
Hans P. Reiser
Marcel Kyas (Eds.)

LN
CS

 1
37

00

Secure IT Systems
27th Nordic Conference, NordSec 2022
Reykjavic, Iceland, November 30 – December 2, 2022
Proceedings

Lecture Notes in Computer Science 13700

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

More information about this series at https://link.springer.com/bookseries/558

https://springerlink.bibliotecabuap.elogim.com/bookseries/558

Hans P. Reiser ·Marcel Kyas (Eds.)

Secure IT Systems
27th Nordic Conference, NordSec 2022
Reykjavic, Iceland, November 30–December 2, 2022
Proceedings

Editors
Hans P. Reiser
Reykjavik University
Reykjavik, Iceland

Marcel Kyas
Reykjavik University
Reykjavik, Iceland

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-22294-8 ISBN 978-3-031-22295-5 (eBook)
https://doi.org/10.1007/978-3-031-22295-5

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-2815-5747
https://orcid.org/0000-0003-1018-3413
https://doi.org/10.1007/978-3-031-22295-5

Preface

This volume contains the papers presented at the 27th Nordic Conference on Secure IT
Systems (NordSec 2022). The conference was held from November 30 to December 2,
2022, in Reykjavik, Iceland.

The NordSec conference series started in 1996 with the aim of bringing together
researchers and practitioners in computer security in the Nordic countries, thereby estab-
lishing a forum for discussion and cooperation between universities, industry, and com-
puter societies. The NordSec conference series addresses a broad range of topics within
IT security and privacy, and over the years it has developed into an international con-
ference that takes place in the Nordic countries. NordSec is currently a key meeting
venue for Nordic university teachers and students with research interests in information
security and privacy.

NordSec 2022 received a record number of 89 submissions, of which 85 were con-
sidered valid submissions and were double-blind reviewed each by three members of
the Program Committee (PC). After the reviewing phase, 20 papers were accepted for
publication and included in the proceedings (an acceptance rate of 24%). Addition-
ally, a poster session was organized to encourage further discussion, brainstorming, and
networking on interesting topics of IT security.

We were honored to have two brilliant invited keynote speakers: Véronique Cortier
from Loria, France, and Sigurður Emil Pálsson from the NATO Cooperative Cyber
Defence Centre of Excellence.

We sincerely thank everyone involved in making this year’s conference a success,
including, but not limited to, the authors who submitted their papers, the presenters who
contributed to the NordSec 2022 program, the PC members and additional reviewers for
their thorough and constructive reviews, and EasyChair for their platform.

November 2022 Hans P. Reiser
Marcel Kyas

Organization

General Chair

Marcel Kyas Reykjavik University, Iceland

Program Committee Chairs

Hans P. Reiser Reykjavik University, Iceland
Marcel Kyas Reykjavik University, Iceland

Website Chair

Stewart Sentanoe University of Passau, Germany

Steering Committee

Mikael Asplund Linköping University, Sweden
Aslan Askarov Aarhus University, Denmark
Tuomas Aura Aalto University, Finland
Karin Bernsmed SINTEF ICT and Norwegian University of

Science and Technology, Norway
Billy Bob Brumley Tampere University, Finland
Sonja Buchegger KTH Royal Institute of Technology, Sweden
Mads Dam KTH Royal Institute of Technology, Sweden
Bengt Carlsson Blekinge Institute of Technology, Sweden
Simone Fischer-Huebner Karlstad University, Sweden
Dieter Gollmann Hamburg University of Technology, Germany
Nils Gruschka University of Oslo, Norway
René Rydhof Hansen Aalborg University, Denmark
Audun Jøsang University of Oslo, Norway
Marcel Kyas Reykjavik University, Iceland
Helger Lipmaa University of Tartu, Estonia
Antonios Michalas Tampere University, Finland
Katerina Mitrokotsa Chalmers University of Technology, Sweden
Simin Nadjm-Tehrani Linköping University, Sweden
Hanne Riis Nielson Technical University of Denmark, Denmark
Hans P. Reiser Reykjavik University, Iceland
Juha Röning University of Oulu, Finland

viii Organization

Program Committee

Magnus Almgren Chalmers University of Technology, Sweden
Mikael Asplund Linköping University, Sweden
Stefan Axelsson Stockholm University, Sweden
Musard Balliu KTH Royal Institute of Technology, Sweden
Felipe Boeira Linköping University, Sweden
Hai-Van Dang Plymouth University, UK
Tassos Dimitriou Computer Technology Institute, Greece, and

Kuwait University, Kuwait
Nicola Dragoni Technical University of Denmark, Denmark
Ulrik Franke RISE, Sweden
Kristian Gjøsteen Norwegian University of Science and Technology,

Norway
Dieter Gollmann Hamburg University of Technology, Germany
Nils Gruschka University of Oslo, Norway
Mohammad Hamad Technical University of Munich, Germany
Rene Rydhof Hansen Aalborg University, Denmark
Martin Gilje Jaatun SINTEF Digital, Norway
Meiko Jensen Karlstad University, Sweden
Thomas Johansson Lund University, Sweden
Ulf Kargén Linköping University, Sweden
Ville Leppänen University of Turku, Finland
Stefan Lindskog SINTEF Digital and Karlstad University, Sweden
Olaf Maennel Tallinn University of Technology, Estonia
Raimundas Matulevicius University of Tartu, Estonia
Per Håkon Meland SINTEF ICT, Norway
Antonis Michalas Tampere University, Finland
Simin Nadjm-Tehrani Linköping University, Sweden
Nils Nordbotten Thales Norway and University of Oslo, Norway
Tomas Olovsson Chalmers University of Technology, Sweden
Nicolae Paladi CanaryBit AB and Lund University, Sweden
Arnis Paršovs University of Tartu, Estonia
Shahid Raza RISE SICS, Sweden
Einar Snekkenes Norwegian University of Science and Technology,

Norway
Nikola Tuveri Tampere University, Finland
Emmanouil Vasilomanolakis Technical University of Denmark, Denmark
Øyvind Ytrehus University of Bergen, Norway

Organization ix

Additional Reviewers

Abasi-Amefon Affia
Amir M. Ahmadian
Alexandros Bakas
Mariia Bakhtina
Carlos Barreto
Christian Berger
Guillaume Bour
Gaurav Choudhary
Jacob Dexe
Edlira Dushku
Philipp Eichhammer
Eugene Frimpong
Dimitrios Georgoulia
Bjorn Greve
Gudmund Grov
Kaspar Hageman
Fredrik Heiding
Mubashar Iqbal

Håkon Jacobsen
Felix Klement
Antti Kolehmainen
Johannes Köstler
Chunlei Li
Ameer Mohammed
Danielle Morgan
Karl Norrman
Johannes Olegård
Danny Bøgsted Poulsen
Emanuel Regnath
Mari Seeba
Stewart Sentanoe
Madhusudan Singh
Andrea Skytterholm
Matvey Soloviev
Shreyas Srinivasa
Martin Strand

Contents

Privacy

On the Effectiveness of Intersection Attacks in Anonymous Microblogging 3
Sarah Abdelwahab Gaballah, Lamya Abdullah, Minh Tung Tran,
Ephraim Zimmer, and Max Mühlhäuser

Data Privacy in Ride-Sharing Services: From an Analysis of Common
Practices to Improvement of User Awareness . 20

Carsten Hesselmann, Delphine Reinhardt, Jan Gertheiss,
and Jörg P. Müller

Location Privacy, 5G AKA, and Enhancements . 40
Mohamed Taoufiq Damir and Valtteri Niemi

Local Differential Privacy for Private Construction of Classification
Algorithms . 58

Mina Alishahi, Daan Gast, and Sam Vermeiren

IMSI Probing: Possibilities and Limitations . 80
Daniel Fraunholz, Dominik Brunke, Simon Beidenhauser,
Sebastian Berger, Hartmut Koenig, and Daniel Reti

Attacks and Attack Detection

Honeysweeper: Towards Stealthy Honeytoken Fingerprinting Techniques 101
Mohamed Msaad, Shreyas Srinivasa, Mikkel M. Andersen,
David H. Audran, Charity U. Orji, and Emmanouil Vasilomanolakis

Towards Self-monitoring Enclaves: Side-Channel Detection Using
Performance Counters . 120

David Lantz, Felipe Boeira, and Mikael Asplund

DeCrypto: Finding Cryptocurrency Miners on ISP Networks 139
Richard Plný, Karel Hynek, and Tomáš Čejka

Detection of Voice Conversion Spoofing Attacks Using Voiced Speech 159
Arun Sankar Muttathu Sivasankara Pillai, Phillip L. De Leon,
and Utz Roedig

xii Contents

A Wide Network Scanning for Discovery of UDP-Based Reflectors
in the Nordic Countries . 176

Alexander Bjerre, Andreas Philip Westh, Emil Villefrance,
A S M Farhan Al Haque, Jonas Bukrinski Andersen,
Lucas K. Helgogaard, and Marios Anagnostopoulos

GPU-FAN: Leaking Sensitive Data from Air-Gapped Machines via Covert
Noise from GPU Fans . 194

Mordechai Guri

Secure Protocols and Systems

Simplex: Repurposing Intel Memory Protection Extensions for Secure
Storage . 215

Matthew Cole and Aravind Prakash

Automatic Implementations Synthesis of Secure Protocols and Attacks
from Abstract Models . 234

Camille Sivelle, Lorys Debbah, Maxime Puys, Pascal Lafourcade,
and Thibault Franco-Rondisson

How to Avoid Repetitions in Lattice-Based Deniable Zero-Knowledge
Proofs . 253

Xavier Arnal, Abraham Cano, Tamara Finogina, and Javier Herranz

Security Analysis

Obfuscation-Resilient Semantic Functionality Identification Through
Program Simulation . 273

Sebastian Schrittwieser, Patrick Kochberger, Michael Pucher,
Caroline Lawitschka, Philip König, and Edgar R. Weippl

Malware Analysis with Symbolic Execution and Graph Kernel 292
Charles-Henry Bertrand Van Ouytsel and Axel Legay

WearSec: Towards Automated Security Evaluation of Wireless Wearable
Devices . 311

Bernhards Blumbergs, Ēriks Dobelis, Pēteris Paikens,
Krišjānis Nesenbergs, Kirils Solovjovs, and Artis Rušiņš

Contents xiii

Forensics

Maraudrone’s Map: An Interactive Web Application for Forensic Analysis
and Visualization of DJI Drone Log Data . 329

Tobias Latzo, Andreas Hellmich, Annika Knepper, Lukas Hardi,
Tim Phillip Castello-Waldow, Felix Freiling, and Andreas Attenberger

VinciDecoder: Automatically Interpreting Provenance Graphs into Textual
Forensic Reports with Application to OpenStack . 346

Azadeh Tabiban, Heyang Zhao, Yosr Jarraya, Makan Pourzandi,
and Lingyu Wang

Actionable Cyber Threat Intelligence for Automated Incident Response 368
Cristoffer Leite, Jerry den Hartog, Daniel Ricardo dos Santos,
and Elisa Costante

Author Index . 387

Privacy

On the Effectiveness of Intersection
Attacks in Anonymous Microblogging

Sarah Abdelwahab Gaballah(B) , Lamya Abdullah , Minh Tung Tran ,
Ephraim Zimmer , and Max Mühlhäuser

Telecooperation Lab (TK), Technical University of Darmstadt, Darmstadt, Germany
{gaballah,abdullah,max}@tk.tu-darmstadt.de,

minhtung.tran@stud.tu-darmstadt.de, zimmer@privacy-trust.tu-darmstadt.de

Abstract. Intersection attacks, which are popular traffic analysis
attacks, have been extensively studied in anonymous point-to-point com-
munication scenarios. These attacks are also known to be challeng-
ing threats to anonymous group communication, e.g., microblogging.
However, it remains unclear how powerful these attacks can be, espe-
cially when considering realistic user communication behavior. In this
paper, we study the effectiveness of intersection attacks on anonymous
microblogging systems utilizing Twitter and Reddit datasets. Our find-
ings show that the attacks are effective regardless of whether users post
their messages under pseudonyms or publish them to topics without
attaching identifiers. Additionally, we observed that attacks are feasible
under certain settings despite increasing userbase size, communication
rounds’ length, cover traffic, or traffic delays.

Keywords: Anonymous communication · Traffic analysis ·
Intersection attacks · Microblogging

1 Introduction

Microblogging is one of the most popular forms of online social networking
that attracts millions of users. Twitter, for example, is one of the leading
microblogging services. It had approximately 290.5 million active users world-
wide, monthly, in 2019, with a projected increase to over 340 million users by
2024 [9]. All the known microblogging services are based on a centralized archi-
tecture, that enables those systems to know everything about users’ messages
and interests [28]. These services may collect data about their users and sell
or reveal this information to third parties such as governments. In fact, many
services already do this, for example, Facebook said that it has produced data
for 88% of the U.S. government requests [24]. This type of data disclosure could
endanger many users, including political dissidents, human rights activists, and
people who want to share sensitive information (e.g., about health problems, or
sexual harassment experience, etc.). Therefore, many Anonymous Communica-
tion Systems (ACSs) have been proposed over recent years in order to conceal
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. P. Reiser and M. Kyas (Eds.): NordSec 2022, LNCS 13700, pp. 3–19, 2022.
https://doi.org/10.1007/978-3-031-22295-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22295-5_1&domain=pdf
http://orcid.org/0000-0003-0096-470X
http://orcid.org/0000-0002-6237-7378
http://orcid.org/0000-0003-3001-0093
http://orcid.org/0000-0002-4262-6613
http://orcid.org/0000-0003-4713-5327
https://doi.org/10.1007/978-3-031-22295-5_1

4 S. A. Gaballah et al.

user’s interests from the microblogging service providers, other users, and even
a global adversary (e.g., an internet service provider, a government authority,
or an intelligence agency) who can monitor the network communication, by
means of hiding their metadata (e.g., who is communicating with whom, when,
and how frequently they communicate). Some of these systems are specifically
focused and designed towards social networking scenarios such as microblogging
[1,4,8,10,15,16,20].

The vast majority of the existing ACSs are vulnerable to traffic analysis
attacks [6]. Intersection attacks are one of the most common and powerful types
of traffic analysis attacks [27]. This type of attack takes advantage of the change
in the set of users participating in the system over time. An ACS initially might
ensure that a user is not identifiable within a set of other users, which is called an
anonymity set [21]. However, changes in the communication behaviors of users
(e.g., online and offline time of participating users) will evolve and add up to
further information for the adversary in order to reduce the anonymity set or even
single out (i.e., de-anonymize) specific users. A potentially large anonymity set
can be reduced over time just by monitoring, storing, and repeatedly intersecting
the online status of participating users when new messages are exchanged. To
deduce with absolute certainty that two users are communicating, the adversary
usually needs to launch the attack for a long time [2]. While intersection attacks
are deterministic, there is a probabilistic version. It is called statistical disclosure
attacks, which enables an adversary to estimate the likelihood that a targeted
sender was communicating with a specific recipient [12].

Intersection attacks are commonly used to link sender and recipient in
anonymous point-to-point communication settings. These attacks, however, can
also be applied to anonymous group communication scenarios, such as anony-
mous microblogging [27]. Because user messages are publicly published in the
microblogging scenario, an adversary can leverage the use of the intersection
attacks to link users to their published messages or topics of interest.

The existing literature has studied intersection attacks, statistical disclosure
attacks, and suitable mitigation approaches to those attacks in ACSs extensively
[2,7,12,14,23,25,27]. However, we identified several pitfalls that render those
works incomplete under realistic communication scenarios. First, user commu-
nication behavior often is assumed to follow a Poisson distribution [17]. On the
contrary, by utilizing real-world data collection, it has already been shown that
realistic communication behavior does, in fact, not follow such a distribution [17].
The communication behavior, however, has a huge impact on the effectiveness
of intersection attacks as well as on mitigation measures, as will be shown in
the remainder of this paper. Which is why common assumptions about the user
communication behavior must be reconsidered. Second, proposals of ACSs, such
as [1,3,10], consider constant user participation, i.e., the requirement of users to
be always online and sending messages to the system, as the only way to protect
against intersection attacks. Another approach proposed in [12,27] is grouping
users into anonymity sets and only allows all users to join the system at the
same time and having the same sending rate. Yet, constant user participation,

Intersection Attacks on Anonymous Microblogging 5

homogeneous user joining and message sending does not reflect realistic user
communication behavior either, and enforcing it would significantly reduce the
practicability of ACSs. Third, common mitigation techniques proposed against
intersection attacks suggest either an increase in the size of the userbase as the
anonymity set, a random delay of sending messages to the communication sys-
tem, or utilizing cover traffic to hide real message sending. However, it has been
demonstrated that those mitigation measures cannot provide long-term protec-
tion against intersection attacks [2,11]. Still, a detailed investigation of these
mitigation effects and their usefulness in realistic communication settings and
especially in microblogging scenarios are missing.

To the best of our knowledge, no previous work has provided a practical
investigation which answers the following questions:

– How effective are the intersection attacks on different anonymous microblog-
ging scenarios? Especially,when realistic communication settings are consid-
ered.

– What impact does realistic user communication behavior (e.g., sending rates)
have on these attacks?

– To what extent can common mitigation measures against intersection attacks,
more specifically the increasing in cover traffic, delay, and userbase, facilitate
the attack mitigation under realistic microblogging scenarios?

We believe that answering these questions is critical to understand how and
under what conditions intersection attacks are powerful. Additionally, this under-
standing can facilitate and enhance the development of effective mitigation mea-
sures to protect against intersection attacks in practical ACSs. In this paper, we
address the aforementioned questions by investigating intersection attacks on
two different messaging patterns: pseudonym-based and topic-based messaging
of anonymous microblogging. We use real-world datasets from Twitter and Red-
dit to simulate realistic user communication behavior. We launch the attack to
reveal the identity of the publishing user (i.e., de-anonymize the user), hence
the posts and messages can be linked to the sending user. Using an intersection
attack for the other direction, i.e., to discover which topic a user subscribed to
is beyond our scope1.

This paper is organized as follows: The assumptions, anonymous microblog-
ging messaging patterns, and threat model are all introduced in Sect. 2. Then, in
Sect. 3, we present our intersection attack for each messaging pattern. Following
that, in Sect. 4, we discuss the evaluation results of our experiments. Finally,
Sect. 5 concludes the paper and presents some points for future work.

1 It is noteworthy that a solution for this intersection attack direction has been
addressed already by utilising broadcasting of published messages, i.e., sending every
published message to all users, as seen in [1,4,5]. Nonetheless, broadcasting imposes
a high communication overhead on users, which makes it an inefficient solution.
Thus, more research in this area is clearly needed.

6 S. A. Gaballah et al.

2 Design and Assumptions

In this work, we consider an anonymous microblogging system that has a set of
users U = {u1, u2, ...un}. Each user, ui ∈ U , can independently decide how many
messages to send, and when to send them. Thus, there are no agreements on com-
munication behavior between users, which is closest to commonly used existing
non-anonymous microblogging systems. All messages transmitted between users
and the system are encrypted and padded to the same length i.e., they appear
indistinguishable to any external observer. The users do not include any person-
ally identifiable information (e.g., real names or addresses) in their messages, as
the messages are published publicly on the system. The communication in the
system is assumed to proceed in rounds, R = {r1, r2, ...rw}, and ui is online in
a round rx ∈ R when she sends messages during this round. The system pub-
lishes all messages at the end of the round. It also can support special anonymity
features like cover traffic and the delay of messages.

2.1 Messaging Patterns

To investigate the effectiveness of intersection attacks on different anonymous
microblogging scenarios, we consider two major microblogging messaging pat-
terns which differ based on how users publish their messages.

Pseudonym-Based Messaging Pattern. Every ui uses a pseudonym (i.e., a
fictitious username), p′ ∈ P = {p1, p2, ...pm}, in order to publish her messages
in the system, see Fig. 1(a). The pseudonyms must not contain any personal
information about the users. The system is responsible for ensuring unlinkability
between ui and p′. Any user of the system can read the content published under
every pseudonym but cannot realize the real identity of the pseudonym’s owner.
In this pattern, we assume a one-to-one relationship between the sets of users U
and pseudonyms P , which means that each user ui ∈ U has only one pseudonym
p′ ∈ P and vice versa. The pseudonym is considered online during round rx only
when messages are published under this pseudonym during rx.

Topic-Based Messaging Pattern. Users follow the topic-based pub-
lish/subscribe (pub/sub) paradigm. In this pattern, the users publish their mes-
sages to topics i.e., a user ui who posts a message to a topic t′ ∈ T = {t1, t2, ...tq}
is called a publisher, see Fig. 1(b). As the topics are the focus, publishers do
not need to have any kind of identity (e.g., pseudonyms) on the anonymous
microblogging system. Ensuring unlinkability between ui and t′ is assumed to be
assured by the system. Any user of the system can read every message published
to every topic but cannot know anything about who publishes these messages. In
this pattern, the users U and Topics T have a many-to-many relationship, which
means that t′ can have many publishers and ui can publish to multiple topics.
Additionally, we assume a topic to be active during round rx when it receives
new messages in rx. Furthermore, any user can send messages to multiple topics
in the same round.

Intersection Attacks on Anonymous Microblogging 7

Fig. 1. The publishing process in (a) Pseudonym-based messaging pattern and (b)
Topic-based messaging pattern.

2.2 Threat Model

We assume a global passive adversary A who monitors the whole communica-
tion during the set of rounds R and can learn who participates in each round
and how many messages each participant sends. A does not have any means to
interrupt the traffic by dropping or altering data packets, nor does A gain intel-
ligence about the actual content of the encrypted messages during transmission.
It cannot collude with the anonymous system, but it can corrupt an arbitrary
number of users. Moreover, it can read all published messages every round.

2.3 Delay

The messages can be arbitrarily delayed on the system for a number of rounds
(≤ d rounds) to prevent A from correlating the incoming messages—sent by
the users to the system—with the published ones. A can realize the maximum
allowed delay (d), but it cannot learn the exact number of rounds for which
a message will be delayed. To deal with this issue, when a message is sent in
rx, A shall observe the published content during rx, rx+1, · · · , rx+d−1 as the
message must be published in one of these rounds. Therefore, A will treat these
consecutive rounds as one joint big round.

2.4 Cover Traffic

Users can produce cover traffic (also referred to as dummy messages) to prevent
A from discovering when and how many real messages are sent. Since the system
does not publish cover messages, A can detect the presence of cover traffic if
the total number of sent messages by users is larger than the total number of
eventually published messages. Nonetheless, it is not possible to determine the
exact number of real messages sent by each user. A can only be certain that the
user’s real messages are less than or equal to the number of messages sent by
her.

8 S. A. Gaballah et al.

3 Attacks

In this section, we explain how the adversary can de-anonymize users by employ-
ing an intersection attack, considering the two anonymous microblogging mes-
saging patterns mentioned in Sect. 2.1.

3.1 User-Pseudonym Linking

This attack targets anonymous microblogging systems that are based on the
pseudonym-based messaging pattern. The goal is to identify the pseudonym p′

of a user ui to learn what she publishes. We do not consider a statistical disclosure
attack as the aim is to study what the adversary can learn with absolute certainty.
Thus, we consider A as being successful only when it can narrow down the ui’s
list of potential pseudonyms to only p′.

The naive approach for launching the attack (i.e., link ui to p′) is described
as follows: When ui is online for the first time in round rx, A creates the set
of potential pseudonyms, Pui

, which constitutes the anonymity set of ui at this
point. Pui

contains every online pseudonym pj in rx that meets the following
two requirements:
– pj is online for the first time, i.e., messages are published under this

pseudonym for the first time.
– Mpj

= Mui
, where Mpj

is the number of messages published under pj , and
Mui

is the number of messages sent by ui.

In every subsequent round (rx+1, rx+2, · · ·), if ui sends a message, any pseu-
donym pl ∈ Pui

that does not publish new messages, shall be removed from Pui
.

When the size of Pui
drops to only one, it means that the pseudonym p′ of ui is

identified. However, this naive approach does not consider the following issues:
– ui may send only dummy messages either in her first round (rx) or in subse-

quent rounds. In this case, ui will be online but her pseudonym p′ will not
be online as the dummy messages are not published on the system.

– ui may send both real and dummy messages either in rx or in subsequent
rounds. In this case, p′ will have published fewer messages than what ui has
sent (i.e., Mp′ < Mui

).

To overcome these issues and perform a more powerful intersection attack
for linking a user to her pseudonym, we consider the following approach for our
investigations. It is based on the observation that the attack can be more efficient
if A does not only consider the online rounds of ui but also her offline rounds. In
other words, A can track pseudonyms in Pui

which are online while ui is offline
and excludes them from Pui

which might lead to faster convergence:

Step 1. Creating the initial anonymity set.
Let Pui

be the set of potential pseudonyms for ui (anonymity set). Initially,
it includes every pj that publish messages in rx for the first time while at the
same time ui is online for the first time as well. Additionally, pj has published
the same or a fewer amount of messages compared to the number of messages
sent by ui, i.e., Mpj

≤ Mui
.

Intersection Attacks on Anonymous Microblogging 9

Step 2. Verifying whether p′ is in Pui
.

A compares the total number of online users to the total number of online
pseudonyms during rx. If they are equal, it means all online users published real
messages, so Pui

definitely includes p′. In such a case, a flag f is set to true,
which indicates that no new pseudonyms can be added to Pui

.

Step 3. Updating Pui
during every subsequent round.

(a) Every pl that fulfills one of the following conditions will be removed from
Pui

:
– it is online while ui is offline.
– Mpl

> Mui
.

– it is offline while ui is online and the number of online users is the same
as the number of online pseudonyms, i.e., p′ is definitely online in this
particular round. (When this happens, the flag f must be set to true.)

(b) If ui is online and f is false, A adds to Pui
every pseudonym pj that is

online for the first time, and Mpj
≤ Mui

.

Step 4. Repeat Step 3 until: the flag f is true and Pui
contains only one

pseudonym (p′).
Figure 2 shows a simple example of the proposed method. In this example, we

assume a group of four users U = {u1, u2, u3, u4} publishing during four rounds
R = {r1, r2, r3, r4}, and the goal is to determine each user’s pseudonym. A can
learn the following over each round:

◦ r1: Pu1 = {p2, p3}, Pu2 = {p2, p3}, Pu3 = {p2, p3}
◦ r2: Pu1 = {p1, p3, p4}, Pu2 = {p2}, Pu3 = {p1, p3, p4}, Pu4 = {p1, p4}
◦ r3: Pu1 = {p1, p3, p4}, Pu2 = {p2}, Pu3 = {p1, p3}, Pu4 = {p1, p4}
◦ r4: Pu1 = {p1}, Pu2 = {p2}, Pu3 = {p3}, Pu4 = {p4}
Intuitively, the more rounds that are observed, the more information is gath-

ered; thus, the likelihood of a pseudonym being exposed increases. As we dis-
cussed in Sect. 2.2, A does not know the actual content of the messages sent, so
it cannot distinguish between the cover messages and the real ones.

3.2 User-Topic Linking

This attack targets anonymous microblogging systems that use a topic-based
messaging pattern. The adversary’s goal is to identify the topic(s) on which ui is
publishing extensively. In this attack, a ranking-based approach [18] is utilized
for our investigations, where A keeps a list of potential interest topics for user
ui, let’s call it Tui

. Each topic tk ∈ Tui
is assigned a score (initially zero). The

topic(s) with the highest score is most likely to be the one with the most posts
by the user. This attack is especially effective when the user has been immersed
in a specific topic for a long time. The scores of topics can be calculated by A
using the methods outlined below.

10 S. A. Gaballah et al.

Fig. 2. Example of the User-Pseudonym Linking Attack

Method 1: In every round rx in which ui is online, A adds to Tui
any topic

that is active for the first time. Then, it updates the scores of topics that are in
Tui

by taking the following actions:

– increasing the score of each tk ∈ Tui
by a number a if it is active in rx.

– decreasing the score of each tk ∈ Tui
by a number b if it is inactive in rx.

A cannot realize the topic(s) on which ui publishes messages. Therefore, it
considers every active topic if ui is online as a potential interest and it increases
the score of this topic. To expand the score gap between interesting topics and
not-interesting ones, A decreases the score of topics that are inactive when ui is
online. It does not exclude these topics, as ui may post messages on them during
subsequent rounds.

To maintain high scores for the topics that are in fact interesting to ui, but
that are not posted to by ui in every round, i.e., they are sometimes inactive
even though ui is online, the increasing number a should be greater than the
decreasing number b.

Figure 3 shows a simple example for using Method 1 to update the scores
of the topics over rounds, assuming ui is online during the rounds R =
{r1, r2, r3, r4}. In this example, at the end of the four rounds, t4 is assumed
to be the most likely interesting topic for ui because it has the highest score.
For simplicity, a and b have been set to one, so the increasing and decreasing of
each topic’s score is done by one. Later, in the evaluation, we discuss further the
increasing and decreasing numbers.

Method 2: Some topics are so popular that they are active throughout the
majority of the rounds. By just observing rounds in which ui is online, these
topics will get high scores in Tui

even if they are not of any interest to the user.
To tackle this issue, in addition to updating the topics’ scores during rounds in
which ui is online (similar to Method 1), A can do the following:

– for every round in which ui is offline, A adds to Tui
any topic that is active

for the first time, and decreases the score of each tk ∈ Tui
by a number b if it

is active.

Intersection Attacks on Anonymous Microblogging 11

Fig. 3. Example of the User-Topic Linking Attack

That enables excluding irrelevant highly active topics while retaining relevant
highly active topics as top-ranked topics in Tui

.

Method 3: ui may be interested in several topics that are not widely popular.
Since ui may not publish on all of these topics every time she goes online, some
of them may be inactive when she is online. Reducing the scores of these topics
every time ui is online can result in a significant drop in their scores. Thus, in
order to keep high scores for these topics, in this method, A does not reduce the
score of every inactive tk ∈ Tui

in the rounds in which ui is online. The steps
of this method, executed every round regardless whether ui is online or not, are
as follows:

– adding to Tui
any topic that is active for the first time.

– increasing the score of each tk ∈ Tui
by a number a if it is active when ui is

online.
– decreasing the score of each tk ∈ Tui

by a number b if it is active when ui is
offline.

4 Evaluation

In this section, we measure the effectiveness of the presented intersection attacks
for linking a user to a pseudonym and/or topic on anonymous microblogging.
The communication is simulated using two real-world datasets collected from
two popular microblogging platforms, Twitter and Reddit. Users’ messages are
assigned to communication rounds based on their timestamps in the datasets. All
rounds have the same length of time. We tested three round length values: 30 min
(1,800 s), 1 h (3,600 s), and 2 h (7,200 s), where an increase in the round length
usually means an increase in the number of users participating in the round, i.e.,
anonymity set size. To simulate the adversary A, a logger was implemented to
record all traffic generated by users and all messages posted on the anonymous
microblogging system during rounds. The data gathered by the logger serves
as input for an analyzer, which executes the attacks. Our simulation prototype
is implemented using Java and Python. We conducted the experiments on a

12 S. A. Gaballah et al.

machine equipped with a 16-core Intel Xeon E5-2640 v2 processor and 64 GB of
RAM.

Datasets. The first dataset is a collection of records extracted from Twitter
over the course of the entire month of November 2012 [13,19]. This dataset con-
tains 22, 534, 846 tweets, 6, 914, 561 users, and 3,379,976 topics, referred to as
hashtags. The second dataset is collected by us from Reddit for the entire month
of October 2021. This dataset contains posts and comments from 1,638,157 dif-
ferent users and 3,403 different topics, referred to as subreddits. Both datasets
include a timestamp, user id, and topic (hashtag/subreddit) at each record.

Fig. 4. The distribution of users based on sending rates (userbase size = 1 million)

Users. To investigate the impact of the number of users on the performance
of the intersection attacks, in our experiments, we tested userbases of different
sizes: 10,000, 100,000, and 1,000,000. Each userbase is created by choosing users
randomly and independently from the datasets. To study the influence of user
communication behavior on the attacks, we looked into the relationship between
how many messages a user sends (user’s sending rates) and the vulnerability to
the attack. For that, we focused on three groups of sending rates in particular:
(10 − 100) messages, (100 − 1, 000) messages, and (> 1, 000) messages. Figure 4
shows the percentage of users who belong to each group in the userbase of
one million users. The shown distribution was found to be nearly the same in
10,000 and 100,000 userbases. As illustrated in Fig. 4, most Reddit users sent
between 10 and 100 messages during the observed month, which is different from
the Twitter dataset. The difference in sending rates between users on Twitter and
Reddit is expected, given that the two platforms have different service models.

Cover Traffic and Delay. To study the implications of using cover traffic on
the effectiveness of the intersection attacks, each user generates a fixed number
of dummy messages to hide every single real message (this is the same cover
traffic generation approach used in [22]). The generated dummy messages are

Intersection Attacks on Anonymous Microblogging 13

sent in random rounds to create noise in the user’s sending rate. We tested three
different cover-to-real message ratios: 1:1, 5:1, and 10:1. Similarly, to study the
effectiveness of the delay on the intersection attacks, we evaluated three values
for the maximum delay d in terms of number of rounds: one round, three rounds,
and five rounds. Messages are delayed arbitrary rounds up to at most d rounds.

4.1 User-Pseudonym Linking

To evaluate the effectiveness of the user-pseudonym linking attack, we computed
the maximum amount of time required to link a user to her pseudonym (de-
anonymization), as shown in Fig. 5(a) and Fig. 5(b). For instance, A needs a
maximum of 200 rounds to learn the pseudonym of any user—regardless of the
sending rate—when the userbase size is 100,000 users and the round length is
3,600 seconds, see Fig. 5(a). While as illustrated in Fig. 5(b), when the system
has one million users and the round length is 7,200 seconds, then A needs a
maximum of 210 rounds to learn the pseudonym of any user who has sent more
than 1,000 messages. As depicted in Fig. 5(a) and Fig. 5(b), the time needed for
the de-anonymization increases when the round length, the number of users, or
the sending rates increase. Nonetheless, having a large round length or a large
user base still does not provide long-term protection, especially for users with
high sending rates.

Fig. 5. The maximum time needed to de-anonymize users in the Twitter dataset. (a)
studying the impact of various userbase sizes, where the userbase includes users of
different sending rates, (b) studying the impact of sending rates (userbase size = 1
million).

14 S. A. Gaballah et al.

Fig. 6. The impact of cover traffic on the number of de-anonymized users (userbase
size = 1 million, round length = 1h). (a) Twitter, (b) Reddit.

In Fig. 6(a) and Fig. 6(b), we show the impact of using cover traffic on the
number of identified users in the Twitter and Reddit datasets, respectively.
According to our findings, sending random cover traffic increases the number
of required observed rounds. However, it can only slightly reduce the number
of de-anonymized users by the end of the observation period. For example,
if users randomly send 10 dummy messages for every real message (i.e., ratio
10:1)—that definitely leads to high bandwidth overhead—, the adversary still
can identify pseudonyms of over 70%, 80%, and 90% of users who send (10−100),
(100−1, 000), and (> 1, 000) messages, respectively, see Fig. 6(a). We think that
the main reason behind the ineffectiveness of cover traffic in protecting the users
is the randomness in generating and sending the dummy messages, which seems
incapable of creating anonymity sets that can provide long-term protection for
the users’ pseudonyms.

Fig. 7. The impact of delay on the number of de-anonymized users (userbase size = 1
million, and round length = 1h). (a) Twitter, (b) Reddit.

Intersection Attacks on Anonymous Microblogging 15

In Fig. 7(a) and Fig. 7(b), we illustrate how delaying messages can help in
degrading the effectiveness of the user-pseudonym linking attack. Since the
adversary cannot learn the exact number of rounds for which a message has
been delayed, it treats every message as if it has been postponed by d rounds.
That results in very large anonymity sets, hence, it reduces the attack perfor-
mance. Using the delay is more powerful on Twitter than on Reddit, especially
for users with sending rate of more than 100 messages. That is because nearly
60% of users in the Twitter dataset post more than 100 messages, whereas there
are only about 25% of users in the Reddit dataset who have similar sending rates,
see Fig. 4. In the Reddit dataset, for example, there are only five users who have
sent more than 1,000 messages. The communication behaviors of these five users
are also noticeably different, making it difficult to conceal each one’s behavior
using delay. Nonetheless, it appears that cover traffic is more effective in pro-
tecting these users as shown in Fig. 6(b).

4.2 User-Topic Linking

The increasing and decreasing numbers (a and b), described in Sect. 3.2, were
tested using several values. We found that in the Twitter dataset, the best results
can be produced for all userbases when a = 5 and b = 1. While in the Reddit
dataset, the best values are a = 7 and b = 1.

Fig. 8. The impact of increasing the userbase size on the effectiveness of three methods
in linking users to topics (sending rate group is (100 − 1, 000), and round length = 1h).
(a) Twitter (a = 5, b = 1), (b) Reddit (a = 7, b = 1).

In Fig. 8(a) and Fig. 8(b), the effectiveness of the user-topic linking attack
is studied using each of the three methods of computing topic scores, described
in Sect. 3.2. As demonstrated in both figures, any increase in the userbase leads
to a significant decrease in the number of de-anonymized users. Furthermore,
predictably, the attack is greatly influenced by the users’ sending rates, i.e.,

16 S. A. Gaballah et al.

users posting more messages are much more vulnerable to the attack. In the
figures, we show only the results of users who sent (100−1, 000) messages.

The second and third methods produce significantly better results than the
first method, see Fig. 8(a) and Fig. 8(b). Since the irrelevant topics are filtered
out in the second and third methods by decreasing the scores of topics that are
active when the user is offline. The third method appears to behave similarly to
the second, implying that lowering the scores of inactive topics when the user is
online has little effect on the results.

The first method seems to be far more effective on Reddit than on Twitter,
implying that updating the scores of topics during users’ offline rounds has less
impact on Reddit than on Twitter. That is due to differences in the two datasets;
e.g., Reddit has a smaller number of high popular topics compared to Twitter.

Fig. 9. The impact of delay and cover traffic on the effectiveness of various methods
in user-topic linking (sending rate group is (100 − 1, 000), round length = 1 h). (a)
Twitter (a = 5, b = 1), (b) Reddit (a = 7, b = 1).

Figure 9(a) and Fig. 9(b) show the effect of delaying messages and generating
cover messages on the percentage of de-anonymized users when method 3 is con-
sidered. The delay, like in the first attack, is shown to be a better countermeasure
than cover traffic. For example, if the userbase size is 10,000 and the maximum
delay is 3 hours, the percentage of the de-anonymized users is reduced from 57%
to 25%. While using five cover messages for each real message (i.e., 5:1) can only
decrease the percentage of de-anonymized users to 51%, see Fig. 9(a).

Overall, the user-pseudonym linking attack is far more effective than the user-
topic linking attack. That is mainly for two reasons. First, it is due to the many-
to-many relationship between users and topics, whereas users and pseudonyms
have a one-to-one relationship. The user may publish on various topics every
round, and each topic can get messages from different users over rounds. The
second reason is that some of the topics can be active for the majority of the
time. Thus, it is difficult to distinguish whether the user publishes on that topic
or on another one.

Intersection Attacks on Anonymous Microblogging 17

5 Related Work

Anonymous Microblogging. Several systems have been proposed to sup-
port anonymous microblogging scenarios. The methods used to achieve sender
anonymity differ between these systems. The commonly used methods are
mixnets (Atom [16] and Riffle [15]), DCnets (Dissent [5]), private information
retrieval (Blinder [1], Riposte [4], 2PPS [10], and Spectrum [20]), and random
forwarding (AnonPubSub [8]). For receiver anonymity, systems like Dissent,
Riposte, Blinder, Atom, and Spectrum depend on the concept of broadcasting
messages to all users. While systems like AnonPubSub, 2PPS, and Riffle have
addressed this goal by proposing anonymous multicast communication mecha-
nisms.

Intersection Attacks. Many studies on intersection attacks and statistical
disclosure attacks have been conducted. In [7,14,25], researchers demonstrated
the efficacy of statistical disclosure attacks against mixnets-based systems, espe-
cially when the systems support full bidirectional communications [7]. Statistical
disclosure attacks have been proven to be effective in attacking the Signal appli-
cation’s sealed sender mechanism in order to deduce the relationship between the
sender and the recipient of an end-to-end encrypted message stream [18]. Inter-
section attacks combined with social network analysis were shown in [26] to be
capable of determining the social relationships of a targeted social network user.
A variant of statistical disclosure attacks based on an Expectation-Maximization
algorithm has also been demonstrated to be feasible on anonymous email net-
works [23].

6 Conclusion and Future Work

In this paper, we conducted intersection attacks in anonymous microblogging
against pseudonym-based and topic-based messaging patterns. The findings
demonstrate that the attacks are effective and practical in de-anonymizing users,
particularly when they post messages under pseudonyms. In the user-topic link-
ing attack, increasing the user base has proven to be a far more effective miti-
gation solution than in the user-pseudonym linking attack. The users with high
sending rates are found to be more vulnerable to the attacks, especially when
the number of these users is small. We evaluated the impact of using delay
and cover traffic, which are common mitigation techniques against intersection
attacks. According to our results, delaying messages for several hours can reduce
the performance of intersection attacks better than cover traffic. However, both
delay and cover traffic do not completely prevent intersection attacks because
they only extend the time at which users lose their anonymity. Furthermore,
they introduce significant latency and bandwidth overhead, making them less
convenient for all scenarios.

In the future, we would like to investigate even more improved and sophisti-
cated intersection attacks in the topic-based messaging pattern. Additionally, we

18 S. A. Gaballah et al.

will work on developing suitable mitigation approaches which can create stable,
long-lived anonymity sets without imposing high latency or bandwidth overhead
on users while considering realistic user communication behavior, such as users’
ability to join the anonymity system at any time and have various sending rates.

Acknowledgements. This work was partially supported by funding from the German
Research Foundation (DFG), research grant 317688284. We thank Tim Grube for his
insightful comments on an earlier draft of the manuscript. We would also like to thank
the anonymous NordSec reviewers for their feedback.

References

1. Abraham, I., Pinkas, B., Yanai, A.: Blinder-scalable, robust anonymous committed
broadcast. In: Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, pp. 1233–1252 (2020)

2. Berthold, O., Langos, H.: Dummy traffic against long term intersection attacks.
In: Dingledine, R., Syverson, P. (eds.) PET 2002. LNCS, vol. 2482, pp. 110–128.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36467-6 9

3. Cheng, R., et al.: Talek: private group messaging with hidden access patterns. In:
Annual Computer Security Applications Conference, pp. 84–99 (2020)

4. Corrigan-Gibbs, H., et al.: Riposte: an anonymous messaging system handling
millions of users. In: 2015 IEEE Symposium on Security and Privacy, pp. 321–
338. IEEE (2015)

5. Corrigan-Gibbs, H., Ford, B.: Dissent: accountable anonymous group messaging.
In: Proceedings of the 17th ACM Conference on Computer and Communications
Security, pp. 340–350 (2010)

6. Danezis, G., Serjantov, A.: Statistical disclosure or intersection attacks on
anonymity systems. In: Fridrich, J. (ed.) IH 2004. LNCS, vol. 3200, pp. 293–308.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30114-1 21

7. Danezis, G., Diaz, C., Troncoso, C.: Two-sided statistical disclosure attack. In:
Borisov, N., Golle, P. (eds.) PET 2007. LNCS, vol. 4776, pp. 30–44. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-75551-7 3

8. Daubert, J., et al.: Anonpubsub: anonymous publish-subscribe overlays. Comput.
Commun. 76, 42–53 (2016)

9. Dixon, S.: Number of twitter users worldwide from 2019 to 2024. https://www.
statista.com/statistics/303681/twitter-users-worldwide/ (2022)

10. Gaballah, S.A., et al.: 2PPS-publish/subscribe with provable privacy. In: 2021 40th
International Symposium on Reliable Distributed Systems (SRDS), pp. 198–209.
IEEE (2021)

11. Grube, T., Thummerer, M., Daubert, J., Mühlhäuser, M.: Cover traffic: a trade of
anonymity and efficiency. In: Livraga, G., Mitchell, C. (eds.) STM 2017. LNCS,
vol. 10547, pp. 213–223. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-68063-7 15

12. Hayes, J., Troncoso, C., Danezis, G.: TASP: towards anonymity sets that persist.
In: Proceedings of the 2016 ACM on Workshop on Privacy in the Electronic Society,
pp. 177–180 (2016)

13. Karissa, M., et al.: Truthy: enabling the study of online social networks. In: Pro-
ceedings 16th ACM Conference on Computer Supported Cooperative Work and
Social Computing Companion (CSCW) (2013)

https://doi.org/10.1007/3-540-36467-6_9
https://doi.org/10.1007/978-3-540-30114-1_21
https://doi.org/10.1007/978-3-540-75551-7_3
https://www.statista.com/statistics/303681/twitter-users-worldwide/
https://www.statista.com/statistics/303681/twitter-users-worldwide/
https://doi.org/10.1007/978-3-319-68063-7_15
https://doi.org/10.1007/978-3-319-68063-7_15

Intersection Attacks on Anonymous Microblogging 19

14. Kedogan, D., Agrawal, D., Penz, S.: Limits of anonymity in open environments. In:
Petitcolas, F.A.P. (ed.) IH 2002. LNCS, vol. 2578, pp. 53–69. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36415-3 4

15. Kwon, A., et al.: Riffle: an efficient communication system with strong anonymity.
Proc. Priv. Enhancing Technol. 2016(2), 115–134 (2016)

16. Kwon, A., et al.: Atom: horizontally scaling strong anonymity. In: Proceedings of
the 26th Symposium on Operating Systems Principles, pp. 406–422 (2017)

17. Madani, S.: Improving security and efficiency of mix-based anonymous communi-
cation systems. PhD thesis, RMIT University (2015)

18. Martiny, I., et al.: Improving signal’s sealed sender. In: The Internet Society, NDSS
(2021)

19. McKelvey, K., et al.: Design and prototyping of a social media observatory. In:
Proceedings of the 22nd International Conference on World Wide Web Companion,
WWW 2013 Companion, pp. 1351–1358 (2013)

20. Newman, Z., et al.: Spectrum: high-bandwidth anonymous broadcast with mali-
cious security. Cryptol. ePrint Arch. (2021)

21. Pfitzmann, A., Hansen, M.: A terminology for talking about privacy by data mini-
mization: anonymity, unlinkability, undetectability, unobservability, pseudonymity,
and identity management (2010)

22. Piotrowska, A.M.: Studying the anonymity trilemma with a discrete-event mix
network simulator. In: Proceedings of the 20th Workshop on Workshop on Privacy
in the Electronic Society, pp. 39–44 (2021)

23. Portela, J., et al.: Disclosing user relationships in email networks. J. Supercomput.
72(10), 3787–3800 (2016)

24. Thorbecke, C.: Facebook says government requests for user data have reached all-
time high. https://abcnews.go.com/Business/facebook-government-requests-user-
data-reached-time-high/story?id=66981424 (2019)

25. Troncoso, C., Gierlichs, B., Preneel, B., Verbauwhede, I.: Perfect matching disclo-
sure attacks. In: Borisov, N., Goldberg, I. (eds.) PETS 2008. LNCS, vol. 5134, pp.
2–23. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70630-4 2

26. Trujillo, A.G.S., Orozco, A.L.S., Villalba, L.J.G., Kim, T.-H.: A traffic analysis
attack to compute social network measures. Multimed. Tools Appl. 78(21), 29731–
29745 (2019)

27. Wolinsky, D., et al.: Hang with your buddies to resist intersection attacks. In: Pro-
ceedings of the 2013 ACM SIGSAC Conference on Computer & Communications
Security, pp. 1153–1166 (2013)

28. Xu, T., Chen, Y., Fu, X., Hui, P.: Twittering by cuckoo: decentralized and socio-
aware online microblogging services. In: Proceedings of the ACM SIGCOMM 2010
Conference, pp. 473–474 (2010)

https://doi.org/10.1007/3-540-36415-3_4
https://abcnews.go.com/Business/facebook-government-requests-user-data-reached-time-high/story?id=66981424
https://abcnews.go.com/Business/facebook-government-requests-user-data-reached-time-high/story?id=66981424
https://doi.org/10.1007/978-3-540-70630-4_2

Data Privacy in Ride-Sharing Services:
From an Analysis of Common Practices

to Improvement of User Awareness

Carsten Hesselmann1(B), Delphine Reinhardt2, Jan Gertheiss3,
and Jörg P. Müller1

1 Clausthal University of Technology, Adolph-Roemer-Straße 2A,
38678 Clausthal-Zellerfeld, Germany

{carsten.hesselmann,joerg.mueller}@tu-clausthal.de
2 Georg August University Göttingen, Wilhelmsplatz 1, 37073 Göttingen, Germany

reinhardt@cs.uni-goettingen.de
3 Helmut Schmidt University, Holstenhofweg 85, 22043 Hamburg, Germany

jan.gertheiss@hsu-hh.de

Abstract. Individuals are frequently confronted with privacy-related
decisions under uncertainty especially in online contexts. The resulting
privacy concerns are a decisive factor for individuals to (not) use online
services. In order to support individuals to make more informed deci-
sions, we assess the current state of practice of certain online services.
This analysis is focused on ride-sharing and includes popular services in
Germany, Austria, and Switzerland and we investigate how they handle
user data. The results show that services include a wide-ranging set of
personal data and lack standardization. Furthermore, they offer limited
privacy-related features. Based on this analysis, we developed a Trans-
parency Enhancing Technology in the form of a browser extension that
informs users about data practices of the services at the time of data dis-
closure. In addition to this, we conducted a scenario-based online exper-
iment with a representative sample to evaluate the usability of our tool
and its effect on users’ concerns and behavior. Results show significant
improvements in awareness and decision reflection with limited decrease
in disclosure rates of personal data.

Keywords: Data privacy · Disclosure behavior · Sharing economy ·
Transparency enhancing technology

1 Introduction

Privacy has been a topic of expanding interest for researchers, economists, and
regulators alike [37]. This is a distinct indicator that the recent developments in
data collection and processing are problematic as privacy regulations and privacy
research are reactive areas [7]. More specifically, individuals – also referred to as

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. P. Reiser and M. Kyas (Eds.): NordSec 2022, LNCS 13700, pp. 20–39, 2022.
https://doi.org/10.1007/978-3-031-22295-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22295-5_2&domain=pdf
https://doi.org/10.1007/978-3-031-22295-5_2

Data Privacy in Ride-Sharing Services 21

users in this work – frequently make privacy-related decisions under uncertainty
as a consequence of incomplete information and information asymmetry [3]. This,
in turn, results in a lack of transparency and control over personal data while
increasing individuals’ anxiety and concern [6]. This is substantiated by examples
such as the misuse of web browsers’ device battery API by companies to increase
prices [29] and the growing market for online personal data which stays obscure
and out of reach for the individual [4]. Tools and technologies that try to aid
individuals in their privacy choices exist in physical (shutter for privacy webcams
[24]) and in digital form (tools that help with privacy choices [12]) but are scarce
in numbers.

Digital data collection is substantially easier and more broadly applied com-
pared to the physical world. In addition, concerns about digital privacy are sim-
ilar to concerns in the physical world [48]. Therefore, they have to be taken into
consideration from the stakeholders of any data collection and processing. More-
over, the research on how the privacy practices of companies affect individuals
is limited [6] and needs to be extended on.

This applies especially well to the sharing economy – a term summarizing
Peer-to-Peer (P2P) markets for the temporary share or rental of goods – as
sharing blends borders between the online and offline [33] as well as the private
and the economic spheres [39]; in this work we focus on services for sharing rides.
Markets in the sharing economy are partly based on reputation systems which
enable consumers to evaluate other (unknown) participants in the market based
on crowd-sourced information [36]. In addition to that, the quality of interactions
in P2P markets can vary greatly depending on each individual and the market
is regulated by reciprocity [31]. For these reasons, user retention and loyalty are
of major importance and any barriers and impediments should be reduced. One
of the dominant factors that prevent participation and transaction execution in
e-commerce and the sharing economy are privacy concerns [1,16,44].

The topic of data collection and disclosure in sharing services is complex
and equivocal. The disclosure of personal information required to gain access to
(ride-sharing) services is applied in a ask-on-first-use principle – typically used
in mobile applications – which is insufficient to match individuals’ preferences
[20,49] and, furthermore, occurs at an early stage of digital interaction, making
the individual feel hopeless about their data [21]. Supporting an individual’s
assessment of privacy choices is a needed area of research [12] as users are willing
to rethink their decision when provided with a plausible reason [23].

In this paper, we present the results of our ongoing research on privacy con-
cerns and disclosure behavior in the sharing economy. Our goal is to make data
practices of ride-sharing services more transparent for the user. Therefore, we
decided to design and implement a TET in the form of a browser extension that
adds relevant information to the sign-up process and later data disclosures — its
functionality is depicted with a simplified example in Fig. 1 and further detailed
in Sect. 4. There are multiple reasons for our decision to create a TET. Firstly,
personal preferences surrounding privacy are highly subjective [38]. Secondly,
recent research has shown that individuals not only have differing preferences

22 C. Hesselmann et al.

Fig. 1. Simplified registration form without a) and with b) the proposed TET

about partly giving up control but prefer to remain in control of their deci-
sions [11,21,23,26]. Thirdly, incomplete information hinders privacy decisions
[2] especially due to the disconnect between data collection and its usage. This
disconnect is felt on the users side as lack of awareness about the data usage [49].
Lastly, transparency positively affects individuals’ reaction and a lack of it could
result in future backlash [6] as lack of awareness is one of the key components
of privacy concerns [34]. In consequence of this, we chose the Internet Users’
Information Privacy Concern (IUIPC) metric [25] to evaluate the effects of our
tool on users’ privacy concerns. It is designed specifically to fit privacy research
in an online context. In addition to that, the IUIPC statements used to assess
an individual’s privacy concerns are divided into the three dimensions control,
collection, and awareness which fit the aforementioned issues surrounding the
control over the data, the online data disclosure, and the lack of transparency.

The contributions of this paper are threefold. After reviewing related research
in Sect. 2, we analyze the state of practice of popular ride-sharing services in
Sect. 3 and identify differences in data practices and privacy-related features,
addressing the following Research Questions (RQs):

RQ 1: What personal data are commonly included in ride-sharing services?
RQ 2: How much of the personal information is exposed to other individuals?
RQ 3: What privacy-related features do services for ride-sharing offer?

Our analysis shows that privacy-related features are rare. In addition, most
services’ transparency about data practices could be improved, as opt-out
options are commonly difficult to access [13]. A preliminary study [17] based
on this analysis showed that the differences in data practices affect users’ pri-
vacy concerns and their disclosure behavior. However, the data was attained in
a self-reporting manner which usually correlates less with actual behavior.

Therefore, we implemented a tool which integrates privacy-related informa-
tion into the websites of ride-sharing services via an icon-based approach, as
described in Sect. 4. The tool is a browser extension that works with all common
browsers. The goal of this is to empower individuals to make a more informed
decision when deciding about disclosing personal information. We formulated
the following RQs for the development of our tool:

Data Privacy in Ride-Sharing Services 23

RQ 4: How much personalization and automation is applicable?
RQ 5: Which technical approach is applicable for the described goal?
RQ 6: Which design approach is suitable?
RQ 7: How can long-term usefulness be ensured and data set kept up-to-date?

Subsequently, as a first evaluation of our tool, we conducted a scenario-based
experiment with a fictional ride-sharing service MyCarPool and asked partici-
pants to create a personal profile during the experiment, as discussed in Sect. 5.
The sample (n = 1093) was representative of the German online population.
Our goal was to answer the following RQs:

RQ 8: Do the icons change the participant’s privacy concerns?
RQ 9: Do the icons change the participant’s decision about data disclosure?
RQ 10: Do the participants perceive and understand the icons?
RQ 11: Are the participants aware of how much data they actively disclosed?
RQ 12: Do the participants use or perceive the available profile settings?
RQ 13: What is the most helpful information for the participants?

We used the IUIPC metric with its dimensions control, collection, and aware-
ness to assess participants’ privacy concerns and observed the disclosure of per-
sonal information. We compared the results of the control and test group with
logistic regression models for effect size and significance, as discussed in Sect. 6.
The results indicate significant effects on users’ awareness and (partly) collec-
tion. Furthermore, the disclosure rates are affected for certain combinations of
icon and personal data.

2 Related Work

Privacy research is multifaceted. We start by mentioning a set of notable works
which include similar approaches based on visual cues, data disclosure, and trans-
parency improvements. Similar to [22], we analyze the disclosure behavior during
a sign-up process and aim to improve the transparency of underlying data prac-
tices for the individual based on visual cues. A key difference from their work is
that we do not analyze affection in our experiment and therefore do not include
framing in our visual cues. Instead, the visual and textual cues in our experiment
are designed and formulated neutrally. Furthermore, our experiment is adjusted
to the sharing economy and includes common practices based on a prior analysis
of services. Therefore, it contributes specifically to this field of research.

The process of signing up for digital services is similar to the installation
process of mobile applications at least as far as the disclosure of information is
concerned. It is mandatory to disclose a set of personal information to complete
a sign-up process. Equally, the installation of a mobile application demands the
granting of permissions, which in turn leads to the disclosure of a variety of
data. [18] study individuals’ disclosure behavior during the installation process
of mobile applications by adding visual cues hinting at potentially dangerous

24 C. Hesselmann et al.

permissions. In consequence, the authors use the Mobile Users’ Information Pri-
vacy Concern (MUIPC) metric instead of IUIPC which is used in our work.
Additionally, our work does not include a three-color approach which typically
conveys implicit information – for example, by using green, yellow, and red visual
cues – as we firstly wanted to evaluate the effects of visual cues without framing.
Furthermore, we do not include individuals’ general privacy concerns as a sep-
arate set of questions in order to compare their decisions with their self-stated
attitudes because we compare the results from the test and control group. In
addition to that, the IUIPC metric includes broad privacy statements and the
visual cues used in our work include the most imminent consequences of poten-
tial data disclosure by highlighting the data practices of the service and paying
emphasis specifically to other individuals’ access to the personal information.

Similarly to the installation of mobile applications, [20] investigate users’
knowledge about browser extensions and their preferences for installation noti-
fications. This directly relates to our proposed tool as it is a browser extension
and we have incorporated minimal permission requests and limit the extension’s
activity to relevant websites of ride-sharing services. Furthermore, [20] found that
users prefer more extensive dialogues with examples of what data is potentially
accessed. We integrate this finding in our implementation and offer a summary
function that includes all relevant data which are otherwise communicated via
individual icons across the website and its sub-pages. [13] measure how risk-
based icons (icons that convey the result of a risk analysis) can lead to a more
informed consent of individuals. Our approach shows similarity to the work of
[13] as both aim at providing means of comparability between different services
and policies respectively. However, in contrast to [13], our work focuses on data
disclosure instead of privacy policies.

Furthermore, [9] evaluate how different explanations affect users’ satisfac-
tion with an algorithmic decision. Similarly, [8] compare different explanation
styles to evaluate users’ perceived justice of a given algorithmic decision. While
both works are related to our work in terms of improving transparency, the goal
is different. The aforementioned works focus on explaining decisions made on
already collected data while the work presented in this paper focuses on trans-
parency of data practices before a disclosure decision is made. In summary, our
work contributes to the privacy research specifically for the sharing economy by
evaluating the disclosure behavior of individuals during a sign-up process in a
scenario-based experiment without decision-nudging or framing.

3 Analysis of Ride-Sharing Services

To assess the current state of practice of ride-sharing services and how transpar-
ent they present their practices to the user for RQs 1–3, we analyzed the websites
of the most popular ride-sharing services in Germany, Austria and Switzerland,
according to various ratings [14,41–43]. The results cover 11 ride-sharing services
and 39 data attributes in total (after merging similar attributes, as summarized
in Table 1). Our analysis shows which data attributes are included in a service

Data Privacy in Ride-Sharing Services 25

Table 1. Merged data attributes

Contact information Cellphone number, landline number, fax number

Social media Facebook, YouTube, personal website

Personal description Personal characteristics, self description, things I like

Interests Sport, hobby, movie

Job Job description, job industry

Address Country, city, zip code, street

and are exposed to other users, as discussed in Sect. 3.1. In addition, available
privacy settings and the validation of information are reviewed in Sect. 3.2.

This analysis was limited to shared rides. Therefore, if cargo transport or
the like is offered, it is not included. In addition, this analysis was limited to
those areas and features of the websites which are accessible to users, e.g., the
privacy policies. The analysis only includes information that is directly linked to
the individual, their preferences, or information about their vehicle. Information
relating solely to a ride offer, e.g., locations and routes, is not included in this
analysis as it is an extensive research area on its own.

The following steps were carried out during the analysis: (i) register an
account, (ii) complete the profile, (iii) check for profile settings, (iv) review profile
pages, (v) review ride offers, (vi) create ride offers, and (vii) book ride offers.

3.1 Collection and Exposure of Personal Information

Our results show that there is a great variety of user data which is included in
the services, as depicted in Table 2. The set of collected data attributes ranges

Table 2. Details of collection and exposure of personal data

b
es

se
rm

it
fa

h
re

n

B
la

b
la

ca
r

C
li
ck

a
p
o
in

t

E
-c

a
rp

o
o
li
n
g

F
a
h
rg

em
ei

n
sc

h
a
ft

F
o
a
h
st

m
it

G
re

en
d
ri

v
e

M
if
a
z

M
it

fa
h
rp

o
rt

a
l

P
en

d
le

rp
o
rt

a
l

T
w

o
g
o

Collected data 9 23 12 16 14 5 6 16 29 21 14

Mandatory 3 14 3 9 5 4 2 2 4 12 10

Optional 6 9 9 7 9 1 4 14 25 9 4

Exposed data 9 12 10 11 11 5 4 15 17 11 10

Profile page 0 2 0 1 3 0 0 0 5 0 2

Ride offer 9 4 5 5 3 5 4 7 10 11 8

Both 0 6 5 5 5 0 0 8 2 0 0

26 C. Hesselmann et al.

Fig. 2. Services that collect (x-axis) and expose (y-axis) data attributes. Abbreviations:
(1) COVID test results and/or vaccination status, job, membership automobile club,
phone owner, phone provider (2) marital status, bank account, PayPal account, air-
condition, car mileage, country of car registration, fuel consumption

between 5 and 29, and the set of exposed data attributes varies between 4 and
17. In addition, Fig. 2 displays the full set of included data attributes across all
analyzed services. The data points are widely spread as the data entries on both
axes range from below 10% to 100%. This indicates the diversity in included
personal information and a lack of standardization in this regard. The fact that
each data attribute is on average included in 36% of ride-sharing services confirms
this lack of standardization and concludes RQ 1.

To assess the exposure of personal information for RQ 2, we investigated
whether disclosed personal information is accessible for other users. Information
about smoking behavior, the vehicle and profile picture are shared most often.
On average, services show 75% of the disclosed personal information to other
users. This means one quarter of the disclosed personal information is not part
of any user-to-user interaction and remains only with the service provider. Some
services are close to the 50% margin, which emphasizes how different the data
practices depend on the choice of service. This raises the question as to why the
user should disclose their personal information to the service provider if not even
half of it is accessible to the other users, especially in the context of sharing rides,
where – by design – the interaction with other users is arguably the main reason
for an individual to use such a service. This question is further aggravated by the
fact that explanations to the user on why this information should be disclosed
are lacking in almost all instances as the privacy policies provide basic legal
terminology. Only a limited number of services mention privacy settings (e.g.,
change exposure of information towards other users) in the privacy policies.

Data Privacy in Ride-Sharing Services 27

Table 3. Validation of authenticity (V) and privacy settings (S) offered by ride-sharing
services

Email Phone

number

First

name

Last

name

License

plate

Vehicle

model

Driver’s

license

Auto

mobile

club

S V S V S V S V S V S V S V S V

Bessermitfahren X X

Blablacar X X

Clickapoint X X X

E-carpooling X

Fahrgemeinschaft X X X X X X X

Foahstmit

Greendrive X

Mifaz X X X

Mitfahrportal X X

Pendlerportal X

Twogo X

The analysis also includes the type of disclosure of personal information
which can be either mandatory or optional. On average, 29% of the considered
39 data attributes is mandatory. The rest is optional, which advocates a tendency
towards a user-friendly type of collection at a first glance. However, only in few
cases is the optional disclosure made transparent, enticing users to disclose more
information due to the over-disclose phenomenon [30].

Furthermore, the exposure of each attribute towards other users is either
not exposed or exposed on the profile page and/or together with the ride offer.
Certain information is exposed in a reduced fashion; for instance, if the date of
birth is disclosed, only the age (in years) is made accessible to other users. Ten
data attributes are never displayed for other users, which makes the collection
of this information questionable from a user perspective.

3.2 Privacy-Related Features

An analysis of the privacy-related features for RQ 3 shows that only a limited
number of shared mobility services offer these features. Moreover, the range
and type of these features vary greatly. Some services offer or require the user
to complete a process to validate the authenticity of personal information while
other services offer privacy settings to change the exposure of certain data. Those
can affect the communication with other users, matchmaking among groups, and
whether specific information (e.g., email address or phone number) is accessible
for others (as shown in Table 3). In almost all instances, the availability of profile
settings is not communicated to the user at the time of disclosure.

4 Proposed Transparency Enhancing Technology

In order to address the differences in data practices and the improvable degree of
transparency, we implemented a tool and tested its functionality with the services

28 C. Hesselmann et al.

Fig. 3. Degree of personalization and automation of privacy tools

included in the prior analysis. We first decided on the degree of personalization
and automation (as stated in RQ 4) to be included in the implementation, as
referred to in Fig. 3. The fact that we choose low for both has a number of rea-
sons. On the one hand, a higher degree of personalization is considerate of the
subjective and contextual nature of privacy. However, the loss of privacy accu-
mulates with every disclosure of information [28] and the additional collection
and processing of personal preferences pose a risk of (future) privacy infringe-
ments. Moreover, the protection of privacy based on collection of personal data
is contradictory. On the other hand, a higher degree of automation promises a
reduced cognitive burden for the individual but is difficult to achieve especially
due to the mentioned subjective nature of privacy, the conception of privacy,
and the subsequent decisions. Furthermore, recent research has made apparent
that individuals do prefer to remain in control over their privacy-related deci-
sions [11,21,23,26]. In this context, the transparency gained by our approach
can be sufficient for individuals to make informed decisions. We achieve this
by displaying the imminent consequences of the underlying data practices, since
individuals tend to devalue and underestimate decisions and consequences due to
psychological distance [5]. With that in mind, we chose to design a TET focused
on the underlying data practices of the respective ride-sharing service and aimed
at increasing the awareness on the side of the individuals. This enables individu-
als to take more informed decisions and react accordingly if needed, e.g., by not
disclosing or purposefully falsifying information.

In order to make the data practices of service providers transparent to indi-
viduals, we then decided on the technical approach (formulated as RQ 5). It is
important to reduce barriers on the side of the user as far as possible as adop-
tion is difficult to achieve [38]. For that reason, we committed to the premise to
focus on a technology that could integrate additional information directly into
the website of the ride-sharing service. The corresponding mobile applications
of ride-sharing services are closed systems and a third-party app based on the
service’s API (if available) would have contradicted our premise. Therefore, we

Data Privacy in Ride-Sharing Services 29

Fig. 4. Current set of icons included in the proposed TET and their respective tool-tip

chose to implement our idea as a browser extension. This also incorporates the
well-established notion that privacy is contextual [2,27].

Subsequently, we chose an icon-based approach for the design of our tool
and the integration of information (for RQ 6), as depicted in Fig. 1. Icons have
multiple advantages over text- or color-based designs. The memorization of icons
works effortlessly as a results of picture superiority [10]. This is crucial, as indi-
viduals can only dedicate a limited time for privacy protection [38] and are at
the same time confronted with a considerable number of privacy-related deci-
sions [49]. Icons are free from linguistic barriers and if used as a standardized
set across multiple instances can create comparability [13], in our case between
different ride-sharing services. However, the set of icons needs to be small enough
to not risk an information overload [13] similar to a notification fatigue which
leads to inattentive permission granting since receiving too many notifications
has the same effect as receiving no notifications at all [49].

Our tool covers most of the ride-sharing services included in the prior anal-
ysis. For each website, additional icons are displayed next to the input fields;
a simplified example is depicted in Fig. 1. These icons indicate privacy-related
information, e.g., whether the corresponding personal information is exposed to
other registered users. In total, the current implementation features five different
icons; exposure, validation, settings, optional, and notice (covering information
that does not fit in the four prior categories), as shown in Fig. 4. Each icon has a
tool-tip explaining its meaning, accessible via mouse-over/touch. The icons were
chosen based on prior interviews in which multiple icon options were displayed
and the participants interpreted their meaning.

The browser extension communicates with a server to receive the relevant
data about websites and icons. In order to keep the data set up-to-date (for RQ
7), we have implemented feedback functionalities that report input fields to the
server. This function only reports strings in the name or id attribute of certain
website elements, e.g., surname, and does not include any personal information.

5 Scenario-Based Online Experiment

After implementing our tool, we conducted a scenario-based online experiment
in order to receive a first evaluation of its impact on user behavior and gain

30 C. Hesselmann et al.

feedback on the tool’s usability. The experiment was reviewed and approved
by the Data Protection Officer of the Clausthal University of Technology. The
experiment was conducted between the 10th and 22nd of March 2022.

5.1 Sample

A total of 1093 participants contributed to our study. They were a representa-
tion of the German online population and were recruited by a panel provider
(certified ISO 20252:2019). The average age of our sample is 44 years and gender
distributions are 51% female and 49% male. The majority of participants with
education levels 2 and 3 are 40 years or older while education levels 4 and 5
are predominantly young adults (30 years or younger). The full demographic
information is presented in Table 7 in the Appendix.

5.2 Setup

In the experiment, we showed the participants a fictional ride-sharing service and
asked them to create a personal profile and adjust it to their preferences. This
includes disclosure of personal information and adjustment of privacy-related
profile settings. To capture the disclosure behavior of participants, meta data
(i.e., dirty fields) was stored during the experiment. Consequently the resulting
data set does not include any personal information. After finishing the pro-
file creation we investigated the participants’ privacy concerns and asked fur-
ther questions. Since privacy requires a proxy to be measured [37], we used the
IUIPC metric with the dimensions control (cont.), collection (coll.), and aware-
ness (awar.) as it is specifically designed for online contexts [25]. Control and
collection have 3 statements respectively while awareness has 2 statements, as
listed in Table 8 in the Appendix. We adapted the IUIPC metric to the con-
text of our experiment and re-formulated the statements to match our fictional
ride-sharing service MyCarPool.

To evaluate the effects of our privacy tool, we used a control (n = 551) and
a test (n = 542) group. Both groups’ demographics are representative of the
German online population. The latter had access to additional visual cues at the
time of data disclosure based on our proposed tool. The experiment included the
icons indicating the exposure of personal data, the validation of authenticity, and
the availability of user-specific profile settings, as shown in Fig. 1. An icon mark-
ing optional data disclosure is not included since existing research demonstrated
its effectiveness [23] and we focused on the remaining icons. In addition to that,
it is difficult to differentiate between a user’s decision on to not disclose informa-
tion for privacy reasons and the decision on to not disclose information because
it is optional. Since the disclosure of first name and email was mandatory during
the experiment, they are not listed in the results.

5.3 Methods

We use logistic additive regression models (ordinal/binary), fitted through R
add-on package mgcv [32,45–47], to compare the participants’ answers to the

Data Privacy in Ride-Sharing Services 31

IUIPC statements and their disclosure behavior between control and test group.
In addition to that, group and gender are being considered as binary factors, i.e.,
the value of group indicates the difference between the control and test group.
For age and education level we allow for smooth, potentially nonlinear effects,
with age-effects being modeled as (penalized) thin plate regression splines (mgcv
default). For the ordinal education factor, a discrete, second-order smoothing
penalty is used as proposed in [15,40].

6 Results

We used the IUIPC metric to measure participants’ privacy concerns (RQ 8) and
collected the disclosure rates of personal information via meta data (RQ 9). On
top of that, we asked the participants further questions to answer RQs 10–13.

6.1 Privacy Concerns

The results show significant differences between the control and test group in
the awareness dimension and significance in part of the collection dimension
as displayed by the group variable in Table 4. The difference in awareness indi-
cates a higher degree of users’ certainty about the data practices of the service
provider, since the respective statements refer directly to the service providers’
transparency about their data practices. Additionally, coll.2 shows an increase
in decision reflection. The gender variable displays additional, though smaller,
increases in awareness (awar.1) and decision reflection (coll.2) for women, but
also an increase in expressed discomfort (coll.1) and concern (coll.3), which aligns
with prior literature [3,35]. Higher age is typically associated with stronger
agreement to IUIPC statements, but effects vary in terms of size, shape, and
significance — see Fig. 5. Agreement to general privacy statements (cont.1 &
cont.2) shows a (rather) linear increase with age while awar.1 shows increases
starting around age 40. Positive association between education level and IUIPC
is observed for cont.1, cont.2 and coll.1, but with some statistical uncertainty
as indicated by p-values and (pointwise) confidence intervals. For awar.1 and
awar.2, the association seems to be negative, at least for higher education levels
(where uncertainty is lower). For the remaining statements, no clear effects are
observed.

Table 4. Ordinal/cumulative logistic regression coefficients for IUIPC metric responses
for group (test) and gender (female) with usual significance codes *** (0.001), ** (0.01),
* (0.05).

cont.1 cont.2 cont.3 coll.1 coll.2 coll.3 awar.1 awar.2

Group 0.021 −0.024 0.109 0.085 0.480 0.153 0.628 0.550

P-value 0.846 0.825 0.310 0.430 0.000*** 0.153 0.000*** 0.000***

Gender −0.062 0.354 0.017 0.318 0.480 0.311 0.245 0.036

P-value 0.573 0.002** 0.875 0.004** 0.000*** 0.005** 0.026* 0.741

32 C. Hesselmann et al.

Fig. 5. Effect of age and education level on the IUIPC metric responses (note, for model
identifiability, effects are centered around zero across the data observed [47]). Shaded
regions and dashed lines indicate approximate, pointwise 95% confidence intervals.

6.2 Disclosure Rate

Applying the procedure from Sect. 6.1 to the disclosure rates leads to the results
summarized in Table 5 and Fig. 6. Looking at the coefficient of the group variable
(i.e., being in the test group) in Table 5, we can see some behavioral changes
depending on data sensitivity and type of icon; particularly date of birth and
last name show a decrease in disclosure rate when combined with the exposure
icon. In contrast to that, the disclosure of license plate increases when it is
presented in combination with the profile settings icon (which, however, does
not apply for the disclosure of sex). Furthermore, gender differences show that
men tend to disclose less information about themselves but more about their
vehicle and vice versa for women. Except for sex, higher age is associated with
increased disclosure rates, but with varying effect sizes — see Fig. 6. With respect
to education, higher levels show lower disclosure rates of information about the
individual. In contrast to this, participants with higher levels of education tend
to disclose more information about their vehicles.

Data Privacy in Ride-Sharing Services 33

Table 5. Logistic regression coefficients for disclosure rate for group (test) and gender
(female) with usual significance codes *** (0.001), ** (0.01), * (0.05). Attached icons
for test group: 1 = exposure, 2 = validation, 3 = settings

Address Date of
birth1

Driver’s
license2

Last
name1

Sex3 Vehicle
color1

License
plate3

Vehicle
model2

Group −0.102 −0.352 −0.065 −0.507 0.065 −0.149 0.328 −0.073

P-value 0.500 0.016* 0.671 0.004** 0.668 0.379 0.010* 0.681

Gender 0.581 0.202 0.450 0.595 0.588 −0.341 −0.273 −0.465

P-value 0.000*** 0.178 0.004** 0.001** 0.000*** 0.053 0.037* 0.013*

Fig. 6. Effect of age and education level on the disclosure rate (note, for model identi-
fiability, effects are centered around zero across the data observed [47]). Shaded regions
and dashed lines indicate approximate, pointwise 95% confidence intervals.

6.3 Icon Recognizability and Understandability

Next, for RQ 10, we evaluate the recognizability of the used icons. Therefore, we
ask all participants in the test group to identify a given icon. In addition, we ask
participants to recall who was able to access one piece of personal information

34 C. Hesselmann et al.

they had disclosed during the profile creation. Our results show that more par-
ticipants are able to correctly recall privacy-related information linked to one of
their personal information; 28% of participants identified the given icon correctly
and 37% correctly recalled who was able to access their personal information.
Moreover, we ask participants to state how often the additional privacy-related
information did influence their disclosure decision. In total, 55% stated it had an
influence on their decision (combining the answers sometimes, most of the time,
and always), with 14% being unsure and 31% stating never.

6.4 Data Disclosure

Then, additionally, the participants had to reflect on the amount of personal
information they had disclosed during the experiment (for RQ 11). This question
was raised to both groups and the answers indicate differences; in the control
group 19% are able to correctly state how many attributes of personal infor-
mation they had disclosed compared to 28% in the test group. This indicates
improved – yet small – reminiscence and awareness. While these numbers remain
relatively low they are higher than usually recorded in privacy research with fail-
ure rates of above 90% [19].

6.5 Use of Profile Settings

We note a similar difference in the data for RQ 12. As the icon set includes one
icon specifically dedicated to the availability of profile settings, we evaluated the
usage of these settings or (in case they were not adjusted by the participant)
asked participants if they had perceived them. In the control group, 26% used
or at least perceived the profile settings compared to 35% in the test group.

6.6 Information Usefulness

Finally, for RQ 13, we asked the participants to state the additional information
which they regard most useful (or in case of the control group; which they would
most liked to have), presenting them multiple options, as stated in Table 6. The

Table 6. Answers about most useful information (values rounded)

Control group Test group

If my data was exposed to others 44% 35%

If the service provider offered to validate my data 15% 11%

If profile settings for this information were available 10% 10%

If I should not provide a piece of information 17% 13%

I am not sure 15% 32%

Data Privacy in Ride-Sharing Services 35

results show interesting differences. While both groups state a piece of informa-
tion’s exposure as most useful, the test group shows noteworthy changes in the
distribution of answers. The option for information exposure scores noticeably
fewer answers in the test group while, at the same time, the number of uncertain
answers more than doubles. This supports the theory that individuals are often
unable to correctly evaluate their own privacy preferences as, once confronted
with a given scenario, the individual’s evaluation of helpful information shifts.

7 Limitations

Some shortcomings and limitations are worth mentioning. Firstly, the analysis
of ride-sharing services is limited to the user perspective. That means that inter-
nal data processing and further data practices on side of the service provider
are not included. To complement our analysis with the provider’s side remains
a task of our ongoing research. Secondly, the participants were notified twice
before participating in the experiment that any disclosed personal data would
not be stored. Though the term privacy was not mentioned explicitly to the
participants, this possibly affected some participants in their disclosure deci-
sions but was inevitable as this notification was required by the panel provider.
Thirdly, our data indicate that participants with a higher level of education are
more likely to disclose information about their vehicle. However, we did not ask
participants about the possession of a vehicle, which could be a mediating fac-
tor. Lastly, the combinations of data attributes and icon type could be changed
to examine whether different combinations of information and icon type yield
insights about individuals’ disclosure behavior.

8 Conclusion and Outlook

With this work, we contribute to the current state of privacy research in the shar-
ing economy. Firstly, we analyzed the current practices of ride-sharing services
to uncover part of their data practices. Secondly, we proposed and implemented
a TET in the form of a browser extension that is capable of integrating addi-
tional information seamlessly into the services’ websites and support individuals
to make more informed decisions. Thirdly, we conducted a scenario-based online
experiment with two representative samples for the test and control groups to
evaluate our tool. For this experiment, we used a fictional ride-sharing service
and asked participants to create a profile with their personal information. Based
on our findings, we can confirm that a higher degree of transparency of data
practices does not necessarily lead to less disclosed information. Consequently,
we recommend service providers to offer profile settings for sensitive personal
information and illustrate data practices which apply to their service and web-
site more clearly. The direction of our future research includes the provider’s
perspective on the data practices and the overall affect data practices have on
the individual’s choice of service when they are able to compare services with

36 C. Hesselmann et al.

the help of our tool. In addition to that, our prior analysis of ride-sharing ser-
vices only covered the countries Germany, Austria, and Switzerland. Therefore,
broader cultural differences and their effects on privacy concerns and disclosure
behavior are not accounted for in this work.

Appendix

Table 7. Demographic data of respondents

% Gender % Age % Education

51 Female 3 18–20 1 Not finished school (yet)

49 Male 20 21–30 6 Primary school certificate

20 31–40 21 Primary school certificate & vocational training

19 41–50 32 Secondary school certificate or equivalent

23 51–60 19 Higher education entrance qualification

15 >60 21 Higher education

Table 8. Context-specific formulations of IUIPC metric (answers were given as degree
of agreement on a seven-point Likert scale)

Question Statement

cont.1 My privacy is really a matter of my right to exercise control and autonomy
over how MyCarPool collects, uses, and shares my information.

cont.2 The control of my personal information lies at the heart of my privacy.

cont.3 I believe that MyCarPool has taken or reduced my control over my data as a
result of a marketing transaction.

coll.1 It bothered me when MyCarPool asked me for personal information.

coll.2 When MyCarPool asked me for personal information, I sometimes thought
twice before providing it.

coll.3 I am concerned that MyCarPool collected too much personal information
about me.

awar.1 MyCarPool did disclose the way my data are collected, processed, and used.

awar.2 I was aware and knowledgeable about how MyCarPool uses my personal
information.

Data Privacy in Ride-Sharing Services 37

References

1. Acquisti, A., Grossklags, J.: Privacy attitudes and privacy behavior. In: Camp,
L.J., Lewis, S. (eds.) Economics of Information Security, Advances in Informa-
tion Security, vol. 12, pp. 165–178. Kluwer Academic Publishers, Boston (2004).
https://doi.org/10.1007/1-4020-8090-5 13

2. Acquisti, A., Grossklags, J.: Privacy and rationality in individual decision making.
IEEE Secur. Priv. 3(1), 26–33 (2005). https://doi.org/10.1109/MSP.2005.22

3. Acquisti, A., John, L.K., Loewenstein, G.: The impact of relative standards on the
propensity to disclose. J. Mark. Res. 49(2), 160–174 (2012). https://doi.org/10.
1509/jmr.09.0215

4. Agogo, D.: Invisible market for online personal data: an examination. Electron.
Mark. 31(4), 989–1010 (2020). https://doi.org/10.1007/s12525-020-00437-0

5. Bandara, R., Fernando, M., Akter, S.: Is the privacy paradox a matter of psycho-
logical distance? an exploratory study of the privacy paradox from a construal level
theory perspective. In: Proceedings of the 51st Hawaii International Conference on
System Sciences (2018). https://doi.org/10.24251/HICSS.2018.465

6. Beke, F.T., Eggers, F., Verhoef, P.C.: Consumer informational privacy: current
knowledge and research directions. FNT Mark. Found. Trends Mark. 11(1), 1–71
(2018). https://doi.org/10.1561/1700000057

7. Bélanger, F., Crossler, R.E.: Privacy in the digital age: a review of information
privacy research in information systems. MIS Q. 35(4), 1017 (2011). https://doi.
org/10.2307/41409971

8. Binns, R., van Kleek, M., Veale, M., Lyngs, U., Zhao, J., Shadbolt, N.: It’s reducing
a human being to a percentage. In: Mandryk, R., Hancock, M., Perry, M., Cox, A.
(eds.) Proceedings of the 2018 CHI Conference on Human Factors in Computing
Systems, pp. 1–14. ACM, New York, NY, USA (2018). https://doi.org/10.1145/
3173574.3173951

9. Bove, C., Aigrain, J., Lesot, M.J., Tijus, C., Detyniecki, M.: Contextualization and
exploration of local feature importance explanations to improve understanding and
satisfaction of non-expert users. In: 27th International Conference on Intelligent
User Interfaces, pp. 807–819. ACM, New York, NY, USA (2022). https://doi.org/
10.1145/3490099.3511139

10. Childers, T.L., Houston, M.J.: Conditions for a picture-superiority effect on con-
sumer memory. J. Consu. Res. 11(2), 643 (1984). https://doi.org/10.1086/209001

11. Colnago, J., et al.: Informing the design of a personalized privacy assistant for the
internet of things. In: Proceedings of the 2020 CHI Conference on Human Factors
in Computing Systems, pp. 1–13. Association for Computing Machinery, New York,
NY, USA (2020). https://doi.org/10.1145/3313831.3376389

12. De, S.J., Le Metayer, D.: Privacy risk analysis to enable informed privacy set-
tings. In: 2018 IEEE European Symposium on Security and Privacy Workshops
(EuroS&PW), pp. 95–102. IEEE (2018). https://doi.org/10.1109/EuroSPW.2018.
00019

13. Efroni, Z., Metzger, J., Mischau, L., Schirmbeck, M.: Privacy icons: a risk-based
approach to visualisation of data processing. Eur. Data Prot. L. Rev. 5(3), 352–366
(2019). https://doi.org/10.21552/edpl/2019/3/9

14. Entega Plus GmbH: Mitfahrgelegenheit und Co.: Fahrgemeinschaft 2.0. https://
www.entega.de/blog/fahrgemeinschaft-die-wichtigsten-onlinemitfahrportale/

15. Gertheiss, J., Scheipl, F., Lauer, T., Ehrhardt, H.: Statistical inference for ordinal
predictors in generalized additive models with application to bronchopulmonary

https://doi.org/10.1007/1-4020-8090-5_13
https://doi.org/10.1109/MSP.2005.22
https://doi.org/10.1509/jmr.09.0215
https://doi.org/10.1509/jmr.09.0215
https://doi.org/10.1007/s12525-020-00437-0
https://doi.org/10.24251/HICSS.2018.465
https://doi.org/10.1561/1700000057
https://doi.org/10.2307/41409971
https://doi.org/10.2307/41409971
https://doi.org/10.1145/3173574.3173951
https://doi.org/10.1145/3173574.3173951
https://doi.org/10.1145/3490099.3511139
https://doi.org/10.1145/3490099.3511139
https://doi.org/10.1086/209001
https://doi.org/10.1145/3313831.3376389
https://doi.org/10.1109/EuroSPW.2018.00019
https://doi.org/10.1109/EuroSPW.2018.00019
https://doi.org/10.21552/edpl/2019/3/9
https://www.entega.de/blog/fahrgemeinschaft-die-wichtigsten-onlinemitfahrportale/
https://www.entega.de/blog/fahrgemeinschaft-die-wichtigsten-onlinemitfahrportale/

38 C. Hesselmann et al.

dysplasia. BMC. Res. Notes 15(1), 112 (2022). https://doi.org/10.1186/s13104-
022-05995-4

16. Hann, I.H., Hui, K.L., Lee, S.Y.T., Png, I.P.: Overcoming online information pri-
vacy concerns: an information-processing theory approach. J. Manag. Inf. Syst.
24(2), 13–42 (2007). https://doi.org/10.2753/MIS0742-1222240202

17. Hesselmann, C., Gertheiss, J., Müller, J.P.: Ride sharing & data privacy: how data
handling affects the willingness to disclose personal information. Findings (2021).
https://doi.org/10.32866/001c.29863

18. Jackson, C.B., Wang, Y.: Addressing the privacy paradox through personalized
privacy notifications. Proc. ACM Interact. Mobile Wearable Ubiquit. Technol. 2(2),
1–25 (2018). https://doi.org/10.1145/3214271

19. Kamleitner, B., Sotoudeh, M.: Information sharing and privacy as a socio-technical
phenomenon. TATuP - Zeitschrift für Technikfolgenabschätzung in Theorie und
Praxis 29(3), 68–71 (2019). https://doi.org/10.14512/tatup.28.3.68

20. Kariryaa, A., Savino, G.L., Stellmacher, C., Schöning, J.: Understanding users’
knowledge about the privacy and security of browser extensions. In: 2021 Seven-
teenth Symposium on Usable Privacy and Security (SOUPS), pp. 99–118 (2021)

21. Kitkowska, A., Shulman, Y., Martucci, L.A., Wästlund, E.: Facilitating privacy
attitudes and behaviors with affective visual design. In: Hölbl, M., Rannenberg,
K., Welzer, T. (eds.) SEC 2020. IAICT, vol. 580, pp. 109–123. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-58201-2 8

22. Kitkowska, A., Warner, M., Shulman, Y., Wästlund, E., Martucci, L.A.: Enhanc-
ing privacy through the visual design of privacy notices: exploring the interplay
of curiosity, control and affect. In: Sixteenth Symposium on Usable Privacy and
Security (SOUPS 2020), pp. 437–456. USENIX Association (2020)

23. Krol, K., Preibusch, S.: Control versus effort in privacy warnings for webforms. In:
Proceedings of the 2016 ACM on Workshop on Privacy in the Electronic Society -
WPES 2016, pp. 13–23. ACM Press, New York, New York, USA (2016). https://
doi.org/10.1145/2994620.2994640

24. Machuletz, D., Laube, S., Böhme, R.: Webcam covering as planned behavior. In:
Mandryk, R., Hancock, M., Perry, M., Cox, A. (eds.) Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems, pp. 1–13. ACM, New York,
NY, USA (2018). https://doi.org/10.1145/3173574.3173754

25. Malhotra, N.K., Kim, S.S., Agarwal, J.: Internet Users’ Information Privacy Con-
cerns (IUIPC): the construct, the scale, and a causal model. Inf. Syst. Res. 15(4),
336–355 (2004). https://doi.org/10.1287/isre.1040.0032

26. Marsch, M., Grossklags, J., Patil, S.: Won’t you think of others? interdepen-
dent privacy in smartphone app permissions. Proc. ACM Human Comput. Inter.
5(CSCW2), 1–35 (2021). https://doi.org/10.1145/3479581

27. Nissenbaum, H.: Privacy in Context: Technology, Policy, and the Integrity of Social
Life. Stanford University Press, Stanford, CA (2009). https://doi.org/10.1515/
9780804772891

28. Nissim, K., Wood, A.: Is privacy privacy? Philos. Trans. Ser. A Math. Phys. Eng.
Sci. 376(2128), 20170358 (2018)

29. Olejnik, L., Englehardt, S., Narayanan, A.: Battery status not included: assessing
privacy in web standards. CEUR Workshop Proc. 1873, 17–24 (2017)

30. Preibusch, S., Krol, K., Beresford, A.R.: The privacy economics of voluntary over-
disclosure in web forms. In: Böhme, R. (ed.) The Economics of Information Security
and Privacy, pp. 183–209. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-39498-0 9

https://doi.org/10.1186/s13104-022-05995-4
https://doi.org/10.1186/s13104-022-05995-4
https://doi.org/10.2753/MIS0742-1222240202
https://doi.org/10.32866/001c.29863
https://doi.org/10.1145/3214271
https://doi.org/10.14512/tatup.28.3.68
https://doi.org/10.1007/978-3-030-58201-2_8
https://doi.org/10.1145/2994620.2994640
https://doi.org/10.1145/2994620.2994640
https://doi.org/10.1145/3173574.3173754
https://doi.org/10.1287/isre.1040.0032
https://doi.org/10.1145/3479581
https://doi.org/10.1515/9780804772891
https://doi.org/10.1515/9780804772891
https://doi.org/10.1007/978-3-642-39498-0_9
https://doi.org/10.1007/978-3-642-39498-0_9

Data Privacy in Ride-Sharing Services 39

31. Proserpio, D., Xu, W., Zervas, G.: You get what you give: theory and evidence
of reciprocity in the sharing economy. Quant. Mark. Econ. 16(4), 371–407 (2018).
https://doi.org/10.1007/s11129-018-9201-9

32. Team, R.C.: R: a language and environment for statistical computing. R Foun-
dation for Statistical Computing, Vienna, Austria (2022). https://www.R-project.
org/

33. Ranzini, G., Etter, M., Lutz, C., Vermeulen, I.E.: Privacy in the sharing economy.
SSRN Electron. J. (2017). https://doi.org/10.2139/ssrn.2960942

34. Rath, D.K., Kumar, A.: Information privacy concern at individual, group, organi-
zation and societal level - a literature review. Vilakshan - XIMB J. Manag. 18(2),
171–186 (2021). https://doi.org/10.1108/XJM-08-2020-0096

35. Reinhardt, D., Khurana, M., Hernández Acosta, L.: I still need my privacy: explor-
ing the level of comfort and privacy preferences of German-speaking older adults
in the case of mobile assistant robots. Pervasive Mob. Comput. 74, 101397 (2021).
https://doi.org/10.1016/j.pmcj.2021.101397

36. Schor, J., et al.: Debating the sharing economy. J. Self Gov. Manag. Econ. 4(3),
7–22 (2014)

37. Smith, J.H., Dinev, T., Xu, H.: Information privacy research: an interdisciplinary
review. MIS Q. 35(4), 989 (2011). https://doi.org/10.2307/41409970

38. Story, P., et al.: Awareness, adoption, and misconceptions of web privacy tools.
Proc. Priv. Enhancing Technol. 2021(3), 308–333 (2021). https://doi.org/10.2478/
popets-2021-0049

39. Teubner, T., Flath, C.M.: Privacy in the sharing economy. J. Assoc. Inf. Syst. 20,
213–242 (2019). https://doi.org/10.17705/1jais.00534

40. Tutz, G., Gertheiss, J.: Regularized regression for categorical data. Stat. Model.
16(3), 161–200 (2016). https://doi.org/10.1177/1471082X16642560

41. Utopia GmbH: Die besten Mitfahrgelegenheiten. https://utopia.de/ratgeber/
mitfahrgelegenheiten/

42. VCS Verkehrs-Club der Schweiz: Carpooling. https://www.verkehrsclub.ch/
ratgeber/auto/autoteilen/carpooling/

43. VGL Verlagsgesellschaft: Mitfahrzentralen im Vergleich. https://www.vergleich.
org/mitfahrzentrale/

44. Wang, Yu., Wang, S., Wang, J., Wei, J., Wang, C.: An empirical study of
consumers’ intention to use ride-sharing services: using an extended technology
acceptance model. Transportation 47(1), 397–415 (2018). https://doi.org/10.1007/
s11116-018-9893-4

45. Wood, S.N.: On p-values for smooth components of an extended generalized addi-
tive model. Biometrika 100(1), 221–228 (2013). https://doi.org/10.1093/biomet/
ass048

46. Wood, S.N.: Fast stable restricted maximum likelihood and marginal likelihood
estimation of semiparametric generalized linear models. J. Roy. Stat. Soc. Ser. B
(Stat. Methodol.) 73(1), 3–36 (2011). https://doi.org/10.1111/j.1467-9868.2010.
00749.x

47. Wood, S.N.: Generalized Additive Models. Chapman and Hall/CRC (2017).
https://doi.org/10.1201/9781315370279

48. Yao, M.Z., Rice, R.E., Wallis, K.: Predicting user concerns about online privacy.
J. Am. Soc. Inform. Sci. Technol. 58(5), 710–722 (2007). https://doi.org/10.1002/
asi.20530

49. Zhang, S., Feng, Y., Bauer, L., Cranor, L.F., Das, A., Sadeh, N.: Did you know
this camera tracks your mood? Proc. Priv. Enhancing Technol. 2021(2), 282–304
(2021). https://doi.org/10.2478/popets-2021-0028

https://doi.org/10.1007/s11129-018-9201-9
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.2139/ssrn.2960942
https://doi.org/10.1108/XJM-08-2020-0096
https://doi.org/10.1016/j.pmcj.2021.101397
https://doi.org/10.2307/41409970
https://doi.org/10.2478/popets-2021-0049
https://doi.org/10.2478/popets-2021-0049
https://doi.org/10.17705/1jais.00534
https://doi.org/10.1177/1471082X16642560
https://utopia.de/ratgeber/mitfahrgelegenheiten/
https://utopia.de/ratgeber/mitfahrgelegenheiten/
https://www.verkehrsclub.ch/ratgeber/auto/autoteilen/carpooling/
https://www.verkehrsclub.ch/ratgeber/auto/autoteilen/carpooling/
https://www.vergleich.org/mitfahrzentrale/
https://www.vergleich.org/mitfahrzentrale/
https://doi.org/10.1007/s11116-018-9893-4
https://doi.org/10.1007/s11116-018-9893-4
https://doi.org/10.1093/biomet/ass048
https://doi.org/10.1093/biomet/ass048
https://doi.org/10.1111/j.1467-9868.2010.00749.x
https://doi.org/10.1111/j.1467-9868.2010.00749.x
https://doi.org/10.1201/9781315370279
https://doi.org/10.1002/asi.20530
https://doi.org/10.1002/asi.20530
https://doi.org/10.2478/popets-2021-0028

Location Privacy, 5G AKA,
and Enhancements

Mohamed Taoufiq Damir(B) and Valtteri Niemi

Department of Computer Science, University of Helsinki, Helsinki, Finland
{mohamed.damir,valtteri.niemi}@helsinki.fi

Abstract. We introduce a linkability attack variant on 5G AKA that we
call the Replay In GUTI (RIG) attack. Our attack investigates the case
where the temporary identifier GUTI is used for identification. Recalling
that the GUTI-based identification is the most frequently used case, the
goal of the RIG attack is to check the presence of a target user in an
attack area, that is by linking two Authentication and Key Agreement
(AKA) sessions. We further explain how our attack works also against
some enhancements of 5G AKA, in which the GUTI case is not covered.
We focus on protocols where authentication requires a contribution from
the User Equipment (UE). As an example of such enhancements, we
discuss the works in [5,15,16], then we examine the protocol proposed in
[2] in more detail. Moreover, we propose a USIM-compatible fix against
our attack.

Keywords: 5G-AKA · Privacy · IMSI catchers

1 Introduction

Over the years, active attacks on mobile telephony networks became gradually
a serious security and privacy threat. Such a type of attack was often ignored
during the design of early mobile security protocols. For example, 2G networks
have only a little protection against active attacks, or even against passive ones.
The 2G networks suffered from the use of weak cryptography algorithms and
the lack of mutual authentication between users and the networks. Despite the
security improvements deployed in subsequent mobile network generations, var-
ious works introduced attacks on 3G, 4G, and even 5G [7–9]. Moreover, active
attacks became more feasible in practice, which is due to the availability of the
software and hardware that is needed to perform such attacks [10].

In the present work, we mainly focus on tracking and localising 5G users.
More precisely, we are concerned with detecting the presence of a target user
in an attack area. The detection is by intercepting the message flow in the 5G
Authentication and Key Agreement protocol (5G AKA).

This work was supported by the Business Finland Consortium Project “Post-Quantum
Cryptography” under Grant 754/31/2020.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. P. Reiser and M. Kyas (Eds.): NordSec 2022, LNCS 13700, pp. 40–57, 2022.
https://doi.org/10.1007/978-3-031-22295-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22295-5_3&domain=pdf
https://doi.org/10.1007/978-3-031-22295-5_3

Location Privacy, 5G AKA, and Enhancements 41

In mobile networks, every user is assigned a globally unique identifier called
International Mobile Subscriber Identity (IMSI) in 4G and Subscriber Perma-
nent Identifier (SUPI) in 5G. This identifier is used to identify the user during
communication, but it is also used to locate and track the user. The track-
ing is required for billing and legal obligation purposes and also because, for
incoming calls, the network has to find the user. In this setting, intercepting the
SUPI/IMSI is a serious privacy threat.

To intercept communication between a user and a network, the attacker uses
the so-called IMSI catcher1. An IMSI catcher works as a fake base station to
obtain users’ identities by impersonating the real network. Smartphones’ base-
band modem keeps selecting the base station with the best signal quality. Based
on the fact that the modem does not distinguish between fake and legit base
stations, the IMSI catcher is in theory able to attract most users in its attack
area. Obtaining users’ identities in an attack area can serve the attacker to detect
the presence of a Person of Interest (PoI) with a known identifier, or to simply
collect information about users visiting the attack zone.

To avoid IMSI catching in 4G/5G, the serving network assigns to the USIM
a Globally Unique Temporary Identity (GUTI), which is a temporary and fre-
quently changing identifier. Note that knowing a user’s GUTI would not serve
in distinguishing such a user from random users during the next communication
if the GUTI has been changed. Unfortunately, in 4G, there are circumstances
where the user is required to send the permanent identifier (IMSI) as plain text.
For example, when the network is unable to derive the IMSI from the GUTI, or
when the GUTI is not yet assigned, which might accrue during the first contact
to a new network in the case of roaming.

Consequently, an active attacker can recover the IMSI by simply emulating
one of the above scenarios. The technical specification for security architecture
and procedures in 5G, 3GPP TS.33.501, improved in resisting IMSI catchers
by imposing SUPI concealment. More precisely, in 5G, the permanent identifier
SUPI is never sent as plain text. The concealed SUPI is called the Subscription
Concealed Identifier (SUCI). Despite the adoption of encrypting the SUPI in 5G
networks, various works, see Sect. 3, showed that it is still possible to track users
based on investigating the user’s behavior during the 5G AKA procedure. The
most popular way of tracking is by the so-called linkability attacks.

Known linkability attacks against 5G are particular cases of replay attacks,
where the attacker intercepts and replays messages between a user X and its
service provider to link different 5G AKA sessions to the same user. Usually,
the attacker replays recorded messages from a previous execution of the AKA
protocol to users in an attack area, then observes answers from the users. A
linkability attack is “successful” if the attacker is able (based on the received
answers) to distinguish the user X from the other users in the attack area, that
is even if the identity of X is encrypted or randomized, i.e., X used the SUCI
or GUTI for identification. In this work, we introduce a linkability attack in the

1 Conventionally called IMSI catchers also in the case of 5G although the permanent
identifier is SUPI.

42 M. T. Damir and V. Niemi

case of GUTI-based identification. We aim to further highlight the importance
of considering the GUTI case in 5G AKA enhancements. The GUTI-based iden-
tification is often ignored while designing enhancements for 5G AKA resisting
linkability attacks. Moreover, most 5G AKA enhancements use the fact that the
user is performing extra operations, such as generating randomness or encrypt-
ing SUPI, before sending its identifier to the network. However, this is not the
case for GUTI-based identification and the enhancements cannot be extended to
GUTI-based identification. For a complete exposition of our work, we will first
recall the 5G mobile network architecture, then we will describe our contribu-
tions in more detail.

2 Mobile Network Architecture

Mobile network architecture consists of three major entities.

– The User Equipment (UE) which includes the Mobile Equipment (ME) and
the Universal Subscriber Identity Module (USIM). These two can be illus-
trated, respectively, as a phone and a SIM card.

– The Home Network (HN) is the core network that handles all management
tasks for the user. For the present work, the HN is the entity responsible for
authentication and key agreement. We denote the identity of the HN by IDH .

– The Serving Network (SN) is the network the user is connected to. It is also
responsible of forwarding messages between the UE and HN. We denote the
identity of the SN by IDS .

Communication between the UE and the SN is either initiated by the UE, e.g.,
for outgoing call, or by the SN, e.g., for incoming call. In both cases, the UE is
required to send its identity to the SN. In 5G networks, the HN assigns to every
UE a unique identifier called the Subscription Permanent Identifier (SUPI).

As mentioned in the introduction, sending the SUPI as plaintext is a serious
privacy threat. A new feature in 3GPP TS 33.501, the 5G security specification,
is the use of public-key cryptography for SUPI encryption, i.e., ECIES algo-
rithm, which results in the Subscription Concealed Identifier (SUCI). The SUPI
encryption (resp., decryption) is performed at the UE (resp., HN) using an HN
public key (resp. secret key) that we denote by pkH (resp. skH).

Whenever a SUCI is received by the SN, this last forwards it to the HN. Next,
the HN proceeds on generating an authentication challenge for the UE based on
a freshly generated random bitstring RANDH and the user’s stored credentials.
The UE and the HN share a long-term key K, and a dynamic sequence number
SQN, where K is stored at the temper-resistant part of the USIM at the UE side,
while SQN is used to check synchronization and detect replay attacks. We denote
by SQNH and SQNU , the sequence numbers at the HN and UE, respectively.

Once a mutual authentication and key agreement are established between
the UE and SN via the HN, the serving network assigns to the UE2 a Globally
2 The GUTI assignment is done over a secure channel established after authenticating
the UE by the SN via the HN.

Location Privacy, 5G AKA, and Enhancements 43

Unique Temporary Identity (GUTI). The GUTI is an 80 bits string, where the
first 48 bits carry some “predictable” information, e.g., the mobile country code,
while the remaining 32 bits are the “unpredictable” part of the GUTI3.

Compared to the SUCI, GUTI is the more frequent mean of identification.
For the UE side, the use of GUTI does not require extra computations, i.e.,
encryption, while on the SN side, it is not necessary to ask for the HN’s help
to identify the UE, which is the case for getting decryption of the SUCI. For
securing the communication between the SN and the UE, the SN can choose
either to use the previously established keys with the UE or to start a new AKA
procedure by first resolving the SUPI from GUTI, then sending the SUPI to the
HN to trigger a new authentication, see Sect. 4 for a detailed exposition of 5G
AKA.

We summarise the used notations in Table 1.

Table 1. Summary of notations

Notation Meaning

HN Home network

UE User equipment

SN Serving network

IDH HN identity

IDS SN identity

SUPI Subscriber permanent identifier

pkH/skH HN public/private ECIES keys

KD The shared SUPI encryption key resulting from ECIES

SUCI Subscriber Concealed Identifier (encrypted SUPI)

GUTI Globally unique temporary identifier

K Long term key shared between HN and UE

SQNU Sequence number at UE

SQNH Sequence number at HN

RANDH The HN random challenge

3 Contributions and Related Work

Various works considered and proposed solutions to resist active attackers in 5G
and beyond, see for instance [5–9] and the references therein. Such proposals
often require some contribution from the user. In fact, the user contribution
is usually carried to the HN during the SUPI-based identification. Thus, such
3 Typically it is just the unpredictable part of GUTI that needs to be explicitly
included in messages between the network and the UE.

44 M. T. Damir and V. Niemi

enhancements typically do not cover the GUTI case. In the present work, we
propose a linkability attack against 5G AKA with user identification based on
GUTI. Indeed, a similar attack against 5G AKA is proposed in [10] in the case
where user is identified based on SUCI. In our work, we emphasize that our
GUTI variant of the attack works also against the 5G AKA enhancement in [2],
while this enhancement protects against the attack in [10]. In fact, linkability
attacks were blocked in in [2] by re-using an ECIES shared key between the UE
and the core network. The primary purpose of this shared key is to encrypt the
SUPI. In the present work we explain how our attack works against the protocol
proposed in [2] and its possible extensions to the GUTI case.

We further discuss the protocols in [5,15,16]. To block linkability attacks,
these protocols (at least) require the UE to send both the SUPI and a freshly
generated random bitstring in an encrypted message to the SN. In fact, such
5G AKA enhancements did not cover the GUTI-based identification, thus, we
discuss the effect of our attack on their possible extensions to the GUTI case. Our
aim behind discussing the protocols in [2,5,15,16] is to highlight the importance
of considering the GUTI-based identification in future 5G AKA enhancements.
Moreover, we argue that the enhancements using public key encryption during
identification are usually not extendable to the GUTI case to protect against
our attack, that is keeping in mind the purpose of using the GUTI. Finally, we
propose a fix against our attack. The fix is USIM compatible.

In summary, our contributions consist of:

– An attack on 5G AKA and 5G AKA’, the 5G AKA enhancement proposed
in [2].

– We suggest a USIM compatible privacy preserving fix against this RIG attack.
– Emphasizing the importance of covering the GUTI based identification in

AKA enhancements by further discussing the protocols in [5,15,16].

4 5G Authentication and Key Agreement Protocol (5G
AKA)

Before proceeding with describing our attack, we will first give details of the
5G AKA protocol. The 5G system supports two protocols, namely, the 5G-
Authentication and Key Agreement and a mobile network specific method for the
Extensible Authentication Protocol, denoted 5G-AKA and EAP-AKA’, respec-
tively. The two protocols are similar in our context, thus, we will mainly focus
on the 5G AKA. In 5G AKA, we distinguish two steps, the UE identification,
which consists of the SUPI concealment and the UE’s identification by the HN,
and the authentication phase, which allows both the UE and the HN to securely
authenticate each other and agree on shared secret keys.

4.1 The UE’s Identification

The identification in 5G is either done by sending the GUTI from the UE or
the SUCI. It is also possible that identification is triggered by request from

Location Privacy, 5G AKA, and Enhancements 45

the network side. The GUTI is a frequently changing identifier that appears as
random4. Hence, a scenario where a malicious but passive entity intercepts it
does not threaten the privacy of the user. This may be the underlying reason
why most works on linkability attacks ignore the case of GUTI in their design.
In our work, we will show why it is worth considering such case. For the sake
of completeness, we will first describe the SUCI-based identification in 5G AKA
and enhancements. In the rest of this section, we focus on the SUCI case.

For the SUPI concealment, the UE uses an Elliptic Curve Integrated Encryp-
tion Scheme (ECIES) algorithm, see 3GPP TS 33.501 Annex C, with the HN
public key, pkHN . This public key is stored at the USIM and it is used to to
derive an ECIES key KD, shared between the UE and the HN. The SUPI encryp-
tion can be performed by a next generation USIM [3GPP TS 31.102] or by the
mobile equipment. The SUCI is then sent to the HN via the SN, together with
a MAC tag, and pkU , an ephemeral public-key generated at the UE.

Reflecting the UE side, the HN will use its secret key, skHN , to generate
KD using pkU , check the MAC, and decrypt the SUCI. Then the UE data is
retrieved from the HN database and the HN proceeds with an authentication
procedure.

4.2 The Authentication and Key Agreement

As specified by 3GPP TS 33.501, the 5G-AKA uses a Key Derivation Func-
tion (KDF) and seven independent symmetric key algorithms denoted by
f1, f2, f3, f4, f5, f

∗
1 and f∗

5 . These functions are assumed to be one-way functions
and they are used, e.g., to derive keys that protect integrity and confidentiality.

Authentication in 5G-AKA. The authentication procedure starts once the
HN decrypts the SUCI. If the MAC check passes, then based on the SUPI, the
HN retrieves the long term key K, and its related sequence number, denoted
SQNH , which is a 48 bits string used for the purpose of proving to the UE
that the authentication data sent to it is fresh (and not something recorded and
replayed by an attacker). The HN further generates a 128-bit random number
RANDH , then proceeds on computing an authentication vector (AV) by running
the algorithm in Fig. 1 using K, SQNH ,RANDH and an Authentication Man-
agement Field (AMF) in which a specific separation bit equals 1. The AMF is a
16 bits string, where the first bit is called the “AMF separation bit”. It is used
for the purposes of differentiating between mobile generations, the last 8 bits
can be used for proprietary purposes. As the next step, the HN sends (RANDH ,
AUTN, HXRES∗) to the SN, then this last forwards RANDH and AUTN to the
UE.

At this point, we distinguish two types of operations at the UE, namely,
those performed by the ME and those performed by the USIM. As depicted by
Figs. 2 and 3, we put together the operations at the USIM (resp. ME) into a
single algorithm that we denote by At-USIM (resp. At-ME).
4 The unpredictable part appears as random.

46 M. T. Damir and V. Niemi

Fig. 1. Challenge and key material
generation at HN

Fig. 2. Challenge response at the
USIM

Fig. 3. Session key and RES∗ generation at the ME.

In the case of a successful run of AT-USIM, the ME generates RES∗ using
AT-ME, then forwards it to the SN. The SN receives the value of RES∗ from
the UE and then compares SHA256(RANDH ,RES∗) with HXRES∗. If the two
values are equal, then the SN forwards RES∗ to the HN which verifies the equality
XRES∗ = RES∗. If this last check passes, then finally, the HN sends the SUPI
and Kseaf to the SN.

Figure 4 (Appendix) summarizes the workflow in 5G AKA.

5 A New Attack: Replay in GUTI (RIG)

When the GUTI is sent in a connection request from UE to the SN, the SN
resolves the SUPI from GUTI, then decides between either communicating using
previously established keys or starting a new 5G AKA authentication procedure,
very similar to the one described in the case of SUCI. For the purposes of the
attack, we utilize the latter option where the SN chooses to authenticate the UE
via the HN. More precisely, in our attack, we link two 5G AKA sessions, where
a different GUTI is used as an identifier for each session.

Location Privacy, 5G AKA, and Enhancements 47

5.1 The RIG Attack

We distinguish two steps in our attack, namely, a discovery phase and an attack
phase.

The Discovery Phase. In the first phase of our attack, the attacker,

1. sniffs the network traffic for a GUTI-based 5G AKA protocol run related to
a Person of Interest (PoI), denoted as Utarget. Linking the 5G AKA session
with the PoI can be done by other means e.g. surveillance cameras or with
fine-grained location information.

2. records the authentication vector sent by the SN to the UE consisting of the
target’s AUTN and RAND that we denote by AVtarget. The attacker also
observes and records the identity of the local operator that serves the UE.

Please not that the attacker remains passive throughout the discovery phase,
i.e., it just receives and records radio signals but does not have to transmit
anything.

The Attack Phase. In the attack phase, we assume that Utarget is using the
GUTI for its next connection. Note that this GUTI is not typically the same one
that has been seen by the attacker in the discovery phase. In order to localise
Utarget in an attack area, the attack goes as follows.

1. The attacker sets up a fake base station which pretends to belong to a local
operator identified in the discovery phase.

2. Because the fake base station has a strong signal, some devices in the attack
area try to create a radio connection to the attacker base station. Users that
are registered to the claimed local operator, send their temporary identifier
(unpredictable part of GUTI) if they have one [3GPP TS 38.331]. If the PoI
Utarget is in the attack area, then it will send (unpredictable part of) its GUTI
that we denote by GUTItarget5.

3. The attacker sends authentication request [3GPP TS 24.501] with the pre-
viously recorded authentication data AVtarget to every connected user in the
attack area.

4. The attacker receives the users’ responses.
The attacker is expected to receive two types of responses:

– The non-targeted users in the attack area will reply with an authenti-
cation failure, that is because the MAC check in step 3 in Fig. 2 fails,
which is due to the fact that AVtarget is generated using the “wrong” key
material.

– If Utarget is in the attack area, then the attacker will receive a response
containing a MAC check pass and a synchronization failure message as
depicted in step 4 in Fig. 2.

5 At this stage GUTItarget is unknown to the attacker and not linked yet to the PoI.

48 M. T. Damir and V. Niemi

5. In the latter case the attacker learns that Utarget is in the attack area and
records GUTItarget.

Note that recording GUTItarget might lead to further tracking of Utarget, that is
in case the same GUTItarget was re-used for Utarget. In fact, previous works on
GUTI re-allocations shows that some operators fail to frequently renew their sub-
scribers GUTIs after every communication, see for instance [11]. Anyways, after
the GUTI has finally been re-allocated, the attack phase needs to be repeated
in the same, extended or different attack area.

6 Feasibility of the RIG Attack

In this section, we discuss the practical setting of our attack.

6.1 IMSI-Catchers

Communication between the UE and SN is either initiated by the UE (regis-
tration request) or the SN (identification request or paging). In both cases, the
UE sends the user identifier (SUCI or GUTI) to the SN. Such an identification
is not authenticated, thus, an IMSI-catcher (fake base station) can either send
an identification request to the UE or a registration request to the SN. More-
over, we assume that the IMSI-catcher can impersonate the real network and
replay messages from both the SN and the UE. Various works showed that these
assumptions are feasible in practice [12–14].

6.2 The Attack Area

The ME continuously monitors the signal strength in its surrounding area, then
selects the cell with the strongest signal. Such a procedure is not authenticated,
thus, the ME cannot distinguish between a legit SN and a fake base station.
Consequently, in practice an IMSI catcher is assumed to attract the mobile
devices in its range.

7 Attacking 5G AKA Enhancements

7.1 Applying the RIG Attack to 5G AKA’

In [2], and to bypass known linkability attacks, the authors showed that it is
enough to use 5G AKA with the addition of hiding the RANDH used in AV from
an attacker operating in the channel between the SN and the UE. For this end,
the authors in [2], suggested encrypting RANDH , the random number generated
at the HN, by re-using the key that was primarily utilized to encrypt the SUPI,
namely the key KD in Sect. 4.1. More precisely, the authentication vector sent
by the HN to the SN is the same as the one in Fig. 4, but with EncKD

(RANDH),
an encrypted RANDH , instead of plaintext RANDH . Using the fact that KD

Location Privacy, 5G AKA, and Enhancements 49

is initially shared with the UE, this last obtains RANDH by decrypting the
received message, then runs Algorithms 2 and 3 in a similar fashion than is
done in “standard” 5G AKA. The protocol in [2] is denoted 5G AKA’. It is
worth mentioning that the authors in [2] used Tamarin tool to formally verify
the security of 5G AKA’.

The Attack on 5G AKA’. The case of GUTI is indeed not mentioned in [2].
In our context, in the case of GUTI, the SN first resolves the SUPI from GUTI,
then starts an authentication phase by sending the SUPI (or a stored SUCI from
the first identification) to the HN. For the authentication phase, there are two
possible scenarios:

1. The HN uses the authentication procedure as in 5G AKA in the case of GUTI.
2. The HN uses the authentication procedure as in 5G AKA’ in the case of

GUTI, where the HN uses KD, the ECIES shared key which is stored during
the last SUCI based identification, that is to encrypt the RAND in the newly
generated authentication vector.

The first scenario is vulnerable to the RIG attack as described in the begin-
ning of the section. For the latter scenario to be possible, the ME has to store
the key KD after the previous SUCI based identification and HN keeps using
the same key KD for encrypting RANDH in every GUTI-based identification.

As described in the RIG attack, the attacker records AVtarget, the target’s
authentication vector resulting from a first GUTI based identification, which
in the 5G AKA’ case consists of AUTN and EnKD

(RANDH), the symmetric
encryption of RANDH using KD. Hence, the attack on 5G AKA’ is as follows:

1. The attacker records the target’s authentication vector AVtarget from the first
connection.

2. The attacker waits for users in an attack area to request for radio connection.
3. For each connected user, the attacker replays the recorded AVtarget containing

EncKD
(RANDH) and AUTN in an authentication request.

4. The non-target users will reply with an authentication failure.
5. If the target user is in the attack area, then Utarget will successfully decrypt

EnKD
(RANDH) and the MAC check at the UE will pass, while the synchro-

nization check will fail.
6. The attacker learns whether Utarget is in the attack area and, in the positive

case, records its GUTI.

Note that our attack is successful against 5G AKA’ because of the re-use of
the key KD from the SUCI based identification. As this key is generated during
the SUPI encryption, then renewing it will only accrue when a new SUCI based
authentication was initiated.

Finally, with our attack we highlight two problems:

– Re-using the ECIES key6 to block linkability attacks might still lead to other
linkability attacks when the GUTI case is not covered.

6 The key used for encrypting the SUPI.

50 M. T. Damir and V. Niemi

– The case of GUTI must be considered in formal verification of AKA protocols
in 5G and beyond.

7.2 Discussion on Further 5G AKA Enhancements

In the previous section, we examined the 5G AKA’ which is a 5G AKA enhance-
ment that is resistant to linkability attacks. In this section, we discuss two
examples of 5G AKA enhancements that considered7 further security proper-
ties, namely, the works in [5,15,16].

In [3], the authors conducted a 5G AKA formal verification using Tamarin.
Among the security issues pointed out by the verifier is the lack of session key
confirmation. In [5], the authors proposed a protocol with session key confirma-
tion that is resistant to known linkability attacks. The work in [16], considered
another security issue in 5G AKA, namely, the lack of perfect forward secrecy. In
[15], both perfect forward secrecy and session key confirmation are investigated.

The key idea in [15] requires the UE to generate a random bitstring RU , and
RU is encrypted with the SUPI and IDSN using pkH , while the protocols in
[5,16], additionally require the SN to send a random RS to the UE, then both
RS and RU are encrypted with the SUPI and IDSN using pkH . In the three
protocols, the encrypted message is sent to the HN via the SN. This idea does
not directly carry over to the GUTI case because the SN does not have access
to skH . Indeed, if GUTI would be encrypted in place of SUPI, the SN would
need to consult HN for decryption. But this would completely undermine the
purpose of GUTI which allows the SN to protect the identity privacy without
bothering HN. Recall that SN has the option not to authenticate the GUTI but
instead use the previously established shared keys with the UE. On the other
hand, if SN decides to go for authentication in the GUTI case, then this needs
to be done with “standard” 5G AKA, and it follows that the RIG attack would
apply.

To extend the protocol in [15] to cover the GUTI case, we discuss next a
modification where the identity (which is GUTI instead of SUPI) is sent in
plaintext while the random RU and IDSN are still sent in encrypted form, using
the public key of the HN. If the SN chooses the option of not authenticating
the UE, the encrypted message is ignored by the SN. Later the UE will find out
that authentication is not required, and the UE can delete the freshly generated
RU . On the other hand, if the SN wants to authenticate, then it forwards the
encrypted RU and IDSN to the HN, together with the permanent identity,
after resolving it from the GUTI. Note that the SN must have received such
a permanent identity from HN when the UE was authenticated by the SN for
the first time. Indeed, the SN cannot forward GUTI to the HN because the latter
cannot resolve it.

To extend the protocols of [5,16] the above modification does not work as
such because both protocols begin by the UE receiving a fresh random RS ,
generated by the SN, which needs to be encrypted together with SUPI, RU , and

7 In addition to linkability attacks.

Location Privacy, 5G AKA, and Enhancements 51

IDSN . In the case of GUTI, and when SN wants to skip the authentication, the
SN would not need to generate such a random at all. Therefore, there are (at
least) two possible ways how to extend these two protocols to the GUTI case.

– The UE will first send just a GUTI. If the SN does not want to authenticate
(but use session keys from previous connection) then the protocol is com-
pletely skipped. On the other hand, if SN wants to authenticate, the protocol
is run from the beginning, similarly as in the SUPI/SUCI case (as proposed
in [5,16]). It is clear that this solution is not optimal because SN already has
the identity of the UE but this information is not utilized, and the message
flow is increased by one message from the UE to the SN.

– The SN always begins by generating its random RS , regardless of what fol-
lows. This random could then be encrypted together with RU and IDSN ,
using the public key of the HN, while GUTI is sent in plaintext (similarly as
in the above modification to the [15]). If the SN does not want to authen-
ticate then both randoms are wasted. On the other hand, if SN wants to
authenticate, the protocol continues in the modified form, based on the same
idea as above for [15]: the encryption of the RS , RU and IDSN replaces the
SUCI of [5,16] while the permanent identity is sent separately from the SN
to the HN. This solution is also not fully satisfactory either because of all the
wasted effort dealing with generating and encrypting random strings (in case
SN decides that authentication is not needed).

In the next section, we will propose a more efficient enhancement of 5G AKA,
which is non-vulnerable to known linkability attacks, and the newly proposed
RIG attack. Our fix is also USIM compatible, which means that our proposal
does not require changes at the USIM, hence, it is compatible with previous
mobile generations.

8 Protecting Against the RIG Attack

Before proceeding on describing our fix, we first precise the used threat model.

8.1 Threat Model

Our threat model follows from the requirements specified in TS 33.501. In fact,
our threat model assumptions were implicitly introduced in Sect. 6.

The Channel Between the UE and the SN. The 3GPP standard, TS
33.501, does not specify conditions on the channel between the UE and the
SN. In our context, we assume the existence of an attacker (IMSI-catcher) with
the ability of sending messages to users in its attacking range. Moreover, the
attacker can intercept, manipulate and replay messages in the channel between
the SN and the UE.

52 M. T. Damir and V. Niemi

The Channel Between the SN and the HN. As specified in TS 33.501,
the channel between the SN and the HN is a core network interconnection wired
channel. We assume that such a channel is secured by means outside of the scope
of this paper.

The Channel Between the USIM and ME. In our model, we consider the
UE as a single entity. Therefore, for the purposes of this paper, the communica-
tion between the USIM and the ME is assumed secure.

8.2 A Privacy-Preserving GUTI Protocol

In our fix, we suggest that during the GUTI assignment, the SN additionally
generates a random value RANDS and then sends it, together with the GUTI,
over the established encrypted channel between the SN and the UE. More pre-
cisely, the shared RANDS is stored at both the UE and SN sides, preserving
its association to the assigned GUTI. The RANDS is used during the authen-
tication procedure following identification with the associated GUTI for mask-
ing/unmasking the RAND involved in generating the authentication vector and
in running the AT-USIM algorithm.

More precisely, we distinguish two phases.

1. The GUTI assignment phase:
– The SN generates a GUTI and RANDS then sends

c = EncKs
(GUTI,RANDS)

where Ks is the previously established session key used to protect the
channel between the UE and the SN.

– The ME decrypts c and stores GUTI and RANDS .
2. The authentication phase:

(a) The UE sends the GUTI to the SN in the radio connection request.
(b) The SN resolves the SUPI from GUTI and forwards the SUPI to the HN.
(c) The HN generates the authentication vector and sends HXRES∗, AUTN

and RANDH to SN.
(d) The SN computes RAND′

S = RANDS ⊕RANDH , and sends RAND′
S and

AUTN to the ME.
(e) The ME computes RANDH = RANDS ⊕ RAND′

S .
(f) The UE runs At − USIM and At − ME using RANDH , computes Kseaf ,

and sends RES∗ to the SN.
(g) The SN computes SHA512(RANDH ,RES∗) and compares it with

HXRES.
(h) If the two are equal, the SN sends RES∗ to the HN. Otherwise, the authen-

tication ends in failure.
(i) The HN receives RES∗ and compares it with XRES∗ .
(j) If the previous check passes, then the HN sends Kseaf to the SN.

Please note that the above procedure is similar to 5G AKA except for steps
(d) and (e), where the SN (resp., ME) masks (resp., unmasks) RANDH .

Location Privacy, 5G AKA, and Enhancements 53

8.3 Remarks on the Security of the Fixed Protocol

As described in Sect. 5.1, the main idea behind the RIG attack is to explore the
fact that a recorded authentication vector will pass the MAC check in Fig. 2.
Clearly, the whole authentication procedure will be aborted by detecting a syn-
chronization failure anyways, but receiving a synchronization failure message by
the attacker is enough in our case to conclude that such a message is sent by the
target user. In fact, our fix is enforced by a mechanism to detect replayed authen-
tication vectors. According to 3GPP standards, the GUTI should be changed
with each voice call. Adapting this requirement to our fix results in the ME stor-
ing a new random 128 bitstring RANDS with every GUTI assignment. Assuming
that an attacker is performing the RIG attack by recording an authentication
vector sent by the SN to the UE consisting of AUTN and

RAND′
S = RANDS ⊕ RANDH .

Then for the next communication, the UE is supposed to obtain a new GUTI
and randomness RAND′′

S from the SN. Now assuming that the UE starts a new
communication with the SN, then the UE is expecting a new authentication
vector containing a bitstring of the form RAND′′

S ⊕ RAND′
H , where RAND′

H is
a freshly generated randomness at the HN.

Finally, if the attacker replayed RAND′
S to the target user, this last is sup-

posed to first compute

R = RAND′′
S ⊕ RAND′

S = RAND′′
S ⊕ RANDS ⊕ RANDH ,

which is different from RAND′
H (with a high probability). Next, the target user

will use R instead of RAND′
H in the MAC check in Fig. 2, which will abort the

communication before the synchronization check.
The remaining case in this direction is when the same GUTI is used (at

least) twice to identify an UE. In that case, the same RANDS would be used (at
least twice) to mask different instances of RANDH . From cryptographic point of
view, masking two different random challenges with the same key using an XOR
operation is clearly not a secure solution. But because the re-use of the same
GUTI would anyways allow linkability of different messages, this shortcoming
does not decrease security level of our solution. Please note that with our fix,
the user can detect any replayed authentication vector. In fact, known linkability
attacks [7–9] rely on observing the user’s responses after receiving a replayed
authentication vector. The mentioned works are described in the SUCI case, but
we note that they can be also extended to our case, where the AKA protocol is
based on a GUTI identification. Consequently, our proposal is also secure against
such attacks.

8.4 Formal Verification

To further analyze the linkability attack resistance of our fix, we use the well-
known formal verification tool Tamarin [18]. Linkability attacks follow from an

54 M. T. Damir and V. Niemi

attacker distinguishing two protocol executions, say by two users UE1 and UE2.
In other words, we aim to prove that the attacker will not be able to conclude
information about UE2, even if the attacker is observing/recording a protocol
execution by UE1. Tamarin can be used to check tractability and distinguisha-
bility using the operator diff. The diff operator takes as input two arguments.
In our case, such two arguments are given by two GUTIs representing UE1
and UE2. In the diff mode, also known as the observational equivalence mode,
Tamarin generates two instances of the protocol referred to by a Left Hand Side
(LHS) and Right Hand Side (RHS). Moreover, Tamarin automatically gener-
ates a lemma called Observational equivalence, where proving such a lemma
implies that an intruder cannot distinguish LHS from RHS. Consequently, that
proves that an attacker cannot link two protocol executions.

For our formal verification, we consider a Dolev-Yao attacker [17] in the chan-
nel between the UE and SN, namely an attacker who can eavesdrop, modify,
delete and inject messages. However, the attacker cannot break cryptographic
primitives and can only use them via their legitimate interface. We further con-
sider the SN and the HN to be one single entity. Thus, the protocol is seen as
a two-party protocol between the UE and the SN/HN. Please note that such
assumptions do not contradict our assumptions in Sect. 8.1 on the attacker’s
abilities and the secure channel between the HN and SN.

Our Tamarin code is based on the script in [3], where the authors evaluated
the security of 5G AKA using Tamarin. In [3], the authors considered a SUCI-
based identification. Hence, the difference between our script and the code in
[3] consists of considering the GUTI case instead of SUCI. Additionally, we
implement our fix by masking the RAND used in the 5G AKA authentication
vector. The masking is done using a random bitstring RANDS generated and
sent by the SN during the GUTI assignment.

Verification Results. As pointed out in [18], the observational equivalence
mode requires extra precomputations compared to the trace mode8. The obser-
vational mode usually results in long proof times or even non-termination. In
fact, we run the Tamarin privacy script of the standardized 5G AKA [3]. Tamarin
found traces for different linkability attacks in approximately four hours. As
argued in the previous section, Tamarin is not expected to find such counterex-
amples in our fix. Indeed, Tamarin did not find any attack against our fix in a
running time of approximately 24 h, which helped us establish more confidence
in the security of our protocol. Moreover, we tested the above mentioned traces
of the linkability attacks found in the standardized 5G AKA against our fix. As
a result, Tamarin showed that our protocol is non-vulnerable to those attacks.

8 The trace mode is used to prove “usual” security properties, e.g., keys secrecy or
authentication.

Location Privacy, 5G AKA, and Enhancements 55

8.5 Efficiency and Backward Compatibility

Our fixed protocol is similar to 5G AKA with the minimal additions. In sum-
mary, compared to 5G AKA, the additional computational, communication and
memory overheads are:

1. Computational overhead:
– Generating a random bitstring, RANDS , at the SN.
– During authentication, the SN performs one extra XOR operation:

RAND′
S = RANDS ⊕ RANDH .

– At the UE, the ME performs one extra XOR operation:

RANDH = RANDS ⊕ RAND′
S .

2. Communication overhead:
– Additional encrypted RANDS sent during the GUTI assignment phase

by the SN.
– We emphasize that no extra bits are sent over the radio channel between

the SN and the UE. We recall that in 5G AKA, RANDH is sent by the
SN to UE during authentication. Thus, our fix does not affect the size of
the parameters sent over the radio channel during authentication, as it
only requires sending RANDS ⊕ RANDH instead of RANDH .

3. Memory overhead:
– Storing RANDS at the ME and SN.

Please note that our fix does not require any changes at the USIM, which
enables our proposal to be implemented using previous USIMs.

9 Conclusion

In the present work, we introduced a new linkability attack on 5G AKA in the
case where the temporary identity GUTI is used for identification. We further
show that the attack works also against several proposed enhancements of 5G
AKA. We discuss how the enhancements known in the literature could be further
enhanced to protect against the new attack. Unfortunately, it seems there are
no straightforward extensions that would be sufficiently efficient in the case of
GUTI. Therefore, we propose our own fix as an USIM-compatible extension of
5G AKA that resists all known linkability attacks, including the new one. For
future research, it is important to include the case of temporary identity when
mobile system authentication is developed further, including in standardization.
Another future work is to try out the new RIG attack and the protection against
it in an experimental set-up.

56 M. T. Damir and V. Niemi

APPENDIX

The Message Flow in 5G AKA

Fig. 4. The message flow in 5G AKA

References

1. Sikeridis, D., Kampanakis, P., Devetsikiotis, M.: Post-quantum authentication in
TLS 1.3: a performance study. IACR Cryptol. Eprint Arch. 2020, pp. 71 (2020)

2. Wang, Y., Zhang, Z., Xie, Y.: Privacy-Preserving and Standard-CompatibleAKA
Protocol for 5G. In: 30th USENIX Security Symposium (USENIX Security 21),
pp. 3595–3612 (2021)

Location Privacy, 5G AKA, and Enhancements 57

3. Basin, D., Dreier, J., Hirschi, L., Radomirovic, S., Sasse, R., Stettler, V.: A formal
analysis of 5G authentication. In: Proceedings of the 2018 ACM SIGSAC Confer-
ence on Computer and Communications Security (CCS), pp. 1383–1396 (2018)

4. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the
symbolic analysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 696–701. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8 48

5. Braeken, A., Liyanage, M., Kumar, P., Murphy, J.: Novel 5G authentication proto-
col to improve the resistance against active attacks and malicious serving networks.
IEEE Access. 7, 64040–64052 (2019)

6. Koutsos, A.: The 5G-AKA authentication protocol privacy. In: 2019 IEEE Euro-
pean Symposium On Security And Privacy (EuroS&P), pp. 464–479 (2019)

7. Arapinis, M., et al.: New privacy issues in mobile telephony: fix and verification.
In: Proceedings of the 2012 ACM Conference on Computer and Communications
Security (CCS), pp. 205–216 (2012)

8. Fouque, P., Onete, C., Richard, B.: Achieving better privacy for the 3GPP AKA
protocol. Proc. Priv. Enhancing Technol. 2016, 255–275 (2016)

9. Borgaonkar, R., Hirschi, L., Park, S., Shaik, A.: New privacy threat on 3G, 4G, and
upcoming 5G AKA protocols. Proc. Privacy Enhancing Technol. 2019, 108–127
(2019)

10. Chlosta, M., Rupprecht, D., Pöpper, C., Holz, T.: 5G SUCI-catchers: still catching
them all?. In: Proceedings of the 14th ACM Conference on Security and Privacy
in Wireless and Mobile Networks (WiSec), pp. 359–364 (2021)

11. Hong, B., Bae, S., Kim, Y.: GUTI reallocation demystified: cellular location track-
ing with changing temporary identifier. In: Network And Distributed Systems Secu-
rity (NDSS) Symposium 2018 (2018)

12. Shaik, A., Borgaonkar, R., Seifert, JP., Asokan, N., Niemi, V.: Practical attacks
against privacy and availability in 4G/LTE mobile communication systems. In:
Symposium on Network and Distributed SystemSecurity Network And Distributed
Systems Security (NDSS) Symposium 2016 (2016)

13. Chlosta, M., Rupprecht, D., Holz, T., Pöpper, C.: LTE security disabled: mis-
configuration in commercial networks. In: Proceedings of the 12th Conference on
Security and Privacy in Wireless and Mobile Networks (WiSec), pp. 261–266 (2019)

14. Hussain, S., Chowdhury, O., Mehnaz, S., Bertino, E.: LTEInspector: a systematic
approach for adversarial testing of 4G LTE. In: Network And Distributed Systems
Security (NDSS) Symposium 2018 (2018)

15. Liu, T., Wu, F., Li, X., Chen, C.: A new authentication and key agreement protocol
for 5G wireless networks. Telecommun. Syst. 78, 317–329 (2021)

16. Hojjati, M., Shafieinejad, A., Yanikomeroglu, H.: A blockchain-based authentica-
tion and key agreement (AKA) protocol for 5G networks. IEEE Access. 8, 216461–
216476 (2020)

17. Dolev, D., Yao, A.: On the security of public key products. Stanford University,
Department of Computer Science (1981)

18. Tamarin Prover Manual (2022). https://tamarin-prover.github.io/manual/index.
html. Accessed Oct 2022

https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-642-39799-8_48
https://tamarin-prover.github.io/manual/index.html
https://tamarin-prover.github.io/manual/index.html

Local Differential Privacy for Private
Construction of Classification Algorithms

Mina Alishahi(B), Daan Gast, and Sam Vermeiren

Department of Computer Science, Open Universiteit, Heerlen, The Netherlands
mina.sheikhalishahi@ou.nl, seg.vermeiren@studie.openuniversiteit.be

Abstract. In recent years, Local differential privacy (LDP), as a strong
privacy preserving methodology, has been widely deployed in real world
applications. It allows the users to perturb their data locally on their
own devices before being sent out for analysis. In particular, LDP serves
as an effective solution for the construction of privacy-preserving clas-
sifiers. While several approaches in the literature have been proposed
to build classifiers over distributed locally differential private data, an
understanding of the difference in the performance of these LDP-based
classifiers is currently missing. In this study, we investigate the impact
of using LDP on four well-known classifiers, i.e., Näıve Bayes, Decision
Tree, Random Forest, and Logistic Regression classifiers. We evaluate
the impact of dataset’s properties, LDP mechanisms, privacy budget,
and classifiers’ structure on LDP-based classifiers’ performance.

Keywords: Classification · Local differential privacy · Privacy

1 Introduction

With the rapid development of information technology, the collection of users’
data has dramatically increased. The amount of data created globally is growing
exponentially, from 15 zettabytes in 2010 to 64 in 2020 and expected to reach
to 168 in 20251.

To extract valuable information out of this massive amount of data, data-
driven decision-making techniques should be used. Classification algorithms (or
classifiers) have particularly served as effective tools in data analysis for making
precise decisions in new situations using previous experiences. These algorithms
are widely employed in our modern society, including but not limited to medi-
cal image analysis, natural language processing, biometric identification, Spam
detection, and smart grid [18,28]. In general, the classification algorithms are
accurately trained when they have access to a large amount of data. However,
due to privacy concerns an access to this data is not possible as the data owners
are unwilling to share their original data with third parties.

A large body of research has been devoted to the construction of a clas-
sifier, where the users’ privacy is protected [4,5,12,17,28]. Existing solutions
1 https://www.statista.com/.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. P. Reiser and M. Kyas (Eds.): NordSec 2022, LNCS 13700, pp. 58–79, 2022.
https://doi.org/10.1007/978-3-031-22295-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22295-5_4&domain=pdf
https://www.statista.com/
https://doi.org/10.1007/978-3-031-22295-5_4

Local Differential Privacy for Private Construction 59

for privacy-preserving classifiers’ construction can be divided into three main
categories. The first category employs cryptographic-based approaches, which
mainly find the model’s parameters over encrypted inputs. These approaches,
however, are not scalable both in terms of execution runtime and bandwidth
usage. The other category solves the problem at hand using data anonymization
techniques, where the data under analysis is perturbed before being released,
e.g., k-anonymity, �-diversity, and t-closeness. These techniques are, however,
criticized for not protecting the users’ privacy properly. The last category com-
prises the application of Differential Privacy (DP) and Local Differential Privacy
(LDP), which offers a rigorous privacy guarantee. Through these techniques, a
systematic noise is added to the revealed data such that some statistical prop-
erties of the original data are preserved. In particular, LDP gains increasing
attention in private data analysis as it guarantees the user’s privacy on her own
device before being sent to any third party [3].

Under the LDP setting, several classification algorithms have been trained
in the literature, e.g., Näıve Bayes and Neural Network classifiers [5,24,26].
However, a comparison of the performance of classifiers in this setting is currently
missing. Such knowledge enables the data owner and the analyst to select the
most appropriate classification algorithm and training parameters to guarantee
high privacy under LDP while minimizing the loss of accuracy. Accordingly, this
study aims to answer the following research questions:

– How does the choice of the LDP mechanism affect the performance of LDP-
based classifiers?

– Which properties of the dataset affect the performance of LDP-based classi-
fiers?

– How does the level of privacy affect the performance of LDP-based classifiers?

To answer these questions, we investigate the application of LDP in four well-
known classification algorithms, namely the Näıve Bayes, Decision Tree, Random
Forest, and Logistic Regression classifiers in a locally differential private setting.
For each classification algorithm, we analyze the effect of LDP mechanisms,
dataset properties, and privacy levels on the LDP-based classifier accuracy.

The remainder of this paper is organized as follows. The next section presents
Local Differential Privacy and the classification algorithms studied in this work.
Section 3 shows the proposed architecture along with the main entities, and
Sect. 4 presents the LDP-based classifiers. Section 5 describe our experimental
setup and results. Section 6 discusses related work, and Sect. 7 concludes the
paper and provides directions for future work.

2 Preliminaries

This section briefly presents the Local Differential Privacy mechanisms and clas-
sification algorithms used in this study.

60 M. Alishahi et al.

Algorithm 1: Frequency estimation
1 Function estimate(U, l, ε, vr):

input: U : The set of users {u1, . . . , un}, where each user ui owns
data value di,
l: ldp mechanism,
ε: epsilon value,
vr: value requesting frequency estimation

output: F (vr): frequency estimation of value vr

2 begin
/* Perturb data of each user and send to aggregator */

3 foreach vi owned by ui ∈ U do
4 Aggregator ← Perturb(vi, l, ε);

/* Perform frequency estimation for value vr */
5 return Aggregator.estimate(vr);

2.1 Local Differential Privacy

In Local Differential Privacy (LDP), an aggregator collects information from
users (data owners) who do not fully trust the aggregator but are willing to
participate in the aggregator’s analysis. To protect the confidentiality of data,
each user’s value is perturbed using a randomized algorithm locally before being
sent out to the aggregator [13]. The perturbation might require a pre-processing
algorithm over input data named encoding. The aggregator then collects the
perturbed values and estimates the true statistic.

Definition 1 (ε-Local Differential Privacy (ε-LDP) [11]). A randomized
mechanism M satisfies ε-LDP if and only if for any pair of input values v, v′ ∈ D
and for any possible output S ⊆ Range(M), we have

Pr[M(v) ∈ S] ≤ eεPr[M(v′) ∈ S] (1)

when the value of ε is known from the context, we omit ε from ε-LDP and simply
write LDP.

In this study, we employ two main LDP mechanisms, namely frequency and
mean estimation, as summarized in Algorithms 1 and 2, respectively. A complete
definition of the LDP-based mechanisms has been provided in Appendix.

2.2 Classification Algorithms

Next, we briefly introduce these classifiers employed in this study (for more detail
refer to [1]).

Näıve Bayes (NB) algorithms are statistical classifiers based on the Bayes The-
orem for calculating probabilities and conditional probabilities. It makes use of all

Local Differential Privacy for Private Construction 61

Algorithm 2: Mean estimation
1 Function estimateMean(U, l, ε,W):

input: U : users {u1, . . . , un}, where each user ui owns data (X∗
i , ci),

l: ldp mean mechanism,
ε: privacy value,
W : set of weights (w1, . . . , wk)

output: mean gradient for each feature, (∇1, . . . ,∇k)
2 begin

/* Calculate gradient of each user and perturb */
3 foreach (X∗

i , ci) owned by ui ∈ U do
4 c′

i = x∗
1 · w1 + . . . + x∗

k · wk;
5 costi = (ci − c′

i);
6 foreach xj ∈ X∗ do
7 ∇[j] = cost * xj ;

8 ψ[i] = Perturb(∇, l, ε)

/* Calculate average over all perturbed gradients */

9 return 1
n

∑n
i=0 ψ[i];

Table 1. Notations.

Notation Description Notation Description

NT Number of occurrences in T Nt Number of occurrences of t in T

P(x) Probability of x P (x | c) Conditional probability of x given c

n Number of records k Number of feature vectors

D Dataset Aj Feature vector j

X∗ An individual record x∗
i Feature value i

C Set of labels c′ Predicted class label

η Learning rate ∇ Set of gradients

W Set of weights wi Weight i of W

d Depth of tree s Size of forest

attributes contained in the data, and analyses them individually as though they
are equally important and independent (näıve assumption) from each other. Näıve
Bayes model is easy to build and particularly useful for very large data sets.

Decision Trees (DT) are classification algorithms with a tree-based structure
drawn upside down with its root at the top. Each internal node represents a
test/condition based on which the tree splits into branches/edges. The end of
the branch that does not split anymore (respecting some stopping criteria) is
the decision/leaf. The paths from root to leaf represent classification rules. One
advantage of DTs is the comprehensibility of the classification structures. This
enables the analyzer to verify which attributes determined the final classification.
The drawback is that DTs might be non-robust for datasets with a large number
of attributes.

62 M. Alishahi et al.

Random Forest (RF) is an ensemble learning method for classification which
operates by constructing a multitude of decision trees at training time and out-
putting the class that is the mode of the classes of the individual trees. RF
corrects for decision trees’ habit of overfitting to their training set. The RF has
also been recognized to be among the most accurate classifiers.

Fig. 1. Architecture of framework.

Logistic Regression (LR) is a statistical model that is largely employed in
statistical data analysis to classify binary dependent variables. In regression anal-
ysis, logistic regression (or logit regression) is used to estimate the parameters of
a logistic model returning the probability of occurrence of a class. To this end,
the LR classifier builds a logit variable that contains the natural log of the odds
of the class occurring or not. Then, a maximum likelihood estimation algorithm
is applied to estimate the probabilities.

Table 1 summarizes the notations that are used in this study.

3 Architecture

The architecture of our framework as depicted in Fig. 1 constitutes of three main
entities: 1) the data owner, 2) the data aggregator, and 3) the semi trusted entity.

Data Owner (or User): The data owner is responsible for sending its data
to the aggregator (or semi trusted party in DT and RF). It uses a perturbation

Local Differential Privacy for Private Construction 63

mechanism that aligns with the mechanism used by the aggregator. In our algo-
rithms, the data of each user is represented by a single record of a dataset. We
assume that each user only participates once in the training of our classifier.

Data Aggregator: The data aggregator is responsible for collecting all the per-
turbed data and training the classifier. It determines the perturbation scheme
that the user should employ. The aggregator performs three actions: data aggre-
gation, frequency/mean estimation, and training of the classifier.

Semi Trusted Entity: The LDP-based privacy mechanisms are not stand-
alone enough to guarantee the users’ privacy in the construction of DT and
RF algorithms. The information leakage occurs when the data are directed to
new child nodes. As each user’s data will belong to a unique child node, the
aggregator can understand the feature-value of the previous level that the user’s
information satisfied. To avoid it, we propose a new framework that combines
LDP and Homomorphic Encryption to securely build the DT and RF algorithms
on individual data.

In this setting, the aggregator generates the public and private keys, while
the public key is shared with data owners and the private key is kept private.
The data owners encrypt the feature-value of the feature they belong to in the
previous level of tree and employ LDP for estimating the information gain of
upcoming split feature. The data owners then send this tuple, including the
encrypted and noisy values to the semi trusted entity. This entity shuffles the
data and sends them to the aggregator. The aggregator decrypts the ciphertexts
to understand which data should be used for aggregation in each new node.

4 LDP-Based Classification Algorithms

This section presents the algorithms for implementing the LDP-based classifiers.

4.1 LDP-Based Näıve Bayes Classifier

The LDP version of Näıve Bayes classifier has been adopted from the work
presented in [26]. In the proposed approach, frequency estimation is used to
calculate the different probabilities that are required in Bayes functions. In the
first step, the prior probabilities are estimated using frequency estimation. To
this end, the user provides the aggregator its class label in a perturbed format.
The data aggregator estimates the frequency Fc of each class label c. The prior
probability P (c) is then estimated as P (cj) =

Fcj

NC
, where NC (the number of

class labels) is known by the aggregator.
The likelihood computation requires some more work at the side of the user.

To maintain the relationship between the class and feature values from the train-
ing data, it needs to be connected before sending it to the server. After the con-
nection step, the result is a representation of the feature and class label connected
together into a unique integer as presented in Algorithm3. Once the connecting
is done, the data is perturbed and sent to the aggregator. The aggregator uses

64 M. Alishahi et al.

the frequency of the connected feature value and class labels to calculate the
conditional probabilities as follows:

P (xi | c) =
Fxi,c∑

xi∈X Fxi,c
(2)

Algorithms 4 and 5 present the estimation of class prior probability and likeli-
hood probabilities, respectively.

4.2 LDP-Based Logistic Regression Classifier

The design of our LDP-based Logistic Regression classifier has been inspired
by the work presented in [22]. Logistic Regression works by performing gradient
descent. At each iteration, it needs to find a mean gradient that is used to update

Algorithm 3: Connect feature value and class label
1 Function getConnectedLabel(d, k, c)

input: d: feature value, encoded numerical representation of the
feature value,
k: number of class labels,
c: class label, encoded numerical representation of the class

label,
output: v̂: connected feature-class label;

2 begin
3 v̂ = (d − 1) ∗ k + c;
4 return v̂

Algorithm 4: LDP-based Näıve Bayes class prior probability
1 Function computeClassPrior(U, l, ε, C)

input: U : set of users {u1, . . . , un} each user u owning class label cu,
l: ldp-mechanism,
ε: privacy value,
C: class domain C = {c1, . . . , cm}

output: classPriorProbabilities

2 begin
3 classPriorProbabilities = [];
4 foreach c ∈ C do
5 Fc = estimate (U, l, ε, c); � (see Algorithm 1)
6 P (c) = Fc / n;
7 classPriorProbabilities [c] = P (c);

8 return classPriorProbabilities

Local Differential Privacy for Private Construction 65

the weights of a function. With the LDP frequency estimation technique, we are
not able to calculate a gradient directly from the perturbed data. The solution
here could be to make the user calculate its own gradient and supply that to
the aggregator. Frequency estimation still requires the data to be binned into
categories before perturbation. In theory, we could calculate a mean from this
data but it is not accurate enough to use in Logistic Regression.

To solve this problem, we use a mean estimation technique instead of
frequency estimation. Three different LDP mean estimation mechanisms are
described in Sect. 2.1. Every mechanism has its own way of perturbing the data.
Once the data is perturbed, the mean is estimated by taking the average of all
perturbed records. The gradient descent is done by supplying the user with a set
of weights. The user determines a prediction based on their data and calculates
their own gradient. This gradient is then perturbed and sent to the aggregator.

On the aggregator side, the mean gradient can be determined from all the
data. This mean value is used to update the weights like it is done in the normal

Algorithm 5: LDP-based Näıve Bayes likelihood probabilities
1 Function computeLikelihood(U, l, ε, A,C)

input: U : set of users {u1, . . . , un} each owning (X∗
i , ci),

l: ldp-mechanism,
ε: privacy value,
A: set of feature domains A = {A1, . . . , Ak},
C: class domain C = {c1, . . . , cm}

output: likelihood;

2 begin
3 likelihood = [];

/* Create a version of U that has connected
feature-class labels */

4 Û = connectFeatureAndClass(U);
5 foreach c ∈ C do
6 foreach Aj ∈ A do

/* Obtain estimates of connected feature-class
labels */

7 estimates = [];
8 foreach d ∈ Aj do
9 v̂ = getConnectedLabel(d, c);

10 estimates[v̂] = estimate(Û , l, ε, v̂);

/* Calculate likelihood for each connected label
*/

11 foreach Fv̂ ∈ estimates do
12 likelihood [Aj][P (c | v̂)] = Fv̂ / sum(estimates);

13 return likelihood

66 M. Alishahi et al.

Logistic Regression algorithm. This process is repeated for a number of itera-
tions. The epsilon value is divided by the total number of iterations to ensure
the privacy budget of each user is not overridden. The mechanisms used in this
work require the perturbed values be in the range [−1, 1]. Any value that is out
of this range is transformed to either −1 or 1.

The gradient is calculated by first making a prediction with the current
weights. The prediction is then subtracted from the actual class label to obtain
the error or cost. The feature values are now multiplied by the error and this is
the gradient we use to update the weights as ∇ = (c − c′) · X [16].

Note that this step of updating the weights locally is performed on the user
side who knows the class label of her own record. Algorithm 6 summarizes the
construction of a Logistic Regression algorithm that satisfies ε-LDP.

4.3 LDP-Based Decision Tree Classifier

We designed the LDP-based Decision Tree algorithm by the combination of
encryption and LDP-based frequency estimations as explained in Sect. 3 (Semi
trusted role).

Algorithm 6: LDP-based Logistic Regression Classifier
1 Function train(U, I, η, ε):

input: U : set of users {u1, . . . , un} each user ui owning (X∗
i , ci),

I: number of iterations to perform,
η: learning rate,
ε: privacy value

output: W: trained weights

2 begin
3 W = array of 0’s with size k;
4 for I iterations do

/* estimate mean gradients from all users */
5 mean∇ = estimateMean(U, l, ε,W);

/* Update weights using mean gradients */
6 foreach wz ∈ W do
7 wz = wz + η · mean∇z · wz;

8 return W

Local Differential Privacy for Private Construction 67

For the part where frequency estimation is used, we essentially compute the
Information Gain (IG) for selecting the split attribute. The IG value is computed
based on entropy H, where

H(Aj) = −
∑

i

P (xi,j)log2P (xi,j) (3)

The feature A∗ that maximizes H(Aj) is selected for data division. To compute
P (xi,j), we connect each feature value and class label using Algorithm3.

As explained before, after finding the optimum attribute for data division,
directing data to child nodes reveals the sensitive information of users. We solve
this by introducing a semi-trusted party. First, we get the perturbed data from
all users. We use this to calculate the IG and the most important feature. Then,
we ask all users which value they have for this feature. They respond by resend-
ing their perturbed data together with this value. However, they first encrypt
this value using a public key provided by the aggregator. Then, they send this
combination to the semi-trusted party. This agent cannot decode the value (not
owning the private key), so she can not figure out the value the users have sent
it. Next, this intermediate party shuffles the data, so the aggregator does not
know which user sent which data.

The aggregator then receives this shuffled data, decrypts the value with the
private key, and assigns the perturbed data to the accompanying value. Then
for each value, the aggregator can again estimate the frequency and calculate
the IG again in new child nodes. This process continues until the tree reaches its
pre-determined depth. In the leaves, the aggregator uses frequency estimation
to count the labels and assigns the plurality label. We have chosen not to prune
out the tree, as it again poses the risk of information leakage.

4.4 LDP-Based Random Forest Classifier

For Random Forests (RF), we use the LDP-based DT classifier as presented in
Algorithm 7. The only difference is that in RF the trees are growing through a
random selection of features for data division instead of using IG. Algorithm8
summarizes the process of building the RF classifier in LDP setting.

68 M. Alishahi et al.

Algorithm 7: LDP-based Decision Tree Classifier
input: D: dataset {(X1, c1), . . . , (Xn, cn)},

A: set of feature domains A = {A1, . . . , Ak},
d: depth of the tree, IF : information gain algorithm,
parent: start node, l: LDP mechanism, ε: privacy budget

output: DT anchored on root node
1 begin

/* Get frequency estimates for all values */
2 foreach Ai in A do
3 foreach vr in Ai do
4 countir ← estimate(D, l, ε, vr); � (see Algorithm 1)
5 counti add countir;
6 count add counti;

/* Select feature with information gain using the
estimated frequencies */

7 Aj ← IF (A, count);
/* Create leaf if d is reached */

8 if d = 0 then
9 foreach x∗

i ∈ Aj do
10 lab ← label of max(countj) ;
11 lf ← leaf with value x∗

i and label lab;
12 attach lf to parent;

/* Create node for every value of feature and rerun
algorithm from that node */

13 else
14 foreach x∗

i ∈ Aj do
15 no ← node with value x∗

i ;
16 attach no to parent;

/* The semi-trusted party returns Dt */
17 Dt ← all data from D where Aj has x∗

i ;
18 At ← A without Aj ;
19 LDP-based Decision Tree Classifier(Dt, At, d − 1 , IF , no, l, ε);

5 Experimental Analysis

This section presents the experimental set-up and experimental results imple-
menting algorithms presented in Sect. 4.

Local Differential Privacy for Private Construction 69

Algorithm 8: LDP-based Random Forest Classifier
input: D: dataset {((X1, c1), . . . , (Xn, cn)},

A: set of feature domains, A = {A1, . . . , Ak}, d: depth of the trees,
s: size of the forest, IF : select random value function,
parent: root node, l: LDP mechanism, ε: privacy budget

output: RF ← Random Forest
1 begin

/* Create s DT */

2 for i ≤ s do
3 tree ← LDP-based DT algorithm(D, A, d,IF , parent, l,ε);
4 add tree to RF;

5 return RF

Table 2. Dataset information.

Dataset Data type # Features # Records

Adult Mixed 12 48842
Iris Continuous 4 150
Mushroom Categorical 22 8124
Vote Categorical 16 435
Car Categorical 6 1728
Nursery Categorical 8 12960
SPECT Categorical 22 267
Weight lifting Continuous 152 3936
Htru2 Continuous 9 17898

5.1 Experimental Set-up

We have implemented the Algorithms 4, 5, 7, 8 in Python using DE, LH,
HR, HE, UE, and RAP mechanisms (Sects. 2.1 and A), and Algorithm 6 using
Dutchi, Piecewise, and Hybrid mean estimation mechanisms (Sects. 2.1 and
A)2. The privacy levels ε used in ε-LDP algorithms are taken from the set
E = {0.01, 0.1, 0.5, 1, 2, 3, 5}. The input variables of the privacy mechanisms have
been set to their default parameters as proposed in [6].

Dataset: For our experiments, we have selected nine datasets, namely adult, iris,
mushroom, vote, car, nursery, spect, weightlifting and htru2, from UCI machine
learning repository3. Table 2 summarizes the dataset information. To make sure
all the data we use in our tests is in the same format, we preprocess it. LR

2 The codes of our experiments are available in https://github.com/PaaEl/LDP-
classifiers.

3 https://archive.ics.uci.edu.

https://github.com/PaaEl/LDP-classifiers
https://github.com/PaaEl/LDP-classifiers
https://archive.ics.uci.edu

70 M. Alishahi et al.

and NB can only handle numerical data, thus we convert all categorical data to
integers. No information is lost in this step. DT and RF use the same data, for
ease of use and to ensure standardization.

0.01 0.1 0.5 1 2 3 5
0

0.25

0.5

0.75

1

Epsilon (ε)

A
cc
ur
ac
y

DE
LH
HR
HE
UE
RAP

SKLearn

(a) LDP-based Näıve Bayes

0.01 0.1 0.5 1 2 3 5
0

0.25

0.5

0.75

1

Epsilon (ε)

A
cc
ur
ac
y

DE
LH
HR
HE
UE
RAP

SKLearn

(b) LDP-based Decision Tree

0.01 0.1 0.5 1 2 3 5
0

0.25

0.5

0.75

1

Epsilon (ε)

A
cc
ur
ac
y

DE
LH
HR
HE
UE
RAP

SKLearn

(c) LDP-based Random Forest

0.01 0.1 0.5 1 2 3 5
0

0.25

0.5

0.75

1

Epsilon (ε)

A
cc
ur
ac
y

Duchi
Piecewise
Hybrid
SKLearn

(d) LDP-based Logistic Regression

Fig. 2. Average accuracy of LDP-based classifiers per LDP mechanism.

Local Differential Privacy for Private Construction 71

5.2 Experimental Results

The experimental results aim to verify the performance of the LDP-based clas-
sifiers on the set of selected benchmark datasets.

LDP Mechanism Impact: Figure 2 shows the accuracy of LDP-based clas-
sifiers averaged over nine datasets using different LDP mechanisms. It can be
observed that for the classifiers employing frequency estimation mechanisms,
i.e., NB, DT, and RF classifiers, the RAPPOR and UE provide high accuracy
(close to SKLearn accuracy in non-private setting); the other frequency esti-
mation mechanisms show almost the same behaviour, except from HR which
slightly performs better than the others. For the LR classifier, all three mean
estimation mechanisms show similar performance.

Table 3. Dataset properties.

Dataset property Datasets

Large Adult, htru2, nursery
Small Iris, SPECT, vote, car
Many features Weightliftingexercises
Few features Iris, car
Binary classification Adult, mushroom, SPECT, vote, htru2
Multinomial classification Nursery, car, iris, weightlifting

Dataset Impact: To evaluate the impact of datasets on the performance of
LDP-based classifiers, we consider three different categories of datasets based
on their properties, namely large vs small, many vs few features, and binary vs
multinomial classification. A large dataset has a number of records more than
10,000 records. A dataset with many features is considered to have more than
100 feature columns, whereas the one with few features has less than 5 features.
Table 3 indicates which dataset fits in each category.

Figure 3 depicts the performance of LDP-based classifiers based on dataset
properties. It can be observed that as expected large datasets serve as better
sources for these classifiers compared to small datasets. This is resulted from the
inherent property of LDP in which the noises are cancelled when the number of
instances is increased.

The number of features seems to have no direct impact on the performance of
LDP-based classifiers. Still, it can be seen that very few features do not provide
enough information for our private classifiers to correctly label the new instances.

Finally, the datasets with two labels are considerably better resources for
LDP classifiers compared to multi-label datasets. This is because the classifiers
tend to better classify the instances when there are only two labels compared to
more options.

72 M. Alishahi et al.

Privacy Level Impact: From Figs. 2 and 3, it can be seen that as expected
in general when the privacy requirement is relaxed (greater ε values), the LDP-
based classifiers’ performance improves. The optimal value of a privacy budget

0.01 0.1 0.5 1 2 3 5
0

0.25

0.5

0.75

1

Epsilon (ε)

A
cc
ur
ac
y

Large Few Binary
Small Many Multinomial

(a) LDP-based Näıve Bayes

0.01 0.1 0.5 1 2 3 5
0

0.25

0.5

0.75

1

Epsilon (ε)

A
cc
ur
ac
y

(b) LDP-based Decision Tree

0.01 0.1 0.5 1 2 3 5
0

0.25

0.5

0.75

1

Epsilon (ε)

A
cc
ur
ac
y

(c) LDP-based Random Forest

0.01 0.1 0.5 1 2 3 5
0

0.25

0.5

0.75

1

Epsilon (ε)

A
cc
ur
ac
y

(d) LDP-based Logistic Regression

Fig. 3. The impact of datasets properties on LDP-based classifiers’ performance.

Local Differential Privacy for Private Construction 73

that trades off between the privacy gain and utility loss can be found on the elbow
point of graphs in Figs. 2 and 3. It can be observed that in general, a privacy
budget between 1 to 3 (on average ε = 2) offers the best value in protecting
enough privacy and providing high accuracy. If high privacy (low ε value) is
required, then it can be seen that non of the LDP mechanism embedded in
LDP-based LR provide high accuracy.

5.3 Findings

Our findings can be summarized as follows.

– For the LDP-based classifiers that use frequency estimation, i.e., Näıve Bayes,
Decision Tree, and Random Forest, the RAP and UE outperform the other
LDP mechanisms. As RAP brings its high accuracy with the expense of imple-
mentation runtime, the UE is better to be used when there is a time restric-
tion. For the LDP-based Logistic Regression classifier that relies on mean
estimation, the LDP mechanisms show a negligible difference.

– The performance of the LDP-based classifiers is improved when they are
trained on large datasets with only two class labels. We could not find any
direct link between the number of features and classifiers’ performance.

– The optimal value of ε for all LDP-based classifiers lies somewhere between 1
and 3. If a higher privacy constraint is required, the combination of RAP/UE
and Näıve Bayes/Decision Tree is proposed.

– From our understanding, there is no logical solution to build a Decision Tree
or a Random Forest classifiers with the use of only LDP mechanisms (unless
with huge accuracy loss in adding noise to the all combination of feature-
values). A hybrid algorithm that combines LDP with another privacy enhanc-
ing methodology solves the problem of not fully trusting a third party. How-
ever, it might cause computation overhead, e.g., here we added Homomorphic
Encryption. This should certainly be considered as the limitation of DT and
RF algorithms when they are planned to be fitted in LDP setting.

In summary, if the runtime, accuracy, and high privacy are all the matter
of importance, we propose the application of UE-based Näıve Bayes classifier as
the best solution.

6 Related Work

In the last few years, privacy-preserving machine learning has received increasing
attention. Several privacy enhancing techniques, including but not limited to
encryption, anonymization, and randomization, have served as effective solutions
to protect the users’ privacy when direct access to original sensitive data is not
possible [2,14,15,21].

In particular, the application of Differential Privacy (DP) and Local Dif-
ferential Privacy (LDP) in protecting the confidentiality of users’ information

74 M. Alishahi et al.

over distributed data for training the classifiers has gained momentum. In what
follows, we present some recent studies in this regard.

In the DP setting, in general, one party owns when one party owns the data
and another party is interested in obtaining a classifier model on this sensitive
non-public data [9]. This approach has been used to enforce differential privacy
on Näıve Bayes classifier [20], which replaces the dataset queries in the standard
Näıve Bayes algorithm with differentially private ones. This methodology has
been improved in [27] by using smooth sensitivity, a differential privacy tech-
nique that lowers the amount of random noise on each query, while retaining the
same level of privacy. An overview of differentially private Decision Tree algo-
rithms is given in [9]. In other DP-based approaches, the noise is added to the
model’s parameters before the model is published. In [10], an evaluation of dif-
ferential privacy mechanisms for two machine learning algorithms is presented
to understand the impact of different choices of ε and different relaxations of
differential privacy on both utility and privacy.

Local Differential Privacy has also been employed in several studies to guar-
antee the users’ privacy in building classifiers. Näıve Bayes classifier is con-
structed under LDP in [26] using two approaches to be suitable for both cat-
egorical and continuous features. Later in [25] an alternative framework based
on the private computation of join distribution is designed for calculating the
probabilities. In [22], LDP-based techniques are proposed to compute gradient
descent applicable in three classifiers (and specifically Logistic Regression).

Few studies in the literature compare the performance of different classifiers
in a private setting. The performance of different classifiers that are trained over
private inputs using secure two-party computation [19], anonymization tech-
niques (e.g., k-anonymity) [4], and differential privacy [14], have already been
explored. In all of these researches, the impact of the dataset, the inherent prop-
erties of classifiers, and privacy requirement on the performance of private clas-
sifiers have been investigated.

However, to the best of our knowledge, no previous study has compared the
performance of classifiers under local differential privacy. Our research gives an
insight into the most optimal use of an LDP machine learning classifiers for
specific problems. We bridge the gap between the individual research on specific
classifiers and provide a comparison of LDP embedded classifiers.

7 Conclusion and Future Directions

This paper provides a comparison of classifiers’ performance when they are
trained on Locally Differential Private (LDP) data. The assumption is that each
record of data is owned by a single user and all users are interested in obtaining
an accurate classifier’s model without sharing their original data. Four well-
known classification algorithms, namely Näıve Bayes, Decision Tree, Random
Forest, and Logistic Regression, have been trained under the LDP setting. Our
experimental results show that the selection of LDP mechanism, dataset prop-
erties, classifier structure, and privacy level, all affect the performance of the
LDP-based classifiers.

Local Differential Privacy for Private Construction 75

In future work, we plan to extend our work in designing LDP-based classi-
fiers for more classification algorithms, e.g., Neural Networks, Support Vector
Machines, and k Nearest Neighbors. The other research path is the comparison
of LDP-based classifiers’ resistance against privacy attacks, e.g., membership
inference or attribute attacks. Future studies can provide methodologies on how
to improve LDP machine learning to make it safer and more private compared
to what it is now.

A Appendix

This section presents the LDP-based mechanisms used in this study.

A.1 Frequency Estimation

We first present the definition of randomized response in frequency estimation [7]:

Definition 2 (Randomized Response). Let v be a user’s binary value, v′ be
its encoded version (if any) and Perturbv′ be its perturbed response. Then, for
any value v,

Pr[Perturbv′ = v] =

{
eε

eε+1 if v′ = v,
1

eε+1 if v′ �= v
(4)

The randomized response returns the true value with probability eε

eε+1 and the
random value with probability 1

eε+1 .

Based on the concept of randomized response, in what follows we present
frequency estimation mechanisms have been used in our research.

Direct Encoding (DE): In this mechanism there is no encoding done, input
data is sent in the original format. To determine if the sent data will be perturbed
two probabilities are used: p and q.

P [Perturb(y) = i] =

{
p = eε

eε+D−1 if v′ = i

q = 1
eε+D−1 if v′ �= i

(5)

The user sends their true data with probability p or perturbs their data with
probability q. The actual perturbation is done by adding noise to the data. For
discrete values Generalized Random Response (GRR) can be used. This tech-
nique selects a random other value from the domain to be used as the perturbed
value.

Advantages of this mechanism are ease of performance and low computational
cost. Disadvantage is its poor performance when the dimension of the domain
of the data is high.

76 M. Alishahi et al.

Local Hashing (LH): OLH is conceptually similar to RAPPOR, but instead
of encoding v as a bitvector it uses a vector of integers. The perturbation is done
by performing GRR over the integer vector as follows.

P [Perturb(y) = i] =

{
p = eε

eε+g−1 , if v′ = i

q = 1
eε+g−1 , if v′ �= i

(6)

Hadamard Random Response (HR): HR transforms the v into a single
bit and then performs RR on this bit. Transformation is done using a random
2D × 2D matrix ϕ, where ϕ is multiplied with the standard basis vector e with
the v ’th position equal to 1. Each column vector ϑ of this multiplication then
represents a v. Users select a random index and send out the index and the
corresponding ϑ. The aggregator adds all the vectors and calculates the inner
product of those vectors with ϕε to estimate frequencies. Main advantage is con-
stant communication cost, but more information is lost during the perturbation.

Threshold with Histogram Encoding (HE): In this technique, v is encoded
as a histogram B, of length D, with all components set to 0 except for the one
in the v -th position, which is set to 1. The data is then perturbed by adding
Laplacian noise to each component. The aggregator considers each component
above a threshold
 as a 1, each below as a 0. The perturbation is performed as
the following:

Perturb(B′[i]) = B[i] + Lap(
2
ε
) (7)

with Lap being the Laplace distribution.

Unary Encoding (UE): In this mechanism the value to be perturbed v is
encoded as a bitvector B of length d with all bits set to 0 except for the one in
the v -th position. Perturbation is done by changing the value of every bit based
on the probabilities p and q, as mentioned in the perturbation definition below.
For example an original value of 0 will be changed to 1 with probability q. UE
handles higher dimensional data better than DE but takes longer time to be
executed. The perturbation function is defined as the following:

P [Perturb(B′[i]) = 1] =

{
p = 1

2 if B[i] = 1
q = 1

eε+1 if B[i] = 0
(8)

Randomized Aggregatable Privacy-Preserving Ordinal Response
(RAPPOR/RAP): The encoding of the data in RAPPOR is done by making
a Bloom filter of the data. It does this by using multiple different hash functions
to produce multiple hash-values of v. These hashes are used to set the bits in a
bit vector B of length k.

Perturbation is done in two steps. The first step is called permanent random-
ized response. Each bit in B is using a probability based on a parameter f. The
following describes this first perturbation step:

P [B1[i] = 1] =

{
1 − 1

2f, if B0[i] = 1
1
2f, if B0[i] = 0

(9)

Local Differential Privacy for Private Construction 77

This is followed by a second perturbation called instantaneous randomized
response. This is similar to the first but uses probabilities p and q, which are set
to p = 0.75 and q = 0.25. The following describes this second perturbation step:

P [B2[i] = 1] =

{
p, if B1[i] = 1
q, if B1[i] = 0

(10)

Advantages of using hash functions are the reduction of communication costs and
variance, at the cost of increased computational costs and the risk of collisions.
To estimate frequencies of values RAPPOR uses LASSO, a regression analysis
method, and linear regression [23]. The value for ε in RAPPOR is represented
by f . The pure-LDP module used in our code provides a conversion function to
get the corresponding value for f , given ε.

A.2 Mean Estimation

The following mean estimation mechanisms have been used in our research.

Duchi: The first mechanism we use is by Duchi et al. [8] and is taken from the
paper by Wang et al. [22]. Given a value xi ∈ [−1, 1] and the privacy parameter
ε, the algorithm returns a perturbed value x′

i that is equal to either eε+1
eε−1 or

− eε+1
eε−1 , with the probability:

P (x′
i = v | xi) =

{
eε−1
2eε+2 · xi + 1

2 if v = eε+1
eε−1

− eε−1
2eε+2 · xi + 1

2 if v = − eε+1
eε−1

(11)

Piecewise: The Piecewise mechanism is described by Wang et al. [22]. Given a
value xi ∈ [−1, 1] and the privacy parameter ε, the algorithm returns a perturbed
value x′

i that is in [−C,C], where

C =
eε/2 + 1
eε/2 − 1

(12)

The perturbed value is returned with the probability:

P (x′
i = v | xi) =

{
p if v ∈ [l(xi), r(xi)]
p
eε if v ∈ [−C, l(xi)) ∪ (r(xi), C]

(13)

where

p =
eε − eε/2

2eε + 2
, l(xi) =

C + 1
2

· xi − C − 1
2

, r(xi) = l(xi) + C − 1. (14)

Hybrid: The Hybrid mechanism by Wang et al. [22], uses a combination of
both Duchi and Piecewise. The algorithm itself is quite simple. Given an input
value xi, a coin is flipped to see which of the two mechanisms will be used for
perturbation.

78 M. Alishahi et al.

References

1. Aggarwal, C.C.: Data Classification: Algorithms and Applications. Chapman and
Hall CRC (2014)

2. Alishahi, M., Moghtadaiee, V.: Collaborative private classifiers construction. In:
Collaborative Approaches for Cyber Security in Cyber-Physical Systems. Springer,
Cham (2022)

3. Alishahi, M., Moghtadaiee, V., Navidan, H.: Add noise to remove noise: local dif-
ferential privacy for feature selection. Comput. Secur. 102934 (2022)

4. Alishahi, M., Zannone, N.: Not a free lunch, but a cheap one: on classifiers perfor-
mance on anonymized datasets. In: Barker, K., Ghazinour, K. (eds.) DBSec 2021.
LNCS, vol. 12840, pp. 237–258. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-81242-3 14

5. Arachchige, P.C.M., Bertok, P., Khalil, I., Liu, D., Camtepe, S., Atiquzzaman, M.:
Local differential privacy for deep learning. IEEE Internet Things J. 7(7), 5827–
5842 (2019)

6. Cormode, G., Maddock, S., Maple, C.: Frequency estimation under local differential
privacy. Proc. VLDB Endow. 14(11), 2046–2058 (2021)

7. Cormode, G., Maddock, S., Maple, C.: Frequency estimation under local differential
privacy [experiments, analysis and benchmarks]. CoRR abs/2103.16640 (2021).
https://arxiv.org/abs/2103.16640

8. Duchi, J.C., Jordan, M.I., Wainwright, M.J.: Minimax optimal procedures for
locally private estimation. J. Am. Stat. Assoc. 113(521), 182–201 (2018)

9. Fletcher, S., Islam, M.Z.: Decision tree classification with differential privacy: a
survey. ACM Comput. Surv. (CSUR) 52(4), 1–33 (2019)

10. Jayaraman, B., Evans, D.: Evaluating differentially private machine learning in
practice. In: USENIX Conference on Security Symposium, SEC 2019, pp. 1895–
1912 (2019)

11. Kasiviswanathan, S.P., Lee, H.K., Nissim, K., Raskhodnikova, S., Smith, A.: What
can we learn privately?*. SIAM J. Comput. 40(3), 793–826 (2011)

12. Khodaparast, F., Sheikhalishahi, M., Haghighi, H., Martinelli, F.: Privacy-
preserving LDA classification over horizontally distributed data. In: Kotenko, I.,
Badica, C., Desnitsky, V., El Baz, D., Ivanovic, M. (eds.) IDC 2019. SCI, vol. 868,
pp. 65–74. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-32258-8 8

13. Kim, J.W., Edemacu, K., Kim, J.S., Chung, Y.D., Jang, B.: A survey of differ-
ential privacy-based techniques and their applicability to location-based services.
Comput. Secur. 111, 102464 (2021)

14. Lopuhaä-Zwakenberg, M., Alishahi, M., Kivits, J., Klarenbeek, J., van der Velde,
G.J., Zannone, N.: Comparing classifiers’ performance under differential privacy.
In: International Conference on Security and Cryptography (SECRYPT) (2021)

15. Martinelli, F., SheikhAlishahi, M.: Distributed data anonymization. In: IEEE Inter-
national Conference on Dependable, Autonomic and Secure Computing (DASC),
pp. 580–586 (2019)

16. Poole, D., Mackworth, A.: Artificial Intelligence: Foundations of Computational
Agents, 2nd edn. Cambridge University Press, Cambridge (2017)

17. Resende, A., Railsback, D., Dowsley, R., Nascimento, A., Aranha, D.: Fast privacy-
preserving text classification based on secure multiparty computation. IEEE Trans.
Inf. Forensics Secur. 17, 428–442 (2022)

18. Sheikhalishahi, M., Saracino, A., Martinelli, F., Marra, A.L., Mejri, M., Tawbi, N.:
Digital waste disposal: an automated framework for analysis of spam emails. Int.
J. Inf. Sec. 19(5), 499–522 (2020)

https://doi.org/10.1007/978-3-030-81242-3_14
https://doi.org/10.1007/978-3-030-81242-3_14
https://arxiv.org/abs/2103.16640
https://doi.org/10.1007/978-3-030-32258-8_8

Local Differential Privacy for Private Construction 79

19. Sheikhalishahi, M., Zannone, N.: On the comparison of classifiers’ construction over
private inputs. In: IEEE International Conference on Trust, Security and Privacy
in Computing and Communications (TrustCom), pp. 691–698. IEEE (2020)

20. Vaidya, J., Shafiq, B., Basu, A., Hong, Y.: Differentially private Naive Bayes clas-
sification. In: International Joint Conferences on Web Intelligence (WI) and Intel-
ligent Agent Technologies (IAT), vol. 1, pp. 571–576. IEEE (2013)

21. Vu, D.H.: Privacy-preserving Naive Bayes classification in semi-fully distributed
data model. Comput. Secur. 115, 102630 (2022)

22. Wang, N., et al.: Collecting and analyzing multidimensional data with local dif-
ferential privacy. In: International Conference on Data Engineering (ICDE), pp.
638–649. IEEE (2019)

23. Wang, T., Blocki, J., Li, N., Jha, S.: Locally differentially private protocols for
frequency estimation. In: USENIX Security Symposium, pp. 729–745 (2017)

24. Wu, X., Qi, L., Gao, J., Ji, G., Xu, X.: An ensemble of random decision trees with
local differential privacy in edge computing. Neurocomputing (2021)

25. Xue, Q., Zhu, Y., Wang, J.: Joint distribution estimation and Näıve Bayes classi-
fication under local differential privacy. IEEE Trans. Emerg. Top. Comput. (2019)

26. Yilmaz, E., Al-Rubaie, M., Chang, J.M.: Locally differentially private Naive Bayes
classification. arXiv preprint arXiv:1905.01039 (2019)

27. Zafarani, F., Clifton, C.: Differentially private Naive Bayes classifier using smooth
sensitivity. arXiv preprint arXiv:2003.13955 (2020)

28. Zheng, X., Zhao, Y., Li, H., Chen, R., Zheng, D.: Blockchain-based verifiable
privacy-preserving data classification protocol for medical data. Comput. Stan-
dards Interfaces 82 (2022)

http://arxiv.org/abs/1905.01039
http://arxiv.org/abs/2003.13955

IMSI Probing: Possibilities
and Limitations

Daniel Fraunholz1(B), Dominik Brunke1, Simon Beidenhauser1,
Sebastian Berger1, Hartmut Koenig1, and Daniel Reti2

1 ZITiS, Communications Department, Munich, Germany
Daniel.Fraunholz@zitis.bund.de

2 German Research Center for Artificial Intelligence, Kaiserslautern, Germany

Abstract. Mobile networks are vital for modern societies. Recent gener-
ations of mobile communication systems have introduced increased secu-
rity and privacy features to enhance their trust and reliability capabil-
ities. Several well-known vulnerabilities, however, have not been mit-
igated due to design choices so far. An example is the IMSI probing
attack considered in this paper which exploits vulnerabilities of the pag-
ing mechanism in mobile networks, whereas the reference to the Inter-
national Mobile Subscriber Identifier (IMSI) is arbitrary and misleading.
The IMSI probing attack can be used to locate and track mobile phones
to infer the behavior their users. Although first published already ten
years ago, it can be applied to all cellular network generation up to the
upcoming 5G Stand Alone. The attack requires a certain effort to be
successful. It is therefore considered less practicable. In this paper, we
present an in-depth analysis of the IMSI probing attack and discuss the
likelihood for its success including the required presumptions. We show
that under certain conditions the attack may be successful and that the
success rate can significantly be improved. Finally, we present a novel
attack variant that doubles the success rate and enables location deter-
mination at the cell granularity level.

Keywords: IMSI probing attack · Privacy violation · 4G · 5G SA ·
Paging · RRC protocol

1 Introduction

Mobile devices have become ubiquitous in recent decades. The number of services
offered on mobile devices is increasing with an astonishing speed. Sensitive ser-
vices, such as online banking and health data capturing, have become standard.
The growing impact of mobile technologies on human beings improves their life
quality in various ways, but they also provide a lucrative target for misuse by
exploiting their vulnerabilities.

With each generation, mobile telecommunications networks have become
more and more secure. At the very beginning of the development the lack of
mutual authentication between base station and the mobile phone (UE, user
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. P. Reiser and M. Kyas (Eds.): NordSec 2022, LNCS 13700, pp. 80–97, 2022.
https://doi.org/10.1007/978-3-031-22295-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22295-5_5&domain=pdf
https://doi.org/10.1007/978-3-031-22295-5_5

IMSI Probing 81

equipment) in 2G was the main reason for the well-known privacy attacks based
on false base stations (FBSs) [9]. For this attack type, solutions were discussed
through all mobile network generations, e.g., the authentication of System Infor-
mation Block (SIB) broadcast messages to prevent the use of false base stations.
With 5G Stand Alone (5G SA), the use of the permanent subscription identifier
has been restricted over the air interface which significantly limits the possibil-
ity of privacy attacks. Another example of a vulnerability existing since 3G is
the so-called Linkability of Failure Messages (LFM) attack [2] which exploits a
weakness in the authentication and key agreement (AKA) procedure. With pag-
ing, used to wake up disconnected mobile devices, the situation is similar. The
IMSI probing attack exploits the fact that paging messages include the M-TMSI
(Temporary Mobile Subscriber Identity) of the phone to wake up, which is typ-
ically not changed frequently [6]. The attack was first published in 2012 [8], but
it was not considered a severe attack at that time, since the same result could
readily be achieved with other attacks. The reference to the International Mobile
Subscriber Identifier (IMSI) was arbitrarily chosen for this attack because the
initial attack scenario published did not use the IMSI as target identifier but
the phone number. In principle, the attack can use any identifier to initiate
interactions with a target device.

In 4G and 5G, the attack can be applied for degrading privacy guarantees. So
in 5G SA, for instance, an attacker should not be capable to verify the presence or
absence of a user because no permanent identity is transmitted over the air, but
the paging vulnerability allows one to link the reuse of temporary identities, e.g.,
the GUTI (Globally Unique Temporary Identifier), to verify the presence and
absence of a certain user. The 3rd Generation Partnership Project (3GPP) - the
relevant body for the specification of cellular networks - has been already aware of
this problem and proposed to change the 5G GUTI after certain events (3GPP
TS33.501, 6.12.3), e.g., after receiving paging messages (GUTI re-allocation).
However, 3GPP has not specified exactly how the GUTI reallocation should be
implemented. Recent research has found out that several operators did so even
before it was required by the standard [6]. In many cases, however, the new GUTI
was based on the previous one with only slight and predictable modifications.
The 3GPP standard (3GPP TS33.501, 6.12.3) explicitly states that the change
of the GUTI is up to the operator. So, the re-allocation of GUTIs was not
implemented as required in the three investigated 5G SA networks in China,
rendering IMSI probing attacks still feasible [10].

In this paper, we present an in-depth analysis of IMSI probing attacks and
examine the effectiveness as well as the limitations of the attack. This is necessary
because no such investigation has been performed since the introduction of the
attack. We discuss the conditions when the attack may be successful and present
an attack variant that doubles the success rate and allows for a location accuracy
at cell granularity. Currently, the use of paging messages is the only available
probing method in public. Therefore, we refer to paging-based probing here.
Paging messages can only be triggered when the target phone has no radio
connectivity, i.e., when it is in the so-called idle mode. We explore the idle mode

82 D. Fraunholz et al.

with and without user interactions, called active and passive phone, respectively.
The remainder of the paper is organized as follows. In the following Sect. 2, we
introduce the IMSI probing attack and discuss various aspects of its use. Section 3
analyzes the behavior with passive phones in a testbed consisting of 4G and 5G
mobile network lab environments and commercial off-the-shelf (COTS) mobile
phones. Section 4 then considers the behavior with active phones. For this, a
user behavior model has been developed to enable simulation-based analysis of
the IMSI probing attack. The impact of applications installed on mobile phones
is analyzed in depth also in this section. In Sect. 5, we present measurements
from public land mobile networks (PLMNs) to augment the results of the lab
network and the simulation. Based on these analyses, we quantify the overall
success probability of IMSI probing attacks in Sect. 6 and analyze the impact of
the most relevant parameters for the success probability is analyzed. In Sect. 8
we present a novel, more efficient attack vector. Some final remarks conclude the
paper.

2 IMSI Probing Attack

The goal of the IMSI probing attack is to verify whether a given device is cur-
rently in a certain cell or tracking area. This can be used to track a person in
certain area (e.g. city), to observe its movement in a shopping area, or to pre-
pare further activities, e.g., to check whether a person is at home to prepare a
burglary. The presence can be determined with cell (200 m–20 km) or tracking
area (multiple cells) granularity, respectively.

The software for this attack is freely available. The hardware cost for
commercial-of-the-shelf software-defined radios, which are sufficient for launch-
ing the attack, is below $2000. Only minimal programming knowledge is required
to adapt open-source software like srsRAN [14], OpenAirInterface [11], or other
open-source monitoring tools, such as Falcon [5], LTEEye [7], OWL [3], and
C3ACE [4] for the attack. Qualcomm baseband chips offer access to layer-2/3
messages via the DIAG protocol. Open-source frameworks, such as QCsuper [12],
built upon this DIAG protocol can also be used.

2.1 Attack Presumptions

To launch the attack the attacker has to trigger a paging message. This can be
done by sending a message to the target device. For this, the attacker needs to
know at least one identity of the target device, e.g., the social media account or
others, as discussed below. The attacker must further be connected to the mobile
network of the target device, either directly or via a proxy network, e.g., the
Internet. Moreover, the attacker must be able to passively monitor and analyze
the paging channel of the given cell or of at least one cell within the tracking
area in which the target device’s presence should be checked. The analysis itself
can be either performed in real time or offline afterwards. Finally, it requires
that the attacker is close to the target device. In practice, this can be several

IMSI Probing 83

hundred meters in urban cells and some kilometers in rural environments. It is
difficult to determine the proximity in advance as beam propagation is subject
to different factors, e.g., weather or position. The distance to the target device
can be increased using high-end antennas and other monitoring equipment.

Target Device Identities. Attacks on mobile devices often use different iden-
tities for their purpose, such as GUTI, IMSI, IMEI (International Mobile Equip-
ment Identity), or MSISDN (Mobile Subscriber Integrated Services Digital Net-
work Number). IMSI probing, in contrast, can use any identity that trigger pag-
ing messages. From the attacker’s perspective, this is a substantial advantage
because social media or e-mail accounts can be exploited as well. Additionally,
the attack can also be performed without knowledge of any mobile network-
related identity, if other identities are known as shown by Shaik et al. [13].
Thus, the attack can be used in versatile scenarios.

2.2 Triggering Paging Messages

Assuming that all presumptions of the attacker model are met the attack can
be launched triggering a paging message. For this, the attacker has to select
an appropriate triggering method based on the available identities. Almost all
instant messaging applications trigger a paging message at the base station.
Since an attacker usually does not know the instant message apps installed,
default applications, such as telephony or SMS, can also be used for triggering.
There is also the option to secretly trigger paging messages. Shaik et al. [13]
proposed the use of the typing notification of Whatsapp for this because it is
not shown on the target device, even if the application is used by the device
owner during the reception of the paging message. There is one exception when
the attacker’s Whatsapp account is already known to the target Whatsapp’s one.
In this case, the attacker’s account is indicated as “typing”, i.e., the account is
currently writing a message. A similar behavior is also expected in other instant
messaging apps. Another less concealed option is the use of Facebook [13]. This
proposal relies on the fact that the Facebook application does not prominently
show messages of unknown users, but instead stores them in a folder, called
“Other messages”, not be seen by the user. In addition, an attacker must know
in advance whether various additional conditions are fulfilled: does the target use
the application, also the mobile version of it, and whether it is active. Therefore,
it is most likely that attacks prefer to use phone or vendor default applications
which require less assumptions on installed applications. We did not examine
any other means in the context of this investigation to trigger paging messages
in an open or concealed manner.

2.3 Connection Mode

The connection mode is of crucial importance for the success of the attack. It
is idle or connected. A phone is in the connected mode when it has established

84 D. Fraunholz et al.

a layer-2 (Access Stratum, AS) and a layer-3 (Non Access Stratum, NAS) con-
nection. It is in the idle mode when only a layer-3 (NAS) connection has been
established but no layer-2 (AS) connection. Only if the phone is in the idle mode
the attack is successful. Therefore, the switching between these two modes has
to be detected. This has to be done by simultaneously monitoring the paging
channel of the target cell or tracking area, respectively.

2.4 Monitoring the Paging Channel

Regarding the monitoring two kinds are distinguished: regular and smart paging.
Regular paging sends paging messages in each cell of a tracking area, whereas
smart paging only in the cell in which the mobile device is located, i.e., with smart
paging, the presence of the target device can be verified with cell-granularity.
An attacker can easily figure out whether smart paging is used by triggering a
paging message and monitoring a neighbor cell of the same tracking area. If the
paging message is received only tracking area-granularity can be achieved.

In order to recognize the paging messages triggered by the attack the pag-
ing messages must be sent with defined sending frequency. This frequency can
arbitrarily be chosen by the attacker, e.g., every 10 s, and can also be non-
equidistant. In this case, the paging channel analysis tries to recognize whether
there are messages to a certain device that follow this pattern.

2.5 Result Verification

Regarding the sending two types of errors can be distinguished. If the frequency
pattern is detected although the target device is currently not located in the cell
or tracking area we have a false positive (FPs). This type of error occurs if a
short pattern has been chosen. Kune et al. [8] triggered a paging message with a
probe j (j ∈ 1 ≤ j ≤ n) and stored any temporary identifier in a set Ij that were
addressed in paging messages within a specified time interval tmin ≤ t ≤ tmax

after triggering the paging message to the target device.

Ij =

{
TMSIt, tmin ≤ t ≤ tmax

Ø, otherwise
(1)

This step was repeated n times until only one identifier occurred in each of
the stored set I, i.e. the intersection of temporary identifiers send after each
probe is the temporary identifier of the target device (I1 ∩ I2 ∩ ... ∩ In). While
using a distinct pattern, the likelihood of a false positive is lower than in the
approach of Kune et al. Simple repetitions of the pattern further decreases the
likelihood. False negatives (FNs), in contrast, occur when the device is located
in the monitored cell or tracking area, but the frequency pattern is not found on
the paging channel. This happens if the target device is not in idle mode when
the attack is carried out or the monitoring system misses to capture the message.
It is enough to fail the attack, when one paging message to the target device is
missing in at least one set because there is no identifier in this case that occurs

IMSI Probing 85

in each list (I1 ∩ I2 ∩ ... ∩ In = Ø). Pattern matching algorithms that employ
thresholds for list comparison achieve more reliable results. After sending 10
probes, for example, it is sufficient to have a single identity in 80% of the lists,
i.e., eight lists to conclude that the target is present, while the algorithm of
Kune et al. would fail in this example. We apply the results of this examination
to develop optimized attack success strategies which we present in Sect. 6.

3 Analyzing Idle Behavior with Passive Phones

The most significant limitation of the IMSI probing attack is that an attacker
does not know whether the target device is in idle mode. When it is not in idle
mode the attack results in a false negative, i.e., the target presence cannot be
verified even if the target device is in the cell or tracking area. We consider two
cases for the further analysis: (1) the device is not in use at all during the attack.
Even then, there is a probability that the device is not in idle mode. This case
is referred to as passive mode and is considered in this section. (2) The device is
in use during the attack, e.g., for a telephone call or for browsing the Internet.
This is referred to as active mode and is analyzed in a subsequent section.

3.1 Test Setup

To assess the passive mode we set up a testbed to measure idle times using an
Amarisoft Callbox Classic [1]. The Callbox consists of a base station with 5G
SA support, the respective core, and an IP Multimedia Subsystem (IMS). Base
station and core also support 4G and multiple cell scenarios, such as 5G NSA. In
our experiments, we used 5G SA for phones that support it, otherwise 4G. The
phones were Android ones from various vendors, e.g., Samsung, Google, Huawei,
Oppo, and Sony. The Callbox also possesses other basic monitoring capabilities,
e.g., the possibility to verify whether a device has a layer-2 identifier (Cell-Radio
Network Temporary Identifier, C-RNTI) associated with. If no such identifier
is associated, the device is in idle mode and possesses only the layer-3 identity
(GUTI). A script has been written to monitor the association of a layer-2 identi-
fier in 1 s periods. Thus, the idle times of any device connected to the test setup
could be determined. All phones had a factory-reset prior to experimentation
and no additional software was installed. Any software installed on the phones
can potentially alter the idle time behavior because any software with network
connection can initiate a communication and thus forcing the phone to switch
from idle to connected. It can be assumed that the more software, i.e., apps, are
installed on the target phone the more likely is that the device is not in the idle
mode, so that the presence verification leads to a false negative. Because only
default software was installed on the phones, the results can be interpreted as
best case scenarios in which the attack can be launched on each phone model.

3.2 Idle Time Behavior of Passive Phones

We found out that the examined mobile phones (Phone A, Phone B, Phone C,
Phone D, Phone E) were between 89% and 96% of the overall monitoring period

86 D. Fraunholz et al.

Fig. 1. Idle behavior of the investigated phones with default configuration

in the idle mode. An exception was Phone E* for which we used Phone E with dis-
abled data connectivity and an idle ratio of 99.8%. In all cases other than E*, an
increased connectivity period in the first minutes of the experiment was observed
followed by a cyclic periodicity of idle time behavior after about 5 min. An exem-
plary visualization of the idle behavior of the investigated mobile phones is given
in Fig. 1. The shortest observed idle time period was 1s for Phone A, the longest
4972 s for Phone E* with disabled mobile data connectivity. With enabled mobile
data connectivity, Phone E had a maximal idle duration of 530 s, indicating the
significant influence of the data connectivity. An overview of the results is given
in Table 1. When the mobile data connection between the mobile phone and the
network was disabled, the mobile phone connected only once during the moni-
toring. From this, it can be derived that the phones’ idle phases are significantly
correlated with the Internet connectivity, which is controlled in the upper layers
of the phones’ protocol stack. It can also be concluded that the idle behavior
of passive phones in default configuration is characterized by short but frequent
connection phases, which are temporally grouped in many cases.

3.3 Analysis of Process Behavior in Passive Mode

In order to assess which processes are relevant in the idle and connected mode,
a mobile application has been developed to collect information about the net-
work packets and the corresponding processes. The app uses the proc file sys-
tem to gather this information. It requires a rooted phone for installation. Two
24h experiments were conducted. In the first experiment, the test phone was
in the default configuration, i.e., no apps (besides our monitoring app) were
installed. A total of 6287 packets was observed resulting in an average of 4.4

IMSI Probing 87

Table 1. Overview of the idle time behavior of selected mobile phones with default
settings and default software installed, Phone E* is like Phone E but with disabled
data connectivity

Phone A Phone B Phone C Phone D Phone E Phone E* Av. wo E*

Exp. duration 4271 s 3592 s 3870 s 3942 s 4095 s 6790 s 3954 s

Number conn. 34 32 17 12 27 2 24,40

Idle conn. ratio 91% 89% 91% 96% 90% 99,8% 91%

Av. conn. phase 11 s 13 s 21 s 15 s 16 s 6 s 15.20 s

Min. conn. phase 4 s 10 s 10 s 10 s 10 s 1 s 8.80 s

Max. conn. phase 26 s 27 s 76 s 40 s 73 s 10 s 48.40 s

Av. idle phase 118 s 96 s 207 s 290 s 136 s 2260 s 169.40 s

Min. idle phase 1 s 2 s 3 s 5 s 2 s 290 s 2.60 s

Max. idle phase 287 s 328 s 821 s 821 s 530 s 4972 s 557.40 s

packets per minute. However for IMSI probing, the temporal distribution is sig-
nificant. Therefore, we further analyzed the phases in which no packets were
sent. We found out that most packets (6015) had a distance less than 1s to the
preceding packet. There were several phases in which no packets were sent, up
to 1680 s, which provide multiple options for successful IMSI probing attacks.
Google services, such as GMS persistent and quicksearchbox, accounted for the
majority of network traffic and dominated the connectivity phase. Since cellu-
lar phones are usually not in default configuration, the opportunities for IMSI
probing may differ from the previously discussed scenarios. To take the impact
of mobile applications on the IMSI probing success probability into account we
installed and registered in the second experiment a number of popular applica-
tions on the phones. The complete list is given in Appendix A. Where necessary,
user accounts were registered. However, no further interactions with apps were
induced, e.g., no subscriptions, friend requests, likes etc. Interestingly, the behav-
ior changed drastically. With these popular applications, the number of packets
transferred in 24 h increased almost 35 times, resulting in a total of 217748
packets transferred and on average of 151 packets per minute. As expected, the
number of idle phases reduced significantly to only 15 phases between 20 s and
30 s. The maximal idle duration observed was 25.4 s. The effective time is even
smaller in reality, since we measured the time between two consecutive pack-
ets in the experiment. The actual idle phases are initiated by the network after
a certain threshold (phone’s inactivity timer) which further reduces the time
slot available for the attack. On process-level, the most significant change is
that Google services have no significant share in the number of packets sent
over the network. Instead the process com.zhiliaoapp.musically (60.76%) and
com.zhiliaoapp.musically:push (5.21%) account caused more than 65% of the
observed packets. As the two processes can be attributed to the TikTok applica-
tion, this observation indicates that an installed TikTok application significantly
reduces the probability of successful IMSI probing attacks. With 1.32% of the

88 D. Fraunholz et al.

observed packets, the aforementioned Google GMS service is ranked third. This
process also almost doubled the number of packets sent from 1589 to 2885, sug-
gesting that at least one of the installed applications affects Google services as
well.

4 Analyzing Idle Behavior with Active Phones

IMSI probing attacks can only be successful when the target phone besides being
in idle mode is close to the target person. However most likely, the phones are
actively used over time thus reducing the idle mode times. To enable an in-depth
analysis of IMSI probing attacks under these conditions the idle behavior model
of the mobile phones must include the user behavior. For this purpose, we have
developed an additional user behavior model based on the following assumptions:
The average screen time of a person varies by many factors, such as weekday,
habits, and age. To evaluate the effectiveness of the IMSI probing attack several
assumptions about the target must be made. We assume here that an average
person spends about 3:15 h with its phone per day and that this time spreads
over 58 sessions [15], 70% of them are shorter than 2 min, 25% are between 2–
10 min, and 5% longer than 10 min. Moreover, the sessions are equally distributed
between 8 a.m. and 7 p.m. The time spent on smartphones is significantly lower
between 9 p.m. and 7 a.m., what increases the probability of a successful attack.
It was also found that on average the time spent on mobile phones is less on
weekdays than on weekends [15]. During the pandemic the screen time increased
about 20% to 30% rendering probes less likely to be successful. A visualization
of an exemplary idle behavior of the developed model of such a behavior for an
8h period is contained in Fig. 2 (lower graph, cyan and magenta solid lines).

5 Empirical Evaluation in Real World Mobile Networks

To further quantify the success probability of IMSI probing attacks other param-
eters were examined. An important parameter is the number of consecutive
probes required for a successful attack. The capture rate of the available moni-
toring systems is another parameter that needs to be considered because there
is a likelihood of probes being missed.

5.1 Experimental Environment

Figure 3 depicts the number of paging messages in 10 s time interval over a 24 h
period in the network used for the experimental evaluation. The tracking area
is located in the north-east metropolitan region of Munich, but it is no longer
part of the Munich city. As it can be seen, up to almost 1400 paging messages
per 10 s interval need to be captured and processed by the monitoring system.

IMSI Probing 89

Fig. 2. Upper graph: Exemplary visualization of the idle and connected times of the
assumed user behavior model. Lower graph: Exemplary visualization of the idle and
connected phases resulting from the combined user and processes model

Fig. 3. Visualization of the number of received temporal user identities (TMSI) per
1680 s over the course of about 24 h in a cell in the northern metropolitan area of
Munich.

5.2 Required Number of Probing Repetitions

The determination of the required probe number for a successful identification
of a phone is crucial for further investigations. This is because the number of
required probes in combination with the duration of a single probe determines
the total idle period necessary for a successful attack. The required number
of probes is not known in advance and can only be estimated. As previously
described, an attacker needs to define a time window in which paging messages
are collected. This must be repeated until only one or none GUTI is included in

90 D. Fraunholz et al.

each observed window. The number of paging messages per window depends on
the window size and the network usage behavior which depends, as argued above,
on daytime, habits, and so on. To quantify the IMSI probing success probability
we performed several attacks (as described in [8]) against a known target phone
on a working day at noon in an urban region in the network of a major German
operator. In general, we needed about 6 probes at this time to receive only one
GUTI included in each monitored time window. This corresponds to the results
from the literature [8,13].

5.3 Capture Rates

An attacker cannot know whether all paging messages in a monitored time win-
dow are captured or not. The capture rate depends on multiple factors. In our
experiments we deployed the Falcon monitoring system [5] to collect the paging
messages and to determine the capture rate. We found that the value significantly
depends on the signal quality and the network usage. The achieved capture rates
were between 70% and 99%. Mobile phones do also not have a capture rate of
100% because the base station repeats the paging messages several times to
reduce the likelihood of missing them. This effect increases the capture rate of
the monitoring system.

6 Attack Success Probability and Impact Factors

To determine the probability of a successful IMSI probing attack two cases have
to be distinguished. (1) The success probability is estimated using the developed
model based on the experimental results of the idle behavior of the mobile phones
that are not in use (passive) and have no applications installed (default configu-
ration). (2) Based on this, user interactions with a mobile phone are included in
the quantification. False positive probabilities are not considered here because
this would require assumptions on third-party devices connected to the cell or
tracking area in which the attack is launched. In the two cases, the success prob-
ability depends on the number of required probes, the time window to monitor
the probes, the capture rates, and the idle times of the mobile phones. Given
that an attacker cannot know the exact idle behavior of the mobile phones, any
attack time is equally sufficient.

6.1 Passive Mobile Phone with Default Configuration

In our experiments, we used the Amarisoft Callbox as test network and the
aforementioned script to monitor the phone’s idle times. Additionally, a Python
script was written to use the JSON API to periodically send SMSs every 20 s
via the test network to the target phone. 20 s were chosen because the network
typically releases the phone after 5–15 s of inactivity and 20 s ensure that the
previous SMS does not influence the subsequent ones. The script used the JSON
API of the Callbox. The paging channel of the test network was again monitored

IMSI Probing 91

Table 2. Overview of the idle time behavior of selected mobile phones with default
settings and default software installed

Ph. A Ph. B Ph. D Ph. E Ph. E*

True-pos 98 128 96 100 108

False-pos 7 19 27 14 1

True-neg 2823 2767 2295 2151 2053

False-neg 45 18 9 12 10

Precision 0.933 0.871 0.780 0.877 0.991

Recall 0.685 0.877 0.914 0.893 0.915

F1-score 0.790 0.874 0.842 0.885 0.952

with the Falcon tool. A statistical evaluation of the complete experiment is given
in Table 2.

The success rate for IMSI probing attacks against passive phones in default
configuration varies significantly depending on the number of probes required
and the phone model. This is because the false negative classifications, i.e., the
missed probes, were significantly higher than for other phones. The reason for
this is the shorter idle time or the more frequent connection phases, respectively,
since the same monitoring system was used in all experiments. The success prob-
ability for one probe is about 70% and reduces to about 1% for 12 consecutive
probes for Phone A. All other phones had a success probability of about 90% for
one and between 20% and 35% for the 12 consecutive probes. The success proba-
bility for 7 consecutive probes, as identified as typical number in the experiment,
is about 7% for Phone A and between 40% and 53% for the other phones.

From this experiment, the time between a received SMS and the return to
idle mode was estimated to be about 12 s. This is important to quantify the
waiting period between two consecutive probes in the subsequent evaluation.

6.2 Active Mobile Phone with Default Configuration

To determine the success probability for active phones the idle behavior model
as described in Subsect. 4 was investigated. An exemplary visualization of the
distribution of the connections and idle phases is shown in Fig. 4b, whereby the
threshold of 7 consecutive probes with a 12 s window between probes is marked
with a vertical solid red line.

It shows that there are several idle phases that are long enough to perform
a successful IMSI probing attack. An attacker, however, cannot know the begin
or end of these phases, i.e., the likelihood of a successful attack is the same
at any point in time from the attackers perspective. Therefore, the attacker’s
probability to launch the attack is equally distributed over the considered time.
Consequently, the number of required probes and the capture rate of the moni-
toring system are the two parameters that cannot be known in advance because
they depend on the cell or tracking area load during the attack. An exemplary

92 D. Fraunholz et al.

Fig. 4. (a) Visualization of the relation of the attack success probability and the number
of probes required for presence verification. Phone D (green) and Phone E* (purple) are
almost similar. (b) Histogram of the resulting length of idle times in the user behavior
simulation and the threshold for the minimal idle time required for a successful attack
(6 consecutive probes á 12 s) (Color figure online)

visualization of the success rates for several required numbers of probes and
capture rates is given in Fig. 5.

Several of the considered scenarios have a success probability close to zero.
This is because the availability of idle phases is limited if the user behavior is
taken into account. The required number of consecutive probes linearly increases
the needed duration of the idle phase. The gradient depends on the minimal
time between two probes which is the sum of the time between sending the
probe, receiving by the phone, connecting to the network, receiving the data
(i.e., the SMS in our experiment), and switching back to idle mode after a short
inactivity period. In best-case scenario, the IMSI probing attack only achieves
a success probability of 36.88%. This is the case with a 100% capture rate and
only 4 probes being necessary to differentiate the target phone from all other
phones in the cell or tracking area. In our experiments with different provider
networks, four probes was the minimum number of probes that were required
for a successful attack.

7 Optimizing the Attack Success Probability

The results obtained suggest that IMSI probing is not a reliable attack technique
at all. If we consider the typical user behavior with eight required probes and a
capture rate of 99%, the success probability is below 20%. Moreover, this only
holds if no applications are installed. The in-depth process analysis revealed that
the required idle phases are even less if applications are installed on the phone,
which is the normal case in real world scenarios.

The success probability is determined based on the assumption that the
pattern detection algorithm cannot handle errors, leading to an unsuccessful

IMSI Probing 93

Fig. 5. Left: Impact of the capture rate on the success probability for different number
of required probes. Right: Impact of the required number of probes on the success
probability for different capture rates.

probe if one probe is missed (e.g., because of the capture rate or because the
phone was not in idle mode). More advanced pattern detection algorithms can
take these factors into account and increase the success probabilities as follows.
There are two strategies. (1) An attacker can simply repeat the IMSI probing
attack after completion. In this case, the overall success probability of the attack
is generally determined by the discrete binominal distribution P (X ≥ 1) =
P (X = 0) + ... + P (X = n), whereby P (X) =

(
n
k

)
pk(1 − p)n−k and P is the

overall success probability, n the number of attacks, k the number of successful
attacks and p the success rate of a single probe. For example, if the attack success
rate is 40%, the probability of at least one successful attack after 4 attacks is
about 87%. This strategy is limited by the overall number of idle phases that
are long enough to perform a successful attack, i.e., if there are no idle phases
long enough for a successful attack the attack fails regardless of the number of
repetitions. In all other cases, this strategy will succeed given infinite time. (2)
A more advanced strategy is to adapt the pattern detection during the attack.
As presented in Table 2, the recall for a single probe is about 90% (excluding
Phone A), i.e., there is only a 10% probability to miss a paging message. If one
paging message is missed the intersection does not converge to one remaining
identity but to none. In such a situation, additional probes can be sent to verify
the result. The formula from above applies here as well. For example, if the
likelihood of a single successful probe is 90%, the likelihood of seven consecutive
successful probes is about 48%, i.e., when seven probes were sent the probability
that at least one was missed is about 52%. However, by simply sending another
probe, i.e., eight probes are sent and only seven are required to be successful, the
overall success probability reaches 81%. Adding a ninth probe, i.e., nine probes
are sent and only seven of them are required for success, would increase the

94 D. Fraunholz et al.

overall attack success probability to 95%. This strategy is more effective than
the first one presented, since only a single probe has to be repeated instead of
the complete probe sequence. The additional probes in the two strategies can be
sent at any time. The only limitation is that the identity can change over time
or that the target phone changes its location.

8 A Novel Attack Technique for IMSI Probing

Currently only paging messages are used as attack vector for IMSI probing
attacks. We present here another attack vector - the RRCConnectionSetup mes-
sage - which achieves a better success rate. RRCConnectionSetup is a layer-2
downlink message that is part of the Radio Resource Control (RRC) protocol. It
is sent from the phone to the base station in the process of establishing Access
Stratum connectivity.

Performing the IMSI probing attack using the RRCConnectionSetup message
has two major advantages. (1) The location accuracy can be improved from
tracking area granularity to cell one. RRCConnectionSetup messages are not
sent in the tracking area but only on layer-2 of the cell the phone is in. For paging
messages, this granularity has been only possible up to now when smart paging
(i.e., paging messages are only sent in the last known cell instead of the last
known tracking area) was applied in the target cell. (2) The number of probes
reduces drastically because the number of RRCConnectionSetups is generally
lower than the number of paging messages. This is because RRCConnectionSetup
messages are only sent when the paging procedure is successful and the phone
establishes a connection, or when the phone establishes a connection without
prior paging.

For the evaluation of this attack technique, we performed an experiment com-
paring paging- and RRCConnectionSetup-based attacks. We performed twenty
consecutive attacks and compared the efficiency of the two attack vectors regard-
ing the required number of probes to verify the target presence which ultimately
impacts the attack success probability, as argued above. It was found that paging-
based IMSI probing attacks required between 4 and 10 probes with on average
5.6 probes and a standard deviation of 1.2 probes. For the RRCConnectionSetup-
based attack, 2 or 3 probes were needed with on average of 2.2 probes and a
standard deviation of 0.4 probes. These results show the greater efficiency of
the new attack vector. The number of messages collected during the specified
time window (4.5 s) after the probe was ten RRCConnectionSetup messages
compared to on average ninety paging messages before. This is the reason why
the new attack method converges faster leading to a better correlation between
the number of required probes and the number of messages collected after each
probe.

Based on these experimental results, we further assessed the attack success
probability of the two vectors. We run hundred simulations with a given cap-
ture rate of 95% and a minimal waiting period of 12 s between the probes,
and a minimal required number of two probes for RRCConnectionSetup and

IMSI Probing 95

six for paging. Our model showed an average attack success probability for the
RRCConnectionSetup-based method of 39.72% with a standard deviation of
4.42% and for the paging-based one 20.71% with a standard deviation of 3.00%,
i.e., the number of RRCConnectionSetup messages is about one tenth of the
number of paging messages in the same time window (90 vs. 10 messages). This
results in a reduction of about one third in the number of probes required (six
vs. two probes) which itself doubles the success probability of the IMSI probing
attack (20% vs 40%).

The RRCConnectionSetup attack vector, however, increases the uncertainty
of the calibration of the time window after the probe. This is because measuring
paging messages is subject to uncertainties of the phone, the API that initi-
ates the probe, and the network that receives the probe and subsequently sends
the paging message to the target phone. For monitoring RRCConnectionSetup
messages, the uncertainty is extended by the target phone receiving the paging
message and subsequently sending the RRCConnectionRequest message back to
the base station which then in turn responds with the RRCConnectionSetup to
the phone. We found that the delay of this process is on average 0.4 s, while the
standard deviation increases from 0.77 s to 1.06 s. This effect must be compen-
sated by adjusted time windows when performing the attack. For paging-based
IMSI probing, the calibration of the time window is also necessary.

We identified a limitation in our experimental setup because the Falcon tool
[5] captured paging messages with an accuracy of about 98.8% and RRCConnec-
tionSetup messages with an accuracy of about 76%. This may be caused by the
increased complexity in decoding for the RRCConnectionSetup messages. We
made the measurements from the phone’s baseband chip which we accessed via
the Qualcomm DIAG protocol with QCsuper [12] as baseline. The ratio of mes-
sages received at the baseband chip and SMS triggered was 92.8% for both paging
and RRCConnectionSetup messages. The remaining messages (7.2%) were not
being sent, since the phone was not in idle mode. We mitigated this limitation
by considering positive results only. This is valid because the target phone was
present in the monitored network and only the number of required probes for
verification was evaluated.

9 Conclusions

In this paper, we have studied on the effectiveness of the IMSI probing attack
that allows for invading user privacy. With the advance of cellular network gen-
erations, this relative old attack is becoming more attractive for attackers in
the context of modern telecommunication networks like 5G. The effectiveness of
the attack significantly depends on the manner how the target phone is used.
Modern devices with many installed apps and a frequent device usage through
phone calls, video streaming, messaging etc. render IMSI probing attacks more
complex with a relative low success rate. Nevertheless, 3GPP has proposed mit-
igation mechanisms (3GPP TS33.501, 6.12.3) which are ineffective though [6].
The attack leaves traces on the device, i.e., in the baseband processor, and hence

96 D. Fraunholz et al.

can be detected. The results of our empirical study have shown that the IMSI
probing attack based on the algorithm of Kune et al. using paging messages is
rather ineffective and only successful under optimal conditions. We have inves-
tigated the success rate for phones in passive and active mode. Especially the
passive mode contradicts the current trends of phone and data service usage.
These use cases are pretty unlikely. We have shown, however, that the use of
additional probes and more robust detection algorithms can improve the success
rate significantly. Nevertheless the execution of the attack remains complex. We
have proposed a novel attack vector based on the monitoring of the RRCConnec-
tionSetup messages of the RRC protocol. It significantly reduces the number of
probes thus increasing the attack success likelihood. This makes the deploy-
ment of the attack less complicated. Using the RRCConnectionSetup message
instead of paging messages doubles the attack success rate and also improves
the localization accuracy to cell granularity level. The impact of network and
phone delays, e.g., from network utilization, on the IMSI probing time window
needs to be investigated further. In particular, the trade-off between the num-
ber of messages (i.e., paging or RRCConnectionSetup) per time interval and the
necessary window size for capturing in the context of messages captured after
a single probe are of special interest here. Moreover, only smartphones were
considered. Other device types, such as IoT devices or vehicles, may have a dif-
ferent susceptibility to IMSI probing attacks. In this domain, the influence of the
Discontinuous Reception (DRX) or Extended Discontinuous Reception (eDRX)
cycles may play a significant role for the attack success rate, as paging occasions
might be reduced drastically.

A Installed Applications in Section 4

Facebook, Whatapp, Facebook Messenger, Instagram, TikTok, Subway Surfers,
Facebook Lite, Microsoft Word, Microsoft PowerPoint, Snapchat, SHAREit,
Netflix, Twitter, Flipboard, Candy Crush Saga, Skype, Spotify, Dropbox, Viber,
LINE.

References

1. Amarisoft: Amari callbox (2022). https://www.amarisoft.com
2. Arapinis, M., et al.: New Privacy Issues in Mobile Telephony: Fix and Verification.

CCS, North Carolina, USA (2012)
3. Bui, N., Widmer, J.: Owl: a reliable online watcher for LTE control channel mea-

surements. In: Proceedings of the 5th Workshop on All Things Cellular: Operations,
Applications and Challenges, pp. 25–30. ATC 2016, Association for Computing
Machinery, New York, NY, USA (2016). https://doi.org/10.1145/2980055.2980057

4. Falkenberg, R., Ide, C., Wietfeld, C.: Client-based control channel analysis for
connectivity estimation in LTE networks. In: 2016 IEEE 84th Vehicular Tech-
nology Conference (VTC-Fall), pp. 1–6 (2016). https://doi.org/10.1109/VTCFall.
2016.7880932

https://www.amarisoft.com
https://doi.org/10.1145/2980055.2980057
https://doi.org/10.1109/VTCFall.2016.7880932
https://doi.org/10.1109/VTCFall.2016.7880932

IMSI Probing 97

5. Falkenberg, R., Wietfeld, C.: FALCON: an accurate real-time monitor for client-
based mobile network data analytics. In: 2019 IEEE Global Communications Con-
ference (GLOBECOM). IEEE, Waikoloa, Hawaii, USA (2019). https://doi.org/10.
1109/GLOBECOM38437.2019.9014096, https://arxiv.org/abs/1907.10110

6. Hong, B., Bae, S., Kim, Y.: GUTI reallocation demystified: cellular location track-
ing with changing temporary identifier. In: NDSS (2018)

7. Kumar, S., Hamed, E., Katabi, D., Erran Li, L.: LTE radio analytics made easy and
accessible. SIGCOMM Comput. Commun. Rev. 44(4), 211–222 (2014). https://
doi.org/10.1145/2740070.2626320

8. Kune, D.F., Koelndorfer, J., Hopper, N., Kim, Y.: Location leaks on the GSM air
interface. ISOC NDSS (2012)

9. Mjølsnes, S.F., Olimid, R.F.: Easy 4G/LTE IMSI catchers for non-programmers.
In: Rak, J., Bay, J., Kotenko, I., Popyack, L., Skormin, V., Szczypiorski, K.
(eds.) MMM-ACNS 2017. LNCS, vol. 10446, pp. 235–246. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-65127-9 19

10. Nie, S., Zhang, Y., Wan, T., Duan, H., Li, S.: Measuring the deployment of 5g
security enhancement. In: Proceedings of the 15th ACM Conference on Security
and Privacy in Wireless and Mobile Networks, pp. 169–174. WiSec 2022, Associ-
ation for Computing Machinery, New York, NY, USA (2022). https://doi.org/10.
1145/3507657.3528559

11. OpenAirInterface software alliance: openairinterface (2022). https://
openairinterface.org

12. P1sec: QCSuper (2022). https://github.com/P1sec/QCSuper
13. Shaik, A., Borgaonkar, R., Asokan, N., Niemi, V., Seifert, J.P.: Practical attacks

against privacy and availability in 4g/LTE mobile communication systems.
NDSS16 (2016)

14. Software Radio Systems: srsRAN (2022). https://github.com/srsran/srsRAN
15. Zalani, R.: Screen time statistics 2021: your smartphone is hurting you (2021).

https://elitecontentmarketer.com/screen-time-statistics/

https://doi.org/10.1109/GLOBECOM38437.2019.9014096
https://doi.org/10.1109/GLOBECOM38437.2019.9014096
https://arxiv.org/abs/1907.10110
https://doi.org/10.1145/2740070.2626320
https://doi.org/10.1145/2740070.2626320
https://doi.org/10.1007/978-3-319-65127-9_19
https://doi.org/10.1145/3507657.3528559
https://doi.org/10.1145/3507657.3528559
https://openairinterface.org
https://openairinterface.org
https://github.com/P1sec/QCSuper
https://github.com/srsran/srsRAN
https://elitecontentmarketer.com/screen-time-statistics/

Attacks and Attack Detection

Honeysweeper : Towards Stealthy
Honeytoken Fingerprinting Techniques

Mohamed Msaad1 , Shreyas Srinivasa1(B) , Mikkel M. Andersen1 ,
David H. Audran1 , Charity U. Orji1 , and Emmanouil Vasilomanolakis2

1 Aalborg University, Copenhagen, Denmark
{mmsaad18,mman21,daudra21,corji21}@student.aau.dk, shsr@es.aau.dk

2 Technical University of Denmark, Kgs. Lyngby, Denmark
emmva@dtu.dk

Abstract. The increased number of data breaches and sophisticated
attacks have created a need for early detection mechanisms. Reports
indicate that it may take up to 200 days to identify a data breach and
entail average costs of up to $4.85 million. To cope with cyber-deception
approaches like honeypots have been used for proactive attack detection
and as a source of data for threat analysis. Honeytokens are a subset of
honeypots that aim at creating deceptive layers for digital entities in the
form of files and folders. Honeytokens are an important tool in the proac-
tive identification of data breaches and intrusion detection as they raise
an alert the moment a deceptive entity is accessed. In such deception-
based defensive tools, it is key that the adversary does not detect the
presence of deception. However, recent research shows that honeypots
and honeytokens may be fingerprinted by adversaries. Honeytoken fin-
gerprinting is the process of detecting the presence of honeytokens in a
system without triggering an alert. In this work, we explore potential fin-
gerprinting attacks against the most common open-source honeytokens.
Our findings suggest that an advanced attacker can identify the major-
ity of honeytokens without triggering an alert. Furthermore, we propose
methods that help in improving the deception layer, the information
received from the alerts, and the design of honeytokens.

Keywords: Honeytokens · Fingerprinting · Counter-deception

1 Introduction

Cyber attacks have reached a record level in 2021, making it the highest in 17
years with a 10% increase from the previous year [14]. A $1.07 million cost
increase is related to the spike in remote work due to the COVID-19 pan-
demic [15] in addition to the continuous growth of IoT devices [8,23]. Further,
the time needed to identify and contain a security breach may take up to 287
days [13]. To combat this, the cyber-defense community is moving toward more
active lines of defense that leverage deception-based techniques. Deception tech-
niques confuse and divert attackers from real assets by placing fake data and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. P. Reiser and M. Kyas (Eds.): NordSec 2022, LNCS 13700, pp. 101–119, 2022.
https://doi.org/10.1007/978-3-031-22295-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22295-5_6&domain=pdf
http://orcid.org/0000-0002-4989-8523
http://orcid.org/0000-0002-5720-5504
http://orcid.org/0000-0001-5966-9823
http://orcid.org/0000-0003-3344-7258
http://orcid.org/0000-0003-3336-9253
http://orcid.org/0000-0001-5068-9158
https://doi.org/10.1007/978-3-031-22295-5_6

102 M. Msaad et al.

vulnerable systems across an organization’s network. Any interaction with a
deceptive entity may be considered an attack. In practice, there are two leading
deception technologies: honeypots and honeytokens.

Honeypots are deceptive systems that emulate a vulnerable program [16,17,
20,24], for instance, a vulnerable version of the Linux operating system (OS),
an HTTP server, or an IoT device. They lure attackers and deflect them from
real assets while gathering information about the techniques and tools used dur-
ing the interaction. Honeypots differ by their low, medium or high-interaction
level [9,25,26]. As the name implies, interaction refers to how much capabilities
are offered to the adversary. The process of discovering the existence of a hon-
eypot in a system is known as honeypot fingerprinting [22,26]. The drawback
of many honeypots is that their emulation of systems/protocols exposes some
artifacts that attackers can detect.

Honeytokens are digital entities that contain synthetic/fabricated data. They
are usually stored in a system under attractive names as a trap for intruders,
and any interaction with them is considered an attack. Honeytokens can be files
such as PDFs, SQL database entries, URLs, or DNS records that embed a token.
Once accessed they trigger and alert the system about the breach [3]. Addition-
ally, honeytokens are less complex and easier to maintain when compared to
honeypots.

The honeytokens’ efficiency resides in their indistinguishability; hence, iden-
tifying that an entity is a honeytoken (known as fingerprinting), diminishes its
value. In this paper, we explore and extend the research on honeytoken finger-
printing techniques and demonstrate a fingerprinting tool that can successfully
fingerprint 14 out of 20 honeytokens offered by the most popular open-source
honeytoken service. Our contributions in this work are as follows:

– We analyze the design of open-source honeytokens to identify potential gaps
for fingerprinting purposes.

– We introduce additional techniques to detect open-source honeytokens with-
out triggering alerts.

– We propose techniques to improve the deceptive capabilities of honeytokens
and introduce features that can enhance the use of information received from
alerts triggered by intrusions.

The rest of this paper is structured as follows. In Sect. 2, we discuss the
background of the working mechanism and the fingerprinting mechanism of hon-
eytokens. Section 3 summarizes the related work of honeytoken fingerprinting.
Section 4 presents our proposed stealthy techniques for honeytoken fingerprint-
ing. Moreover, in Sect. 5 we present a proof of concept for honeytoken fingerprint-
ing. In Sect. 6, we discuss countermeasures against honeytoken fingerprinting. We
conclude our work in Sect. 7.

2 Background

Cyber-deception is an emerging proactive cyber defense methodology. When
well crafted, deception-based tools can be leveraged as source of threat intelli-

Honeysweeper : Towards Stealthy Honeytoken Fingerprinting Techniques 103

gence data. Deception techniques have two correlated defense strategies: first, to
diverge the attacker from tangible assets by simulating vulnerable systems to lure
attackers and attract attention, protecting tangible assets from being attacked.
Second, to notify about ongoing suspicious activities, which can minimize the
impact of an attack.

Honeytokens are deceptive entities that work by essentially triggering a notifi-
cation when the user initiates an action on them. The actions can vary depending
on the honeytoken type, such as read, write, query and others. The concept is to
embed a token in the deceptive entity and rely on the deceptive layer to consume
the token and trigger the alert. Figure 1 shows the conceptual flow of a honeyto-
ken. The honeytoken is deployed on a user’s system at either OS, application, or
network levels. On any attempt of access, the honeytoken triggers an alert to the
user through the notification mechanism. The recipient’s information is obtained
by placing a request to the honeytoken service. The honeytoken service acts as
an endpoint and provides a back-end for managing the honeytokens and the
metadata of the deployed honeytokens. Upon obtaining recipient information, a
notification is sent either as an email or a text message.

Action Token

Honeytoken OS/Application/Network

Load Honeytoken

Consume token

Request

Honeytoken
service

ForwardNotify

User

Adversary

Fig. 1. Honeytoken concept and alert mechanism

To explain the honeytoken mechanism in detail, we use the Canarytokens
(honeytokens service) as a case study to provide concrete examples. Canaryto-
kens is an open-source honeytoken provider that offers 20 different honeytoken
types. All the honeytokens provided share the same deployment life-cycle as
illustrated in Fig. 2.

To explain the deceptive layer and trigger mechanism, we use the PDF hon-
eytoken from the Canarytoken service. The Adobe Acrobat Reader (AAR) offers
a range of functionality for the PDF format to increase the document’s interac-
tion. One of these functionalities is the URI function, which allows linking a local
URI to the world wide web via the AAR plugin Weblink [1]. The weblink plugin
exposes its functionalities to other applications through the Host-Function-Table
API. Once the honeytoken is accessed with AAR, the URL is loaded by the

104 M. Msaad et al.

Fig. 2. Canarytokens life-cycle

weblink plugin, which on its turn will start a DNS request to resolve the domain
name. This DNS request will alert the owner of the PDF honeytoken.

Unlike honeypots, honeytokens are accessible only if the attacker is within
the system where the honeytokens reside. The attacker can gain access through
an attack or be an insider. In both cases, honeytokens are very useful as an early
alarm against successful data exfiltration if triggered.

3 Related Work

Since the invention of deception techniques, much research has been proposed for
fingerprinting the deceptive entities [2,4,7,26]. These fingerprinting techniques
fall into two categories: passive and active fingerprinting. Passive techniques do
not require interaction with the deceptive entity and focus on monitoring. How-
ever, active fingerprinting can be either stealthy or noisy. We define stealthy
fingerprinting as the process of revealing a deceptive mechanism without trig-
gering any alarm.

3.1 Honeypot Fingerprinting

Holz et al. list some artifacts produced by the honeypot simulation to detect a
honeypot [12]. For instance, by verifying the User-Mode-Linux (UML). UML is a
way of having a Linux kernel running on another Linux. The initial Linux kernel
is the host OS, and the other is the guest OS. By default, the UML executes in
Tracing Thread mode (TT) and is not designed to be hidden and can be used to
check for all the processes started by the host OS main thread. By executing the
command: “ps a”, one can retrieve a list of processes and identify UML usage’s
existence. Another sign of UML is the usage of the TUN/TAP back-end for the
network, which is not common on a real system and can identify UML usage.
Another place to look for artifacts is at the file proc/self/maps that contains

Honeysweeper : Towards Stealthy Honeytoken Fingerprinting Techniques 105

the current mapped memory regions on a Linux system. On a real OS, the end
of the stack is usually 0xc0000000, which is not the case on a guest OS. These
artifacts can be used against honeypots, rendering them visible to the attacker.

Other fingerprinting techniques, such as the network latency comparison,
focus on the network layer. For instance, by calculating the differences between
an HTTP server and a honeypot HTTP server. Mukkamala et al. utilized timing
analysis to reveal if a program is a honeypot. Comparing the timing analysis
of ICMP echo requests, they showcased that an HTTP-server honeypot will
respond slower than a real HTTP-server [18]. In another work by Srinivasa et
al., a framework for fingerprinting different honeypots is proposed. The utilized
techniques include so-called probe-based fingerprinting (such as port-scans or
banner-checks), and metascan-based fingerprinting (e.g., using data from the
Shodan API) [22].

3.2 Honeytoken Fingerprinting

Honeytokens can take the form of different data types, such as files, database
entries, and URL/DNS records. The first step of fingerprinting is to classify hon-
eytokens to build a standard fingerprint method for each type. Fraunholz et al.
have classified honeytokens based on the entity type it emulates [6]. For instance,
so-called honeypatches are classified as server-based honeytokens as they emu-
late a vulnerable decoy. The decoy may host monitoring software that collects
important attack information and deceptive files that misinform the attackers.
The attacker is redirected to a decoy once the system detects an exploit. Sim-
ilarly, the database, authentication, and file honeytokens emulate data records
and authentication credentials, such as passwords and documents. Similarly, Han
et al. proposed a multi-dimensional classification of deception techniques based
on the goal, unit, layer, and deployment of the deception [11]. The majority of
the surveyed honeytokens are classified based on the detection goal. However,
they differ in the four deception layers—the network, system, application, and
data layer. In another work, Zhang et al. proposed a two-dimensional taxon-
omy, which eases the systematic review of representative approaches in a threat-
oriented mode, namely from the domains of honeypots, honeytokens, and MTD
techniques. They classify deception techniques depending on which phase of the
Cyber Kill-Chain they can deceive an attacker. Honeytokens can be used in eight
out of twelve phases to deceive attackers [27].

To the best of our knowledge, the only work that examines honeytoken-
specific fingerprinting to date is by Srinivasa et al. [21]. The work showcases a
proof of concept regarding fingerprinting a public honeytoken provider as a case
study. Additionally, they suggest a honeytoken classification based on the four
levels of operation and their fingerprinting technique, respectively:

– Network level: The honeytokens operating on this level emulate a network
entity or use the network as the channel for delivering the alerts. The respec-
tive fingerprinting technique for this deceptive layer relies on sniffing the net-
work traffic to detect such calls. In their example with the PDF honeytoken,

106 M. Msaad et al.

Srinivasa et al. observed the usage of DNS queries. However, this fingerprint-
ing method remains passive and not stealthy as it leads to triggering the
alert.

– Application/File-Level: These honeytokens take the format of a specific
file, e.g., PDF or DOCX, and obfuscate an alert mechanism within the file.
The alert is triggered if specific applications like Adobe Reader or Microsoft
Word opens the honeytoken. The fingerprinting techniques relies on file
decompression and obtaining the file honeytoken metadata.

– System-Level: These honeytokens utilize operating systems’ features such
as event logs and inotify calls as alert mechanisms. For fingerprinting these,
Srinivasa et al. suggest monitoring background-running processes to check for
the inotify call and to look out for changes in the file or the directory path.

– Data-Level: These honeytokens emulate data and can be hard to distinguish
from actual data. The technique for fingerprinting honeytokens operating
on the data level could vary depending on the data emulated and its alert
mechanism. However, as mentioned by Srinivasa et al., viewing the file’s meta-
data can help an attacker determine whether the file is a possible honeytoken.
For instance, Honeyaccount [5] creates fake user-accounts for a system to
deceive attackers in using them and hence trigger the alert. On a compromised
Windows machine, adversaries can list the user accounts to verify the last
known activity. Additionally, adversaries can use Windows PowerShell scripts
to recover meta-data about the accounts in Active Directory. This can assist
in identifying fake user accounts.

Srinivasa et al. also present different fingerprinting techniques for each hon-
eytoken type. For instance, to fingerprint a PDF honeytoken and determine its
trigger channel, they monitored the network traffic when interacting with the file.
This fingerprinting technique is noisy as the honeytoken triggers after the inter-
action. However, a stealthier fingerprinting approach for the same honeytoken
was also applied. They used a PDF parser1 to extract information from the PDF
stream. The information consisted of a URL where the domain name belonged
to the honeytoken provider. All their proposed fingerprinting techniques relied
only on black box testing (i.e., triggering the honeytoken to find the deceptive
layer and the alerting mechanism). Lastly, the authors did not consider multiple
honeytokens but focused only on a few as a base for their proof of concept.

4 Methodology

To build the fingerprinting techniques, we used different methods to extract
information from the honeytoken implementation. The methods include white
box and black box testing.

1 https://github.com/DidierStevens/DidierStevensSuite/blob/master/pdf-parser.py.

https://github.com/DidierStevens/DidierStevensSuite/blob/master/pdf-parser.py

Honeysweeper : Towards Stealthy Honeytoken Fingerprinting Techniques 107

4.1 Honeytoken Analysis

To analyze the honeytokens, we started by building a classification to help us
create fingerprinting techniques for each honeytoken class. Srinivasa et al. have
established a Canarytoken honeytoken classification, and we use it as a building
block for our extended version [21].

In particular, we extend the previous classification and propose a new one
that maps all the publicly offered honeytokens from Canarytokens, as shown
in Table 1. We added the dependency layer as a category of classification. The
dependency can be at the application or the OS layer. The PDF, .docx honeyto-
kens can only trigger when used with a specific application. For instance, .docx
will only trigger with the application Microsoft Word and would not if opened
with the online version Microsoft 365, concluding that it is an application-
dependent honeytoken. In contrast, other honeytokens, such as the SQL-DUMP,
will trigger with any query from an SQL-capable application. This classification
also relates to the privileges needed to stop the triggering mechanism (e.g., the
OS-dependent honeytokens will require higher privileges to interrupt the trigger
process than the application-dependent ones).

The first analysis step is to classify the honeytokens based on their under-
lying operation. We leverage the syntax form of the token as the base for the
classification. From all the 20 available honeytokens, we find four base usages:
DNS, URL, SMTP, IP, and access keys base.

The second step is to classify the honeytokens based on the location of the
honeytoken identifier in the token. After analyzing all the URL/DNS-based hon-
eytokens, we observed that the token is a subdomain or a path identifier in the
URL. This brought us to conclude the trigger channel based on the location.
Subdomain honeytokens will use DNS as a trigger channel, while the URL hon-
eytokens will use the HTTP protocol.

With the classification as a base, we focus on developing fingerprinting tech-
niques that target the dependency layer and the trigger channel. We use white
and black box testing in our methodology to identify the gap in the implemen-
tation of the honeytokens that can be leveraged for developing fingerprinting
techniques.

White Box Testing. The Canarytokens (honeytoken provider) service is open
source, and we used white box testing to investigate the implementation to find
artifacts. In particular, we utilized manual static analysis to check the honeyto-
kens’ generation code for any predicted output or patterns that can be used as
a fingerprinting base. From our testing, we discover the following:

– ID length: We identify the usage of a fixed length in the honeytoken ID.
– Hardcoded data: We analyzed the source code to search for hardcoded data in

the honeytoken’s generation process. For instance, upon analyzing the code
for the .exe file honeytoken, we discover the usage of hardcoded data used to
generate a certificate.

108 M. Msaad et al.

Table 1. Extended Canarytokens classification

Honeytoken

base

Honeytoken

name

Trigger

channel

Alerting

entity

Dependency

layer

Acrobat Reader PDF
Adobe Acrobat Reader

& Others
Application

Custom .exe/ Binary
Windows

User Access Control
OS

MySQL Dump SQL Server None

SQL Server SQL Server None

DNS DNS Server None

Windows Folder
Windows

File Explorer
OS

DNS

Subdomain

Based

SVN Server

DNS

SVN Server None

Windows Word Document
Microsoft Word Desktop

Application
Application

Windows Excel Document
Microsoft Excel Desktop

Application
Application

QR Code

Fast Redirect

Slow Redirect

URL

Custom Image Web Bug

URL

Based

Cloned Website

HTTP
Web Browsers,

Curl & others
None

SMTP

Based
Email Address SMTP SMTP Server

Kubernetes Config File TLS
Kubernetes

Application

None

IP

Based Wireguard Config File
Wireguard

Protocol

Wireguard

Application

Access Key

Based
AWS Key CloudWatch CloudWatch

Application

– Template file usage: Canarytokens use a template file to generate the PDF,
.docx and .xlsx honeytokens. This template is not changed and leads to static
metadata that can be fingerprinted.

– File size: This is a result of the template file usage and constant file size. We
consider this an additional artifact to the template to enhance the probability
of accurate fingerprinting.

Black Box Testing. The black box testing did not focus on testing the sys-
tem’s internals. Instead, we used it to extract additional information that is only
available after the honeytoken generation and validate our findings. The black
box included creating and interacting with the honeytoken to reveal the trig-

Honeysweeper : Towards Stealthy Honeytoken Fingerprinting Techniques 109

ger channel and the entity responsible for triggering the alert. The implemented
techniques are as follows:

– Extracting metadata from the honeytokens to inspect if there are any static
metadata present.

– Monitoring the network traffic when triggering a honeytoken to discover the
trigger channel and confirm the white box testing findings.

– Monitoring what sub-processes were started by the application or the OS
that triggers the honeytoken. This gives us an idea of how to circumvent the
trigger mechanism and stop the honeytoken alert if possible.

With the knowledge gained from the black box, we classify the honeytokens
into three categories depending on the token base: URL/DNS, IP, and access
key based. The URL/DNS-based honeytokens have a URL or a DNS subdomain
directly in the data or the file’s metadata. Regardless of the honeytoken type,
they all have the same domain name, canarytokens.com, or the equivalent IP
address. The access key is a simple AWS access key with an identifier to link the
user information with the honeytoken.

4.2 Honeytoken Fingerprinting

The first step is to be able to fingerprint honeytokens generated from the offi-
cial website of Canarytokens2. We create and download all possible honeytokens
to familiarize ourselves and gain information about all the different honeyto-
kens offered by the Canarytokens service. In particular, we are interested on the
underlying trigger mechanism, the trigger channels, and the honeytoken depen-
dency.

To begin, the fingerprinting technique was a simple keyword search in the
honeytoken data. The keyword is usually related to the honeytoken provider or
publicly known information. We searched for the “canarytokens” keyword in the
data or the metadata of all the URL/DNS base honeytokens. Regarding the IP-
based honeytokens, our initial fingerprinting method was to perform a reverse
DNS lookup of the “canarytokens.com” domain name and compare it to the one
in the honeytoken. Finally, we did not discover any fingerprinting strategy for the
access key-based honeytokens since all the information related to the access key,
since the all the information is saved at the server of the access key provider,
except for a repeated pattern in the AWS key ID as displayed in Listing 1.1.
The identifier has 12 constant characters AKIAYVP4CIPP, which can be used
to fingerprint all the AWS keys originating from Canarytokens.

1 # 1st key

2 [default]

3 aws_access_key_id = [AKIAYVP4CIPP]G6FXFYHS

4 aws_secret_access_key = UDxJeQftE3ekx+

KS7skayD8MuN6CVVx0uemuxBSB

2 https://canarytokens.org/generate.

https://canarytokens.org/generate

110 M. Msaad et al.

5 output = json

6 region = us -east -2

7
8 # 2nd -key

9 [default]

10 aws_access_key_id = [AKIAYVP4CIPP]CF45DQPM

11 aws_secret_access_key = 8iTskHJBDDnYpUt1a2KY /

hTlbScFoAS51cJl4nO5

12 output = json

13 region = us -east -2

14
15 # 3rd -key

16 [default]

17 aws_access_key_id = [AKIAYVP4CIPP]A3TB575H

18 aws_secret_access_key = mb8HpotCq27p4rCsQGwYpXo0xx+

oQcIMpjdT+qOJ

19 output = json

20 region = us -east -2

Listing 1.1. Canarytokens AWS access key repeated characters

The second major milestone is fingerprinting the honeytokens regardless of
the domain name. We use the Canarytokens source code to set up the honeytoken
service on our private honeytoken server. The keyword search or the IP address
comparison approach is ineffective with this setup. However, the keyword search
is still valid for the .exe/.dll honeytoken files due to the hardcoded data found
in the certificate generation source code.

As mentioned before, the white box testing revealed that the URL/DNS-
based honeytokens follow a specific pattern. The DNS/URL contains a 25-
character alphanumeric identifier (ID) as displayed in Table 2, which is used
to link the honeytoken with the user’s contact information. The ID is the subdo-
main for the DNS-based honeytokens and is the path for the URL-based ones.
The placement of the URL/DNS value in the honeytoken is known to us. How-
ever, there are other URLs/DNS in some honeytokens. For instance, the URL
in the .docx honeytoken resides in the metadata, which already includes other
URLs to microsoft.com. In order to determine the existence of a honeytoken
URL, we loop through each URL and see if they have a 25-character alphanu-
meric string in the DNS/URL. If they do, we label it as a possible honeytoken
URL.

Table 2. URL/DNS Honeytokens followed pattern

Identifier uq3501pu9mo56obz6kn5auhpq

URL http://domain.name/url/path/
uq3501pu9mo56obz6kn5auhpq/contact.php

DNS uq3501pu9mo56obz6kn5auhpq.domain.name

http://domain.name/url/path/

Honeysweeper : Towards Stealthy Honeytoken Fingerprinting Techniques 111

Our analysis suggests that the file type honeytokens use a static template to
generate the PDF, .docx, and .xlsx files. For instance, the template.pdf file in
the source code leads to constant metadata in the PDF honeytoken. Normally,
some metadata attributes, such as the Document UUID, should be unique for
each file. A constant UUID will make it easy to identify any PDF file from
Canarytokens, even if the domain name is private. Additionally, other data can
make the attacker more confident that this is a honeytoken file (e.g., created
and modified dates). However, the file creation and modification dates are old (7
years), and any data in it might not be valid anymore from the attacker’s point
of view. See Appendix Listing 1.2 for more details.

The Canarytokens implementation uses template files to generate all the file
type honeytokens, which results in fixed file sizes. We observe that all the PDF,
.docx, and .xlsx have the same size of 5KB, 15KB, and 7.7KB respectively. This
additional artifact can be used with the template static metadata to raise the
confidence of our fingerprinting method. Additionally, this constant small file size
indicates that the file is empty and may not lure the attacker into interacting
with it.

5 Proof of Concept: Honeysweeper

This section demonstrates the applicability of our honeytokens’ fingerprinting
techniques based on the Canarytoken implementation [19]. The fingerprinting
tool’s, namely honeysweeper, source code is available at our GitHub repository3.

5.1 Overview

From all the information gained from the black/white box testing, we built
an OS-independent tool that can successfully fingerprint 14 out of the 20 hon-
eytokens offered by Canarytokens. The tool relies on a primary fingerprinting
technique matching the 25-character string identifier. However, this fingerprint
method introduces the problem of false positives. As we discussed earlier, some
honeytokens (i.e., file-type ones) contain more than one URL/DNS. If by any
chance, another link contains a 25 characters string, the tool will label it as a
possible honeytoken. Nevertheless, from an attacker’s perspective, we argue that
false negatives are more critical since they would raise an alarm.

Honeysweeper begins by revealing the honeytoken extension for the file-type
ones and then extracting the DNS/URL. URL/DNS/Email honeytokens can be
added in a text file and passed to the tool. As in the case of PDF, .docx and .xlsx
files, the tool needs to decompress the file as shown in Appendix Listings 1.3
– 1.4, and loops through each file to extracts all the tokens. Once obtained,
honeysweeper runs the find canarytoken(string) to match any pattern that
matches the 25-character string in the honeytoken content. The PDF, .docx,
and .exe/.dll honeytokens have higher confidence due to the earlier additional

3 https://github.com/aau-network-security/canarytokens finger printer.

https://github.com/aau-network-security/canarytokens_finger_printer

112 M. Msaad et al.

artifacts, i.e., the static template as shown in Appendix Listing 1.2 and the small
file size as shown in Fig. 3. The tool includes checks for the PDF template as a
proof of concept and can easily be enhanced to detect other files such as .docx
and .xlsx.

Fig. 3. Honeytokens file-type constant size artifact

5.2 Limitations

The Wireguard and Kubernetes honeytokens are not included in honeysweeper as
we found no possible way of fingerprinting them when deployed with a private
IP. All the data in the honeytokens are randomly generated, e.g., the public
and private keys. However, this technique remains effective if the honeytokens
are deployed with a known honeytoken provider IP address. The fingerprinting
techniques for SVN and SQL-server are not included in the fingerprinting tool
since both honeytokens are not directly accessible to the attacker. A possible
fingerprinting method for the SQL server can be to check the size of the table
where the honeytoken resides. If the table is empty, it may not deceive the
attacker for any further interaction. The other honeytokens e.g., PDF, .docx, and
SQL-dump are available directly on the system and the fingerprinting methods
are covered in honeysweeper.

6 Countermeasures Against Fingerprinting

The fixed ID length is the primary artifact shared among the studied honeyto-
kens. We propose that the honeytoken identifier should be randomized in length

Honeysweeper : Towards Stealthy Honeytoken Fingerprinting Techniques 113

or set in a range. For instance, the ID length could be between 25 and 32 charac-
ters, making the fingerprinting process harder and removing the 25-character ID
artifact. This mitigation is valid for all the honeytokens containing a URL/DNS
with 25 character identifiers. However, this only solves one problem.

The following recommendations are valid for all the template-dependent hon-
eytokens. The PDF honeytokens should have random metadata. In the case of
PDF, the attacker can generate a PDF Canarytokens and compare it to any PDF
exfiltrated. Even if the honeytoken administrator changes the domain name and
removes the 25-character ID artifact, the metadata alone is enough to raise
suspicion. To address this, we propose to randomize the PDF XMP metadata.
There are a few rules to keep the metadata consistent and not leave a metadata-
modification footprint [10]. We present our solution in Appendix Listing 1.5.

Moreover, the honeytoken administrator should modify the content of the
.docx, .xlsx, and PDF files before deployment to change the document size which
are .docx files are always 15 KB, the .xlsx files with 7.7 KB, and the PDF files
with 5 KB. Once modified, the honeytokens will resemble an actual file with data
and lure the attacker into opening it. Otherwise, the attacker can combine the
honeytoken file size with other artifacts to ensure the existence of a trap.

The signing process for the .exe/binary honeytokens should be with certifi-
cates unrelated to any honeytoken provider. As seen in the Canarytokens source
code, a new certificate is generated to sign the .exe/.dll files. We generate an
executable honeytoken using the source code locally to investigate the gener-
ation process. We see that a private key and a certificate is generated to sign
the honeytoken and are removed after the process is complete. Nevertheless, the
information included in the signature is hard-coded. Figure [4] shows the hard-
coded information in the certificate. This hard-coded information will be the
same for all the .exe/binary honeytokens and can be an artifact.

Fig. 4. Certificate hardcoded data

When deploying the stored procedure for a table on the SQL server, the
administrator can set explicit permissions on the stored procedure by denying the
public users from viewing the stored procedure’s definition. The same approach
applies for the SQL functions as a honeytoken. The function permission can be
fragmented. For example, allow the public to select the functions and views but
disallow viewing the definitions (syntax). Additionally, the trap table should be
populated with random fake data to lure the attacker into interacting with it.

114 M. Msaad et al.

The Wireguard and Kubernetes honeytokens should use an IP address not
linked with a honeytoken domain name. If no domain name is available and there
is no alternative but to use the Canarytokens servers due to development and
maintenance costs, an administrator can use a local server IP and redirect the
traffic to Canarytokens servers.

7 Conclusion

Deception techniques like honeytokens are an essential extra layer of defense,
and deploying them is becoming more and more common. However, for the
deception technique to achieve its goal, it should be well crafted to deceive and
should not include easy to exploit fingerprinting artifacts. This paper proposes
fingerprinting techniques against most existing Canarytokens’ honeytokens pro-
posals and implementations. We analyze all the publicly offered honeytokens
and propose countermeasures against the suggested techniques. As ethical dis-
closure, we informed Canarytokens of our findings. For future work, we plan on
exploring other fingerprinting methods. For instance, the signature verification
of the .exe/.dll files and other techniques. Additionally, we consider improving
the honeytoken ID generation process by including a non-repudiation concept.

Appendix

Static Data on PDF Canarytoken

Listing 1.2 shows the static data identified on parsing the composite XML file
of the PDF Canarytoken. We can observe static data on the modify date, create
date and metadata date.

1 <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP

Core 5.6-c015 81.157285 , 2014/12/12 -00 :43:15 ">

2 <rdf:RDF xmlns:rdf="http: //www.w3.org /1999/02/22 -rdf -

syntax -ns#">

3 <rdf:Description rdf:about=""

4 xmlns:xmp="http: //ns.adobe.com/xap /1.0/"

5 xmlns:dc="http: //purl.org/dc/elements /1.1/"

6 xmlns:xmpMM="http: //ns.adobe.com/xap /1.0/ mm/"

7 xmlns:pdf="http: //ns.adobe.com/pdf /1.3/">

8 <xmp:ModifyDate >2015 -07 -22 T16:41:31 +02 :00</

xmp:ModifyDate >

9 <xmp:CreateDate >2015 -07 -22 T16:38:51 +02 :00</

xmp:CreateDate >

10 <xmp:MetadataDate >2015 -07 -22 T16:41:31 +02 :00</

xmp:MetadataDate >

11 <xmp:CreatorTool >Acrobat Pro 15.8.20082 </

xmp:CreatorTool >

12 <dc:format >application/pdf</dc:format >

Honeysweeper : Towards Stealthy Honeytoken Fingerprinting Techniques 115

13 <xmpMM:DocumentID >uuid:a2364080 -b5a8 -1b46 -b156 -

ea05c4972d03 </xmpMM:DocumentID >=

14 <xmpMM:InstanceID >uuid:7656c56e -b1e6 -f444 -801f

-06 e28a50831f </xmpMM:InstanceID >

15 <pdf:Producer >Acrobat Pro 15.8.20082 </

pdf:Producer >

16 </rdf:Description >

17 </rdf:RDF >

18 </x:xmpmeta >

Listing 1.2. PDF honeytoken static metadata

Fingerprinting of PDF Canarytoken

Listing 1.3 shows the pseudo code for fingerprinting of PDF Canarytoken. The
method checks for URLs embedded in the PDF and against a list of known
honeytoken service URLs.

1 def find_token_in_pdf(file_location):

2 check_template(file_location) # check for template

artifact

3 # List for URLs found

4 list_of_urls = []

5 pdf = open(file_location , "rb").read()

6 stream = re.compile(b’.*? FlateDecode .*? stream (.*?)

endstream ’, re.S)

7 for s in re.findall(stream , pdf):

8 s = s.strip(b’\r\n’)

9 line = ""

10 try:

11 line = zlib.decompress(s).decode(’latin -1’)

changed this from UTF -8 to latin -1 as

it throws errors. We

12 # want the app to be silent :)

13 except Exception as e:

14 print(e)

15 token = Tokenfinder.find_tokens_in_string(line)

16 if token:

17 list_of_urls.extend(token)

18 if len(list_of_urls) == 0:

19 print("No canaries detected")

20 return None

21 else:

22 print(str(len(list_of_urls)) + " canary URLs

detected in the file")

23 for url in list_of_urls:

24 print("Canary detected !: ", url)

25 print ()

Listing 1.3. PDF fingerprinting

116 M. Msaad et al.

Fingerprinting of .docx and .xlsx Canarytokens

Listing 1.4 shows the pseudo code for fingerprinting of .docx and .xlsx Canary-
tokens. The techniques unzips the composite file formats to check for URLs
embedded in the files.

1 def check_office_files(file_location):

2 list_of_urls = [] # List to hold all urls in the

file

3 try:

4 # Unzip the office file without saving to

folder

5 unzipped_file = zipfile.ZipFile(file_location ,"

r")

6 # List of all the content of the zip

7 namelist = unzipped_file.namelist ()

8 # Reads every file in the zip file and looks if

it contains the string you wish to search

for

9 for item in namelist:

10 content = str(unzipped_file.read(item))

11 token = Tokenfinder.find_tokens_in_string(

content)

12 if token:

13 list_of_urls.extend(token)

14 except OSError as e:

15 print(f"Exception: {e}")

16 # If no results of the search

17 if len(list_of_urls) == 0:

18 return None

19 else:

20 print(str(len(list_of_urls)) +" canary URLs

detected in the file")

21 for url in list_of_urls:

22 print("Canary detected: ", url)

23 print ()

Listing 1.4. .docx and .xlsx fingerprinting

Mitigation of Metadata in Canarytoken

Listing 1.5 shows the mitigation by randomization of the file creation date
and time. The randomness avoids static creation dates that is implemented by
Canarytokens.

1 from pikepdf import Pdf

2 import uuid , random , datetime , os

3
4 # make creation date with random Time -Zone [+1 to +3]

Honeysweeper : Towards Stealthy Honeytoken Fingerprinting Techniques 117

5 def creation_date ():

6 time = datetime.datetime.now()

7 rand_region =str(random.randint(1, 3))

8 stamp = time.strftime(’2022-%m-%d’)+’T’+ time.

strftime(’%H:%M:%S’)+ ’+0’+ rand_region+ ’:00’

9 return stamp

10
11
12 def modification_date ():

13 time = datetime.datetime.now()

14 return time.strftime(’%Y-%m-%d’)+’T’+ time.strftime

(’%H:%M:%S’)

15
16 def add_metadata(source_pdf , out_dir):

17 mod_date = modification_date ()

18 with Pdf.open(source_pdf) as pdf:

19 with pdf.open_metadata(set_pikepdf_as_editor=

False) as meta:

20 meta[’xmp:CreatorTool ’] = ’Acrobat Pro

22.001.20112 ’

21 meta[’xmpMM:DocumentID ’] = str(uuid.uuid4 ()

)

22 meta[’xmpMM:InstanceID ’] = str(uuid.uuid4 ()

)

23 meta[’xmp:CreateDate ’] = creation_date ()

24 meta[’xmp:ModifyDate ’] = mod_date

25 meta[’xmp:MetadataDate ’] = mod_date

26 meta[’pdf:Producer ’] = ’Acrobat Pro

22.001.20112 ’

27 pdf.save(os.path.join(out_dir , os.path.basename(

source_pdf)))

28 print(’Done!’)

29
30 source_pdf = "/Users/mm/Downloads/pdftoken.pdf"

31 out_dir = ’/Users/mm/Desktop/’

32 add_metadata(source_pdf , out_dir)

Listing 1.5. Metadata mitigation

References

1. Acrobat: Acrobat API reference (2021). https://opensource.adobe.com/dc-
acrobat-sdk-docs/acrobatsdk/html2015/Acro12 MasterBook/API References
SectionPage/API References/Acrobat API Reference/AV Layer/Weblink.html

2. Aguirre-Anaya, E., Gallegos-Garcia, G., Luna, N.S., Vargas, L.A.V.: A new pro-
cedure to detect low interaction honeypots. Int. J. Electr. Comput. Eng. (IJECE)
4(6), 848–857 (2014)

3. Čenys, A., Rainys, D., Radvilavicius, L., Goranin, N.: Database level honeytoken
modules for active DBMS protection. In: Nilsson, A.G., Gustas, R., Wojtkowski,

https://opensource.adobe.com/dc-acrobat-sdk-docs/acrobatsdk/html2015/Acro12_MasterBook/API_References_SectionPage/API_References/Acrobat_API_Reference/AV_Layer/Weblink.html
https://opensource.adobe.com/dc-acrobat-sdk-docs/acrobatsdk/html2015/Acro12_MasterBook/API_References_SectionPage/API_References/Acrobat_API_Reference/AV_Layer/Weblink.html
https://opensource.adobe.com/dc-acrobat-sdk-docs/acrobatsdk/html2015/Acro12_MasterBook/API_References_SectionPage/API_References/Acrobat_API_Reference/AV_Layer/Weblink.html

118 M. Msaad et al.

W., Wojtkowski, W.G., Wrycza, S., Zupančič, J. (eds.) Adv. Inf. Syst. Dev., pp.
449–457. Springer, US, Boston, MA (2006)

4. Dahbul, R.N., Lim, C., Purnama, J.: Enhancing honeypot deception capability
through network service fingerprinting. J. Phys: Conf. Ser. 801, 012057 (2017).
https://doi.org/10.1088/1742-6596/801/1/012057

5. Faveri, C.D., Moreira, A.: Visual modeling of cyber deception. In: 2018 IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC), pp.
205–209 (2018). https://doi.org/10.1109/VLHCC.2018.8506515

6. Fraunholz, D., et al.: Demystifying deception technology: a survey. CoRR
abs/1804.06196 (2018). https://arxiv.org/abs/1804.06196

7. Fu, X., Yu, W., Cheng, D., Tan, X., Streff, K., Graham, S.: On recognizing virtual
honeypots and countermeasures. In: 2006 2nd IEEE International Symposium on
Dependable, Autonomic and Secure Computing, pp. 211–218 (2006). https://doi.
org/10.1109/DASC.2006.36

8. Ghirardello, K., Maple, C., Ng, D., Kearney, P.: Cyber security of smart homes:
development of a reference architecture for attack surface analysis. In: Living in
the Internet of Things: Cybersecurity of the IoT - 2018, pp. 1–10 (2018). https://
doi.org/10.1049/cp.2018.0045

9. Guarnizo, J.D., et al.: Siphon: towards scalable high-interaction physical honey-
pots. In: Proceedings of the 3rd ACM Workshop on Cyber-Physical System Secu-
rity, pp. 57–68. CPSS 2017, Association for Computing Machinery, New York, NY,
USA (2017). https://doi.org/10.1145/3055186.3055192

10. Gungor, A.: Pdf forensic analysis and XMP metadata streams (2017). https://
www.meridiandiscovery.com/articles/pdf-forensic-analysis-xmp-metadata/

11. Han, X., Kheir, N., Balzarotti, D.: Deception techniques in computer security: a
research perspective. ACM Comput. Surv. 51(4), 1–36 (2018). https://doi.org/10.
1145/3214305

12. Holz, T., Raynal, F.: Detecting honeypots and other suspicious environments. In:
Proceedings from the Sixth Annual IEEE SMC Information Assurance Workshop,
pp. 29–36 (2005). https://doi.org/10.1109/IAW.2005.1495930

13. IBM: how much does a data breach cost? (2021). https://www.ibm.com/security/
data-breach

14. IBM: Insights into what drives data breach costs (2021). https://www.ibm.com/
account/reg/uk-en/signup?formid=urx-51643

15. IBM: key findings (2021). https://www.ibm.com/downloads/cas/OJDVQGRY
16. La, Q.D., Quek, T.Q.S., Lee, J., Jin, S., Zhu, H.: Deceptive attack and defense game

in honeypot-enabled networks for the internet of things. IEEE Internet Things J.
3(6), 1025–1035 (2016). https://doi.org/10.1109/JIOT.2016.2547994

17. Mokube, I., Adams, M.: Honeypots: Concepts, approaches, and challenges. In:
Proceedings of the 45th Annual Southeast Regional Conference. p. 321–326. ACM-
SE 45, Association for Computing Machinery, New York, NY, USA (2007). https://
doi.org/10.1145/1233341.1233399

18. Mukkamala, S., Yendrapalli, K., Basnet, R., Shankarapani, M.K., Sung, A.H.:
Detection of virtual environments and low interaction honeypots. In: 2007 IEEE
SMC Information Assurance and Security Workshop, pp. 92–98 (2007). https://
doi.org/10.1109/IAW.2007.381919

19. Research, T.A.: Canarytokens. https://github.com/thinkst/canarytokens
20. Sethia, V., Jeyasekar, A.: Malware capturing and analysis using dionaea honeypot.

In: 2019 International Carnahan Conference on Security Technology (ICCST), pp.
1–4 (2019). https://doi.org/10.1109/CCST.2019.8888409

https://doi.org/10.1088/1742-6596/801/1/012057
https://doi.org/10.1109/VLHCC.2018.8506515
https://arxiv.org/abs/1804.06196
https://doi.org/10.1109/DASC.2006.36
https://doi.org/10.1109/DASC.2006.36
https://doi.org/10.1049/cp.2018.0045
https://doi.org/10.1049/cp.2018.0045
https://doi.org/10.1145/3055186.3055192
https://www.meridiandiscovery.com/articles/pdf-forensic-analysis-xmp-metadata/
https://www.meridiandiscovery.com/articles/pdf-forensic-analysis-xmp-metadata/
https://doi.org/10.1145/3214305
https://doi.org/10.1145/3214305
https://doi.org/10.1109/IAW.2005.1495930
https://www.ibm.com/security/data-breach
https://www.ibm.com/security/data-breach
https://www.ibm.com/account/reg/uk-en/signup?formid=urx-51643
https://www.ibm.com/account/reg/uk-en/signup?formid=urx-51643
https://www.ibm.com/downloads/cas/OJDVQGRY
https://doi.org/10.1109/JIOT.2016.2547994
https://doi.org/10.1145/1233341.1233399
https://doi.org/10.1145/1233341.1233399
https://doi.org/10.1109/IAW.2007.381919
https://doi.org/10.1109/IAW.2007.381919
https://github.com/thinkst/canarytokens
https://doi.org/10.1109/CCST.2019.8888409

Honeysweeper : Towards Stealthy Honeytoken Fingerprinting Techniques 119

21. Srinivasa, S., Pedersen, J.M., Vasilomanolakis, E.: Towards systematic honeytoken
fingerprinting. In: 13th International Conference on Security of Information and
Networks. SIN 2020, Association for Computing Machinery, New York, NY, USA
(2020). https://doi.org/10.1145/3433174.3433599

22. Srinivasa, S., Pedersen, J.M., Vasilomanolakis, E.: Gotta catch’em all: a multistage
framework for honeypot fingerprinting. arXiv preprint arXiv:2109.10652 (2021)

23. Srinivasa, S., Pedersen, J.M., Vasilomanolakis, E.: Open for hire: attack trends
and misconfiguration pitfalls of iot devices. In: Proceedings of the 21st ACM
Internet Measurement Conference, pp. 195–215. IMC 2021, Association for Com-
puting Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3487552.
3487833,https://doi.org/10.1145/3487552.3487833

24. Vasilomanolakis, E., et al.: This network is infected: hostage - a low-interaction
honeypot for mobile devices. In: Proceedings of the Third ACM Workshop on
Security and Privacy in Smartphones & Mobile Devices, pp. 43–48. SPSM 2013,
Association for Computing Machinery, New York, NY, USA (2013). https://doi.
org/10.1145/2516760.2516763

25. Vasilomanolakis, E., Karuppayah, S., Mühlhäuser, M., Fischer, M.: Hostage: a
mobile honeypot for collaborative defense. In: Proceedings of the 7th International
Conference on security of information and networks. SIN 2014, vol. 2014, pp. 330–
333. ACM (2014)

26. Vetterl, A., Clayton, R.: Bitter harvest: systematically fingerprinting low- and
medium-interaction honeypots at internet scale. In: 12th USENIX Workshop on
Offensive Technologies (WOOT 18). USENIX Association, Baltimore, MD (2018).
https://www.usenix.org/conference/woot18/presentation/vetterl

27. Zhang, L., Thing, V.L.: Three decades of deception techniques in active cyber
defense-retrospect and outlook. Comput. Secur. 106, 102288 (2021). https://arxiv.
org/abs/2104.03594

https://doi.org/10.1145/3433174.3433599
http://arxiv.org/abs/2109.10652
https://doi.org/10.1145/3487552.3487833,
https://doi.org/10.1145/3487552.3487833,
https://doi.org/10.1145/3487552.3487833
https://doi.org/10.1145/2516760.2516763
https://doi.org/10.1145/2516760.2516763
https://www.usenix.org/conference/woot18/presentation/vetterl
https://arxiv.org/abs/2104.03594
https://arxiv.org/abs/2104.03594

Towards Self-monitoring Enclaves:
Side-Channel Detection Using

Performance Counters

David Lantz, Felipe Boeira , and Mikael Asplund(B)

Department of Computer and Information Science, Linköping University,
Linköping, Sweden

{felipe.boeira,mikael.asplund}@liu.se

Abstract. Trusted execution environments like Intel SGX allow devel-
opers to protect sensitive code in so-called enclaves. These enclaves pro-
tect their code and data even in the cases of a compromised OS. How-
ever, such enclaves have also been shown to be vulnerable to numerous
side-channel attacks. In this paper we propose an idea of self-monitoring
enclaves and investigate the viability of using performance counters to
detect a side-channel attacks against Intel SGX, specifically the Load
Value Injection (LVI) class of attacks. We characterize the footprint of
three LVI attack variants and design a prototype detection mechanism.
The results show that certain attack variants could be reliably detected
using this approach without false positives for a range of benign applica-
tions. The results also demonstrate reasonable levels of speed and over-
head for the detection mechanism. Finally, we list four requirements for
making self-monitoring based on such a detection mechanism feasible
and point out that three of them are not satisfied in Intel SGX.

Keywords: TEE · Intel SGX · LVI · Side-channel attacks · Intrusion
detection · Performance counters

1 Introduction

With the growth of cloud computing, increasingly more sensitive data is being
handled and processed in mixed or untrusted environments. Achieving trust in
these services is thus both difficult and important, and one way to address this
problem is through the concept of a Trusted Execution Environment (TEE). A
TEE provides a shielded execution environment separated from the (potentially
untrusted) Operating System (OS). This means that even if the cloud service
itself is compromised and controlled by an attacker, a TEE instance (called an
enclave) can still guarantee confidentiality and integrity for the code and data
contained in the TEE.

Companies like Intel and ARM have offered their own implementations (or
specifications) of TEEs, and there are also research-driven efforts like Key-
stone [12]. However, many of the current solutions have been shown to be vul-
nerable to numerous Side-Channel Attacks (SCAs) [17,32], where architectural
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. P. Reiser and M. Kyas (Eds.): NordSec 2022, LNCS 13700, pp. 120–138, 2022.
https://doi.org/10.1007/978-3-031-22295-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22295-5_7&domain=pdf
http://orcid.org/0000-0003-2707-8089
http://orcid.org/0000-0003-1916-3398
https://doi.org/10.1007/978-3-031-22295-5_7

Towards Self-monitoring Enclaves 121

side effects of a program like cache behaviour, power consumption, etc., are used
to infer secret data used by a program. A large amount of research has been con-
ducted regarding SCAs targeting Intel SGX, and several SCAs have thus been
discovered in recent years. One class of such attacks is called Load Value Injec-
tion (LVI) [26], which allows an attacker to temporarily hijack the execution of
a victim process.

Many of the existing attacks targeting Intel SGX can be mitigated, but often
at a high cost in terms of performance. New generations of TEE solutions are
also likely to mitigate known attacks, but we argue that a trusted component
should not only be designed to be secure against all known attacks, but also
capable of detecting when it is under attack. If an attack can be detected in
time, the enclave can take protective action like suspending its operation until
the threat has been removed.

In this paper, we investigate one potential approach with which an enclave
could detect a side-channel attack through Hardware Performance Counters
(HPCs). There have been many examples in the literature of using HPCs to
detect side-channel attacks in other contexts, particularly attacks targeting cache
behaviour [1]. For example, Mushtaq et al. [16] developed a tool called WHISPER
that uses machine learning and HPCs to detect cache-based SCAs. However, we
are not aware of any work that explores using performance counters for detecting
attacks targeting TEEs.

Our threat model assumes an attacker that is able to run (almost) arbitrary
code in the untrustusted domain, with the aim of trying to extract information
from within the trusted domain (the enclave). Some of the attacks we consider,
might not be easily implementable without having at least some way of affecting
also the code within the enclave, but such analysis is out of scope for this paper.
If the attacker is able to actively influence the performance counters from the
untrusted domain, the detection mechanisms discussed in this paper would not
work which we also discuss further in Sect. 5.

We have chosen to investigate Intel SGX since it is still one of the domi-
nating TEE implementations available, and there are several interesting attacks
against SGX. Of these, we found LVI to be most interesting due to it being
relatively recent, still not fully mitigated, and exists in several variants. This
work is primarily intended to characterize and describe the relationship between
side-channel attack against enclaves in terms of performance counters as a first
step towards a long-term goal of allowing enclaves to become self-monitoring. As
we show in this paper, such monitoring is not supported by current hardware,
and we provide recommendations for how future hardware solutions could better
support such mechanisms. To summarize, the contributions of this paper are:

– A characterization of the resource footprint of three LVI attack variants.
– Design and evaluation of a prototype detection mechanism for LVI-style side-

channel attacks based on an idea of self-monitoring enclaves.
– Requirements for future hardware designs related to performance counters

and TEEs to allow self-monitoring enclaves to be properly implemented.

122 D. Lantz et al.

The remainder of the paper is structured as follows. Section 2 presents the
background and related work, in Sect. 3 we analyze the LVI attacks based on how
they affect a number of hardware performance counters, Sect. 4 describes details
of side-channel attack detection mechanisms and their performance, in Sect. 5 we
discuss how such mechanisms could potentially support self-monitoring enclaves
and what practical limitations hinder it today, and finally, Sect. 6 concludes the
paper.

2 Background and Related Work

In this section we briefly go through some fundamental concepts relating to
trusted execution environments and how they can be targeted by side-channel
attacks (with a focus on Intel SGX), followed by an overview of existing detection
methods for side-channel attacks.

2.1 Attacks on Trusted Execution Environments

In the SGX threat model, only the enclave can be trusted while all other parts
of the system are deemed untrustworthy. However, SGX has been shown to
be vulnerable against a number of side-channel attacks [17]. Interestingly, side-
channel attacks are excluded from the SGX threat model [7], and Intel instead
leaves it up to enclave developers to write their programs in a manner which
makes it resistant to those types of attacks.

Xu et al. [31] introduced the concept of controlled-channel-attacks where
secret information is gained by repeatedly causing page faults during enclave
execution. In another work related to controlled channel attacks, Bulck et al.
developed the attack framework SGX-Step [27]. SGX-Step provides a kernel
framework that allows attackers to track page table entries directly from user
space. SGX-Step is an open-source framework1 and has been used to construct
a number of other attacks.

Cache-based SCAs (CSCAs) have been shown to be possible on SGX [3,8],
due to SGX enclaves still making use of shared caches. Several more advanced
attacks making use of CSCAs have since been constructed, like CacheZoom [14]
and Memjam [13]. A unique attack by Schwarz et al. [22] used cache attacks
from within an enclave itself to attack other enclaves.

SGX has also been shown to be vulnerable to transient execution attacks, for
example the similarly named attacks SgxPectre [5] and SgxSpectre [18] demon-
strated that SGX was vulnerable to Spectre-type attacks. The first version of
Foreshadow [25] also targeted SGX, and several Microarchitectural Data Sam-
pling attacks [4,21,28] were shown to be able to leak data across several protec-
tion boundaries, including SGX enclaves. Other attacks include CacheOut [29]
and CrossTalk [20].

Load Value Injection (LVI) [26] is an example of a transient execution attack
specialized for SGX which was found by Bulck et al. [26]. The authors describe
1 https://github.com/jovanbulck/sgx-step.

https://github.com/jovanbulck/sgx-step

Towards Self-monitoring Enclaves 123

LVI as a “reverse Meltdown”-type attack since it essentially turns the process
of a Meltdown attack around by injecting data instead of leaking data. The
attack operates under the assumption that the attacker can provoke page faults
or microcode assists during enclave execution, optionally using features offered
by a framework such as SGX-Step.

2.2 Detection Methods

Most of the research regarding detection of SCAs has been done for non-SGX
contexts, but there are also some detection tools developed specifically for SGX.
One such SGX-specific detection tool is T-SGX [24], that makes use of TSX
to prevent controlled-channel attacks. The authors claim that T-SGX works
faster than previous state-of-the-art mitigation schemes, but T-SGX still induces
performance overheads of 50% on average and storage overheads of about 30%.
Similarly, Chen et al. present Déjà Vu [6], which exists as an extension to the
LLVM compiler, and also uses TSX to protect against controlled channel attacks.
The authors of SGX-Step [27] state that tools like T-SGX and Déjà Vu would
be able to detect an ongoing attack by the frequent interrupts caused by single-
stepping an enclave. However, they also bring up some of the drawbacks such as
the fact that TSX is not available on all SGX-enabled processors, and that TSX
defenses significantly increase run-time performance overheads.

In contexts outside of SGX, a number of methods and tools for detecting
side-channel attacks have been proposed. Most of the research regarding SCA
detection concerns cache-based SCAs. In a survey by Akram et al. [1], the authors
present much of the known work concerning CSCA detection, and note among
other things that almost all of the methods use hardware performance counters
for detecting the attacks. There are also examples of both signature-based and
anomaly-based detection.

Mushtaq et al. [16], develop a tool called WHISPER for detecting CSCAs dur-
ing runtime with the help of machine learning and hardware performance coun-
ters. The tool is designed to collect values from HPCs during runtime, which are
then used as features for the ensemble learning model. The authors demonstrate
the capability of the tool by using it to detect three CSCA variants targeting
the AES cryptosystem: Flush+Reload, Flush+Flush, and Prime+Probe.

While many CSCA detection methods use machine learning methods
together with HPCs for detection [2,15], some also present tools based on value
thresholds for certain HPC events. HexPADS [19] is one such tool which uses
HPC events like LLC accesses, LLC misses and total number of retired instruc-
tions to detect certain attacks, like Rowhammer attacks [23] as well as some
cache-based SCAs according to known attack signatures. It does this by mon-
itoring performance counters of all currently running processes in the system
using the perf event open interface. By comparing to existing attack signatures
for CSCAs and Rowhammer attacks among others, a process is either deemed
to be benign or is detected as a potential attack.

124 D. Lantz et al.

3 Characterization of LVI Invariant Footprint

We now proceed to present a characterization of the footprint of LVI attacks.
First, we describe which attacks we have analyzed. Then, experiments are made
to compare LVI attack processes to other benign processes by running a range of
different attack and non-attack scenarios. The objective is to show in which ways
LVI differs from benign applications with regards to footprint in performance
counters.

3.1 LVI Attacks

For running the LVI attacks, the existing PoC implementation was used, which
is included as a part of the SGX-Step [27] repository. The three variants of LVI
along with their equivalent variant according to the classification to Bulck et
al. [26], are shown in Table 1. From this point, the names from the LVI clas-
sification tree will be used to refer to the PoC attacks, with the exception of
LVI-SB-ROP which will be referred to as LVI-US-SB-ROP (to highlight that it
also relies on the User/Supervisor attribute).

Table 1. The three LVI PoC variants and their corresponding LVI variant according
to the classification done by Bulck et al. [26].

PoC variant LVI classification

LVI-SB (store buffer injection) LVI-US-SB

LVI-SB-ROP (trans. control flow hijacking) LVI-US-SB

LVI-L1D (L1D cache injection) LVI-PPN-L1D

It is important to note that these attack PoCs are simplified and don’t demon-
strate real attacks, but since they still contain all the major steps behind LVI
attacks they can still be used for investigating the impact of LVI on performance
counters. One should also note that while the PoC is part of the SGX-Step
repository, it only makes use of its page table manipulation features and not its
single-stepping capabilities (however, more practical LVI attacks can).

These LVI-US-SB and LVI-US-SB-ROP variants both preempt enclave exe-
cution by using page faults that occur when a Page Table Entry (PTE) is marked
as belonging to the kernel with the User/Supervisor (U/S) attribute of a page
table entry.

There are (for most systems) two types of valid page faults, minor and major
page faults, which both can happen during normal program execution. Major
page faults for example occur when the requested page is not yet present in
memory. Minor faults occur when pages exist in memory but have not yet been
marked by the Memory Management Unit (MMU). The types of page faults
caused by LVI (and Meltdown-type attacks) however, occur due to one of several

Towards Self-monitoring Enclaves 125

invalid conditions (e.g. accessing a page without high enough privileges), and can
therefore be seen more as errors that shouldn’t occur in a normal program.

Both the LVI-US variants also exploit the store buffer to inject malicious
data. The LVI-US-SB variant then uses victim enclave instructions following the
faulting instruction to directly encode enclave data via a cache covert channel.
The LVI-US-SB-ROP attack on the other hand, uses the same method of data
injection, but instead faults a return instruction in order to get it to load the
attacker value. This allows the attacker to redirect control flow to an arbitrary
second-stage code gadget located within the existing enclave code base, where
secrets are again encoded through a cache-based covert channel. This variant
thus demonstrates the possibility of using LVI to hijack control flow, using tech-
niques similar to Return Oriented Programming (ROP).

The LVI-PPN-L1D variant instead exploits a type of page fault unique for
SGX, by the attacker remapping the PTE for a page B to point to the Phys-
ical Page Number (PPN) of another page A. This is done before entering the
enclave function. Then, inside the enclave, page A is dereferenced, bringing the
physical memory containing A into the L1 data cache. However, when page B
is accessed, the Enclave Page Cache Map checks of SGX detect the virtual-to-
physical remapping and a page fault is raised. However, the poisoned physical
address is still sent to the L1D cache before the fault is architecturally raised,
and due to A already being in the L1D cache, this leads to a cache hit. A can
thus be injected into transient execution, allowing the attacker again can use a
cache-based covert channel to leak enclave data.

3.2 Measuring LVI Impact

The purpose of these tests is to compare the values of these performance counters
when an LVI attack is ongoing, to their values for other benign processes. In
order to achieve this, a number of different scenarios were constructed in order
to showcase both attack applications and a variety of benign processes with
varying loads on the system, like web browsers, games, benchmark programs,
etc. The selected scenarios are seen in Table 2. We performed the same tests with
an additional 20 scenarios (based on different uses of the Atom text editor, web
browsing and different games on the Steam platform) [11]. These are excluded
from this paper for conciseness since they show similar results.

The first three scenarios simply demonstrate the unchanged LVI attacks vari-
ants. To compare with situations where an attack doesn’t take place, scenarios
where the victim enclave is simply run without an attack were included (scenar-
ios 4–6). Since all three attack variants have designated victim code loops that it
attacks, there are also three different baseline scenarios without an attack, one
for each variant. Scenarios 7–10 can be seen as normal, benign computer usage
processes, while scenarios 11–13 demonstrate benchmark applications that put
a high load on the system.

Experiment Setup: Measuring the selected events can only for a maximum of 4
hardware counters in addition to the INSTRUCTIONS event at a time. Using

126 D. Lantz et al.

Table 2. Explanation of different scenarios for measuring performance counters.

Nr Scenario Description

1 LVI-US-SB Normal LVI-US-SB PoC attack scenario

2 LVI-PPN-L1D Normal LVI-PPN-L1D PoC attack scenario

3 LVI-US-SB-ROP Normal LVI-US-SB-ROP PoC attack scenario

4 NA (SB) No Attack (NA) scenario (LVI-US-SB)

5 NA (L1D) No Attack (NA) scenario (LVI-PPN-L1D)

6 NA (SB-ROP) No Attack (NA) scenario (LVI-US-SB-ROP)

7 Text editor User creating and writing to a file in the Atom text editor

8 Firefox - Youtube User watching a youtube video in the Firefox browser

9 Firefox - Twitter User scrolling down a twitter feed in the Firefox browser

10 Game User playing a game (Civilization 5) via the Steam platform

11 Stress -c 1 Loop performing CPU computation sqrt()

12 Stress -m 1 Loop performing malloc() and free() for 256MB arrays

13 Stress -i 1 Loop calling I/O function sync()

more counters than this limit results in either very low values or no values at
all for any running processes. Therefore, we selected groups of related counters
and measured in batches. Each run consists of running the corresponding sce-
narios while at the same time running the measurement tool for 150 iterations,
with one second between each iteration. In each iteration, the tool scanned for
running processes and sampled counter values (in counting mode) before reset-
ting the counters again. For each complete run, the first 120 samples for the
relevant processes in each scenario were gathered. From this data, averages for
every event could be analyzed and compared across the different scenarios. The
INSTRUCTIONS event was also used in order to provide normalized averages
of each event.

LVI Footprint Results: Figure 1 shows the results of the experiments split over
three plots. In each plot the number of events per 1000 instructions are shown.
Note the logarithmic Y-axis in the plots which is used since otherwise the small
values are hard to see at all. The top plot shows the normal use-case scenarios, the
middle one the stress tests, and the bottom the LVI proof of concept scenarios,
with and without an external attacker.

One can see that the number of page faults for the two LVI-US-SB attack
variants is quite large compared to other processes. While the number of page
faults for stress m is very high, further examination with the perf command line
tool showed that all of these consisted of minor page faults. The LVI attacks on
the other hand generate a lot of visible page faults in the cases of LVI-US-SB
and LVI-US-SB-ROP, but almost none of these are minor faults. In fact, it could
be seen that the amount of minor page faults for an LVI-US-SB attack scenario
is the same as when the LVI application is run without an attack taking place.
A high total of page faults paired with low amounts of minor and major faults

Towards Self-monitoring Enclaves 127

0.01

0.1

1

10

100

1000

CA
CH

E_
RE
F

CA
CH

E_
M
IS
S

BR
_I
NS
TR

BR
_M
IS
S

PA
GE

_F
AU
LT
S

L1
D_
RA

L1
D_
RM

DT
LB
_R
A

DT
LB
_R
M

IT
LB
_R
A

IT
LB
_R
M

E
ve

nt
s
pe

r
10

00
in
st
ru
ct
io
ns Text editor

Firefox - youtube
Firefox - twitter

Game

0.01

0.1

1

10

100

1000

CA
CH

E_
RE
F

CA
CH

E_
M
IS
S

BR
_I
NS
TR

BR
_M
IS
S

PA
GE

_F
AU
LT
S

L1
D_
RA

L1
D_
RM

DT
LB
_R
A

DT
LB
_R
M

IT
LB
_R
A

IT
LB
_R
M

E
ve

nt
s
pe

r
10

00
in
st
ru
ct
io
ns stress_c

stress_m
stress_i

0.01

0.1

1

10

100

1000

CA
CH

E_
RE
F

CA
CH

E_
M
IS
S

BR
_I
NS
TR

BR
_M
IS
S

PA
GE

_F
AU
LT
S

L1
D_
RA

L1
D_
RM

DT
LB
_R
A

DT
LB
_R
M

IT
LB
_R
A

IT
LB
_R
M

E
ve

nt
s
pe

r
10

00
in
st
ru
ct
io
ns LVI-US-SB

LVI-PPN-L1D
LVI-US-SB-ROP

NA(SB)
NA(L1D)

NA(SB-ROP)

Fig. 1. Number of events per 1000 instructions for each performance counter and sce-
nario.

128 D. Lantz et al.

therefore seems like it can be a good indicator of an LVI attack, at least for the
two LVI-US variants.

Compared to No Attack (NA) scenarios, the averages for cache references and
misses are much higher for LVI attacks. This makes sense due to the cache side-
channel used by all the LVI attack variants, which causes higher amounts of cache
misses but also cache references. One can also see that the cache miss rate, taken
as the ratio between average cache misses and average cache references, is much
higher for LVI attack variants than for LVI example applications without an
attack. However, it can also be seen that this ratio is significantly higher for other
scenarios, like the Firefox, Game and stress m scenarios. A detection method
based on only a high cache miss rate would therefore be almost guaranteed to
lead to false positives for several of the benign scenarios. While they would have
to be paired with other attack indicators in order to avoid false positives, the
large difference between attack and no attack scenarios still indicate that cache
references and cache misses could be good indicators of an attack.

Based on our results, neither branch instructions, branch mispredictions, L1D
cache events, or dTLB events seem to be good indicators for an ongoing attack
since they are not more affected by the attacks compared to benign applications.
It is reasonable that branch instructions and mispredictions don’t make good
indicators of an ongoing attack. While LVI is similar to Spectre in some ways,
it does not use branch mispredictions to hijack control flow.

In the work by Gruss et al. [9], iTLB events were used to normalize other
events. However, it can immediately be noted in regards to the number of iTLB
read accesses and iTLB read misses, the average number of misses is often larger
than the average number of accesses. For the LVI scenarios, both with and
without actual attacks, this difference is quite significant. This is in contrast to
the results in [9], and might be because iTLB misses events are mapped to a
different, actual hardware event for this system.

Event Fluctuations: For some of the scenarios, the values of counters exhibited
large fluctuations, meaning that the maximum values for those counters were
much larger than the averages. Figure 2 illustrates this by comparing the total
number of instructions over 50 samples for LVI-US-SB and two other benign
scenarios.

When the total number of instructions varies, variations are also naturally
found for the other events as well. The scenarios with the largest fluctuations
were the text editor, web browsing, and game scenarios. While these fluctuations
can be expected, they are important to keep in mind when looking at the aver-
ages for those scenarios. In comparison, the LVI attack scenarios shows no large
fluctuations for either counter, since it simply continuously runs an attack loop
for several iterations, and doesn’t change behaviour significantly across sample
iterations. The same is true for the stress benchmark scenarios.

Towards Self-monitoring Enclaves 129

Fig. 2. Fluctuations in total number of instructions.

4 Detecting LVI Attacks

This section describes the design and evaluation of a prototype mechanism to
detect LVI attacks.

4.1 Chosen Attack Indicators

Given the results in Sect. 3, the performance events that were deemed to show
the most promise for detection, were total number of instructions, page faults
(total as well as minor and major), LLC cache misses, and LLC cache references.
These events (except instructions) showed a large difference between attack and
no-attack LVI scenarios, and were quite significant in attack scenarios compared
to other, benign scenarios. Page faults, LLC cache misses and references can also
be directly tied to the behaviour of an LVI attack, which is not true for many of
the other events. For the page faults, a distinction was made between valid and
invalid page faults since the invalid page faults seemed to be the best indicator

130 D. Lantz et al.

of an attack. Since a counter event for specifically invalid page faults doesn’t
exist, a high amount of total page faults but a low amount of both minor and
major faults was used to indicate a high amount of invalid faults.

4.2 Footprint-Based Detection

US Variant: Pseudocode for DET LVI US is shown in Fig. 3, with constants for
all thresholds. The intuition for this detector can be summarised as follows. If
there are many page faults that cannot be attributed as normal faults (major
or minor), then it is likely an attack (partial detection). Moreover, if there is
a high cpu usage (many instructions per second), and at the same time a high
cache usage and miss rate, then this is a strange process that is neither a normal
process that uses moderate amounts of cpu or a cpu-intensive process that should
have a confined memory locality. Combined with the first indication we decide
that this is a full detection.

Fig. 3. Pseudocode for DET LVI US, detector for the LVI-US-SB attack variants.

The average number of page faults for the LVI-US-SB attack is more than
10,000 per sample while the benign process with the highest number of total page
faults (apart from the outlier scenario stress m) is a web scenario with 2322 page
faults per sample [11]. For the purpose of the experiments with our prototype
detector we chose values that were spaced reasonably between the attack and
non-attack variants. For a proper detection mechanism, we believe that more
platforms (i.e., other CPUs) and scenarios (more use-cases) would need to be
analyzed and potentially be based on a learning-based approach. Such analysis
is out of scope for this work as our goal is to showcase that the detection is at
all viable in this context. All the chosen values for the thresholds used with the
DET LVI US detector are shown in Table 3.

PPN Variant: The second detector, DET LVI PPN, is similar to the first one
except that it cannot detect based on a high total of page faults, since the results
showed that the invalid page faults caused by LVI-PPN-L1D weren’t reported to
the performance counters (leading to a low number of total page faults). Instead,

Towards Self-monitoring Enclaves 131

Table 3. Chosen values for the thresholds used with the DET LVI US detector.

Threshold Value Threshold Value

TPF (>) 6000 CR 1 3000000

MINF 1 10 CM 1 1000000

MAJF 1 1 CM RATE 1 0.3

INSTR 1 100000000

another attack indicator was added in an attempt to minimize the possibility
of false positives. From the results we observe that the values of counters for
many benign applications varies a lot between samples, while the LVI processes
showed very little variation between samples, since they all run a continuous
attack loop without major variations between iterations. A measurement on this
variation could be obtained by dividing the total number of instructions for the
current iteration with the same value for the last iteration. In order to fully detect
an attack with DET LVI PPN, this value was assumed to be within a certain
interval. While this indicator can increase the time to detect an attack, it can
also lessen the risk of false positives. Aagin we differentiate between processes
that some of the chosen indicators (partial detection) from processes that match
all indications (full detection) (Fig. 4).

Fig. 4. Pseudocode for DET LVI PPN, detector for the LVI-PPN-L1D attack.

The detection thresholds were chosen in a similar way as for the US-variant,
but with some adjustments. Since DET LVI PPN couldn’t rely on invalid page
faults as an attack indicator, the risk of false positives was deemed to be larger
for this detector. The thresholds for number of instructions, cache references
and cache misses were therefore increased. Furthermore, the number of minor
page faults was assumed to be zero instead of close to or equal to zero. Finally,
the value for the difference in instructions between iterations was assumed to be
within 0.9–1.1. When observing the LVI attacks, this value was found to often

132 D. Lantz et al.

be less than a hundredth away from 1. The specific values used as thresholds for
the DET LVI PPN detector are shown in Table 4.

Table 4. Chosen values for the thresholds used with the DET LVI PPN detector.

Threshold Value Threshold Value

TPF (<) 6000 CM 2 2000000

MINF 2 1 CM RATE 2 0.3

MAJF 2 1 IDIFF LOW 0.9

INSTR 2 150000000 IDIFF HIGH 1.1

CR 2 6000000

4.3 Detection Performance

To evaluate the effectiveness of the prototype detectors for LVI, the same scenar-
ios as described above were used to offer both attack and non-attack scenarios.
In addition to these, an idle scenario (only detection tool running) and a bench-
marking scenario using Geekbench52 were added. The scenarios were run for
120 s while the detection tool measured performance counters for all running
processes (with the standard sampling interval of 1 s) and noted whenever a
potential attack was detected. It was also noted whether a potential attack pro-
cess matched all the attack indicators (Full detection) or some of them (Partial
detection).

Table 5 shows the results of detection for the different scenarios, detectors
(partial and full) and how a combined detector that uses both variants (full
detection) combined would perform. Each attack scenario was fully detected by
the suitable detector, and no other scenarios lead to a benign process being
fully detected as an attack. The LVI-US-SB attacks were both detected after
either 2 or 3 sample iterations of the detector. This could vary depending on
the number of minor page faults caused during the setup phase of the attack
(creation of enclave, etc.), which could remain above the threshold for multiple
sample iterations. Afterwards, the attacks were however consistently and reliably
detected.

The LVI-PPN-L1D attack was also detected fully and consistently with the
DET LVI PPN detector, but it should be noted that Partial detection took 2
sample iterations while Full detection took 3 iterations, since the transition from
setup phase to main attack loop in the attack application also means a bigger
difference in number of instructions. This shows that the attack has to run for
a longer time in order to match the final indicator. But as can be seen for the
Geekbench scenario, which was reported as a potential attack (Partial) twice,
not having the final indicator would have lead to benign processes being fully
reported as attacks.

2 https://www.geekbench.com/.

https://www.geekbench.com/

Towards Self-monitoring Enclaves 133

Table 5. Detection results during different scenarios, each running for at least 120 s
and a sampling interval of 1 s.

DET US DET PPN Combined

Part. Full Part. Full

Attack scenarios

LVI-US-SB Y Y N N Y

LVI-PPN-L1D N N Y Y Y

LVI-US-SB-ROP Y Y N N Y

Benign scenarios

NA (SB) N N N N N

NA (L1D) N N N N N

NA (SB-ROP) N N N N N

Text editor N N N N N

Firefox - Youtube N N N N N

Firefox - Twitter N N N N N

Game N N N N N

Stress c N N N N N

Stress m N N N N N

Stress i N N N N N

Idle N N N N N

Geekbench5 N N Y N N

5 Towards Self-monitoring Enclaves

Having analyzed the LVI attacks in terms of their affect on a number of HPCs
and demonstrated how they can be detected using relatively simple thresholds
we now proceed to discuss what would be required to make this useful in for
a self-monitoring enclave. Next, we discuss why this cannot be done in current
Intel SGX systems.

Self-monitoring Enclaves: A self-monitoring enclave which could reliably detect
that it is being subject to a side-channel attack launched from the untrusted
environment would provide some real added security compared to the current
situation. Side-channel attacks tend to require a relatively long time period to
succeed since the bandwidth of such channels is often quite limited. Thus, being
able to detect the attack and then potentially stop operations would likely also
prevent the attack from succeeding. Moreover, based on the results in this paper,
we can with relative certainty state that the currently available HPCs can be
effective in detecting SCAs that target enclaves (at least in some cases). So, does
that mean that we could implement this functionality within the enclave so that
it becomes self-monitoring? Unfortunately, the answer to this question is no.

134 D. Lantz et al.

For any measuring mechanism to be useful and not counterproductive as a
security monitoring primitive the following requirements must be met:

1. The interface to invoke measurement operations must be accessible from
within the enclave.

2. The confidentiality, integrity and availability of the measurements must be
upheld even if the untrusted environment is compromised.

3. Measurements performed from within the enclave must be able to record
events taking place either inside or outside the enclave.

4. Measurements performed from the untrusted environment must not be
affected by any events within the enclave.

Requirement 1 is obvious for a self-monitoring enclave since it follows from
the very idea of an enclave performing the monitoring activity. Requirement 2
is composed of three properties. Confidentiality of measurements (and the fact
that a measurement is being performed) is important to uphold since other-
wise this could risk becoming a new side-channel that can be used to exfiltrate
information from the enclave. Integrity and availability of measurements are also
self-evident as otherwise the attacker can hinder the protection. Requirement 3
is the minimum level of measurement that is needed to detect anything useful. In
this work, we relied on events taking place outside the enclave but could also see
that the ability to monitor events within the enclave would be very useful (e.g.,
the EPCM page faults). Finally, requirement 4 is similar to the confidentiality
requirement of the measurements since it is needed to prevent the creation of
new side-channel attacks. Unfortunately, only requirement 4 is upheld by Intel
SGX.

HPCs Cannot be Accessed by Enclaves: Accessing HPCs from within an SGX
enclave using an interface such as PAPI, seems to be impractical if not impos-
sible, even for enclaves running in debug-mode (thus violating requirements 1
and 3). Firstly, using third party libraries within Intel SGX (and other TEEs)
is non-trivial because of the additional security requirements that comes with
enclave execution. In a paper by Wang et al. [30], this matter is discussed and
explored in more detail. Secondly, reading HPCs requires making use of an
underlying instruction, RDPMC (hardware instruction for reading HPCs), that
is classified by Intel as illegal within enclaves, along with many other hardware
instructions.According to Intel the RDPMC instruction can result in a VMEXIT
(transferring control to the VMM) when executed within an enclave, and since
the VMM cannot be allowed to update the enclave, Intel classifies the instruction
as illegal. RDPMC is also by default restricted to privilege level 0. In order to
use the instruction from within the enclave, a certain flag in register CR4 would
have to be manually set in order to allow performance monitoring counters for
all privilege levels [10]. However, due to RDPMC being illegal within enclaves
according to Intel, this was not investigated further.

HPCs are not Protected: Another fundamental limitation of the method used
in this work that prevents it from being practical today as a basis for self-
monitoring enclaves is that the detection tool exists in untrusted code. It is

Towards Self-monitoring Enclaves 135

therefore not protected against an adversary that has compromised the entire
OS, which is the exact type of threat that SGX is supposed to protect against
(and that an LVI attack assumes). A privileged attacker could also mess with
the values or configurations of hardware performance counters, making their
results unreliable. Software performance counters are particularly unreliable in
this case since they originate from the OS and not from hardware. This breaks
requirement 2.

Enclaves Don’t Impact HPCs: Moreover, hardware performance counters are
disabled for SGX enclaves (except in debug mode), so the method used here relied
on using the performance pattern of the attacker (host application) instead.
Having access to performance counter information for an enclave itself would
perhaps allow detection methods to easier identify attacks towards it, since they
could compare to normal execution performance and see if there is anomalous
behaviour indicating an attack. However, as it stands now, it is not realistic
to have hardware performance counter support for enclave processes, since it
is currently disabled for good reasons. If it was enabled in the same way as
for normal processes, it would give insight to the enclave process not only for a
potential detection process, but for attackers as well. Attackers could then use the
information from the HPC registers to easier mount attacks against the enclaves.
In some sense one can say that the current approach upholds requirement 4 at
the cost of making HPCs impractical to use for detecting SGX attacks.

6 Conclusions

A trusted enclave in an untrusted cloud environment can be likened to a small
fishing boat surrounded by sharks. Hopefully the boat is robust enough, but if
someone is starting to chew on the boat it would be good to know about it. Cur-
rently, such self-monitoring is not supported for Intel SGX enclaves making the
metaphorical fisherman both blind and deaf. In this work we try to showcase the
benefits of being able to make enclaves self-monitoring by characterizing three
LVI attacks against Intel SGX in terms of how they affect a set of performance
counters and based on this design and evaluate a prototype capable of detect-
ing LVI attacks. We also discuss the practical limitations of translating such a
prototype into a functioning self-monitoring enclave.

The attack footprint of the LVI attacks have both differences and similar-
ities. They all interrupt a victim by way of page faults or microcode assists,
which can be recorded with software or hardware performance counters. They
are all also dependent on some sort of side-channel (often cache) at the end
to transmit secret data, which also has a measurable impact on performance
counters related to that channel. With regards to using the performance coun-
ters as a detection mechanism we found that it is possible using a relatively
simple threshold-based detection, with acceptable speed and levels of overhead.
Moreover, this shows a concrete example of a side-channel attack targeting SGX
enclaves being detectable with the help of performance counters. We also describe

136 D. Lantz et al.

the four requirements needed for such a mechanism to be useful to make a self-
monitoring enclave a reality and find that three of them are violated by Intel
SGX.

In summary, there are numerous practical limitations of using performance
counters to detect SGX-specific attacks as a self-monitoring mechanism. There
are also some challenges with performance counters in general, most notably non-
determinism and overcounting. Yet, we hope that future designs for trusted envi-
ronments consider the need for monitoring not just as a debugging mechanism
but also for security reasons that it fulfills the necessary security requirements.

Acknowledgements. This work was supported by the national project RICS
(Resilient Information and Control Systems) financed by the Swedish Civil Contin-
gencies Agency (MSB).

References

1. Akram, A., Mushtaq, M., Bhatti, M. K., Lapotre, V., Gogniat, G.: Meet the Sher-
lock Holmes’ of side channel leakage: a survey of cache SCA detection techniques.
IEEE Access 8, 70836-70860 (2020)

2. Allaf, Z., Adda, M., Gegov, A.: A comparison study on flush+ reload and prime+
probe attacks on AES using machine learning approaches. Adv. Intell. Syst. Com-
put. 650, 09 (2017)

3. Brasser, F., Müller, U., Dmitrienko, A., Kostiainen, K., Capkun, S., Sadeghi, A.R.:
Software grand exposure: SGX cache attacks are practical. In: 11th USENIX Work-
shop on Offensive Technologies (WOOT 17), Vancouver, BC. USENIX Association
(2017)

4. Canella, C., et al.: Fallout: leaking data on meltdown-resistant CPUs. In: Proceed-
ings of the ACM SIGSAC Conference on Computer and Communications Security
(CCS). ACM (2019)

5. Chen, G., Chen, S., Xiao, Y., Zhang, Y., Lin, Z., Lai, T.H.: SgxPectre: stealing
intel secrets from SGX enclaves via speculative execution. In: 2019 IEEE European
Symposium on Security and Privacy (EuroS & P), pp. 142–157 (2019)

6. Chen, S., Zhang, X., Reiter, M.K., Zhang, Y.: Detecting privileged side-channel
attacks in shielded execution with déjà vu. In: Proceedings of the 2017 ACM on
Asia Conference on Computer and Communications Security, ASIA CCS 2017,
New York, NY, USA, pp. 7–18. Association for Computing Machinery (2017)

7. Costan, V., Devadas, S.: Intel SGX explained. IACR Cryptol. ePrint Arch. 2016,
86 (2016)

8. Götzfried, J., Eckert, M., Schinzel, S., Müller, T.: Cache attacks on Intel SGX. In:
Proceedings of the 10th European Workshop on Systems Security, EuroSec 2017,
New York, NY, USA. Association for Computing Machinery (2017)

9. Gruss, D., Maurice, C., Wagner, K., Mangard, S.: Flush+Flush: a fast and stealthy
cache attack. In: Caballero, J., Zurutuza, U., Rodŕıguez, R.J. (eds.) DIMVA 2016.
LNCS, vol. 9721, pp. 279–299. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-40667-1 14

10. Herath, N., Fogh, A.: These are not your grand Daddys CPU performance counters-
CPU hardware performance counters for security (2015)

11. Lantz, D.: Detection of side-channel attacks targeting Intel SGX. Master’s thesis,
Linköping University, Department of Computer and Information Science (2021)

https://doi.org/10.1007/978-3-319-40667-1_14
https://doi.org/10.1007/978-3-319-40667-1_14

Towards Self-monitoring Enclaves 137

12. Lee, D., Kohlbrenner, D., Shinde, S., Asanović, K., Song, D.: Keystone: an open
framework for architecting trusted execution environments. In: Proceedings of the
Fifteenth European Conference on Computer Systems, EuroSys 2020, New York,
NY, USA. Association for Computing Machinery (2020)

13. Moghimi, A., Wichelmann, J., Eisenbarth, T., Sunar, B.: MemJam: a false depen-
dency attack against constant-time crypto implementations. Int. J. Parallel Pro-
gram. 47(4), 538–570 (2018). https://doi.org/10.1007/s10766-018-0611-9

14. Moghimi, A., Irazoqui, G., Eisenbarth, T.: CacheZoom: how SGX amplifies the
power of cache attacks. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS,
vol. 10529, pp. 69–90. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
66787-4 4

15. Mushtaq, M., Akram, A., Bhatti, M.K., Chaudhry, M., Lapotre, V., Gogniat, G.:
Nights-watch: a cache-based side-channel intrusion detector using hardware perfor-
mance counters. In: Proceedings of the 7th International Workshop on Hardware
and Architectural Support for Security and Privacy, HASP 2018. ACM (2018)

16. Mushtaq, M., et al.: Whisper: a tool for run-time detection of side-channel attacks.
IEEE Access 8, 83871–83900 (2020)

17. Nilsson, A., Bideh, P.N., Brorsson, J.: A survey of published attacks on Intel SGX
(2020). https://arxiv.org/abs/2006.13598

18. O’Keeffe, D., et al.: Spectre attack against SGX enclave (2018). https://github.
com/lsds/spectre-attack-sgx

19. Payer, M.: HexPADS: a platform to detect “Stealth” attacks. In: Caballero, J.,
Bodden, E., Athanasopoulos, E. (eds.) ESSoS 2016. LNCS, vol. 9639, pp. 138–154.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30806-7 9

20. Ragab, H., Milburn, A., Razavi, K., Bos, H., Giuffrida, C.: CrossTalk: speculative
data leaks across cores are real. In 2021 IEEE Symposium on Security and Privacy
(SP). Intel Bounty Reward (2021)

21. Schwarz, M., et al.: ZombieLoad: cross-privilege-boundary data sampling. In: CCS
(2019)

22. Schwarz, M., Weiser, S., Gruss, D., Maurice, C., Mangard, S.: Malware guard
extension: using SGX to conceal cache attacks. In: Polychronakis, M., Meier, M.
(eds.) DIMVA 2017. LNCS, vol. 10327, pp. 3–24. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-60876-1 1

23. Seaborn, M., Dullien, T.: Exploiting the DRAM rowhammer bug to gain kernel
privileges. Black Hat 15, 71 (2015)

24. Shih, M. W., Lee, S., Kim, T., Peinado, M.: T-SGX: eradicating controlled-channel
attacks against enclave programs. In: The Network and Distributed System Secu-
rity (NDSS) Symposium, vol. 01 (2017)

25. Van Bulck, J., et al.: Foreshadow: extracting the keys to the Intel SGX kingdom
with transient out-of-order execution. In: Proceedings of the 27th USENIX Security
Symposium, USENIX Association, vol. 8 (2018)

26. Van Bulck, J., et al.: LVI: hijacking transient execution through microarchitectural
load value injection. In: 41th IEEE Symposium on Security and Privacy (S&P
2020). IEEE (2020)

27. Van Bulck, J., Piessens, F., Strackx, R.: SGX-Step: a practical attack framework
for precise enclave execution control. In: Proceedings of the 2nd Workshop on
System Software for Trusted Execution, SysTEX 2017. ACM (2017)

28. Van Schaik, S., et al.: RIDL: Rogue in-flight data load. In: S&P (2019)
29. van Schaik, S., Minkin, M., Kwong, A., Genkin, D., Yarom, Y.: CacheOut: leaking

data on Intel CPUs via cache evictions. In: 2021 IEEE Symposium on Security and
Privacy (SP), pp. 339–354 (2021)

https://doi.org/10.1007/s10766-018-0611-9
https://doi.org/10.1007/978-3-319-66787-4_4
https://doi.org/10.1007/978-3-319-66787-4_4
https://arxiv.org/abs/2006.13598
https://github.com/lsds/spectre-attack-sgx
https://github.com/lsds/spectre-attack-sgx
https://doi.org/10.1007/978-3-319-30806-7_9
https://doi.org/10.1007/978-3-319-60876-1_1
https://doi.org/10.1007/978-3-319-60876-1_1

138 D. Lantz et al.

30. Wang, P., et al.: Building and maintaining a third-party library supply chain
for productive and secure SGX enclave development. In: Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering: Software
Engineering in Practice, ICSE-SEIP 2020, New York, NY, USA, pp. 100–109. Asso-
ciation for Computing Machinery (2020)

31. Xu, Y., Cui, W., Peinado, M.: Controlled-channel attacks: deterministic side chan-
nels for untrusted operating systems. In: 2015 IEEE Symposium on Security and
Privacy, pp. 640–656 (2015)

32. Zhang, Y., Zhao, M., Li, T., Han, H.: Survey of attacks and defenses against
SGX. In: 2020 IEEE 5th Information Technology and Mechatronics Engineering
Conference (ITOEC), pp. 1492–1496 (2020)

DeCrypto: Finding Cryptocurrency
Miners on ISP Networks

Richard Plný1 , Karel Hynek1,2(B) , and Tomáš Čejka2

1 Faculty of Information Technology, Czech Technical University in Prague,
Prague, Czech Republic

{plnyrich,hynekkar}@fit.cvut.cz
2 CESNET z.s.p.o., Prague, Czech Republic

{hynekkar,cejkat}@cesnet.cz

Abstract. With the rising popularity of cryptocurrencies and the
increasing value of the whole industry, people are incentivized to join and
earn revenues by cryptomining—using computational resources for cryp-
tocurrency transaction verification. Nevertheless, there is an increasing
number of abusive cryptomining cases, and it is reported that “coin miner
malware” grew by more than 4000% in 2018. In this work, we analyzed
the cryptominer network communication and proposed the DeCrypto
system that can detect and report mining on high-speed 100Gbps
backbone Internet lines with millions of users. The detector uses the
concept of heterogeneous weak-indication detectors (Machine-Learning-
based, domain-based, and payload-based) that work together and create
a robust and accurate detector with an extremely low false-positive rate.
The detector was implemented and evaluated on a real nationwide high-
speed network and proved efficient in a real-world deployment.

Keywords: Cryptocurrency · Miner · Detection · Flow · Security ·
Network · Monitoring

1 Introduction

The first widely recognized cryptocurrency—Bitcoin—was proposed by Satoshi
Nakamoto [26] in 2008. At that time, the world was in a global financial cri-
sis, when central banks rapidly increased the monetary bases (printing money),
which decreased the trust in money. Bitcoin targeted the decreased trust with
decentralized and anonymous peer-to-peer networks based on cryptographic and
consensus mechanisms, which allowed trustworthy financial transactions with-
out the need for a central authority [44]. Since the Bitcoin introduction, we have
seen immense development in the cryptocurrency market. Nowadays, there are
more than 3600 publicly exchangeable cryptocurrencies. It is estimated that the
crypto market is worth more the 1.13 trillion USD (August 2022 [9]).

The cryptocurrency transactions are validated without any central authority
using a consensus mechanism. Bitcoin and similar cryptocurrencies use a “proof-
of-work” consensus protocol [26,44]. In this scheme, the community (i.e., miners)
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. P. Reiser and M. Kyas (Eds.): NordSec 2022, LNCS 13700, pp. 139–158, 2022.
https://doi.org/10.1007/978-3-031-22295-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22295-5_8&domain=pdf
http://orcid.org/0000-0002-0544-8424
http://orcid.org/0000-0002-8281-618X
http://orcid.org/0000-0001-7794-9511
https://doi.org/10.1007/978-3-031-22295-5_8

140 R. Plný et al.

spends its computational resources to solve a difficult mathematical problem to
verify the transactions (mining). The first miner who successfully verifies the
transactions is rewarded with newly created coins, transaction fees, or both.
The chance of receiving the reward depends on the miner’s computational per-
formance since only the first one is rewarded. Therefore, miners are incentivized
to maximize their computational power using specialized mining hardware or
create large mining GPU arrays [2].

Mining can consume a large portion of electricity, which is the main cost of
mining and reduces the net earnings of an individual cryptominer. Therefore,
there are examples from the past where miners tried to avoid electricity bills by
placing the mining hardware in offices or public buildings without appropriate
permission. The property owners (such as universities) are then unaware of the
mining activity. However, they have to cover the increased costs of the electric-
ity [1]. Similarly, rogue researchers already misused the computational power of
research supercomputers to mine cryptocurrency [13,23].

Miners also use illegal practices to abuse compromised computational
resources leaving their owners unaware [8,15,43]. Cryptomalware or abusive
cryptomining refers to mining carried out by criminals using resources stolen
from their victims [28]. It is a way to use more devices and increase the overall
hash rate and the chances to gain reward. Especially Monero became very pop-
ular when it comes to cryptomalware since it is known to be hard to trace [12].
Nearly 5% of all Monero coins in circulation in 2018 (valued at almost $40 million
at that time) were mined by malware [20]. Specialists from McAffee [22] reported
that “coin miner malware” grew by more than 4000% in the year 2018, and nearly
58% of all attacks on IoT devices intended to mine cryptocurrency [33]. Abusive
mining attacks were listed as the top three threats by [18]. According to the
FBI’s Internet Crime Report [11], a total of $1.6 billion was lost due to incidents
involving the use of cryptocurrency. The cryptomining communication can thus
be a severe indicator of compromise. In multiple use-cases, it is beneficial to
detect and notify the device owner, property owner, or administrators about
such suspicious activity.

Nowadays, most miners use pooled mining [36] since it provides a much
higher chance for a reward compared to solo mining. Therefore, this work
targets the network-traffic-based detection of cryptocurrency miners joined in
mining pools while avoiding IP-address-based detection due to its unreliabil-
ity [16,29]. We analyzed the traffic shape of mining communication using a large
dataset obtained from a nationwide Internet Service Provider (ISP) network
and proposed a novel DeCrypto (Detection of Cryptominers) system that can
be deployed to high-speed (100 Gbps) backbone lines and potentially protect
millions of devices and users. The proposed DeCrypto system uses described
weak-indication architecture, aggregating multiple heterogeneous classifiers into
a single, robust, and accurate detector (accuracy reaching up to 96.5% and pre-
cision up to 99.9971%) with negligible false-positive detections. We implemented
DeCrypto and evaluated it on the nationwide ISP network used by half a million
users.

DeCrypto: Finding Cryptocurrency Miners on ISP Networks 141

The contributions of our work can be summarized as follows:

– We developed a Rules Generator script, used to daily update a block list
of cryptomining pools, that can be used for reliable block-list-based mining
detection. The software is publicly available in [31] and was used for the
creation of large cryptomining communication datasets.

– We created two annotated datasets containing real-world traffic. Together
they contain more than 1 million extended bidirectional flow records of cryp-
tominers communication and around 1.8 million records of other types of
traffic used as a counter class. We are unaware of any mining dataset of
similar size, and thus we made it publicly available in [32].

– We proposed a novel mining detection system called DeCrypto that uses
weak mining indicators. The detector can accurately recognize mining net-
work traffic using extended flows in real-time. The high accuracy combined
with extended flows makes the detector deployable on high-speed ISP back-
bone lines, where it can protect millions of devices.

– We implemented the proposed detector and evaluated it on nationwide ISP
infrastructure used by half a million users. The implementation was made
publicly available as an open-source project on GitHub [30].

This paper is divided as follows: Sect. 2 summarizes the related work of
cryptominers detection. Section 3 provides information about novel datasets.
Section 4 describes DeCrypto system in detail. Section 5 contains results of our
experiments. Section 6 describes the deployment of DeCrypto system and expe-
riences with ML-based detection on high-speed ISP lines. Section 7 concludes
this paper.

2 Related Work

Since mining is considered suspicious activity, it is essential to let network oper-
ators know when such activity takes place on their network. One of the possi-
ble approaches is to recognize mining using IP-based block-lists of well-known
mining pools such as [45]. However, the block-list-based detection can be con-
sidered unreliable [16,29], since the block-lists can never be complete. Moreover,
they can also suffer for false-positive detection since each domain or IP address
can host multiple services. Therefore, multiple studies have proposed mining
detection using various approaches. Jingqiang et al. [21] focused on detecting
browser-based “silent miners”. Their method uses a sandbox to load a website
and then analyzes its resources to detect JavaScript (JS) miners. Kharraz et
al. [19] also focused on JS miners. In their study, they utilized JS compilation
time, JS engine execution time, garbage collection, and other statistics to train
the Machine Learning (ML) detector, which achieved more than 95% of the
true-positive rate. Nevertheless, these approaches do not use computer-network
telemetry to detect miners; instead, they require access to in-browser statistics.
Additionally, they consider only browser-based mining software, leaving other
types of abusive mining undetected.

142 R. Plný et al.

Swedan et al. [40] proposed a system called MDPS—Mining Detection and
Prevention System, that detects miners in network traffic. The proposed MDPS
uses a man-in-the-middle proxy for deep packet inspection. The decrypted pay-
load is then inspected by URL block lists, detectors of mining code, and by Virus-
Total1 to find malicious external JS libraries. Nevertheless, the system’s applica-
bility is limited to networks, where man-in-the-middle inspection is acceptable.
Compared to the MDPS, the proposed DeCrypto system does not require traf-
fic decryption, which maintains users’ privacy while allowing the deployment to
service provider networks.

Žádńık et al. [42] examined the possibility of cryptominers communication
detection using flow-based telemetry. Their work combined passive detection and
a secondary verification of false positives by active probing. The passive detection
utilized an ML-based model with a manually created feature vector. During
the data analysis, they discovered that cryptominers traffic has the following
characteristics:

1. Mutual communication between a cryptominer and a mining pool server often
lasts for several hours

2. Packets are generally small, often in the range from 40 to 120 bytes
3. Most flows are observed with TCP ACK and PUSH flags set
4. The destination port is either a well-known port of a different service or not

well-known but definitely lower than the source port
5. TCP connections are generally long-lasting, often exceeding the maximal flow

duration
6. Communication is not disrupted, i.e., most flows do not contain the RST flag

Moreover, Žádńık et al. [42] provide a brief overview of all cryptomining proto-
cols, including Stratum protocol [27]. According to Recabarren et al. [35], the
Stratum is a de-facto standard in pooled mining. Stratum protocol uses TCP
as the underlining transport protocol and transfers messages in JSON format.
Since Stratum is a request-response type protocol with long gaps between the
messages, it forms a distinctive pattern that the network detectors could recog-
nize. However, Žádńık et al. [42] used traditional flow data that contains only
basic information such as the number of transferred bytes and packets, and the
passive detection suffered from a large false-positive rate. To mitigate the false
positives, they used active probing to confirm that the detected destination IP
address is a mining pool server. Even though the Žádńık et al. [42] proposal
achieves good accuracy, the active probing brings performance limitations, and
thus it is unsuitable for high-speed networks.

Another flow-based detector was proposed by Muñoz et al. [25], who designed
an ML-based detector. They generated a cryptominers traffic dataset and ana-
lyzed its characteristics. It was determined that cryptominers flows are long
duration and have a small number of transferred packets. Moreover, a server
typically sends 20 times more data than a client. Based on their analysis, they
proposed the following feature vector:

1 https://virustotal.com.

https://virustotal.com

DeCrypto: Finding Cryptocurrency Miners on ISP Networks 143

Table 1. Properties of traditional basic flow and its extensions provided by ipfixprobe
flow exporter that are part of the created dataset

Basic flow part Extended flow part

IP addresses TLS SNI

Ports Per Packet Information

Number of transferred bytes and
packets from each direction

The first 100 bytes of
payload from each direction

Transport Protocol

1. Inbound and outbound packets/second
2. Inbound and outbound bits/second
3. Inbound and outbound bits/packet
4. Bits inbound/bits outbound ratio
5. Packets inbound/packets outbound ratio

The best model was Decision Tree which achieved an average accuracy of
99.9%. However, they did not consider real-world deployment and worked with
a small portion of lab-created cryptominers traffic that represented only 0.03%
(less than 700 flows) of their whole dataset. Therefore, the accuracy can signifi-
cantly differ when deployed to real-world network monitoring infrastructure.

Compared to the related works, the DeCrypto system uses extended flow data
as input network telemetry from high-speed networks. Moreover, the DeCrypto
system does not rely on a single ML-based detector. Instead, it combines mul-
tiple information carried in the flow to achieve higher accuracy while lowering
the false-positive rate to a minimum. Compared to all mentioned related work,
the DeCrypto system was deployed to the actual nationwide ISP infrastructure
and thus was thoroughly evaluated during multiple months of operation. For
instance, Žádńık et al. [42] used only 15 min of real-network traffic for evalua-
tion.

3 Datasets

Since none of the previous works provided a sufficient dataset that could be used
for proper design and verification, we decided to create our own. The main differ-
ence compared to previous works is the size of our dataset and also that we used
extended bidirectional flow data created by ipfixprobe2—a high-performance
flow exporter that can monitor 100 Gbps traffic. Contrary to traditional IP flow
record, which contains only basic information about the communication, such as
the number of transferred bytes, and packets, ipfixprobe flow exporter also adds
information about the first 30 individual packets (packet size, timestamp, TCP
flags, and direction) that carried payload. Ipfixprobe also extends each flow for

2 https://github.com/CESNET/ipfixprobe.

https://github.com/CESNET/ipfixprobe

144 R. Plný et al.

Fig. 1. Dataset creation scheme

the first 100B of payload from each direction and Server Name Indication (SNI)
from TLS Client Hello packets. The flow properties exported by ipfixprobe are
shown in the Table 1, and the individual field names and their description are
provided with the dataset that we made publicly available in [32].

The dataset creation methodology is depicted in the Fig. 1 and was divided
into two steps: 1. Generation of Traffic Capture Rules and 2. Communication
Capture.

3.1 Generation of Traffic Capture Rules

We have used an initial mining pool list from [45] together with our own cre-
ated list, available in [31]—we chose top 10 mining pools by size [4,24] for Bit-
coin (BTC), Ethereum (ETH) and Monero (XMR). The initial lists of mining
pools remained unchanged for whole dataset generation process. Nevertheless,
we checked once per day the validity of domain names using our own active
probing software called Rules Generator [31]. The Rules Generator takes a list
of mining-pool domain names and ports as input and performs DNS resolution
to obtain IPv4 and IPv6 addresses. When multiple addresses are received in
the DNS response, all of them included in the list are further processed. These
addresses are then tested using active probing using mining protocol via TLS or
plain TCP connection. Since Stratum protocol is the de-facto standard of pooled
mining [35], we only used Stratum to verify that a pair (IP address and port) is
an actual mining pool. Verified pairs are then passed to the output to be used
as a filtration rule in the Communication Capture phase.

3.2 Communication Capture

To ensure the real-world nature of the dataset, we reached CESNET, a large
internet provider with more than half a million individual users. Their customers
are mainly big institutions such as universities. The CESNET network monitor-
ing infrastructure follows the traditional IPFIX monitoring approach described

DeCrypto: Finding Cryptocurrency Miners on ISP Networks 145

Table 2. Overview of the created datasets

Dataset Captured during # Miners # Others # Total

Design Dec 14-Feb 10 2022 693,237 1,331,666 2,024,903

Validation Feb 28-Mar 31 2022 392,577 682,999 1,075,576

by Hofstede et al. [14] with five minutes of active timeout3; thus, the captur-
ing was performed on the flow collector by filtering communication of the pair
of IP addresses and ports obtained from the Rules Generator script (described
in Sect. 3.1). Since we aimed for long-term data capture, the Rules Genera-
tor verified the pools each day and provided an updated list of IP addresses
to minimize possible mislabeling due to the natural continuous obsolescence of
block-list-based annotations.

We also captured general network traffic transferred via CESNET as a
counter class for miner communication. We captured all traffic from the select-
ed/24 IPv4 address sub-space to limit the amount of data and enable long-term
capture. Since we are dealing with the ISP traffic, each IP address may corre-
spond to multiple physical/virtual devices due to Network Address Translation
and can thus represent multiple devices and users. Additionally, we performed
filtration of the general network traffic and removed communication to confirmed
mining pools to ensure correct labels. The filtration was done using the daily-
updated list of mining pools’ IP addresses and ports.

Traffic capture (of both miner and the regular class) was performed between
December 2021 and February 2022. Together we collected 2,024,903 extended
bidirectional flows from which we created the Design dataset. Moreover, we per-
formed one more traffic capture in March 2022 to create a dataset for evaluation.
The Evaluation dataset contains 1,075,576 flows in total. See the Table 2.

The Ethical Aspects of Real Traffic Capture and Active Probing

Users’ privacy is an essential priority, so our research was done with extreme
carefulness. The indisputable advantages of real traffic generated by hundreds
of thousands of people come with the cost of potential privacy abuse of real
users. Therefore, we used only automatic data processing with immediate data
anonymization. With this, we declare that we did not analyze or manually pro-
cess deanonymized data and did not perform any procedures that could lead us
to the user’s identity.

Active probing which we performed is considered an ethical research prac-
tice [17]. Nevertheless, the probing procedure was extremely slow, with five-
second intervals between individual connections to avoid overloading the target’s
resources and minimizing the impact. Moreover, the number of checked host was
very small and the scan procedure checked hundreds of hosts per day.

3 Longer TCP connections are split into multiple flows.

146 R. Plný et al.

4 Introduction to DeCrypto System

The main motivation for using the concept of heterogeneous weak indicators
for detection is the minimization of false-positive detection. The weak-indicator
approach combines multiple heterogeneous classifiers. Each of them works on
different operational principles with its own limitations and inaccuracies, thus
providing weak indication of mining. By joining these weak-indication detectors
together, we form a robust and more accurate detector with a small number of
false positives, which are our main concern.

Since we aim for deployment to large ISP infrastructure, the detector needs
to process a large volume of data. The CESNET network monitoring infrastruc-
ture generates by average 120,000 flow records per second from eight backbone
peering lines. With a large number of predictions per second, even 99% accu-
racy is not enough. For instance, the approach proposed by Muñoz et al. [25]
reached an accuracy of 99.998% on the lab-created dataset, which would rep-
resent (when we assume the same accuracy in real-world deployment) 2.4 false
classifications per second in CESNET. Unfortunately, Muñoz et al. do not pro-
vide a false-positive rate; however, since cryptominers represent only a negligible
amount of transferred traffic (as can be seen in their imbalanced dataset, where
cryptominers flows represent less than 0.03%), we could expect that most false
classifications would be false positives. Similarly, Žádńık et al. [42] proposal
would suffer 3120 (2.6%) false-positive detections per second without the active
probing. Nevertheless, active probing is not a solution for reducing false positives
on large infrastructures due to performance and ethical questions of mass prob-
ing (thousands requests per second)—scanning network nodes could be marked
as malicious actors, which could negatively affect network operation.

The minimization of false-positive rate in network detectors is one of the
biggest challenges for network security research that aims to use Machine Learn-
ing technology. A large number of false-positive detections cause alarm desensi-
tization and alert fatigue—even professional security analysts lose their trust in
the validity of the alarm resulting in ignored and unresolved alerts [5].

In the following sections, we describe the DeCrypto system architecture,
which does not require the active probing mechanism and enables high-speed
deployment with negligible false-positive detections.

4.1 Weak Indicators of Cryptomining

Previous works [25,42] summarized that the cryptomining packets are usually
smaller than packets in other traffic and inter-packet intervals are generally very
long (more than 10 s). We confirmed these observations by analysis of the Design
dataset (see the Table 2). Moreover, we found that the mining traffic in the
Design dataset is mostly unencrypted, carrying Stratum protocol in plain text.
Almost 80% of cryptominers traffic was unencrypted, even though the traf-
fic encryption can be considered a de-facto standard nowadays. The distinctive
cryptominer traffic properties that we found in our Design dataset can be sum-
marized as:

DeCrypto: Finding Cryptocurrency Miners on ISP Networks 147

Fig. 2. High-level scheme of the DeCrypto detection procedure

1. Traffic is long-lasting and typically lasts for several hours.
2. Low amount of data are transferred (packers are usually small, ∼270 bytes).
3. Longer intervals (more than 10 s) between packets.
4. Almost all packets have a TCP PUSH flag set.
5. Significant amount of traffic is still unencrypted.
6. The encrypted traffic is almost always transferred on different than well-

known ports.
7. Domain names in TLS SNI extension contain distinctive words such as pool,

mine and mining.

Based on the analysis of the Design dataset, we propose three weak indica-
tors to exploit these traffic characteristics: 1. Stratum Detector, which detects
Stratum protocol in unencrypted communication, 2. a Machine-Learning model
that leverages statistical properties of mining communication, and 3. TLS SNI
Classifier that inspects domain names in SNI. The results of all three detectors
are then processed by the Meta Classifier that produces the final result, as indi-
cated in the Fig. 2. The detailed description of each component and experiments
performed on the dataset’s design part are described in the following sections.

4.2 Stratum Detector

Since ipfixprobe flow exporter supports extraction of the first bytes of payload
even from the high-speed networks, we decided to use these bytes as one of
the weak indicators. Specifically, Stratum Detector is designed to look for the
Stratum mining protocol. The ipfixprobe provides us with the first 100 bytes
from each direction of communication. Therefore, a total of 200 bytes is used for
the detection, which are inspected by two regular expression patterns that were
created based on the Stratum protocol specification [27]:

1. ("(("(?P<I>id)|(?P<R>result)|(?P<E>error)":\s?).*){3,}
2. ("(jsonrpc|method|worker)":\s?")|(params":|mining\.(set|not))

The first pattern can recognize Stratum protocol messages called request and
notification, and the second pattern recognizes Stratum responses from the min-
ing pools. Moreover, Stratum Detector checks that all three groups (id, result

148 R. Plný et al.

Table 3. TLS SNI values of cryptominer flows

TLS SNI value Count

asia2.ethermine.org 1228

fee.nanominer.org 1020

rvn-us-west1.nanopool.org 565

rvn-jp1.nanopool.org 561

xmr-us-west1.nanopool.org 402

xmr-jp1.nanopool.org 316

eu1.ethermine.org 39

other 230

total 4361

Table 4. Overview of selected features for ML models. The feature importance was
calculated using Gini index.

Feature name Description Importance

BYTES Number of bytes from src 0.0473

BYTES REV Number of bytes from dst 0.0510

PACKETS Number of packets from src 0.0163

PACKETS REV Number of packets from dst 0.0238

SENT PERCENTAGE Ratio of packets from src 0.1532

RECV PERCENTAGE Ratio of packets from dst 0.1829

AVG PKT INTERVAL Average seconds between packets 0.1550

OVERALL DURATION Overall flow duration 0.0716

AVG PKT LEN Average length of a packet 0.0695

PSH RATIO Ratio of packets with PUSH flag set 0.0709

MIN PKT LEN Minimal length of a packet 0.1009

DATA SYMMETRY Ratio of received and sent bytes 0.0576

and error) have been matched by the first pattern. Such kind of detector can
be considered very reliable since it performs a payload-based analysis. The pro-
posed expressions could find all the flows in our Design dataset with an unen-
crypted payload containing Stratum. Nevertheless, the Stratum Detector only
works with unencrypted communication. The encrypted miner traffic detection
is then performed in other weak-indication classifiers.

4.3 TLS SNI Classifier

TLS SNI Classifier is designed to detect suspicious keywords in domain names
in the Server Name Indication (SNI) extension of the TLS protocol. However,
SNI is only sent when the TLS is used, meaning it can be present only in flows
representing encrypted communication.

DeCrypto: Finding Cryptocurrency Miners on ISP Networks 149

Mining pools can operate more mining servers and provide services for multi-
ple cryptocurrencies. There is a total of 4361 cryptominer flows with non-empty
SNI in the Design dataset; see the Table 3 with mining pool SNI values. It can be
seen that these mining-pool domain names contain the cryptocurrency’s name
and the particular server’s identification. Domain names of mining pools also
contain keywords suggesting the mining process. As we can see in the Table 3,
many domain names contain pool or mine. Therefore, the TLS SNI classifier
performs pattern matching on domain names looking for distinctive keywords.

The first group of keywords contains a list of cryptocurrency abbreviations.
We planned to include a wide range of cryptocurrency names in this list, but
to achieve the best possible performance, we only included rvn, xmr and eth,
because only these were mined in the Design dataset. The rvn is contained in
1239 SNI values, xmr in 835, and eth in 1267 of them. However, not all pools use
this scheme; therefore, only around ∼75% of the cryptominer flows are covered by
this group of keywords. In addition, the TLS SNI Classifier creates four enhanced
patterns based on the observed domain names for matching from each list entry:
-$NAME, $NAME-, .$NAME and $NAME. ($NAME is the short cryptocurrency name).

The second group contains the keywords indicating the mining process. Based
on the SNI values in the Design dataset, we chose mine and pool. The mine is
contained in 2287 and the pool in 2074 of them. In addition, none of the flows
contained both keywords in its SNI. Therefore, our two selected keywords match
all the cryptominer flows, which have the SNI value non-empty.

The TLS SNI Classifier’s output indicates if both, one, or none groups were
matched. The group is matched if at least one of its keywords is present in the
TLS SNI. The Meta Classifier then processes the TLS SNI Classifier’s output to
perform the final classification.

4.4 ML Classifier

The third weak-indication detector uses ML to distinguish cryptomining traf-
fic based on its distinctive traffic shape properties. To maintain explainabil-
ity and enable in-depth inspection and debugging of models in the future, we
decided to use a basic shallow-learning approach (such as Decision Trees). Con-
trary to sophisticated Deep-Learning techniques, shallow learning algorithms
provide much better explainability and interpretability even for non-experts in
ML domain [5].

During the experiments performed on the Design dataset, we identified 12 dis-
tinctive traffic features to recognize cryptominers that are written in the Table 4
together with their importance computed using the mean decrease of Gini impu-
rity index [38]. These features were used in all of our experiments with ML. We
experimented with four shallow-learning models, such as AdaBoost (with under-
lying Decision Tree) [37], Decision Tree [34], Random Forest [3], and Logistic
Regression [41]. For each model, we performed hyperparameter tuning and fea-
ture selection using 5-fold cross-validation. The Random Forest classifier with all
identified features (showed in the Table 4) achieved the best results; thus, we used
it in the DeCrypto system. The best hyperparameters are listed in the Table 5.

150 R. Plný et al.

Table 5. Hyperparameters of the best Random forest model

Hyperparameter Value

Split criterion gini

Max depth 10

Max features sqrt

Min samples leaf 2

Min samples split 5

Estimators 100

Nevertheless, the Random Forest model does not perform final classification.
Instead, it outputs the probability of flow affiliation with cryptomining traffic,
which is then used in the Meta Classifier to derive the final detection.

1 def doDetection(flow):

2 if stratumDetector.isStratum(flow) == True:

3 return True

4 # when Stratum was not detected, use ML or

5 # Dempster−Shafer Theory (DST)

6 features = getFeatures(flow)

7 ml proba = mlClassifier.predictProba(features)

8

9 # when we do not have SNI, use only ML score

10 if not flow.hasTlsSni():

11 return ml proba > ML THRESHOLD

12

13 # when we have SNI, combine SNI and ML score using DST

14 tls sni score = tlsSniClassifier.scoreSni(flow)

15 dst pignistic = DST.combine(ml proba , tls sni score)

16

17 return dst pignistic > DST THRESHOLD

Listing 1.1. The Meta Classification Decision

4.5 Meta Classifier

The ML Classifier, the Stratum Detector, and the TLS SNI Classifier form a
group of weak-indication classifiers. As mentioned above, the Meta Classifier
processes and combines outputs of these support classifiers and performs final
detection (see the Fig. 2).

The pseudocode of classifier combination is written in the Listing 1.1. Since
detecting a Stratum protocol in the payload is a trustworthy mining indicator,
Stratum detection is performed first. If Stratum protocol was detected, a flow
is marked as a miner immediately, and other support classifiers are not invoked
to save computational resources. If Stratum is not detected, features for the ML

DeCrypto: Finding Cryptocurrency Miners on ISP Networks 151

Fig. 3. Accuracy and Precision plots when finding the optimal decision thresholds

model are calculated, and the ML Classifier is used to get the probability of affil-
iation to mining communication. If the TLS SNI is not present, the probability
is compared to the ML threshold to get the final prediction. See the Sect. 4.6
for more details on the ML threshold.

If a TLS SNI value is present, it is processed by TLS SNI Classifier. The
TLS SNI classifier output is then combined with the output of the ML Classifier
via the Dempster-Shafer Theory (DST) [10,39]. The DST is a mathematical
framework allowing a combination of multiple data sources, each with different
certainty. The beliefs of each data source are expressed as probabilities, which
are combined via Dempster’s Rule of Combination, resulting in the final belief
value (pignistic probability of affiliation to mining class). The pseudocode of
combination TLS and ML detection using DST is shown in the Listing 1.2. The
final belief is then compared with the DST threshold to make the final prediction.

1 def DSTCombinator(tlsSniScore , mlProba):

2 mlBpa = MassFunction({
3 ’Miner’: mlProba,

4 ’Other’: 1 − mlProba

5 })
6 tlsSniBpa = MassFunction({
7 ’Miner’: tlsSniScore ,

8 ’Other’: 1 − tlsSniScore

9 })
10 combinedBpa = mlBpa.combine(tlsSniBpa)

11 combinedPignistic = combinedBpa.pignistic()

12

13 return combinedPignistic[’Miner’]

Listing 1.2. Combination via the DST

152 R. Plný et al.

4.6 Selection of the Optimal Detection Parameters

In the Meta Classifier, there are three possible paths by which a flow can be
marked as a miner—1. Stratum is detected (Stratum path), 2. DST pignis-
tic function exceeds the DST threshold (DST path), or 3. the ML probability
exceeds the ML threshold (ML path). To find the optimal value of both DST and
ML thresholds, we evaluated threshold values from 0 to 1 with a step of 0.01 in
a loop and chose the value producing the minimum false positives. The accuracy
and precision measures based on the used threshold can be seen in the Fig. 3,
and the best threshold values are:

DST THRESHOLD = 0.03

ML THRESHOLD = 0.99

The DST threshold value of 0.03 is the lowest value that does not gener-
ate any false-positive detection. The DST path achieved accuracy of 99.9995%
and precision of 100.00%, see the Fig. 3a. The ML threshold value of 0.99 was
selected, since it generated only 18 false positives with accuracy of 93.0107%
and precision of 99.9663%. The overall accuracy of the ML path is lower than
in related works [25,42] due to the minimization of the false-positive rate and
could be much higher with a less strict value of the threshold. Nevertheless, we
argue that in our deployment scenario is the lowest possible false-positive rate
crucial for real-world deployment [5].

The whole DeCrypto system achieved an accuracy of 96.4972% and precision
of 99.9971% during the design phase on the Design dataset with the chosen
thresholds. The Table 6 depicts the resulting confusion matrix.

Table 6. Confusion matrix of the DeCrypto system on the Design dataset

Actual

Miner Other traffic

Predicted Miner 624,585 18

30.8451% 0.0008%

Other traffic 70,911 1,329,389

3.5019% 65.6519%

5 Evaluation

We evaluated the whole DeCrypto system using the Validation dataset described
in the Sect. 3, which we did not use in the design phase. The Validation dataset
enables independent testing, which is necessary to avoid detector overfitting.

When tested on the Evaluation dataset with previously defined thresholds
(see Sect. 4.6), the detector achieved the overall accuracy of 93.7261% and the
precision of 99.9945%. The detailed performance results of the DeCrypto system

DeCrypto: Finding Cryptocurrency Miners on ISP Networks 153

Table 7. Confusion matrix of the DeCrypto system on the Evaluation dataset

Actual

Miner Other traffic

Predicted Miner 325,114 18

30.2269% 0.0016%

Other traffic 67,463 682,981

6.2722% 63.4990%

are shown in the confusion matrix in the Table 7. It can be seen that the results
are similar to the design phase, and the detector still maintains a low false-
positive rate. The DeCrypto system created only 18 false positives while making
1,075,576 predictions. The 18 false positives were produced only by the ML path
of the system (see the Table 8 in the Appendix) and come from 10 different IP
addresses; however, due to the anonymization process in the dataset creation, we
could not use IP addresses to identify the type of traffic that causes false-positive
detection.

The false-negative rate has increased twofold compared to the design phase,
and the detector did not identify around 17% mining flows. The increase in the
false-negative rate is expected due to the strict settings of thresholds and mini-
mization of false positives. However, since the cryptomining process is typically
long-lasting, one active cryptominer usually generates more than one flow—
long TCP connections are split into five-minute flows in the IPFIX monitoring
infrastructures of CESNET. Therefore, even if some flows representing one active
cryptominer will be evaluated as false negatives, we can assume that the detector
will correctly recognize the miner when processing subsequent flows representing
the same mining TCP connection.

We tested our hypothesis and aggregated all flows based on flow key (IP
addresses, ports, and protocol) in the Evaluation dataset and found 113,324
unique mining TCP connections (unique cryptominers). The DeCrypto system
successfully marked as a miner at least one flow for each mining TCP connection.
Therefore, all unique miners in the Evaluation dataset were detected even though
the false-negative rate (calculated on individual flows) is not negligible.

6 Deployment

The DeCrypto detection system was implemented in Python using NEMEA [7],
a high-performance network traffic analysis framework. The efficiency of our
Python implementation was evaluated on the computer with AMD Ryzen 7
3700X 8-Core Processor, 3.59 GHz, and 16 GB RAM. The DeCrypto system was
able to process up to 41,500 flows per second in a single thread. Such performance
is sufficient for high-speed network monitoring since, in deployment, we put a
filter removing flows carrying less than eight packets that would represent at
least four Stratum messages. On the CESNET network, the filtration reduces

154 R. Plný et al.

amount of data from 120,000 to around 13,000 flows per second. The large drop
in the number of flows is expected since the Internet traffic follows heavy-tail
distribution [6] and thus, most flows are very short.

We successfully deployed the DeCrypto implementation to the CESNET net-
work monitoring infrastructure in April 2022, which performs stream-wise flow
processing in real-time. In the early phases of deployment, we recorded a ∼2500
false positives per day due to the ML detector path. The ML falsely identified
chatting services (such as Facebook Messenger, Telegram, or Signal) as cryp-
tominers. Therefore, additional alert processing was implemented to suppress
the false positives. The security personnel received alerts from ML-only detection
when at least three consecutive flows belonging to the same TCP connections
(the flows describing long TCP connections are split after 5 min) were marked
as a miner. Since the implementation of the restriction of ML-only detection,
we record less than ten false-positive alerts per day, while the DeCrypto creates
around 10,000 cryptomining alerts per day.

The deployment of ML technology to high-speed network monitoring infras-
tructure was successful due to deployment of other non-ML weak indicators.
A large number of predictions that has to be made by ISP-level detector still
precludes the deployment of algorithms that are solely based on ML technology
because even 99% precision is not enough when making thousands of predic-
tions per second. Even though the DeCrypto system provides possible solutions
for ML deployment to large monitoring infrastructure, it concerns only a single
use-case of cryptomining detection. Other use-cases or a general framework for
creating detectors using weak indicators poses a challenge for our future work.

7 Conclusion

With the rising value of the cryptocurrency sector, people are more incentives to
join the community and earn revenues by cryptomining. Nevertheless, security
companies and governmental agencies have reported an increasing number of
abusive mining [11,22,33]. Cryptomining can thus be considered an indicator of
compromise, and detecting miners is viable in multiple use-cases.

In this paper, we proposed a novel and efficient detection method, DeCrypto,
which can reliably detect mining entities on ISP networks. The proposed
DeCrypto system uses the concept of heterogeneous weak-indication detectors
to minimize false positives, which is crucial for actual deployment on large moni-
toring infrastructures. By analysis of real-world cryptominer traffic, we proposed
and implemented three heterogeneous weak-indication detectors: 1. the Stratum
Detector, 2. the TLS SNI Classifier, and 3. the ML Classifier. All three indicators
of cryptomining traffic are merged together and provide reliable detection.

The proposed DeCrypto system was designed and evaluated using novel
datasets obtained from real-world ISP backbone lines operated by the CES-
NET, which we made publicly available [32]. According to our evaluation, the
concept of heterogeneous weak indicators proved to be efficient in false positives
reduction while recognizing all mining entities in the dataset. The DeCrypto

DeCrypto: Finding Cryptocurrency Miners on ISP Networks 155

system implementation was published as an open-source project [30] and it is
already deployed on real ISP monitoring infrastructure and currently protects
half a million users against abusive mining.

Acknowledgments. This research was funded by the Ministry of Interior of the Czech
Republic, grant No. VJ02010024: Flow-Based Encrypted Traffic Analysis and also by
the Grant Agency of the CTU in Prague, grant No. SGS20/210/OHK3/3T/18 funded
by the MEYS of the Czech Republic.

A Appendix

A.1 Detailed Results of Weak-Indication Classifiers

Table 8 and Table 9 show detailed results of the DeCrypto system together with
true positives (TP), false positives (FP), false negatives (FN) and true negatives
(TN).

Table 8. Results of all paths of the DeCrypto system on the Design dataset with the
DST threshold set to 0.03 and ML threshold set to 0.99

Path TP FP FN TN Accuracy Precision

Stratum Path 567,138 0 0 0 100.0000% 100.0000%

DST Path 4105 0 256 442,246 99.9427% 100.0000%

ML Path 53,342 18 70,655 887,143 93.0107% 99.9663%

Table 9. Results of all paths of the DeCrypto system on the Evaluation dataset with
the DST threshold set to 0.03 and ML threshold set to 0.99

Path TP FP FN TN Accuracy Precision

Stratum Path 313,670 0 0 0 100.0000% 100.0000%

DST Path 2882 2 280 262,438 99.8938% 99.9307%

ML Path 8562 16 67,183 420,543 86.4601% 99.8135%

References

1. Baciu, P.: Czech prime minister accuses pirate party of mining bit-
coin (2018). https://bitcoinist.com/prime-minister-accuses-czech-pirate-party-of-
mining-bitcoin-so-what/

2. Bedford Taylor, M.: The evolution of bitcoin hardware. Computer 50(9), 58–66
(2017). https://doi.org/10.1109/MC.2017.3571056

3. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
4. BTC.com: Professional data service for global blockchain enthusiasts. https://

explorer.btc.com/

https://bitcoinist.com/prime-minister-accuses-czech-pirate-party-of-mining-bitcoin-so-what/
https://bitcoinist.com/prime-minister-accuses-czech-pirate-party-of-mining-bitcoin-so-what/
https://doi.org/10.1109/MC.2017.3571056
https://explorer.btc.com/
https://explorer.btc.com/

156 R. Plný et al.

5. Bushra Alahmadi, L.A., Martinovic, I.: 99% false positives: a qualitative study of
SOC analysts’ perspectives on security alarms. In: 31st USENIX Security Sym-
posium (USENIX Security 2022). USENIX Association, Boston (2022). https://
www.usenix.org/conference/usenixsecurity22/presentation/alahmadi

6. Cappé, O., Moulines, E., Pesquet, J.C., Petropulu, A.P., Yang, X.: Long-range
dependence and heavy-tail modeling for teletraffic data. IEEE Signal Process. Mag.
19(3), 14–27 (2002)

7. Cejka, T., et al.: NEMEA: a framework for network traffic analysis. In: 12th Inter-
national Conference on Network and Service Management (CNSM) (2016)

8. Cimpanu, C.: Malvertising campaign mines cryptocurrency right in your browser
(2017). https://www.malwarebytes.com/malvertising

9. CoinMarketCap: Coinmarketcap. https://coinmarketcap.com. Accessed 8 Aug
2022

10. Dempster, A.P.: Upper and lower probabilities induced by a multivalued map-
ping. Ann. Math. Stat. 38(2), 325–339 (1967). https://doi.org/10.1214/aoms/
1177698950

11. FBI: FBI: internet crime report 2021. https://www.ic3.gov/Media/PDF/
AnnualReport/2021 IC3Report.pdf

12. Hayward, A.: What are privacy coins? Monero, zcash, and dash explained
(2021). https://decrypt.co/resources/what-are-privacy-coins-monero-zcash-and-
dash-explained

13. Hill, K.: Government researcher misused supercomputers to mine a surprisingly
small amount of bitcoin (2014). https://www.forbes.com/sites/kashmirhill/2014/
06/06/government-researcher-misused-supercomputers-to-mine-bitcoin/

14. Hofstede, R., et al.: Flow monitoring explained: from packet capture to data anal-
ysis with NetFlow and IPFIX. IEEE Commun. Surv. Tutor. 16(4), 2037–2064
(2014). https://doi.org/10.1109/COMST.2014.2321898

15. Hruska, J.: Browser-based mining malware found on pirate bay, other sites (2017).
https://www.extremetech.com/internet/255971-browser-based-cryptocurrency-
malware-appears-online-pirate-bay

16. Hynek, K., Čejka, T., Žádńık, M., Kubátová, H.: Evaluating bad hosts using adap-
tive blacklist filter. In: 2020 9th Mediterranean Conference on Embedded Comput-
ing (MECO), pp. 1–5 (2020). https://doi.org/10.1109/MECO49872.2020.9134244

17. Jamieson, S.: The ethics and legality of port scanning. Technical report, SANS
Institute (2001). https://www.sans.org/white-papers/71/

18. JustFirewalls: 2022 cyber security trends: Top 5 threats to watch out for this
year. https://www.justfirewalls.com/2022-cyber-security-trends-top-5-threats-to-
watch-out-for-this-year

19. Kharraz, A., et al.: Outguard: detecting in-browser covert cryptocurrency mining
in the wild. In: The World Wide Web Conference, WWW 2019, pp. 840–852.
Association for Computing Machinery, New York (2019). https://doi.org/10.1145/
3308558.3313665

20. Khatri, Y.: Crypto mining malware has netted nearly 5% of all monero, says
research (2019). https://www.coindesk.com/markets/2019/01/10/crypto-mining-
malware-has-netted-nearly-5-of-all-monero-says-research/

21. Liu, J., Zhao, Z., Cui, X., Wang, Z., Liu, Q.: A novel approach for detecting
browser-based silent miner. In: 2018 IEEE Third International Conference on Data
Science in Cyberspace (DSC), pp. 490–497 (2018). https://doi.org/10.1109/DSC.
2018.00079

22. McAffee: Mcafee labs threats report (2018). https://www.mcafee.com/enterprise/
en-us/assets/reports/rp-quarterly-threats-dec-2018.pdf

https://www.usenix.org/conference/usenixsecurity22/presentation/alahmadi
https://www.usenix.org/conference/usenixsecurity22/presentation/alahmadi
https://www.malwarebytes.com/malvertising
https://coinmarketcap.com
https://doi.org/10.1214/aoms/1177698950
https://doi.org/10.1214/aoms/1177698950
https://www.ic3.gov/Media/PDF/AnnualReport/2021_IC3Report.pdf
https://www.ic3.gov/Media/PDF/AnnualReport/2021_IC3Report.pdf
https://decrypt.co/resources/what-are-privacy-coins-monero-zcash-and-dash-explained
https://decrypt.co/resources/what-are-privacy-coins-monero-zcash-and-dash-explained
https://www.forbes.com/sites/kashmirhill/2014/06/06/government-researcher-misused-supercomputers-to-mine-bitcoin/
https://www.forbes.com/sites/kashmirhill/2014/06/06/government-researcher-misused-supercomputers-to-mine-bitcoin/
https://doi.org/10.1109/COMST.2014.2321898
https://www.extremetech.com/internet/255971-browser-based-cryptocurrency-malware-appears-online-pirate-bay
https://www.extremetech.com/internet/255971-browser-based-cryptocurrency-malware-appears-online-pirate-bay
https://doi.org/10.1109/MECO49872.2020.9134244
https://www.sans.org/white-papers/71/
https://www.justfirewalls.com/2022-cyber-security-trends-top-5-threats-to-watch-out-for-this-year
https://www.justfirewalls.com/2022-cyber-security-trends-top-5-threats-to-watch-out-for-this-year
https://doi.org/10.1145/3308558.3313665
https://doi.org/10.1145/3308558.3313665
https://www.coindesk.com/markets/2019/01/10/crypto-mining-malware-has-netted-nearly-5-of-all-monero-says-research/
https://www.coindesk.com/markets/2019/01/10/crypto-mining-malware-has-netted-nearly-5-of-all-monero-says-research/
https://doi.org/10.1109/DSC.2018.00079
https://doi.org/10.1109/DSC.2018.00079
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-dec-2018.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-dec-2018.pdf

DeCrypto: Finding Cryptocurrency Miners on ISP Networks 157

23. McMillan, R.: Harvard researcher was caught mining the bitcoin derivative, doge-
coin (2014). https://www.wired.com/2014/02/harvard-dogecoin/

24. MiningPoolStats: Miningpoolstats. https://miningpoolstats.stream/monero
25. Muñoz, J.Z.I., Suárez-Varela, J., Barlet-Ros, P.: Detecting cryptocurrency miners

with NetFlow/IPFIX network measurements. In: 2019 IEEE International Sym-
posium on Measurements Networking (M N), pp. 1–6 (2019). https://doi.org/10.
1109/IWMN.2019.8804995

26. Nakamoto, S.: A peer-to-peer electronic cash system. Bitcoin.org 4, 2 (2008).
https://bitcoin.org/bitcoin.pdf

27. Palatinus, M.: Stratum mining protocol. Slushpool.com (2019). https://slushpool.
com/help/manual/stratum-protocol

28. Pastrana, S., Suarez-Tangil, G.: A first look at the crypto-mining malware ecosys-
tem: a decade of unrestricted wealth. In: Proceedings of the Internet Measurement
Conference, IMC 2019, pp. 73–86. Association for Computing Machinery, New
York (2019). https://doi.org/10.1145/3355369.3355576

29. Pektaş, A., Acarman, T.: Deep learning to detect botnet via network flow sum-
maries. Neural Comput. Appl. 31(11), 8021–8033 (2018). https://doi.org/10.1007/
s00521-018-3595-x

30. Plný, R., Hynek, K., Čejka, T.: Decrypto. https://github.com/plnyrich/DeCrypto
31. Plný, R., Hynek, K., Čejka, T.: Rules generator. https://github.com/plnyrich/

RulesGenerator
32. Plný, R., Hynek, K., Čejka, T.: Datasets of cryptomining communication (2022).

https://doi.org/10.5281/zenodo.7189292
33. PurpleSec LLC: Cyber Security Statistics: The Ultimate List of Stats, Data, &

Trends for 2022 (2022). https://purplesec.us/resources/cyber-security-statistics/#
Start

34. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publish-
ers Inc., San Francisco (1993)

35. Recabarren, R., Carbunar, B.: Hardening stratum, the bitcoin pool mining proto-
col. Proc. Priv. Enhanc. Technol. 3, 54–71 (2017)

36. Ren, L., Ward, P.A.: Pooled mining is driving blockchains toward centralized sys-
tems. In: 2019 38th International Symposium on Reliable Distributed Systems
Workshops (SRDSW), pp. 43–48 (2019). https://doi.org/10.1109/SRDSW49218.
2019.00015

37. Schapire, R.E.: Explaining AdaBoost. In: Schölkopf, B., Luo, Z., Vovk, V. (eds.)
Empirical Inference, pp. 37–52. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-41136-6 5

38. Scornet, E.: Trees, forests, and impurity-based variable importance. arXiv preprint
arXiv:2001.04295 (2020)

39. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press,
Princeton (2021). https://doi.org/10.1515/9780691214696

40. Swedan, A., Khuffash, A.N., Othman, O., Awad, A.: Detection and prevention of
malicious cryptocurrency mining on internet-connected devices. In: Proceedings of
the 2nd International Conference on Future Networks and Distributed Systems,
ICFNDS 2018. Association for Computing Machinery, New York (2018). https://
doi.org/10.1145/3231053.3231076

41. Tsangaratos, P., Ilia, I.: Comparison of a logistic regression and näıve bayes classi-
fier in landslide susceptibility assessments: the influence of models complexity and
training dataset size. CATENA 145, 164–179 (2016). https://doi.org/10.1016/j.
catena.2016.06.004

https://www.wired.com/2014/02/harvard-dogecoin/
https://miningpoolstats.stream/monero
https://doi.org/10.1109/IWMN.2019.8804995
https://doi.org/10.1109/IWMN.2019.8804995
https://bitcoin.org/bitcoin.pdf
https://slushpool.com/help/manual/stratum-protocol
https://slushpool.com/help/manual/stratum-protocol
https://doi.org/10.1145/3355369.3355576
https://doi.org/10.1007/s00521-018-3595-x
https://doi.org/10.1007/s00521-018-3595-x
https://github.com/plnyrich/DeCrypto
https://github.com/plnyrich/RulesGenerator
https://github.com/plnyrich/RulesGenerator
https://doi.org/10.5281/zenodo.7189292
https://purplesec.us/resources/cyber-security-statistics/#Start
https://purplesec.us/resources/cyber-security-statistics/#Start
https://doi.org/10.1109/SRDSW49218.2019.00015
https://doi.org/10.1109/SRDSW49218.2019.00015
https://doi.org/10.1007/978-3-642-41136-6_5
https://doi.org/10.1007/978-3-642-41136-6_5
http://arxiv.org/abs/2001.04295
https://doi.org/10.1515/9780691214696
https://doi.org/10.1145/3231053.3231076
https://doi.org/10.1145/3231053.3231076
https://doi.org/10.1016/j.catena.2016.06.004
https://doi.org/10.1016/j.catena.2016.06.004

158 R. Plný et al.

42. Veselý, V., Žádńık, M.: How to detect cryptocurrency miners? By traffic forensics!
Digit. Invest. 31, 100884 (2019). https://doi.org/10.1016/j.diin.2019.08.002

43. Vuijsje, E.: Cryptocurrency malvertising campaign hijacks users’ browsers.
https://www.geoedge.com/cryptocurrency-malvertising-campaign-hijacks-users-
browsers/

44. Watorek, M., Drożdż, S., Kwapinń, J., Minati, L., Oswiecimka, P., Stanuszek, M.:
Multiscale characteristics of the emerging global cryptocurrency market. Phys.
Rep. 901, 1–82 (2021). https://doi.org/10.1016/j.physrep.2020.10.005. Multiscale
characteristics of the emerging global cryptocurrency market

45. Zvik, E.W.: The crypto mining threat: the security risk posed by bitcoin and
what you can do about it (2018). https://www.catonetworks.com/blog/the-crypto-
mining-threat/

https://doi.org/10.1016/j.diin.2019.08.002
https://www.geoedge.com/cryptocurrency-malvertising-campaign-hijacks-users-browsers/
https://www.geoedge.com/cryptocurrency-malvertising-campaign-hijacks-users-browsers/
https://doi.org/10.1016/j.physrep.2020.10.005
https://www.catonetworks.com/blog/the-crypto-mining-threat/
https://www.catonetworks.com/blog/the-crypto-mining-threat/

Detection of Voice Conversion Spoofing
Attacks Using Voiced Speech

Arun Sankar Muttathu Sivasankara Pillai1(B), Phillip L. De Leon2,
and Utz Roedig1

1 School of Computer Science and Information Technology, Cork, Ireland
{asankar,u.roedig}@ucc.ie

2 Klipsch School of Electrical and Computer Engineering, New Mexico State
University, Las Cruces, NM, USA

pdeleon@nmsu.edu

Abstract. Speech consists of voiced and unvoiced segments that dif-
fer in their production process and exhibit different characteristics. In
this paper, we investigate the spectral differences between bonafide and
spoofed speech for voiced and unvoiced speech segments. We observe that
the largest spectral differences lie in the 0–4 kHz band of voiced speech.
Based on this observation, we propose a low-complexity, pre-processing
stage which subsamples voiced frames prior to spoofing detection. The
proposed pre-processing stage is applied to two systems, LFCC+GMM
and IA/IF+KNN that differ entirely on the features and classifier used
for spoofing detection. Our results show improvement with both systems
in detection of the ASVspoof 2019 A17 voice conversion attack, which
is recognized to have one of the highest spoofing capabilities. We also
show improvements in the A18 and A19 voice conversion attacks for the
IA/IF+KNN system. The resulting A17 EERs are lower than all reported
systems where the A17 spoofing attack is the worst attack except the
Capsule Network. Finally, we note that the proposed pre-processing stage
reduces the speech date by more than 4× due to subsampling and using
only voiced frames but at the same time maintaining similar pooled EER
as that for the baseline systems, which may be advantageous for resource
constrained spoofing detectors.

Keywords: Spoofing detection · Speech processing · Computer
security · Voice bio-metric

1 Introduction

Traditionally, usernames and passwords are used for authentication. However,
handling usernames and passwords securely has been proven to be difficult and
compromised passwords have lead to many security breaches. The burden of using
passwords can be eliminated by using biometric authentication. For example, fin-
ger prints, retina scans or voice prints can be used as input for authentication.

Automatic Speaker Verification (ASV) systems are popular as a low-cost and
flexible technology for biometric authentication. However, even these systems
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. P. Reiser and M. Kyas (Eds.): NordSec 2022, LNCS 13700, pp. 159–175, 2022.
https://doi.org/10.1007/978-3-031-22295-5_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22295-5_9&domain=pdf
https://doi.org/10.1007/978-3-031-22295-5_9

160 A. S. Muttathu Sivasankara Pillai et al.

are known to be vulnerable to spoofing which can be classified into attacks via
impersonation, replay, speech synthesis, twins, and voice conversion [1]. Among
these, replay, speech synthesis, and voice conversion remain threats due to the
availability of successful open-source tools for generating high-quality spoofed
speech which can be used in a targeted attack [2].

Countermeasures to detect spoofed speech and thus prevent an attack, are in
active development and the ASVspoof challenge, initiated in 2015, has assisted
with advancing the research through organized trials and evaluations [3]. Most
developed methods perform feature extraction in the frequency domain using
filter banks to obtain sub-band spectral features. The features are analysed using
sophisticated classifiers such as Gaussian Mixture Model (GMM) or Deep Neural
Networks (DNN), and the best performing systems use a number of classifiers
in combination, i.e. ensemble classifier. There have been significant advances in
spoofing detection to the point where top-performing systems evaluated using
the ASVspoof 2019 dataset report pooled min-tandem-Decision Cost Function
(t-DCF) below 0.1 and Equal Error Rate (EER) below 3.5% (see [4]). Recently
12 state-of-the-art detection systems have been reported in [5] and evaluated
using the ASVspoof 2019 dataset. It was found that the most successful spoofing
attacks are A08 (most successful for 2 systems), A17 (most successful for 9
systems), and A18 (most successful for 1 system). Attack A08 is speech synthesis
and attacks A17 and A18 are voice conversion. However, state-of-the-art systems’
performance against the worst ASVspoof 2019 attacks have an average EER of
12.94% [5]. Of the 9 systems reporting A17 as the worst attack, the average EER
is 14.2% with Capsule Network reporting 3.76% EER [5]. Thus for some specific
attacks, detection accuracy is still lacking.

The speech signal is composed of voiced and unvoiced segments that differ
by the production mechanism and characteristic features [6]. These segments are
separately used for many speech processing applications due to the difference in
the type and depth of information contained in these segments. For example, the
speaker-specific unique information can be found much in voiced segments due
to vocal cord vibration and so on [7]. In general, spoofing attacks are applied
to the entire speech signal without considering separately voiced and unvoiced
segments and hence the location and level of artefacts vary with these segments.

In this paper, we investigate the spectral differences between human
(bonafide) and spoofed speech for voiced and unvoiced speech segments. When
comparing spectra of bonafide and spoofed speech, we find the largest differences
lie in voiced segments in the 0–4 kHz band. With this observation, we propose
a low-complexity pre-processing stage which subsamples voiced frames prior to
spoofing detection. We evaluate this novel pre-processing stage using different
detection systems. The core contribution of this work is the insight that voiced
and unvoiced speech segments contribute very differently to the task of spoofing
detection.

Our specific contributions are as follows:

– We show that voiced speech segments are more useful for spoofing detec-
tion than unvoiced speech segments. We also describe the distribution of

Detection of Voice Conversion Spoofing Attacks Using Voiced Speech 161

information for spoofing detection over frequency bands in voiced and
unvoiced speech segments.

– We propose a low-complexity pre-processing stage which subsamples only
voiced frames prior to spoofing detection. This pre-processing stage reduces
the amount of necessary data by a factor of 4 while maintaining overall detec-
tion accuracy (similar pooled EER).

– We show that this pre-processing stage can be combined with different exist-
ing spoofing detection systems.

– We show an improvement in the detection accuracy for the challenging
ASVspoof 2019 A17 voice conversion attack using two different detection
systems together with the novel pre-processing stage. We also show improve-
ments for the A18 and A19 voice conversion attacks in some settings.

This paper is organized as follows. The details of the ASVspoof database
used for conducting experiments are given in Sect. 2. In Sect. 3, we provide a brief
review of speech production focusing on voiced speech and place of articulation as
motivation for the investigation of using voiced speech for spoofing detection. In
Sect. 4, we present our observations on the spectral differences between bonafide
and spoofed speech for voiced and unvoiced segments. In Sect. 5, we propose
a pre-processing stage which takes as input the speech signal and passes to
the countermeasure a signal containing only voiced segments and in Sect. 6 we
provide detection results for two different countermeasures with and without the
pre-processing stage. Section 7 summarizes the works done in spoofing detection
and how our work differs from others. In Sect. 8, we discuss the results paying
close attention to the A17 attack which is considered the most difficult attack
to detect. Finally, in Sect. 9, we conclude the paper.

2 ASVspoof Challenge Dataset and Evaluation Metric

The ASVspoof challenge series was initiated in 2015 with the motivation of
advancing spoofing detection and countermeasures. The first challenge was
focused on voice conversion and synthetic speech attacks while the second spoof
challenge organized in 2017 concentrated on replay attacks as they are much
easier to generate without any technical expertise. The third spoof challenge
took place in 2019 and considered speech synthesis, voice conversion, and replay
attacks. The fourth challenge organized recently in 2021 focused on discrimi-
nating between genuine and spoofed or deepfake speech using ASVspoof 2019
database.

The ASVspoof 2019 challenge database consists of a logical access (LA) par-
tition containing voice conversion and speech synthesis examples in addition to
the physical access (PA) partition which contains replay examples. Each par-
tition contains training, development and evaluation subsets. The training and
development subsets are used for conducting experiments related to the devel-
opment of the detection model while the evaluation set is utilized for measuring
detection performance of the developed model. The training and development
subsets of LA contain 6 spoofing attacks which are considered as known attacks

162 A. S. Muttathu Sivasankara Pillai et al.

and used for the construction of the detection model. The evaluation subset of
LA has 11 unknown attacks to determine the efficiency of the developed model
on attacks that are unknown to the system or in other words on attacks that are
not used for training the model. In addition, each subset also contains examples
of human-produced speech. All speech examples, including the source utterances
for creating the spoofed speech, are taken from the VCTK corpus [8]. The utter-
ances consist of 107 speakers (46 male and 61 female) that are partitioned into
three disjoint subsets. Details of the database are summarized in Table 1.

Table 1. Description of the logical access partition of the ASVspoof 2019 challenge
database.

Database
attributes

Training set Development set Evaluation set

Spoofing
attackalgorithms

A01-A06 A01-A06 A07-A19

Spoofing
methods

TTS (4) VC (2) TTS (4) VC (2) TTS (6) VC (2) Hybrid (3)

Known attacks 6 6 2 (A16 = A04, A19 = A06)

Unknown attacks 0 0 11

No. of genuine
samples

2580 2548 7355

No. of spoofed
samples

22800 (3800× 6) 22296 (3716× 6) 63882 (10647× 6)

No. of male
speakers

8 4 21

No. of female
speakers

12 6 27

The training and development data sets are built using the same set of spoof-
ing attacks (A01–A06). Spoofing attacks A01 to A04 are based on Text-to-Speech
(TTS) methods while attacks A05 and A06 use voice conversion (VC) methods.
The attacks A01-A03 are neural network based TTS systems and attack A04
does TTS using waveform concatenation method. The evaluation data set con-
sists of 13 spoofing attacks (A07-A19) out of which 2 attacks (A16 and A19) are
considered as known attacks and the remaining 11 spoofing attacks are unknown
attacks. Attacks A16 and A19 use the same spoofing techniques as attacks A04
and A06 respectively. The unknown attacks consist of six TTS based methods
(A07-A12), two VC methods (A17 and A18) and three hybrid models (A13-
A15). The hybrid models use a combination of VC and TTS for the generation
of spoofed speech.

The following metrics are used for quantifying the detection performance of
spoofing detector.

Detection of Voice Conversion Spoofing Attacks Using Voiced Speech 163

– Equal Error Rate (EER) - An ideal spoofing detector should flag spoofed
speech and pass genuine speech but in reality there is always some error
which is quantified using False Acceptance Rate (FAR) and False Rejection
Rate (FRR).
False Acceptance Rate: It is the ratio of spoofed speech samples wrongly
classified as genuine speech and can be written as

FAR =
FP

FP+TN
(1)

where False Positive (FP) is the number of spoofed speech samples misclas-
sified as genuine speech and True Negative (TN) denotes the number of cor-
rectly identified spoofed speech samples.
False Rejection Rate It is defined as the ratio of genuine samples misclassified
as spoofed speech. FRR can be expressed as

FRR =
FN

FN+TP
(2)

where True Positive (TP) is the correctly identified bonafide speech samples
and False Negative (FN) is the number of genuine speech samples misclassified
as spoofed speech.
It is desirable to minimize both FAR and FRR for improving the efficiency
of detection systems. But adjusting the detection threshold to reduce either
of the errors harm the other. The detection threshold plot has a point where
both the error rates are equal and that common value is called the EER which
is considered a metric in ASV spoof 2019 challenge.

– tandem-Decision Cost Function The EER metric is sufficient to quantify the
performance of a stand alone spoofing detector. But when this detector is
integrated into an ASV system, the impact of countermeasure on verification
performance cannot be evaluated by EER metric. In such scenario, the t-
DCF metric [9] measures the impact of spoofing and countermeasure on the
reliability of ASV system by combining the verification and spoofing errors.
The minimum normalized tandem-Decision Cost Function is expressed in the
form

t-DCFmin = min
Thr

{βPcmMISS(Thr) + PcmFAR(Thr)} . (3)

The parameter β depends on the spoofing prior and cost parameters and
on miss and false alarm rates of speaker verification. PcmMISS(Thr) and
PcmFAR(Thr) are the false alarm and miss rates of the counter measure at
threshold Thr.

For additional information, please see [10].

3 Brief Review of Speech Production

Speech is an acoustic wave produced by the air expelled from lungs which serves
as the excitation for the acoustic filter consisting of vocal and nasal tracts [6].

164 A. S. Muttathu Sivasankara Pillai et al.

The frequency spectrum of the excitation is shaped by the frequency selectivity
of these tracts. The vocal tract contains different sections called articulators that
play a crucial role in the generation of different sounds by shaping the airflow.
During speech production, the airflow is modulated according to the sound to be
generated by the movement of active articulators toward the passive articulators
which remain stationary throughout the process [11]. This relative placement
of articulators will create different types of constrictions for generating various
voiced (vowels) and unvoiced (plosives, consonants) sounds. The features of vocal
and nasal tracts change continuously with time and make speech radiated from
lips non-stationary.

The basic difference between voiced and unvoiced sound is due to the behavior
of vocal cords during sound production [6]. During vocal cord vibration, air flow-
ing from the lungs will be interrupted periodically by the vocal cords providing a
series of pulses for excitation of the vocal tract which produces voiced speech sig-
nals. Voiced speech is dominated by periodic pulses and a set of formants which
are peaks in the frequency spectrum due to the acoustic resonance of vocal tract.
These spectral peaks are in the low-frequency region and hence the energy of
voiced speech mostly lies below 4 kHz. When vocal cords remain stationary, the
vocal tract will have a random excitation and constriction by different artic-
ulators will generate unvoiced sound. These unvoiced sounds are non-periodic,
sounds random and their energy is mainly contained in region from 2–8 kHz [12].
The speech production mechanism is thus modelled as a source excitation pass-
ing through a time-varying filter that corresponds to the dynamic characteristics
of vocal tract. The excitation is random noise for unvoiced sounds and a series of
pulses for voiced sounds which represents the fundamental frequency in speech.

Spoofed speech is generated using TTS and VC techniques in order to change
the voice identity of speech to that of a target speaker to be perceived true
by humans and/or speaker verification systems. In ASVspoof 2019 challenge
database, the spoofed speech is generated using four TTS (A01-A04) and two
VC (A05-A06) spoofing attack algorithms for training and development sets and
by using ten TTS (A07-A16) and three VC (A17-A19) spoofing attack algorithms
for the evaluation set [13].

The spoofed speech generation using the TTS system converts the input text
to speech that feels like to be spoken by the target speaker. This process involves
conversion of text to linguistic features and then to acoustic features which are
used to generate the waveform of desired speech. The VC techniques change the
voice identity of speech without changing the linguistic content. When parallel
training data (utterances with the same linguistic content for both source and
target speakers) is available, the VC can be easily done using methods such
as dynamic time wrapping and spectral mapping [14,15]. Due to the difficulty
in obtaining parallel training data, many VC methods are developed using non-
parallel training data. In all these methods, the input speech undergoes an inter-
mediate transformation to remove the source speaker characteristics followed by
the addition of target speaker characteristics and reconstruction of speech.

Detection of Voice Conversion Spoofing Attacks Using Voiced Speech 165

The various VC models include variational auto-encoder (A05 and A17),
GMM-UBM with speech source filter model (A06), i-vector Probabilistic Linear
Discriminant Analysis (PLDA) based transfer learning, and so on [13,16]. The
spoofing attack A06 does VC for the generation of spoofed speech by mapping
the source-filter characteristics of input speech on a frame-by-frame basis to that
of the target speaker. The input audio signal is analyzed and the derived acoustic
features (Mel frequency Cepstrum Coefficients (MFCC) and Linear Prediction
Cepstrum Coefficients (LPCC)) are modified to match the filter characteristics
with that of the target speaker and in order to produce the spoofed speech.
The spoofing attack A18 uses a transfer learning method to predict the i-vectors
of target speaker from the i-vectors of source speaker. The knowledge about
predicted i-vectors are used to generate the MFCCs of target speaker and thereby
for the production of spoofed speech. The attacks A05 and A17 use variational
auto-encoder for mapping the spectral features of input audio from source to
target speaker. The auto-encoder is trained to encode the incoming spectral
feature vectors to speaker independent vectors and then to decode them with the
characteristics for the target speaker. This is followed by a speech reconstruction
process in which attacks A05 and A17 differ.

The spoofing attack A17 uses direct waveform modification method for the
generation of target speech but the spoofing attack A06 uses WORLD vocoder.
In direct waveform modification, spectral details are preserved that help in pro-
ducing high-quality speech. The target speech waveform is generated in spoofing
attack A17 by passing the F0 transferred residual signal through a synthesis
filter designed for the target speaker using the converted spectral features. The
F0 transferred residual signal is sensitive to the spectral estimation error due to
the difficulty in modelling speaker characteristics which is a problem associated
with conversion models based on non-parallel training data. The interaction of
F0 transformed residual signal with inaccurately estimated spectrum will pro-
duce noise in the reconstructed speech. It is evident from the spectral plots of
source speech and target speech obtained using waveform modification method
given in [17] that spectral errors are prominent in the low-frequency region.

Motivated by the spectral estimation errors and the fact that speech (exclud-
ing silence) is dominated by voiced sounds that contain mainly low-frequency
components, use of these voiced segments may provide better features for dis-
criminating between genuine and spoofed speech generated using VC methods
based on direct waveform modification.

4 Spectral Differences in Voiced/Unvoiced Segments
from Human and Spoofed Speech

Initial work in detection of spoofed speech, extracted discriminating features
from the entire speech signal and using pre-trained models, classified speech sig-
nals as genuine or spoofed [18,19]. Later work extracted features from specific
components of the decomposed speech signal which contained more discrimi-
nating information than the signal as a whole, in order to improve detection

166 A. S. Muttathu Sivasankara Pillai et al.

accuracy. For example, spoofing detectors based on specific words [20], based on
specific spectral bands [21,22], or based on specific modes in Empirical Mode
Decomposition (EMD) have been investigated [23]. Speech signals are generally
composed of voiced, unvoiced, and silence segments [11]. Typically, little if any
discriminating features exist in silence segments and thus we focus on analyzing
unique discriminating features within voiced and unvoiced segments. To the best
of our knowledge spoofing detectors based on voiced or unvoiced segments have
not been investigated.

In order to analyze spectral differences in voiced and unvoiced segments
from genuine and spoofed speech, we choose from ASVspoof 2019 LA train-
ing sets A01-A04 (TTS), two male speakers (LA92 and LA95) and two female
speakers (LA79 and LA80). Next, we identified identical sentences from gen-
uine and spoofed speech for each speaker. Next, for each identical sentence
pair, we segmented phonemes according to voiced or unvoiced. Finally for
each voiced/unvoiced segment we computed the difference in magnitude spectra
between the genuine and spoofed segment. For training sets A05-A06 (VC), iden-
tical sentences did not exist so we identified identical words from genuine and
spoofed speech for each speaker and proceeded as above with phoneme segmen-
tation and computation of the difference spectra. The difference spectra were
then averaged and are shown in Figs. 1 and 2.

0 1000 2000 3000 4000 5000 6000 7000 8000

Frequency Hz

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 m
ag

ni
tu

de

A01

A02

A03

A04

A05

A06

Fig. 1. Average difference (between bonafide and spoofed speech) magnitude spectra
for voiced segments from ASVspoof 2019 attacks A01 to A06. We observe a large,
well-defined spectral difference in the 0–4 kHz frequency band.

When comparing spectra of human (bonafide) and spoofed speech, we find
the largest differences lie in voiced segments over the 0–4 kHz band; smaller
differences exist in unvoiced segments over the 4–8 kHz band. From this obser-
vation, we find that we are able to accurately classify bonafide versus spoofed
speech using only voiced speech segments from the 0–4 kHz band. When viewed
as a general pre-processing stage, we can show this technique, i.e. using only
voiced segments from 0–4 kHz, can be applied to various detectors including

Detection of Voice Conversion Spoofing Attacks Using Voiced Speech 167

0 1000 2000 3000 4000 5000 6000 7000 8000

Frequency Hz

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 m
ag

ni
tu

de
A01

A02

A03

A04

A05

A06

Fig. 2. Average difference (between bonafide and spoofed speech) magnitude spectra
for unvoiced segments from ASVspoof 2019 attacks A01 to A06. Unlike voiced speech
(Fig. 1), we observe an uneven spectral difference in the unvoiced speech, however, most
of the spectral difference lies in 4–8 kHz frequency band.

Linear frequency Cepstrum Coefficients (LFCC)+GMM while maintaining sim-
ilar accuracy. By using only voiced segments and downsampling the signal to
4 kHz bandwidth, the data rate and hence computation can be reduced.

From Fig. 1 we observe differences in spectra for voiced segments in the 0–
4 kHz band where the largest differences are in the 0–1 kHz band. A simple
linear interpolation over 300–4000 Hz shows an approximate difference rate of
−17 dB/kHz. On the other hand, in the band from 4–8 kHz the spectral dif-
ference is minor. This suggests that for voiced segments, most of the spectral
discriminating features lie in 0–4 kHz band. From Fig. 2 we also observe differ-
ences in spectra for unvoiced segments but in the 4–8 kHz band. Furthermore,
these differences are not as great as in the voiced segments. Given these obser-
vations, in the next section we propose a pre-processing stage for which features
are extracted from voiced segments only.

5 Subsampling and Voiced Segmentation
as a Pre-processing Stage

From our observations of the spectral differences in voiced segments from
bonafide and spoofed speech, we propose a pre-processing stage which takes
as input the speech signal and passes to the countermeasure a signal containing
only voiced segments. Furthermore, because most of the spectral difference in
the voiced segment lies in the 0–4 kHz band, we may subsample the signal by
2×. In the implementation, shown in Fig. 3, we first use 20 ms speech frames and
a Zero Crossing Rate (ZCR) detector to label the frames as voiced or unvoiced.

168 A. S. Muttathu Sivasankara Pillai et al.

We subsample the speech signal by 2× and retain only the corresponding voiced
frames. The proposed pre-processing stage lowers the date rate approximately
by a factor of 4, i.e. removal of silence and unvoiced segments shortens the sig-
nal by approximately half and downsampling reduces the data by another half.
This reduction in data may be important in applications where low-complexity
spoofing detection is important, e.g. Personal Voice Assistants (PVAs).

Counter
measure/
spoofing
detec�on

Genuine
or

Spoofed

Framing
20 ms

Framing
20 ms

Subsampling
2x

Voiced/
unvoiced

Speech
signal

voiced

Pre-processing stage

Fig. 3. Block diagram of the proposed pre-processing stage.

6 Spoofing Detection Results Using Proposed
Pre-processing Stage

In order to test the proposed pre-processing stage, we consider two detectors
which use different features and have results which are among the top perform-
ing systems, excluding ensemble systems, using the ASVspoof 2019 evaluation
set. We exclude neural networks and deep learning systems in order to focus
on the generalization of this approach as a pre-processing stage to conventional
systems. The first system uses LFCC features with a ML detector based on a
GMM [22] and the second system uses statistics of the Instantaneous Ampli-
tude (IA)/Instantaneous Frequency (IF) from Intrinsic Mode Functions (IMFs)
decomposed using EMD [24].

6.1 Brief Overview of Anti-spoofing Systems Used in This Work

The first system under consideration is the LFCC-based system proposed in [22].
The LFCC features are extracted from the entire speech signal spectrum using a
filter order of 70. The training and development sets of ASVspoof 2019 challenge
are used to generate the LFCC features and to train the GMM using 1024
components. Classification uses ML estimation. For additional details on this

Detection of Voice Conversion Spoofing Attacks Using Voiced Speech 169

system, we refer the reader to [22]. As software for this system was unavailable,
we implemented our own version. Results of this system for ASVspoof 2019
evaluation set A07-A19 and pooled baseline results are given in the second row
of Table 2. Our implementation has a slightly higher EER (3.85%) than the
published result (3.51%) which may be due to the difference in the environment.

Framing

Feature extrac�on

FramingDEMODEMD

Voiced or
Unvoiced

{xf(t)}

Feature Vector

{ak(t),ꙍk(t)}{φk(t)}Speech
signal

x(t)

ISA

{akf(t),ꙍkf(t)}
V

Fig. 4. Block diagram of the EMD based feature vector creation for spoofing detection.

The second system under consideration is based on statistics of the IAs and
IFs from IMFs resulting from EMD as proposed in [24]. In this system shown
in Fig. 4, EMD is used to decompose the entire speech signal into IMFs. IMFs
are each demodulated in order to obtain the IAs and IFs. For each of the first
10 IMFs, we compute the statistics {μ, σ2, γ, κ} of the IA and IF resulting in
an 80 × 1 feature vector. We use a k -Nearest Neighbours (KNN) classifier to
determine whether the speech signal is bonafide or spoofed. For additional details
on this system, we refer the reader to [24]. Results of this system for ASVspoof
2019 evalaution set A07-A19 and pooled baseline results are given in the third
column of Table 2.

6.2 Results Using Proposed Pre-processing Stage

The proposed pre-processing stage can be viewed as a front-end to the anti-
spoofing countermeasure. This front-end subsamples the speech signal by 2×
and retains only those frames which have been classified as voiced. Since voiced
frames are approximately half of the speech signal (unvoiced and silence frames
are the other half), this front-end reduces the data presented to the counter-
measure by approximately 4× and hence lowers computation. The LFCC-GMM
detector with the proposed pre-processing stage gives a pooled EER and min-t-
DCF of respectively 3.99% and 0.10% which is slightly worse compared to the
baseline system’s EER and roughly the same for the min-t-DCF. While compar-
ing the performance for each individual attack (A7-A19), the proposed methods
improves the EER for 3 attacks (A12, A15, and A17); gives worse EER for 5
attacks (A10, A13, A14, A18, and A19); and nearly the same (within 0.05%)
EER for 5 attacks (A7, A8, A9, A11 and A16) in comparison with the baseline

170 A. S. Muttathu Sivasankara Pillai et al.

Table 2. The spoofing detection error metrics (%) for LFCC+GMM and IA/IF-KNN
systems using only voiced segments or the entire speech signal (baseline). Error rates in
red denote worse performance when using voiced segments, while those in blue denote
better performance when using voiced segments.

Spoofing attack
algorithms

Spoofing detectors

LFCC-GMM
(Baseline)

LFCC-GMM
(voiced)

IAIF-KNN
(baseline)

IAIF-KNN
(voiced)

A07 0.02 0.02 2.09 3.50

A08 0.00 0.02 2.09 3.50

A09 0.00 0.02 2.09 3.50

A10 12.74 14.89 2.09 3.50

A11 0.00 0.02 2.09 3.50

A12 1.87 1.77 2.09 3.50

A13 2.87 3.44 2.09 3.50

A14 0.00 0.76 2.09 3.50

A15 2.01 1.63 2.09 3.50

A16 0.02 0.02 2.09 3.50

A17 7.47 3.97 11.90 4.56

A18 0.04 2.73 10.15 4.46

A19 0.08 0.14 6.63 3.50

Pooled tDCF 0.10 0.10 0.09 0.09

Pooled EER 3.85 3.99 3.51 3.50

detection system. This is highlighted in Table 2 using red color for worse EER,
blue color for better EER, and black color for nearly the same EER.

The IA/IF-KNN detector with the proposed pre-processing stage gives a
pooled EER and min-t-DCF of respectively 3.50% and 0.09% which is roughly
the same compared to the baseline system’s EER and min-t-DCF. While compar-
ing the performance for each individual attacks (A7-A19), the proposed method
improves the EER for 3 attacks (A17, A18, and A19) and gives worse EER for
10 attacks (A7-A16) in comparison with the baseline detection system.

For the IA/IF-KNN system, all VC attacks (A17-A19) have lower EER with
the pre-processing stage than without it. For A17, A18, and A19 attacks, EER
is reduced to 4.56%, 4.46%, 3.50% from 11.90%, 10.15%, 6.63% respectively.

Of particular interest is attack A17 where we note that “...this method was
judged to have the highest spoofing capability in Voice Conversion Challenge
2018” [25]. More recently in [5] (see Table 3) A17 is generally considered the
worst attack with the best performing system (Capsule Network) reporting an
EER of 3.76% on this attack. For two systems in this work, EER is substantially
improved to 3.97%, 4.56% from 7.47%, 11.90% respectively for the LFCC-GMM,
IA/IF-KNN systems. With the exception of the Capsule Network (LFCC+Deep
Learning) which reports EER of 3.76% for A17, the systems in this work with

Detection of Voice Conversion Spoofing Attacks Using Voiced Speech 171

the pre-processing stage perform better than all the other systems, i.e. Res-
TSSDnet (6.01%), ResNet18-LCML-FM (6.19%), LCNN-LSTM-sum (9.24%),
ResNet18-OC-Softmax (9.22%), ResNet18-AM-Softmax (13.45%), ResNet18-
GAT-T (28.02%), ResNet18-GAT-s (21.74%) and PC-DARTS (30.20%) where
the A17 attack is the worst attack [5]. Performance of these systems for the A17
attack, may be improved with the proposed pre-processing stage.

7 Related Work

The various LA spoofing detection methods developed differ by the front-end fea-
tures used to acquire discriminative information and by the back-end classifiers
used for generating the decision score based on which genuine/spoof speech clas-
sification is performed. The promising features used for spoofing detection are
especially but not limited to Constant-Q Cepstrum Coefficients (CQCC), LFCC,
MFCC, Inverse Mel frequency Cepstrum Coefficients (IMFCC), and neural net-
work embedding [19,26–29]. In some mechanisms, the above-mentioned features
are used in combination with source features such as epochs, peak to side lobe
ratio to obtain the complementary information that aids detection [18,30,31].
The conventional feature extraction is carried out in the frequency domain using
filter banks to obtain the short-term sub band spectral features. Some DNN
based spoofing detection methods use these features to extract the network
embeddings that serve as the feature for categorization [32].

Despite the information richness, the time domain is not considered generally
for countermeasure except in a few cases. These include the processing of incom-
ing speech signals in the time domain to separate out the temporal dependency
feature which is used in conjunction with the source features for detection [33],
temporal convolution for spoofing detection [30] and the usage of variation in
temporal distribution of amplitudes for genuine and spoofed speech classifica-
tion. The statistical features of IA and IF derived using EMD are calculated
along time domain in [24] for spoofing detection. The raw speech waveform is
used as input in some DNN based spoofing detectors and this has been made
possible by using sinc filters [5,34,35].

Rather than extracting features from either time or frequency domain, some
spoofing detection methods have used a combined approach [32,35,36]. Here the
spectral and temporal domains are combined either at feature level by combin-
ing the features extracted form both domains or at score level by fusing the
individual scores of classifiers by using the features extracted from each domain
or by combining the intermediate feature representations of domains within the
detector model itself.

In all these spoofing detection approaches, the speech signal is considered
as whole without considering the level of impact on various types of segments
within a speech signal. That is how our work differs from others where the voiced
and unvoiced segments of a speech signal is separately analyzed to quantify the
impact of spoofing on them and used that for spoofing detection.

172 A. S. Muttathu Sivasankara Pillai et al.

8 Discussion

Further elaborating for the pooled EER and worst attack performance, we refer
the reader to [5]. The IA/IF-KNN system with the pre-processing stage, has
better pooled EER performance and better performance against the worst attack
than systems ResNet18-GAT-T, ResNet18-GAT-s, PC-DARTS, and RawNet2.
With the exception of Capsule Network, the other systems have better pooled
EER but worse performance on the worst attack than the worst attack (A17)
on IA/IF-KNN system with the pre-processing stage.

For the systems considered in this paper (LFCC+GMM and IA/IF+KNN),
in general the pooled results (t-DCF and EER) are roughly the same when
using the entire speech signal or with the pre-processing stage (voiced segments
and downsampled) where we note that with the pre-processing stage we use
approximately 1/4 of the signal samples. We measured execution time for our
implmentations of the LFCC+GMM and IA/IF+KNN baseline systems and
compared to the systems with the proposed pre-processing stage. We find that,
including the overhead for the voiced/unvoiced detector, execution times are
reduced by 1.86%, 1.95% for the LFCC+GMM, IA/IF+KNN respectively when
using the pre-processing stage.

9 Conclusions

In this paper, we present our observations that the largest spectral differences
between bonafide and spoofed speech, lie in the 0–4 kHz band of voiced speech
segments. Based on this observation, we propose a pre-processing stage which
subsamples voiced frames prior to spoofing detection. The application of the pro-
posed method to the LFCC+GMM and IA/IF+KNN systems reduces the input
speech data while maintaining similar pooled EER as that for the baseline sys-
tems. Furthermore, our results show substantial improvements in the detection
accuracy by both the systems for A17 voice conversion attack and in the A18
and A19 voice conversion attacks for the IA/IF+KNN system. The ASVspoof
2019 A17 voice conversion attack is recognized to have one of the highest spoof-
ing capabilities and has the worst EER for most of the top performing spoofing
detectors. We note that the proposed pre-processing stage reduces the speech
data by approximately a factor of 4, due to subsampling and using only voiced
frames, which may be important for resource-constrained spoofing detectors.
Although only two systems were considered, this pre-processing stage may be
beneficial to other systems as well.

Acknowledgement. This publication has emanated from research supported in part
by a Grant from Science Foundation Ireland under Grant number 19/FFP/6775 and
13/RC/2077 P2.

Detection of Voice Conversion Spoofing Attacks Using Voiced Speech 173

References

1. Wu, Z., Li, H.: On the study of replay and voice conversion attacks to text-
dependent speaker verification. Multimed. Tools Appl. 75(3), 5311–5327 (2015).
https://doi.org/10.1007/s11042-015-3080-9

2. Lindberg, J., Blomberg, M.: Vulnerability in speaker verification-a study of techni-
cal impostor techniques. In: Sixth European Conference on Speech Communication
and Technology, pp. 5–9 (1999)

3. Wu, Z., et al.: ASVspoof 2015: the first automatic speaker verification spoofing and
countermeasures challenge. In: Sixteenth Annual Conference of the International
Speech Communication Association (2015)

4. Todisco, M., et al.: ASVspoof 2019: future horizons in spoofed and fake audio
detection. In: Proceedings of the Annual Conference of the International Speech
Communication Association (INTERSPEECH), pp. 1008–1012 (2019)

5. Ge, W., Patino, J., Todisco, M., Evans, N.: Raw differentiable architecture search
for speech deepfake and spoofing detection. In: Proceedings of the 2021 Edition of
the Automatic Speaker Verification and Spoofing Countermeasures Challenge, pp.
22–28 (2021)

6. Quatieri, T.F.: Discrete-Time Speech Signal Processing: Principles and Practice.
Pearson Education India, New Delhi (2006)

7. Lovekin, J.M., Yantorno, R.E., Krishnamachari, K.R., Benincasa, D.S., Wenndt,
S.J.: Developing usable speech criteria for speaker identification technology. In:
Proceedings of the 2001 IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), vol. 1, pp. 421–424 (2001)

8. Veaux, C., Yamagishi, J., MacDonald, K., Corpus, V.C.T.K.: English multi-speaker
corpus for CSTR voice cloning toolkit. The Centre for Speech Technology Research
(CSTR), University of Edinburgh (2017)

9. Kinnunen, T., et al.: t-DCF: a detection cost function for the tandem assessment
of spoofing countermeasures and automatic speaker verification. arXiv preprint
arXiv:1804.09618 (2018)

10. Consortium: ASVspoof 2019: automatic speaker verification spoofing and
countermeasures challenge evaluation plan (2019). https://www.asvspoof.org/
asvspoof2019/asvspoof2019 evaluation plan.pdf

11. Rabiner, L., Schafer, R.: Digital Processing of Speech Signals. Prentice Hall, Engle-
wood Cliffs (1978)

12. Monson, B.B., Hunter, E.J., Lotto, A.J., Story, B.H.: The perceptual significance of
high-frequency energy in the human voice. Front. Psychol. 5, 587 (2014). https://
www.frontiersin.org/article/10.3389/fpsyg.2014.00587

13. Wang, X., et al.: ASVspoof 2019: a large-scale public database of synthesized,
converted and replayed speech. Comput. Speech Lang. 64, 101114 (2020). https://
www.sciencedirect.com/science/article/pii/S0885230820300474

14. Sisman, B., Yamagishi, J., King, S., Li, H.: An overview of voice conversion and its
challenges: from statistical modeling to deep learning. IEEE/ACM Trans. Audio
Speech Lang. Process. 29, 132–157 (2020). https://doi.org/10.1109/TASLP.2020.
3038524

15. Kobayashi, K., Toda, T., Nakamura, S.: Intra-gender statistical singing voice con-
version with direct waveform modification using log-spectral differential. Speech
Commun. 99, 211–220 (2018). https://www.sciencedirect.com/science/article/pii/
S0167639317303710

https://doi.org/10.1007/s11042-015-3080-9
http://arxiv.org/abs/1804.09618
https://www.asvspoof.org/asvspoof2019/asvspoof2019_evaluation_plan.pdf
https://www.asvspoof.org/asvspoof2019/asvspoof2019_evaluation_plan.pdf
https://www.frontiersin.org/article/10.3389/fpsyg.2014.00587
https://www.frontiersin.org/article/10.3389/fpsyg.2014.00587
https://www.sciencedirect.com/science/article/pii/S0885230820300474
https://www.sciencedirect.com/science/article/pii/S0885230820300474
https://doi.org/10.1109/TASLP.2020.3038524
https://doi.org/10.1109/TASLP.2020.3038524
https://www.sciencedirect.com/science/article/pii/S0167639317303710
https://www.sciencedirect.com/science/article/pii/S0167639317303710

174 A. S. Muttathu Sivasankara Pillai et al.

16. Hsu, C.C., Hwang, H.T., Wu, Y.C., Tsao, Y., Wang, H.M.: Voice conversion
from non-parallel corpora using variational auto-encoder. In: 2016 Asia-Pacific
Signal and Information Processing Association Annual Summit and Conference
(APSIPA), pp. 1–6. IEEE (2016)

17. Huang, W.C., et al.: Generalization of spectrum differential based direct waveform
modification for voice conversion. arXiv preprint arXiv:1907.11898 (2019)

18. Xiao, X., Tian, X., Du, S., Xu, H., Chng, E., Li, H.: Spoofing speech detection using
high dimensional magnitude and phase features: the NTU approach for ASVspoof
2015 challenge. In: Proceedings of the Annual Conference of the International
Speech Communication Association (INTERSPEECH), pp. 2052–2056 (2015)

19. Todisco, M., et al.: Integrated presentation attack detection and automatic speaker
verification: common features and Gaussian back-end fusion. In: Proceedings of
the Annual Conference of the International Speech Communication Association
(INTERSPEECH), pp. 77–81 (2018)

20. De Leon, P.L., Stewart, B.: Synthetic speech detection based on selectedword dis-
criminators. In: 2013 IEEE International Conference on Acoustics, Speech and
Signal Processing, pp. 3004–3008. IEEE (2013)

21. Mankad, S.H., Garg, S.: On the performance of empirical mode decomposition-
based replay spoofing detection in speaker verification systems. Prog. Artif. Intell.
9(4), 325–339 (2020). https://doi.org/10.1007/s13748-020-00216-0

22. Tak, H., Patino, J., Nautsch, A., Evans, N., Todisco, M.: Spoofing attack detection
using the non-linear fusion of sub-band classifiers. In: Proceedings of the Annual
Conference of the International Speech Communication Association (INTER-
SPEECH), p. 1844 (2020)

23. Tapkir, P., Patil, H.A.: Novel empirical mode decomposition cepstral features for
replay spoof detection. In: Proceedings of the Annual Conference of the Interna-
tional Speech Communication Association (INTERSPEECH), pp. 721–725 (2018)

24. Sankar, M.A., De Leon, P.L., Sandoval, S., Roedig, U.: Low-complexity speech
spoofing detection using instantaneous spectral features. In: 2022 29th Interna-
tional Conference on Systems, Signals and Image Processing (IWSSIP), pp. 1–4.
IEEE (2022). https://hdl.handle.net/10468/13215

25. Kinnunen, T., et al.: A spoofing benchmark for the 2018 voice conversion challenge:
leveraging from spoofing countermeasures for speech artifact assessment. Proc.
Odyssey 2018(06), 187–194 (2018)

26. Yu, H., Tan, Z.-H., Ma, Z., Martin, R., Guo, J.: Spoofing detection in automatic
speaker verification systems using DNN classifiers and dynamic acoustic features.
IEEE Trans. Neural. Netw. Learn. Syst. 29(10), 4633–4644 (2018)

27. Sahidullah, M., et al.: Integrated spoofing countermeasures and automatic speaker
verification: an evaluation on ASVspoof 2015. In: Proceedings of the Annual Con-
ference of the International Speech Communication Association (INTERSPEECH)
(2016)

28. Lavrentyeva, G., et al.: STC antispoofing systems for the ASVspoof2019 challenge.
In: Proceedings of the Annual Conference of the International Speech Communi-
cation Association (INTERSPEECH), pp. 1033–1037 (2019)

29. Chetttri, B., et al.: Ensemble models for spoofing detection in automatic speaker
verification. In: Proceedings of the Annual Conference of the International Speech
Communication Association (INTERSPEECH), pp. 1018–1022 (2019)

30. Tian, X., Xiao, X., Chng, E.S., Li, H.: Spoofing speech detection using temporal
convolutional neural network. In: Asia-Pacific Signal and Information Processing
Association Annual Summit and Conference (APSIPA), pp. 1–6 (2016)

http://arxiv.org/abs/1907.11898
https://doi.org/10.1007/s13748-020-00216-0
https://hdl.handle.net/10468/13215

Detection of Voice Conversion Spoofing Attacks Using Voiced Speech 175

31. Jelil, S., Das, R.K., Prasanna, S.M., Sinha, R.: Spoof detection using source, instan-
taneous frequency and cepstral features. In: Proceedings of the Annual Conference
of the International Speech Communication Association (INTERSPEECH), pp.
22–26 (2017)

32. Tak, H., Jung, J.W., Patino, J., Todisco, M., Evans, N.: Graph attention networks
for anti-spoofing. In: Proceedings of the Annual Conference of the International
Speech Communication Association (INTERSPEECH) (2021)

33. Witkowski, M., Kacprzak, S., Żelasko, P., Kowalczyk, K., Ga�lka, J.: Audio replay
attack detection using high-frequency features. In: Proceedings of the Annual
Conference of the International Speech Communication Association (INTER-
SPEECH), pp. 27–31 (2017)

34. Tak, H., Patino, J., Todisco, M., Nautsch, A., Evans, N., Larcher, A.: End-to-end
anti-spoofing with RawNet2. In: Proceedings of the IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 6369–6373 (2021)

35. Tak, H., Jung, J.W., Patino, J., Kamble, M., Todisco, M., Evans, N.: End-to-end
spectro-temporal graph attention networks for speaker verification anti-spoofing
and speech deepfake detection. In: Automatic Speaker Verification and Spoofing
Countermeasures Challenge, pp. 1–8 (2021)

36. Jung, J.W., et al.: AASIST: audio anti-spoofing using integrated spectro-temporal
graph attention networks. In: Proceedings of the IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 6367–6371 (2022)

A Wide Network Scanning for Discovery
of UDP-Based Reflectors in the Nordic

Countries

Alexander Bjerre , Andreas Philip Westh, Emil Villefrance,
A S M Farhan Al Haque , Jonas Bukrinski Andersen, Lucas K. Helgogaard ,

and Marios Anagnostopoulos(B)

Department of Electronic Systems, Aalborg University, Copenhagen, Denmark
mariosa@es.aau.dk

Abstract. Distributed Reflective Denial of Service (DRDoS) attacks
exploit Internet facing devices with the purpose to involve them in DoS
incidents. In turn, these devices unwittingly amplify and redirect the
attack traffic towards the victim. As a result, this traffic causes the extor-
tion of the target’s network bandwidth and computation resources. The
current work evaluates the amplification and reflective potentials of four
UDP-based protocols, which are constantly reported as facilitators to
DoS attacks. These are Simple Service Discovery Protocol (SSDP), Sim-
ple Network Management Protocol (SNMP), Constrained Application
Protocol (CoAP) and Web Services Dynamic Discovery (WSD). Specif-
ically, we conduct a countrywide network scanning across the four main
Nordic countries, i.e., Denmark, Finland, Norway and Sweden, and enu-
merate the devices that respond to any of our probes and hence they can
be exploited in DoS attacks. For each of the discovered devices, we assess
its amplification capabilities in terms of Bandwidth Amplification Factor
(BAF) and Packet Amplification Factor (PAF) that can contribute to a
DoS incident. The outcomes show that from the four examined protocols,
SSDP and SNMP are the most beneficial protocols from an attacker’s
perspective, as a multitudinous group of reflectors is identified in each
of the considered countries. Even worst, a significant portion of these
devices produced a BAF over 30, a BAF that can multiply significantly
the attack traffic stemming from the attacker’s side and hence causes a
devastating impact on the victim’s infrastructure.

Keywords: DDoS · Amplification attacks · Reflection attacks ·
SSDP · SNMP · CoAP · WSD · Internet measurement

1 Introduction

Without a doubt, denial of service (DoS) attacks are considered as a crucial
threat against the stability and resilience of the Internet’s critical infrastructure.
This fact is reported in many recent security reports, which they estimate that
the number and impact of the Distributed DoS (DDoS) incidents will steadily
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. P. Reiser and M. Kyas (Eds.): NordSec 2022, LNCS 13700, pp. 176–193, 2022.
https://doi.org/10.1007/978-3-031-22295-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22295-5_10&domain=pdf
http://orcid.org/0000-0003-0508-7427
http://orcid.org/0000-0002-0957-4882
http://orcid.org/0000-0001-9844-3667
http://orcid.org/0000-0002-9193-8517
https://doi.org/10.1007/978-3-031-22295-5_10

A Wide Network Scanning for Discovery of UDP-Based Reflectors 177

rise every year [1]. The objective of such attacks is to saturate the bandwidth
of the target with numerous and large packets and exhaust its computational
resources.

Distributed Reflective DoS (DRDoS) attacks, which are the focus of our
work, typically exploit the application protocols that rely on the User Datagram
Protocol (UDP) of the transport layer. Due to its connectionless nature, UDP
facilitates the spoofing of the requests’ source IP address, which are reflected
by the third parties that service these applications, and eventually they redirect
the attack traffic to the target. Moreover, such attacks take advantage of the
amplification capabilities of the application layer protocols, where specific pro-
tocols or type of requests provide a much larger response than the size of the
request, thus, multiplying the attack traffic [2]. In short, DRDoS attacks com-
bine the amplification and reflection characteristics with the aim to saturate the
victim’s network and computational resources. This is achieved by flooding the
target with network traffic triggered by small but legitimate requests originated
by the attacker to a service. In turn, this service redirects the traffic as responses
towards the victim [3].

Usually, the evildoers take advantage of protocols and services that support
specific types of requests that generated much greater responses. Examples of
such protocols are the Domain Name System (DNS) [4], the Network Time
Protocol (NTP) [5], and others. A requirement for the success of a DRDoS is
that these services should operate openly, which means that they should accept
and respond to requests from anyone on the Internet. Typically, such services
should be restricted to the intended internal users, however, the researchers and
the real-life security incidents have shown that this is not the case.

Contributing to this topic, our work provides a fresh, multi-country and
multi-protocol Internet measurement study on the amplification and reflection
capabilities of the Simple Service Discovery Protocol (SSDP), Simple Network
Management Protocol (SNMP), Constrained Application Protocol (CoAP) and
Web Services Dynamic Discovery (WSD). These four UDP-based protocols are
constantly reported in the related literature as enablers of devastating DRDoS
attacks. For this reason, we exhaustively investigate the IP ranges of the four
major Nordic countries, namely Denmark (DK), Finland (FI), Norway (NO) and
Sweden (SE) –in alphabetical order–, with the purpose to discover the devices
that openly respond to any of the four aforementioned protocols and analyse
their amplification capabilities. In particular, the main contributions of the cur-
rent work are summarized as follows:

– We conduct a wide network scanning and probing of the IP address ranges in
the four main Nordic countries, i.e., Denmark, Finland, Norway and Sweden,
with the purpose to discover devices accessible from the open Internet that
run any of the SSDP, SNMP, CoAP, and WSD service, and possibly provide
a high amplification factor. Such type of devices can be implicated in DRDoS
incidents as the unwittingly reflectors.

– We evaluate their potential contribution to DRDoS attacks by assessing the
amplification they yield, both in terms of Bandwidth Amplification Factor

178 A. Bjerre et al.

(BAF) and Packet Amplification Factor (PAF). We examine variant payload
values that trigger different set of responses and hence different magnitudes
of amplification factors.

– To obtain a clearer view of the trends and differences between the four coun-
tries, we analyse the Autonomous Systems (AS) that the reflectors reside and
categorize them to the type of the network that they are connected.

The rest of the paper is organized as follows. The next section provides
the background that will facilitate to grasp the inner workings of the DRDoS
attacks, while it also presents the SSDP, SNMP, CoAP and WSD protocols with
the various type of requests and payloads. The followed methodology is described
in Sect. 3, while Sect. 4 presents the results and highlights our main outcomes.
The related work is discussed in Sect. 5, whereas the paper concludes in Sect. 6.

2 Background

2.1 Source IP Address Spoofing

The capability of source IP address spoofing is essential to how UDP-based DoS
attacks unfold. The UDP is a connectionless protocol which, unlike the TCP,
has no handshake phase. Even more, in the case the ingress filtering mechanism
[6], aka BCP 38, is not implemented adequately, then the spoofing can pass
undetected. A study from the Spoofer Project [7] in 2005 showed that roughly
25% of the ASs allowed spoofed IP packets to be sent out of their network, thus,
facilitating the aggressors to launch reflection attacks. This was still a problem
in 2016, when it was estimated that 20% of the ASs can still be used to send out
spoofed IP packets [8]. More recent statistics by the CAIDA Spoofer Project [9]
indicate that the 20% of the AS are still spoofable, regardless if Network Address
Translation (NAT) is enabled or not.

2.2 Calculation of Amplification Factor

In simple terms, the amplification characteristic is accomplished, when the size
of the response is much greater than that of the request. The attacker first
needs to choose a protocol and utilize a specific type of request, that produces
a response that has the maximum possible size. This capability is measured as
the amplification factor (AF), and it is an indication of the effectiveness of the
attack. In short, the higher the AF, the more voluminous the attack traffic and
the quicker the bandwidth and resource consumption at the target’s side. In the
literature, they are used two formulas for assessing the amplified effect [5]. The
PAF (Eq. 1) considers the number of response packets that the amplifier sends
towards the target, when it responds to a single request.

PAF =
response’s number of packets
request’s number of packets

(1)

A Wide Network Scanning for Discovery of UDP-Based Reflectors 179

On the other, the BAF (Eq. 2) [5,10] denotes the bandwidth increment as the
amount of bytes that the amplifier sends, as a response to the request, divided
by the amount of bytes of the request. According to common practices in the
literature, in our work we calculate the BAF based on the length of the IP
payload of the request packet and the total number of bytes in the response [8].

BAF =
length(response)
length(request)

(2)

2.3 Evaluated Protocols

In our research, we focus on the assessment of the SSDP, SNMP, CoAP, and
WSD, as facilitators in DRDoS attacks. Following, we detail on their function-
ality, how they are abused for launching a DRDoS attack, and what type of
requests are used to trigger an amplified response. The main issue with these
protocols is that although they are meant to be used within a Local Area Net-
work (LAN), a Service Provider Network or an enterprise’s Wide Area Network
(WAN), they are instead deployed on public Internet-facing devices in an unau-
thenticated and open way. Consequently, these devices accept and are forced to
fulfil the requests.

Simple Service Discovery Protocol (SSDP)
Within environments that do not operate a centralized configuration mecha-
nisms, such as DHCP, and contain a vast number and diverse type of appliances,
there is a need for a simple and easy way for discovering the network services.
This can be accomplished with the help of the SSDP protocol [11]. A device in
an SSDP setup is either a control point (client) or root (server) which offers one
or more SSDP services. Whenever the client sends an M-SEARCH command,
then the root devices should answer with the details of the services they offer.
For each different service, a root should send a separate response. SSDP is based
on UDP to send a request either to the multicast (239.255.255.250) or unicast
address of the root device on port 1900. It supports two generic query types:

– upnp:rootdevice, which searches for all root devices.
– ssdp:all, which searches for all UPnP-supporting devices and services.

Simple Network Management Protocol (SNMP)
SNMP is used for network monitoring and specifically to configure and collect
information from network devices such as routers, switches, servers and work-
stations. Typically, the administrative computer, called manager, undertake to
monitor the networking devices, called agents. The agents provide the manage-
ment data in the form of variables, which describe their status and configuration.
The manager is capable to request or set the value of these variables. SNMPv2 is
considered the most suitable version for amplification attacks, as it supports the
GetBulk request and allows requests without the requirement for authentication.

180 A. Bjerre et al.

GetBulk returns a list of SNMP variables and typically is used for iterating all
monitoring variables of an agent. The response size, and thus the amplification
factor, is determined by the total amount and length of the variables contained
in the returned list. In addition, the following parameters for the GetBulk probe
are found to be efficient for amplifying the response [12]:

– Community must be set to “public”, this allows access to the SNMP variables
without authentication and is commonly the default configuration.

– Max-repetitions must be set to a high value. This field represents how many
GetNext operations should be performed by the receiver. In other words, it
forces the agent to include multiple variables in its response.

– Non-repeaters must be ‘0’ to indicate the number of objects that are
expected to return a single instead of multiple instances.

Constrained Application Protocol (CoAP)
CoAP, defined in RFC 7252 [13], is a specialized web transfer protocol for use
by constrained nodes and allows them to communicate with the Internet. It
is designed for constrained environments, e.g., low-power and lossy networks,
or between constrained nodes and general nodes on the Internet. CoAP is an
application protocol, similar to HTTP, but for usage over UDP. It is mainly
utilized in IoT devices and aims to operate as HTTP over UDP, effectively
enabling these devices to interact over the Internet. Since CoAP is based on
UDP transport protocol, even a simple GET request can be used for triggering
a much larger response. However, in our probe, the /.well-known/core URI is
utilized to perform a CoRE Resource Discovery on UDP port 5683 and thereby
request the list of resources hosted by a server [14].

Web Services Dynamic Discovery (WSD)
WSD, also known as WS-Discovery, is a multicast discovery protocol to locate
services on a LAN over UDP. Its intended use is to facilitate the network dis-
covery of consumer devices, such as printers, CCTV and DVR systems. Notably,
various components of Windows OS employ WSD for network discovery. It uses
only the IP multicast address 239.255.255.250, which typically should not
be routed through the Internet. However, the implementation of WSD daemon
responds to the requests even when they come from an unicast IP address and
there is only a single recipient [15]. In our probe, we utilized the malformed
XML-payload provided in the pkt file for ZMap [16].

3 Methodology

Our objective is to scan the whole IPv4 range of the main Nordic countries, e.g.,
Denmark, Finland, Norway and Sweden, with the purpose to detect and iden-
tify exploitable, possibly unattended, devices running any of the four evaluated
protocols and assess their potential amplification capabilities for different types

A Wide Network Scanning for Discovery of UDP-Based Reflectors 181

of requests. Similarly to our methodology, an attacker can follow the same app-
roach to locate these devices and engage them as reflectors and amplifiers in their
DDoS campaigns. To acquire the IP address ranges for the Nordic countries, we
use the ip2location.com1 database.

For the scanning, we utilize the ZMap tool [16]. ZMap is a fast Internet-wide
scanning tool capable of scanning millions of IP addresses within few minutes. It
can also take as parameter the payload, either in text or hex format, and issue
a properly formatted request to every IPv4 address in the specified IP range.
Simultaneously with the scanning process, we monitor the incoming responses.
Whenever a response is captured from a specific IP address, it means that in
this address a device operates the service openly, and thus a candidate reflector
is identified. Afterwards, we evaluate for each of the discovered device its ampli-
fication capabilities. This means, we calculate the PAF and BAF produced by
the response using the Eq. 1 and 2, respectively.

4 Results

For the analysis of the results, we utilize the tshark tool to extract the IP
payload length and other useful fields from the responses contained in the cap-
tured traffic. Overall, for each protocol, we provide a table including interesting
statistics for the specific probe. The column Reflectors indicates the unique
number of the detected devices, while the column PCM shows the per cent
mille or the one-thousandth percent of the reflectors based on the total num-
ber of IP addresses scanned for the specific country. The columns MeanBAF
and MaxBAF show the mean and the maximum BAF calculated from all the
responses of a country, correspondingly. Similarly, the columns MeanPAF and
MaxPAF give the mean and the maximum PAF. Finally, the column Mean-
BAF>=30 presents the mean BAF of the responses that generated a BAF over
or equal to 30. While, the column MeanTop10% provides the mean BAF of
the Top 10% highest BAF results. The rest of the columns are protocol specific.
Note that in boldface are denoted the highest values for each country.

For further visualizing the population of the identified reflectors, we provide
the distribution of the BAF results in histograms grouped into different ranges,
e.g., less than 1, from 1 to less than 10, from 10 to less 20, from 20 to less than
30, and 30 or above.

4.1 IP Demographics

As mentioned previously, this work examines the main Nordic countries, those
are Denmark, Finland, Norway and Sweden. As evident from Table 1, these coun-
tries have a similar allocation of IP addresses, which is around 13–15M, except
for Sweden that reaches 30M.

1 IP2Location: https://lite.ip2location.com/database/ip-country.

https://lite.ip2location.com/database/ip-country

182 A. Bjerre et al.

Table 1. Demographics per examined country

Country Total IP addresses

Denmark 13,001,728
Finland 15,256,576
Norway 15,779,840
Sweden 30,212,096

4.2 SSDP

For the SSDP scanning, we conducted two probes, one that contains the unicast
address as the host field of the SSDP request, that is, the IP address of the host
that our probe is heading. The other contains the SSDP multicast address, e.g.,
239.255.255.250. These two probes are indicated as U and M in the column
Target, respectively. Both of these two probes utilize the ssdp:all query type.

Table 2 shows the results from the SSDP scans. It is evident that the highest
distribution of SSDP reflectors resides within the Swedish IP range with around
2.8K reflectors, while the lowest within the Finish with less than 300 reflectors.
This is evident in the difference of the PCM values, where Sweden has the highest
and Finland the lowest density of reflectors.

Additionally, we can observe that the highest BAF and PAF are similar
for all countries, except Denmark unicast probe, which exhibits notably lower
values. Also, the mean BAF lies between a factor of 20 and 31 for both probes.
Furthermore, when focusing on the reflectors with a BAF over 30, the mean
is lowest in Denmark with a BAF of 39 and up to 151 in Finland. Note that
in Finland, they were identified only 32 reflectors with a BAF over 30, where
28 of these are part of its top 10% group. Another interesting finding is the
PAF statistics. All countries have a max PAF of 84 except for unicast probe in
Denmark which has 46.

Table 2. Detailed results for SSDP scanning

Country Target Reflectors PCM MeanBAF MaxBAF MeanPAF MaxPAF MeanBAF > 30 MeanTop10%

Denmark U 764 5.88 23.26 128.47 7.85 46 38.32 42.26
M 766 5.89 22.11 290.21 7.92 84 39.34 43.01

Finland U 284 1.86 21.51 309.59 6.26 84 151.70 168.94
M 286 1.87 20.31 290.58 6.36 84 143.38 155.09

Norway U 1,186 7.52 30.78 309.20 10.41 84 41.15 48.49
M 1,186 7.52 29.60 290.21 10.66 84 39.58 45.81

Sweden U 2,821 9.34 23.05 309.20 7.82 84 40.78 48.62
M 2,807 9.29 21.72 290.21 7.83 84 41.16 46.46

Figure 1 visualizes the proportions of the SSDP reflectors in the examined
countries. The highest mean BAF is achieved for the probe that had unicast IP

A Wide Network Scanning for Discovery of UDP-Based Reflectors 183

address as target. It is evident, that the Norwegian IP range contains the highest
number of SSDP reflectors with a BAF over 30. Specifically, this is the 61% of
the discovered devices for the unicast and 56% for the multicast probe. Denmark
comes second with 44% and 32%, while Sweden comes third with 34% and 26%,
and finally Finland with 11% and 10%, for unicast and multicast respectively.
On the contrary, the majority of the reflectors contained in the Finish IP range
exhibits a BAF in the group 1 to 10. Overall, the multicast probe reveals a trend
for lower BAF across all countries.

Fig. 1. Histograms of BAF results for SSDP

Furthermore, we categorize the SSDP reflectors according to their adminis-
trative organization. Table 3 provides the population of devices located on the
same AS. For privacy reasons, we exclude the name and the identifier of the AS,
but rather we mention the type of the network. In Table 3, Telco means that the
IP range belongs to a telecommunication company that offers data, voice and
mobile services, while ISP represents a network that provides solely broadband
services. Regional ISPs are ISP companies that offer services to a specific geo-
graphical region. From Table 3, we can observe that the majority of the reflectors
reside within the networks of ISPs, which gives an indication that these reflectors
are end-users appliances. Further examination of the SSDP payload, namely the
advertised services contained in the SSDP responses, indicates that the devices
are both of Linux and Windows OS, as well as OS found on networking devices
and smart IoT devices, like Cisco, pfSence OS, Synology/DSM, Net OS and oth-
ers. Overall, there are a few number of ASs that cumulative are responsible for
the majority of the devices, while many more ASs contain a handful of devices.
A special case is that of Finland, where we can see that more than the half of
the reflectors (67.96%) are located in a cloud provider, which can interpreted
that most probably the reflectors correspond to cloud services.

4.3 SNMP

For the SNMP protocol, we experiment with different values for the
max-repetition field in the GetBulk request, specifically, with 500, 1000 and

184 A. Bjerre et al.

Table 3. SSDP reflectors by organization. Percentage values, rounded to 2 decimal
places, are given in parentheses.

Denmark Finland Norway Sweden
AS Devices AS Devices AS Devices AS Devices

Regional ISP 161 (21.07) Cloud provider 193 (67.96) Telco 638 (53.79) ISP 499 (17.69)
Telco 157 (20.55) Telco 19 (6.69) Telco 160 (13.49) Regional ISP 407 (14.43)
Regional ISP 78 (10.21) Telco 11 (3.87) ISP 133 (11.21) ISP 365 (12.94)
ISP 54 (7.07) Telco 10 (3.52) ISP & Cloud provider 106 (8.94) Research network 226 (8.01)
ISP 48 (6.28) ISP 8 (2.82) Regional ISP 27 (2.28) Cloud provider 191 (6.77)
ISP 46 (6.02) Telco 4 (1.41) Corporate network 16 (1.35) Telco 130 (4.61)
ISP 42 (5.50) Corporate network 4 (1.41) Regional ISP 15 (1.26) ISP 123 (4.36)
Regional ISP 27 (3.53) Regional ISP 3 (1.06) Regional ISP 12 (1.01) Corporate network 103 (3.65)
Regional ISP 25 (3.27) ISP 3 (1.06) Regional ISP 9 (0.76) ISP & Cloud provider 78 (2.76)
ISP & Cloud provider 23 (3.01) ISP 2 (0.71) Regional ISP 7 (0.59) Regional ISP 54 (1.91)
Corporate network 14 (1.83) Telco 2 (0.71) Corporate network 6 (0.51) Regional ISP 53 (1.88)
Regional ISP 10 (1.31) Corporate network 2 (0.71) Cloud provider 4 (0.34) ISP 42 (1.49)

Other 79 (10.35) Other 23 (8.08) Other 53 (4.47) Other 550 (19.50)

2250. In this way, we aim to investigate how this field can affect the volume
of the returned variables in a response, and thus it increases the BAF of the
attack. Table 4 summarizes the outcomes for the SNMP scans, where the column
MaxRep corresponds to the value of the max-repetition field of the request.
The highest population of SNMP reflectors is located within the Swedish IP
range with around 13K devices, while the lowest within the Finish with almost
1.5K. As a result, the highest PCM is 44.44 from the scan of Sweden with 500 as
the max-repetition value and the lowest is 9.48 PCM from the scan of Finland
with 2250. The highest observed BAF is 683.15 from a host in the Swedish IP
range, when it was probed using 2250 as the max-repetition value.

Table 4. Detailed outcome for SNMP scanning

Country MaxRep Reflectors PCM MeanBAF MaxBAF MeanPAF MaxPAF MeanBAF > 30 MeanTop10%

Denmark 500 3,069 23.60 11.65 268.42 1.49 16 65.08 75.08
1000 3,016 23.20 8.72 574.98 1.33 34 46.57 49.37
2250 3,007 23.13 7.43 580.93 1.25 34 36.66 37.60

Finland 500 1,553 10.18 38.46 322.31 2.74 22 74.20 177.86
1000 1,495 9.80 42.62 627.95 2.99 37 90.99 229.94
2250 1,447 9.48 24.39 123.51 1.93 10 40.29 53.94

Norway 500 3,718 23.56 20.73 360.69 1.63 21 89.82 87.89
1000 3,637 23.05 15.16 145.92 1.3 11 39.32 36.44
2250 3,682 23.33 18.24 242.65 1.48 15 70.37 64.32

Sweden 500 13,427 44.44 20.80 395.71 1.98 23 91.12 120.30
1000 12,867 42.59 12.92 673.79 1.54 40 49.75 51.42
2250 12,964 42.91 12.93 683.15 1.54 40 46.35 49.22

Figure 2 illustrates the proportions of the SNMP reflectors. From Fig. 2, it is
evident that Finland has the highest distribution of reflectors with more than
35% that provide a BAF over 30 for the three different payloads, while the rest
of the countries with a percentage of around 7%–15% have similar distribution

A Wide Network Scanning for Discovery of UDP-Based Reflectors 185

for this category. On the contrary, the majority of reflectors within the Danish
IP range with a percentage around 75% fall in the category of 1 to 10, which
stands true for all probes irrelevant of the value of max-repetition field.

Another interesting outcome is that the max-repetition value of 500 triggers
the best results, although that these responses are not expected to have the
largest size. This makes the max-repetition value of 500 as the best candidate
for exploitation in DDoS attacks. From these figures, we can only assume that
the investigated devices tend to respond to SNMP requests that do not require
high computational power to process or trigger lengthy responses, which a higher
max-repetition value will force the device to perform.

Fig. 2. Histograms of BAF results for SNMP

Similarly, Table 5 summarizes the AS of the SNMP reflectors. The figures
are similar to that of SSDP, where the IP ranges of Telco and ISP companies
contain the majority of the SNMP reflectors. In fact, we can safely argue that,
with few exceptions, the same set of AS contain high numbers of SSDP and
SNMP reflectors.

4.4 CoAP

For the case of CoAP, we omit to produce the histograms, as most of the BAF
values fall in the range of 1 to 10 with only a handful of outliers over 10. Table 6

186 A. Bjerre et al.

Table 5. SNMP reflectors by organization. Percentage values, rounded to 2 decimal
places, are given in parentheses.

Denmark Finland Norway Sweden
AS Devices AS Devices AS Devices AS Devices

ISP and Cloud provider 1,157 (37.70) Telco 312 (20.09) Regional ISP 1,637 (44.03) Regional ISP 5,673 (42.25)
Cloud provider 426 (13.88) Telco 297 (19.12) ISP and Cloud provider 371 (9.98) Telco 1,747 (13.01)
Telco 411 (13.39) Telco 276 (17.77) Telco 357 (9.60) ISP 1,537 (11.45)
Corporate network 102 (3.32) Cloud provider 141 (9.08) Telco 282 (7.58) Telco 615 (4.58)
Telco 94 (3.06) Telco 83 (5.34) Telco 249 (6.70) ISP and Cloud provider 554 (4.13)
ISP 85 (2.77) Telco 58 (3.73) ISP 171 (4.60) ISP 433 (3.22)
Telco 79 (2.57) ISP 42 (2.70) Corporate network 65 (1.75) Cloud provider 365 (2.72)
Regional ISP 73 (2.38) Cloud provider 38 (2.45) Telco 50 (1.34) ISP 249 (1.85)
ISP 71 (2.31) ISP 27 (1.74) Regional ISP 49 (1.32) Cloud provider 160 (1.19)
Regional ISP 58 (1.89) Telco 25 (1.61) Corporate network 45 (1.21) ISP 130 (0.97)
Telco 55 (1.79) Cloud provider 24 (1.55) ISP and Cloud provider 41 (1.10) Corporate network 128 (0.95)
Regional ISP 54 (1.76) ISP 18 (1.16) Regional ISP 33 (0.89) Regional ISP 118 (0.88)

Other 404 (13.16) Other 212 (13.65) Other 368 (9.90) Other 1,718 (12.80)

outlines the outcomes for the CoAP scans. The outcomes reveal that there is a
significant difference in the distribution of the population between the countries.
On the one side, there is Denmark with 0.66 PCM that correspond to only 86
reflectors, whereas Finland has 12.89 PCM with 1,967 reflectors. A more detailed
look at the results shows that the majority of the responses, namely between the
first and third quartile, produce a BAF between five and six, which makes the
mean BAF consistent across countries. The max BAF goes up to 40 for Norway,
while only being 9.41 for Denmark. With regard to mean PAF, the results are
similar for all countries, whereas this is not the case for the maximum PAF.
In Norway, we see a PAF up to 30. Overall, we can conclude that there is a
considerable difference in the number and density of the CoAP reflectors among
the four countries. However, they offer similar mean BAF independent of the
country. Finally, Table 7 provides the analysis of the AS for the CoAP reflectors.

Table 6. Detailed results for CoAP scanning

Country Reflectors PCM MeanBAF MaxBAF MeanPAF MaxPAF MeanTop10%

Denmark 86 0.66 4.96 9.41 4.97 7 7.12

Finland 1,967 12.89 5.39 20.69 5.51 7 6.91

Norway 549 3.48 4.86 40.34 4.91 30 7.73

Sweden 3,104 10.27 4.87 25.10 5.00 13 6.88

4.5 WSD

Table 8 provides the outcomes of the WSD scanning, while Fig. 3 depicts the dis-
tribution of the WSD reflectors. As presented in Table 8 the highest population
of WSD reflectors resides within the Swedish IP range where 811 unique devices
were identified with 2.68 PCM, and the lowest within the Danish with 58 devices

A Wide Network Scanning for Discovery of UDP-Based Reflectors 187

Table 7. CoAP reflectors by organization. Percentage values, rounded to 2 decimal
places, are given in parentheses.

Denmark Finland Norway Sweden
AS Devices AS Devices AS Devices AS Devices

Regional ISP 28 (32.56) Telco 632 (32.13) Telco 125 (22.77) Regional ISP 761 (24.52)
ISP 10 (11.63) Telco 561 (28.52) Research network 97 (17.67) Telco 551 (17.75)
Telco 10 (11.63) Telco 396 (20.13) ISP and Cloud provider 76 (13.84) Telco 481 (15.50)
Telco 8 (9.30) ISP 58 (2.95) Telco 51 (9.29) ISP 308 (9.92)
ISP 8 (9.30) Cloud provider 53 (2.69) Telco 33 (6.01) ISP 262 (8.44)
ISP 4 (4.65) Cloud provider 31 (1.58) Telco 28 (5.10) Cloud provider 178 (5.73)
ISP 3 (3.49) Telco 29 (1.47) Corporate network 28 (5.10) Corporate network 147 (4.74)
Regional ISP 2 (2.33) Telco 27 (1.37) Telco 25 (4.55) ISP and Cloud provider 51 (1.64)

Telco 23 (1.17) Telco 17 (3.10) Telco 32 (1.03)
Corporate network 19 (0.97) Regional ISP 16 (2.91) Regional ISP 30 (0.97)
Telco 14 (0.71) ISP 8 (1.46) Regional ISP 28 (0.90)
ISP 14 (0.71) Regional ISP 7 (1.26) University network 24 (0.77)

Other 13 (15.11) Other 110 (5.59) Other 38 (6.92) Other 251 (8.09)

with 0.45 PCM. Furthermore, we can observe that the mean BAF is similar for
all countries, with a value around 30. Sweden exhibits the highest max BAF
with 193.55, while Denmark and Finland produced notably reduced max BAF
with a value of 97.94. The mean PAF is quite low for the WSD protocol, where
all countries exhibit a mean PAF of 1.5. Lastly, Table 9 shows the population of
the WSD reflectors according to the AS that they belong.

Table 8. Detailed results for WSD scanning

Country Reflectors PCM MeanBAF MaxBAF MeanPAF MaxPAF MeanBAF > 30 MeanTop10%

Denmark 58 0.45 31.74 97.94 1.55 3 46.11 70.47
Finland 298 1.96 35.30 97.94 1.56 6 57.35 97.42
Norway 179 1.13 33.50 145.16 1.66 3 43.57 65.31
Sweden 811 2.68 29.32 193.55 1.50 6 50.68 82.83

From Fig. 3, we observe that for all the countries, the proportion of BAF
greater than 30 is more than the half of the overall population, with the highest
for that of Norway with a 72%. The second-largest proportion is in the range of
1 to 10, consisting of around a quarter of devices. An interesting outcome is that
none of the responses, across all countries, produced a BAF less than 1. This
is due to the fact that the payload of the request is minimal, containing just
three characters. The small payload could be interpreted as that WSD based
DRDoS attacks could be suitable for exploiting IoT devices, which often have
low bandwidth capabilities. On the other, the low population of WSD reflectors
indicates that it would be challenging for a DoS attacker to assemble a crucial
army of reflectors, and they may favour for other UDP-based protocols with
more dense population.

188 A. Bjerre et al.

Fig. 3. Histograms of BAF results for WSD probe

Table 9. WSD reflectors by organization. Percentage values, rounded to 2 decimal
places, are given in parentheses.

Denmark Finland Norway Sweden
AS Devices AS Devices AS Devices AS Devices

Telco 28 (48.28) Telco 87 (29.19) ISP and Cloud provider 26 (14.53) Cloud provider 181 (22.32)
Telco 8 (13.79) Telco 83 (27.85) Telco 25 (13.97) Telco 116 (14.30)
ISP 5 (8.62) Telco 56 (18.79) Research network 25 (13.97) Telco 98 (12.08)
Regional ISP 5 (8.62) ISP 14 (4.70) ISP 20 (11.17) ISP 84 (10.36)
ISP 3 (5.17) Telco 7 (2.35) Telco 14 (7.82) Telco 83 (10.23)
Regional ISP 3 (5.17) Corporate network 7 (2.35) Regional ISP 14 (7.82) ISP 48 (5.92)
Regional ISP 2 (3.45) Cloud provider 6 (2.01) ISP 12 (6.70) Corporate network 28 (3.45)
Cloud provider 1 (1.72) ISP 5 (1.68) ISP 7 (3.91) ISP 21 (2.59)
Telco 1 (1.72) Telco 4 (1.34) ISP 5 (2.79) ISP 15 (1.85)
ISP 1 (1.72) ISP 4 (1.34) ISP 4 (2.23) Corporate network 12 (1.48)
ISP 1 (1.72) ISP 3 (1.01) ISP 4 (2.23) University network 11 (1.37)

Regional ISP 2 (0.67) Students organization 3 (1.68) ISP and Cloud provider 8 (0.99)

Other 0 (0.00) Other 20 (6.71) Other 20 (11.17) Other 106 (13.07)

4.6 Discussion

As expected, SSDP exhibits the highest max and mean PAF. This is due to the
fact, that SSDP returns a response for every supported service. All countries
achieved a mean PAF between 6 and 10, with a max PAF of 84, except for the
unicast probe for Denmark. The max BAF is over 100 for each type of probe,
with values that vary between 128.47 for Denmark and 309.59 for Finland. For
SSDP, the unicast probe produces a marginal higher BAF than the multicast
probe. A possible explanation could be that the payload for an unicast request is
usually smaller than that of the multicast request, which is the largest possible
and has fixed length. Thus, it results in a larger BAF.

Regarding SNMP scanning, the outcomes reveal that the number of reflectors
increases with lower max-repetition values, however, the BAF increases with
higher max-repetition values. The max-repetition value of 500 seems to be
a good balance in the trade-off between the number of reflectors and BAF, as
this value produce the optimal mean BAF for all the reflectors as well as for
the reflectors that produce a BAF over 30 or the top 10%. This stands valid
for all the countries except Finland, which shows the best mean BAF values
for max-repetition equal to 1,000. The highest BAF observed throughout our

A Wide Network Scanning for Discovery of UDP-Based Reflectors 189

experiments is for SNMP with a value of 229.94, and is produced by a Finish IP
address when the max-repetition was 1,000.

However, although, the SNMP reflectors resulted in the highest max BAF
among the four protocols, the mean BAF is surprisingly low, the second lowest
after CoAP. This is because a significant number of the reflectors returned a
response with a size smaller than the request, resulting in a BAF smaller than
1. This fact is also evident from the high max PAF and low mean PAF values
in Table 4. Nevertheless, if we filter out the optimal amplifiers, either those that
provided a BAF over 30 or the top 10%, they produce the highest mean BAF for
all countries. Finally, SNMP reflectors exhibit the most dense population among
the four investigated protocols, with a population that varies from around 10
PCM for Finland to almost 45 PCM for Sweden.

CoAP results in the lowest outcomes in terms of BAF, significantly lower
compared to the other three protocols. The mean BAF does not exceed 6 across
all countries, with a max BAF of 40.34 for Norway. The low mean BAF for the top
10% confirms that there are a handful of outliers that produced a beneficial for
an attacker BAF. Similarly, the mean PAF values are very close across countries.
Noteworthy is the max PAF of Norway with a value of 30 with the remaining
countries demonstrating far lower mean PAF.

WSD produces the highest mean BAF. However, it has the lowest distribution
of reflectors, which is the lowest observed throughout our experiments. This
constitutes challenging to discover and exploit these reflectors in effective DDoS
attacks. The PAF outcomes are not considerable as well. These figures can be
explained by the fact that the payload of the request is minimal, which can
create a high BAF with a relatively small response length or PAF.

Overall, SNMP seems to be the most beneficial to be exploited in DDoS
attacks. This is due to the highest proportion of discovered reflectors, the highest
max BAF, as long as high results in the statistics for mean BAF over 30 and
the top 10%. SSDP is also a reasonable choice for a DDoS attack, with its
high mean PAF and considerable mean BAF results. On the other hand, if the
attackers aim to launch a lightweight attack and exploit restricted devices, then
the appropriate choice could be CoAP protocol, as this requires the creation of
a small request which triggers a considerable high mean BAF.

From the point of view of the examined countries, Sweden contains the largest
population of reflectors both in terms of absolute values and proportion for all
protocols but CoAP. For this country, the distribution of reflectors reaches the
highest for the case of SNMP protocol with a value of 44.5 PCM or 13,427
identified devices. On the other hand, Finland has the smallest population for
the SSDP and SNMP protocols, the two most beneficial protocols, with 1.9 and
10, respectively. Finally, Denmark has the smallest population for CoAP and
WSD with around 0.5 PCM.

190 A. Bjerre et al.

5 Related Work

In the literature, there exist a significant corpus of research works that scrutinize
various factors in DRDoS attacks. Mainly, these works investigate the contribu-
tion of UDP-based protocols as amplifiers and assess their capabilities in terms
of BAF and PAF.

To this direction, Rossow [5] conducted an Internet scanning measure-
ment and investigated 14 UDP-based protocols as potential amplifiers in DDoS
attacks. Regarding SNMP, the authors assessed that the discovered reflectors
produced a mean BAF of 6.3 with the top 10% achieving a BAF of 11.3. For the
case of SSDP protocol, they deduced that SSDP devices could provide a mean
BAF of 30.8 with the top 10% accomplishing a BAF of 75.9. In comparison to
our work, we can note that the reflectors we have discovered provide a much
higher BAF, namely 75 to 230 and 42 to 169 for SNMP and SSDP, respectively.
However, the population of the reflectors, we identified, is much smaller, as we
only consider 4 countries.

Furthermore, Kührer et al. [17] conducted a global Internet scanning for the
discovery of potential reflectors. They focused on several UDP-based protocols,
including SNMP and SSDP. They showed that throughout their experiment
there existed a number of around 9M SNMP and 5M SSDP reflectors. Another
interesting observation is that these reflectors migrate to different IP addresses
with a high rate. In fact, only 50% of the initial identified reflectors were still
accessible after one week on the same IP address. In comparison with [17], besides
the enumeration of the potential reflectors, we also assess their amplification
capabilities in terms of BAF and PAF.

More recent, Anagnostopoulos et al. [18] conducted a large scale evaluation
of DNS and SSDP reflectors in three countries, these are Greece, Portugal and
Singapore. Their outcomes for SSDP verify that there exist a significant portion
of SSDP reflectors in the three countries, which contribute a BAF of 52 to 85 for
the top 25% reflectors of each country, achieving a maximum BAF of 470 and a
PAF of 126.

Another category of research works is the examination of IoT and networking
devices by exploiting them as reflectors and stressing them under heavy network
load. For example, Lyu et al. [19] investigated the reflective DDoS attack capa-
bilities of eight consumer IoT devices in terms of provided BAF and traffic
capacity. From their experiments with SSDP, SNMP and TCP SYN reflection,
they observed that M-SEARCH request for SSDP is the most beneficial for an
attacker, as it was supported by the half of the examined devices yielding a
BAF between 15.13 and 43.3. By deploying the eight devices, the authors were
able to carry out and sustain a DDoS attack with a BAF of 20 for 24 h, causing
a traffic stream of around 1.2 Mbps towards the victim.

Gondim et al. [12] assessed in a custom testbed the amplification capabilities
of SSDP and SNMP protocol, among other UDP-based protocols. They observed
a BAF of at most 38 and 610, and a PAF of 10 and 33 for SSDP and SNMP,
respectively. However, they recognized that protocols such as SSDP and SNMP,

A Wide Network Scanning for Discovery of UDP-Based Reflectors 191

which are mainly deployed in restricted environments such as in IoT networks,
suffer from saturation when they are exploited for DoS purposes. That is, the
amplification effect is decreasing due to the computation capabilities of the IoT
device and the congestion on the outbound traffic.

6 Conclusions

DoS type of attacks in the form of DRDoS, which take advantage of the amplifica-
tion effect of specific application protocols, as well as the IP spoofing capability,
constitutes a constant threat to the Internet infrastructure and a rising concern
to the security community. In this work, we conduct a multi-country Internet
scan in the Nordic region with the purpose to investigate SSDP, SNMP, CoAP
and WSD services. The specific protocols have been reported to provide strong
amplification potentials. Through our probes, we aim to examine the distribu-
tion of the reflectors in the four countries, namely, Denmark, Finland, Norway
and Sweden, and assess their amplification capacity.

Our findings show that there exist a substantial number of potentially
exploitable reflectors, a great proportion of which generates a high amplifica-
tion factor in terms of both BAF and PAF. SNMP and SSDP protocols are
proven to be the most beneficial protocols from an attacker’s perspective. For
SNMP, Sweden contains the most multitudinous group of reflectors, as more
than 44 PCM of the overall Swedish IP addresses respond to the SNMP probe,
yielding a mean BAF of 20. In addition, Finland has the highest proportion of
the most optimal amplifiers. Specifically, in this country, around one third of
the detected reflectors provide a BAF over 30, with an overall mean BAF of 90.
Even worst, for the most beneficial type of probe, the top 10% of the amplifiers
produces a BAF of 230. Regarding SSDP, the distribution of reflectors reaches
the highest of 10 PCM for Sweden, with a mean BAF of 23. This country also
has the highest proportion of devices that produce a BAF over 30 with of 41.
On the other hand, Finland which has the lowest population exhibits the best
results for the categories BAF over 30 and top 10%, with a BAF of 152 and
169, respectively. On the contrary, CoAP and WSD show the lowest outcomes
in terms of distribution and partially in BAF, which makes them not a strong
candidate for DRDoS.

Overall, we believe our work could contribute in the battle against the DDoS
ecosystem and help the interested parties in the cybersecurity community, such
as professionals, researchers, and service providers, to design their defence strat-
egy against the DDoS attacks. Through our experiments, we can deduce the type
and the characteristics of the existing reflectors. The analysis of the IP addresses
in terms of AS shows that the majority of these devices reside within IP ranges
assigned to ISP and telco companies, meaning that we can safely assume that
these devices belong to end-users. Moreover, the payload of the SSDP and SNMP
responses denote that these reflectors correspond to home appliances, like net-
working and smart IoT devices. In addition, the outcomes of this study can help

192 A. Bjerre et al.

to raise the security awareness of the community regarding the potentials of this
critical threat and urge the stakeholders to undertake the appropriate mitigation
actions.

References

1. NexusGuard. Threat Report FHY 2021 Distributed Denial of Service (DDoS)
2. Anagnostopoulos, M.: Amplification DoS Attacks, pp. 1–3. Springer, Heidelberg

(2019). https://doi.org/10.1007/978-3-642-27739-9_1486-1
3. Heinrich, T., Obelheiro, R.R., Maziero, C.A.: New kids on the DRDoS block: char-

acterizing multiprotocol and carpet bombing attacks. In: Hohlfeld, O., Lutu, A.,
Levin, D. (eds.) PAM 2021. LNCS, vol. 12671, pp. 269–283. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-72582-2_16

4. M. Anagnostopoulos, G. Kambourakis, S. Gritzalis, and D. K. Y. Yau. Never say
never: authoritative TLD nameserver-powered DNS amplification. In: NOMS 2018
IEEE/IFIP Network Operations and Management Symposium, pp. 1–9 (2018)

5. Rossow, C.: Amplification hell: revisiting network protocols for DDoS abuse. In:
Proceedings of the 2014 Network and Distributed System Security Symposium
(NDSS) (2014)

6. Ferguson, P., Senie, D.: Network ingress filtering: defeating denial of service attacks
which employ IP source address spoofing. Technical report (1998)

7. Beverly, R., Bauer, S.: The spoofer project: inferring the extent of internet source
address filtering on the internet. In: Steps to Reducing Unwanted Traffic on the
Internet Workshop (SRUTI 2005). USENIX Association (2005)

8. Ryba, F.J., Orlinski, M., Waehlisch, M.,Rossow, C., Schmidt, T.C.: Amplifica-
tion and DRDoS attack defense-a survey and new perspectives. arXiv preprint
arXiv:1505.07892 (2015)

9. Center for Applied Internet Data Analysis (CAIDA). State of IP Spoofing. http://
spoofer.caida.org/summary.php (2022)

10. van Rijswijk-Deij, R., Sperotto, A., Pras, A.: DNSSEC and its potential for DDoS
attacks: a comprehensive measurement study. In: Proceedings of the 2014 Confer-
ence on Internet Measurement Conference, IMC 2014, New York, NY, USA, pp.
449–460. ACM (2014)

11. Goland, Y., Cai, T., Leach, P., Gu, Y., Albright, S.: Simple service discovery pro-
tocol/1.0 operating without an arbiter (1999)

12. Gondim, J.J., de Albuquerque, R.O., Orozco, A.L.S.: Mirror saturation in amplified
reflection Distributed Denial of Service: a case of study using SNMP, SSDP, NTP
and DNS protocols. Future Gener. Comput. Syst. 108, 68–81 (2020)

13. Shelby, Z., Hartke, K., Bormann, C.: RFC7252: The Constrained Application Pro-
tocol (CoAP) (2014)

14. Mattsson, J.P., Selander, G., Amsüss, C.: Amplification Attacks Using the Con-
strained Application Protocol (CoAP) (2014)

15. Respeto, J.: New DDoS vector observed in the wild: WSD attacks hit-
ting 35/Gbps. http://www.akamai.com/blog/security/new-ddos-vector-observed-
in-the-wild-wsd-attacks-hitting-35gbps (2019)

16. Durumeric, Z., Wustrow, E., Halderman, J.A.: ZMap: fast internet-wide scanning
and its security applications. In: 22nd USENIX Security Symposium (USENIX
Security 13), pp. 605–620. USENIX Association (2013)

https://doi.org/10.1007/978-3-642-27739-9_1486-1
https://doi.org/10.1007/978-3-030-72582-2_16
http://arxiv.org/abs/1505.07892
http://spoofer.caida.org/summary.php
http://spoofer.caida.org/summary.php
http://www.akamai.com/blog/security/new-ddos-vector-observed-in-the-wild-wsd-attacks-hitting-35gbps
http://www.akamai.com/blog/security/new-ddos-vector-observed-in-the-wild-wsd-attacks-hitting-35gbps

A Wide Network Scanning for Discovery of UDP-Based Reflectors 193

17. Kührer, M., Hupperich, T., Rossow, C., Holz, T.: Exit from hell? reducing the
impact of amplification DDoS attacks. In: 23rd USENIX Security Symposium
(USENIX Security 14), pp. 111–125 (2014)

18. Anagnostopoulos, M., Lagos, S., Kambourakis, G.: Large-scale empirical evaluation
of DNS and SSDP amplification attacks. J. Inf. Secur. Appl. 66, 103168 (2022)

19. Lyu, M., Sherratt, D., Sivanathan, A., Gharakheili, H.H., Radford, A., Sivaraman,
V.: Quantifying the reflective DDoS attack capability of household IoT devices.
In: Proceedings of the 10th ACM Conference on Security and Privacy in Wireless
and Mobile Networks, WiSec 2017, New York, NY, USA, pp. 46–51. Association
for Computing Machinery (2017)

GPU-FAN: Leaking Sensitive Data
from Air-Gapped Machines via Covert

Noise from GPU Fans

Mordechai Guri(B)

Cyber Security Research Center, Ben-Gurion University of the Negev,
8410501 Beer-Sheva, Israel
gurim@post.bgu.ac.il

http://www.covertchannels.com

Abstract. Modern computer networks are secured with a wide range of
products, including firewalls, intrusion detection and prevention systems
(IDS/IPS), and access control mechanisms. But despite the multiple lay-
ers of security, these measures can be bypassed by motivated attackers.
To cope with this threat, an ‘air-gap’ is a network security measure that
may be taken where highly sensitive information needs to be protected.
In this approach, the internal network is isolated from the Internet, phys-
ically and logically, to create a physical boundary with the outer digital
world.

In this paper, we show that attackers can leak data from air-gapped
networks via covert acoustic signals. Our method doesn’t require speak-
ers on infected computers. Malware running on the computer can use
the GPU (graphics processing unit) fans and evasively control its speed.
While the slight changes in the RPM (rotation per minute) speed are
not noticeable to users, they can be used to modulate and encode binary
information. A nearby receiver, such as a compromised smartphone or
a laptop, can receive the covert acoustic signals and demodulate and
decode the binary information. We discuss the attack model on air-
gapped networks and provide relevant technical background and the
characteristics of the GPU fans. We also present the covert channel’s
design, implementation, and evaluation. The results show that a brief
amount of sensitive information can be leaked several meters away via
covert noises generated from the GPU fans.

Keywords: Air-gap · Acoustic · GPU · Covert channel · Exfiltration

1 Introduction

Information is an organization’s most valuable asset in the modern digitalized
era. Accordingly, sensitive data such as personal information, financial data,
intellectual properties, and source code are kept secured within the organiza-
tion’s networks. To protect IT networks from online threats, a wide range of

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. P. Reiser and M. Kyas (Eds.): NordSec 2022, LNCS 13700, pp. 194–211, 2022.
https://doi.org/10.1007/978-3-031-22295-5_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22295-5_11&domain=pdf
http://orcid.org/0000-0003-1806-8858
https://doi.org/10.1007/978-3-031-22295-5_11

GPU-FAN: Leaking Sensitive Data from Air-Gapped Machines 195

security products are commonly used; antivirus (AV), intrusion detection and
prevention systems, data leakage prevention systems, Security Information and
Event Management (SIEM), and so on. But despite the multiple layers of secu-
rity and defense, a major part of the industry has recorded successful attacks on
their networks. Such attacks are usually conducted by attack groups or cyber
criminals with specific goals, whether to steal, spy, or disrupt. For example, in
March 2021 hacking group known as Hafnium attacked a wide range of industries
by exploiting vulnerabilities in Microsoft Exchange Server. The attack affected
over 30,000 organizations across the United States, including local governments,
government agencies, and businesses [1]. In April 2022, a cryptocurrency and
NFT games company Ronin reported that they were hacked with a total loss
of $540 Million. To infiltrate the organization’s network, attackers may employ
different types of techniques, including social engineering, 0-day vulnerabilities,
Malvertising, exploit kits, browser attacks, and so on [2].

1.1 Air-Gap Networks

Where highly sensitive information is involved, an organization may keep the
relevant data in air-gapped networks. An air-gap (or air-wall) is a security mea-
sure in which a computer, network, or device is disconnected from the Internet
on both physical and logical levels. In air-gap networks, there is no connection to
the external networks through cable networks, Wi-Fi, Bluetooth, or other types
of connection. Such physical isolation keeps sensitive information protected from
the aforementioned types of online cyber threats. Air-gapped networks are known
to be used by a wide range of organizations, including defense and military, gov-
ernmental sectors, finance and banking, health care and hospitals, and critical
infrastructure.

1.2 Air-Gap Attacks

Although the level of security provided by the air-gap measure is high, air-
gap networks are immune to sophisticated cyber attacks. Events reported in the
past show that skilled and persistent adversaries can infiltrate the organization’s
boundaries and breach air-gap networks. To achieve this goal, the attackers may
use strategies such as compromising supply chains, employing social engineering,
and using deceived insiders. Agent.btz, revealed in 2008, is a worm that primar-
ily spreads itself via removable devices such as USB thumb drives [3]. The worm
infected U.S. classified networks in a military base in the Middle East. The FBI
and DHS joint analysis report attributed Agent.BTZ to Russian civilian and mil-
itary intelligence services [3]. The Stuxnet worm, reported in 2011, is a malicious
computer worm that is known for its use to attack nuclear facilities. According
to the reports, the worm could attack the systems through a USB drive that was
plugged into an affected system and then spread to any subsequent systems that
the USB drive was plugged into [4]. In November 2019, the Washington Post
reported the Kudankulam Nuclear Power Plant (KKNPP) in India, suffered

196 M. Guri

from a cyberattack. Other malware that targets air-gap environments, such as
Ramsay [5], and Tick [6], were reported in recent years.

1.3 Air-Gap Exfiltration

After the infiltration phase, the malware usually collects the data of interest; doc-
uments, keystrokes logging, credentials, etc. At some point, the malware needs
to exfiltrate the information outward to the attacker. In the case of Internet-
connected networks, exfiltration is a trivial task; legitimate Internet protocols
such as HTTPS, DNS, or SMTP can be used for the exfiltration [7]. However,
in the cases of air-gapped networks, the act of leakage is a more challenging
task due to the lack of Internet connectivity. The research domain of exfiltrating
data over air-gaps is known as air-gap covert channels. The fundamental idea
is to use nonstandard communication mediums to leak the information to the
remote attacker. Over the past twenty years, researchers demonstrated different
types of air-gap covert channels, including electromagnetic, optical, thermal, and
acoustic [8].

1.4 Our Contribution

This paper presents a new type of air-gap covert channel based on the GPU
fans that enable attackers to leak data from isolated, air-gapped systems. The
contributions of our work are listed below.

1. Attack model. We present the offensive attack model on an air-gapped
system in which the attacker uses the GPU fans to exfiltrate information.
The GPU exists today on many modern systems workstations, servers, data
centers, and public and private cloud environments, making this attack highly
available to the attacker.

2. GPU fan acoustics. We focus on using the Graphical Processing Unit
(GPU) for the exfiltration. Although leaking via fan noise has been discussed
before, no prior work focuses on GPU fans. We focus on the characteristics
unique to GPU fans, technically and acoustically, for the implementation,
evaluation, and measurements.

3. Collaborative attack & modulation. GPU fans are commonly equipped
with multiple fans. We present the exfiltration of data with multiple GPU
fans and discuss the topic of collision avoidance and multi-fan modulation.

4. Implementation and countermeasures. We present the implementation
of a transmitter and receiver that can be used with any ordinary smartphone
or nearby microphones and also discuss a set of countermeasures to cope with
this threat.

1.5 Contribution to Prior Work

Although the concept of a covert channel using the computer chassis and CPU
fans has been presented in prior work [9], no previous work focus on the GPU fans

GPU-FAN: Leaking Sensitive Data from Air-Gapped Machines 197

Fig. 1. Graphic cards with one (C), two (B), and three (A) fans

Table 1. Comparison between the characteristics of chassis, CPU, and GPU fans

Fan Control Interference Number

Chassis Partial No Mostly single
CPU Partial Interference with CPU workloads Mostly single
GPU (this paper) Full control No interference with CPU Multiple

for the exfiltration. In this paper, we focus on the GPU fans, which have several
unique characteristics for exfiltration, as presented in Table 1. First, compared
to the GPU fans, the chassis and CPU fans have limited or no control over the
speed. Some CPU controllers have an internal controller that overrides the speed
configuration, and some chassis and CPU fans completely lack speed control.
Second, using the CPU fans cause interference with the current processes on
the CPU, while the GPU fans are separated from the main CPU and hence
available most of the time. Third, modern graphic cards are commonly shipped
with multiple fans, which can be used for exfiltration. Figure 1 shows typical
graphic cards with one, two, and three fans.

This paper is organized as follows. The attack model is introduce in Sect. 2.
We overview related work in Sect. 3. The design and implementation of transmit-
ter and receiver are described in Sects. 4 and 5, respectively. Section 6 presents
the analysis and evaluation results. Countermeasures are provided in Sect. 7, and
we conclude in Sect. 8.

2 Attack Model

The term Advanced Persistent Threat (APT) in cyber-security is used to describe
sophisticated, commonly nation-state cyberattacks aimed at gaining strategic
advantages. It also includes the type of cybercrime attacks targeted at business
sectors. The cyber kill chain framework introduced by Lockheed Martin consists
of seven main attack phases [10]. In this cyber kill chain, the remote operations
on the network are done over legitimate connections, usually through the Inter-
net. For example, the attacker may compromise the internal network using a
phishing email opened by an organization employee, and data can be exfiltrated
via HTTPS protocol to a remote server. However, in the case of an air-gapped
network, these steps are more challenging since the attacker doesn’t have direct
connectivity with the target network. In the following subsections, we describe

198 M. Guri

the main phases that are unique to the APT attacks on air-gapped networks.
The attack chain consists of the following main stages, illustrated in Fig. 2.

Fig. 2. The different phases of the attack; infection, data gathering, and exfiltration

2.1 Air-Gap Infection

In the case of air-gap networks, malware delivery through the Internet is impos-
sible since the network is isolated. In this case, the adversaries may use sophisti-
cated attack vectors, such as contaminating the organization’s supply chains of
hardware and software. For example, Blomberg reported in 2018 that state actor
spy chips are found in hardware used by Apple, Amazon, and other companies.
Attackers can also use malicious or deceived insiders to deliver malware into
the air-gap network [11]. The Agent.btz APT from 2008 is a computer worm
that compromised U.S. military networks via an infected USB drive used by a
deceived employee. Another case is the Stuxnet worm that breached supervisory
control and data acquisition (SCADA) systems in 2010 [4]. Other attacks that
target air-gap facilities, such as Ramsay [5] and Tick [6], were found by security
firms in recent years.

2.2 Mobile Infection

In the second step, the employees’ smartphones in the organization are located,
and the malicious application is installed on the smartphones. It is important to
note that mobile phone carriers are not necessarily malicious insiders. The device
can be infected via email attachments, websites, or malicious app downloads
without the owner’s consent or knowledge.

GPU-FAN: Leaking Sensitive Data from Air-Gapped Machines 199

2.3 Data Gathering

After installing malware in the target network, the attacker may want to collect
interest data. The information collected may be documents, keylogging, creden-
tials, biometric information, images, and so on.

2.4 Data Exfiltration

In the exfiltration stage, the malware transmits the data using acoustic signals
generated by GPU fans. The binary information is modulated and encoded on
the manipulations of one or more GPU fan speeds. Concurrently, the malicious
app on the phone scans for the acoustic signals denoting a covert channel. When
the signals are received and decoded, the data can be decoded in the smartphone.
This data can be forwarded later to the attacker via Wi-Fi or cellular data.

Fig. 3. Attack scenario (illustration). Malware within the infected air-gapped computer
(A) transmits sensitive information emanating from the GPU fans. The smartphone or
laptop of employees receives the data

The attack scenario is illustrated in Fig. 3. Malware within the infected air-
gapped computer (A) transmits sensitive information emanating from the GPU
fans. The smartphone or laptop of employees receives the data.

3 Related Work

Air-gap covert channels are particular types of communication channels that
allow attackers to leak data from highly isolated, air-gapped systems in non-
standard ways. They are commonly categorized into electromagnetic and mag-
netic, electric, optical, thermal, and acoustic. A wide range of prior works focuses

200 M. Guri

on the electromagnetic spectrum as a medium for covert communication channels
in air-gap environments. Emanating radio signals from various components in
the system is demonstrated by techniques such as AirHopper [12], GSMem [13],
Funthenna [14], and USBee [15]. Other research show how to use magnetic fields
to exfiltrate data from isolated computers within Faraday cages [16]. Researchers
also introduced techniques that use power lines to leak data from air-gapped sys-
tems [17,18]. The optical medium can also be used to leak information. Loughry
discussed the option of leaking data over optical emanation using LEDS [19],
which was recently extended by other research works [20,21], by using the drive
indicator LED [22], router LEDs [23], and screens [24] to exfiltrate over air-gaps.
BitWhisper is a unique thermal covert channel that uses heat to modulate data
and exfiltrate it from a device [25].

3.1 Acoustic

In acoustic covert channels, data is encoded on top of sound waves. The most
common technique used by prior work is to use the computer loudspeakers to
generate sonic and ultrasonic waves [26–29]. These work discuss the transmission
of information between desktops, laptops, and smartphones via near ultrasonic
waves, usually above 18 kHz. The main limitation of the acoustic methods listed
above is the required system with sound hardware and loudspeakers. It is known
that some policies restrict the installation of loudspeakers in the system to create
a hardened, audio- gaped environment. To overcome the audio-gap limitations,
Researchers introduced a few methods which do not require loudspeakers. Guri
et al. used the noise from the hard disk drive actuator arm and CD/DVD to leak
data to short ranges [30,31]. More recently, researchers presented PowerSupplay,
a method that uses power supplies to exfiltrate data from air-gapped, audio-
gapped systems [32]. The work which is close to our work is Fansmitter, which
used computer fans to modulate and leak data [9]. However, the work in [9]
discusses chassis and CPU fans, while our work focuses on GPU fans and their
unique characteristics for data exfiltration in the discussion, implementation,
and evaluation. The contribution of our work is described in detail in Sect. 1.

4 Transmission

In this section, we present the implementation of the transmitter and the data
modulation encoding schemes.

4.1 GPU Fan Control

To control the GPU fan speed, a core code must be executed at the kernel level.
The GPU manufacturers implement their kernel driver and modules that inter-
face with the GPU thermal information and fan speeds. In many cases, a set of
API functions that interact with the kernel driver is provided to the developers to

GPU-FAN: Leaking Sensitive Data from Air-Gapped Machines 201

be used in their user-level process. For example, the AMDGPU kernel driver pro-
vides fan control for graphics cards via hwmon in the sysfs interface. In this case,
the fan PWN control range from 0 to 255 and can be calculated by multiplying
its value by 2.55. For example, setting the fan speed to 25 present can be done
by echo "64" > /sys/class/drm/cardX/device/hwmon/hwmon0/pwm1. Other
manufacturers provide their own control libraries. For example, NVIDIA pro-
vides dynamic fan control for NVIDIA graphic cards on Linux and Windows.
The NVAPI allows full user-level access to NVIDIA GPUs and drivers in any
application. Another option is to use the command line interface to interact with
the GPU fans; as in the case of NVIDIA, use the command nvidia-settings -a
GPUTargetFanSpeed=70 to set the fan speed to 70%. The implementation used
the standard API to control the GPU fans. The three levels of GPU fan control
and their corresponding required privilege levels and prerequisite are listed in
Table 2.

Table 2. Levels of GPU fan control

Control level OS Privileges Prerequisite

Kernel module/driver Windows/Linux/Mac Root/admin Signed driver (windows) installing kernel module (Linux, Mac)
User level API Windows/Linux User DLL (Windows) or shared libraries (Linux) provided by the OEM
File system interface (VFS) Linux/Mac User File system write permissions

4.2 Blade Pass Frequency (BPF)

The centrifugal fans installed on the GPUs are emitting acoustic noises in fre-
quencies and amplitudes. The blade passing frequency (BPF) noise is the most
dominant acoustic component of centrifugal fans. This noise is an aerodynamic
noise that is generated by turbulent flow fields and vibroacoustic noise resulting
from structural vibrations. The main tone generated by a fan is calculated by
multiplying the number of blades (n) by the rotating speed (R) in revolutions
per minute (RPM).

4.3 Modulation

We used the BFSK (binary frequency shift keying) modulation scheme in which
the information is modulated over two-speed levels. In this modulation, the
two BPF frequencies, BPF0 and BPF1, representing 0 and 1, are generated
by two distinct RPM speeds. Figure 4 shows the spectrogram of the alternating
sequence, with the F0 (600 Hz) and F1 (510Hz) frequencies generated by two
RPM in the GPU fan. Note that data can be modulated on the low harmonies
as well, but the quality of the signal is low due to the low SNR at the low
frequencies.

202 M. Guri

Fig. 4. BFSK modulation with two RPMs

4.4 Encoding and Framing

We encode the data with a frame consists a sequence of 13 bits (Fig. 5). The first
four bits are used for synchronization, letting the receiver detect the beginning
of a frame and extract the BPF parameters. The following 8 bits are the actual
payload representing the byte to transfer. The last bit is a parity bit which is
used as a simple error detection mechanism.

Fig. 5. The frames structure

4.5 Multiple Fans

Many modern graphics cards are shipped with multiple fans, most commonly two
or three. There are graphic cards that have even four and five fans. Single fan
GPU has a small form factor and uses a blower-style method for their cooling.
The multiple fans graphic cards have more computation power and are suitable
for medium to large-sized computer cases. Multiple fan GPUs are built with
PWM support which allows them to automatically adjust the speed according
to the heat. In the context of our covert channel, the malware can increase the
channel bandwidth by using multiple fans to exfiltrate the data. To modulate the
data on multiple fans, we implement a modulator that splits the stream of bytes
to transmit into chunks of n, where n is the number of fans that exists on the
system. For the transmission, each of the fans is responsible for transmitting the
byte in the stream of the location modulo t, where t is the specific fan number.
Figure 6 illustrates the exfiltration of six bytes in a stream with three fans.

GPU-FAN: Leaking Sensitive Data from Air-Gapped Machines 203

Multiple Fans Physical Layer. At the physical layer, a transmission with
multiple fans requires a collision avoidance mechanism. This is important for
the prevention of interference between the concurrent transmissions of the dif-
ferent fans. In our implementation, we split the relevant frequency band to the
number of fans (n) where each fan base carrier frequency begins at a distinct
band.

Fig. 6. Exfiltration with three fans (n = 3)

5 Reception

A standard audio chip in smartphones and laptops can sample at 48 kHz. Since
our covert channel is at the lower frequency bands, we downsampled the audio
input to 1000Hz Hz. Our demodulator app is implemented in Android OS for
smartphones. The main functionality of the receiver operates in a dedicated
thread, responsible for data sampling and downsampling, signal processing, and
data demodulation. Figure 7 on the left shows the Android receiver app state
machine. A photo of an app decoding the ‘TOP SECRET’ keystrokes exfiltrated
from a nearby air-gapped workstation is presented on the right.

Fig. 7. The Android receiver app state machine (left), and an Android receiver app,
decoding the ‘TOP SECRET’ text exfiltrated from a nearby workstation (right)

204 M. Guri

– Reception and Signal Processing. The first step is to sample the signal,
transform it to the frequency domain, and extract the two FSK frequencies by
applying a fast Fourier transform (FFT) to the array of the sampled values.
The signal is downsampled and stored.

– Sync Detection and Calibration. The receiver continuously searches for
a syn signal to identify a frame header (1010). The channel parameters are
extracted and forwarded to the demodulation methods if the sequence is
detected.

– Demodulation. In this stage, the eight bits payload is demodulated, and
the parity bit is calculated.

6 Evaluation

In this section, we present the evaluation of the covert channels. We show the
acoustic range of different GPUs, discuss the transmission speed, present the
effective distances given various properties, and the transmission time of different
types of information.

6.1 Acoustic Range

The frequency range of GPU fans is a fundamental property of the communica-
tion channel at the physical layer for implementing the down-sampling, modu-
lation, and demodulation schemes. In addition, given one or more transmitting
fans, it is crucial to split the dynamic range accordingly to avoid collisions and
interference between the fans. Table 3 present the acoustic range and number
of fans of seven GPUs of major graphic card manufacturers; NVIDIA, ASUS,
EVGA, GAINWARD, INNO3D, MSI, and GIGABYTE. As can be seen, the
main acoustic components of GPU fans span approximately 0 to 700Hz. This
implies that the covert channel is maintained relatively in the lower frequency
ranges of the acoustic spectrum, making it difficult to monitor and block, as
discussed in the countermeasures section. It is important to note that although
some graphic cards support high RPMs, which yield higher BPF values, we limit
the evaluation process to the standard max speeds, commonly 3000 RPM. The
number of fans on a typical graphical card is between 1 and 3, whereas multiple
fans on a graphic card usually have the same speed, acoustic range, and other
characteristics.

6.2 Transition Time

The transmission speed mainly depends on the d parameter, which is the tran-
sition time between two RPMs encoding the ‘0’ and ‘1’. Since the switching
between two rotational speeds is a mechanical process, we tested the minimal
value of d in which a nearby receiver can identify the acoustic component of
the corresponding BPF. In this evaluation we tested the transmission with d =
250ms, d = 500ms, d = 1 s, and d = 2 s. Figure 8 show the spectrogram of a

GPU-FAN: Leaking Sensitive Data from Air-Gapped Machines 205

Table 3. The acoustic range and number of fans of different graphic cards

Model Upper BPF Blades # Fans

1 GeForce GTX 1080Ti Founders 450Hz 9 1
2 ASUS ROG Poseidon GeForce GTX 1080Ti Platinum Edition 650Hz 13 2
3 EVGA GeForce GTX 1080Ti FTW3 Elite 550Hz 11 3
4 GAINWARD GeForce GTX 1080Ti Phoenix Golden Sample 750Hz 15 2
5 INNO3D iChill GeForce GTX 1080Ti Black 450Hz 9 1
6 MSI GeForce GTX 1080Ti Lightning 750Hz 15 3
7 GIGABYTE GeForce GTX 1060 Mini 650Hz 13 1

signal transmitted with three values of d, as received by a nearby smartphone
receiver. The results show that we maintained successful signal demodulation
for the values of 2 s, 1 s, and 500ms. However, the transmission time of 250ms
yields low SNR values that work only for short distances with some of the fans.
Hence, we consider the d = 500ms as the stable minimal value for use in the
covert channel.

Fig. 8. Spectrogram of transmissions with d = 2 s (left), d = 1 s (middle), and d =
500ms (right)

6.3 Bit Rates

The bit rate of the covert channel is derived from the transition time and the
number of fans on the graphical card. We found that a minimal guarding interval
10Hz is sufficient to prevent collisions between transmissions in cases of multi-
ple fans. Table 4 shows the different bit rates for the graphical cards provided in
Table 3 at the beginning this section. The bit rates are 0.5–2 bit/s for transmis-
sions with a single fan and 1.5–6 bit/s for transmissions with three participating
fans. Note that higher bit rates can be maintained where a parameter of d =
250ms is applicable, e.g., short ranges and appropriate GPUs.

6.4 Effective Distance

We measure the effective distance of the covert channel. In this setup, a receiver
smartphone with a demodulator app described in Sect. 5 was located at increas-
ing distances from the transmitting computer. Figure 9 shows the power spectral

206 M. Guri

Table 4. The bit rates for graphic cards with various numbers of fans and different d
values

Models # d = 250 ms d = 500ms d = 1 s d = 2 s

1,5,7 (1 fan) 4 bit/s 2 bit/s 1 bit/s 0.5 bit/s
2,4 (2 fans) 8 bit/s 4 bit/s 2 bit/s 1 bit/s
3,6 (3 fans) 12 bit/s 6 bit/s 3 bit/s 1.5 bit/s

Table 5. The evaluation results in a range of 0 to 500 cm, with SNR, BER, and different
fan speeds

density (PSD) of transmissions up to 500 cm away, which depicts the existence
of the signal over time in terms of power. The signals are observed in the spec-
trum in the whole range. Table 5 present the signal-to-noise ratio (SNR), with

GPU-FAN: Leaking Sensitive Data from Air-Gapped Machines 207

different percentage of fan speeds for distances of 0 to 500 cm. For the evaluation
we tested five different fan speeds transitions, 40%–60%, 50%–70%, 60%–80%,
70%–90%, and 80%–100%. For each transmission, we present the bit error rate
(BER) maintained for the transmission, whereas BER of 0% means data trans-
mitted with no errors. As can be seen, with a transition time of 500ms (d =
500ms), we maintained a BER of 0% up to 400 cm between the transmitting
computer and the receiving smartphone. For 500 cm away, we had to increase
the transition time to 1 s (d = 1 s) to achieve a BER of 0%. This is mainly due
to environmental acoustic interferences that emanate from other components in
the room and outside, which affect the SNR levels.

Fig. 9. The power spectral density (PSD) of transmissions up to 500 cm away

6.5 Data Transmission

Table 6 present the time it takes to exfiltrate various types of information for each
computer with minimum (d = 0.250ms) and maximum (d = 2 s) parameters. A
brief amount of information such as bitcoin private keys, RSA encryption keys,
short texts, keylogging, and credentials can be exfiltrated from each computer in
a time ranging from seconds to dozens of minutes, depending on the transmitting
parameters and number of fans participating in the covert channel. Note that
the attackers may use multiple computers to increase the channel bandwidth.

208 M. Guri

Table 6. Transmission times min (d = 0.250 ms)/max (d = 2 s)

Information 1 fan 2 fans 3 fans

256-bit bitcoin key 64 s/512 s 32 s/256 s 21 s/170 s
Password (64 bit) 16 s/128 s 8 s/256 s 5 s/43 s
2048 bit RSA key 512 s/4096 s 256 s/2048 s 170 s/1375 s
AES 128 key 32 s/256 s 16 s/128 s 10 s/85 s
Keylogging 8 s/1.2 s 4 s/1 s 3 s/0.5 s
PIN codes (80 bits) 20 s/160 s 10 s/80 s 7 s/53 s
Brief texts (100 bytes) 200 s/1600 s 100 s/800 s 67 s/533 s

7 Countermeasures

Several defensive and protective countermeasures can be taken to defend against
the proposed covert channel.

– Zone restrictions. Several US and NATO standards, such as NATO SDIP-
27, NATO AMSG, USA NSTISSAM, and NATO ZONES, define a separation
of zones usually to deal with radiated electromagnetic, magnetic, optical, and
acoustic waves of equipment [33]. In this approach, recording devices such
as laptops, mobile phones, or recording devices are eliminated from the area
of air-gapped computers or kept at least outside a specified radius of several
meters away.

– Intrusion Detection. In this approach, we monitor the GPU fan’s activities
within the operating systems and detect suspicious activities. Such anoma-
lies could be a process that frequently changes the GPU fan’s speed. These
are three different layers from which an intrusion detection system can be
operated. (1) API monitoring: In this user-level approach, the thermal
API provided by the OEM is monitored, and the actual function calls are
inspected in runtime. In the case of Windows OS, this can be implemented
as proxy dynamic link libraries (DLLs) to the OEM libraries or by using
code injection and hooking techniques. (2) Monitoring kernel driver: In
this kernel level approach, a driver/module is installed at the kernel level
and continuously monitors the commands sent to the graphic cards on the
specified buses. The main advantage of this approach is the ability to cope
with kernel-level rootkits that bypass user-level mechanisms. (3) File sys-
tem filter: This approach is most relevant to Linux/Mac systems, in which
the fan can be controlled using the file system interface. This method installs
a file system filter and monitors the I/O control commands sent to the GPU
fans. Our experiment shows that all the monitoring approach leaks to certain
levels of false positive. One of the main reasons is that legitimate software
regulates the GPU fans according to the current temperature and workload
on the GPU.

GPU-FAN: Leaking Sensitive Data from Air-Gapped Machines 209

– External acoustic monitoring. It is possible to use noise detector hardware
devices that record and analyze the audio waves in a room at a specified range
of frequencies. Although such products exist [34], they are mainly used in the
ultrasonic band, which is relatively quiet. As shown in Sect. 6 the relevant
range for our covert channel is 0–700Hz which is a highly noisy range; it
would suffer from high rates of false alarms due to environmental noises.

– Internal jamming. Another option is to interrupt the covert channel by
applying random fluctuations to the GPU fans. Such jamming can be imple-
mented as a process that randomly interferes and performs slight changes to
the GPU fan RPMs. The main drawback of this approach is the undesired
continuous interference with the GPU fans that can affect its performance.

– External acoustic jamming. Acoustic jammers are hardware devices which
used to mask potential transmissions on certain frequency ranges, usually
ultrasonic. The jamming is done by continuously producing high-power white
noise signals in the whole range, masking other signals. While this approach
is effective for the inaudible ultrasonic band, it is less relevant to the low-
frequency band of our covert channel. Jamming the 0–700Hz range yields a
continuous high noise in the room, which is usually not accepted due to user
inconvenience and health reasons.

– GPU with water cooling. GPU water coolers, such as Corsair Hydro series,
provide effective and quiet cooling for GPUs and graphic cards. However, the
users need to purchase the complete cooling kit to facilitate a GPU water
block and are also required to work only with compatible graphic cards, which
is not always possible.

– Noise blocking chassis. There are specialized enclosures for workstations
and servers, which can significantly reduce the noise levels on the system’s top,
bottom, or sides. They also reduce the negative impact of air and structure-
borne vibrations. Some of the products we checked can reduce the noise by
70–75%, equivalent to approximately 15 dBA.

8 Conclusion

This paper presents a covert acoustic channel that allows attackers to exfiltrate
information from air-gapped, audio-gapped systems. We show that malicious
code in the computer can control the momentary speed of the GPU cooling fans
and encode binary information over the changes. A nearby receiver, such as a
compromised smartphone, can receive the emanated blade frequency acoustic
signals and decode the binary data. We present the design, implementation,
and evaluation of the covert channel. We also discuss the GPU fan control and
the multiple fans modulation. The results show that some sensitive information,
such as encryption keys, credentials, and texts, can be successfully leaked from
air-gapped computers up to five meters away.

210 M. Guri

References

1. New nation-state cyberattacks - microsoft on the issues. https://blogs.microsoft.
com/on-the-issues/2021/03/02/new-nation-state-cyberattacks/. Accessed 09 Apr
2022

2. Ronin hack: North korea’s lazarus behind $540 million axe infinity breach
| wired. https://www.wired.com/story/ronin-hack-lazarus-tmobile-breach-data-
malware-telegram/. Accessed 09 Apr 2022

3. Agent.btz - Wikipedia. https://en.wikipedia.org/wiki/Agent.BTZ. Accessed 09
May 2022

4. Kushner, D.: The real story of stuxnet. IEEE Spectr. 50(3), 48–53 (2013)
5. ESET research discovers cyber espionage framework Ramsay | ESET. https://

www.eset.com/int/about/newsroom/press-releases/research/eset-research-
discovers-cyber-espionage-framework-ramsay/. Accessed 09 May 2022

6. Tick group weaponized secure USB drives to target air-gapped critical sys-
tems. https://unit42.paloaltonetworks.com/unit42-tick-group-weaponized-secure-
usb-drives-target-air-gapped-critical-systems/. Accessed 09 May 2022

7. Mazurczyk, W., Wendzel, S., Zander, S., Houmansadr, A., Szczypiorski, K.: Infor-
mation Hiding in Communication Networks: Fundamentals, Mechanisms, Applica-
tions, and Countermeasures. John Wiley, Hoboken (2016)

8. Guri, M., Elovici, Y.: Bridgeware: the air-gap malware. Commun. ACM 61(4),
74–82 (2018)

9. Guri, M., Solewicz, Y., Elovici, Y.: Fansmitter: acoustic data exfiltration from
air-gapped computers via fans noise. Comput. Secur. 91, 101721 (2020)

10. Assante, M. J., Lee, R. M.: The industrial control system cyber kill chain. SANS
Inst. InfoSec Read. Room 1 (2015)

11. The big hack: How china used a tiny chip to infiltrate U.S. companies
- Bloomberg. https://www.bloomberg.com/news/features/2018-10-04/the-big-
hack-how-china-used-a-tiny-chip-to-infiltrate-america-s-top-companies. Accessed
09 Apr 2022

12. Guri, M., Kedma, G., Kachlon, A., Elovici, Y.: AirHopper: bridging the Air-Gap
between isolated networks and mobile phones using radio frequencies. In: Malicious
and Unwanted Software: The Americas (MALWARE), 2014 9th International Con-
ference on, pp. 58–67. IEEE (2014)

13. Guri, M., Kachlon, A., Hasson, O., Kedma, G., Mirsky, Y., Elovici, Y.: GSMem:
data exfiltration from air-gapped computers over GSM frequencies. In: USENIX
Security Symposium, pp. 849–864 (2015)

14. funtenna - GitHub (2016). https://github.com/funtenna. Accessed 09 May 2022
15. Guri, M., Monitz, M., Elovici, Y.: USBee: Air-Gap covert-channel via electromag-

netic emission from USB. In: 2016 14th Annual Conference on Privacy, Security
and Trust (PST), pp. 264–268. IEEE (2016)

16. Guri, M., Zadov, B., Elovici, Y.: ODINI: escaping sensitive data from faraday-
caged, air-gapped computers via magnetic fields. IEEE Trans. Inf. Forensics Secur.
15, 1190–1203 (2019)

17. Guri, M., Zadov, B., Bykhovsky, D., Elovici, Y.: PowerHammer: exfiltrating data
from Air-Gapped computers through power lines. IEEE Trans. Inf. Forensics Secur.
15, 1879–1890 (2019)

18. Shao, Z., Islam, M.A., Ren, S.: Your noise, my signal: exploiting switching noise
for stealthy data exfiltration from desktop computers. Proc. ACM Meas. Anal.
Comput. Syst. 4(1), 1–39 (2020)

https://blogs.microsoft.com/on-the-issues/2021/03/02/new-nation-state-cyberattacks/
https://blogs.microsoft.com/on-the-issues/2021/03/02/new-nation-state-cyberattacks/
https://www.wired.com/story/ronin-hack-lazarus-tmobile-breach-data-malware-telegram/
https://www.wired.com/story/ronin-hack-lazarus-tmobile-breach-data-malware-telegram/
https://en.wikipedia.org/wiki/Agent.BTZ
https://www.eset.com/int/about/newsroom/press-releases/research/eset-research-discovers-cyber-espionage-framework-ramsay/
https://www.eset.com/int/about/newsroom/press-releases/research/eset-research-discovers-cyber-espionage-framework-ramsay/
https://www.eset.com/int/about/newsroom/press-releases/research/eset-research-discovers-cyber-espionage-framework-ramsay/
https://unit42.paloaltonetworks.com/unit42-tick-group-weaponized-secure-usb-drives-target-air-gapped-critical-systems/
https://unit42.paloaltonetworks.com/unit42-tick-group-weaponized-secure-usb-drives-target-air-gapped-critical-systems/
https://www.bloomberg.com/news/features/2018-10-04/the-big-hack-how-china-used-a-tiny-chip-to-infiltrate-america-s-top-companies
https://www.bloomberg.com/news/features/2018-10-04/the-big-hack-how-china-used-a-tiny-chip-to-infiltrate-america-s-top-companies
https://github.com/funtenna

GPU-FAN: Leaking Sensitive Data from Air-Gapped Machines 211

19. Loughry, J., Umphress, D.A.: Information leakage from optical emanations. ACM
Trans. Inf. Syst. Secur. (TISSEC) 5(3), 262–289 (2002)

20. Guri, M., Zadov, B., Bykhovsky, D., Elovici, Y.: CTRL-ALT-LED: leaking data
from Air-Gapped computers via keyboard LEDs. In: 2019 IEEE 43rd Annual Com-
puter Software and Applications Conference (COMPSAC), vol. 1, pp. 801–810.
IEEE (2019)

21. Nassi, B., Shamir, A., Elovici, Y.: Xerox day vulnerability. IEEE Trans. Inf. Foren-
sics Secur. 14(2), 415–430 (2018)

22. Guri, M., Zadov, B., Elovici, Y.: LED-it-GO: leaking (A Lot of) data from Air-
Gapped computers via the (Small) hard drive LED. In: Polychronakis, M., Meier,
M. (eds.) DIMVA 2017. LNCS, vol. 10327, pp. 161–184. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-60876-1_8

23. Guri, M., Zadov, B., Daidakulov, A., Elovici, Y.: xlED: covert data exfiltration
from Air-Gapped networks via switch and router LEDs. In: 2018 16th Annual
Conference on Privacy, Security and Trust (PST), pp. 1–12. IEEE (2018)

24. Guri, M., Bykhovsky, D., Elovici, Y.: Brightness: leaking sensitive data from Air-
Gapped workstations via screen brightness. In: 2019 12th CMI Conference on
Cybersecurity and Privacy (CMI), pp. 1–6. IEEE (2019)

25. Guri, M., Monitz, M., Mirski, Y., Elovici, Y.: BitWhisper: covert signaling channel
between Air-Gapped computers using thermal manipulations. In: 2015 IEEE 28th
Computer Security Foundations Symposium (CSF), pp. 276–289. IEEE (2015)

26. Madhavapeddy, A., Sharp, R., Scott, D., Tse, A.: Audio networking: the forgotten
wireless technology. IEEE Pervasive Comput. 4(3), 55–60 (2005)

27. Carrara, B., Adams, C.: On acoustic covert channels between Air-Gapped systems.
In: Cuppens, F., Garcia-Alfaro, J., Zincir Heywood, N., Fong, P.W.L. (eds.) FPS
2014. LNCS, vol. 8930, pp. 3–16. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-17040-4_1

28. Guri, M., Solewicz, Y., Elovici, Y.: Mosquito: covert ultrasonic transmissions
between two Air-Gapped computers using speaker-to-speaker communication. In
2018 IEEE Conference on Dependable and Secure Computing (DSC), pp. 1–8.
IEEE (2018)

29. Deshotels, L.: Inaudible sound as a covert channel in mobile devices. In: WOOT
(2014)

30. Guri, M., Solewicz, Y., Daidakulov, A., Elovici, Y.: Acoustic data exfiltration from
speakerless Air-Gapped computers via covert hard-drive noise (‘DiskFiltration’).
In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol.
10493, pp. 98–115. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
66399-9_6

31. Guri, M.: Cd-leak: leaking secrets from audioless Air-Gapped computers using
covert acoustic signals from CD/DVD drives. In: 2020 IEEE 44th Annual Com-
puters, Software, and Applications Conference (COMPSAC), pp. 808–816. IEEE
(2020)

32. Guri, M.: Power-supplay: Leaking sensitive data from air-gapped, audio-gapped
systems by turning the power supplies into speakers. IEEE Trans. Dependable
Secure Comput., 1 (2021)

33. Nstissamtempest/2-95 (2000). https://cryptome.org, https://cryptome.org/
tempest-2-95.htm. Accessed 09 May 2022

34. Products - pulsar instruments plc (2018). https://pulsarinstruments.com/en/
categories. Accessed 09 May 2022

https://doi.org/10.1007/978-3-319-60876-1_8
https://doi.org/10.1007/978-3-319-17040-4_1
https://doi.org/10.1007/978-3-319-17040-4_1
https://doi.org/10.1007/978-3-319-66399-9_6
https://doi.org/10.1007/978-3-319-66399-9_6
https://cryptome.org
https://cryptome.org/tempest-2-95.htm
https://cryptome.org/tempest-2-95.htm
https://pulsarinstruments.com/en/categories
https://pulsarinstruments.com/en/categories

Secure Protocols and Systems

SIMPLEX: Repurposing Intel Memory
Protection Extensions for Secure Storage

Matthew Cole(B) and Aravind Prakash

Binghamton University, Binghamton, USA
{mcole8,aprakash}@binghamton.edu

Abstract. The last few decades have seen several hardware-level features
to enhance security, but due to security, performance, and/or usability
issues these features have attracted steady criticism. One such feature is
the Intel Memory Protection Extensions (MPX), an instruction set archi-
tecture extension promising spatial memory safety at a lower performance
cost due to hardware-accelerated bounds checking. However, recent inves-
tigations into MPX have found that is neither as performant, accurate,
nor precise as software-based spatial memory safety. Given its ubiquity,
we argue that it provides an under-utilized hardware resource that can
be salvaged for security purposes. We propose Simplex, an open-sourced
library that re-purposes MPX registers as general purpose registers. Using
Simplex, we demonstrate securely storing sensitive information directly
on the hardware (e.g. encryption keys). We evaluate for performance, and
find that deployment is feasible in all but the most performance-intensive
code, with amortized performance overhead as low as about 1%.

Keywords: Information hiding · Hardware security · Intel MPX

1 Introduction

Intel Memory Protection Extensions (MPX) is an instruction set architecture
(ISA) extension for modern Intel processors providing spatial memory safety
using compile-time intentions. MPX is comprised of three key components work-
ing in harmony: architectural support through a set of two configuration, one
status, and four bounds registers; compile-time instrumentation; and run-time
support integrated with the operating system. This run-time manages enabling
and disabling CPU interpretation of MPX instructions through the configuration
registers, sets up a pointer bounds lookup table for spilling more objects’ bounds
than four registers can hold, interprets error codes indicated in the status regis-
ter, and coordinates with the operating system to handle memory management
and error handling.

In practice, MPX is unusable in its intended form. It was intended to be
performant, inter-operable with un-instrumented legacy code, and configurable
for both debug and release environments without rewriting the source. However,
Oleksenko et al. and Serebryany independently showed that MPX does not per-
form as well as software- and language-based memory safety, demonstrating a
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. P. Reiser and M. Kyas (Eds.): NordSec 2022, LNCS 13700, pp. 215–233, 2022.
https://doi.org/10.1007/978-3-031-22295-5_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22295-5_12&domain=pdf
http://orcid.org/0000-0003-1743-1504
https://doi.org/10.1007/978-3-031-22295-5_12

216 M. Cole and A. Prakash

50% amortized performance overhead with good compiler optimizations, and a
400% worst-case performance overhead [24,32]. The GNU C Compiler (GCC)
recently removed its libmpx library and eliminated the instrumentation code,
while Linux recently removed its support for kernel compilation due to a lack
of community interest in maintaining the code. In short, MPX never achieved
widespread adoption as a memory safety tool as envisioned by its designers, even
as its architectural resources remain on widely-deployed processors. Yet even a
conservative estimate puts the number of MPX-supported deployments at 100s
of millions worldwide, thus MPX is a ubiquitous – yet unused – resource.

In this paper, we leverage MPX as a general storage primitive–specifically
for storage of security-sensitive data such as cryptographic keys. Our contribu-
tion is named Simplex, which is comprised of a library enabling introspection
and manipulation of the MPX context, a minimalist runtime that avoids the
overhead associated with the compiler-provided MPX runtime, a test suite ver-
ifying correctness, and evaluations demonstrating the practicality of Simplex.
Furthermore, our contribution allows manipulation of the MPX context even in
the complete absence of support for compiler instrumentation or an operating
system’s runtime.

The Simplex library provides all necessary runtime components and func-
tions for instrumentation, and the MPX context is part of the broader XSAVE
context, thus it is still saved and restored on context switches even though Linux
formally removed all MPX support as of kernel version 5.6. Only a microcode
update from Intel would break Simplex by removing the CPU’s ability to inter-
pret the MPX opcodes, however we do not believe that this is likely to occur
because there are no extant attacks against a victim which do not also link to
an operating system’s runtime (i.e. the attack proposed by Dekel and Kasif [7]).

Because the ability to prevent disclosure is a valuable resource in security, we
emphasize applications of Simplex for moving information out of main memory.
For example, Hargreaves and Chivers, and Kazim et. al showed two different
techniques for extracting encryption keys from main memory [13,16]. On the
one hand, hiding data in the kernel is often impractical as it incurs performance
overhead due to the expensive transitions between user and kernel modes. On
the other hand, reserving registers (e.g. [18,20,21,34])) is undesirable for two
reasons: (1) it removes a register from the allocation pool, which could impact
performance due to sub-optimal register allocation [2], and (2) it affects interop-
erability when handwritten assembly or binaries not compiled using the modified
compiler may accidentally access or modify the reserved register. Because Sim-
plex uses the MPX bounds registers, and because the bounds registers are not
used unless the application was also explicitly compiled with MPX support, we
can ensure that no other code will access or modify the hidden data or pointer
stored inside the bounds register.

Our evaluation shows that Simplex is practical, and confirms initial observa-
tions by Otterstad [27] and Oleksenko et al. [24] that the majority of MPX’s per-
formance cost comes from handling exceptions and interacting with the bounds
lookup table within the runtime. We avoid this overhead because Simplex avoids

Simplex: Repurposing Intel MPX for Secure Storage 217

using the bounds lookup table by writing to the bounds registers directly using
the bndmk instruction and reading from the bounds registers using the bndmov
instruction to spill the contents into memory. We evaluated for performance
in two different ways. First, we created three custom benchmark fixtures: (1) a
microbenchmark testing the rate at which load and store operations can be com-
pleted to both the %r15 general purpose register and the %bnd0 MPX bounds
register, (2) a macro-benchmark simulating information unhiding by traversing
and combining two hidden half-buffers, and (3) implementations of a subset of
the string.h header. Second, we compiled sandboxed versions of two SPEC
CPU2017 benchmarks: 519.lbm, a particle-fluid simulation written in C, and
531.deepsjeng, a chess engine written in C++ to demonstrate practicality of
moving key data into the MPX bounds registers from global memory. Finally,
we evaluated for usability and correctness by modifying the OpenSSL Blowfish
cipher, then running the included integration and unit test suites.

The remainder of the paper is structured as follows: We discuss the history
of MPX and the reasons prohibiting its widespread adoption as a memory safety
tool in Sect. 2.1. Next, we examine the problems in information hiding continuing
to plague security researchers in Sect. 2.2. An overview of our threat model and
necessary modifications to a compiler to support Simplex appears in Sect. 3.
We describe the implementation of the Simplex library, and answer questions
about MPX context behavior during common program behavior including mul-
tithreading and system process lifecycles in Sect. 4. We present our evaluation in
Sect. 5, showing Simplex is both sound and practical. Finally, we survey related
work in Sect. 6 and conclude in Sect. 7.

2 Background

2.1 Intel MPX

In 2012, Intel introduced PointerChecker, which provides bounds checking
in the software layer through the Intel Composer XE development environment
for C and C++ [9]. Recognizing the potential for greatly improved performance
through hardware support, Intel moved much of the Pointer Checker func-
tionality into MPX, announced in 2013 [14] and subsequently debuted in the
Skylake architecture in 2015.

MPX is a combination of an instruction set extension, compiler and operat-
ing system support, and runtime library. It provides four new 128-bit bounds
registers (%BND0 through %BND3), each of which are split into an upper half and
lower half which have the purpose of holding an upper bound and lower bound
address. MPX also employs the %BNDCFGx register pair to hold user-space and
kernel-space configuration, and a %BNDSTATUS register to hold status information
in case of a bounds check failure. These additional registers are encompassed in
the larger Intel64 context, shown in Fig. 1. Intel designed MPX with the overar-
ching goal of compatibility with un-instrumented code and unextended architec-
tures. Where an MPX-supported CPU encounters un-instrumented code, such
as a vendor-provided library, program execution continues with the cost that the

218 M. Cole and A. Prakash

Fig. 1. The MPX context as part of the larger Intel64 context. The blue pathway shows
how information is written to the bounds registers. The red pathway shows how infor-
mation is read from the bounds registers (including sanitizing the stack afterwards).
(Color figure online)

CPU can no longer provide memory safety because the bounds checks are not
performed unless a bndcl, bndcu, or bndcn instruction is executed. Where an
MPX-unsupported CPU encounters instrumented code, or when MPX has not
been initialized by setting %bndcfg[0], the instructions are interpreted as nop
instructions instead of triggering unrecognized instruction exceptions.

Although MPX achieves a four- to five-fold speedup compared to Pointer
Checker, it suffers prohibitive penalties of worst-case 200% performance over-
head, 480% memory overhead, 5.4x more page faults [24], significant cache pres-
sure, and a 50% slowdown even when bounds checking instructions are idempo-
tent [32]. Furthermore, MPX cannot catch temporal memory safety issues [24],
suffers false positives from otherwise legal C idioms due to restrictions on struc-
ture memory layouts [24,32] and false negatives in response to undefined behav-
iors which cause inappropriate bounds loads [27], conflicts with other Intel ISA
extensions such as SGX and TSX [24], and it has no explicit support for mul-
tithreading [24]. As a result, support for MPX bounds checking has virtually
ceased. Currently MPX’s only remaining compiler support is Intel’s own ICC
since version 15.0 and Microsoft’s Visual Studio 2015 Update 1.

2.2 Information Hiding

Information hiding techniques relying on probabilistic mechanisms can be
defeated. Göktaş et al. demonstrated thread spraying [10] as a means of dis-
closing the safe regions with a known structure (e.g. the safe stack region used
in [18]). By repeatedly creating objects that have both safe and regular allo-
cations, then probing the space to find one of these hidden safe allocations,

Simplex: Repurposing Intel MPX for Secure Storage 219

they can effectively de-randomize the entire address space. They also discovered
that information in the thread local storage (TLS) and the thread control block
(TCB) provide clues to locating these stacks. Furthermore, Oikonomopoulos et
al. introduced allocation oracles which eliminate the need for probing [23]. The
idea is that an allocation oracle takes the size of an area to allocate as input,
and if successful returns the location allocated. From this information and apply-
ing a binary search technique, an attacker can locate “holes” in the allocatable
memory. If the attacker has knowledge of how a defense’s sensitive data is laid
out, then these holes reveal where the sensitive data is not hidden. With enough
queries to the oracle, eventually the sensitive data can be located, and the pro-
cess avoids crashes or distinguishable behavior usable by a runtime detector.
Likewise, Evans et al. used timing side channels to read the contents of hidden
metadata with or without crashes (the former is faster, the latter is difficult to
detect) [8]. Using this technique, they can de-randomize the location of libraries
such as libc, then use this to calculate the start of the safe region. Once com-
plete, modifying the contents of the safe region permits an attacker to violate at
least one implementation of Code Pointer Integrity (CPI).

State of the art defenses use registers to simulate segmentation as available
in the IA-32 architecture in order to provide deterministic rather than proba-
bilistic information hiding. One common point of these implementations is that
they would benefit from dedicated registers. For example, two of the imple-
mentations of CPI require a dedicated register for information hiding [18]. In
the reference implementation, %fs was reserved, however this may affect other
legitimate usages of the register. For example, operating systems sometimes use
this register to access TLS. Providing register storage via Simplex helps return
reserved general purpose registers to the compiler’s allocation list and restores
special purpose registers to their expected usage.

The dangers of storing secrets such as cryptographic keys in memory are
also well known. For example, CERT Secure Coding Standard MEM06-C warns
against writing sensitive data to disk, and Cold Boot Attacks [12,26] are a well
explored vector when the key is located in DRAM. As a result, these secrets are
often moved to un-swappable memory, such as registers or enclaves in order to
maintain secrecy.

3 SIMPLEX

3.1 Threat Model

We assume a threat model similar to that offered by other work on informa-
tion hiding, namely Koning [17] and Yun [33]. Our system under threat has an
effective defense against code reuse, which in turn prevents an attacker from
arbitrarily calling the Simplex library functions, even though he or she may
have an arbitrary read or write primitive. Although Simplex might be used to
store a pointer to a hidden memory region, it does not itself provide isolation.
We presume that the programmer has a Trusted Code Base comprised of at
least a privileged, trusted operating system and a trusted build toolchain used

220 M. Cole and A. Prakash

to build the Simplex library. We concede that an attacker may be able to load
a Loadable Kernel Module (LKM) that enables or disables MPX at a privileged
operating system level (and in fact, we provide one such implementation within
the Simplex code base). However, this would imply a compromised kernel, which
is outside our scope. That said, we show in Sect. 3.4 that it is not sufficient for
an attacker to emplace values into the bounds registers or leak values from the
bounds registers in a way that is beneficial to the attacker. Finally, we assume
that Simplex is correctly implemented and is trusted by the programmer. We
release our code as open source, and offer a full test suite within that code base
as an assurance to that assumption.

3.2 Design Decisions

Previous works seeking to hide information from attackers have chosen one of
three options. 1) Storing information in the kernel or in pages that can only be
accessed in a privileged hardware mode (e.g. [11,15]) is secure as long as the
operating system is not compromised. However these schemes come with the
obligation of additional context switches for each query or update, hampering
performance. 2) A more performant choice is storing information in a hidden
region within the program’s address space (e.g. [6,18,21]). Yet it relies on either
probabilistic hiding measures which can be defeated if the attacker has knowl-
edge of the type of information being hidden, or if the attacker is able to tolerate
crashes and restarts while searching. 3) Alternatively, it is possible to reserve reg-
isters from the compiler’s allocation pool and use these registers exclusively for
storing sensitive data. Once the registers are selected, the defender can formally
verify that no other code accesses these registers, guaranteeing security. Nonethe-
less, there is still the concern that available registers are limited and may conflict
with other defenses or dynamically linked code that use the reserved register.

3.3 Simplex-Enabled Compilation

In our evaluations, we manually replaced global pointer objects and their refer-
ence/dereference statements with the necessary code to enable bounds register
usage. However, we do not feel this is scalable. Consider the modifications made
to the SPEC CPU2017 benchmarks: 519.lbm has just 1 KLOC and required
22 modifications, 531.deepsjeng has only 10 KLOC and required 173 modi-
fications – these are very small code bases compared to 502.gcc (1.3 MLOC)
and 526.blender (1.6 MLOC), the largest C/C++ benchmarks in CPU2017.
Making these modifications are expensive in terms of developer effort and time,
requiring both discovering and understanding the global variables’ utilization.
For example, modifying the two SPEC CPU2017 benchmarks took about two
days of development time each. If the number and complexity of changes nec-
essary were to scale, implementing the larger benchmarks by hand becomes
infeasible. Therefore, we have designed but not yet implemented a system using
Clang’s annotation system to mark variables as candidates for placement in a
bounds register. This reduces the developer’s workload to simply recognizing

Simplex: Repurposing Intel MPX for Secure Storage 221

which variables should go into a bounds register, applying annotations to the
declarations, then compiling the source code with the options necessary to enable
Simplex.

First, the developer applies the necessary annotation at the variable’s decla-
ration. The compiler recognizes the annotation, and maps that variable to one
of the bounds registers, depending on its size or throws a compilation error if
no more register space is available. Next, the compiler pass replaces references
to these variables with appropriate Simplex function calls. If the variable is an
lvalue, it is replaced with a call to one of the mutator functions; if it is a rvalue,
it is replaced with a call to one of the accessor functions.

Developer Annotation vs Automated Discovery: On the one hand, devel-
oper annotation has the benefit of precisely capturing what is of security rele-
vance and importance as per software design, but on the other hand, developers
are prone to make mistakes. Therefore, we recommend three modes of operation
that make a trade off between security and performance.

Whitelisting: In this mode, we allow a developer to whitelist security-sensitive
data that is stored in the MPX bounds registers by the compiler. This is the
most conservative and performance-friendly, yet error-prone option.

Automatic Inference: In this mode, the compiler employs a heuristic approach to
automatically profile and identify security sensitive information and accordingly
provisions MPX bounds registers to manage such sensitive data. One option is
to identify security-sensitive documented API functions and perform backward
slicing to identify data of interest. This is the most aggressive option that favors
security over performance.

Blacklisting: Finally, as an intermediate option, blacklisting allows a developer
to define data items that should not be stored in the MPX registers. While
blacklisting is just as prone to human error as is whitelisting, it is likely to have
less adverse effects on security as compared to mistakes in whitelisting.

3.4 Context Behavior

Motivated by the desire to provide confidentiality between processes and/or
threads – even when there is a relationship between the processes or threads
– we explored the behavior of the MPX context. At process creation, the child
inherits an identical MPX context to that of the parent because the MPX context
is itself part of the larger CPU context (see Fig. 1).

Because Simplex provides methods to initialize and finalize its minimal MPX
context, the reader may question what would happen if a programmer or attacker
called these methods repeatedly (whether by accident or malice). We found that
each time the MPX context is initialized, the bounds registers’ lower bounds are
set to the system maximum unsigned value, and the upper bounds are set to 0.
In MPX’s design use case, this results in a guaranteed passed bounds check until
the bounds register is set to some allocated object’s bounds. In the Simplex
use case, repeated initialization destroys the values inside the bounds registers

222 M. Cole and A. Prakash

by resetting them to the conservative bounds values. Although this may allow
an attack against availability, it does not allow an attack seeking disclosure.
Furthermore, it is no more dangerous for code-reuse attacks than the numerous
xor %reg %reg instructions which are used by the compiler to place a zero value
in a register.

4 Implementation

4.1 Components of SIMPLEX

Unfortunately, there is no means of directly accessing the MPX bounds registers
via a mov instruction. ICC does offer intrinsics, although these are only available
if a MPX runtime is available and providing bounds checking [29]. This means it
is not possible to use these intrinsics for accessing the bounds registers without
also suffering the continual risk of a bounds check clobbering the bounds regis-
ters. Therefore, within Simplex we provide a system readiness check, a minimal
runtime to enable and disable MPX execution, accessor and mutator functions,
and a test suite to verify proper operation of the library.

System Readiness Check. Although it is possible for a user to test whether their
system can support MPX from the command line using commands such as lscpu
and sysctl, a program must be able to verify readiness itself and abort further
execution if it cannot prove its readiness. This is because CPUs that do not
support MPX will silently interpret these MPX instructions as NOP. We verify
that %CPUID[14] is set (indicating that the CPU supports the MPX extension),
and that %XCR0[3:4] are set (indicating that the CPU should include the MPX
registers as part of a context save and restore) during initialization.

Enabling and Disabling Functions. We also provide a way of enabling and dis-
abling MPX operations within both kernel mode and user mode applications.
This can be done by setting flags on the %BNDCFGS and %BNDCFGU registers respec-
tively. %BNDCFGx[0] enables interpretation of the MPX instruction extension,
and %BNDCFGx[1] enables bounds register preservation when legacy instructions
are encountered. Unlike the GCC run-time, we do not set %BNDCFGx[63:12]
with the base address of the bounds table. This minimizes startup overhead,
and also provides a small measure of security since accidentally attempting to
access the bounds table will result in a segmentation fault rather than disclosing
the contents of a bounds register.

Accessor and Mutator Functions. For each of the four bounds registers, a com-
mon accessor and mutator wrapper function provides a handle to the bounds
register. There are four varieties of each wrapper function: lower-half 64 bits
only, upper-half 64 bits only, all 128 bits, and a “quick” lower-half only which
does not attempt to save the upper-half nor clean the stack of any spilled values.
The applicable bounds register is selected through an enumerator with four val-
ues. When writing to the bounds registers, the value to be written is marshaled

Simplex: Repurposing Intel MPX for Secure Storage 223

from the function arguments into a bndmk instruction using sib-addressing. When
accessing, the bounds register is atomically spilled onto the stack above the stack
pointer (i.e. at a lower address than the top of the stack) then moved into a reg-
ister because there is no bounds register-to-general purpose register instruction.
This is accomplished using a bndmov instruction. As previously mentioned, all
accessor functions except the quick variants will sanitize this value on the stack
in case the value stored within the bounds registers is sensitive. We have verified
that our extended assembly statements to perform the sanitation are not opti-
mized by either GCC or Clang through manual inspection of disassembled code.
See Fig. 1 for more information on data flows to and from the MPX context.

4.2 Security Impact of the SIMPLEX Implementation

Canella et al. recently reported a variety of Meltdown transient execution
attacks, one of which is the Meltdown-BR (Bounds Check Bypass) attack [4,19].
Dekel also describes a post-exploitation technique called BoundHook, which
allows an attacker to cause a bounds check exception in a user-mode context, and
then catch the exception to gain control over the thread execution [7]. With both
of these vulnerabilities, Simplex does not increase a program’s attack surface
because both require a #BR exception to be raised in order to initiate exploitation.
Since Simplex does not use the bndcl, bndcu, or bndcn instructions, no such
exception will be raised by our code. Additionally, because BoundHook requires
that the attacker has also already compromised machine administrator rights,
any attacker who can successfully execute a BoundHook intrusion can simply
observe and modify the MPX context without the need to further compromise
Simplex.

Considerations for Multi-threaded Programs. Because Simplex can be used in
multi-threaded applications, we must address the dangers that an attacker-
controlled thread could victimize a thread using Simplex to interact with the
MPX bounds registers during a brief period after spilling to the stack. We pro-
vide one mitigation in that Simplex will zero out the memory used by the
bndmov spill instruction immediately after copying to the destination register in
all accessor functions except for qgetbndl which is performance- rather than
security-optimized. We speculated an attacker-controlled victim thread or pro-
cess with a pointer to the bottom of the stack could read this memory in a race
condition assisted by a scheduler interrupt sometime between the spill from the
bounds register to the time the stack memory is sanitized. Therefore we instru-
mented our library using a PAPI API [1] software defined event to measure the
frequency of context switches within the Simplex accessor functions and did
not detect that such a sequence of events occurred. We hypothesize that this
is because the accessor functions do not require any system calls and are very
short-lived, and thus unlikely to trigger the scheduler’s watchdog timer. Further-
more, we note that threads cannot directly access other threads’ stacks, therefore
the risk is limited to an attacker causing a process or thread to disclose its own
bounds register values into shared memory during the window. We also note

224 M. Cole and A. Prakash

that Simplex spills outside the red zone, and therefore the compiler should not
generate instructions that otherwise access this region without attacker input,
and therefore such gadgets in the intended instruction stream are extremely rare.

5 Evaluation

We conducted our evaluation on an 8-core Intel Core i7-7700K CPU at 4.20GHz
with 62.8 GiB RAM running Ubuntu 20.04 LTS and the Linux 5.4 kernel. The
system under evaluation conforms to POSIX.1-2017, and uses GNU libc and
POSIX thread implementation version 2.27.

5.1 Benchmarks

We authored two benchmark fixtures to evaluate whether Simplex attains per-
formance that is comparable to using general purpose registers.

Load-Store Benchmark. First, we authored a micro-benchmark that tests
load and store performance when Simplex employs the %bnd0 MPX bounds
register compared to handwritten assembly using general purpose registers using
%r15, segmentation registers using %gs:0, and the MMX and SSE instruction set
extension registers using %mm0 and %xmm1 respectively, see Fig. 2. We find that
the mean of writing to the MPX bounds registers is comparable to writing to
the general purpose registers (1.00x), segmentation registers (1.01x), and MMX
registers (0.98x). This is because all four of these operations have a fast, dedi-
cated assembly instruction for writing to the register - either mov or bndmk. The
fastest assembly instruction option for writing to the SSE registers is movaps,
which moves four aligned, packed, single-precision floating point values to the
register. However, it incurs significant overhead compared to the mov instruc-
tion because of microarchitectural limitations and thus the rate of MPX bounds
register writes is 13.90x faster than these writes.

Loading from the MPX bounds registers is a different story. Additional over-
head results because the MPX extension does not contain an instruction to move
from a bounds register directly to another register, whether a bounds register
or otherwise; bndmov only provides a bounds register to memory spill operation.
Therefore load operations from a bounds register require that the data is first
spilled to the quadword above the stack pointer through a bndmov instruction,
then recovered through two additional mov instructions. General purpose regis-
ter, segmentation register and MMX register loads can all be accomplished by
a single mov instruction and thus MPX bounds register loads are only 0.74x,
0.32x, and 0.73x as fast, respectively. Segmentation register loads are particu-
larly fast when repeatedly executed because of cache effects. Conversely, MPX
bounds register loads are 1.69x faster than SSE register loads because these loads
also must spill to stack, and because of the aforementioned micro-architectural
limitations of the apsmov instruction.

Simplex: Repurposing Intel MPX for Secure Storage 225

Our findings also confirm the micro-architectural analysis of Oleksenko et
al. [24] which found that it was not necessarily the MPX bounds operations
that were particularly expensive, but rather the management of the bounds
table through a two-level table lookup – particularly the bndstx and bndldx
instructions. Simplex uses neither of these instructions and thus avoids their
associated performance overhead.

Fig. 2. Rate of load and store operations. Box and whisker plot shows median, min-
imum/maximum, and first/third quartile operation rates. We use %r15 for General,
%gs:0 for Segmentation, %mm0 for MMX, %xmm1 for SSE and %bnd0 for MPX. The test
consisted of 104 runs, with 106 iterations per run. We report the steady-state rate of
operations accomplished per second.

String Operations. We also evaluated the block memory operations from the
string.h header using reference implementations of libgcc. We excluded the
string-specific functions so that we could randomly fill buffers from test run-to-
run without the concern of whether the buffer formed a single valid C string,
and because our choice of functions does not include trivial functions that do not
operate on buffers (e.g. strerror). We then refactored these functions for Sim-
plex to replace any passed argument that contains the address of a buffer with
calls to instead load it from the corresponding bounds register. These bench-
marks show that the performance cost of Simplex is easily amortized, as we
found that the maximum overhead was only 5.86%, and a 0.69% overall geomet-
ric mean. In the specific case of these function implementations, benchmarks that
do not short-circuit (i.e. memcpy, memmove and memset) are able to amortize
the cost fully compared to functions that do short-circuit (i.e. memcmp, mem-
chr). We do not claim that there is a performance benefit to Simplex, simply
that if there is a performance cost, it is small enough to be unnoticeable to the
user and that it is offset by the utility of the additional registers provided by
Simplex. We report specific data for each benchmark in Fig. 3.

226 M. Cole and A. Prakash

Fig. 3. String.h benchmarks’ performance overhead when modified to pass pointer
arguments in bounds registers. A negative percentage indicates the Simplex-modified
code ran in less time than the reference implementation.

5.2 Modifications to Existing Codebases

SPEC CPU2017. We hand-modified two SPEC CPU2017 benchmarks,
519.lbm which simulates fluid flow through lattices, and 531.deepsjeng which
plays chess. In both cases, we selected the two global pointers to data struc-
tures that had the highest number of uses in order to fully stress the Sim-
plex library, showing an example of these modifications in Fig. 4. Although we
selected global objects, it should be emphasized that Simplex is not limited to
just globals; heap or local objects could also be placed in the bounds registers.
Using the SPEC benchmarks proves both correctness – the output is verified
against a known correct output – and demonstrates performance cost of using
Simplex. We measured the performance rate ratio between runs with an unmod-
ified benchmark and one where frequently used pointers to global variables were
placed into a bounds register. This performance ratio was between 1.000 and
1.006 for 519.lbm, and 0.975 and 0.985 for 531.deepsjeng (see Table 1). Higher
performance rate ratios indicate faster execution, but differ from performance
overhead measurements since performance rate takes into account the number
of threaded copies running simultaneously.

OpenSSL. We then modified the OpenSSL Blowfish symmetric key cipher to
demonstrate how Simplex might be used in a security application. In our mod-
ified Blowfish cipher, the address of the cipher’s global key schedule structure
is stored in a bounds register. Therefore wherever an encryption or decryption
function would ordinarily receive a pointer to the key schedule as a function
parameter, we instead pass a null value as the parameter and thus de-reference
the bounds register at each usage of the parameter. Although the OpenSSL test
suite provides test run time in its output, the Blowfish correctness test is very

Simplex: Repurposing Intel MPX for Secure Storage 227

Fig. 4. An example of modifications needed to store global pointers in bounds registers
from the lbm benchmark. In this example, the global pointers srcGrid and dstGrid
are placed in BND0 and BND1 respectively.

short in duration. As a result, our observed runtime overheads are smaller than
the reported measurement resolution and not particularly useful as a metric of
performance (see Table 2). We conclude that register repurposing presents min-
imal performance cost for cryptographic applications. We also emphasize that
although we placed a pointer to a key schedule structure in the bounds registers
for this evaluation, this structure is stored on the heap in the unmodified Blow-
fish cipher and therefore we have not introduced attack surface in our modified
cipher. Additionally, some other OpenSSL ciphers’ keys are less than 512 bits
in size and would fit entirely within the bounds registers. The MPX bounds
registers can hold any value, not just pointer values.

6 Related Work

Existing Evaluations. Explorations of Intel MPX generally find MPX to be
flawed as a memory safety tool, and thus inspired our investigation as to whether
MPX could be repurposed. Serebryany unfavorably evaluated the performance

228 M. Cole and A. Prakash

Table 1. Simplex SPEC CPU2017 evaluation data. Run time refers to how long the
benchmark took to complete. Base Rate refers to the raw performance of this bench-
mark relative to the SPEC CPU2017 reference machine and thus provides insight into
the underlying system under test. Ratio refers to the ratio of the modified benchmark’s
multi-threaded performance to the unmodified benchmark’s multi-threaded perfor-
mance. Ratio < 1 implies the modified benchmark ran slower than the unmodified
benchmark.

Variables in bounds register Copies Run time Base rate Ratio

519.lbm_r
None 1 202 5.21
None 4 605 6.96
srcGrid →bnd0 1 201 5.24 1.006
srcGrid →bnd0 4 605 6.96 1.000
srcGrid →bnd0, dstGrid →bnd1 1 202 5.23 1.004
srcGrid →bnd0, dstGrid →bnd1 4 606 6.96 1.000
531.deepsjeng_r
None 1 283 4.04
None 4 290 15.8
state →bnd0, gamestate →bnd1 1 288 3.98 0.985
state →bnd0, gamestate →bnd1 4 297 15.4 0.975

Table 2. Simplex OpenSSL evaluation data. Measurements were obtained using
time(1), and presented columns reflect its output.

Variables in bounds register usr sys cusr csys cpu

05-test_bf.t
None 0.02 0.00 0.03 0.00 0.05
BF_KEY *schedule →bnd0 0.01 0.00 0.03 0.00 0.04
Overhead −50.0% 0.0% 0.0% 0.0% −20.0%

of Intel MPX versus the Address Sanitizer memory safety tool [31,32]. Notably,
he discovered not only up to a 2.5x performance slowdown and 4.0x memory
overhead on some benchmarks, but that the MPX instructions still exhibit a
50% slowdown even when they should be ignored on a system which does not
have MPX support or has disabled it. He also identifies three categories of false
positives that Address Sanitizer does not have: atomic pointers, un-instrumented
bounds changes, and those caused by compiler optimizations after instrumen-
tation. Otterstad examined the effectiveness of early implementations of MPX,
identifying eight new categories of false positives and false negatives beyond
those explored by Serebryany [27]. Furthermore, he demonstrates at least one
toy program which can be victimized by ROP attacks because of these false posi-
tives and false negatives. Oleksenko et al. performed a study of the performance,

Simplex: Repurposing Intel MPX for Secure Storage 229

security guarantees, and usability issues of MPX after it became available in
production hardware [24]. Furthermore, their empirical study was backed by an
exhaustive investigation of how MPX is actually implemented at the hardware,
operating system and software levels, supporting their experimental findings.

Other Uses of Intel MPX. We are not the only members of the community to
propose repurposing MPX. Code Pointer Integrity (CPI) maintains a safe region
to protect function pointers, return addresses and other pointers to code called
a “safe stack” [18]. The authors propose one implementation of CPI using MPX
to store the safe region’s metadata, gaining performance benefits by moving
some of the implementation into MPX’s hardware accelerated checks. Burow
further investigates using MPX to isolate CPI’s shadow stacks and provide a
highly-efficient implementation [3]. We note that Simplex performs much of
the management functionality they described, and could be used in conjunc-
tion with their defenses. Opaque Control-Flow Integrity (O-CFI) combines fine-
grained code layout randomization with coarse-grained CFI in order to defeat
sophisticated attacks seeking in-memory layout information to launch code-reuse
attacks [21]. O-CFI uses MPX instructions to perform branch instrumentation,
where legal branch targets are “chunked” together into a minimal address range,
similar to a buffer. Oleksenko proposes a system combining MPX for hardware
fault detection with Intel Transactional Synchronization Extensions (TSX) for
fault rollback [25]. The underlying principle is that if a pointer’s value is cor-
rupted by a fault, then it will likely point to a dramatically different address
outside the bounds of the referent object. MemSentry is a deterministic memory
isolation framework addressing the threats of allocation oracles, thread spraying,
crash-resistant memory disclosure primitives, and various side channels [17]. The
authors use MPX and Intel Memory Protection Keys (MPK) to describe a more
efficient method of intra-process isolation, similar to that provided by the kernel
through mprotect and Software Fault Isolation (SFI). CFIXX is a C++ defense
for virtual table pointers providing Object Type Integrity (OTI) [3]. CFIXX pro-
tects against corruption attacks against OTI by protecting the memory region
containing the OTI metadata with selective MPX instrumentation. By reimagin-
ing the layout of the address space, they are able to halve the number of bound
checks compared to a full memory safety solution provided by MPX. BOGO
extends the MPX bounds tables to not only provide spatial memory safety, but
also temporal memory safety [35]. Since MPX already initializes bounds table
entries at allocation, BOGO additionally invalidates these entries upon deallo-
cation and thus gains temporal memory safety. Since doing this operation at
every deallocation can be expensive, the authors also introduce more efficient
techniques for managing the deallocation metadata updates and for scanning
the bounds table. DataShield provides three methods for coarse-grained bounds
checks for non-sensitive pointer dereferences, one of which utilizes MPX to avoid
the need to information hide the non-sensitive data regions [5]. Up to four of
these regions’ addresses are initialized in the MPX bounds register at program
startup, with each pointer dereference in order to assure that the pointer does
not escape the non-sensitive region. The Linux kernel can be protected against

230 M. Cole and A. Prakash

Just-in-Time code reuse attacks by kR̂ X, which hardens benign read operations
that an attacker might reuse to disclose code to find useful JIT gadgets [28].
Intel MPX is used in one implementation of kR̂ X to accelerate the execute-only
range checks to reduce the performance overhead. The Spons & Shields Frame-
work (SSF) for Intel SGX trusted execution environments uses the MPX bounds
check instructions to verify memory accesses, however it does so outside of the
traditional MPX runtime [30].

Repurposing Hardware Registers. The idea of repurposing hardware registers
as with Simplex is not unique. TRESOR is a patch that implements the AES
encryption algorithm for the Linux kernel, and also provides additional security
by utilizing the Intel AES-NI instruction set extension plus keeping encryption
keys in the x86 debug registers instead of in RAM [22]. Ginseng keeps secrets
in an encrypted secure stack until they are needed, then moves the secret into
dedicated registers [33]. This has the effect of reducing the amount of sensitive
data kept in the ARM TrustZone Trusted Execution Environment (TEE) and
thus reduces the TEE’s attack surface and does not require placing the operating
system within the trusted computing base.

7 Conclusion

Simplex is an open-source library repurposing the Intel MPX instruction set
extension. We present evidence that suggests that MPX is ubiquitous, and show
that MPX bounds registers can be repurposed as general purpose storage. In
particular, they can be used to hide security sensitive data. We demonstrate
that although the MPX ISA lacks a dedicated instruction to move data directly
to and from the bounds registers, it is still possible to do so through the available
spill and fill instructions, bndmk and bndmov. Furthermore, we show that such
operations are not overly-burdensome, especially once the operations are amor-
tized across the entire execution of a program. We do this through a collection
of refactored programs and a partial implementation of the C standard library.
Finally, we make Simplex available to the community as open-source software
at https://github.com/bingseclab/simplex.

References

1. Browne, S., Dongarra, J., Garner, N., London, K., Mucci, P.: A scalable cross-
platform infrastructure for application performance tuning using hardware coun-
ters. In: Proceedings of the 2000 ACM/IEEE Conference on Supercomputing, SC
2000 (2000). https://doi.org/10.1109/SC.2000.10029

2. Bruening, D., Garnett, T., Amarasinghe, S.: An infrastructure for adaptive
dynamic optimization. In: Proceedings of the International Symposium on Code
Generation and Optimization: Feedback-Directed and Runtime Optimization,
CGO 2003, pp. 265–275. IEEE Computer Society (2003)

https://github.com/bingseclab/simplex
https://doi.org/10.1109/SC.2000.10029

Simplex: Repurposing Intel MPX for Secure Storage 231

3. Burow, N., Mckee, D., Carr, S.A., Payer, M.: CFIXX: object type integrity for
C++. In: Network and Distributed Systems Security Symposium 2018 (2018).
https://doi.org/10.14722/ndss.2018.23279

4. Canella, C., et al.: A systematic evaluation of transient execution attacks and
defenses. In: 28th USENIX Security Symposium (USENIX Security 2019), pp. 249–
266 (2019). https://www.usenix.org/conference/usenixsecurity19/presentation/
canella

5. Carr, S.A., Payer, M.: DataShield: configurable data confidentiality and integrity.
In: Proceedings of the 2017 ACM on Asia Conference on Computer and Com-
munications Security - ASIA CCS 2017 (2017). https://doi.org/10.1145/3052973.
3052983

6. Davi, L., Liebchen, C., Sadeghi, A.R., Snow, K.Z., Monrose, F.: Isomeron: code ran-
domization resilient to (just-in-time) return-oriented programming (2015). https://
doi.org/10.14722/ndss.2015.23262

7. Dekel, K.: BoundHook: exception based, kernel-controlled user-mode hooking
(2017). https://www.cyberark.com/threat-research-blog/boundhook-exception-
based-kernel-controlled-usermode-hooking/

8. Evans, I., et al.: Missing the point(er): on the effectiveness of code pointer integrity.
In: 2015 IEEE Symposium on Security and Privacy, pp. 781–796 (2015). https://
doi.org/10.1109/SP.2015.53

9. Ganesh, K.: Pointer checker: easily catch out-of-bounds memory accesses (2012).
https://software.intel.com/sites/products/parallelmag/singlearticles/issue11/
7080_2_IN_ParallelMag_Issue11_Pointer_Checker.pdf

10. Göktas, E., et al.: Undermining information hiding (and what to do about it). In:
Proceedings of the 25th USENIX Conference on Security Symposium, pp. 105–119
(2016)

11. Gruss, D., Lipp, M., Schwarz, M., Fellner, R., Maurice, C., Mangard, S.: KASLR is
dead: long live KASLR. In: Engineering Secure Software and Systems, pp. 161–176
(2017). https://doi.org/10.1007/978-3-319-62105-0_11

12. Halderman, J.A., et al.: Lest we remember: cold-boot attacks on encryption keys.
Commun. ACM 52(5), 91–98 (2009). https://doi.org/10.1145/1506409.1506429

13. Hargreaves, C., Chivers, H.: Recovery of encryption keys from memory using a
linear scan. In: 2008 Third International Conference on Availability, Reliability
and Security (2008). https://doi.org/10.1109/ARES.2008.109

14. Intel Corporation: Introduction to Intel Memory Protection Extensions
(2013). https://software.intel.com/en-us/articles/introduction-to-intel-memory-
protection-extensions

15. Intel Corporation: Control-flow Enforcement Technology Specification, May
2019. https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-
enforcement-technology-preview.pdf

16. Kazim, A., Almaeeni, F., Ali, S.A., Iqbal, F., Al-Hussaeni, K.: Memory foren-
sics: recovering chat messages and encryption master key. In: 2019 10th Interna-
tional Conference on Information and Communication Systems (ICICS), pp. 58–64
(2019). https://doi.org/10.1109/IACS.2019.8809179

17. Koning, K., Chen, X., Bos, H., Giuffrida, C., Athanasopoulos, E.: No need to hide:
protecting safe regions on commodity hardware. In: Proceedings of the Twelfth
European Conference on Computer Systems, pp. 437–452 (2017). https://doi.org/
10.1145/3064176.3064217

18. Kuznetsov, V., Szekeres, L., Payer, M., Candea, G., Sekar, R., Song, D.:
Code-pointer integrity. In: Proceedings of the 11th USENIX Conference

https://doi.org/10.14722/ndss.2018.23279
https://www.usenix.org/conference/usenixsecurity19/presentation/canella
https://www.usenix.org/conference/usenixsecurity19/presentation/canella
https://doi.org/10.1145/3052973.3052983
https://doi.org/10.1145/3052973.3052983
https://doi.org/10.14722/ndss.2015.23262
https://doi.org/10.14722/ndss.2015.23262
https://www.cyberark.com/threat-research-blog/boundhook-exception-based-kernel-controlled-usermode-hooking/
https://www.cyberark.com/threat-research-blog/boundhook-exception-based-kernel-controlled-usermode-hooking/
https://doi.org/10.1109/SP.2015.53
https://doi.org/10.1109/SP.2015.53
https://software.intel.com/sites/products/parallelmag/singlearticles/issue11/7080_2_IN_ParallelMag_Issue11_Pointer_Checker.pdf
https://software.intel.com/sites/products/parallelmag/singlearticles/issue11/7080_2_IN_ParallelMag_Issue11_Pointer_Checker.pdf
https://doi.org/10.1007/978-3-319-62105-0_11
https://doi.org/10.1145/1506409.1506429
https://doi.org/10.1109/ARES.2008.109
https://software.intel.com/en-us/articles/introduction-to-intel-memory-protection-extensions
https://software.intel.com/en-us/articles/introduction-to-intel-memory-protection-extensions
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://doi.org/10.1109/IACS.2019.8809179
https://doi.org/10.1145/3064176.3064217
https://doi.org/10.1145/3064176.3064217

232 M. Cole and A. Prakash

on Operating Systems Design and Implementation, OSDI 2014, pp. 147–
163. USENIX Association (2014). https://www.usenix.org/conference/osdi14/
technical-sessions/presentation/kuznetsov

19. Lipp, M., et al.: Meltdown: reading kernel memory from user space. In: 27th
USENIX Security Symposium, pp. 973–990 (2018). https://www.usenix.org/
conference/usenixsecurity18/presentation/lipp

20. Lu, K., Song, C., Lee, B., Chung, S.P., Kim, T., Lee, W.: ASLR-guard: stop-
ping address space leakage for code reuse attacks. In: Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security, pp. 280–
291 (2015). https://doi.org/10.1145/2810103.2813694

21. Mohan, V., Larsen, P., Brunthaler, S., Hamlen, K.W., Franz, M.: Opaque control-
flow integrity. In: Network and Distributed Systems Security Symposium 2015
(2015). https://doi.org/10.14722/ndss.2015.23271

22. Müller, T., Freiling, F.C., Dewald, A.: TRESOR runs encryption securely outside
RAM. In: Proceedings of the 20th USENIX Conference on Security, SEC 2011
(2011). https://doi.org/10.5555/2028067.2028084

23. Oikonomopoulos, A., Athanasopoulos, E., Bos, H., Giuffrida, C.: Poking holes in
information hiding. In: 25th USENIX Security Symposium, Austin, TX, pp. 121–
138 (2016)

24. Oleksenko, O., Kuvaiskii, D., Bhatotia, P., Felber, P., Fetzer, C.: Intel MPX
explained: an empirical study of Intel MPX and software-based bounds checking
approaches (2017). https://doi.org/10.48550/ARXIV.1702.00719

25. Oleksenko, O., Kuvaiskii, D., Bhatotia, P., Fetzer, C., Felber, P.: Efficient fault tol-
erance using Intel MPX and TSX. In: Fast Abstract in the 46th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, Toulouse, France
(2016)

26. Ooi, J.G., Kam, K.H.: A proof of concept on defending cold boot attack. In: 2009
1st Asia Symposium on Quality Electronic Design (2009). https://doi.org/10.1109/
ASQED.2009.5206245

27. Otterstad, C.W.: A brief evaluation of Intel MPX. In: 2015 Annual IEEE Systems
Conference Proceedings, pp. 1–7. IEEE (2015). https://doi.org/10.1109/SYSCON.
2015.7116720

28. Pomonis, M., Petsios, T., Keromytis, A.D., Polychronakis, M., Kemerlis, V.P.:
kR̂ X: comprehensive kernel protection against just-in-time code reuse. In: Pro-
ceedings of the Twelfth European Conference on Computer Systems, EuroSys 2017
(2017). https://doi.org/10.1145/3064176.3064216

29. Ramakesavan, S., Rodriguez, J.: Intel memory protection extensions enabling
guide (2016). https://software.intel.com/en-us/articles/intel-memory-protection-
extensions-enabling-guide

30. Sartakov, V.A., O’Keeffe, D., Eyers, D., Vilanova, L., Pietzuch, P.: Spons &
shields: practical isolation for trusted execution. In: Proceedings of the 17th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Environments
(2021). https://doi.org/10.1145/3453933.3454024

31. Serebryany, K., Bruening, D., Potapenko, A., Vyukov, D.: Addresssanitizer: A fast
address sanity checker. In: 2012 USENIX Annual Technical Conference. pp. 309–
318 (2012)

32. Serebryany, K.: Address sanitizer Intel memory protection extensions (2016).
https://github.com/google/sanitizers/wiki/AddressSanitizerIntelMemoryProtect
ionExtensions

https://www.usenix.org/conference/osdi14/technical-sessions/presentation/kuznetsov
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/kuznetsov
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://doi.org/10.1145/2810103.2813694
https://doi.org/10.14722/ndss.2015.23271
https://doi.org/10.5555/2028067.2028084
https://doi.org/10.48550/ARXIV.1702.00719
https://doi.org/10.1109/ASQED.2009.5206245
https://doi.org/10.1109/ASQED.2009.5206245
https://doi.org/10.1109/SYSCON.2015.7116720
https://doi.org/10.1109/SYSCON.2015.7116720
https://doi.org/10.1145/3064176.3064216
https://software.intel.com/en-us/articles/intel-memory-protection-extensions-enabling-guide
https://software.intel.com/en-us/articles/intel-memory-protection-extensions-enabling-guide
https://doi.org/10.1145/3453933.3454024
https://github.com/google/sanitizers/wiki/AddressSanitizerIntelMemoryProtectionExtensions
https://github.com/google/sanitizers/wiki/AddressSanitizerIntelMemoryProtectionExtensions

Simplex: Repurposing Intel MPX for Secure Storage 233

33. Yun, M.H., Zhong, L.: Ginseng: keeping secrets in registers when you distrust the
operating system. In: Network and Distributed Systems Security Symposium 2019
(2019). https://doi.org/10.14722/ndss.2019.23327

34. Zhang, M., Sekar, R.: Control flow and code integrity for COTS binaries: an effec-
tive defense against real-world ROP attacks. In: Proceedings of the 31st Annual
Computer Security Applications Conference, pp. 91–100 (2015). https://doi.org/
10.1145/2818000.2818016

35. Zhang, T., Lee, D., Jung, C.: BOGO: buy spatial memory safety, get temporal
memory safety (almost) free. In: Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operat-
ing Systems, ASPLOS 2019, New York, NY, USA, pp. 631–644. Association for
Computing Machinery (2019). https://doi.org/10.1145/3297858.3304017

https://doi.org/10.14722/ndss.2019.23327
https://doi.org/10.1145/2818000.2818016
https://doi.org/10.1145/2818000.2818016
https://doi.org/10.1145/3297858.3304017

Automatic Implementations Synthesis
of Secure Protocols and Attacks

from Abstract Models

Camille Sivelle1 , Lorys Debbah1, Maxime Puys1,3(B) ,
Pascal Lafourcade2 , and Thibault Franco-Rondisson1

1 Univ. Grenoble Alpes, CEA, LETI, DSYS, 38000 Grenoble, France
{Camille.Sivelle,Lorys.Debbah,Maxime.Puys,

Thibault.Franco-Rondisson}@cea.fr
2 LIMOS, University Clermont Auvergne, CNRS UMR 6158,

Clermont-Ferrand, France
Pascal.Lafourcade@uca.fr

3 CEA-Leti, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France

Abstract. Attack generation from an abstract model of a protocol is not
an easy task. We present BIFROST (Bifrost Implements Formally Reli-
able prOtocols for Security and Trust), a tool that takes an abstract model
of a cryptographic protocol and outputs an implementation in C of the pro-
tocol and either a proof in ProVerif that the protocol is safe or an imple-
mentation of the attack found. We use FS2PV, KaRaMeL, ProVerif and
a dedicated parser to analyze the attack traces produced by ProVerif. If
an attack is found then BIFROST automatically produces C code for each
honest participant and for the intruder in order to mount the attack.

1 Introduction

The security of a communication protocol involves two different aspects: (i) the
security of the protocol itself and (ii) the security of the cryptographic schemes
involved. Several tools are now available to formally prove the intrinsic security
of both protocols (like ProVerif [19], Scyther [23] or Tamarin [32]) and primitives
(like CryptoVerif [20] or Easycrypt [9]) see [8] for a survey. However, another
issue comes into play. Security flaws often appear when implementing code for
a given protocol, even for a proven secure one. In this case, the attack does not
rely on an intrinsic flaw of the protocol, but involves vulnerabilities related to
the code design or even from the programming language. It also happens too
often that the implementation is a slightly different protocol than the one proven
(for instance the order of the content of an encrypted message is changed) and
thus have the formal proof becoming meaningless. In 2014, the Heartbleed [27]
attack over SSL/TLSv1.0 whose feasibility had been formally proven in [16] is
an example of an attack targeting the implementation. We can also mention
a famous attack of the SSH protocol in Debian Linux distributions where the
generation of a fresh nonce was wrongly implemented [5]. Hence implementing
a secure protocol is a sensitive task and every detail is important.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. P. Reiser and M. Kyas (Eds.): NordSec 2022, LNCS 13700, pp. 234–252, 2022.
https://doi.org/10.1007/978-3-031-22295-5_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22295-5_13&domain=pdf
http://orcid.org/0000-0001-5483-7381
http://orcid.org/0000-0001-6127-9816
http://orcid.org/0000-0002-4459-511X
http://orcid.org/0000-0002-3142-3538
https://doi.org/10.1007/978-3-031-22295-5_13

Automatic Implementations Synthesis of Secure Protocols 235

Contributions: We propose an automatic tool-chain named BIFROST (Bifrost
Implements Formally Reliable prOtocols for Security and Trust), that takes as
input a cryptographic protocol modeled in F*, we call this input a protocol model
in the rest of the paper, and combines the following existing tools: FS2PV [17],
KaRaMeL [38] (formerly known as KreMLin) and ProVerif [19]. BIFROST pro-
duces:

1. An implementation in C from a protocol modeled in F*.
2. If the protocol is safe then a proof in ProVerif is produced.
3. If ProVerif finds a flaw then an implementation in C of the attack is given.

BIFROST supports several standard cryptographic primitives that correspond
to those supported by ProVerif. We are able to use several symmetric encryption
schemes, public key encryption schemes, signatures schemes and hash functions.
All these primitives are wrapped around widely-known cryptographic primitive
libraries such as MbedTLS. BIFROST unifies their APIs and make them directly
compatible with verification tools such ProVerif. BIFROST has been successfully
tested on the famous Needham-Schroeder [34] and Otway-Rees [36] protocols,
alongside a MAC based password protocol taken from [17].

Formal verification tools need to over-approximate an attacker’s capabilities
in order to be sure that a protocol is secure in regards to a given property.
Therefore, the attacks generated by such tools can sometimes not be feasible
in practice. If the protocol was not found secure, the attack implementation
generated by BIFROST can be played along with the protocol implementation
previously generated. If the execution of the attack found by formal verifica-
tion succeeds, it proves its feasibility in a practical context. This can give an
automatic confirmation that the protocol is not secure, rather than manually
implementing the attack.

Related Work: Several tools can be related to BIFROST. We classify them in
three categories: (i) generic code verification tools, (ii) cryptographic protocol
verification tools, (iii) tools specifically designed to generate code from verifiable
protocol models. Generic code verification and cryptographic protocol verifica-
tion tools are not directly related works to BIFROST, but they are related to
the basic blocks used in the approach. Thus, we will mainly mention the one
used within BIFROST and their main competitors.

Generic Code Verification Tools: They have been developed for several tens of
years. Among many other reference tools we can list:

– The B method [6] is a formal method software development framework pro-
posed by Abrial et al. in 1996 based on set theory and first order logic in order
to write and check code specifications. The goal is to both check consistency
of specifications and code.

– Frama-C [24] is a tool developed in 2012 by Cuoq et al. that performs static
analysis on C programs. Various analyses are supported such as dead code
deletion, value analysis or weakest-precondition calculus.

236 C. Sivelle et al.

– F* [40] is a general-purpose functional programming language designed by
Swamy et al. in 2013 which allows to specify properties alongside code. Then,
various analyses can be performed on the code such as dependent types,
monadic effects, refinement types, and a weakest precondition calculus.

We use F* models in BIFROST, due to their compatibility with the other bricks
used in our toolchain.

Cryptographic Protocol Verification Tools: They have been developed since 1995,
when G. Lowe found an attack on the formerly proven Needham-Schroeder proto-
col [31]. Such tools often implement the Dolev-Yao [26] intruder model and check
all possible actions for an attacker interacting with multiple sessions of a given
protocol in parallel to verify security properties such as secrecy or authentica-
tion. Multiple tools have been introduced since 1995 [8] and benchmarked [8,30].
Among them we can list:

– Tamarin [32] is a security protocol prover designed by Meier et al. since 2013.
Tamarin is able to handle an unbounded number of sessions. Protocols are
specified as multi-set rewriting systems with respect to temporal first-order
properties. It relies on Maude [28] and supports equational theories such as
Diffie-Hellman.

– DY* [14] is a tool developed by Bhargavan et al. in 2021. It is an implemen-
tation of the Dolev-Yao intruder model in F* and allows security properties
verification on a protocol taking advantage of the internal F* prover. It is
however currently unable to produce attack traces.

– ProVerif [19] is developed by Blanchet et al. since 2001 and relies on Horn
clause analysis to check an unbounded number of sessions.

We chose ProVerif in our tool chain, since it is stable and that several bricks of
our approach are compatible with this well established tool.

Cryptographic Protocol Code Generation Tools: There exist some tools allowing
to generate code from verifiable protocol models, such as BIFROST.

– Spi2Java [37] is a framework proposed in 2004 that automatizes the generation
of Java implementations from protocols described in spi calculus, an extension
of pi-calculus. This method allows for formal verification of security properties
through translation of the spi-calculus specifications to a format that can be
verified by ProVerif prior to code generation.

– In 1993 and in 2009, Bieber et al. [18] and Benaissa et al. [12] respectively
proposed an approach to analyze the security of cryptographic protocols using
the Event-B framework. To the best of our knowledge, they partly implement
the Dolev-Yao model as a library for the internal verifier of Event-B, allowing
them to specify lemmas describing security properties to be proven such as
secrecy and authentication. It is however unclear if their approach is able to
find an attack trace. As their framework relies on Event-B, specifications can
be refined into C-like code.

Automatic Implementations Synthesis of Secure Protocols 237

– In 2009, Bhargavan et al. [15] proposed a compiler allowing to translate
protocols modeled in some ad-hoc language into ML-like implementations.
They provide various security verifications through a custom type-checker [13]
which performs security verifications similar to ProVerif and Tamarin.

– AnBx [33] is an IDE developed in 2015 by Modesti. It extends the Alice &
Bob (AnB) protocol model making it compatible with OFMC [10], a pro-
tocol verifier such as ProVerif. After verification, the protocol model can be
translated into Java.

– Jasmin [7] is a cryptographic primitive verification tool, developed by Almeida
et al. in 2017. It takes a primitive model as input, written in a specific lan-
guage, and checks it against memory flaws or cache timing attacks. The model
is then translated in a subset of the C language. Yet, it is worth noting that
even if Jasmin shares resemblance with the frameworks described above, it
only applies to cryptographic primitives rather than to protocols, which are
complementary.

Finally, several previous works mention that they perform protocol synthesis.
However, if their works share resemblance with ours, this terminology should not
be confused with protocol implementation synthesis which aims at automatically
generating executable protocol implementations. For instance, Bellare et al. [11]
and Katz et al. [29] synthesize protocol models resistant to active intruders from
protocol models resistant to passive intruders in the context of authenticated
group key exchange. Cortier et al. [22] translate a single-session protocol into a
multi-session protocol secure against a Dolev-Yao intruder. Sprenger [39] et al.
rely on Isabelle/HOL [35] to write secure-by-design protocol models. In 2008,
Bhargavan et al. [17] synthesize ProVerif models from F# protocol implemen-
tations in a tool called FS2PV. We are using FS2PV in BIFROST because it
is compatible with ProVerif and it will help us in our goal to generate attack
implementations in C.

Overall, only cryptographic protocol code generation tools are direct com-
petitors to BIFROST. All other presented works are related to internal tools
used within BIFROST (e.g., cryptographic protocols verification tools). More-
over, to the best of our knowledge, if all tools mentioned above are able to
faithfully translate a protocol from a provable model into a programming lan-
guage (with their own limitations), none of them are dealing with attacks found
by the verification tools.

Outline: In Sect. 2, we introduce the BIFROST framework. In Sect. 3, we delve
into the technical challenges regarding automatic code generation from protocol
models and explaining the inner-workings of BIFROST. In Sects. 4 and 5, we
respectively present the cryptographic primitives supported and how we auto-
matically generate code for attacks found. In Sect. 6 we give a detailed example
of the approach on the Needham-Schroeder protocol which will be part of tech-
nical report of this paper and in the manual of BIFROST. Finally, we conclude
in Sect. 7.

238 C. Sivelle et al.

2 Overview of BIFROST

Our aim is, with the same input file, to be able to generate C code with KaRaMeL
and a π-calculus file for ProVerif. For this, we use a subset of F* that is compat-
ible both with the subset of F# that is used by FS2PV, and also with low* (the
subset of F* that can be compiled into C) in order to be able to use KaRaMeL.
In the rest of the paper, we denote this subset F$. When it is clear from the
context we also use F*. In Fig. 1, we describe the BIFROST approach. From
a cryptographic protocol model (1) the user needs to write an F$ file. In step
(2), we generate a π-calculus model using FS2PV, which can then be verified by
ProVerif in step (3) with respect to the security properties described in a .query
file. If the protocol is safe and ProVerif proves the security of the requested prop-
erties in step (4), we apply KaRaMeL in step (5) to the initial model in F$ to
generate C code corresponding to the implementation of the roles of each partic-
ipant in the protocol (6), thus bridging the gap between the formal verification
of the protocol and its implementation. If the protocol is not safe it means that
ProVerif found an attack in step (7), then we parse the ProVerif attack trace
using a tool we have developed (8) to generate the corresponding F$ code. We
apply KaRaMeL to the obtained F$ files to automatically generate the C code
implementing the role of the attacker in the protocol.

Fig. 1. The BIFROST toolchain.

In the following, we describe in Sect. 3 some of the challenges for transforming
abstract models into a practical implementation. We then present, in Sect. 4,
the different cryptographic primitives that are available in BIFROST and how
we integrate them to allow crypto-agility. Finally, we show, in Sect. 5, how we
manage to generate attack implementations from ProVerif traces.

Automatic Implementations Synthesis of Secure Protocols 239

3 From Abstract Model to Implementation

The translation from an abstract model to a concrete implementation brings
several challenges. The F$ model which serves as an input for our toolchain relies
on a set of functions for cryptographic primitives, network operations and data
manipulation, which are all currently imposed by FS2PV. One important point
is that FS2PV only uses an abstract definition of these function to translate the
input F$ protocol description into a ProVerif model. However, when generating
the C implementation of the protocol, all these functions must also be defined
with their proper implementation. Moreover, their implementation must fit their
purpose in the real world. For instance, if the Net.send function is internal
to FS2PV for its analysis at the abstract model phase, it must actually be
sending packets on a network when called by real code. Some abstract functions
can have multiple implementations depending on user choices. For instance, a
Crypto.symenc function can be translated into AES or ChaCha encryption while
Net.send can translate to a TCP/IP send or a LoraWan send depending on
context. On the other hand, some functions defined and called within the abstract
model do not serve any purpose in the implementation (such as π-calculus’ fork).

BIFROST Libraries. To this end, we propose a series of C libraries Crypto, Net,
Data and Pi, implementing all the necessary functions to link and run the C
code produced by KaRaMeL from our model. Figure 2 describes the translation
of the different libraries of abstract functions into their implementations.

– Data contains several functions necessary for data types manipulation. In
FS2PV representation, the principal data type is the Byte, which can rep-
resent variables of various size and nature, as it could be a nonce as well as
a key, or even a concatenation of different Bytes. This is problematic in C,
as those can hardly be represented by the same data structures and might
introduce some type flaw attacks, as the one existing on the fixed version
of Needham-Schroeder by G. Lowe, where a confusion between identity and
nonces allows an intruder to mount an attack [21]. The solution we proposed
in our Data library is to define the Byte as a C structure, composed of an
integer representing the subtype of the object, an integer representing the size
of the object and an union of the C structures corresponding to each possible
subtype (nonce for example).

– Crypto gathers all the functions relative to the cryptographic operations in
the protocol. Most of its functions are meant to be crypto-agile and thus are
algorithm agnostic wrappers to specific primitives such as RSA or AES.

– The Net library of BIFROST includes basic network operations. As of now,
they are implemented on either TCP/IP sockets or low level UART connec-
tions. However, supporting various protocols is possible with BIFROST but it
is important to ensure the compatibility with the network model of ProVerif.

240 C. Sivelle et al.

Fig. 2. Abstract functions libraries translated into C code.

– Finally, the Pi library relates to internal π-calculus functions used by ProVerif
for its analysis (mainly for process scheduling) and does not have any real
purpose in real life. Thus, this module does not need to be translated into C.

Keys Management. Another difference between the protocol model and the role
implementation is the way that keys are managed. When verifying a protocol
with ProVerif, private keys are often modeled as terms freshly generated at
the beginning of the protocol, public keys being derived from these terms and
published on a public channel. This is sufficient to consider that each participant
knows a given public key in the formal model. However, this traditional setup
for verification, consisting in broadcasting keys or supposing that participants
already know each other’s public keys beforehand is more complicated to pull
off on real hosts. Within BIFROST, we use the following key management to
reconcile both formal verification and implementation usability (it can also apply
to any supposedly pre-shared keys): two distinct main functions are defined for
the formal verification and the implementation generation. One is required by
FS2PV in which each participant role is called with keys created by abstract
methods from FS2PV. This file is then translated as the main process clause used
by ProVerif to setup roles instances. On the other hand, KaRaMeL produces C
code for every participant, plausibly running on different systems, and each of
them requires its main function. Thus, the role of each participant is described in

Automatic Implementations Synthesis of Secure Protocols 241

a F$ file containing a role function, which takes in argument the keys, and a main
function, in which the keys are loaded from a .pem file. This choice presupposes
that the keys are generated and stored on each system executing a participant’s
role beforehand, which is common for embedded devices.

4 Cryptographic Primitives

To allow crypto-agility by letting the user choose a cryptographic algorithm
among different options, we decided to handle all the following schemes and to
implement several algorithms for each of them.

– Symmetric encryption uses a key shared by both participants to encrypt
and decrypt data. Symmetric keys are often smaller than asymmetric keys
which allows communication to be fast. We support three algorithms for sym-
metric encryption: AES-128/192/256 in CBC mode, Blowfish in CBC mode
and Chacha20.

– Message Authentication Code uses symmetric keys to check the integrity
and authenticity of data. We support the following four algorithms: AES with
CMAC, Poly1305-AES, Chacha20-Poly1305 and HMAC.

– Hashing has a lot of applications in cryptography. It can be used to com-
pute fingerprints for example. We support two hashing algorithms: SHA2 and
RIPEMD160.

– Asymmetric encryption uses a public key, private key pair to encrypt
and decrypt. It is often used to transfer symmetric keys. We support two
algorithms for asymmetric encryption: RSA-OAEP and RSA-PKCS1-v1.5.

– Asymmetric signature uses a public key, private key pair to check for
the integrity and the authenticity of data. We support three algorithms for
asymmetric signature: RSA-PKCS1-v1.5, RSA-PSS and ECDSA.

Cryptographic primitives management in BIFROST relies on MbedTLS [1],
a C library developed by ARMmbed. It implements the TLS [25] protocol and
required cryptographic primitives. MbedTLS is designed to fit on small embed-
ded systems. However, one of the key concerns of BIFROST is to allow for crypto-
agility, which would in our case translate as the possibility for the toolchain to
handle both different algorithms and different cryptographic libraries, such as
OpenSSL [3] or OpenQuantumSafe [2], in order to fit as easily to existing code
base. In practice, any cryptographic operation requires different MbedTLS func-
tion calls (e.g., to set the seed or initialize the context before encrypting). As all
these atomic function calls are not defined within FS2PV and ProVerif, granu-
larity differs with MbedTLS. Thus, we created a C library composed of functions
that would act as wrappers above MbedTLS’s functions. More precisely, we
wanted those wrappers to encompass every intermediate function of MbedTLS
(or another library) to provide a more generic function to the user, which would
also fit the granularity of protocol models. The use of this library also allows the
user to choose the primitives to use for a given protocol.

242 C. Sivelle et al.

Different options allow us to choose which primitive to use. The choice of
which primitive should be used is currently left to the user of BIFROST (which
is the protocol modeler and not the final user). This choice is partly motivated by
the context of embedded systems where not all primitives are supported by chip
vendors and some freedom in the choice can be important. Yet, letting any user
choose their cryptographic primitives will often lead to vulnerable systems. While
leaving room for freedom of choice, we intend to support cryptographic suites1
which will automatically include a combination of validated cryptographic prim-
itives with their proper configuration (e.g., ECDHE_PSK_WITH_AES_128_
GCM_SHA256). By defining the right macros, preprocessor will comment out
code for unused primitives. In a similar way, the user can choose the size of its
keys with preprocessor directives, the idea being to give the user maximum con-
trol over the parameters for each primitive. This control is the one that MbedTLS
provides so we did not restrict the options provided by the library but we eased
the way to select them. This allows a user to custom the protocol by choosing
the cryptographic primitives’ parameters he wishes to use.

5 Attack Generation

The generation of the attack implementation is based on the output printed by
ProVerif in case an attack is found. This output corresponds to an attack trace in
applied π-calculus which describes the steps performed by the intruder to violate
the specified security property. As already presented in Fig. 1, the approach we
chose for this part was to first parse the attack trace from ProVerif’s output in
order to obtain an abstract syntax tree (8), and to use that tree to generate the
F$ file implementing the actions described in the trace. We then apply KaRaMeL
(9) to that F$ file to generate the C implementation of the attacker’s role (10).
We motivate the choice of generating F$ code and using KaRaMeL rather than
generating C code directly from the syntax tree for the coherency it guarantees
with the C code generated from the protocol model with KaRaMeL. To our
knowledge, there is no tool or framework allowing to generate executable code
for an attack found by a protocol verification tool. The generated C code can
then be compiled and executed alongside a normal protocol session (or more if
needed) in order to play the attack.

ProVerif Attack Trace Parsing: To parse the attack traces from the ProVerif
outputs, we have chosen to proceed in Python, using the Lark module [4]. Lark
is a parsing library able to parse any context-free grammar, using an advanced
grammar language based on EBNF, a metalanguage that allows to describe the
syntactic rules of programming languages. The first step is therefore to deter-
mine the grammar of ProVerif outputs and to describe it in EBNF language.
Globally, an attack trace is made up of a succession of lines that can be consid-
ered as instructions. We consider four different types of instructions in ProVerif’s
language: in, out, new and event.
1 https://ciphersuite.info/cs/.

https://ciphersuite.info/cs/

Automatic Implementations Synthesis of Secure Protocols 243

1 in (c , (Bob ,M_1)) with M_1 = pk(skB_1) at {5}
2 out (c ,M_6) with M_6 = aenc (n_3 , pk (skB_1)) at {12}

Listing 1.1. Example of in/out instructions.

The in and out instructions aim to send and receive messages from a channel
and have the same grammar. The elements that we want to retrieve in our syntax
tree are:

1. their two arguments (for example c and M_6 for the out of Listing 1.1),
2. the equality given after the with keyword (for instance M_1 = pk(skB_1)

for the in),
3. the line number in the process (5 or 12).

In Listing 1.1, c, M_6, and M_1 are variable or channel names, pk(skB_1)
or aenc(n_3, pk(skB_1)) are functions applied these variables. As terms can
be functions applied multiple times to another term, we define values as either
ground terms or function results and line numbers correspond to natural num-
bers. Then, we can define the in and out instructions as in Listing 1.2.
1 out : "out" "(" va l " ," va l ") " "with" va l "=" va l " at " "{" l i n e "}"
2 in : " in " "(" va l " ," va l ") " "with" va l "=" va l " at " "{" l i n e "}"

Listing 1.2. Grammar for in/out instructions.

We also define similar rules for new and event keywords. The new instruction
allows a participant or the intruder to generate a fresh term. On the other hand,
event does not have any effect on the protocol but allows to place markers in
the trace which can be used for reachability properties. Their form is shown in
Listing 1.3.

1 new n_1 c r e a t i n g n_3 at {21}
2 event endB(A, pk (skA_1) ,Bob , pk (skB_1) ,n_2) at {25}

Listing 1.3. Example of new/event instructions.

Similarly, these instructions are translated in EBNF as shown in Listing 1.4.

1 new : "new" va l " c r e a t i n g " va l " at " "{" l i n e "}"
2 event : " event " va l " at " "{" l i n e "}" "(goa l) "

Listing 1.4. Grammar for new/event instructions.

Generating F$ Code: From the syntax tree obtained, we write a program that
generates a code in F$. Processing will differ according to the type of instruction.
An out corresponds for example to a sending by one of the hosts defined in the
protocol. As the code generated at this step corresponds to the behavior of the
intruder, a call to F$ Net_recv function is performed on the channel indicated
by the variable stored in the AST. Similarly, an in means that the intruder must
send the given message on the channel, leading to a call to Net_send. When
the declaration in the with statement involves functions, for example M_6 =
aenc(n_3, pk(skB_1)), we translate these into the corresponding functions in
our libraries. The events could be ignored since they do not bring anything to

244 C. Sivelle et al.

the attack in itself. We therefore simply use a logging system when an event is
raised. The case of the new requires a little more work because ProVerif does
not distinguish the generation of nonces from the generation of encryption keys.
However, the functions that are assimilated in F$ are not the same. To remedy
this problem, we use a preprocessing function that goes through the tree a first
time to determine on one hand if the generation of each variable is done by the
intruder, and on the other hand, the type of this variable. The latter is given by
the functions that are applied to it after creation. The algorithm used for the
generation of the code can therefore be summarized as shown in Listing 1.5.

1 ast_to_fdollar(tree):
2 initialize the output string to ""
3
4 # Preprocessing
5 for each instruction:
6 if it is a new:
7 store the type of the variable declared
8 output all the declarations with their correct types
9

10 # Main processing
11 for each instruction:
12 determine the type using the first child node of the tree
13 if it is of type "in":
14 add to output a "let ... = ..." defining the variable
15 add to output a Net_send (... ,...)
16 if it is of type "out":
17 add to output a "let ... = ..." defining the variable
18 add to output a Net_recv (... ,...)
19 if it is of type "event ":
20 add to output a log (... ,...)
21 if it is of type "new":
22 do nothing (already processed during the preprocessing)
23 return output

Listing 1.5. F$ code generation.

6 An Example: The Needham-Schroeder Protocol

We show how BIFROST can be applied on the well-known Needham-Schroeder
protocol. We first describe this protocol in Sect. 6.1, then we show in Sect. 6.2 how
this protocol is modeled in F$ and it is translated into C code using BIFROST.
Finally, we detail in Sect. 6.3 the generation of the implementation of an attack
on this protocol from the attack trace found by ProVerif.

6.1 The Needham-Schroeder Protocol

The Needham-Schroeder [34] protocol is a mutual authentication protocol involv-
ing two parties A and B. They wish to agree on a shared value that they will
use to secure further communications. In this protocol, messages are sent on an

Automatic Implementations Synthesis of Secure Protocols 245

insecure channel. NA, NB are nonces, pkA, pkB are public keys and (m)pkB
sym-

bolizes the public encryption of the message m. The first message (A,NA)pkB
is

used to initiate a new session between A and B. The second message is used by
A to authenticate B and the third one is used by B to authenticate A. Nonces
are also used to prevent replay attacks.

A −→ B :(A,NA)pkB

B −→ A :(NA, NB)pkA
A −→ B :(NB)pkB

In 1996 G. Lowe [31] found a famous attack on this protocol. This attack assumes
that a dishonest agent I impersonates the honest agent B in the previous proto-
col, leading to a man-in-the-middle attack.

A −→ I :(A,NA)pkI

I −→ B :(A,NA)pkB
B −→ I :(NA, NB)pkA

I −→ A :(NA, NB)pkA

A −→ I :(NB)pkI

I −→ B :(NB)pkB

With this attack, the intruder obtains both NA and NB which allows him to
derive any secret based on those two nonces. He also impersonates A when
speaking to B. This vulnerability was fixed by Gavin Lowe [31] by modifying
only one message in the Needham-Schroeder-Lowe (NSL) protocol:

A −→ B :(A,NA)pkB

B −→ A :(NA, NB , B)pkA
A −→ B :(NB)pkB

One can see that with this variant, the intruder is not able to get the nonce
NB . Indeed, as the intruder tries to perform the attack, A will cipher with pkI as
she is willingly talking with the intruder. However, upon reception of the second
message containing the identity of B, A will realize she is not talking to I as she
was willing to initially and will not send the last message, thus preventing I from
getting the last nonce.

6.2 From Protocol Model to Implementation

The code 1.6 is the role of A in the Needham-Schroeder protocol in F$, and
the code 1.7 is the protocol implementation in C generated by KaRaMeL are
given in Fig. 3. The code for B is similar. We can see that in F$ code 1.6, we
start by establishing the communication channel 10.0.0.2, port 80 (which we
will use for the IP address of B). Then a pair of keys is generated and public

246 C. Sivelle et al.

Fig. 3. Input code of A’s role in F$ and generated C code.

keys are published on the network. A listens for the public key of B2. After this
initialization phase, the protocol can start and A generates a nonce and sends it

2 This is a common modeling practice in protocol verification, allowing the intruder
to choose who A is going to talk to.

Automatic Implementations Synthesis of Secure Protocols 247

and her name encrypted with the public key of B according to the first step of
the protocol. Then A waits for the answer of B. Once B’s response is received,
A checks the correspondence between the nonce sent in the first message and
the one received from B. If the nonces match them A confirms to B that she has
received NB by sending it back to B encrypted by B’s public key.

The C code produced by BIFROST is given in the code 1.7. It follows exactly
the same steps and use all libraries proposed by the tool. Moreover, we argue
that even for an automatically generated code. It stays fairly understandable
and possible to analyze with C static analyzers such as Frama-C or CPPcheck.

6.3 Attacker Implementation Generation

The F$ code of the role of A displayed in Listing 1.6 is translated into pi-calculus
by FS2PV and can be analyzed by ProVerif3. To do so, we need to provide a
query (i.e., a security property) for ProVerif to verify. In this example, this query
is shown in Listing 1.8 and requires the last message received by B from A to
actually be sent by A for B earlier, ensuring authentication of A to B on NB .

1 query ev :Ev(BMessageB(a , b , nb)) ==> ev :Ev(AMessageA(a , b , nb)) .

Listing 1.8. Query used by ProVerif

Using this query, ProVerif is able to find an attack. The trace is also quite
long and we chose to narrow down the output to what is shown in Listing 1.9.

1 new T55 c r e a t i n g T55_1 at {90}
2 new T53 c r e a t i n g T53_1 at {92}
3 new T51 c r e a t i n g T51_1 at {94}
4 out (NethttpChan , CryptoAsymPrivKey (DataFresh (M))) with M =

T51_1 at {96}
5 out (NethttpChan , CryptoAsymPubKey(DataBin (M_1))) with M_1 =

DataPK(DataFresh (T53_1)) at {97}
6 event Ev(BStart (DataUtf8 (SBobS ()) , DataUtf8 (SAl iceS ()))) at

{128}
7 event Ev(AStart (DataUtf8 (SAl iceS ()) , DataUtf8 (SIntruderS ())))

at {100}
8 new T49 c r e a t i n g T49_1 at {102}
9 out (NethttpChan , DataBin (M_2)) with M_2 = DataAsymEncrypt (

DataBin (DataPK(DataFresh (T51_1))) , DataConcat (DataUtf8 (
SAl iceS ()) , DataFresh (T49_1))) at {104}

10 in (NethttpChan , [. . .]) = DataAsymEncrypt (DataBin (DataPK(
DataFresh (T53_1))) , DataConcat (DataUtf8 (SAl iceS ()) ,
DataFresh (T49_1))) at {130}

11 new T29 c r e a t i n g T29_1 at {135}
12 out (NethttpChan , DataBin (M_3)) with M_3 = DataAsymEncrypt (

DataBin (DataPK(DataFresh (T55_1))) , DataConcat (DataFresh (
T49_1) , DataFresh (T29_1))) at {137}

3 As this code is really long, we will not show it in this article.

248 C. Sivelle et al.

13 in (NethttpChan , DataBin (M_3)) with M_3 = DataAsymEncrypt (
DataBin (DataPK(DataFresh (T55_1))) , DataConcat (DataFresh (
T49_1) , DataFresh (T29_1))) at {105}

14 out (NethttpChan , DataBin (M_4)) with M_4 = DataAsymEncrypt (
DataBin (DataPK(DataFresh (T51_1))) , DataFresh (T29_1)) at
{111}

15 in (NethttpChan , [. . .]) = DataAsymEncrypt (DataBin (DataPK(
DataFresh (T53_1))) , DataFresh (T29_1)) at {138}

Listing 1.9. Attack trace found by ProVerif.

The attack found by using ProVerif is actually the same as the one discovered
by Lowe and presented in Sect. 6.1. It can be read as the following (with lines
1–5 prior to the roles of A and B): Line 1: creation of skA; Line 2: creation of
skB ; Line 3: creation of skI ; Line 4: share skI for the intruder; Line 5: share pkB
for the intruder; Line 6–7: start event from B and A Line 8: creation of nonce
NA; Line 9: A sends (A,NA)pkI

; Line 10: B receives (A,NA)pkB . This message
is built by the intruder using the message from A. Line 11: creation of nonce
NB ; Line 12: B sends (NA, NB)pkA

; Line 13: A receives (NA, NB)pkA
; Line 14:

A sends (NB)pkI
; Line 15: B receives (NB)pkB

. This message is built by the
intruder using the message from A.

The F$ representation of the role of the intruder generated by the Python
parser can be found in Listing 1.10. The reader may take note that it follows
the steps of the attack described above. The C implementation is generated by
KaRaMeL, similarly to the roles of A and B, and after compilation it can be
executed along with the two roles in order to play the attack. Finally, when
we add Lowe’s correction to the protocol model (described in Sect. 6.1), we can
indeed see that ProVerif declares the protocol safe for the given properties.

1 let roleI skI pkB adr1 adr2: Int32.t =
2 let c2 = connect adr2 in
3 let c1 = listen adr1 in
4 let m_04 = skI in
5 let m_05 = pkB in
6 let m_09 = Net.recv(c1) in
7 let m_13 = utf8("Alice") in
8 let m_15 = rsa_decrypt m_04 m_09 in
9 let (m_16 ,m_17) = iconcat m_15 in

10 let m_14 = m_17 in
11 let m_12 = concat m_13 m_14 in
12 let m_10 = rsa_encrypt m_05 m_12 in
13 let m_11 = Net.send c2 m_10 in
14 let m_20 = Net.recv(c2) in
15 let m_21 = Net.send c1 m_20 in
16 let m_22 = Net.recv(c1) in
17 let m_25 = rsa_decrypt m_04 m_22 in
18 let m_23 = rsa_encrypt m_05 m_25 in
19 let m_24 = Net.send c2 m_23 in
20 let z = Net.close c2 in 0l

Listing 1.10. Role of the intruder in F$

Automatic Implementations Synthesis of Secure Protocols 249

7 Conclusion

We present BIFROST, a toolchain allowing to automatically generate C code
from an abstract model of cryptographic protocols. BIFROST takes as inputs a
protocol modeled in F$ and output C files. To generate these files BIFROST uses
KaRaMeL to obtain an implementation of the protocol that corresponds to the
model. Moreover, BIFROST transforms the F$ specifications into a π-calculus
file using FS2PV and this file is sent to ProVerif to verify if the protocol is safe or
not. If ProVerif finds a flaw, then we produce the additional C files that allow us
to mount the attack on the protocol implementation. For this we have designed
a parser of ProVerif’s output, able to generate F$ model describing the attack
trace. This F$ file can be translated into C code using KaRaMeL in the same
way as other roles. Moreover, BIFROST can deal with several cryptographic
primitives and network parameters. The choice of using ARM mBedTLS as a
backend relies on its common use within industry products, especially within
embedded systems. However, support with HACL*4 which is a formally verified
cryptographic library would be possible and make sense to have a completely
verified toolchain. On a similar note, gcc/clang could be switched to CompCert5,
a formally verified compiler.

As a future work, we intend to switch FS2PV for an F* compatible translator
that will allow us to support multiple verification tools alongside ProVerif. This
will allow us to not rely on F# anymore and have a protocol representation only
requiring to be compatible with F*. We also aim to extend BIFROST to be able
to consider equational theories and advanced trace-based security properties like
forward secrecy and post-compromise security. Security against side-channel and
fault attacks could also be studied.

References

1. ARM mBed. https://tls.mbed.org/. Accessed 21 Jan 2022
2. OpenQuantumSafe. https://openquantumsafe.org. Accessed 21 Jan 2022
3. OpenSSL. https://www.openssl.org/. Accessed 21 Jan 2022
4. Python Lark parser. https://lark-parser.readthedocs.io/en/latest/. Accessed 21

Jan 2022
5. Cve-2008-0166: Openssl 0.9.8c-1 (2008). https://security-tracker.debian.org/

tracker/CVE-2008-0166
6. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University

Press, Cambridge (2005)
7. Almeida, J.B., et al.: Jasmin: high-assurance and high-speed cryptography. In: Pro-

ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, pp. 1807–1823 (2017). https://doi.org/10.1145/3133956.3134078

8. Barbosa, M., et al.: SoK: computer-aided cryptography. In: 42nd IEEE Symposium
on Security and Privacy, SP 2021, San Francisco, CA, USA, 24–27 May 2021, pp.
777–795. IEEE (2021). https://doi.org/10.1109/SP40001.2021.00008

4 https://github.com/hacl-star/hacl-star.
5 https://compcert.org/.

https://tls.mbed.org/
https://openquantumsafe.org
https://www.openssl.org/
https://lark-parser.readthedocs.io/en/latest/
https://security-tracker.debian.org/tracker/CVE-2008-0166
https://security-tracker.debian.org/tracker/CVE-2008-0166
https://doi.org/10.1145/3133956.3134078
https://doi.org/10.1109/SP40001.2021.00008
https://github.com/hacl-star/hacl-star
https://compcert.org/

250 C. Sivelle et al.

9. Barthe, G., Grégoire, B., Heraud, S., Béguelin, S.Z.: Computer-aided security
proofs for the working cryptographer. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 71–90. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-22792-9_5

10. Basin, D., Mödersheim, S., Viganò, L.: An on-the-fly model-checker for security
protocol analysis. In: Snekkenes, E., Gollmann, D. (eds.) ESORICS 2003. LNCS,
vol. 2808, pp. 253–270. Springer, Heidelberg (2003). https://doi.org/10.1007/978-
3-540-39650-5_15

11. Bellare, M., Canetti, R., Krawczyk, H.: A modular approach to the design and anal-
ysis of authentication and key exchange protocols. In: Proceedings of the Thirtieth
Annual ACM Symposium on Theory of Computing, pp. 419–428 (1998). https://
doi.org/10.1145/276698.276854

12. Benaissa, N., Méry, D.: Cryptographic protocols analysis in event B. In: Pnueli,
A., Virbitskaite, I., Voronkov, A. (eds.) PSI 2009. LNCS, vol. 5947, pp. 282–293.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11486-1_24

13. Bengtson, J., Bhargavan, K., Fournet, C., Gordon, A.D., Maffeis, S.: Refinement
types for secure implementations. ACM Trans. Program. Lang. Syst. (TOPLAS)
33(2), 1–45 (2011). https://doi.org/10.1145/1890028.1890031

14. Bhargavan, K., et al.: DY*: a modular symbolic verification framework for exe-
cutable cryptographic protocol code. In: EuroS&P 2021–6th IEEE European Sym-
posium on Security and Privacy (2021). https://doi.org/10.1109/EuroSP51992.
2021.00042

15. Bhargavan, K., Corin, R., Deniélou, P.M., Fournet, C., Leifer, J.J.: Cryptographic
protocol synthesis and verification for multiparty sessions. In: 2009 22nd IEEE
Computer Security Foundations Symposium, pp. 124–140. IEEE (2009). https://
doi.org/10.1109/CSF.2009.26

16. Bhargavan, K., Fournet, C., Corin, R., Zalinescu, E.: Cryptographically verified
implementations for TLS. In: Proceedings of the 15th ACM Conference on Com-
puter and Communications Security, pp. 459–468 (2008). https://doi.org/10.1145/
1455770.1455828

17. Bhargavan, K., Fournet, C., Gordon, A.D., Tse, S.: Verified interoperable imple-
mentations of security protocols. ACM Trans. Program. Lang. Syst. (TOPLAS)
31(1), 1–61 (2008). https://doi.org/10.1145/1452044.1452049

18. Bieber, P., Boulahia-Cuppens, N., Lehmann, T., van Wickeren, E.: Abstract
machines for communication security. In: 1993 Proceedings Computer Security
Foundations Workshop VI, pp. 137–146. IEEE (1993). https://doi.org/10.1109/
CSFW.1993.246632

19. Blanchet, B.: An efficient cryptographic protocol verifier based on prolog rules. In:
2001 Proceedings of the 14th IEEE Computer Security Foundations Workshop, pp.
82–96. IEEE (2001). https://doi.org/10.1109/CSFW.2001.930138

20. Blanchet, B.: A computationally sound mechanized prover for security protocols
(2006). https://doi.org/10.1109/SP.2006.1

21. Ceelen, P., Mauw, S., Radomirović, S.: Chosen-name attacks: an overlooked class of
type-flaw attacks. Electron. Notes Theor. Comput. Sci. 197, 31–43 (2008). https://
doi.org/10.1016/j.entcs.2007.12.015

22. Cortier, V., Warinschi, B., Zălinescu, E.: Synthesizing secure protocols. In: Biskup,
J., López, J. (eds.) ESORICS 2007. LNCS, vol. 4734, pp. 406–421. Springer, Hei-
delberg (2007). https://doi.org/10.1007/978-3-540-74835-9_27

23. Cremers, C.J.F.: The Scyther tool: verification, falsification, and analysis of secu-
rity protocols. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp.

https://doi.org/10.1007/978-3-642-22792-9_5
https://doi.org/10.1007/978-3-642-22792-9_5
https://doi.org/10.1007/978-3-540-39650-5_15
https://doi.org/10.1007/978-3-540-39650-5_15
https://doi.org/10.1145/276698.276854
https://doi.org/10.1145/276698.276854
https://doi.org/10.1007/978-3-642-11486-1_24
https://doi.org/10.1145/1890028.1890031
https://doi.org/10.1109/EuroSP51992.2021.00042
https://doi.org/10.1109/EuroSP51992.2021.00042
https://doi.org/10.1109/CSF.2009.26
https://doi.org/10.1109/CSF.2009.26
https://doi.org/10.1145/1455770.1455828
https://doi.org/10.1145/1455770.1455828
https://doi.org/10.1145/1452044.1452049
https://doi.org/10.1109/CSFW.1993.246632
https://doi.org/10.1109/CSFW.1993.246632
https://doi.org/10.1109/CSFW.2001.930138
https://doi.org/10.1109/SP.2006.1
https://doi.org/10.1016/j.entcs.2007.12.015
https://doi.org/10.1016/j.entcs.2007.12.015
https://doi.org/10.1007/978-3-540-74835-9_27

Automatic Implementations Synthesis of Secure Protocols 251

414–418. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70545-
1_38

24. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.:
Frama-C. In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM 2012.
LNCS, vol. 7504, pp. 233–247. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33826-7_16

25. Dierks, T., Rescorla, E.: The transport layer security (TLS) protocol version 1.2.
RFC 5246 (2008)

26. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Trans. Inf. Theory
29(2), 198–208 (1983). https://doi.org/10.1109/TIT.1983.1056650

27. Durumeric, Z., et al.: The matter of heartbleed. In: Proceedings of the 2014 con-
ference on internet measurement conference, pp. 475–488 (2014). https://doi.org/
10.1145/2663716.2663755

28. Escobar, S., Meadows, C., Meseguer, J.: Maude-NPA: cryptographic protocol
analysis modulo equational properties. In: Aldini, A., Barthe, G., Gorrieri, R.
(eds.) FOSAD 2007-2009. LNCS, vol. 5705, pp. 1–50. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03829-7_1

29. Katz, J., Yung, M.: Scalable protocols for authenticated group key exchange. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 110–125. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45146-4_7

30. Lafourcade, P., Puys, M.: Performance evaluations of cryptographic protocols ver-
ification tools dealing with algebraic properties. In: Foundations and Practice of
Security - 8th International Symposium, FPS 2015, Clermont-Ferrand, France, 26–
28 October 2015, Revised Selected Papers, pp. 137–155 (2015). https://doi.org/
10.1007/978-3-319-30303-1_9

31. Lowe, G.: Breaking and fixing the Needham-Schroeder public-key protocol using
FDR. In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 147–
166. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61042-1_43

32. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the
symbolic analysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 696–701. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8_48

33. Modesti, P.: AnBx: automatic generation and verification of security protocols
implementations. In: Garcia-Alfaro, J., Kranakis, E., Bonfante, G. (eds.) FPS 2015.
LNCS, vol. 9482, pp. 156–173. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-30303-1_10

34. Needham, R.M., Schroeder, M.D.: Using encryption for authentication in large
networks of computers. Commun. ACM 21(12), 993–999 (1978). https://doi.org/
10.1145/359657.359659

35. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic, vol. 2283. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45949-9_5

36. Otway, D., Rees, O.: Efficient and timely mutual authentication. SIGOPS Oper.
Syst. Rev. 21(1), 8–10 (1987). https://doi.org/10.1145/24592.24594

37. Pozza, D., Sisto, R., Durante, L.: Spi2Java: Automatic cryptographic protocol
java code generation from SPI calculus. In: Proceedings of the 18th International
Conference on Advanced Information Networking and Application (2004). https://
doi.org/10.1109/AINA.2004.1283943

38. Protzenko, J., et al.: Verified low-level programming embedded in f. Proc. ACM
Program. Lang. 1(ICFP), 17–1 (2017). https://doi.org/10.1145/3110261

https://doi.org/10.1007/978-3-540-70545-1_38
https://doi.org/10.1007/978-3-540-70545-1_38
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1109/TIT.1983.1056650
https://doi.org/10.1145/2663716.2663755
https://doi.org/10.1145/2663716.2663755
https://doi.org/10.1007/978-3-642-03829-7_1
https://doi.org/10.1007/978-3-540-45146-4_7
https://doi.org/10.1007/978-3-319-30303-1_9
https://doi.org/10.1007/978-3-319-30303-1_9
https://doi.org/10.1007/3-540-61042-1_43
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-319-30303-1_10
https://doi.org/10.1007/978-3-319-30303-1_10
https://doi.org/10.1145/359657.359659
https://doi.org/10.1145/359657.359659
https://doi.org/10.1007/3-540-45949-9_5
https://doi.org/10.1007/3-540-45949-9_5
https://doi.org/10.1145/24592.24594
https://doi.org/10.1109/AINA.2004.1283943
https://doi.org/10.1109/AINA.2004.1283943
https://doi.org/10.1145/3110261

252 C. Sivelle et al.

39. Sprenger, C., Basin, D.: Developing security protocols by refinement. In: Proceed-
ings of the 17th ACM Conference on Computer and Communications Security, pp.
361–374 (2010). https://doi.org/10.1145/1866307.1866349

40. Swamy, N., Weinberger, J., Schlesinger, C., Chen, J., Livshits, B.: Verifying higher-
order programs with the Dijkstra monad. In: Proceedings of the 34th annual ACM
SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2013, pp. 387–398 (2013). https://doi.org/10.1145/2499370.2491978

https://doi.org/10.1145/1866307.1866349
https://doi.org/10.1145/2499370.2491978

How to Avoid Repetitions
in Lattice-Based Deniable
Zero-Knowledge Proofs

Xavier Arnal1, Abraham Cano1, Tamara Finogina1,2(B) ,
and Javier Herranz1(B)

1 Dept. Matemàtiques, Universitat Politècnica de Catalunya,
Barcelona, Spain

{xavier.arnal,abraham.cano,javier.herranz}@upc.edu
2 Scytl Election Technologies, S.L.U., Barcelona, Spain

tamara.finogina@scytl.com

Abstract. Interactive zero-knowledge systems are a very important
cryptographic primitive, used in many applications, especially when deni-
ability (also known as non-transferability) is desired. In the lattice-based
setting, the currently most efficient interactive zero-knowledge systems
employ the technique of rejection sampling, which implies that the inter-
action does not always finish correctly in the first execution; the whole
interaction must be re-run until abort does not happen.

While repetitions due to aborts are acceptable in theory, in some prac-
tical applications it is desirable to avoid re-runs for usability reasons. In
this work we present a generic technique that departs from an interac-
tive zero-knowledge system (that might require multiple re-runs to com-
plete the protocol) and obtains a 3-moves zero-knowledge system (with-
out re-runs). The transformation combines the well-known Fiat-Shamir
technique with a couple of initially exchanged messages. The resulting
3-moves system enjoys honest-verifier zero-knowledge and can be easily
turned into a fully deniable proof using standard techniques. We show
some practical scenarios where our transformation can be beneficial and
we also discuss the results of an implementation of our transformation.

1 Introduction

In some applications, it is mandatory to ensure that the result of an interaction
between a prover and a verifier is non-transferable, i.e., deniable. For example,
electronic voting requires ballot content correctness proofs (i.e., proof that the
ballot indeed contains the option voter selected) to be non-transferable to prevent
vote selling. It means no one except the voter should be able to realize that valid
content correctness proof is coming from the voting device and not simulated.
Similarly, a deniable authentication should produce a proof that convinces only
protocol participants and no one else.

Informally deniability means that only the verifier who interacted with the
prover can be convinced that some statement is true. No one else looking at
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. P. Reiser and M. Kyas (Eds.): NordSec 2022, LNCS 13700, pp. 253–269, 2022.
https://doi.org/10.1007/978-3-031-22295-5_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22295-5_14&domain=pdf
http://orcid.org/0000-0003-4771-0635
http://orcid.org/0000-0001-5141-7234
https://doi.org/10.1007/978-3-031-22295-5_14

254 X. Arnal et al.

the same transcript should be able to say if it comes from a real interaction
or from one simulated by the verifier. At first glance, it might seem that a
standard notion of zero-knowledge (ZK) definition, which requires the existence
of a simulator algorithm that can produce transcripts indistinguishable from the
ones produced in a real execution, suffices for achieving deniability. However, it
is not always the case. For deniability, it is crucial that the verifier can run such
a simulator algorithm in the real life; definitions of the ZK notion where the
simulator controls a random oracle or a common reference string are thus not
satisfactory.

Let us consider for instance non-interactive proofs that are ZK in the random
oracle model (ROM). To simulate the transcript, one needs to have control over
the hash oracle, which is impossible in real-life settings. Hence, ZK in ROM
results in only theoretical deniability: any valid non-interactive proof is, without
a doubt, coming from the prover.

The impossibility of achieving deniability with a one-round protocol (in ROM
or CRS model) was proven already by Rafael Pass [24]. Also, he argued that
two rounds are necessary and sufficient for achieving deniability in ROM. His
solution for proving that some public x belongs to some language LR (borrowing
notation from Sect. 2) was to use a two-rounds proof of the following form: in
the first round, the verifier generates a commitment to a trapdoor and a non-
interactive zero-knowledge proof of knowledge (NIZKPoK) of the trapdoor. In
the second round, the prover verifies the received NIZKPoK and, if valid, creates
an OR proof for the statement “x ∈ LR OR I know the verifier’s trapdoor”.
We, however, claim that this solution is non-deniable. A malicious verifier can
easily copy an existing commitment and corresponding NIZKPoK from some
other party/execution and, therefore, engage in a protocol without knowing the
trapdoor. Later such a verifier can somehow demonstrate that it could not have
known the trapdoor, which makes the origin of any valid proof undeniable.

Therefore, it seems natural that, for deniability, we need a protocol with
full zero-knowledge (ZK)1 in the plain model (with no extra assumptions like
a random oracle, a common reference string, a public key infrastructure, etc.).
Achieving ZK in the plain model requires at least three rounds of interaction.
Furthermore, existing 3-rounds ZK systems are quite theoretical and inefficient;
we will thus focus on achieving efficient and 4-rounds ZK systems.

Two classical ways of doing so (and thus to obtain a deniable proof system),
assuming the existence of an interactive proof system Π for proving x ∈ LR,
are:

(a) If Π is a 3-rounds (Sigma) protocol, where transcripts have the form (a, c, z),
then add an initial round where the verifier commits to the challenge c. In
round 3 now the verifier opens the commitment; the prover sends z only if
the opening is correct. Soundness and ZK hold if the commitment is perfectly
hiding and trapdoor.

1 Honest-verifier zero-knowledge (HVZK) is not enough, since the notion of deniability
is intrinsically related to a dishonest verifier who could be interested in transferring
its conviction to somebody else.

How to Avoid Repetitions in Lattice-Based Deniable Zero-Knowledge Proofs 255

(b) The verifier sends Y in the first round, where Y = F (X) for some homomor-
phic one-way function F and input X. It also engages a Sigma protocol for
proving knowledge of X, which is finished in the two next rounds. In round 4, if
the Sigma protocol has been successful, the prover computes a non-interactive
(via Fiat-Shamir) proof for the statement “x ∈ LR OR I know X”.

The Lattice-Based Setting. Both solutions (a) and (b) above require execution
of a Sigma protocol for some language. In the lattice-based setting (the most
promising one for achieving security in front of quantum computers, through the
hardness of some shortest vector problems in lattices [2] such as the learning with
errors (LWE) problem and the short integer solution (SIS) problem) such Sigma
protocols are not trivial to construct: the security of LWE and SIS requires that
the solution not only has a specific structure but also is small. Thus, a masking
term has to be small, but that unavoidably leaks parts of the secret.

A solution to this problem was proposed by Lyubashevsky in [18]. He pro-
posed the smart idea of a (possibly) aborting prover, using rejection sampling to
ensure that the answer’s distribution is independent of the secret. The rejection
sampling allowed to ensure correctness and security and led to many fundamen-
tal cryptographic constructions: canonical identification (CID) and signatures
(e.g. [18]), zero-knowledge proofs (e.g. [20]), blind signatures (e.g. BLAZE+
[4]), and others.

The main downside of the idea is the possibility of multiple protocol repeti-
tions that may be very undesirable in practical applications. Real people expect
to interact with a system only once and always receive the (correct) result at
the end. Hence, an unpredictable number of repeats due to rejection sampling
makes deniable protocols unpractical.

Unfortunately, eliminating aborts in lattice-based ZK proofs is quite chal-
lenging. Behnia et al. [8] studied rejection conditions in Lyubashevsky’s CID
scheme and found a way to remove one of the two conditions. However, they
concluded that full elimination of rejection sampling is problematic.

An alternative is to reduce the occurrence of protocol re-runs. One of the sim-
plest methods to ensure the protocol terminates after a fixed number of repeti-
tions M ≥ 2 (with a high probability) is to use a large enough distribution over
Z. However, this comes at the cost of increased execution time and proof size.

Another method to decrease the occurrence of aborts is to run several proto-
cols in parallel. Usually, parallel repetition aims to reduce the knowledge error
rather than the completeness error. However, we can use it for decreasing rejects
as well. Prover starts N independent instances of the protocol and sends N com-
mitments to the verifier, replying only with the first proof that did not cause
an abort. While this increases the probability of successful protocol termination,
it significantly increases communication and computational complexity (by a
factor of N) and does not eliminate aborts completely.

Another work by Attema et al. [5] proposes an s-out-of-t threshold paral-
lel repetition, where the verifier accepts if s out of t of the parallel instances
are accepting. Unfortunately, the completeness error is still ≥ ρt, where ρ is
the completeness error of a single protocol run. Therefore, achieving a negligible

256 X. Arnal et al.

probability of aborts would require a substantial t and would result in an increased
proof size and proving time.

An improvement over parallel repetition—a generic construction for reducing
aborts in 3-moves protocols—was proposed in [4]. This construction builds on
top of the idea of � parallel repetitions and uses (unbalanced) binary hash trees
to reduce the size of the first answer, from �-commitments to a tree root.

An alternative to the aborts approach is probabilistically checkable proofs
(PCPs) and interactive oracle proofs (IOPs) cleverly combined with lattice-
based algebraic techniques. For example, [10] presents a zero-knowledge system
for proving knowledge of Learning With Errors (LWE) pre-images, which does
not involve aborts. Unfortunately, this solution is more efficient than a general
lattice-based system (with aborts) only for some specific settings, for instance,
when proving at the same time knowledge of a lot of LWE pre-images with the
same matrix A. In other cases, the initial commitment and Merkle paths result
in bigger proofs than possible alternatives, especially considering that we need
several iterations to achieve negligible soundness.

All in all, the currently most efficient and compact interactive zero-knowledge
systems in the lattice-based setting are those with aborts and, so far, there is no
efficient way to eliminate them.

1.1 Our Contribution

In this work, we show a simple way to construct a deniable lattice-based proof
system that always requires just a single execution for completeness. We depart
from any multi-round interactive lattice-based zero-knowledge systems (possibly
with re-runs due to the presence of aborts). We demonstrate the security and
effectiveness of our construction and its applicability to a wide class of protocols.
In particular, we have implemented the system that results from applying our
construction to the system proposed in [11].

The general idea of the transformation is to apply the Fiat-Shamir transfor-
mation to the original system Π, combined with an initial message by the prover;
the challenges of the non-interactive Fiat-Shamir version of Π will not be simply
the outputs of the hash functions (as in Fiat-Shamir), but a combination (a sort
of trapdoor commitment) of these outputs with the values sent by the prover in
the initial message. This allows us to prove that the resulting 3-rounds protocol
enjoys the honest-verifier zero-knowledge (HVZK) property.

At this point, we can use both (a) and (b) solutions depicted above: if the
system Π was for proving the desired statement, then we can use (a); otherwise,
if Π is for proving the knowledge of a pre-image for a lattice-based homomorphic
one-way function, we can use (b).

1.2 Illustrating Our Technique

We show how to eliminate the necessity of the protocol re-runs using the lattice-
based CID scheme [18] as an example (see Fig. 1). First, we briefly recall the
CID scheme and then show how to apply our transformation.

How to Avoid Repetitions in Lattice-Based Deniable Zero-Knowledge Proofs 257

Let A be a public matrix selected uniformly at random from Z
n×m
q . The

prover P would like to prove the knowledge of a secret matrix S ∈ Z
m×n with

small entries such that B = A · S(mod q), where B ∈ Z
n×n
q is also public. To

do so, P samples a fresh masking vector y from χm, where χ is some distribution
over Z (the discrete Gaussian over Z or the uniform over a small subset of Z).
Then it sends commitment v = A · y(mod q) to the verifier V. The V picks
a random challenge from the challenge space C = {(c1, . . . , cn) ∈ Z

n : ci ∈
{−1, 0, 1},

∑n
i=1 |ci| = κ}. The P returns response z = y+ c ·S to the challenge

only if rejection sampling algorithm RejSampl(z) does not abort. The protocol
is repeated by sampling a fresh y until RejSampl accepts. The verifier V accepts
if and only if v = A · z − B · c(mod q) and ||z||p is smaller than a pre-defined
bound B, where p ∈ {2,∞} depending on the distribution χ.

In our construction, a proof is generated non-interactively (via the Fiat-
Shamir transformation) and turned back into an interactive one with the help
of a very simple trapdoor commitment:

1. To prove a statement st, P samples a value r ∈ {0, 1}� at random and sends
it to the verifier V.

2. V sends to P a random challenge γ ∈ {0, 1}�.
3. P runs a non-interactive version of the CID scheme (if necessary, re-running

it until abort does not happen) to get a typical proof (com, e, z); but the chal-
lenge e is defined as e = H1

(
r⊕H(st, com, γ)

)
instead of the usual H(st, com)

in the Fiat-Shamir transformation.

Figure 1 gives an example of a singe-run (without re-runs) CID scheme. Note
that in case of aborting, a fresh y is sampled and the process is repeated until
RejSampl(z) accepts, ensuring z is statistically indistinguishable from e · S.

Intuitively, we see that security is inherited from the non-interactive version
of the protocol. On the one hand, P commits to r prior to receiving the ver-
ifier’s challenge γ, thus it cannot manipulate the non-interactive challenge e.
Therefore the resulting proof behaves as a standard non-interactive version of
the initial (interactive) protocol. On the other hand, thanks to the use of the
simple trapdoor commitment, anyone can generate a simulated transcript that
is indistinguishable from the real one.

In the protocol described in Fig. 1, H : {0, 1}∗ → {0, 1}� and H1 : {0, 1}� →
C denote two hash functions and ⊕ denotes component-wise XOR operation
between two strings of � bits.

2 Preliminaries: (Public Coin) Interactive Proofs

Let R ⊂ {0, 1}∗ × {0, 1}∗ be a binary relation. If a pair (x,w) ∈ R, we call x an
statement and w a witness for x. The relation is an NP-relation if, given (x,w),
one can decide in polynomial time if (x,w) ∈ R or not. Such a relation R gives
rise to the set of “yes”-instances defined as LR = {x ∈ X | ∃w ∈ W s.t. (x,w) ∈
R}, known as the language of R. The set of witnesses for a valid statement
x ∈ LR is denoted as R(x).

258 X. Arnal et al.

Fig. 1. Interactive CID scheme that always terminates after a single run.

Interactive Proofs. An interactive proof system Π for relation R is an interac-
tive protocol between two probabilistic polynomial-time (PPT) algorithms, the
prover P and the verifier V. The common input of the two parties is a statement
x, whereas P has as an additional input a witness w ∈ R(x). We thus denote an
execution of such a protocol as 〈P (y) ,V(y)〉Π . The final output of the protocol
is a bit — 1 if V accepts, 0 otherwise. The set of messages exchanged during the
execution of Π is called an (accepting or rejecting) transcript.

We will consider in this work a specific but very common type of interactive
proof systems: those where the first and last messages are sent by P, leading to
(2μ+1) rounds of communication, for some integer μ ≥ 1. We will be considering
public coin systems: all the random choices of V are made public during the
execution of Π. This is equivalent to say that the 2i-th message of the protocol,
sent by V to P, is a random element ci ←R Ci, called a challenge, taken from
some challenge space(s) Ci.

The first property that must be required to such an interactive system is
δ-completeness: if (x,w) ∈ R then it holds Pr[〈P (x,w) ,V(x)〉Π = 1] = 1 − δ.

Zero-Knowledge. A public coin interactive protocol Π as above enjoys the
honest-verifier zero-knowledge (HVZK) property if there exists a PPT algorithm
MΠ such that, for any (x,w) ∈ R, on input x and μ challenge values c1, . . . , cμ

with ci ∈ Ci, outputs an accepting transcript with the same distribution as the
one produced by an execution of 〈P (x,w) ,V(x)〉Π run with a honest verifier V
that has chosen those challenges ci ←R Ci, for i = 1, . . . , μ.

A stronger notion is full zero-knowledge (ZK), which clearly implies denia-
bility; it requires that, for every verifier V∗ there exists a PPT simulator MV∗,Π

such that for every (x,w) ∈ R the output 〈P (x,w) ,V∗(x)〉Π is identically dis-

How to Avoid Repetitions in Lattice-Based Deniable Zero-Knowledge Proofs 259

tributed to the output MV∗(x). This property can be relaxed requiring that the
outputs only be statistically or computationally indistinguishable.

(Knowledge) Soundness. A protocol Π has the ε-soundness property if, for any
x /∈ LR, it holds Pr[〈P (x) ,V(y)〉Π = 1] ≤ ε.

There is a stronger version of soundness — that of knowledge soundness. A
protocol Π enjoys knowledge soundness with knowledge error κ : N → [0, 1] if
there exist a positive polynomial q(·) and algorithm K, such that for every prover
P∗ and x ∈ LR, the extractor K, on input x, with black-box oracle access to P∗

and within an expected number of steps polynomial in |x|, outputs a witness
w ∈ R(x) with probability at least

Pr[〈P (x,w) ,V(x)〉Π = 1] − κ(|x|)
q(|x|)

3 The Transformation

Let Π = 〈P(x, ω),V(x)〉Π be a public coin (2μ + 1)-rounds interactive proof
system for language LR. We denote as ai the message sent by P to V in round
2i−1, for i = 1, . . . , μ, and as z the last message sent by P in round 2μ+1. The
message sent by V in round 2i is a random challenge ci ∈ Ci, for some challenge
space Ci, for i = 1, . . . , μ.

Let us consider 1 + μ hash functions: on the one hand H : {0, 1}∗ → {0, 1}�

and on the other hand Hi : {0, 1}� → Ci, for i = 1, . . . , μ.
We construct a 3-rounds interactive proof system Σ = 〈P(x,w),V(x)〉Σ for

the same language LR, as follows.

1. For i = 1, . . . , μ, P chooses ri ∈ {0, 1}� uniformly at random. These values
r1, . . . , rμ are sent to V.

2. V chooses a challenge γ ∈ {0, 1}� uniformly at random and sends it to P.
3. P runs an execution of the system Π by using inputs (x, ω), and playing also

the role of the verifier, by defining the challenges as ci = Hi(ri ⊕ hi), where
hi = H(x, a1, . . . , ai, c1, . . . , ci−1, γ), for i = 1, . . . , μ. The resulting transcript
(a1, a2, . . . , aμ, z) is sent by P to V.

V accepts the interaction as valid if (a1, c1, a2, c2, . . . , aμ, cμ, z) is an accept-
ing transcript for Π with input x, where ci = Hi(ri ⊕ hi) and hi =
H(x, a1, . . . , ai, c1, . . . , ci−1, γ), for i = 1, . . . , μ.

3.1 Security Analysis

The completeness property of Σ is trivially satisfied, assuming the interactive
system Π enjoys completeness. In the next sections we show how the zero-
knowledge and soundness properties of Π are also inherited by Σ.

260 X. Arnal et al.

Zero-Knowledge

Proposition 1. Assuming Π enjoys the honest-verifier zero-knowledge (HVZK)
property, then the new interactive system Σ also enjoys the HVZK property.

Proof. The goal is to show that, for any (x,w) ∈ LR, a simulator algorithm
MΣ can, on input x and any (honest) random challenge γ ∈ {0, 1}�, produce
transcripts (r1, . . . , rμ, γ, a1, . . . , aμ, z) indistinguishable from those produced by
an execution of 〈P(x,w),V(x)〉Σ with a honest verifier V which takes that γ
uniformly at random in {0, 1}�.

By hypothesis, there is a simulator MΠ for Π. What the simulator MΣ

does first is to choose uniformly at random μ values v1, . . . , vμ
$← {0, 1}�

and to compute ci = Hi(vi) for i = 1, . . . , μ. Then MΠ runs simulator MΠ

with input x and challenges c1, . . . , cμ, which results in an accepting tran-
script (a1, c1, a2, c2, . . . , aμ, cμ, z), indistinguishable from those produced by
〈P(x,w),V(x)〉Π . After that MΣ computes the values hi = Hi(x, a1, . . . , ai, c1,
. . . , ci−1, γ) and ri = vi ⊕ hi, for i = 1, . . . , μ.

It is easy to check that the transcript has the same distribution as those
produced in a real execution of 〈P(x,w),V(x)〉Σ where γ is the challenge chosen
by the honest verifier.

Assuming hash functions Hi are pseudo-random functions, the values ci =
Hi(vi) generated by MΣ and given as inputs to MΠ are random and uniform
elements in Ci. �

If we combine this 3-rounds and HVZK protocol Σ with a trapdoor and per-
fectly hiding commitment scheme (as scheduled in item (a) in the Introduction),
we can obtain full zero-knowledge in the plain model and thus, deniability.

Alternatively, we can apply our construction to a protocol Π for proving
knowledge of a pre-image X for some value Y = F (X), where F is a lattice-
based homomorphic one-way function. The resulting protocol Σ can then be
used in the solution depicted in item (b) in the Introduction.

Soundness

Proposition 2. Assuming Π has ε-soundness and if � is big enough, then the
new interactive system Σ has the ε′-soundness, in the (classical) Random Oracle
Model, where ε′ ≤ ε ·Qμ and Q is an upper bound on the number of hash queries
that a prover of Σ can make.

Proof. The proof of this result works in a similar way as the well-known (in its
naive, non-optimized version) proof that the Fiat-Shamir transformation of a
public-coin interactive system with soundness results in a secure non-interactive
system: the idea is to rewind the adversary several (in our case, μ times), by
fixing the randomness and the answers to the hash queries up to a specific point,
and then to use the Forking Lemma [25] to ensure that, with non-negligible
probability, all the instances of the adversary will lead to forgeries with the
desired outputs (that have been fixed in the rewinds).

How to Avoid Repetitions in Lattice-Based Deniable Zero-Knowledge Proofs 261

First of all, if � is big enough, then the probability 2−� of breaking soundness
by guessing the challenge γ ∈ {0, 1}� is negligible. In that setting, let us assume
that Σ still does not have ε′-soundness. Thus, there exists a prover PΣ that is
accepted with probability > ε′, when run with some instance x′ /∈ LR. We are
going to construct a prover PΠ against the soundness of Π, running thus with
the same x′ /∈ LR.

As its first instruction, PΠ starts running PΣ , which sends its first message
(r1, . . . , rμ). Now PΠ chooses at random γ ∈ {0, 1}� and sends it to PΣ . We
remark that (r1, . . . , rμ) and γ are going to be fixed for all the calls that PΠ

makes to PΣ . In this first call, PΣ gives its final answer (a(1)
1 , . . . , a

(1)
μ , z(1)),

which is valid with probability ≥ ε′.
During this and the other executions of PΣ , our new prover PΠ has

to answer the hash queries made by PΣ . This is done in the usual way,
by keeping track of all previous queries, selecting a random output for new
queries, storing the (input,output) relations in a table, etc. With overwhelm-
ing probability, a successful prover PΣ will have made all the key queries
hi ← H(x′, a(1)

1 , . . . , a
(1)
i , c

(1)
1 , . . . , c

(1)
i−1, γ) and Hi(ri + hi), for i = 1, . . . , μ.

After the first execution, PΠ sends the value a
(1)
1 to its verifier VΠ , which then

sends a challenge c1. With overwhelming probability, it will be the case that c1 �=
H1(r1⊕h1). What PΠ does now is to rewind: it starts a new running of PΣ , with
the same random tape and the same answers to the hash queries, up to the point
where the query H1(r1⊕h1) is made; this time, the answer to this query is defined
as c1. The Forking Lemma ensures that, with non-negligible probability, this
second execution of PΣ will produce a valid transcript (a(1)

1 , a
(2)
2 , . . . , a

(2)
μ , z(2))

with the same value a
(1)
1 as in the first execution (because, with overwhelming

probability, the value a
(1)
1 had been queried to hash oracle H to produce h1,

before the key query H1(r1 ⊕ h1) was made). At this point, PΠ sends the value
a
(2)
2 to its verifier VΠ , which then sends a challenge c2.

The same rewind argument is done again, with the same random tape and
hash answers as in the second execution, but now defining H2(r2 ⊕ h2) to be
c2. Again with overwhelming probability this query, which depends on h2 which
depends on c1, must have been made after the query H1(r1 ⊕ h1), which is
again answered as c1. With non-negligible probability, this third execution of
PΣ produces a valid transcript (a(1)

1 , a
(2)
2 , a

(3)
3 , . . . , a

(3)
μ , z(3)).

Repeating this argument μ times, letting PΠ send a
(i)
i to its verifier

VΠ in round i, getting ci as answer and rewinding PΣ accordingly, at the
end we eventually finish, after μ + 1 executions of PΣ , with a valid tran-
script (a(1)

1 , a
(2)
2 , a

(3)
3 , . . . , a

(μ)
μ , z(μ+1)) satisfying ci = Hi(ri ⊕ hi), where hi =

Hi(x′, a(1)
1 , . . . , a

(i)
i , c1, . . . , ci−1, γ). Thus, our PΠ has convinced its verifier VΠ

with non-negligible probability ε. By the iterated use of the Forking Lemma, the
relation between ε and ε′ is essentially ε ≈ ε′

Qµ . �

262 X. Arnal et al.

3.2 Extensions

– The same idea as in the proof for soundness can be applied to prove that
knowledge soundness of Π implies knowledge soundness of Σ.

– The soundness property of Σ is obtained in the classical Random Oracle
Model. If one wants to achieve soundness in the Quantum Random Oracle
Model, then one can use alternative transformations to Fiat-Shamir, either
generic [12,29] or specific for lattice-based systems [17], that have been pro-
posed in the last years.

– The naive reduction in our proof for the soundness property implies a loss
factor Qμ which is exponential in the number of rounds of Π. This problem
can be solved by using the results in [6], whenever the starting protocol Π
enjoys (k1, . . . , kμ)-special soundness. We stress that most (if not all) popular
interactive systems Π enjoy this property, including lattice-based ones.

– If the challenge spaces Ci of the interactive protocol Π are closed spaces
for some mathematical operation (that we denote for simplicity as +), then a
small modification to our construction is possible, basically choosing ri ←R Ci

and then defining ci = ri + hi, where hi = Hi(x, a1, . . . , ai, h1, . . . , hi−1, γ),
being now Hi : {0, 1}∗ → Ci. This situation happens for instance when Π is
the protocol in [30]: the challenge space contains integers modulo a prime p.

4 Applications

The transformation proposed in the previous section is useful in settings where
a lattice-based interactive zero-knowledge protocol is mandatory (for instance, if
deniability is required), or for some reason preferable to a non-interactive proto-
col. In such a situation, the most efficient existing protocols Π involve rejection
sampling and thus aborts [11,13,14,20,21,30]. Our transformation results in a
3-rounds protocol Σ without mandatory protocol restarts, at the cost of relying
on the Random Oracle Model to achieve provable security.

We give below three specific examples of situations where such interactive
protocols are used. After that, we discuss other situations where our result in
the previous section does not seem applicable.

4.1 Canonical Identification Schemes

Canonical Identification (CID) schemes are three round public coin protocols in
which a prover (who sends the first and third messages) proves knowledge of
the secret key matching a specific public key. The second message, sent by the
verifier, is a random challenge.

Although these schemes are often used as building blocks to design other
cryptographic protocols (in particular, signature schemes, with no interaction
between the signer and the verifier), they can be used on their own: for instance,
in access control systems where the user trying to get access proves to the access
entity (the verifier, in this context) that he owns the secret key which matches

How to Avoid Repetitions in Lattice-Based Deniable Zero-Knowledge Proofs 263

a public key of some authorized user. If the users want their access to remain
private, a solution can be to run a CID scheme, so that the transcript is non-
transferable and the (possibly dishonest) access entity cannot prove to someone
else that a user got access to the system. An example of the use of such non-
transferable identification schemes can be found in [9].

CID schemes are one of the examples considered in the work [4] to motivate
their use of trees of commitments, in order to reduce the abort probability of
lattice-based interactive zero-knowledge systems. They use Lyubashevsky’s iden-
tification protocol [18] (recalled in the Sect. 1.2 of this work) as an illustrative
lattice-based CID scheme. Therein, the probability of aborting in a single exe-
cution of the protocol is ≈ 1 − 1

M , where M = exp
(
12
α + 1

2α2

)
, being α a lattice

parameter that affects the size of the standard deviation σ used to sample the
underlying Gaussian distribution: α = Tα.

There are basically four options2 if one wants to be sure that the identi-
fication protocol will finish with overwhelming probability psc in three rounds
of communication (that is, without forcing the verifier to send more than one
message):

1. keep the typically proposed parameters for α, σ, and repeat the protocol, in
parallel, at least M times. Here the choice of α will depend on the desired
probability psc. The M repetitions imply that the global communication con-
tains M vectors in the ring (Rq)k;

2. run a single execution of the protocol, but with highly increased parameters
α, σ so that M is very close to one;

3. keep the typical values for α, σ and apply the tree of commitments technique
introduced in [4], which increases the computational complexity of the prover
by a factor � and the communication complexity by log(�) hash values, where
� (the number of leaves in the tree) depends on α, psc;

4. apply our transformation to Lyubashevsky’s CID scheme, which results in a
protocol that always succeeds; the communication complexity of the protocol
is almost the same as in the original CID scheme, whereas the computational
cost for the prover is essentially the same as in options 1, 2, and 3 above.

Note that option 4 is the only one that ensures that the protocol will always
finish successfully. The other advantage of option 4 over the three first options
is, of course, its communication complexity. On the negative side, option 4 is
the only one that needs the heuristic Random Oracle Model to have provable
security.

Some specific values given in Sect. 3 of [4] are as follows, for psc = 1 − 2−10:
option 1 could have α = 11 and M ≈ 3, option 2 should have α > 213.6 and
option 3 could have α = 23 and � = 8 or alternatively α = 12 and � = 16.

For higher values of psc, parameters in options 1,2,3 must be increased even
more. As an example, authors of [4] show that α = 42 and � = 64 are needed for
psc = 1 − 2−128.
2 We stress that the abort-free protocol in [10] is not really suitable for this setting,

in terms of efficiency.

264 X. Arnal et al.

4.2 Non-transferable Signatures

In some kinds of signature schemes that have been introduced in the last decades,
the validity of the signature is not universally verifiable as it happens in stan-
dard signatures. In contrast, the signer puts some limit on the user(s) who can
verify a signature, and also on the capability to transfer this conviction to other
users. Examples of this kind of signature schemes are designated verifier sig-
natures, directed signatures, nominative signatures, undeniable signatures, and
designated confirmer signatures.

Some of them are aggregated under the name of on-line non-transferable sig-
natures [27]. In such schemes, the signing algorithm is run by the signer, but then
there are interactive protocols, Confirm and Disavow, run by both the signer and
the verifier, which confirm the verifier of the validity or invalidity of a signature.
The verifier cannot convince anybody else of any of these facts. Applications of
these kinds of signatures include machine-readable travel documents and identity
documents like e-Passports [7,23].

The interaction between signer and verifier typically involves a 3-rounds zero-
knowledge system. If one intends to design such schemes in a lattice-based set-
ting, thus, our result in this paper can be directly used as an ingredient of such
designs, so that the interaction between signer and verifier needs to be run only
once, without the verifier noticing the presence of aborts and without (parallel)
repetitions.

As a particular example, the first (and maybe only) secure lattice-based unde-
niable signature scheme is the one in [26]. The confirmation and disavowal pro-
tocols of the scheme are designed by using Stern’s techniques [28]: a dishonest
prover is accepted with probability 2/3 (soundness error), which means the pro-
tocols must be run a large number of times to achieve real soundness. Our tech-
niques, combined with some suitable and efficient lattice-based zero-knowledge
system Π for the languages involved in those confirmation/disavowal protocols,
would result in protocols Σ with overwhelming soundness, without repetitions
due to aborts. There are many options today (see for instance [20] and references
therein) to find a suitable and efficient Π for the specific lattice-based languages
appearing in the confirmation/disavowal protocols of [26].

4.3 eVoting with CAI and CR Properties

Two important properties of an electronic voting system are cast-as-intended
(CAI) verifiability and coercion-resistance (CR). CAI verifiability means that
the voter is convinced that the option inside a ciphertext that goes to the ballot
box is the one that he/she has chosen, when the ciphertext has been created by
an external (possibly dishonest) voting device. Coercion-resistance is achieved if
a voter has means of deceiving a coercer who tries to force the voter to act in a
specific way during the voting protocol.

In scenarios where voters do not receive secret information (such as cre-
dentials) from the election authorities, it has been recently shown [15] that at

How to Avoid Repetitions in Lattice-Based Deniable Zero-Knowledge Proofs 265

least three rounds of interaction between the voter and voting device are nec-
essary in order to achieve CAI and CR at the same time. The authors of that
paper propose two generic constructions involving four rounds of communica-
tion. For instance, in one of the constructions, the interaction is essentially a
combination of a commitment scheme (where the voter commits to the chal-
lenge that will be used later) and a zero-knowledge system, with honest-verifier
zero-knowledge, where the voting device proves knowledge of randomness r such
that Encpk(m; r) = c, for some public parameters pk,m, c: the public key pk of
the encryption scheme Enc, the plaintext m which the voting option chosen by
the voter and the ciphertext c that will go to the ballot box.

If one wants to instantiate this construction with post-quantum secure tools,
one can choose a lattice-based encryption scheme, for instance, one based on
the hardness of the Ring Learning With Errors (RLWE) problem [22] and com-
bine it with some of the recent efficient zero-knowledge systems for lattice-based
relations [11,13,14,20,21,30]. Since the interactive versions of all these zero-
knowledge systems Π involve rejection sampling and aborts, we can apply our
transformation to get a 3-rounds system Σ, with honest-verifier zero-knowledge
as desired, and without any repetitions. This means that the voter does not
need to run many executions of the system (in parallel or not) in order to get
convinced that the ciphertext contains the voting option m.

4.4 Settings Where Our Result Is Not Useful

We insist once again that the “abort problem” of zero-knowledge systems based
on lattices is not an issue if these systems are to be used in the non-interactive
version resulting from applying Fiat-Shamir or a similar transformation. In these
cases, the party acting as the prover will eventually abort and start the process
again, without the final verifier noticing. This happens in a lot of practical uses
of these protocols—including standard/group/ring/attribute-based signatures.

A kind of signature that requires interaction is blind signature, where a user
wants to obtain a signature by a signer on some message m, without the signer
obtaining any information about the message m. Currently, in the setting of
lattice-based blind signatures, the tree of commitments technique introduced in
[4] to reduce the abort probability has been successfully used a couple of times,
first in the same paper [4] as an improvement of the signature scheme BLAZE
[3] and then in [16] to construct a provably-secure (in contrast to BLAZE and
BLAZE+) but inefficient scheme which involves three rounds of communication.

A natural question is thus: can our Π → Σ transformation be applied in
the setting of (lattice-based) blind signatures, as it happened with the tree of
commitments technique? The answer seems to be no, as a blind signature scheme
where the signer proves something using Σ appears to be very far from achieving
the blindness property. In any case, a positive answer to the question would result
in a blind signature scheme with at least three rounds of communication, which
would not improve the state-of-the-art: recently, a couple of schemes involving
only two rounds of communication have been proposed in the lattice setting
[1,19].

266 X. Arnal et al.

5 Implementation

In this section we present our experimental results of the implementation of
our transformation. We applied our transformation to the 5 round protocol of
Bootle et al. [11], using a custom-built library for polynomial operations over
Zq/〈xn + 1〉, along with the RustCrypto library for computing SHA2 hashes in
Rust.

The tests were performed on an Intel Core i7-10750H CPU. We have per-
formed 1,000 tests over the protocol with and without the transformation. We
have found that, when using the parameters proposed by Bootle et al. [11], the
mean execution time increases from 20.6 to 21.5 s (σ < 0.3), amounting to an
increase of about 5% in execution time. In Fig. 2, we can see the time distribu-
tion of the protocol over the executions with (orange) and without (blue) the
transformation.

While we have obtained an expected decrease in the performance of a single
run of the protocol, we have been able to avoid the need for re-runs and thus
achieve an improvement over the whole testing. For completeness, Fig. 3 gives
the distribution of the number of aborts produced in another 10,000 tests of the
non-transformed protocol with faster parameters (n = 16). For instance, more
than 6% of the executions required 10 repetitions or more of the protocol; this
may be very undesirable in some real-life interactive protocols.

Fig. 2. Time distribution (in seconds) of the 1,000 executions of the first sampling test.
(Color figure online)

6 Conclusion

This work presents a theoretical result related to the cryptographic primitive
of interactive zero-knowledge systems: a transformation from any public coin
(2μ + 1)-rounds interactive proof system to a public coin 3-rounds proof system
for the same language. This result, by itself, may seem not original nor useful at
all, because the well-known Fiat-Shamir transformation can transform the same

How to Avoid Repetitions in Lattice-Based Deniable Zero-Knowledge Proofs 267

Fig. 3. Percentage of executions in the second sampling test, with 10,000 executions,
that suffered i aborts, for each i in the x-axis. For instance, 1.5% of the executions had
20 repetitions with aborts.

(2μ+1)-rounds interactive proof system into a non-interactive (one-round) proof
system.

But in some practical settings, when proofs must be deniable, non-interactive
systems are not a valid solution; in these cases, a 3-rounds solution is essentially
optimal. When all this happens in the post-quantum secure setting of lattice-
based cryptography, such (2μ+1)-rounds interactive proof systems use to employ
the rejection sampling technique, which leads to a non-negligeable number of
repetitions of the protocol, before the proof is securely produced. This means that
the verifier must be on-line for a while and, in case of required repetitions, choose
again different random challenges. All in all, this may lead to an undesirable
user-oriented experience, for instance in electronic voting applications.

The most relevant property of our transformation, in the lattice-based set-
ting, is that possible repetitions due to rejection sampling do not affect the
verifier: they are done internally by the prover, in the 3rd (and last) round of
the proof system. The verifier can choose a single challenge and disconnect; the
proof will be produced with 100% probability in any case.

Acknowledgements. This work is partially supported by the Spanish Ministerio de
Ciencia e Innovación (MICINN), under Project PID2019-109379RB-I00.

References

1. Agrawal, S., Kirshanova, E., Stehlé, D., Yadav, A.: Can round-optimal lattice-
based blind signatures be practical? Cryptology ePrint Archive, Report 2021/1565
(2021). https://ia.cr/2021/1565

2. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:
Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Com-
puting, New York, NY, USA, pp. 99–108. Association for Computing Machinery
(1996)

3. Alkeilani Alkadri, N., El Bansarkhani, R., Buchmann, J.: BLAZE: practical
lattice-based blind signatures for privacy-preserving applications. In: Bonneau, J.,

https://ia.cr/2021/1565

268 X. Arnal et al.

Heninger, N. (eds.) FC 2020. LNCS, vol. 12059, pp. 484–502. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-51280-4 26

4. Alkeilani Alkadri, N., El Bansarkhani, R., Buchmann, J.: On lattice-based inter-
active protocols: an approach with less or no aborts. In: Liu, J.K., Cui, H. (eds.)
ACISP 2020. LNCS, vol. 12248, pp. 41–61. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-55304-3 3

5. Attema, T., Fehr, S.: Parallel repetition of (k1, . . . , kµ)-special-sound multi-round
interactive proofs. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022. LNCS, vol.
13507, pp. 415–443. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
15802-5 15

6. Attema, T., Fehr, S., Klooß, M.: Fiat-Shamir transformation of multi-round inter-
active proofs. IACR Cryptol. ePrint Arch. 1377 (2021)

7. Balli, F., Durak, F.B., Vaudenay, S.: BioID: a privacy-friendly identity document.
In: Mauw, S., Conti, M. (eds.) STM 2019. LNCS, vol. 11738, pp. 53–70. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-31511-5 4

8. Behnia, R., Chen, Y., Masny, D.: On removing rejection conditions in practical
lattice-based signatures. In: Cheon, J.H., Tillich, J.-P. (eds.) PQCrypto 2021 2021.
LNCS, vol. 12841, pp. 380–398. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-81293-5 20

9. Blundo, C., Persiano, G., Sadeghi, A.-R., Visconti, I.: Improved security notions
and protocols for non-transferable identification. In: Jajodia, S., Lopez, J. (eds.)
ESORICS 2008. LNCS, vol. 5283, pp. 364–378. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-88313-5 24

10. Bootle, J., Lyubashevsky, V., Nguyen, N.K., Seiler, G.: More efficient amortization
of exact zero-knowledge proofs for LWE. In: Bertino, E., Shulman, H., Waidner,
M. (eds.) ESORICS 2021. LNCS, vol. 12973, pp. 608–627. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-88428-4 30

11. Bootle, J., Lyubashevsky, V., Seiler, G.: Algebraic techniques for short(er) exact
lattice-based zero-knowledge proofs. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11692, pp. 176–202. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-26948-7 7

12. Don, J., Fehr, S., Majenz, C., Schaffner, C.: Security of the Fiat-Shamir transfor-
mation in the quantum random-oracle model. In: Boldyreva, A., Micciancio, D.
(eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 356–383. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26951-7 13

13. Esgin, M.F., Nguyen, N.K., Seiler, G.: Practical exact proofs from lattices: new
techniques to exploit fully-splitting rings. In: Moriai, S., Wang, H. (eds.) ASI-
ACRYPT 2020. LNCS, vol. 12492, pp. 259–288. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-64834-3 9

14. Esgin, M.F., Steinfeld, R., Liu, J.K., Liu, D.: Lattice-based zero-knowledge proofs:
new techniques for shorter and faster constructions and applications. In: Boldyreva,
A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 115–146. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26948-7 5

15. Finogina, T., Herranz, J., Larraia, E.: How (not) to achieve both coercion resistance
and cast as intended verifiability in remote eVoting. In: Conti, M., Stevens, M.,
Krenn, S. (eds.) CANS 2021. LNCS, vol. 13099, pp. 483–491. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-92548-2 25

16. Hauck, E., Kiltz, E., Loss, J., Nguyen, N.K.: Lattice-based blind signatures, revis-
ited. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp.
500–529. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1 18

https://doi.org/10.1007/978-3-030-51280-4_26
https://doi.org/10.1007/978-3-030-55304-3_3
https://doi.org/10.1007/978-3-030-55304-3_3
https://doi.org/10.1007/978-3-031-15802-5_15
https://doi.org/10.1007/978-3-031-15802-5_15
https://doi.org/10.1007/978-3-030-31511-5_4
https://doi.org/10.1007/978-3-030-81293-5_20
https://doi.org/10.1007/978-3-030-81293-5_20
https://doi.org/10.1007/978-3-540-88313-5_24
https://doi.org/10.1007/978-3-030-88428-4_30
https://doi.org/10.1007/978-3-030-26948-7_7
https://doi.org/10.1007/978-3-030-26948-7_7
https://doi.org/10.1007/978-3-030-26951-7_13
https://doi.org/10.1007/978-3-030-64834-3_9
https://doi.org/10.1007/978-3-030-64834-3_9
https://doi.org/10.1007/978-3-030-26948-7_5
https://doi.org/10.1007/978-3-030-92548-2_25
https://doi.org/10.1007/978-3-030-56880-1_18

How to Avoid Repetitions in Lattice-Based Deniable Zero-Knowledge Proofs 269

17. Katsumata, S.: A new simple technique to bootstrap various lattice zero-knowledge
proofs to QROM secure NIZKs. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021.
LNCS, vol. 12826, pp. 580–610. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-84245-1 20

18. Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
598–616. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-
7 35

19. Lyubashevsky, V., Nguyen, N.K., Plancon, M.: Efficient lattice-based blind signa-
tures via Gaussian one-time signatures. In: Hanaoka, G., Shikata, J., Watanabe, Y.
(eds.) PKC 2022. LNCS, vol. 13178, pp. 498–527. Springer, Cham (2022). https://
doi.org/10.1007/978-3-030-97131-1 17

20. Lyubashevsky, V., Nguyen, N.K., Plançon, M.: Lattice-based zero-knowledge
proofs and applications: shorter, simpler, and more general. In: Dodis, Y., Shrimp-
ton, T. (eds.) CRYPTO 2022. LNCS, vol. 13508, pp. 71–101. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-15979-4 3

21. Lyubashevsky, V., Nguyen, N.K., Seiler, G.: Shorter lattice-based zero-knowledge
proofs via one-time commitments. In: Garay, J.A. (ed.) PKC 2021. LNCS, vol.
12710, pp. 215–241. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
75245-3 9

22. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. J. ACM 60(6), 43:1–43:35 (2013)

23. Monnerat, J., Pasini, S., Vaudenay, S.: Efficient deniable authentication for signa-
tures. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS
2009. LNCS, vol. 5536, pp. 272–291. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-01957-9 17

24. Pass, R.: On deniability in the common reference string and random oracle model.
In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 316–337. Springer, Hei-
delberg (2003). https://doi.org/10.1007/978-3-540-45146-4 19

25. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. J. Cryptol. 13(3), 361–396 (2000)

26. Rawal, S., Padhye, S., He, D.: Lattice-based undeniable signature scheme. Ann.
Télécommun. 77(3–4), 119–126 (2022)

27. Schuldt, J.C.N., Matsuura, K.: On-line non-transferable signatures revisited. In:
Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol.
6571, pp. 369–386. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-19379-8 23

28. Stern, J.: A new identification scheme based on syndrome decoding. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48329-2 2

29. Unruh, D.: Post-quantum security of Fiat-Shamir. In: Takagi, T., Peyrin, T. (eds.)
ASIACRYPT 2017. LNCS, vol. 10624, pp. 65–95. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-70694-8 3

30. Yang, R., Au, M.H., Zhang, Z., Xu, Q., Yu, Z., Whyte, W.: Efficient lattice-based
zero-knowledge arguments with standard soundness: construction and applications.
In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 147–
175. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7 6

https://doi.org/10.1007/978-3-030-84245-1_20
https://doi.org/10.1007/978-3-030-84245-1_20
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-030-97131-1_17
https://doi.org/10.1007/978-3-030-97131-1_17
https://doi.org/10.1007/978-3-031-15979-4_3
https://doi.org/10.1007/978-3-030-75245-3_9
https://doi.org/10.1007/978-3-030-75245-3_9
https://doi.org/10.1007/978-3-642-01957-9_17
https://doi.org/10.1007/978-3-642-01957-9_17
https://doi.org/10.1007/978-3-540-45146-4_19
https://doi.org/10.1007/978-3-642-19379-8_23
https://doi.org/10.1007/978-3-642-19379-8_23
https://doi.org/10.1007/3-540-48329-2_2
https://doi.org/10.1007/978-3-319-70694-8_3
https://doi.org/10.1007/978-3-319-70694-8_3
https://doi.org/10.1007/978-3-030-26948-7_6

Security Analysis

Obfuscation-Resilient Semantic
Functionality Identification Through

Program Simulation

Sebastian Schrittwieser1(B) , Patrick Kochberger1,3 , Michael Pucher1 ,
Caroline Lawitschka1, Philip König2, and Edgar R. Weippl1,2

1 University of Vienna, Vienna, Austria
{sebastian.schrittwieser,patrick.kochberger,michael.pucher,

caroline.lawitschka,edgar.weippl}@univie.ac.at
2 SBA Research, Vienna, Austria

{pkoenig,eweippl}@sba-research.org
3 St. Pölten University of Applied Sciences, St. Pölten, Austria

patrick.kochberger@fhstp.ac.at

Abstract. Figuring out whether a particular semantic functionality
exists in a binary program is challenging. While pattern-matching-based
detection is susceptible to syntactic changes of the code, formal equiva-
lence proofs quickly hit complexity limitations in practice. In this paper,
we present SimID, a novel approach to semantic detection of function-
ality based on observation of input-output behavior of functions during
simulated program execution. An evaluation with 4259 functions from
31 binary programs demonstrates that the approach has high detec-
tion accuracy across various compilers and even computing architectures
(x86-64 and ARM64) as well as in the presence of state-of-the-art obfus-
cations such as code virtualization. Analysis complexity is low enough
for practical use cases.

Keywords: Code equivalence · Binary similarity · Binary analysis ·
Code obfuscation

1 Introduction

Binary code similarity, i.e. the identification of a similarity of two programs in
binary form is an area of intensive research in computer science [10,18]. In the
past it has been addressed with a wide range of different research methodolo-
gies such as comparison of execution traces and machine learning-based match-
ing of different artifacts such as the disassembled code, etc. However, all these
approaches come with their own set of advantages and disadvantages (see Sect. 2)
and in general, accuracy is far from perfect.

Similarity can exist in different areas of a binary program. Syntactic simi-
larity results from the presence of similar sequences of instructions in two bina-
ries. This type of similarity is used when comparing concrete implementations
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. P. Reiser and M. Kyas (Eds.): NordSec 2022, LNCS 13700, pp. 273–291, 2022.
https://doi.org/10.1007/978-3-031-22295-5_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22295-5_15&domain=pdf
http://orcid.org/0000-0003-2115-2022
http://orcid.org/0000-0002-0898-9824
http://orcid.org/0000-0003-0123-0214
http://orcid.org/0000-0003-0665-6126
https://doi.org/10.1007/978-3-031-22295-5_15

274 S. Schrittwieser et al.

of programs (e.g., in plagiarism detection). It is not particularly robust to code
transformations such as optimization and obfuscation because although the func-
tionality remains the same, the concrete sequences of instructions might change
significantly.

In contrast, structural similarity of programs compares graph representations
of programs (e.g., control flow graph, call graph). Since these graphs are usually
quite stable, the robustness against code transformations is higher.

Semantic similarity compares the functionalities of programs independent of
their actual implementation. This equivalence can be identified in three different
ways [10]. First, the binary code can be enriched with semantic information
(e.g., type of instruction such as arithmetic or logic) and then the semantic
content of the program can be derived from this sequence. A second method is to
create symbolic formulas from the binary code, for which semantic similarity can
then be calculated using graph distance, semantic hashing, or theorem proving.
However, since in modern computing architectures a semantic description of
functionality can be expressed by an infinite number of syntactic statements, a
formal proof of equivalence is often not feasible in practice due to complexity
issues. Third, it can be evaluated whether two programs executed with the same
input parameters produce the same output while intermediate program states
are completely ignored.

A sub-aspect of semantic code similarity is the identification of functionality
in a program independent of its specific implementation. Thus, instead of exam-
ining two programs for similarity, the goal is to determine whether a particular
semantic functionality is contained in a program. For functionalities that have
deterministic input-output behavior, a promising approach to their identifica-
tion is to search for their characteristic input-output relationship in the binary
program. In the past, it has been shown, that this methodology works well in
dynamic analysis settings, where the program is monitored during runtime or
traces of its execution are recorded for offline analysis [2]. However, dynamic
analysis comes with a number of shortcomings. Firstly, the appropriate execu-
tion environment must be available for each binary (computing architecture and
operating system) and it must be isolated from the rest of the analysis system
when analyzing software with unknown functionality (e.g., malware). Secondly,
code coverage is challenging but crucial, as only functionality that is actually
executed can be analyzed.

In this paper, we present a novel approach that uses the idea of identifying
a deterministic algorithm based on known pairs of inputs and outputs in simu-
lated program execution. Program simulation is architecture-agnostic and allows
targeted analysis of individual functions, thus solving the coverage limitations
of dynamic analysis.

In particular, the main contributions of our paper are:

– We present SimID, a novel semantic functionality identifier based on program
simulation.

– We demonstrate the robustness of our approach in the presence of different
build configurations, architectures, and even state-of-the-art code obfusca-
tions by measuring costs and resilience.

Semantic Functionality Identification 275

– We introduce different strategies for runtime optimization of the analysis,
making real-life use cases for SimID possible.

The remainder of this paper is structured as follows: In Sect. 2, we describe
related work on binary similarity and functionality identification. Section 3
explains our approach in detail. In Sect. 4 we evaluate the effectiveness of our
approach and its practicability in real-world scenarios. In Sect. 5 results are pre-
sented. Finally, Sect. 6 concludes the paper.

2 Related Work

Binary code similarity detection is researched for different motivations and con-
cepts proposed in the literature use a large set of different methodologies. A
recent survey by Haq and Caballero [10] systematically analyzes binary code sim-
ilarity concepts from 70 publications based on their application areas, methodolo-
gies, implementations and how they were evaluated. In recent years, the advent
of better and better machine learning techniques has greatly boosted binary
similarity research. A 2022 paper by Marcelli et al. [18] comes to the conclusion,
that today’s machine learning-based approaches (e.g., [20,27,33]) for detecting
code similarity are more accurate than simpler concepts based on fuzzy hashing
(i.e. hashing algorithms that output similar hash values when given similar input
data).

2.1 Semantic Binary Code Similarity

The sub-field of semantic binary code similarity research aims at finding semantic
similarity between two pieces of binary code or identifying functionality inde-
pendent of its concrete implementation in binary programs. In the past, various
different—both static and dynamic—methodologies have been proposed.

Dynamic Approaches. Egele et al. [8] introduced blanket-execution, a dynamic
equivalence testing primitive for matching functions in binaries that compares
their side effects during execution. Wang and Wu [30] proposed in-memory
fuzzing in order to gather different kinds of program behaviors. Similarity scores
of behavior traces are calculated based on the longest common subsequence and
used as a feature vector to train a machine learning model. Kargén and Shah-
mehri [14] developed another method based on dynamic analysis. Two semanti-
cally similar binaries are executed with the same input while their runtime traces
are recorded. Input and output values are the principle matching features. Hu et
al.’s Mockingbird [12] is a semantic-based similarity detection tool to identify
functions in binaries ported across architectures. It extracts signatures consist-
ing of system call information and conditional operations and compares them
to measure similarity. Calvet et al.’s Aligot [2] detects cryptographic functions
based on their input-output parameters. In contrast to our work, which is based
on static analysis and simulation of individual function calls, Aligot uses traces
of dynamic program execution as its foundation.

276 S. Schrittwieser et al.

Hybrid Approaches. There also exist hybrid methods combining both static and
dynamic methodologies. For example Ming et al. [19] addressed binary diffing
through what they call sliced segment equivalence checking. With this concept,
they identify differences and similarities between execution traces and compare
the logic of instructions that influence observable behavior. CACompare [11] by
Hu et al. detects similar binary code across architectures by emulating functions
to extract semantic signatures. The semantic signatures are composed of the
input and output values, comparison operands, and the according condition as
well as library function calls.

Static Approaches. The majority of methodologies described in the literature, as
surveyed by Marcelli et al. [18], use static analysis concepts. For instance, Luo
et al. [17] attempted to take on the issue of obfuscated code within automated
code similarity detection by using the longest common subsequence of semanti-
cally equivalent basic blocks. The semantics of a basic block is defined through
its input/output behavior, whereupon the similarity of blocks is checked based
on the equivalence of the symbolic formulas of the output. A similar method
by David et al. [7], finds common vulnerabilities and exposures within stripped
firmware images. Their tool, FirmUp, takes the context of the surrounding exe-
cutable into consideration for their similarity analysis, using data-flow slices of
basic blocks as representations for pairwise evaluation. Pewny et al. [21] lifted
code to an intermediate representation and sampled concrete input values to
observe the I/O behavior of basic blocks to identify binary functionality through-
out different instruction sets. In contrast to our work, the authors explicitly
excluded obfuscated code from their scope, as they were able to show that cer-
tain code transformations would increase false negatives. Another source that
can be analyzed to gain data about vulnerabilities is security patch patterns. Xu
et al. [31] introduced Spain, a tool that focuses on identifying patch patterns and
corresponding vulnerabilities. Patches are identified through a semantic analysis
of traces and patterns through a taint analysis of the patched functions. The
so-gained patterns are then used to statically search for similar patches in other
binary code. Identifying open-source software packages in binaries was researched
by Alrabaee et al. [1]. The authors proposed an approach that includes syntac-
tic as well as semantic analysis. A Markov model was applied to test extracted
syntactical features of functions and further, a neighborhood hash graph kernel
was applied in order to obtain the semantics of functions. The extracted behav-
ior of instructions was then combined through a Bayesian network to identify
a known function. To capture the complete semantics of a function, Xue et
al. [32] came up with a concept based on selective inlining of relevant library
and user-defined functions. The approach not only considers input and output
values but also different categories such as high-level semantic features in order
to improve matching throughout different architectures and compilers, as well
as to improve accuracy. discovRE by Eschweiler et al. [9] aims at detecting
vulnerable code segments in large code bases across different operating systems,
compiler optimizations, and CPU architectures. Starting with a known vulnera-
ble binary function, similar functions containing the same vulnerability are iden-

Semantic Functionality Identification 277

tified based on the similarity of their control flow graphs. The tool SemDiff by
Wang et al. [29] uses angr [26] to extract data read and written to memory. It
uses these memory signatures to identify differences in two binary files even in
the presence of simple transformation (e.g., inlined functionality). Qiu et al. [24]
identified library functionality inside binaries by searching for subgraphs in an
execution dependence graph. The well-known commercial tool BinDiff1 iden-
tifies differences in disassembled code of two binaries.

3 Approach

The static analysis approach of SimID uses program simulation to observe the
input-output behavior of the individual functions of a binary.

3.1 Program Simulation

Program simulation mimics the behavior of a program without the results dif-
fering from a real execution of the program. Unlike an emulator, which creates
a replica of the execution environment for the program, the simulator does not
execute the actual binary code of the program but runs a simulation of an
abstracted version of it. More formal concepts such as abstract interpretation
have also been used in the past to identify functionality in programs [6,23].
However, due to the complexity of such approaches only limited real-world use
is possible. In contrast, its lower level of abstraction makes program simulation
fast enough for practical use cases (e.g., functional malware analysis). In addi-
tion, it is possible to simulate individual functions of a binary in isolation, thus
mitigating the challenge of coverage that exists in dynamic analysis approaches.
Thus, for SimID program simulation represents a perfect sweet spot between
formal modeling and the actual execution of a program.

Simulation Model. One major challenge when working with program simulation,
however, is the quality of its underlying model of the computing architecture.
Abstractions might result in discrepancies between a real execution of a program
and its simulation. In our project, we built upon the binary simulation engine
of angr. angr lifts binaries to Valgrind’s VEX IR [25], a RISC-like intermediate
language, and is able to perform simulations on the entire program or parts of
it (e.g., individual functions). To model the execution environment (e.g., system
calls to the operating system) as well as calls to library functions (e.g., to libc),
angr uses the concept of “function summaries”: many external calls are replaced
by simulations (so-called SimProcedures) written in Python.

Program State. To be able to simulate individual functions isolated from the rest
of the program, an appropriate program state must be created beforehand. angr
provides different state constructors. One of them (call state()) constructs a
state ready to simulate a given function. This constructor must be passed the
starting address of the function and its arguments.
1 https://www.zynamics.com/bindiff.html.

https://www.zynamics.com/bindiff.html

278 S. Schrittwieser et al.

3.2 Function Input and Output Matching

The general concept of our function identification algorithm works similar to Cal-
vet et al.’s Aligot [2]. If the input-output behavior of a deterministic algorithm
is known in advance, it can be identified independently of its concrete syntactic
implementation in a program by comparing the input and output values of all
functions during execution or simulation. While Aligot uses traces of dynamic
program execution as its foundation, our approach is based on a simulation of
individual function calls. Algorithm1 shows the high-level concept of our func-
tionality identification. SimID operates at the function level. This means that
we simulate each function of a program with the arguments corresponding to a
known input-output pair.

Algorithm 1: Basic concept of SimID in pseudocode.
Input: P (Program in binary representation)
Input: EIN (Expected INput)
Input: EOUT (Expected OUTput)
Input: PROTO (expected function PROTOtype)
Output: CF (List of candidate functions implementing the searched

functionality)
1 CFG ← reconstructControlFlowGraph(P)
2 for functions in P as FUNC do
3 CC ← reconstructCallingConvention(FUNC, CFG)
4 if CC.PROTOTYPE ∨ CC.PROTOTYPE = PROTO then
5 CS ← generateCallState(FUNC, EIN, PROTO)
6 C ← createCallable(FUNC, PROTO, CS)
7 RET ← C(EIN)
8 if RET = EOUT then
9 CF ← CF + FUNC

10 else
/* wrong function prototype */

11 WFP ← WFP + FUNC

12 if CF is empty then
13 for functions in WFP as FUNC do
14 CS ← generateCallState(FUNC, EIN, PROTO)
15 C ← createCallable(FUNC, PROTO, CS)
16 RET ← C(EIN)
17 if RET = EOUT then
18 CF ← CF + FUNC

19 return CF

Function Prototype Recovery. In order to pass the input arguments correctly to
the simulated execution of the function, the structure of the arguments (order

Semantic Functionality Identification 279

and size) must match that of the function prototype of the function. For optimal
analysis efficiency, only functions in the binary with a matching function pro-
totype shall be run through simulation. However, function prototype extraction
is always error-prone, as prototypes are not stored explicitly in the binary but
must be derived from the function calls at the callees according to the speci-
fications of the calling convention of the binary architecture. Thus, simulating
only functions with exact matches on the function prototype will result in an
unacceptable number of false negatives (i.e., functions which include the search
functionality but are omitted from simulation because of an incorrect extrac-
tion of their prototype). We developed several strategies for handling inaccurate
function prototypes and performed experiments to determine the most efficient
one. In the most efficient strategy, SimID tries to extract the function prototype
of all functions of a binary and excludes those for which extraction fails or for
which the function prototype does not match. The other functions are then sim-
ulated. If a candidate function is found, analysis for that binary is finished. If the
functionality is not found, the remaining functions are simulated despite their
non-matching or unextractable function prototype. This strategy prevents false
negatives while keeping the analysis fast. A detailed discussion of the different
analysis strategies is presented in Sect. 4. In all strategies, we disabled analy-
sis of functions for which SimProcedures (see Sect. 3.1) exist as these contain
reimplementations of system functionality and thus cannot host the searched
functionality.

Nested Functions. SimID does not search for functionality directly but identi-
fies functions that have input-output behavior corresponding to the functionality.
How this input-output behavior is generated is not relevant for SimID. Thus,
its methodology also works for nested functions that have split the implementa-
tion of the searched functionality into multiple functions—a concept often used
in code obfuscation (e.g., function splitting). In our evaluation of SimID, we
observed this behavior in multiple samples (see Sect. 5).

4 Evaluation

For the evaluation of SimID, we reimplemented the domain generation algo-
rithm (DGA) of the Ramdo malware [22] in C and embedded it in a simple
fake malware. The fake malware includes a help message, checks the system’s
name, decodes a hardcoded, ROT13 encrypted filename, and writes the first
1.000 domains generated by the DGA into the file.

DGAs are widely used by malware authors to make connections to their
command and control servers resilient against blocking attempts. A DGA usu-
ally is a deterministic algorithm that can generate an arbitrarily large number
of domain names. Periodically, a malware would pick a few of them at ran-
dom and try to establish connections. Malware analysts need to reverse engineer
the algorithm in order to be able to block further communication. Because of
their determinism property and well-defined inputs (usually some seed) and out-
put (domain names) DGAs are prime candidates for functionality identification

280 S. Schrittwieser et al.

methodologies. Listing 1 shows our reimplementation of the DGA in C. Basically,
the algorithm (located in the generate domain function) returns a 16 charac-
ters long string which has “.org” appended to create a valid domain name. The
string is generated from a hardcoded seed and a counter through a combination
of several mathematical operations.

1 struct node {

2 void *data;

3 struct node *next;

4 };

5 typedef struct node * llist;

6 struct sSelf {

7 long int seed;

8 long int nr;

9 long int generateddomains;

10 char lastdomain[50];

11 llist *domainhistory;

12 };

13 char * generate_domain(struct sSelf *self){

14 long int s = ((2 * self->seed) * (self->nr + 1));

15 long int r = ((long int) s ^ (long int) ((26 * self->seed) *

self->nr));↪→

16 char domain[50] = "";

17 for (int i = 0; i < 16; i++){

18 r = (r & 4294967295);

19 strcat(domain, chr(((r

20 r += ((long int) r ^ (long int) ((s * pow(i,2)) * 26));

21 }

22 strcat(domain, ".org");

23 strcpy(self->lastdomain,domain);

24 self->nr += 1;

25 return self->lastdomain;

26 }

Listing 1: Reimplementation of Ramdo’s DGA. This code is part of the fake
malware used to evaluate SimID. The generate domain function implements the
DGA functionality. The input and output data is stored in a struct variable and
the function returns a pointer to the domain name.

4.1 Samples

The source code of the fake malware is 380 LoC (lines of code) long and has a size
of about 8.700 bytes. For sample generation, the source code was compiled with a
total of 31 build and obfuscation configurations (see Table 1). Besides musl-gcc

Semantic Functionality Identification 281

(version 12.1.1.20220730), samples were also compiled with musl-clang (ver-
sion 14.0.6), CompCert (version 3.10), TenDRA (version 5.0/x32 64 git:abecfa3),
and TinyCC (versions 0.9.27 and mob:1de025c) and obfuscated with Obfusca-
tor LLVM [13] (version 4.0.1) and Tigress2 [3] (version 3.1). musl is a general-
purpose implementation of the C library. We have chosen the musl-gcc wrapper
for comparability reasons because it is also used by the Tigress obfuscator.

Moreover, we also added four samples compiled with gcc for the ARM64
(AArch64) architecture. The builds generated with gcc, clang, as well as the
Tigress builds were compiled for different optimization levels (O0, O1, O2, and
O3) to increase the variation of the samples. Table 1 lists all build and obfusca-
tion configurations, while Table 2 shows the identification results.

Sample Sizes. Binary sizes range from 9.5 kB (TinyCC) to 114.3 kB (CompCert).
The function extraction algorithm of angr reports a total of 100 functions in the
x86-64 binary representation of our fake malware compiled with musl-gcc at
optimization level O2. The least functions were generated by TinyCC (58) and
the most functions are present in the virtualization-obfuscated samples of Tigress
(539). In total, the 31 binaries contain 4.259 functions (reported by angr).

For matching the starting addresses of identified functions with a ground
truth, the samples were compiled with debug symbols, and function starting
addresses were extracted using angr. However, those symbols were never used
by SimID at any stage for identification.

Test System. All, except the ARM runtime, evaluations and measurements were
performed on a Arch Linux machine, kernel version 5.19.5 with an AMD Ryzen
9 5900X (24) @ 3.700 GHz CPU and 32006 MiB of memory. The evaluation sys-
tem ran angr version 9.2.13 and Python version 3.10.6. To measure the times
it took to make (compile and obfuscate) tm and run tr the samples we used
the hyperfine3 tool version 1.14.0. The analysis times tA, tB , tC , tD and tE
are reported by SimID using the datetime4 Python package. The runtime for
the ARM binaries was also measured using the hyperfine tool version 1.14.0,
but inside a QEMU Virtual Machine running Ubuntu 20.04.4 LTS aarch64 ker-
nel version 5.15.0-46-generic using 4 CPU cores and 3908 MiB of memory on a
MacBookAir10,1 (M1).

4.2 Obfuscation Techniques

For evaluating the robustness of SimID against code obfuscations, we applied
protections of Obfuscator LLVM [13] (OLLVM) and Tigress [3] to a subset of our
samples. These two obfuscators are freely available and often used in academic
research on software protections. OLLVM implements three obfuscations—bogus
control flow, control flow flattening and instruction substitution—which we all

2 https://tigress.wtf/.
3 https://github.com/sharkdp/hyperfine.
4 https://docs.python.org/3/library/datetime.html.

https://tigress.wtf/
https://github.com/sharkdp/hyperfine
https://docs.python.org/3/library/datetime.html

282 S. Schrittwieser et al.

Table 1. Details about the sample. For each sample the table gives the filesize s in
Byte, the increase of the file size s ↗ (compared to tinycc-latest), the mean runtime
tr and its standard deviation σ(tr) in ms for 15.000 runs, the mean make time tm and
its standard deviation σ(tm) in ms for 1.000 runs (all but compcertcc) and 100 runs
(only compcertcc), and the number of functions |F |. † produces malformed samples
(see Sect. 5.2). ∗ measured on a separate ARM-based system. Also see Sect. 4.1.

Compiler s s ↗ tm σ(tm) tr σ(tr) |F |
clang-O0 16,576 175.00% 93.7 1.3 3.6 1.2 83

clang-O1 16,616 175.42% 123.0 2.1 2.4 0.8 89

clang-O2 16,656 175.84% 126.8 2.2 2.4 0.9 89

clang-O3 20,752 219.09% 131.0 2.2 2.3 0.6 88

compcertcc 114,320 1,206.93% 6,228.0 80.0 3.6 0.6 82

gcc-aarch64-O0 17,856 188.51% 39.6 0.6 0.4 ∗ 0.1 ∗ 68

gcc-aarch64-O1 13,760 145.27% 59.9 1.1 0.4 ∗ 0.1 ∗ 68

gcc-aarch64-O2 13,824 145.95% 81.6 1.0 0.4 ∗ 0.1 ∗ 79

gcc-aarch64-O3 13,848 146.20% 92.9 1.4 0.4 ∗ 0.1 ∗ 77

gcc-O0 16,632 175.59% 39.0 1.0 3.1 1.5 71

gcc-O1 16,632 175.59% 54.6 0.9 2.4 0.8 71

gcc-O2 16,672 176.01% 70.4 1.3 2.4 1.0 100

gcc-O3 16,672 176.01% 79.5 1.4 2.2 0.5 104

ollvm-b 32,544 343.58% 43.5 1.4 4.1 0.6 84

ollvm-bf 36,640 386.82% 46.9 1.1 27.1 1.2 86

ollvm-bfs 44,832 473.31% 48.1 1.7 33.4 1.7 84

ollvm-bs 32,544 343.58% 44.1 0.8 4.5 1.0 86

ollvm-f 27,528 290.63% 43.3 0.7 13.6 1.3 84

ollvm-fs 27,528 290.63% 43.2 0.4 13.0 1.1 84

ollvm-s 27,528 290.63% 41.4 0.5 3.3 1.0 83

tendra † 91,108 961.87% 96.3 1.3 3.6 0.9 75

tigress-f-O0 20,832 219.93% 145.0 1.7 35.7 1.9 70

tigress-f-O1 16,736 176.69% 167.2 1.6 20.1 1.4 174

tigress-f-O2 20,832 219.93% 189.9 1.6 22.5 1.9 264

tigress-f-O3 20,832 219.93% 189.4 1.8 22.4 1.5 264

tigress-v-O0 98,528 1,040.20% 215.7 2.3 737.9 13.3 262

tigress-v-O1 86,256 910.64% 258.7 2.4 347.7 9.9 258

tigress-v-O2 86,256 910.64% 312.9 3.9 241.7 7.9 539

tigress-v-O3 86,256 910.64% 315.9 5.4 244.4 7.9 539

tinycc-0-9-27 9,516 100.46% 15.1 0.3 2.9 0.9 96

tinycc-latest 9,472 100.00% 15.1 0.5 2.6 0.3 58

sum 1,086,584 9,451.7 1,804.9 4,259.0

min 9,472 100.00% 15.1 0.3 2.2 0.0 58.0

max 114,320 1,206.93% 6,228.0 80.0 737.9 13.3 539.0

avrg 35,051 370.05% 304.9 4.1 66.8 2.4 137.4

median 20,832 219.93% 81.6 1.4 4.1 1.1 84.0

Semantic Functionality Identification 283

used for sample generation. Tigress supports many protection techniques. We
picked flattening to be able to compare results with the corresponding obfusca-
tion of OLLVM and virtualization which can be considered as one of the strongest
protections.

Substitution (s). Substitution replaces standard operators or instruction
sequences with semantically equal but more complex ones. This protection is
rather simple, but it adds variation to protected programs.

Bogus Control Flow (b). This obfuscation makes the control flow graph of
a program look more complicated than it actually is. In the implementation of
OLLVM the call graph is changed in such a way that before a basic block a new
block is generated, which contains an opaque predicate and a conditional jump
to the original basic block depending on it. An opaque predicate always evaluates
to the same truth value (true or false), regardless of the input. However, this
property is difficult for a static analyst to determine. Thus, although the control
flow always follows the same path at the conditional jump, it does not appear
to do so in the control flow graph.

Flattening (f). The control flow flattening [16] obfuscation technique reduces
the depth of the control flow graph by removing the structured flow. The obfus-
cator generates a dispatcher code block which is responsible for selecting in which
order the basic blocks are executed.

Virtualization (v). Virtualization [15] translates the code of a function into
a custom bytecode and replaces the original function with a virtual machine.
At runtime the virtual machine interprets the bytecode by looking up the corre-
sponding machine code instruction and executing it. Virtualization adds sig-
nificant runtime overhead to a program, as bytecode interpretation is time-
consuming.

5 Results

In this section, we present the results of our evaluation of SimID with a special
focus on its robustness in the presence of code obfuscations. In 1997 Collberg
et al. [4,5] proposed four metrics to estimating the strength of software protec-
tions: potency, resilience, cost, and stealth. Potency describes how much more
obscure an obfuscated program is for human analysts, while resilience measures
the strength of a protection against automatic analysis tools. Costs quantify the
performance penalty (e.g., runtime, memory usage, binary size, etc.) and stealth
is a measurement for how hard it is to detect a protection. We measured the
resilience and costs of the obfuscations used in our evaluation against function
identification with SimID. Potency and stealth are not relevant for our evalua-
tion as SimID is an automated tool that aims at identifying functionality and
not protections.

284 S. Schrittwieser et al.

5.1 Costs

The costs of all protections (and build configurations) are summarized in Table
1. Building samples with Tigress takes longer than with other configurations
(except CompCert compiler which has a significantly longer build time than
any other configuration). However, the differences are small (e.g., 145 ms for
Tigress flattening compared to 126.8 ms for clang with optimization level O2).
Most obfuscated samples have significant runtime costs. Samples obfuscated with
substitution and bogus control flow (OLLVM) result in the lowest overhead on
runtime. Virtualization extends the runtime by a factor of up to 300 compared to
the default gcc O2 build configuration. When looking at the file size CompCert is
again the exception that builds by far the biggest binary, virtualization increases
the file size by a factor of 9–10.

5.2 Resilience

To make the runtimes of the analyses of the individual samples comparable
to each other, we continued the function identification in a sample even if the
searched functionality has already been already found. Overall, SimID was able
to correctly identify the searched functionality in all samples in our evalua-
tion. Thus, no obfuscation was completely resilient against SimID’s functional-
ity identification approach. However, analysis times were heavily influenced by
obfuscating transformations applied to the sample binaries. We ran SimID using
five different strategies for dealing with incomplete function prototype recovery
(labeled A, B, C, and D in Table 2).

Prototype Recovery Strategies. Strategy A simulates each function regardless of
its function prototype. With this approach, although the functionality is cor-
rectly identified for all samples, the analysis time of over 3.5 h is significantly
longer than with other strategies. This overhead is primarily caused by the sam-
ples on which virtualization obfuscation was applied using Tigress. This is not
surprising given how virtualization obfuscation works (see Sect. 4.2). The over-
head caused by the protection, already considerable in the native execution of
the program (more than 200 ms vs less than 5 ms runtime—see Table 1), adds to
the slowdown in the simulation environment of SimID. Strategy B attempts to
recover the prototype of each function. Functions with a non-matching prototype
are not analyzed, but functions for which prototype recovery fails are run in the
simulation environment. This approach results in numerous functions not being
analyzed and therefore false negatives due to incorrectly recovered prototypes.
Strategy C works similarly to B except that functions for which prototype recov-
ery fails are also not analyzed. As expected, this strategy resulted in an even
larger number of false negatives in our evaluation. However, the runtimes of
strategies B and C are significantly shorter than those of strategy A. The com-
bination strategies described in Sect. 3 are labeled as D and E in Table 2. The
combination strategy D first uses strategy B, and only if the functionality cannot

Semantic Functionality Identification 285

be found in a sample, all functions are simulated as a fallback (strategy A). Sim-
ilarly, for strategy E, first strategy C is applied, and as a fallback (strategy A).
Using combination strategy E, we were able to detect the searched functionality
in all samples with only 60% of the runtime of strategy A.

Multi-function Identification. In many samples, two functions were identified
by SimID to contain the searched functionality. A manual analysis of the cor-
responding samples showed that in some cases anger’s conservative function
recognition marked two addresses pointing to the same function as separate
functions. Listing 2 and Listing 3 show the two different types of this behav-
ior that we identified in our samples based on two examples. In the clang-O3
sample a NOP instruction is placed before the start of the generate domain
function. Angr marks the NOP and the first instruction of the actual function
as starting addresses of two separate functions. As the NOP does not modify
the state of the program, the input-output behavior of both functions is iden-
tical. In tinycc-0-9-27 sample angr both marks the first instruction of the
generate domain function as well as its reference in the jump table in the PLT
section of the binary as the starting addresses of two separate functions. Ignoring
all functions identified in the PLT section reduced the total analysis time of our
sample set by only a few minutes (total runtime of 3 h 17 m 32 s with strategy A).
We decided to follow a conservative approach and include PLT section functions
in SimID to avoid false negatives.

Malformed Binary. In a first analysis run, SimID was not able to identify the
searched functionality in the sample compiled with TenDRA. A manual analysis
showed that the DGA of this binary generated wrong domains (and thus the
binary generated by TenDRA was malformed). We then adjusted the analysis
to look for the domain actually generated by the DGA of the TenDRA binary.
SimID was then able to correctly identify the corresponding function.

5.3 Analysis Times

Overall, it took SimID approximately 3.5 h/1.6 h/1.5 h/2.2 h/2.1 h to analyze the
31 samples with the strategies A/B/C/D/E and no termination of the search
algorithm after the first identification of functionality in a binary (1.3 h with
termination and strategy E). However, there are significant differences in the
time required by SimID to analyze the various samples. While the vast majority
of samples could be analyzed in well under two minutes, the analysis of one
virtualization-protected sample required almost three-quarters of an hour with
strategy A. In general, it can be observed that those samples to which the Tigress
obfuscations were applied led to significantly longer analysis times, while the
obfuscations on Obfuscator LLVM generated almost no additional overhead.
Therefore, the samples generated with Tigress have a higher resilience at the
price of higher costs. There is a strong correlation (0.94) between the number
of functions in a binary and the runtime of the analysis. Correlations between
the native runtime of the samples and runtime of the analysis (0.77) as well as
sample size and runtime of the analysis (0.64) are weaker.

286 S. Schrittwieser et al.

Table 2. Evaluation results for each build and obfuscation configuration. A, B, C, D,
and E are the results (number of detected candidate functions) for the different strate-
gies (see Sect. 5.2). The columns tA, tB , tD, and tE give the time it took the analysis
in hours:minutes:seconds. For comparability reasons, we continued all analysis runs in
this evaluation even after the searched functionality has been found in a function. † The
sample generated with TenDRA is executable, but generates incorrect domain names
(see Sect. 5.2). The results in the table depict the results with the new expected value.

Compiler A tA B tB C tC D tD E tE

clang-O0 2 00:01:17 1 00:00:34 1 00:00:13 1 00:00:35 1 00:00:14

clang-O1 2 00:01:23 ✗ 00:00:25 ✗ 00:00:03 2 00:01:26 2 00:01:24

clang-O2 2 00:01:22 ✗ 00:00:26 ✗ 00:00:03 2 00:01:25 2 00:01:23

clang-O3 2 00:01:21 ✗ 00:00:26 ✗ 00:00:03 2 00:01:23 2 00:01:21

compcertcc 2 00:01:30 1 00:00:33 1 00:00:16 1 00:00:32 1 00:00:15

gcc-aarch64-O0 1 00:01:00 1 00:00:34 1 00:00:09 1 00:00:34 1 00:00:09

gcc-aarch64-O1 1 00:00:59 ✗ 00:00:33 ✗ 00:00:09 1 00:01:00 1 00:00:59

gcc-aarch64-O2 1 00:01:12 ✗ 00:00:32 ✗ 00:00:06 1 00:01:13 1 00:01:11

gcc-aarch64-O3 1 00:01:08 ✗ 00:00:32 ✗ 00:00:06 1 00:01:10 1 00:01:09

gcc-O0 1 00:01:01 1 00:00:35 1 00:00:13 1 00:00:35 1 00:00:13

gcc-O1 1 00:01:01 ✗ 00:00:32 ✗ 00:00:10 1 00:01:02 1 00:01:01

gcc-O2 2 00:01:35 ✗ 00:00:30 ✗ 00:00:06 2 00:01:37 2 00:01:35

gcc-O3 2 00:01:40 ✗ 00:00:30 ✗ 00:00:06 2 00:01:43 2 00:01:41

ollvm-b 2 00:01:20 1 00:00:30 1 00:00:11 1 00:00:30 1 00:00:11

ollvm-bf 2 00:01:37 1 00:00:34 1 00:00:15 1 00:00:34 1 00:00:15

ollvm-bfs 2 00:01:37 1 00:00:34 1 00:00:16 1 00:00:34 1 00:00:16

ollvm-bs 2 00:01:21 1 00:00:30 1 00:00:11 1 00:00:29 1 00:00:11

ollvm-f 2 00:01:23 1 00:00:30 1 00:00:12 1 00:00:30 1 00:00:12

ollvm-fs 2 00:01:25 1 00:00:29 1 00:00:11 1 00:00:29 1 00:00:11

ollvm-s 2 00:01:17 1 00:00:28 1 00:00:10 1 00:00:28 1 00:00:10

tendra † 2 00:01:17 ✗ 00:00:23 ✗ 00:00:04 2 00:01:19 2 00:01:19

tigress-f-O0 1 00:04:48 1 00:04:35 1 00:04:16 1 00:04:32 1 00:04:06

tigress-f-O1 1 00:06:33 ✗ 00:01:48 ✗ 00:01:27 1 00:07:01 1 00:06:52

tigress-f-O2 2 00:10:23 ✗ 00:01:39 ✗ 00:01:17 2 00:10:53 2 00:10:28

tigress-f-O3 2 00:10:34 ✗ 00:01:38 ✗ 00:01:18 2 00:10:54 2 00:10:27

tigress-v-O0 1 00:34:05 1 00:30:06 1 00:30:30 1 00:30:22 1 00:28:58

tigress-v-O1 1 00:24:23 1 00:19:53 1 00:20:33 1 00:20:41 1 00:19:41

tigress-v-O2 2 00:43:54 1 00:13:46 1 00:14:20 1 00:14:26 1 00:13:38

tigress-v-O3 2 00:43:09 1 00:13:40 1 00:13:24 1 00:14:17 1 00:13:13

tinycc-0-9-27 2 00:01:33 1 00:00:36 ✗ 00:00:01 1 00:00:37 2 00:01:33

tinycc-latest 1 00:00:47 1 00:00:31 1 00:00:12 1 00:00:31 1 00:00:12

31 31 03:27:55 18 01:38:52 17 01:30:31 31 02:13:22 31 02:04:28

Semantic Functionality Identification 287

1 0x000012f6 ret

2 0x000012f7 nop word [rax + rax]

3 ; generate_domain (int64_t arg1, uint64_t arg_2150h);

4 0x00001300 push rbp

5 0x00001301 push r15

6 0x00001303 push r14

7 0x00001305 push r13

8 0x00001307 push r12

9 0x00001309 push rbx

10 0x0000130a sub rsp, 0x2158

Listing 2: SimID reports the searched functionality to be present in two functions
(0x12f7 and 0x1300) of the sample clang-O3. However, this behavior is a result
of angr’s conservative function recognition which tends to favor false positives
over false negatives. Except for the NOP instruction which does nothing, the two
functions are identical.

1 0x00400a52 ret

2 ; generate_domain (int64_t arg1);

3 0x00400a53 push rbp

4 0x00400a54 mov rbp, rsp

5 0x00400a57 sub rsp, 0x2370

6 0x00400a5e mov qword [var_8h], rdi ; arg1

7 0x00400a62 mov rax, qword [var_8h]

8 ;-- section..plt:

9 0x00401968 push qword [0x00601e28] ; [14] -r-x section size

448 named .plt↪→

10 0x0040196e jmp qword [0x00601e30]

11 0x00401974 add byte [rax], al

12 0x00401976 add byte [rax], al

13 0x004019c8 jmp qword [strcat] ; 0x601e70

14 0x004019ce push 8 ; 8

15 0x004019d3 jmp section..preinit_array

16 ; fcn.004019d8 ();

17 0x004019d8 jmp qword [generate_domain] ; 0x601e78

18 0x004019de push 9 ; 9

19 0x004019e3 jmp section..preinit_array

Listing 3: Excerpt from the disassembly of the sample tinycc-0-9-27: SimID
correctly reports the generate domain function at address 0x400A53. However,
SimID additionally identifies the searched functionality in the PLT section at
0x4019D8. The explanation for this behavior is that angr identifies the refer-
ence to the generate domain function inside the jump table located in the PLT
section as a function.

288 S. Schrittwieser et al.

5.4 Limitations

The most obvious limitation of SimID is its dependence on a specific struc-
ture of input and output values. The semantic recognition of functionality can
only work if it is defined in advance how the passed function arguments of the
searched functionality are processed and in which form the output is returned.
This means that the approach is not robust to modifications of the function
prototype. For example, adding additional arguments to the function breaks our
algorithm as it renders the mapping between concrete input values and function
arguments ambiguous. In addition as already discussed in Sect. 3, function pro-
totype reconstruction is never accurate. In our approach, we rely on angr’s logic
for function prototype reconstruction which is very capable of at least identifying
the correct number of arguments and their sizes. SimID performs a conservative
matching to avoid false negatives by running function simulation if the num-
ber of arguments extracted from the function prototypes matches the expected
number and all functions of a program in a second iteration if the searched
functionality was not found in the first pass. For a more complex matching (e.g.,
based on data types) the function prototype reconstruction of angr is not precise
enough. In future work, we aim at implementing more advanced function proto-
type approximations (such as a use-def analysis at all callees described by Veen
et al. [28]) which might allow more sophisticated function prototype matching
and thus increase the robustness of the approach to modification to the function
prototypes.

A similar challenge is input values, which are not passed as function argu-
ments, but are written to a specific memory location (e.g., by a function, which
would run before the analyzed function in a non-simulated execution). Without
executing this function in the simulation, these input values would be missing. In
the future, we want to solve this challenge by observing accesses to uninitialized
memory.

Another limitation is the incompleteness of the simulation. The semantic
functionality identification is based on a comparison of the input-output behav-
ior of a simulated function execution with known values. If the simulation is
incomplete, it may lead to deviating output values and thus the identification
may fail. In the course of our research, we have already found such deviations and
extended angr’s model (SimProcedures). However, in the evaluation, we found
that the model is complete enough for handling our diverse binaries for x86-64
and ARM64. Still, edge cases can occur.

6 Conclusions

In this paper we presented SimID, an approach to semantically identify pro-
gram functionality through its deterministic input-output behavior. Compared
to similar approaches presented in the literature, SimID uses program simula-
tion, which allows selectively probing individual functions for the presence of
specific functionality. Our approach is robust to syntactical variations resulting
from different build configurations and works even across different computing

Semantic Functionality Identification 289

architectures. Moreover, none of the obfuscating transformations which we have
applied to sample programs with Tigress and Obfuscator LLVM prevented func-
tionality identification during evaluation. With an analysis time of around 2 h
and 4 min for 31 samples containing a total of 4259 functions, the approach
qualifies for real-world use cases.

Acknowledgements. This work was funded by the Austrian Science Fund (FWF)
under grant I 3646-N31.

References

1. Alrabaee, S., Shirani, P., Wang, L., Debbabi, M.: FOSSIL: a resilient and efficient
system for identifying FOSS functions in Malware binaries. ACM Trans. Priv.
Secur. 21, 1–34 (2018). https://doi.org/10.1145/3175492

2. Calvet, J., Fernandez, J.M., Marion, J.-Y.: Aligot: cryptographic function identifi-
cation in obfuscated binary programs. In: Proceedings of the 2012 ACM Conference
on Computer and Communications Security, pp. 169–182 (2012). https://doi.org/
10.1145/2382196.2382217

3. Collberg, C., Martin, S., Myers, J., Nagra, J.: Distributed application tamper detec-
tion via continuous software updates. In: Proceedings of the 28th Annual Com-
puter Security Applications Conference, ACSAC 2012, Orlando, Florida, USA, pp.
319–328. Association for Computing Machinery (2012). https://doi.org/10.1145/
2420950.2420997. ISBN 9781450313124

4. Collberg, C., Thomborson, C., Low, D.: A taxonomy of obfuscating transforma-
tions. Technical report. 148. University of Auckland (1997). https://researchspace.
auckland.ac.nz/handle/2292/3491

5. Collberg, C., Thomborson, C., Low, D.: Manufacturing cheap, resilient, and
stealthy opaque constructs. In: Proceedings of the 25th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 1998, San Diego, Cal-
ifornia, USA, pp. 184–196. Association for Computing Machinery (ACM) (1998).
https://doi.org/10.1145/268946.268962. ISBN 0897919793

6. Dalla Preda, M.: Code obfuscation and malware detection by abstract interpreta-
tion. Ph.D. thesis. Università degli Studi di Verona (2007). https://iris.univr.it/
bitstream/11562/337972/1/main.pdf

7. David, Y., Partush, N., Yahav, E.: FirmUp: precise static detection of common
vulnerabilities in firmware. In: Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and Operat-
ing Systems, ASPLOS 2018, Williamsburg, VA, USA, pp. 392–404. Association for
Computing Machinery (ACM) (2018). https://doi.org/10.1145/3173162.3177157.
ISBN 9781450349116

8. Egele, M., Woo, M., Chapman, P., Brumley, D.: Blanket execution: dynamic sim-
ilarity testing for program binaries and components. In: 23rd USENIX Security
Symposium (USENIX Security 2014), pp. 303–317 (2014)

9. Eschweiler, S., Yakdan, K., Gerhards-Padilla, E.: discovRE: efficient cross-
architecture identification of bugs in binary code. In: NDSS, vol. 52, pp. 58–79
(2016)

10. Haq, I.U., Caballero, J.: A survey of binary code similarity. ACM Comput. Surv.
54(3) (2021). https://doi.org/10.1145/3446371. ISSN 0360-0300

https://doi.org/10.1145/3175492
https://doi.org/10.1145/2382196.2382217
https://doi.org/10.1145/2382196.2382217
https://doi.org/10.1145/2420950.2420997
https://doi.org/10.1145/2420950.2420997
https://researchspace.auckland.ac.nz/handle/2292/3491
https://researchspace.auckland.ac.nz/handle/2292/3491
https://doi.org/10.1145/268946.268962
https://iris.univr.it/bitstream/11562/337972/1/main.pdf
https://iris.univr.it/bitstream/11562/337972/1/main.pdf
https://doi.org/10.1145/3173162.3177157
https://doi.org/10.1145/3446371

290 S. Schrittwieser et al.

11. Hu, Y., Zhang, Y., Li, J., Gu, D.: Binary code clone detection across architec-
tures and compiling configurations. In: 2017 IEEE/ACM 25th International Con-
ference on Program Comprehension (ICPC). Institute of Electrical and Electron-
ics Engineers (IEEE) (2017). https://doi.org/10.1109/ICPC.2017.22. ISBN 978-1-
5386-0535-6

12. Hu, Y., Zhang, Y., Li, J., Gu, D.: Cross-architecture binary semantics understand-
ing via similar code comparison. In: 2016 IEEE 23rd International Conference
on Software Analysis, Evolution, and Reengineering (SANER), vol. 1, pp. 57–67
(2016). https://doi.org/10.1109/SANER.2016.50. ISBN 978-1-5090-1855-0

13. Junod, P., Rinaldini, J., Wehrli, J., Michielin, J.: Obfuscator-LLVM - software
protection for the masses. In: Wyseur, B. (ed.) Proceedings of the IEEE/ACM
1st International Workshop on Software Protection, SPRO 2015, pp. 3–9. Institute
of Electrical and Electronics Engineers (IEEE) (2015). https://doi.org/10.1109/
SPRO.2015.10. ISBN 978-1-4673-7094-3

14. Kargéen, U., Shahmehri, N.: Towards robust instruction-level trace alignment of
binary code. In: 2017 32nd IEEE/ACM International Conference on Automated
Software Engineering (ASE), pp. 342–352. Institute of Electrical and Electronics
Engineers (IEEE) (2017). https://doi.org/10.1109/ASE.2017.8115647. ISBN 978-
1-5386-2684-9

15. Kochberger, P., Schrittwieser, S., Schweighofer, S., Kieseberg, P., Weippl, E.: SoK:
automatic deobfuscation of virtualization-protected applications. In: Proceedings
of the 16th International Conference on Availability, Reliability and Security,
ARES 2016. Vienna, Austria, pp. 1–15. Association for Computing Machinery
(ACM) (2021). https://doi.org/10.1145/3465481.3465772. ISBN 9781450390514

16. László, T., Kiss, Á.: Obfuscating C++ programs via control flow flattening.
In: Annales Universitatis Scientiarum Budapestinensis de Rolando Eötvös Nomi-
natae. Sectio Computatorica, vol. 30, pp. 3–19 (2009). http://compalg.inf.elte.hu/
annales/computatorica/VO30.pdf

17. Luo, L., Ming, J., Wu, D., Liu, P., Zhu, S.: Semantics-based obfuscation- resilient
binary code similarity comparison with applications to software and algorithm
plagiarism detection. IEEE Trans. Softw. Eng. 43(12), 1157–1177 (2017). https://
doi.org/10.1109/TSE.2017.2655046. ISSN 1939-3520

18. Marcelli, A., Graziano, M., Ugarte-Pedrero, X., Fratantonio, Y., Mansouri, M.,
Balzarotti, D.: How machine learning is solving the binary function similarity
problem. In: USENIX Security, pp. 2099–2116 (2022). https://www.usenix.org/
conference/usenixsecurity22/presentation/marcelli

19. Ming, J., Xu, D., Jiang, Y., Wu, D.: BinSim: trace-based semantic binary diff-
ing via system call sliced segment equivalence checking. In: 26th USENIX Security
Symposium (USENIX Security 2017), Vancouver, BC, pp. 253–270. USENIX Asso-
ciation (2017). https://www.usenix.org/conference/usenixsecurity17/technical-
sessions/presentation/ming. ISBN 978-1-931971-40-9

20. Peng, D., Zheng, S., Li, Y., Ke, G., He, D., Liu, T.-Y.: How could neural net-
works understand programs? In: Meila, M., Zhang, T. (eds.) Proceedings of the
38th International Conference on Machine Learning, vol. 139, pp. 8476–8486. Pro-
ceedings of Machine Learning Research (PMLR) (2021). https://doi.org/10.48550/
arXiv.2105.04297. https://proceedings.mlr.press/v139/peng21b.html

21. Pewny, J., Garmany, B., Gawlik, R., Rossow, C., Holz, T.: Cross-architecture bug
search in binary executables. In: 2015 IEEE Symposium on Security and Privacy,
pp. 709–724. IEEE (2015)

https://doi.org/10.1109/ICPC.2017.22
https://doi.org/10.1109/SANER.2016.50
https://doi.org/10.1109/SPRO.2015.10
https://doi.org/10.1109/SPRO.2015.10
https://doi.org/10.1109/ASE.2017.8115647
https://doi.org/10.1145/3465481.3465772
http://compalg.inf.elte.hu/annales/computatorica/VO30.pdf
http://compalg.inf.elte.hu/annales/computatorica/VO30.pdf
https://doi.org/10.1109/TSE.2017.2655046
https://doi.org/10.1109/TSE.2017.2655046
https://www.usenix.org/conference/usenixsecurity22/presentation/marcelli
https://www.usenix.org/conference/usenixsecurity22/presentation/marcelli
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/ming
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/ming
https://doi.org/10.48550/arXiv.2105.04297
https://doi.org/10.48550/arXiv.2105.04297
https://proceedings.mlr.press/v139/peng21b.html

Semantic Functionality Identification 291

22. Plohmann, D., Yakdan, K., Klatt, M., Bader, J., Gerhards-Padilla, E.: A
comprehensive measurement study of domain generating malware. In: 25th
USENIX Security Symposium (USENIX Security 2016), Austin, TX, pp.
263–278 (2016). https://www.usenix.org/conference/usenixsecurity16/technical-
sessions/presentation/plohmann. ISBN 978-1-931971-32-4

23. Dalla Preda, M., Madou, M., De Bosschere, K., Giacobazzi, R.: Opaque predicates
detection by abstract interpretation. In: Johnson, M., Vene, V. (eds.) AMAST
2006. LNCS, vol. 4019, pp. 81–95. Springer, Heidelberg (2006). https://doi.org/10.
1007/11784180 9 ISBN 978-3-540-35636-3

24. Qiu, J., Su, X., Ma, P.: Library functions identification in binary code by using
graph isomorphism testings. In: 2015 IEEE 22nd International Conference on Soft-
ware Analysis, Evolution, and Reengineering (SANER), pp. 261–270. Institute
of Electrical and Electronics Engineers (IEEE) (2015). https://doi.org/10.1109/
SANER.2015.7081836

25. Shoshitaishvili, Y., Wang, R., Hauser, C., Kruegel, C., Vigna, G.: Firmalice - auto-
matic detection of authentication bypass vulnerabilities in binary firmware (2015).
https://doi.org/10.14722/NDSS.2015.23294

26. Shoshitaishvili, Y., et al.: SoK: (state of) the art of war: offensive techniques in
binary analysis. In: IEEE Symposium on Security and Privacy (2016). https://doi.
org/10.1109/SP.2016.17

27. Tian, D., Jia, X., Ma, R., Liu, S., Liu, W., Hu, C.: BinDeep: a deep learning app-
roach to binary code similarity detection. Expert Syst. Appl. 168 (2021). https://
doi.org/10.1016/j.eswa.2020.114348. ISSN 0957-4174

28. van der Veen, V., et al.: A tough call: mitigating advanced code-reuse attacks at
the binary level. In: 2016 IEEE Symposium on Security and Privacy (SP), pp.
934–953 (2016). https://doi.org/10.1109/SP.2016.60. ISBN 978-1-5090-0824-7

29. Wang, S.-C., Liu, C.-L., Li, Y., Xu, W.-Y.: Semdiff: finding semtic differences in
binary programs based on angr. In: ITM Web of Conferences, vol. 12, p. 03029.
EDP Sciences (2017). https://doi.org/10.1051/itmconf/20171203029

30. Wang, S., Wu, D.: In-memory fuzzing for binary code similarity analysis. In:
2017 32nd IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), pp. 319–330. Institute of Electrical and Electronics Engineers (IEEE)
(2017). https://doi.org/10.1109/ASE.2017.8115645. ISBN 978-1-5386-2684-9

31. Xu, Z., Chen, B., Chandramohan, M., Liu, Y., Song, F.: SPAIN: security patch
analysis for binaries towards understanding the pain and pills. In: 2017 IEEE/ACM
39th International Conference on Software Engineering (ICSE), pp. 462–472. Insti-
tute of Electrical and Electronics Engineers (IEEE) (2017). https://doi.org/10.
1109/ICSE.2017.49. ISBN 978-1-5386-3868-2

32. Xue, Y., Xu, Z., Chandramohan, M., Liu, Y.: Accurate and scalable cross-
architecture cross-OS binary code search with emulation. IEEE Trans. Softw. Eng.
45(11), 1125–1149 (2019). https://doi.org/10.1109/TSE.2018.2827379. ISSN 1939-
3520

33. Yang, S., Cheng, L., Zeng, Y., Lang, Z., Zhu, H., Shi, Z.: Asteria: deep learning-
based AST-encoding for cross-platform binary code similarity detection. In: 2021
51st Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), pp. 224–236. Institute of Electrical and Electronics Engineers
(IEEE) (2021). https://doi.org/10.1109/DSN48987.2021.00036. ISBN 978-1-6654-
3572-7

https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/plohmann
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/plohmann
https://doi.org/10.1007/11784180_9
https://doi.org/10.1007/11784180_9
https://doi.org/10.1109/SANER.2015.7081836
https://doi.org/10.1109/SANER.2015.7081836
https://doi.org/10.14722/NDSS.2015.23294
https://doi.org/10.1109/SP.2016.17
https://doi.org/10.1109/SP.2016.17
https://doi.org/10.1016/j.eswa.2020.114348
https://doi.org/10.1016/j.eswa.2020.114348
https://doi.org/10.1109/SP.2016.60
https://doi.org/10.1051/itmconf/20171203029
https://doi.org/10.1109/ASE.2017.8115645
https://doi.org/10.1109/ICSE.2017.49
https://doi.org/10.1109/ICSE.2017.49
https://doi.org/10.1109/TSE.2018.2827379
https://doi.org/10.1109/DSN48987.2021.00036

Malware Analysis with Symbolic
Execution and Graph Kernel

Charles-Henry Bertrand Van Ouytsel(B) and Axel Legay

INGI, ICTEAM, Université Catholique de Louvain, Place Sainte Barbe 2,
LG05.02,01, 1348 Louvain-La-Neuve, Belgium

{charles-henry.bertrand,axel.legay}@uclouvain.be

Abstract. Malware analysis techniques are divided into static and
dynamic analysis. Both techniques can be bypassed by circumvention
techniques such as obfuscation. In a series of works, the authors have
promoted the use of symbolic executions combined with machine learn-
ing to avoid such traps. Most of those works rely on natural graph-based
representations that can then be plugged into graph-based learning algo-
rithms such as Gspan. There are two main problems with this approach.
The first one is in the cost of computing the graph. Indeed, working with
graphs requires one to compute and representing the entire state-space
of the file under analysis. As such computation is too cumbersome, the
techniques often rely on developing strategies to compute a representa-
tive subgraph of the behaviors. Unfortunately, efficient graph-building
strategies remain weakly explored. The second problem is in the clas-
sification itself. Graph-based machine learning algorithms rely on com-
paring the biggest common structures. This sidelines small but specific
parts of the malware signature. In addition, it does not allow us to work
with efficient algorithms such as support vector machine. We propose a
new efficient open source toolchain for machine learning-based classifi-
cation. We also explore how graph-kernel techniques can be used in the
process. We focus on the 1-dimensional Weisfeiler-Lehman kernel, which
can capture local similarities between graphs. Our experimental results
show that our approach (1) outperforms existing ones by an impressive
factor, (2) is resistant to static adversarial attacks.

Keywords: Malware analysis · Symbolic execution · Malware
classification

1 Introduction

According to the independent IT security institute AV-Test [5], the number of
malware infections has increased significantly over the last ten years, reaching a
total of 1287.32 million in 2021. With approximately 450 000 new malware every
day, companies spend on average 2.4 millions dollars [1] on defenses against such
malicious software. For this reason, effective and automated malware detection

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. P. Reiser and M. Kyas (Eds.): NordSec 2022, LNCS 13700, pp. 292–310, 2022.
https://doi.org/10.1007/978-3-031-22295-5_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22295-5_16&domain=pdf
http://orcid.org/0000-0001-5720-6569
http://orcid.org/0000-0003-2287-8925
https://doi.org/10.1007/978-3-031-22295-5_16

Malware Analysis with Symbolic Execution and Graph Kernel 293

and classification is an important requirement to guarantee system safety and
user protection.

Most malware classification approaches are based on the concept of signa-
ture and signature detection. A malware signature, which is often built manually,
represents the DNA of the malware [7,13,18]. Consequently, deciding whether
a binary file contains a specific malware boils down to checking whether the
signature of such malware is present in the binary. The simplest type of signa-
ture is the syntactic signature, i.e., signatures based on syntactic properties of
the malware binaries (length, entropy, number of sections, or presence of certain
strings). Alternatively, behavioral signatures are based on the malware’s behav-
ioral properties (interaction with the system and its network communications).

Different types of signature give rise to different malware classification
approaches. In static malware analysis approaches, the classification boils down
to detecting the presence of a given static signature directly in the binary that
has been disassembled. This signature often boils down to a sequence of charac-
ters [15]. The two main advantages of this approach is that it is fast and does
not require executing the malware. On the other hand, static signatures are very
sensitive to obfuscation techniques that modify the binary code to change its
syntactic properties [22]. An illustration of those limitations is given in [7,25]
where the authors show the approach is not robust to variants of the MIRAI
malware. Other static approaches use machine learning algorithms (see [34] for
an illustration in the context of Android systems). Several works shows that
those are not resistant to adversarial examples (e.g: [33]).

Another classification approach is that of dynamic analysis, which executes
the malware and observes if its effect on the system corresponds to some behav-
ioral signature [21,38]. This approach is based on the fact that a static obfusca-
tion does not modify the behavior of the malware and therefore has no influence
on the classification of a behavioral signature. To avoid infecting the analyst’s
system and to prevent the malware from spreading, the malware is commonly
executed in a sandbox. Unfortunately, malware can implement sandbox detec-
tion techniques to determine whether they are being executed in a sandbox.
As dynamic analysis is limited to one execution, a malware can pass detection
by avoiding exhibiting malicious behavior [3]. More information on static and
dynamic malware analysis can be found in the following tutorial [7].

Aware of those limitations, several authors have proposed using some explo-
ration techniques coming from the formal verification areas. This includes sym-
bolic execution [10,12,14], a technique that explores possible execution paths
of the binary without either concretizing the values of the variables or dynam-
ically executing the code. As the code exploration progresses, constraints on
symbolic variables are built and system calls tracked. A satisfiability-modulo-
theory (SMT) checker is in charge of verifying the satisfiability of the collected
symbolic constraints and thus the validity of an execution path.

The advent of symbolic execution has led to the development of a new set of
machine learning-based fully automatised malware classification methods. Those
continue and extend the trend of applying machine learning to malware classi-

294 C.-H. Bertrand Van Ouytsel and A. Legay

fication [20,34,35]. In particular, in [25] the authors have proposed combining
symbolic execution with Gspan [37], a machine learning algorithm that allows
us to detect the biggest common subgraphs between two graphs. In its training
phase, the algorithm collects binary calls via symbolic analysis. Such calls are
then connected in a System Call Dependency Graph (SCDG), that is a graph
that abstracts the flow of information between those calls. Gspan can compute
the biggest common subgraphs between malware of a given family. Those then
represent the signature for the family. In its classification phase, the approach
extracts the SCDG from the binary and compares it with each family’s signature.

Unfortunately, the above-mentioned approach has several limitations. The
first one is that it depends on the efficiency of the symbolic analysis engine. The
second one is that SCDGs are built as an abstraction of the real behavior of the
binary. In particular, the approach will connect two calls that have the same
argument even though those calls may be from different function. Such a choice,
which is motivated by efficiency reasons, may lead to a crude over-approximation
of the file’s behavior and hence to misclassification.

Relying on the biggest common subgraphs may exclude important but iso-
lated calls that are specific to the malware. In addition, using graphs poses a
particular challenge in the application of traditional data mining and machine
learning approaches that rely on vectors. To surmount those limitations, the
authors in [24] proposed using a graph kernel [23], which can be intuitively
understood as a function measuring the similarity of pairs of graphs. In their
work, the authors used the approach in a non-supervised process. However, such
kernel can be plugged into a kernel machine, such as a support vector machine.
Results in [24] show that the graph kernel outperforms Gspan in terms of accu-
racy. Unfortunately, the kernel used in [24] still implicitly relies on detecting the
biggest commonalities between graphs. Individual important calls are out of its
scope.

Our paper makes several contributions to improving symbolic analysis-based
malware classification. The first contribution consists in a flexible and open
source implementation of a malware analysis toolchain based on [32] (avail-
able here [6]). In addition to obtaining better performances, the flexibility of
the new implementation allows us to plug in and compare various classifica-
tion algorithms and symbolic execution strategies. In particular we develop and
compare several efficient resource-based strategies that enable us to build com-
pact but more informative SCDGs than those in [24,25]. The approach is able
to distinguish more SCDGs and hence obtain a finer grain in both training and
classification processes. Another important contribution of this paper is the com-
parison of the Weisfeiler-Lehman Kernel [31] with other classifiers. Such a graph
kernel is capable of comparing the graph’s local small structures by a ingenious
relabelling of its vertices. Finally, a major contribution of the paper is a series of
experimental results showing that our approach outperforms those in [25] and in
[24] when being used in a supervised context. We also show that our approach
outperform static approaches when facing adversarial examples.

Malware Analysis with Symbolic Execution and Graph Kernel 295

2 On Graph Comparison for Malware Analysis

This section briefly introduces several notions related to graphs. It also outlines
the limits of graph-based representation in malware analysis and advantages of
graph kernels.

A graph G is defined as a pair (V,E), where V is a set of Vertices and E a
set of edges such that {{u, v} ⊆ V |u �= v}. The set of edges and vertices of G are
given by E(G) and V (G), respectively. We also consider labelled graphs where a
label function l : V (G) → Σ assigns a label from Σ to each vertex of G. We use
l(v) to denote the label of vertices v. A graph G’ = (V’, E’) is a subgraph of G =
(V, E) if V ′ ⊆ V and E′ ⊆ E. We are interested in applying graph comparison to
extract and compare malware signatures represented by SCDGs. In particular,
graph isomorphism is considered to be a powerful tool that allows us to detect
structural similarities between graphs that may not be identical. Two unlabelled
graphs G and H are said to be isomorphic (G � H) if there exists a bijection
φ : V (G) → V (H) such that (u, v) ∈ E(G) if and only if (1) (φ(u), φ(v)) ∈ E(H)
(for all u, v ∈ V (G)), and (2) l(v) = l(v′) for each (v, v′) ∈ φ. There exists a wide
range of graph similarity measures. This includes, e.g., subgraph isomorphism
used to compute the largest common subgraph. Checking graph isomorphism is
known to be NP. Moreover, reducing the comparison of two graphs to checking
their isomorphism is known to be restrictive as it requires both graphs to have
same structure. This situation is rarely encountered when comparing (classes
of) malware. The situation is illustrated in Fig. 1, where two malware from the
same family are considered to be different since Vertex SetF ilePointer cannot
be covered by an isomorophic relationship.

Fig. 1. Example of non-isomorphic graphs with
high similarities

To address the problem,
authors in [25] proposed an
approach based on Gspan.
This is a popular algorithm
for frequent graph-based pat-
tern mining. Given a set of
graphs G and a desired sup-
port min supp, Gspan (whose
pseudo-code is given in
Appendix A) tries to extract
all subgraphs present at least
in min supp graphs of G. If
G represents a set of malware
from the same family, the set
of common subgraphs repre-
sents their signatures.

Unfortunately, relying on computing the biggest subgraphs may dismiss small
but important connected components that do not belong to the biggest sub-
graphs. The situation is illustrated in Graph 3 of Fig. 2, where important calls
such as IsDebuggerPresent may be ignored. An inefficient solution could be to
extend the number of subgraphs. Unfortunately, when bigger graphs than in our

296 C.-H. Bertrand Van Ouytsel and A. Legay

example are involved, this approach will mostly favor a variant of the biggest
connected component, as we will see in Sect. 4. In order to address this problem,
we resort to the concept of Graph Kernels.

2.1 Graph Kernels

In machine learning, kernel methods are algorithms that allow us to compare
different data points with a particular similarity measure. Consider a set of data
points X such as Rm and let k : X ×X → R be a function. Function k is a valid
kernel on X if there exists a Hilbert space Hk and a feature map φ : X → Hk such
that k(x, y) = 〈φ(x), φ(y)〉 for x, y ∈ X , where 〈·, ·〉 denotes the inner product
of Hk. It is known that φ exists only if k is a positive semidefinite function. A
well-known kernel is the Gaussian radial basis function (RBF) kernel on R

m,
m ∈ N, defined as:

kRBF (x, y) = exp(−‖x − y‖2
2σ2

) (1)

with σ, the bandwidth parameter. Observe that RBF kernel gives an explicit
definition of φ. In practice, this is not always required. Indeed, algorithms such
as Support Vectors Machine (SVM) use the data X only through inner products
between data points. Having the kernel value k(x, y) between each data point
is thus sufficient to build an SVM-based classifier. This approach is known as
the kernel trick [16]. A Gram matrix K, is defined with respect to a finite set
of point x1, .., xn ∈ X. Each element Ki,j with i, j ∈ {0, .., n} represents the
kernel value between pairs of points k(xi, xj). If the Gram Matrix K of Kernel
k is positive semi-definite for every possible set of data points, then k is a valid
kernel.

It is common for kernels to compare data points using differences between
data vectors. However, the structures of graphs are invariant to permutations
of their representations (i.e., ordering of edges/vertices does not influence struc-
ture and distance between graphs). This motivates the need to compare graphs
in ways that are permutation invariant. Moreover, to avoid strict comparison
(which would be equivalent to isomorphism), it is common to use smoother
metrics of comparison, such as convolutionnal kernels, for better generalization
capabilities. Convolutionnal kernels divide structures (i.e., graphs in our case)
into substructures (e.g., edges, subgraphs, paths, etc) and then evaluate a kernel
between each pair of such substructures.

In [24], the authors propose a similarity metric for malware behavior graphs
based on common vertices and edges. Concretely, they define a similarity σ
between two graphs G and H as:

σ(G,H) = ασvertices(G,H) + (1 − α)σedges(G,H) (2)

Malware Analysis with Symbolic Execution and Graph Kernel 297

where α is the vertice-edge factor allowing to adjust weights of vertices and
edges in the similarity function (set to 0.25 in the conclusion of their work). The
vertice similarity is defined as:

σvertices(G,H) =
|V(G) ∩ V(H)|

min(V(G),V(H))
(3)

and the edge similarity as:

σedges(G,H) =
|CCmax(G ∩ H)|

min(|CCmax(G)|, |CCmax(H)|) (4)

where V(G) are the set of vertices of G and CCmax(G) is the biggest connected
component of G.

While this approach adds information related to all nodes labels compared
to Gspan, it suffers from similar drawbacks than Gspan. Indeed, it focus on
the biggest connected component, neglecting edges in other connected compo-
nents. This problem is illustrated on Graph 4 of Fig. 2. One can see that the
kernel identifies similarities between nodes of Graph 1 and Graph 2. However,
it ignores important edge dependencies such as GetModuleHandle, CopyFileA,
and GetSystemDirectoryA.

Fig. 2. Graph 3 represents the subgraph extracted
with Gspan from graphs of Fig. 1. Graph 4 corre-
sponds to the extraction with the kernel from [24]

To tackle this problem, a
popular approach in graph
kernels is the comparison of
local structure. In this app-
roach, two vertices of differ-
ent graphs are considered to be
similar if they share the same
labels. The two vertices are
considered to be more similar
if, in addition, they share sim-
ilar neighborhoods (i.e., ver-
tices with the same labels).
Using this approach, Sher-
vashidze et al. [31] introduced
graph kernels based on the 1-
dimensional Weisfeiler-Lehman (WL). Let G and H be graphs, and l : V (G) ∪
V (H) → Σ be a function giving their vertices labels. By several iterations i =
0, 1, ..., the 1-WL algorithm computes a new label function li : V(G)∪V (H) → Σ,
with each iteration allowing comparison of G and H. Let N(v) be the neighbor-
hood of a vertex v ∈ G in V (G), i.e., N(v) = {u ∈ V (G)|(v, u) ∈ E(G)}. In the
first iteration, l0 = l, and in subsequent iterations,

li(v) = relabel(li−1(v), sort(li−1(u)|u ∈ N(v))) (5)

with v ∈ V (G) ∪ V (H), sort(S) returning a sorted tuple of S and function
relabel(p) maps the pair p to a unique value in Σ which is not already used
in previous iterations. When the cardinality of li equals the cardinality of li−1,

298 C.-H. Bertrand Van Ouytsel and A. Legay

the algorithm stops. The idea of the WL sub-tree kernel is to compute the
previous function for h ≥ 0 and after each iteration i to compute a feature
vector φi(G) ∈ R|Σi| for each graph G, where Σi ⊆ Σ denotes the image of li.
Each component φi(G)σi

j
counts the number of appearances of vertices labelled

with σi
j ∈ Σi. The overall feature vector φWL(G) is defined as the concatenation

of the feature vectors of all h iterations, i.e.,

φWL(G) = (φ0(G)σ0
1
, ..., φ0(G)σ0

|Σ0|
, φh(G)σh

1
, ..., φh(G)σh

|Σh
|) (6)

Finally, to compute similarity between two different feature vectors, we apply
the following formula:

kWL(G,G′) =
∑

φ∈φW L(G)

∑

φ′∈φW L(G′)

δ(φ, φ′) (7)

where δ is the Dirac kernel, that is, it is 1 when its arguments are equals and 0
otherwise. The more labels the two graphs have in common, the higher this ker-
nel value will be. Compared with Gspan and the kernel from [24], this kernel also
targets similarities related to all nodes and edges of the biggest subgraph but also
local similarities. This is illustrated in Fig. 3, where dependencies between Get-
ModuleHandle, CopyFileA, and GetSystemDirectoryA are kept in the learning
process.

Fig. 3. The figure shows that, contrary to Simple Kernel, the Weisfeiler-Lehman kernel
captures all common edges between the graphs of Fig. 1

3 Approach: Symbolic Execution + Machine Learning
for Malware Analysis

We propose an open source toolchain for malware analysis that is based on
machine learning and SCDGs (available here [6]). The toolchain relies on the
following important components: the first component consists in collecting and
labelling a series of binaries from different malware families. Then, angr [32],

Malware Analysis with Symbolic Execution and Graph Kernel 299

a python framework for symbolic execution, is used to execute those files. The
result is used to extract a SCDG for each such binary. One of the contributions
of this paper will be to improve and adapt the symbolic engine to malware anal-
ysis as well as the construction of SCDGs. Those SCDGs are then used to train
machine learning algorithms. If Gspan is used, the training will result in com-
mon subgraphs to represent signatures for each family. If SVM is used, a Gram
matrix between all the malware programs is created. Finally, the toolchain also
contains supervised classifiers. If Gspan is used, the SCDG of the new malware
is compared with those of the signature of each family and the classifier retains
the one with the closest distance. If SVM is used, a Gram matrix is created
between all trained malware and the new malware. This matrix is then used in
the SVM classification process. A main contribution of this paper is to compare
those two types of classification.

3.1 Extraction of Calls

The construction of the SCDG is based on Symbolic Execution. This approach
envisages the exploration of all the possible execution paths of the binary without
either concretizing the values of the variables or dynamically executing the code
(i.e., the binary is analyzed statically). Instead, all the values are represented
symbolically. As the code exploration progresses, constraints on symbolic vari-
ables are built and system calls tracked. A satisfiability-modulo-theory (SMT)
checker is in charge of verifying the satisfiability of the collected symbolic con-
straints and thus the validity of an execution path. A wide range of tools and
techniques have been developed for efficient symbolic execution analysis. Most
of those techniques agree on the fact that symbolic execution still suffers from
state-space-explosion and, consequently, only a finite set of symbolic paths can
be explored in a reasonable amount of time. This is particularly the case with
malware analysis where the classification process must be done with very lim-
ited resources. As the calls that form the SCDG are collected directly from those
symbolic paths, the choice of which paths to follow will have an impact on the
machine learning process.In a recent work, authors showed how SMT solving
could impact performances [8,11,29]. In this paper, we focus on path selection
strategies. The work in [25] implements a Breadth-First Search (BFS) approach,
that is, at each execution step all ongoing paths are explored simultaneously.
This approach leads to an important growth of states and memory usage. As we
have limited resources, we propose to explore one subset of paths at a time. We
prioritize states from which one can explore new assembly instruction addresses
of the program. Our Custom Breadth-First Search Strategy (CBFS-Strategy)
is presented in Algorithm 1. The algorithm begins by taking L states for explo-
ration from the set of available states and putting them in the list R of states
to explore next (line 4). It then iterates among all other available states. If it
finds a state leading to an unexplored part of the code or with a shorter path of
execution (line 6), it puts it in R and takes out a state with a lower priority (i.e.:
state not leading to a new instruction or state with a longer depth). After going
through each state, it returns R to allow angr to perform a new execution step on

300 C.-H. Bertrand Van Ouytsel and A. Legay

R’ states. In addition to BFS-Strategy, we also implemented a Custom Depth-
First Search Strategy (CDFS-Stategy), which is presented in Algorithm 2 (the
main difference with CBFS-Strategy being the condition to select successor state
at Line 6). Observe that symbolic execution with this coverage heuristic is not
new. However, the implementation and evaluation of restricted versions within
a tool for malware classification are.

Algorithm 1. CBFS exploration
1: Inputs: A set of states: S
2: Limit of states: L
3: Outputs: A set of L states: R
4: R ← S[: L]
5: for state s ∈ S do
6: if new(s.next ip)|{∃state ∈

R|s.depth <
state.depth & !new(state.next ip)}
then

7: Remove state from R
8: Add s to R
9: Return R

Algorithm 2. CDFS exploration
1: Inputs: A set of states: S
2: Limit of states: L
3: Outputs: A set of L states: R
4: R ← S[: L]
5: for state s ∈ S do
6: if new(s.next ip)|{∃state ∈

R|s.depth >
state.depth & !new(state.next ip)}
then

7: Remove state from R
8: Add s to R
9: Return R

Another important challenge in symbolic execution is that of handling loops.
Indeed, the condition of such loops may be symbolic. In addition, the loop
may create an infinite repetitive behavior. In those situations, deciding between
staying in the loop or exiting the loop remains a tricky choice that has been
the subject of several works focusing on the possibilities, which include Loop-
extended Symbolic Execution [26], Read-Write set [9], and bit-precise symbolic
mapping [36]. As those approaches may be too time-consuming, we propose to
reuse two intermediary heuristics from [25]. The first one applies to loops whose
condition contains a symbolic value. Such loops may give rise to two states at
each iteration: one that exits the loop for those symbolic values that exceed
the condition and one that remains within the loop for other values, with this
last state being used again to iterate on the loop. We chose to stop such itera-
tion after four steps. For loops that do not contain symbolic values, since such
loop may still lead to an unbounded number of behaviors, our approach consists
in limiting the execution to a finite, arbitrary fixed, number of steps and then
forcing the execution to exit the loop.

3.2 Creating SCDGs

Symbolic execution allows us to obtain several paths representing executions
of a given binary. Our next step is to collect the sets of calls present on each
such path as well as their addresses and arguments. Those are used to build the
SCDG corresponding to this binary. Following [25], SCDGs are graphs where
each vertex is labelled with the name of a system call; and the edges correspond
to (an abstraction of) information flow between these calls. Concretely, each

Malware Analysis with Symbolic Execution and Graph Kernel 301

SCDG is built from the symbolic representation by merging and linking calls
from one or more symbolic paths. Their construction could be influenced by
applying different SCDG-Strategies.

Consider first the creation of a graph execution from one symbolic path.
We consider three types of edge. In the first one, two calls are linked if they
both share an argument with identical value (i.e.: one-edge strategy). This is,
for example, the case of two calls with the same file handler. The second link
is established between two calls that both have an argument with the same
symbolic value. An example is a symbolic file size returned by a call and passed
to a second call added to another value. In addition, we consider that two calls
can be linked if an argument of the first call is the calling address of the second
one. This situation typically arises in dynamic loading of a library. We also
label each edge with the index of the argument in both calls (return value of
a call is given index 0). The three-edges strategy is called SCDG-Strategy
1 and the one-edge strategy is called SCDG-Strategy 2. Our experiments
shows that SCDG-Strategy 2 loses important dependency between calls and
leads to more isolated nodes in SCDGs. Indeed, this strategy suffers from two
types of problem. First, symbolic values may be modified before being passed to
another call. Second, some calls used by obfuscation techniques exhibit address-
arguments links. A typical example is given by GetProcAddress, used to hide
real content of the import table of PE files.

An example of an SCDG is given in Fig. 4 with SCDG-Strategy 1 and
SCDG-Strategy 2. The program first calls CreateFile, which returns a handle
to the file with the specified filename. A vertex is thus constructed for CreateFile.
Then, a call to SetFilePointer on the preceding file handle occurs. This leads to
the creation of a new vertex (SetFilePointer). Since the returned argument of
CreateFile (index 0) is the same as the first argument of SetFilePointer (index
1), an edge is added between them. Vertices ReadFile and WriteFile are created
and linked following similar principles.

0->1

CreateFileA

SetFilePointer

WriteFile

1->1

0->1

2->2
ReadFile

GetProcAddress(lib,"CreateFileA")
HANDLE = CreateFileA('out.txt')
SetFilePointer(HANDLE, 120)
SIZE = GetFileSize("/etc/passwd")
ReadFile("/etc/passwd",buffer)
WriteFile(HANDLE,buffer,SIZE+128)

0->addr

GetProcAdress

0->1

CreateFileA

SetFilePointer

WriteFile

1->1

0->1

2->2

ReadFile

GetProcAdress

1->1
0->3

GetFileSize

1->1

GetFileSize

SCDG-Strategy 1 SCDG-Strategy 2

Fig. 4. Illustration of a SCDG built with SCDG-Strategy 1 and SCDG-
Strategy 2

302 C.-H. Bertrand Van Ouytsel and A. Legay

There are situations where different calls in the same execution share the
same API name and occur at the same instruction address but with distinct
arguments. One may decide to merge the two calls into one single vertex. In
this case, we conserve the set of arguments of the first call observed in the
execution. This merge incurs a loss of precision but leads to a more compact
SCDG representation [29]. This may be of importance when one has to train the
system with a large number of different types of malware. This merging strategy
is called SCDG-Strategy 3. Merging calls gives different advantages. First, it
decreases the size of the SCDG, which may lead to better classification/detection
performances. In addition, it may reduce the impact of some calls in the learning
phase. An example is given with the wabot malware, which uses a hundred of
calls to WriteFile during its execution. If not merged, those calls that are not
part of the main actions of the malware will constitute an important part of the
signature. This may have a negative impact on the training phase. On the other
hand, there are situations where SCDG-Strategy 3 merges calls with different
goals. This situation may result in losing part of the malware behavior.

The above strategies apply to single symbolic paths only. When several sym-
bolic paths are considered, one can decide to produce an SCDG that is com-
posed of the disjoint union of such executions. Such a strategy is referred to as
SCDG-Strategy 5. On the other hand, SCDG-Strategy 4 consists in merg-
ing successive executions from different symbolic paths. SCDG-Strategy 5 is
simplier to compute, but SCDG-Strategy 5 gives smaller graphs. According
to our experimental results, SCDG-Strategy 4 may speed up the computation
time by an exponential factor for families with high symbolic execution numbers.

3.3 Creating a Classification Model and Evaluate New Samples

The toolchain uses SCDGs to train a classifier which is used to detect and classify
malware. We have implemented two classifiers. One implementation is based on
Gspan and follows the idea from [25]. Another one implements the graph kernel
from [24] and the Weisfeiler-Lehman extension we outlined in Sect. 2.

The classifier that uses Gspan implementation works by extracting signatures
from malware families. We obtain the signature of each family by computing
the biggest subgraphs between the SCDG of each malware. In the classification
phase, we compare the SCDG of new binary with those of each signature. The
file belongs to the malware family whose graph is the closest to the binary’s.

For the case of graph kernel, the training phase consists in computing the fea-
ture vector that corresponds to applying the algorithm in [24] or the Weisfeiler-
Lehman extension to each malware of the family. As explained in the background
section, the algorithm produces a Gram matrix between all those vectors. This
matrix represents an implicit version of the kernel. A support vector machine can
then exploit this implicit representation. In the classification phase, we compute
a Gram matrix between the feature vector of the binary under classification and
the vectors of all malware used in the training set. Observe that, contrary to the
Gspan approach, graph kernel does not require us to produce an explicit and
hence all-encompassing representation of the signature of each family.

Malware Analysis with Symbolic Execution and Graph Kernel 303

4 Experimental Results

This section describes the methodology used to assess our toolchain’s perfor-
mance in both extracting SCDGs and classifying new binaries. Our evaluation
set was composed of 1874 malware divided into 15 families plus 150 cleanware
samples. The data set’s exact composition is given in Table 1. In terms of ori-
gins, 64 percent of the samples were obtained thanks to a direct collaboration
with Cisco. The remaining 36% were extracted from MalwareBazaar [2]. Sam-
ples were labelled using AVClass [28], a python tool to label malware samples.
This tool is fed with VirusTotal reports and outputs the most likely family of
each sample. To evaluate detection performance, we used 150 open source pro-
grams found online [27]. To show the relevance of approach, we also compare
our classifier performance with a SVM classifier trained on Ember [4] static fea-
tures. Those features are known to be representative features for existing static
machine learning approach. We then demonstrate how easily it could be fooled
with adversarial examples generated with framework such as MAB-malware [33].

Table 1. Composition of the dataset

Family #samples Family # samples

bancteain 91 remcosRAT 476

delf 78 sfone 32

fickerstealer 44 sillyp2p 269

gandcrab 92 simbot 126

ircbot 36 sodinokibi 75

lamer 61 sytro 115

nitol 71 wabot 134

redlinestealer 35 cleanware 150

In the rest of the section, all
experiments were performed on a
desktop PC with an Intel Core
i7-8665U CPU (1.90 GHz × 8)
and 16 GB RAM running Ubuntu
18.04.5. Our experimental results
relied on our ability to extract
SCDGs efficiently. In all experi-
ments, we used a timeout of ten
minutes for each SCDG. Note that
20% of the SCDGs were computed
in time while 80% never computed
entirely. For the case of BFS-Strategy, we used the same parameters as in [29]
(loop threshold of 4, unlimited number of states to explore, z3 optimization
enabled). However, for CDFS-Strategy and CBFS-Strategy we imposed a limit
of 10 states that could be explored simultaneously. All metrics for multi-class
classification are weighted average.

Environment Modelling. Proper environment modelling is a major challenge
in developing efficient symbolic execution techniques. Indeed, when we apply
symbolic execution we avoid exploring/executing API call code. Since performing
such an operation would drastically increase the computation time [19]. In angr,
when a call to an external library occurs, the call is hooked to a simulated
procedure called simprocedures that will produce the symbolic outputs for the
function. A simple but crude implementation of such procedure is to assume that
the external function returns a symbolic value without any constraint. In such
a case, simprocedures simply returns symbolic values covering the full range
of outputs given in the specification. In practice, such a solution gives good
results in 26 percent of the analyzed families. However, this solution may generate
outputs that are not defined in the specification. In addition, it ignores many

304 C.-H. Bertrand Van Ouytsel and A. Legay

potential effects of the call, which include the modifications of input parameters
or the number of its arguments. This may lead to incoherent executions if those
parameters impact the rest of the execution (e.g.: in branch choices). We propose
several improvements to fix those issues. The first one consists in restricting
the ranges of outputs to those given in the specification. As an example, if the
output is an integer variable that can take only four values, simprocedures would
generate those values instead of the full range of integers. Another one concerns
the case where an execution is blocked because modifications of some arguments
by the external call are not performed. This happens in situations where the
external call may modify some of its inputs or even some environment variables.
In such case, we emulate several potential modifications with concrete values.
Observe that this improvement work must be performed for each call in our
dataset that causes problems. That is why, we have constituted a simprocedures
library that is constantly enriched with experiments and calls.

We first apply Gspan to SCDGs obtained with combinations of different
strategies. Signatures are obtained by sampling randomly 30% of the SCDGs of
each family; those SCDGs constitute the training set. Other SCDGs are then
classified to assess the quality of those signatures; those SCDGs constitute the
test set. This process is repeated three times and performance is averaged.

Table 2. Results of Gspan classifier with different exploration strategies

SCDG-strategy BFS-strategy CBFS-strategy CDFS-strategy

1 2 3 4 5 Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

x x x 0.685 0.566 0.619 0.721 0.604 0.657 0.652 0.609 0.629

x x x 0.623 0.552 0.585 0.674 0.568 0.616 0.61 0.587 0.5983

x x 0.683 0.589 0.632 0.698 0.555 0.619 0.669 0.597 0.631

x x 0.609 0.534 0.569 0.651 0.534 0.586 0.629 0.54 0.581

x x x 0.684 0.651 0.667 0.736 0.655 0.693 0.693 0.639 0.664

x x x 0.614 0.594 0.614 0.686 0.615 0.648 0.645 0.586 0.614

x x 0.679 0.587 0.629 0.623 0.465 0.532 0.68 0.597 0.636

x x 0.602 0.556 0.578 0.587 0.448 0.508 0.632 0.578 0.603

In Table 2, we observe that CDFS-Strategy generally outperforms CBFS-
Strategy and BFS-Strategy. By inspecting the results, we observed that
BFS-Strategy ran out of memory for 7 percent of the binaries, thus reduc-
ing its performance compared to CBFS-Strategy. While SCDG-strategy 4
showed improvements with SCDG-strategy 5, it should be noted that SCDG-
strategy 5 entails significant overhead in SCDG building (up to 100 times
slower) and signature size (5 times bigger on average). In general, the best perfor-
mances were obtained by combining SCDG-strategy {2, 3, 4}. Upon inspect-
ing best classifier in Fig. 6, we see a lot of confusion between different classes.
This can be explain by plotting similarities between signatures built with Gspan,
as illustrated in Fig. 5. There, different signatures share important similarities,
leading to confusion between different malware families, as illustrated in Fig. 6.

Malware Analysis with Symbolic Execution and Graph Kernel 305

This problem is directly linked to a problem exposed in Sect. 2, that is, Gspan
focus on the biggest subgraph while neglecting other components.

Fig. 5. Similarity matrix between signa-
tures obtained with Gspan

Fig. 6. Confusion matrix obtained for
Gspan with CBFS-strategy and SCDG-
strategy {2, 3, 4}.

We now turn to applying kernel from [24]. Table 3 shows that overall per-
formance increased compared with Gspan. Moreover, CBFS-Strategy and
CDFS-Strategy outperformed both BFS-Strategy and SCDG-strategy {2,
3, 4} strategies appeared to be more efficient. However, Fig. 7 shows that several
families were still indistinguishable.

Table 3. Results of SVM classifier and kernel from [24] with different exploration
strategies

SCDG-strategy BFS-strategy CBFS-strategy CDFS-strategy

1 2 3 4 5 Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

x x x 0.754 0.691 0.721 0.845 0.812 0.828 0.833 0.787 0.8093

x x x 0.728 0.673 0.699 0.785 0.736 0.759 0.77 0.714 0.741

x x 0.742 0.71 0.725 0.827 0.778 0.801 0.82 0.754 0.786

x x 0.711 0.649 0.678 0.771 0.703 0.735 0.74 0.698 0.718

x x x 0.769 0.723 0.745 0.851 0.826 0.838 0.847 0.813 0.829

x x x 0.738 0.645 0.688 0.813 0.752 0.781 0.802 0.738 0.768

x x 0.747 0.632 0.684 0.798 0.747 0.771 0.835 0.772 0.802

x x 0.714 0.654 0.682 0.781 0.733 0.756 0.763 0.718 0.739

306 C.-H. Bertrand Van Ouytsel and A. Legay

Fig. 7. Confusion matrix obtained for
SVM classifier and kernel from [24]
with CBFS-strategy and SCDG-
strategy {2, 3, 4}

Fig. 8. Confusion matrix obtained for WL
kernel with CDFS-strategy and SCDG-
strategy {1, 4}.

Weisfeiler-Lehman Kernel (WL). Finally, we investigated the SVM classi-
fier with the WL kernel. The results in Table 4 clearly outperformed the others,
reaching an F1-score of 0.929 with CDFS-Strategy and SCDG-strategy {1,
3, 4}. Families were better distinguished, as illustrated in Fig. 8. Those results
confirm our supposition of Sect. 2: taking advantage of an SCDG’s local structure
increases the efficiency of machine learning in malware classification.

Adversarial Examples. Contrary to a static approach, our observed classifiers
are resistant to adversarial examples based on static features. This is illustrated
in Table 5 where we show that the MAB-malware adversarial framework [33]
can easily mutated and corrupt Ember features [4] used in most of static classi-
fiers. This fact highlights that, although offering good performance, those static
classifiers are highly vulnerable and there is a need to develop new approaches.

Training Time. In general, WL kernel outperforms Gspan by a factor of 15
and Kernel in [24] by a factor of 10 000. We suspect that the overhead is due
to the extensive use of pairwise graph mining in the similarity metric presented
in Sect. 2. Compare to the Kernel in [24], Gspan reduces these number of com-
putation since it first create a signature for each family before comparing those
signature with the binary to classify.

These experiments permit to draw several conclusions. First, SCDG-
strategy 1 gives overall better results than SCDG-strategy 2 with WL ker-
nel. That is not the case for the other classifier where these information seems
to lead to overfitting and SCDG-strategy 2 should be preferred. Moreover,
the impact of SCDG-strategy 3 varies. While it improves classification for
kernels that are based on the biggest common subgraph, its impact when com-
bined with other strategies varies. Finally, while SCDG-strategy 5 leads to
a considerable overhead, it does not improve performance of any classifier. On
the other hand, SCDG-strategy 4 leads to more compact signatures, better
computation times and good classification performances. Regarding exploration

Malware Analysis with Symbolic Execution and Graph Kernel 307

Table 4. Results of SVM and WL kernel with different exploration strategies

SCDG-strategy BFS-strategy CBFS-strategy CDFS-strategy

1 2 3 4 5 Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

x x x 0.852 0.847 0.846 0.865 0.864 0.852 0.936 0.931 0.929

x x x 0.832 0.824 0.827 0.85 0.842 0.846 0.915 0.91 0.912

x x 0.895 0.891 0.892 0.894 0.881 0.874 0.937 0.933 0.929

x x 0.847 0.836 0.841 0.86 0.851 0.855 0.918 0.911 0.914

x x x 0.86 0.855 0.857 0.897 0.879 0.867 0.929 0.925 0.924

x x x 0.812 0.795 0.803 0.867 0.862 0.864 0.885 0.877 0.881

x x 0.895 0.891 0.891 0.895 0.891 0.886 0.939 0.933 0.929

x x 0.834 0.828 0.831 0.862 0.858 0.859 0.891 0.887 0.888

Table 5. Comparison in the context of adversarial examples (mutated dataset)

Model Initial dataset Mutated dataset

Precision Recall F1-score Precision Recall F1-score

Gspan 0.911 0.914 0.911 0.911 0.914 0.911

SVM kernel from [24] 0.965 0.95 0.957 0.965 0.95 0.957

SVM Weisfeiler-Lehman 0.989 0.975 0.981 0.989 0.975 0.981

SVM Ember features 0.964 0.965 0.964 0.763 0.564 0.502

strategies, BFS-strategy is generally outperformed by CBFS-strategy while
CDFS-strategy outperforms other strategies when used with the WL graph
kernel.

5 Future Work

We propose a new efficient approach for malware detection. Directions for future
work includes new exploration heuristics, such as concolic executions [30] or
smart sampling [17]. Another objective is to apply our kernel in a non-supervised
approach like in [24]. We are also interested in implementing a distributed version
of the toolchain. In this context, the federated learning paradigm should allow us
to combine information from different contributors. We also plan to investigate
resistance to adversarial examples based on semantical modifications of malware.
In addition, we will continue to improve our toolchain with new simprocedure
and plugin interfaces.

Acknowledgments. Charles-Henry Bertrand Van Ouytsel is an FRIA grantee of the
Belgian Fund for Scientific Research (FNRS-F.R.S.). We would like to thank Cisco for
their malware feed, VirusTotal for their API and the CyberExcellence project funded
by the Walloon Region under convention 2110186.

308 C.-H. Bertrand Van Ouytsel and A. Legay

A Gspan Algorithm

The Gspan algorithm is presented hereunder in Algorithm 3. Given a dataset of
graphs G and a desired support min supp, Gspan tries to extract all subgraphs
present at least in min supp graphs of G. If G represents a set of malware
from the same family, the output set of common subgraphs S represents their
signatures. To this purpose, Gspan defines a DFS Code of a graph G as an
ordered edge sequence constructed from a DFS exploration of G. Original Gspan
paper [37] defines a way to order these DFS codes, allowing to define a unique
minimum DFS code for a graph G (min(.) function in Algorithm 3). Given a
DFS code s, c is called a child of s if it expands s with a new edge to create a
valid DFS code.

Algorithm 3. Gspan algorithm
1: In: A set of graphs: G
2: Out: A set of common subgraphs S

3: Sort labels in G by their frequency
4: Remove infrequent vertices/labels
5: Relabel remaining vertices and edges
6: S

1 ← all frequent 1-edge graphs in G

7: Sort S
1 in lexicographical order

8: S ← S
1

9: for each edge e ∈ S
1 do

10: initialize s with e
11: Subgraph mining(G ,S, s)
12: D ← D − e
13: if |G| < min supp then
14: break
15: Return S

Algorithm 4 . Main procedure
Subgrap mining of Gspan algo-
rithm
1: if s �= min(s) then
2: return;

3: S ← S ∪ {s}
4: enumerates s in each graph in G

5: and count its children;
6: for each c; c is a child of s do
7: if support(c) ≥ min supp then
8: s ← c
9: Subgraph mining(G, S, s)

References

1. Eighth Annual Cost of Cybercrime Study. https://www.accenture.com/us-en/
insights/security/eighth-annual-cost-cybercrime-study. Accessed 29 Oct 2021

2. MalwareBazaar by abuse.ch, fighting malware and botnets. https://bazaar.abuse.
ch/. Accessed 29 Oct 2021

3. Afianian, A., Niksefat, S., Sadeghiyan, B., Baptiste, D.: Malware dynamic analysis
evasion techniques: a survey. ACM Comput. Surv. (CSUR) 52(6), 1–28 (2019)

4. Anderson, H.S., Roth, P.: EMBER: an open dataset for training static PE malware
machine learning models. arXiv preprint arXiv:1804.04637 (2018)

5. AV-Test: AV-Test, the independent IT-Security institute (2021). https://www.av-
test.org/en/statistics/malware/

6. Bertrand Van Ouytsel, C.H., Crochet, C., Dam, K., Legay, A.: SEMA: a toolchain
using Symbolic execution for malware analysis. In: 17th International Conference
on Risks and Security of Internet and Systems (CRiSIS) (2022, to appear)

https://www.accenture.com/us-en/insights/security/eighth-annual-cost-cybercrime-study
https://www.accenture.com/us-en/insights/security/eighth-annual-cost-cybercrime-study
https://bazaar.abuse.ch/
https://bazaar.abuse.ch/
http://arxiv.org/abs/1804.04637
https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/

Malware Analysis with Symbolic Execution and Graph Kernel 309

7. Biondi, F., Given-Wilson, T., Legay, A., Puodzius, C., Quilbeuf, J.: Tutorial: an
overview of malware detection and evasion techniques. In: Margaria, T., Steffen,
B. (eds.) ISoLA 2018. LNCS, vol. 11244, pp. 565–586. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03418-4 34

8. Biondi, F., Josse, S., Legay, A., Sirvent, T.: Effectiveness of synthesis in concolic
deobfuscation. Comput. Secur. 70, 500–515 (2017)

9. Boonstoppel, P., Cadar, C., Engler, D.: RWset: attacking path explosion in
constraint-based test generation. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS
2008. LNCS, vol. 4963, pp. 351–366. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-78800-3 27

10. Cadar, C., Ganesh, V., Sasnauskas, R., Sen, K.: Symbolic execution and constraint
solving (Dagstuhl seminar 14442). Dagstuhl Rep. 4(10), 98–114 (2014)

11. Chen, Z., et al.: Synthesize solving strategy for symbolic execution. In: Cadar, C.,
Zhang, X. (eds.) ISSTA, pp. 348–360. ACM (2021)

12. David, R., et al.: BINSEC/SE: a dynamic symbolic execution toolkit for binary-
level analysis. In: 2016 IEEE 23rd International Conference on Software Analysis,
Evolution, and Reengineering (SANER), vol. 1, pp. 653–656. IEEE (2016)

13. Faruki, P., Laxmi, V., Bharmal, A., Gaur, M.S., Ganmoor, V.: AndroSimilar:
robust signature for detecting variants of android malware. J. Inf. Secur. Appl.
22, 66–80 (2015)

14. Godefroid, P.: Test generation using symbolic execution. In: IARCS Annual Con-
ference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2012). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2012)

15. Griffin, K., Schneider, S., Hu, X., Chiueh, T.: Automatic generation of string sig-
natures for malware detection. In: Kirda, E., Jha, S., Balzarotti, D. (eds.) RAID
2009. LNCS, vol. 5758, pp. 101–120. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-04342-0 6

16. Hofmann, M.: Support vector machines-kernels and the kernel trick. Notes 26(3),
1–16 (2006)

17. Jegourel, C., Legay, A., Sedwards, S.: Importance splitting for statistical model
checking rare properties. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS,
vol. 8044, pp. 576–591. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-39799-8 38

18. Kirat, D., Vigna, G.: MalGene: automatic extraction of malware analysis evasion
signature. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, pp. 769–780 (2015)

19. Lin, Y.: Symbolic execution with over-approximation. Ph.D. thesis, University of
Melbourne, Parkville, Victoria, Australia (2017)

20. Macedo, H.D., Touili, T.: Mining malware specifications through static reachability
analysis. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS,
vol. 8134, pp. 517–535. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40203-6 29

21. Massicotte, F., Couture, M., Normandin, H., Michaud, F.: A testing model for
dynamic malware analysis systems. In: 2012 IEEE Fifth International Conference
on Software Testing, Verification and Validation (ICST), pp. 826–833. IEEE (2012)

22. Moser, A., Kruegel, C., Kirda, E.: Limits of static analysis for malware detection.
In: Twenty-Third Annual Computer Security Applications Conference (ACSAC),
pp. 421–430. IEEE (2007)

23. Nikolentzos, G., Vazirgiannis, M.: Learning structural node representations using
graph kernels. IEEE Trans. Knowl. Data Eng. 33(5), 2045–2056 (2019)

https://doi.org/10.1007/978-3-030-03418-4_34
https://doi.org/10.1007/978-3-540-78800-3_27
https://doi.org/10.1007/978-3-540-78800-3_27
https://doi.org/10.1007/978-3-642-04342-0_6
https://doi.org/10.1007/978-3-642-04342-0_6
https://doi.org/10.1007/978-3-642-39799-8_38
https://doi.org/10.1007/978-3-642-39799-8_38
https://doi.org/10.1007/978-3-642-40203-6_29
https://doi.org/10.1007/978-3-642-40203-6_29

310 C.-H. Bertrand Van Ouytsel and A. Legay

24. Puodzius, C., Zendra, O., Heuser, A., Noureddine, L.: Accurate and robust malware
analysis through similarity of external calls dependency graphs (ECDG). In: The
16th International Conference on Availability, Reliability and Security (ARES),
pp. 1–12 (2021)

25. Said, N.B., et al.: Detection of mirai by syntactic and behavioral analysis. In: 2018
IEEE 29th International Symposium on Software Reliability Engineering (ISSRE),
pp. 224–235. IEEE (2018)

26. Saxena, P., Poosankam, P., McCamant, S., Song, D.: Loop-extended symbolic exe-
cution on binary programs. In: Proceedings of the Eighteenth International Sym-
posium on Software Testing and Analysis (ICST), pp. 225–236 (2009)

27. Sébastien, C.: Portable freeware dataset (2019)
28. Sebastián, M., Rivera, R., Kotzias, P., Caballero, J.: AVclass: a tool for massive

malware labeling. In: Monrose, F., Dacier, M., Blanc, G., Garcia-Alfaro, J. (eds.)
RAID 2016. LNCS, vol. 9854, pp. 230–253. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-45719-2 11

29. Sebastio, S., et al.: Optimizing symbolic execution for malware behavior classifica-
tion. Comput. Secur. 93, 101775 (2020)

30. Sen, K.: Concolic testing: a decade later (keynote). In: Xu, H., Binder, W. (eds.)
WODA@SPLASH. ACM (2015)

31. Shervashidze, N., Schweitzer, P., Van Leeuwen, E.J., Mehlhorn, K., Borgwardt,
K.M.: Weisfeiler-Lehman graph kernels. J. Mach. Learn. Res. 12(9), 2539–2561
(2011)

32. Shoshitaishvili, Y., et al.: SOK: (state of) the art of war: offensive techniques in
binary analysis. In: 2016 IEEE Symposium on Security and Privacy (SP), pp.
138–157. IEEE (2016)

33. Song, W., Li, X., Afroz, S., Garg, D., Kuznetsov, D., Yin, H.: MAB-malware: a
reinforcement learning framework for blackbox generation of adversarial malware.
In: Proceedings of the 2022 ACM on Asia Conference on Computer and Commu-
nications Security (AsiaCCS), pp. 990–1003 (2022)

34. Taheri, R., Ghahramani, M., Javidan, R., Shojafar, M., Pooranian, Z., Conti,
M.: Similarity-based android malware detection using hamming distance of static
binary features. Futur. Gener. Comput. Syst. 105, 230–247 (2020)

35. Ucci, D., Aniello, L., Baldoni, R.: Survey of machine learning techniques for mal-
ware analysis. Comput. Secur. 81, 123–147 (2019)

36. Xu, D., Ming, J., Wu, D.: Cryptographic function detection in obfuscated binaries
via bit-precise symbolic loop mapping. In: 2017 IEEE Symposium on Security and
Privacy (SP), pp. 921–937 (2017)

37. Yan, X., Han, J.: gSpan: graph-based substructure pattern mining. In: 2002 IEEE
International Conference on Data Mining, pp. 721–724. IEEE (2002)

38. Zhang, Z., Qi, P., Wang, W.: Dynamic malware analysis with feature engineer-
ing and feature learning. In: Proceedings of the AAAI Conference on Artificial
Intelligence, pp. 1210–1217. AAAI (2020)

https://doi.org/10.1007/978-3-319-45719-2_11
https://doi.org/10.1007/978-3-319-45719-2_11

WearSec: Towards Automated Security
Evaluation of Wireless Wearable Devices

Bernhards Blumbergs1 , Ēriks Dobelis1 , Pēteris Paikens1(B) ,
Krǐsjānis Nesenbergs2 , Kirils Solovjovs2 , and Artis Rušin, š2

1 Institute of Mathematics and Computer Science, University of Latvia,
Raina blvd. 29, Riga, Latvia

{bernhards.blumbergs,eriks.dobelis,peteris.paikens}@lumii.lv
2 Institute of Electronics and Computer Science, 14 Dzerbenes St., Riga, Latvia

{krisjanis.nesenbergs,kirils.solovjovs,artis.rusins}@edi.lv

Abstract. Wearable devices are becoming more prevalent in the daily
life of society, ranging from smartwatches, and fitness bracelets to acces-
sories and headphones. These devices, both from their hardware man-
ufacturing and wireless firmware development perspectives may possess
drawbacks. In recent years security researchers have uncovered a series
of vulnerabilities. In this paper we introduce the concept and describe
the key ideas towards the development of an automated security evalua-
tion prototype for wireless wearable devices using device fingerprinting,
as well as passive and active vulnerability identification. Furthermore
we describe the technical approaches, challenges, and implementation
choices we faced while developing the first stages of the prototype for this
concept and handling full-spectrum Bluetooth analysis with software-
defined radio.

1 Introduction

In recent years there has been a steady rise in wearable device usage - from 325
million connected wearable devices in the world in 2016 to 1105 million in 2022
[23]. These devices may contain personally identifiable information about the
user, electronic health record (EHR) data [7], geolocation information, and may
be connected to private networks. Thus, such a combination may be introducing
privacy and security risks. Compromised wearable devices may reveal signifi-
cant personal information, and may facilitate the execution of attacks by an
adversary leading to, for example, the breach of private network security, covert
account takeover, and performing direct or indirect targeted attacks. Common
wearable devices use wireless communication standards, such as Bluetooth Clas-
sic (BT), Bluetooth low energy (BLE), or WiFi, to communicate with other
devices. Therefore these standards, their implementation, and inherent vulnera-
bilities are the focus of our research [20].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. P. Reiser and M. Kyas (Eds.): NordSec 2022, LNCS 13700, pp. 311–325, 2022.
https://doi.org/10.1007/978-3-031-22295-5_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22295-5_17&domain=pdf
http://orcid.org/0000-0001-9679-6282
http://orcid.org/0000-0002-8691-3614
http://orcid.org/0000-0002-5939-5436
http://orcid.org/0000-0002-2445-2891
http://orcid.org/0000-0003-1700-3286
http://orcid.org/0000-0001-5292-7201
https://doi.org/10.1007/978-3-031-22295-5_17

312 B. Blumbergs et al.

This paper provides the following contributions:

1. automated wireless wearable device security evaluation prototype conceptual
design, its specific functionality requirements, and patent description;

2. the overview of the first stage of the prototype technical implementation.

This paper is structured as follows – Sect. 2 covers the related work on wireless
device fingerprinting and security assessment; Sect. 3 describes the proposed sys-
tem architecture conceptual prototype considerations for performing automated
security evaluation of wireless wearable devices; Sect. 4 describes the specific
implementation stages, issues encountered during the first stage of the proto-
type implementation, and solutions to overcome these problems; Sect. 5 discusses
future work related to this research.

2 Related Work

For the envisioned approach we are aiming at a dual use system which can be
used for unsupervised security review of wireless devices across multiple wireless
protocols, identifying them and checking for known vulnerabilities, and also as a
supporting testbed for experts performing vulnerability research. For the latter,
there is specific research in IoT/wearable area such as the SecuWear platform
[17,18] and others using the popular Ubertooth platform [16], however it has
hardware limitations preventing from capturing the full data transmitted (e.g.
Bluetooth Classic Enhanced Data Rate packets, and missed packets due to chan-
nel hopping), and they focus on manual exploration of vulnerabilities as opposed
to automated fuzzing.

In our proposal the first step in a potential attack against wearable devices is
the detection and identification of the device, such as fingerprinting to identify
either a model or a specific device; followed by scanning for known vulnerabilities
and applying fuzzing approaches to identify new potential vulnerabilities.

2.1 Device Detection and Fingerprinting

Device fingerprinting [40] is a method where the target device is identified using
its unique features and imperfections of its hardware components and/or higher
layer features. A combination of these unintended features and possibly values
derived from these features are called device fingerprints. Fingerprinting process
may be split into two parts: feature extraction and classification. The focus of
this section is feature extraction. Successful fingerprinting may lead to serious
security risks if the identified chipset has publicly known attack vectors with
available exploitation proof-of-concept (PoC) code.

Feature extraction can start from the moment when the target device is
powered and starts broadcasting or responding to incoming signals. For exam-
ple, there are cases when a device may be identified by its signal level ramp time
while the transmitter is turning on or off (i.e., transient-based radio frequency
fingerprinting) [22]. The start and stop time of the transient signal can be found

Towards Automated Security Evaluation of Wireless Devices 313

using Bayesian detection, variance fractal dimension threshold detection, phase
detection, mean change point detection, or permutation entropy and general-
ized likelihood ratio test [38]. Further analysis of transient signal frequency and
phase spectrum can also be done, however, the drawback of this method is that
since the transient time is short high sample rates are required for accurate
analysis. This method requires capturing to be started before the device (or its
transmitting circuit) is powered and activated.

The implemented wireless standard determines carrier frequencies, which
shall be used by the device. Since this frequency is generated by the use of
a non-ideal radio frequency (RF) circuit in the transmitter some carrier offset
is expected. This offset can also be used as one item of the RF fingerprint. To
achieve a reliable data transmission it is important to deal with this expected
CFO (carrier frequency offset) and it is usually solved in the transmission stan-
dard itself. For example, in Bluetooth, every advertising data packet contains
some bits at the beginning of transmission, which the receiver uses to estimate
and correct the CFO. The longer these training sequences are, the more precise
the CFO estimate can be achieved.

Devices, which have both Bluetooth and WiFi functionality often use a combo
chipset to combine both of these standards. Wireless protocol bits are encoded in
I and Q channels, resulting in hardware imperfections such as IQ (In-phase and
quadrature component) imbalance, IQ offset, and previously mentioned CFO
[14]. IQ offset is the shift from the center of the constellation diagram [37]. IQ
imbalance can be split into two imperfections: amplitude error and phase error.
To quantify both of these errors EVM (error vector magnitude) [28] can be
calculated. IQ imbalance occurs because the carrier oscillator signal at the Q
channel is never perfectly offset by 90◦ when compared to the I channel, also it
is very hard to achieve identical gain for both I and Q channel oscillator signal.
IQ offset occurs because the baseband signal has a DC component and carrier
frequency signal leaking through the mixer into the baseband signal. The usage
of a combined chipset means that even though Bluetooth uses a GFSK (Gaussian
frequency-shift keying) modulated signal, which might be implemented without
the separation of I and Q signals, it will still have IQ imperfections.

There have also been successful attempts at fingerprinting using machine
learning technology for image recognition, where the used image is compiled
from RF samples. For example, waterfall images, constellation diagrams, and
wavelet coefficients projected onto time scale plane or multiple windowed time
diagram images compiled into one [2,24,26].

It is possible to fingerprint devices using features, which are present at higher
levels of communication. There is no need for expensive specialized hardware
to perform higher-layer fingerprinting. One could use a device, such as, Uber-
tooth [16], various WiFi dongles, or some other commercial-off-the-shelf tools.
Researchers at [6] have used freely available open-source tools to extract GATT
(Generic attribute profile), which contains a UUID (Universally unique identi-
fier) of the device, which may reveal information about the device, used protocols

314 B. Blumbergs et al.

as defined by the Bluetooth specification [3], service classes and profiles, GATT
services, and manufacturer of thhe device.

There has been related work done on using response to non-standard IEEE
802.11 frame with modified MAC header as a WiFi fingerprinting method. Dif-
ferent devices responded differently to frames with control flags and frame types
prohibited by IEEE 802.11 standards. This method yielded good results for fin-
gerprinting access points, but not so good for client devices [4].

Researchers in [31] propose the following network parameters to be used as
IEEE 802.11 device fingerprints:

1. Transmission rate as different NICs (Network interface cards) have a different
distribution of used transmission rates;

2. Frame size, which depends on the data being sent;
3. Access time of the medium, the time device waits after transmission before

going idle and starting to broadcast frames;
4. Time between received frames.

Fig. 1. Overview of extractable fingerprints

Figure 1 summarizes all of the previously described features, which may be
used as fingerprints by their origin.

2.2 Vulnerability Identification

Within this project, the two main directions for vulnerability identification will
be pursued:

1. known and publicly released vulnerability applicability, based on the DUT
(device-under-test) passive fingerprinting and intercepted communication
analysis;

2. active attempts to trigger unknown vulnerabilities by the use of black-box
fuzz testing techniques.

Towards Automated Security Evaluation of Wireless Devices 315

To allow the identification of applicable publicly released vulnerabilities,
enough details, such as, operating system and firmware build versions, have
to be collected through the process of passive DUT fingerprinting. A vulner-
ability database assembled by researchers or available databases, such as, the
well-known Exploit-DB [32], may be used to search for the best match of appli-
cable vulnerabilities based on the extracted fingerprinting information. In cases,
when existing databases do not include known vulnerabilities and related proof-
of-concept code, the researchers should evaluate the database’s completeness and
perform its enrichment, if necessary. This approach to vulnerability identification
heavily depends on two key factors: 1) implementing a set of efficient methods
for device fingerprinting, and 2) developing a complete and structured database
of applicable vulnerabilities. Within this research, a custom-structured database
of identified and publicly released vulnerabilities related to wearable devices,
their firmware, and their protocol stack implementations, will be attempted to
be assembled to be used in the initial stages of the wireless DUT security assess-
ment.

Discovery of the vulnerabilities would mostly be done through one or a com-
bination of multiple approaches, such as, fuzz testing, reverse engineering, or
source code analysis. However, in the scope of this research, only black-box fuzz
testing is assessed due to having limited or no prior information related to the
DUT implementation. Fuzz testing or fuzzing is a software testing technique
aimed at uncovering issues, such as, coding errors and security vulnerabilities,
by the use of random or malformed data to trigger an unexpected behavior
[11,13]. In a nutshell, the two most commonly used fuzzing methods have been
recognized [29]:

1. mutation-based (also referred to as coverage-guided or dumb fuzzing) - is
aimed at introducing changes by modifying the existing values blindly (e.g.,
random values, bit-flips, and other binary modifications), that may keep the
input valid, but trigger new or unexpected behavior. The injected test cases
are derived from known good data, such as, captured Bluetooth communica-
tion frames;

2. generation-based (also referred to as behavior-based or intelligent fuzzing) -
focuses on describing data and state models based upon the communication
protocol specification (e.g., RFC).

The most recent relevant related work on Bluetooth fuzzing over the air is
the Braktooth publication [9], detailing an approach and an engineering solu-
tion based on the modified firmware of an Espressif ESP32 development kit
for instrumenting interventions in an otherwise well-behaved Bluetooth stack.
There is also a similar work on Bluetooth Low Energy testing [10]. Attacks on
BT (Bluetooth) and other accessory firmware are especially insidious, because in
some popular configurations (e.g., iPhones) the Bluetooth chip will be powered
and can be engaged in activities even when the primary device is turned off [8].
This is a relevant consideration within the risk profile of this project.

In contrast to the static vulnerability identification through DUT finger-
printing and lookup in a database of known vulnerabilities, the fuzz testing will

316 B. Blumbergs et al.

heavily rely on three core aspects: 1) valid test case sample acquisition or their
specification in accordance with the standard, 2) identification of protocol fields
and their mutation strategies, and 3) required larger time-span for fuzz testing
process execution and appropriate means of its orchestration to identify a likely
anomaly or recover from a dead-end state. Within this research, both mutation-
based and generation-based approaches may be employed, depending on the
availability and openness of the wireless protocol specification. With the pri-
mary effort being set on mutation-based fuzz testing the loss of code coverage is
anticipated [29]. The use of mutation-based fuzzing would permit the test case
automated generation based on the captured frames during the device finger-
printing process or when performing an active interrogation, while maintaining
limited or no knowledge of the underlying communication protocols. This, in
turn, may provide support for a wider range of wearable DUT testing, while
considering a likely increased time and process context management penalties.
The main goal for the initial active vulnerability identification is focused on
identifying anomalous conditions, and not on in-depth assessment and zero-day
vulnerability analysis for exploit development.

There has been significant work in the field of software vulnerability identifi-
cation with fuzz testing technique development and tool implementations, both
from academic [25], industry [12], and community [33] perspectives. The publica-
tion [21] lists and assess 32 research papers, which introduce novel fuzzing strate-
gies and their tool implementation, however, by no means this is a conclusive list.
Furthermore, it has to be noted, that the field of vulnerability assessment and
fuzz testing is dynamic and constantly changing, with new projects appearing,
and existing ones either being deprecated, abandoned, or reworked. To mention
a few notable projects with a primary focus on mutation-based strategies – AFL
(American Fuzzy Lop) [15], Boofuzz [35], Bbuzz [27], and Zzuf [5]; and with a
primary focus on generation-based strategies – Peach [34] (now part of GitLab),
Spike [19] (abandoned), and Defensics [39] (commercial solution).

3 Prototype Concept Description

To perform an automated security evaluation of wireless wearable devices, we
introduce the key principles, define functional requirements and design an oper-
ational prototype of the technology. The anticipated design of a finalized pro-
totype is similar to a security gate and utilizes an array of sensors, performing
a variety of functional tests and assessments in a fully automated manner on
devices being carried through this gate. Such a conceptual approach has been
chosen to facilitate the security assessment of the wearable devices while being
worn openly or being hidden by their wearer. Such an approach would permit the
achievement of at least the following high-level effects: 1) assessing the security
level of wearable devices worn by their user, 2) evaluation of identified vulner-
abilities and their severity level, 3) prohibition of wearing and use of wearable
devices at places with a certain security level, and 4) identification of hidden or
clandestine wearable devices.

Towards Automated Security Evaluation of Wireless Devices 317

The core automated functionality tests and assessment of the wireless wear-
able devices are directed toward the following activities:

1. passive fingerprinting of wearable devices based on their radio spectrum
broadcast interception. In this stage, the received broadcast data is being
interpreted to identify at least the hardware chip manufacturer and its model
and, if possible - the device itself, based on the transmitted data, its unique
patterns, and signatures;

2. passive fingerprinting-based identification of known vulnerabilities of wear-
able devices. In this stage, the collected fingerprint data is queried against a
database, which combines the known and publicly disclosed generic or specific
vulnerabilities and their metadata for wireless wearable devices;

3. active interaction with wearable devices to validate the identified vulnera-
bility, acquire further data for fingerprinting or perform automated tests to
attempt triggering unknown vulnerabilities. In this stage, the identified vul-
nerabilities are further probed to validate their exploitability in case there is a
publicly disclosed proof-of-concept exploit code. Secondly, active interaction
evokes responses from the device, which allows for further fingerprinting. And
thirdly, automated vulnerability identification and probing are done by the
use of fuzz-testing approaches at the wireless protocol level.

The prototype process flow has the following blocks in a hierarchical order
(Fig. 2):

1. wireless device-under-test (DUT). One or multiple commercial-off-the-shelf
(COTS) wearable wireless devices under test;

2. wireless sensors with related hardware-protocol driver (HPD) modules. The
prototype design includes a set of necessary hardware to cover the respec-
tive radio frequency bands used by the COTS wearable devices. This can be
implemented using a chip designed for the protocols or generic SDR (software-
defined radio). To enable the interaction with the DUT, related HPD integra-
tions are required at the prototype model’s operating system level (e.g., kernel
modules and libraries). HPD modules are supervised by relevant wrappers to
ensure the interaction with higher abstraction levels of the overall automated
interaction process. It is important to note that the prototype needs to be able
to gather not only data, which is relevant for normal device operation, but,
also, side information (e.g. signal amplitude, frequency offset, etc.) for finger-
printing, and it needs to generate radio protocol variations, which sometimes
might be outside normal bounds of the protocol specification. The wrapper
permits interaction with a specific wireless sensor through the message queu-
ing process;

3. asynchronous message queuing and management. This block allows the higher
abstraction layers to inject and receive data intended for one or multiple
HPDs;

4. domain-specific language (DSL) is a common API-based construct permitting
to form the messages for injection or receiving data from the messaging queue.
This layer permits either creation and interpretation of raw data packets or
standard messages according to the wireless protocol specifications;

318 B. Blumbergs et al.

5. traffic recording and filtering capture all raw traffic as well as other parame-
ters of the RF signal traversing HPD. This permits interaction with recorded
wireless packet or frame data via DSL construct for purposes, such as, vali-
dation of delivered message compliance and received data interpretation for
passive fingerprinting or assessing the results of fuzz-testing operations;

6. The user scripts are the top-level entity permitting the definition and con-
duct of activities by interacting via the DSL API. The user script may be
written in any scripting or programming language allowing the JSON-based
API interaction with the DSL.

Fig. 2. Prototype concept process flow

The stages of the operational technological prototype development are
addressed in the following order:

Stage 0. identification and acquisition of wearable DUTs and prototype hard-
ware specification definition;

Stage 1. recording of the wearable device wireless communications in a broad
spectrum range;

Towards Automated Security Evaluation of Wireless Devices 319

Stage 2. assessment and fingerprinting of the wireless communication patterns;
Stage 3. labeled data-set creation of recorded wireless communications for

machine learning-assisted automated fingerprinting;
Stage 4. active device probing and assessment.

In this paper, the scope is kept within stage 1 of the prototype implementation,
with respective implementation considerations and identified issues described
in Sect. 4, while the overall high-level concept is described in submitted patent
application [30].

4 Implementation Considerations

This chapter focuses on the Stage 1 implementation of the described prototype
and aims to provide the attempted approaches taken, identified challenges and
issues, and describe any applicable solutions.

The prototype will include both protocol-specific chips and a generic SDR
mechanism. Readymade chips allow an easy way to communicate using standard
protocol mechanisms without complex implementation efforts. At the same time,
they are limited only to those functions that are allowed by the manufacturer and
will neither allow significant deviations from the protocol nor allow the gathering
of nuances of the radio signal. SDR allows any conceivable data collection and
generation of any signal variations as long as we can implement those. The rest of
this chapter elaborates on the choice and implementation of the SDR mechanism
as readymade chip usage is relatively straightforward.

4.1 Frequency Bandwidth Consideration

To capture all the channels of Bluetooth and Bluetooth LE simultaneously a
recording at an 80 MHz wide spectrum band is required. Within our tests, none
of the low-cost SDR devices offered a bandwidth as wide as 80 MHz, and the
use of multiple devices was considered to ensure the capture of the required
bandwidth combined between the devices.

4.2 Choice of SDR Device

The first device we tested was a widely known hobbyist SDR device HackRF
One by Great Scott Gadgets. It provides up to 20 million complex samples
per second, thus we would need four such devices to record the whole 80 MHz
bandwidth.

Another positive side to HackRF was previous references on using mul-
tiple hardware synchronized devices for recording (such as described on this
blog: https://olegkutkov.me/tag/hackrf/ and a different method implemented
in firmware [1].

Following initial tests with HackRF, we came to the conclusion that described
method of hardware synchronization does not easily lead us to results. Synchro-
nization of the HackRF devices on the firmware level was clearly described only

https://olegkutkov.me/tag/hackrf/

320 B. Blumbergs et al.

for two devices, but we needed four. Though from the description we could guess
that it is extendable to more devices, the way to do this was not obvious.

A major issue we encountered with HackRF was the differing quality of the
four devices. Signal level, signal-to-noise-ratio (SNR), and other characteristics
differed widely across the devices, sometimes by more than 10 dB. This intro-
duced an inconvenience in data processing, as it was clear that for each recording
the four streams have to be put through calibration routines to be convenient
for analysis, and some issues (e.g. differing SNR) cannot be easily taken away
even with calibration. Also, this creates a risk that our recordings might not be
easily repeatable by other HackRF devices.

Of course, this is likely not something that is wrong with HackRF One device
design itself, but more of different manufacturing and supply chains for each of
the devices. As HackRF is an open hardware design, they are produced not only
by the original manufacturer but, also, by other unlicenced manufacturers with
possibly different quality assurance processes and possible variations in hardware
components.

We had an option to procure other four HackRF One devices with additional
emphasis on ensuring they come from the original manufacturer. This was com-
plicated from a procurement perspective as the original manufacturer is not
represented locally, and we did not have control of the procurement processes of
local suppliers. Thus we made a decision to utilize existing HackRF One devices
by the team for individual exploratory experiments and look for alternative SDR
devices.

We identified 3 manufacturers providing devices within our budget and qual-
ity criteria:

– Ettus Research USRP B series
– Nuand BladeRF
– Lime Microsystems LimeSDR

After limited experiments with BladeRF we chose Ettus Research products
due to better software support in GNU Radio, which was part of the plan for the
software stack. Also, “UHD: USRP source” (the block providing integration with
Ettus Research SDRs from GNU Radio) provides tagging of the data capture
overruns, which turned out to be a repeating issue in our experimentation when
capturing the full Bluetooth spectrum. We did not identify comparable features
in competing products.

The eventually chosen hardware setup was combining two Ettus Research
USRP b205mini devices with synchronized clocks, which provide 56 Msps each,
covering the required 80 MHz bandwidth.

4.3 Data Capture Bandwidth Issues

The first issue we encountered during experiments was - the limited throughput
of the USB connection. Initial recordings had a mismatch of data file size com-
pared to the expected value (based on recording time and sample size in bytes).

Towards Automated Security Evaluation of Wireless Devices 321

Unfortunately, none of the software tools (GNU radio and HackRF native CLI
tools) we used had an in-built capability to warn us of the issue. We concluded
that data loss is due to loss in USB connection as data loss further down the
processing shall be identified by the software processing stack.

The second issue was the disk writing speed. We wanted to use GNU radio
for initial processing steps as it provided the convenience of visual feedback (via
built-in frequency and waterfall sinks) and a library of built-in filters and other
tools. The minimal data rate for raw data from the device is 2 × 12 bits × 80
Msps, which equals 240 MBps with optimal data packing, which could match the
SSD writing speed of a single drive. GNU Radio typically uses 2 × 32 bit floating
point numbers to represent a complex data stream and saves them into the file
in this format. Thus the size of the stream becomes 8 bytes × 80 Msps, which
equals 640 MBps. This in turn exceeded the writing speed of our commodity
SSD hardware.

Theoretically, we could have used a more optimal data recording format, but
this would decrease the convenience of using the default format and would require
additional work on creating data packing code. Also, we knew that we cannot
predict all the specific needs for the next stages, and we might need to store
processed data for which converting to 2× 12 bit complex numbers might lead
to loss of precision, therefore it would create additional software incompatibility
risks and overhead, which cannot be fully estimated at the moment. Ultimately,
we chose to keep the default data format of GNU radio and to overcome disk
writing speed limitations we chose a RAM-based disk for the recording process.
If we would need to decrease stored sampled sizes, we can add postprocessing in
the future.

Another gain of this approach was faster data processing speed as reading
and writing data to/from RAM-based disk is significantly faster than commodity
SSD.

The only drawback (considered minor by us) was another procurement need
- additional RAM for the processing computer. Fortunately, this is a common
procurement need and was easy to implement. As a result, the following work-
station for data collection and analysis was acquired for data acquisition and
processing:

– CPU: Intel Xeon Silver 4208 (32) @ 3.2 GHz;
– RAM: 1 TB;
– HDD: 10 TB;
– SSD: 512 GB;
– Kernel: 5.15.0-25-generic;
– OS: Ubuntu 22.04 LTS.

4.4 Interference by Surrounding Signals

As the 2.4 GHz band is full of other signals, such as, WiFi, Zigbee, and other
BT devices, which are out of the scope of this research, one of the challenges in
preparing a radio data stream dataset is making a clean recording without the
noise. Even though the most obvious solution would be a Faraday cage, it is not

322 B. Blumbergs et al.

sufficient, because the signals would be reflected within the cage multiple times
leading to interference, thus for this purpose, it was decided that we need to
design an electronic anechoic chamber environment. Such an environment insu-
lates external transmissions as a Faraday cage but also has internal absorbers,
that absorb any internal signal without reflecting it. The dimensions of such
environment and absorbers must be comparable to wavelengths of interest, thus
the dimensions cannot be too small. We opted for external dimensions of 1 m,
that satisfy this requirement. Also, in order to reduce any leaking of external
signals all data lines for conducting the experiment are optically disconnected
to isolate internal and external signals of this environment. This also allows us
to test malicious transmissions, which should not be allowed in public environ-
ments. Additionally, the power supply for test equipment must also be filtered
in order to isolate external signals further.

The electronic anechoic chamber we are currently acquiring has the following
technical properties:

– Outside dimensions: 1.0 m × 1.0 m × 1.0 m;
– Inside dimensions (from the edge of absorbers): 0.8 m × 0.8 m × 0.8 m;
– RF parameters: 100 dB attenuation from 150 kHz to 10 GHz;
– Connections: 4 optically decoupled USB 3 connectors, power sockets that

supply filtered 220 V 16 A;
– Material: Stainless steel with foam pyramid absorbers.

By using an electronic anechoic chamber we are ensuring that devices under
test are sources of all activity in the radio frequency spectrum, no external signals
will interfere with the experiments, and also the experiments will not interfere
with external signals.

4.5 Lack of Open Source, Instrumentable Low-Level Protocol Stack

A key limitation for protocol analysis and interaction (especially, using SDR)
is the availability of the open-source, instrumentable low-level protocol stack.
Bluetooth is a complex set of protocols, which are not described clearly thus it
is not trivial to implement correct behavior. Our requirements include partic-
ular modifications to the protocol to attempt the exploitation of the protocol
vulnerability, and the available implementations of lower protocol layers are all
closed source compiled firmware, which will perform only standards-compliant
behavior.

The key part is the ability to receive and send arbitrary, modified, or noncom-
pliant Bluetooth frames without having to reimplement the full Bluetooth pro-
tocol functionality. The approach proposed by Braktooth [9] relies on a reverse-
engineered and modified version of the existing Espressif firmware for ESP32
systems that allows it to intercept BT packets and forward them to a com-
puter controlling logic, which may craft an appropriate BT response packet in
the time that is required to respond. Other authors propose an approach that
instruments and observes the firmware on a phone or computer [36], which allows
more effective fuzzing but is limited to the specific chipsets used on phones and
computers.

Towards Automated Security Evaluation of Wireless Devices 323

5 Conclusions and Future Work

The main conclusion from the current implementation stage is that the iden-
tified engineering challenges are not an obstacle to implementing the proposed
prototype concept and this would be a usable framework for automated security
evaluation of wireless wearable devices. The development of the prototype is
currently a work in progress, with the key hardware and software infrastructure
working as a proof of concept, but still needing development on the DSL/HPD
interface part. We hope that the lessons learned from our practical experimenta-
tion will be useful for other researchers working on low-cost RF protocol analysis.

The immediate future work includes recording and publishing an RF dataset
for analysis and direct experimentation with protocol fuzzing, replicating the
existing experiments, and extending it to a broader set of devices, focusing
specifically on wearable devices. The dataset should be open and expandable
in the future in a standardized way.

Future work towards automated vulnerability discovery should focus on the
following aspects:

1. identification, implementation, and validation methods and approaches for
wireless wearable device fingerprinting;

2. assembly of a dedicated vulnerability database, based on known and publicly
released vulnerabilities affecting wireless wearable devices;

3. evaluation, design, and validation of applicable black-box fuzz testing
approaches and methods for mutation-based and generation-based strategies;

4. implementation of the fuzz testing test case generation, process management,
and physical wireless wearable device state identification and recovery, with
limited feedback or interaction capabilities.

Acknowledgements. This research is funded by the Latvian Council of Science,
project “Automated wireless security analysis for wearable devices”, project No. LZP-
2020/1-0395.

References

1. Bartolucci, M., del Peral-Rosado, J.A., Estatuet-Castillo, R., Garcia-Molina, J.A.,
Crisci, M., Corazza, G.E.: Synchronisation of low-cost open source sdrs for naviga-
tion applications. In: 2016 8th ESA Workshop on Satellite Navigation Technologies
and European Workshop on GNSS Signals and Signal Processing (NAVITEC), pp.
1–7. IEEE (2016)

2. Bertoncini, C., Rudd, K., Nousain, B., Hinders, M.: Wavelet fingerprinting of radio-
frequency identification (RFID) tags. IEEE Trans. Industr. Electron. 59(12), 4843–
4850 (2011)

3. Bluetooth SIG Inc: Assigned numbers. https://www.bluetooth.com/specifications/
assigned-numbers/. Accessed 26 Aug 2022

4. Bratus, S., Cornelius, C., Kotz, D., Peebles, D.: Active behavioral fingerprinting of
wireless devices. In: Proceedings of the first ACM Conference on Wireless Network
Security, pp. 56–61 (2008)

https://www.bluetooth.com/specifications/assigned-numbers/
https://www.bluetooth.com/specifications/assigned-numbers/

324 B. Blumbergs et al.

5. Caca Labs: zzuf - multi-purpose fuzzer. http://caca.zoy.org/wiki/zzuf. Accessed
30 Aug 2022

6. Celosia, G., Cunche, M.: Fingerprinting bluetooth-low-energy devices based on the
generic attribute profile. In: Proceedings of the 2nd International ACM Workshop
on Security and Privacy for the Internet-of-Things, pp. 24–31 (2019)

7. Cilliers, L.: Wearable devices in healthcare: privacy and information security
issues. Health Inf. Manag. J. 49(2-3), 150–156 (2020). https://doi.org/10.1177/
1833358319851684. PMID: 31146589

8. Classen, J., Heinrich, A., Reith, R., Hollick, M.: Evil never sleeps: when wireless
malware stays on after turning off iphones. In: Proceedings of the 15th ACM Con-
ference on Security and Privacy in Wireless and Mobile Networks, pp. 146–156.
WiSec ’22, Association for Computing Machinery, New York, NY, USA (2022).
https://doi.org/10.1145/3507657.3528547

9. Garbelini, M.E., Chattopadhyay, S., Bedi, V., Sun, S., Kurniawan, E.: Braktooth:
causing havoc on bluetooth link manager (2021)

10. Garbelini, M.E., Wang, C., Chattopadhyay, S., Sumei, S., Kurniawan, E.:
SweynTooth: unleashing mayhem over bluetooth low energy. In: 2020 USENIX
Annual Technical Conference (USENIX ATC 20), pp. 911–925 (2020)

11. Garg, P.: Fuzzing: mutation vs. generation. https://resources.infosecinstitute.com/
topic/fuzzing-mutation-vs-generation/. Accessed 28 Aug 2022

12. GitLab: Devsecops with gitlab. https://about.gitlab.com/solutions/dev-sec-ops/.
Accessed 30 Aug 2022

13. GitLab DEVSECOPS blog: What is fuzz testing?. https://about.gitlab.com/
topics/devsecops/what-is-fuzz-testing/. Accessed 28 Aug 2022

14. Givehchian, H., et al.: Evaluating physical-layer ble location tracking attacks on
mobile devices. In: IEEE Symposium on Security and Privacy (SP) (2022)

15. Google: american fuzzy lop. https://github.com/google/AFL Accessed 28 Aug
2022

16. Great Scott Gadgets: Ubertooth one. https://greatscottgadgets.com/
ubertoothone/. Accessed 26 Aug 2022

17. Hale, M.L., Ellis, D., Gamble, R., Waler, C., Lin, J.: Secu wear: an open source,
multi-component hardware/software platform for exploring wearable security. In:
2015 IEEE International Conference on Mobile Services, pp. 97–104. IEEE (2015)

18. Hale, M.L., Lotfy, K., Gamble, R.F., Walter, C., Lin, J.: Developing a platform to
evaluate and assess the security of wearable devices. Digit. Commun. Netw. 5(3),
147–159 (2019)

19. ImmunitySec: Spike. https://www.kali.org/tools/spike/. Accessed 30 Aug 2022
20. Ken Research: Worldwide wearable devices cybersecurity market. https://www.

kenresearch.com/defense-and-security/security-devices/worldwide-wearable-
devices/179018-16.html. Accessed 28 Aug 2022

21. Klees, G., Ruef, A., Cooper, B., Wei, S., Hicks, M.: Evaluating fuzz testing. In:
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communi-
cations Security, pp. 2123–2138. CCS’18, Association for Computing Machinery,
New York, NY, USA (2018). https://doi.org/10.1145/3243734.3243804

22. Köse, M., Taşcioğlu, S., Telatar, Z.: RF fingerprinting of IoT devices based on
transient energy spectrum. IEEE Access 7, 18715–18726 (2019). https://doi.org/
10.1109/ACCESS.2019.2896696

23. Laricchia, F.: Number of connected wearable devices worldwide from 2016
to 2022. https://www.statista.com/statistics/487291/global-connected-wearable-
devices/. Accessed 28 Aug 2022

http://caca.zoy.org/wiki/zzuf
https://doi.org/10.1177/1833358319851684
https://doi.org/10.1177/1833358319851684
https://doi.org/10.1145/3507657.3528547
https://resources.infosecinstitute.com/topic/fuzzing-mutation-vs-generation/
https://resources.infosecinstitute.com/topic/fuzzing-mutation-vs-generation/
https://about.gitlab.com/solutions/dev-sec-ops/
https://about.gitlab.com/topics/devsecops/what-is-fuzz-testing/
https://about.gitlab.com/topics/devsecops/what-is-fuzz-testing/
https://github.com/google/AFL
https://greatscottgadgets.com/ubertoothone/
https://greatscottgadgets.com/ubertoothone/
https://www.kali.org/tools/spike/
https://www.kenresearch.com/defense-and-security/security-devices/worldwide-wearable-devices/179018-16.html
https://www.kenresearch.com/defense-and-security/security-devices/worldwide-wearable-devices/179018-16.html
https://www.kenresearch.com/defense-and-security/security-devices/worldwide-wearable-devices/179018-16.html
https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1109/ACCESS.2019.2896696
https://doi.org/10.1109/ACCESS.2019.2896696
https://www.statista.com/statistics/487291/global-connected-wearable-devices/
https://www.statista.com/statistics/487291/global-connected-wearable-devices/

Towards Automated Security Evaluation of Wireless Devices 325

24. Li, B., Cetin, E.: Waveform domain deep learning approach for RF fingerprinting.
In: 2021 IEEE International Symposium on Circuits and Systems (ISCAS), pp.
1–5. IEEE (2021)

25. Liang, J., Wang, M., Chen, Y., Jiang, Y., Zhang, R.: Fuzz testing in practice:
obstacles and solutions. In: 2018 IEEE 25th International Conference on Software
Analysis, Evolution and Reengineering (SANER), pp. 562–566 (2018). https://doi.
org/10.1109/SANER.2018.8330260

26. Liu, D., Wang, M., Wang, H.: RF fingerprint recognition based on spectrum water-
fall diagram. In: 2021 18th International Computer Conference on Wavelet Active
Media Technology and Information Processing (ICCWAMTIP), pp. 613–616. IEEE
(2021)

27. Lockout: Bbuzz: a bit-aware network protocol fuzzing and reverse engineering
framework. https://github.com/lockout/Bbuzz. Accessed 28 Aug 2022

28. Mahmoud, H.A., Arslan, H.: Error vector magnitude to snr conversion for nondata-
aided receivers. IEEE Trans. Wireless Commun. 8(5), 2694–2704 (2009)

29. Miller, C., Peterson, Z.N.: Analysis of mutation and generation-based fuzzing.
DefCon vol. 15 (2007). https://defcon.org/images/defcon-15/dc15-presentations/
Miller/Whitepaper/dc-15-miller-WP.pdf

30. Nesenbergs, K., Paikens, P., Blumbergs, B., Rusins, A., Dobelis, E.: Apparatus
and method for wireless security analysis of wearable devices (2022). lV Patent
application No. EPLV202200000033380

31. Neumann, C., Heen, O., Onno, S.: An empirical study of passive 802.11 device
fingerprinting. In: 2012 32nd International Conference on Distributed Computing
Systems Workshops, pp. 593–602. IEEE (2012)

32. Offensive Security: Exploit-DB. https://www.exploit-db.com/ Accessed 26 Aug
2022

33. OWASP: Fuzzing. https://owasp.org/www-community/Fuzzing Accessed 30 Aug
2022

34. Peach: Peach fuzzer community edition. https://peachtech.gitlab.io/peach-fuzzer-
community/ Accessed 30 Aug 2022

35. Pereyda, J.: boofuzz: network protocol fuzzing for humans. https://github.com/
jtpereyda/boofuzz. Accessed 30 Aug 2022

36. Ruge, J., Classen, J., Gringoli, F., Hollick, M.: Frankenstein: advanced wireless
fuzzing to exploit new bluetooth escalation targets. In: 29th USENIX Security Sym-
posium (USENIX Security 20), pp. 19–36. USENIX Association (2020). https://
www.usenix.org/conference/usenixsecurity20/presentation/ruge

37. Sköld, M., Yang, J., Sunnerud, H., Karlsson, M., Oda, S., Andrekson, P.A.: Con-
stellation diagram analysis of DPSK signal regeneration in a saturated parametric
amplifier. Opt. Express 16(9), 5974–5982 (2008)

38. Soltanieh, N., Norouzi, Y., Yang, Y., Karmakar, N.C.: A review of radio frequency
fingerprinting techniques. IEEE J. Radio Freq. Identif. 4(3), 222–233 (2020)

39. Synopsys: Defensics fuzz testing. https://www.synopsys.com/software-integrity/
security-testing/fuzz-testing.html

40. Xu, Q., Zheng, R., Saad, W., Han, Z.: Device fingerprinting in wireless networks:
challenges and opportunities. IEEE Commun. Surveys Tutorials 18(1), 94–104
(2015)

https://doi.org/10.1109/SANER.2018.8330260
https://doi.org/10.1109/SANER.2018.8330260
https://github.com/lockout/Bbuzz
https://defcon.org/images/defcon-15/dc15-presentations/Miller/Whitepaper/dc-15-miller-WP.pdf
https://defcon.org/images/defcon-15/dc15-presentations/Miller/Whitepaper/dc-15-miller-WP.pdf
https://www.exploit-db.com/
https://owasp.org/www-community/Fuzzing
https://peachtech.gitlab.io/peach-fuzzer-community/
https://peachtech.gitlab.io/peach-fuzzer-community/
https://github.com/jtpereyda/boofuzz
https://github.com/jtpereyda/boofuzz
https://www.usenix.org/conference/usenixsecurity20/presentation/ruge
https://www.usenix.org/conference/usenixsecurity20/presentation/ruge
https://www.synopsys.com/software-integrity/security-testing/fuzz-testing.html
https://www.synopsys.com/software-integrity/security-testing/fuzz-testing.html

Forensics

Maraudrone’s Map: An Interactive Web
Application for Forensic Analysis

and Visualization of DJI Drone Log Data

Tobias Latzo1(B), Andreas Hellmich2, Annika Knepper2, Lukas Hardi1,
Tim Phillip Castello-Waldow1, Felix Freiling2, and Andreas Attenberger1

1 Central Office for Information Technology in the Security Sector (ZITiS),
Munich, Germany

{tobias.latzo,lukas.hardi,timphillip.castellowaldow,
andreas.attenberger}@ZITiS.bund.de

2 Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
{andreas.hellmich,annika.knepper,felix.freiling}@fau.de

Abstract. Unmanned Aerial Vehicles (also known as drones) are an
increasingly important source of forensic evidence, especially for com-
mercial drones offered by the market leader DJI. The forensic analysis
of this type of evidence, however, is still in its infancy. We present the
design and implementation of an open-source tool that supports the visu-
alization and analysis of log data acquired in the DATv3 format, which
is the standard log format used by DJI. In our evaluation we not only
show the usefulness of the interactive visualization of our tool, but also
give an empirical overview over the log message types and other artefacts
that can be used for anomaly and manipulation detection, an extensible
feature also offered by our tool.

Keywords: DJI · UAV · Visualization · Log analysis · Anomaly
detection

1 Introduction

Over the past years, drones have been established as widespread Unmanned
Aerial Vehicles (UAV) that are also popular with private customers as well as
enterprises. Today’s drones are easy to fly, mostly used for taking photos or
videos and are offered for a reasonable price. In 2021, the Chinese manufacturer
Shenzhen DJI Sciences and Technologies Ltd. (DJI) had the biggest market
share in this area [17]—despite the bigger drop of the market share in DJI’s
commercial drone market share. DJI is also popular with authorities and fire
departments [6]. Usually, these drones are controlled via a remote control that
is connected to a smartphone or tablet. The smartphone or tablet runs an app
that shows a live feed from the camera and other telemetry data.

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-22295-5_18.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. P. Reiser and M. Kyas (Eds.): NordSec 2022, LNCS 13700, pp. 329–345, 2022.
https://doi.org/10.1007/978-3-031-22295-5_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22295-5_18&domain=pdf
https://doi.org/10.1007/978-3-031-22295-5_18
https://doi.org/10.1007/978-3-031-22295-5_18

330 T. Latzo et al.

However, the ever-increasing spread of drones can also entail security issues.
In 2018, hundreds of flights at the Gatwick airport were cancelled due to reports
of drone activity. Also, cheaper consumer drones have already been used for drug
trafficking [15], spying [9], or for dropping fireworks [18].

When it comes to an incident and the police is able to seize a drone, it needs to
be analyzed forensically. Drones often come with a flight recorder that is probably
originally intended for checking warranty claims. However, there is no standard
that allows authorities to analyze these logs. For example, DJI generates massive
propriety log data during the flight in so called DAT files. Besides the GPS track
the logs contain many other sensor data that can be relevant during a forensic
investigation.

In this paper we introduce an easily extensible interactive web application
that visualizes DJI drone log data. Additionally, it is also able to analyze the
logs for anomalies that can help the investigator to find data of interest.

1.1 Related Work

The number of drone incidents increased [5] and so drone forensics has become
a lively topic. This is documented by a recent survey by Al-Dhaqm et al. [1]
who reviewed more than 30 papers in the field of drone forensics. They observed
that the security of drones has become better and better but that this also
makes acquisition of log files more difficult. Based on a review of existing drone
forensic analysis models, the authors developed an integrated forensic model that
can help digital forensic investigations of drones. The authors also assert that,
while many tools for forensic analysis exist, they either are not specific to drone
data or are not open-source.

A notable exception is DRone Open source Parser (DROP) [3], an open-
source software framework implemented to parse DAT files for the DJI Phan-
tom III. The authors also studied the log files that are generated by the corre-
sponding mobile app and correlated these logs with the logs that are resident on
the drone’s non-volatile storage. They showed that the best way of acquiring the
on-board logs is to remove the glued-in microSD card of the DJI Phantom III
and to not turn it on since this may delete older logs. DROP, however, neither
supports newer versions of the DJI log format nor does it offer visualization.

There is also some existing work in the field of anomaly detection of DJI
flight records. Moon et al. [14] address the problem of whether a drone incident
was caused by malfunction, crime, mistake or external forces by trying to detect
drone anomalies in the flight records of a DJI Phantom 4. For this, they make use
of motor current values and controller direction values. Basically it is possible to
detect some abnormal flight data on the four main axes (forwards, backwards,
rightwards, and leftwards), but they do not provide any software to replicate the
results. Furthermore, Lieser et al. [13] utilized the Inertial Measurement Unit
(IMU) sensor data to interact with the drone via user taps.

Maraudrone’s Map 331

1.2 Contribution

In this paper, we analyze DJI’s drone log messages and introduce a tool for their
visualization. Our main contributions are as follows:

– We extend the DRone Open source Parser (DROP) [3] so it is also able to
parse DATv3 log files. Our extension also offers human-readable JSON output.
Since we publish the code open-source1, the code can serve as a documenta-
tion of DJI’s DATv3 format.

– We introduce Maraudrone’s Map2 which visualizes DJI’s DATv3 log files that
were parsed with DROP. Maraudrone’s Map is implemented as an interactive,
easily extensible web application and easy to use. It is designed to play-back
a flight. The user can choose from a variety of sensor data to be displayed
in interactive graphs. For transparent analysis of data provenance, there is
always a link to the raw JSON messages and also a link back to the original
DAT files.

– To make digital forensic investigations more efficient, Maraudrone’s Map also
allows to detect various anomalies. Our application can be extended by adding
self-written modules for detecting anomalies.

1.3 Outline

In Sect. 2 we give some background information that is needed to understand the
rest of the paper. Section 3 is about the DROP extension for DATv3. In Sect. 4
we classify and define anomalies that can be detected. Furthermore, in Sect. 5
we describe the implementation of Maraudrone’s Map. In Sect. 6 we evaluate the
DROP extension and Maraudrone’s Map. Eventually, Sect. 7 concludes this paper.

2 Background

In this section we provide some background information about the drones we use
for our experiments (see Sect. 2.1). We show the setup of the drones and describe
what logging information is typically saved on them (see Sect. 2.2). Furthermore,
in Sect. 2.3 we describe the DJI Universal Markup Language that is used for the
communication.

2.1 UAV Models

We investigate three major drone models of the manufacturer DJI [8]: DJI Phan-
tom 4 Advanced, DJI Inspire 2, and the DJI Matrice 600 Pro. We start with the
widespread DJI Phantom 4 Advanced, a mid-size quadcopter (1.3 kg) designed
mainly for the private and semi-professional sector. It is equipped with four
rotors and can fly as fast as 72 km/h up to 30min while carrying a 332 g camera.

1 https://github.com/dumbledrone/DROP.
2 https://github.com/dumbledrone/MaraudronesMap.

https://github.com/dumbledrone/DROP
https://github.com/dumbledrone/MaraudronesMap

332 T. Latzo et al.

Following that, we examine the professional drone DJI Inspire 2. Since it can
carry professional camera equipment as heavy as 800 g while flying for 25min
up to 94 km/h, its large size and high weight (3.44 kg), it is mainly used by film-
making crews. We were able to extract the log files from the glued-in microSD
card (see Fig. 1). Next we looked at the DJI Matrice 600 Pro—a large and heavy
(9.5 kg) hexacopter made for industrial use with a payload capacity of 6 kg. This
is achieved by six rotors, enabling the drone to fly for up to 32min depending
on the carried weight. Similarly to the DJI Inspire 2 the log files were located in
a glued-in microSD card.

Fig. 1. Flight recorder module of the DJI Inspire 2 with a glued-in microSD card (top,
marked in red). (Color figure online)

2.2 DJI Drone Setup

The DJI drone setups of our investigated devices are as follows (see Fig. 2).
A smartphone or tablet is connected with the remote control via USB. The
smartphone needs to start a specific app, i.e., DJI Go 4 or DJI Go [7]. On the
screen, the user can see a live video feed as well as On-Screen Display (OSD)
information, i.e., telemetry data like the battery level, altitude, horizontal and
vertical speeds, etc. Basically, the drone is controlled via the remote control.
There are also (semi-)automatic flight manoeuvres possible like follow a person,
circle around a point of interest or return-to-home. These usually require input
via the app. It is also possible to change flight parameters like the maximum
altitude via the app.

DJI drones store videos and photographs in higher quality on a microSD
card that can easily be removed. Furthermore, DJI drones perform a significant
amount of activity logging. The corresponding logs are stored in files which are
named FLYXYZ.DAT with XYZ signifying a consecutive three digit number. All our
investigated models store the log data on the internal glued-in microSD card.
Figure 1 shows the flight recorder module of the DJI Inspire 2 with the attached
microSD card. Although the log can often be downloaded with the computer, it
is recommended to directly copy them from the microSD card. If the computer
is used, the drone needs to be switched on and so older log files can be removed.
The computer application additionally encrypts the logs. However, the key can
be easily extracted. Furthermore, it is also possible to download the logs directly
from the FTP server.

Maraudrone’s Map 333

USB

Remote Control

Smartphone

Pictures and

Videos

Drone

FLYXYZ.DAT

Pictures and

Videos

SD

FLYXYZ.DAT .TXT

Fig. 2. Overview of a typical DJI drone setup with the relevant data including the
corresponding data storage locations.

The app stores pictures and videos in lower quality. Furthermore, the app
stores DAT and TXT files. However, these DAT files contain much less logging data.
The TXT files can be displayed using the DJI GO 4 app. Here the flight can be
replayed while all OSD information is visible. In this paper, we focus on the DAT
files of the drone.

2.3 DJI Universal Markup Language

00

M
a
g
i
c

L
e
n
g
t
h

V
e
r
s
i
o
n

C
R
C
8

S
o
u
r
c
e

D
e
s
t
i
n
a
t
i
o
n

Log-Info Tail

01 02 03 04 05 06 07

Header

08 09 0A

Payload

0B 0C OD ... FD FE FF

Log-Message
Payload

Block

Description

Blocksize [Byte]

Offset

6 4 0...253 2

C
R
C
1
6

Tick

Fig. 3. The DUML log message format.

The DJI Universal Markup Language (DUML) protocol is used for the com-
munication between onboard hardware components as well as for the communi-
cation to peripheral components. As the information in the log files (DAT files)
of the UAV contains DUML messages, it was necessary for us to understand
the message structure. Several tools and publications offer an overview over
the structure of DUML messages [2,3,16]. Knowledge of the protocol message
structure is a pre-requisite for further analysis. In the following, we describe the

334 T. Latzo et al.

DUML format that occurs in the DAT files. In its shortest form, a DUML message
shows a length of 13 bytes in total. The length of the message can be extended
to a maximum of 255 bytes by adding a payload of variable length. Messages
containing a larger payload are split into several, single messages.

As shown in Fig. 3, a DUML message can be split into four main blocks.
The message header as the first block (offset 0x00 to 0x05) contains the magic
byte, which is 0x55 for all DUML messages. The second byte represents the
length of the message, followed by one byte characterizing the protocol version
of the message. This is followed by an error protection, derived from a CRC8
checksum. Furthermore, the header contains transport information. Hence, it
consists of one byte identifying the source of the message followed by one byte
as index for the destination.

The next block (offset 0x06 to 0x09) of a DUML message contains the tick
number. The tick number represents the internal bus clock and is stored with
each packet.

The message type (or packet type) of a DUML message is identified by the
source and destination bytes (see Fig. 3). As we later show, there are some packet
types that are not yet understood, i.e., only a subset of around 30 packet types
are analyzable. We will return to this topic in Sect. 3.

The tick block is followed by the payload of the message. Here, different
parameters (for example, longitude, latitude, velocities, height, rotational speeds,
voltages) are encoded and transmitted [2]. The DUML message is closed by a
two bytes tail, derived from a CRC16-checksum [16].

3 DROP Extension for DATv3

Before the DJI log data can be visualized and analyzed for anomalies, it needs to
be parsed. For this, we make use of the DRone Open source Parser (DROP) [3].
Since the original DROP is implemented to parse DATv2 log files, we extended
DROP to also support DATv3. We did this by analyzing DatCon [10]. In this
section, we describe the implementation of this DROP extension. Note that we
focus on DROP’s parsing functionality and not on the correlation of DAT and
TXT files.

DROP is implemented for Python 3.4. We neither make use of any other
language features nor have any other dependencies. Our implementation is tested
with Python 3.10 on macOS Monterey (12.5). We used the DJI Phantom 4
Advanced (see Sect. 2.1) as a reference drone. However, the evaluation in Sect. 6
showed that we can also parse DATv3 logs of other UAVs.

3.1 Usage

The original DROP application [3] saves the result as a CSV file. Each parsed
sensor value is represented as a value in a column. These values are updated
when a corresponding message appears, i.e., in the CSV it is harder to find out
which message updated a value. For this reason, we introduce JSON output with

Maraudrone’s Map 335

the -j switch. Each parsed DUML message is represented by a JSON object.
Maraudrone’s Map (see Sect. 5) expects DROP’s JSON output.

To generate a suitable JSON file, the following command can be executed:

. /DROP. py −j DAT_FILE

Table 1 shows the four new switches that we introduced to DROP. For Marau-
drone’s Map only the -j switch is necessary. Note that using this switch only
the DUML messages that can be visualized by Maraudrone’s Map (see Sect. 5)
are extracted and not all messages. For deeper manual analysis, i.e., to analyze
also the unknown message types, the other switches can be used (especially -a).

Table 1. DROP’s new switches.

Switch Description

-a Create additional output files containing all unknown messages
-g Create additional output files containing only GPS messages
-v Include all messages in standard output file
-j Create JSON output file instead of CSV

3.2 Parsing of Log Messages

First, we need to distinguished between DATv2 and DATv3 files. This can be
done by parsing the log file’s header information. Note, DATv2’s header is 128
bytes in size. DATv3’s header is 256 bytes in size and contains the ASCII letters
DJI_LOG_V3 at offset 0xF2.

DAT files consist of multiple DUML messages (see Sect. 2.3), i.e., each mes-
sages starts with the magic value 0x55. DROP then reads successively the log
messages (also referred to as packets). The packet length is defined in each
DUML packet (see Fig. 3).

The payload of our analyzed DUML messages is XOR encrypted. The encryp-
tion scheme is very simple and has not changed for DJI LOG V3. The encryption
key k is calculated as k = t mod 256 where t is the current tick number (see also
Fig. 3. Each byte of the payload is xor’d with k. After decryption of the payload,
it can be decoded.

Our DROP extension comprises more than 30 packet types using the -a
switch. Without that switch, DROP parses 15 different packet types which are
currently sufficient for the visualization in Maraudrone’s Map (see Table 2).

Listing 1.1 shows an example of a gps message in the JSON format.
All parsed message types can be found in the corresponding repository in
modules/V3Messages.

4 Anomaly Detection

When it comes to an incident, the digital forensic investigator faces the problem
of finding the reason why the incident happened. A specific manoeuvre may be

336 T. Latzo et al.

Table 2. DROP’s standard packet types that are visualized in Maraudrone’s Map.

Label Description
1 gps Contains the GPS coordinates
2 battery_info Contains battery information
3 controller Contains information of the remote control
4 usonic Contains sensor data of the ultrasonic sensor
5 osd_general_data Contains OSD data for the app
6 osd_home Contains OSD data of the home point
7 rc_debug_info Contains debug information of the remote controller
8 imu_atti Contains sensor data of the Inertial Measurement Unit (IMU)
9 esc_data Contains data of the Electronic Speed Controller (ESC)
10 rec_mag Contains information of the compass
11 motorctrl Contains PWM data of the motors
12 recordSD_logs

Contain text-based log messages
13 flylog
14 syscfg
15 recflylog

caused by external forces (e.g., wind), malfunction, manipulation or intention. In
this section we define and classify some anomalies that might be useful for digital
forensic investigations. All anomalies we identified were determined empirically
using the DJI Phantom 4 Advanced. However, we observed that this also applies
to other models. Since there is a diversity of sensory data in the logs, we expect
that there are many similar anomalies that can be detected.

We distinguish between technical anomalies (see Sect. 4.1) and flight anoma-
lies (see Sect. 4.2).

{
"date " : 20220501 ,
" time" : " 9 : 3 5 : 2 1 " ,
" l ong i tude " : 49 .1038296 ,
" l a t i t u d e " : 11 .7279622 ,
" a l t i t u d e " : 344 .262 ,
. . .
"messageid " : 47542981 ,
" pktId " : 2096 ,
" o f f s e t " : 1015597

}

Listing 1.1. Example of a parsed GPS message. We have redacted the coordinates for
the review.

Maraudrone’s Map 337

4.1 Technical Anomalies

We identified two technical anomalies that may occur. Technical anomalies are
those that are not directly related to the flight or flight control but technical
artefacts.

Controller Ticks. First, the remote control sends ticks in the field ctrl_ticks.
These ticks are numbered in ascending order starting with 0. Usually, there is
no gap between those ticks. Bigger gaps may be an indicator that the commu-
nication between the UAV and the remote control was lost. Also, manipulation
can be a reason.

GPS Packet Frequency. Our reference flights revealed that the log files contain
about five GPS packets per second. Major deviations should also be considered
more closely.

4.2 Flight Anomalies

Flight anomalies are based on actual sensor data. We identified three flight
anomalies.

Battery Capacity. The battery capacity decreases steadily. This means, the bat-
tery capacity should not increase. Furthermore, there are many battery logs and
gaps should not appear.

Drone Orientation. Using the internal compass, the orientation of the drone
is logged frequently. This means there should not be any major fluctuations.
These would be indications that there could be some problems with the com-
pass. External forces or a crash are also possible. Furthermore, we check if the
commands of the remote control match sensor values of the drone. This means,
we expect that if the joystick input is more than 20%, there should be some
reaction of the drone that is observable in the nearer future.

Rotor Speed. Here, we also check if the rotor speeds match the commands of
the remote control. This mean acceleration, slow down, increase of altitude, or
decrease of altitude. Here, we also expect a change of the rotor speeds in the
nearer future if the joystick input is more than 20%. However, we get a lot of
anomalies when there is movement regarding multiple axes as Moon et al. [14]
also observed. Additionally, we check if one rotor is stopped while the others are
rotating.

4.3 Severity of Anomalies

The anomalies we described in the previous sections were determined empiri-
cally. A detection of an anomaly does not automatically mean that something is
wrong but is more meant as an indication that there could be something wrong.
Usual log files also exhibit some anomalies. To help a digital forensic investiga-
tor better understand the anomaly we additionally define different severity levels
(see Table 3) that quantify it.

338 T. Latzo et al.

Table 3. Severity levels of anomalies.

Level Description
Severe Should not appear in regular flights, have a potentially high impact on the

flight
Medium May appear in regular flights and have a potentially medium impact on the

flight
Minor Appear quite often in regular flights and have a potentially low impact on the

flight

5 Maraudrone’s Map

Maraudrone’s Map is an easy-to-use, interactive, easy extensible, forensic,
Angular-based [11] web application that visualizes DJI drone log data. The drone
log data needs to be preprocessed using our DROP extension (see Sect. 3). The
imported log files are stored locally in the browser’s IndexedDB.

We make use of observables, i.e., every display element is implemented as
an Angular component. This makes it easy to extend the application by further
display components.

Fig. 4. Screenshot of Maraudrone’s map.

Figure 4 shows a screenshot of Maraudrone’s Map. The screen is divided into
three components in two columns. On the upper left hand side, the map with the

Maraudrone’s Map 339

drone’s track is shown. Below, there is a timeline of the flight including buttons
to playback the flight in realtime, as a time lapse, or in slow motion respectively.
The right side shows some general information about the flight as well as current
telemetry data.

Map. Since for drone investigations the location is crucial, the map view takes
up the largest part of the screen. It shows the drone’s current position and
orientation. The investigator can choose between Google Maps [12] and Open-
StreetMap [4]. The user can also choose between satellite map, street map or
terrain map. For easier navigation, the track of the whole flight is shown. This
track can additionally be colorized indicating the flight altitude, horizontal speed,
and flight time.

Timeline. The timeline and time control is located directly under the map. One
can quickly navigate through time using the timeline. The start button starts
the playback of the flight. One can choose between playback by second and
message. The latter gives more fine-grained control over the playback.

Flight Information. The right side of the screen shows flight information. These
consist of multiple parts. First, the Flight Info consists of static information
about the flight including the UAV model, the date, flight time, time until takeoff,
etc. This information is derived and calculated from various DUML messages.
Next, the General Info is information about the current status of the drone
including the current position, altitude above the ground, ultrasonic altitude,
vertical and horizontal speeds, etc. Then, there is the Controller Status where
the current joystick positions are shown. Anomalies (see Sect. 4) are displayed
under the controller status. Furthermore, there is a graph view that can show
arbitrary sensor data as a graph (see Fig. 5). Note that it is also possible to
navigate using data points on the graph. Furthermore, the current packet can
be viewed in Raw Data. For transparent data provenance, there is always a link
back to the original log file. Eventually, the text-based messages are displayed
in the Flight Log Entries section.

6 Evaluation

In the previous sections, we have shown how we extended DROP and how Marau-
drone’s Map is implemented. In this section, we evaluate these implementations
using real world flight data from different drones (see Sect. 2.1).

6.1 DROP Extension

In Sect. 3 we showed how we extended DROP to be compatible with DJI’s DATv3
log files. In this section, we evaluate which and how many packet types DROP
is able to parse. This gives some insights into how DJI uses logging in different
drones. Furthermore, the evaluation shows how much and what data is logged.

340 T. Latzo et al.

Fig. 5. Example of the graph view of Maraudrone’s Map. This graph shows the bat-
tery’s temperature (green), number of satellites (blue), distance to home (red), hori-
zontal speed (black) and overall speed (purple). (Color figure online)

We start with an overview of the huge mass of DJI logging data. Table 4
shows the number of logged packets that each of the reference flights generated. It
stands out that different models produce a very different number of log messages.
The DJI Inspire 2 generates about 8600 messages per second while the smaller
DJI Phantom 4 Advanced produces about 2100 messages per second.

Figure 6 shows the number of logged messages after tick x. The corresponding
graphics for the DJI Inspire 2 and the DJI Matrice 600 Pro look quite similar
and can be found in Appendix A in Fig. 9 and Fig. 10. One can see that the
number of messages that are logged per second is quite stable. If there would be
some bigger gaps this may be an indication of tampering (see Sect. 4).

Maraudrone’s Map only needs a small subset of packet types (15) for visual-
ization (see Sect. 3). Our DROP extension is able to parse more than 30 different
packet types. However, this is still a subset of occurring packet types. Table 4
shows the number of occurring packet types by drone model. For the DJI Inspire
2, there are 115 occurring packet types while for the DJI Phantom 4 Advanced,
there are 80. With our DROP extension we can parse up to about 36% of the
occurring packet types. Table 5 also shows how many packets in total can be

Maraudrone’s Map 341

Table 4. Known and unknown packet types by model.

Model Duration Total Pkt
types

Known Pkt
types

Unknown Pkt
types

Phantom 4 Advanced 03:25 80 29 (36.25%) 51 (63.75%)
Inspire 2 08:56 115 28 (24.35%) 87 (75.65%)
Matrice 600 Pro 06:12 113 25 (22.12%) 88 (77.88%)

Table 5. Known and unknown packets by model.

Model Duration #Packets #Packets/s Known Pkts Unknown Pkts
Phantom 4 Advanced 03:25 431k 2104/s 221k (51.44%) 209k (48.56%)
Inspire 2 08:56 4611k 8603/s 576k (12.49%) 4035k (87.51%)
Matrice 600 Pro 06:12 1442k 3877/s 496k (34.43%) 945k (65.57%)

parsed. The values in the table reveal that we can only parse about 51% of all
occurring packets in the log for the DJI Phantom 4 Advanced. We can only parse
about 12.5% of the log messages of the DJI Inspire 2. While these values seem
to be low, DROP is nevertheless able to parse a lot of information that might
be interesting for a forensic investigation.

Figure 7 shows the number of occurrences of the 15 most frequent packet
types that we are able to parse with our DROP extension for the DJI Phan-
tom 4 Advanced. It is noticeable, that there are packet types in the logs that
appear exactly in the same amount, e.g., controller and aircraft_condition.
Figure 7 shows four nearly perfect steps. Each stage roughly halves the number
of messages in the corresponding packet types. Probably, this comes from peri-
odic messages with different frequencies. Figure 8 shows the 15 most frequent
messages that appear at all. Three definite stages are apparent. About half of
these packet types cannot be parsed using DROP. The graphs of the DJI Inspire

0.0 0.2 0.4 0.6 0.8 1.0
Tick Number ×109

0

100000

200000

300000

400000

A
cc
um

ul
at
ed

m
es
sa
ge
s

Fig. 6. Number of logged messages after tick x for the DJI Phantom 4 Advanced.

342 T. Latzo et al.

2 (see Fig. 11 and Fig. 12) and DJI Matrice 600 Pro (see Fig. 13 and Fig. 14) can
be found in Appendix A.

im
u
at
ti

im
u
ex

re
cm

ag
ra
w

re
cm

ag

co
nt
ro
lle
r

ai
rc
ra
ft
co
nd
iti
on

rc
de
bu
g
in
fo

ba
tt
er
y
in
fo ba
t

ba
tt
er
y
st
at
us

es
c
da
ta

us
on
ic

os
d
ge
ne
ra
l d

at
a

m
ot
or
ct
rl

re
cd
ef
s

Packet Type

0

10000

20000

30000

40000

O
cc
ur
en
ce
s

42533 42531

21312 21312

10709 10709 10706 10706 10562 10561
5369 4209 3707 3212 2494

Fig. 7. Occurrences of the 15 most frequent known packet types for the DJI Phantom
4 Advanced.

im
u
at
ti

im
u
ex

re
cm

ag
ra
w

re
cm

ag

0x
4f
6a

0x
88
8

0x
8a
0

co
nt
ro
lle
r

ai
rc
ra
ft
co
nd
iti
on

0x
4f
75

0x
4f
74

rc
de
bu
g
in
fo

ba
tt
er
y
in
fo

0x
cd
e0

0x
86
0

Packet Type

0

10000

20000

30000

40000

O
cc
ur
en
ce
s

42533 42531

21312 21312 19184

10710 10710 10709 10709 10706 10706 10706 10706 10705 10705

Fig. 8. Occurrences of the 15 most frequent (known and unknown) packet types for
the DJI Phantom 4 Advanced.

6.2 Maraudrone’s Map

Maraudrone’s Map can be used as a local web application that forensically visu-
alizes DJI drone log data. Before, the log file needs to be parsed using DROP (see
Sect. 3). In this section we evaluate Maraudrone’s Map in terms of performance
and compatibility. For our measurements, we use an Apple MacBook Air M2
with Google Chrome Version 104.0.5112.101 (Official Build) (arm64).

Table 6 shows the import times of the reference flights. Smaller flights are
imported quite fast (10s). Longer flights need about one minute to be imported.
Since JavaScript does not support multithreading, the app cannot be used in
the meantime. Once the flight is imported and the corresponding data is stored
in the IndexedDB, loading the flight takes place immediately.

Maraudrone’s Map 343

Table 6. Import times of Maraudrone’s Map.

Model Duration #Messages Filesize Import time

Phantom 4 Advanced 03:25 221953 118 MiB 10s
Inspire 2 08:56 576178 287 MiB 70s
Matrice 600 Pro 06:12 496679 235 MiB 55s

Maraudrone’s Map visualizes the logs for all three drones. We used the DJI
Phantom 4 Advanced as a reference. During development we experienced some
weird behavior of some displayed values or joystick positions. This is because DJI
uses different packets for the same packet type. However, in all these cases we
were able to fix it by additionally checking the packet lengths and assuming that
the packet type in combination with the packet length yields distinct semantic
data. Another indication of this assumption is that the same apps are used for
different drones and this communication happens also via DUML.

6.3 Anomaly Detection

In Sect. 4 we identified and classified seven anomalies. In this section we want to
show that the anomaly detection works as intended and discuss the anomalies
that occur in our reference flights. Beside the source code, the repository of
Maraudrone’s Map3 contains also some hand-crafted JSON files that trigger the
anomalies as intended.

In Table 7 one can see the occurring anomalies in the reference flights. The
anomalies that appear very early (i.e., the tick number in squared brackets is
low) are caused by the drone’s startup process. The many orientation jumps of
the DJI Phantom 4 Advanced are because of Inertial Measurement Unit (IMU)
inaccuracies.

6.4 Limitations

While the evaluation showed that DROP and Maraudrone’s Map are very pow-
erful tools, it also revealed some limitations.

Since the log files are stored in a propriety and binary format, we must rely
on the result of the parser. Parsing DJI’s DAT files is quite cumbersome and
error-prone. We adapted DROP by analyzing DatCon [10]. So we also rely on
the correctness of this tool. It is not guaranteed that DJI does not change the file
format in newer drones and the parser produces nonsense. There are many more
DUML messages that we are not able to parse but might be relevant for digital
forensic investigations. The time it takes to import a JSON file is relatively long
and longer flights will cause also longer import times. This might be a problem
if the investigator needs to analyze many flights. Other models like the DJI

3 https://github.com/dumbledrone/MaraudronesMap.

https://github.com/dumbledrone/MaraudronesMap

344 T. Latzo et al.

Table 7. Anomalies in the reference flights (log level: medium). Values are rounded.
The value in squared brackets shows the position. By clicking the value in the app it
jumps to that position.

Model Anomalies

Phantom 4 Advanced Time Stamps: other number than 4–6 per second:
[Medium] Time stamp 46870 occurred 10 times [34638]
Change of orientation too big:
[Severe] Orientation jumps from 180 to 291 [122]
[Medium] Orientation jumps from 244 to 147 [160292]
[Medium] Orientation jumps from 83 to 180 [160767]
[Medium] Orientation jumps from 180 to 263 [160836]

Inspire 2 Battery: there is a gap between these percentages:
[Medium] 80% - 78% [389054]
Change of orientation too big:
[Medium] Orientation jumps from 180 to 266 [206]

Matrice 600 Pro Change of orientation too big:
[Medium] Orientation jumps from 298 to 242 [260]

Mavic 2 or the DJI Mavic Air 2 encrypt their logging data. It is also not clear if
the decrypted logs use the same DUML format we can parse using DROP.

7 Conclusion and Future Work

In this paper, we introduced Maraudrone’s Map—an interactive, easy extendible
and easy-to-use web application for digital forensic investigation of DJI drone log
data. For this, we extended DROP [3] to be compatible with the newer DATv3
format. Maraudrone’s Map allows to analyze DJI’s DAT files and comes with
playback functionality, visualization of many sensor data, anomaly detection,
etc. To make data provenance transparent, there is always a link back to the
original log file as well as the parsed message that can be viewed in human-
readable JSON format.

The evaluation revealed that there are many more packet types that may also
contain relevant information. Future work should parse more packet types. To
reduce the risk of parsing errors, it would be beneficial to derive the packet types
including the payload from existing DJI software. For better anomaly detection,
it might be beneficial to make use of machine learning techniques. While it is
quite easy to manipulate single log messages like the drone’s positions, it might
be hard to change the logs consistently. The performance of Maraudrone’s Map
for larger files should be enhanced. Furthermore, Maraudrone’s Map should be
able to visualize multiple DAT files at once. Then, an analyst would be able to
quickly navigate to the flight of interest.

Maraudrone’s Map 345

References

1. Al-Dhaqm, A., Ikuesan, R.A., Kebande, V.R., Razak, S., Ghabban, F.M.: Research
challenges and opportunities in drone forensics models. Electronics 10(13), 1519
(2021)

2. Christof, T.: DJI Wi-Fi Protocol Reverse Engineering (2021). https://epub.jku.at/
obvulihs/download/pdf/6966648?originalFilename=true

3. Clark, D., Meffert, C., Baggili, I.M., Breitinger, F.: DROP (DRone Open source
Parser) your drone: forensic analysis of the DJI Phantom III. Digit. Investig. 22
Supplement, S3–S14 (2017). https://doi.org/10.1016/j.diin.2017.06.013

4. Community: OpenStreetMap (2022). https://www.openstreetmap.org/
5. Dedrone: Worldwide Drone Incidents (2022). https://www.dedrone.com/

resources/incidents/all
6. DJI: Public Safety. https://enterprise.dji.com/public-safety
7. DJI: DJI Apps (2022). https://www.dji.com/downloads
8. DJI: DJI Models (2022). https://www.dji.com/products/comparison-consumer-

drones
9. DroneBlogger: Spy drone halts Bayern Munich training (2020). https://dronenews.

africa/spy-drone-halts-bayern-munich-training/
10. flylog.info: DatCon and CsvView. https://datfile.net/
11. Google Inc.: Angular (2022). https://angular.io
12. Google Inc.: Google Maps (2022). https://maps.google.de
13. Lieser, M., Schwanecke, U., Berdux, J.: Tactile human-quadrotor interaction:

metrodrone. In: Wimmer, R., Kaltenbrunner, M., Murer, M., Wolf, K., Oakley,
I. (eds.) TEI 2021: Fifteenth International Conference on Tangible, Embedded,
and Embodied Interaction, Online Event/Salzburg, Austria, 14–19 February 2021,
pp. 30:1–30:6. ACM (2021). https://doi.org/10.1145/3430524.3440649

14. Moon, H., Jin, E., Kwon, H., Lee, S., Gibum, K.: Digital forensic methodology for
detection of abnormal flight of drones. J. Inf. Secur. Cybercrimes Res. 4(1), 27–35
(2021)

15. Naylor, C.: BC men charged after drone flies drugs into Manitoba prison (2022).
https://www.castanet.net/edition/news-story-375140-3-.htbeym

16. Original Gangsters: DUPC Packet Builder (2019). https://github.com/o-gs/dji-
firmware-tools/blob/master/comm_mkdupc.py

17. Singh, I.: DroneAnalyst report reveals dramatic drop in DJI’s commercial drone
market share (2021). https://dronedj.com/2021/09/14/droneanalyst-dji-market-
share-2021/

18. Singh, I.: California man arrested for dropping illegal fireworks from drone (2022).
https://dronedj.com/2022/06/07/drone-fireworks-arrest-california/

https://epub.jku.at/obvulihs/download/pdf/6966648?originalFilename=true
https://epub.jku.at/obvulihs/download/pdf/6966648?originalFilename=true
https://doi.org/10.1016/j.diin.2017.06.013
https://www.openstreetmap.org/
https://www.dedrone.com/resources/incidents/all
https://www.dedrone.com/resources/incidents/all
https://enterprise.dji.com/public-safety
https://www.dji.com/downloads
https://www.dji.com/products/comparison-consumer-drones
https://www.dji.com/products/comparison-consumer-drones
https://dronenews.africa/spy-drone-halts-bayern-munich-training/
https://dronenews.africa/spy-drone-halts-bayern-munich-training/
https://datfile.net/
https://angular.io
https://maps.google.de
https://doi.org/10.1145/3430524.3440649
https://www.castanet.net/edition/news-story-375140-3-.htbeym
https://github.com/o-gs/dji-firmware-tools/blob/master/comm_mkdupc.py
https://github.com/o-gs/dji-firmware-tools/blob/master/comm_mkdupc.py
https://dronedj.com/2021/09/14/droneanalyst-dji-market-share-2021/
https://dronedj.com/2021/09/14/droneanalyst-dji-market-share-2021/
https://dronedj.com/2022/06/07/drone-fireworks-arrest-california/

VinciDecoder : Automatically
Interpreting Provenance Graphs
into Textual Forensic Reports
with Application to OpenStack

Azadeh Tabiban1(B) , Heyang Zhao1, Yosr Jarraya2, Makan Pourzandi2 ,
and Lingyu Wang1

1 CIISE, Concordia University, Montreal, QC, Canada
{a tabiba,z heyang,wang}@ciise.concordia.ca

2 Ericsson Security Research, Ericsson Canada, Montreal, QC, Canada
{yosr.jarraya,makan.pourzandi}@ericsson.com

Abstract. The operational complexity and dynamicity of clouds high-
light the importance of automated solutions for explaining the root cause
of security incidents. Most existing works rely on human analysts to inter-
pret provenance graphs for root causes of security incidents. However,
navigating and understanding a large and complex cloud-scale prove-
nance graph can be very challenging for human analysts. Without such
an understanding, cloud providers cannot effectively address the under-
lying security issues causing the incidents, such as vulnerabilities or mis-
configurations. In this paper, we propose VinciDecoder, an automated
approach for generating natural language forensic reports based on prove-
nance graphs. Our main observation is that the way nodes and edges
compose a path in provenance graphs is similar to how words compose a
sentence in natural languages. Therefore, VinciDecoder leverages a novel
combination of provenance analysis, natural language translation, and
machine-learning techniques to generate forensic reports. We implement
VinciDecoder on an OpenStack cloud testbed, and evaluate its perfor-
mance based on real-world attacks. Our user study and experimental
results demonstrate the effectiveness of our approach in generating high-
quality reports (e.g., up to 0.68 BLEU score for precision).

1 Introduction

With the recent worldwide surge in adopting cloud computing, there is an
increasing need for explaining the root cause of security incidents in large
scale cloud infrastructures [1]. Sharing detailed forensic reports about such root
causes and attack techniques can raise cybersecurity awareness, and improve
threat detection and attack prevention techniques [24]. However, most existing
provenance-based solutions (e.g., [40,47,53]) would face a critical challenge in
such a context, i.e., it would be impractical to rely on human analysts to inter-
pret the large and complex provenance graphs produced by such solutions for a
large cloud with tens of thousands of inter-connected virtual resources [35].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. P. Reiser and M. Kyas (Eds.): NordSec 2022, LNCS 13700, pp. 346–367, 2022.
https://doi.org/10.1007/978-3-031-22295-5_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22295-5_19&domain=pdf
http://orcid.org/0000-0001-6235-2317
http://orcid.org/0000-0001-9775-6231
http://orcid.org/0000-0002-7441-7541
https://doi.org/10.1007/978-3-031-22295-5_19

VinciDecoder 347

There exist rule-based techniques (e.g., [49]) for generating textual summaries
of provenance graphs. However, only relying on a set of specified rules [49] would
not be sufficient, as the unpredictable nature of security incidents [57] will neces-
sitate to constantly develop new rules, which may be costly especially for large
clouds. We will further illustrate such limitations through the following example.

Motivating Example. Figure 1(a) depicts a provenance graph (left), and an
analyst manually performing the task of creating a human-readable report (right)
based on the provenance graph. Specifically, upon receiving an alert about the
leakage of network traffic, the analyst begins investigating the suspicious paths
of the provenance graph (left) generated by existing tools (e.g., [54]) to manually
report the root cause as shown in Fig. 1a (right) (the exploit of a vulnerability [3]
by updating the device owner field of a port attached to a created VM). However,
such a task can be challenging to an analyst, especially as a real world cloud
provenance graph may have tens of thousands of nodes and edges [47].

Fig. 1. Motivating example.

– Key ideas. Figure 1(b) shows the two main approaches adopted by our solu-
tion, namely VinciDecoder, for automatically interpreting provenance graphs
into forensic reports. First, our rule-based approach generates customized
forensic reports based on lexicons and grammar rules as illustrated in Fig. 1(b)

348 A. Tabiban et al.

(bottom left). Such rules are specified by the analyst according to his/her
criteria (e.g., domain-knowledge) and understanding of the existing paired
provenance graphs and forensic reports for similar types of future attacks.
Second, for use cases where such criteria are too dynamic (e.g., new types
of attacks) for a rule-based approach to handle, we also propose a learning-
based approach (bottom right) which automatically learns the correspondence
between pairs of provenance graphs and forensic reports using Neural Machine
Translation (NMT). Specifically, similar to words (e.g., verbs and object) of
a sentence, there is a dependency between nodes (e.g., operations and their
affected resources) in a provenance graph, which inspires us to train a transla-
tion model by applying NMT to provenance graphs (source language) paired
with human-readable reports (target language), and automatically translate
future provenance graphs into a natural language interpretation using the
trained model.

– Challenges. Although our vision for adopting NMT seems plausible, realiz-
ing VinciDecoder requires addressing the following two main challenges. First,
NMT is typically applied to textual data, whereas provenance graphs are usu-
ally stored as nodes and edges. To address this, VinciDecoder converts paths
of provenance graphs into primitive sentences of node properties (detailed
in Sect. 3.2). Second, it is challenging to generate high quality reports with
a limited number of paired provenance graphs and reports for training. To
address this, VinciDecoder leverages tens of thousands of CVE entries and
their corresponding provenance graphs to train NMT (detailed in Sect. 4.2).

In summary, our main contributions are as follows:

• To the best of our knowledge, VinciDecoder is the first solution for generating
forensic reports based on provenance analysis results using both rule-based
and learning-based techniques. By reducing the reliance on human analysts
to interpret and document large and complex provenance graphs, our app-
roach can avoid the limitations, human error, and delay that are natural to
such manual efforts, and thus improve the practicality of provenance analysis
in large-scale cloud environments, enable automated documentation of root
causes for security incidents, and allow for more timely incident-response.

• To automatically generate reports using NMT, we design several mechanisms
as follows. VinciDecoder first converts provenance graph paths into primi-
tive sentences representing properties of nodes, and removes instance-specific
information to avoid mis-translation; it then learns a translation model based
on the paired primitive sentences and reports; finally, when given target paths,
VinciDecoder applies the learned model to the primitive sentences represent-
ing the paths to generate the forensic report. Optionally, our rule-based app-
roach can form forensic reports by linking the node properties extracted from
the target path based on pre-specified rules.

• We implement VinciDecoder on an OpenStack-based cloud testbed, and vali-
date its effectiveness based on real-world security incidents. Our experiments
and user study show that VinciDecoder generates high-quality results (e.g., up
to 0.68 BLEU score for precision) with sufficient readability for human ana-

VinciDecoder 349

lysts (e.g., 92% of our participants agree that understanding the attack steps
is much easier using VinciDecoder’s report than using provenance graphs).

The rest of this paper is organized as follows: Sect. 2 provides some back-
ground on data provenance and NMT. Section 3 details our methodology.
Section 4 describes our implementation and presents the evaluation results. We
discuss different aspects of our work and the related work in Sect. 5 and Sect. 6,
respectively. We conclude the paper in Sect. 7.

2 Preliminaries

This section provides a background on data provenance, NMT and our assump-
tions.

2.1 Provenance Graph

As a powerful technique to capture the dependencies between data objects (e.g.,
virtual resources or operating system files) and events (e.g., management oper-
ations or system calls) in a graph representation, data provenance has been
applied to clouds. We show an example of a cloud management-level provenance
graph [47] in Fig. 2(a) consisting of two types of nodes: entities (shown as ovals)
and activities (shown as rectangles), where entities represent virtual resources
(e.g., a virtual port Portmal), and activities represent cloud management opera-
tions (e.g., an operation CreateVM). Each node stores several properties such as
the type of the operations/resources and the user who triggers the operations.
Edges indicate the dependency between an operation and its affected resources.
For example, in Fig. 2(a), the edge from CreateVM to Portmal shows that this
operation attaches Portmal to the created VM VMmal.

2.2 Neural Machine Translation

Neural Machine Translation (NMT) [46] builds a conditional probability model,
P (Y |X), such that the likelihood of a target sentence Y given a source sentence
X is maximized [22]. As Fig. 2(b) shows, NMT usually consists of an encoder
and a decoder, which typically utilize recurrent neural networks (RNN) such
as a Long Short-Term Memory (LSTM) [23]. To initialize the training, LSTM
cells are assigned with random weights, and the encoder captures the semantics
of X by encoding it into a fixed-length vector H. Then, the decoder generates
the target sentence given the computed vector H. NMT computes the devia-
tion of the generated sentence from the reference sentence Y and improves the
model by optimizing the assigned weights based on other pairs of sentences.
In Sect. 3.4 and 3.5, we detail how VinciDecoder leverages this mechanism to
generate forensic reports.

2.3 Assumptions

We assume the accuracy of provenance analysis results provided by existing
tools (e.g., [54]), such as suspicious paths capturing the attack steps or malicious

350 A. Tabiban et al.

Fig. 2. An excerpt of a cloud management-level provenance graph (a); an example of
NMT Encoder-Decoder model (b).

behavior. We also assume the correctness and completeness of provenance-based
root cause analysis solutions (e.g., [21,54]) in identifying suspicious paths cap-
turing the attack steps. We assume that the provenance construction tool is not
compromised. Finally, similar to most other learning-based data-to-text tech-
niques (e.g., [42]), we assume the availability of a sufficient amount of training
data (i.e., paired forensic reports and suspicious paths) for training our model1.

3 VinciDecoder

In this section, we provide an overview of VinciDecoder, detail its different mod-
ules, and describe the interaction between them.

3.1 Overview

Figure 3 shows an overview of VinciDecoder, which consists of two main phases:
learning phase and automatic report generation phase. In the learning phase,
VinciDecoder collects paired suspicious paths and reports for training, and then
transforms suspicious paths into primitive sentences in our intermediary lan-
guage (Sect. 3.2), which represents the properties of a node as a compound word,
and removes the instance-specific information (Sect. 3.3). Next, it applies NMT
to train a translation model profiling the correspondence between the obtained
sentences and their forensic reports (Sect. 3.4). In the automatic report gen-
eration phase, VinciDecoder applies the trained translation model to generate
forensic reports based on the suspicious paths of the provenance graph associ-
ated with the newly detected incident (Sect. 3.5). Optionally, VinciDecoder can
generate reports using our rule-based mechanism (Sect. 3.5).

3.2 Path to Intermediary Language Translation (PILT)

NMT is typically applied to textual sentences, which renders its application to
provenance graphs challenging. To address this, the PILT module converts each
1 In Sect. 4.2, we discuss how we obtain more pairs of reports and paths for training.

VinciDecoder 351

Iden�fied
suspicious paths

Learning

Exis�ng reports

Transla�on
Model Training

Primi�ve sentences

Automa�c Report
Genera�on

Normalized
reports

Normalized primi�ve sentences

Transla�on
model

Provenance
Analysis

Tool

Newly iden�fied
Suspicious path

VinciDecoder

Normaliza�on

Primi�ve
sentence

Transla�on

Normalized
primi�ve sentence

Path to Intermediary
Language Transla�on (PILT)

Rule-based Report Genera�on

Pre-specified rules

Forensic
report

Cloud

In
cid

en
t

al
er

t

Normaliza�on
Path to Intermediary
Language Transla�on (PILT)

Learning-based
Rule-based

Fig. 3. Overview of VinciDecoder.

suspicious path into a primitive sentence by querying the database to sequentially
scan the nodes, extract their properties, and record them as one compound
word of the sentence (see Fig. 3). Algorithm 1 details the mechanism of PILT as
follows: PILT extracts the properties type and user from operation nodes and
appends them to the created primitive sentence (line 3–5). Moreover, it calculates
the elapsed time between the timestamp properties stored at two consecutive
operation nodes (line 6–7) and appends the calculated value with a proper post-
fix (e.g., “-millisecond”, “-hours”, etc.) to the sentence (line 8–9). The elapsed
time may be interesting for reporting the incidents where the attacker attempts
to issue a large number of operations in a short period of time, e.g., to launch
race condition or DoS attacks. PILT also records the type and the identifier of
resources (line 10–13). In the next section, we detail how obtained sentences are
modified and leveraged to train the translation model.

352 A. Tabiban et al.

Example 1. Figure 4 shows the translation of a path (left) into a primitive sen-
tence (right) in our intermediary language. As we can see, the properties of each
node (e.g., the node representing CreatePort operation) are represented by a
word (e.g., “type:CreatePort,user:non-admin”) in the obtained sentence.

type:CreatePort
�me:12:00:14.433

user:non-admin

type:UpdatePort
�me:12:00:45.535
user: non-admin

type:port
resourceID:

Portmal

...“type:Port,resourceID:Portm
al”“type:UpdatePort,user:nona
dmin,ElapsedTime: 31-sec”

Fig. 4. Simplified example path (left) translated into a primitive sentence (right).

3.3 Normalization

To allow NMT to focus on generic words in the primitive sentences instead
of application-specific ones (which may lead to mis-translation), VinciDecoder
needs to remove instance-specific information from the dataset before feeding
it to NMT. Specifically, the forensic reports and their corresponding primitive
sentences used for training may contain values (e.g., the name/ID of resources)
that are related to semantics of the specific scenarios (which NMT is not aware
of). Retaining such values is known to reduce the quality of the reports generated
by the trained neural translation model [43]. Therefore, VinciDecoder identifies
and replaces all instance-specific values (e.g., the number preceding the string
“-milliseconds”2) with a placeholder (i.e., \0), and the name of the applications
or software platforms with the word “platform” based on our specified rules.

3.4 Translation Model Training

This module builds a translation model to profile the correspondence between
the existing forensic reports and their associated suspicious paths. To this end,
we leverage NMT [26], as it automatically captures the context of words and
nodes (i.e., the dependencies between words in a report and nodes in a path)
using embeddings. By applying NMT, VinciDecoder first projects words of a
report and the words of the obtained primitive sentences (i.e., properties of
nodes) into a high-dimensional numerical vector space such that words/nodes
with similar contexts have closer vector representations. Next, VinciDecoder
builds a translation model based on the derived vectors that optimally maps
each provided forensic report to its paired primitive sentence.

Example 2. Figure 5 shows an excerpt of the training dataset composed of the
primitive sentences obtained from the suspicious paths (left) and their corre-
sponding manually created reports (right). The semantically related information
on each side are illustrated with the same type of lines.

2 Despite removing the numbers, the range of the elapsed time (e.g., milliseconds vs.
hours) retains useful information about the incidents.

VinciDecoder 353

...

A non-admin user creates a port, then creates
a VM a�ached to that port, and immediately
updates the port device_owner field so the
an�-spoofing rule is bypassed due to the
vulnerability exploit.

...

“type:CreatePort,ElapsedTime:\0-seconds,user:non-admin,
ID: Portmal” “type:port,user:non-admin” “type:CreateVM,
Elapsed Time:\0-seconds,user:non-admin” “type:port,
user:non-admin” “type:UpdatePortDeviceOwner, Elapsed
Time: \0-milliseconds”

Fig. 5. Example paths in our intermediary language (left) and their corresponding
manually written reports (right). Semantically related information are highlighted by
the same type of lines.

3.5 Automatic Report Generation

Once a new security incident is detected, VinciDecoder automatically generates
forensic reports based on the suspicious path identified by existing tools (e.g., [21,
54]) using our learning-based and rule-based techniques.

Learning-Based Report Generation. After building the translation model
in the learning phase, VinciDecoder can be applied to generate forensic reports
based on the detected suspicious path. Specifically, VinciDecoder converts the
suspicious path into a primitive sentence in our intermediary language, and
removes the instance-specific information by following the same techniques as
mentioned in Sect. 3.2 and Sect. 3.3. Next, it applies the translation model to
each normalized primitive sentence to automatically generate the corresponding
forensic report. To improve the quality of generated reports, VinciDecoder also
allows the analyst to conduct post-editing [28] by identifying the instance-specific
information using the primitive sentences and adding them to the reports.

Rule-Based Report Generation. To ensure the applicability of our approach
when there is a lack of a sufficient number of reports for training, VinciDecoder
is also equipped with a rule-based mechanism, which enables translation with-
out training data. Specifically, VinciDecoder sequentially scans nodes on each
path, and extracts the following properties stored at each node: the type and ID
of resources/operations, the user triggering an operation, and the elapsed time
between the timestamp values stored in two consecutive operation nodes. Then,
it creates an ordered list, where each item represents the properties of a node.
Next, VinciDecoder generates sentences based on rules specified by the analyst,
and it sequentially links the items such that the extracted user, resource, opera-
tion and elapsed time are included as the subject, object, verb and propositional
phrase in generated sentences, respectively (detailed in Appendix). Finally, Vin-
ciDecoder generates an introductory and a concluding sentence to describe an
overview of the incident (e.g., describing the time of the detection).

Example 3. Figure 6 shows the report related to the incident in our motivating
example (Sect. 1). The report starts with explaining the number of operations in
the suspicious path, continues with describing the attack steps, and concludes
with indicating the ID of nodes in the suspicious paths.

354 A. Tabiban et al.

By the detec�on �me, there are 4 opera�ons performed in 1 minute corresponding to the resource vmmal. A nonadmin
user created a port named portmal on a subnet. Once done, this user modified portdeviceowner a�er less than a minute.
(S)He also created a vm named vmmal on that port a�er less than a second. Then, (s)he modified that portdeviceowner
a�er less than a second. More details can be found in the provenance graph in path [416 - 419 - 422 - 425].

Fig. 6. Automatically generated report on the incident discussed in our motivating
example (Sect. 1).

4 Implementation and Evaluation

In this section, we detail the implementation of VinciDecoder and evaluate our
solution.

4.1 Evaluation Using Cloud Management-Level Provenance Graphs

To evaluate VinciDecoder under different scenarios (e.g., various lengths of sus-
picious paths), we apply VinciDecoder to cloud management-level provenance
graphs generated in our testbed cloud.

4.1.1 Implementation and Data Collection
We implement VinciDecoder in a cloud testbed based on OpenStack [8] (a popu-
lar open-source cloud platform). We note that only our PILT module (Sect. 3.2)
and our rules (Appendix) are platform-specific, and the modular design of Vin-
ciDecoder makes it easily portable to other platforms or provenance models
(e.g., OS-level provenance [25]). We export provenance graphs from Neo4j [7]
into JSON format for processing. We leverage Open-Source Toolkit for Neu-
ral Machine Translation (ONMT) [26] (a popular tool for language transla-
tion). Similar to some other solutions (e.g., [54]), we choose the default options
for embedding paths (i.e., 500 dimensional vector) as well as the batch size
and the dropout rate (i.e., 64 and 0.3, respectively). We leverage the metrics
in [45] to evaluate our approach. We run VinciDecoder on an Ubuntu 20.04
server equipped with 128 GB of RAM. We generate the provenance graphs
through deploying and updating different types of virtual resources. Moreover,
we enrich our training dataset by leveraging the rule-based mechanism (detailed
in Sect. 3.5). To simulate reports authored based on various writing styles, we
specify rules capturing the writing styles of our different authors.

Table 1. Statistics of our testbed datasets.

Dataset Training Testing

Dtr-size1 Dtr-size2 Dtr-size3 Dtr-size4 Dtr-len1 Dtr-len2 Dtr-len3 Dtr-len4 Dts1 Dts2

of paths 2000 4000 6000 8000 2000 2000 2000 2000 2000 2000

lmin 4 4 4 4 4 8 12 16 4 8

Table 1 shows the statistics of our datasets. To evaluate the effect of length
and number of available samples (i.e., the suspicious paths) on the performance,

VinciDecoder 355

we conduct our experiments based on two groups of training datasets: 1) varying
the number of paths: four datasets (Dtr-size1 to Dtr-size4) each consisting of a
different number of paths with the same minimum length; 2) varying the length
of paths: four datasets (Dtr-len1 to Dtr-len4) consisting of the same number of
paths with different specified minimum lengths. We randomly select 70% and
30% of the paths from each training dataset to build and validate (used by
NMT to automatically tune the hyperparameters in training [22]) the models,
respectively. Our training and testing datasets are selected from disjoint parts of
the provenance graph, so we can evaluate the ability of VinciDecoder in handling
unseen datasets. We also evaluate our approach based on two testing datasets
with paths of different minimum lengths as shown in Table 1.

4.1.2 Effectiveness Evaluation
We reproduce in our testbed eight real-world incident scenarios that involve
cloud management operations, and apply VinciDecoder to generate reports based
on the captured provenance graphs. Table 2 shows those scenarios and corre-
sponding incidents. Most of those scenarios are discussed in previous works
(e.g., [14,34,48,50,55]) focusing on security verification. For all cases, our gener-
ated reports capture all operations that led to the incidents. Table 3 demonstrates
the effectiveness of VinciDecoder based on five scenarios. We also showcased our
result for the sixth scenario in Sect. 3.5. The other two scenarios (Table 2, sev-
enth and eighth rows) involve fewer types of operations and are thus omitted
due to space limitation.

Table 2. Attack scenarios used to evaluate the effectiveness of VinciDecoder.

Index Root cause Incident

1 Improper authorization [55] Port Scanning

2 Failed update of security groups [48] Data leakage

3 Soft-rebooting migrated VM [5] Data corruption

4 Deleting resized VM [4] Disk utilization

5 Incorrect role assignment [50] Data leakage

6 Race condition in update port [48] Data leakage

7 Wrong VLAN ID [14] Data leakage

8 Excessive VM creation on a host [34] Disk utilization

356 A. Tabiban et al.

Table 3. Reports generated by VinciDecoder for five scenarios in Table 2. The sixth
scenario is showcased in Sect. 3.5.

Example of Verifying the Captured Information Figure 7(a) shows the
automatically generated report explaining the operations (i.e., the creation of a
rogue port on a router created by a different user) to exploit a vulnerability [2]
that led to the attack on VMa (Table 2, first row). VinciDecoder correctly details
the steps described by the manually created report shown in Fig. 7(b).

4.1.3 Performance Evaluation
We showcase the high quality of generated reports with different number and
length of paths in training datasets based on well known translation metrics
BLEU and ROUGE [45]. BLEU (precision) measures the fraction of the gener-
ated information that are relevant to the manually written reports and ROUGE

Fig. 7. Verifying the information captured by our generated report. The semantically
relevant information are highlighted with the same type of line.

VinciDecoder 357

(recall) indicates the fraction of information from the reference reports that are
included in automatically generated reports. As VinciDecoder proposes the first
learning-based provenance translation solution, we cannot directly compare our
results to existing works, while we note that scores above 0.5 are generally known
to reflect high quality translations [29].

Fig. 8. Evaluation with cloud management-level provenance graphs.

Number of Training Samples. Figure 8(a) shows that, in most cases, there
is a minor variation in the evaluated performance as the number of the training
samples increases. This can be explained by the possibility that our transla-
tion models trained by larger datasets may become more biased [33] due to the
frequent appearances of similar patterns of cloud management operations. To
further illustrate this effect, Fig. 9 compares an excerpt of a manually written
report of a path with the ones generated by VinciDecoder based on the four
training datasets. As we can see, larger training datasets (e.g., Dtr-size4) cause
more extra or missing information in the generated reports. We conclude that
our approach remains useful even with a limited number of training samples.

Fig. 9. Comparing reports generated by training datasets with different numbers of
samples (irrelevant parts of the generated reports are crossed out).

Length of Training Samples. Figure 8(b) shows that the performance
decreases when the length of paths in the training dataset increases, which may

358 A. Tabiban et al.

be due to the degraded performance of NMT for longer sentences [18]. The
reduction is more significant for Dts1 due to the difference between the length
of paths in this testing dataset (with minimum four nodes) and that of paths
in the training datasets, Dtr-len3 and Dtr-len4 (with minimum 12 and 16 nodes).
The training datasets Dtr-len1 and Dtr-len2 (with paths of minimum four and
eight nodes) cause a noticeably higher performance for Dts1 than for Dts2 due to
the general positive impact of shorter paths of Dts1 on the performance and the
similarity between training and testing datasets regarding the lengths of paths.

Number of Epochs. Figure 8(c) shows that the performance is significantly
improved with the number of epochs (i.e., the number of times NMT iterates
through a training dataset). We also measure the perplexity (i.e., the extent a
trained model could predict a newly provided data [15]) and the accuracy for
different numbers of epochs and training datasets. Figure 10(a) shows that the
perplexity decreases to around 1.2 after 20 epochs, and Fig. 10(b) shows that
the accuracy increases to around 97% after 40 epochs. We conclude that the
perplexity and accuracy of VinciDecoder improve with the number of epochs,
and reach almost constant values after training over maximum 40 epochs.

Fig. 10. (a) Perplexity (the smaller is better) and (b) accuracy at different epochs; (c)
the growth of vocabulary size, and (d) the proportion of unseen words.

Out-of-Vocabulary Evaluation. Figure 10(c) shows that, without normal-
ization (Sect. 3.3), the size of the vocabulary significantly grows with the size
of the dataset, which may subsequently reduce the performance. Furthermore,
Fig. 10(d) shows that, on average, the proportion of unseen words in the testing
dataset (i.e., words that do not exist in the training datasets, and thus may be
translated incorrectly) is around 6% less after conducting normalization. This
shows that our normalization technique effectively increases the applicability of
the trained models for describing new provenance graphs in testing datasets. In
summary, our results demonstrate the feasibility and quality of the produced
reports for datasets with different number and length of paths.

4.2 Large Scale Experiments Using CVE-Based Provenance Graphs

As our evaluation in Sect. 4.1 is limited to the data collected from our testbed,
to evaluate our approach based on more realistic and larger scale datasets, we
apply VinciDecoder to CVE-based provenance graphs in this section.

VinciDecoder 359

Data Collection. The performance of NMT may be adversely affected by the
scarce available pairs of input data [19]. Therefore, to enrich our dataset, we
adopt an approach similar to recent works (e.g., [13,20,44]) on extracting prove-
nance graphs from cyber threat intelligence (CTI) reports such as vulnerability
databases [6]. Similar to such solutions, we leverage a combination of rule-based
and machine learning techniques (e.g., Part-of-Speech Tagging [17]) to extract
different components of provenance graphs (e.g., affected systems, attackers’
activities, and the impact of attacks), which allows us to generate a large num-
ber of provenance graphs paired with their CTI reports to train our translation
model. To this end, we processed 60,000 CVE entries. Inspired by existing solu-
tions (e.g., [44]), to decrease the verbosity of CVE entries and facilitate extract-
ing provenance information, we apply a summarization technique3 to the entries,
and subsequently, extract provenance metadata. Finally, we clean the dataset by
removing the entries from which the attackers’ activities and impact cannot be
extracted, and we obtain six datasets with the total number of 40,151 entries
as shown in Table 4. We randomly select 80%, 10% and 10% of entries in each
dataset for training, testing and validation, respectively.

Table 4. Statistics of our datasets prepared with CVE entries.

D1 D2 D3 D4 D5 D6

Total before cleaning 30000 36000 42000 48000 54000 60000

Total after cleaning 20626 25188 28575 32333 36283 40151

Training 16600 20271 22997 26022 29201 32314

Validation 2060 2514 2852 3227 3621 4007

Testing 1966 2403 2726 3084 3461 3830

Number of Epochs. We showcase the high quality of our generated reports
by first identifying the number of epochs that yields the highest performance
(average BLEU and ROUGE scores) for each dataset. Figure 11(a) shows that
VinciDecoder achieves higher performance with smaller datasets after a fewer
number of epochs (e.g., 30 epochs for D1). This can be explained by the pos-
sibility that training on smaller datasets for a larger number of epochs would
cause overfitting [38], which decreases the performance. On the other hand, the
performance related to our larger datasets (D4, D5 and D6 in Fig. 11(b)) remains
high for a larger number of epochs. For instance, we maximise the performance
by training on our largest dataset (D6) for 100 epochs.

Number of Training Samples. We measure the performance of VinciDecoder
trained with different datasets for the number of epochs that achieved the highest
performance in Fig. 11(a) and 11(b) (e.g., 30 and 100 epochs for D1 and D6,
respectively). Figure 11(c) shows that both the BLEU and ROUGE scores remain

3 https://pypi.org/project/nlpaug/.

https://pypi.org/project/nlpaug/

360 A. Tabiban et al.

almost similar and above 0.68 and 0.74, respectively, for all datasets. This shows
that despite the complex content and various writing styles that are natural to
CVE reports, VinciDecoder performs well in generating such reports4.

Fig. 11. Evaluation with CVE-based provenance graphs.

4.3 User-Based Study
To evaluate the quality and usefulness of our generated reports in helping human
analysts, we conduct a user study5 based on standard practices [10], where par-
ticipants have to evaluate the factual correctness and fluency of the reports gen-
erated by VinciDecoder. Our participants include eight cybersecurity researchers
working in a major telecommunication organization and five graduate researchers
working in cybersecurity labs of our university. Table 5 shows the percentage of
participants in each group, their reported level of expertise, and the average
score for all statements.

Table 5. Average quantified agreement levels for each group (scores will be explained
later). PG means provenance analysis. (A), (L), and (N) signs represent advanced, little
and no knowledge, respectively, as reported by the participants.

Industry Academia

Background (Cloud-PG) A-A A-L A-N L-L L-N A-L

Participants (%) 15 23 8 8 8 38

Scores (out of 5) 3.83 4.28 3.83 3.83 3 4.13

At the beginning of the study, we show an attack scenario (our motivating
example in Sect. 1) to the participants. Next, we provide the participants with

4 Note that while both sets of our experiments in Sect. 4.1 and 4.2 show high quality
reports, directly comparing their results is not meaningful as their reports are of
incomparable lengths (e.g., cloud management-level provenance graph-based reports
are typically longer which has a negative effect on the performance).

5 This study has been identified as quality assurance by Research Ethics/Office of
Research of our university, which means it requires no ethics approval.

VinciDecoder 361

the provenance graph, the report generated by VinciDecoder, and the manually
written report. Our study asks participants to evaluate their investigation with
and without VinciDecoder, and accordingly express their level of agreement with
the provided statements (shown in Table 6) by choosing one of the following
options: Strongly agree, Agree, Neutral, Disagree and Strongly disagree. We then
quantify the results by assigning an integer between one and five to each option,
where five means Strongly agree and one means Strongly disagree.

Fig. 12. Participants’ agreement with statements in Table 6.

Table 6. Survey statements and scores. The agreement level of participants are con-
verted to scores between one and five (score five represents Strongly agree).

Statement Score

S1 Understanding the attack steps using the generated text is
easier than using the path

4.3

S2 The generated text is consistent with the explained attack
scenario

3.92

S3 The generated text is consistent with the path regarding the
relationships of operations

4.31

S4 The generated text captures all the information of the
suspicious path

4

S5 The generated text is sufficiently fluent compared with the
manually written report

3.46

S6 The generated text is consistent with the manually written
report regarding attack steps

3.92

Figure 12 shows the distribution of participants’ agreement with each state-
ment. For most participants, understanding the attack steps is much easier using
our generated report than the provenance graph (S1). According to most partic-
ipants, our generated report contains no information contradicting the described
attack scenario and the provenance graph (S2 and S3). Additionally, the results
(S4) affirm that all the information captured by the provenance graph is reflected
in our generated report. Most users find the generated report almost as fluent
as the manually created one (S5), while the slightly lower fluency is expected for
automatically generated reports [28]. Finally, the attack steps described by the
generated report is consistent with the report created by the human analyst (S6).
We show the average quantified scores in Table 5. VinciDecoder achieves scores
above three among all groups despite their low level (little or no) of expertise,
which confirm the benefits of VinciDecoder to users in investigating incidents.

362 A. Tabiban et al.

5 Discussion

In this section, we discuss future directions and limitations of VinciDecoder.

Application to Other Models. Our approach is generic enough to support
various provenance models (e.g., [25,37] and [53] for the OS and Internet of things
environments, respectively) after converting paths into primitive sentences cap-
turing both nodes and edges as words in our intermediary language. Likewise,
an interesting future direction is to apply VinciDecoder to other graphical secu-
rity models such as attack graphs [13] paired with their corresponding textual
interpretation.

Coverage. In this work, we leverage NMT for generating forensic reports from
long suspicious paths, as it is known to perform well in translating long sen-
tences [46]. In our future work, we will further investigate the possibility of
applying other translation techniques [31] that may increase the performance of
VinciDecoder. Finally, our goal is to assist analysts, instead of replacing them, by
allowing them to focus on more important but light-weight tasks, e.g., validating
the report to ensure its legal value.

6 Related Work

Provenance-based security solutions have been extensively explored [25,40,41,
47,53]. King et al. [25] propose data provenance to investigate security inci-
dents in operating systems. ProvDetector [54] is a provenance solution to detect
anomalous programs using embedded sentences representing paths. Poirot [36]
identifies attack-related subgraphs, and SteinerLog [12] detects attack cam-
paigns across multiple hosts using alert correlation. Some of recent solutions
(e.g., [37,58]) focus on increasing the interpretability of provenance graphs.
ATLAS [9] adopts sequence learning to model the signature of attacks. There
exist efforts adapting provenance analysis to domains other than operating sys-
tems such as the Internet of Things (IoT) (e.g., [53]) and SDN environments
(e.g., [51,52]). Wu et al. [56] propose an approach explaining the absence of
events. The authors in [32] and [11] propose a provenance-based investigation
and access control scheme for clouds, respectively. The authors in [39], propose a
solution to enhance the access control mechanism in OpenStack. Chen et. al [16]
propose CLARION to capture precise provenance graphs across namespaces of
different containers. Unlike our work, none of those solutions generates a human-
readable description of the provenance graph, and our approach can be applied
to most of those solutions to automatically translate their results into natural
language reports.

Several solutions [27,30,42] have been proposed to generate human-readable
descriptions based on non-linguistic information. The authors in [42] propose a
solution to generate textual summaries about basketball games based on tables
of information using NMT. [30] is a neural text generation solution to generate
the first sentence of a Wikipedia entry based on a provided infobox. Finally, [27]

VinciDecoder 363

proposes a solution that generates abstracts for scientific papers (with the BLEU
score of around 0.14) based on paired titles and knowledge graphs (with 4.43
edges, on average). None of those solutions are designed for generating forensic
reports based on typically larger and more complex provenance graphs that are
natural to the security context or cloud scale. ProvTalk [49] proposes a rule-
based approach for generating textual summaries of provenance graphs, which is
generalized and complemented with a learning-based approach in VinciDecoder.

7 Conclusion

In this paper, we presented VinciDecoder, the first solution for automatically
translating provenance analysis results into human-readable forensic reports
using both rule-based and learning-based techniques. To this end, we first
explored the characteristics of the provenance graph to represent it in an inter-
mediary language, which can then be translated into a natural language. We
showed the feasibility of our approach by implementing VinciDecoder based on
an OpenStack cloud, and demonstrated the high quality of generated reports for
real-world incident scenarios using both numerical (up to 0.56 and 0.68 BLEU
scores for cloud management-level and CVE-based provenance graphs, respec-
tively) and user-based evaluations. As future work, we will integrate VinciDe-
coder with other (e.g., OS-level) provenance analysis tools. We will also explore
other translation techniques and hyperparameters (i.e., the size of embedding
vectors and batch size), which may further improve the effectiveness of our app-
roach.

Acknowledgment. We thank the anonymous reviewers for their valuable comments.
This work was supported by the Natural Sciences and Engineering Research Council
of Canada and Ericsson Canada under the Industrial Research Chair in SDN/NFV
Security and the Canada Foundation for Innovation under JELF Project 38599.

Appendix

Algorithm 2 shows our rule-based mechanism generating reports based on
the cloud management-level provenance graphs (e.g., the provenance graph
in Fig. 1). To generate fluent sentences, we specify rules for indicating differ-
ent subjects (line 2–5). We add resources extracted from the names of opera-
tions (e.g., a VM in CreateVM) through the template a $resource type named
$main resource name (line 7–9). We specify various rules (line 11–20) for describ-
ing other affected resources connected to an operation node. We also specify rules
to record other information such as the elapsed time between operations (line
21–26). Through such rules specifically designed for each type of operations,
resources, and users, VinciDecoder generates reports when there is an insuffi-
cient amount of training data for generating high quality reports.

364 A. Tabiban et al.

References

1. Cisco AVOS. https://github.com/CiscoSystems/avos. Accessed 28 July 2022
2. CVE-2014-0056. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-

0056/. Accessed 28 July 2022
3. CVE-2015-5240. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-

5240. Accessed 28 July 2022
4. CVE-2016-7498. https://nvd.nist.gov/vuln/detail/CVE-2016-7498. Accessed 28

July 2022
5. CVE-2020-17376. https://bugs.launchpad.net/nova/+bug/1890501. Accessed 28

July 2022
6. CVE details. https://www.cvedetails.com/vulnerability-list/. Accessed 14 June

2022
7. Neo4j Graph Platform. https://neo4j.com/. Accessed 28 July 2022
8. OpenStack. https://www.openstack.org/. Accessed 28 July 2022
9. Alsaheel, A., et al.: ATLAS: a sequence-based learning approach for attack inves-

tigation. In: USENIX Security, pp. 3005–3022 (2021)
10. Assila, A., Ezzedine, H., et al.: Standardized usability questionnaires: features and

quality focus. eJCIST 6(1) (2016)
11. Bates, A., Mood, B., Valafar, M., Butler, K.R.B.: Towards secure provenance-based

access control in cloud environments. In: CODASPY, pp. 277–284 (2013)

https://github.com/CiscoSystems/avos
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0056/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0056/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-5240
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-5240
https://nvd.nist.gov/vuln/detail/CVE-2016-7498
https://bugs.launchpad.net/nova/+bug/1890501
https://www.cvedetails.com/vulnerability-list/
https://neo4j.com/
https://www.openstack.org/

VinciDecoder 365

12. Bhattarai, B., Huang, H.: SteinerLog: prize collecting the audit logs for threat
hunting on enterprise network. In: ASIA CCS, pp. 97–108 (2022)

13. Binyamini, H., Bitton, R., Inokuchi, M., Yagyu, T., Elovici, Y., Shabtai, A.:
A framework for modeling cyber attack techniques from security vulnerability
descriptions. In: KDD, p. 2574–2583 (2021)

14. Bleikertz, S., Vogel, C., Groß, T., Mödersheim, S.: Proactive security analysis of
changes in virtualized infrastructures. In: ACSAC, pp. 51–60. ACM (2015)

15. Chen, S.F., Goodman, J.: An empirical study of smoothing techniques for language
modeling. Comput. Speech Lang. 13(4), 359–394 (1999)

16. Chen, X., Irshad, H., Chen, Y., Gehani, A., Yegneswaran, V.: CLARION: sound
and clear provenance tracking for microservice deployments. In: USENIX Security,
pp. 3989–4006 (2021)

17. Chiche, A., Yitagesu, B.: Part of speech tagging: a systematic review of deep learn-
ing and machine learning approaches. J. Big Data 9(1), 1–25 (2022)

18. Cho, K., van Merriënboer, B., Bahdanau, D., Bengio, Y.: On the properties of
neural machine translation: encoder-decoder approaches. In: SSST, pp. 103–111.
ACL (2014)

19. Fadaee, M., Bisazza, A., Monz, C.: Data augmentation for low-resource neural
machine translation. In: ACL, pp. 567–573 (2017)

20. Gao, P., et al.: Enabling efficient cyber threat hunting with cyber threat intelli-
gence. In: ICDE, pp. 193–204. IEEE (2021)

21. Hassan, W.U., Aguse, L., Aguse, N., Bates, A., Moyer, T.: Towards scalable cluster
auditing through grammatical inference over provenance graphs. In: NDSS (2018)

22. He, D., Lu, H., Xia, Y., Qin, T., Wang, L., Liu, T.Y.: Decoding with value networks
for neural machine translation. Adv. Neural Inf. Process. Syst. 30, 177–186 (2017)

23. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

24. Johnson, C., Badger, L., Waltermire, D., Snyder, J., Skorupka, C., et al.: Guide to
cyber threat information sharing. NIST Spec. Publ. 800, 150 (2016)

25. King, S.T., Chen, P.M.: Backtracking intrusions. In: SOSP, pp. 223–236 (2003)
26. Klein, G., Kim, Y., Deng, Y., Senellart, J., Rush, A.: OpenNMT: open-source

toolkit for neural machine translation. In: Proceedings of ACL, System Demon-
strations, pp. 67–72. ACL (2017)

27. Koncel-Kedziorski, R., Bekal, D., Luan, Y., Lapata, M., Hajishirzi, H.: Text gen-
eration from knowledge graphs with graph transformers. In: NAACL (2019)

28. Läubli, S., Sennrich, R., Volk, M.: Has machine translation achieved human parity?
A case for document-level evaluation. In: EMNLP, pp. 4791–4796. ACL (2018)

29. Lavie, A.: Evaluating the output of machine translation systems. AMTA Tutor.
86 (2010)

30. Lebret, R., Grangier, D., Auli, M.: Neural text generation from structured data
with application to the biography domain. In: EMNLP, pp. 1203–1213. ACL (2016)

31. Lopez, A.: Statistical machine translation. ACM Comput. Surv. (CSUR) 40(3),
1–49 (2008)

32. Lu, R., Lin, X., Liang, X., Shen, X.S.: Secure provenance: the essential of bread
and butter of data forensics in cloud computing. In: ASIA CCS, pp. 282–292 (2010)

33. L’Heureux, A., Grolinger, K., Elyamany, H.F., Capretz, M.A.M.: Machine learn-
ing with big data: challenges and approaches. IEEE Access 5, 7776–7797 (2017).
https://doi.org/10.1109/ACCESS.2017.2696365

34. Madi, T., et al.: QuantiC: distance metrics for evaluating multi-tenancy threats in
public cloud. In: CloudCom, pp. 163–170. IEEE (2018)

https://doi.org/10.1109/ACCESS.2017.2696365

366 A. Tabiban et al.

35. Miao, H., Deshpande, A.: Understanding data science lifecycle provenance via
graph segmentation and summarization. In: ICDE, pp. 1710–1713. IEEE (2019)

36. Milajerdi, S.M., Eshete, B., Gjomemo, R., Venkatakrishnan, V.: POIROT: aligning
attack behavior with kernel audit records for cyber threat hunting. In: CCS, pp.
1795–1812 (2019)

37. Milajerdi, S.M., Gjomemo, R., Eshete, B., Sekar, R., Venkatakrishnan, V.N.:
HOLMES: real-time APT detection through correlation of suspicious information
flows. In: IEEE S&P, pp. 1137–1152 (2019)

38. Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)
39. Nguyen, D., Park, J., Sandhu, R.: Adopting provenance-based access control in

openstack cloud IaaS. In: Au, M.H., Carminati, B., Kuo, C.-C.J. (eds.) NSS 2014.
LNCS, vol. 8792, pp. 15–27. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-11698-3 2

40. Pasquier, T., et al.: Practical whole-system provenance capture. In: SoCC, pp.
405–418 (2017)

41. Pasquier, T., et al.: Runtime analysis of whole-system provenance. In: CCS, pp.
1601–1616. ACM (2018)

42. Puduppully, R., Dong, L., Lapata, M.: Data-to-text generation with content selec-
tion and planning. In: AAAI, vol. 33, pp. 6908–6915 (2019)

43. Santana, M.A.B., Ricca, F., Cuteri, B.: Reducing the impact of out of vocabulary
words in the translation of natural language questions into SPARQL queries. arXiv
preprint arXiv:2111.03000 (2021)

44. Satvat, K., Gjomemo, R., Venkatakrishnan, V.: EXTRACTOR: extracting attack
behavior from threat reports. In: EuroS&P, pp. 598–615. IEEE (2021)

45. Sharma, S., El Asri, L., Schulz, H., Zumer, J.: Relevance of unsupervised met-
rics in task-oriented dialogue for evaluating natural language generation. CoRR
abs/1706.09799 (2017)

46. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural
networks. Adv. Neural Inf. Process. Syst. 2, 3104–3112 (2014)

47. Tabiban, A., Jarraya, Y., Zhang, M., Pourzandi, M., Wang, L., Debbabi, M.: Catch-
ing falling dominoes: cloud management-level provenance analysis with application
to OpenStack. In: CNS, pp. 1–9. IEEE (2020)

48. Tabiban, A., Majumdar, S., Wang, L., Debbabi, M.: PERMON: An Openstack
middleware for runtime security policy enforcement in clouds. In: CNS, pp. 1–7.
IEEE (2018)

49. Tabiban, A., Zhao, H., Jarraya, Y., Pourzandi, M., Zhang, M., Wang, L.: ProvTalk:
towards interpretable multi-level provenance analysis in networking functions vir-
tualization (NFV). In: NDSS (2022)

50. Thirunavukkarasu, S.L., et al.: Modeling NFV deployment to identify the cross-
level inconsistency vulnerabilities. In: CloudCom, pp. 167–174. IEEE (2019)

51. Ujcich, B.E., et al.: Cross-app poisoning in software-defined networking. In: CCS,
pp. 648–663 (2018)

52. Wang, H., Yang, G., Chinprutthiwong, P., Xu, L., Zhang, Y., Gu, G.: Towards
fine-grained network security forensics and diagnosis in the SDN era. In: CCS, pp.
3–16. ACM (2018)

53. Wang, Q., Hassan, W.U., Bates, A., Gunter, C.: Fear and logging in the internet
of things. In: NDSS (2018)

54. Wang, Q., et al.: You are what you do: hunting stealthy malware via data prove-
nance analysis. In: NDSS (2020)

55. Wang, Y., et al.: TenantGuard: scalable runtime verification of cloud-wide VM-
level network isolation. In: NDSS (2017)

https://doi.org/10.1007/978-3-319-11698-3_2
https://doi.org/10.1007/978-3-319-11698-3_2
http://arxiv.org/abs/2111.03000

VinciDecoder 367

56. Wu, Y., Zhao, M., Haeberlen, A., Zhou, W., Loo, B.T.: Diagnosing missing events
in distributed systems with negative provenance. In: ACM SIGCOMM, pp. 383–
394 (2014)

57. Yusif, S., Hafeez-Baig, A.: A conceptual model for cybersecurity governance. J.
Appl. Secur. Res. 16(4), 490–513 (2021)

58. Zeng, J., Chua, Z.L., Chen, Y., Ji, K., Liang, Z., Mao, J.: WATSON: abstracting
behaviors from audit logs via aggregation of contextual semantics. In: NDSS (2021)

Actionable Cyber Threat Intelligence
for Automated Incident Response

Cristoffer Leite1,2(B) , Jerry den Hartog1, Daniel Ricardo dos Santos2,
and Elisa Costante2

1 Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
{c.leite.da.silva,j.d.hartog}@tue.nl

2 Forescout Technologies, 5612 AB Eindhoven, The Netherlands

Abstract. Applying Cyber Threat Intelligence for active cyber defence,
while potentially very beneficial, is currently limited to predominantly
manual use. In this paper, we propose an automated approach for using
Cyber Threat Intelligence during incident response by gathering Tactics,
Techniques and Procedures available on intelligence reports, mapping
them to network incidents, and then using this map to create attack
patterns for specific threats. We consider our method actionable because
it provides the operator with contextualised Cyber Threat Intelligence
related to observed network incidents in the form of a ranked list of
potential related threats, all based on patterns matched with the inci-
dents. We evaluate our approach with publicly available samples of differ-
ent malware families. Our analysis of the results shows that our method
can reliably match network incidents with intelligence reports and relate
them to these threats. The approach allows increasing the automation
of its use, thus addressing one of the major limiting factors of effective
use of suitable Cyber Threat Intelligence.

1 Introduction

In our ever more digital and online society, it is essential for organizations to
properly protect themselves against cyber threats. Organisations under attack
need to be well-informed to respond quickly and appropriately. Related infor-
mation, so called Cyber Threat Intelligence (CTI), includes analysed knowledge
about capabilities, infrastructure, methods, and victims of cyber threat actors.
As such, this information has the potential to help organizations to better per-
form threat detection, incident response, threat hunting, and risk management
as well as to make strategic decisions to protect themselves. However, current
methods of linking incidents with CTI reports are not sufficiently actionable;
they require a lot of effort of the operator.

Threat Intelligence can generally be divided in different groups based on their
level of detail and long-term use, including Technical and Tactical [1]. Exam-
ples of Technical CTI include Indicator of Compromise (IoC) such as hashes of
infected files, known malicious IP addresses and domain names. For detection,

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. P. Reiser and M. Kyas (Eds.): NordSec 2022, LNCS 13700, pp. 368–385, 2022.
https://doi.org/10.1007/978-3-031-22295-5_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22295-5_20&domain=pdf
http://orcid.org/0000-0002-6391-4278
https://doi.org/10.1007/978-3-031-22295-5_20

Actionable Cyber Threat Intelligence for Automated Incident Response 369

Technical CTI is easy to use: IoCs can be matched with network traffic or end-
point information in real-time to generate alerts that indicate a network intru-
sion is taking place. However, this relies on aspects that are easy for attackers
to change, for example by simply recompiling a malware with slightly different
code or acquiring new infrastructure. This limits how helpful such CTI use is for
the detection of more sophisticated or long-term attacks.

Tactical intelligence describes not just isolated IoCs but also the Tactics,
Techniques and Procedures (TTPs) used by adversaries. TTPs are useful for
incident response because they are harder for an attacker to change than IoCs.
The problem with Tactical intelligence is that, although there are plenty initia-
tives for standardisation and usage of CTI, there currently is no easy, automatic
way to incorporate its use in threat detection systems. This results in a lack of
automated Tactical CTI use on incident response [2–4]; most incident response
teams use this CTI manually if at all.

Aiming to make incident response more actionable, we investigate the fol-
lowing research question: RQ: Can the incident processing flow of an analyst
be automated by employing CTI? Refining our scope leads us to the following
sub questions: SQ1: Can related CTI provide valuable context for alerts, mak-
ing them more actionable? SQ2: Can available CTI be matched with behavior
observed in the network automatically?

To answer these questions we present a solution that automates most of
the process of matching available CTI with observed network events. We build
intelligence patterns for threats by gathering relevant CTI reports and mapping
their included Tactics, Techniques and Procedures (TTPs) to network observable
events. In addition to automation, this allow work to be done as soon as a threat
becomes known, rather then when under attack. We evaluate the approach on
samples of different families of malware/ransomware [5] and several open source
CTI feeds and find that our approach is capable of building patterns that capture
the families with high accuracy and thus provide context to network incidents
based on intelligence reports.

Our core contributions include automating an important step in the response
by matching CTI to network incidents. We demonstrate that it is feasible to accu-
rately distinguish between malware families with simple patterns extracted from
CTI information. By making high-level CTI more actionable we also increase its
value creating an added incentive to create and share it.

The remainder of this paper is organised as follows. Section 2 introduces how
Cyber Threat Intelligence is currently used, state-of-the-art in actionability and
automation for CTI and analyses the gap that still remains. Section 3 presents
our methodology and its core components. Section 4 describes our implementa-
tion, validation experiments and the experimental results. Finally, Sect. 5 high-
lights our conclusions and future work directions.

2 Background and Related Work

In this section we sketch how CTI is currently used in network intrusion detec-
tion, also defining some related terminology, and then review related work.

370 C. Leite et al.

2.1 Current Situation

Figure 1 shows an example setup of a Network Intrusion Detection System
(NIDS) generating alerts1 about incidents for analysis while using some form
of CTI. Blacklists are usually implemented by sub modules of the NIDS, while
the event correlation could also be implemented externally by either a Security
Information and Event Management (SIEM), which mostly generates alerts by
agregating and correlating events, or a Security Orchestration, Automation and
Response (SOAR), which does that but also includes response capabilities.

Fig. 1. A diagram of a simple NIDS solution

To identify attacks based on incidents provided by the NIDS, a Cyber Secu-
rity Incident Response Team (CSIRT) usually resorts to CTI available on a
Threat Intelligence Platform (TIP) or in specific intelligence feeds. CTI is usu-
ally aggregated in the form of reports related to a threat or a campaign. A
report may also contain other reports. While doing a Threat Intelligence and
Attack Path Analysis, for example, it is necessary to acquire information about
‘observables’ from a TIP to see if they match known IoCs [4].

Observables are features of events monitored in a network. When an atomic
observable, like an IP address or payload hash, is potentially linked to security
breaches, it is called an Indicator of Compromise (IoC). IoCs are thus low-
level, non-contextual CTI that allow incident response to be executed in an
(semi-)automated manner, e.g. through blacklisting, which also holds as a valid
approach even during surges of data to analyse. But for high-level CTI, such as
that providing tactical and operational attack information, analysts manually
review events in network incidents and compare them with reports from CTI
feeds. This manual approach is typical for active defence using high-level CTI [2].

The more contextual information provided by these high-level CTI is needed
in the majority of the cases to properly analyse incidents. The manual process
to acquire required intelligence becomes a problem especially when attack cam-
paigns flood the NIDS with information, creating surges of data to be analysed.
Some automation is needed, or at least the ability to perform as much of the
manual work a-priori rather than having to wait for an attack to occur. This

1 We use ‘alerts’ as a general term, and when more specific we use ‘events’ for basic
alerts and network ‘incidents’ for the alerts after correlation.

Actionable Cyber Threat Intelligence for Automated Incident Response 371

would improve the capability of responding to threats, and allow the CSIRT to
better act on the intelligence received. Automating its application on incident
response would make use of CTI more actionable [3].

2.2 Related Work

Most of the recent work on CTI focuses on managing IoCs [6], gathering unstruc-
tured Open-Source CTI (OSCTI) to extract Indicators [7], Tactics, Techniques
and Procedures from them [8,9], with a broad usage of Natural Language Pro-
cessing (NLP) for these cases [8,10], and assessing the quality of OSCTI [11–14]
or the formats used by them [15]. Some focus on generating CTI from network
events for specialised use case scenarios [16], and improving visualisation of CTI.

There is a broad acceptance that there is a need for more semi-automated
or actionable forms of consuming Cyber Threat Intelligence during incident
response [2–4] and that automation would add great value to it [13,14]. Action-
ability in this context is the capability of reacting during network incidents while
using the knowledge provided by CTI. In this context, J. Liu et al. [17] propose
a trigger mechanism to create an actionable CTI discovery system. It focuses
on portraying the relationship between IoCs and campaign stages to generate
actionable CTI from intelligence reports by using NLP.

For implementation of actionable CTI on defense, Amthor et al. [18] pro-
pose the integration of the information from intelligence platforms into Security-
Policy-Controlled Systems (SPCS). With two approaches to integrate detection
and response scenarios: A direct integration with intelligence obtained is received
and processed directly by security-critical systems, and an indirect one where it
is integrated to the security tools used by the organisation. The work by Serket-
zis et al. [19] combines a preparation step with application of CTI to improve the
usage of IoCs on Incident Response. It focus on revealing patterns of malicious
activities by correlating IoCs from multiple malware instances to CTI reports.

A few different approaches aim to automate the use of CTI by linking it to
TTPs or further matching attacker behaviour. Legoy et al. [20] automate the
extraction of TTPs from cyber threat reports using ATT&CK. Similarly, Husari
et al. [21] use NLP and Information retrieval (IR) for text mining to extract
threat actions based on semantic relations, constructing attack patterns with
TTPs and kill chain phases. On the work by Li et al. [22], they extract structured
attack behavior graphs from CTI reports to identify the applied techniques,
aggregating these reports into behavioural graphs of techniques. Another close
method is the service provided by Hybrid Analysis [23]. They execute a malware
sample in a sandboxed environment, generate a list of processes executions and
then correlate these with host-based TTPs in a simple list.

2.3 Gap Analysis

To achieve CTI-based network protection one needs to: (1) a-prioi perform threat
analysis based on available CTI and (2) map relevant threats (TTPs) found to
detectable network incidents. Then at runtime, (3) matching incidents to the
threats and their related CTI enables use of this CTI in (4) incident response.

372 C. Leite et al.

Many solutions exist to create and share CTI, but as noted above, automation
of its use is limited. In the related work above we limit our scope by considering our
goal of automation of the incident processing flow. A considerable amount of the
presented works prioritise generating better formats, analysing existing ones or
suggesting new capabilities to sharing platforms to allow using CTI with response
mechanisms. A small number actually tries to use available CTI in a more auto-
mated way, but even those do not focus on applying it to incident response. For
the papers and tools we consider most relevant, Table 1 shows which of the four
steps listed they contribute to. For example, Hybrid Anaylsis [23] considers TTP
map and CTI match though in an offline host-based setting, while the graphs of
Li et al. [22] help in automating threat mapping. Yet a clear gap where mapping
TTPs gathered from matched CTI or from Threat Analysis assessments does not
overlap with the application of them in incident response.

Table 1. Gap analysis of current approaches for automated and actionable CTI

Threat analysis TTP map CTI match Incident response

automation automation

Zhu et al. [9] � – � –

Legoy et al. [20] � � – –

Husari et al. [21] � � – –

Li et al. [22] � � – –

Hybrid analysis [23] – � – �

From the discussion above and to the best of our knowledge, there is not any
work that suggests a methodology to increase the automation and the actionabil-
ity of available CTI on incident response by linking known attacker behaviour
from reports to network incidents.

3 Methodology

In this section, we describe our solution for adding automation and actionability
to the use of high-level CTI in network intrusion detection and incident response.
As depicted in Fig. 2, we introduce an Intelligence Pattern Orchestrator (IPO)
that will enrich network incidents with related high-level CTI. This directly
provides the analyst with contextual information for those incidents. Related
incidents matching the same pattern can also be grouped to help further reduce
the workload.

The information flow of the IPO detailed in Fig. 3 is divided into four main
steps that cover pattern creation and their use. Creation of patterns is triggered
by threats and reliable related indicators becoming known. These indicators can,
for example, come directly from sandboxed samples of a threat or from a TIP
where initial related CTI is found.

Actionable Cyber Threat Intelligence for Automated Incident Response 373

Fig. 2. Intelligence Pattern Orchestrator for actionable CTI on network events

The first step is the Intelligence Gathering, in which the indicators are
matched with available CTI. Next in the CTI Filtering and Ranking phase
low-level CTI is filtered out and provided to the NIDS for blacklisting as in the
current situation (Fig. 1). High-level CTI are ranked based on their usefulness
for network intrusion detection. All sufficiently high scoring CTI reports can
be used to build patterns, but optionally the ranking can be presented to an
analyst for manual adjustments and exclusion of certain CTI reports. In the
following Pattern Building step, the CTI is matched with TTPs from MITRE
ATT&CK and mapped into network detectable events. We combine these events
into a pattern, which is stored along with related information.

Fig. 3. The information flow of our solution

The created patterns are used in the final step, Pattern Matching, trig-
gered by the detection of new incidents. These new incidents are compared with
the stored patterns and matching incidents are enriched with the related infor-
mation from the pattern.

374 C. Leite et al.

3.1 Intelligence Gathering

The Intelligence Gathering phase starts from a number of indicators related to
a known threat. The relevance of a type of indicator depends on the threat,
e.g. file hashes of payloads or exploit downloader files might be more useful for
identifying reports about an instance of a Ransomware than the IPs used by it
in a specific campaign.

At the time the process is triggered, our data base (TIP) will have been
filled with reports from CTI feeds, some related to the threat we are currently
considering. With an initial list of indicators related to a threat, we select all
CTI reports in the our database that include at least one of the indicators on
the initial list (r0). If these reports include additional indicators, we add these
to our list and iterate this process until no new reports are added. This results
in rR the least fixed point of rR = r0 ∪ {rt ∈ TIP | flat(rR) ∩ flat(rt) �= ∅} with
flat(r) = {c ∈ r} ∪ ∪r′∈R flat(r′) the report flattened to a set of CTI.

3.2 CTI Filtering and Ranking

Amongst the Relevant CTI (rR) we need to find those reports that are most
useful for building patterns in the orchestrator. To that end, we first filter out
reports that only contain low-level CTI. The IoCs included in these reports
are provided to the NIDS (for addition to blacklists as in existing solutions) as
shown in Fig. 3. But these reports are not used when building patterns as they
do not include behavioural information. Next, we rank the remaining ones on
their usefulness for linking to and providing contextual information for network
incidents detected by a NIDS, i.e. on the quality of their information regarding
attack execution plans and methods that can help identify an ongoing attack by
observing the network.

To define the level of intelligence of a CTI c (level(c)), and formalize the
notion of high- vs low-level CTI, we refer to the expanded Detection Maturity
Level (DML) Model [24,25] as shown in Fig. 4.

We define low-level CTI as those of DML 1 or 2, equivalent to the group of
Technical intelligence, as described by [1]. (DML 0 is ignored as it is does not
contain relevant information by definition.) High-level CTI is defined as those
with DML 3 or higher, which includes Tactical (TTPs), Operational (Attacker
Strategy and Goals) and Strategic (Identity) CTI. This separation also matches
with the different perspectives of CTI described by the authors on [15], where
IoCs are artifacts, TTPs describe the attacker behaviour, and the higher levels
indicate the response.

For reports, we define their level based on the highest level of CTI included
in the report (level(r) = max c∈flat(r)level(c)), so a report is low-level if it only
contains low-level CTI and high-level if it contains at least one high-level CTI.

Not all high-level information is useful for network-based detection. If related
to network detectable events, Tactical (TTPs) CTI might be useful to capture
the attacker’s behaviour detectable by a NIDS. Operational (Goals and Strategy)
and Strategic (Identity) CTI on the other hand can be useful for the analist in

Actionable Cyber Threat Intelligence for Automated Incident Response 375

Fig. 4. Filtering CTI with the Detection Maturity Level Model [25]

planning a response. We thus need to find which TTPs are network-mappable,
i.e. related to network detectable events.

As TTPs are typically expressed in term of the MITRE ATT&CK frame-
work [20–23], we use that framework to find which TTPs are network-mappable,
as described in more detail in Subsect. 4.1. We assume that the robustness of that
framework allows an adequate coverage of up-to-date TTPs. In this section we
simply assume that we have a subset NM of all CTI that are network mappable
TTP entries in the MITRE ATT&CK matrix.

The initial ranking score assigned to reports is how many network-mappable
TTPs they contain, rank(r) = #{c ∈ flat(r) | c ∈ NM }. In principle, any
report with a sufficiently high score can be used to build patterns. However,
after the automated ranking, security analysts can manually check the list of
reports related to an attack and adjust the rank accordingly, thus adapting
which reports will be used in the pattern building. This (optional) review step
is included because one of the problems with OSCTI is the quality of its reports
in regards to coverage and inter-report conciseness [11–14].

By the end of this step, the output is a ranked list of reports rF that include
network-mappable CTI which will be used for the creation of the attack patterns.
The next step will be the translation of rF into the pattern itself. Note that the
actual scores are only relevant for presentation to and evaluation by the analyst
in the review step. For the Pattern Building, it only matters whether reports are
included or not; rF = {r ∈ rR | rank(r) > threshold}.

3.3 Pattern Building

Having found TTPs that might indicate a specific threat and can be detected
on the network, we need to relate them to alerts that a NIDS might produce. In
order to achieve that, events in the network were ordered in a taxonomy based
on their types and event types were mapped to related TTPs. With that relation
in place, patterns are formed from event types related to the TTPs in rF .

An event type describes a network behaviour possibly related to a threat. The
list of event types we consider comes from the NIDS we use in the implementa-
tion and is the result of an aggregation of many threat data resources, including

376 C. Leite et al.

Industrial Control Systems Cyber Emergency Response Team (ICS-CERT) and
NIST National Vulnerability Database (NVD). Event types are arranged in a
taxonomy tree that indicates first the event source (alerts or logs), then its vari-
ations per additional level, with a short representation by an event type ID.
For example, the event type ID alert ops net unscon is an Unstable Connec-
tion network issue that falls in the operational category of alert events, while
alert ops net netmis would be a Network Misconfiguration in the same category.

To create the link between TTPs and events, we assume the event types
used by the NIDS are mapped to ATT&CK, i.e. we have a mapping N2A from
event types to sets of TTPs in NM . For the NIDS we use a (partial) mapping
of event types was created using the four lower stages of the framework for
adversarial threat hunting described by Gunter et al. [26]. Gunter’s framework
gives the notion of observables as being the result of a step in the attack, and
being related to TTPs. To link event types to TTPs, we thus look if the type is
related to these observable which belong to a TTP.

Fig. 5. Gunter’s framework for adversarial threat hunting with PSExec from [26]

A NIDS could monitor possible sources of observables to detect them as
network events (of a certain type). Figure 5 taken from [26] shows an example
where threat hunting for PSExec (a tool used to run processes remotely using
any user’s credentials) gives related observables and sources that can be linked
to TTPs in the higher stages. As such it provides the information needed to
create the required mapping.

In our implementation, the NIDS itself is the Observable Source, and the
types of events detected by it are the Observables. The TTPs are directly linkable
to ATT&CK. From our analysis, each event type can be mapped to one or
two Techniques on ATT&CK, e.g. a security alert related to FTP CMD buffer
overflow attempt is mappable to both Network Denial Of Service (T1498) and
Exploitation of Remote Services (T1210)2.

The pattern p = {type | N2A(type) ∩flat(rF) �= ∅} consist of the set of event
types that are linked to some TTP in rF . We add meta data including at least a

2 https://attack.mitre.org/techniques/enterprise/.

https://attack.mitre.org/techniques/enterprise/

Actionable Cyber Threat Intelligence for Automated Incident Response 377

time interval p.T and the related CTI reports p.CTI = rR. The analysts needs
to decide the time window, possibly supported by heuristics based on the type
of attack, whereas although attacks are usually short-timed [27], well-applied
stealth can prolong their lifespan [28]. Other meta data can also be added such
as a name, description, level of severity, etc. These optional fields can be gathered
from any relevant CTI with DML 7 to 9, even if that report is not ranked for
inclusion in the (detection part of the) pattern.

Fig. 6. An example of a pattern with meta data in JSON format

Figure 6 shows an example of a pattern in JSON format (without CTI links).
The event IDs are represented in a regex by a letter according to the order that
they appear in the array of event types, i.e. the letter a in the example refers to
alert sec event type1. Any pattern built is added to a database of patterns for
use by the Pattern Matching.

3.4 Pattern Matching

At run time, with a database of patterns in place, we aim to match patterns
to incidents provided by the NIDS as shown in Fig. 2. We model incidents as
non-empty sets of events. Different NIDS may represent an event e differently,
but we assume they have at least: a timestamp (e.time), a set of involved hosts
(e.hosts) and a type (e.type) as defined in the previous section. For a set of
events I we then define its time: I.time = max{e.time | e ∈ I}, involved hosts
I.hosts = ∪e∈I e.hosts, and types I.type = {e.type | e ∈ I}.

To define the notion of a matching pattern we consider a pattern p, an
incident In and a timeline of past incidents I1, . . . , In−1. For involved hosts
we define related events as those involving that host within the pattern time
interval; Eh = {e ∈ I1 ∪ . . . ∪ In | e.time >= i.time − p.T, h ∈ e.hosts} and
we say that such a set is a candidate set if it contains at least two different
types of events from p, or if E contains only events of one type which is in p;
#(p ∩ Eh.type) >= 2 ∨ Eh.type ⊂ p. We say p is candidate pattern for In if:
∃h ∈ In.hosts : Eh is a candidate set.

378 C. Leite et al.

For candidate patterns, we define a level of coverage through Pattern Pre-
dominance (P), which is the percentage of all related events that have an event
type from p i.e. P (p, In) = maxh∈In.hosts#{e ∈ Eh | e.type ∈ p}/#Eh. A pat-
tern is considered to match if the pattern predominance is higher than some
predetermined threshold which can be set according to the needs of the analyst.

This definition of match captures a heuristically determined trade-off between
detection rate and false positives. It considers that for the same threat (family)
many of the events are expected to of types known to belong to that threat, as
captured by the requirement on Pattern Predominance. It also considers that
the same event type might occur in different types of attacks. As such one of
several event types from the incidents occurring in the pattern is insufficient to
claim a match. However, this being the only type in the incident or, even better,
having multiple shared types, provides a much stronger indication.

Any matched pattern p is added to a list (sorted by Pattern Predominance)
of matches for the incident. The related meta data, such as related CTI (p.CTI),
thus provides context to the incident.

With this methodology, an analyst or a CSIRT can use the CTI reports
related to the matched patterns in a semi-automated manner for incident
response. Next section evaluates this approach by implementing it and testing
the creation of patterns on sandboxed scenarios.

4 Implementation and Evaluation

This section details the implementation of the methodology described in Sect. 3,
with explanations about the experimental setup and results obtained.

4.1 Implementation

We detail below the formats and TIPs chosen as source for information, as well
as the thresholds set for minimum compatibility of patterns.

Intelligence Gathering

TIP. Several public CTI feeds are available, like AlienVault, VirusTotal, Mal-
ware Traffic Analysis and Hybrid Analysis. There are also open-source platforms,
such as MISP and OpenCTI for implementing a TIP and optionally offering its
own combined info as a new feed. We run an OpenCTI instance to collect CTI
reports from the four feeds mentioned above. We select OpenCTI as it has a
slight focus on more contextualised information for indicators and is capable of
linking them to related threats and also to their primary source (a report, a
MISP event, etc.). OpenCTI is also able to consume MISP generated feeds.

Actionable Cyber Threat Intelligence for Automated Incident Response 379

Internal CTI Format. In our implementation, we use reports in the Structured
Threat Information Expression (STIX) 2.1 format for its versatility in exchang-
ing CTI and also because it is a widely adopted standard [15,29]. In STIX we
represent CTI as structured objects called STIX Domain Object (SDO)s and
reports as containers called STIX Bundles.

Intel Matching. We match which reports (expressed as STIX bundles) include
given threat indicators (also expressed in STIX) to get all the SDOs related to
those samples.

Pattern Building

TTP Match. In this step, information about the TTPs is requested using the
MITRE API and then added to the report. This is done for all network-mappable
TTPs.

Mapping Events to TTPs. The NIDS can only operate network-based events,
which makes it compatible with only a subset of MITRE ATT&CK. We use
MITRE’s diagram of techniques and their linked data sources [30] to filter the
interesting ones for a NIDS. A total of 1.267 event types from the NIDS we
use were mapped to network mappable techniques from both MITRE ICS and
Enterprise. For each event type, only a single TTP or the two most relevant ones
were assigned. As a result, only some of the mappable TTPs have related event
types. Figure 7 shows a list of network mappable MITRE techniques from their
Enterprise framework and a highlight for the ones mapped.

Fig. 7. Network detectable techniques from MITRE with the ones used in blue (Color
figure online)

380 C. Leite et al.

Pattern Matching Module

Pattern Matching. The threshold for pattern predominance, used to determine
pattern compatibility in pattern matching (see Subsect. 3.4), is set to 0.5 based
our empirical experimentation. Thus patterns with at least 50% of predominance
(P ≥ 0.5) are considered as being matched with high confidence during the
pattern analysis, and medium confidence if there is only one event type match
with t = 1. Note that low-confidence approximates, i.e. candidate patterns with
low predominance (P < 0.5), can be suggested for analysts if needed (clearly
marked with as being low-confidence).

4.2 Experimental Setup

Dataset. For our experiments, we use a dataset consisting of 27 sand-boxed
samples of ransomware from 4 different families: Cerber, Crysis, REvil/Sodinok-
ibi and WannaCry [5], with a total of 78.5 GB in PCAPs. Each sample refers to
an instance of a ransomware from one of the families. These PCAPS represent
the network traffic and the I/O operations executed by these malwares while
encrypting a network shared directory.

In selecting these samples we considered: malware and more specifically ran-
somware are a growing threat with industry-wide impact, malware families with
a considerable number of samples in an open dataset with good adoption allow
proper reproducible validation, and related OSCTI data must be available.

From the reports matched with these malware families, 74.13% included some
TTPs, with 25.86% having only one. 15.51% had explicit information about mal-
ware instances. Files were the most common indicator, whereas email addresses
the most rare ones. All the reports contained some observables which belong to
DML 1–2, and only 8.76% had any CTI level 7–8.

Evaluation Metrics. In the tests, we want to verify if a pattern made out of
a CTI report is strong enough to define and match a sample from a malware
family rather than a single instance, and if it is unique enough to differentiate
malware families. To evaluate the suitability of our methodology, we then want
to check if the patterns: (1) Match same-family samples with a high score. (2)
Do not match different families or match with a low enough score.

Mapping Malwares to Patterns. We divide our malware families in two
groups: One is the group of sample with indicators that point to reports with
higher level of CTI available, which will be then used to generate the initial
patterns. Based on observations about the available CTI related to them, we
selected Cerber and Sodinokibi/REvil as the sources for the attack patterns as
part of the first group. And the second group consists of all samples that will be
used for the validation, including the ones used to create the patterns themselves.

Figure 8 shows the process of mapping the samples from Cerber to related
CTI and extracting network mappable TTPs from them. Sodinokibi/REvil fol-
lowed a similar flow. To create actionable information out of reports related to

Actionable Cyber Threat Intelligence for Automated Incident Response 381

Fig. 8. Mapping Cerber samples to related high-level network-detectable CTI

these malwares, we use as a starting point a list of hashes related to the mal-
ware payloads from each sample. It is possible to match which reports as STIX
bundles include these payloads to get the SDOs related to those samples. These
reports are then filtered based on the level of CTI they have, and then ranked
based on two scores: The percentage of related payload hashes they include from
that initial list, and the amount of contextual CTI on these reports. In the case
of similar reports, they can be grouped based on their related SDOs.

In our case, we decided to use the hashes from the samples themselves as the
starting point to search for related CTI in a way of validating if the patterns
can detect related samples, but as stated before, there is also the possibility of
extracting this information from other sources, such as the reports themselves.

Fig. 9. Final patterns generated for cerber and REvil

Using the first group, we generated patterns for the malware families and
then added them to our database. Figure 9 shows the resulting patterns. We
replay the samples from that malware family in a network monitored by the
NIDS, which sends the events to the pattern module for scoring and validation.
After that, we run the same experiment again using the samples from all other
families as a validation step. Next section shows the results of our experiments.

382 C. Leite et al.

Fig. 10. Final results for detection with Cerber

4.3 Results

Figure 10 shows the results using the pattern generated for Cerber. Out of the
eleven samples from Cerber instances, all of them matched with the pattern, we
define eight of them as high confidence matches, because they have at least two
events types matching and t ≥ 0.5, and the remaining two as medium confidence
because there is only one event type match, but t = 1. At the same time, there has
been no match with other malware samples. One sample, REvil-2021-May-04,
did not have any anomalous events detected by our NIDS, and by consequence
it did not appear as anomalous on our observations. We ran our tests using the
patterns presented and analysed the results from the main experiment described
on Subsect. 4.2.

Figure 11 shows the results of the experiment now using the pattern generated
for REvil. With the exception of the same sample as mentioned above, all the
others matched the pattern created with high confidence. As mentioned before,
the sample that did not match was not detected as anomalous. This may be due
to the map presented on Fig. 7 not being broad enough to include events related
to its incidents. In this test, there has been also one erroneous match with a
sample from the WannaCry ransomware family. All the other samples did not
match with the REvil pattern.

The detection achieved a False Negative Rate of 5.88% when considering the
REvil sample with no events detected as incidents by the NIDS. At the same

Actionable Cyber Threat Intelligence for Automated Incident Response 383

Fig. 11. Final results for detection on REvil

time, the detection achieved a False Positive Rate of 2.77%. The results give a
Detection Rate of 94.11% with an accuracy of 96.22%.

5 Conclusion

The work proposed in this paper aims to increase the actionability of using CTI
on incident response by automatically relating incidents to relevant CTI. Our
methodology helps to define a structured way of consuming available CTI by
linking them to known threats and their expected behaviour. It enables the use
of the gathered intelligence by matching its attack patterns with network events
related to incidents.

The evaluation shows that it is possible to correlate CTI with observed behav-
ior with good precision, positively answering the sub questions SQ1 and SQ2.
Considering the main research question we have to note a significant limita-
tion we encountered; the scarcity of quality high-level OSCTI. This reduces the
scope of our evaluation and the ability to fully answer RQ. However, having
shown linking CTI and network behavior can be automated we both increase
the value of such CTI, creating an incentive to generate and share it, as well as
open an avenue to reducing the effort needed to produce CTI. As future work,
we plan to use our results to generate CTI reports out of the network incidents.
We also plan to create an advanced version of our patterns that include event
chains to analyse ordered multi-host incidents.

384 C. Leite et al.

References

1. Chismon, D., Ruks, M.: Threat intelligence: collecting, analysing, evaluating.
MWR InfoSecurity 3(2), 36–42 (2015)

2. Schlette, D.: Cyber threat intelligence. In: Jajodia, S., Samarati, P., Yung, M. (eds.)
Encyclopedia of Cryptography, Security and Privacy, pp. 1–3. Springer, Heidelberg
(2021). https://doi.org/10.1007/978-3-642-27739-9 1716-1

3. Nespoli, P., Papamartzivanos, D., Mármol, F.G., Kambourakis, G.: Optimal coun-
termeasures selection against cyber attacks: a comprehensive survey on reaction
frameworks. IEEE Commun. Surv. Tutor. 20(2), 1361–1396 (2017)

4. Groenewegen, A., Janssen, J.S.: TheHive project: the maturity of an open-source
security incident response platform (2021)

5. Berrueta, E., Morato, D., Magaña, E., Izal, M.: Open repository for the evaluation
of ransomware detection tools. IEEE Access 8, 65658–65669 (2020)

6. Gao, Y., Xiaoyong, L.I., Hao, P.E.N.G., Fang, B., Yu, P.: HinCTI: a cyber threat
intelligence modeling and identification system based on heterogeneous information
network. In: IEEE Transactions on Knowledge and Data Engineering, p. 1 (2020)

7. Liao, X., Yuan, K., Wang, X., Li, Z., Xing, L., Beyah, R.: Acing the IOC game:
toward automatic discovery and analysis of open-source cyber threat intelligence.
In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS 2016). Association for Computing Machinery, New York,
pp. 755–766 (2016). https://doi.org/10.1145/2976749.2978315

8. Gao, P., et al.: Enabling efficient cyber threat hunting with cyber threat intelli-
gence. In: 2021 IEEE 37th International Conference on Data Engineering (ICDE),
pp. 193–204 (2021). ISSN: 2375-026X

9. Zhu, Z., Dumitras, T.: ChainSmith: automatically learning the semantics of mali-
cious campaigns by mining threat intelligence reports. In: 2018 IEEE European
Symposium on Security and Privacy (EuroS&P), pp. 458–472. IEEE (2018)

10. Afzaliseresht, N., Miao, Y., Michalska, S., Liu, Q., Wang, H.: From logs to stories:
human-centred data mining for cyber threat intelligence. IEEE Access 8, 19089–
19099 (2020)

11. Tundis, Andrea, Ruppert, Samuel, Mühlhäuser, Max: On the automated assess-
ment of open-source cyber threat intelligence sources. In: Krzhizhanovskaya, V.V.,
et al. (eds.) ICCS 2020. LNCS, vol. 12138, pp. 453–467. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-50417-5 34

12. Noor, U., Anwar, Z., Altmann, J., Rashid, Z.: Customer-oriented ranking of cyber
threat intelligence service providers. Electron. Commer. Res. Appl. 41, 100976
(2020)

13. Brown, R., Lee, R.M.: 2021 SANS Cyber Threat Intelligence (CTI) Survey, p. 19
(2021)

14. Berndt, Anzel, Ophoff, Jacques: Exploring the value of a cyber threat intelligence
function in an organization. In: Drevin, Lynette, Von Solms, Suné, Theocharidou,
Marianthi (eds.) WISE 2020. IAICT, vol. 579, pp. 96–109. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-59291-2 7

15. Schlette, D., Caselli, M., Pernul, G.: A comparative study on cyber threat intel-
ligence: the security incident response perspective. IEEE Commun. Surv. Tutor.
23(4), 2525–2556 (2021)

16. Gong, S., Lee, C.: Cyber threat intelligence framework for incident response in an
energy cloud platform. Electronics 10(3), 239 (2021)

https://doi.org/10.1007/978-3-642-27739-9_1716-1
https://doi.org/10.1145/2976749.2978315
https://doi.org/10.1007/978-3-030-50417-5_34
https://doi.org/10.1007/978-3-030-59291-2_7

Actionable Cyber Threat Intelligence for Automated Incident Response 385

17. Liu, J., et al.: TriCTI: an actionable cyber threat intelligence discovery system via
trigger-enhanced neural network. Cybersecurity 5(1), 8 (2022). https://doi.org/10.
1186/s42400-022-00110-3

18. Amthor, P., Fischer, D., Kühnhauser, W.E., Stelzer, D.: Automated cyber
threat sensing and responding: integrating threat intelligence into security-policy-
controlled systems. In: Proceedings of the 14th International Conference on Avail-
ability, Reliability and Security, pp. 1–10 (2019). https://doi.org/10.1145/3339252.
3340509

19. Serketzis, N., Katos, V., Ilioudis, C., Baltatzis, D., Pangalos, G.: Improving foren-
sic triage efficiency through cyber threat intelligence. Future Internet 11(7), 162
(2019)

20. Legoy, V., Caselli, M., Seifert, C., Peter, A.: Automated retrieval of ATT&CK
tactics and techniques for cyber threat reports. arXiv preprint arXiv:2004.14322
(2020)

21. Husari, G., Al-Shaer, E., Ahmed, M., Chu, B., Niu, X.: TTPDrill: automatic and
accurate extraction of threat actions from unstructured text of CTI sources. In:
Proceedings of the 33rd Annual Computer Security Applications Conference, pp.
103–115 (2017)

22. Li, Z., Zeng, J., Chen, Y., Liang, Z.: AttacKG: constructing technique knowledge
graph from cyber threat intelligence reports. In: Atluri, V., Di Pietro, R., Jensen,
C.D., Meng, W. (eds) Computer Security – ESORICS 2022. LNCS, vol. 13554, pp.
589–609. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17140-6 29

23. Hybrid Analysis: https://www.hybrid-analysis.com/
24. Stillions, R.: The DML model (2014). http://ryanstillions.blogspot.com/2014/04/

the-dml-model 21.html
25. Bromander, S., Jøsang, A., Eian, M.: Semantic cyberthreat modelling. In: STIDS,

pp. 74–78 (2016)
26. Gunter, D.: Hunting with rigor: quantifying the breadth, depth and threat intel-

ligence coverage of a threat hunt in industrial control system environments, p. 21
(2018)

27. Cole, E.: Advanced Persistent Threat: Understanding the Danger and How to
Protect Your Organization. Newnes, London (2012)

28. Ghafir, I., Prenosil, V.: Advanced persistent threat attack detection: an overview.
Int. J. Adv. Comput. Netw. Secur. 4(4), 5054 (2014)

29. Sauerwein, C., Fischer, D., Rubsamen, M., Rosenberger, G., Stelzer, D., Breu,
R.: From threat data to actionable intelligence: an exploratory analysis of the
intelligence cycle implementation in cyber threat intelligence sharing platforms.
In: The 16th International Conference on Availability, Reliability and Security, pp.
1–9 (2021). https://doi.org/10.1145/3465481.3470048

30. MITRE: MITRE ATT&CK techniques mapped to data sources. Tech. Rep. (2019).
http://attack.mitre.org/docs/attack roadmap 2019.pdf

https://doi.org/10.1186/s42400-022-00110-3
https://doi.org/10.1186/s42400-022-00110-3
https://doi.org/10.1145/3339252.3340509
https://doi.org/10.1145/3339252.3340509
http://arxiv.org/abs/2004.14322
https://doi.org/10.1007/978-3-031-17140-6_29
https://www.hybrid-analysis.com/
http://ryanstillions.blogspot.com/2014/04/the-dml-model_21.html
http://ryanstillions.blogspot.com/2014/04/the-dml-model_21.html
https://doi.org/10.1145/3465481.3470048
http://attack.mitre.org/docs/attack_roadmap_2019.pdf

Author Index

Abdullah, Lamya 3
Alishahi, Mina 58
Anagnostopoulos, Marios 176
Andersen, Jonas Bukrinski 176
Andersen, Mikkel M. 101
Arnal, Xavier 253
Asplund, Mikael 120
Attenberger, Andreas 329
Audran, David H. 101

Beidenhauser, Simon 80
Berger, Sebastian 80
Bertrand Van Ouytsel, Charles-Henry 292
Bjerre, Alexander 176
Blumbergs, Bernhards 311
Boeira, Felipe 120
Brunke, Dominik 80

Cano, Abraham 253
Castello-Waldow, Tim Phillip 329
Čejka, Tomáš 139
Cole, Matthew 215
Costante, Elisa 368

Damir, Mohamed Taoufiq 40
Debbah, Lorys 234
den Hartog, Jerry 368
Dobelis, Ēriks 311

Finogina, Tamara 253
Franco-Rondisson, Thibault 234
Fraunholz, Daniel 80
Freiling, Felix 329

Gaballah, Sarah Abdelwahab 3
Gast, Daan 58
Gertheiss, Jan 20
Guri, Mordechai 194

Haque, A S M Farhan Al 176
Hardi, Lukas 329
Helgogaard, Lucas K. 176
Hellmich, Andreas 329
Herranz, Javier 253

Hesselmann, Carsten 20
Hynek, Karel 139

Jarraya, Yosr 346

Knepper, Annika 329
Kochberger, Patrick 273
Koenig, Hartmut 80
König, Philip 273

L. De Leon, Phillip 159
Lafourcade, Pascal 234
Lantz, David 120
Latzo, Tobias 329
Lawitschka, Caroline 273
Legay, Axel 292
Leite, Cristoffer 368

Msaad, Mohamed 101
Mühlhäuser, Max 3
Müller, Jörg P. 20
Muttathu Sivasankara Pillai, Arun Sankar

159

Nesenbergs, Krišjānis 311
Niemi, Valtteri 40

Orji, Charity U. 101

Paikens, Pēteris 311
Plný, Richard 139
Pourzandi, Makan 346
Prakash, Aravind 215
Pucher, Michael 273
Puys, Maxime 234

Reinhardt, Delphine 20
Reti, Daniel 80
Ricardo dos Santos, Daniel 368
Roedig, Utz 159
Rušiņš, Artis 311

Schrittwieser, Sebastian 273
Sivelle, Camille 234

388 Author Index

Solovjovs, Kirils 311
Srinivasa, Shreyas 101

Tabiban, Azadeh 346
Tran, Minh Tung 3

Vasilomanolakis, Emmanouil 101
Vermeiren, Sam 58

Villefrance, Emil 176

Wang, Lingyu 346
Weippl, Edgar R. 273
Westh, Andreas Philip 176

Zhao, Heyang 346
Zimmer, Ephraim 3

	 Preface
	 Organization
	 Contents
	Privacy
	On the Effectiveness of Intersection Attacks in Anonymous Microblogging
	1 Introduction
	2 Design and Assumptions
	2.1 Messaging Patterns
	2.2 Threat Model
	2.3 Delay
	2.4 Cover Traffic

	3 Attacks
	3.1 User-Pseudonym Linking
	3.2 User-Topic Linking

	4 Evaluation
	4.1 User-Pseudonym Linking
	4.2 User-Topic Linking

	5 Related Work
	6 Conclusion and Future Work
	References

	Data Privacy in Ride-Sharing Services: From an Analysis of Common Practices to Improvement of User Awareness
	1 Introduction
	2 Related Work
	3 Analysis of Ride-Sharing Services
	3.1 Collection and Exposure of Personal Information
	3.2 Privacy-Related Features

	4 Proposed Transparency Enhancing Technology
	5 Scenario-Based Online Experiment
	5.1 Sample
	5.2 Setup
	5.3 Methods

	6 Results
	6.1 Privacy Concerns
	6.2 Disclosure Rate
	6.3 Icon Recognizability and Understandability
	6.4 Data Disclosure
	6.5 Use of Profile Settings
	6.6 Information Usefulness

	7 Limitations
	8 Conclusion and Outlook
	References

	Location Privacy, 5G AKA, and Enhancements
	1 Introduction
	2 Mobile Network Architecture
	3 Contributions and Related Work
	4 5G Authentication and Key Agreement Protocol (5G AKA)
	4.1 The UE's Identification
	4.2 The Authentication and Key Agreement

	5 A New Attack: Replay in GUTI (RIG)
	5.1 The RIG Attack

	6 Feasibility of the RIG Attack
	6.1 IMSI-Catchers
	6.2 The Attack Area

	7 Attacking 5G AKA Enhancements
	7.1 Applying the RIG Attack to 5G AKA'
	7.2 Discussion on Further 5G AKA Enhancements

	8 Protecting Against the RIG Attack
	8.1 Threat Model
	8.2 A Privacy-Preserving GUTI Protocol
	8.3 Remarks on the Security of the Fixed Protocol
	8.4 Formal Verification
	8.5 Efficiency and Backward Compatibility

	9 Conclusion
	References

	Local Differential Privacy for Private Construction of Classification Algorithms
	1 Introduction
	2 Preliminaries
	2.1 Local Differential Privacy
	2.2 Classification Algorithms

	3 Architecture
	4 LDP-Based Classification Algorithms
	4.1 LDP-Based Naïve Bayes Classifier
	4.2 LDP-Based Logistic Regression Classifier
	4.3 LDP-Based Decision Tree Classifier
	4.4 LDP-Based Random Forest Classifier

	5 Experimental Analysis
	5.1 Experimental Set-up
	5.2 Experimental Results
	5.3 Findings

	6 Related Work
	7 Conclusion and Future Directions
	A Appendix
	A.1 Frequency Estimation
	A.2 Mean Estimation

	References

	IMSI Probing: Possibilities and Limitations
	1 Introduction
	2 IMSI Probing Attack
	2.1 Attack Presumptions
	2.2 Triggering Paging Messages
	2.3 Connection Mode
	2.4 Monitoring the Paging Channel
	2.5 Result Verification

	3 Analyzing Idle Behavior with Passive Phones
	3.1 Test Setup
	3.2 Idle Time Behavior of Passive Phones
	3.3 Analysis of Process Behavior in Passive Mode

	4 Analyzing Idle Behavior with Active Phones
	5 Empirical Evaluation in Real World Mobile Networks
	5.1 Experimental Environment
	5.2 Required Number of Probing Repetitions
	5.3 Capture Rates

	6 Attack Success Probability and Impact Factors
	6.1 Passive Mobile Phone with Default Configuration
	6.2 Active Mobile Phone with Default Configuration

	7 Optimizing the Attack Success Probability
	8 A Novel Attack Technique for IMSI Probing
	9 Conclusions
	A Installed Applications in Section4
	References

	Attacks and Attack Detection
	Honeysweeper: Towards Stealthy Honeytoken Fingerprinting Techniques
	1 Introduction
	2 Background
	3 Related Work
	3.1 Honeypot Fingerprinting
	3.2 Honeytoken Fingerprinting

	4 Methodology
	4.1 Honeytoken Analysis
	4.2 Honeytoken Fingerprinting

	5 Proof of Concept: Honeysweeper
	5.1 Overview
	5.2 Limitations

	6 Countermeasures Against Fingerprinting
	7 Conclusion
	References

	Towards Self-monitoring Enclaves: Side-Channel Detection Using Performance Counters
	1 Introduction
	2 Background and Related Work
	2.1 Attacks on Trusted Execution Environments
	2.2 Detection Methods

	3 Characterization of LVI Invariant Footprint
	3.1 LVI Attacks
	3.2 Measuring LVI Impact

	4 Detecting LVI Attacks
	4.1 Chosen Attack Indicators
	4.2 Footprint-Based Detection
	4.3 Detection Performance

	5 Towards Self-monitoring Enclaves
	6 Conclusions
	References

	DeCrypto: Finding Cryptocurrency Miners on ISP Networks
	1 Introduction
	2 Related Work
	3 Datasets
	3.1 Generation of Traffic Capture Rules
	3.2 Communication Capture

	4 Introduction to DeCrypto System
	4.1 Weak Indicators of Cryptomining
	4.2 Stratum Detector
	4.3 TLS SNI Classifier
	4.4 ML Classifier
	4.5 Meta Classifier
	4.6 Selection of the Optimal Detection Parameters

	5 Evaluation
	6 Deployment
	7 Conclusion
	A Appendix
	A.1 Detailed Results of Weak-Indication Classifiers

	References

	Detection of Voice Conversion Spoofing Attacks Using Voiced Speech
	1 Introduction
	2 ASVspoof Challenge Dataset and Evaluation Metric
	3 Brief Review of Speech Production
	4 Spectral Differences in Voiced/Unvoiced Segments from Human and Spoofed Speech
	5 Subsampling and Voiced Segmentation as a Pre-processing Stage
	6 Spoofing Detection Results Using Proposed Pre-processing Stage
	6.1 Brief Overview of Anti-spoofing Systems Used in This Work
	6.2 Results Using Proposed Pre-processing Stage

	7 Related Work
	8 Discussion
	9 Conclusions
	References

	A Wide Network Scanning for Discovery of UDP-Based Reflectors in the Nordic Countries
	1 Introduction
	2 Background
	2.1 Source IP Address Spoofing
	2.2 Calculation of Amplification Factor
	2.3 Evaluated Protocols

	3 Methodology
	4 Results
	4.1 IP Demographics
	4.2 SSDP
	4.3 SNMP
	4.4 CoAP
	4.5 WSD
	4.6 Discussion

	5 Related Work
	6 Conclusions
	References

	GPU-FAN: Leaking Sensitive Data from Air-Gapped Machines via Covert Noise from GPU Fans
	1 Introduction
	1.1 Air-Gap Networks
	1.2 Air-Gap Attacks
	1.3 Air-Gap Exfiltration
	1.4 Our Contribution
	1.5 Contribution to Prior Work

	2 Attack Model
	2.1 Air-Gap Infection
	2.2 Mobile Infection
	2.3 Data Gathering
	2.4 Data Exfiltration

	3 Related Work
	3.1 Acoustic

	4 Transmission
	4.1 GPU Fan Control
	4.2 Blade Pass Frequency (BPF)
	4.3 Modulation
	4.4 Encoding and Framing
	4.5 Multiple Fans

	5 Reception
	6 Evaluation
	6.1 Acoustic Range
	6.2 Transition Time
	6.3 Bit Rates
	6.4 Effective Distance
	6.5 Data Transmission

	7 Countermeasures
	8 Conclusion
	References

	Secure Protocols and Systems
	Simplex: Repurposing Intel Memory Protection Extensions for Secure Storage
	1 Introduction
	2 Background
	2.1 Intel MPX
	2.2 Information Hiding

	3 Simplex
	3.1 Threat Model
	3.2 Design Decisions
	3.3 Simplex-Enabled Compilation
	3.4 Context Behavior

	4 Implementation
	4.1 Components of Simplex
	4.2 Security Impact of the Simplex Implementation

	5 Evaluation
	5.1 Benchmarks
	5.2 Modifications to Existing Codebases

	6 Related Work
	7 Conclusion
	References

	Automatic Implementations Synthesis of Secure Protocols and Attacks from Abstract Models
	1 Introduction
	2 Overview of BIFROST
	3 From Abstract Model to Implementation
	4 Cryptographic Primitives
	5 Attack Generation
	6 An Example: The Needham-Schroeder Protocol
	6.1 The Needham-Schroeder Protocol
	6.2 From Protocol Model to Implementation
	6.3 Attacker Implementation Generation

	7 Conclusion
	References

	How to Avoid Repetitions in Lattice-Based Deniable Zero-Knowledge Proofs
	1 Introduction
	1.1 Our Contribution
	1.2 Illustrating Our Technique

	2 Preliminaries: (Public Coin) Interactive Proofs
	3 The Transformation
	3.1 Security Analysis
	3.2 Extensions

	4 Applications
	4.1 Canonical Identification Schemes
	4.2 Non-transferable Signatures
	4.3 eVoting with CAI and CR Properties
	4.4 Settings Where Our Result Is Not Useful

	5 Implementation
	6 Conclusion
	References

	Security Analysis
	Obfuscation-Resilient Semantic Functionality Identification Through Program Simulation
	1 Introduction
	2 Related Work
	2.1 Semantic Binary Code Similarity

	3 Approach
	3.1 Program Simulation
	3.2 Function Input and Output Matching

	4 Evaluation
	4.1 Samples
	4.2 Obfuscation Techniques

	5 Results
	5.1 Costs
	5.2 Resilience
	5.3 Analysis Times
	5.4 Limitations

	6 Conclusions
	References

	Malware Analysis with Symbolic Execution and Graph Kernel
	1 Introduction
	2 On Graph Comparison for Malware Analysis
	2.1 Graph Kernels

	3 Approach: Symbolic Execution + Machine Learning for Malware Analysis
	3.1 Extraction of Calls
	3.2 Creating SCDGs
	3.3 Creating a Classification Model and Evaluate New Samples

	4 Experimental Results
	5 Future Work
	A Gspan Algorithm
	References

	WearSec: Towards Automated Security Evaluation of Wireless Wearable Devices
	1 Introduction
	2 Related Work
	2.1 Device Detection and Fingerprinting
	2.2 Vulnerability Identification

	3 Prototype Concept Description
	4 Implementation Considerations
	4.1 Frequency Bandwidth Consideration
	4.2 Choice of SDR Device
	4.3 Data Capture Bandwidth Issues
	4.4 Interference by Surrounding Signals
	4.5 Lack of Open Source, Instrumentable Low-Level Protocol Stack

	5 Conclusions and Future Work
	References

	Forensics
	Maraudrone's Map: An Interactive Web Application for Forensic Analysis and Visualization of DJI Drone Log Data
	1 Introduction
	1.1 Related Work
	1.2 Contribution
	1.3 Outline

	2 Background
	2.1 UAV Models
	2.2 DJI Drone Setup
	2.3 DJI Universal Markup Language

	3 DROP Extension for DATv3
	3.1 Usage
	3.2 Parsing of Log Messages

	4 Anomaly Detection
	4.1 Technical Anomalies
	4.2 Flight Anomalies
	4.3 Severity of Anomalies

	5 Maraudrone's Map
	6 Evaluation
	6.1 DROP Extension
	6.2 Maraudrone's Map
	6.3 Anomaly Detection
	6.4 Limitations

	7 Conclusion and Future Work
	References

	VinciDecoder: Automatically Interpreting Provenance Graphs into Textual Forensic Reports with Application to OpenStack
	1 Introduction
	2 Preliminaries
	2.1 Provenance Graph
	2.2 Neural Machine Translation
	2.3 Assumptions

	3 VinciDecoder
	3.1 Overview
	3.2 Path to Intermediary Language Translation (PILT)
	3.3 Normalization
	3.4 Translation Model Training
	3.5 Automatic Report Generation

	4 Implementation and Evaluation
	4.1 Evaluation Using Cloud Management-Level Provenance Graphs
	4.2 Large Scale Experiments Using CVE-Based Provenance Graphs
	4.3 User-Based Study

	5 Discussion
	6 Related Work
	7 Conclusion
	References

	Actionable Cyber Threat Intelligence for Automated Incident Response
	1 Introduction
	2 Background and Related Work
	2.1 Current Situation
	2.2 Related Work
	2.3 Gap Analysis

	3 Methodology
	3.1 Intelligence Gathering
	3.2 CTI Filtering and Ranking
	3.3 Pattern Building
	3.4 Pattern Matching

	4 Implementation and Evaluation
	4.1 Implementation
	4.2 Experimental Setup
	4.3 Results

	5 Conclusion
	References

	Author Index

