
Modelling Recurrent Stress Drops
in Porous Media

David Riley, Itai Einav, and François Guillard(B)

The University of Sydney, Sydney, NSW 2006, Australia

francois.guillard@sydney.edu.au

Abstract. aut]Riley, Davidaut]Einav, Itaiaut]Guillard, FrançoisBrittle
porous media subjected to confined compression experience rate-
dependent compaction behaviour ranging from smooth stress-strain to
one with recurrent abrupt drops in stress. Micromechanical investigations
suggest that stress drops correlate with the collapse of the meso-scale
structure. As such, we develop a novel model that qualitatively gener-
ates such behaviour. A vital feature of the model is the meso-related
temperature, which characterises the fluctuating velocities at the meso-
scale and, importantly, in general to all heterogeneous porous media. We
assume that such temperature induces a loss of strength at the macro-
scale and leads to a stress drop. Additionally, the meso-related tem-
perature decays into micro-related (thermal) temperature, thus allowing
stress to recover following a stress drop. Our model exhibits the different
stress drop regimes and provides insight into the physical mechanisms
required to generate these compaction patterns in brittle porous media.
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1 Introduction

Understanding compaction phenomena in brittle porous media are of significance
for petroleum engineering, geotechnical engineering, and material science. These
materials can exhibit intriguing behaviours such as rate dependence and the
occurrence of recurrent stress drops. These stress drops have been observed in a
variety of porous materials (e.g., sand [1], snow [2,3], cereals [4,5], and foam [6])
and typically correspond to localised compaction. However, little research has
been performed to model stress drops directly, despite using continuum models
to study localisation phenomena [7].

We present a continuum model that generates these recurrent stress drops
while only using state variables relevant to general porous media. The key to the
model’s success is the meso-related temperature, which is related to the velocity
fluctuations at the meso-scale and is used as a softening mechanism for the mate-
rial. The meso-related temperature is first generated by macroscale dissipative
processes and then feeds into thermal energy through a two-stage irreversible
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process [8]. This temperature is assumed to be the physical mechanism responsi-
ble that could potentially lead to a drop in stress. The stress can recover after the
softening since the meso-related temperature is dissipated into thermal tempera-
ture. Furthermore, we show that this model generates rate-dependent behaviour
similar to that observed in puffed rice cereal [5] and dust [9], where increasing
strain rates result in the evolution from stress drops to stress undulation with
no sharp event of stress instability.

2 Model

The model developed herein depends on state variables general to all porous
media. Since porous media are composed of a solid matrix, the elastic strain
tensor εe

ij is a necessary state variable. We can define a bulk density ρ and solid
density ρs since the solid material is interspersed with pores. The evolution of the
bulk density ρ is determined by the mass balance equation, while a constitutive
assumption gives the evolution of the solid density ρs. In our model, we assume
that ρs does not change and therefore use the unstressed solid density ρ∗

s, which
is constant for a given material. The introduction of these two densities naturally
allows us to define a third state variable, the solid fraction φ = ρ

ρs
≈ ρ

ρ∗
s
, which

is critical for capturing plastic pore collapse.
The above state variables are typically applied for modelling porous media.

In addition, we also include the meso-related entropy sm to represent the meso-
scopic degrees of freedom of the meso-structure [8]. The conjugate of the meso-
related entropy is the meso-related temperature, which characterises the velocity
fluctuations of the material at the meso-scale and is related to the thermody-
namic pressure pT in a manner that will be shown in Sect. 2.2. Our model
assumes that the meso-related temperature is the phenomenological cause of
macroscale softening. For example, in sand, the meso-related temperature could
be generated from mechanical dissipation such as plastic pore collapse or grain
breakage; alternatively, in a cellular solid, the meso-related temperature is gen-
erated from the local collapse of the solid skeleton structure. These dissipative
events create new degrees of freedom that allow the local material to develop
fluctuating velocities. The fluctuating velocities then decay into thermal temper-
ature. We assume that the culmination of a potentially large number of these
meso-scale regions with fluctuating velocities could induce meso-scale weakening
and collapse, thus leading to macroscale softening.

Consequently, we consider the internal energy density u to be given by

u(ρ, εe
ij , sm) = ue(ρ, εe

ij) + um(sm), (1)

where ue and um are the elastic energy and meso-related energy densities, respec-
tively.

2.1 Elastic Internal Energy

We assume that the porous media can be modelled as a linear elastic material,
but also include a linear dependence on density ρ. Thus, we consider the following
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form for the elastic internal energy density:

ue(ρ, εe
ij) =

(
ρ

ρ∗
s

)(
K

2
εe2

v +
3
2
Gεe2

s

)
. (2)

Here εe
v = εe

ii is the volumetric elastic strain and εe
s =

√
2
3εe

ij

′
εe
ij

′ is the triaxial

elastic strain, where εe
ij

′
is the deviatoric component of the elastic stress tensor.

Finally, K and G are the bulk stiffness and the shear stiffness, respectively.
The elastic pressure and triaxial shear stress can then be given by

pe =
∂ue

∂εe
v

=
ρ

ρ∗
s

Kεe
v, (3)

qe =
∂ue

∂εe
s

= 3
ρ

ρ∗
s

Gεe
s. (4)

where the triaxial stress invariants can also be determined from the elastic stress
tensor σe

ij by pe = 1
3σe

ii and qe =
√

3
2σe

ij

′
σe

ij

′ .

2.2 Meso-related Internal Energy, Temperature,
and Thermodynamic Pressure

The meso-related internal energy was first introduced to capture the meso-
related degrees of freedom for a porous media [8] and later modified [10] to
the present form:

um(sm) =
s2m
4

. (5)

Through differentiation of the meso-related temperature is found to be

Tm =
∂um

∂sm
=

sm

2
. (6)

The evolution of the meso-related temperature was derived from the corre-
sponding entropy balance [10]. Meso-related temperature is first generated by
macroscale dissipative processes and then feeds into thermal energy through
a two-stage irreversible process [8], which is captured through a source term
from macro-scale dissipation and sink term that depends on the current state
of meso-related temperature. Furthermore, the entropy balance accounts for the
advection of the meso-related temperature, which results in a Laplacian term in
the evolution equation. The concepts of two-stage irreversibility and non-local
interactions guide us to the form of the evolution law of the meso-related tem-
perature, given by:

∂tT
2
m = km∇2Tm + D − ηT 2

m. (7)

Here km is a meso-related diffusivity constant, η is a coefficient controlling the
rate of energy sink from the meso-scale to the micro-scale, and

D = peε̇p
v + qeε̇p

s , (8)
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is the mechanical dissipation, where ε̇p
v and ε̇p

s are the plastic volumetric and
triaxial shear strain rate invariants, respectively. For simplicity, we assume η is
a constant. Note that the current paper seeks to explore only local phenomena,
and thus the second gradient term in Eq. (7) will be neglected from here on.

The two-stage irreversibility concept results in a cascading of energy from
meso-related temperature to the micro-related (thermal) temperature T , which
results in the following form of the micro-related temperature evolution:

∂tT = kT ∇2T +
η

cT ρ
T 2

m, (9)

where kT is the micro-related diffusivity coefficient and cT is the specific thermal
heat capacity of the porous media.

The thermodynamic pressure can be given through the following expression

pT = − ∂(u/ρ)
∂(1/ρ)

∣∣∣∣
sm
ρ ,εe

ij

= T 2
m. (10)

We then recognise that the total pressure p consists of two terms in this model,
p = pe + pT .

2.3 Plastic Strain Rates and Solid Fraction Evolution

Generally, many porous materials exhibit irreversible deformations with no
apparent purely elastic regime, e.g., puffed rice cereals and sand. As such, we
use a combination of bounding surface plasticity [11] and h2plasticity [12] in a
similar manner to [10], such that the material undergoes plastic deformations at
any load. Moreover, mechanical dissipation grows instantaneously upon loading,
which results in a continuous rise in the thermodynamic pressure.

From hydrodynamic derivations, it was determined that the elastic stresses
are equivalent to the effective stresses [13]. Thus, we apply similar assumptions
of effective stress theory that the bounding surface y and loading surface ya

depend on the elastic (effective) stresses. The bounding surface in this model is

y =
(

2pe

py
− 1

)2

+
(

2qe

Mpy

)2

− 1 = 0, (11)

where M is the slope of the critical state line (CSL) and py is the isotropic yield
pressure, which depends on the solid fraction and thermodynamic pressure, as
will be discussed later.

Importantly, an elliptical surface bounds both pe and qe, and as such it
guides the plastic strains under both shear and pressure loading conditions.
Furthermore, elliptical surfaces such as the one chosen for y have been used in
modelling of sands [14], snow [15,16], and carbonate rock [17]. While specific
shapes of a yield surface may better capture the phenomenology of particular
materials, changing the shape will not negate the generation of a stress drop as
long as the stress is capped in both pe and qe.
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Now a loading surface that passes through the current stress state can be
determined. We choose the loading surface to take the following form

ya =
(

2pe

ξpy
− 1

)2

+
(

2qe

ξMpy

)2

− 1 = 0, (12)

where ξ is determined from the above equation using the current state variables.
The mapping variable ξ is bounded between 0 and 1, and when ξ = 1 the loading
surface coincides with the bounding surface. This ensures that at any non-zero
stress state that ya = 0 and guarantees the generation of plastic processes.

The rates of the plastic strain invariant are

ε̇p
v = ξ|λa|∂ya

∂pe
, (13)

ε̇p
s = ξ|λa|∂ya

∂qe
, (14)

where λa is the auxiliary non-negative plasticity multiplier. The auxiliary non-
negative plasticity multiplier is solved for by the consistency condition and tem-
porarily assuming ξ = 1. However, the rates of plastic strains are reduced by
taking the actual value of ξ from Eq. (12). Thus, the stress state progresses away
from the current loading surface for ξ < 1. However, if ξ = 1, then λa would keep
the stress state on the loading surface which coincides with the bounding surface
in this instance. Additionally, the mechanical dissipation is always non-negative
since an associative flow rule was chosen and the loading surface is elliptical.

By using the conservation of mass, the evolution of solid fraction can be
expressed as

∂tφ = φ(ε̇p
v + (1 − τ)ε̇e

v), (15)

where τ can either be related to the solid material’s Poison ratio [18] or equiv-
alently a relative solid fraction [10]. In this paper, we assume that only plastic
volumetric processes produce changes in the solid fraction (τ = 1). Thus, Eq. 15
reduces to φ̇ = φε̇p

v.
Following typical conventions of modelling porous media, we take the size of

the bounding surface to enlarge with increasing density but also assume that it
contracts with a rise in thermodynamic pressure (kinetic softening). To account
for density hardening, py is taken to depend nonlinearly on φ like that used for
snow [19]. The introduction of kinetic softening is motivated by the concepts
introduced in Sect. 2.2 and experimental findings in aqueous foams [20] and
granular solids [21], where it was observed that stress fluctuations could induce
yielding. To this end, we assume py declines as a function of the kinetic number
Ik = pT

pe+pT , which is bounded between 0 and 1 [10]. The specific form of the
isotropic yield pressure is

py = β∗K
(
(1 − φ)−3 − 1

)
e−cIk , (16)
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where β∗ is a dimensionless positive constant, and c is a positive constant, which
characterises the material sensitivity to kinetic softening. The choice of an expo-
nential function ensures that when pT = 0, the material undergoes no softening.
Moreover, as φ → 0, the yield stress approaches zero, which could be further
accentuated if pT � pe (Ik → 1). Notably, the dependence of the isotropic yield
pressure on the thermodynamic pressure results in a rate-dependent plasticity
model, which will be shown in Sect. 3.1.

3 Results

All simulations are oedometric tests with a constant boundary velocity V , similar
to typical experimental conditions. The material parameters were assumed and
chosen to be reasonable for brittle highly porous media and are used unless
otherwise specified. As such, we assume that the initial solid fraction φ0 = 0.25
to represent materials such as puffed rice cereal [22], dust particles [9], and
calcareous sand [23]. The shear stiffness is determined based on a chosen bulk
stiffness K and Poisson’s ratio ν by G = 3K(1−2ν)

2(1+ν) . For Poisson’s ratio, we
assume ν = 0.25, which is within the range of typical values for sand [24] and
rock [25]. We assume that M = 1.5 is relevant for puffed rice cereals as the grains
are angular and internally porous, similar to calcareous sand [26]. However, we
explore the effect of different values in Sect. 3.2. Finally, we choose c = 10 as
the value was found to generate repetitive stress drops. Table 1 summarises the
chosen constants for the simulations.

Table 1. Model constants used for the simulations, unless otherwise indicated in the
text.

K (kPa) ν β∗ M ρ∗
s ( kg

m3 ) φ0 c ε̇v (s−1) η (s−1)

103 0.25 1
10

1.5 600 0.25 10 0.01 103

3.1 Rate Dependence and Density Dependence

To relate to the dependencies observed in experiments, we explore the rate sen-
sitivity of the model, showing that it can conceptually capture diverse rate-
dependent phenomena. The simulations use a constant boundary velocity V ,
which is varied by several orders of magnitudes in the same manner that was
done experimentally for puffed rice cereals [27]. Note that this results in an
increasing instantaneous volumetric strain rate ε̇v throughout the simulation.

For all scenarios in Fig. 1, the normalised axial stress initially increases with
a simultaneous rise in pT and φ. This steady rise continues until there is a sharp
runaway of pT (or meso-related temperature), which can be interpreted as the
destruction of the meso-structure (kinetic softening). Simultaneously, there is a
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Fig. 1. The effect of strain rate and initial density on the constitutive behaviour. Panels
(a–c) shows the response for three different velocities V . Here, the effects are shown for
the evolution of normalised axial stress σ/K (top), normalised thermodynamic pressure
pT /K (middle), and solid fraction φ (bottom), for three different values of initial solid
fractions, φ0, all against εv.

sharp increase in φ and a rapid decline in the normalised axial stress. However,
for the chosen constants, the sink term in Eq. (7) mitigates the runaway events
when it becomes larger than the mechanical dissipation, which causes a decline
in pT (middle row). The decline in pT allows for the normalised axial stress
to recover. We imagine this phenomenological cycle representing competition
between the destruction of the meso-structure and density hardening, which
supports the development of recurrent drops in stress (top plots).

From Fig. 1, it is evident that the model exhibits rate-dependent behaviour,
particularly at low initial density (φ0 = 0.2). For higher V , the thermodynamic
pressure attains higher magnitudes and takes more time to dissipate into ther-
mal temperature, as shown by the middle row of subplots. This results in a
build-up of the meso-related temperature over time for the highest velocity.
However, it should be noted that the model shows little change in behaviour at
velocities below V = 0.01 m s−1. Furthermore, the thermodynamic pressure’s
time-dependent relaxation results in a smoother increase in φ during a stress
drop and generates a smoother transition from the decline in axial stress to
stress recovery. Importantly, as φ0 increases, the model predicts a transition from
abrupt stress drops to smoother undulating drops in stress as observed exper-
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imentally in dust particles and modelled for snow. Furthermore, Fig. 1 shows
that under increased strain rates, the σ-εv curve becomes smoother, which is in
line with experimental observations [5]. While the model qualitatively predicts
the transition from abrupt drops in stress to a smooth σ-εv curve, it does not
quantitatively agree with these behaviours at the appropriate initial densities or
velocities. The agreement with a specific material could be improved to better
capture phenomenology by using a density-dependent η or c value or a term for
viscous hardening.

3.2 Critical State Slope

Fig. 2. The effect of the slope of the CSL on the constitutive behaviour. Panels (a-
c) shows the response for three different M (in Eq. 11). Here, the effects are shown
for the evolution of the normalised axial stress σ/K (top), normalised thermodynamic
pressure pT /K (middle), and solid fraction φ (bottom), all against εv.

Initially, M = 1.5 was assumed to be potentially reasonable for puffed rice cereals
and calcareous sand, but now we explore the effect on the constitutive response.
It is important to explore this as some porous materials could be relatively
spherical and smooth, which leads to a lower M , such as glass beads, and still
generate stress drops [7]. In granular materials, M is correlated with the internal
friction angle, and thus one might expect that it could impact the material’s
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susceptibility to the destruction of the meso-scale. Thus, M was varied from 1
to 2 to identify its impact on the model response. In this section we prescribe
V = 0.01 m s−1.

From Fig. 2, the decrease of axial stress during an axial stress drop is signifi-
cantly larger and occurs less frequently for a low M , which matches experimen-
tal observations in glass beads [9]. These substantial drops in stress correspond
to a significant increase in solid fraction φ and thermodynamic pressure. We
interpret this as a result of low internal friction, resulting in more pronounced
destruction of the meso-scale structure from velocity fluctuations at the meso-
scale (meso-related temperature). As M increases, the stress drop magnitudes
decrease, where in granular media, this phenomenology could be a result of
higher internal friction that prohibits the destruction of the meso-scale. More-
over, these drops increase in frequency and result in a higher amount of plastic
pore collapse (bottom plots).

4 Conclusions

Brittle porous media have been shown to exhibit fascinating rate-dependent
compaction patterns. We develop a constitutive model, which generates recurrent
abrupt stress drops and reproduces the rate-dependent transitions in compaction
as observed experimentally. The critical component to the generation of these
features is the introduction of the meso-related temperature, which captures
in a phenomenological manner the entropy production associated with meso-
scale velocity fluctuations. This temperature is assumed to destroy the meso-
scale structure in heterogeneous porous media. Thus, we use the meso-related
temperature to induce macroscale kinetic softening.

The occurrence and frequency of the abrupt recurrent stress drops are depen-
dent on the competition between the destruction of the meso-structure (kinetic
softening) and density hardening. Moreover, internal friction within the material
is accounted for, which can moderate the magnitude of stress drops. Thus, the
model can reproduce the behaviours of materials ranging from glass beads to
cereals. Additionally, the time-dependent nature of sinking meso-related tem-
perature to micro-related temperature results in rate dependence similar to that
observed in puffed rice cereal [27] and dust particles [9], where the stress drops
transition from abrupt to undulating with a reduced magnitude. However, these
results occurred at different initial densities than those expected from exper-
imental results. A better quantitative agreement could be achieved by using
state-dependent functions for c or η or including a viscous hardening term, but
these are left for future research.

While this model was developed to be general for all porous media that
undergo pore collapse and density hardening, it could be enhanced to capture
specific material’s behaviour. The extension of the model to specific materials
should be possible as the model’s behaviour emerges from state variables that are
useful in describing all porous media. For example, in the case of sand, the combi-
nation of breakage and pore collapse contributes to plastic dissipative processes
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and could be accounted for by combining this model with breakage mechan-
ics [18]. Alternatively, the model could be tuned to reproduce the behaviours of
metallic foam by applying a yield surface shape known to produce behaviours
associated with such materials.
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