.

We give an ElGamal toy example in the full version to showcase our technique.

3 Verifiable Decryption from Distributed Decryption

We will now construct a (batch) zero-knowledge proof system of correct decryp-
tion from the distributed decryption protocol. The protocol is given in Fig. 2.
More precisely, our proof system is a sigma protocol with completeness, special
soundness, and honest verifier-zero knowledge.

For any public key cryptosystem, a public key output by the key generation
algorithm uniquely defines a decryption function that for all messages agrees with
the decryption algorithm for any ciphertext output by the encryption algorithm,
except those that lead to decryption failure.

Recall that for a batched verifiable decryption protocol the statement consists
of a public key, a vector of ciphertexts and a vector of messages, where the
ciphertexts have been output by the encryption algorithm. The statement is in
the language if and only if the messages correspond to the decryption function
applied to the ciphertexts. The secret key (witness) satisfies the relationship with
the statement if it corresponds to the public key and the message vector is the
decryption of the ciphertexts with the secret key.

The protocol works as follows: the prover creates λ sharings of the secret
key by calling the Deal algorithm λ times. For each sharing and each ciphertext,

Verifiable Decryption in the Head 361

the prover uses the Play algorithm to construct the decryption share. The prover
sends the auxiliary information from Deal and all the shares to the verifier. Then,
the verifier returns a challenge which is a binary vector of length λ. The prover
finally reveals the corresponding parts of the shares as well as any randomness
used in the Play algorithms with this key share. The prover checks that (1) all the
revealed shares verify, (2) the decryption shares are consistent with the revealed
key shares, and (3) the messages correspond to the decryption shares.

Fig. 2. Proof of correct decryption. ρi,k,j denotes the random tape used by the Play
algorithm to create the ith share of the jth ciphertext in the kth run of the protocol.

Completeness. Up to the possible negligible error introduced by decryption fail-
ures, completeness follows immediately by construction and the correctness of
the underlying distributed decryption protocol.

Special Soundness. By rewinding, any cheating prover with a significant suc-
cess probability can be used to create two accepting conversations (w,β, z) and

362 K. Gjøsteen et al.

(w,β′, z′), with β �= β′. From this it follows that β[k] �= β′[k] for at least one k,
and the verify algorithm has accepted both secret key shares and every decryp-
tion share in this round has been correctly created using the Play algorithm.
Then, since the ciphertexts are encryptions of the first message vector, integrity
implies that FindKey will recover a witness which matches the public key and
for which the messages match the output of the decryption function.

Honest-Verifier Zero-Knowledge. Our simulator works as follows, given the
statement (pk, {cj}τ

j=1, {mj}τ
j=1) and the challenge β: First, for i = 1, ..., λ,

we let (auxi, skβ [i],i) ← DealSim(pk,β[i]) and, for j = 1, ..., τ , we let dsβ [i],j,i ←
PlaySim(pk, skβ [i],i, ci,mi) and ds1−β [i],j,i ← Play(pk, skβ [i],i, ci). The proof tran-
scripts is then ((pk, {cj}τ

j=1, {mj}τ
j=1), (auxi, ds0,j,i, ds1,j,i),β, skβ [i],i). This is

computationally indistinguishable from the honest transcripts if the distributed
decryption protocol is simulatable.

We give a machine checked proof of our protocol instantiated with ElGamal
in the full version of this paper to provide confidence in our general transform.

4 BGV Encryption

We present a version of the BGV encryption scheme by Brakerski, Gentry and
Vaikuntanathan [17]. See the full version of this paper for background on lattice-
based cryptography. Let p � q be primes, let Rq and Rp be polynomial rings
modulo the primes q or p and XN + 1 for a fixed N , let B∞ ∈ N be a bound
and let κ be the security parameter. The encryption scheme consists of three
algorithms: key generation, encryption and decryption, where

– KeyGen samples an element a ←$Rq uniformly at random, samples short
s, e ←$Rq such that max(‖s‖∞, ‖e‖∞) ≤ B∞. The algorithm outputs the
public key pk = (a, b) = (a, as + pe) and the secret key sk = (s, e).

– Enc, on input the public key pk = (a, b) and an element m in Rp, samples
short r, e′, e′′ ←$Rq such that the norm max(‖r‖∞, ‖e′‖∞, ‖e′′‖∞) ≤ B∞,
and outputs the ciphertext c = (u, v) = (ar + pe′, br + pe′′ + m) in R2

q .
– Dec, on input the secret key sk = (s, e) and a ciphertext c = (u, v), outputs

the message m = (v − su mod q) mod p in Rp.

The decryption algorithm is correct as long as the norm max‖v − su‖∞ = BDec <
�q/2�. It follows that the BGV encryption scheme is secure against chosen plain-
text attacks if the DKS∞

N,q,β problem is hard for some β = β(N, q, p,B∞).
Furthermore, we present the passively secure distributed decryption tech-

nique by Bendlin and Damg̊ard [11] used in the MPC-protocols by Damg̊ard
et al. [20,22]. When decrypting, we assume that each decryption server Dj , for
1 ≤ j ≤ ξ, has a uniformly random share skj = sj of the secret key sk = (s, e)
such that s = s1 +s2 + ...+sξ. Then they partially decrypt in the following way:

– DistDec, on input a secret key-share skj = sj and a ciphertext c = (u, v),
computes mj = sju, sample some large noise Ej ←$E ⊂ Rq such that
‖Ej‖∞ ≤ 2sec(BDec/pξ) for some statistical security parameter sec and upper
error-bound max‖v − su‖∞ ≤ BDec, then outputs dsj = tj = mj + pEj .

Verifiable Decryption in the Head 363

We obtain the full decryption of the ciphertext (u, v) as m ≡ (v − t mod q)
mod p, where t = t1 + t2 + ... + tξ. This will give the correct decryption as long
as the noise max‖v − t‖∞ ≤ (1+2sec)BDec < �q/2� (see [20, Appendix G]). Here,
t will be indistinguishable from random except with probability 2−sec.

5 Zero-Knowledge Protocol of Correct Decryption

5.1 Lattice-Based Distributed Decryption

Setup. We will be working over the ring Rq = Zq[X]/〈XN + 1〉 together with
a modulus p � q, both prime. These are the public parameters of the protocol,
together with security parameter κ, soundness parameter λ, bound B∞ and max-
imal ciphertext error-bound BDec. We define commitments, their security and
give a concrete instantiation based on lattices in the full version of this paper.
The commitments are both computationally hiding and computationally bind-
ing, in addition to being linearly homomorphic. Finally, let (ΠZKPoS,ΠZKPoSV)
be a non-interactive zero-knowledge protocol for the following relation:

RDKS∞
N,q,1

= {((A,y);x) : Ax = y mod q ∧ ‖x‖∞ = 1}.

Scheme. We present a distributed decryption version of the BGV encryption
scheme [17], where KeyGen, Enc and Dec are defined in Sect. 4.

The dealer algorithm (Deal) takes as input a public key pk = (a, b) and
corresponding secret key sk = (s, e), samples uniform s0 and e0 from Rq, and
computes s1 = s− s0 and e1 = e− e0. Then it commits to the values as csi

=
Com(si), cei

= Com(ei), and computes bi = asi+pei so that b = b0+b1. Finally,
it computes non-interactive zero-knowledge proofs πSi

proving that the sums
s0 + s1 and e0 + e1 are short (see details in Sect. 6). It outputs key shares
sk0 = (s0, e0), sk1 = (s1, e1) and aux = (b0, b1, cs0 , cs1 , ce0 , ce1 , πS0 , πS1).

The verify algorithm (Verify) takes as input a public key pk = (a, b), an index
i, a secret key share ski = (si, ei), openings dsi

and dei
, and aux. It outputs 1

if and only if (bi
?= asi+pei) ∧ (b ?= b0+b1) ∧ Open(csi

, dsi
) ∧ Open(cei

, dei
) ∧

(ΠZKPoSV(ski, aux, πSi
)), and 0 otherwise.

The player algorithm (Play) takes as input a key share ski = (si, ei), a cipher-
text c = (u, v), samples bounded Ei and outputs dsj = ti = siu + pEi.

The reconstruction algorithm (Rec) takes as input a ciphertext c = (u, v),
decryption shares (t0, t1), and outputs m = (v − t0 − t1 mod q) mod p.

5.2 Security

Theorem 1 (Correctness). The distributed decryption scheme in 5.1 is cor-
rect with respect to Definition 1 when max‖v − t‖∞ ≤ (1 + 2sec)BDec < �q/2�.

Theorem 2 (Integrity). Suppose the protocol ΠZKPoS is (computationally)
sound and that Com is (computationally) binding. Let A0 be an adversary against
integrity of the distributed decryption scheme with advantage ε0, and let λ be

364 K. Gjøsteen et al.

the number of rounds in the protocol. Then there exists adversaries A1 and A2

against soundness of ΠZKPoS and binding of Com, respectively, with advantages
ε1 and ε2, such that ε0 ≤ ε1+ε2+2−λ. The runtime of A1 and A2 are essentially
the same as the runtime of A0.

Proof. We sketch the argument. There are essentially three possible ways to
attack the integrity of the protocol: an attacker that knows the secret decryption
key but correctly guess the challenge in each round is able to decrypt to arbitrary
messages, and otherwise, if the attacker does not know the secret key, needs to
break the underlying schemes. The guessing attack has success probability 2−λ.

For Verify to accept for both i = 0 and i = 1, we need that b = b0 + b1,
b0 = as0 + pe0, b1 = as1 + pe1 and that the zero-knowledge proof of shortness
πS of the sums s0 + s1 and e0 + e1 are accepted. If either of the key shares are
incorrect then Verify accept with probability 0, and if the key shares are correct,
then Rec outputs m except with negligible probability. An attacker can choose
s0, s1, e0 and e1 such that all equations are correct, but the sums are not short.
The soundness of Verify then reduces to the soundness of the zero-knowledge
protocol, and an attacker A0 against this part of the protocol with advantage ε0
can be turned into an attacker A1 against ΠZKPoS with the same advantage.

The last option is for the attacker to produce commitments to a true but unre-
lated statement with respect to the secret key used in the encryption scheme.
This allows the attacker to produce a valid proof of shortness without cheating,
but for an unrelated key. However, Verify only accepts if both the opening of
the commitments are correct and the zero-knowledge proof of shortness verifies.
Hence, and attacker A0 that is able to produce valid openings and proofs with
advantage ε0 can be turned into an attacker A2 against Com with the same advan-
tage by rewinding the prover for the zero-knowledge proof of knowledge of short
openings and then extract two different but valid openings to the commitment.

Theorem 3 (Privacy). Suppose the protocol ΠZKPoS is (statistically) honest-
verifier zero-knowledge, that Com is (computationally) hiding and that Enc is
(computationally) CPA secure. Then there exists a simulator for the verifiable
decryption protocol such that for any distinguisher A0 for this simulator with
advantage ε0 there exists an adversary A2 against hiding for the commitment
scheme with advantage ε2, an adversary A3 against CPA security for the encryp-
tion scheme with advantage ε3, and a distinguisher A1 for the simulator of
ΠZKPoS with advantage ε1, such that ε0 ≤ ε1 + ε2 + ε3. The runtime of A1,
A2 and A3 are essentially the same as the runtime of A0.

Proof. Let SimShort be a simulator for ΠZKPoS. We present a simulator DealSim
for the Deal-algorithm and a simulator PlaySim for the Play-algorithm in Fig. 3.

DealSim: We create the simulator in three steps. We first replace πS by the
simulated proof π∗

S produced by SimShort. An attacker A0 with advantage ε0
against this change can be turned into an attacker A1 against the simulator
SimShort of protocol ΠZKPoS with the same advantage.

Verifiable Decryption in the Head 365

Fig. 3. Simulators DealSim and PlaySim.

Next, we replace the key shares by uniformly random key-shares s∗
i and e∗

i

that give correctness, that is, the public key-shares b∗
0 and b∗

1 sum to b, but s∗
0

and s∗
1 does not need to sum to a short key s∗ and e∗

0 and e∗
1 does not need to

sum to short noise e∗. This ensures that Verify outputs 1. An attacker A0 with
advantage ε0 against this change can then be turned into an attacker A3 against
CPA security of the encryption scheme with the same advantage.

Finally, we replace the commitments to unopened values by commitments to
random values. This way, none of the values in the protocol any longer depends
on the secret key in the protocol, and b∗

i are simulated perfectly. An attacker A0

with advantage ε0 against this change can then be turned into an attacker A2

against hiding of the commitment scheme with the same advantage.
PlaySim: we start by sampling bounded E1−i from E and computing t1−i =

s1−iu+ pE1−i. Then we find ti such that (v − t0 − t1 mod q) mod p = m. This
ensures that Rec outputs the message m when reconstructing the shares. Here,
the values are sampled according to the exact same distribution as in the real
protocol, and the statistical distance is negligible in the security parameter κ.

5.3 Zero-Knowledge Proof of Verifiable Decryption

We present the different phases of our sigma protocol for proving correct decryp-
tion. The protocol is given in Fig. 4. The security of the construction follows
directly from the results in Sect. 3 in combination with Theorem 1, 2 and 3.

Setup. We are given a honestly generated public key pk = (a, b = as+pe), where
max(‖s‖∞, ‖e‖∞) ≤ B∞. The secret key sk = (s, e) is given to the prover. We are
given a set of honestly generated ciphertexts {(uj , vj) = (arj + pe′

j , brj + pe′′
j +

mj)}τ
j=1, where max(‖r‖∞, ‖e′‖∞, ‖e′′‖∞) ≤ B∞, and set of messages {mj}τ

j=1.

Commit phase. For soundness parameter λ, the prover does the following for
k = 1, ..., λ. First, it runs the Deal algorithm on sk and pk to produce sk0,k, sk1,k

and auxk. It uses ΠZKPoS to prove that the shares are correctly computed.
Then, for i = 0, 1 and each j = 1, ..., τ , it runs the Play algorithm on each

366 K. Gjøsteen et al.

key-share ski,k and ciphertext cj to produce t0,j,k and t1,j,k. Finally, it sends
w ← ({auxk, {ti,j,k}1,τ

i=0,j=1}λ
k=1) to end the commitment phase.

Challenge phase. The verifier independently samples a random binary challenge
vector β of length λ. It sends β to the prover.

Respond phase. The prover sends openings z = ({dsβ [k],k , deβ [k],k}), for each of
the commitments to each index k of β, to the verifier.

Verification phase. For each k = 1, ..., λ, the verifier runs the Verify algorithm to
make sure that the openings of sβ [k],k and eβ [k],k are valid, check that all shares
of the public key are computed correctly as bβ [k],k = asβ [k],k +peβ [k],k, verify the
public key b = b0,k + b1,k and ensure that each πSi,k

is valid. Further, for each
j = 1, ..., τ , the verifier runs the Rec algorithm to make sure that all decryption
shares are correct and that all messages are decrypted correctly. It outputs 1 if
all checks hold, and 0 otherwise.

Fiat-Shamir. To make the scheme non-interactive we can use the Fiat-Shamir
transform [26] by hashing the output of the commit phase and use the hash as
challenge, before outputting the response. We note that this can be done similarly
to the optimizations described for estimating the size in the next section. We also
note that the soundness parameter λ initially can be very small in the interactive
case, while it should be (approximately) as large at the security parameter κ in
the non-interactive setting, increasing the size of the proof of decryption.

Hybrid proof. We note that the interaction in the protocol opens for a hybrid
proof: if we wish for a quick result to get confidence in the decrypted ciphertexts
but at the same time can wait longer to be completely certain, we can ask for
two proofs. First, we ask the prover for a proof where λI = 10 or λI = 20, and
sample a random challenge ourselves. If we accept the proof, we ask the prover
to compute a non-interactive proof for the same statement but with λN = 100.
This proof can be received, stored and verified later, knowing already that the
messages most likely are correctly decrypted. The interactive proof also allows
the verifier to arbitrarily increase λI by sending more challenges on the fly, where
we tell the prover when we are done, and he creates the proofs of shortness in
the end. This is particularly useful in real-world applications, e.g., e-voting.

6 Performance

In this section, we shall carefully analyze the performance of our decryption
proof. Along the way, we make several easy optimizations with respect to the
protocol in Fig. 4. In particular, we use a commitment in the first message, and
then send only the values that the verifier cannot recompute himself in the
second message. Finally, we compute the zero-knowledge proofs of shortness in
the response phase instead of the commit phase, reducing the number of proofs
by a factor of two in each round of the protocol.

Verifiable Decryption in the Head 367

Fig. 4. Zero-knowledge proof of correct decryption.

368 K. Gjøsteen et al.

6.1 Proof Size

Each element in Rq is of size N log q bits, which might be large, and each element
in Rp is of size N log p bits, which will be small. Short elements bounded by B∞ is
of size N log B∞ bits. We let H be a collision resistant hash-function with output
of length 2κ. Note that the soundness parameter λ may be chosen independently
of, and in particular smaller than, the security parameter κ.

Commit phase. To reduce the number of ring elements being sent, we com-
mit to the output of the commit phase using a hash-function, and send the
hash instead. More concretely, we let w = H({b0,k, b1,k, cs0,k , cs1,k , ce0,k , ce1,k ,

{ti,j,k}1,τ
i=0,j=1}λ

k=1).

Challenge phase. The verifier sends the vector β consisting of λ independently
sampled bits to the prover.

Respond phase. Note that we do not need to send the partial decryptions tβ [k],j,k,
because they can be computed uniquely from uj , sβ [k],k and Eβ [k],j,k, and we can
let a uniform binary seed ρβ [k],k of length 2κ bits can be used to deterministically
generate the randomness used in each round. Next, we also note that bβ [k],k can
be computed directly from sβ [k],k and eβ [k],k, and b1−β [k],k from b and bβ [k],k.

It follows that, for each k = 1, ..., λ, the prover sends sβ [k],k and eβ [k],k,
commitments cs1−β [k],k and ce1−β [k],k together with the openings dsβ [k],k and
deβ [k],k , and the partial decryptions {t1−β [k],j,k}τ

j=1. Since the commitments to
the sharings of s and e are used in the zero-knowledge proof of shortness, these
commitment is computed using lattice-based commitments. We observe that
csk

= cs1−β [k],k +Com(sβ [k],k) and cek
= ce1−β [k],k +Com(eβ [k],k), with randomness

zero, are commitments to sβ [k],k + s1−β [k],k and eβ [k],k + e1−β [k],k, which are
short. Then we use the zero-knowledge proof of shortness to prove that we know
openings of csk

and cek
to get πS0 and πS1 . Denote all proofs of shortness by πS .

Total communication. The total proof size sent by the prover is

2κ + λN(4 log q + 2κ + 2 log B∞) + λτN log q + |πS | bits.

Zero-knowledge proof of shortness. There are many options for πS , proving
knowledge of valid openings of the commitments csk

and cek
. We can use the

Fiat-Shamir with aborts framework [36,37], but this would give us a large sound-
ness slack, that is, we prove knowledge of a vector that might be much larger
than what we started with. This would increase the parameters to be used in
the overall protocol. Other alternatives are the exact proofs using MPC-in-the-
head techniques by Baum and Nof [9] or the range proofs by Attema et al. [6].
However, we note that even though these are efficient, both protocols are very
complex and are complicated to implement correctly for use in the real world.
Another approach is to use generic proof systems like Ligero [4] or Aurora [10],
adding more complexity to the overall protocol. We can also use the amortized

Verifiable Decryption in the Head 369

proof by Bootle et al.. [7] to prove that all λ executions are done correctly at
the same time. This is the most efficient proof system for these relations today.

However, assuming that the soundness parameter λ is much smaller than
the number of ciphertexts τ , the size of the proofs of shortness does not matter
much. To keep the protocol as simple as possible, to make it easier to implement
the protocol and avoid bugs in practice, we choose to use the Stern-based proofs
by Kawachi et al. [32] and Ling et al. [34] in our implementation and estimates.

Concrete parameters. For a concrete instantiation, we use the example parame-
ters in Table 1, estimated to κ = 128 bits of long-term security using the LWE-
estimator [3] with the BKZ.qsieve cost-model. Inserting these parameters into
the proof of shortness, then each proof πSi,k

is of size ≈ 87μ KB. This makes
|πS | ≈ 175μλ KB. Furthermore, using the improvements by Beullens [14] we can
shrink the proofs down to 18μλ KB. If we replace πS with the amortized proof
by Bootle et al.. [7] we get a proof of total size 520 KB1. However, if the number
of ciphertexts τ is very large, we can ignore all other terms and get a proof of
correct decryption πD of size ≈ 14λτ KB. See Table 1 for details. The given
ciphertext modulus q is chosen to be large enough to ensure correct decryption.

Table 1. Notation, explanation, constraints and concrete parameters for the protocol.
We also provide size and timings for decryption proof πD and proofs of shortness πS .

Parameter Explanation Constraints Value

N Dimension Power of two 2048

q Ciphertext modulus BDec � q ≡ 1 mod 2N ≈ 255

p Plaintext modulus 2

κ Security parameter Long-term privacy 128

sec Statistical security 40

λ Soundness parameter 10, ..., 128

μ Repetitions of ΠZKPoS μ ≥ λ · ln(2)/ ln(3/2) 17, ..., 218

B∞ Bounds on secrets 1

BDec Decryption bound ‖v − su‖∞ ≤ BDec ≈ 213

Size of πD Timings for πD Size of πS Timings for πS

14λτ KB 4λτ ms 175λμ KB 30λμ ms

6.2 Implementation

We wrote a proof of concept implementation of our scheme in C++ using the
NTL-library [43]. The implementation was benchmarked on an Intel Core i5
running at 2.3 GHz with 16 GB RAM. We ran the protocol with λ = 40, τ =
1000, μ = 68. The timings are given in Table 1. The implementation is very
1 Setting m = 2048, log q = 55, r = 90, b = 3, τ = 50, k = 2398, l = 5000 and h = 100

for soundness 2−45 and run the protocol twice, see [7, Section 4.1] for details.

370 K. Gjøsteen et al.

simple, and consists of a total of 400 lines of code. Our source code is available
online2. We note that our implementation does not use the number theoretic
transform for fast multiplication of elements in the ring to reduce complexity. A
rough comparison to NFLlib [2], where they show clear improvements compared
to NTL, indicates that an optimized implementation should provide a speedup
by at least an order of magnitude.

7 Comparison

7.1 Comparison to DistDec (TCC’10)

We sketch an extension of the passively secure distributed decryption protocol
ΠDistDec given by Bendlin and Damg̊ard [11], which is used in SPDZ [20,22]. The
main difference compared to our protocol is that this protocol requires zero-
knowledge proofs to ensure correct computation at each step of the protocol
to achieve active security instead of repeating the decryption procedure several
times. The protocol works roughly as following:

1. Each party Di samples uniform Ei,j such that ‖Ei,j‖∞ ≤ 240BDec/ξp (for 40
bits statistical security) and computes the partial decryptions ti,j = siuj +
pEi,j for each ciphertext cj = (uj , vj).

2. Each party Di publish a zero-knowledge proof πLi,j
of the linear relation for

ti,j , using the lattice-based commitments together with their zero-knowledge
proof of linear relations by Baum et al. [8].

3. Each party Di use the amortized ZKP by Baum et al. [7] for batch-size N to
prove that each Ei,j is bounded by 2secBDec/ξp, given commitments cEi,j

.
4. The verifier checks the relations (vj − t0,j − t1,j mod q) ≡ mj mod p and

that all the zero-knowledge proofs are valid.

Elements tj and commitments cEi,j
are N log q and 2N log q bits, respec-

tively. Each proof of linearity πLi,j
is 6N log(6σ̄) bits. The amortized proof is

540 log(6σ̂) bits. The total size, for each Di, is

(3N log q + 6N log(6σ̄) + 540 log(6σ̂))τ bits.

Then one party can split the key into ξ = 2 shares, run ΠDistDec on each key-
share locally, and return the outputs from both D1 and D2 together with an
additional proof that the key-splitting was correct. We based the estimate on
the parameters from Table 1, with σ̄ ≈ 216 and σ̂ ≈ 266 (see e.g. Aranha et al. [5]
for details about proofs and sizes). However, the amortized proof is not exact,
which means that we must increase q to q ≈ 278 to ensure correct decryption.
For security κ = 128 we also need to increase N to N = 4096. The proof is then
of size ≈ 363τ KB. We conclude that ΠZKPCD is of equal size as ΠDistDec for
λ = 26 and otherwise larger.

We do not have access to timings for this protocol. However, as the modulus is
much larger, the dimension is twice the size, the zero-knowledge proofs include
Gaussian sampling and rounds of aborts, we expect the protocol to be much
slower than ours despite the large number of repetitions in our construction.
2 https://github.com/tjesi/verifiable-decryption-in-the-head.

https://github.com/tjesi/verifiable-decryption-in-the-head

Verifiable Decryption in the Head 371

7.2 Comparison to Boschini et al. (PQ Crypto’20)

Boschini et al. [15] presents a zero-knowledge protocol for Ring-SIS and Ring-
LWE. Their protocol can be used to prove knowledge of secrets or plaintexts,
or prove correct decryption given a message and a BGV ciphertext. Concrete
estimates for the latter are not given in the paper, but the number of constraints
is higher for decryption than for the former. For a slightly smaller choice of
parameters, a single proof of plaintext knowledge is of size 87 KB and takes
roughly 3 minutes to compute. We conclude that the proof system by Boschini
et al. will provide decryption proofs of equal size as protocol when λ = 6 and
smaller otherwise. The time it takes to produce such a proof are several orders
of magnitude slower than ours, making the system impossible to use in practice
even for moderate sized sets of ciphertexts.

7.3 Comparison to Lyubashevsky et al. (PKC’21)

A recent publication by Lyubashevsky, Nguyen and Seiler [38] gives a verifiable
decryption protocol for the Kyber encapsulation scheme [41]. Here, the encryp-
tion is over a rank 2 module over a ring of dimension N = 256 and modulus
q = 3329 with secret and noise values bounded by B∞ = 2. The proof of correct
decryption of binary messages of dimension 256 is of size 43.6 KB, which of equal
size as in our protocol for λ = 3. We note that the message space is smaller than
in our protocol, mostly because we are forced to choose larger parameters to
ensure correct decryption, and hence, we can not provide a proof of verifiable
decryption for Kyber in particular. They do not provide timings, but we notice
that the proof system use Gaussian sampling, rejection sampling, partially split-
ting rings and automorphisms – making the protocol very difficult to implement
correctly and securely in practice.

7.4 Comparison to Silde (VOTING’22)

Silde [44] presents a direct verifiable decryption of BGV ciphertexts. The param-
eters are similar to our scheme, and the proof is of size 47 KB per ciphertext.
This the same as in our scheme for λ = 4, ignoring the setup cost, while smaller
for larger λ. The timing of the decryption protocol is 90 ms per ciphertext, which
is equal to our timings for λ = 23 and otherwise up to 6 times faster for λ = 128.

Acknowledgment. We thank Carsten Baum and the anonymous reviewers for helpful
comments.

References

1. Adida, B.: Helios: web-based open-audit voting. In: van Oorschot, P.C. (ed.)
USENIX Security 2008, pp. 335–348. USENIX Association (2008)

372 K. Gjøsteen et al.

2. Aguilar Melchor, C., Barrier, J., Guelton, S., Guinet, A., Killijian, M.O., Lepoint,
T.: NFLlib: NTT-based fast lattice library. In: Sako, K. (ed.) CT-RSA 2016. LNCS,
vol. 9610, pp. 341–356. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-319-29485-8 20

3. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. J. Math. Cryptol. 9(3), 169–203 (2015)

4. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: Lightweight sub-
linear arguments without a trusted setup. In: Thuraisingham, B.M., Evans, D.,
Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 2087–2104. ACM Press (2017).
https://doi.org/10.1145/3133956.3134104

5. Aranha, D.F., Baum, C., Gjøsteen, K., Silde, T.: Verifiable mix-nets and dis-
tributed decryption for voting from lattice-based assumptions. Cryptology ePrint
Archive, Report 2022/422 (2022). https://ia.cr/2022/422

6. Attema, T., Lyubashevsky, V., Seiler, G.: Practical product proofs for lattice com-
mitments. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol.
12171, pp. 470–499. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
56880-1 17

7. Baum, C., Bootle, J., Cerulli, A., del Pino, R., Groth, J., Lyubashevsky, V.: Sub-
linear lattice-based zero-knowledge arguments for arithmetic circuits. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 669–699. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 23

8. Baum, C., Damg̊ard, I., Lyubashevsky, V., Oechsner, S., Peikert, C.: More efficient
commitments from structured lattice assumptions. In: Catalano, D., De Prisco, R.
(eds.) SCN 2018. LNCS, vol. 11035, pp. 368–385. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-98113-0 20

9. Baum, C., Nof, A.: Concretely-efficient zero-knowledge arguments for arithmetic
circuits and their application to lattice-based cryptography. In: Kiayias, A.,
Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12110, pp.
495–526. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45374-9 17

10. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.:
Aurora: transparent succinct arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019. LNCS, vol. 11476, pp. 103–128. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17653-2 4

11. Bendlin, R., Damg̊ard, I.: Threshold decryption and zero-knowledge proofs for
lattice-based cryptosystems. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol.
5978, pp. 201–218. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-11799-2 13

12. Bertot, Y., Castéran, P., Huet, G., Paulin-Mohring, C.: Interactive theorem proving
and program development : Coq’Art : the calculus of inductive constructions. Texts
in theoretical computer science, Springer (2004). https://doi.org/10.1007/978-3-
662-07964-5

13. Bettaieb, S., Schrek, J.: Improved lattice-based threshold ring signature scheme. In:
Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932, pp. 34–51. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38616-9 3

14. Beullens, W.: Sigma protocols for MQ, PKP and SIS, and fishy signature schemes.
In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp. 183–
211. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3 7

15. Boschini, C., Camenisch, J., Ovsiankin, M., Spooner, N.: Efficient Post-quantum
SNARKs for RSIS and RLWE and Their Applications to Privacy. In: Ding, J.,
Tillich, J.-P. (eds.) PQCrypto 2020. LNCS, vol. 12100, pp. 247–267. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-44223-1 14

https://doi.org/10.1007/978-3-319-29485-8_20
https://doi.org/10.1007/978-3-319-29485-8_20
https://doi.org/10.1145/3133956.3134104
https://ia.cr/2022/422
https://doi.org/10.1007/978-3-030-56880-1_17
https://doi.org/10.1007/978-3-030-56880-1_17
https://doi.org/10.1007/978-3-319-96881-0_23
https://doi.org/10.1007/978-3-319-98113-0_20
https://doi.org/10.1007/978-3-319-98113-0_20
https://doi.org/10.1007/978-3-030-45374-9_17
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-642-11799-2_13
https://doi.org/10.1007/978-3-642-11799-2_13
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-642-38616-9_3
https://doi.org/10.1007/978-3-030-45727-3_7
https://doi.org/10.1007/978-3-030-44223-1_14

Verifiable Decryption in the Head 373

16. Boyle, E., Kohl, L., Scholl, P.: Homomorphic secret sharing from lattices without
FHE. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp.
3–33. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3 1

17. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: Goldwasser, S. (ed.) ITCS 2012, pp. 309–
325. ACM (2012). https://doi.org/10.1145/2090236.2090262

18. Groot Bruinderink, L., Hülsing, A., Lange, T., Yarom, Y.: Flush, Gauss, and
Reload – a cache attack on the bliss lattice-based signature scheme. In: Gierlichs,
B., Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 323–345. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53140-2 16

19. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F.
(ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993).
https://doi.org/10.1007/3-540-48071-4 7

20. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority - or: Breaking the SPDZ limits. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
1–18. Springer, Heidelberg (Sep (2013)

21. Damg̊ard, I., Orlandi, C., Takahashi, A., Tibouchi, M.: Two-Round n-out-of-n and
multi-signatures and trapdoor commitment from lattices. In: Garay, J.A. (ed.) PKC
2021. LNCS, vol. 12710, pp. 99–130. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-75245-3 5

22. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty Computation from
Somewhat Homomorphic Encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

23. Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, New York (1990). https://
doi.org/10.1007/0-387-34805-0 28

24. Dodis, Y., Halevi, S., Rothblum, R.D., Wichs, D.: Spooky encryption and its appli-
cations. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 93–
122. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3 4

25. Espitau, T., Fouque, P.A., Gérard, B., Tibouchi, M.: Side-channel attacks on BLISS
lattice-based signatures: Exploiting branch tracing against strongSwan and elec-
tromagnetic emanations in microcontrollers. In: Thuraisingham, B.M., Evans, D.,
Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 1857–1874. ACM Press (2017).
https://doi.org/10.1145/3133956.3134028

26. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

27. Gordon, D.M.: A survey of fast exponentiation methods. J. Algorithms 27(1),
129–146 (1998). https://doi.org/10.1006/jagm.1997.0913

28. Haines, T., Lewis, S.J., Pereira, O., Teague, V.: How not to prove your election
outcome. In: 2020 IEEE Symposium on Security and Privacy, pp. 644–660. IEEE
Computer Society Press (2020). https://doi.org/10.1109/SP40000.2020.00048

29. Haines, T., Müller, J.: SoK: techniques for verifiable mix nets. In: Jia, L., Küsters,
R. (eds.) CSF 2020 Computer Security Foundations Symposium, pp. 49–64. IEEE
Computer Society Press (2020). https://doi.org/10.1109/CSF49147.2020.00012

30. Heiberg, S., Willemson, J.: Verifiable internet voting in Estonia. In: 6th Interna-
tional Conference on Electronic Voting: Verifying the Vote, EVOTE 2014 (2014)

https://doi.org/10.1007/978-3-030-17656-3_1
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1007/978-3-662-53140-2_16
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/978-3-030-75245-3_5
https://doi.org/10.1007/978-3-030-75245-3_5
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/0-387-34805-0_28
https://doi.org/10.1007/0-387-34805-0_28
https://doi.org/10.1007/978-3-662-53015-3_4
https://doi.org/10.1145/3133956.3134028
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1006/jagm.1997.0913
https://doi.org/10.1109/SP40000.2020.00048
https://doi.org/10.1109/CSF49147.2020.00012

374 K. Gjøsteen et al.

31. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: Johnson, D.S., Feige, U. (eds.) 39th ACM STOC. pp.
21–30. ACM Press (2007). https://doi.org/10.1145/1250790.1250794

32. Kawachi, A., Tanaka, K., Xagawa, K.: Concurrently secure identification schemes
based on the worst-case hardness of lattice problems. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 372–389. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-89255-7 23

33. Keller, M., Pastro, V., Rotaru, D.: Overdrive: making SPDZ great again. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 158–
189. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7 6

34. Ling, S., Nguyen, K., Stehlé, D., Wang, H.: Improved zero-knowledge proofs of
knowledge for the ISIS problem, and applications. In: Kurosawa, K., Hanaoka,
G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 107–124. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36362-7 8

35. Luo, F., Wang, K.: Verifiable decryption for fully homomorphic encryption. In:
Chen, L., Manulis, M., Schneider, S. (eds.) ISC 2018. LNCS, vol. 11060, pp. 347–
365. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99136-8 19

36. Lyubashevsky, V.: Fiat-shamir with aborts: applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
598–616. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-
7 35

37. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 43

38. Lyubashevsky, V., Nguyen, N.K., Seiler, G.: Shorter lattice-based zero-knowledge
proofs via one-time commitments. In: Garay, J.A. (ed.) PKC 2021. LNCS, vol.
12710, pp. 215–241. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
75245-3 9

39. Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
35–54. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 3

40. Peng, K., Boyd, C., Dawson, E.: Batch zero-knowledge proof and verification and
its applications. ACM Trans. Inf. Syst. Secur. 10(2), 6 (2007)

41. Schwabe, P., et al.: CRYSTALS-KYBER. Tech. rep., National Institute of Stan-
dards and Technology (2020), available at https://csrc.nist.gov/projects/post-
quantum-cryptography/round-3-submissions

42. Shirazi, F., Simeonovski, M., Asghar, M.R., Backes, M., Diaz, C.: A survey on
routing in anonymous communication protocols. ACM Comput. Surv. 51(3) (2018).
https://doi.org/10.1145/3182658

43. Shoup, V.: NTL: a library for doing number theory (2021). https://libntl.org/
index.html

44. Silde, T.: Verifiable Decryption for BGV. Workshop on Advances in Secure Elec-
tronic Voting (2022). https://ia.cr/2021/1693

https://doi.org/10.1145/1250790.1250794
https://doi.org/10.1007/978-3-540-89255-7_23
https://doi.org/10.1007/978-3-319-78372-7_6
https://doi.org/10.1007/978-3-642-36362-7_8
https://doi.org/10.1007/978-3-319-99136-8_19
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-29011-4_43
https://doi.org/10.1007/978-3-030-75245-3_9
https://doi.org/10.1007/978-3-030-75245-3_9
https://doi.org/10.1007/978-3-642-38348-9_3
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.1145/3182658
https://libntl.org/index.html
https://libntl.org/index.html
https://ia.cr/2021/1693

Resumable Zero-Knowledge for Circuits
from Symmetric Key Primitives

Handong Zhang1,2, Puwen Wei1,2(B), Haiyang Xue3, Yi Deng4,5, Jinsong Li1,2,
Wei Wang1,2, and Guoxiao Liu1,2

1 Key Laboratory of Cryptologic Technology and Information Security,
Ministry of Education, Shandong University, Jinan, China

{hdzhang,jsli,liuguoxiao}@mail.sdu.edu.cn, {pwei,weiwangsdu}@sdu.edu.cn
2 School of Cyber Science and Technology, Shandong University, Qingdao, China

3 The University of Hong Kong, Pokfulam, Hong Kong, China
haiyangxc@gmail.com

4 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing, China

deng@iie.ac.cn
5 School of Cyber Security, University of Chinese Academy of Sciences, Beijing,

China

Abstract. Consider the scenario that the prover and the verifier per-
form the zero-knowledge (ZK) proof protocol for the same statement
multiple times sequentially, where each proof is modeled as a session.
We focus on the problem of how to resume a ZK proof efficiently in
such scenario. We introduce a new primitive called resumable honest
verifier zero-knowledge proof of knowledge (resumable HVZKPoK) and
propose a general construction of the resumable HVZKPoK for circuits
based on the “MPC-in-the-head” paradigm, where the complexity of the
resumed session is less than that of the original ZK proofs. To ensure
the knowledge soundness for the resumed session, we identify a prop-
erty called extractable decomposition. Interestingly, most block ciphers
satisfy this property and the cost of resuming session can be reduced
dramatically when the underlying circuits are implemented with block
ciphers. As a direct application of our resumable HVZKPoK, we con-
struct a post quantum secure stateful signature scheme, which makes
Picnic3 suitable for blockchain protocol. Using the same parameter set-
ting of Picnic3, the sign/verify time of our subsequent signatures can
be reduced to 3.1%/3.3% of Picnic3 and the corresponding signature
size can be reduced to 36%. Moreover, by applying a parallel version
of our method to the well known Cramer, Damg̊ard and Schoenmak-
ers (CDS) transformation, we get a compressed one-out-of-N proof for
circuits, which can be further used to construct a ring signature from
symmetric key primitives only. When the ring size is less than 24, the
size of our ring signature scheme is only about 1/3 of Katz et al.’s con-
struction.

Keywords: Resumable · Honest verifier zero-knowledge ·
MPC-in-the-head · Stateful signature · Ring signature · Blockchain

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
K. Nguyen et al. (Eds.): ACISP 2022, LNCS 13494, pp. 375–398, 2022.
https://doi.org/10.1007/978-3-031-22301-3_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22301-3_19&domain=pdf
https://doi.org/10.1007/978-3-031-22301-3_19

376 H. Zhang et al.

1 Introduction

Zero-knowledge (ZK) proofs [29,30] and their non-interactive form (NIZK) [12],
which allow a prover to convince a verifier of a certain statement without reveal-
ing any additional information, are among the most fundamental and important
cryptographic primitives. It is known that there exists ZK proof [29] for any NP
language, while the resulting construction is rather inefficient. A lot of works
have been done to propose efficient (NI)ZK proofs for arbitrary circuits or spe-
cific algebraic computation, e.g., zk-SNARKs [9,25], which have short proof for
a statement. Some works focus on the efficient composition of ZK proofs for sev-
eral statements [1,20,24]. Other works such as [14,34,40] investigate the batch
ZK proofs, which enable many instances of the same relation to be proved and
verified simultaneously. Amongst most of those constructions, the randomness
and the related transcripts are “recycled” or compressed in one execution of the
resulting ZK protocol in order to reduce the cost of computation or communi-
cation.

Notice that one common case of ZK proof, however, is proving the same
statement repeatedly multiple times. For example, a user may be required to
provide digital signatures on different messages periodically, where each signa-
ture can be thought of as one execution of the NIZK proof of knowledge of the
signing key [7]. One typical application is validating the authenticity of firmware
updates for IoT devices. The manufacturer periodically offers firmware updates
and the corresponding signatures, and the IoT devices verify these signatures in
order to ensure the authenticity of the updates. Another direct application of ZK
is the identification protocol, which could be used by a company to determine
the identity of a user each time he tries to access company resources.

Hence, it is worth considering the efficiency of ZK protocols in a scenario
where the prover and the verifier need to run the ZK proof of a statement many
times (sequentially). In practice, the state information derived from previous
sessions could be reused in the following sessions to achieve significant savings
in processing load and bandwidth, e.g., session resumption of TLS 1.3 [41]. It is
desired that the ZK protocol for the subsequent sessions be much more efficient
than that of the original one. Therefore, a natural question is that

How can we resume a session of ZK proofs efficiently?

An intuitive way is to reuse the information of previous ZK sessions (of the same
statement). In fact, similar issues have been considered in the research of NIZK.
A series of works explored how to reuse the common reference string (CRS) of
NIZK for multiple theorems and multiple provers [12,22,33], which implies the
case of CRS reuse in multiple sessions (or executions). On the interactive ZK
protocols, how to securely reuse previous transcripts among different sessions is,
however, more subtle and tends to result in a breach of security. For instance,
the witness in many Σ protocols can be extracted when the same commitments
are reused in different sessions (with different challenges).

In another recent line of works, researchers have shown how to use secure
multiparty computation (MPC) to obtain (NI)ZK proofs, and further quantum-

Resumable Zero-Knowledge for Circuits from Symmetric Key Primitives 377

resistant signatures. Ishai et al. [35] showed how to use the so-called “MPC-
in-the-head” approach to obtain public-coin ZK proofs. Their scheme was fur-
ther improved by [18,26] to obtain quantum-resistant signature via Fiat-Shamir
transformation [23]. The resulting signature Picnic [16], which was submitted
to the NIST post-quantum standardization effort, is very competitive, since its
security is based entirely on symmetric-key primitives. But it is still less efficient
than lattice-based CRYSTALS-DILITHIUM [4] and multivariate-based Rainbow
[21]. So we would like to ask whether we could reduce the overall complexity of
Picnic when considering multiple sequential signing requests. In other words, how
can we resume the signing/verifying procedure of Picnic efficiently?

1.1 Our Contributions

We introduce the notion of resumable honest verifier ZK proof of knowledge
(resumable HVZKPoK) to capture the security and efficiency of HVZKPoK in
the scenario of session resumption. In that scenario, the prover and the verifier
can perform the ZK proofs multiple times sequentially, where each proof is exe-
cuted in a session. Informally, we say an HVZKPoK is resumable if it satisfies
(1) resumable zero-knowledge, i.e., no additional information about the witness
is revealed from all sessions; (2) resumable knowledge soundness, i.e., the witness
can be extracted from every session; (3) resumption efficiency, i.e., the cost of
the resumed session in terms of both computation and communication should
be much less than that of the initial session (or the original ZK proofs).

The main challenge of constructing resumable HVZKPoK is to achieve resum-
able knowledge soundness while preserving resumption efficiency, since removing
or reusing partial transcripts of the original ZK proofs would undermine or break
its soundness property in general. To overcome that problem, we investigate the
“MPC-in-the-head” paradigm in the preprocessing model proposed by Katz,
Kolesnikov and Wang (KKW) [38], and find that their proofs can be separated
according to the decomposition of circuits, where the proofs for the correspond-
ing partial circuits can be further rerandomized without breaking the security.
By making use of such separability of the KKW proofs, we provide a general
construction of the resumable HVZKPoK. The main idea is that the underlying
circuits are decomposed into two parts, where the proofs for the partial circuits
with smaller size can be rerandomized. Once the initial session of proofs for the
entire circuits is finished, both the prover and the verifier can resume a session
by running the rerandomized proofs for the partial circuits only. Since the cost
of the KKW proofs is closely related to the number of the AND gates of the
circuits, the cost of the resumed session is reduced significantly due to the size
of the partial circuits.

Notice that only proofs for the partial circuits usually cannot achieve knowl-
edge soundness implied by the proofs for the entire circuits. To mitigate that
problem, we identify a property called extractable decomposition, which guar-
antees that the witness can be extracted from the inputs of the separated partial
circuits. Interestingly, most block ciphers satisfy this property. In addition, the

378 H. Zhang et al.

circuits of block ciphers can be decomposed such that the separated partial cir-
cuits have no AND gates. Hence, the cost for resuming sessions can be made
very small when implemented with block ciphers. By applying the Fiat-Shamir
heuristic [23], our resumable HVZKPoK can be transformed into a stateful post-
quantum signature scheme. Comparing with the typical chain-based stateful sig-
nature [37], the main advantage of our scheme is that, once the initial signature
has been generated, the subsequent signatures are much more efficient than the
initial one.

We implement our signature and give a comparison with Picnic3 [36]. The
sign/verify time of our subsequent signatures can be reduced to 3.1%/3.3%-
9.2%/8.8% of Picnic3 and the corresponding signature size can be reduced to
36.0%-38.1%. (For the fixed verifier, the size of the state information needed to
be stored is about 2.9 KB-10.9KB.) Although the complexity of our first signa-
ture is slightly higher than Picnic3, it is worthy for the reducing cost of subse-
quent signatures. In particular, our stateful signatures make the symmetric-based
signatures, such as Picnic3, suitable for the post-quantum secure blockchain pro-
tocol. That is, the previous signatures (or the states) can be stored in the history
blocks efficiently and publicly. The verifier only needs to check the validity of the
current signature without checking all previous signatures, since the validity of
the previous signatures is implied by the consistency of the underlying consensus
protocol.

Moreover, applying our method to the Cramer, Damg̊ard and Schoenmakers
(CDS) technique [20], we construct a compressed one-out-of N proof, where
most of the transcripts for the simulation in CDS technique can be removed.
Furthermore, we can construct a ring signature from symmetric key primitives
using our compressed one-out-of N proof (without resorting to the Merkle-tree
based accumulator). Comparing with the ring signatures from symmetric key
primitives proposed by [38], the size of our ring signature is about 1/3 of [38]
when the ring size is less than 24.

1.2 Related Works

Zero-Knowledge from Symmetric Primitives. Most efficient ZK proofs
exist for a restricted set of languages, e.g., languages relying on algebraic struc-
tures. To construct efficient ZK proofs for a larger class of languages, many works
focus on ZK proofs for arbitrary circuits [8–11,13,15,19,25,31,32,39,43], which
have relatively short proofs size and verification time. However, most efficient
constructions require a trusted setup or rely on assumptions, which are insecure
in the quantum setting.

Ishai et al. [35] introduced a novel way of constructing ZK proofs, called
“MPC-in-the-head”, which is based on secure multi-party computation (MPC)
protocols. Following the idea of [35], Giacomelli et al. [26] proposed ZKBoo which
supports efficient non-interactive (NI) ZKPoKs for arbitrary circuits. Chase et
al. [18] improved the performance of ZKBoo and proposed ZKB++, which is used
to construct the post-quantum secure signature scheme, called Picnic. Compared

Resumable Zero-Knowledge for Circuits from Symmetric Key Primitives 379

with other post-quantum secure signature candidates, Picnic relies on the secu-
rity of the underlying symmetric-key primitives instead of structured hardness
assumptions. Although Picnic has good performance on the speed when imple-
mented on hardware, it has a large signature size which is linear in the size of
the circuits. Ames et al. [3] proposed Ligero with sublinear proof size, which
asymptotically outperforms ZKBoo and ZKB++. Katz et al. [38] instantiated
the MPC-in-the-head paradigm in the preprocessing model, which can reduce
the number of parallel repetitions, and provided an improved version of Picnic,
called Picnic2. Guilhem et al. [42] applied the “MPC-in-the-head with prepro-
cessing” approach to the arithmetic circuit of AES and implemented a signature
scheme, called BBQ, whose security is based on AES. Baum et al. [6] proposed
a novel way to construct an AES-based signature scheme, called Banquet, which
reduces the signature size compared with BBQ and its implementation results
show that Banquet can be made almost as efficient as Picnic2 . Baum and Nof [5]
incorporated the “sacrificing” paradigm into “MPC-in-the-head” to reduce the
proof size for arithmetic circuits. Kales and Zaverucha [36] made further opti-
mizations and presented a new parameter set for Picnic2, called Picnic3. Goel
et al. [27] introduced a general framework for constructing Σ-protocols of dis-
junctive proof which can be used to implement ring signature. Recently, Goel et
al. [28] proposed a novel technique for efficiently adding set membership proofs
to any MPC-in-the-head based ZK protocol and the resulting ring signatures
outperform Katz et al.’s construction by a factor of 5 to 8.

2 Preliminaries

Notations. Let [n] denote {1, . . . , n} and κ denote the security parameters. Let
C and C ′ be the boolean circuit representation of F and f , respectively, where
C and C ′ consists of XOR and AND gates. Let |C| denotes the number of AND
gates in the circuit C and |Cin/out| denotes the number of input/output wires
of C. Let LR ⊆ {0, 1}∗ be an NP language and R be the related NP-relation
for circuit C. A ≈c B denotes computational indistinguishability between dis-
tributions A and B. Let Com denote a commitment scheme. A commitment to
a message m is denoted as com = Com(m; r) where r ∈ {0, 1}κ is chosen uni-
formly. We say Com is secure if it satisfies the following properties: (1) Hiding :
Com(m; r) reveals noting about m; (2) Binding : it is hard to find two messages
m �= m′ such that Com(m; r) = Com(m′; r′). Let H denote the hash function.
We say H is collision-resistant if the probability that any PPT adversary finds
x and x′ such that H(x) = H(x′) and x �= x′ is negligible.

2.1 MPC-in-the-head with Preprocessing

MPC-in-the-head paradigm [35] is a novel technique to construct ZK proofs from
MPC protocols. Suppose the statement to be proven is (C, y), where C(w) =
y and w is the witness. Following the MPC-in-the-head paradigm, the prover
simulates an MPC protocol which evaluates the circuit C among all the parties

380 H. Zhang et al.

in his head and the input of each party is a secret sharing of the witness w.
The prover then commits to the views of each party in the execution of the
MPC protocol. The verifier randomly chooses a subset of these commitments
as the challenge. Once receiving the challenge, the prover opens the challenged
commitments. The verifier checks the correctness and consistency of these views.

MPC-in-the-head with preprocessing (KKW) [38] improves MPC-in-the-head
paradigm and the resulting scheme can achieve the required soundness with
much shorter proofs. Loosely speaking, the KKW protocol has two phases, the
preprocessing phase and the online phase. In the preprocessing phase, the prover
generates random masks for each party, which are used to hide the witness. In
the online phase, the prover simulates the execution of the MPC protocol using
the masked shares of each party and the masked input (or the masked witness)
of the circuit. Note that the verifier needs to challenge both phases. The main
techniques of MPC-in-the-head with preprocessing are described below.

Let [x] denote an n-out-of-n (XOR-based) secret sharing scheme of a bit
x, i.e., x = [x]1 ⊕ · · · ⊕ [x]n, where [x]i for 1 ≤ i ≤ n is the secret share.
Suppose the underlying n-party MPC protocol is Π, which is executed by n
parties P1, · · · , Pn. Let zα denote the value of wire α of C(w). zα will be masked
by a random bit λα, say, ẑα = zα ⊕ λα. Each party Pi will hold [λα]i, which is
a share of λα.

– Preprocessing phase. In the preprocessing phase, the prover generates the
masks for each party Pi. More precisely, Pi is given the following values.

• [λα]i for each input wire α.
• [λγ]i for the output wire γ of each AND gate.
• [λα,β]i for each AND gate with input wires α and β such that λα,β =

λα · λβ .
[λα]i and [λγ]i can be generated using a pseudorandom generator (PRG)
with a random seed seedi, for i = 1, . . . , n, where [λα]1 ⊕ · · · ⊕ [λα]n = λα

and [λγ]1 ⊕ · · · ⊕ [λγ]n = λγ . Hence, seedi instead of {[λα]i} and {[λγ]i} is
given to Pi so that the total proof size can be reduced. Notice that [λα,β]n
cannot be generated using seedn only due to λα,β = λα · λβ . Actually, n − 1
shares of λα,β are generated using PRG, while the share of Pn is computed by
[λα,β]n := λαλβ ⊕ [λα,β]1 ⊕ · · · [λα,β]n−1, which plays the role of “correction
bits”. Therefore, party Pn needs to be given auxn = {[λα,β]n} for all AND
gates in addition to seedn.

– Online phase. During the online phase, each party Pi runs the underlying
n-party MPC protocol Π to evaluate the circuit C gate-by-gate in topological
order. For each gate with input wires α and β and output wire γ,

• For an XOR gate, Pi can locally compute ẑγ = ẑα ⊕ ẑβ and [λγ]i =
[λα]i ⊕ [λβ]i, since Pi already holds ẑα, [λα]i, ẑβ and [λβ]i.

• For an AND gate, Pi locally computes [s]i = ẑα[λβ]i ⊕ ẑβ [λα]i ⊕ [λα,β]i ⊕
[λγ]i, publicly reconstructs s, and computes ẑγ = s⊕ ẑαẑβ which satisfies
ẑγ = zγ ⊕ λγ . Note that party Pi holds [λα,β]i and [λγ]i in addition to
ẑα, [λα]i, ẑβ and [λβ]i for each AND gate.

Resumable Zero-Knowledge for Circuits from Symmetric Key Primitives 381

Finally, each party Pi can compute ẑγ for the output wire γ of the circuit, and
the output value zγ is computed as zγ = ẑγ ⊕ λγ , where λγ is reconstructed
publicly.

Security of the underlying MPC protocol. [17, Lemma 6.1] proves that the
underlying MPC protocol Πmpc is secure against an all-but-one corruption in the
semi-honest model by showing that there exists a simulator for the MPC protocol
Πmpc such that the real execution of Πmpc is computational indistinguishable
from the simulated execution of Πmpc under the assumption of secure PRG.

3 Resumable HVZK Proof of Knowledge

Let R be an efficiently decidable binary NP-relation which is polynomially
bounded, and LR be the NP-language defined by R. That is, ∃w such that
(x,w) ∈ R iff x ∈ LR. In our setting, the prover and the verifier can sequentially
perform the zero-knowledge proofs for LR polynomially-many times, say q(κ)
times, where each proof is modeled as a session and the t-th session is denoted
as session(t), for t ∈ {1, . . . , q(κ)}. In each session(t), the prover aims to con-
vince the verifier that he knows the witness w for statement x by running the
HVZKPoK protocol Π = {(P(t),V(t))}. Let P(t) = P(x,w, prt, pst) denote the
prover’s strategy of session(t), which takes as input the common-input x, witness
w, prover’s randomness prt and state pst. Here, pst is the prover’s state after
session(t − 1). Similarly, let V(t) = V(x, vrt, vst) denote the verifier’s strategy of
session(t), which takes as inputs the common-input x, verifier’s randomness vrt

and state vst.
In this paper, we transform an “ordinary” HVZKPoK Π ′ = (P ′,V ′) to a

resumable HVZKPoK Π = {(P(t),V(t))}, the security of which is more subtle. In
particular, we have to ensure that the adversary who does not have the knowledge
of the witness cannot convince the verifier in any session, even that the adversary
can have access to the transcripts of all previous sessions. Consider the following
game on soundness. The adversary A can invoke the “honest” prover to run
Π for x ∈ LR with the verifier for polynomially-many sequential sessions, say,
session(1), . . . , session(q(κ) − 1), where A can get all the transcripts of these
sessions. For the next session, say session q(κ), A runs Π with the verifier for
x ∈ LR, trying to convince the verifier without the help of the “honest” prover.
The soundness of the resumable HVZK is defined according the above game,
which requires that A can win the game only with negligible probability. Formal
definition of resumable HVZKPoK is described below.

Definition 1 (Resumable HVZK Proof of Knowledge). Π = {(P(t),
V(t))} is a resumable honest verifier zero-knowledge proof of knowledge for the
relation R with soundness error ξ if the following properties hold:

– Completeness: If the prover and the verifier follow the protocol (P(t),V(t))
on inputs x ∈ LR and witness w ∈ Rx, then the verifier always accepts in
each session(t), for t ∈ {1, . . . , q(κ)}.

382 H. Zhang et al.

– Resumable Honest Verifier Zero-Knowledge: Let viewP
V (x,w) be the

transcripts of all the sessions run by the prover and the verifier. There exists
a PPT simulator Sim such that Sim(x) ≈c viewP

V (x,w) for all x ∈ LR and
w ∈ Rx.

– Resumable Knowledge Soundness: For each session(t), there exists a
probabilistic knowledge extractor E, such that for every P̂(t) and every x ∈ LR,
the algorithm E satisfies the following condition:

• Let δt(x) denote the probability that the verifier accepts on input x for
(P̂(t),V(t)) of session(t). If δt(x) > ξt(x), then upon input x ∈ LR and
oracle access to P̂(t), the algorithm E outputs a valid witness w ∈ Rx in
expected number of steps bounded by O(1

δt(x)−ξt(x)).
Here, ξt denotes the soundness error of session(t) for t ∈ {1, . . . , q(κ)}. Let
ξ = max{ξ1, . . . , ξq(κ)}.

– Resumption efficiency: For each session(t) with t > 1, the computational
and communicational complexity of (P(t),V(t)) should be less than that of the
original HVZKPoK Π ′ = (P ′,V ′) for R. That is, resumable HVZK proof of
knowledge should be efficient in each resumed session.

Here, the statement x of R is of the form (F, y), such that (x,w) ∈ R iff
F (w) = y, where F denotes a function. Let C be the circuit representation of F .
So the statement can be rewritten as (C, y), such that (x,w) ∈ R iff C(w) = y.
As mentioned in Sect. 1, the function F needs to satisfy a special property called
extractable decomposition, which is defined as follows.

Definition 2 (Extractable Decomposition). Let F : {0, 1}κ → {0, 1}κ′
be a

function which has a decomposition as F = f ◦ g. We say the decomposition is
extractable if, for all x ∈ {0, 1}κ, there exists an efficient extractor ED such that
ED(g(x)) = x.

Consider the case that F (w) = Enc(w,m), where Enc(w,m) is a block cipher
with the private key w and the plaintext m. It is known that a typical block
cipher consists of multiple rounds, where each round takes as inputs the output
of previous round and the corresponding subkey (or round key) derived from the
master key w. Note that the subkey schedule of most block ciphers is reversable,
which implies most block ciphers naturally satisfy the property of extractable
decomposition. Concretely, given a block cipher with n rounds, the first n − 1
rounds as well as the key schedule can be taken as g, and the last round is
taken as f . Suppose the output of g(w) is w′, which consists of the output of
the (n − 1)-th round and n-th round key kn. f takes as input w′ and outputs
the final ciphertext. Obviously, w can be extracted from w′, which implies the
extractability of the decomposition.

4 General Construction for Resumable HVZKPoK

In this section, we present the general construction of resumable HVZKPoK
from the KKW protocol. We first abstract the construction of the original KKW

Resumable Zero-Knowledge for Circuits from Symmetric Key Primitives 383

protocol [38] for F (w) = y, where F has a decomposition as F = f ◦ g. Then,
we show how to efficiently resume HVZKPoK for w′ such that f(w′) = y and
w′ = g(w). Recall that C and C ′ denote the circuit representation of F and f ,
respectively. So F (w) = y and f(w′) = y can be rewritten as C(w) = y and
C ′(w′) = y, respectively.

4.1 KKW Protocol for F

The KKW protocol πF for C(w) = y, i.e., F (w) = y, consists of the preprocessing
phase πF

pre and the online phase πF
on. πF

pre shows that the n parties’ states are
generated randomly and correctly by “cut-and-choose”, and πF

on ensures that
each party’s view in the MPC protocol are correct and consistent. Let M denote
the number of repetitions for reducing the soundness error.
Preprocessing phase πF

pre(1
κ).

– Round 1. Commit to the masks of M instances.
The prover prepares the masks λj of the MPC protocol for the circuit C as
described in Sect. 2.1 for each instance j ∈ [M]. Since λj is determined by
n parties’ states {statej,1, . . . , statej,n}, which are the random seeds and the
n-th party’s auxiliary information, the prover only needs to commit to those
states. The corresponding commitments are denoted as comF

pre. The prover
sends comF

pre to the verifier.
– Round 2. Challenge for the preprocessing phase.

The verifier chooses a random subset C ∈ [M] with |C| = τ , which is used to
challenge the prover to open the commitments of instances in [M]\C, so that
the verifier can check the randomness and correctness of λj for each instance
j ∈ [M]\C. The verifier sends C to the prover.

– Round 3-a. Respond to the challenge for the preprocessing phase.
The prover computes the openings of the commitments of instances in [M]\C.
Denote these openings as respF

pre. The prover sends respF
pre to the verifier.

Online phase πF
on(w, {statej,i}j∈C,i∈[n]).

– Round 3-b. Commit to the views of each party.
The prover runs the n-party MPC protocol for C(w) = y using the masks λj

and the witness w for each instance j ∈ C, and computes the commitments
to the views of each party in the MPC protocol execution. Let comF

on denote
these commitments. (For simplicity, the masked values of input, e.g., ŵj =
w ⊕ λj,w, is considered to be part of comF

on.) The prover sends comF
on to the

verifier.
– Round 4. Challenge for the online phase.

The verifier chooses a random set P = {pj}j∈C with pj ∈ [n], which is used
to challenge the prover to open the views of all but the pj-th party for each
instance j ∈ C, so that the verifier can check the consistency of n − 1 parties’
views for that instance. The verifier sends P to the prover.

384 H. Zhang et al.

– Round 5. Respond to the challenge for the online phase.
The prover computes the openings of all but the pj-th party’s commitments
for each instance j ∈ C. Let respF

on denote these openings. The prover sends
respF

on to the verifier.

Verification Strategy.

1. For the opened instances in [M]\C, the verifier uses respF
pre to recover parts

of the openings of comF
pre, which are also used to check the randomness and

correctness of the masks.
2. For each unopened instance in C, the verifier uses respF

on and the masked
values of input to simulate the MPC protocol for C(w) = y and recover the
openings of comF

on and the remaining openings of comF
pre.

3. The verifier checks the output of the simulation of the MPC protocol and the
consistency of comF

pre and comF
on.

4.2 Intuitive Construction for Resumable HVZKPoK

Once the verifier accepts the proof, he is convinced not only that the prover has
the witness in the current session, but also the correctness and randomness of
the transcripts implied by the proof. We notice that the verifier’s trust on some
transcripts of KKW protocol can be “reused” to reduce the cost of proofs when
resuming sessions. An intuitive construction of resumable HVZKPoK for F is
described as follows, where the decomposition F = f ◦g is public. For simplicity,
we only consider the case of two sessions.

– HVZKPoK for the initial session. It is similar to the original KKW
protocol, except that the prover needs to prepare preprocessing values for the
next session and proves the consistency of w′ and w. Let πf = (πf

pre, π
f
on)

denote the KKW proof for C ′(w′) = y, i.e., f(w′) = y. HVZKPoK for the
initial session consists of the following phases.
1. πF : The original KKW proof for w such that C(w) = y.
2. πf

pre: Prepare the preprocessing values of C ′(w′) = y for the next session.
In particular, πF and πf

pre can be merged with the same preprocessing
challenge C, which will be explained later.

3. πcert: Consistency proof for w and w′. That is, we need to guarantee that
w′ used in the next session is the correct intermediate value of C(·) when
evaluating on input w.

– HVZKPoK for the second session.
1. πf

on: Online phase of the KKW proof for C ′(w′) = y.

Note that πf
pre and πf

on constitutes the complete KKW protocol for C ′(w′) =
y. Intuitively, if the verifier can be convinced that the preprocessing data in
πf

pre is generated correctly, the prover only needs to run πf
on for the second

session. Suppose the verifier has accepted the initial session. Combining with
the consistency proof πcert for w and w′, the verifier can be convinced that
the prover has the knowledge of w in the second session. Therefore, the prover

Resumable Zero-Knowledge for Circuits from Symmetric Key Primitives 385

needs to provide efficient consistency proof for w and w′, while ensuring that
the preprocessing data in πf

pre are generated by the “honest” prover, who has
the knowledge of w. (Recall the soundness game mentioned in Sect. 3, where we
do not consider the malicious prover who has the knowledge of witness.) To do
so, we modify the KKW protocol πf

pre for C ′(w′) = y.

4.3 Modified KKW for f and Consistency Proof

Suppose λw′ is the random masks for w′ in πF , i.e., the masked intermediate
value ŵ′ = w′ ⊕ λw′ . The main modification of πf is that the generation of
the preprocessing data in πf

pre is based on λw′ . More specifically, the prover
rerandomizes ŵ′ using a random and public value Δ, i.e., w̄′ = w′ ⊕ λw′ ⊕ Δ.
Then, the prover generates the corresponding preprocessing values for the KKW
proof for C ′(w′) = y using λ′

w′ = λw′ ⊕Δ as the mask. Here, the prover generates
n−1 secret shares of λ′

w′ by running PRG with n−1 random seeds, while the n-th
secret share [λ′

w′]n is determined by [λ′
w′]n = λ′

w′ ⊕ [λ′
w′]1 ⊕· · ·⊕ [λ′

w′]n−1 and is
sent to the verifier. (comf

pre commits to the corresponding seeds for each party.)
Hence, the verifier only needs to challenge the prover to open n−2 parties’ views
in the online phase.

Based on the above modification, we can provide a simple and efficient con-
struction for the consistency proof πcert. After πf

pre, the prover computes a com-
mitment comon, which commits to comF

on||comf
pre||Δ||[λ′

w′]n, and sends comon

as well as comf
pre||Δ||[λ′

w′]n to the verifier. Since the verifier accepted the ini-
tial session, the consistency of comF

on and the preprocessing data of the initial
session, e.g., λw′ , has been checked. Due to the binding property of comon, the
rerandomized mask λ′

w′ = λw′ ⊕ Δ, which is determined by comf
pre||Δ, is hard

to be modified. In the second session, by checking the openings of comf
pre, it is

implicitly guaranteed that λ′
w′ is generated by the same “honest” prover of the

initial session. Therefore, the witness w′ implied by w̄′ is the same as that of the
initial session, i.e., w̄′ = w′ ⊕ λ′

w′ , and the verifier does not need to check the
correctness and randomness of the preprocessing data for the second session by
“cut-and-choose”. Notice that only the unopened instances in the initial session
need the simulated executions of the MPC protocol, which means only in these
instances, we need to rerandomize the masked intermediate value ŵ′. That is
why πF and πf

pre can be merged with the same preprocessing challenge C. To
summarize, the modified KKW πf = (πf

pre, π
f
on) for the partial circuits C ′ is

described as follows.
Preprocessing phase πf

pre({λj,w′}j∈C , C).

– Round 1-a. Rerandomize the masks for the instances in C.
1. The prover chooses a random seedΔ to generate Δj for each instance j ∈

C. Then, the prover computes the rerandomized masks λ′
j,w′ = λj,w′ ⊕Δj ,

where λj,w′ is the mask of ŵ′
j .

2. For each instance j ∈ C, the prover chooses a random seedj,i for each party
Pi to generate the share [λ′

j,w′]i for i ∈ [n− 1], while [λ′
j,w′]n is computed

by [λ′
j,w′]n = λ′

j,w′ ⊕ [λ′
j,w′]1 ⊕· · ·⊕ [λ′

j,w′]n−1. Other preprocessing values

386 H. Zhang et al.

are generated as described in Sect. 2.1. [λ′
j,w′]n is included as part of the

auxiliary information auxn. So we have auxn ∈ {0, 1}|C′|+|C′
in|. The prover

sets state′
j,i = seedj,i for i ∈ [n−1], and state′

j,n = seedj,n||auxn. Compute
comf

pre, which commits to the n parties’ states.
3. The prover sends state′

j,n, seedΔ and comf
pre to the verifier.

Online phase πf
on(w′, {state′

j,i}j∈C,i∈[n]).

– Round 1-b. Commit to the views of each party.
The prover runs the MPC protocol for C ′(w′) = y using the rerandom-
ized masks λ′

j,w′ (determined by {state′
j,i}i∈[n]) and the witness w′ for each

instance j ∈ C. The prover computes the commitment to the views of each
party during the MPC protocol. Denote these commitments as comf

on. Send
comf

on to the verifier.
– Round 2. Challenge for the online phase.

The verifier chooses a random set P = {pj}j∈C with pj ∈ [n − 1] in order
to challenge the prover to open the views of all but the pj-th party for each
instance j ∈ C, so that the verifier can check the consistency of n − 2 views
for that instance. The verifier sends P to the prover.

– Round 3. Respond to the challenge for the online phase.
The prover computes the openings of the commitments of those challenged
parties for each instance j ∈ C. Denote the response by respf

on. Send respf
on

to the verifier.

Verification Strategy. The verification strategy is similar to that of the origi-
nal KKW, except that there is no need to check the randomness and correctness
of the masks by cut-and-choose.

1. For each instance j ∈ C, the verifier uses respf
on, ŵ′

j , seed
Δ and state′

j,n to
simulate the MPC protocol for C ′(w′) = y and recover the openings of comf

on

and comf
pre. (Here, the verifier can get ŵ′

j after the initial session.)
2. The verifier checks the output of the simulation of the MPC protocol for C ′

and the consistency of comf
on and comf

pre.

5 Resumable HVZKPoK from KKW

Using the KKW protocol πF for C(w) = y and the modified version πf for
C ′(w′) = y as building blocks, we can construct the resumable HVZKPoK pro-
tocol ΠRes, which consists of two sub protocols ΠRes,1 and ΠRes,2. ΠRes,1 is
for the initial session and ΠRes,2 is for the resumed session. Figure 1 shows the
relations of the sub protocols of our general construction.

Resumable Zero-Knowledge for Circuits from Symmetric Key Primitives 387

Fig. 1. General construction for resumable HVZKPoK

5.1 Resumable HVZKPoK for Initial Session ΠRes,1

The resumable HVZKPoK ΠRes,1 = (πpre,1, πon,1) for the initial session is
described as follows.
Preprocessing phase πpre,1 = πF

pre(1
κ). The preprocessing phase is the same

as that of πF
pre(1

κ).

– Round 1. Commit to the masks of M instances.
The prover runs round 1 of πF

pre(1
κ), which computes the commitments

comF
pre,1 to {statej,i,1}j∈[M],i∈[n] for M instances, and sends comF

pre,1 to the
verifier.

– Round 2. Challenge for the preprocessing phase.
The verifier runs round 2 of πF

pre(1
κ) to send a random τ -sized set C to the

prover.
– Round 3-a. Respond to the challenge for the preprocessing phase.

The prover runs round 3 of πF
pre(1

κ) to generate the corresponding response,
denoted by respF

pre,1, and sends it to the verifier.

Online phase πon,1 = (πF
on(w, {statej,i,1}j∈C,i∈[n])∧πf

pre({λj,w′}j∈C , C)∧πcert).
The prover’s strategy of πon,1 includes: (1) Run πF

on(w, {statej,i,1}j∈C,i∈[n]) as the
original KKW protocol; (2) Prepare the masks for the next session; (3) Certify
these masks for the next session to ensure that the witness w′ which will be used
in the next session is consistent with w.

– Round 3-b.
1. Run round 3-b of πF

on(ω, {statej,i,1}j∈C,i∈[n]) to generate the correspond-
ing commitment comF

on,1. Denote the corresponding intermediate mask
as λj,w′ for each instance j ∈ C.

2. Run round 1-a of πf
pre({λj,w′}j∈C , C) to generate a random seedΔ

2 , the
state of each party {state′

j,i,2}j∈C,i∈[n] and comf
pre,2 as described above

for the next session.

388 H. Zhang et al.

3. Run πcert to commit to comF
on,1||comf

pre,2||seedΔ
2 ||{state′

j,n,2}j∈C . Denote
the corresponding commitment as comon,1. Send comon,1, com

f
pre,2, seed

Δ
2

and {state′
j,n,2}j∈C to the verifier.

– Round 4. Challenge for the online phase.
The verifier runs round 4 of πF

on(w, {statej,i,1}j∈C,i∈[n]) to send a random set
P = {pj}j∈C with pj ∈ [n] to the prover.

– Round 5. Respond to the challenge for the online phase.
The prover runs round 5 of πF

on(w, {statej,i,1}j∈C,i∈[n]) to generate the corre-
sponding response respF

on,1, and sends it to the verifier.

Verification Strategy. The verification strategy is similar to that of πF , except
that the verifier needs to check the consistency of comon,1.

1. For the opened instances in [M]\C, the verifier uses respF
pre,1 to recover parts

of the openings of comF
pre,1, which are also used to check the randomness and

correctness of masks.
2. For each unopened instance in C, the verifier uses respF

on,1 to simulate the
MPC protocol for C(w) = y and recover the openings of comF

on,1 and the
remaining openings of comF

pre,1.
3. The verifier checks the output of the simulation of the MPC protocol and the

consistency of comF
pre,1.

4. The verifier checks the consistency of comF
on,1 and comon,1.

State Update. The prover and the verifier need to maintain states for ses-
sion resumption. The prover’s initial state is pstate = w, and the verifier’s is
vstate =⊥. After the initial session, the prover and the verifier update their
states as follows.

– Prover’s state update: pstate = {ŵ′
j}j∈C ||seedΔ

2 ||{state′
j,i,2}j∈C,i∈[n], where ŵ′

j

is the masked intermediate value for each instance j ∈ C.
– Verifier’s state update: vstate = {ŵ′

j}j∈C ||seedΔ
2 ||{state′

j,n,2}j∈C ||comf
pre,2.

We emphasize that vstate can be made public.

5.2 Resumable HVZKPoK for Second Session ΠRes,2

For simplicity, we present the resumable HVZKPoK ΠRes,2 for the second ses-
sion, which can be easily extended to the case of session(t) for any t > 1.
Online phase πon,2 = (πf

on(w′, {state′
j,i,2}j∈C,i∈[n])∧πf

pre({λj,w′}j∈C , C)∧πcert).
The prover’s strategy πon,2 is similar to πon,1, except that he simulates the

MPC protocol for C ′(w′) = y instead of C(w) = y. Note that all the inputs of
πon,2 can be extracted from pstate.

– Round 1.
1. Run round 3-b of πf

on(w′, {state′
j,i,2}j∈C,i∈[n]) to generate the correspond-

ing commitment comf
on,2.

Resumable Zero-Knowledge for Circuits from Symmetric Key Primitives 389

2. Run round 1-a of πf
pre({λj,w′}j∈C , C) to generate a random seedΔ

3 , the
state of each party {state′

j,i,3}j∈C,i∈[n] and comf
pre,3 as described above

for the next session.
3. Run πcert to generate comon,2, which is the commitment of

comf
on,2||comf

pre,3 ||seedΔ
3 ||{state′

j,n,3}j∈C . Send comon,2, com
f
pre,3, seed

Δ
3

and {state′
j,n,3}j∈C to the verifier.

– Round 2. Challenge for the online phase.
The verifier runs round 2 of πf

on(w′, {state′
j,i,2}j∈C,i∈[n]) to send a random set

P = {pj}j∈C with pj ∈ [n − 1] to the prover.
– Round 3. Respond to the challenge for the online phase.

The prover runs round 3 of πf
on(w′, {state′

j,i,2}j∈C,i∈[n]) to generate the cor-
responding response respf

on,2. Send respf
on,2 to the verifier.

Verification Strategy.

1. For each unopened instance j ∈ C, the verifier uses respf
on,2, ŵ′

j , seed
Δ
2 and

state′
j,n,2 to simulate the MPC protocol for C ′(w′) = y and recover the

openings of comf
on,2 and comf

pre,2. Note that ŵ′
j , seedΔ

2 and state′
j,n,2 can

be extracted from vstate.
2. The verifier checks the output of the simulation of the MPC protocol.
3. The verifier checks the consistency of comf

pre,2, com
f
on,2 and comon,2.

State Update. The prover and the verifier update their states as follows.

– Prover’s state update: pstate = {ŵ′
j}j∈C ||seedΔ

3 ||{state′
j,i,3}j∈C,i∈[n].

– Verifier’s state update: vstate = {ŵ′
j}j∈C ||seedΔ

3 ||{state′
j,n,3}j∈C ||comf

pre,3.

5.3 Security

Theorem 1. Assume that πF , the underlying commitment scheme and pseudo-
random generator are secure, and F has an extractable decomposition as f ◦ g.
Then ΠRes is a resumable honest verifier zero-knowledge proof of knowledge.

The proof of zero-knowledge in Theorem 1 is similar to that of [38], while we
should consider the zero-knowledge property of all the sessions as a whole. For
the proof of resumable knowledge soundness, we show the consistency between
w′ of session(t) and w, and use the method of [5,38] to construct a witness
extractor E for each session. Formal proof of Theorem 1 is in Appendix A.

Parallel Repetition. The soundness error ξt of ΠRes,2 for session(t) may be
higher than ξ1. We could reduce ξt with parallel executions of ΠRes,2 as follows.

– In round 3 of the online phase πon,1 (or round 1 of πon,2) for session(t − 1),
the prover repeats round 1 of πf

pre for � times. In other words, the prover
rerandomizes intermediate masked values for � times with � random {Δi}i∈[�].

390 H. Zhang et al.

– For session(t), the prover and the verifier run ΠRes,2 for � times with the
corresponding masked values generated in the previous session, where the
verifier needs to send � random challenges in round 2 of πon,2.

Indeed, the above method can be interpreted as compacting � executions of
ΠRes,2 for � sessions into one session, which will not break the security of our
resumable HVZKPoK due to the honest verifier setting. In this way, we can
reduce ξt to 1

(n−1)τ·� . By choosing appropriate �, M , n and τ , we can gain a
better soundness error for session(t). (Note that there is a trade-off between
the soundness error and the proof size.) The proof of the following theorem are
similar to that of Theorem 1 and hence omitted.

Theorem 2. Assume that πF , the underlying commitment scheme and pseudo-
random generator are secure, and F has an extractable decomposition as f ◦ g.
Then ΠRes with parallel executions is a resumable honest verifier zero-knowledge
proof of knowledge.

5.4 3-Round Resumable HVZKPoK

Our 5-round ΠRes,1 can be transformed into a 3-round protocol using the sim-
ilar method of [38] with the modification that the prover needs to prepare the
random masks of the next session for every instance in [M]. Such modification
has no effect on the security of the initial session, as those random masks could
be considered as redundant information if there are no subsequent sessions. A
concrete construction of our 3-round resumable HVZKPoK Π3

Res, in which F
is instantiated with LowMC [2] as in [38], is shown in our full paper [44]. The
security proof of the following theorem is similar to that of Theorem 1 and hence
omitted.

Theorem 3. Assume that the underlying hash function, commitment scheme
and pseudorandom generator are secure. Then Π3

Res is a resumable honest ver-
ifier zero-knowledge proof of knowledge.

6 Resumable-Picnic

As in the previous works [18,38], our 3-round protocol can be transformed into a
resumable non-interactive ZKPoK (NIZKPoK) using the Fiat-Shamir heuristic
in each session, and the resulting NIZKPoK can be used to construct a state-
ful signature scheme. More precisely, we instantiate F with Enc(·, 0κ) for some
symmetric encryption scheme Enc(·, ·) in which the first input is the key and the
second input is the plaintext. The signing key is a uniform sk ∈ {0, 1}κ and the
verification key is pk = Enc(sk, 0κ). By applying Fiat-Shamir heuristic to each
session of our 3-round protocol for the relation (pk, sk) ∈ R, we can obtain a
sequence of signatures, where the t-th signature is denoted as σt. We denote our
stateful signature scheme as Resumable-Picnic.

Resumable Zero-Knowledge for Circuits from Symmetric Key Primitives 391

Theorem 4. Resumable-Picnic is strongly unforgeable under chosen message
attacks in the QROM when Com is a collapse-binding commitment scheme and
H is a collapsing hash function.

Due to page restrictions, more details of Resumable-Picnic and the proof of The-
orem 4 are presented in the full version [44].

Application. One of the possible applications of Resumable-Picnic is in the
blockchain setting, where each σi can be stored in the corresponding block pub-
licly. The verifier only needs to check the validity of σt of the current block,
since the validity of {σi}i<t in previous blocks are implied by the consistency
of the underlying consensus protocol. More specifically, the signer can sign a
transaction tx1 using Resumable-Picnic with pk and generate the signature σ1.
Then the miner generates a block Bi for a set of transactions with corresponding
signatures, which includes (tx1, σ1). Afterwards, when the signer wants to sign
another transaction tx2 with pk, he can generate σ2 efficiently using the state
ss1. Due to the blockchain protocol, (tx2, σ2) will be included in some block,
say Bj , for j > i. If block Bi has been confirmed, which implies the validity of
the signatures included in Bi have been confirmed by the majority of miners,
the verifier of σ2 does not need to check the validity of σ1 any more. Due to
the efficiency of session resumption, σ2 is more efficient than the original Picnic.
(Note that there is usually a confirmation delay in most blockchain protocols.
For instance, the confirmation delay of Bitcoin is about 6 blocks, which means
a block is confirmed if it is followed by at least 6 blocks.)

Table 1. Comparison between Picnic3 and resumable-Picnic. “Size” denotes the signa-
ture size. The results are the median time for running 10000 times.

Scheme M n τ � Sign (ms) Verify (ms) Size (Bytes)

Picnic3-Level 1 252 16 36 71.68 51.37 12595± 223

Resumable-Picnic [session(1)] 252 16 36 1 99.99 76.23 14277± 243

Resumable-Picnic [session(2)] 252 16 36 1 8.31 4.78 4796

Resumable-Picnic [session(t > 2)] 252 16 36 1 6.59 4.11 4796

Picnic3-Level 3 419 16 52 170.37 119.45 27104± 455

Resumable-Picnic [session(1)] 419 16 52 1 220.45 163.91 31166± 466

Resumable-Picnic [session(2)] 419 16 52 1 13.15 7.90 10088

Resumable-Picnic [session(t > 2)] 419 16 52 1 10.60 6.67 10088

Picnic3-Level 5 601 16 68 487.45 290.22 48716± 721

Resumable-Picnic [session(1)] 601 16 68 1 512.56 332.24 55043± 673

Resumable-Picnic [session(2)] 601 16 68 1 18.28 11.26 17536

Resumable-Picnic [session(t > 2)] 601 16 68 1 14.97 9.52 17536

392 H. Zhang et al.

Experimental Results and Comparison. We implement Resumable-Picnic
using the same parameters as Picnic3 [36], and give an efficiency comparison
with Picnic3. Our benchmarks run on a platform with an Intel Core i7-8700
CPU clocked at 3.2 GHz and 16GB RAM. The parameters are chosen as Picnic3
did which fits security level 1, 3, and 5 recommended by NIST. The comparison
between Picnic3 and Resumable-Picnic are shown in Table 1. As shown in Table 1,
although the cost of Resumable-Picnic’s initial session is slightly higher than
that of Picnic3, the efficiency of Resumable-Picnic for the subsequent sessions are
improved dramatically. Compared with Picnic3 with security level 1, 3 and 5, the
sign/verify time of Resumable-Picnic for session(t > 2) is reduced to 9.2%/8.0%,
6.2%/5.6%, and 3.1%/3.3%, respectively, and the signature size is reduced to
38.1%, 37.2% and 36.0%, respectively.

7 Compressed 1-out-of-N Proof and Ring Signatures

[20] provides a novel method of the one-out-of-N proof for the relation ROR

defined by (x1, . . . , xN ∈ LR;w) ∈ ROR ⇐⇒ ∃t ∈ [N], s.t.(xt, w) ∈ R. By
applying the parallel version of ΠRes,2 described in Sect. 5.3 to the CDS method
[20], we can get a compressed one-out-of-N proof when the N statements share
the same circuit. The main idea is that, for the N − 1 statements which the
prover does not know the witness, the prover runs the simulator of the resumable
HVZKPoK ΠRes,2 for the partial circuit C ′ in parallel. Hence, most transcripts
of the simulation for the N − 1 statements can be removed. Furthermore, based
on our compressed one-out-of-N proof, we can construct a ring signature from
symmetric-key primitives. More details of our compressed one-out-of-N proof
and the resulting ring signature are presented in the full version [44].

Using the same parameter set of Picnic2, we make a comparison between
the ring signature of [38] and ours in Table 2. It shows that the size of our
ring signature is smaller than that of [38] when the ring size is less than 26. In
particular, it is just about 1/3 of the ring signature size of [38] when the ring
size is less than 24.

Table 2. Comparison between ring signature [38] and our work.

Ring size 2 22 23 24 25 26 27

|σ| ([38]) 70KB 106KB 142KB 177KB 213KB 249KB 285KB

|σ| (Ours) 21KB 30KB 47KB 82KB 151KB 290KB 567KB

Acknowledgements. We would like to thank the anonymous reviewers for their
insightful and helpful comments. Handong Zhang, Puwen Wei, Jinsong Li, Wei Wang
and Guoxiao Liu were supported by the National Key Research and Development Pro-
gram of China (Grant No. 2018YFA0704702), Shandong Provincial Key Research and

Resumable Zero-Knowledge for Circuits from Symmetric Key Primitives 393

Development Program (Major Scientific and Technological Innovation Project) (Grant
No.2019JZZY010133) and Shandong Provincial Natural Science Foundation (Grant
No. ZR2020MF053). Haiyang Xue was supported by the National Natural Science
Foundation of China (Grant No. 62172412). Yi Deng was supported by the National
Natural Science Foundation of China (Grant No. 61932019 and No. 61772522), the Key
Research Program of Frontier Sciences, CAS (Grant No. QYZDB-SSW-SYS035) and
Natural Science Foundation of Beijing (Grant No. M22003).

A Proof of Theorem 1

Proof. Completeness. This property follows from the correctness of the under-
lying MPC protocol Π used in πF and πf .

Resumable Honest Verifier Zero-Knowledge. We need to consider the
simulator for all q(κ) sessions instead of only one, where the simulation for the
transcripts generated by πF and πf follows the idea of [38]. Let SimΠ denotes
the simulator of the MPC protocol Π. The simulator Sim of ΠRes is described
as follows.

– Simulation for initial session session(1).
1. Sim chooses random C and P as the challenge for the preprocessing phase

and the online phase respectively.
2. For each instance j �∈ C, Sim prepares λj using {statej,i,1}i∈[n] and gen-

erates the corresponding respF
pre,1 as an honest prover would do in the

preprocessing phase.
3. For each instance j ∈ C, Sim chooses a random masked input for the MPC

protocol and n−1 random states for n−1 parties determined by P. Then,
Sim runs SimΠ to simulate the views of the n parties during the MPC
protocol and computes corresponding comF

on,1. Notice that Sim can get the
corresponding intermediate masked value ŵ′

j for each instance j ∈ C from
the simulated views. As mentioned in Sect. 2.1, the indistinguishability
between the simulated execution of SimΠ and the real execution relies on
the security of the underlying PRG.

4. Sim computes comF
pre,1 and respF

on,1 according to the transcripts generated
in step 2 and 3. For the generation of comF

pre,1, the state of the party in
P of each instance can be set by 0-string with appropriate length.

5. Sim randomly chooses seedΔ
2 and {state′

j,i,2}j∈C,i∈[n], and computes the
corresponding commitment comf

pre,2. Generate comon,1 as the commit-
ment to comF

on,1||comf
pre,2||seedΔ

2 ||{state′
j,n,2}j∈C .

– Simulation for subsequent session seesion(t), where 1 < t ≤ q(κ).
1. Sim chooses a random P as the challenge for the online phase.
2. For each instance j ∈ C, Sim computes the rerandomized intermediate

masked input ŵ′
j ⊕ Δj , in which ŵ′

j is the intermediate masked value of
seesion(1) and Δj is generated by seedΔ

t . Note that Sim has n−2 parties’
states determined by P. Then, Sim runs SimΠ to simulate the views of n
parties during the MPC protocol, and computes corresponding comf

on,t.

394 H. Zhang et al.

3. Sim randomly chooses seedΔ
t+1 and {state′

j,i,t+1}j∈C,i∈[n], and computes
the corresponding commitment comf

pre,t+1. Generate comon,t as the com-
mitment to comf

on,t||comf
pre,t+1||seedΔ

t+1||{state′
j,n,t+1}j∈C .

Following a standard hybrid argument, we have that the transcript generated by
Sim is computationally indistinguishable from that of a real protocol, where the
indistinguishability relies on the indistinguishability of the simulated transcripts
generated by SimΠ and the hiding property of the commitment scheme.

Resumable Knowledge Soundness. The proof of the resumable knowledge
soundness is similar to that of [5,38], except that we need to show that there
exists a witness extractor E for each session, especially the resumed session.

We first show the soundness error ξ(M,n, τ). Since ΠRes,1 is similar to that
of the original KKW except additional processing for the masks of the next
session. The soundness error ξ1 of ΠRes,1 is the same as that of [38]. That is,

ξ1(M,n, τ) = max
0≤c≤τ

{ (
M−c
M−τ

)
(

M
M−τ

) · nτ−c

}
,

where c denotes the number of preprocessing emulations where the malicious
prover cheats.

On the soundness error of ΠRes,2, recall the soundness game mentioned in
Sect. 3, where the malicious prover can invoke the “honest” prover to interact
with the verifier for polynomially-many sessions, say session(1), . . . , session(t−1)
for 1 < t ≤ q(κ), and tries to convince the verifier in session(t) without the help of
the “honest” prover. Note that the masks for session(t) are generated by the hon-
est prover in session(t−1). So a malicious prover of session t can cheat only in the
online phase, where he must cheat in one of the views of the n−1 parties. Thus,
the probability that the prover will not be detected in ΠRes,2 is ξt(M,n, τ) =

1
(n−1)τ . Therefore, we have ξ(M,n, τ) = max {ξ1(M,n, τ), ξt(M,n, τ)} , for any
1 < t ≤ q(κ). Next, we proceed to prove the resumable knowledge soundness
property by showing how to construct E to extract a valid witness for each ses-
sion. As explained above, the proof of knowledge soundness in [5] can be applied
to ΠRes,1 directly. We focus on ΠRes,2 of session(t), where 1 < t ≤ q(κ). For
simplicity we assume that the commitment scheme is perfectly binding.

We first prove that if the success probability of cheating δt(x) > ξt(M,n, τ),
then there exists at least one MPC instance of C, where the prover has committed
to a valid intermediate value w′. Considering the deterministic prover with fixed
random tape, let v be a 0/1-vector with length (n − 1)τ , where each entry
corresponds to a possible challenge for the online phase of V(t) and 1 denotes the
event of success. Hence, we have that δt(x) is the fraction of ‘1’ entries in v and
the number of ‘1’ entries in v is higher than 1 due to δt(x) > ξt(M,n, τ) = 1

(n−1)τ .
That is, there must exist two accepting transcripts with different challenges
{pj}j∈C and {p′

j}j∈C such that pj �= p′
j for an MPC instance j. That means all

Resumable Zero-Knowledge for Circuits from Symmetric Key Primitives 395

the views of the parties in instance j are correct and the witness used in this
instance must be a valid intermediate value w′.

However, since f is just a part of F , it may be easy for a malicious prover
to find a different w∗ �= w′ such that f(w∗) = 1. It seems that any malicious
prover who can find such a w∗ can cheat in the next session by computing
λw∗ = w′ ⊕ λw′ ⊕ w∗ and generating the corresponding n shares of λw∗ ⊕ Δ. (
w′ ⊕ λw′ can be extracted during the verification of the initial session.) Thanks
to the binding property of the commitment comon,t in πcert, it is hard for the
adversary to provide consistency proof using such w∗ and λw∗ . For instance,
in session(t − 1), comon,t−1 is the commitment of comf

on,t−1||comf
pre,t||seedΔ

t

||{state′
j,n,t}j∈C , where (comon,t−1, com

f
pre,t, seed

Δ
t , {state′

j,n,t}j∈C) are public.
The rerandomized mask for session(t), say λw′ ⊕ Δ, is determined by (comf

pre,t,
seedΔ

t , {state′
j,n,t}j∈C) and is hard to be modified due to comon,t−1. (The use of

mask λw∗ such that λw∗ �= λw′ ⊕Δ will be detected by checking the consistency
of comon,t−1 and comf

pre,t.) Therefore, a malicious prover needs to (1) guess the
challenge sent by the verifier successfully, which happens with probability 1

n−1
for each instance, or (2) find n − 1 random seeds which can be used to generate
an (n−1)-out-of-(n−1) secret-sharing of λw∗ ⊕Δ⊕ [λw′ ⊕Δ]n, where each share
is generated by running PRG with the corresponding random seed. This can be
done with negligible probability assuming the underlying PRG is secure. Hence,
comon,t−1 and comf

pre,t guarantee the consistency of w′ in session(t) with w.
Next, we show how to extract the witness using two accepting transcripts

with {pj}j∈C and {p′
j}j∈C when the challenge for j is different. Since pj �= p′

j , the
transcripts with pj reveals n− 1 shares of the masks of the intermediate masked
input, whereas the transcripts with p′

j reveals the remaining shares (Notice that
the shares of the n-th party is public). Hence, we can get all the shares to recover
the intermediate value w′. Due to the special property of the decomposition for
F , the witness w can be further extracted from w′.

To sum up, the extractor E is described as follows.

1. Run ΠRes,2 with the prover in session t until the event of success happens, in
order to find an ‘1’ entry of the vector v, where the corresponding challenge
is {pj}j∈C .

2. Run ΠRes,2 with the prover in session t (using different challenges) until a
different ‘1’ entry is found, where the corresponding challenge is {p′

j}j∈C such
that pj �= p′

j .
3. Extract the witness ω in execution j using the related transcripts with {pj}j∈C

and {p′
j}j∈C . If F (w) = y, output w and halt.

Let δt(x) = ξt(M,n, τ) + εt(x) for some εt(x) > 0. The expected running
time of the step 1 and 2 is 1

δt(x) < 1
εt(x) and the running time of step 3 depends

on the running time of F (w) with common input x, which is supposed to be
more efficient than step 1 and 2. Therefore, a valid witness can be extracted in
O(1

εt(x)) expected number of steps.

396 H. Zhang et al.

Resumption Efficiency. ΠRes,2 consists of πf and the consistency proof πcert.
Since πf is a simplified KKW proof for the partial circuits of F (without cut-
and-choose), the complexity of πf is much smaller than that of the original
KKW proof for F . Recall that πcert mainly consists of comon,2 and seedΔ

3 . So
the complexity of πcert just takes a very small portion of πf . Hence, although
the overall complexity of ΠRes,2 depends on the concrete decomposition of F ,
ΠRes,2 is much efficient than that of the original KKW proof Π ′ for F in general.

��

References

1. Abe, M., Ambrona, M., Bogdanov, A., Ohkubo, M., Rosen, A.: Non-interactive
composition of sigma-protocols via share-then-hash. In: Moriai, S., Wang, H.
(eds.) ASIACRYPT 2020. LNCS, vol. 12493, pp. 749–773. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-64840-4 25

2. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers
for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9056, pp. 430–454. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46800-5 17

3. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: lightweight sub-
linear arguments without a trusted setup. In: ACM CCS 2017, pp. 2087–2104.
ACM Press, New York (2017). https://doi.org/10.1145/3133956.3134104

4. Avanzi, R., et al.: Crystals-kyber. NIST PQC Round 3, 4 (2020)
5. Baum, C., Nof, A.: Concretely-efficient zero-knowledge arguments for arithmetic

circuits and their application to lattice-based cryptography. In: Kiayias, A.,
Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12110, pp.
495–526. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45374-9 17

6. Baum, C., de Saint Guilhem, C.D., Kales, D., Orsini, E., Scholl, P., Zaverucha,
G.: Banquet: short and fast signatures from AES. In: Garay, J.A. (ed.) PKC 2021.
LNCS, vol. 12710, pp. 266–297. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-75245-3 11

7. Bellare, M., Goldwasser, S.: New paradigms for digital signatures and message
authentication based on non-interactive zero knowledge proofs. In: Brassard, G.
(ed.) CRYPTO 1989. LNCS, vol. 435, pp. 194–211. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 19

8. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable zero knowledge with
no trusted setup. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11694, pp. 701–732. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-26954-8 23

9. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C:
verifying program executions succinctly and in zero knowledge. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 90–108. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-40084-1 6

10. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.:
Aurora: transparent succinct arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019. LNCS, vol. 11476, pp. 103–128. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17653-2 4

https://doi.org/10.1007/978-3-030-64840-4_25
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1145/3133956.3134104
https://doi.org/10.1007/978-3-030-45374-9_17
https://doi.org/10.1007/978-3-030-75245-3_11
https://doi.org/10.1007/978-3-030-75245-3_11
https://doi.org/10.1007/0-387-34805-0_19
https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.1007/978-3-030-17653-2_4

Resumable Zero-Knowledge for Circuits from Symmetric Key Primitives 397

11. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero
knowledge for a von neumann architecture. In: 23rd USENIX Security Symposium,
pp. 781–796. USENIX Association, San Diego, CA (2014). https://www.usenix.
org/conference/usenixsecurity14/technical-sessions/presentation/ben-sasson

12. Blum, M., De Santis, A., Micali, S., Persiano, G.: Noninteractive zero-knowledge.
SIAM J. Comput. 20(6), 1084–1118 (1991). https://doi.org/10.1137/0220068

13. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron,
J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 327–357. Springer, Heidel-
berg (2016). https://doi.org/10.1007/978-3-662-49896-5 12

14. Bootle, J., Groth, J.: Efficient batch zero-knowledge arguments for low degree
polynomials. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10770, pp.
561–588. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76581-5 19

15. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
short proofs for confidential transactions and more. In: 2018 IEEE Symposium on
Security and Privacy, pp. 315–334 (2018). https://doi.org/10.1109/SP.2018.00020

16. Chase, M., et al.: The picnic signature scheme, design document v2. 1 (2019)
17. Chase, M., et al.: The picnic signature scheme, design document v2. 2. Available

at https://microsoft.github.io/Picnic/ (2020)
18. Chase, M., et al.: Post-quantum zero-knowledge and signatures from symmetric-

key primitives. In: ACM CCS 2017, pp. 1825–1842. ACM Press, New York (2017).
https://doi.org/10.1145/3133956.3133997

19. Costello, C., et al.: Geppetto: versatile verifiable computation. In: 2015 IEEE Sym-
posium on Security and Privacy, pp. 253–270 (2015). https://doi.org/10.1109/SP.
2015.23

20. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994.
LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48658-5 19

21. Ding, J., Chen, M.S., Petzoldt, A., Schmidt, D., Yang, B.Y.: Rainbow. NIST PQC
Round 3, 4 (2020)

22. Feige, U., Lapidot, D., Shamir, A.: Multiple noninteractive zero knowledge proofs
under general assumptions. SIAM J. Comput. 29(1), 1–28 (1999). https://doi.org/
10.1137/S0097539792230010

23. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

24. Fischlin, M., Harasser, P., Janson, C.: Signatures from sequential-or proofs. In:
Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp. 212–244.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3 8

25. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9 37

26. Giacomelli, I., Madsen, J., Orlandi, C.: ZKBoo: faster zero-knowledge for Boolean
circuits. In: 25th USENIX Security Symposium, pp. 1069–1083. USENIX Asso-
ciation, Austin, TX (2016). https://www.usenix.org/conference/usenixsecurity16/
technical-sessions/presentation/giacomelli

27. Goel, A., Green, M., Hall-Andersen, M., Kaptchuk, G.: Stacking sigmas: a frame-
work to compose σ-protocols for disjunctions. Cryptology ePrint Archive, Report
2021/422 (2021). https://ia.cr/2021/422

https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/ben-sasson
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/ben-sasson
https://doi.org/10.1137/0220068
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-319-76581-5_19
https://doi.org/10.1109/SP.2018.00020
https://microsoft.github.io/Picnic/
https://doi.org/10.1145/3133956.3133997
https://doi.org/10.1109/SP.2015.23
https://doi.org/10.1109/SP.2015.23
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1137/S0097539792230010
https://doi.org/10.1137/S0097539792230010
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-030-45727-3_8
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/giacomelli
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/giacomelli
https://ia.cr/2021/422

398 H. Zhang et al.

28. Goel, A., Green, M., Hall-Andersen, M., Kaptchuk, G.: Efficient set membership
proofs using MPC-in-the-head. In: Proceedings on Privacy Enhancing Technologies
2022(2), 304–324 (2022). https://doi.org/10.2478/popets-2022-0047

29. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
and a methodology of cryptographic protocol design. In: SFCS 1986, pp. 174–187.
IEEE Computer Society Press (1986). https://doi.org/10.1109/SFCS.1986.47

30. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989). https://doi.org/10.1137/
0218012

31. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8 19

32. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 305–326. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 11

33. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer,
Heidelberg (2006). https://doi.org/10.1007/11761679 21

34. Henry, R., Goldberg, I.: Batch proofs of partial knowledge. In: Jacobson, M.,
Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp.
502–517. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38980-
1 32

35. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: STOC 2007, pp. 21–30. ACM Press, New York (2007).
https://doi.org/10.1145/1250790.1250794

36. Kales, D., Zaverucha, G.: Improving the performance of the picnic signature
scheme. Cryptology ePrint Archive, Report 2020/427 (2020). https://eprint.iacr.
org/2020/427

37. Katz, J.: Digital signatures. Springer Science & Business Media (2010)
38. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge with

applications to post-quantum signatures. In: ACM CCS 2018, pp. 525–537. ACM
Press, New York (2018). https://doi.org/10.1145/3243734.3243805

39. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifi-
able computation. In: 2013 IEEE Symposium on Security and Privacy, pp. 238–252
(2013). https://doi.org/10.1109/SP.2013.47

40. Peng, K., Bao, F.: Batch ZK proof and verification of OR logic. In: Yung, M., Liu,
P., Lin, D. (eds.) Inscrypt 2008. LNCS, vol. 5487, pp. 141–156. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-01440-6 13

41. Rescorla, E., Dierks, T.: The transport layer security (TLS) protocol version 1.3.
RFC 8446, https://doi.org/10.17487/RFC8446, August 2018 (2018)

42. de Saint Guilhem, C.D., De Meyer, L., Orsini, E., Smart, N.P.: BBQ: using AES
in picnic signatures. In: Paterson, K.G., Stebila, D. (eds.) SAC 2019. LNCS, vol.
11959, pp. 669–692. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
38471-5 27

43. Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-efficient
zksnarks without trusted setup. In: 2018 IEEE Symposium on Security and Privacy
(SP), pp. 926–943 (2018). https://doi.org/10.1109/SP.2018.00060

44. Zhang, H., Wei, P., Xue, H., Deng, Y., Li, J., Wang, W., Liu, G.: Resumable zero-
knowledge for circuits from symmetric key primitives. Cryptology ePrint Archive,
Report 2022/556 (2022). https://eprint.iacr.org/2022/556

https://doi.org/10.2478/popets-2022-0047
https://doi.org/10.1109/SFCS.1986.47
https://doi.org/10.1137/0218012
https://doi.org/10.1137/0218012
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/11761679_21
https://doi.org/10.1007/978-3-642-38980-1_32
https://doi.org/10.1007/978-3-642-38980-1_32
https://doi.org/10.1145/1250790.1250794
https://eprint.iacr.org/2020/427
https://eprint.iacr.org/2020/427
https://doi.org/10.1145/3243734.3243805
https://doi.org/10.1109/SP.2013.47
https://doi.org/10.1007/978-3-642-01440-6_13
https://doi.org/10.17487/RFC8446
https://doi.org/10.1007/978-3-030-38471-5_27
https://doi.org/10.1007/978-3-030-38471-5_27
https://doi.org/10.1109/SP.2018.00060
https://eprint.iacr.org/2022/556

On Security of Fuzzy Commitment Scheme
for Biometric Authentication

Donghoon Chang1,2, Surabhi Garg1,3(B) , Munawar Hasan1,2,5,
and Sweta Mishra4

1 IIIT-Delhi, New Delhi, India
{donghoon,surabhig,munawarh}@iiitd.ac.in

2 NIST, Gaithersburg, MD, USA
{donghoon.chang,munawar.hasan}@nist.gov

3 TCS Research, Chennai, India
surabhi.garg@tcs.com

4 Shiv Nadar University, Kalavakkam, India
sweta.mishra@snu.edu.in

5 Irisys Co. Ltd., Seoul, Korea
munawar@irisys.co.kr

Abstract. Biometric security is a prominent research area with grow-
ing privacy and security concerns related to biometric data, generally
known as biometric templates. Among the recently proposed biometric
template protection schemes, fuzzy commitment is the most popular and
reliable. It uses error correcting codes to deal with the significant number
of bit errors present in the biometric templates. The high error correcting
capability of the underlying error correcting codes is crucial to achieving
the desired recognition performance in the biometric system. In gen-
eral, it is satisfied by padding the input biometric template with some
additional bits. The fixed padding approaches proposed in the litera-
ture have security vulnerabilities that could disclose the user’s biometric
data to the attacker, leading to an impersonation attack. We propose
a user-specific, random padding scheme that preserves the recognition
performance of the system while it prevents the impersonation attack.
The empirical results show that the proposed scheme provides 3 times
better recognition performance on the IIT Delhi iris database than the
baseline, unprotected systems. Through security analysis, we show that
the attack complexity of our proposed work is 2k, where k is the length
of the secret message used to generate codeword, with k ≥ 128 bits.

Keywords: Fuzzy commitment · Error correcting codes · Bit
padding · Biometric security · Authentication · BCH Codes

1 Introduction

Biometric-based authentication systems are being recently deployed on a wide-
spread level in multiple diverse sectors. One of the most significant examples of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
K. Nguyen et al. (Eds.): ACISP 2022, LNCS 13494, pp. 399–419, 2022.
https://doi.org/10.1007/978-3-031-22301-3_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22301-3_20&domain=pdf
http://orcid.org/0000-0001-5424-4068
http://orcid.org/0000-0003-1240-5841
https://doi.org/10.1007/978-3-031-22301-3_20

400 D. Chang et al.

biometric authentication is India’s Aadhaar project [8]. Typically, the biometric
data, commonly known as a biometric template, is stored during enrolment in its
original, unprotected form on public database servers from where it can be stolen
or modified by the attackers [18,37]. Unlike passwords, if the biometric data is
stolen or lost, it remains compromised forever. Therefore, it is crucial to protect
the biometric templates to safeguard users’ privacy and security. Hashing could
be used to protect biometric templates. However, different biometric samples of
a particular instance are never the same, returning an entirely different hash
output, which makes authentication infeasible.

Recently, several biometric template protection schemes have been pro-
posed [4,5,10,31,34] that generate the protected templates such that the protected
templates reveal no significant information about the original templates. These
schemes are broadly categorized as cancelable biometrics, homomorphic encryp-
tion schemes and biometric cryptosystems or biocryptosystems. In the cancelable
biometric approaches [5,11,14,39], the original biometric template is transformed
into a protected template using a key/password dependent transformation func-
tion. The comparisons are performed between two protected templates. However,
the recognition performance is highly degraded. The homomorphic encryption
schemes [13,45] encrypt the biometric templates such that the comparisons dur-
ing authentication are performed on the encrypted biometric templates, provid-
ing high security. They require huge computations. Biocryptosystems [4,6,10,15,
19,20,40] have been prominently used that generate biometric-dependent helper
data from the original biometric template. Fuzzy commitment [20] is a popular
biocryptosystem which is being used in wide applications including face template
protection using deep learning model [31] and key generation from biometric tem-
plates [5]. In this paper, we focus on the implementation and security aspects of
the fuzzy commitment schemes (refer Sect. 2).

Due to the noisy biometric templates, it is not possible to transform them
directly into the protected templates without incorporating any error tolerance
mechanisms. It is, therefore, necessary to use error correcting codes (ECC) [30] [10,
44]. Several error correcting codes [30] are proposed in the literature such as
Reed Solomon (RS) Codes [12], Hadamard Codes [32], Binary Bose-Chaudhuri-
Hocquenghem (BCH) Codes [3], Turbo Codes [2] and the various combinations of
these codes. Our work focuses on BCH codes as they have been extensively used
in the literature [4,5,31] in the domain of biometric security. Also, it has been
observed from [35] that these are simple to perform and are more advantageous
over other codes such as RS codes for correcting random and burst errors in the
biometric data. The details of the BCH code are given in Sect. 2.

Motivation. Fuzzy commitment schemes have been widely used as an underly-
ing architecture in multiple schemes, some are summarized in Table 1. As inferred
from the limitations of these schemes discussed in Sect. 4, the efficient implemen-
tation and the security of fuzzy commitment schemes majorly rely on implement-
ing underlying error correcting code. The efficiency is measured in terms of the
recognition performance accuracy and the time taken to perform the user authen-
tication. Further, the security of the fuzzy commitment scheme depends on the
length of the secret message, K used to generate the underlying error correcting

On Security of Fuzzy Commitment Scheme for Biometric Authentication 401

Table 1. The existing prominent biometric template protection schemes that use fuzzy
commitment scheme. Here, K represents the secret key used to generate the error
correcting code C, t denotes the maximum number of errors C can correct.

Approach Underlying ECC Limitation (s)

Baseline A [10,16] BCH or RS code small t, low recognition performance

Baseline B [6,15] RS and Hadamard code or BCH code |K| ≤ 128

Zero padding [22,24,25,38] RS and Hadamard code impersonation attack [42,44]

Fixed padding [22,23,25,38] RS and Hadamard code require additional key/password

Bit-wise encryption [5] BCH code small t, low recognition performance

BIOFUSE [4] BCH code small t, low recognition performance

Secure Face [31] (based on DL
model [9,26,43])

RS or BCH code |K| ≤ 128

code. In a fuzzy commitment scheme, the length of the biometric template B
should be exactly equal to the length of error correcting codeword C. It is due
to the XOR operation between these parameters to generate the secure sketch
value S given as B ⊕ C −→ S. Here, if C is revealed to the attacker, the origi-
nal biometric template B could be obtained. Furthermore, in real-life scenarios,
the biometric templates contain multiple bit errors, which could be higher than
the error correcting capability t of the underlying error correcting codeword.
In such cases, it is challenging to implement the error correcting code with a
sufficiently large secret message K, preferably with k ≥ 128 bits and k = |K|,
where |.| denotes the length. In general, to mitigate the mentioned challenges,
the following techniques are introduced in the literature.

1. The significant bits are extracted from the biometric templates [9,17] with
the error correcting code applied on the significant bits, providing a good
recognition performance. To equalize the length of B and C, a few extra bits
from the input biometric template are discarded from the beginning or the
end [21]. It may lead to loss of discrimination [44] between the biometric
templates of different users as the discarded bits may be relevant.

2. A larger size codeword is taken so that it could correct more number of bit
errors. It can be done by padding the biometric template with some extra
bits such that the corresponding codeword’s size would increase [22,22,24,
25,38]. The details are given in Sect. 4. The padding technique results in
higher accuracy; however, it leads to impersonation attack [42] (refer Sect. 5).

3. Considering a small-sized secret key used to generate the random error cor-
recting codeword [6,9,15,26,31,43]. The smaller is the key size, the more
errors an error correcting codeword can correct, the higher is the recognition
performance. Such an approach is vulnerable to the brute force attack.

The implementation challenges with the fuzzy commitment schemes prompt the
need for an efficient implementation of error correcting codewords. We propose
a user-specific, random padding scheme to prevent the impersonation attack on
error correcting codewords while providing high recognition performance. The
application of our contribution exists in all such scenarios where fuzzy commit-
ment schemes are applied to generate a secure biometric template or to derive
the secure key from biometrics.

402 D. Chang et al.

The Paper Makes the Following Contributions.

– We introduce a user-specific, random bit-padding approach for implementing
the error correcting codes in the fuzzy commitment scheme that improves the
recognition performance of the system.

– The existing fixed, zero padding schemes lead to an impersonation attack
discussed in Sect. 5. We propose to the best of the authors’ knowledge, first
and a novel padding approach that prevents such an attack.

– We exclude the use of any additional password or key as a secret parameter.
– We evaluate the recognition performance of our proposed system that shows a

tremendous improvement in performance accuracy measured in terms of true
match rate (TMR) as compared to the existing schemes, which are discussed
in Sect. 4 (in our proposed scheme, TMR = 0.63).

– Further, the empirical experiments performed to evaluate the performance
in terms of time taken for enrolment and authentication show that our pro-
posed approach can be implemented for a wide-scale deployment of biometric
authentication systems. As an instance, our proposed scheme takes around
0.3 seconds to authenticate a user.

– We provide a thorough security analysis that shows that our proposed
scheme’s attack complexity is equivalent to the brute force attack complexity.

2 Preliminaries

2.1 Notations

B denotes the original biometric template represented in the form of a binary
string, C denotes the error correcting codeword generated from a secret message
K of length k. n denotes the length of the codeword C. H denotes the hash func-
tion. The error correcting capability of an error correcting codeword is denoted
by t. S denotes the secure sketch value. ‖ denotes the concatenation operation
and ⊕ denotes the XOR operation. HD denotes the public helper data which is
stored on the database server during the enrolment phase.

2.2 Definitions

We use several concepts in our construction discussed below.

– Fuzzy Commitment Scheme: The fuzzy commitment (FC) scheme is a
combination of two functions, a commitment and a de-commitment function.
1. A commitment function on input B ∈ {0, 1}n, selects a random error

correcting code C ∈ {0, 1}n and returns a random secure sketch value
S ∈ {0, 1}n where S = B ⊕C. S and H(C) are stored on server as a part
of helper data HD during enrolment.

2. The de-commitment function takes a n-bit query template B′ and the
secure sketch value S. It computes (S ⊕ B′) to generate C ′. With an
efficient error correcting code decoding function, if the Hamming distance

On Security of Fuzzy Commitment Scheme for Biometric Authentication 403

between two strings B and B′, denoted as ‖B ⊕ B′‖ ≤ t, where t is the
maximum number of errors that can be corrected in the bit string, C ′

is decoded to the nearest codeword C ′′. If (H(C ′′) = H(C)), the user is
authenticated and B is recovered.

– BCH Codes: Given the mapping as an injective function, the error correct-
ing codes map k-symbols to n-symbols such that {0, 1}k −→ {0, 1}n. Each
error correcting code is a set of unique, random codewords denoted by C.
One of the prominent examples of error correcting codes used in biomet-
rics is Bose-Chaudhuri-Hocquenghem codes. BCH codes are random error-
correcting cyclic codes constructed using polynomials over a finite field (Galois
field). For any positive integers (q ≥ 3) and (t < 2(q−1)), there exists a t-error-
correcting BCH code generated with the random, secret message K of length
k with the following parameters [3,30]:
Size of error correcting codeword: n = 2q − 1
Number of parity-check bits: n − k ≤ qt
Minimum distance: dmin ≥ 2t + 1
The codeword C is denoted as (n, k, t)− BCH codeword. The parity-check
bits are used to recover the original, transmitted codeword from a received
codeword with some error(s). Minimum distance gives the minimum distance
between any two codewords, such that each codeword corrects a maximum
of t error bits. In our paper, the security attack is explained in Sect. 5 with
BCH codes into consideration.

3 Models and Settings

We discuss the system participants, assets and the possible attack scenarios. We
consider the biometric system with a fuzzy commitment scheme as the underlying
architecture.

Fig. 1. System model for our proposed scheme. Here, HD denotes the helper data
stored on the database server.

3.1 System Model and Participants

The system consists of users (genuine or impostors) and a server. Figure 1 shows
the system model for our proposed scheme. The user provides input as the bio-
metric characteristics, such as iris, from which features are extracted to get the

404 D. Chang et al.

template. The client device consists of a feature extraction module, a fuzzy com-
mitment and a de-commitment module. Further, the padding module is present
within the fuzzy commitment/de-commitment modules. The padding is assumed
to be done on the original biometric templates. We consider the generation of
helper data to be done on the client device. The database server stores the helper
data generated using the iris template for each user. The helper data constitutes
the secure sketch value and the hash of the error correcting codeword used in
the underlying fuzzy commitment scheme as discussed in Sect. 2.

3.2 Attack Model

– In the real world, an attack is possible where the attacker can access the
server database to get the helper data corresponding to each enroled user.

– When the padding approach is used (whether fixed, zero padding [22,38]
or random, secret padding (proposed approach)), the attacker may know the
positions in the biometric template where the fixed (such as all 0′s) or random
padding has been done.

– In the case if padding bits are also known to the attacker (such as in the case
of all 0′s), it would lead to the security attack as discussed in Sect. 5 which
reveals the original biometric template of a particular enroled/genuine user to
the attacker. The disclosed biometric template could be used for any malicious
activities. For example, the attacker may impersonate the genuine user by
providing the disclosed biometric template to authenticate successfully. It
results in an impersonation attack.

4 Related Work

This section describes the literature work related to existing biometric template
protection schemes including the padding schemes that use fuzzy commitment
as an underlying architecture.

4.1 Existing Biometric Cryptosystems (Including Padding-Based
Schemes)

Hao et al. [15] are the first to introduce the fuzzy commitment scheme for iris
template protection by integrating two error correcting codes, Hadamard and
Reed-Solomon, in the fuzzy commitment scheme. Kanade et al. [21,25] introduce
a secret shuffling of iriscode using a password or a key [22,24,38]. It is followed by
zero insertion in iriscode to improve the error correcting capability of Hadamard
codes (increased beyond 25%). Two zeros are inserted after every three bits
of iriscode. However, padding with all 0′s results in an impersonation attack,
discussed in Sect. 5. Also, using an additional key or a password is not a reliable
solution since keys or passwords need to be memorized or require secret storage,
which is an overhead.

On Security of Fuzzy Commitment Scheme for Biometric Authentication 405

Most of the recent work on biometric cryptosystems [4,6,16] that incorpo-
rate fuzzy commitment schemes implement BCH codes as the error correcting
codes. In [28], a biometric cryptosystem is constructed by combining fingerprint
templates with various error correcting codes, including BCH code which gives
promising results. Hoang et al. [16] propose an authentication system on mobile
devices for gait characteristics in which BCH code is employed. Deploying the
same scheme for iriscodes with no padding results in an unsatisfactory recog-
nition performance if k ≤ 128 bits. Similarly, an improved scheme is proposed
in [6], where additional security parameters are included in the generation of
error correcting codeword. However, implementing BCH or RS code with no
padding and k ≥ 128 bits results in low recognition performance accuracy on
the real databases. In [4], the fuzzy commitment scheme is combined with the
fuzzy vault scheme using the format preserving encryption. The scheme is highly
secure. However, high recognition performance is achieved on the assumption
that the error correcting codes can correct all or most of the bit errors in the
input biometric templates.

4.2 Existing Cancelable and Deep Learning Based Schemes

A cancelable biometric scheme is proposed in [5] that uses a fuzzy commitment
scheme to generate a secret key from the input biometric template while preserv-
ing the recognition performance with the assumption that the error correcting
code can correct all the bit-errors in the biometric template. In the area of deep
learning [31], the fuzzy commitment scheme is used to extract the secret key,
which is used to activate or deactivate the layers of the neural network to get a
protected template as an output. The security of the underlying fuzzy commit-
ment scheme is limited to around 56 bits. In [9,43], a face template protection
scheme is proposed while using error correcting codes to correct bit-errors; how-
ever, the security of the fuzzy commitment scheme is not taken into consider-
ation. A reconstruction of the protected biometric template to get the original
biometric template is shown in [26]. The attack is possible due to the use of a
fuzzy commitment scheme. However, the attack considers all the bit-errors to be
corrected by the error correcting codes, which is not always feasible.

5 Impersonation Attack on Error Correcting Codewords

In this section, we describe an attack on error correcting codes mentioned in
[42,44]. The security of the codeword (considering BCH codes) depends on k
message bits from which it is generated. Therefore, the brute force attack to get
the correct codeword will take 2k number of trials. However, the following attack
allows an attacker to reveal the entire biometric template by solving a set of linear
equations with a complexity less than that of a brute force attack. Considering
the case when a zero-padding or fixed padding (can be used interchangeably) is
performed on the biometric template, we assume that the attacker knows the
relative positions where the 0′s or fixed padding bits are inserted [21]. If the input

406 D. Chang et al.

biometric template is zero-padded with k or more than k bits, after padding, the
fuzzy commitment scheme is given as

B‖{0}k+ ⊕ C = S (1)

where {0}k+
denotes that k or more than k zeros are inserted. Because of the

zero insertions and public value S, the attacker would know the corresponding
k or more than k bits of the codeword C by inverting the XOR operation.

The Step-by-Step Procedure of the Attack is Described as Follows
The encoding of BCH codeword aims as finding a polynomial that has gen-

erator polynomial g(x) as a factor. The secret message K = Kk−1Kk−2 · · · K0 of
length k bits is represented in the form of a polynomial given as K(x). Consid-
ering the Euclidean division of polynomials, we take dividend as secret message
bits K(x) multiplied with xn−k and subtract the remainder given as P (x) from
the dividend to get the output as a multiple of divisor (which denotes the gen-
erator polynomial g(x)). The division is denoted as

xn−kK(x) − P (x) = g(x) × q(x) (2)

where q(x) represents the multiplicative factor.
The systematic error correcting codeword includes the secret message bits

verbatim within the codeword itself. Such a codeword in polynomial form is
denoted as C(x) and is given as C(x) = K(x) ∗ P (x). Here, P (x) is denoted as
the parity-check bits (in the polynomial form) of the error correcting codeword
C(x). It is of size (n − k). Parity check bits is derived from Eq. (2) as

P (x) = xn−kK(x) mod(g(x)) (3)

The Eq. (3) is linear under modulus operation, therefore,

P (x) = xn−kKk−1x
k−1mod(g(x)) ⊕ xn−kKk−2x

k−2mod(g(x)) ⊕ . . .

⊕xn−kK0mod(g(x))

= Kk−1x
n−1mod(g(x)) ⊕ Kk−2x

n−2mod(g(x)) ⊕ . . . ⊕ K0x
n−kmod(g(x)).

Representing xn−imod(g(x)) as vector Vn−i, where 1 ≤ i ≤ k, P (x) is given
as

P (x) = Kk−1Vn−1 ⊕ Kk−2Vn−2 ⊕ . . . ⊕ K0Vn−k. (4)

The generator polynomial g(x) is public and is known for a particular pair
(n, k) of the codeword, implying vector Vn−i would be known.

Given: k or more than k bits of the codeword C, where these known k bits
are considered as a part of parity-check bits.

Goal: Find the secret message K(x) with k bits from which the original
error correcting codeword is generated.

Constructing (n − k) linear equations from Eq. (4) with Kj as unknowns,
where 0 ≤ j ≤ (k − 1), we get

On Security of Fuzzy Commitment Scheme for Biometric Authentication 407

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V 1
n−1 V 1

n−2 . . . V 1
(n−k)

V 2
n−1 V 2

n−2 . . . V 2
(n−k)

V 3
n−1 V 3

n−2 . . . V 3
(n−k)

...
... . . .

...
...

... . . .
...

V
(n−k)−1
n−1 V

(n−k)−1
n−2 . . . V

(n−k)−1
(n−k)

V
(n−k)
n−1 V

(n−k)
n−2 . . . V

(n−k)
(n−k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(n−k)×k

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Kk−1

Kk−2

Kk−3

...

...
K1

K0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
k×1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P(n−k)−1

P(n−k)−2

P(n−k)−3

...

...
P1

P0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(n−k)×1

(5)

Since the input biometric template is padded with k or more than k zeros,
the attacker get the corresponding k or more than k bits in error correcting
codeword. We consider that the revealed codeword bits are a part of parity-check
bits Pu, where 0 ≤ u ≤ ((n−k)−1). Using Eq. (5) with k or more than k known
parity-check bits on the right-hand side of the matrix, it generates k independent
linear equations with k unknown secret message bits (given by K), forming a
system of linear equations EX = F with a unique solution X = E−1F [7].

Taking X as the unknown secret message K, E as the known vector V and
F as the parity check matrix P with ≥ k known values, the attacker solves
the linear equations to get k unknown secret message bits to get the codeword
C. B can be obtained by simply XORing C with secure sketch value S using
Eq. (1), leading to an impersonation attack. In the case of brute force, the
attack complexity would be 2k bits, whereas, in our case, the attack complexity
becomes equal to the complexity of solving a system of linear equations. The
attack mentioned above is mainly documented on BCH codes. However, it is
also possible to perform the attack on the family of BCH codes, including the
Reed Solomon codes and other members of the same family [42,44].

6 Proposed Work

We propose a user-specific, random padding approach for the efficient imple-
mentation of a fuzzy commitment scheme that enhances the overall system’s
security while preserving high recognition performance. The proposed scheme
works on the principle that unique but random padding bits must be used dur-
ing enrolment and authentication for a particular individual. The padding bits
are derived from the underlying error correcting codeword. At the same time,
the padding bits are random and are not stored anywhere during the enrolment
to avoid being guessed by the attacker.

6.1 User-Specific, Random Padding Using Codeword Bits

The user provides its biometric template in the form of a binary string B ∈
{0, 1}n. A random, error correcting codeword C ∈ {0, 1}m is used to correct the
bit-errors present in the biometric template. Taking inspiration from the exist-
ing approaches [25,38], we introduce random padding on the input biometric

408 D. Chang et al.

template. Insertion of a few random padding bits increases the size of B while
keeping the bit errors the same as that of the original B (before padding). Since
the length of the biometric template and error correcting codeword is kept the
same, a corresponding larger-sized codeword is required for the modified bio-
metric template (with padding). Generally, larger the codeword size, the more
errors it will correct [44] (observed in Fig. 2). Thus, it is possible to correct more
bit-errors in the biometric template by using a larger-size codeword.

Algorithm 1: Enrolment Phase
Input: Iriscode B

Output: Secure sketch values Sj for 1 ≤ j ≤ i and i ≥ 2, hash value
1. B = B1‖B2‖ . . . ‖Bi−1‖Bi

2. For 1 ≤ j ≤ i − 1

3. Cj
kj←− Kj , � Kj denotes j-th random secret message

4. Sj = Bj ⊕ Cj , � |Cj | = |Bj |
5. j = j + 1
6. For j = i

7. Ci
ki←− Ki, � |Ci| = |Bi‖{Ci−1}pad|

8. H(Ci)
H←− Ci

9. Bi‖{Ci−1}pad ⊕ Ci = Si

10. Return S1, S2, . . . , Si, H(C1‖C2‖ . . . ‖Ci)

During enrolment phase, on providing B as input, we split it into i different
blocks such that B = B1‖B2‖ . . . ‖Bi−1‖Bi.

Each block Bj with 1 ≤ j ≤ i is of length n1, n2, . . . , ni−1, ni respectively,
where the length could vary for each block. For each block Bj , a codeword Cj

of length mj is generated. We can split the biometric template into any number
of blocks of biometric templates with 2 minimum blocks, i.e. i ≥ 2. In Sect. 7,
we perform our experiments with biometric templates splitted into 2 blocks. For
the purpose of generality and simplicity, we consider applying padding to only
the last block Bi of the biometric template.

For 1 ≤ j ≤ i−1, a secure sketch value Sj is derived using fuzzy commitment
scheme with Bj and corresponding Cj as inputs. It is given as

B1 ⊕ C1 = S1

B2 ⊕ C2 = S2

...
Bi−1 ⊕ Ci−1 = Si−1

To introduce padding in the last block Bi, we propose to use a few codeword
bits from the codeword Ci−1 belonging to a previous block. The number of
padding bits required is denoted by pad. These padding bits are replicated from
the codeword Ci−1 and are appended to block Bi.

On Security of Fuzzy Commitment Scheme for Biometric Authentication 409

Algorithm 2: Authentication Phase
Input: Iriscode B′, Secure sketch values Sj , where 1 ≤ j ≤ i and

i ≥ 2, hash value H(C1‖C2‖ . . . ‖Ci)
Output: a bit 1/0

1. B′ = B′
1‖B′

2‖ . . . ‖B′
i−1‖B′

i

2. For 1 ≤ j ≤ i − 1
3. C ′

j = B′
j ⊕ Sj , � |Cj | = |B′

j | and error correcting
capability of Cj is tj

4. C ′
j is decoded to C ′′

j if HD(Bj , B
′
j) < tj

5. j = j + 1
6. For j = i
7. B′

i‖{Ci−1}pad ⊕ Si = C ′
i

8. C ′
i is decoded to C ′′

i if HD(Bi, B
′
i) < ti

9. if H(C ′′
1 ‖C ′′

2 ‖ . . . ‖C ′′
i) = H(C1‖C2‖ . . . ‖Ci)

10. Return 1, � User is successfully authenticated
11. else
12. Return 0

The enrolment phase for the last block of the biometric template is given as,

Bi‖{Ci−1}pad ⊕ Ci = Si

{Ci−1}pad denotes that the pad number of bits from Ci−1 are taken for con-
catenation. Here, the codeword Ci is chosen such that its length is exactly equal
to the length of the padded biometric template, denoted as

|Ci| = |Bi‖{Ci−1}pad|
The secure sketch values S1, S2, . . . , Si−1, Si are stored on the database server

as public values along with the hash of all the codewords concatenated together
denoted as H(C1‖C2‖ . . . ‖Ci). The values S1 to Si and H(C1‖C2‖ . . . ‖Ci) con-
stitute the helper data. The enrolment phase is described in Algorithm 1.

During the authentication phase, the user provides B′ ∈ {0, 1}l which is
splitted into i blocks of the respective lengths as in the enrolment phase such that
B′ = B′

1‖B′
2‖ . . . ‖B′

i−1‖B′
i. From the secure sketch values Sj for 1 ≤ j ≤ i − 1

and i ≥ 2 stored as a part of helper data on the database server, the original
codeword Cj is decoded as

B′
1 ⊕ S1 = C ′

1

B′
2 ⊕ S2 = C ′

2

...
B′

i−1 ⊕ Si−1 = C ′
i−1

If B′
j ,Bj (for 1 ≤ j ≤ i−1) satisfy the condition that HD(B′

j , Bj) ≤ t, where
HD calculates the hamming distance between two binary strings, C ′

j is decoded
using t-error correcting codeword to get the codeword C ′′

j = Cj .

410 D. Chang et al.

For j = i, i.e. for the last block, |B′
i|
= |Si|, thus, we need padding. The

pad number of bits are replicated from the decoded codeword C ′′
i−1 = Ci−1 and

appended to the B′
i. We then perform, B′

i‖{Ci−1}pad ⊕ Si = C ′
i If B′

i,Bi satisfy
the condition: HD(B′

i, Bi) ≤ t, C ′
i would be decoded to the codeword C ′′

i . If
H(C ′′

1 ‖C ′′
2 ‖ . . . ‖C ′′

i) = H(C1‖C2‖ . . . ‖Ci), the user is authenticated successfully.
The authentication phase is described in Algorithm 2.

We can design multiple constructions by taking the blocks in any order while
maintaining their order during the enrolment and authentication phase. Accord-
ing to the statistical distribution of bit errors among multiple datasets, the design
flexibility helps to achieve high-performance accuracy while preserving security.

7 Experiments and Performance Analysis

We analyze the performance of our proposed scheme in terms of recognition
accuracy and the time taken to perform biometric authentication. We perform
the experiments on the publicly available IIT-Delhi iris database [27] consisting
of 420 instances, 5 samples per instance. To obtain the iriscodes, we use several
open-source libraries such as OSIRIS [36] and University of Salzburg Iris Toolkit
v1.0 [41] and the Daugman-like 1D-Log Gabor (LG) algorithm proposed by
Masek [33] for feature extraction in the iris. An iriscode of length 10240 bits
is generated. We perform a statistical test on the database to find the general
distribution of errors in the iriscodes. On about 4200 genuine samples with a
threshold of 0.21 (considering a suitable BCH codeword with k ≥ 128 bits, we
partition each iriscode into 3 parts and observed that the last partition contains
more number of bit errors (greater than 21%) as compared to the other two
partitions for most of the iriscodes. Hence we prefer padding on the second
block of the iriscode when the iriscode is split into 2 blocks. We use BCH codes
for implementation1 of various configurations (shown in Table 2).

7.1 Recognition Performance Evaluation

We evaluate the recognition performance in terms of the true match rate and
false match rate generated by the system for various values of the length k of
secret message K. The higher the length of K, the more is the security. The
recognition performance of our proposed scheme is shown in Fig. 2. The true
match rate decreases by increasing the length of secret message K and increases
with the decreasing length of K. It is implicit that the higher the length of secret
message K, the fewer errors t would be corrected by a particular error correct-
ing codeword [29]. Therefore, a performance-security trade-off always exists in
the implementation of error correcting codes. Figure 3 shows the comparison of
recognition performance of our proposed approach with the existing approaches.
We select the value of K such that k ≥ 128 for our proposed approach and
compare our proposed approach in Table 2 with the existing constructions given
as follows.
1 http://www.eccpage.com/bch3.c.

http://www.eccpage.com/bch3.c

On Security of Fuzzy Commitment Scheme for Biometric Authentication 411

Fig. 2. The recognition performance (true match rate (TMR)) of Proposed A and
Proposed B schemes with respect to the length k of secret message K. The markers
show the TMR at k = 128.

– Baseline A [10,16]: It denotes the original fuzzy commitment scheme pro-
posed by Dodis et al. [10] (without padding). The extra bits from the bio-
metric template are discarded.

– Baseline B [6,15]: It denotes the scheme proposed by Hao et al. [15] with
BCH code with k = 19 bits so that the maximum number of errors would be
corrected by the underlying error correcting codeword.

– Zero Padding [22,24,25,38]: We append several zeros in the biometric tem-
plate B of length 10240 to get the modified length of 16383 bits.

– Fixed Padding [22,23,25,38]: We append some fixed padding bits derived
using an additional key or a password.

– Bit-wise encryption [5]: In [5], we ignore the cancelable template generation
module and focus on the fuzzy extractor. BCH code is used to correct the bit
errors in the input biometric template.

– BIOFUSE [4]: For BIOFUSE, we consider the performance of the fuzzy com-
mitment scheme while ignoring the fuzzy vault scheme’s performance since a
Boolean AND operation is performed.

– Secure Face [31]: We consider the fuzzy extractor module for generating the
secure key from iriscode using BCH code.

– Proposed: We split the iriscode into i = 2 blocks as described in Sect. 6. We
consider the two best cases given as:

• Proposed A: B1=8191 with C1=8191 bits and B2=2049 padded with
6142 bits of C1. The length of codeword C2=8191 bits.

• Proposed B: B1=8191 with C1=8191 bits and B2=2049 padded with
2046 bits of C1. The length of codeword C2=4095 bits.

412 D. Chang et al.

Table 2. True match rate (TMR) along with security comparison for various fuzzy
commitment schemes designed for iris biometric templates.

Approaches Biometric template B Codeword C, (n, k, t) TMR Security
(in k bits)

B1 B2 C1 C2

Baseline A [10,16] 8191 2047 (8191,131,1759) (2047,133,365) 0.19 k1, k2 ≥ 128

2047 8191 (2047,133,365) (8191,131,1759) 0.17 k1, k2 ≥ 128

Baseline B [6,15] 8191 2047 (8191, 14, 2047) (2047, 12, 511) 0.49 k1, k2 ≤ 128

2047 8191 (2047,12,511) (8191, 14,2047) 0.61 k1, k2 ≤ 128

Zero padding [22,24,25,38] 10240‖{0}6143 (16383,134,3575) 0.93 k1, k2 ≥ 128a

Fixed padding [22,23,25,38] 10240‖{0}6143 (16383,134,3575) 0.93 k1, k2 ≥ 128a

Bit-wise encryption [5] 8191 2047 (8191,131,1759) (2047,133,365) 0.19 k1, k2 ≥ 128

2047 8191 (2047,133,365) (8191,131,1759) 0.17 k1, k2 ≥ 128

BIOFUSE [4] 8191 2047 (8191,131,1759) (2047,133,365) 0.19 k1, k2 ≥ 128

2047 8191 (2047,133,365) (8191,131,1759) 0.17 k1, k2 ≥ 128

Secure Face [31] 8191 2047 (8191,131,1759) (2047,133,365) 0.19 k1, k2 ≥ 128

2047 8191 (2047,133,365) (8191,131,1759) 0.17 k1, k2 ≥ 128

Proposed 8191 2049‖{C1}6142 (8191,131,1759) (8191,131,1759) 0.63 k1, k2 ≥ 128

8191 2049‖{C1}2046 (8191,131,1759) (4095,134,763) 0.64
2049‖{C2}2046 8191 (4095,134,763) (8191,131,1759) 0.59
2049‖{C2}6142 8191 (8191,131,1759) (8191,131,1759) 0.59

Following are the observations

– The proposed scheme gives the best recognition performance accuracy among
all the secure schemes (no impersonation attack and k ≥ 128 bits). We achieve
a true match rate of approximately 64% as the best case.

– The zero and fixed padding schemes [21–25,38] show highest accuracy (93%);
however, they lead to the impersonation attack (refer Sect. 5).

– The Baseline B has recognition performance equivalent to the performance
of proposed approach, it is not secure due to the small length of the secret
message (k = 19), resulting in a brute force attack (refer Sect. 8).

– We also calculate the false match rate (FMR) of our proposed approach as
well as the existing approaches. It is almost negligible for all the causes con-
tributing to high security in critical systems when the priority is to reject an
intruder or an impostor rather than to keep the true match rate high.

– In Table 2 and Fig. 3, we observe that the recognition performance of some
existing schemes [4,5,31] is low (TMR = 0.19), given k = 128 bits. By imple-
menting our proposed padding approach, the recognition performance of such
schemes could be improved to 3 times (with TMR = 0.63).

– In Table 2, we also consider padding on the first block of iriscode. In compar-
ison to the Baseline A (TMR= 0.17) where B1=2047 and B2=8191 bits,
a significant improvement (TMR = 0.59) is shown in the proposed case
with padding where B1=2049‖{C2}6142 and B2=8191. Thus, in the scenarios,
where the distribution of error is more in the first block, the padding on the
first block could help to improve the overall performance rates of the system.

– We further evaluate the results on different number of block partitions, con-
sidering 3 blocks as B1=2047 bits with codeword C1=2047 bits, B2=6144 bits
padded with 2047 bits of codeword C1 and B3=2047 bits padded with 6144

On Security of Fuzzy Commitment Scheme for Biometric Authentication 413

Fig. 3. Recognition performance of various approaches (best cases from Table 2).

bits of codeword C2. The length of codeword C2 and C3=8191 bits. Similar to
the above-mentioned case, we observe the degradation of accuracy (TMR=
0.48) as compared to the Proposed A and Proposed B cases.

– While the overall accuracy of our proposed scheme is quite low for imple-
mentation in real-life scenarios; it still surpasses the accuracy achieved with
baseline approaches by a significant number. For real-life implementations,
the configurations can be manipulated according to the database and the
error distribution in the particular database to get the desired accuracy.

7.2 Efficiency in Terms of Authentication Time

We evaluate the efficiency of our proposed scheme in terms of the time taken
during the enrolment and authentication phase (measured in terms of seconds on
an average of over 200 runs each). The experiments are performed on a server-
grade processor; Intel i7 2.6GHz quad core processor (with hyper-threading)
with 16GB RAM architecture for profiling BCH encoding and decoding subrou-
tines. Further, we have used several compiler flags that allow fast compilation of
the code. Following are the inferences from Table 3:

– We obtain the authentication time as approximately 0.3 seconds for one of
the best cases- Proposed B. Shorter authentication time helps to achieve
the deployability of our proposed approach on wider scale biometric systems
where real-time processing is a major requirement.

– For the configuration with 3 block partition (B1=2047, B2=6144 and
B3=2047 bits), we obtain the enrolment time as 0.0039 seconds and authenti-
cation time as 0.46 seconds approximately which shows that as the length of
codewords and the number of codewords used increase, the time also increases.

– Small authentication time proves the fact that the entire authentication pro-
cess is not resource-intensive. Hence, our proposed scheme could also be scaled
to low powered or IoT devices.

414 D. Chang et al.

– Hardware instructions could be utilized for several mathematical computa-
tions that potentially improve both the enrolment and authentication time.

Table 3. Time taken (in seconds) by various schemes plotted in Fig. 2 in terms of
enrolment time (BCH encoding time + XOR operation time) and authentication time
(BCH decoding time + XOR operation time). XOR takes approx. 0.00002 s.

Approaches Biometric template B Efficiency (in seconds)
B1 B2 Enrolment Authentication

Baseline A [10,16] 8191 2047 0.002213 0.256226
Baseline B [6,15] 2047 8191 0.002213 0.256226
Zero Padding [22,24,25,38] 10240‖{0}6143 0.004952 0.531250
Fixed Padding [22,23,25,38] 10240‖{0}6143 0.004952 0.531250
Bit-wise encryption [5] 8191 2047 0.002213 0.256226
BIOFUSE [4] 8191 2047 0.002213 0.256226
Secure Face [31] 8191 2047 0.002213 0.256226
Proposed A 8191 2049‖{C1}6142 0.003536 0.409550
Proposed B 8191 2049‖{C1}2046 0.002694 0.308337

8 Security Analysis

The security of our proposed work majorly depends on two parameters: the input
biometric template B and the secret message K of length k used to generate C.

8.1 Brute Force Attack Complexity

We discuss the brute force attack complexity for an attacker to reveal B or C.

1. Brute force complexity for getting the biometric template B: While
the attacker tries to perform an exhaustive search over B, the number of trials
to get B is given in terms of the entropy of B. Hao et al. [15] introduce the
concept of security based on the sphere-packing bound [1] to calculate the
entropy estimation on iriscode as a biometric template which gives the prob-
ability of how difficult or easy it is to guess a correct iriscode by an attacker.
It computes a degree of freedom that requires the correlation information [15]
in a large real-time database, which is not a practical approach.

2. Brute force complexity for getting the error correcting codeword C:
In the fuzzy commitment scheme, we store the hash of the codeword C on
the server as a part of the helper data. The authentication is successful when
(H(C ′′) = H(C)).

On Security of Fuzzy Commitment Scheme for Biometric Authentication 415

To compromise C, there could be 2 different approaches:
– In the first approach, the target would be to obtain C. Given H(C), the

attacker could perform pre-image attack on C to satisfy the authentica-
tion condition that (H(C ′′) = H(C)). The attack complexity is given by
the number of trials required to guess C which limits to |H(C)| since
|C| >> |H(C)|. It is equal to 2|H(C)|.

– In the second approach, the attacker could perform a brute force attack
on the secret message K with the number of trials as 2k, where k is the
length of K. Therefore, the security bound is given in terms of the number
of trials as 2min(|H(C)|,k). Usually, k ≤ |H(C)|, therefore, attacker chooses
to perform brute force on secret message K.

To prevent the attacks given in the two approaches mentioned above, first,
the size of the hash output should be considerably large. For example, we use
SHA-256 as the hash function, which gives 256 bits hash value. Second, the
secret message bits K used to generate codewords must be preferably equal
to or greater than 128 bits. We further suggest that for every block of the
biometric template Bj , with 1 ≤ j ≤ i obtained after splitting the biometric
template B into i blocks, the secret message bits used for generating the
respective codewords must have lengths kj ≥ 128 bits.

8.2 Attack Complexity of the Proposed Scheme

Our proposed random-padding scheme prevents the impersonation attack dis-
cussed in Sect. 5. The following result justifies the security of our scheme.

Statement: The security of the overall scheme lies on the security
of the k bits of the secret message K, which is used to generate C.

Proof. To compromise the system, an attacker could follow two approaches:

– Case 1: Guessing K: K is assumed to be a uniformly distributed random
value. The number of trials required to obtain K is equal to the brute force
complexity and is given as 2k, where k is the length of K.

– Case 2: Guessing padding bits pad in our proposed random padding
scheme: The fuzzy commitment scheme for the i − th block of biometric
template following our proposal is shown as

Bi‖{Ci−1}pad ⊕ Ci = Si

The padding bits are random, secret bits and are not stored on the server
during enrolment. It is ensured that the number of padding bits, pad ≥ k,
where k is the length of secret message K used to generate the underlying
codeword C and k ≥ 128 bits. In case if pad < k bits, an attacker can perform
a brute force approach and can be successful with attack complexity less than
2128, leading to the impersonation attack, described in Sect. 5.

416 D. Chang et al.

Since the padding bits are unknown, the attacker aims at guessing at least k
padding bits out of pad number of bits which requires 2k number of trials to
guess the k bits. To prevent the impersonation attack, we consider the number
of padding bits pad ≥ k ≥ 128. Besides, it is always easy to avoid the case
when pad < 128. For an example, let we have i blocks of biometric template,
out of which the padding is required for the block Bj such that 1 ≤ j ≤ i
and i ≥ 2. Then, the error correcting codeword of a specific length mj could
be chosen by the system for block Bj in a way that, we get mj − nj ≥ 128
where nj is the length of block Bj and mj − nj gives the number of padding
bits required for the particular block.
Therefore, the whole system’s security depends on the security of k bits of
the secret message, equivalent to the brute force attack complexity as 2k.

9 Conclusions

We propose, first in our knowledge, a novel, user-specific, random padding
scheme for an efficient implementation of error correcting codes to enhance the
security of existing fuzzy commitment schemes. Our proposed padding scheme
prevents the impersonation attack that could reveal the whole biometric tem-
plate to the attackers. While the existing approaches often use an additional key
or a password to enhance security or recognition performance, we did not use
any of these. The experimental results show that our proposed padding scheme
tremendously improves the recognition performance of the baseline, unprotected
schemes by approximately 3 times by providing a true match rate of 0.64. The
time taken for authentication is around 0.30 seconds on an average of over 200
trials. We provide a thorough security analysis for our proposed work. It shows
that our proposed random padding scheme provides the attack complexity of k
bits equivalent to the brute force attack complexity, where k denotes the length
of the secret message used to generate the codeword and k ≥ 128 bits.

We conclude that our proposed scheme is simple and efficient to implement. It
significantly improves recognition performance and efficiency in terms of authen-
tication time while preserving the overall system’s security. Other than for user
authentication, our scheme could be applied in the areas where the fuzzy com-
mitment scheme is prominently used to generate a secret key from the biometric
templates [4,5,31]. Since the secret, the cryptographic key generated from a par-
ticular instance is unique, it is very important to preserve maximum bit errors in
different samples of the same instance. In such scenarios, our proposed padding
scheme would enhance the error preservation, hence the system’s performance.
Further, the performance accuracy can be significantly increased by considering
multiple configurations of the blocks of biometric templates according to the
distribution of bit errors in a particular database.

On Security of Fuzzy Commitment Scheme for Biometric Authentication 417

References

1. Al-Assam, H., Jassim, S.: Security evaluation of biometric keys. Cmput. Secur.
31(2), 151–163 (2012)

2. Berrou, C., Glavieux, A., Thitimajshima, P.: Near shannon limit error-correcting
coding and decoding: Turbo-codes. 1. In: Proceedings of ICC’93-IEEE Interna-
tional Conference on Communications, vol. 2, pp. 1064–1070. IEEE (1993)

3. Bose, R.C., Ray-Chaudhuri, D.K.: On a class of error correcting binary group
codes. Inf. Control 3(1), 68–79 (1960)

4. Chang, D., Garg, S., Ghosh, M., Hasan, M.: Biofuse: a framework for multi-
biometric fusion on biocryptosystem level. Inf. Sci. 546, 481–511 (2021)

5. Chang, D., Garg, S., Hasan, M., Mishra, S.: Cancelable multi-biometric approach
using fuzzy extractor and novel bit-wise encryption. IEEE Trans. Inf. Forensics
Secur. 15, 3152–3167 (2020)

6. Chauhan, S., Sharma, A.: Improved fuzzy commitment scheme. Int. J. Inf. Technol.
14, 1321–1331(2019)

7. Cullen, C.G.: Matrices and Linear Transformations. Courier Corporation (2012)
8. Daugman, J.: 600 million citizens of India are now enrolled with biometric id. SPIE

Newsroom 7 (2014)
9. Dayal Mohan, D., Sankaran, N., Tulyakov, S., Setlur, S., Govindaraju, V.: Signif-

icant feature based representation for template protection. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
(2019)

10. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys
from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24676-3_31

11. Drozdowski, P., Garg, S., Rathgeb, C., Gomez-Barrcro, M., Chang, D., Busch, C.:
Privacy-preserving indexing of iris-codes with cancelable bloom filter-based search
structures. In: 2018 26th European Signal Processing Conference (EUSIPCO), pp.
2360–2364. IEEE (2018)

12. Gao, S.: A new algorithm for decoding reed-solomon codes. In: In: Bhargava, V.K.,
Poor, H.V., Tarokh, V., Yoon, S. (eds.) Communications, Information and Network
Security, pp. 55–68. Springer, Boston (2003). https://doi.org/10.1007/978-1-4757-
3789-9_5

13. Gomez-Barrero, M., Maiorana, E., Galbally, J., Campisi, P., Fierrez, J.: Multi-
biometric template protection based on homomorphic encryption. Pattern Recogn.
67, 149–163 (2017)

14. Gomez-Barrero, M., Rathgeb, C., Galbally, J., Busch, C., Fierrez, J.: Unlinkable
and irreversible biometric template protection based on bloom filters. Inf. Sci. 370,
18–32 (2016)

15. Hao, F., Anderson, R., Daugman, J.: Combining crypto with biometrics effectively.
IEEE Trans. Comput. 55(9), 1081–1088 (2006)

16. Hoang, T., Choi, D., Nguyen, T.: Gait authentication on mobile phone using bio-
metric cryptosystem and fuzzy commitment scheme. Int. J. Inf. Secur. 14(6), 549–
560 (2015). https://doi.org/10.1007/s10207-015-0273-1

17. Hollingsworth, K.P., Bowyer, K.W., Flynn, P.J.: The best bits in an iris code. IEEE
Trans. Pattern Anal. Mach. Intell. 31(6), 964–973 (2008)

18. Jain, A.K., Nandakumar, K., Nagar, A.: Biometric template security. EURASIP
J. Adv. Signal Process. 2008, 113 (2008)

https://doi.org/10.1007/978-3-540-24676-3_31
https://doi.org/10.1007/978-1-4757-3789-9_5
https://doi.org/10.1007/978-1-4757-3789-9_5
https://doi.org/10.1007/s10207-015-0273-1

418 D. Chang et al.

19. Juels, A., Sudan, M.: A fuzzy vault scheme. In: Proceedings of IEEE International
Symposium on Information Theory, 2002, p. 408. IEEE (2002)

20. Juels, A., Wattenberg, M.: A fuzzy commitment scheme. In: Proceedings of the
6th ACM conference on Computer and Cmmunications Security, pp. 28–36. ACM
(1999)

21. Kanade, S., Camara, D., Krichen, E., Petrovska-Delacrétaz, D., Dorizzi, B.: Three
factor scheme for biometric-based cryptographic key regeneration using iris. In:
Biometrics Symposium, 2008. BSYM 2008, pp. 59–64. IEEE (2008)

22. Kanade, S., Camara, D., Petrovska-Delacrtaz, D., Dorizzi, B.: Application of bio-
metrics to obtain high entropy cryptographic keys. World Acad. Sci. Eng. Tech 52,
330 (2009)

23. Kanade, S., Petrovska-Delacrétaz, D., Dorizzi, B.: Cancelable iris biometrics and
using error correcting codes to reduce variability in biometric data. In: 2009 IEEE
Conference on Computer Vision and Pattern Recognition, pp. 120–127. IEEE
(2009)

24. Kanade, S., Petrovska-Delacrétaz, D., Dorizzi, B.: Multi-biometrics based crypto-
graphic key regeneration scheme. In: 2009 IEEE 3rd International Conference on
Biometrics: Theory, Applications, and Systems, pp. 1–7. IEEE (2009)

25. Kanade, S.G., Petrovska-Delacrétaz, D., Dorizzi, B.: Enhancing information secu-
rity and privacy by combining biometrics with cryptography. Synth. Lect. Inf. Sec.
Privacy Trust 3(1), 1–140 (2012)

26. Keller, D., Osadchy, M., Dunkelman, O.: Fuzzy commitments offer insufficient
protection to biometric templates produced by deep learning. arXiv preprint
arXiv:2012.13293 (2020)

27. Kumar, A., Passi, A.: Comparison and combination of iris matchers for reliable
personal authentication. Pattern Recogn. 43(3), 1016–1026 (2010)

28. Li, P., Yang, X., Qiao, H., Cao, K., Liu, E., Tian, J.: An effective biometric cryp-
tosystem combining fingerprints with error correction codes. Expert Syst. Appl.
39(7), 6562–6574 (2012)

29. Lin, S., Costello, D.J.: Error Control Coding. Prentice Hall, Englewood Cliffs
(2001)

30. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes, vol. 16.
Elsevier, New York (1977)

31. Mai, G., Cao, K., Lan, X., Yuen, P.C.: Secureface: face template protection. IEEE
Trans. Inf. Forensics Secur. 16, 262–277 (2020)

32. Malek, M.: Hadamard Codes. California State University, p. 112 (2018)
33. Masek, L., et al.: Recognition of human iris patterns for biometric identification.

Ph.D. thesis, Citeseer (2003)
34. Nandakumar, K., Jain, A.K.: Biometric template protection: Bridging the perfor-

mance gap between theory and practice. IEEE Signal Process. Mag. 32(5), 88–100
(2015)

35. NL, F.: Uk," comparison bose-chaudhuri-hocquenghem bch and reed solomon.
CCITT SGXV, Doc.# 476, Working Party XV/4, Specialists Group on Coding
for Visual Telephony (2004)

36. Othman, N., Dorizzi, B., Garcia-Salicetti, S.: OSIRIS: an open source iris recogni-
tion software. Pattern Recogn. Lett. 82, 124–131 (2016)

37. Ratha, N.K., Connell, J.H., Bolle, R.M.: Enhancing security and privacy in
biometrics-based authentication systems. IBM Syst. J. 40(3), 614–634 (2001)

38. Rathge, C., Uhl, A., Wild, P.: Reliability-balanced feature level fusion for fuzzy
commitment scheme. In: 2011 International Joint Conference on Biometrics
(IJCB), pp. 1–7. IEEE (2011)

http://arxiv.org/abs/2012.13293

On Security of Fuzzy Commitment Scheme for Biometric Authentication 419

39. Rathgeb, C., Breitinger, F., Busch, C.: Alignment-free cancelable iris biometric
templates based on adaptive bloom filters. In: 2013 International Conference on
Biometrics (ICB), pp. 1–8. IEEE (2013)

40. Rathgeb, C., Uhl, A.: The state-of-the-art in iris biometric cryptosystems. In: State
of the Art in Biometrics, pp. 179–202 (2011)

41. Rathgeb, C., Uhl, A., Wild, P., Hofbauer, H.: Design decisions for an iris recognition
SDK. In: Bowyer, K.W., Burge, M.J. (eds.) Handbook of Iris Recognition. ACVPR,
pp. 359–396. Springer, London (2016). https://doi.org/10.1007/978-1-4471-6784-
6_16

42. Stoianov, A.: Security of error correcting code for biometric encryption. In: 2010
Eighth Annual International Conference on Privacy Security and Trust (PST), pp.
231–235. IEEE (2010)

43. Talreja, V., Valenti, M.C., Nasrabadi, N.M.: Zero-shot deep hashing and neural
network based error correction for face template protection. In: 2019 IEEE 10th
International Conference on Biometrics Theory, Applications and Systems (BTAS),
pp. 1–10. IEEE (2019)

44. Teoh, A.B.J., Kim, J.: Error correction codes for biometric cryptosystem: an
overview. Inf. Commun. Mag. 32(6), 39–49 (2015)

45. Zhou, K., Ren, J.: PassBio: privacy-preserving user-centric biometric authentica-
tion. IEEE Trans. Inf. Forensics Secur. 13(12), 3050–3063 (2018)

https://doi.org/10.1007/978-1-4471-6784-6_16
https://doi.org/10.1007/978-1-4471-6784-6_16

SoK: Decentralized Randomness Beacon
Protocols

Mayank Raikwar(B) and Danilo Gligoroski

Norwegian University of Science and Technology (NTNU), Trondheim, Norway
{mayank.raikwar,danilog}@ntnu.no

Abstract. The scientific interest in the area of Decentralized Random-
ness Beacon (DRB) protocols has been thriving recently. Partially that
interest is due to the success of the disruptive technologies introduced by
modern cryptography, such as cryptocurrencies, blockchain technologies,
and decentralized finances, where there is an enormous need for a pub-
lic, reliable, trusted, verifiable, and distributed source of randomness. On
the other hand, recent advancements in the development of new crypto-
graphic primitives brought a huge interest in constructing a plethora of
DRB protocols differing in design and underlying primitives.

To the best of our knowledge, no systematic and comprehensive work
systematizes and analyzes the existing DRB protocols. Therefore, we
present a Systematization of Knowledge (SoK) intending to structure
the multi-faced body of research on DRB protocols. In this SoK, we
delineate the DRB protocols along the following axes: their underlying
primitive, properties, and security. This SoK tries to fill that gap by pro-
viding basic standard definitions and requirements for DRB protocols,
such as Unpredictability, Bias-resistance, Availability (or Liveness), and
Public Verifiability. We classify DRB protocols according to the nature
of interactivity among protocol participants. We also highlight the most
significant features of DRB protocols such as scalability, complexity, and
performance along with a brief discussion on its improvement. We present
future research directions along with a few interesting research problems.

Keywords: Random beacon · Bias-resistance · Unpredictability ·
Secret sharing · Verifiable delay function

1 Introduction

Public digital randomness is an essential building component for a large spec-
trum of applications and protocols. For example, a reliable source of continuous
randomness providing high entropy, also known as random beacon, is crucial for
many security applications. A notion of coin tossing protocol [9] was proposed
by Blum in 1983 that addressed the question of generating the trustworthy ran-
dom value in a network of mutually distrustful participants. Further, Rabin [58]
formalized the notion of the random beacon. Since then, randomness generation
has been advanced significantly due to the underlying modern cryptography.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
K. Nguyen et al. (Eds.): ACISP 2022, LNCS 13494, pp. 420–446, 2022.
https://doi.org/10.1007/978-3-031-22301-3_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22301-3_21&domain=pdf
http://orcid.org/0000-0002-5479-5748
http://orcid.org/0000-0002-7078-6139
https://doi.org/10.1007/978-3-031-22301-3_21

SoK: Decentralized Randomness Beacon Protocols 421

Lately, coin tossing protocols became more appealing in Proof-of-Work (PoW)
or Proof-of-Stake (PoS) [39] consensus. Random beacon has a range of applica-
tions that includes cryptographic parameter generation [49], design of byzantine
fault tolerant (BFT) protocols [16,39], privacy-preserving message services [40], e-
voting protocols [1], online gaming [13], publicly auditable selections [13], anony-
mous browsing [41], sharded blockchains [23] and smart contracts [48].

Due to the applicability of shared randomness in a variety of applications, a rich
body of literature has emerged that proposesmanyDRBprotocols differing in their
designs and underlying cryptography. Nevertheless, the system models and design
challenges in these DRB protocols are highly disparate. Therefore, to address these
challenges and to provide a general definition of a DRB protocol, we present a Sys-
tematization of Knowledge (SoK). The purpose of this SoK is to provide a system-
atic overview of existing DRB protocols that can help researchers and practitioners
to find suitable solutions for randomness generation.

Background. An easy approach to achieve continuous randomness is through
a single node or a trusted third party such as NIST [46], Random.org [43] or
Oraclize.it [56]. The NIST beacon continuously outputs hardware-generated ran-
dom values from a quantum-mechanical effect. Since these beacon services are
centralized, they can be unreliable. Moreover, in the past, they suffered a signif-
icant public trust deterioration after the revealed backdoor in the NSA-designed
Dual elliptic curve pseudorandom number generator [68]. Due to these problems,
these centralized beacon services are undesirable for secure applications.

As a consequence, Decentralized Randomness Beacon (DRB) protocols were
proposed and constructed where trust is distributed across multiple nodes that
jointly generate random values at a regular interval. More concretely, a con-
sortium of organizations launched a distributed publicly verifiable randomness
beacon that periodically provides unbiasable and unpredictable random outputs.
The deployment is known as League of Entropy (LoE)) [51] that aims to provide
collaborative governance for protection of its random beacon. The consortium
believes that their beacon can become a fundamental service on the internet.

DRB protocols can be constructed by employing different cryptographic prim-
itives e.g. Publicly Verifiable Secret Sharing schemes (PVSS) [8,17,18,25,47,66,
69], Threshold Crypto-Systems [16,20,31,45,55], Verifiable Random Functions
(VRF) [22,24,27,36,39,71], Verifiable Delay Functions (VDF) [30,34,44,49,65].
Randomness can also be extracted from external data sources such as [7,13,21] or
from the blockchain schemes having their own random beacon [36,45,47]. These
DRB protocols are not equally-suited in all applications or use-cases due to the
diversity in their designs, characteristics, and underlying assumptions.

DRB protocols differ significantly due to their underlying techniques. A DRB
protocol should have a list of desirable beacon properties along with low com-
munication complexity, low computational cost, and low trust requirement (e.g.,
setup assumptions). Additionally, the DRB protocol should be efficient in prac-
tical settings. Therefore, despite having many constructions of DRB protocols,
a few problems such as scalability, trust, and network assumptions need to be
addressed to construct a desirable DRB protocol for practical applications.

422 M. Raikwar and D. Gligoroski

Motivated by the above, the contributions of this SoK are as follows:

1. We provide a formal definition of a Decentralized Randomness Beacon (DRB)
with a brief description of its security properties (Sect. 2).

2. We present a classification of DRB protocols in Interactive and Non-
interactive DRB protocols and we describe these protocols in detail (Sect. 3).

3. We give a brief discussion on several crucial issues related to DRB protocols,
including complexity, scalability, and assumptions. We also identify a few
efficient building components to construct efficient DRB protocols (Sect. 4).

2 Decentralized Randomness Beacon (DRB)

A DRB allows a group of participants to collaboratively produce random val-
ues without the need of a central party. A DRB consists of n participants1
P = (P1, P2, . . . , Pn). These participants are connected in a distributed manner.
Without loss of generality, we assume that a DRB protocol works in rounds
and maintains a beacon state st for each round. For every round e ∈ {1, 2, . . .},
given the current state ste−1, the DRB protocol collectively produces a random
output ve; the state st0 is jointly computed and agreed from the protocol par-
ticipants during the bootstrapping of the DRB protocol. Following, we present
a formalization of DRB and we formally define the required security properties
of a DRB. Additionally, we define a secure DRB protocol in Appendix A.

Definition 1. (Decentralized Randomness Beacon (DRB)) A DRB on a set of
participants P = (P1, . . . , Pn) is defined as a tuple B of polynomial algorithms:
B = (Setup, LocalRand,GlobalRand,VerifyRand,UpdateSt)

– Setup(1λ, n): Given input security parameter λ, and n participants, it gen-
erates public parameter pp and keypair for each participant (pki, ski). All
participants agree on public parameter pp and {pki}.

– LocalRand(ste−1, pp, ski, se,i): Given input state ste−1 from round e−1, public
parameter pp, and input seed se,i, a participant Pi computes a local output
value ve,i with a proof πe,i using ski and se,i for round e. Output (i, ve,i, πe,i).

– GlobalRand(ste−1, pp,S = {(i, ve,i, πe,i)},m): Given input state ste−1, public
parameter pp, a set S of local output values from |S| participants, if |S| ≥ m,
where m is the minimum number of required local output values, the algorithm
computes the beacon output ve for round e by executing a function f on {ve,i}
from set S. It also computes proof of correctness πe using {πe,i} from set S.
Output (ve, πe) or ⊥.

– VerifyRand(ste−1, pp, ve, πe): Given input state ste−1, public parameter pp, a
beacon output ve, and a proof πe, the algorithm verifies the beacon value ve

and the corresponding proof πe. Output 0 or 1.
– UpdateSt(ste−1, pp, ve, πe): Given input state ste−1, public parameter pp, a

beacon output ve, and a proof πe generated at the round e, the algorithm
updates the state from ste−1 to ste for round e. Output ste or ⊥.

1 We use node and participant interchangeably in protocols throughout the paper.

SoK: Decentralized Randomness Beacon Protocols 423

The security properties of a DRB corresponds to: Unpredictability : An adver-
sary should not be able to predict (precompute) future beacon outcomes; Bias-
Resistance: A single participant or a colluding adversary cannot bias the future
beacon values; Availability (or Liveness): A single participant or a colluding
adversary can not prevent the generation of the new beacon value; Public Ver-
ifiability : Any third party can verify the correctness of the new beacon value.
Note: We use DRB protocols and DRBs interchangeably throughout the paper.

These formal security guarantees of a DRB protocol are evolved during the
time. Initial proposals lack the formal definitions and mathematical proofs of
their DRB protocols. Nevertheless, the recent proposals put an emphasis on
the security of their protocols. These protocols define and prove the security
properties of their DRB using the mathematical properties of the underlying
cryptographic primitives. Due to different designs, setting up a formal provabil-
ity framework for DRBs should define the least common security requirements,
therefore, we formulate the desiderata of a DRB protocol as follows where λ is
a security parameter and negl(λ) is a negligible function of λ.

Definition 2. (Unpredictability) Let A(v1, . . . , ve, ste) be a probabilistic polyno-
mial time algorithm that receives the values v1, . . . , ve and the current state ste
as the input values. Let A outputs a value ve+f for any value (future rounds)
f ≥ 2, and for all rounds e ≥ 1. Then

Pr[A(v1, . . . , ve, ste) = ve+f] ≤ negl(λ) (1)

Definition 3. (Bias-Resistance) Let biti(ve) denotes the i-th bit in the binary
representation of ve, let b = |ve| is the number of bits of ve, and let
Ai(v1, . . . , ve−1, ste−1) for i = 1, . . . , b, be b probabilistic polynomial-time algo-
rithms that receive the values v1, . . . , ve−1 and the current state ste−1 as input
and output one bit: 0 or 1. Then for every round e ≥ 1, every Ai() and for all
i = 1, . . . , b

Pr[biti(ve) = Ai(v1, . . . , ve−1, ste−1)] ≤ 1
2
+ negl(λ) (2)

Pr[biti(ve) = 0] ≤ 1
2
+ negl(λ) (3)

More concretely, we say that a DRB protocol is Bias-resistant if predicting any
single bit of the random beacon output ve has only a non-negligible advantage
over the trivial guessing strategy that has a probability of 1/2.

Definition 4. (Availability) Let A be an adversary controlling a fraction of par-
ticipants and Ph ⊆ P be a set of honest participants in the DRB protocol. Given
ve, πe, pp and ste−1, for every round e ≥ 1 and for every participant Pi ∈ Ph

Pr[UpdateSt(ste−1, pp, ve, πe) �= ste] ≤ negl(λ) (4)

Definition 5. (Public Verifiability) Given VerifyRand() as a public probabilistic
polynomial-time algorithm run by an external verifier Px /∈ P that receives ve, πe

424 M. Raikwar and D. Gligoroski

and the state ste−1 at the end of round e as input values and outputs a bit 0 or
1 based on the verification of ve using πe. Then for every round e ≥ 1

Pr[VerifyRand(ve, πe, ste−1) �= 1] ≤ negl(λ) (5)

3 DRB Classification

We classify DRB protocols in two ways: Interactive and Non-Interactive. Inter-
active DRB protocols generate a beacon output in an interactive manner which
involves multiple rounds of communication among participants. However, Non-
Interactive DRB protocols do not involve interactions among participants to pro-
duce a random beacon value for each round. Therefore, non-interactive DRBs are
preferable for decentralized applications. Nevertheless, the setup for the public
parameter generation can be interactive for both types of DRBs.

3.1 Interactive Decentralized Randomness Beacon Protocols

Interactive DRB protocols employ multiple rounds of interaction among par-
ticipants in order to produce one beacon output. These protocols are con-
structed using interactive cryptographic primitives such as Publicly Verifiable
Secret Sharing (PVSS) or Interactive Threshold Signature Scheme. The existing
interactive DRB protocols are based on PVSS involving two logical rounds of
coin-tossing wherein the first round, the participants broadcast commitments
to their shares, and further, these commitments are revealed in another round.
Constructions of DRBs with other interactive cryptographic primitives, we left
as open problems.

Research Problem 1. Construct a DRB protocol based on interactive thresh-
old signature scheme with better complexity compared to existing interactive
DRBs.

The main advantage of PVSS-based DRBs is that the generated randomness
is indistinguishable from uniform. Nevertheless, due to the interaction and broad-
cast, interactive DRBs incur high communication cost. Some of the PVSS-based
DRBs improve upon the general PVSS scheme to reduce the communication
complexity by utilizing a threshold version of PVSS or electing a committee to
perform PVSS or introducing a leader to relay the messages. Hence, these opti-
mized versions of DRB protocols can be used to obtain periodic fresh random-
ness in real-world applications. A PVSS scheme consists of a tuple of algorithms
(PVSS.Setup,PVSS.Share,PVSS.Verify,PVSS.Recon) described in Appendix B.

PVSS-based DRB protocols are mainly of two types: with leader [8,25,66]
and without leader [17,18,47]. In a leader-based protocol, a leader Le is elected
in each round e which is responsible for performing the distribution of the secret
shares of the PVSS scheme. A further illustration can be found in Appendix B.
Following we present a description of PVSS-based interactive DRB protocols.

SoK: Decentralized Randomness Beacon Protocols 425

– Ouroboros [47]: Ouroboros is a PoS-based blockchain where a set of elected
participants run the DRB protocol to fetch the randomness for the leader
election. It operates in two phases commit and reveal. In commit phase, par-
ticipants encrypt the shares for all other participants by running PVSS.Share
and submit the shares on the blockchain. In reveal phase, each participant
decrypts all the encrypted shares that are encrypted using his public key.
Then, each participant computes a local random value using all the decrypted
shares and posts it in the blockchain. Finally, a beacon output is computed
by performing an XOR operation on all the published local random values.

– RandHound, RandHerd [69]: Syta et al. constructed scalable randomness gen-
eration protocols by following client-server architecture and threshold cryp-
tography. RandHound is a one-shot on-demand protocol to generate single
randomness. However, RandHerd is a beacon protocol that emits continu-
ous random values. RandHound divides the servers into groups, and each
group is responsible for running PVSS among the group members. Rand-
Hound employs the commit-reveal technique as defined in Ouroboros for each
group. Finally, to produce global randomness in RandHound, a client operates
on all the received valid local randomness from each server group. RandHerd
improves upon the complexity of RandHound by leveraging communication
trees among the server groups and collective signing to produce beacon out-
puts.

– SCRAPE [17]: Cascudo et al. constructed an honest majority coin-tossing
protocol SCRAPE with guaranteed output delivery. It constructs a thresh-
old PVSS scheme where sharing, verification, and reconstruction take only
a linear number of exponentiations compared to quadratic in basic PVSS
scheme [67]. In SCRAPE, all participants have access to a ledger where mes-
sages are posted similar to Ouroboros. Cascudo et al. constructed an efficient
share verification procedure with linear complexity by observing the fact that
sharing a secret using PVSS is equivalent to encoding the secret with a Reed
Solomon error correcting code [61]. The dealer in the PVSS scheme [67] not
only encrypts the shares but also commits to the shares. Therefore, to prove
that shares in encrypted shares are the same as shares in commitments,
the efficient share verification procedure involving error-correcting code is
applied. SCRAPE improves the computation and verification cost compared
to Ouroboros.

– HydRand [66]: HydRand improves upon the complexity of SCRAPE’s PVSS
protocol. HydRand works in rounds consisting of three phases: propose,
acknowledge and vote. In each round, a leader is selected deterministically
from the set of potential leaders and by using the last round randomness.
In propose phase, the leader reveals his previously committed value which
is acknowledged, signed and further broadcast by the other participants in
acknowledge phase. In vote phase, each participant performs some checks,
including the checks on the number of received acknowledgments. If the
leader does not reveal his secret, the secret is reconstructed using PVSS.Recon.
The beacon value is computed using the revealed secret and the last round
randomness.

426 M. Raikwar and D. Gligoroski

– ALBATROSS [18]: ALBATROSS significantly improves, amortizes the com-
putation complexity of SCRAPE and provides a universal composability
(UC)-secure model. It shows efficiency gain through the packed Shamir secret
sharing scheme in PVSS or by using a linear t-resilient function to extract ran-
domness as a vector of random group elements. It utilizes Cooley-Tukey fast
Fourier transformation to amortize the complexity and for further improve-
ment, it uses

∑
-protocol to prove that the published sharing is correct.

ALBATROSS provides two variants of UC security: 1) First variant uses
UC-Non-Interactive Zero-Knowledge (NIZK) proofs for discrete logarithm,
2) Second variant introduces and uses a new primitive named “designated
verifier” homomorphic commitments where a sender can open a commitment
for one specific receiver. Later, the receiver can prove the same opening to a
third party.

– RandPiper [8]: Bhat et al. constructed a reconfiguration-friendly DRB pro-
tocol RandPiper with strong security guarantees and quadratic communica-
tion complexity. It combines PVSS with State-Machine Replication protocol
and presents two protocols: GRandPiper and BRandPiper. GRandPiper is
a communication optimal DRB with strong unpredictability in the presence
of a static adversary. However, BRandPiper shows the best communication
complexity and the best possible unpredictability in case of a dynamic adver-
sary.

– SPURT [25]: SPURT protocol constructs a new PVSS scheme using pairing
to produce beacon output and involves a leader. The new PVSS scheme relies
on Decisional Bilinear Diffie-Hellman (DBDH) assumption [12]. In addition,
SPURT uses State Machine Replication to lower the communication complex-
ity compared to the broadcast channel used by other DRBs e.g., HydRand.
SPURT operates in a semi-synchronous network and has no trusted setup.

3.2 Non-Interactive Decentralized Randomness Beacon Protocols

We categorize Non-Interactive DRB (NI-DRB) protocols based on the main con-
stituent cryptographic primitive, further, we illustrate these protocols in Table 1.

VDF-Based. These DRBs are based on stand-alone Verifiable Delay Function
VDF = (VDF.Setup,VDF.Eval,VDF.Verify) described in Appendix C. A VDF is
a function f : X → Y that takes a prescribed number of sequential steps to
compute the output and provides exponentially easy verification of the output. In
a VDF-based DRB, the participants evaluate an Iteratively Sequential Function
(ISF) to generate their local random values. The verification of these values can
be efficiently done using VDF.Verify. Due to the non-parallelizable property of
VDF, an adversary cannot bias the output of the random beacon.

Lenstra and Wesolowski [49] constructed a DRB protocol, Unicorn, using a
slow-time hash function named sloth. This function takes inputs from a set of
distrusting participants and outputs a random value. Keeping Unicorn protocol
as a successor to VDF, the following VDF-based DRB protocols are constructed.

SoK: Decentralized Randomness Beacon Protocols 427

– Minimal VDF Randomness Beacon [30]: Justin Drake constructed a minimal
randomness beacon using RANDAO [59] and VDF. RANDAO is a smart con-
tract based DRB where participants submit their local entropy to the smart
contract, and further, the smart contract produces a single global entropy.
RANDAO biasable entropy is used as input to the VDF to produce unbi-
asable randomness. Nevertheless, there is no formal security analysis of this
protocol.

– Continuous VDF [34]: Ephraim et al. presented a new notion of Continuous
Verifiable Delay Function (cVDF) by adapting Pietrzak scheme [57]. A cVDF
f provides the output computation of each intermediate steps (i.e. f(t) for
t < T) with an efficient proof πt (used for public verification of the output).
A cVDF can be used to construct a DRB protocol where beacon outputs are
generated by applying a suitable hash to the intermediate outputs of each
step. The drawback with this protocol is that the nodes having the most
efficient (fastest) processors can always learn the beacon outputs before the
other participating nodes. A similar argument goes for the Unicorn protocol.

– RandRunner [65]: RandRunner leverages trapdoor VDF with strong unique-
ness to construct a DRB protocol. Each participant Pi of RandRunner ini-
tializes its public parameter ppi with a corresponding trapdoor ski. The par-
ticipants exchange their public parameters and verify the received ones. Ran-
dRunner executes in consecutive rounds where in each round, a leader is
elected. Further, the leader tries to solve the VDF using its trapdoor, and
other participants attempt to solve the VDF using the common VDF.Eval
algorithm. The drawback with the RandRunner protocol is that once a pow-
erful adversary becomes a leader, it can keep corrupting the round leaders
(e.g., via DoS), withhold its output computed via trapdoor, and keep working
on for the next outputs for many subsequent rounds hence breaking unpre-
dictability.

– RANDCHAIN [44]: RANDCHAIN is a competitive DRB where in each
round, nodes compete to be a leader which solely produces the beacon out-
put. RANDCHAIN constructs a non-parallelizable Sequential Proof-of-Work
(SeqPoW) puzzle by employing VDF or Sloth. A node solves the SeqPoW puz-
zle by incrementing an ISF for a randomized time. RANDCHAIN works as a
Nakamoto-based blockchain where nodes synchronize their local blockchains
and keep solving the puzzle to mine new blocks to the main blockchain.
RANDCHAIN mimics a blockchain structure, so it can suffer from front-
running (block withholding) attacks and can also have forks due to problems
with blocks’ finality.

VRF-Based. These DRBs compute randomness using Verifiable Random Func-
tion VRF = (VRF.KeyGen,VRF.Eval,VRF.Verify) described in Appendix D. A
VRF is a pseudorandom function that produces pseudorandom output along
with proof about the correctness of the output. Participants in these DRBs
apply VRF on an input seed to generate their local entropy which is used to
compute the beacon output. VRF-based DRBs are explained as follows:

428 M. Raikwar and D. Gligoroski

– Blockchain Protocol Designs: Ouroboros Praos [27], Algorand [39] and
Erlond [33] blockchains have their DRB as a byproduct. In these DRBs, each
participant Pi runs VDF.Eval on a seed (e.g., previous output or state) using
its secret key ski and the DRB output is computed from the participants’ VRF
outputs. These DRBs do not guarantee generation of uniformly random values
and do not have strong bias-resistance as an adversary can include/exclude
the corrupted participants’ VRF outputs used for DRB output computation.

– Distributed VRF-based DRBs: A distributed VRF (DVRF) [29] based
DRB was first introduced by DFINITY [45]. Later DRBs [22,24] employed
DFINITY-DVRF along with BLS cryptography. Nevertheless, these DRBs do
not provide formal security analysis. A recent paper [36] provides two new
constructions of DVRF: 1) DDH-DVRF based on elliptic curve cryptogra-
phy; 2) GLOW-DVRF based on cryptographic pairings. These constructions
also formalize a security model with proper security analysis. DRBs based
on DDH-DVRF, and GLOW-DVRF show strong bias resistance and strong
pseudorandomness.

– RandChain [71]: RandChain follows commit-and-reveal strategy by building
a sub-routine RandGene using VRF. RandChain has a two-layer hierarchical
blockchain structure where nodes form distinct committees. Each committee
has a local blockchain and generates local entropy through the RandGene
protocol, further, global randomness is computed from these local entropy
by forming a RandChain block. RandChain security depends on a secure
sharding process, followed by a leader election for each shard (committee).
However, both processes can be influenced by an adversary to obstruct DRB
properties.

HE-Based. These DRBs utilize homomorphic encryption scheme HE = (HE.
Setup,HE.KeyGen,HE.Enc,HE.Dec,HE.Eval). Homomorphic encryption allows
performing arithmetic operations on ciphertext directly without decryption
(details in Appendix E). Following DRBs employ ElGamal encryption [32] as
partial HE.

– Nguyen-Van et al. [55]: Their DRB has three components: a Requester, a
Public Distributed Ledger (PDL), and a Core Layer. The protocol works in
rounds where, first, the Requester sends a nonce to the PDL that computes
a ticket T and publishes it. Further, participants of the core layer run a VRF
using the ticket T to check if they are selected as a contributor. Each contribu-
tor publishes a ciphertext computed on a random value using the Requester’s
public key. Later, the Requester performs a homomorphic operation on the
published ciphertexts and computes a single ciphertext. Finally, the Requester
publishes the decrypted value as DRB output with a proof of correct decryp-
tion. There are two drawbacks: 1) A malleable ElGamal encryption, 2) The
Requester can collude with contributors or refuse to decrypt the resulting
ciphertext.

– HERB [20]: Homomorphic Encryption Random Beacon (HERB) DRB uses
threshold ElGamal encryption scheme with a distributed key generation

SoK: Decentralized Randomness Beacon Protocols 429

(DKG) protocol. DKG is used to generate a common public key and secret
key shares for participants. Each participant publishes a ciphertext share with
proof of correct encryption (NIZK Proof) on a public bulletin board. These
shares generate an aggregated ciphertext through ElGamal aggregation which
is subsequently decrypted by a threshold of participants to produce the DRB
output.

External Source-Based. In these DRBs, participants extract the randomness
from an external entropy source, i.e., real-world entropy. These entropy sources
can be public blockchains [7,14], real-time financial data [21] or national lot-
tery results [3]. PoW-based blockchains are promising sources but an adversarial
miner can manipulate the generated randomness. Therefore, to achieve most of
the beacon properties, the following DRBs apply different defense mechanisms.

– Rand Extractor [21]: Clark et al. [21] created a model to generate randomness
by combining the information theory with computational finance. They used
the closing prices of the stock market to compute a random output. During
the market’s closing in the day, one entity publishes this random output in
the protocol. This entity can also induce its own local entropy to transpar-
ently construct a publicly verifiable final randomness, but liveness is hard to
achieve.

– Proofs of Delay [14]: In this DRB, a beacon smart contract (BC) publishes the
random beacon values on a public blockchain. The DRB is built on Proof-of-
Delay which uses an ISF such as sloth [49]. In this DRB, a beacon maintainer
executes this ISF and publishes the result to BC with queryable access to the
beacon output using a refereed delegation of computation protocol. To show
the honest behavior, the maintainer is incentivized; otherwise punished.

– Bitcoin Beacon [13] [7]: These DRBs extract randomness from the bitcoin
blockchain [53] and follows the security of the bitcoin. In [13], an extractor
fetches the randomness from the block headers. As each block contains several
transactions involving ECDSA signatures [37] that rely on strong randomness
for security hence, the extractor gives good public randomness as a beacon
output. Bentov et al. [7] constructed a bitcoin beacon protocol that fetches
m consecutive blocks B1, B2, . . . , Bm such that the block Bm already have
l subsequent blocks. Further, the protocol acquires a bit bi from each block
and runs a majority function on all these bits as input to get the DRB output.

Threshold Signature-Based. These DRBs are based on a non-interactive
threshold signature scheme that requires a single round of communication among
participants to produce the unique group signatures from a threshold number
of participants’ signature shares. Most of the existing threshold signature-based
DRBs employ threshold BLS signature. These DRBs require a setup to generate
the secret shares for the participants. Additionally, the complexity of unique
signature construction comply with DRB protocol for practical use.

430 M. Raikwar and D. Gligoroski

T
ab

le
1.

A
dv

an
ta

ge
s

an
d

di
sa

dv
an

ta
ge

s
of

di
ffe

re
nt

no
n-

in
te

ra
ct

iv
e

D
R

B
pr

ot
oc

ol
s

S
ch

em
e

A
d
va

nt
ag

es
D

is
ad

va
nt

ag
es

V
D

F
-b

as
ed

1.
T

h
es

e
D

R
B

s
ac

h
ie

ve
li
ve

n
es

s
u
n
d
er

th
e

p
er

io
d

of
fu

ll
as

yn
ch

ro
ny

2.
T

he
se

D
R

B
s

av
oi

d
by

za
nt

in
e

ag
re

em
en

t
co

ns
en

su
s

he
nc

e
h
av

e
le

ss
co

m
m

un
ic

at
io

n
co

m
pl

ex
it
y

3.
It

sh
ow

s
st

ro
n
g

b
ia

s-
re

si
st

an
ce

as
lo

n
g

as
th

er
e

is
an

h
on

es
t

n
od

e

1.
F
ro

nt
-r

u
n
n
in

g
at

ta
ck

ca
n

h
in

d
er

so
m

e
D

R
B

pr
op

er
ti

es
2.

In
m

os
t

of
th

es
e

D
R

B
s,

th
e

si
gn

ifi
ca

nt
p
ow

er
fu

l
ad

ve
r-

sa
ry

ca
n

le
ar

n
th

e
ou

tp
u
t

of
D

R
B

ea
rl

ie
r

th
an

ot
he

r
no

de
s

3.
T

h
es

e
p
ro

to
co

ls
re

ly
on

th
e

n
ew

as
su

m
p
ti

on
s

of
V

D
F

V
R

F
-b

as
ed

1.
M

os
t

of
th

es
e

D
R

B
s

do
no

t
h
av

e
an

y
tr

us
te

d
se

tu
p

an
d

ac
hi

ev
e

st
ro

n
g

n
ot

io
n

of
p
se

u
d
o-

ra
n
d
om

n
es

s
an

d
b
ia

s-
re

si
st

an
ce

[3
6]

2.
T

h
es

e
D

R
B

s
in

cu
r

le
ss

co
m

p
u
ta

ti
on

an
d

co
m

m
u
n
ic

at
io

n
co

st

1.
In

so
m

e
of

th
es

e
D

R
B

s,
le

ad
er

u
ni

qu
en

es
s

is
n
ot

gu
ar

an
te

ed
th

at
in

tr
od

u
ce

s
ad

d
it

io
na

l
co

ns
en

su
s

p
ro

to
co

l
to

ag
re

e
on

th
e

b
ea

co
n

ou
tp

ut

H
E
-b

as
ed

1.
T

h
e

ou
tp

u
t

of
th

es
e

D
R

B
s

fo
r

a
ro

u
n
d

e
do

es
no

t
d
ep

en
d

on
th

e
ou

tp
u
t

of
th

e
p
re

vi
ou

s
ro

u
n
d

e
−

1

2.
P
ar

ti
al

ho
m

om
or

ph
ic

en
cr

yp
ti

on
sc

h
em

es
us

ed
in

th
es

e
D

R
B

s
ca

n
b
e

re
pl

ac
ed

by
a

la
tt

ic
e-

ba
se

d
fu

ll
y

ho
m

om
or

ph
ic

sc
h
em

e
to

en
su

re
th

e
p
os

t-
qu

an
tu

m
se

cu
ri

ty

1.
S
ca

la
b
il
it
y

is
su

e
d
u
e

to
th

e
h
om

om
or

p
h
ic

ev
al

u
at

io
n

of
m

u
lt

ip
le

ci
p
h
er

te
xt

s
2.

T
h
e

ex
is

ti
n
g

D
R

B
s
u
se

p
u
b
li
c

le
d
ge

r
to

p
u
b
li
sh

th
e

lo
ca

l
an

d
gl

ob
al

en
tr

op
y.

B
u
t

d
is

tr
ib

u
ti

n
g

th
e

lo
ca

l
en

tr
op

y
in

D
R

B
s

u
si

n
g

a
co

n
se

n
su

s
in

cu
r

a
h
ig

h
co

m
m

u
n
ic

at
io

n
co

st

E
xt

er
na

l
So

ur
ce

-b
as

ed

1.
T

he
se

D
R

B
s

d
o

n
ot

in
cu

r
co

m
m

un
ic

at
io

n
co

st
as

th
e

D
R

B
ou

tp
u
t

is
p
u
b
li
sh

ed
in

a
p
u
b
li
c

b
u
ll
et

in
b
oa

rd
2.

T
he

se
D

R
B

s
w

or
k

p
er

fe
ct

ly
ev

en
in

th
e

as
yn

ch
ro

no
us

n
et

w
or

k

1.
M

os
t

of
th

es
e

D
R

B
s

d
o

n
ot

p
ro

vi
d
e

p
u
b
li
c

ve
ri

fi
ab

il
it
y

2.
P
ro

of
-o

f-
W

or
k

b
as

ed
b
ea

co
ns

ar
e

no
t

en
er

gy
effi

ci
en

t
an

d
no

de
s

w
it

h
b
et

te
r

h
ar

d
w

ar
e

ca
n

ou
tp

er
fo

rm
ot

he
r

n
od

es
in p
ro

d
u
ci

n
g

th
e

b
ea

co
n

ou
tp

u
t

T
h
re

sh
ol

d
S
ig

n
at

u
re

-b
as

ed

1.
T

h
es

e
D

R
B

s
p
ro

vi
d
e

st
ro

n
g

b
ia

s
re

si
st

an
ce

an
d

u
n
p
re

d
ic

ta
b
il
it
y

2.
C

on
so

rt
iu

m
of

or
ga

n
iz

at
io

n
s

ca
n

p
ar

ti
ci

p
at

e
to

co
n
st

ru
ct

su
ch

b
ea

co
n

d
u
e

to
th

re
sh

ol
d

p
ro

p
er

ty
(e

.g
.
D

ra
n
d

[3
1]

)

1.
T

h
es

e
D

R
B

s
re

qu
ir

e
ei

th
er

a
tr

us
te

d
se

tu
p

or
D

K
G

,
he

nc
e

do
no

t
off

er
a

re
co

n
fi
gu

ra
ti

on
-f
ri

en
dl

y
se

tu
p

2.
Se

cu
ri

ty
of

th
e

D
R

B
s

d
ep

en
d

on
th

e
se

cu
ri

ty
as

su
m

p-
ti

on
s

of
el

li
p
ti

c
cu

rv
e

p
ai

ri
n
gs

d
u
e

to
th

e
u
se

of
B

L
S
-s

ig
n
at

u
re

SoK: Decentralized Randomness Beacon Protocols 431

– Cachin et al. [16], Drand [31]: Cachin et al. presented a common coin protocol
using threshold signature along with a random-access coin-tossing scheme. In
this DRB, a trusted dealer distributes the secret key shares to the participants.
The DRB output is a unique signature on the hash of a counter (epoch num-
ber). Drand [31] follows a similar idea, but it replaces the threshold secret to
the threshold BLS key. Drand can be considered as an implementation of the
Cachin et al. scheme. Drand utilizes the DKG protocol of Gennaro et al. [38]
during the setup phase that yields a high communication complexity.

– DFINITY [45]: It also employs a threshold BLS signatures scheme but the
selection of the best initialization vector in the scheme creates a challenge.
The protocol works well even in the partial synchronous network model. It
employs a non-interactive DKG setup and achieves better communication
complexity than Drand. The DRB acts as a VRF that produces unbiasable
output.

Note: We present Hybrid DRB protocols in Appendix F.

4 Discussion

4.1 Security Assumptions

The security of all these DRBs depends on well-defined security assumptions.
These assumptions can be assumptions about the underlying network, adversary,
setup, or cryptographic primitives. If these assumptions are failed in some cases,
then the DRB using these assumptions will break its security properties.

– Cryptographic Assumptions (Primitive): As the above described DRBs are
based on cryptographic primitives such as PVSS, VDF, VRF, these DRBs
inherit the security assumptions from the primitives. These assumptions are
well-known hard problems of cryptography such as standard decisional or
computational Diffie-Hellman assumptions [10] (or their variants) depending
on the underlying cryptographic scheme (e.g., PVSS, DVRF). VDF-based
DRBs depend on the new security assumptions on sequential computation
(e.g., iterated squaring over groups of unknown order [62]) that are not well
studied and understood in the current literature. Modeling of the hash func-
tion as a random oracle [6] is also considered in security assumptions in some
DRBs.

– Network Assumptions (Model): Most of the PVSS-based and VRF-based
DRBs assume a strong synchronous network which can be an unrealistic
setting in the real world. Hence, these DRBs require a lock-step synchronous
network where the messages are delivered before the end of each round. In
case of no lock-step synchrony, participants might employ round synchro-
nization protocols [54,74]. Some of the DRBs work well in semi-synchronous
network where the messages are delivered within a known finite time-bound.
VDF-based and external-source-based DRBs work well in an asynchronous
network where messages are delivered without a known time-bound. How-
ever, the trust of these models depends on the underlying setup assumptions

432 M. Raikwar and D. Gligoroski

or on the public blockchain, where the local entropy of the participants are
posted.

– Setup Assumptions: Many DRB protocols [8,20,31,45,69] require an initial
trusted setup assumption where private keys for the participants and uni-
formly random public parameters are generated by a trusted third party
(dealer) or by a distributed key generation (DKG) protocol. The Security of
DRBs with a trusted third party crucially depends on the action and abil-
ity of the trusted party. Nevertheless, DKG incurs a considerable setup cost
(high communication complexity) with its limitation of adding or replacing
the participants. Therefore, DKG-based DRBs are preferred when the par-
ticipants are fixed. Hence, many recent DRB protocols [2,17,27,39,66] have
a transparent setup where the public parameters are trapdoor free.

Following the above security assumption, most of the DRB protocols perform
well in permissioned systems. However, permissionless systems have a highly
dynamic set of nodes that maintain the system state. Due to the dynamically
changing participants, integrating an existing DRB with the system is challeng-
ing. Moreover, setting the assumption on a number of adversarial nodes is hard.

Research Problem 2. Study the hardness of embedding the existing DRB pro-
tocols in permissionless systems, based on Proof-of-Work (PoW) or-Stake (PoS).

4.2 Complexity

DRB protocols following different approaches exhibit different complexity. Find-
ing a good balance between computation and communication complexity in a
DRB protocol is a challenging task. Therefore, an extensive amount of work has
been devoted to reduce the complexity of DRB protocols.

– Communication Complexity : Most of the interactive DRB protocols assume a
broadcast channel. Therefore, Ouroboros [47], RandShare [69], and SCRAPE
[17] have a communication complexity of O(n3) due to the broadcasting of
O(n) size message. HydRand [66] improves upon the communication complex-
ity to O(n2) by having a leader-based approach where a leader node performs
the PVSS share distribution. Relaying the messages through a single node to
reduce the communication complexity is also embraced by ALBATROSS [18],
GLOW [36]. RandHound, RandHerd [69], DFINITY [45] employ sharding to
sample a committee for output generation that results in lower communica-
tion complexity. But such a procedure can be immediately subject to attacks
by an adaptive adversary who can corrupt the committee once it is deter-
mined.
Most of the non-interactive DRBs [14,27,39,55] have less communication
complexity as a successful participant (e.g., leader) usually need to perform
one broadcast. Therefore, it incurs the communication complexity in O(n).
Moreover, most of the NI-DRBs involving blockchain [44,59] to publish shared
local and global randomness also have lower communication complexity.

SoK: Decentralized Randomness Beacon Protocols 433

DKG setup based DRBs [16,20,31,45] suffer from additional communication
cost. Complexity of DRBs can be improved using asynchronous data dissem-
ination (ADD) [26] or using hbACSS [75](for PVSS-based DRBs).

Research Problem 3. Design a DRB protocol with sub-quadratic communica-
tion complexity together with optimal fault-tolerance.

– Computation Complexity : It is defined as the number of operations needed to
be performed by a participant during one round of DRB protocol. PVSS-based
protocols such as RandShare [69] and Ouroboros [47] requires a computation
complexity of O(n3). An improved version of PVSS further reduces this cost
in SCRAPE [17]. Puzzle-based DRBs [13,14] have a high computational cost
due to the involved puzzle. VDF-based DRBs also have the drawback of high
computational complexity due to the repeated squaring. On the contrary,
VRF-based DRBs incur a minimum computation cost.

Research Problem 4. Design a puzzle-based DRB protocol incurring low com-
putation complexity.

– Verification Complexity Verification cost refers to the number of operations
performed by an external participant to verify the output of a beacon pro-
tocol. Although VDF-based DRBs have high computational costs, they do
provide efficient verification hence incur less verification cost. The most effi-
cient DRB protocols with regard to computation and verification complexity
are based on VRF [27,39,71] or threshold crypto-systems [16,31,45,55].

Research Problem 5. Design a PVSS-based DRB protocol with a constant
verification complexity, linear communication cost and no trusted setup.

4.3 Scalability

Despite a decade of research on DRB protocols, only quite a few recent DRBs
emphasize the scalability of their DRB. Scalability in a DRB protocol refers to
the number of participants it can support. Many of the described DRB protocols
do not offer good scalability. Especially, DRBs involving DKG setup provide
poor scalability as DKG does not support frequent modification in the set of
key holders. In addition, the high complexity along with the underlying network
model in many of these DRBs significantly affect the scalability of the DRBs.

A general approach for achieving good scalability is “sharding” which is
considered in recent DRBs, including RandHerd [69], DFINITY [45] and Algo-
rand [39] with the cost of slightly degrading the fault-tolerance. RandHerd shows
a direct consequence of the sharding where nodes are split into smaller groups.
Each group produces local entropy and each group’s entropy is combined to pro-
duce the DRB output. Algorand and DFINITY show selection of a committee
to generate the DRB output. Therefore, this orthogonal technique of randomly
sampling a committee for protocol execution can improve scalability.

434 M. Raikwar and D. Gligoroski

Another way for improving scalability is using a leader-based approach where
a leader relays the messages to the participants. Moreover, having a public ledger
where participants post their local entropy messages also improves scalability.

Reconfiguration Friendliness directly impact scalability. A protocol is recon-
figuration friendly when the parameters and list of participants can be changed
dynamically without affecting the current execution. When there is no binding
between the setup and the system, the reconfiguration becomes easier. DRBs
involving DKG setup are not reconfiguration-friendly, hence poor scalability. On
the contrary, non-interactive DRBs (with no DKG) show better scalability.

Research Problem 6. Study the (im)possibility of designing a reconfiguration-
friendly sub-quadratic DRB protocol that do not employ committee sampling.

4.4 Adversarial Model

Most of these DRBs consider a fixed set of n nodes; out of these nodes, f nodes
may exhibit byzantine behavior. An adversary in these DRBs can be defined as:

Active vs. Passive An active adversary actively modifies the messages (e.g.,
public shares, DRB output) in DRB; a passive adversary observes the transcript
(i.e. messages) of an honest run of the DRB and predicts the DRB’s next output.

Adaptive vs. Static An adaptive adversary corrupts the nodes during the
protocol execution, while a static adversary does corruption before the execution.

An adversary can affect the security guarantees of a DRB in many ways,
such as by trying to bias the produced random output, withholding the output,
predicting the future output, or tricking an outsider (third party) into accepting
invalid beacon output. Leader-based DRBs suffer from targeted attacks, how-
ever, blockchain-based DRBs suffer from blockchain-specific attacks. Moreover,
unpredictability can be affected by network model.

Research Problem 7. Choose a static secure DRB protocol and transform it
to an adaptively secure DRB that retains the efficiency standard of the static
one.

4.5 Throughput Evaluation

We report throughput of state-of-the-art public implementations of various
DRBs in Fig. 1. DFINITY and SPURT operate on a semi-synchronous network
but BRandPiper, Drand, GLOW, and HydRand assume synchronous networks.
The network delay parameter in these DRBs directly affects the throughput of
DRBs.

Drand is a practically deployed DRB protocol. However, when the number of
nodes increases to more than 64, nodes in the DRand abort the DKG step of the
protocol, and yet it suffers from significant network delay. For HydRand, we chose
the public implementation [64] available on Github. For BRandPiper, we depict
throughput for the Merkle-tree-based implementation, which is quantitatively

SoK: Decentralized Randomness Beacon Protocols 435

T
ab

le
2.

C
om

pa
ri

so
n

of
ex

is
ti

ng
de

ce
nt

ra
liz

ed
ra

nd
om

ne
ss

be
ac

on
pr

ot
oc

ol

P
ro

to
co

l
N

et
w

or
k

M
od

el
A

da
pt

iv
e

A
dv

er
sa

ry
L
iv

en
es

s
U

np
re

di
ct

ab
ili

ty
B

ia
s-

R
es

is
ta

nc
e

Fa
ul

t-
to

le
ra

nc
e

C
om

m
un

ic
at

io
n

C
om

pl
ex

it
y

C
om

pu
ta

ti
on

C
om

pl
ex

it
y

V
er

ifi
ca

ti
on

C
om

pl
ex

it
y

C
ry

pt
og

ra
ph

ic
P

ri
m

it
iv

e
N

o
T
ru

st
ed

D
ea

le
r

or
D

K
G

re
qu

ir
ed

A
L
B

A
T

R
O

SS
[1

8]
sy

n.
✗

✓
✓

✓
1/

2
O(

n
)

O(
lo
g

n
)

O(
n
)

P
V

SS
✓

A
lg

or
an

d
[3

9]
se

m
i-s

yn
.

✗
✓

✓
‡

✗
1
/
3

�
O(

cn
)

O(
c)

O(
1
)

V
R

F
✓

B
R

an
dP

ip
er

[8
]

sy
n.

✓
✓

✓
✓

1/
2

O(
n
3
)

O(
n
2
)

O(
n
2
)

P
V

SS
✓

C
ac

hi
n

et
.a

l[
16

]
as

yn
.

✗
✓

✓
✓

1/
3

O(
n
2
)

O(
n
)

O(
1
)

U
ni

q.
th

r-
si

g
✗

C
au

cu
s

[2
]

sy
n.

✗
✓

✓
‡

✗
1/

2
O(

n
)

O(
1
)

O(
1
)

H
as

h
fu

nc
✓

C
on

ti
nu

ou
s

V
D

F
[3

4]
as

yn
.

✗
✗

†
✓

✓
1/

2
O(

1
)

V
D

F
O(

1
)

V
D

F
✓

D
F
IN

IT
Y

[4
5]

se
m

i-s
yn

.
✗

✓
✓

✓
1/

3
O(

n
2
)

O(
n
)

O(
1
)

B
L
S

th
r-

si
g

✗

D
ra

nd
[3

1]
sy

n.
✗

✓
✓

✓
1/

2
O(

n
2
)

O(
n
)

O(
1
)

U
ni

q.
th

r-
si

g
✗

G
L
O

W
[3

6]
sy

n
✗

✓
✓

✓
1/

3
O(

n
)

O(
n
)

O(
1
)

D
V

R
F

✗

G
R

an
dP

ip
er

[8
]

sy
n

✗
✓

✓
‡

✓
1/

2
O(

n
2
)

O(
n
2
)

O(
n
2
)

P
V

SS
✓

H
E

R
B

[2
0]

sy
n.

✗
✓

✓
✓

1/
3

O(
n
2
)∗

O(
n
)

O(
n
)

P
H

E
✗

H
yd

R
an

d
[6

6]
sy

n.
✗

✓
✓

‡
✓

1/
3

O(
n
2
)

O(
n
)

O(
n
)

P
V

SS
✓

N
gu

ye
n-

V
an

et
.a

l[
55

]
sy

n.
✗

✗
✓

✗
1/

2
O(

n
)

O(
1
)

O(
n
)

P
H

E
,V

R
F

✓

O
ur

ob
or

os
[4

7]
sy

n.
✗

✓
✓

✓
1/

2
O(

n
3
)

O(
n
3
)

O(
n
3
)

P
V

SS
✓

O
ur

ob
or

os
P

ra
os

[2
7]

se
m

i-s
yn

.
✓

✓
✓

‡
✗

1/
2

O(
n
)�

O(
1
)�

O(
1
)�

V
R

F
✓

P
ro

of
-o

f-
D

el
ay

[1
4]

sy
n.

✗
✓

✓
✓

1/
2

O(
n
)

ve
ry

hi
gh

O(
lo
g

Δ
)◦

H
as

h
fu

nc
✓

P
ro

of
-o

f-
W

or
k

[5
3]

sy
n.

✗
✓

✓
‡

✗
1/

2
O(

n
)

ve
ry

hi
gh

O(
1
)

H
as

h
fu

nc
✓

R
an

dC
ha

in
[7

1]
sy

n.
✗

✓
✓

✓
1/

3
O(

cn
)

O(
cn

)
O(

n
)

V
R

F
✓

R
A

N
D

C
H

A
IN

[4
4]

sy
n.

✓
✓

✓
✓

1/
3

O(
n
)

V
D

F
O(

1
)

V
D

F
✓

R
A

N
D

A
O

[5
9]

as
yn

.
✗

✓
✗

✗
1/

2
O(

n
)

V
D

F
O(

1
)

V
D

F
✓

R
an

dH
er

d
[6

9]
sy

n
✗

✓
✓

✓
1/

3
O(

c2
lo
g

n
)

O(
c2

lo
g

n
)

O(
1
)

P
V

SS
,C

oS
i

✗

R
an

dH
ou

nd
[6

9]
sy

n.
✗

✓
✓

✓
1/

3
O(

c2
n
)

O(
c2

n
)

O(
c2

n
)

P
V

SS
✓

R
an

dR
un

ne
r

[6
5]

sy
n.

✓
✓

✓
‡

✓
1/

2
O(

n
2
)

V
D

F
O(

1
)

V
D

F
✓

R
an

dS
ha

re
[6

9]
as

yn
.

✓
✗

�
✓

✓
1/

3
O(

n
3
)

O(
n
3
)

O(
n
3
)

V
SS

✓

R
an

d
E

xt
ra

ct
or

[1
3,

21
]

as
yn

.±
✓

✓
�

✓
✓

1/
2

O(
1
)

O(
1
)

O(
1
)

H
as

h
fu

nc
✓

SC
R

A
P

E
[1

7]
sy

n.
✗

✓
✓

✓
1/

2
O(

n
3
)

O(
n
2
)

O(
n
2
)

P
V

SS
✓

SP
U

R
T

[2
5]

se
m

i-s
yn

.
✗

✓
✓

✓
1/

3
O(

n
2
)

O(
n
)

O(
n
)

P
V

SS
,P

ai
ri

ng
✓

U
ni

co
rn

[4
9]

as
yn

.
✗

✓
†

✓
✓

1/
2

O(
1
)

hi
gh

O(
1
)

Sl
ot

h
✓

F
a
u
lt
-t

o
le

ra
n
ce

re
fe

rs
to

n
u
m

b
er

o
f
b
y
za

n
ti
n
e

fa
u
lt
s

a
D

R
B

ca
n

to
le

ra
te

a
n
d

c
is

a
v
er

a
g
e

co
m

m
it
te

e
si
ze

.
‡

re
fe

rs
to

p
ro

b
a
b
il
is
ti
c

g
u
a
ra

n
te

es
fo

r
u
n
p
re

d
ic

ta
b
il
it
y,

a
n
d

h
a
s

a
b
o
u
n
d

o
n

th
e

n
u
m

b
er

o
f
fu

tu
re

ro
u
n
d
s

a
n

a
d
a
p
ti
v
e

ru
sh

in
g

a
d
v
er

sa
ry

ca
n

p
re

d
ic

t
th

e
b
ea

co
n

o
u
tp

u
t.

�
D

u
e

to
th

e
ra

n
d
o
m

ly
sa

m
p
li
n
g

a
co

m
m

it
te

e
o
f
si
ze

c
in

A
lg

o
ra

n
d
,
th

e
fa

u
lt
-t

o
le

ra
n
ce

re
d
u
ce

s
sl
ig

h
tl
y.

†
T
h
e

n
o
d
e

w
it
h

m
o
re

co
m

p
u
ta

ti
o
n
a
l
p
o
w
er

le
a
rn

s
th

e
b
ea

co
n

o
u
tp

u
t

ea
rl
ie

r
th

a
n

o
th

er
s.

∗
H
E
R
B

a
ch

ie
v
es

co
m

m
u
n
ic

a
ti
o
n

co
m

p
le

x
it
y

o
f

O
(n

2
)

w
h
en

n
o
d
es

u
se

A
v
a
la

n
ch

e
a
lg

o
ri
th

m
o
r

p
u
b
li
c

b
lo

ck
ch

a
in

to
sh

a
re

th
ei

r
ci

p
h
er

te
x
ts

.
�

O
u
ro

b
o
ro

s
P
ra

o
s

is
n
o
t

a
st

a
n
d
-a

lo
n
e

D
R
B

a
n
d

d
o
es

n
o
t

d
es

cr
ib

e
ra

n
d
o
m

n
es

s
g
en

er
a
ti
o
n

a
p
p
ro

a
ch

,
so

th
e

p
re

se
n
te

d
co

m
p
le

x
it
y

d
o
es

n
o
t

a
cc

o
u
n
t

th
e

a
d
d
it
io

n
a
l
co

m
p
le

x
it
y

fo
r

co
m

m
u
n
ic

a
ti
o
n

o
r

v
er

ifi
ca

ti
o
n
.

◦
T
h
e

v
er

ifi
ca

ti
o
n

in
b
ea

co
n

sm
a
rt

co
n
tr

a
ct

h
a
s

co
m

p
le

x
it
y

O
(l
o
g

Δ
)

in
th

e
se

cu
ri
ty

p
a
ra

m
et

er
Δ

.
�

A
n

a
d
d
it
io

n
a
l
sy

n
ch

ro
n
y

a
ss

u
m

p
ti
o
n

is
n
ee

d
ed

to
p
ro

v
id

e
li
v
en

es
s

in
R
a
n
d
S
h
a
re

.
±

D
R
B

p
ro

to
co

ls
b
u
il
t
o
n

p
u
b
li
c

b
lo

ck
ch

a
in

a
ls
o

fo
ll
o
w

th
e

n
et

w
o
rk

st
ru

ct
u
re

o
f
th

e
re

sp
ec

ti
v
e

b
lo

ck
ch

a
in

.
T
h
er

ef
o
re

,
[1

3
]
u
se

s
a

sy
n
ch

ro
n
o
u
s
n
et

w
o
rk

a
s
it

re
li
es

o
n

th
e

b
it
co

in
b
lo

ck
ch

a
in

.
�

L
iv

en
es

s
ca

n
b
e

h
in

d
er

ed
d
u
e

to
th

e
li
m

it
ed

a
v
a
il
a
b
il
it
y

o
f
fi
n
a
n
ci

a
l
d
a
ta

ca
u
se

d
b
y

cl
o
se

d
ex

ch
a
n
g
es

in
[2

1
]
o
r

d
u
e

to
th

e
fo

rk
si
tu

a
ti
o
n

in
th

e
b
lo

ck
ch

a
in

in
[1

3
].

436 M. Raikwar and D. Gligoroski

Fig. 1. Overview of throughput for various DRB protocols

practical for real-world scenarios. For SPURT, we used the throughput values
directly from their paper. For DFINITY and GLOW, we followed the public
implementation [35] of DVRFs to get the throughput while assuming no failure.

4.6 Others

– Incentive Some DRBs [14,59] involve incentivizing or punishing the partic-
ipants to enforce fairness against rational adversaries. In particular, these
(dis)incentivizing approaches (e.g., [4]) are considered mostly in smart
contract-based DRBs. Putting an economic incentivization scheme to reward
the participants of beacon enforces the honest behavior from the participants.
An incentivization scheme can also reward the right computation or verifi-
cation. Interesting research would be to create an incentive structure for a
DRB.

– Output Uniqueness It states that the DRB produces a unique output even
in the presence of an adversary having the trapdoor information of honest
participants. It implies strong bias-resistance in DRBs. Therefore, DRBs such
as RandRunner [65], DFINITY [45] and GLOW [36] provide strong bias-
resistance due to their output uniqueness. Having this property also prevents
an adversary from manipulating the beacon output for any financial gain.

– Universal Composability (UC) It is arguably one of the strongest security
guarantees. A UC-secure protocol ensures that the protocol can be employed
as a building block in more complex systems while preserving its security.
The earlier UC-secure DRBs [47] do not provide bias-resistance. The first UC-
secure DRB ALBATROSS [18] leverages UC-secure NIZK proofs. UC-secure
time-lock puzzles (TLP) [5] can be scrutinized to construct a UC-secure DRB.

5 New Components for Construction of DRB Protocols

There have been many new efficient constructions of cryptographic primitives
in recent years. These primitives can be embedded as new building blocks or
replace old ones in the DRB protocols to improve the performance of DRBs.

SoK: Decentralized Randomness Beacon Protocols 437

– Using New Verifiable Functions: Gurkan et al. [42] constructed a new aggre-
gatable DKG scheme that leverages gossip instead of broadcast communi-
cation to reduce the communication complexity. Further, they introduced an
efficient Verifiable Unpredictable Function (VUF) and combined it with DKG.
This threshold VUF can be utilized to construct a DRB protocol.
VDF-based DRBs can benefit from the recent work [63] about batch veri-
fication of VDF in which the verification of beacon outputs during the last
several rounds can be batched and verified efficiently. Work [52] on VDF can
be investigated and applied to construct a practical VDF-based DRB proto-
col.
Current DRBs are not Post-Quantum (PQ) secure (except DRB [50] that does
not depend on any third party to construct a quantum-safe beacon). Recent
constructions of Post-Quantum VRF [15] and Post-Quantum VDF [19] can be
carefully studied and applied to construct practical PQ-secure DRB protocols.

– Using New Threshold Signatures: Tomescu et al. [70] designed a fast BLS-
based threshold signature scheme (BLS-TSS). Their scheme has fast signa-
ture aggregation and verification. There are some DRBs that use the BLS
signature scheme. The new BLS-TSS scheme can be directly applied to these
DRBs to improve their performance. Otherwise, a new large-scale, simple
DRB protocol can be designed and implemented using this new BLS-TSS
scheme.

– Using New Erasure Codes: All known Verifiable Secret Sharing (VSS) schemes
published so far in the open literature (without exception) use the well-known
Reed-Solomon codes [61]. Reed-Solomon codes are Maximum Distance Sepa-
rable (MDS) erasure codes of type (t, n), where the original message is equally
split in t parts and is encoded to n (where n > t) parts. In the recent decade,
the coding theory community constructed new MDS erasure codes. The most
significant line of work was done by Dimakis et al., in [28] where they con-
structed Minimum Bandwidth Regenerating (MBR) codes (optimal in terms
of the repair bandwidth) and Minimum Storage Regenerating (MSR) codes
(optimal in terms of the storage). Soon after that, those MDS codes were
practically employed in Facebook data centers [60], and new variants of MDS
codes e.g. [73] were proposed. Therefore, it would be interesting to research
the potential replacement of the Reed-Solomon code in VSS schemes with
another MDS (MSR) code to improve the performance of VSS-based DRBs.

6 Conclusion

Within recent years, there has been a dramatic surge in the construction of
new Decentralized Randomness Beacon (DRB) protocols due to its emergence in
cryptographic protocols. We present the first systematization of knowledge (SoK)
for the existing efforts on DRB protocols. This SoK provides a comprehensive
review of the design paradigms and approaches of DRB protocols. This SoK can
serve as a starting point to explore DRB protocols and can help researchers or
practitioners to pick a DRB protocol well-suited for their application.

438 M. Raikwar and D. Gligoroski

In this SoK, we presented basic standard definitions of a DRB protocol and
its required properties. We discussed the key components and the most signifi-
cant features of DRB protocols and summarized the existing DRB protocols in
Table 2. We identified several research challenges related to the complexity, scal-
ability, and security of DRB protocols. We highlighted respective solutions to
encounter some of the challenges. Finally, we proposed promising research direc-
tions for the future design of DRB protocols by employing the new cryptographic
components that can help to advance the state-of-the-art of DRB protocols.

A Secure DRB Protocol

A DRB protocol is said to be secure if for any probabilistic polynomial-time
adversary A corrupting at most t parties in a round e, in a security game G
played between the adversary A and a challenger C, A has negligible advantage.

1. C executes the setup and sends the public parameters of the system to A.
2. A corrupts up to t participants and informs about t corrupted nodes to C.
3. C creates the secret and public keys of honest nodes and sends the public keys

of honest nodes to A.
4. A sends the remaining public parameters (e.g. public keys) of t nodes to C.
5. C and A runs the protocol execution interactively per round where:

(a) C sends all the honest participants’ messages to A.
(b) A decides on the delivery (sends / does not send) of the messages.
(c) At the end of a round e, an honest node outputs the protocol transcript.

6. C samples a bit b ∈ {0, 1} and sends either the DRB output based on tran-
script or a random element.

7. A makes a guess b′ and the advantage of A is defined as |Pr[b = b′] − 1
2 |.

B Publicly Verifiable Secret Sharing (PVSS)

In a PVSS scheme, a dealer shares a randomly selected secret s among a set of
n nodes using an (n, t+ 1) threshold access-structure. That means, secret s can
be recovered from a set of t + 1 valid shares.

Definition 6. (PVSS): It is defined as a collection of following algorithms:

– Setup(λ): Given a security parameter λ, generates the public parameters pp
and the public-private key-pair for each node, output the public parameter and
public keys (pp, pk). pp is an implicit input to all the other algorithms.

– Share(s): For a randomly chosen secret s, a dealer creates the secret shares
for each node �S = (s1, s2, . . . , sn) along with the encryption of the shares
�E = (c1, c2, . . . , cn) where ci = Enc(si) and proof of correct encryption �π =
(π1, π2, . . . , πn). It outputs (�S, �E, �π).

– Verify(�E, �π): Given the encrypted shares and the proofs, any external V can
non-interactively verifies if the sharing is correct. It outputs 0 or 1.

SoK: Decentralized Randomness Beacon Protocols 439

Fig. 2. PVSS-based DRB protocols with and without leader

– Recon(�S): Given valid set �S ⊆ {s1, s2, . . . , sn}t+1 of t+1 decrypted shares, it
reconstructs the secret and outputs s.

In a DRB protocol involving a leader, once the setup phase is completed, for
the round e, first a leader election algorithm LeaderElec(e,Oe−1, P1, P2, . . . , Pn)
is executed and a leader Le is selected. The election algorithm can be round-robin
selection or sampling uniformly at random. The leader Le chooses a secret value
sLe

(either a new value or previously committed value in the previous round)
and executes the PVSS scheme for secret sLe

. At the end of round e, DRB
output Oe is generated using the reconstructed secret and the previous round
(or rounds’) output value. Figure 2 depicts leader and non-leader-based DRB
protocols. In the first sub-figure, a leader is elected, followed by leader’s secret is
shared and beacon output is produced. In the second sub-figure, all participants
randomly choose secrets at the start of the round and further share the encrypted
shares of the secret to all the other participants. In the final stage, the first n-t
reconstructed (or decrypted) shares are used to obtain beacon output.

Definition 7. (PVSS-based Interactive Decentralized Randomness Beacon (I-
DRB)) Given a set of participants P = (P1, P2, . . . , Pn), a PVSS-based I-DRB
without leader can be defined as a tuple B of polynomial-time algorithms:
B = (Setup,Share,Verify,Recon,Aggregation)

– Setup(e, λ): Set the round e = 1. Run PVSS.Setup(λ) and generate public
parameter pp and key-pairs (ski, pki) for each participant.

– Share(e): For a round e, each participant Pi runs PVSS.Share(si) for a ran-
domly chosen value si from the input space and gets (�Si, �Ei, �πi). Pi shares the
encrypted shares and corresponding proofs (�Ei, �πi) with other participants.

440 M. Raikwar and D. Gligoroski

– Verify(e, { �E, �π}): Each party Pj runs the share verification algorithm
PVSS.Verify(�Ei, �πi);∀i, i �= j on every shared secret. Let C be the set of first
n − t participants who have correctly shared their random secret values.

– Recon(e, {�Si}): Each party Pi in C opens the Shamir secret si and the ran-
domness used, other participants Pj ;∀j, j �= i verify if it is consistent with
sharing posted during Share phase. If a party Pi refuses to open its secret si,
the secret is reconstructed by executing PVSS.Recon(�Si).

– Aggregation(e, {si}): Once the valid decrypted or reconstructed shares are
available for the parties Pi ∈ C. The beacon output is generated by execut-
ing a function f on input a set of valid shares {si}. This function f takes
all the valid shares {si} (additionally previous beacon outputs) as input and
aggregates these input values to generate the beacon output Oe for round e.

C Verifiable Delay Function (VDF)

Verifiable delay function f : X → Y was defined formally by Boneh et al. [11].
After the introduction of VDF, two new proposals [57,72] were presented. A
VDF has properties of Sequentiality, Uniqueness and ε-Evaluation time.

Definition 8. (VDF): A VDF is defined as a tuple of following algorithms:

– Setup(λ, T): It is a randomized algorithm that takes security parameter λ,
time parameter T and outputs public parameter pp := (G, N,H, T), where
G is a finite abelian group of unknown order, N is an RSA modulus, and
H : X → G is a hash function.

– Eval(pp, x, T): The evaluation algorithm applies T squarings in G starting
with H(x) and outputs the value y ← H(x)(2

T)mod N , along with a proof π.
– Verify(pp, x, y, π, T): The verification algorithm outputs a bit ∈ {0, 1}, given

the input as public parameter pp, input value x, output value y, proof π, and
time parameter T .

D Verifiable Random Function (VRF)

VRF has properties of Uniqueness, Collision resistance and Pseudorandomness.

Definition 9. (VRF): A VRF is defined as a tuple of following algorithms:

– KeyGen(r): On input value r, the algorithm generates a secret key sk and a
verification key vk.

– Eval(sk,M): Evaluation algorithm produces pseudorandom output O and the
corresponding proof π on input sk and a message M .

– Verify(vk,M,O, π): Verify algorithm outputs 1 if and only if the output pro-
duced by evaluation algorithm is O and it is verified by the proof π given the
verification key vk and the message M .

SoK: Decentralized Randomness Beacon Protocols 441

E Homomorphic Encryption (HE)

Definition 10. (HE): An HE scheme is defined as a set of following alo-
gorithms:

– Setup(1λ): Given security parameter λ, Output global parameters params.
– KeyGen(params): Given global parameters param, output a public-private

key-pair (pk, sk).
– Enc(params, pk, μ): Given a message μ ∈ RM, output a ciphertext c.
– Dec(params, sk, c): Given a ciphertext c, output a message μ∗ ∈ RM.
– Eval(pk, f, c1, ..., cl): Given the inputs as public key pk, a function f : Rl

M →
RM which is an arithmetic circuit over RM, and a set of l ciphertexts
c1, ..., cl, output a ciphertext cf .

In the above scheme, the message space M of the encryption schemes is a ring
RM, and the functions to be evaluated are represented as arithmetic circuits over
this ring, composed of addition and multiplication gates. HE can be categorized
into: Partially HE that supports only addition or multiplication; Somewhat HE
that allows both operations but with limited times; Fully HE that supports
arbitrary computation by allowing both operations with unlimited times.

F Hybrid DRB Protocols

There are many more DRB protocols. Some of these protocols use more
than one crypto primitive to achieve all DRB properties with better effi-
ciency/optimization.

– Mt. Random (PVSS + T(VRF))(eprint 2021/1096): It is a multi-tiered DRB
protocol that combines PVSS, VRF, and Threshold VRF (TVRF) to con-
struct a DRB with optimal efficiency and without compromising security
guarantees of DRB. It is a flexible architecture for DRB where each tier runs
a separate beacon based on PVSS, VRF, and TVRF, and output of one tier
works as a seed for the next tier. Being constructed using different crypto-
primitives, each tier differs in the provided randomness and complexity. Due
to that, a high-level application can decide on which tier to use to obtain
randomness.

– Harmony (VRF + VDF)(https://harmony.one/whitepaper.pdf): Harmony is
a sharding-based, provably secure, and scalable blockchain. In Harmony,
nodes compute local entropy by executing VRF using their secret keys. DRB
output is computed using VDF where the input for the VDF is constructed
from a threshold number of VRF evaluations from pairwise different nodes.
DRB output is made pseudorandom by applying a random oracle on VDF
output.

– CRAFT (TLP + VDF)(eprint 2020/784): Baum et. al first construct UC-
secure publicly verifiable TLP and UC-secure VDF. To construct DRB, they
replace the commitments with the UC-secure TLP in the standard commit-
reveal coin-tossing protocol. Their construction achieves O(n) communication

https://harmony.one/whitepaper.pdf

442 M. Raikwar and D. Gligoroski

to generate DRB output. DRB output can be obtained as fast as the commu-
nication channel delay allows when nodes communicate their TLPs faster.

– VeeDo (STARK+VDF)(https://github.com/starkware-libs/veedo): It is
based on STARK-based VDF. STARK is a post-quantum secure zero-
knowledge proof protocol. VeeDo is a smart-contract-based DRB where a
beacon smart contract and a verifier smart contract is placed on-chain. How-
ever, heavy computational parts involving VDF and STARK prover are kept
off-chain. A VDF is run on a seed s from a block hash to compute the DRB
output and a proof is computed using the STARK prover. The VDF output
and the proof are sent to the on-chain contracts for verification and subse-
quently publishing.

– STROBE (RSA-based)(eprint 2021/1643): It is a history-generating DRB
(HGDRB). It allows efficient generation of previous beacon outputs given only
the current beacon value and public key. It is based on origin squaring based
RSA approach of Beaver. It is well-suited for practical applications especially
in streaming designs where it allows client software to generate game states
by computing every missing beacon value and state. It is NIZK-free, concisely
self-verifying and can be efficiently used in blockchain and voting systems.

– OptRand (Bilinear paring-based PVSS + NIZK)(eprint 2022/193): It is an
optimally responsive DRB protocol. It employs a pairing-based PVSS scheme
together with a NIZK proof system to produce DRB outputs. Despite the syn-
chrony of the network, it can provide an optimal response and can progress.
Therefore, OptRand can provide availability at actual network speed during
optimistic conditions. It is reconfiguration-friendly and has low communica-
tion complexity and low latency while generating beacon outputs.

References

1. Adida, B.: Helios: Web-based open-audit voting. In: USENIX Security Symposium.
vol. 17, pp. 335–348 (2008)

2. Azouvi, S., McCorry, P., Meiklejohn, S.: Winning the caucus race: continuous leader
election via public randomness. arXiv preprint arXiv:1801.07965 (2018)

3. Baigneres, T., Delerablée, C., Finiasz, M., Goubin, L., Lepoint, T., Rivain, M.: Trap
me if you can-million dollar curve. IACR Cryptol. ePrint Arch. p. 1249 (2015)

4. Baum, C., David, B., Dowsley, R.: Insured MPC: efficient secure computation
with financial penalties. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol.
12059, pp. 404–420. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
51280-4_22

5. Baum, C., David, B., Dowsley, R., Nielsen, J.B., Oechsner, S.: TARDIS: a founda-
tion of time-lock puzzles in UC. In: Canteaut, A., Standaert, F.-X. (eds.) EURO-
CRYPT 2021. LNCS, vol. 12698, pp. 429–459. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-77883-5_15

6. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Proceedings of the 1st ACM Conference on Computer and
Communications Security, pp. 62–73 (1993)

7. Bentov, I., Gabizon, A., Zuckerman, D.: Bitcoin beacon. arXiv preprint
arXiv:1605.04559 (2016)

https://github.com/starkware-libs/veedo
http://arxiv.org/abs/1801.07965
https://doi.org/10.1007/978-3-030-51280-4_22
https://doi.org/10.1007/978-3-030-51280-4_22
https://doi.org/10.1007/978-3-030-77883-5_15
https://doi.org/10.1007/978-3-030-77883-5_15
http://arxiv.org/abs/1605.04559

SoK: Decentralized Randomness Beacon Protocols 443

8. Bhat, A., Shrestha, N., Kate, A., Nayak, K.: Randpiper-reconfiguration-friendly
random beacons with quadratic communication. IACR Cryptol. ePrint Arch. 2020,
1590 (2020)

9. Blum, M.: Coin flipping by telephone a protocol for solving impossible problems.
ACM SIGACT News 15(1), 23–27 (1983)

10. Boneh, D.: The decision diffie-hellman problem. In: International Algorithmic
Number Theory Symposium, pp. 48–63. Springer, Boston (1998). https://doi.org/
10.1007/978-1-4419-5906-5_443

11. Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 757–
788. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_25

12. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd,
C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45682-1_30

13. Bonneau, J., Clark, J., Goldfeder, S.: On bitcoin as a public randomness source.
IACR Cryptol. ePrint Arch. 2015, 1015 (2015)

14. Bünz, B., Goldfeder, S., Bonneau, J.: Proofs-of-delay and randomness beacons in
ethereum. In: IEEE Security and Privacy on the blockchain (IEEE S&B) (2017)

15. Buser, M., et al.: Post-quantum verifiable random function from symmetric prim-
itives in POS blockchain. IACR Cryptol. ePrint Arch. 2021, 302 (2021)

16. Cachin, C., Kursawe, K., Shoup, V.: Random oracles in constantinople: practical
asynchronous byzantine agreement using cryptography. J. Cryptol. 18(3), 219–246
(2005)

17. Cascudo, I., David, B.: SCRAPE: scalable randomness attested by public entities.
In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 2017. LNCS, vol. 10355, pp.
537–556. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61204-1_27

18. Cascudo, I., David, B.: ALBATROSS: publicly attestable batched randomness
based on secret sharing. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS,
vol. 12493, pp. 311–341. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-64840-4_11

19. Chavez-Saab, J., Henríquez, F.R., Tibouchi, M.: Verifiable isogeny walks:
towards an isogeny-based postquantum VDF. Cryptology ePrint Archive, Report
2021/1289

20. Cherniaeva, A., Shirobokov, I., Shlomovits, O.: Homomorphic encryption random
beacon. IACR Cryptol. ePrint Arch. 2019, 1320 (2019)

21. Clark, J., Hengartner, U.: On the use of financial data as a random beacon. In:
EVT/WOTE. vol. 89 (2010)

22. Corestar: Corestar arcade: Tendermint-based byzantine fault tolerant (BFT) mid-
dleware with an embedded BLS-based random beacon (2019)

23. Croman, K., et al.: On scaling decentralized blockchains. In: Clark, J., Meiklejohn,
S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS,
vol. 9604, pp. 106–125. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53357-4_8

24. DAOBet: Daobet to deliver on-chain random beacon based on BLS cryptography
(2019). https://daobet.org/blog/on-chain-random-generator/

25. Das, S., Krishnan, V., Isaac, I.M., Ren, L.: Spurt: scalable distributed randomness
beacon with transparent setup. IACR Cryptol. ePrint Arch. 2021, 100 (2021)

26. Das, S., Xiang, Z., Ren, L.: Asynchronous data dissemination and its applications.
IACR Cryptol. ePrint Arch. (2021)

https://doi.org/10.1007/978-1-4419-5906-5_443
https://doi.org/10.1007/978-1-4419-5906-5_443
https://doi.org/10.1007/978-3-319-96884-1_25
https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1007/978-3-319-61204-1_27
https://doi.org/10.1007/978-3-030-64840-4_11
https://doi.org/10.1007/978-3-030-64840-4_11
https://doi.org/10.1007/978-3-662-53357-4_8
https://doi.org/10.1007/978-3-662-53357-4_8
https://daobet.org/blog/on-chain-random-generator/

444 M. Raikwar and D. Gligoroski

27. David, B., Gaži, P., Kiayias, A., Russell, A.: Ouroboros Praos: an adaptively-
secure, semi-synchronous proof-of-stake blockchain. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 66–98. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78375-8_3

28. Dimakis, A.G., Godfrey, P.B., Wu, Y., Wainwright, M.J., Ramchandran, K.: Net-
work coding for distributed storage systems. IEEE Trans. Inf. Theory 56(9), 4539–
4551 (2010). https://doi.org/10.1109/TIT.2010.2054295

29. Dodis, Y.: Efficient construction of (distributed) verifiable random functions. In:
Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 1–17. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36288-6_1

30. Drake, J.: Minimal VDF randomness beacon. Ethereum Research (2018)
31. drand: Drand - a distributed randomness beacon daemon (2020). https://github.

com/drand/drand
32. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete

logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)
33. Elrond, A.: Highly scalable public blockchain via adaptive state sharding and secure

proof of stake (2019)
34. Ephraim, N., Freitag, C., Komargodski, I., Pass, R.: Continuous verifiable delay

functions. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107,
pp. 125–154. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-
3_5

35. Fetch.ai.: Distributed verifiable random functions: an enabler of decentralized ran-
dom beacons (2020). https://github.com/fetchai/research-dvrf

36. Galindo, D., Liu, J., Ordean, M., Wong, J.M.: Fully distributed verifiable random
functions and their application to decentralised random beacons. IACR Cryptol.
ePrint Arch. 2020, 96 (2020)

37. Gennaro, R., Goldfeder, S., Narayanan, A.: Threshold-optimal DSA/ECDSA sig-
natures and an application to bitcoin wallet security. In: Manulis, M., Sadeghi,
A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 156–174. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-39555-5_9

38. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key gen-
eration for discrete-log based cryptosystems. In: International Conference on the
Theory and Applications of Cryptographic Techniques, pp. 295–310 (1999)

39. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: Scaling
byzantine agreements for cryptocurrencies. In: Proceedings of the 26th Symposium
on Operating Systems Principles, pp. 51–68 (2017)

40. Goel, S., Robson, M., Polte, M., Sirer, E.: Herbivore: a scalable and efficient pro-
tocol for anonymous communication. Cornell University, Tech. rep. (2003)

41. Goulet, D., Kadianakis, G.: Random number generation during tor voting. In: Tor’s
protocol specifications-Proposal, p. 250 (2015)

42. Gurkan, K., Jovanovic, P., Maller, M., Meiklejohn, S., Stern, G., Tomescu, A.:
Aggregatable distributed key generation. In: Canteaut, A., Standaert, F.-X. (eds.)
EUROCRYPT 2021. LNCS, vol. 12696, pp. 147–176. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-77870-5_6

43. Haahr, M.: Random.org: True Random Number Service. School of Computer Sci-
ence and Statistics, Trinity College, Dublin, Ireland, p. 10 (2010)

44. Han, R., Yu, J., Lin, H.: RandChain: decentralised randomness beacon from
sequential proof-of-work. IACR Cryptol. ePrint Arch. 2020, 1033 (2020)

45. Hanke, T., Movahedi, M., Williams, D.: Dfinity technology overview series, con-
sensus system. arXiv preprint arXiv:1805.04548 (2018)

https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1109/TIT.2010.2054295
https://doi.org/10.1007/3-540-36288-6_1
https://github.com/drand/drand
https://github.com/drand/drand
https://doi.org/10.1007/978-3-030-45727-3_5
https://doi.org/10.1007/978-3-030-45727-3_5
https://github.com/fetchai/research-dvrf
https://doi.org/10.1007/978-3-319-39555-5_9
https://doi.org/10.1007/978-3-030-77870-5_6
http://arxiv.org/abs/1805.04548

SoK: Decentralized Randomness Beacon Protocols 445

46. Kelsey, J., Brandão, L.T., Peralta, R., Booth, H.: A reference for randomness
beacons: Format and protocol version 2. Tech. rep, National Institute of Standards
and Technology (2019)

47. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure
proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7_12

48. Kosba, A., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: The blockchain
model of cryptography and privacy-preserving smart contracts. In: 2016 IEEE
Symposium on Security and Privacy (SP), pp. 839–858 (2016)

49. Lenstra, A.K., Wesolowski, B.: A random zoo: sloth, unicorn, and TRX. IACR
Cryptol. ePrint Arch. 2015, 366 (2015)

50. Li, Z., Tan, T.G., Szalachowski, P., Sharma, V., Zhou, J.: Post-quantum VRF and
its applications in future-proof blockchain system (2021)

51. LoE: League of entropy : Decentralized randomness beacon (2019). https://www.
cloudflare.com/it-it/leagueofentropy/

52. Loe, A.F., Medley, L., O’Connell, C., Quaglia, E.A.: A practical verifiable delay
function and delay encryption scheme. Cryptology ePrint Archive (2021)

53. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. http://bitcoin.org/
bitcoin.pdf (2009)

54. Naor, O., Baudet, M., Malkhi, D., Spiegelman, A.: Cogsworth: Byzantine view
synchronization. arXiv preprint arXiv:1909.05204 (2019)

55. Nguyen-Van, T., et al.: Scalable distributed random number generation based on
homomorphic encryption. In: 2019 IEEE International Conference on Blockchain
(Blockchain), pp. 572–579. IEEE (2019)

56. Oraclize.it: Provable random number generator. https://provable.xyz
57. Pietrzak, K.: Simple verifiable delay functions. In: 10th Innovations in Theoretical

Computer Science Conference (ITCS 2019) (2018)
58. Rabin, M.O.: Transaction protection by beacons. J. Comput. Syst. Sci. 27(2), 256–

267 (1983)
59. Randao: Randao: A dao working as rng of ethereum, https://github.com/randao/

randao. Accessed 1 Nov 2021
60. Rashmi, K.V., Shah, N.B., Gu, D., Kuang, H., Borthakur, D., Ramchandran, K.:

A solution to the network challenges of data recovery in erasure-coded distributed
storage systems: a study on the facebook warehouse cluster. In: 5th USENIX Work-
shop on Hot Topics in Storage and File Systems, USENIX (2013)

61. Reed, I.S., Solomon, G.: Polynomial codes over certain finite fields. J. Soc. Ind.
Appl. Math. 8(2), 300–304 (1960)

62. Mahmoody, M., Moran, T., Vadhan, S.: Time-lock puzzles in the random oracle
model. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 39–50. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_3

63. Rotem, L.: Simple and efficient batch verification techniques for verifiable delay
functions. Cryptology ePrint Archive (2021)

64. Schindler, P.: Hydrand. https://github.com/PhilippSchindler/hydrand
65. Schindler, P., Judmayer, A., Hittmeir, M., Stifter, N., Weippl, E.: Randrunner: dis-

tributed randomness from trapdoor VDFs with strong uniqueness. IACR Cryptol.
ePrint Arch. 2020, 942 (2020)

66. Schindler, P., Judmayer, A., Stifter, N., Weippl, E.: Hydrand: efficient continuous
distributed randomness. In: 2020 IEEE Symposium on Security and Privacy (SP),
pp. 73–89. IEEE (2020)

https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://www.cloudflare.com/it-it/leagueofentropy/
https://www.cloudflare.com/it-it/leagueofentropy/
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
http://arxiv.org/abs/1909.05204
https://provable.xyz
https://github.com/randao/randao
https://github.com/randao/randao
https://doi.org/10.1007/978-3-642-22792-9_3
https://github.com/PhilippSchindler/hydrand

446 M. Raikwar and D. Gligoroski

67. Schoenmakers, B.: A simple publicly verifiable secret sharing scheme and its appli-
cation to electronic voting. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 148–164. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-
1_10

68. Shumow, D., Ferguson, N.: On the possibility of a back door in the NIST sp800-90
dual EC PRNG. In: Proceedings of the Cryptology, vol. 7 (2007)

69. Syta, E., et al.: Scalable bias-resistant distributed randomness. In: 2017 IEEE
Symposium on Security and Privacy (SP), pp. 444–460. IEEE (2017)

70. Tomescu, A., et al.: Towards scalable threshold cryptosystems. In: 2020 IEEE
Symposium on Security and Privacy (SP), pp. 877–893 (2020)

71. Wang, G., Nixon, M.: Randchain: practical scalable decentralized randomness
attested by blockchain. In: 2020 IEEE International Conference on Blockchain
(Blockchain), pp. 442–449. IEEE (2020)

72. Wesolowski, B.: Efficient verifiable delay functions. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019. LNCS, vol. 11478, pp. 379–407. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17659-4_13

73. Ye, M., Barg, A.: Explicit constructions of high-rate MDS array codes with optimal
repair bandwidth. IEEE Trans. Inf. Theory 63(4), 2001–2014 (2017)

74. Yin, M., Malkhi, D., Reiter, M.K., Gueta, G.G., Abraham, I.: HotStuff: BFT con-
sensus with linearity and responsiveness. In: Proceedings of the 2019 ACM Sym-
posium on Principles of Distributed Computing, pp. 347–356 (2019)

75. Yurek, T., Luo, L., Fairoze, J., Kate, A., Miller, A.K.: hbACSS: how to robustly
share many secrets. IACR Cryptol. ePrint Arch. 2021, 159 (2021)

https://doi.org/10.1007/3-540-48405-1_10
https://doi.org/10.1007/3-540-48405-1_10
https://doi.org/10.1007/978-3-030-17659-4_13

Blockchain

CCOM : Cost-Efficient
and Collusion-Resistant Oracle
Mechanism for Smart Contracts

Xiaofei Wu1, Hao Wang1, Chunpeng Ge1(B), Lu Zhou1, Qiong Huang2,
Lanju Kong3, Lizhen Cui3, and Zhe Liu1

1 Nanjing University of Aeronautics and Astronautics, Nanjing, China
{wuxiaofei,wangh24,gecp,lu.zhou,zhe.liu}@nuaa.edu.cn
2 South China Agricultural University, Guangzhou, China

qhuang@scau.edu.cn
3 Shandong University, Jinan, China

{klj,clz}@sdu.edu.cn

Abstract. Smart contracts, that allow parties to establish agreements
based onpredefined ruleswithout a trusted third-party, have been explored
in various applications. However, the main drawback of smart contracts is
that they cannot access the external data required to trigger the execution
of inner logic. The Oracle technology is an interactive bridge between on-
chain smart contracts and off-chain data, which is designed to introduce
external data into the blockchain system. A superior oracle mechanism
should achieve reliable data acquisition with easy data parsing, deployable
services, high system efficiency, and cost-effectiveness. The current smart
contracts oracle mechanisms either rely on a trusted third-party or intro-
duce high computation overhead and difficulty in deployment. This paper,
for the first time, proposes a decentralized and efficient on-chain oracle
mechanism CCOM . In our scheme, a prisoner’s contract is introduced for
users whowant to obtain specific information. The user introduces two ora-
cles to complete the same task of obtaining data, and the contract can pre-
vent oracles from collusion. Rational oracles will not collude but honestly
submit the correct result to increase self-interest.Wealso demonstrate that
the proposed scheme can resist a single potentially malicious oracle service
and prevent collusion from occurring. Finally, we perform experiments on
Ethereum test network Rinkeby and show that our scheme is time-efficient
and cost-effective.

Keywords: Oracle · Smart contract · Collusion-resistant · Game
theory

1 Introduction

A blockchain system is a separate “information island” where data is transmitted
between blockchain participants. It can only access data within the blockchain
and lacks a reliable mechanism to query information outside (i.e., off-chain data)
[2]. However, the execution of blockchain smart contracts relies on reliable exter-
nal data [8]. Consider a smart contract that allows betting on the score of a
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
K. Nguyen et al. (Eds.): ACISP 2022, LNCS 13494, pp. 449–468, 2022.
https://doi.org/10.1007/978-3-031-22301-3_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22301-3_22&domain=pdf
https://doi.org/10.1007/978-3-031-22301-3_22

450 X. Wu et al.

football match. Designing a smart contract that defrays the reward based on the
game’s result is simple. While getting a reliable game score from the real world
to trigger the smart contract is challenging. Therefore, it is essential to efficiently
obtain reliable data to trigger the correct execution of smart contracts.

Oracles (also known as data feeds) [5,10,13,18,29] that get data from off-
chain and feed it into the smart contract is a promising technique to bridge the
smart contracts and the real world data. A straightforward approach is involv-
ing a trusted third-party oracle service to obtain the outside data. However,
a malicious oracle service may provide manipulated data according to its own
profit. Data reliability entirely relies on the trusted third-party oracle service.
Another possible approach is leveraging decentralized oracle service where mul-
tiple oracles collaborate to obtain data. Decentralized oracles also are considered
as consensus oracles, in which the oracle nodes reach an agreement through the
consensus mechanism. Nevertheless, this approach is inefficient and increases
resource consumption and overhead. Moreover, the decentralized oracle services
cannot achieve high economic security [18], which means that if the financial ben-
efits do not outweigh the costs, compromising a network would not be beneficial.
Additionally, decentralized oracle schemes are difficult to deploy.

To overcome the above issues, we propose an efficient and low-overhead on-
chain oracle mechanism that is resistant to a single potentially malicious oracle
service, called CCOM . Our scheme constructs a prisoner’s contract between
the client and two oracles, which adopts cryptographic commitment and game
theory. The key idea is to leverage smart contracts to implement a collusion-
resistant payment protocol. (1) By requiring the oracle to pay the deposit in
advance as a security guarantee for delivering the correct result. If the oracle
delivers the incorrect result, it will be punished and lose the deposit. Such a mean
weakens the oracle’s incentive to collude. (2) Incentivize oracles to act honestly
by redistributing confiscated deposits, which rewards honest oracles that submit
correct results. (3) By requiring the oracle to submit the commitment to bid for
the task, which once again weakens the oracle’s motivation for collusion after
successful bidding. Because in the next stage of delivering the original data,
changing the result will cause the hash verification to fail.

Contributions. To summarize, we make the following contributions in this
paper.

1. We propose a cost-efficient and collusion-resistant blockchain oracle mecha-
nism, CCOM , which uses hash commitment and game theory-based methods
to resist collusion. Detailed game theory analysis proves that two oracles sub-
mitting correct results are the only sequential equilibrium of the game (see
Sect. 2.2).

2. The proposed CCOM can resist to a single potentially malicious oracle service
while taking into account the efficiency and overhead on the basis of ensuring
the degree of decentralization.

CCOM : Cost-Efficient and Collusion-Resistant Oracle Mechanism 451

3. We implement a lightweight smart contract scheme based on Ethereum and
conduct detailed tests on Rinkeby. The results show that our scheme is time-
efficient and cost-effective.

2 Preliminaries

2.1 Games and Strategies

Strategic Game [17] is a model of interaction between decision-makers (also
known as players). Each player has a set of possible actions. This model captures
the interaction between players by allowing each player to be affected by all
player actions, not just his own actions.

Definition 1. A strategic game (with ordinal preferences) consists of the
following three elements.

– Players: a set of players.
– Actions: for each player, a set of actions.
– Preferences: for each player, preferences over the set of action profiles.

The preferences defined as the payoff function, which associates a number
with each action in such a way that actions with higher numbers are preferred.
More precisely, the payoff function u represents a decision-maker’s preferences
if, for any actions a and b in A, u(a) > u(b) if and only if the decision-maker
prefers a to b.
The Prisoner’s Dilemma [16] is one of the well-known situations of strategic
games. The players of the game are two prisoners suspected of major crimes
rather than two Internet users. The two prisoners were locked up in different
interrogation rooms. However, there was enough evidence to convict each of
them of minor crimes, but there was not enough evidence to convict any of them
of major crimes unless one of them informed the public. Everyone can admit or
deny their crime while being silent or betraying each other. If they both remain
silent, everyone will be sentenced to a misdemeanor and go to prison for one
year. If only one of them informs, the informant will be released and the other
will spend four years in prison. If they betray each other, each of them will spend
three years in prison.

This situation may be modeled as a strategic game:

– Players: The two suspects.
– Actions: Each player’s set of actions is Silent, Betray.
– Preferences: Suspect A’s action profiles, from best to worst, are (Betray,

Silent) (A is freed), (Silent, Silent) (A gets one year in prison), (Betray,
Betray) (A gets three years in prison), (Silent, Betray) (A gets four years
in prison). Suspect B’s action profiles are also similar.

We choose payoff functions that represent the suspects’ preference orderings.
For suspect A we let function u1(Betray, Silent)=3 > u1(Silent, Silent) = 2 >

452 X. Wu et al.

u1(Betray, Betray) = 1 > u1(Silent, Betray) = 0. For suspect B we similarly
choose the function u2 for which u2(Silent, Betray) = 3 > u2(Silent, Silent) = 2
> u2(Betray, Betray) = 1 > u2(Betray, Silent) = 0. Using such payout functions,
the game can be presented in the form of Table 1, where the rows correspond to
player A’s actions, the columns correspond to player B’s actions, and the content
of the box is the payoff function for the selected action configuration.

Table 1. The example of prisoner’s dilemma.

Suspect A Suspect B

Silent Betray

Silent (2, 2) (0, 3)

Betray (3, 0) (1, 1)

The Prisoner’s Dilemma simulates a situation in which cooperation will bring
benefits (that is, each player remains silent instead of choosing to betray), but
no matter what the other party does, each player has the incentive to choose to
betray to gain higher returns.

Perfect Information Game: [15] The player specifies the action they will take
at each choice node of the game, and the player knows the node where they are in
and all previous choices, including the choices of other agents. However, in more
realistic situations, such assumptions are too strong, and many scenarios need
to simulate agents that partially or completely do not know the actions taken
by others, or even agents with limited knowledge of their own past actions.

The Imperfect-Information Game [15] is an extended form of a game
that solves this limitation.

In the extensive form, a game is captured as a game tree. Each node repre-
sents a player’s choice, each edge represents a possible action, the leaves represent
the final result, and each player has a utility function. Formally, we define it as
follows.

Definition 2. An imperfect-information game in extensive form is a tuple
(N,A,H,Z, χ, ρ, σ, u) where:

1. N is a set of n players;
2. A is a (single) set of actions;
3. H is a set of non-terminal choice nodes;
4. Z is a set of terminal nodes, disjoint from H;
5. χ: H �→ 2A is the action function, which assigns to each choice node a set of

possible actions;
6. ρ: H �→ N is the player function, which assigns to each non-terminal node a

player i ∈ N who chooses an action at that node;
7. σ: H × A �→ H ∪ Z is the successor function, which maps a choice node and

an action to a new choice node or terminal node such that for all h1, h2 ∈ H
and a1, a2 ∈ A, if σ(h1, a1) = σ(h2, a2) then h1 = h2 and a1 = a2;

CCOM : Cost-Efficient and Collusion-Resistant Oracle Mechanism 453

8. u = (u1, ..., un), where ui : Z �→ R is a real-valued utility function for player
i on the terminal nodes Z.

9. I = (I1, ..., In), where is an equivalence relation that partitions player i′s
choice nodes {h ∈ H : ρ(h) = i} into ki information sets Ii,1, ..., Ii,ki with the
property that χ(h) = χ(h′) and ρ(h) = ρ(h′) whenever there exists a j for
which h ∈ Ii,j and h′ ∈ Ii,j.

In the definition, the tuple (N,A,H,Z, χ, ρ, σ, u) captures the setting and
rules of the game, which same as the perfect-information game, and I captures
the imperfection of information. The strategy set A captures the actions that
players will take at any stage of the game. This paper considers mixed behavior
strategies that are more common than pure strategies.

Definition 3 (Behavior strategies). Let G = (N,A,H,Z, χ, ρ, σ, u) be an
imperfect-information extensive-form game. Then the behavior strategies si of
player i is a function that assigns each information set Ii,j ∈ Ii a probability
distribution over the actions in χ(Ii,j), with the property that each probability
distribution is independent of the others. A completely mixed behavior strat-
egy is a behavior strategy in which every action is assigned a positive probability.
A strategy profile is a list of all players’ strategies s = (si)i∈N . A strategy
profile without player i′s strategy is defined as s−i = (s1, ..., si−1, si+1, ..., sn).
We can also write s = (si, s−i).

2.2 Sequential Equilibrium

The state of the stable optimal solution in game theory is called a Nash equi-
librium [17]. Informally, in a Nash equilibrium, each player’s strategy is the
best given the other players’ strategies, and no one can do better by changing
their strategies if the other players do not change their strategies. However, the
player’s strategy may include irrational behavior that leads to his own lower
payoff, thus forming a weaker Nash equilibrium.

We employ an improvement scheme that excludes unreasonable equilibrium-
sequential equilibrium [17] -consisting of a behavior strategy profile and a
belief system. The equilibrium should not only specify the players’ strategies,
and the belief system should also specify their beliefs about each set of informa-
tion about the history that occurred. They must move according to the set of
information about the history that happened. We refer to such a pair (s, β) as
an assessment, in which s is a behavior strategy profile and β is a belief
system.

Definition 4. In a game G, a (belief system) β = (βi)i∈N is as follows: for
each player i, βi assigns each information set Ii,j ∈ Ii a probability distribution
over the nodes in Ii,j. For each node h ∈ Ii,j, the belief βi (h) = Pr[h|Ii,j], i.e.
the probability that player i is at h given that he is at Ii,j.

Definition 5. In a game G, the player i’s expected payoff at h,given the play
of the game is at node h when the players implement the strategy profile s, is the

454 X. Wu et al.

sum of the utility of each terminal nodes, weighted by the probability of reaching
the node:

ui (s;h) =
∑

z∈Z

Pr[z| (s, h)] · ui (z) (1)

The player i’s expected payoff at Ii,j is the sum of expected payoff at each h ∈ Ii,j,
weighted by the belief βi (h):

ui (s; Ii,j , β) =
∑

h∈Ii,j

βi (h) · ui (s;h) (2)

Definition 6. In a game G, (s, β) be an assessment, the strategy profile s =
(si, s−i) is called rational at information set Ii,j, relative to β, if for each behav-
ior strategy si

′ �= si of player i:

ui (s; Ii,j , β) ≥ ui ((si′, s−i) ; Ii,j , β) (3)

The assessment is called sequentially rational if for each player i and each
information set Ii,j ∈ I, the strategy profile s is rational at Ii,j relative to β.

Definition 7. An assessment (s, β) is said to be consistent if there exists a
sequence of fully mixed behavior strategy profiles (sk)k∈N satisfying the following
conditions:

(1) The profile (sk)k∈N converges to s, which is limk→∞(sk) → s;
(2) The sequence of beliefs (βk)k∈N induced (sk)k∈N (by Bayes’ rule) converges

to the belief system β , which is limk→∞(βk) → β.

Definition 8. An assessment (s, β) is called a sequential equilibrium if it is
sequentially rational and consistent.

Due to imperfect information, players must make decisions under uncertainty.
When a player is asked to make a decision, the belief system allows the player
to construct the strategy that is optimal at every point in the tree.

2.3 Smart Contract and Oracle

Blockchain is a new type of distributed ledger paradigm that integrates mul-
tiple existing technologies. It uses distributed consensus algorithms to generate
and update data and peer-to-peer networks for data transmission between nodes.
The distributed ledger that combines cryptography principles and time stamp-
ing technologies ensures that the stored data cannot be tampered with and uses
automated script codes or smart contracts to implement upper-level application
logic. Smart contracts are programs with specific addresses that are executed
on the blockchain, which are event-driven, self-executing, and tamper-resistant.
They consume transaction fees based on the complexity of the code (for exam-
ple, Gas consumed by deployment in the Ethereum blockchain) and use the

CCOM : Cost-Efficient and Collusion-Resistant Oracle Mechanism 455

resources available on the blockchain network. The introduction of smart con-
tracts to the blockchain has increased the programmability of the blockchain
and revolutionized the software ecosystem.

Although the prospects are promising, smart contracts that perform specific
functions need to access data about real-world state and events from outside
the blockchain system [30,31]. However, since the blockchain system is isolated
from the external world [25], the blockchain and smart contracts cannot access
off-chain data (outside the p2p network). The availability of smart contracts
in terms of performance and programmability will be limited to data on the
chain. To overcome this limitation of smart contracts, the Oracle (also known
as Data Feed) [4,14,28] represented by smart contracts on the blockchain came
into being. Oracles act as agents, servicing data requests from other smart con-
tracts, discovering and validating real-world events, and feeding the data to
smart contracts. Lack of reliable data feeding mechanism limits the applicability
of smart contracts.

3 The Architechture of CCOM

3.1 Adversary Model and Assumption

In our system model, the client who publishes a data request task and introduces
two oracles to get the required data is thought to be honest. The client’s goal
is to get the correct data it wants while minimizing the cost. A single oracle
may behave in-honestly and return incorrect data so as to get extra profit. Each
oracle is thought to be a separate rational adversary, which means that the oracle
always considers all possible outcomes and rationally chooses the strategy that
will maximize its profits. The parties involved are risk-neutral. For other risk
profiles (i.e., risk-seeking or risk-averse), the utility function can be adjusted to
the risk profile, and equilibrium is maintained by choosing deposits based on the
risk profile. Beyond that, we have the following assumptions:

• We assume that oracles can provide incorrect but reasonable results with no
cost.

• For simplicity, we also assume that different oracles consume the same cost
to complete the task, and the cost is public.

• Combined with real-world scenarios, we assume that the data required by
the smart contract is not complicated. Considering the high cost and low
demand of uploading large amounts of data to the blockchain, complex data
acquisition tasks are beyond the scope of this paper for the time being.

3.2 The System Architecture of CCOM

The CCOM involves two types of participants as shown in Fig 1.

• Users (Clients): A user wants to access the specific data which service
provided by oracles, then he creates and distributes the prisoner’s contract
on blockchain to publish a task.

456 X. Wu et al.

Fig. 1. System architecture of CCOM .

• Oracles: An oracle who wants to accept the task needs to bid and sign the
prisoner’s contract with the client.

When on-chain users need to access off-chain data sources to complete some
interactions, the client instantiates a prisoner’s contract according to the specific
requirements and distributes the smart contract on the blockchain. Two oracles
which are selected randomly, sign the contract with the client. Then oracles fetch
data from data sources and deliver it to the contract. If there is any dispute, the
trusted third oracle(TTO) will be introduced, which is served by a reputable
oracle service provider. This oracle can provide results and resolve disputes.
However, if the oracle is rational, TTO will never be called.

To incentivize honest behavior, oracles are required to prepay deposit, which
is stated in the contract in advance. If the oracle acts honestly, the deposit will be
refunded; if the oracle is detected cheating, the client will confiscate the deposit.
In addition, in the case where one oracle is honest and the other cheats, the
honest oracle will get extra profits from the cheating oracle’s deposit. Although,
collusion may bring higher profits than both parties acting honestly. However,
there will be a higher profit if one person can induce the other party to cheat
while being honest with himself. Once both oracles understand that collusion
is unstable, the other oracle always tries to deviate from it. Any attempt to
persuade the other party to collude without a credible and enforceable promise
will be considered a trap, therefore, will not succeed.

3.3 Monetary Variables

We use some non-negative currency variables in the contract — see Table 2.
Obviously, there are some relationships between these currency variables.

• w ≥ c: Oracle will not accept low-paying jobs at a loss.

CCOM : Cost-Efficient and Collusion-Resistant Oracle Mechanism 457

Table 2. Summary of monetary notations.

Notation Description

c The essential cost of an oracle completes the task of obtaining specific data

th The cost of calling TTO to re-complete the task of obtaining specific data and resolving disputes

d The deposit an oracle needs to pay to the client for a job

w The amount the client agrees to pay to an oracle to complete the task of obtaining specific data

• th > 2 ∗ w: Otherwise, the oracle service will not be needed. The client can
directly select the TTO, which is slightly more expensive, to complete the
task of obtaining specific data.

• d > c + th: In order to establish an ideal Nash equilibrium, d is set by the
client in the prisoner’s contract.

In addition, th will be paid by the oracle that submitted the wrong result.
Honest customers pay no more than the cost of requesting two oracle services
plus the gas cost of initiating the transaction.

3.4 The Prisoner’s Contract

The prisoner’s contract is established between a user (client) and two oracles (o1
and o2), the contract is summarized in Algorithm 1, and the specific protocol is
as follows:

Init: The client instantiates the prisoner’s contract according to the specific
data service request (including content and format, etc.) and sets the deadline
T1 < T2 < T3. Then he publishes it on the blockchain.

Create: The client creates a task through the contract, declares the data he
wants to access, and sets the d that oracle needs to pay. Agree to pay the w to
each oracle who completes the task honestly and select o1 and o2 that provide
corresponding services randomly to prevent oracle collusion in advance to a
certain extent. Determine TTO and the th, if any disputes will be resolved by
TTO. In addition, the client pays (2 ∗ w) + th) to the contract when publishing
the task.

Bid: The o1 and o2 assigned the task need to bid within T1. Oracle accepts the
task to pay the d to the contract and upload the HASH of the data required by
the client, namely hash(data). If any oracle fails to do so, the contract will be
terminated, and any deposit paid will be refunded.

458 X. Wu et al.

Deliver: The o1 and o2 must submit the original data before T2. The contract
verifies whether the result submitted by oracle is consistent with those submitted
during the Bid period. If they are the same, the submission is successful.

Pay: If the time exceeds T2, o1 and o2 have not delivered the results, the d will
be forfeited in full. If both o1 and o2 deliver the results and the results are equal,
the w will be paid and the d will be refunded. Otherwise, a dispute will be raised
with TTO.

Only when there is an obvious problem, that is, no oracle delivers the result,
or the client is satisfied with the result, can the contract be directly terminated.

Dispute: After TTO receives the dispute, it completes the task of obtaining
specific data and submits the result0 to the contract, and the contract deter-
mines it.

(1) If both oracles fail to submit the results correctly within the deadline, their
deposits will be forfeited in total, and th will be paid to TTO.

(2) If the result submitted by one oracle is correct and the other oracle is wrong,
the dishonest oracle will be charged for the deposit in total, and the contract
will pay the honest oracle the w, additional bonus (bonus = d−th) and the d.

When only one result is received successfully, or the results do not match, the
contract will determine the cheating behavior and settle the amount based on
the result of TTO. If the client is honest, disputes will only be raised when there
is a problem, and the th will be paid by the cheating oracle’s d.

Liquidate: If after T3, the client neither pays nor raises a dispute, for the oracle
that delivers the result before T2, the client must pay the w and refund the d to
the oracle, and all the remaining balance of the contract will be transferred to
the client.

The client is honest in theory, but if the client maliciously manipulates-
neither pays nor raises a dispute, the oracle can call the Timer function in the
contract to ensure that its funds are not locked.

Reset: After a task ends, the client can call the reset function to reset the
contract parameters before releasing a new task. There is no need to redeploy
contracts frequently, saving gas consumption.

The contract has three deadlines to enforce timeliness and avoid locking
up funds when some parties refuse to advance the contract. The contract may
permanently lock the balances if the code does not specify what to do after the
deadline. So the deadline is crucial for smart contracts.

CCOM : Cost-Efficient and Collusion-Resistant Oracle Mechanism 459

Algorithm 1. The Prisoner’s Contract pseudocode.

Init:

Set state := Init, T1, T2, T3, Do := false;

Create:

Upon receiving (“create”, w, d, th, o1, o2 ,
TTO) from client:
if state := Init and T < T1 < T2 < T3 and

bal[client] ≥ $(2 ∗ w + th) then
state := Created;
bal[ledger] := $(2 ∗ w + th);
worker = {o1, o2};

Bid:

Upon receiving (“bid”, hash(data)i) from oi:
if state := Created and T < T1 and

oi ∈ worker and bal[oi] ≥ $d then
bal[ledger] := bal[ledger]+$d;
hashi := hash(data)i;
hasBid[oi] := true;

else
hasBid[oi] := false;

if hasBid[o1] and hasBid[o2] then
state := GetData;

Deliver:

Upon receiving (“deliver”, datai) from oi:
if state := GetData and T < T2 and

oi ∈ worker then
resulti := datai;
if hash(datai) := hashi then

hasDeliver[oi] := true;
else

hasDeliver[oi] := false;

state := Pay;

Pay:

Upon receiving (“pay”) from client:
while state := Pay and T > T2 do

if hasDeliver[o1] and hasDeliver[o2] then
bal[client] := bal[client] + $(2 ∗ w +

th + 2 ∗ d);
state := Done;
Do := false;

else if hasDeliver[o1] and hasDeliver[o2]
and result1 := result2 then

bal[o1] := bal[o1] + $(w + d);
bal[o2] := bal[o2] + $(w + d);
bal[client] := bal[client] + $(th);
state := Done;
Do := true;

else

state := Error;
Do := false;

return Do;

Dispute:

Upon receiving (“Dispute”, result) from
TTO:
while state := Error do

for i =1 to 2 do
if hasDeliver[oi] and result = resulti

then
hasCheat[oi] := false;

else
hasCheat[oi] := true;

if hasCheat[o1] and hasCheat[o2] then
bal[o2] := bal[o2] + $(w + 2 ∗ d − th);
bal[client] := bal[client] + $(w + th);

else if hasCheat[o1] and hasCheat[o2]
then

bal[o1] := bal[o1] + $(w + 2 ∗ d − th);
bal[client] := bal[client] + $(w + th);

else if hasCheat[o1] and hasCheat[o2]
then

bal[client] := bal[client] + $(2 ∗ (w +
d));

bal[TTO] := bal[TTO] + $(th);
state := Done;

Liquidate:

Upon receiving (“Timer”):
while state := Created and T > T1 do

bal[client] := bal[client] + $(2 ∗ w + th);
for i =1 to 2 do

if hasBid[oi] then
bal[oi] := bal[oi] + $(d);

state := Aborted;

while state := GetData and T > T2 do
state := Pay;

while state := Pay and T > T3 do
for i =1 to 2 do

if hasDeliver[oi] then
bal[oi] := bal[oi] + $(w + d);

bal[client] := bal[client] + bal[ledger];
state := Done;

Reset:

Upon receiving (“reset”):
if state := Done or state := Aborted then

clear cache of all parameters;
state := Init;

4 Discussion and Analysis

An imperfect information game created by the above prisoner’s contract is shown
in Fig. 2. In the game, the players are two oracles. Although the contract also
involves the client and TTO, who are honest and have only one deterministic
strategy, we exclude them from the players. We formalize the game. The player
set is N = {o1, o2}. The action set A = {T − result, F − result, other}, where

460 X. Wu et al.

T −result means that the participant sent the correct result before the deadline,
and F − result means that the participant sent the wrong result before the
deadline. Other refers to other behaviors that submit incorrect data or fail to
submit data within the specified time. The game has two information sets: I1 =
{v0} belongs to o1, and I2 = {v1, v2, v3} belongs to o2. (H,Z, χ, ρ, σ) are captured
by the tree structure. We use u1 and u2 to denote the utility functions of o1 and
o2, respectively. Both parties’ payoff (utilities) are listed below the terminal
nodes.

Fig. 2. The game created by the prisoner’s contract. Bold edges indicate the actions
that parties will play in the unique sequential equilibrium.

Next, we prove that the game has a unique sequential equilibrium. To be
precise, if d > c + th, the probability of both parties of the game submitting the
correct data T − result is 1, and the only achievable node of the game is v4.
The significance of balance is that for each oracle node, submitting the correct
data will always bring itself the highest payoff. In detail, we see the decision
point v1 of o2: if o2 chooses T − result, it will go to the terminal node v4, the
game is over, and the payoff of o2 is w − c; while choosing F − result or other
will go to v5 and v6 respectively, o2’s payoff is all −d. Since w − c is positive,
it’s a better choice than −d anyway. Similarly, for the decision point v2 of o2,
if o2 chooses T − result, it will go to the terminal node v7, and the payoff is
w + d − c + bonus, that is w + 2 ∗ d − c − th. If o2 chooses F − result or other,
it will go to v8 and v9, and the payoff is w and −d, respectively. Obviously, if
d > c+ th, the payoff in v7 is higher than that in v8 and v9. Correspondingly, at
decision point v3, if o2 chooses T − result, it will go to terminal node v10, and
the payoff is w−c+bonus, which is better than the payoff of choosing F −result
or other which is −d. Regardless of how o1 chooses his actions, o2 will prefer
to submit the correct result, and terminal nodes will only be spawned in v4, v7,

CCOM : Cost-Efficient and Collusion-Resistant Oracle Mechanism 461

and v10. From the payoff of o1 in these three nodes, it is obvious that the oracle
will choose to execute T − result to get the best payoff, so if the oracles are all
rational, v4 is the only outcome of the game.

From the definition in Sect. 2.2, we can draw the following conclusions.

Lemma 1. If d > c+th, then Game in Fig. 2 has a unique sequential equilibrium
((s1, s2), (β1, β2)) where

⎧
⎪⎪⎨

⎪⎪⎩

s1 = ([1(T − result), 0(F − result), 0(other)]);
s2 = ([1(T − result), 0(F − result), 0(other)]);
β1 = ([1(v0)]);
β2 = ([1(v1), 0(v2), 0(v3)]);

(4)

Theorem 1. If d > c + th and o1, o2 are rational, Game in Fig. 2 will always
terminate at v4.

Lemma 1 states that for o1 and o2, the best strategy is to always submit
correct results T − result in time (with a probability 1). Informally, beliefs can
be reasoned like this: for o1, since I1 has only one node, o1 knows that it is
always at v0 when it reaches I1 (that is β1 = ([1(v0)])); foro2, knowing that o1’s
strategy is always select to send T − result and it always reaches v1 and not the
other two nodes in I2 (that is β2 = ([1(v1), 0(v2), 0(v3)])).

Given Lemma 1, Theorem 1 can be easily proved: if both parties always send
T − result with a probability 1, the game always ends at v4.

In the above analysis, when both parties submit the same incorrect result at
the deadline, the contract cannot distinguish the authenticity. It will still offer
the incorrect result to the client. At this time, we assume that both oracles have
intentionally reached collusion. The probability of such a situation occurring in
the absence of collusion is extremely low and can be ignored.

Next, we consider the case of collusion. From a rational point of view, in
the game created by our prisoner’s contract, the oracles participating in the
collusion earn less than the payoff for submitting the correct result. However,
there is also the possibility that colluding oracles may obtain extra benefits
from other channels. For example, after the oracle reaches collusion, the result
is manipulated so that the client suffers a loss when using the incorrect data to
execute other smart contracts, and the loss makes the collusion oracle obtain a
higher profit.

Considering that oracles are rational and selfish adversaries, collusion is unre-
liable unless credible and enforceable commitments are made in the form of smart
contracts that explicitly regulate the rewards of collusion and the penalties for
the betrayal of collusion. In addition, if collusion is reached, the oracle also can
betray the collusion and report to the client to obtain higher profits. Therefore,
collusion is unstable.

Moreover, the above collusion is difficult to achieve in CCOM. First of all,
our scheme adopts the principle of randomness to select two oracles. The oracle
node that receives the task cannot determine who also received the task because
anyone can serve as an oracle node on the p2p network to provide data. Then,

462 X. Wu et al.

our prisoner’s contract has a clear deadline for the oracle to submit the result.
The deadline is within a few minutes, and it is almost difficult for a potentially
malicious oracle to quickly find another oracle and sign a collusion contract to do
evil together. It is tantamount to finding a needle in a haystack in a short period.
When the oracle accepting the task pays the deposit for bidding, the identity
of the oracle that issued the transaction is disclosed. However, the hash of the
result has been submitted simultaneously in bidding and cannot be changed in
delivering, so collusion cannot be realized.

To summarise, in the scenario where oracles obtain off-chain data for smart
contracts, CCOM can resist collusion in the face of rational and selfish oracles.

5 Implementation

The experiments is conducted on a ThinkBook 13X with a CPU of 11th Gen
Intel(R)Core(TM) i5-1130G7@ 2.90 GHz and 16 GB RAM. The contract was
implemented in Solidity 0.4.10 [23] and tested on the Ethereum testnet Rinkeby.
Simultaneously, we use the built-in hash function—Keccak256 of solidity to
upload encrypted information to the smart contract. Contracts are loosely cou-
pled with external services provided by oracles. The task of fetching the data
can be viewed as a black box, and the contract does not need to know their
internal details. The contract is only called before/during/after executing the
task. The source code of our scheme’s contracts can be found at https://github.
com/job00001/CCOM.

5.1 Cryptographic Primitives - HASH Function

Hash function is a one-way irreversible and input-sensitive algorithm that is
cryptographically secure. It is precisely that input a random v yields a unique
c = H(v) which is uniformly distributed and unpredictable. The hash algorithm
has the following two characteristics: (1) One-Way: it is difficult to deduce the
sensitive data v through the hash value H(v); (2) Collision-Resistant: it is diffi-
cult to find different sensitive data v′ produces the same hash value H(v).

Cryptographic commitments allow one to commit to a chosen value (or cho-
sen statement) while keeping it hidden to others, with the ability to reveal the
committed value later. The receiver cannot know the chosen value at that time
(which provides hiding property). The chosen value in the commit phase must be
the only one that the sender can compute and validate during the reveal phase
(which provides binding property). Hash function is simple in construction and
easy to use, satisfying the essential characteristics of cryptographic commitments
– hiding and binding. In our experiments, we use solidity’s built-in keccak256
function, which is briefly described below for what it does for our contracts.

Select Oracles Randomly: In the create phase of the prisoner’s contract,
the client uses the keccak256 algorithm to select two oracles randomly. It is too
expensive for solidity to generate random numbers through complex algorithms.

https://github.com/job00001/CCOM
https://github.com/job00001/CCOM

CCOM : Cost-Efficient and Collusion-Resistant Oracle Mechanism 463

We use one of the most commonly used algorithms–“Linear Congruence Genera-
tor (LCG)”. Enter the current timestamp and the client’s address as parameters
to obtain a hash value of type uint256, and then modulo the total number
of oracles n to obtain a random number. Although this method is not secure
enough on Ethereum, in practice, nodes generally do not have enough resources
to launch an attack. Attacks are unprofitable unless we have a ton of money on
our random function, so we decided to accept this shortcoming.

Encrypt Information: The oracle converts the result into a keccak value and
then feeds it to the contract so that other nodes cannot replicate or initiate
acollusion. When two oracles have delivered their original data, the contract
can verify whether the results are consistent with the previous bidding to judge
whether they act honestly. Hashing is a commitment scheme that is strongly
collision-resistant while providing verifiability of results. We replace the actual
input/output values that should be placed on the blockchain with hash values,
temporarily hiding the information of the input/output and avoiding collusion
well (see Sect. 5).

We implement contracts on the blockchain (such as Ethereum) to assist in
realizing a cost-efficient and collusion-resistant oracle mechanism by using a
collision-resistant hash function. Blockchain has limited space for storing data,
and nodes in the network need to verify all transactions. The size and complexity
of transactions are limited, so such an approach is efficient and has very little
overhead (see Sect. 5.2 for details).

5.2 Overhead and Cost

Cryptography Overhead and Gas Cost: We use the built-in hash function
of solidity. Each oracle only needs to generate one keccak value, each client needs
to generate two keccak values, and each prisoner’s contract requires to verify at
most two keccak values. So the additional overhead caused by cryptography
primitives is small. In Table 3, we show the cost of setting up and executing
our contracts on the Ethereum testnet Rinkeby. The cost is in the amount of
gas consumed by each function. In all transactions, the gas price was 1 gas =
0.0000000025 ether.

The cost is roughly related to the computational and storage complexity of
the function. For example, In our prisoner’s contract, Init (deploying the contract
on the blockchain), Create (publishing specific tasks), and Dispute (calling the
third oracle to resolve disputes) cost more than other functions. Deploying our
contract costs 2.96 × 106 gas, but if the reset function is called to reset the
parameters, the contract can be reused without deploying again. Then each task
can save about 2.87 × 106 gas, and the cost can be further reduced. If there is
no dispute for a task, the total cost (client and two oracles) is about 0.57 × 106

gas, and if there is a dispute to be resolved, the total cost is about 0.76 × 106

gas. It can be seen that the cost of using our constructed prisoner’s contract on
Ethereum is very cheap, CCOM is cost-effective.

464 X. Wu et al.

T
a
b
le

3
.
T

h
e

co
st

o
f
u
si

n
g

th
e

sm
a
rt

co
n
tr

a
ct

s
o
n

R
in

k
eb

y.

(a
)

T
h
e

ex
a
m

p
le

w
it

h
d
is

p
u
te

tr
ea

tm
en

t

F
u
n
c
ti
o
n

G
a
s

T
x
n

F
e
e
(E

th
er

)
T
im

e
-c
o
n
su

m
in

g
(s

)
T
x
n

H
a
sh

In
it

2
9
6
2
4
7
7

0
.0

0
7
4
0
6
1
9
2

1
4
.8

9
0
x
5
9
e1

4
b
a
a
b
5
d
2
2
6
9
f3

2
7
6
0
f1

2
b
b
a
e0

d
d
5
2
a
7
ec

3
3
6
9
5
c3

b
0
fe

2
a
6
9
ec

1
3
f8

7
fb

2
3
1

C
re

a
t

2
7
1
1
0
8

0
.0

0
0
6
7
7
7
7
0

1
8
.1

3
0
x
f9

3
2
b
f6

3
f5

9
d
b
6
3
b
4
b
9
9
6
b
2
e9

6
5
3
6
d
a
c2

a
4
0
4
f1

6
8
2
c8

8
3
a
0
0
6
5
ec

1
ea

0
2
d
c4

5
8
b

B
id

8
0
2
2
2

0
.0

0
0
2
0
0
5
5
5

8
.5

3
0
x
c5

4
7
9
e5

d
3
7
6
a
5
0
ca

f6
fb

cc
ca

2
3
6
d
1
0
3
3
f0

e9
9
4
c5

3
4
b
6
5
7
3
1
0
a
f0

1
a
c6

0
1
5
0
6
5
7
d

D
el

iv
er

8
3
5
0
6

0
.0

0
0
2
0
8
7
6
5

5
.9

3
0
x
1
f2

e8
8
7
6
c6

4
e3

0
9
d
1
a
5
d
1
e2

4
e9

a
d
fa

f5
0
6
8
e8

4
5
e9

6
6
4
9
a
5
5
3
b
7
8
3
2
6
a
3
8
7
2
e0

4
a

P
a
y

4
2
4
2
0

0
.0

0
0
1
0
6
0
5
0

1
4
.1

3
0
x
6
fe

6
3
9
3
3
4
f7

7
3
f7

4
a
b
8
4
7
1
c2

3
9
a
9
cd

7
0
3
7
0
f9

0
9
d
9
5
f2

1
7
2
0
d
8
a
b
4
4
0
d
f7

ff
d
d
8
5

D
is

p
u
te

1
2
6
7
4
9

0
.0

0
0
3
1
6
8
7
2

1
6
.2

5
0
x
e7

eb
3
f3

6
0
d
ef

5
2
c2

ca
6
3
d
c0

3
4
7
2
7
a
ed

6
4
6
7
5
9
a
e3

8
5
cc

6
6
b
f3

ef
8
7
2
c6

b
a
b
8
8
e7

e

T
im

er
2
7
7
8
0

0
.0

0
0
0
6
9
4
5
0

1
5
.6

4
0
x
b
1
cb

2
eb

5
7
7
b
7
8
a
3
d
c6

b
6
cf

2
9
6
e2

c7
a
b
e4

2
b
4
9
0
8
3
e0

0
b
4
4
c7

8
3
a
9
8
8
0
c2

9
5
7
9
1
eb

R
es

et
8
6
9
9
5

0
.0

0
0
2
1
7
4
8
7

5
.4

6
0
x
5
f5

4
e2

e5
0
6
e1

2
1
0
c3

b
8
8
a
1
4
c5

3
e3

f6
d
0
3
1
3
6
3
fa

a
c7

9
0
7
5
8
9
a
0
e8

7
3
2
a
2
5
5
5
7
ea

c

(b
)

T
h
e

ex
a
m

p
le

w
it

h
o
u
t

d
is

p
u
te

tr
ea

tm
en

t

F
u
n
c
ti
o
n

G
a
s

T
x
n

F
e
e
(E

th
er

)
T
im

e
-c
o
n
su

m
in

g
(s

)
T
x
n

H
a
sh

C
re

a
t

2
5
3
4
6
5

0
.0

0
0
6
3
3
6
6
2

1
7
.2

8
0
x
5
0
2
0
2
f0

b
d
5
1
3
9
d
8
4
c4

b
8
a
4
d
6
9
7
0
4
b
8
b
0
3
c8

1
8
a
4
a
1
9
f2

8
a
d
a
4
ce

7
b
b
d
0
0
4
8
3
3
8
6
a

B
id

6
0
3
2
2

0
.0

0
0
1
5
0
8
0
5

6
.3

3
0
x
a
6
0
9
b
cf

2
0
4
5
0
f4

4
8
5
9
3
3
2
9
9
d
2
4
2
2
1
d
e5

6
fb

9
5
8
5
7
f8

4
fc

7
b
c1

d
3
7
4
a
0
3
1
9
a
2
a
9
7
3

D
el

iv
er

6
0
5
1
9

0
.0

0
0
1
5
1
2
9
7

1
6
.0

2
0
x
c1

9
9
9
7
0
2
8
4
3
3
6
d
1
5
4
d
d
f2

8
4
7
b
0
6
6
e1

0
6
c6

f8
9
c8

4
8
0
ca

f9
6
1
1
3
d
9
5
f8

5
5
6
1
0
2
2
f1

P
a
y

7
7
0
7
1

0
.0

0
0
1
9
2
6
7
7

1
7
.0

1
0
x
9
7
5
c2

d
5
9
1
ff
d
b
5
1
ec

b
eb

b
4
cc

5
3
6
a
6
7
b
b
9
3
c2

f4
a
b
2
9
d
b
4
b
5
6
2
b
2
6
9
d
e0

b
b
2
b
8
ce

0

R
es

et
8
4
7
5
5

0
.0

0
0
2
1
1
8
8
7

1
1
.8

2
0
x
9
e2

e4
0
9
6
0
4
9
4
f2

a
9
6
7
d
2
1
e6

2
4
ce

d
b
f9

e2
c7

3
8
0
7
b
8
8
8
5
ea

5
9
3
b
e3

c3
b
1
8
7
c8

ec
0
1

CCOM : Cost-Efficient and Collusion-Resistant Oracle Mechanism 465

Time Cost: We also consider the time-consuming of CCOM . Since our oracle
mechanism is wholly based on the modeling of Ethereum smart contracts, the
time-consuming cost does not involve the setting of initial parameters, writing
solidity contracts, and other preprocesses. We only consider the time consumed
by the CCOM mechanism to execute transactions on Ethereum.

We recorded the time consumption of each transaction made on Rinkeby,
as shown in Table 3. For an example of interaction without dispute treatment,
the total time consumption for six transactions is about 79 s. For an example of
interaction with dispute treatment, the total time consumption for seven trans-
actions is 77.5 s. If the time exceeds T3 and the client has not settled, the contract
may involve another liquidating transaction. The current network situation of
Ethereum has affected our results to a certain extent, so the transaction time is
irregular, but a single transaction basically does not exceed 20 s. To sum up, the
time cost of CCOM is also very small.

6 Related Work

Scholars around the world have conducted extensive research on blockchain ora-
cles. The earliest smart contracts use the secure HTTP connection supported
by the Transport Layer Security protocol (TLS) to obtain information. Still, the
TLS protocol cannot fully guarantee that the content of the HTTP session has
not been tampered with. TLS-N [21] is a more general approach to provide non-
repudiation to the TLS protocol. However, to achieve this, significant changes
were made to the TLS protocol, and the scheme was poorly deployable. These
schemes are dedicated to achieving safe and reliable data transmission.

Provable [3] (previously known as Oraclize) is a pioneering centralized oracle
service (operating since 2015) that fetches external data from a Web API and
uses TLSNotary/SafetyNet to build proofs of authenticity to provide security.
Provable is based on a Trusted Execution Environment (TEE) and an auditable
virtual machine. Although the supply of audit data is guaranteed, the perfor-
mance of Provable is not good enough. In 2016, Zhang F et al. [31] proposed
Town Crier (TC), a framework based on Intel Software Extensions Protection
(SGX), and the Enclave instance of SGX acts as a link between HTTPS-enabled
data source websites and Ethereum blockchain smart contracts. TC’s security
relies on the SGX framework’s security and authentication infrastructure. How-
ever, Intel CPU and SGX have been severely attacked and damaged [24,27],
which link security is weak. Furthermore, TC only supports limited APIs and
data feeds dedicated to the Ethereum mainnet. PriceGeth [7] is implemented
as a smart contract for trusted entities to publish real-time price pairs to the
Ethereum blockchain and keep all historical prices on-chain so that prices can
be accessed without gas. The solution is centralized, there is no incentive mecha-
nism for oracles that publish and store price pairs, and the application scenarios
are relatively limited. The above three solutions are typical of centralized oracles,
providing off-chain solutions connected to on-chain smart contracts to transmit
data.

466 X. Wu et al.

Augur [20] utilizes the trust decentralization of blockchain to provide a low-
cost oracle platform for prediction markets of online transactions. Witnet [19]
is a reputation-based decentralized oracle network (DON) protocol that con-
nects smart contracts with external data providers. Witnet’s reputation system
maintains the credibility and honesty of participants by rewarding successful
majority-consistent provers and punishing contradictory provers. ChainLink [22]
is the first decentralized oracle solution proposed on Ethereum, which pushes
data between smart contracts and Web-API, maintaining the integrity, confi-
dentiality, and authenticity of smart contract data and both providing on-chain
and off-chain components. All three schemes select oracle nodes based on repu-
tation, which can easily lead to Matthew Effect and are prone to collusion and
targeted attacks. Aeternity [11] is an open-source, decentralized application plat-
form utilizing public blockchain technology, using Bitcoin-NG as the consensus
mechanism to agree on the state of the outside world.

Bitcoin-NG enables high transaction throughput, making Aeternity a viable
platform for data-intensive oracles. Nevertheless, adopting the consensus mech-
anism as the authentication mechanism wastes many resources. ASTRAEA [6]
is a decentralized blockchain oracle that runs on the public chain and relies
on the voting-based game strategy. ASTREA assumes that all rational players
act honestly, analyzes the game-theoretic incentive structure, and proves that
an ideal Nash equilibrium exists. However, external data feeds can still break
the Nash equilibrium by generating off-chain collusion attacks, and there is still
a risk of Sybil attacks. Dos Network [1] is a decentralized oracle service net-
work that supports multiple mainstream public chains, such as Ethereum, EOS,
TRON, and Zilliqa. The scheme adopts Verifiable Random Function (VRF) and
zero-knowledge proof (zkSNARK) to select working groups safely and randomly.
The chosen node obtains the data and uses the threshold signature algorithm to
synergistically generate the proof of data integrity.

The above solutions [1,6,11,19,20,22] are decentralized oracle platforms, in
which Chainlink and Dos Network provide both on-chain and off-chain compo-
nents, while others only provide on-chain components. Our scheme, CCOM ,
mainly provides on-chain components and is implemented as lightweight smart
contracts. It can resist a single potentially malicious oracle, is more secure than
the centralized oracle service, and has no single point of failure. At the same
time, compared with the decentralized oracle service, it can save resources and
have a lower cost. In short, CCOM balances efficiency and decentralization.

After that, many oracle research schemes realize specific properties, but
they are not comprehensive. The PDFS [9] scheme focuses on achieving non-
repudiation, the zk-AuthFeed [26] scheme uses zero-knowledge proof to achieve
good privacy protection, and GRUB [12] considers the problem of saving gas
overhead.

7 Conclusion

Smart contracts are programs that can be executed autonomously on the
blockchain. In recent years, research on smart contracts has played an indispens-

CCOM : Cost-Efficient and Collusion-Resistant Oracle Mechanism 467

able role in the prosperity and development of the blockchain field. The oracle
technology is crucial for solving the need for blockchain and smart contracts to
access data about real-world state and events from the outside. This paper pro-
posed a cost-effective and collusion-resistant oracle mechanism CCOM , which
constructs a prisoner’s contract between the clients and oracles, and adopts cryp-
tographic commitment and game theory to resist collusion deception. For rational
oracles, always being honest can maximize their benefits. Under the umbrella of
our scheme, the malicious behavior of a single oracle service in the case of central-
ization can be resolved while considering both efficiency and overhead.

Acknowledgements. This work was supported by the National Key R&D Program
of China (Grant No. 2020YFB1005900, 2020B0101090002), the National Key R&D Pro-
gram of Guangdong Province (Grant No. 2020B0101090002), the National Natural Sci-
ence Foundation of China (Grant No. 62032025, 62071222, U21A201710, U20A201092),
and the Natural Science Foundation of Jiangsu Province (Grant No.BK20200418).

References

1. Dos network: a decentralized oracle service boosting blockchain usability with off-
chain data & verifiable computing power. https://s3.amazonaws.com/whitepaper.
dos/DOS (2019)

2. Ethereum blockchain. https://ethereum.org/en/whitepaper/ (2020)
3. Provable documentation. https://docs.provable.xyz/. January 2020
4. Al Breiki, H., Al Qassem, L., Salah, K., Rehman, M.H.U., Sevtinovic, D.: Decen-

tralized access control for IoT data using blockchain and trusted oracles. In: 2019
IEEE International Conference on Industrial Internet (ICII), pp. 248–257. IEEE
(2019)

5. Al-Breiki, H., Rehman, M.H.U., Salah, K., Svetinovic, D.: Trustworthy blockchain
oracles: review, comparison, and open research challenges. IEEE Access 8, 85675–
85685 (2020)

6. Berryhill, R., Veneris, A.: Astraea: A decentralized blockchain oracle. IEEE
Blockchain Tech. Briefs 2(2) (2019)

7. Eskandari, S., Clark, J., Sundaresan, V., Adham, M.: On the feasibility of decen-
tralized derivatives markets. In: Brenner, M., et al. (eds.) FC 2017. LNCS, vol.
10323, pp. 553–567. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70278-0 35

8. Greenspan, G.: Why many smart contract use cases are simply impossible. https://
www.coindesk.com/three-smart-contract-misconceptions (2016)

9. Guarnizo, J., Szalachowski, P.: Pdfs: practical data feed service for smart contracts
(2018)

10. Heiss, J., Eberhardt, J., Tai, S.: From oracles to trustworthy data on-chaining
systems. In: 2019 IEEE International Conference on Blockchain (Blockchain), pp.
496–503. IEEE (2019)

11. Hess, Z., Malahov, Y., Pettersson, J.: Æternity blockchain. https://aeternity.com/
aeternity-blockchainwhitepaper.pdf (2017)

12. Li, K., Tang, Y., Chen, J., Yuan, Z., Xu, C., Xu, J.: Cost-effective data feeds to
blockchains via workload-adaptive data replication (2019)

https://s3.amazonaws.com/whitepaper.dos/DOS
https://s3.amazonaws.com/whitepaper.dos/DOS
https://ethereum.org/en/whitepaper/
https://docs.provable.xyz/
https://doi.org/10.1007/978-3-319-70278-0_35
https://doi.org/10.1007/978-3-319-70278-0_35
https://www.coindesk.com/three-smart-contract-misconceptions
https://www.coindesk.com/three-smart-contract-misconceptions
https://aeternity.com/aeternity-blockchainwhitepaper.pdf
https://aeternity.com/aeternity-blockchainwhitepaper.pdf

468 X. Wu et al.

13. Mammadzada, K., Iqbal, M., Milani, F., Garćıa-Bañuelos, L., Matulevičius, R.:
Blockchain oracles: a framework for blockchain-based applications. In: Asatiani,
A., et al. (eds.) BPM 2020. LNBIP, vol. 393, pp. 19–34. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-58779-6 2

14. Moudoud, H., Cherkaoui, S., Khoukhi, L.: An IoT blockchain architecture using
oracles and smart contracts: the use-case of a food supply chain. In: 2019 IEEE
30th Annual International Symposium on Personal, Indoor and Mobile Radio Com-
munications (PIMRC), pp. 1–6. IEEE (2019)

15. Myerson, R.: Game Theory: Analysis of Conflict. Harvard University Press, Cam-
bridge (1991)

16. Osborne, M.J.: An Introduction to Game Theory. New York vol. 3 (2004)
17. Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge

(1994)
18. Pasdar, A., Dong, Z., Lee, Y.C.: Blockchain oracle design patterns. arXiv preprint

arXiv:2106.09349 (2021)
19. de Pedro, A.S., Levi, D., Cuende, L.I.: Witnet: a decentralized oracle network

protocol. arXiv preprint arXiv:1711.09756 (2017)
20. Peterson, J., Krug, J., Zoltu, M., Williams, A.K., Alexander, S.: Augur: a decen-

tralized oracle and prediction market platform. arXiv preprint arXiv:1501.01042
(2015)

21. Ritzdorf, H., Wüst, K., Gervais, A., Felley, G., Capkun, S.: Tls-n: non-repudiation
over tls enabling-ubiquitous content signing for disintermediation. Cryptology
ePrint Archive (2017)

22. Ellis, S., Juels, A., Nazarov, S.: Chainlink: a decentralized oracle network, March
2017

23. Solidity, E.: Solidity documentation (2017)
24. Van Bulck, J., et al.: Foreshadow: extracting the keys to the intel {SGX} kingdom

with transient out-of-order execution. In: 27th {USENIX} Security Symposium
({USENIX} Security 18), pp. 991–1008 (2018)

25. Van Mölken, R.: Blockchain across Oracle: Understand the details and Implications
of the Blockchain for Oracle Developers and Customers. Packt Publishing Ltd,
Birmingham (2018)

26. Wan, Z., Guan, Z., Zhou, Y., Ren, K.: zk-authfeed: how to feed authenticated data
into smart contract with zero knowledge. In: 2019 IEEE International Conference
on Blockchain (Blockchain) (2019)

27. Weisse, O., et al.: Foreshadow-ng: breaking the virtual memory abstraction with
transient out-of-order execution (2018)

28. Xu, X., et al.: The blockchain as a software connector. In: 2016 13th Working
IEEE/IFIP Conference on Software Architecture (WICSA), pp. 182–191. IEEE
(2016)

29. Xu, X., Weber, I., Staples, M.: Blockchain Patterns. In: Architecture for Blockchain
Applications, pp. 113–148. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-03035-3 7

30. Yamashita, K., Nomura, Y., Zhou, E., Pi, B., Jun, S.: Potential risks of hyperledger
fabric smart contracts. In: 2019 IEEE International Workshop on Blockchain Ori-
ented Software Engineering (IWBOSE), pp. 1–10. IEEE (2019)

31. Zhang, F., Cecchetti, E., Croman, K., Juels, A., Shi, E.: Town crier: an authen-
ticated data feed for smart contracts. In: Proceedings of the 2016 aCM sIGSAC
Conference on Computer and Communications Security, pp. 270–282 (2016)

https://doi.org/10.1007/978-3-030-58779-6_2
http://arxiv.org/abs/2106.09349
http://arxiv.org/abs/1711.09756
http://arxiv.org/abs/1501.01042
https://doi.org/10.1007/978-3-030-03035-3_7
https://doi.org/10.1007/978-3-030-03035-3_7

DeChain: A Blockchain Framework
Enhancing Decentralization via Sharding

Shenwei Chen, Zhen Liu(B), Yu Long, and Dawu Gu

Shanghai Jiao Tong University, Shanghai, China
{sjtucmcsw1998,liuzhen,dwgu}@sjtu.edu.cn, longyu@cs.sjtu.edu.cn,

Abstract. In a blockchain system, full nodes store all the history data
generated by the whole network. As time goes by, the increasing data
will place a heavy burden on the full nodes. Rational nodes may discard
history data, which results in the decrease of the number of full nodes.
Moreover, huge storage requirement prevents storage-constrained users
from participating in the network. These factors weaken decentraliza-
tion and are harmful to the whole blockchain network. In this paper, we
propose a new shard-based blockchain framework called DeChain which
distributes the blockchain database into different nodes in protocol level.
Specifically, we design a new mechanism to shard the UTXOs into spe-
cific nodes and set special rules for transaction generation. Each node in
DeChain is in charge of the verification of some specified transactions.
We propose an RSA accumulator-based method to support inter-shards
verification of transactions. With this framework, users can participate
in the consensus of the whole network by only maintaining a small por-
tion of blockchain database. This greatly reduces the storage burden and
enhances the decentralization of blockchain network.

Keywords: Blockchain · Sharding · Decentralization · Data
management

1 Introduction

Since Bitcoin [25] was introduced in 2008, blockchain technology has become
a promising tool to build trust in digital world. Its success depends on the
feature of decentralization, which means no centralized entity is in charge of the
authenticity of the data but each participant works together to build consensus.
Blockchain technology has shown its success in building digital currency in the
past decade. Combining with other technology, it also enables smart contract
(Ethereum [27]), anonymous transactions (Monero [22]) and other applications.

However, a great challenge faced by blockchain systems in real world is
the storage problem. Without a centralized entity, the data generated by the
blockchain network should be stored in each node. This design intends to enhance
decentralization originally, but shows its drawback in long run. For a full node in
a blockchain system, the storage it needs to store the whole history data becomes
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
K. Nguyen et al. (Eds.): ACISP 2022, LNCS 13494, pp. 469–488, 2022.
https://doi.org/10.1007/978-3-031-22301-3_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22301-3_23&domain=pdf
https://doi.org/10.1007/978-3-031-22301-3_23

470 S. Chen et al.

larger and larger as time goes by. Currently (January, 2022), it takes over 380
gigabytes [3] to run a Bitcoin full node. Things are even worse for Ethereum,
which takes over 500 gigabytes [27] to run an already pruned full node, let alone
archive node which records all the history data.

Some solutions have been proposed to conquer the storage problem, includ-
ing light client, block pruning, stateless blockchain and so on. However, these
solutions do not consider the importance of decentralization and may do harm to
overall health of the whole network. Specifically, light clients [7,16,25] only vali-
date the workload of main chain and store block headers in their database. They
should rely on full nodes to verify transactions and cannot provide concrete data
for other nodes. Lacking the ability to verify transactions independently, light
clients cannot participate in the consensus since they cannot include transactions
into blocks. Hence, light client is only a tool for accessing blockchain network but
do not contribute to the whole network. Data pruning approach [10,15,20] aims
at getting rid of a part of the history data. This can be achieved by techniques
like checkpoint, snapshot or cryptographic aggregation function. However, this
may cause permanent loss of some history data. Recently, the concept of stateless
blockchain [6,9,11] is proposed. In a stateless blockchain, the state of the current
network, for example, unspent transaction outputs (UTXOs) are compressed into
a short commitment. The validator or the miner only needs to store the block
header (including the commitment) and there is no need to store concrete trans-
action data. When issuing a transaction, the transaction proposer should send
the transaction along with its witness to prove its validity. The witness is usu-
ally very large because it should contain the original transactions referenced by
the inputs and proof of existence in the commitment. This greatly inflates the
size of transaction and puts a heavy burden on transaction proposer. Although
these three approaches indeed reduce the storage requirements for participating
in the blockchain network while guaranteeing safety, they ignore the fact that
the existence of full nodes is still necessary. With these approaches, rational
nodes tend not to store all the data because it does not affect their ability to
verify the transactions and generate the block. Hence, the number of full nodes
will decrease, which leads to difficulty in obtaining history data and weakens the
decentralization.

In this paper, we aim at achieving the balance between storage usage and
decentralization, which means reducing the storage usage of a participating node
as well as maintaining enough copies of full blockchain data. The basic idea is
natural: since history data is valuable but full blockchain data is too large for a
node, we can split these data and distribute it to different nodes. To achieve this
goal, we need to handle two challenges: how to split the data reasonably and
how to ensure the nodes’ ability to verify transactions and propose blocks. To
address these challenges, we propose a new shard-based blockchain framework
called DeChain which can reduce storage of a single node as well as maintain
the ability of transaction verification and block proposing. We achieve this goal
in protocol level. Specifically, our contributions are summarized as follows:

DeChain: A Blockchain Framework Enhancing Decentralization via Sharding 471

1. We propose a blockchain framework called DeChain which classifies par-
ticipating nodes into different shards and distributes the whole blockchain
database to them. We design a reasonable data splitting method based on
UTXO hash. Each shard is only in charge of a small portion of data and
maintaining a part of UTXO pool.

2. According to the shard-based structure, we design a special rule for transac-
tions in DeChain. We add restrictions to the inputs of a transaction. There-
fore, a transaction will belong to a specific shard and can be correctly verified
by shard members.

3. We propose an RSA accumulator-based method to handle the inter-shards
transaction verification. Inter-shards transaction verification is crucial since
a node should verify the blocks proposed in other shards.

The rest of the paper is organized as follows. We review some related work
and introduce some background knowledge in Sect. 2. In Sect. 3, we present the
overview of the whole framework and crucial concepts in DeChain. The detailed
operations of DeChain is shown in Sect. 4. In Sect. 5, we make some theoretical
analysis and simulation experiments. Finally, some discussions and conclusion
are given in Sect. 6 and Sect. 7.

2 Background and Related Work

2.1 Sharding

Sharding in blockchain is originally proposed to overcome the scalability and
performance problem. By dividing all the nodes in the network into different
shards, each shard can verify transactions and propose blocks in parallel, thus
elevating the throughput of the whole network. In blockchain sharding, how to
split the nodes and how to deal with intra-shard and inter-shards verification
are big challenges.

Some blockchain sharding protocols [17,19,29] adopt Byzantine agreement-
based designs. In these sharding approaches, nodes are pre-assigned to specific
shards and a leader shard or an atomic commit scheme should be used to deal
with inter-shards verification. In comparison, our work is simpler and does not
involve pre-assignment and complex inter-shards verification. Nodes are free to
join any shards and can still verify transactions and blocks relatively indepen-
dently. Yu et al. [28] propose a protocol called OHIE, which composes parallel
instances of Nakamoto consensus securely. However, it only focuses on scalabil-
ity issue and the node still needs to store all the blockchain data. Our work
also adopt the design of parallel chains but the node only needs to store a part
of blockchain data. We borrow the concept of sharding and design a reasonable
method to distribute data to different nodes, which alleviates the storage burden
of a single node and enhances decentralization of blockchain network.

472 S. Chen et al.

2.2 Aggregating TXOs

Aggregating TXOs (transaction outputs), which was first mentioned in Bitcoin
Forum [1], is a good idea to implement light nodes in a blockchain system. By
compressing TXO state into a short field called TXO root and adding it into
block header, a node can quickly acquire the latest state of the blockchain. This
is also the core technique of stateless blockchain [26]. To aggregate TXOs, how
to effectively organize the TXOs is a big challenge.

Different data structures have been proposed to aggregate TXOs. Chepurnoy
et al. [11] propose a stateless blockchain using sparse Merkle tree [12] to aggregat-
ing UTXOs. However, it requires complex pruning technique to correctly store
the sparse Merkle tree, which is hard to implement in real world. Dryja [13] pro-
poses a Merkle tree forest to organize UTXOs (unspent TXOs) and aggregates
the roots of forest to compress state. However, adding and deleting UTXOs need
recomputing of the tree and are very inefficient. Zhang et al. [30] adopt balanced
binary tree to aggregate UTXOs, which is also inefficient and impractical because
of expensive cost in adding and deleting UTXOs from tree. In comparison, we use
RSA accumulator to aggregate TXOs and do not involve inefficient deleting oper-
ation in our design. Chen and Wang [9] propose miniChain, which also utilizes
RSA accumulator to store spent transaction outputs. This work does alleviate
the storage burden of a single node but places great burden on transaction pro-
posers because they should store and update their transaction proof frequently.
Our work does not put heavy burden on transaction proposers. Moreover, we
introduce RSA accumulator into sharding to handle the inter-shards verification.

2.3 Cryptographic Accumulator

Cryptographic accumulator [2] is a technique that can combine a group of ele-
ments into a short commitment. A prover can generate a membership or non-
membership proof for an element. Then the validator can validate whether the
element is included in the commitment or not with the proof.

Cryptographic accumulator can be divided into static accumulator and
dynamic accumulator. In a static accumulator, if the element in the set changes,
the commitment and membership proof should be computed again and cannot
be updated efficiently. Merkle tree [21] is a kind of static accumulator, which can
accumulate all the elements into a constant-sized Merkle root. The membership
proof is the Merkle path. However, the Merkle root and the membership proof
cannot be updated efficiently since adding or removing an element will result
in recalculation of the whole tree. This is unsatisfactory when the number of
elements is very large. Hence, few systems aggregate the UTXO set into a single
commitment using Merkle Tree.

In contrast, the update efficiency of dynamic accumulator will not be affected
by the number of elements in the set. In this paper, we use a dynamic accumula-
tor called RSA accumulator, which is constructed based on strong RSA assump-
tion. It supports both membership proof and nonmembership proof. Specifically,
the elements in RSA accumulator should be prime numbers to avoid collision.

DeChain: A Blockchain Framework Enhancing Decentralization via Sharding 473

Fig. 1. DeChain architecture

However, a universal RSA accumulator [8,18] does not meet the requirement in
public blockchain since it needs trusted setup. Hence, we use RSA accumulator
described in Boneh’s work [5]. Boneh’s RSA accumulator supports batch mem-
bership and nonmembership proof and does not need trusted setup. Boneh’s
work also discusses the application of RSA accumulator in blockchain, namely
aggregating UTXOs by RSA accumulator. However, deleting UTXOs from the
accumulator is still inefficient. In contrast, our work avoids this expensive delete
operation and only uses the efficient update operation of RSA accumulator.

3 Framework of DeChain

In this section, we present the overview of DeChain and introduce some impor-
tant concepts used in DeChain. The terms “node” or “validator” mean a normal
node which participates in the consensus of the blockchain network. We assume
each “node” is equal in status. We adopt PoW (Proof of Work) as our consensus
mechanism. Hence, a “node” will invest in computing power to propose blocks
and earn reward in the network. The term “client” means a node which issues
transactions. It does not participate in the consensus of the network. Of course,
a user usually acts as “node” and “client” at the same time. However, a client
does not need to store large amounts of data to issue transactions. It only needs
to know its UTXOs to issue transactions using a light client or relying on other
nodes, which is out of scope of this paper.

3.1 Design Principles

The design of DeChain needs to meet the following principles.

– Reasonable work division: We observe the fact that to ensure the overall
health of the whole blockchain network, nodes should be responsible for the
work of storing the blockchain database since they participate in the consensus
and earn reward. Clients do not need to undertake this work and can send
transactions without concrete data on the chain.

474 S. Chen et al.

Fig. 2. Block header of DeChain

– Relatively low storage: The storage usage of a single node should be relatively
low and the network should operate normally even if there is no full node in
the network. This requires us to design a feasible data distribution scheme.

– Complete verification ability: Nodes should still be able to verify transactions
and blocks even if they only maintain a small part of blockchain data.

3.2 Architecture

Figure 1 shows the architecture of DeChain. The whole network is split into N
shards and there exists an independent blockchain in each shard. The node and
the client participate in the network by joining one (or more) shard. Which shard
to join is up to node itself. The node collects transactions and proposes blocks
independently on its chain and takes the responsibility of managing a part of
data, including the block headers of all shards, concrete block data of its shard
and a part of UTXOs. If a node or a client join shard n, we say it belongs to
shard n.

3.3 Block

A block in DeChain is composed of the block header and concrete transaction
data included in the block. The structure of DeChain block header is shown in
Fig. 2. It needs to contain the following fields,

– TX root is the Merkle tree root of transaction hashes in this shard. We
denote this field as txRoot.

– STXO root is the RSA accumulate value of all spent transaction outputs
(STXOs) of this shard. We denote this field as stxoRoot.

– Shard root is the Merkle tree root of the last block hash of each shard. We
denote this field as shardRoot.

DeChain: A Blockchain Framework Enhancing Decentralization via Sharding 475

Fig. 3. DeChain transaction

– Previous hash is the hash of the previous block of this shard. We denote
this field as previousHash.

These are the most important fields in DeChain. Other fields such as times-
tamp, difficulty are omitted here.

3.4 Transaction

The structure of a transaction in DeChain is shown in Fig. 3. Each transaction
in DeChain can be represented as several inputs and outputs. The input is a
TXO hash and other data (e.g. witness, signature).

Definition 1 (TXO hash). TXO hash is the hash value of the content of a
transaction output. It is a unique identifier of a TXO.

Generally, the information in a TXO contains output information like
receiver, amount, locking script and so on. We add a new field salt in TXO.
This is used to generate specific TXO hash later. To simplify the model, we
suppose salt is a 32-bit value. Hence, TXO hash can be calculated by

TXOhash = H(outputInformation||salt) (1)

where H(x) is a secure cryptography hash function. In addition, we stipulate that
all the TXO hashes in DeChain should be prime numbers in order to support
RSA accumulator. We will explain it in detail in the following section.

Since our design requires nodes to manage different shard of UTXOs, we
utilize a simple method to classify them, namely by taking the remainder of TXO
hash. Suppose there are N shards in total and h is the TXO hash. Remember
that all the TXO hash should be prime numbers (also odd numbers).

Definition 2 (TXO Classification). To which shard the TXO belongs can
be calculated by

CalculateShard(h,N) =
h − 1

2
mod N. (2)

Based on the TXO classification, we define the shard identifier.

476 S. Chen et al.

Definition 3 (Shard Identifier). Shard identifier specifies which shard the
node manages. Generally, all the TXOs owned by the node belong to this shard.

The shard identifier can be a single number. For example, if a node chooses
to join shard i, its shard identifier is i. That means all the TXOs owned by it
(i.e. TXOs which the node is eligible to spend) belong to shard i.

Now we can define the transactions in DeChain.

Definition 4 (Transaction). A valid transaction in DeChain consumes sev-
eral UTXOs generated before as inputs and generate some new UTXOs as out-
puts. Moreover, the consumed UTXOs should belong to the same shard. The
transaction hash in DeChain is the root hash of Merkle tree whose leaves are
hashes of inputs and hashes of outputs of the transaction.

We require the consumed UTXOs of a transaction in DeChain should belong
to the same shard. That means only TXOs belong to the same shard can be
used as inputs together to form a transaction, which is the reason why we say
all the TXOs owned by a node should belong to the same shard. In addition,
if all input TXOs of a transaction belong to shard i, we say this transaction
belongs to shard i. That means this transaction will be verified and included in
the blocks by nodes in shard i.

Moreover, the transaction hash in DeChain is not computed simply by hash-
ing the transaction data. Instead, the transaction hash is the root hash of Merkle
tree whose leaves are TXO hashes consumed in inputs and TXO hashes of out-
puts of the transaction, which is shown in Fig. 3. The advantage is that we can
simply prove some specific inputs or outputs belong to a transaction by providing
Merkle path.

4 System Details

In this section we introduce detailed operations of DeChain, including the trans-
action generation and propagation, inter-shards proof generation and verifica-
tion. To simplify the notation, block m means the mth block of one shard. We
omit the shard number here.

4.1 Setup

Once a node connects with a new node, the first thing it should do is to exchange
the shard identifier with new node. This process allows nodes to have a knowledge
of what shard their peers belong to, which will affect the following behavior.

4.2 Transaction Generation

In the above section, we mention that each TXO hash should be a prime number.
This is because we will add it into RSA accumulator later and the elements in
RSA accumulator should be prime. While the output of hash function is almost

DeChain: A Blockchain Framework Enhancing Decentralization via Sharding 477

Algorithm 1: Transaction Generation
Input: Consumed UTXO hash set U = {u1, u2, ...}, transaction output

information set O = {oi, o2, ..., on}, payee shard identifier set
S = {s1, s2, ..., sn}, number of shard N

Output: Generated transaction tx
// setup inputs (e.g. add signature to consumed UTXOs)

1 Inputs = SetupInputs(U)
// setup outputs

2 Outputs = {}
3 for each o in O do
4 salt = 0
5 while true do
6 h = Hash(o||salt)
7 if CalculateShard(h,N) = s and IsPrime(h) then

// find TXO that satisfies the requirement

8 break

9 salt = salt + 1

10 txo = [o, salt]
11 Outputs = Outputs ∪ {txo}
12 tx = (Inputs,Outputs)

uniform, we can iterate over the input until we find an output that satisfies our
requirement (namely prime number).

Of course we can remove this restriction of TXO hash and transfer this pro-
cedure to validators (e.g. the validator first converts the TXO hash to prime
number using a deterministic hash to prime function [14] and then adds it to
the RSA accumulator). However, generating a prime number takes too much
time and all the validators need to repeat this procedure. This is unsatisfactory
since long validation time will damage the synchronization of the whole network.
Hence, we let transaction proposer finish this time-consuming procedure when
generating the transaction since transaction generation is not a frequent thing.
Then the validator only needs to test if the TXO hash is a prime or not with-
out wasting time generating a prime number. To judge if a large number is a
prime number or not, we can use probabilistic algorithms such as Miller-Rabin
primality test [24].

The transaction generation algorithm is shown in Algorithm 1. Suppose Alice
wants to send some coins to Bob. She should first know which shard Bob belongs
to and iterate over salt to find one that make the corresponding TXO hash belong
to this shard.

It should be noticed that this iteration process may cause the collision of
TXO hash (i.e. two TXOs have the same hash value, mostly due to same input).
This can be avoided by adding more randomness into the TXO (e.g. add current
timestamp into TXO). Then because of the collision resistance property of secure
hash function, the probability of collision is negligible with different inputs. Even

478 S. Chen et al.

if it does happen, we can still avoid it in the consensus layer of blockchain. That
means if transaction proposer finds a hash value which collides with a previous
one, he should generate the TXO again. Otherwise, this transaction will be
rejected by the network.

The Number of Iterations Needed to Generate a TXO that Satisfies
the Requirement: Randomly pick a positive integer that is not larger than
M , the probability that it is a prime number is about 1

lnM (Prime number theo-
rem [23]). Suppose there are N shards in total. Since the outputs of hash function
are distributed uniformly, the probability that finding a TXO that satisfies the
requirement with x times of iterations is about

1 −
(

1 − 1
N lnM

)x

. (3)

For SHA-256 and 64 shards, the probability of finding a TXO that satisfies the
requirement with 100000 iterations is larger than 99.98%, which is acceptable.
We should notice that the distribution of prime numbers is not uniform. However,
this distribution is hard to describe, so we only calculate the average probability
above. With enough iterations, a TXO that satisfies the requirement will be
found eventually.

4.3 Transaction Propagation

Each node is in charge of storing UTXOs belong to its shard. To be specific, a
node in shard k will maintain a UTXO pool of UTXOs belong to shard k. Then
it can simply decide if a TXO belongs to shard k exists or not and verify the
transaction inputs. Hence, the node can verify transactions belong to shard k
independently without the help of other nodes from other shards.

The transaction proposer creates transaction and propagates it to the net-
work. When other nodes receive the transaction, they should first check its basic
integrity, namely

– whether all the consumed UTXO hashes belong to the same shard,
– whether all the consumed UTXO hashes are prime numbers,
– whether all the TXO hashes of transaction outputs are prime numbers.

If the transaction does not meet the above requirements, it will be discarded.
Then the nodes’ behaviors vary depending on the shard which they manage. If
the transaction does not belong to the shard managed by the node, which means
that the node cannot further check the validity of the transaction since it does
not have the concrete data, the node just propagates it to peer nodes.

If the transaction belongs to the shard managed by the node, the node will
check

– whether the consumed UTXOs exist in UTXO pool,
– authentication and authorization of the transaction.

If the transaction passes all the checks, it will be put into transaction candi-
date pool and may be included in the block later. Finally, the node will propagate
this transaction to its peer nodes.

DeChain: A Blockchain Framework Enhancing Decentralization via Sharding 479

4.4 Update and Verification of STXO Root

When generating blocks, a node needs to correctly update the STXO root, this is
achieved by adding all STXO hashes into the STXO root of the previous block.
Then the verifier, namely other node, needs to check if the STXO root has
been updated correctly or not. Verifying the TXO root is a time-consuming task
because the value added to accumulator is very large, which can be accelerated by
NI-PoE (Non-Interactive Proof of Exponentiation) [4]. Suppose a prover wants
to convince a verifier w = ux where w, u ∈ G, x ∈ Z. The algorithms of NI-
PoE prove and verify are shown in Algorithm 2. The algorithms hold because
Qlur = ((uq)lur) = uql+r = ux.

Algorithm 2: NI-PoE (Non-Interactive Proof of Exponentiation)
// w, u ∈ G, x ∈ Z, Claim w = ux

// Hprime() is a hash-to-prime function

1 Function NI-PoE-Prove(x, u, w):
2 l = Hprime(x, u, w)
3 q = �x/l�
4 Q = uq

5 return Q

6

7 Function NI-PoE-Verify(x, u, w, Q):
8 l = Hprime(x, u, w)
9 r = x mod l

10 return Qlur ?
= w

The algorithms of update and verification of STXO root are shown in Algo-
rithm 3 and 4. The prover adds all the consumed UTXO hashes of this block into
the STXO root of previous block and generates a proof using NI-PoE. This proof
is also broadcast with the new block. Then the verifier can check the correctness
of new STXO root in a short time.

Algorithm 3: STXO Root Update
Input: Consumed UTXO hash set H, old STXO root Am

Output: New STXO root Am+1, Proof Q
1 x = 1
2 for each h in H do
3 x∗ = h

4 Am+1 = Ax
m

5 Q =NI-PoE-Prove(x,Am, Am+1)

480 S. Chen et al.

Algorithm 4: STXO Root Verification
Input: Consumed UTXO hash set H, old STXO root Am, new STXO root

Am+1, Proof Q
Output: true/false

1 x = 1
2 for each h in H do
3 x∗ = h

4 return NI-PoE-Verify(x,Am, Am+1, Q)

4.5 Proof of Transaction Validity

For a new block belongs to shard i, if the node also manages this shard, it
can quickly verify the transactions included in it. This is because it has the
concrete data of this shard and can check the existence of TXOs, authorization
and authentication of the transactions and so on.

However, for a node that does not belong to this shard, the validity of the
transactions cannot be checked directly since the node only has block header of
other shards. To make other nodes believe the transactions are valid, the block
proposer needs to provide proof of transaction validity. This means the inputs
of transactions exist and have not been spent before.

We mentioned in Sect. 3.4 that the transaction hash is computed by building
a Merkle tree with all inputs and outputs. Hence, the existence of a transaction
input is easy to prove by providing the Merkle path from the transaction input
to the transaction hash and the Merkle path from the transaction hash to TX
root of block header.

In comparison, proving a specific TXO has not been spent before is not that
easy. Remember there is a field called STXO root in block header, which is the
accumulate value of all STXOs before. The block proposer can generate a batch
nonmembership proof for all consumed TXOs with the help of RSA accumulator.
The algorithms of batch nonmembership proof generation and verification in
DeChain are shown in Algorithm 5 and 6. Bezout(x, y) means calculating a, b
which satisfy ax + by = 1 using extended Euclidean algorithm.

Algorithm 5: Batch Nonmembership Proof Generation
Input: STXO root Am,An, STXO hash set Hm:n spent between block m and

block n, the hash set X of TXOs which need to be proved
Output: Nonmembership proof ux for all elements in X

1 x∗ =
∏

x∈X x
2 h∗ =

∏
h∈Hm:n

h

3 (a, b) =Bezout(h∗, x∗)
4 B = Ab

m

5 ux = (a,B)

DeChain: A Blockchain Framework Enhancing Decentralization via Sharding 481

Algorithm 6: Batch Nonmembership Proof Verification
Input: STXO root Am,An, nonmembership proof ux = (a,B), the hash set X

of TXOs which need to be proved
Output: true/false

1 x∗ =
∏

x∈X x

2 return Aa
nB

x∗ ?
= Am

The block proposer generates the nonmembership proof for consumed TXOs
included in his block. Am is the STXO root of the block that generated the
earliest TXO included in the transaction inputs of new block and An is the
TXO root of previous block. With this proof, other nodes can ensure the inputs of
transactions have not been spent before. The algorithms hold because Aa

nB
x∗

=
(Ah∗

m)a(Ab
m)x

∗
= Aah∗+bx∗

m = Am.
The proof size |a| ≈ |x∗| and B is a group element, which is acceptable. How-

ever, the time complexity of nonmembership proof generation is about O(N),
where N is the number of STXOs between block m and block n, which is not
satisfactory when N is very large. If a TXO that is consumed in a transac-
tion was generated a long time ago, it may take too much time to generate the
nonmembership proof. Suppose each block consumes 50 TXOs and a transaction
included in the new block consumes a TXO that was generated 2000 blocks prior
to the latest block, it is estimated that the generate time will exceed 10 minutes.
One solution is to maintain the nonmembership proof of those old TXOs and
update them periodically. The update algorithm is shown in Algorithm 7. This
means generating separate nonmembership proof for it and batch nonmember-
ship proof for others. The time to update nonmembership proof is acceptable
compared to the time interval between blocks. Once the nonmembership proof
of a transaction is ready, the transaction can be included in new block. The
node can also cache the product of previous STXO hashes periodically to accel-
erate computing. Another solution is to resort to a service provider to provide
nonmemebership proof for those TXOs.

Algorithm 7: Nonmembership Proof Update
Input: STXO root An of last update, old proof ux = (a,B), latest STXO root

Ak, STXO hash set Hn:k spent between block n and block k, TXO hash
x which needs to be proved

Output: New nonmembership proof u′
x for x

1 h∗ =
∏

h∈Hm:n
h

2 (a′, b′) =Bezout(h∗, x)
3 r = b′a
4 return u′

x = (a′a,BAr
n)

482 S. Chen et al.

4.6 Block Generation and Validation

The process of block generation includes collecting transactions and constructing
block that meets the requirement of becoming a leader. Since we adopt PoW as
the consensus protocol, block generation can also be referred to as mining, which
means that each node invests computing power to “mine” a solution of a puzzle
(e.g. Hash function).

To generate a block, a block proposer should first correctly fill in the fields of
block header, which we have introduced in Sect. 3.3. The TX root and shard root
are easy to construct by building Merkle trees with all transaction hashes and all
the last block hashes of shards. For STXO root, algorithms introduced in Sect. 4.4
are used. Moreover, the existence of UTXOs should also be proved. This is done
by providing the Merkle path of each UTXO and a batch nonmembership witness
computed by algorithm introduced in Sect. 4.5. These proofs will be broadcast
with the block later.

Once a node mines a new block, it will broadcast it to the whole network.
Other nodes need to validate the block before they insert it into their database.
Nodes which manage different shards will behave differently when validating a
new block.

To validate a block, these components should be checked:

– Whether each transactions included in the block belong to the same shard.
– Whether each TXO of the transactions included in the block has not been

spent before.
– Whether the transactions included in the block are valid. This includes check-

ing the authentication and authorization of each transaction.
– Whether the STXO root is correctly updated.
– Other checks (e.g. whether the Merkle root of transactions matches the TX

root, whether the difficulty meets the requirement).

Verifying whether a TXO has been spent or not is easy for a node which
belongs to the same shard as the block since the node maintains an UTXO pool
of this shard. It only needs to check if the TXO is in the pool or not. However,
it does not work for nodes belong to other shards since these TXOs are not in
their UTXO pool. Remember that existence proof (Merkle path from TXO to
TX root) and unspent proof (nonmembership witness) are also broadcast with
the new block. Hence, for a node belongs to other shard, it can ensure TXOs
consumed in a block exist and have not been spent before using these proof.

After validating a block, the node will search for TXOs that belong to its
shard in each transaction and then add them into its UTXO pool. Then it
will insert the whole block into its database if this block belongs to its shard.
Otherwise, it only needs to store block header and can discard all the concrete
transaction data.

DeChain: A Blockchain Framework Enhancing Decentralization via Sharding 483

5 Analysis and Simulation

5.1 Experiment Setup

The block and transaction data used in our simulation experiments is from Bit-
coin. We extract the meta data of Bitcoin from block 0 (genesis block) to block
720000 (2022/1), including block size, transaction count, the number of inputs
and outputs of each transaction. We run our experiments on Ubuntu 20.02 with
Intel i5-11600KF and 16 GB RAM.

5.2 Storage Usage

The storage usage of a DeChain node is composed of two parts: block headers
and transaction data (transaction data of a shard and UTXOs belong to this
shard). Compared with Bitcoin, the block header of DeChain has two additional
fields, STXO root and Shard root, which are 32 bytes for each. Then the block
header is 144 bytes. In addition, the transaction output contains a new field
called salt. Suppose salt is a 32-bit value.

We simulate the operation of DeChain and evaluate its storage usage using
the real data from Bitcoin. Suppose there are 64 shards in DeChain and the
transactions are randomly distributed to each shard. The block generation speed
of each shard is the same as that of Bitcoin. That means the throughput is also
the same as that of Bitcoin. The storage usage growth of a DeChain node and a
Bitcoin node is shown in Fig. 4.

Fig. 4. Storage usage

The results show that with the same number of blocks generated (and the
same throughput), a DeChain node consumes much lower storage space (about
7 GB) comparing to a Bitcoin full node (about 360 GB). The reason is that
the whole database of DeChain is distributed in different nodes and a single

484 S. Chen et al.

node only needs to store concrete data of one shard. We can also find that the
storage consumed is a little larger than 360/64, which is because besides concrete
transaction data of one shard, some additional data is also needed (salt, block
headers of other shards, concrete TXO data that belongs to this shard but is
generated by transactions of other shards).

5.3 Efficiency

The efficiency of proof generation and verification will affect the network per-
formance. Hence, we test the efficiency of the algorithms used in DeChain to
show the feasibility. Suppose the RSA accumulator has 2048 bit-modulus and
the length of TXO hash is 256-bit (SHA-256 function). We run each test for 100
times and take the average for each data point.

Update and Verification of STXO Root. We first test the performance of
updating and verifying the STXO root. The result is shown in Fig. 5. We can find
that as the number of consumed TXO grows, the time of update and verification
grow linearly. Verification is much faster than update, which is because NI-PoE
greatly reduces the number of group operations. From the real transaction data
of Bitcoin, we can obtain that the average number of transactions in each block
is about 980 and the average number of inputs (consumed TXOs) is about 3.
Hence, to achieve the same throughput with Bitcoin, for a block in DeChain
with 64 shards, the average number of consumed UTXOs in a block is about
980 ∗ 3/64 ≈ 46. That is about 0.25s to update the STXO root and 0.02s to
verify the proof, which is acceptable.

Fig. 5. Update and verification of STXO root

Update and Verification of Nonmembership Proof. The performance of
updating and verifying nonmembership proof is also important. The time to
generate the batch nonmembership proof is hard to test because it depends on
the earliest TXO consumed in the block. Hence, we assume that nonmembership
proof will be updated periodically and only test the efficiency of update and

DeChain: A Blockchain Framework Enhancing Decentralization via Sharding 485

verification. Suppose 50 TXOs are consumed in new block. The result is shown
in Fig. 6. We can find that the time of update grows linearly with the number of
STXOs accumulated (i.e. the number of STXOs since last update). If each block
consumes 50 TXOs, it takes about 6s to update the proof every 20 blocks. The
time of verification is stable because it only depends on the number of TXOs
consumed in new block.

Fig. 6. Update and verification of nonmembership proof

6 Discussion

6.1 Bridge Transaction

Usually, all the UTXOs owned by a user belong to the same shard, which are
easy to form a valid transaction. However, in some special cases (e.g. two wallets
merge into one wallet and these wallets are from different shards A and B), we
can not use these UTXOs in a single transaction. The solution is simple. We
can create a special transaction called bridge transaction that consumes all the
UTXOs from shard A and generates a new UTXO which belongs to shard B.

6.2 Shard Choice

We have mentioned above that which shard to join is up to node itself. Usually
a node will join one shard in default. Of course it can join two or more shards
in order to collect more transactions and mine on a shard that has the most
transaction fee. It can even choose to become a full node (i.e. store the data
of all shards) if it is willing to. In fact, full node is not necessarily needed in
DeChain. All nodes can still verify the validity of the blocks by only maintaining
a small portion of the whole database. This lowers the threshold for a new node
to participate in the network.

486 S. Chen et al.

6.3 Synchronization

When a new node joins the network, it needs to keep in sync with other nodes.
This requires the node to download and verify the data starting from the genesis
block from other nodes and obtain the current UTXO pool. Since the whole
database is distributed in different nodes, we can download the data of each
shard in parallel from multiple nodes. A node only needs to store the data of
its shard and discards the data of other shards once the blocks are validated. In
addition, some techniques used in other blockchain systems like checkpoints or
snapshots can be used to accelerate this process.

6.4 Difficulty Adjustment

Difficulty indicates the probability of becoming the block leader. Each shard’s
blockchain in DeChain has its own difficulty. Similar to Bitcoin, the difficulty is
adjusted every few blocks according to the generation speed of last few blocks.
Hence, for shard with less nodes (computing power), it will be easier to find a
valid block. This encourages users to download the data of this shard and mine
on it. In the long run, the number of nodes on each shard will maintain dynamic
balance, which enhances the decentralization of the whole blockchain network.

6.5 Bandwidth Management

According to our framework, we propose two optimization methods to reduce
bandwidth usage.

Transaction Cache. When a node receives a transaction from others, it can
store this transaction temporarily (and set an expire time). Later when a new
block is mined, the block proposer only needs to propagate the block headers
as well as all transactions hashes included in the block. If the network is well-
connected, these transactions must have already been propagated to all nodes.
Thus there is no need to transmit the transactions again. If some transactions
are missing, the node can ask peer nodes for them.

Transmission on Demand. According to DeChain framework, a node will
store three parts of data: (1) all the block headers, (2) transactions belong to
its shard and (3) UTXOs belong to its shard (UTXO pool). Remember that a
transaction input only contains a TXO hash which refers to previous UTXO.
Some nodes may not store the concrete data of this UTXO. Hence, apart from
block headers and transaction hashes, the details of this UTXO should also be
transmitted. However, there is no need to transmit this data to two kinds of
nodes: (1) the nodes which belong to the same shard as the block and (2) the
nodes which belong to the same shard as the transaction that generates this
UTXO. Thus we can transmit the UTXO data on demand according to the
shard identifier of the peer nodes. This method can also save the bandwidth.

DeChain: A Blockchain Framework Enhancing Decentralization via Sharding 487

7 Conclusion

In this paper, we propose DeChain, a shard-based blockchain framework to
reduce the storage usage for a participating node. We introduce a reasonable
data splitting method, accompanied by a special transaction generation rule. An
RSA accumulator-based method is used to prove the existence of inter-shards
UTXOs. With these techniques, each node in DeChain only needs to keep a
small portion of blockchain data while still having the ability to verify transac-
tions and blocks and also propose blocks. This lowers the storage requirement for
participating in the consensus and encourages more users to join the network,
thus enhancing the decentralization. The analysis and simulation experiments
show the feasibility of our framework.

Acknowledgements. We would like to thank all the anonymous reviewers for their
constructive and detailed comments. This work was supported by the National Natural
Science Foundation of China (No. 62072305), the Key (Keygrant) Project of Chinese
Ministry of Education (No. 2020KJ010201), and the Key Research and Development
Plan of Shandong Province (No. 2021CXGC010105).

References

1. Ultimate blockchain compression. https://bitcointalk.org/index.php?topic=88208
2. Benaloh, J., de Mare, M.: One-way accumulators: a decentralized alternative to

digital signatures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp.
274–285. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7 24

3. Blockchain charts: Bitcoin block size. https://blockchain.info/charts/blocks-size/
4. Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions. In:

Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 757–
788. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 25

5. Boneh, D., Bünz, B., Fisch, B.: Batching techniques for accumulators with appli-
cations to IOPs and stateless blockchains. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11692, pp. 561–586. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-26948-7 20

6. Bonneau, J., Meckler, I., Rao, V., Shapiro, E.: Coda: decentralized cryptocurrency
at scale. IACR Cryptol. ePrint Arch. p. 352 (2020)

7. Bünz, B., Kiffer, L., Luu, L., Zamani, M.: Flyclient: super-light clients for cryp-
tocurrencies. In: IEEE Symposium on Security and Privacy, SP. pp. 928–946. IEEE
(2020)

8. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient
revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 61–76. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45708-9 5

9. Chen, H., Wang, Y.: Minichain: a lightweight protocol to combat the UTXO growth
in public blockchain. J. Parall. Distrib. Comput. 143, 67–76 (2020)

10. Chepurnoy, A., Larangeira, M., Ojiganov, A.: Rollerchain, a blockchain with safely
pruneable full blocks (2016)

11. Chepurnoy, A., Papamanthou, C., Zhang, Y.: Edrax: a cryptocurrency with state-
less transaction validation. IACR Cryptol. ePrint Arch, p. 968 (2018)

https://bitcointalk.org/index.php?topic=88208
https://doi.org/10.1007/3-540-48285-7_24
https://blockchain.info/charts/blocks-size/
https://doi.org/10.1007/978-3-319-96884-1_25
https://doi.org/10.1007/978-3-030-26948-7_20
https://doi.org/10.1007/978-3-030-26948-7_20
https://doi.org/10.1007/3-540-45708-9_5
https://doi.org/10.1007/3-540-45708-9_5

488 S. Chen et al.

12. Dahlberg, R., Pulls, T., Peeters, R.: Efficient sparse merkle trees - caching strate-
gies and secure (non-)membership proofs. In: Secure IT Systems - 21st Nordic
Conference, vol. 10014, pp. 199–215 (2016)

13. Dryja, T.: Utreexo: a dynamic hash-based accumulator optimized for the bitcoin
UTXO set. IACR Cryptol. ePrint Arch, p. 611 (2019)

14. Fouque, P., Tibouchi, M.: Close to uniform prime number generation with fewer
random bits. IEEE Trans. Inf. Theory 65(2), 1307–1317 (2019)

15. Bruce, J.D.: The mini-blockchain scheme (2014). http://cryptonite.info/files/mbc-
scheme-rev3.pdf

16. Kiayias, A., Miller, A., Zindros, D.: Non-interactive proofs of proof-of-work. In:
Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol. 12059, pp. 505–522. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-51280-4 27

17. Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Syta, E., Ford, B.:
Omniledger: a secure, scale-out, decentralized ledger via sharding. In: IEEE Sym-
posium on Security and Privacy, SP. pp. 583–598 (2018)

18. Li, J., Li, N., Xue, R.: Universal accumulators with efficient nonmembership proofs.
In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 253–269. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-72738-5 17

19. Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert, S., Saxena, P.: A secure
sharding protocol for open blockchains. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pp. 17–30. ACM (2016)

20. Matzutt, R., Kalde, B., Pennekamp, J., Drichel, A., Henze, M., Wehrle, K.: Coin-
prune: Shrinking bitcoin’s blockchain retrospectively. IEEE Trans. Netw. Serv.
Manag. 18(3), 3064–3078 (2021)

21. Merkle, R.C.: A digital signature based on a conventional encryption function.
In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer,
Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2 32

22. Monero Foundation: Monero whitepaper (2014). https://cryptoverze.com/monero-
whitepaper/

23. Newman, D.J.: Simple analytic proof of the prime number theorem. Am. Math.
Monthly 87, 693–696 (1980)

24. Rabin, M.O.: Probabilistic algorithm for testing primality. J. Number Theor. 12(1),
128–138 (1980)

25. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). http://bitcoin.
org/bitcoin.pdf

26. Vbuterin: the stateless client concept. https://ethresear.ch/t/the-stateless-client-
concept/172.2017

27. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger (2014).
http://gavwood.com/Paper.pdf

28. Yu, H., Nikolic, I., Hou, R., Saxena, P.: OHIE: blockchain scaling made simple. In:
IEEE Symposium on Security and Privacy, SP. pp. 90–105 (2020)

29. Zamani, M., Movahedi, M., Raykova, M.: Rapidchain: Scaling blockchain via full
sharding. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, CCS. pp. 931–948. ACM (2018)

30. Zhang, W., Yu, J., He, Q., Guan, N.: TICK: tiny client for blockchains. IACR
Cryptol. ePrint Arch, p. 792 (2019)

http://cryptonite.info/files/mbc-scheme-rev3.pdf
http://cryptonite.info/files/mbc-scheme-rev3.pdf
https://doi.org/10.1007/978-3-030-51280-4_27
https://doi.org/10.1007/978-3-540-72738-5_17
https://doi.org/10.1007/3-540-48184-2_32
https://cryptoverze.com/monero-whitepaper/
https://cryptoverze.com/monero-whitepaper/
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
https://ethresear.ch/t/the-stateless-client-concept/172.2017
https://ethresear.ch/t/the-stateless-client-concept/172.2017
http://gavwood.com/Paper.pdf

Garrison: A Novel Watchtower Scheme
for Bitcoin

Arash Mirzaei(B), Amin Sakzad, Jiangshan Yu, and Ron Steinfeld

Faculty of Information Technology, Monash University, Melbourne, Australia
{arash.mirzaei,amin.sakzad,jiangshan.yu,ron.steinfeld}@monash.edu

Abstract. In this paper, we propose Garrison, which is a payment chan-
nel with watchtower for Bitcoin. For this scheme, the storage require-
ments of both channel parties and their watchtower would be O(log(N))
with N being the number of channel updates. Furthermore, using prop-
erties of the adaptor signature, Garrison avoids state duplication. It
means both parties store the same version of transactions for each state
and hence the number of off-chain transactions does not exponentially
increase with the number of applications built on top of each other in
the channel. Moreover, the new proposal avoids punish-per-output pat-
tern, meaning that all outputs of a revoked state can be claimed using a
single revocation transaction. Garrison can be implemented without any
update in Bitcoin script.

Keywords: Bitcoin · Payment channel · Watchtower

1 Introduction

Payment channel is a promising technique to mitigate the scalability issue of
blockchains. To establish a payment channel, two parties lock their funds in a 2-
of-2 multisignature address on the blockchain. Then, parties privately carry out
multiple payments by exchanging off-chain transactions. Finally, parties close
the channel by publishing the last channel state on-chain.

Since the channel parties are generally untrusted and blockchain miners are
unaware of the off-chain transactions, a mechanism must be adopted to pre-
vent parties from publishing an old state. In Lightning Network [15], as the
most widely used Bitcoin payment channel network, with 31,483 nodes, 82,776
channels and total capacity of 159 Million US dollars1, when a channel party
publishes an old channel state on the blockchain, a period called dispute period
starts. In this period, the other party can publish a revocation transaction and
penalize the cheating party by claiming all the channel funds.

However, the dispute process works based on the assumption that parties are
always online to detect malicious behaviours. This requirement can be practically
violated due to crash failures or DoS attacks against the channel party [13,15]. To
relax this assumption, [15] suggests that channel parties delegate the monitoring
task to a third party called the watchtower. The watchtower is an always-online

1 https://1ml.com/statistics,datafetchedon06/12/2021.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
K. Nguyen et al. (Eds.): ACISP 2022, LNCS 13494, pp. 489–508, 2022.
https://doi.org/10.1007/978-3-031-22301-3_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22301-3_24&domain=pdf
https://1ml.com/statistics, data fetched on 06/12/2021
https://doi.org/10.1007/978-3-031-22301-3_24

490 A. Mirzaei et al.

service provider that monitors the blockchain and acts on behalf of its customers
to secure their funds. In other words, once channel parties update their channel,
each party gives the revocation transaction to the watchtower. Then, once an
old state appears on the ledger, the watchtower broadcasts its corresponding
revocation transaction.

Monitor [15] and DCWC [4] are two watchtower schemes for the Lightning
Network where the storage size of the watchtower in both schemes linearly
increases with each channel update and hence the watchtower’s storage costs
would be O(N) with N being the number of channel updates. Generalized chan-
nel [1], Cerberus [5] and FPPW [14] are also other payment channels that work
based on the dispute period idea. However, for all these schemes, the storage
size of the watchtower linearly increases with the number of channel updates.

Outpost [11] is a novel payment channel with watchtower scheme that reduces
the watchtower’s storage requirements per channel from O(N) to O(log(N)).
This consequently reduces the operational costs of maintaining watchtowers.
Although elegantly designed, Outpost suffers from following shortcomings,

– The storage cost of each channel party is still O(N).
– Each party has his own version of the channel state where this state dupli-

cation causes the number of transactions to exponentially increase with the
number of applications on top of each other [1]. In other words, to add an
application (e.g. Virtual channel [2]) on top of the channel, parties must split
their channel into sub-channels. If parties recursively split their channel k
times, then to update their last layer sub-channel, they must create O(2k)
different versions of the channel state.

– Outpost works based on “punish-per-output” pattern, meaning that if there
are M outputs in the published old state, the cheated party must claim each
output separately [1]. Then, the required on-chain transactions upon dispute
would be O(M) with M being the number of outputs in the published old
state.

Therefore, the main motivation of this paper is designing a Bitcoin payment
channel with watchtower scheme which is storage-efficient for channel parties
and the watchtower and also avoids state duplication and punish-per-output
pattern.

1.1 Our Contributions

The contribution of this paper is to present a new payment channel with watch-
tower for Bitcoin, called Garrison, for which the storage cost of channel parties
and the watchtower would be logarithmic in the maximum number of channel
updates. Furthermore, both channel parties store the same version of transac-
tions. Additionally, regardless of the number of outputs in each channel state,
there exists a single revocation transaction per state. Table 1 presents a compar-
ison between Garrison and other Bitcoin payment channels that work based on
dispute period. We also prove security of the Garrison channel under security of
its underlying cryptographic primitives.

Garrison: A Novel Watchtower Scheme for Bitcoin 491

Table 1. Comparison of different dispute period-based payment channels with N chan-
nel updates, M outputs on average per state and k channel splits on top of each other.

Scheme Party’s St. Cost Watch. St. Cost on-chain TX.a off-chain TX.b

Lightning [8] O(log(N)) O(N) O(M) O(2k)

Generalized [4] O(log(N)) O(N) O(1) O(1)

Outpost [11] O(N) O(log(N)) O(M) O(2k)

FPPW [14] O(N) O(N) O(1) O(1)

Cerberus [5] O(N) O(N) O(M) O(2k)

Garrison O(log(N)) O(log(N)) O(1) O(1)
aNumber of on-chain transactions upon dispute.
bNumber of off-chain transactions per state.

1.2 Related Works

The first payment channels were introduced in [18] but they suffered from being
unidirectional. DMC [6] and Lightning [15] were the first bidirectional payment
channels where the former uses decrementing timelocks to replace the current
channel state with a newer one and the latter revokes the current state upon
authorizing a new state. Generalized channels [1] use adaptor signatures to avoid
state duplication. Then, both parties would store the same copy of the channel
transactions.

Lightning and generalized channels require parties to be always online to
prevent their counter-parties from finalizing the channel with an old state. Since
this requirement could be difficult to achieve, parties might delegate it to watch-
towers. Monitor [15] is a privacy preserving watchtower scheme for Lightning
Network. DCWC [4] proposes using a network of watchtowers to minimize the
chance of malicious channel closure. In the above mentioned watchtower schemes,
the watchtower is unaccountable, i.e. watchtowers do not guarantee their clients’
funds. Cerberus [5] and FPPW [14] are two payment channel with watchtower
schemes that focus on fairness with respect to the watchtowers’ clients. Outpost
[11] presents a payment channel with watchtower that reduces the storage costs
of the watchtower from O(N) to O(log(N)) where N denotes the number of
channel updates. Sleepy channel [3] is a payment channel without watchtower
where parties are allowed to go offline for a long time period.

2 Preliminaries and Notations

In this section, we closely follow [1,14] to introduce the underlying cryptographic
primitives of Garrison and notations.

2.1 Preliminaries

Digital Signature. A digital signature scheme Π includes three algorithms as
following:

492 A. Mirzaei et al.

– Key Generation. (pk, sk) ← Gen(1κ) on input 1κ (κ is the security param-
eter), outputs the public/private key pair (pk, sk).

– Signing. σ ← Signsk(m) on inputs the private key sk and a message m ∈
{0, 1}∗ outputs the signature σ.

– Verification. b ← Vrfypk(m;σ) takes the public key pk, a message m and a
signature σ and outputs a bit b.

In this work, we assume that the utilized signature schemes are existentially
unforgeable under an chosen-message attack (EUF − CMA). It guarantees that it
is of negligible probability that an adversary, who has access to a signing oracle,
outputs a valid signature on any new message. In this paper, we call such signa-
ture schemes secure. ECDSA [10] is a secure signature scheme that is currently
being used in Bitcoin. Schnorr [17] is another important secure signature scheme
that has been proposed to be introduced in Bitcoin due to its key aggregation
and signature aggregation properties.

Hard Relation. A relation R with statement/witness pairs (Y ; y) is called a
hard relation if (i) There exists a polynomial time generating algorithm (Y ; y) ←
GenR(1κ) that on input 1κ outputs a statement/witness pair (Y ; y) ∈ R; (ii) The
relation between Y and y can be verified in polynomial time, and (iii) For any
polynomial-time adversary A, the probability that A on input Y outputs y is
negligible. We also let LR := {Y | ∃Y s.t. (Y, y) ∈ R}. Statement/witness
pairs of R can be public/private key of a signature scheme generated by Gen
algorithm.

Adaptor Signature. Given a hard relation R and a signature scheme Π, an
adaptor signature protocol Ξ includes four algorithms as follows:

– Pre-Signing. σ̃ ← pSignsk(m,Y) is a probabilistic polynomial time (PPT)
algorithm that on input a private key sk, message m ∈ {0, 1}∗ and statement
Y ∈ LR, outputs a pre-signature σ̃.

– Pre-Verification. b ← pVrfypk(m,Y ; σ̃) is a deterministic polynomial time
(DPT) algorithm that on input a public key pk, message m ∈ {0, 1}∗, state-
ment Y ∈ LR and pre-signature σ̃, outputs a bit b.

– Adaptation. σ ← Adapt(σ̃, y) is a DPT algorithm that on input a pre-
signature σ̃ and witness y, outputs a signature σ.

– Extraction, Ext(σ, σ̃, Y) is a DPT algorithm that on input a signature σ,
pre-signature σ̃, and statement Y ∈ LR, outputs ⊥ or a witness y such that
(Y, y) ∈ R.

An adaptor signature scheme is “secure” if it is existentially unforgeable
under chosen message attack (aEUF − CMA security), pre-signature adaptable
and witness extractable. The aEUF − CMA security guarantees that it is of negli-
gible probability that any PPT adversary with access to signing and pre-signing
oracles outputs a valid signature for any arbitrary new message m even given
a valid pre-signature and its corresponding Y on m. Pre-signature adaptablity

Garrison: A Novel Watchtower Scheme for Bitcoin 493

guarantees that every pre-signature (possibly generated maliciously) w.r.t. Y
can adapt to a valid signature using the witness y with (Y, y) ∈ R. Witness
extractablity guarantees that it is of negligible probability that any PPT adver-
sary with access to signing and pre-signing oracles outputs a valid signature and
a statement Y for any new message m s.t. the valid signature does not reveal a
witness for Y even given a valid pre-signature on m w.r.t. Y . The ECDSA-based
and Schnorr-based adaptor signature schemes were constructed and analyzed
in [1].

2.2 Notations

Throughout this work, we define different attribute tuples. Let U be a tuple of
multiple attributes and one of its attributes is denoted by attr. To refer to this
attribute, we use U.attr.

Our focus in this work is on Bitcoin or any other blockchains with UTXO
model. In this model, units of value which we call coins are held in outputs.
Formally, an output θ is a tuple of two attributes, θ = (cash, ϕ), where θ.cash
denotes the amount of coins held in this output and θ.ϕ denotes the condition
that needs to be fulfilled to spend the output θ. The condition θ.ϕ is encoded
using any script supported by the underlying blockchain. If the condition θ.ϕ
contains a user P ’s public key, we say that P controls or owns the output θ
because satisfying the condition requires a valid signature corresponding with
that public key. Satisfying a condition might require authorizations by multiple
parties. Such conditions contain public keys of all the involved parties separated
by ∧ operation(s). The relative timelock of T rounds in an output condition is
denoted by ΔT . It means the output cannot be spent within T rounds of the
blockchain.

A condition might also have several subconditions, one of which must be
satisfied to spend the output. Different subconditions of an output are separated
by ∨ operation(s). The OP RETURN output is a special output which does not
hold any coins and is used to add some arbitrary data to the blockchain. Such
an output is denoted by θ = (0, data) where data is its arbitrary data.

A transaction changes ownership of coins, meaning that it takes a list of
existing outputs and transfers their coins to a list of new outputs. To distinct
between these two lists, we refer to the list of existing outputs as inputs. A
transaction TX is formally defined as the tuple (txid, Input,Output,Witness). The
identifier TX.txid ∈ {0, 1}∗ is computed as TX.txid := H([TX]), where [TX] is called
the body of the transaction defined as [TX] := (TX.Input, TX.Output) and H is a
hash function which is modeled as a random oracle. The attribute TX.Input is a
list of identifiers for all inputs of TX. The attribute TX.Output = (θ1, . . . , θn) is a
list of new outputs. The attribute TX.Witness = (W1, . . . ,Wm) is a list of tuples
where its ith tuple authorizes spending the output that is taken as the ith input
of TX. The tuple Wi = (η, ζ) of the witness TX.Witness contains two attributes
where Wi.ζ denotes the data, e.g. the signature(s), that is (are) required to
meet the Wi.η

th subcondition of the output that is taken as the ith input of TX.
The signature (pre-signature) of P for TX.Witness.Wi.ζ is denoted by σP,i

TX (σ̃P,i
TX),

494 A. Mirzaei et al.

where i can be removed for single-input transactions. The ith entry of a list L is
denoted by L[i] with i > 0. Table 2 summarizes the notations.

Table 2. Notations

Notation Description

U.attr Attribute attr of the tuple U

θ = (cash, ϕ) Output with value cash and script condition ϕ

θ = (0, data) OP RETURN output with data as its data

TX Transaction TX = (txid, Input,Output,Witness)

[TX] Tuple (TX.Input, TX.Output)

TX.txid Identifier of the transaction TX

TX.Input List of identifiers for all inputs of TX

TX.Output List of new outputs (θ1, . . . , θn) for TX

TX.Witness List of witnesses (W1, . . . , Wm) for TX where Wi

corresponds with ith input of TX

W = (η, ζ) Witness that fulfills ηth subcondition of an output
using data ζ

σP,i
TX Signature of party P on TX for TX.Witness.Wi.ζ

σ̃P,i
TX Pre-signature of P on TX for TX.Witness.Wi.ζ

ΔT Relative timelock of T rounds

L[i] ith entry of a list L

We additionally use charts to illustrate the connections between different
transactions. Doubled edge and single edge rectangles respectively illustrate
transactions that are already published on-chain or are ready to be published.
Dotted edge rectangles show transactions that still lack the required witness for
at least one input and hence are unprepared to be propagated in the blockchain
network. Directional arrows from ith output of transaction TX to jth input of
transaction TX′ shows that the transaction TX′ takes ith output of the transac-
tion TX as its jth input. If an output has multiple subconditions, it is shown by
a diamond shape with multiple arrows where each arrow corresponds with one
subcondition. OP RETURN outputs are illustrated by blocked lines (instead of
directional arrows). As an example, Fig. 1 shows that TXi and TXj are published
and unpublished, respectively. The transaction TXk is still unprepared to be pub-
lished on the ledger. The transaction TXi has two subconditions, where one of
the subconditions is owned by both A and B and is relatively timelocked by T
rounds and another subcondition is owned by C. The second output of TXk is an
OP RETURN output.

Garrison: A Novel Watchtower Scheme for Bitcoin 495

Fig. 1. A sample transaction flow.

3 Garrison Overview

3.1 System Model

Channel parties exchange data using an authenticated and secure communica-
tion channel. Channel participants might deviate from the protocol if it increases
their profit. Furthermore, the underlying blockchain contains a distributed ledger
that achieves security [9]. If a valid transaction is propagated in the blockchain
network, it is included in the blockchain ledger within τ rounds (i.e. the confir-
mation delay is τ).

3.2 Garrison Overview

This section overviews the Garrison channel between A (Alice) and B (Bob). We
start with a simple payment channel and then modify it step by step to mitigate
its limitations.

A Simple Payment Channel. Figure 2 depicts the simple payment channel,
introduced in [14]. This channel is created once channel parties publish a funding
transaction on the blockchain and hence fund a 2-of-2 multisignature output on
the ledger. The ith channel state includes a commit transaction TXCM,i as well as
a split transaction TXSP,i. The commit transaction sends the channel funds to a
new joint account which is shared between the channel parties. Output of the
commit transaction has two subconditions. The first subcondition which is not
timelocked, as we will explain later, is used for revocation purposes. The second
subcondition is relatively timelocked by T rounds with T > τ and is met by the
corresponding split transaction. Split transaction distributes the channel funds
among the channel parties and hence represents the channel state.

The transaction TXCM,i requires signatures of both parties A and B to be pub-
lished. To generate σB

TXCM,i
, party A generates a statement/witness pair (YA,i, yA,i)

and sends the statement YA,i to B. Then, party B uses the pre-signing algorithm
pSign of the adaptor signature and A’s statement YA,i to generate a pre-signature
σ̃B
TXCM,i

on [TXCM,i] and sends the result to A. Thus, whenever it is necessary, A is
able to use the adaptation algorithm adapt of the adaptor signature to transform

496 A. Mirzaei et al.

the pre-signature to the signature σB
TXCM,i

and publish TXCM,i on-chain. This also
enables B to apply the extraction algorithm Ext on the published signature and
its corresponding pre-signature to extract the witness value yA,i. The witness
value, as will be seen, allows the honest party to punish the dishonest channel
party by claiming all the channel funds.

As one may submit an intermediate state (which is already replaced by a
later state) to the blockchain, the channel parties will need to punish such mis-
behaviours. Thus, upon channel update from state i to i+1, a revocation trans-
action TXRV,i is created by parties. Unlike the split transaction, the revocation
transaction can immediately spend output of the corresponding commit trans-
action TXCM,i using its first subcondition which does not contain any timelock.
Thus, if the revoked commit transaction TXCM,i is published by a channel party,
let’s say A, party B can immediately publish the revocation transaction TXRV,i.
Moreover, since commit transactions are signed using the adaptor signature,
once TXCM,i is published by A, the witness yA,i is revealed to B. Thus, only B
who knows both yA,i and yB,i can meet the condition YA,i ∧ YB,i in the output
of the revocation transaction and hence B will actually be the owner of all the
channel funds. Broadcast of the latest commit transaction does not pose any risk
to its broadcaster because parties have not signed its corresponding revocation
transaction yet.

Fig. 2. A simple payment channel

Reducing the Storage Requirements of the Watchtower. All revocation
transactions in the introduced scheme must be stored by channel parties or their
watchtowers to be published upon fraud. To reduce the storage requirements of
the watchtower, similar to Outpost [11], our main idea is storing the revoca-
tion transaction TXRV,i inside the commit transaction TXCM,i. Then, once TXCM,i is
published, the watchtower extracts TXRV,i and records it on the blockchain. How-
ever, we have TXRV,i.Input = TXCM,i.txid‖1. Thus, if TXRV,i is created, signed and
finally stored inside TXCM,i, then [TXCM,i] and hence TXCM,i.txid and TXRV,i change.
Thus, there is a self-loop situation [11]. To solve this issue, we add an auxil-
iary output with the value of ε to commit transactions where ε is the minimum

Garrison: A Novel Watchtower Scheme for Bitcoin 497

value supported by the Bitcoin blockchain. We also add an auxiliary transaction
between each commit transaction and its corresponding split transaction. This
new transaction TXAU,i spends the auxiliary output of the commit transaction.
The signatures of party A and party B on [TXRV,i] are stored in an OP RETURN
output of the auxiliary transaction TXAU,i. The split transaction TXSP,i spends the
main output of TXCM,i as well as the main output of the auxiliary transaction
TXAU,i. Based on this design, parties can be sure that once the revoked com-
mit transaction TXCM,i is published on the blockchain, its split transaction TXSP,i
cannot be published unless TXAU,i is also on the blockchain. Furthermore, due
to the timelock in the main output of TXAU,i, once this transaction is published
on-chain, TXSP,i cannot be published within T − 1 rounds. However, the honest
party or the watchtower can extract the signatures on [TXRV,i] from TXAU,i and
publish TXRV,i immediately. Figure 3 depicts the transactions flows.

Fig. 3. Reducing the storage requirements of the watchtower

However, this scheme has the following issues:

– To create and publish the revocation transaction, the watchtower must also
know the value of YA,i and YB,i.

– Typically, revocation transaction of state i must be created once parties
update the channel state from state i to i + 1. However, in the proposed
scheme signatures for TXRV,i is stored in TXAU,i and hence TXRV,i must actually
be created once parties update the channel state from state i−1 to i. It means
if an honest party records the latest commit and auxiliary transactions on the
blockchain, the counter-party might publish the revocation transaction and
take all the channel funds.

To solve the first mentioned issue, YA,i and YB,i are stored in an OP RETURN
output that is added to the commit transaction TXCM,i. To solve the second men-
tioned issue, we add two statements from the hard relation R, RA,i and RB,i, to
the first subcondition of the main output of TXCM,i, where RA,i (RB,i) is gener-
ated by A (B) for the state i. Then, once the latest commit and auxiliary trans-
actions are published by A, party B cannot record the revocation transaction as

498 A. Mirzaei et al.

he does not know his counter-party’s witness rA,i. The witnesses rA,i and rB,i are
exchanged between the parties and are given to the watchtower once parties have
created TXCM,i+1, TXAU,i+1 and TXSP,i+1. Thus, TXFU.txid, public keys pkA

RV, pkB
RV, pkA

SP

and pkB
SP as well as r values of both parties are all data needed by the watchtower to

watch the channel for both parties. Figure 4 depicts the mentioned modifications.
The security requirement for r values is that B (or the watchtower) must not

be able to compute rA,j given that he knows rA,i with i < j. Otherwise, when A
submits the latest commit transaction TXCM,j , party B uses rA,i to compute rA,j .
Then, B publishes the revocation transaction TXRV,j and claims its output. If r
values are randomly generated, the mentioned security requirement is met but
storage cost of channel parties and the watchtower would be O(N). To reduce
the storage and meeting the stated security requirement, parties generate their
r values in a binary Merkle tree and use them from the deepest leaf nodes in
the tree to the root [7]. In more details, in a binary Merkle tree, each node has
two child nodes where having the value of a node, the value of each of its child
nodes can simply be computed using a one-way function. But deriving the value
of a node from its child nodes’ values is computationally infeasible. Thus, since
r values are used from the deepest leaf nodes in the tree, the stated security
requirement is achieved. Moreover, the storage needed by each channel party
(or the watchtower) to store r values, received from her counter-party, will be
O(log(N)) because upon receipt of a node value, its child nodes’ values can be
removed from the storage.

Fig. 4. Adding Y and R values to commit transactions

Reducing the Storage Requirements of Channel Parties. Although the
storage of the watchtower is O(log(N)), channel parties still have to store all the
signatures of their counter-parties on the revocation transactions. Otherwise, the
dishonest channel party publishes a revoked commit transaction TXCM,i without
publishing its auxiliary transaction TXAU,i. Then, the channel funds could be
locked forever. This raises a hostage situation. The scheme Outpost suffers from
this problem which is why storage requirement of channel parties is O(N). To
solve this problem, we add one subcondition, YA,i∧YB,i∧Δ3T , to the main output
of the commit transaction TXCM,i. This subcondition allows the honest channel

Garrison: A Novel Watchtower Scheme for Bitcoin 499

party to claim all the channel funds in such hostage situations. In other words,
if party A publishes the revoked commit transaction TXCM,i, she has 3T rounds
time to publish TXAU,i and TXSP,i before B can claim the channel funds by meeting
the subcondition YA,i ∧ YB,i ∧ Δ3T . If during this interval, TXAU,i is published,
party B instantly establishes and publishes TXRV,i and claims its output. To do
so, each party must have r values of both parties stored. Since these keys are
generated in a Merkle tree, the storage requirements of each channel party for
storing these values would be O(log(N)) (See Fig. 5).

Once party A publishes TXCM,i, party B must be able to use Ext algorithm to
extract the value of yA,i. To do so, he must know the corresponding pre-signature
σ̃B
TXCM,i

. If parties store all their own pre-signatures, their storage cost would be
O(N). To acquire lower storage costs, parties must be able to regenerate the
required pre-signature, once a commit transaction is published. To achieve this
goal, random values which are required to generate pre-signatures must be gen-
erated in a Merkle tree and be used from the root to the deepest leaf node
in the tree. In this way, once the commit transaction TXCM,i is published by A,
party B can regenerate the required random value, recompute the correspond-
ing pre-signature σ̃B

TXCM,i
and finally extract the value of yA,i. Thus, the storage

requirements would be still O(log(N)).
Additionally, party B must know the value of yB,i to meet YA,i ∧ YB,i. The

security requirement for y values is that A must not be able to compute yB,i

given that he knows yB,j with j > i. Otherwise, once B submits the latest
commit transaction TXCM,j , A computes yB,j and hence derives yB,i with i < j
and then try to publish TXCM,i before TXCM,j being published on the ledger. Then,
A might be able to claim all the channel funds by meeting the third sub-condition
of the main output of TXCM,i or by publishing the revocation transaction TXRV,i
and claiming its output. If y values are randomly generated, the mentioned
security requirement is met but parties’ storage cost would be O(N). To reduce
the storage and simultaneously meet the stated security requirement, parties
generate their y values in a Merkle tree and give the corresponding Y values to
their counter-parties from the root to the deepest leaf nodes in the tree.

Fig. 5. Reducing storage requirements of channel parties

500 A. Mirzaei et al.

4 Garrison Channel

We introduce different transactions of a Garrison channel in Sect. 4.1. Then, in
Sect. 4.2, we explain its protocol.

4.1 Garrison Transactions

Transactions of a Garrison channel are as following:

Funding Transaction. Parties A and B fund the channel by recording the
funding transaction TXFU on the blockchain. The output of the funding trans-
action is a 2-of-2 multisignature address shared between A and B. If A (B,
respectively) uses the xth (yth, respectively) output of a transaction with trans-
action identifier of txidA (txidB , respectively) to fund the channel with a (b,
respectively) coins, the funding transaction is as follows2:

TXFU.Input := (txidA‖x, txidB‖y),
TXFU.Output := {(a + b, pkA ∧ pkB)},

TXFU.Witness := ((1, σA,1
TXFU

), (1, σB,2
TXFU

)).

Commit Transaction. The commit transaction for state i is denoted by TXCM,i
and is as follows:

TXCM,i.Input := TXFU.txid‖1,

TXCM,i.Output := ((a + b, ϕ1 ∨ ϕ2 ∨ ϕ3),

(ε, pkA
AU ∧ pkB

AU),
(0, (YA,i, YB,i)))

TXCM,i.Witness := {(1, {σA
TXCM,i

, σB
TXCM,i

})}

with ϕ1 := (pkA
RV ∧ pkB

RV ∧ RA,i ∧ RB,i), ϕ2 := (YA,i ∧ YB,i ∧ Δ3T), and
ϕ3 := (pkA

SP ∧ pkB
SP ∧ ΔT) where YA,i and RA,i (YB,i and RB,i) are statements

of a hard relation R generated by A (B) for the ith state and T is any number
such that T > τ . The first and second output of the transaction are the main
and auxiliary outputs. Normally, if TXCM,i is the last commit transaction and
is published on-chain, first its auxiliary output and then its main output are
spent by the auxiliary and split transactions, respectively. The third output of
TXCM,i is an OP RETURN output containing values of YA,i and YB,i. Parties A
and B use their counter-parties’ statements YB,i and YA,i and the underlying
adaptor signature to generate a pre-signature on the commit transaction for
their counter-parties. Thus, once A publishes the commit transaction TXCM,i, she
also reveals her witness yB,i.

2 We assume that funding sources of TXFU are two typical UTXOs owned by A and B.

Garrison: A Novel Watchtower Scheme for Bitcoin 501

Remark 1. Each Bitcoin transaction can have at most one OP RETURN out-
put with the size constraint of 80 bytes. To store YA,i and YB,i inside an
OP RETURN output, their compressed version, each with 33-byte length, are
stored.

Revocation Transaction. The revocation transaction for state i is denoted
by TXRV,i and is as follows:

TXRV,i.Input := TXCM,i.txid‖1,

TXRV,i.Output := {(a + b, YA,i ∧ YB,i)},

TXRV,i.Witness := {(1, {σA
TXRV,i

, σB
TXRV,i

, rA,i, rB,i})}

The TXRV,i spends the main output of TXCM,i using its non-timelocked subcon-
dition pkA

RV ∧ pkB
RV ∧ RA,i ∧ RB,i and sends all the channel funds to an output

with the condition YA,i ∧YB,i. When a dishonest party, let’s say A, publishes the
revoked TXCM,i, she must publish TXAU,i and then wait for T rounds before being
able to publish TXSP,i. However, given that the state i is revoked, B knows the
value of rA,i and hence creates the revocation transaction TXRV,i and instantly
publishes it on the blockchain. The output of TXRV,i can only be claimed by B
because no one else knows the witness yB,i.

Auxiliary Transaction. Auxiliary transaction for state i is as follows:

TXAU,i.Input := TXCM.txid‖2,

TXAU,i.Output := ((ε, pkA
SP ∧ pkB

SP ∧ ΔT),

(0, (σA
TXRV,i

, σB
TXRV,i

)))

TXAU,i.Witness := {(1, {σA
TXAU,i

, σB
TXAU,i

})}

This transaction spends the auxiliary output of the commit transaction and
its output is spent by the split transaction. In other words, split transaction
cannot be published unless auxiliary transaction is on the blockchain. The second
output of TXAU,i is an OP RETURN output containing signatures of both parties
on the corresponding revocation transaction.

Remark 2. Each encoded Bitcoin signature can be up to 73 bytes long. Thus, due
to the size constraint of the OP RETURN output, two separate signatures do
not fit into the auxiliary transaction. To solve this issue, A and B can aggregate
their public keys pkA

RV and pkB
RV to form an aggregated public key pkRV [12] and

change ϕ1 in TXCM,i to (pkRV ∧ RA,i ∧ RB,i). Then, rather than two separate
signatures on the revocation transaction, they generate a multisignature (with
up to 73 byte size) and store it inside the OP RETURN output of TXAU,i.

502 A. Mirzaei et al.

Split Transaction. TXSP,i actually represents the ith channel state and is as
follows:

TXSP,i.Input := (TXCM,i.txid‖1, TXAU,i.txid‖1),
TXSP,i.Output := (θ1, θ2, · · ·),
TXSP,i.Witness := ((3, {σA

TXSP,i
, σB

TXSP,i
}), (1, {σA

TXSP,i
, σB

TXSP,i
}))

The split transaction spends the main output of the commit transaction and
the first output of the auxiliary transaction.

4.2 Garrison Protocol

The lifetime of a Garrison channel can be divided into 4 phases including create,
update, close, and punish. These phases are explained, hereinafter.

Create. The channel creation phase completes once the funding transaction
TXFU, the commit transactions TXCM,0, the split transaction TXSP,0, the auxiliary
transaction TXAU,0 and body of the revocation transaction [TXRV,0] are created,
and TXFU is published on the blockchain. In this phase, parties do not have
access to TXRV,0 as they have not exchanged rA,i and rB,i yet. At the end of the
channel creation phase, the channel would be at state 0. Since output of the
funding transaction can only be spent if both parties agree, one party might
become unresponsive to raise a hostage situation. To avoid this, parties must
sign the commit, revocation, auxiliary and split transactions before signing and
publishing the funding transaction. Figure 6 summarizes the channel creation
phase.

Fig. 6. Summary of garrison channel creation phase.

Garrison: A Novel Watchtower Scheme for Bitcoin 503

Update. Let the channel be in state i ≥ 0 and channel parties decide to update
it to state i + 1. The update process is performed in two sub-phases. In the first
sub-phase, channel parties create TXCM,i+1, TXSP,i+1, TXAU,i+1, and [TXRV,i+1] for
the new state. In the second sub-phase, channel parties revoke the state i by
exchanging rA,i and rB,i and giving these values to the watchtower. We assume
that the watchtower is also paid after each channel update. Figure 7 summarizes
the channel update phase.

Fig. 7. Summary of garrison channel update phase from state i to i + 1.

Close. Assume that the channel parties A and B have updated their channel
n times and then A and/or B decide to close it. They can close the channel
cooperatively. To do so, A and B create the below transaction, called modified
split transaction TXSP, and publish it on the blockchain:

TXSP.Input := TXFU.txid‖1,

TXSP.Output := TXSP,n.Output,

TXSP.Witness := {(1, {σA
TXSP

, σB
TXSP

})}.

If one of the channel parties, e.g. party B, becomes unresponsive, A can still
non-collaboratively close the channel. To do so, she publishes TXCM,n and TXAU,n
on the ledger. Then, she waits for T rounds, and finally publishes TXSP,n.

Punish. Let the channel be at state n. If a channel party, e.g. party A, publishes
TXCM,i and then TXAU,i with i < n on the blockchain, party B or his watchtower
can create the transaction TXRV,i and publish it within T rounds. If only TXCM,i

504 A. Mirzaei et al.

is published, party B claims its first output by meeting its second subcondition
YA,i ∧ YA,i ∧ Δ3T .

Remark 3. If the watchtower is non-responsive, the channel might be closed with
an old state. The paper [16] proposes a reputation system, called HashCashed,
which forces watchtowers to be responsive without requiring them to lock any
funds as collateral. We assume that Garrison is used with HashCashed system.

5 Security Analysis

In this section we prove that for the Garrison channel, it is of negligible proba-
bility that an honest party loses any funds.

Lemma 1. Let Π be a EUF − CMA secure digital signature, R be a hard relation
and Ξ be a secure adaptor digital signature. Then, for a Garrison channel with
n channel updates, the broadcast of TXRV,i with i < n causes the honest channel
party P ∈ {A,B} to lose any funds in the channel with negligible probability.

Proof. Without loss of generality let P = A. The transaction TXRV,i with i < n
spends the main output of the revoked TXCM,i and hence cannot be published
unless TXCM,i is on-chain. The transaction TXCM,i spends the output of TXFU. Since
the condition in TXFU.Output contains pkA, this output cannot be spent without
A’s authorization. Otherwise, security of the underlying digital signature would
be violated. Based on the protocol, the honest party A never broadcasts the
revoked TXCM,i on-chain and her pre-signature σ̃TXCM,i on the transaction TXCM,i is
the only authorization he grants for spending TXFU.Output using TXCM,i. Thus,
if TXCM,i is published, the probability that A fails to obtain yB,i is negligible.
Otherwise, aEUF − CMA security or witness extractability of the used adaptor
signature is violated. Furthermore, TXRV,i has only one output with the condition
of YA,i ∧YB,i and the value of a+ b. Since A privately preserves its witness value
yA,i, the probability that any PPT adversary claims TXRV,i.Output is negligible.
Otherwise, the utilized hard relation would break. Therefore, it is of negligible
probability that A (who knows both yA,i and yB,i) fails to claim TXRV,i.Output
and obtain all the channel funds.

Lemma 2. Let Π be a EUF − CMA secure digital signature, R be a hard rela-
tion and Ξ be a secure adaptor digital signature. Then, for a Garrison channel
between A and B with P ∈ {A,B} being the honest party, if P ’s counter-party
publishes TXCM,i, it is with negligible probability that

– P fails to obtain the data required to meet the second subcondition of
TXCM,i.Output[1].ϕ.

– any PPT adversary can meet the second subcondition of TXCM,i.Output[1].ϕ.

Proof. Without loss of generality let P = A. Similar to the proof of Lemma 1,
if B publishes TXCM,i, the probability that A fails to obtain yB,i is negligible.
Otherwise, aEUF − CMA security or witness extractability of the used adaptor

Garrison: A Novel Watchtower Scheme for Bitcoin 505

signature is violated. The witness yA,i has also been created by A and hence he
has the whole data required to meet YA,i∧YB,i∧Δ3T . Furthermore, given that A
privately preserves its witness value yA,i, the probability that any PPT adversary
meets this subcondition is negligible. Otherwise, the utilized hard relation would
break.

Lemma 3. Let Π be a EUF − CMA secure digital signature, R be a hard relation
and Ξ be a secure adaptor digital signature. Then, for a Garrison channel with n
channel updates, if the honest party P ∈ {A,B} publishes TXCM,n, P loses funds
in the channel with negligible probability.

Proof. Without loss of generality let P = A. We assume that A publishes TXCM,n
in the block Bj of the blockchain and prove that it is of negligible probability
that A fails to publish TXSP,n. Then, since TXSP,n corresponds with the latest
channel state, its broadcast cannot cause A to lose any funds.

The condition TXCM,n.Output[2].ϕ contains pkA
AU and hence it is of negligible

probability that this output is spent without A’s authorization. Otherwise, the
security of the underlying digital signature is violated. The honest party A grants
such an authorization only on the transaction TXAU,n which is held by both A and
B. Based on the protocol, once TXCM,n is published on the blockchain by A, he
also instantly submits TXAU,n to the blockchain. According to our assumptions
regarding the blockchain, TXAU,n is published on the blockchain in the block
Bj+k with 0 < k ≤ τ < T . Similarly, the first output of TXAU,n can only be
spent by TXSP,n. According to the protocol, A holds TXSP,n and submits it to
the blockchain T rounds after TXAU,n is published on-chain. Thus, given that the
first input of TXSP,n (or equivalently the first output of TXCM,n) is still unspent,
based on our assumptions regarding the blockchain, TXSP,n is published on the
blockchain in the block Bj+k+l+T with 0 < l ≤ τ < T . Now, we prove that,
when Bj+k+l+T with 0 < l, k < T is added to the blockchain, the first output of
TXCM,n, TXCM,n.Output[1], is still unspent.

The first and third subconditions of TXCM,n.Output[1] contains RA,n and pkA
SP,

respectively and hence it is of negligible probability that these two subconditions
are met without A’s authorization. Otherwise, the underlying hard relation or
digital signature would break. Party A grants such an authorization only on
TXSP,n. Moreover, the second subcondition YA,i ∧ YB,i ∧ Δ3T cannot be met in
block Bj+k+l+T with 0 < l, k < T because j + k + l + T < j + 3T .

Lemma 4. Let Π be a EUF − CMA secure digital signature, R be a hard relation
and Ξ be a secure adaptor digital signature. Then, for a Garrison channel with
n channel updates and with P ∈ {A,B} being the honest party, if P ’s counter-
party publishes TXCM,n, it is of negligible probability that P loses any funds in the
channel.

Proof. Without loss of generality let P = A. The proof is similar to the proof
of Lemma 3. The only difference is that following Lemma 2, it is of negligible
probability that A fails to meet the second subcondition of TXCM,n.Output[1].
Therefore, A can either publishes both TXAU,n and TXSP,n or claim TXCM,n.Output[1]

506 A. Mirzaei et al.

by meeting its second subcondition. None of these two cases can cause the honest
party A to lose any funds in the channel.

Lemma 5. Let Π be a EUF − CMA secure digital signature, R be a hard relation
and Ξ be a secure adaptor digital signature. Then, for a Garrison channel with
n channel updates and with P ∈ {A,B} being the honest party, if any adversary
publishes TXCM,i with i < n, it is of negligible probability that P loses any funds
in the channel.

Proof. Without loss of generality let P = A. The output TXCM,i.Output[1] includes
3 subconditions, one of which must be met to cheat A out of its funds. The first
subcondition contains pkA

RV and hence it is of negligible probability that this
output is spent without A’s authorization. Otherwise, the security of the used
digital signature is violated. The honest party A grants such an authorization
only on the transaction TXRV,i. However, according to Lemma 1, it is of negli-
gible probability that broadcast of TXRV,i causes A to lose any funds. Moreover,
according Lemma 2, it is of negligible probability that any PPT adversary can
meet the second subcondition. Now, we prove that if the third subcondition is
used to cheat A out of her funds, it leads to a contradiction.

Assume that the third subcondition of TXCM,i.Output[1] is used to cheat A
out of her funds. This subcondition contains pkA

SP and hence it is of negligible
probability that this condition is met without A’s authorization. Otherwise,
the security of the underlying digital signature is violated. The honest party A
grants such an authorization only on the transaction TXSP,i. Assume that TXSP,i
is included in the block Bk of the blockchain. The transaction TXSP,i cannot
be added to the blockchain unless its inputs are some unspent outputs on the
blockchain. It means that TXAU,i is also on the blockchain and following the
condition in TXAU,i.Output[1], the transaction TXAU,i must have been published
in the block Bj with j ≤ k − T . However, based on the protocol, once A or
her watchtower observes TXAU,i on the blockchain, they create the corresponding
revocation transaction TXRV,i and submit it to the blockchain. According to our
blockchain assumptions, this transaction is published on the blockchain in block
Bl with j < l ≤ j + τ < j + T ≤ k. However, once TXRV,i is published in the
block Bl of the blockchain, the transaction TXSP,i becomes invalid and cannot be
published in block Bk of the blockchain which leads to a contradiction.

Theorem 1. Let Π be a EUF − CMA secure digital signature, R be a hard rela-
tion and Ξ be a secure adaptor digital signature. Then, for a Garrison channel,
an honest party P ∈ {A,B} loses any funds in the channel with negligible prob-
ability.

Proof. Without loss of generality let P = A. Funds of A are locked in
TXFU.Output. It is of negligible probability that any PPT adversary A spends
the output of TXFU without the honest party A’s authorization. Otherwise, the
underlying digital signature would be forgeable. Furthermore, TXSP, TXCM,i with
i = [0, n − 1], TXCM,n are the only transactions in the protocol that spend the
output of TXFU and A grants authorization for. Thus, these transactions will be

Garrison: A Novel Watchtower Scheme for Bitcoin 507

discussed further. Since TXSP represents the final agreed state of the channel, its
broadcast cannot cause A to lose any funds. Moreover, according to Lemmas
3 and 4, it is of negligible probability that broadcast of TXCM,n causes A to be
cheated out of her funds. Also, based on the protocol, A never publishes TXCM,i
with i = [0, n−1] and according to Lemma 5, if one of these transactions is pub-
lished by the adversary, it causes A to lose any funds with negligible probability.
This concludes the proof.

References

1. Aumayr, L., et al.: Generalized bitcoin-compatible channels. IACR Cryptol. ePrint
Arch. 2020, 476 (2020)

2. Aumayr, L., et al.: Bitcoin-compatible virtual channels. In: 2021 IEEE Symposium
on Security and Privacy (SP), pp. 901–918. IEEE (2021)

3. Aumayr, L., Thyagarajan, S.A., Malavolta, G., Moreno-Sanchez, P., Maffei,
M.: Sleepy channels: bitcoin-compatible bi-directional payment channels without
watchtowers. Cryptology ePrint Archive (2021)

4. Avarikioti, G., Laufenberg, F., Sliwinski, J., Wang, Y., Wattenhofer, R.: Towards
secure and efficient payment channels. arXiv preprint arXiv:1811.12740 (2018)

5. Avarikioti, Z., Thyfronitis Litos, O.S., Wattenhofer, R.: Cerberus channels: incen-
tivizing watchtowers for bitcoin. In: Bonneau, J., Heninger, N. (eds.) FC 2020.
LNCS, vol. 12059, pp. 346–366. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-51280-4 19

6. Decker, C., Wattenhofer, R.: A fast and scalable payment network with bitcoin
duplex micropayment channels. In: Pelc, A., Schwarzmann, A.A. (eds.) SSS 2015.
LNCS, vol. 9212, pp. 3–18. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-21741-3 1

7. Developers, L.: Bolt# 3: Bitcoin transaction and script formats (2017)
8. Dryja, T., Milano, S.B.: Unlinkable outsourced channel monitoring. Talk

transcript) https://diyhpl.us/wiki/transcripts/scalingbitcoin/milan/unlinkable-
outsourced-channel-monitoring (2016)

9. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol with chains
of variable difficulty. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10401, pp. 291–323. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 10

10. Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature algo-
rithm (ECDSA). Int. J. Inf. Secur. 1(1), 36–63 (2001)

11. Khabbazian, M., Nadahalli, T., Wattenhofer, R.: Outpost: a responsive lightweight
watchtower. In: Proceedings of the 1st ACM Conference on Advances in Financial
Technologies, pp. 31–40 (2019)

12. Lindell, Y.: Fast secure two-party ECDSA signing. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017. LNCS, vol. 10402, pp. 613–644. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63715-0 21

13. McCorry, P., Bakshi, S., Bentov, I., Meiklejohn, S., Miller, A.: Pisa: Arbitration
outsourcing for state channels. In: Proceedings of the 1st ACM Conference on
Advances in Financial Technologies, pp. 16–30 (2019)

14. Mirzaei, A., Sakzad, A., Yu, J., Steinfeld, R.: Fppw: a fair and privacy preserv-
ing watchtower for bitcoin. Cryptology ePrint Archive, Report 2021/117 (2021).
https://eprint.iacr.org/2021/117

http://arxiv.org/abs/1811.12740
https://doi.org/10.1007/978-3-030-51280-4_19
https://doi.org/10.1007/978-3-030-51280-4_19
https://doi.org/10.1007/978-3-319-21741-3_1
https://doi.org/10.1007/978-3-319-21741-3_1
https://diyhpl.us/wiki/transcripts/scalingbitcoin/milan/unlinkable-outsourced-channel-monitoring
https://diyhpl.us/wiki/transcripts/scalingbitcoin/milan/unlinkable-outsourced-channel-monitoring
https://doi.org/10.1007/978-3-319-63688-7_10
https://doi.org/10.1007/978-3-319-63688-7_10
https://doi.org/10.1007/978-3-319-63715-0_21
https://doi.org/10.1007/978-3-319-63715-0_21
https://eprint.iacr.org/2021/117

508 A. Mirzaei et al.

15. Poon, J., Dryja, T.: The bitcoin lightning network: Scalable off-chain instant pay-
ments (2016)

16. Rahimpour, S., Khabbazian, M.: Hashcashed reputation with application in design-
ing watchtowers. In: 2021 IEEE International Conference on Blockchain and Cryp-
tocurrency (ICBC), pp. 1–9. IEEE (2021)

17. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptology 4(3),
161–174 (1991). https://doi.org/10.1007/BF00196725

18. Spilman, J.: [bitcoin-development] anti dos for tx replacement. https://lists.
linuxfoundation.org/pipermail/bitcoin-dev/2013-April/002433.html (2013)

https://doi.org/10.1007/BF00196725
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2013-April/002433.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2013-April/002433.html

Shoot Before You Escape: Dynamic
Behavior Monitor of Bitcoin Users
via Bi-Temporal Network Analytics

Chen Zhao1,2, Jianing Ding1,2, Zhenzhen Li1,2, Zhen Li1,2, Gang Xiong1,2,
and Gaopeng Gou1,2(B)

1 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
{zhaochen4264,dingjianing,lizhenzhen,lizhen,

xionggang,gougaopeng}@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Sciences, Beijing,

China

Abstract. As the first successful decentralized cryptocurrency system,
Bitcoin has gradually become a breeding ground for hiding illegal or mali-
cious activities without a central governing authority, in recent years. It
remains a challenging task to mine Bitcoin blockchain for better financial
forensics and security regulation, due to the hugeness and dynamism of
transaction data. In this paper, we propose BitMonitor, which enables
dynamic classification of Bitcoin users in real-time. The key module
of BitMonitor is the construction of Bi-Temporal transaction network.
Through it, on the one hand, we can perform temporal slicing of transac-
tions associated with wallet nodes and sequentially tag the intent of user
activity at different stages. On the other hand, it enables deep backtrack-
ing and tracing of the relevant financial flows dynamically over time. We
demonstrate the effectiveness of the resulting multi-order neighborhood
information in a static experimental scenario. Besides, the specificity of
the Bi-Temporal transaction network also allows for incremental updat-
ing of neighborhood characteristics. Finally, through a weighted voting
mechanism by incorporating tags on historical slices, we evaluate the
dynamic classification performance from two different aspects. Unlike
the static post-mortem analysis among existing work, we are the first
to conduct a dynamic behavior monitor for the purpose of identifying
Bitcoin accounts as soon as possible.

Keywords: Bitcoin · Address classification · Dynamic behavior
analysis · Financial forensics

1 Introduction

Bitcoin, as the most widely used virtual cryptocurrency system, has attracted
extensive attention since firstly proposed in [25]. Behind the boom, anomalous
behaviors are now proliferating as well. According to [10], nearly one-quarter of

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
K. Nguyen et al. (Eds.): ACISP 2022, LNCS 13494, pp. 509–528, 2022.
https://doi.org/10.1007/978-3-031-22301-3_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22301-3_25&domain=pdf
https://doi.org/10.1007/978-3-031-22301-3_25

510 C. Zhao et al.

Bitcoin users and one-half of Bitcoin transactions are involved in illegal activ-
ities. [18] demonstrated that Bitcoin is still the dominant cryptocurrency used
in criminal activities compared to others. Hence, studying and understanding
Bitcoin-related activities is an urgent need of critical societal importance.

The prosperity of illegal activities can be greatly attributed to these reasons.
a) Based on the decentralized peer-to-peer network, transactions can be carried
out more conveniently and autonomously than usual without third-party govern-
ing authority. b) Due to the pseudonymous nature, just with a base-58 encoded
identifier of 26–35 alphanumeric characters that we call Bitcoin address [25],
along with a related private key, everyone can send or receive Bitcoin. There is
no need to provide any extra information related to real-world identities in this
process, which protects the privacy of participants to a certain extent.

Yet till now, keeping a comprehensive and detailed understanding of the
activities in Bitcoin is still an extremely tricky task due to the hugeness and
dynamism of transaction data. As of 16th Jan 2021, there are more than one
million daily active addresses and 300 thousand daily transactions in Bitcoin
(https://studio.glassnode.com/).

However, most existing work dissects the Bitcoin transaction network just
from a static perspective (i.e., studying a snapshot of the transaction network
at time t). Few schemes considering dynamism either try to analyze behavioral
changes of Bitcoin users by dividing the transaction ledger into small tempo-
ral batches of different granularities [1,38,39], or introduce various temporal
attributes(e.g., temporal features generated by LSTM, node embedded represen-
tation capturing the dynamism of the graph sequence and attributed temporal
heterogeneous motifs) to improve classification rates of Bitcoin users at a static
point in time [20,28,36]. Nevertheless, these efforts simply reveal the fact that
the behavior of Bitcoin entities may constantly change over time and the effec-
tiveness of temporal properties proposed in classification tasks, without giving
corresponding solutions of real-time classification in dynamic scenarios.

We are the first to conduct a dynamic behavior monitor for the purpose of
identifying Bitcoin accounts as soon as possible. The main motivation behind this
research is that, with more detailed and targeted regulatory matters deployed
actively in advance, we will meet fewer regulatory difficulties, especially those
caused by the gradual proliferation of suspicious funds in the vast transaction
network. In addition, note that the feature extraction is time-dependent. Reg-
ular features like ’total number of transactions’ extracted by a wallet node in
2016 may all have been changed in 2019. A natural question arises: whether the
features selected at the old-time point can also perform well in the event of data
changes at a new point.

Obviously, existing classification methods cannot be applied directly to
dynamic scenarios. Unlike our task of trying to identify targets quickly when
anomalous behavior occurs, what they do is always a static post-mortem anal-
ysis where the target wallet nodes have been inactive for a long time. Thus, it
is highly desirable to explore a new classification model for dynamic scenarios.

https://studio.glassnode.com/

Shoot Before You Escape: Dynamic Behavior Monitor of Bitcoin Users 511

Certainly, this model should also take into account the subsequent, unbearable
space-time overhead.

In this paper, we propose BitMonitor, a powerful scheme for monitoring
the dynamic behavior of Bitcoin users. Specifically, the model is built on a Bi-
Temporal network where not only the timeline of transactions related to a user
is dissected but more detailed temporal information about tracking and tracing
money flows associated with these transactions is given. We give a deep insight
into these flows based on a natural assumption that malicious accounts often
carry out multi-level transactions like money laundering to conceal the true
flow of funds and then escape scrutiny. Of course, some existing studies have
also demonstrated that multi-order neighbor information may be helpful to the
classification of Bitcoin users [15,30]. To reduce spatial and temporal complexity,
we introduce flows extraction and flow sampling in the process of data processing.
Finally, we perform sequence tagging and weighted voting to integrate historical
information and then realize real-time classification.

Our contributions can be briefly summarized as follows:

• We design BitMonitor for real-time dynamic classification. To achieve this,
we first study the Bitcoin blockchain in the form of a bipartite address-
transaction graph. The combination of two heterogeneous information adds
temporal attributes to the transaction graph.

• The key step in BitMonitor is the construction of Bi-Temporal transaction
network, which dissects the trading information in two dimensions. On the one
hand, transactions directly related to the target wallet node can be arranged
in time series according to the additional timestamp. On the other hand, it
is possible to perform deeper backtracking and tracing of the money flows
associated with these transactions.

• To facilitate the training and evaluation of the dynamic classification model
(BitMonitor), time slicing is performed, together with subsequent dynamic
sequence tagging and weighted voting incorporating historical information,
we can classify wallet nodes at different time points.

• We evaluate the dynamic classification performance based on two require-
ments, one is to identify the correct category of nodes as early as possible and
the other is to reduce misclassification during the intermediate process. We
balance the two requirements by a weighting coefficient w. Additional exper-
iments in static scenarios validate the effectiveness of the feature extraction
framework and present some useful findings.

To the best of our knowledge, this is the first to study real-time classification
tasks in dynamic scenarios. The remainder of this paper is structured as follows.
After this introduction, Sect. 2 summarizes the related work. Section 3 provides
the preliminaries needed for the paper. A detailed description of the proposed
methodology BitMonitor can be found in Sect. 4. Section 5 presents the experi-
mental results and analysis. After a brief discussion of BitMonitor in Sect. 6, we
conclude this paper in Sect. 7.

512 C. Zhao et al.

2 Related Work

Since the birth of Bitcoin, its anonymity has been controversial. On the one
hand, transactions related to malicious or illegal activities are heavily deployed
due to the unregulated nature and pseudo-anonymity. On the other hand, the
transparency of the transaction ledger and the traceability of pseudonyms in
Bitcoin have made it possible to attack anonymity [31]. From the perspective
of conducting better financial forensics and security regulation, we focus on the
latter here. Relevant research can be roughly divided into the following three
categories.

Address Deanonymization. Initial methods of de-anonymization (i.e. associ-
ating wallet addresses belonging to the same user), mainly used heuristic rules
such as ’multi-input’ and ’change address’ [5,23,31]. The effectiveness of the
heuristic was further investigated in [12]. More recently, some new methods of
address clustering and community detection have been proposed. In addition, in
order to deal with some privacy enhancement technologies that have emerged
on Bitcoin [7,34], there have been some corresponding analysis and mitigation
measures [14,24,36]. However, the methods proposed above do not achieve true
de-anonymization. A laborious but direct approach that correlates the wallet
address on the chain with the real-world personal information of the user off-
chain is to gather information from social networks. There have been a few
attempts to help analyze some particular activities such as hacking subnetworks
[11], tor hidden service users [3] and human traffickers [29].

Illegal Activities Detection. Typical illegal activities include darknet mar-
ket [17,19], ransomware [2,27], money laundering [24,35] and scam [6]. In [2],
ransomware-related transactions can be automatically detected by using local
topological information available on the Bitcoin transaction graph. [17] proposed
a voting-based method to identify newly emerged darknet markets’ transactions
and addresses. Based on a novel analysis of transactions history, [32] can effi-
ciently collect a large number of the HYIP (High Yield Investment Programs)
operators’ Bitcoin addresses and achieve a 93.75% detection accuracy on a recent
public dataset. In particular, some work has built a Bitcoin transaction net-
work visualization system to help identify illegal abnormal transaction patterns
including money laundering and denial of service attacks [8,9,22].

Relevant Services Identification. Analytical research related to the classi-
fication of various service types is likewise of considerable significance in finan-
cial regulation. For instance, Bitcoin exchange functions as a medium for the
exchange of digital and fiat currencies, providing a breakthrough in anti-money
laundering tasks [30]. Mechanisms like deep auto-encoder [26] and hybrid motifs
[36] have been introduced to identify addresses associated with the mixed cur-
rency service. Besides, [37] provided a detailed analysis of mixing services in
a generic abstraction manner, and summarized two important mixing mecha-
nisms. More recently, with the popularity of graph learning technology, a series
of related algorithms have been introduced to explore more possibilities in node
identification tasks [4,28,35].

Shoot Before You Escape: Dynamic Behavior Monitor of Bitcoin Users 513

In short, whether for the task of classifying illegal/legal activities or different
types of services, no study exists on dynamic behavior monitoring of Bitcoin
users for timely detection. Our work is the first to do such analysis, and the
goal is to propose a general framework for Bitcoin user behavior analysis, not
specifically for a particular classification task.

3 Preliminaries

In this section, we give a rough overview of Bitcoin’s transaction structure. Unlike
traditional credit card transactions, the transaction structure of Bitcoin is based
on an unspent transaction output (UTXO) model.

A Bitcoin transaction, as shown in the left half of Fig. 1, comprises a list
of inputs and outputs. Each input is linked to an existing unspent transaction
output (i.e. UTXO) and each output denotes a new generated UTXO associated
with the recipient. An UTXO is related to only one specific address whereas an
address can be connected to many UTXOs, either by receiving UTXOs generated
from transactions or by spending those as inputs of new transactions, as shown
in the right half of Fig. 1. Additionally, note that UTXO is indivisible so it can
only be spent as a whole.

Fig. 1. Transaction structure of Bitcoin (Left: transaction perspective; Right: wallet
address perspective)

With such a transaction structure, any Bitcoin can be tracked or traced back
easily between transaction nodes and wallet nodes in the form of UTXO. This
unique design provides an opportunity to monitor the flow of suspicious funds.

4 Methodology

This section provides a detailed description of our methodology towards identify-
ing Bitcoin users over time. The overview of the proposed scheme BitMonitor is
presented in Fig. 2. After the heterogeneous graph information processing mod-
ule, a Bi-Temporal network based on the perspective of target nodes is estab-
lished. With the help of Bi-Temporal network dissection, deeper information
mining and incremental feature updating can be implemented in the following
dynamic behavior classifier.

514 C. Zhao et al.

Fig. 2. The overview of the proposed scheme BitMonitor

4.1 Information Extraction on Heterogeneous Graph

Bipartite Graph Construction. Based on the background introduction of
Bitcoin in Sect. 3, we can study the Bitcoin blockchain in the form of a bipartite
address-transaction graph G = (A, T , E), where a ∈ A represents an address,
t ∈ T represents a transaction and E represents the set of edges between A
and T . The resulting bipartite graph may have bidirectional edges and multiple
edges when the same wallet address node appears in both the inputs and outputs
of a transaction, or multiple times in the inputs (outputs). These edges will
be unfolded or merged later for the local topological analysis of the nodes to
be classified. The combination of two heterogeneous information adds temporal
attributes to the transaction graph as well as facilitates the tracking and tracing
of money flows. For example, when a Bitcoin user receives a transfer, the source
of the funds can be traced back, and similarly, when a Bitcoin user initiates a
transfer, we can track where the funds go later.

Max-money Flows Extraction. A Bitcoin user is usually associated with
many transactions, and then these transactions are related to a larger number
of users. Reasonable simplification is necessary here for that once more in-depth
money flow information is taken into account, the number of relevant nodes
involved is numerous. Specifically, we perform a max-money flows extraction.
Starting one by one from the transactions directly related to a wallet node to be
classified (i.e. the user’s first-order neighbors), if it is an incoming transaction
to receive funds (we note it as received transaction), we only select the wallet
node sending the largest amount. Accordingly, if it is an outgoing transaction
to transfer funds (we note it as spent transaction), we only select the wallet

Shoot Before You Escape: Dynamic Behavior Monitor of Bitcoin Users 515

node receiving the largest amount. These selected nodes act as second-order
neighbors. Third-order neighbors are obtained by selecting the relevant previous
or next transaction along with the just max-money flow (if linked to a received
transaction, then here is the previous one). Extracting deep neighbor information
in this way, until there is a Coinbase transaction (a transaction initiated by
the system that rewards miners and cannot be tracked back) or an unspent
transaction output is encountered (cannot be traced further) or the required
maximum number of layers is met.

Feature Extraction. Overall, there are three types of nodes requiring feature
extraction: main wallet node, transaction node, and neighbor wallet node. The
main wallet node, i.e. the node to be classified, is characterized to grasp global
information of the transaction records, then the feature of transaction nodes
and neighbor wallet nodes is extracted to incorporate relevant neighborhood
characters. Note that, the same wallet address may appear multiple times in the
input (output) list of a transaction, possibly to split big funds, so we merge such
multi-inputs or multi-outputs during feature extraction.

The main wallet node includes 22 features, which are listed in Table 1. As in
most of the existing work, these features are basic first-order statistical features
related to the number of transactions, transaction amounts, and transaction time
of the target node.

The transaction node includes 12 features, which are listed in Table 2. Here,
we extract the basic first-order statistical features from the transaction amount
and the list of transaction inputs/outputs.

To simplify the problem of feature updating in dynamic scenarios, feature
extraction of the neighbor wallet node is only based on static information at the
moment of association with the main wallet node, which is completely different
from that of the main wallet node. The neighbor wallet node includes 4 features,
which are listed as follows: whether it is related to the Coinbase transaction,
whether the output has been spent, the relevant transaction amount, and the
interval between the receipt of funds and the outflow of funds.

4.2 Bi-Temporal Network Dissection

After a series of transaction data processing steps in the previous subsection, we
can dissect the transaction information related to a wallet address node from the
perspective of a Bi-Temporal transaction network. That is, on the one hand, the
wallet address node is involved in a large number of transactions and these trans-
actions can be arranged in time series according to the additional timestamp.
On the other hand, money flows associated with these transactions can be traced
back or tracked over time. As illustrated by the example in Fig. 2, for the already
extracted disorderly money flows related to the target node, we can perform tem-
poral profiling from two perspectives: transaction timeline and money-flowing.
Then, among the listed time points of transactions: t1 < t3 < t6 < t8 < t9 < t12,
t2 < t1, t4 < t3, t6 < t5, t8 < t7, t10 < t9, t12 < t11. In a word, the idea of

516 C. Zhao et al.

Table 1. Basic statistical features of main wallet node

Feature Description

Ntotal The total number of transactions

Ncoinbase The number of Coinbase transactions

Nspent The number of spent transactions

Nreceived The number of received transactions

Vtotal,spent Total spent BTC

Vtotal,received Total received BTC

Vmax,spent The maximum value of spent BTC

Vmax,received The maximum value of received BTC,

Vmin,spent The minimum value of spent BTC

Vmin,received The minimum value of received BTC

Vmean,spent The mean value of spent BTC

Vmean,received The mean value of received BTC

Ilifetime Total active time (interval between the first transaction
and the last transaction, calculated by blocks)

Imax,spent The maximum interval of spent transactions

Imax,received The maximum interval of received transactions

Imin,spent The minimum interval of spent transactions

Imin,received The minimum interval of received transactions

Imean,spent The mean interval of spent transactions

Imean,received The mean interval of received transactions

Imax,all The maximum interval of transactions

Imin,all The minimum interval of transactions

Imean,all The mean interval of transactions

Table 2. Basic statistical features of transaction node

Feature Description

Iscoinbase Whether it is a Coinbase transaction
Ntotal The total number of wallet nodes involved
Noutputs The number of wallet nodes in outputs
Ninputs The number of wallet nodes in inputs
Vtotal The total BTC amount of the transaction
Vmax,outputs The maximum value of BTC amount in outputs
Vmax,inputs The maximum value of BTC amount in inputs
Vmin,outputs The minimum value of BTC amount in outputs
Vmin,inputs The minimum value of the amount in inputs
Vmean,outputs The mean value of BTC amount in outputs
Vmean,inputs The mean value of BTC amount in inputs
Vfee The transaction fee (Satoshi)

Shoot Before You Escape: Dynamic Behavior Monitor of Bitcoin Users 517

Bi-Temporal network dissection lays the foundation for the subsequent dynamic
behavioral analysis.

4.3 Dynamic Behavior Classification

In this subsection, we will introduce the main body of the proposed BitMonitor,
i.e. the design of a dynamic behavior classifier. First, we slice the Bi-Temporal
network of the main wallet node. Then sequence tagging of each time slice is
performed. Finally, the historical sequence tagging information is fused to realize
the task of classifying wallet nodes at different time points.

Time Slicing. Many wallet nodes are rich in transaction information, with up
to ten million transaction records for a single node under extreme conditions.
To facilitate training and classification, we focus on the transaction information
within the last year of each node and slice it into 12 time slices, with each month
as a time slice (about 4320 blocks). Here, the time interval used for slicing is
just a hyper-parameter that can be adjusted according to the actual processing
capacity and task requirements.

Another reason for slicing is based on such speculation: A wallet node car-
ries out ransomware transaction activity within a certain period, and then is
marked as a ransomware malicious node. However, this does not mean that
every transaction associated with this wallet node is involved in ransomware
activity. Before the ransomware transactions occur, it may only engage in nor-
mal transactions such as shopping and investment, and similarly, in the period
after the ransomware transactions, it may conduct activities like asset transfer
or money laundering. Of course, papers mentioned in Sect. 1 have shown that
the behavioral activities of wallet nodes vary over time. So slicing in time, rather
than fusing all the information together, is more helpful to analyze this periodic
and changing trading activity.

Sequence Tagging. Then, we conduct sequential tagging of each time slice,
details of this process can be seen in Fig. 3.

...

...

...

...

hin_2

LSTMout

hout_2

hout_1

hin_1

Concat

LSTMin

hout

hin
ein_2

eout_1

ein_1

emain

ein_4

eout_4

ein_3

eout_3

eout_2

C
o

n
ca

t

emain

Existing labels

Unknown/Normal

label

Flow

sampling

IkSequence taggingGk preprocessing

F
u

ll
y

 c
o

n
n

ec
te

d

la
y

er
s

Gk

Dynamically updating with t

Fig. 3. The details of sequence tagging in BitMonitor

518 C. Zhao et al.

First, for the transaction flows in month k, we sample two flows with the max-
imum value of received BTC and spent BTC. Set the maximum neighbor order in
each direction to N . Following the feature extraction method in Sect. 4.1, we can
obtain the embedded representations of the main wallet node denoted as emain

and its neighbors denoted as ein_1, ein_2, ..., ein_N ; eout_1, eout_2, ..., eout_N

(here, ein_i corresponds to the ith order neighbor in the direction of money-
inflow, while eout_i corresponds the ith order neighbor in the direction of money-
outflow).

Second, to ensure homogeneity of the data for subsequent dynamic analysis,
we concatenate the neighboring transaction node and wallet node two by two.
This results in new neighborhood representations denoted as hin_1, hin_2, ...,
hin_n; hout_1, hout_2, ..., hout_n (n = N/2).

Then, LSTM algorithm is used to fuse the neighbor information with increas-
ing number of neighbor layers. Details are as follows:

hin = LSTMin(hin_1, hin_2, ..., hin_n) (1)
hout = LSTMout(hout_1, hout_2, ..., hout_l) (2)

Here, we use two Long Short Term Memory [13] networks LSTMin and
LSTMout to aggregate neighboring features in different directions. They have
the same operating mechanism with two hidden layers. In parentheses is a series
of input values. LSTMin can aggregate n layers neighbor information (using zero
padding in case of Coinbase transaction blocking backtracking), for that once a
received transaction is generated, all information related to the source of funds
is immediately exposed; while the number of neighbor layers l that LSTMout

can aggregate needs to be determined based on the actual time t for node class
determination.

Finally, after concatenating the neighborhood features of incoming and out-
going directions as well as the features of the main wallet node, we can classify
the activity intention of the wallet nodes in month k by three fully connected
layers as described in Eq. 3,

I
(t)
k = Softmax(W3 ·Relu(W2 ·Relu(W1 ·CONCAT (e(k)main, h

(k)
in , h

(k,t)
out)))) (3)

where I
(t)
k represents the predicted probability vector of the user’s activity inten-

tion on the kth month at a given observation time t. W1, W2 and W3 are weight
matrices. Two points need to be noted here.

• Observe the Bi-Temporal network of a wallet node, time slicing is conducted
according to the timestamps of the transactions that are directly associated
with the main wallet node. However, other neighboring transaction nodes are
not limited by time slicing and they still change dynamically over time as
stated earlier. Specifically, the number of neighboring layers which can be
tracked from spent transactions will increase, when an unspent transaction
output is transferred out to someone else in a new transaction. In short,
transaction information of a historical time slice is still dynamically changing

Shoot Before You Escape: Dynamic Behavior Monitor of Bitcoin Users 519

at different time points. Another advantage of the LSTM algorithm is that it
can keep incremental updating. According to the principle of LSTM algorithm
[13], if the nth order neighborhood Xn appears, feature representation of the
first n orders can be simply computed based on Xn and information passed
down from the previous state. So we don’t need to keep all the historical source
data all the time, which can greatly reduce the spatio-temporal overhead.

• The category labels already revealed in the currently labeled datasets do not
encompass all categories of wallet nodes, but only contain a few key categories
that need to be paid attention to. However, when the activity intent of a
wallet node in a certain period is analyzed, it is likely that the wallet node
is only engaged in ordinary transactions or other types of transactions not
mentioned. Thus, such category information (unknown/normal) needs to be
taken into consideration when tagging the time-slice information.

Weighted Voting. For a given time point t, after sequentially tagging all his-
torical time slices, we need to fuse these results to determine the most likely
label of the wallet node at time t. We first summarize these results in a sum-
mation fashion (this process is equivalent to voting). The weighting operation is
specific to different trading activities, and its purpose is to highlight occasional
but noteworthy activities, such as illegal activities. The entire weighted voting
mechanism is described in Eq. 4:

Yt = Softmax(W4 · (
t∑

k=1

I
(t)
k)) (4)

where W4 is a weight matrix, Yt represents the probability vector indicating the
likelihood that the wallet node belongs to each category at time t. Our predicted
label is the largest one of Yt.

Loss Function. Next, we design the loss function used for model training. Note
that, due to the dynamic nature of user activity, any other type of transaction
activity is possible before or after representative transaction activities (directly
related to the real label of wallet nodes) occur. Thus, one necessary assumption
should be given that the wallet nodes in our adopted labeled dataset did not
perform, or only rarely performed other special activities that may influence
the judgment of their categories. What’s more, we cannot know the true label-
ing time of the dataset, the only thing that can be guaranteed is the ground
truth label at the last time point (all transactions have been revealed). We bal-
ance the need to improve the correctness of classification at the last time point
and the need to reduce misclassification during the intermediate process by a
weighting coefficient w in the following loss function L. Misclassification dur-
ing the intermediate process here means being incorrectly classified into other
categories other than the true label and normal/unknown label(representative

520 C. Zhao et al.

events haven’t happened yet).

L =
1

|X| ·
|X|∑

i=1

(w · l(i)medium + (1 − w) · l(i)last)

=
1

|X| ·
|X|∑

i=1

(w · 1
11

11∑

t=1

l
(i)
t + (1 − w) · l(i)12)

(5)

l
(i)
t =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−
C∑

c=1

ŷ(i)c · log(Y (i)
t,c + Y

(i)
t,normal/unknown) , t = 1, 2, ..., 11

−
C∑

c=1

ŷ(i)c · log(Y (i)
t,c) , t = 12

(6)

As presented in Eq. 5 and Eq. 6, |X| is the size of the training set, l(i)medium

denotes the loss of sample xi during the intermediate process, l(i)last denotes the
loss of sample xi at the last time point, l

(i)
t denotes the loss of sample xi at

time t, Y (i)
t,c is the predicted probability of label c for the sample xi (at time t).

ŷ
(i)
c = 1 if the ground truth label of sample xi is c, else ŷ

(i)
c = 0. C denotes the

number of label categories in the dataset. It can be seen that the loss function L
is changed from the cross-entropy function, just distinguishing between the last
time point and the intermediate process in the way loss is calculated as well as
adding the weighting coefficient w.

5 Experiments

In this section, we are devoted to evaluating the effectiveness of the proposed
scheme BitMonitor. After a brief description of the dataset collection module,
we illustrate the effectiveness of the Bi-Temporal network construction in static
scenarios and present an experimental analysis of some key parameter settings.
Finally, we evaluate the classification performance of BitMonitor in dynamic
scenarios.

5.1 Dataset Description

It is well known that Bitcoin transaction data is recorded in an open and trans-
parent block ledger, which can be obtained and analyzed by anyone who joins
the Bitcoin network. In this paper, we synchronize the first 672,627 transaction
blocks (as of 1st Jan 2021) and use BlockSci v0.7 [16] tool to perform block pars-
ing. We use a seven-categories Bitcoin addresses dataset which contains 26,313
addresses [33]. Details of this dataset can be seen in Table 3.

Shoot Before You Escape: Dynamic Behavior Monitor of Bitcoin Users 521

Table 3. Dataset details

Category Description Number

Exchange/Wallet A medium for the exchange of digital and fiat currencies 10,469

Faucet Offering small amount of Bitcoin to those completing the assigned task 340

Gambling Various types of gambling activities 6,734

HYIP High Yield Investment Programs 2,026

Market Online market place 1,900

Mixer Helping with money laundering to avoid Bitcoin flow tracking 3,199

Mining pool An entity that gathers miners for mining 1,645

5.2 Experimental Analysis in Static Scenarios

In this subsection, we first present a simplified model configuration modified from
BitMonitor. A series of experimental analyses based on it not only fully illus-
trate the effectiveness of the feature extraction frame incorporating multi-order
neighbors, but also give some interesting conclusions. The feature extraction
framework here includes bipartite graph construction, max-money flows extrac-
tion and multi-order heterogeneous neighbor information extraction.

A Simplified Model Configuration. The proposed scheme BitMonitor can
be modified for static scenarios with a simplified model configuration named
BitMonitor_static. It is essentially a feature extraction framework taken from
BitMonitor. We show its details in Fig. 4. Here, instead of expanding transac-
tions related to the target wallet node on a timeline, all relevant transactions
are roughly placed together. Unlike the Sequence Tagging module in Sect. 4.3,
where flows with the largest amount of received BTC and spent BTC are sam-
pled on each time slice to reduce spatio-temporal complexity, we sample the top
5 largest flows in both directions separately here. In general, merging multiple
flows is more robust than merging one single flow, so we perform several exper-
iments and choose ’5’ from the perspective of performance and computational
complexity. These flows are then merged by averaging. Finally, after concatenat-
ing the neighborhood features of incoming and outgoing directions as well as the

Target node

label

Main wallet node

Outgoing

information

Incoming

information

...

...

... ...

... ...

...

...

mean

Concat

Classfication
Transaction node

Neighbor wallet node

Fig. 4. The feature extraction framework BitMonitor_static used in static scenarios

522 C. Zhao et al.

features of the main wallet node, we can obtain the final node label by using a
common machine learning classifier.

Benefit of Bi-Temporal Transaction Network. In addition to facilitating
dynamic profiling, another advantage of the Bi-Temporal network is the ability
to fuse multi-order neighbor information. Based on the simplified model con-
figuration above, we illustrate the effectiveness of the feature extraction frame-
work by comparing it with the prior best feature processing scheme [21] on this
labeled dataset. That work was proposed by Lin et al. mainly to enrich the fea-
ture expression by introducing higher-order moments. We cite the results given
in that paper directly, keeping the same experimental configuration including
Micro-F1 score, Macro-F1 score, and 10-fold cross-validation strategy.

In addition, to facilitate the evaluation, we choose the same six common
machine learning classifiers as the original paper. We consider the first 10 orders
of neighbor information here. Table 4 shows the detailed results.

Table 4. Performance in static scenarios

Method High-order moment scheme BitMonitor_static(ours)
Micro-F1 Macro-F1 Micro-F1 Macro-F1

Logistic regression 0.48 0.45 0.77 0.74
SVM 0.47 0.46 0.83 0.79
AdaBoost 0.36 0.36 0.63 0.56
Random Forest 0.83 0.81 0.82 0.79
XGBoost 0.83 0.82 0.91 0.90
LightGBM 0.87 0.86 0.90 0.89

Although Lin et al. add high-order moment features to improve performance,
the best result of these six classifiers is only 0.87 Micro-F1/0.86 Macro-F1. Our
scheme performs better on most classifiers and achieves the best result of 0.91
Micro-F1/0.90 Macro-F1 by XGBoost. Obviously, these results illustrate the
effectiveness of the neighborhood information used in performance improvement,
even with the most common statistical features.

Further Exploration of Neighbor Characteristics. Then, we use the best
model of XGBoost to further explore the characteristics of neighbors. We perform
specific experimental analyses to evaluate the influence of different numbers of
neighbor layers, different directions of neighbor information, and different types
of neighbor nodes. Accuracy, F1 score, and Recall are used to evaluate these
results.

Table 5 shows the details of the experimental results. The first column of it
presents different experimental configurations in such a form (choice of direction,

Shoot Before You Escape: Dynamic Behavior Monitor of Bitcoin Users 523

Table 5. Results of different experimental parameters in BitMonitor_static

Experimental parameters Accuracy Macro-F1 Macro-Recall

BitMonitor_static(main, 0, none) 0.773 0.701 0.676
BitMonitor_static(all, 2, two) 0.898 0.883 0.856
BitMonitor_static(all, 4, two) 0.904 0.899 0.872
BitMonitor_static(all, 6, two) 0.906 0.900 0.873
BitMonitor_static(all, 8, two) 0.905 0.900 0.872
BitMonitor_static(all, 10, two) 0.906 0.898 0.871
BitMonitor_static(main+in, 10, two) 0.824 0.756 0.722
BitMonitor_static(main+out, 10 , two) 0.901 0.897 0.872
BitMonitor_static(all, 10, wallet) 0.848 0.813 0.779
BitMonitor_static(all, 10, transaction) 0.905 0.899 0.873

number of neighbor layers, choice of node type). Specifically, the first parameter
term includes four choices: considering only the feature of main wallet node,
considering main wallet node and incoming direction neighbors (associated with
received transaction), considering main wallet node and outgoing direction neigh-
bors (associated with spent transaction), and considering all these information.
The second parameter term examines different numbers of neighbor layers. The
third parameter term includes three options: considering only neighbor wallet
nodes, considering only neighbor transaction nodes, and considering both types.

The best result is 0.906 Accuracy/0.900 Macro-F1/0.873 Macro-Recall with
BitMonitor_static (all, 6, two), which shows that neighbor information of both
directions and both types are all helpful for classification. Further, the result
using only the neighbor features in the outgoing direction is significantly better
than that in the incoming direction. It can be concluded that the spent transac-
tion_related trading pattern of wallet nodes reveals more information for clas-
sification. This is not difficult to understand, for example, malicious nodes may
intentionally launder money and share the spoils after conducting illegal trad-
ing activities. In addition, to some extent, fusing more layers of neighbors will
obtain better classification results. We have achieved the best results when fusing
6 layers of neighbors in this experiment.

Experimental Analysis of Flows Extraction and Flow Sampling. In
Sect. 4.1 and Sect. 4.3, we propose to reduce the complexity of the data analysis
by max-money flows extraction mode (tracking and tracing the maximum funds)
as well as sampling flows corresponding to the maximum spent transaction and
received transaction. Other methods that can be used include focusing on the
minimum money flow similarly or doing these in a random way (flows extraction:
in the process of tracking and tracing the funds, if a transaction has multiple
inputs or outputs, randomly select one; flow sampling: for the previously gener-
ated transaction flows, randomly select one). We compare these three methods
and present the results in Table 6.

524 C. Zhao et al.

Table 6. Results of different options in flows extraction and flow sampling

Option Accuracy Macro-F1 Macro-Recall

Max 0.906 0.898 0.871
Min 0.909 0.898 0.869

Rand 0.897 0.888 0.856

From Table 6, we can see that the first two options are slightly better com-
pared with the random option. Although the min option has higher accuracy
than the max option, the max option has higher recall. There is only a very
slight difference between them. A reasonable explanation is as follows: The gen-
eration of small amounts of money may be caused by change wallets (wallets
that appear in the transaction output list to make change). These change wallet
addresses have the same owner as the main wallet node, so mining the character-
istics of these neighboring addresses will deepen our understanding of the main
wallet node’s behavior pattern. Besides, large amounts of money have a strong
user-subject purpose. In all, both options are helpful for classification.

5.3 Performance Evaluation in Dynamic Scenarios

In this subsection, we evaluate the classification performance of BitMonitor in
dynamic scenarios. Relevant experimental hyperparameters of BitMonitor are
set with the learning rate of 0.1, the batch size of 1000, the epochs of 800, and a
SGD optimizer. The num_layers and the hidden_size of LSTMin/LSTMout we
used are 2 and 60 respectively. The output dimension of the first fully connected
layer is 400 and the output dimension of the second is 200. The ratio of the
training set, validation set, and test set is 6:2:2. Besides, we use dropout and
BatchNorm function to prevent over-fitting (the rate of dropout we set is 0.2).

As stated in Sect. 4.3, due to the lack of real labels at intermediate time
points, it is not possible to evaluate the discriminant results for each time point.
In order to demonstrate the effectiveness of BitMonitor, we put forward two
requirements. One is to identify the correct category of nodes as early as possible
and the other is to reduce misclassification during the intermediate process. Note
that early transactions may not have been involved in illegal activities. Instead,
they may be just ordinary transfer activities. Thus, ’as early as possible’ means
that we are able to classify correctly as soon as some representative transaction
activities occur, rather than rudely classifying them quickly.

Table 7 shows the details of performance evaluation. It includes the aver-
age classification performance during the intermediate process, the classification
performance at the last time point, and the average earliest time point tearly at
which the node’s category is consistently and correctly identified (i.e. the target
wallet node is correctly classified at all time points after this point). The hyper-
parameter w is the weighting factor used in Eq. 5 to balance the need to improve
the correctness of classification at the last time point and the need to reduce mis-
classification during the intermediate process. From this table, we can see that

Shoot Before You Escape: Dynamic Behavior Monitor of Bitcoin Users 525

when the w increases, misclassification in the intermediate process decreases,
but the classification performance is worse at the last time point. Besides, our
proposed method can consistently and correctly identify the wallet nodes at a
relatively early time (the total number of time points is 12 in this paper).

Table 7. Performance in dynamic scenarios

w Intermediate process The last time point tearly

Accuracy Macro-F1 Macro-Recall Accuracy Macro-F1 Macro-Recall

0.0 0.470 0.469 0.534 0.854 0.814 0.792 6.25

0.1 0.898 0.880 0.855 0.850 0.813 0.778 6.12

0.2 0.907 0.884 0.860 0.845 0.710 0.680 5.94

Finally, we look at the identification results of a HYIP wallet node(address:
“1KoeBcBM5MzqwAJh8E6bsubbq9LtixygqE”) at different time points (w =
0.1). This node is classified as ’Unknown/Normal’ at the first time point, but
can be consistently classified as ’HYIP’ from the second (i.e. July 24th, 2015).
By manual inspection, this node does receive/send small Bitcoins with similar
amounts frequently after June 24th, which is consistent with its characteristics:
attracting investments and offering daily interest rates to investors.

6 Discussion

In this section, we give a short discussion of the proposed BitMonitor. Firstly, in
terms of the model itself, there are three limitations or improvements as follows.
a) The focus of our paper is on the implementation of BitMonitor, a model
capable of dynamic detection of Bitcoin user behavior. Nevertheless, additional
experiments have been carried out on a simplified static scene to illustrate the
rationality and effectiveness of the feature extraction framework incorporating
multi-order neighbors. Making deeper model improvements to outperform other
work in static scenes (not just those for feature optimization) is our next step. b)
Although our model has taken spatio-temporal complexity into account, some
other aspects of data processing such as the speed of transaction parsing and
feature extraction will have a great impact on the model size and update latency.
We will specifically analyze these changes as the Bitcoin data grows dynamically
in future work. c) Due to the lack of labels at different time points, we can only
make a general assessment of dynamic classification performance.

Secondly, in terms of the applicability of the model, the proposed BitMon-
itor is only applicable to blockchains with an UTXO-based transaction mode
like Bitcoin, and cannot be applied to Ethereum (an account-based transaction
mode). Nevertheless, the idea of dynamic sequence tagging of time slices as well
as weighted voting incorporating historical information can be borrowed. Fur-
thermore, if we shift the main object of model analysis from the wallet address
nodes to the transaction hash nodes, we can analyze transaction-related tasks in

526 C. Zhao et al.

a similar way, such as conducting a more scientific and comprehensive analysis
of mixing behavior to identify the mixing transactions rather than only locating
to some possible wallet addresses.

7 Conclusion

In this paper, we propose BitMonitor, which enables dynamic behavioral mon-
itoring of Bitcoin wallet address nodes. Based on the constructed Bi-Temporal
transaction network, we are able to dissect the trading information in two dimen-
sions. On the one hand, transactions directly related to the target wallet node
can be time-sliced. Together with subsequent dynamic sequence tagging and
weighted voting incorporating historical information, we can classify nodes at
different time points. On the other hand, it is possible to perform deeper back-
tracking and tracing of the money flows associated with these transactions. We
demonstrate the effectiveness of the resulting multi-order neighborhood infor-
mation in a static experimental scenario. Finally, we evaluate the dynamic clas-
sification performance from two aspects.

Acknowledgement. This work is supported by The National Key Research and
Development Program of China No. 2021YFB3101400 and the Strategic Priority
Research Program of Chinese Academy of Sciences, Grant No. XDC02040400.

References

1. Agarwal, R., Barve, S., Shukla, S.K.: Detecting malicious accounts in permis-
sionless blockchains using temporal graph properties. Appl. Netw. Sci. 6(1), 1–30
(2021)

2. Akcora, C.G., Li, Y., Gel, Y.R., Kantarcioglu, M.: Bitcoinheist: topological data
analysis for ransomware prediction on the bitcoin blockchain. In: Bessiere, C. (ed.)
Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intel-
ligence, IJCAI 2020. pp. 4439–4445. ijcai.org (2020)

3. Al Jawaheri, H., Al Sabah, M., Boshmaf, Y., Erbad, A.: Deanonymizing tor hidden
service users through bitcoin transactions analysis. Comput. Secur. 89, 101684
(2020)

4. Alarab, I., Prakoonwit, S., Nacer, M.I.: Competence of graph convolutional net-
works for anti-money laundering in bitcoin blockchain. In: Proceedings of the 2020
5th International Conference on Machine Learning Technologies, pp. 23–27 (2020)

5. Androulaki, E., Karame, G.O., Roeschlin, M., Scherer, T., Capkun, S.: Evaluating
user privacy in bitcoin. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp.
34–51. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1_4

6. Bartoletti, M., Pes, B., Serusi, S.: Data mining for detecting bitcoin ponzi schemes.
In: 2018 Crypto Valley Conference on Blockchain Technology (CVCBT), pp. 75–84.
IEEE (2018). https://doi.org/10.1109/CVCBT.2018.00014

7. Bonneau, J., Narayanan, A., Miller, A., Clark, J., Kroll, J.A., Felten, E.W.: Mix-
coin: anonymity for bitcoin with accountable mixes. In: Christin, N., Safavi-Naini,
R. (eds.) FC 2014. LNCS, vol. 8437, pp. 486–504. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45472-5_31

https://doi.org/10.1007/978-3-642-39884-1_4
https://doi.org/10.1109/CVCBT.2018.00014
https://doi.org/10.1007/978-3-662-45472-5_31

Shoot Before You Escape: Dynamic Behavior Monitor of Bitcoin Users 527

8. Chen, W., Wu, J., Zheng, Z., Chen, C., Zhou, Y.: Market manipulation of bitcoin:
evidence from mining the MT. GOX transaction network. In: IEEE INFOCOM
2019-IEEE Conference on Computer Communications, pp. 964–972. IEEE (2019)

9. Di Battista, G., Di Donato, V., Patrignani, M., Pizzonia, M., Roselli, V., Tamassia,
R.: Bitconeview: visualization of flows in the bitcoin transaction graph. In: 2015
IEEE Symposium on Visualization for Cyber Security (VizSec), pp. 1–8. IEEE
(2015). https://doi.org/10.1109/VIZSEC.2015.7312773

10. Foley, S., Karlsen, J.R., Putnin, š, T.J.: Sex, drugs, and bitcoin: how much illegal
activity is financed through cryptocurrencies? Rev. Finan. Stud. 32(5), 1798–1853
(2019). https://doi.org/10.1093/rfs/hhz015

11. Goldsmith, D., Grauer, K., Shmalo, Y.: Analyzing hack subnetworks in the bitcoin
transaction graph. Appl. Netw. Sci. 5(1), 1–20 (2020). https://doi.org/10.1007/
s41109-020-00261-7

12. Harrigan, M., Fretter, C.: The unreasonable effectiveness of address cluster-
ing. In: 2016 Intl IEEE Conferences on Ubiquitous Intelligence & Computing,
Advanced and Trusted Computing, Scalable Computing and Communications,
Cloud and Big Data Computing, Internet of People, and Smart World Congress
(UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), pp. 368–373. IEEE (2016)

13. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

14. Hu, Y., Seneviratne, S., Thilakarathna, K., Fukuda, K., Seneviratne, A.: Charac-
terizing and detecting money laundering activities on the bitcoin network. arXiv
preprint arXiv:1912.12060 (2019)

15. Jourdan, M., Blandin, S., Wynter, L., Deshpande, P.: Characterizing entities in
the bitcoin blockchain. In: 2018 IEEE International Conference on Data Mining
Workshops (ICDMW), pp. 55–62 (2018)

16. Kalodner, H., et al.: {BlockSci}: design and applications of a blockchain analysis
platform. In: 29th USENIX Security Symposium (USENIX Security 20), pp. 2721–
2738 (2020)

17. Kanemura, K., Toyoda, K., Ohtsuki, T.: Identification of darknet markets’ bitcoin
addresses by voting per-address classification results. In: 2019 IEEE International
Conference on Blockchain and Cryptocurrency (ICBC), pp. 154–158. IEEE (2019)

18. Kethineni, S., Cao, Y.: The rise in popularity of cryptocurrency and associated
criminal activity. Int. Crim. Justice Rev. 30(3), 325–344 (2020)

19. Lee, S., et al.: Cybercriminal minds: an investigative study of cryptocurrency
abuses in the dark web. In: 26TH Annual Network and Distributed System Security
Symposium (NDSS 2019), pp. 1–15. Internet Society (2019)

20. Li, Y., Cai, Y., Tian, H., Xue, G., Zheng, Z.: Identifying illicit addresses in bitcoin
network. In: Zheng, Z., Dai, H.-N., Fu, X., Chen, B. (eds.) BlockSys 2020. CCIS,
vol. 1267, pp. 99–111. Springer, Singapore (2020). https://doi.org/10.1007/978-
981-15-9213-3_8

21. Lin, Y.J., Wu, P.W., Hsu, C.H., Tu, I.P., Liao, S.W.: An evaluation of bitcoin
address classification based on transaction history summarization. In: 2019 IEEE
International Conference on Blockchain and Cryptocurrency (ICBC), pp. 302–310.
IEEE (2019)

22. McGinn, D., Birch, D., Akroyd, D., Molina-Solana, M., Guo, Y., Knottenbelt,
W.J.: Visualizing dynamic bitcoin transaction patterns. Big Data 4(2), 109–119
(2016). https://doi.org/10.1089/big.2015.0056

23. Meiklejohn, S., et al.: A fistful of bitcoins: characterizing payments among men
with no names. In: Proceedings of the 2013 Conference on Internet Measurement
Conference, pp. 127–140 (2013). https://doi.org/10.1145/2504730.2504747

https://doi.org/10.1109/VIZSEC.2015.7312773
https://doi.org/10.1093/rfs/hhz015
https://doi.org/10.1007/s41109-020-00261-7
https://doi.org/10.1007/s41109-020-00261-7
http://arxiv.org/abs/1912.12060
https://doi.org/10.1007/978-981-15-9213-3_8
https://doi.org/10.1007/978-981-15-9213-3_8
https://doi.org/10.1089/big.2015.0056
https://doi.org/10.1145/2504730.2504747

528 C. Zhao et al.

24. Möser, M., Böhme, R., Breuker, D.: An inquiry into money laundering tools in the
bitcoin ecosystem. In: 2013 APWG eCrime researchers summit. pp. 1–14. IEEE
(2013). https://doi.org/10.1109/eCRS.2013.6805780

25. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Decentralized Bus.
Rev. 21260 (2008)

26. Nan, L., Tao, D.: Bitcoin mixing detection using deep autoencoder. In: 2018 IEEE
Third international conference on data science in cyberspace (DSC), pp. 280–287.
IEEE (2018). https://doi.org/10.1109/DSC.2018.00047

27. Paquet-Clouston, M., Haslhofer, B., Dupont, B.: Ransomware payments in the
bitcoin ecosystem. J. Cybersecur. 5(1), tyz003 (2019)

28. Pareja, A., et al.: Evolvegcn: evolving graph convolutional networks for dynamic
graphs. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34,
pp. 5363–5370 (2020)

29. Portnoff, R.S., Huang, D.Y., Doerfler, P., Afroz, S., McCoy, D.: Backpage and
bitcoin: uncovering human traffickers. In: Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 1595–1604
(2017). https://doi.org/10.1145/3097983.3098082

30. Ranshous, S., et al.: Exchange pattern mining in the bitcoin transaction directed
hypergraph. In: Brenner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 248–263.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70278-0_16

31. Reid, F., Harrigan, M.: An analysis of anonymity in the bitcoin system. In: Alt-
shuler, Y., Elovici, Y., Cremers, A., Aharony, N., Pentland, A. (eds.) Security and
Privacy in Social Networks, pp. 197–223. Springer, New York (2013). https://doi.
org/10.1007/978-1-4614-4139-7_10

32. Toyoda, K., Mathiopoulos, P.T., Ohtsuki, T.: A novel methodology for HYIP oper-
ators’ bitcoin addresses identification. IEEE Access 7, 74835–74848 (2019)

33. Toyoda, K., Ohtsuki, T., Mathiopoulos, P.T.: Multi-class bitcoin-enabled service
identification based on transaction history summarization. In: 2018 IEEE Interna-
tional Conference on Internet of Things (iThings) and IEEE Green Computing and
Communications (GreenCom) and IEEE Cyber, Physical and Social Computing
(CPSCom) and IEEE Smart Data (SmartData), pp. 1153–1160. IEEE (2018)

34. Valenta, L., Rowan, B.: Blindcoin: blinded, accountable mixes for bitcoin. In: Bren-
ner, M., Christin, N., Johnson, B., Rohloff, K. (eds.) FC 2015. LNCS, vol. 8976, pp.
112–126. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48051-
9_9

35. Weber, M., Domeniconi, G., Chen, J., Weidele, D.K.I., Bellei, C., Robinson, T.,
Leiserson, C.E.: Anti-money laundering in bitcoin: Experimenting with graph con-
volutional networks for financial forensics. arXiv preprint arXiv:1908.02591 (2019)

36. Wu, J., Liu, J., Chen, W., Huang, H., Zheng, Z., Zhang, Y.: Detecting mixing
services via mining bitcoin transaction network with hybrid motifs. IEEE Trans.
Syst. Man Cybern. Syst. 52, 1–13 (2021)

37. Wu, L., et al.: Towards understanding and demystifying bitcoin mixing services.
In: Proceedings of the Web Conference 2021, pp. 33–44 (2021)

38. Zhang, R., Zhang, G., Liu, L., Wang, C., Wan, S.: Anomaly detection in bitcoin
information networks with multi-constrained meta path. J. Syst. Architect. 110,
101829 (2020)

39. Zola, F., Bruse, J.L., Eguimendia, M., Galar, M., Orduna Urrutia, R.: Bitcoin and
cybersecurity: temporal dissection of blockchain data to unveil changes in entity
behavioral patterns. Appl. Sci. 9(23), 5003 (2019)

https://doi.org/10.1109/eCRS.2013.6805780
https://doi.org/10.1109/DSC.2018.00047
https://doi.org/10.1145/3097983.3098082
https://doi.org/10.1007/978-3-319-70278-0_16
https://doi.org/10.1007/978-1-4614-4139-7_10
https://doi.org/10.1007/978-1-4614-4139-7_10
https://doi.org/10.1007/978-3-662-48051-9_9
https://doi.org/10.1007/978-3-662-48051-9_9
http://arxiv.org/abs/1908.02591

Author Index

Adomnicai, Alexandre 125

Bai, Shi 289
Beard, Austin 289
Bi, Lei 168
Bijwe, Subodh 85

Cao, Jinzheng 147
Chan, Kwan Yin 265
Chang, Donghoon 399
Chauhan, Amit Kumar 85
Chen, Shenwei 469
Cheng, Qingfeng 147
Cui, Handong 265
Cui, Lizhen 449

Deng, Yi 375
Ding, Jianing 509
Ding, Xiaohui 332

Esgin, Muhammed F. 332

Fu, Fang-Wei 189

Garg, Surabhi 399
Ge, Chunpeng 449
Gjøsteen, Kristian 355
Gligoroski, Danilo 420
Gou, Gaopeng 509
Grassi, Lorenzo 24
Gu, Dawu 469
Guo, Jian 3
Guo, Wenshuo 189

Haines, Thomas 355
Hasan, M. Anwar 309
Hasan, Munawar 399
Huang, Qiong 449

Ito, Ryoma 46

Johnson, Floyd 289

K. B. Vidhanalage, Sulani 289
Kong, Lanju 449

Li, Jinsong 375
Li, Xinghua 147
Li, Yumei 229
Li, Zhen 509
Li, Zhenzhen 509
Liu, Guoxiao 375
Liu, Zhe 449
Liu, Zhen 469
Loe, Angelique Faye 244
Long, Yu 469
Lu, Xianhui 168
Luo, Junjie 168

Maeda, Yusaku 209
Mao, Yongxia 106
Medley, Liam 244
Minematsu, Kazuhiko 125
Mirzaei, Arash 489
Mishra, Sweta 399
Miyaji, Atsuko 46
Miyashita, Shotaro 46
Müller, Johannes 355

Ngo, Tran 289
Nuida, Koji 209

O’Connell, Christian 244

Pan, Shimin 265
Pan, Yanbin 147
Phalakarn, Kittiphon 309

Quaglia, Elizabeth A. 244

Raikwar, Mayank 420
Rechberger, Christian 24
Rønne, Peter 355

Sakzad, Amin 332, 489
Sanadhya, Somitra Kumar 85
Shigeri, Maki 125
Silde, Tjerand 355
Song, Ling 3
Steinfeld, Ron 332, 489
Suppakitpaisarn, Vorapong 309

530 Author Index

Wang, Bolin 106
Wang, Hao 449
Wang, Haoyang 3
Wang, Kunpeng 168
Wang, Wei 375
Wei, Puwen 375
Wu, Wenling 67, 106
Wu, Xiaofei 449

Xiong, Gang 509
Xue, Haiyang 375

Yu, Jiangshan 489
Yuen, Tsz Hon 265

Zhang, Futai 229
Zhang, Handong 375
Zhang, Lei 67
Zhang, Li 106
Zhang, Mingwu 229
Zhang, Yuhan 67
Zhao, Chen 509
Zhou, Lu 449

	 Preface
	 Organization
	Keynote Talks
	 Combinatorial Cryptography
	 Technical Challenges in Blockchains
	 Just About Time
	 Contents

	Symmetric-Key Cryptography
	Key Structures: Improved Related-Key Boomerang Attack Against the Full AES-256
	1 Introduction
	2 Preliminaries
	2.1 Description of AES
	2.2 Boomerang Attack
	2.3 Notations

	3 Key Structures
	4 Improved Boomerang Attack on AES-256
	4.1 Construction of the Key Structure
	4.2 Boomerang Distinguisher
	4.3 A Detailed Description of the Attack

	5 Conclusion
	References

	Truncated Differential Properties of the Diagonal Set of Inputs for 5-Round AES
	1 Introduction
	1.1 Contributions
	1.2 Follow-Up Works: Truncated Differentials for 5-/6-Round AES

	2 Preliminary
	2.1 Advanced Encryption Standard (AES)
	2.2 Properties of an S-Box

	3 Probability Distribution for 5-Round AES
	3.1 Truncated Differentials for 2-Round AES
	3.2 Multiple-of-8 Property and Mixture Differential Cryptanalysis
	3.3 Main Result: Probability Distribution for 5-Round AES

	4 Initial Considerations
	5 Proof of Theorem4: Sum of Binomial Distributions
	6 Proof of Theorem4: About the Probabilities p3,p10, p17
	6.1 Reduction to the Middle Round
	6.2 A ``Simpler'' Case: 216 Texts with Two Equal Generating Variables
	6.3 Generic Case: 232 Texts

	7 Practical Results for 5-Round AES
	7.1 Probability Distribution of 5-Round AES over (F2n)44
	7.2 Practical Results for 5-Round AES over F2n44 for n{4,8}

	References

	PNB-Focused Differential Cryptanalysis of ChaCha Stream Cipher
	1 Introduction
	2 Specification of ChaCha
	3 Differential Cryptanalysis of ChaCha
	3.1 Precomputation Phase
	3.2 Online Phase

	4 Analysis of PNB
	4.1 Search for PNB with High Neutral Measures
	4.2 Experimental Results
	4.3 Discussion

	5 PNB-Focused Differential Attack
	5.1 Analysis of Single-Bit Differential Biases
	5.2 Complexity Estimation

	6 Related Works
	7 Conclusion
	References

	Improved Differential Attack on Round-Reduced LEA
	1 Introduction
	2 Fu's MILP Model for Differential Characteristics of ARX Ciphers
	3 Automatic Search for Characteristics and Differentials for Round-Reduced LEA
	3.1 Differential Property for Modular Addition
	3.2 Improved Searching Strategy for Long-Round Differential Characteristics

	4 Application to Round-Reduced LEA
	4.1 Description of LEA
	4.2 Characteristics and Differentials of Round-Reduced LEA
	4.3 Differential Attacks on Round-Reduced LEA

	5 Conclusion
	References

	Implementing Grover Oracle for Lightweight Block Ciphers Under Depth Constraints
	1 Introduction
	1.1 Our Contributions
	1.2 Organization of the Paper

	2 Preliminaries
	2.1 Fault-Tolerant Gate Set
	2.2 Cost Metrics for Quantum Circuit

	3 Finding Key for Block Cipher with Grover's Algorithm
	3.1 Key Search Problem for Block Cipher
	3.2 Grover's Algorithm
	3.3 Cost Metrics for Grover's Algorithm with Parallelization
	3.4 Cost Metrics for Grover's Algorithm with Parallelization Under a Depth Limit

	4 Quantum Circuit of GIFT
	4.1 Round Function
	4.2 Key Schedule and Round Constants

	5 Quantum Circuit of SKINNY
	5.1 Round Function

	6 Quantum Circuit of SATURNIN
	6.1 Round Function
	6.2 Key Schedule and Round Constants

	7 Quantum Resource Estimates for Implementing the Circuits of GIFT, SKINNY, and SATURNIN
	8 Grover Oracles and Key Search Resource Estimates
	8.1 Grover Oracle
	8.2 Cost Estimates for Lightweight Block Cipher Key Search
	8.3 Cost Estimates for Grover Search Under MAXDEPTH Limit

	9 Conclusion
	References

	Improved Division Property for Ciphers with Complex Linear Layers
	1 Introduction
	2 Notations and Division Property
	3 A Method to Reduce Redundant Division Trails for Complex Linear Layers
	4 Applications
	4.1 Application to uBlock-128
	4.2 Application to MIBS

	5 Conclusion
	A Linear Inequalities for S-Boxes in uBlock-128
	B Linear Inequalities for S-Boxes in MIBS
	References

	Fast Skinny-128 SIMD Implementations for Sequential Modes of Operation
	1 Introduction
	2 Skinny in Software
	2.1 The Skinny-128 Tweakable Block Ciphers
	2.2 Publicly Available Software Implementations

	3 Optimizing the S-Box Layer
	3.1 NEON Vector Permute Instructions
	3.2 S-Box Decomposition

	4 Other Optimizations
	4.1 Linear Layer
	4.2 Tweakey Schedule

	5 Implementation Results
	5.1 ARM NEON
	5.2 Intel Streaming SIMD Extensions

	6 Conclusion and Future Work
	A D4444 Decomposition
	B D4454 Decomposition
	References

	Public-Key Cryptanalysis
	Handle the Traces: Revisiting the Attack on ECDSA with EHNP
	1 Introduction
	2 Preliminaries
	2.1 ECDSA
	2.2 ECDSA Scalar Multiplication and Side-Channel Attack
	2.3 EHNP
	2.4 Lattice

	3 Framework of EHNP Attack
	3.1 Preparation
	3.2 Formulating EHNP
	3.3 Lattice Basis

	4 New Analysis of ECDSA-EHNP
	4.1 New Estimation for "026B30D z"026B30D
	4.2 Sublattice Analysis
	4.3 Evaluating the Instance
	4.4 Short Vectors

	5 Algorithms
	5.1 Strategy
	5.2 The Attack

	6 Simulation Analysis
	6.1 Attacking with 3 Traces
	6.2 Attacking with More Traces
	6.3 Handling Errors

	7 Conclusion
	References

	Hybrid Dual and Meet-LWE Attack
	1 Introduction
	1.1 Related Work
	1.2 Contributions
	1.3 Roadmap

	2 Preliminaries
	2.1 Notations
	2.2 Lattice and Lattice Reduction
	2.3 The Learning with Errors Problem
	2.4 Lemma

	3 May's Meet-LWE Attack
	3.1 Ternary-0
	3.2 Ternary-1

	4 Hybrid Dual Attacks
	5 Combine Meet-LWE with Dual Attack
	5.1 Meet-LWE on Ternary-2 LWE
	5.2 The Larger Error
	5.3 Our Attack

	6 Complexity Estimation and Comparison
	6.1 Case 1
	6.2 Case 2
	6.3 Case 3
	6.4 Overview

	7 Conclusion
	References

	Cryptanalysis and Repair of a Gabidulin Code Based Cryptosystem from ACISP 2018
	1 Introduction
	2 Preliminaries
	2.1 Notations and Basic Concepts
	2.2 Gabidulin Codes

	3 Lau-Tan Cryptosystem
	4 Key Recovery Attack
	4.1 Further Results About Gabidulin Codes
	4.2 Recovering the Private T
	4.3 Finding an Equivalent (S',G')
	4.4 Complexity of the Attack
	4.5 Implementation

	5 A Repair
	5.1 Description of the Repair
	5.2 Security Analysis

	6 Cryptanalysis of Loidreau's Cryptosystem
	7 Conclusion
	References

	Public-Key Cryptography
	Chosen Ciphertext Secure Keyed Two-Level Homomorphic Encryption
	1 Introduction
	1.1 Background
	1.2 Our Contributions
	1.3 Related Work
	1.4 Organization of the Paper

	2 Preliminaries
	2.1 Pairings
	2.2 Notation

	3 Hash Proof Systems
	3.1 Construction of HPS Based on Diverse Vector Space
	3.2 Direct Product of HPS

	4 Keyed Two-Level Homomorphic Encryption
	4.1 Syntax and Security Notion
	4.2 Overview of Our Construction
	4.3 Construction of Hash Proof System
	4.4 Concrete Construction of the Proposed Scheme

	5 Efficiency Evaluations
	References

	Structure-Preserving Linearly Homomorphic Signature with Designated Combiner for Subspace
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work
	1.3 Organization

	2 Preliminaries and Definitions
	2.1 Mathematic Background
	2.2 The Augmented Basis Vectors
	2.3 The Formal Definition
	2.4 Security Model

	3 Our Construction
	4 Correctness and Security Analysis
	4.1 Correctness Analysis
	4.2 Security Analysis

	5 Theoretical Analysis
	6 Conclusion
	References

	TIDE: A Novel Approach to Constructing Timed-Release Encryption
	1 Introduction
	1.1 Sealed-Bid Auctions
	1.2 Technical Overview
	1.3 Related Work
	1.4 Contributions

	2 Preliminaries: Assumptions and Number Theory
	3 Our Construction
	4 Security
	5 Conclusion
	References

	Multi-signatures for ECDSA and Its Applications in Blockchain
	1 Introduction
	1.1 Motivation
	1.2 Contribution
	1.3 Related Work
	1.4 Paper Organization

	2 Preliminaries
	3 Multiplicative-to-Additive Share Conversion Protocol
	3.1 Definition

	4 Multi-signatures for ECDSA
	4.1 Construction
	4.2 Security Proof

	5 Instantiating with Class Group
	5.1 Hard Subgroup Membership Group
	5.2 CL Encryption for HSM Group
	5.3 ZK Proof with CL Encryption

	6 Implementation
	7 Applications in Blockchain
	8 Conclusion
	A Definition for Building Blocks
	A.1 ECDSA
	A.2 Additive Homomorphic Encryption
	A.3 Trapdoor Commitment

	B Trapdoor Commitments and Its ZK Proofs
	C Zero-Knowledge Proof for MtA(wc)
	References

	Post-quantum Cryptography
	Fiat-Shamir Signatures Based on Module-NTRU*-12pt
	1 Introduction
	1.1 Previous Work
	1.2 Contributions

	2 Preliminaries
	2.1 (Inhomogeneous) Module-NTRU

	3 Signature Based on iMNTRU in the QROM
	3.1 A Lossy Identification Scheme

	4 A BLISS-Like Signature Based on MNTRU
	4.1 Signature Scheme
	4.2 Security Proof

	5 Security Analysis and Parameters
	5.1 Concrete Instantiation

	References

	Speeding-Up Parallel Computation of Large Smooth-Degree Isogeny Using Precedence-Constrained Scheduling*-12pt
	1 Introduction
	2 Preliminaries
	2.1 SIDH
	2.2 Large Smooth-Degree Isogeny Computation and Strategies
	2.3 Single-Processor Setting
	2.4 Multi-processor Setting
	2.5 Precedence-Constrained Scheduling Algorithms

	3 Proposed Strategy Evaluation Technique
	3.1 Task Dependency Graphs of Strategies
	3.2 Efficient Algorithm for Removing Transitive Edges
	3.3 Proposed Strategy Evaluation Technique

	4 Proposed Strategy Construction Technique
	4.1 Optimal Strategies and Evaluations
	4.2 Proposed Strategy Construction Technique

	5 Experiments and Results
	6 Conclusion
	References

	An Injectivity Analysis of Crystals-Kyber and Implications on Quantum Security
	1 Introduction
	1.1 Our Contribution

	2 Preliminaries
	2.1 Injectivity
	2.2 Crystals-Kyber Scheme
	2.3 Methodologies and Techniques

	3 Theoretical Bounds for Crystals-Kyber
	3.1 Main Result
	3.2 Associated Lemmas and Their Proofs

	4 Numerical Result and Analysis
	5 Conclusion
	References

	Cryptographic Protocols
	Verifiable Decryption in the Head
	1 Introduction
	1.1 Contribution
	1.2 Related Work

	2 Passively Secure 2-Party Decryption
	3 Verifiable Decryption from Distributed Decryption
	4 BGV Encryption
	5 Zero-Knowledge Protocol of Correct Decryption
	5.1 Lattice-Based Distributed Decryption
	5.2 Security
	5.3 Zero-Knowledge Proof of Verifiable Decryption

	6 Performance
	6.1 Proof Size
	6.2 Implementation

	7 Comparison
	7.1 Comparison to DistDec (TCC'10)
	7.2 Comparison to Boschini et al. (PQ Crypto'20)
	7.3 Comparison to Lyubashevsky et al. (PKC'21)
	7.4 Comparison to Silde (VOTING'22)

	References

	Resumable Zero-Knowledge for Circuits from Symmetric Key Primitives
	1 Introduction
	1.1 Our Contributions
	1.2 Related Works

	2 Preliminaries
	2.1 MPC-in-the-head with Preprocessing

	3 Resumable HVZK Proof of Knowledge
	4 General Construction for Resumable HVZKPoK
	4.1 KKW Protocol for F
	4.2 Intuitive Construction for Resumable HVZKPoK
	4.3 Modified KKW for f and Consistency Proof

	5 Resumable HVZKPoK from KKW
	5.1 Resumable HVZKPoK for Initial Session Res, 1
	5.2 Resumable HVZKPoK for Second Session Res, 2
	5.3 Security
	5.4 3-Round Resumable HVZKPoK

	6 Resumable-Picnic
	7 Compressed 1-out-of-N Proof and Ring Signatures
	A Proof of Theorem 1
	References

	On Security of Fuzzy Commitment Scheme for Biometric Authentication
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Definitions

	3 Models and Settings
	3.1 System Model and Participants
	3.2 Attack Model

	4 Related Work
	4.1 Existing Biometric Cryptosystems (Including Padding-Based Schemes)
	4.2 Existing Cancelable and Deep Learning Based Schemes

	5 Impersonation Attack on Error Correcting Codewords
	6 Proposed Work
	6.1 User-Specific, Random Padding Using Codeword Bits

	7 Experiments and Performance Analysis
	7.1 Recognition Performance Evaluation
	7.2 Efficiency in Terms of Authentication Time

	8 Security Analysis
	8.1 Brute Force Attack Complexity
	8.2 Attack Complexity of the Proposed Scheme

	9 Conclusions
	References

	SoK: Decentralized Randomness Beacon Protocols
	1 Introduction
	2 Decentralized Randomness Beacon (DRB)
	3 DRB Classification
	3.1 Interactive Decentralized Randomness Beacon Protocols
	3.2 Non-Interactive Decentralized Randomness Beacon Protocols

	4 Discussion
	4.1 Security Assumptions
	4.2 Complexity
	4.3 Scalability
	4.4 Adversarial Model
	4.5 Throughput Evaluation
	4.6 Others

	5 New Components for Construction of DRB Protocols
	6 Conclusion
	A Secure DRB Protocol
	B Publicly Verifiable Secret Sharing (PVSS)
	C Verifiable Delay Function (VDF)
	D Verifiable Random Function (VRF)
	E Homomorphic Encryption (HE)
	F Hybrid DRB Protocols
	References

	Blockchain
	CCOM: Cost-Efficient and Collusion-Resistant Oracle Mechanism for Smart Contracts*-12pt
	1 Introduction
	2 Preliminaries
	2.1 Games and Strategies
	2.2 Sequential Equilibrium
	2.3 Smart Contract and Oracle

	3 The Architechture of CCOM
	3.1 Adversary Model and Assumption
	3.2 The System Architecture of CCOM
	3.3 Monetary Variables
	3.4 The Prisoner's Contract

	4 Discussion and Analysis
	5 Implementation
	5.1 Cryptographic Primitives - HASH Function
	5.2 Overhead and Cost

	6 Related Work
	7 Conclusion
	References

	DeChain: A Blockchain Framework Enhancing Decentralization via Sharding
	1 Introduction
	2 Background and Related Work
	2.1 Sharding
	2.2 Aggregating TXOs
	2.3 Cryptographic Accumulator

	3 Framework of DeChain
	3.1 Design Principles
	3.2 Architecture
	3.3 Block
	3.4 Transaction

	4 System Details
	4.1 Setup
	4.2 Transaction Generation
	4.3 Transaction Propagation
	4.4 Update and Verification of STXO Root
	4.5 Proof of Transaction Validity
	4.6 Block Generation and Validation

	5 Analysis and Simulation
	5.1 Experiment Setup
	5.2 Storage Usage
	5.3 Efficiency

	6 Discussion
	6.1 Bridge Transaction
	6.2 Shard Choice
	6.3 Synchronization
	6.4 Difficulty Adjustment
	6.5 Bandwidth Management

	7 Conclusion
	References

	Garrison: A Novel Watchtower Scheme for Bitcoin*-12pt
	1 Introduction
	1.1 Our Contributions
	1.2 Related Works

	2 Preliminaries and Notations
	2.1 Preliminaries
	2.2 Notations

	3 Garrison Overview
	3.1 System Model
	3.2 Garrison Overview

	4 Garrison Channel
	4.1 Garrison Transactions
	4.2 Garrison Protocol

	5 Security Analysis
	References

	Shoot Before You Escape: Dynamic Behavior Monitor of Bitcoin Users via Bi-Temporal Network Analytics
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Methodology
	4.1 Information Extraction on Heterogeneous Graph
	4.2 Bi-Temporal Network Dissection
	4.3 Dynamic Behavior Classification

	5 Experiments
	5.1 Dataset Description
	5.2 Experimental Analysis in Static Scenarios
	5.3 Performance Evaluation in Dynamic Scenarios

	6 Discussion
	7 Conclusion
	References

	Author Index

