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Abstract. Because of their non-associated plastic behavior, the failure modes of
geomaterials are much more diverse than those of materials following associated
plasticity. For instance, it is well established that failure can occur before reaching
the plastic limit surface and before the vanishing of the determinant of the acoustic
tensor. This is well illustrated by the static liquefaction of loose sand subjected
to undrained triaxial tests in the lab or by the recent failure of Brumadinho dam
in 2019. In the wake of the pioneering work of Hill [4], the second-order work
criterion, as proposed by Nicot et al. [11], Wan et al. [18], has been shown to be
the most general criterion to anticipate failure for non-associated materials. This
criterion defines a bifurcation domain corresponding to a set of states for which
there exists a potential for failure if (i) the material is subjected to an incremental
load leading to the vanishing of the second-order work, (ii) the mode of control
allows for an inertial transition through a sudden burst of kinetic energy. In this
work, it is proposed to extend the concept of bifurcation domain from the material
point scale to the engineering structure scale. In this respect, an earth dam is
modeled using the finite element software Cast3M [3]. By virtue of directional
analyses carried out both numerically and analytically at different location points
in the dam body, the set of material points that belongs to the bifurcation domain is
identified. This enables us to map the spatial domain of the damwhere conditional
failure may occur. This map can be used to anticipate unsafe changes in loading
conditions on the dam boundaries. Such a contribution proposes a modern and
innovative view of failure in geomaterials at the engineering scale, in particular
with respect to the risk of liquefaction.
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1 Introduction

A correct design of engineering structures relies on an accurate prediction of failure
modes. Historically, the mechanical stability analysis of earth dikes or dams has been
assessed thanks to Limit Equilibrium Methods (LEM) [2, 15, 16]. Such methods postu-
late the existence of a failure surface with a given geometry (usually circular) and the
equilibrium of the expected sliding mass is solved by dividing it into slices in contact.
Repeating the procedure for several failure surfaces enables us to assess the stability of
the structure. In this approach, the failure mechanism is postulated a priori, which leads
to the definition of an upper bound for mechanical stability. Since there could exist other
failure mechanisms not accounted for, safety margins are considered with the use of a
large safety factor (the ratio between resistive forces over the maximal resistive forces
allowed by the sliding criterion). LEM methods are still frequently used in engineering
approaches, because of their simplicity and even if they generally lead to overdesign.

With the increase in computer power, more refined methods were proposed based on
the use of Finite ElementModeling (FEM). Based on the knowledge of the material con-
stitutive behaviors and the designed geometry, stress and strain fields can be computed.
Zones in which the mechanical state is close to the failure limit are then identified, as
well as potential failure surfaces. As long as the numerical computation converge, the
static equilibrium of the structure is obtained. In this sense, FEM provides a lower bound
for mechanical stability. However, to account for uncertainties in determining material
properties, a safety factor is also used. In FEM framework, it can be defined with the use
of the shear strength reduction technique [21]. This technique consists in decreasing the
shear resistance of the soil until failure occurs, which is often detected in practice from
a lack in numerical convergence.

In both cases, the standard engineering methods used to assess the mechanical sta-
bility of earth dikes or dams relate the current stress state to the plastic ultimate state
that the soil can bear without considering any perturbation. However, geomaterials are
known to exhibit a non-associated plastic behavior. As a result, their failure modes are
much more diverse than those of materials following associated plasticity. They can
fail before reaching the plastic limit surface through the formation of shear bands for
instance, or through static liquefaction. The formation of shear bands is well detected
by the vanishing of the determinant of the acoustic tensor [8, 14] but not the static lique-
faction (frequently observed for loose sand subjected to undrained triaxial tests) which
requires the use of the second-orderwork criterion [4, 11, 18, 19]. The second-orderwork
criterion corresponds to the loss of positive definitiveness of the elasto-plastic matrix,
i.e. when the determinant of the symmetric part of this matrix is negative. For associ-
ated plasticity, the elasto-plastic matrix is symmetric and material bifurcations appear
therefore on the plastic limit surface. But for non-associated plasticity, the vanishing
of the second-order work occurs strictly before the plastic limit conditions is fulfilled
and before the vanishing of the accoustic tensor [1, 18]. Under the assumptions of small
strains and negligible geometrical effects, the second-order work criterion reads:

∃(dσ , dε) linked by the constitutive behavior such that W2 = dσ : dε < 0 (1)

The second-orderwork criterion defines the concept of bifurcation domain at thematerial
point scale which corresponds to the set of states (defined by states variables) for which
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conditional failure is expected [17, 18]. For such states, a proper loading direction and
a proper mode of control will trigger material failure in the form of an inertial transition
from a quasi-static to a dynamic regime [19]. Such potential for failure is assessed at
the material point scale thanks to the use of directional analyses [19], which consists in
applying any possible stress or strain perturbation form a reference state, recording the
material response and evaluating the sign of the corresponding second order work.

At the engineering structure scale, the vanishing of the second-order work was used
so far only along a given loading path in order to anticipate the failure of the structure
[5, 7, 10, 13, 20]. Such approaches have proved to be relevant to detecting the onset of
instabilities when the engineering structure is subjected to a monotonic change of its
boundary conditions, but such approaches fails to predict whether there exists any critical
incremental perturbations detrimental to safety for a structure at equilibrium initially.
To the best of our knowledge, only the work of Prunier, Laouafa et al. [6, 12] provided
some clues to answer this question at the scale of an engineering structure, by observing
the vanishing of the determinant of the global stiffness matrix that relates to unknown
degrees of freedom of a FEM problem. Such an approach is however computationally
demanding because the size of the matrix is huge.

The present work intends to apply the concept of bifurcation domain at the engineer-
ing structure scale. FEM simulations are conducted for a dam made of a non-associated
Drucker-Prager elasto-plastic material. For each point of the dam, strain control direc-
tional analyses are conducted from an analytical point of view to detect which points of
the dam are in the bifurcation domain from a material scale viewpoint. By analyzing the
directions of the instability cone thus detected, the existence of potential internal failure
surfaces are estimated. The present study intends to generalize the use of second-order
work at the scale of an engineering structure, and the notion of conditional stability in
mechanical stability analyses. In the context of dam safety, we hope that our methodol-
ogy may be used to better anticipate failure through static liquefaction as illustrated by
the Brumadinho dam failure in 2019 in Brazil.

2 Dam Modeling with FEM

In this study, a simple trapezoidal dam is modeled in plane strain conditions with the
finite element software Cast3M [3]. The dam body and the foundation are both assumed
to behave as a standard non-associated elasto-plastic material following Drucker-Prager
criterion. The constitutive behavior is summarized as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Elasticity (Hooke law) : σ = λTr(εe)1 + 2μεe

Strain decomposition: ε = εe + εp

Drucker-Prager yield surface: f (σ ) = αTr(σ ) + σeq < K
Drucker-Prager plastic potential: g(σ ) = βTr(σ ) + σeq

Non-associated flow rule: ε̇p = η̇
∂g
∂σ

= η̇
(
β1 + 3

2
σ

σeq

)
, η̇ ≥ 0

Hardening (not activated) : K̇ = H ε̇
p
eq, K ∈ [K0,Kmax]

(2)

In the above equations, the invariants σeq and ε
p
eq are expressed as σeq =

√
3
2 s : s with

s = σ − 1
3Tr(σ )1 the deviatoric stress tensor, and ε

p
eq =

√
2
3ε

p
dev : ε

p
dev with ε

p
dev = εp −
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1
3Tr(ε

p)1 the deviatoric part of the plastic strain. In all this study, continuum mechanics
sign convention is used with positive traction and extension. Note that hardening can be
accounted for if H > 0.

In plane strain conditions, the plastic coefficients α, β and K can be expressed in
terms of friction angle ϕ, cohesion c′ and dilatancy angle ψ (see for instance [9]), while
the elastic Lamé coefficients relates to Young’s modulus E and Poisson’s ratio ν as:

{
λ = Eν

(1+ν)(1−2ν)

μ = E
2(1+ν)

,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

α =
√
3 tan ϕ√

9+12 tan2 ϕ

β =
√
3 tanψ√

9+12 tan2 ψ

K0 = 3
√
3c′√

9+12 tan2 ϕ

. (3)

The material parameters and the geometrical characteristics of the dam are summarized
in Table 1. The dam has a drainage system located on the interface with the foundation
and starting 10 m downstream from the middle of the crest.

The static equilibrium of the dam is computed with a simplified two steps procedure:

1. In the first step, gravity is progressively increased while the water reservoir remains
empty. The dam geometry is set once for all and the construction of a real dam in
lifts is not accounted for. Thus, this step corresponds to an approximate modeling of
the dam construction.

2. Then, a pore water pressure field is applied by gradually increasing the pore water
pressure from zero to the values corresponding to a column of 7 m in the dam
reservoir. This step corresponds roughly to the filling of the dam reservoir. The
water pressure field is obtained from a separate hydraulic simulation performed in
Cast3M with an horizontal hydraulic permeability of 10−6 m/s in the dam body and
in the foundation and of 10−3 m/s in the drainage system. In both cases, anisotropic
permeability is considered with the vertical permeability being ten times larger.
The pore water pressure field is applied in the form of external forces on the mesh
elements according to local pressure gradients.

Once themechanical equilibrium is achieved, the stress and strain fields are extracted
to be analyzed from a material point scale with respect to the concept of bifurcation
domain.

3 Material Scale Stability Analysis

If we limit our analyses to divergence instabilities, it is well established that the most
general criterion to study these bifurcations is the so-called second-order work criterion
(1) as introduced by Hill [4] and reviewed extensively in [18]. Based on this definition,
the mechanical stability of a material is assessed thanks to directional analyses. For
instance, this can be performed in the strain space, by imposing dε and recording dσ
according to the constitutive behavior. In the most general case, dε resides in a space of
six dimensions. However, by considering the principal strain directions, the directional
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analysis can be restricted to the diagonal dε with only three independent components.
By use of the spherical coordinates, dε is imposed as:

⎧
⎨

⎩

dεI = dε cosφ sin θ

dεII = dε sin φ sin θ

dεIII = dε cos θ

(4)

with θ ∈ [0, π ] and φ ∈ [0, 2π ]. θ and φ correspond to the direction of the incremental
strain perturbation in the principal strain space.

For the constitutive behavior summarized in Eq. (2), an analytical expression can be
derived forW2. The expression depends on whether plasticity is activated, the plasticity
activation condition being f (σ + dσ e) > K where dσ e = λTr(dε)1 + 2μdε.

– In the elastic case, f (σ + dσ e) < K , and the second-order work reads:

We
2 = KcompTr

2(dε) + 2μ||dεdev||2 (5)

– In the plastic case, f (σ + dσ e) > K , and the second-order work reads:

Wp
2 = We

2 −
[
f (σ )−K

3 + αKcompTr(dε) + μ
s:dεdev

σeq

][
βKcompTr(dε) + μ

s:dεdev
σeq

]

αβKcomp + μ
3 + H

9
s:dεpdev
σeqε

p
eq

(6)

In the above equations, Kcomp = λ + 2μ/3 is the compressibility modulus, dεdev
and s the deviatoric parts of the incremental strain and the stress tensors respectively.

Note that, plasticity needs to be activated in order to observe the vanishing of the
second-order work in (6) as We

2 ≥ 0. In that case, it is interesting to underline that
hardening (H > 0) will limit the possibility to observe the vanishing of the second-
order work in (6). If the initial state is on the plastic yield surface (f (σ ) = K), Eq. (6)
simplifies a little. And for the case of associated plasticity (α = β) with no hardening
(H = 0), the use of Cauchy-Schwarz inequality shows thatW2 is always greater or equal
to zero1.

Based on the analytical expression given in Eqs. (5) and (6), the normalized second-
order workWnorm

2 = W2||dσ ||||dε|| can be plotted with a spherical representation for all the
points of the dam body as illustrated in Fig. 1.

In Fig. 1, an elliptical cone of instability is observed in the principal strain space for
some points of the dam for incremental loading directions corresponding generally to
dεI > 0 (extension), dεII < 0 (compression) and dεIII > 0 (extension). Such results are
consistent with the usual instability cone directions observed in the literature [13, 19].
In the case where dεI + dεII = 0 (close to the situation observed in Fig. 1, the cone
direction corresponds to pure shear in the plane (eI , eII ) with an extension in the out of
plane direction. The elliptical shape of the instability cone has been previously reported
in [13] for different constitutive relations.

1 Vanishing requires dεpdev to be positively co-linear to s andTr(dε) = α
√
6||dεpdev|| > 0 (increase

in volume).
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Fig. 1. Spherical representation in the principal strain space of the normalized second-order work
for two points of the dam body: out of (left) and in (right) the bifurcation domain. The set of loading
directions withW2 < 0 forms an elliptic cone of instability characterized by a mean direction and
a maximal opening angle.

4 Bifurcation Domain Definition and Instability Cone Directions

In the previous section, themechanical stability was assessed from amaterial scale view-
point. In order to assess the mechanical stability of an engineering structure according to
Eq. (1), there is a need to define the bifurcation domain Ωbif of an engineering structure

x ∈ Ωbif if and only if ∃(dσ , dε), such that
dσ = C(σ (x)) : dε and W2 = dσ : dε < 0

(7)

where C(σ (x)) is the tangent constitutive tensor of the material located at point x.
For the points located in the bifurcation domain, there exists a set of incremental

directions that will lead to material failure (provided that the imposed perturbation on
the dam boundaries allows for an increase in kinetic energy). The cone direction (θc, φc)

(illustrated in Fig. 1) corresponds to an incremental strain tensor dεcone with principal
strain values (dεI , dεII , dεIII ) expressed according to (4) and principal directions coin-
ciding with the principal strain directions (by definition of the set of incremental strain
considered in the directional analysis). Because of the plane strain condition, one prin-
cipal strain direction is the out of plane direction z. The two other directions lie in the
(x, y) plane and depends on the strain field.

A representation of the dam bifurcation domain together with the corresponding
strain perturbation leading to the vanishing of the second order work (i.e. the cone
directions) is given in Fig. 2.

For the damconsidered, the bifurcationdomain is quite extensive and looks consistent
with the shapes of failure observed in situ. However, one can notice that most of the cone
directions have a non negligible off plane component, making them not compatible with
plane strain mechanisms. If we restrict the admissible failure mechanisms to plane strain
conditions (this correspond to the equatorial plane in Fig. 1), the bifurcation domain is
largely reduced as illustrated in Fig. 3. It no longer spans across the dam body.

As a result, we can conclude from these graphs that there exists some plausible
mechanisms that can lead to the failure of the dam considered; provided that the plane
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Fig. 2. Bifurcation domain of a dam. For each material point in the bifurcation domain, the cone
direction is represented. Such representation corresponds to local deformation mechanisms likely
to trigger underlying material instability.

Fig. 3. Bifurcation domain of a dam restricted to plane strain perturbations. For each material
point in the bifurcation domain, the plane strain cone direction is represented as in Fig. 2.

strain assumption is lifted. These mechanisms cannot develop fully without allowing an
extension of the dam in the out-of-plane direction.

5 Conclusion

In this paper, we have proposed a method to extend the concept of bifurcation domain
from the material scale viewpoint to the scale of engineering structures in the form of
bifurcationmaps. The use of this advanced criterion enables us to think outside the box to
detect potential failuremodes that are not accounted for inmore standard approaches and
with more restrictive instability criteria. In the present example, perturbations with an
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out of plane extension of the dam are probably able to activate a significant proportion of
the bifurcation domain. Such perturbations are likely to exist in practice since the plane
strain condition is strictly valid only for a dam of infinite out of plane length. Out-of-
plane extension might come for instance from displacements of the lateral supporting
points or from the digging of a transverse trench in maintenance work or after over-
toping erosion. A 3D FEM modeling of the dam should be considered to simulate such
perturbations.

In the present study, an analytical expression of the second-order work criterion has
been derived for the specific constitutive behavior of Eq. (2). However, it should be
underlined that directional analyses can be performed numerically at the material point
scalewith any kind of rate-independent constitutive behavior. Among others, this include
the use of micromechanical models [17] or even discrete element modeling (DEM) [19]
in case FEMxDEMapproaches are considered. A proof of feasibility has been performed
in the present study (not shown here) and the analytical results of Eqs. (5) and (6) have
been recovered with auxiliary FEM computations on a unit volume of material. Before
conducting the directional analysis, this unit volume was pre-loaded according to the
stress states encountered in the dam body.

Even if the present study highlights the potential use of the bifurcation domain
concept at the scale of an engineering structure, there is now an inverse problem to solve
to identify the adverse changes in the boundary conditions that will effectively trigger the
underlying material instabilities. Eventually, we will need to assess whether the mode
of control may allow the inertial transition to take place leading to the dam liquefaction.
The answers to these questions are the last missing links to making an efficient use of
the second-order work criterion in practical design of engineering structures.
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