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Preface

The book is a collection of contributions to the 12th International Workshop on
Bifurcation and Degradation in Geomechanics (IWBDG2022) held 28 November–1
December 2022 (scheduled for the year 2020 but moved to 2022 due to COVID
restrictions) at the University ofWestern Australia, in Perth, Australia. IWBDG2022
continues the series of workshops started in Karlsruhe, Germany, in February 1988.
Since then, the workshops were held in Gdansk, Poland, September 1989; Aussois,
France, September 1993; Gifu, Japan, September 1997; Perth, Australia, November
1999;Minneapolis,USA, June2002;Crete,Greece, June2005;LakeLouise,Canada,
May 2008; Porquerolles Island, France, May 2011; Hong Kong, China, May 2014;
and Limassol, Cyprus, May 2017. The proceedings are published in Springer Series
in Geomechanics and Geoengineering. The papers report new achievements in the
theoretical and experimental investigation of instability, bifurcation, localisation and
fracturing in geomaterials and the accompanying seismicity with applications to
the analysis and monitoring of dangerous deformations and failures in geomaterials
and engineering structures. The papers present recent advances in theoretical and
experimental methods. Each paper is peer-reviewed by two experts in the field. The
book is intended for academics, engineers and research students, working in the fields
of geomechanics, rock mechanics and geotechnical engineering.

We thank all authors for their timely submission and participation in IWBDG2022,
the reviewers of the papers and members of Scientific and Organising Committees
for their support.

Crawley, WA, Australia Elena Pasternak
Arcady Dyskin
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Mechanical Stability Analysis of Engineering
Structures with Use of the Bifurcation Domain

Concept

Antoine Wautier1(B), Anthony Mouyeaux1, François Nicot2,3, Richard Wan4,
and Félix Darve5
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2 Université Grenoble Alpes, INRAE, UR ETNA, St-Martin-d’Hères, France
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Bourget-du-Lac, France
4 Civil Engineering Department, University of Calgary, Calgary, AB, Canada

5 Laboratoire 3SR UMR5521, Université Grenoble Alpes, CNRS, G-INP, Grenoble, France

Abstract. Because of their non-associated plastic behavior, the failure modes of
geomaterials are much more diverse than those of materials following associated
plasticity. For instance, it is well established that failure can occur before reaching
the plastic limit surface and before the vanishing of the determinant of the acoustic
tensor. This is well illustrated by the static liquefaction of loose sand subjected
to undrained triaxial tests in the lab or by the recent failure of Brumadinho dam
in 2019. In the wake of the pioneering work of Hill [4], the second-order work
criterion, as proposed by Nicot et al. [11], Wan et al. [18], has been shown to be
the most general criterion to anticipate failure for non-associated materials. This
criterion defines a bifurcation domain corresponding to a set of states for which
there exists a potential for failure if (i) the material is subjected to an incremental
load leading to the vanishing of the second-order work, (ii) the mode of control
allows for an inertial transition through a sudden burst of kinetic energy. In this
work, it is proposed to extend the concept of bifurcation domain from the material
point scale to the engineering structure scale. In this respect, an earth dam is
modeled using the finite element software Cast3M [3]. By virtue of directional
analyses carried out both numerically and analytically at different location points
in the dam body, the set of material points that belongs to the bifurcation domain is
identified. This enables us to map the spatial domain of the damwhere conditional
failure may occur. This map can be used to anticipate unsafe changes in loading
conditions on the dam boundaries. Such a contribution proposes a modern and
innovative view of failure in geomaterials at the engineering scale, in particular
with respect to the risk of liquefaction.

Keywords: Mechanical stability · Second-order work criterion · Engineering
scale · Liquefaction
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1 Introduction

A correct design of engineering structures relies on an accurate prediction of failure
modes. Historically, the mechanical stability analysis of earth dikes or dams has been
assessed thanks to Limit Equilibrium Methods (LEM) [2, 15, 16]. Such methods postu-
late the existence of a failure surface with a given geometry (usually circular) and the
equilibrium of the expected sliding mass is solved by dividing it into slices in contact.
Repeating the procedure for several failure surfaces enables us to assess the stability of
the structure. In this approach, the failure mechanism is postulated a priori, which leads
to the definition of an upper bound for mechanical stability. Since there could exist other
failure mechanisms not accounted for, safety margins are considered with the use of a
large safety factor (the ratio between resistive forces over the maximal resistive forces
allowed by the sliding criterion). LEM methods are still frequently used in engineering
approaches, because of their simplicity and even if they generally lead to overdesign.

With the increase in computer power, more refined methods were proposed based on
the use of Finite ElementModeling (FEM). Based on the knowledge of the material con-
stitutive behaviors and the designed geometry, stress and strain fields can be computed.
Zones in which the mechanical state is close to the failure limit are then identified, as
well as potential failure surfaces. As long as the numerical computation converge, the
static equilibrium of the structure is obtained. In this sense, FEM provides a lower bound
for mechanical stability. However, to account for uncertainties in determining material
properties, a safety factor is also used. In FEM framework, it can be defined with the use
of the shear strength reduction technique [21]. This technique consists in decreasing the
shear resistance of the soil until failure occurs, which is often detected in practice from
a lack in numerical convergence.

In both cases, the standard engineering methods used to assess the mechanical sta-
bility of earth dikes or dams relate the current stress state to the plastic ultimate state
that the soil can bear without considering any perturbation. However, geomaterials are
known to exhibit a non-associated plastic behavior. As a result, their failure modes are
much more diverse than those of materials following associated plasticity. They can
fail before reaching the plastic limit surface through the formation of shear bands for
instance, or through static liquefaction. The formation of shear bands is well detected
by the vanishing of the determinant of the acoustic tensor [8, 14] but not the static lique-
faction (frequently observed for loose sand subjected to undrained triaxial tests) which
requires the use of the second-orderwork criterion [4, 11, 18, 19]. The second-orderwork
criterion corresponds to the loss of positive definitiveness of the elasto-plastic matrix,
i.e. when the determinant of the symmetric part of this matrix is negative. For associ-
ated plasticity, the elasto-plastic matrix is symmetric and material bifurcations appear
therefore on the plastic limit surface. But for non-associated plasticity, the vanishing
of the second-order work occurs strictly before the plastic limit conditions is fulfilled
and before the vanishing of the accoustic tensor [1, 18]. Under the assumptions of small
strains and negligible geometrical effects, the second-order work criterion reads:

∃(dσ , dε) linked by the constitutive behavior such that W2 = dσ : dε < 0 (1)

The second-orderwork criterion defines the concept of bifurcation domain at thematerial
point scale which corresponds to the set of states (defined by states variables) for which
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conditional failure is expected [17, 18]. For such states, a proper loading direction and
a proper mode of control will trigger material failure in the form of an inertial transition
from a quasi-static to a dynamic regime [19]. Such potential for failure is assessed at
the material point scale thanks to the use of directional analyses [19], which consists in
applying any possible stress or strain perturbation form a reference state, recording the
material response and evaluating the sign of the corresponding second order work.

At the engineering structure scale, the vanishing of the second-order work was used
so far only along a given loading path in order to anticipate the failure of the structure
[5, 7, 10, 13, 20]. Such approaches have proved to be relevant to detecting the onset of
instabilities when the engineering structure is subjected to a monotonic change of its
boundary conditions, but such approaches fails to predict whether there exists any critical
incremental perturbations detrimental to safety for a structure at equilibrium initially.
To the best of our knowledge, only the work of Prunier, Laouafa et al. [6, 12] provided
some clues to answer this question at the scale of an engineering structure, by observing
the vanishing of the determinant of the global stiffness matrix that relates to unknown
degrees of freedom of a FEM problem. Such an approach is however computationally
demanding because the size of the matrix is huge.

The present work intends to apply the concept of bifurcation domain at the engineer-
ing structure scale. FEM simulations are conducted for a dam made of a non-associated
Drucker-Prager elasto-plastic material. For each point of the dam, strain control direc-
tional analyses are conducted from an analytical point of view to detect which points of
the dam are in the bifurcation domain from a material scale viewpoint. By analyzing the
directions of the instability cone thus detected, the existence of potential internal failure
surfaces are estimated. The present study intends to generalize the use of second-order
work at the scale of an engineering structure, and the notion of conditional stability in
mechanical stability analyses. In the context of dam safety, we hope that our methodol-
ogy may be used to better anticipate failure through static liquefaction as illustrated by
the Brumadinho dam failure in 2019 in Brazil.

2 Dam Modeling with FEM

In this study, a simple trapezoidal dam is modeled in plane strain conditions with the
finite element software Cast3M [3]. The dam body and the foundation are both assumed
to behave as a standard non-associated elasto-plastic material following Drucker-Prager
criterion. The constitutive behavior is summarized as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Elasticity (Hooke law) : σ = λTr(εe)1 + 2μεe

Strain decomposition: ε = εe + εp

Drucker-Prager yield surface: f (σ ) = αTr(σ ) + σeq < K
Drucker-Prager plastic potential: g(σ ) = βTr(σ ) + σeq

Non-associated flow rule: ε̇p = η̇
∂g
∂σ

= η̇
(
β1 + 3

2
σ

σeq

)
, η̇ ≥ 0

Hardening (not activated) : K̇ = H ε̇
p
eq, K ∈ [K0,Kmax]

(2)

In the above equations, the invariants σeq and ε
p
eq are expressed as σeq =

√
3
2 s : s with

s = σ − 1
3Tr(σ )1 the deviatoric stress tensor, and ε

p
eq =

√
2
3ε

p
dev : ε

p
dev with ε

p
dev = εp −
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1
3Tr(ε

p)1 the deviatoric part of the plastic strain. In all this study, continuum mechanics
sign convention is used with positive traction and extension. Note that hardening can be
accounted for if H > 0.

In plane strain conditions, the plastic coefficients α, β and K can be expressed in
terms of friction angle ϕ, cohesion c′ and dilatancy angle ψ (see for instance [9]), while
the elastic Lamé coefficients relates to Young’s modulus E and Poisson’s ratio ν as:

{
λ = Eν

(1+ν)(1−2ν)

μ = E
2(1+ν)

,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

α =
√
3 tan ϕ√

9+12 tan2 ϕ

β =
√
3 tanψ√

9+12 tan2 ψ

K0 = 3
√
3c′√

9+12 tan2 ϕ

. (3)

The material parameters and the geometrical characteristics of the dam are summarized
in Table 1. The dam has a drainage system located on the interface with the foundation
and starting 10 m downstream from the middle of the crest.

The static equilibrium of the dam is computed with a simplified two steps procedure:

1. In the first step, gravity is progressively increased while the water reservoir remains
empty. The dam geometry is set once for all and the construction of a real dam in
lifts is not accounted for. Thus, this step corresponds to an approximate modeling of
the dam construction.

2. Then, a pore water pressure field is applied by gradually increasing the pore water
pressure from zero to the values corresponding to a column of 7 m in the dam
reservoir. This step corresponds roughly to the filling of the dam reservoir. The
water pressure field is obtained from a separate hydraulic simulation performed in
Cast3M with an horizontal hydraulic permeability of 10−6 m/s in the dam body and
in the foundation and of 10−3 m/s in the drainage system. In both cases, anisotropic
permeability is considered with the vertical permeability being ten times larger.
The pore water pressure field is applied in the form of external forces on the mesh
elements according to local pressure gradients.

Once themechanical equilibrium is achieved, the stress and strain fields are extracted
to be analyzed from a material point scale with respect to the concept of bifurcation
domain.

3 Material Scale Stability Analysis

If we limit our analyses to divergence instabilities, it is well established that the most
general criterion to study these bifurcations is the so-called second-order work criterion
(1) as introduced by Hill [4] and reviewed extensively in [18]. Based on this definition,
the mechanical stability of a material is assessed thanks to directional analyses. For
instance, this can be performed in the strain space, by imposing dε and recording dσ
according to the constitutive behavior. In the most general case, dε resides in a space of
six dimensions. However, by considering the principal strain directions, the directional
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analysis can be restricted to the diagonal dε with only three independent components.
By use of the spherical coordinates, dε is imposed as:

⎧
⎨

⎩

dεI = dε cosφ sin θ

dεII = dε sin φ sin θ

dεIII = dε cos θ

(4)

with θ ∈ [0, π ] and φ ∈ [0, 2π ]. θ and φ correspond to the direction of the incremental
strain perturbation in the principal strain space.

For the constitutive behavior summarized in Eq. (2), an analytical expression can be
derived forW2. The expression depends on whether plasticity is activated, the plasticity
activation condition being f (σ + dσ e) > K where dσ e = λTr(dε)1 + 2μdε.

– In the elastic case, f (σ + dσ e) < K , and the second-order work reads:

We
2 = KcompTr

2(dε) + 2μ||dεdev||2 (5)

– In the plastic case, f (σ + dσ e) > K , and the second-order work reads:

Wp
2 = We

2 −
[
f (σ )−K

3 + αKcompTr(dε) + μ
s:dεdev

σeq

][
βKcompTr(dε) + μ

s:dεdev
σeq

]

αβKcomp + μ
3 + H

9
s:dεpdev
σeqε

p
eq

(6)

In the above equations, Kcomp = λ + 2μ/3 is the compressibility modulus, dεdev
and s the deviatoric parts of the incremental strain and the stress tensors respectively.

Note that, plasticity needs to be activated in order to observe the vanishing of the
second-order work in (6) as We

2 ≥ 0. In that case, it is interesting to underline that
hardening (H > 0) will limit the possibility to observe the vanishing of the second-
order work in (6). If the initial state is on the plastic yield surface (f (σ ) = K), Eq. (6)
simplifies a little. And for the case of associated plasticity (α = β) with no hardening
(H = 0), the use of Cauchy-Schwarz inequality shows thatW2 is always greater or equal
to zero1.

Based on the analytical expression given in Eqs. (5) and (6), the normalized second-
order workWnorm

2 = W2||dσ ||||dε|| can be plotted with a spherical representation for all the
points of the dam body as illustrated in Fig. 1.

In Fig. 1, an elliptical cone of instability is observed in the principal strain space for
some points of the dam for incremental loading directions corresponding generally to
dεI > 0 (extension), dεII < 0 (compression) and dεIII > 0 (extension). Such results are
consistent with the usual instability cone directions observed in the literature [13, 19].
In the case where dεI + dεII = 0 (close to the situation observed in Fig. 1, the cone
direction corresponds to pure shear in the plane (eI , eII ) with an extension in the out of
plane direction. The elliptical shape of the instability cone has been previously reported
in [13] for different constitutive relations.

1 Vanishing requires dεpdev to be positively co-linear to s andTr(dε) = α
√
6||dεpdev|| > 0 (increase

in volume).
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Fig. 1. Spherical representation in the principal strain space of the normalized second-order work
for two points of the dam body: out of (left) and in (right) the bifurcation domain. The set of loading
directions withW2 < 0 forms an elliptic cone of instability characterized by a mean direction and
a maximal opening angle.

4 Bifurcation Domain Definition and Instability Cone Directions

In the previous section, themechanical stability was assessed from amaterial scale view-
point. In order to assess the mechanical stability of an engineering structure according to
Eq. (1), there is a need to define the bifurcation domain Ωbif of an engineering structure

x ∈ Ωbif if and only if ∃(dσ , dε), such that
dσ = C(σ (x)) : dε and W2 = dσ : dε < 0

(7)

where C(σ (x)) is the tangent constitutive tensor of the material located at point x.
For the points located in the bifurcation domain, there exists a set of incremental

directions that will lead to material failure (provided that the imposed perturbation on
the dam boundaries allows for an increase in kinetic energy). The cone direction (θc, φc)

(illustrated in Fig. 1) corresponds to an incremental strain tensor dεcone with principal
strain values (dεI , dεII , dεIII ) expressed according to (4) and principal directions coin-
ciding with the principal strain directions (by definition of the set of incremental strain
considered in the directional analysis). Because of the plane strain condition, one prin-
cipal strain direction is the out of plane direction z. The two other directions lie in the
(x, y) plane and depends on the strain field.

A representation of the dam bifurcation domain together with the corresponding
strain perturbation leading to the vanishing of the second order work (i.e. the cone
directions) is given in Fig. 2.

For the damconsidered, the bifurcationdomain is quite extensive and looks consistent
with the shapes of failure observed in situ. However, one can notice that most of the cone
directions have a non negligible off plane component, making them not compatible with
plane strain mechanisms. If we restrict the admissible failure mechanisms to plane strain
conditions (this correspond to the equatorial plane in Fig. 1), the bifurcation domain is
largely reduced as illustrated in Fig. 3. It no longer spans across the dam body.

As a result, we can conclude from these graphs that there exists some plausible
mechanisms that can lead to the failure of the dam considered; provided that the plane
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Fig. 2. Bifurcation domain of a dam. For each material point in the bifurcation domain, the cone
direction is represented. Such representation corresponds to local deformation mechanisms likely
to trigger underlying material instability.

Fig. 3. Bifurcation domain of a dam restricted to plane strain perturbations. For each material
point in the bifurcation domain, the plane strain cone direction is represented as in Fig. 2.

strain assumption is lifted. These mechanisms cannot develop fully without allowing an
extension of the dam in the out-of-plane direction.

5 Conclusion

In this paper, we have proposed a method to extend the concept of bifurcation domain
from the material scale viewpoint to the scale of engineering structures in the form of
bifurcationmaps. The use of this advanced criterion enables us to think outside the box to
detect potential failuremodes that are not accounted for inmore standard approaches and
with more restrictive instability criteria. In the present example, perturbations with an
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out of plane extension of the dam are probably able to activate a significant proportion of
the bifurcation domain. Such perturbations are likely to exist in practice since the plane
strain condition is strictly valid only for a dam of infinite out of plane length. Out-of-
plane extension might come for instance from displacements of the lateral supporting
points or from the digging of a transverse trench in maintenance work or after over-
toping erosion. A 3D FEM modeling of the dam should be considered to simulate such
perturbations.

In the present study, an analytical expression of the second-order work criterion has
been derived for the specific constitutive behavior of Eq. (2). However, it should be
underlined that directional analyses can be performed numerically at the material point
scalewith any kind of rate-independent constitutive behavior. Among others, this include
the use of micromechanical models [17] or even discrete element modeling (DEM) [19]
in case FEMxDEMapproaches are considered. A proof of feasibility has been performed
in the present study (not shown here) and the analytical results of Eqs. (5) and (6) have
been recovered with auxiliary FEM computations on a unit volume of material. Before
conducting the directional analysis, this unit volume was pre-loaded according to the
stress states encountered in the dam body.

Even if the present study highlights the potential use of the bifurcation domain
concept at the scale of an engineering structure, there is now an inverse problem to solve
to identify the adverse changes in the boundary conditions that will effectively trigger the
underlying material instabilities. Eventually, we will need to assess whether the mode
of control may allow the inertial transition to take place leading to the dam liquefaction.
The answers to these questions are the last missing links to making an efficient use of
the second-order work criterion in practical design of engineering structures.
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Abstract. Implicit integration schemes for elastoplastic constitutive equations
have been developed in recent years as an alternative to explicit schemes. The
consistent tangent constitutive matrix Dcon that results from implicit schemes
makes the global stiffness matrix consistent with the implicit integration proce-
dure and differs from the traditional continuum tangent constitutive matrix Dep

that results from explicit schemes. Onset of strain localization and shear banding
has been traditionally predicted using the continuum tangent constitutive matrix.
It is shown that different criteria for onset of shear-band formation are obtained
depending on whether Dcon or Dep is used. It is shown that shear band prediction
using Dcon is step-size dependent, and that the use of Dcon influences the pre-
dicted onset of strain localization in frictional materials. An analytical equation for
prediction of the onset of shear-band formation usingDcon for theMohr-Coulomb
model is developed, and a numerical example is presented.

Keywords: Bifurcation · Constitutive relations · Strain localization

1 Introduction

The use of implicit integration schemes of elastoplastic response of geomaterials has
increased in use in recent years (e.g., Runesson 1987; Jeremic and Sture 1997). The
main feature of implicit algorithms is the use of the final stress point in the constitutive
response in calculating all the relevant derivatives and internal variables required in the
constitutive relations (Simo and Taylor 1985; Jeremic and Sture 1997). Since this point
is not known in advance, a set of Newton iterations is used to advance the solution toward
the final point for each load increment. In comparison, explicit integration schemes use
the initial stress point to determine the derivatives and internal variables required to
form the constitutive relations. Since a solution is assumed to exist, implicit methods
generally guarantee that a converged solution will be obtained on the constitutive level,
even for highly nonlinear models (Ortiz and Popov 1985).

The resulting discretized constitutive relation obtained using implicit schemes is
called the consistent tangent operator or the consistent tangent constitutive matrix Dcon

and differs considerably from the continuum tangent constitutive matrix Dep obtained
using explicit schemes.
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The use of Dcon to form the global stiffness matrix for a finite element assemblage
preserves the quadratic convergence of the iterative global convergencemethod, and thus
achieves faster convergence in finite element calculations than the use of Dep (Simo and
Taylor 1985). Dep evaluates the gradients to the yield surface and to the plastic potential
surface at the same stress point, namely the initial stress point. In comparison, Dcon is
formulated to be consistent with the integrationmethod, and so evaluates the gradients to
the yield surface and to the plastic potential surface at different stress points. Therefore,
Dcon is generally non-symmetric even when applied to models with associated flow
rules. In contrast, Dep is only non-symmetric for non-associated flow.

Bifurcation in the stress-strain relation occurs when the acoustic tensor B (defined
below) becomes non-positive definite and produces negative eigenvalues for certainwave
propagation directions. In bifurcation theory, such negative eigenvalues imply strain
localization and instability, following Mandel’s (1964) stability criterion. Rudnicki and
Rice (1975) showed that non-symmetry of D causes B to become non-positive definite
under hardening conditions, in which peak strength has not yet been mobilized.

A review of the different studies that have been performed so far reveals that, so
far, implicit integration schemes and their effects on prediction of shear band formation
have not been investigated. This is even though implicit schemes have gained wide
acceptance and use finite element modeling. Three properties of Dcon may affect the
prediction of shear band formation. These properties include: (1) non-symmetry even
for associated flow, (2) reduced stiffness, and (3) step-size dependence. The effects of
using Dcon instead of Dep to predict the onset of strain localization are investigated in
this paper. The objective of this paper is to show the effects of using implicit integration
in predicting the onset of strain localization in frictional-cohesive geomaterials.

2 Constitutive Equations

Constitutive relations for elastoplasticmodels are given by the following set of equations:

dεij = dεeij + dε
p
ij (1)

dσij = De
ijkldεekl (2)

dε
p
ij = λ

∂g

∂σij
(3)

dqα = λhα (4)

where dεij, dεeij, and dε
p
ij are the increments of the total, elastic, and plastic strain tensors;

dσij is the increment of the Cauchy stress tensor;De
ijkl is the elastic constitutive tensor; λ

is the plastic multiplier; ∂g/∂σij is the gradient to the plastic potential surface; qα is the
set of plastic hardening variables; and hα is the plastic hardening rule. Equations (1)–(4)
represent the properties of strain additivity, incremental elasticity, plastic flow rule, and
plastic hardening rule, respectively.
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Equations (1)–(3) may be combined into a single equation to solve for the stress
increment dσij for a given strain increment dεij:

dσij = De
ijkl

(
dεkl − λ

∂g

∂σij

)
(5)

Implementation of the constitutive model requires the numerical integration of Eqs.
(1)–(4). For rate-independent elastoplasticity, the values of f and λ are restricted by the
Kuhn-Tucker loading-unloading criterion:

f
(
σij, qα

) ≤ 0; λ ≥ 0 and f λ = 0 (6)

Equations (6) must be satisfied simultaneously for all loading conditions. Equa-
tions (6) specifies that the yield function must be non-positive for any set of stresses
and hardening variables. For elastoplastic loading, the stress point must lie on the yield
surface at all stages of loading, which generally requires that plastic strain occurs and λ

> 0. The goal of a numerical calculation for an elastoplastic loading step is to find the
correct value of λ such that the final stress point is consistent with the final yield surface
(f = 0). Using Eqs. (4) and (5) to satisfy the first equation of Eq. (6) yields:

f
(
σij,f , qα,f

) = f
(
σij,0 + dσij, qα,0 + dqα

)

= f

(
σij,0 + De

ijkl

(
dεkl − λ

∂g

∂σkl

)
, qα,0 + λhα

)
= 0 (7)

For linear elastic models, the plastic flow direction is the only quantity in Eq. (7) that
depends on the loading increment and continuously evolves during loading. Implicit
numerical integration schemes for elastoplasticity satisfy Eq. (7) by using the plastic
flow direction at the final stress point σij,f

∂g

∂σij,f
= ∂g

∂σij

∣∣∣∣
σij,f

(8)

Implicit integration schemes continously update the trial value of λ and the trial
plastic flow direction during the iterative solution process. In Jeremic and Sture (1997),
an approximate solution for the final plastic flowdirection is attained readily as a function
of the derivatives of the plastic flow direction by using the first two terms of the Taylor
series expansion of Eq. (8), evaluated at the initial stress point σij,0:

∂g

∂σij,f
= ∂g

∂σij

∣∣∣∣
σij,f

≈ ∂g

∂σij

∣∣∣∣
σij,0

+
(

∂2g

∂σij∂σkl

∣∣∣∣
σij,0

)
dσkl +

(
∂2g

∂σij∂qα

∣∣∣∣
σij,0

)
dqα (9)

For finite element calculations, it is necessary to formaglobal stiffnessmatrix to calculate
displacements for the next loading step or global iteration. The global stiffness matrix is
formed using an elastoplastic constitutive matrix, which is either the continuum tangent
constitutive matrix Dep or the consistent tangent constitutive matrix Dcon.Dcon has been
shown to promote faster global convergence, as discussed earlier. These two constitutive
matrices and their differences in final form are discussed below.



16 M. Gutierrez and R. Hickman

Both Dep and Dcon are formed by combining Eq. (5) and Prager’s consistency
condition:

df = ∂f

∂σij
dσij + ∂f

∂qα

dqα (10)

Ultimately, both Dep and Dcon are formed using the difference between the elastic
and plastic tangent matrices:

Dep
ijkl = De

ijkl − Dp
ijkl = De

ijkl −
De
ijmn

∂g
∂σmn,0

∂f
∂σpq

De
pqkl

Hp + H
(11a)

Dcon
ijkl = Re

ijkl − Rp
ijkl = Re

ijkl −
Re
ijmn

∂m
∂σmn

∂f
∂σpq

Re
pqkl

Hp + H
(11b)

where ∂m/∂σij is a modified plastic flow direction that incorporates the projected change
in hardening parameter, Hp is the perfectly plastic modulus, H is the plastic hardening
modulus, and Re

ijkl is a modified stiffness tensor that Jeremic and Sture (1997) call the
“reduced stiffness tensor”. The following expressions for Hp are obtained for Dep and
Dcon:

Hp = ∂f

∂σrs
De
rstu

∂g

∂σtu,0
forDep andHp = ∂f

∂σrs
Re
rstu

∂m

∂σtu
forDcon (12)

Both Dep and Dcon can be expressed in a single general form:

{
Dep
ijkl,D

con
ijkl

}
= Ee

ijkl −
Ee
ijmnQmn

∂f
∂σpq

Ee
pqkl

∂f
∂σrs

Ee
rstuQtu − ∂f

∂qα
hα

= Ee
ijkl −

Ee
ijmnQmn

∂f
∂σpq

Ee
pqkl

Hp + H
(13)

In Eq. (13), Ee
ijkl is a general expression for the elastic constitutive matrix and Qij is

a general expression for the plastic flow direction. To form Dep or Dcon, the gradient to
the yield function ∂f /∂σij and the hardening modulus hα are both evaluated at the initial
stress point. The final forms of Dep and Dcon are not the same due to the differences
between Ee

ijkl and Qij (Jeremic and Sture 1997) and as summarized in Table 1.

Table 1. Expressions for Ee
ijkl and Qij for Dep and Dcon.

If Dep is used If Dcon is used

Ee
ijkl De

ijkl Reijkl = De
mnkl

[
δmiδnj + λDe

mnpq
∂2g

∂σpq∂σij

]−1

Qij
∂g

∂σij,0
∂m
∂σij

= ∂g
∂σij,0

+ λ
∂2g

∂σij∂qα
hα

Several differences between Dep and Dcon may be noted. First, the terms used to
form Dep are constant at a given stress point, while the terms used to form Dcon are
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functions of the magnitude of λ from the previous loading step. Since the magnitude
of λ depends on the magnitude of the loading step, Dcon is step-size-dependent, while
Dep is step-size-independent. Jeremic and Sture (1997) show that Dcon converges toDep

as λ → 0, or for an infinitesimally small elastoplastic loading step. Second, the terms
Qmn = ∂g/∂σmn and ∂f /∂σpq in Eq. (13) are equal for associated flow, so Dcon

ijkl = Dcon
klij

and Dep is symmetric for associated flow. In contrast, the terms Qmn = ∂g/∂σmn +
λhα∂2g/(∂σmn∂qα) and ∂f /∂σpq in Eq. (13) are not equal for associated flow, soD

ep
ijkl �=

Dep
klij and Dcon is generally non-symmetric even for associated flow. A third difference

between Dep and Dcon is that the material stiffness is reduced when Dcon is used, as will
be demonstrated later.

Since Dcon aims to satisfy the constitutive response at the final stress point, its
elements may be viewed as local secant moduli between the initial and final stress point.
In contrast, Dep may be viewed as a tangential matrix since its components are based
on the derivatives at the current stress point. This difference between Dep and Dcon is
shown schematically in Fig. 1.

Fig. 1. Stress-strain curve illustrating the different stiffness moduli of Dep and Dcon.

3 Bifurcation and Shear Band Formation

Bifurcation theory is concerned with the prediction of how instability in the stress-strain
response leads to localized deformations or deformation bands in elastoplastic materials.
It is noted that bifurcation theory can predict not only localized deformations but also
other types of instability mode that can be encountered in elastoplastic materials. As a
result of strain localization instability ensues in terms of strain softening in the stress-
strain relation. Strain localization manifests itself in cohesive-frictional materials as a
narrow zone in which the deformation rate exceeds that in the uniformly deformed
material. Since the yielding mechanism for these materials is shearing, the zone of strain
localization is called a shear band although other types of deformation bands such as
compression and dilation bands may occur or be predicted.

Prediction of strain localization is based onMandel’s (1964) stability criterion which
states that a material is stable only when it can propagate small perturbations in the form
of waves. Instability and strain localization occur when a small perturbation in the form
of a wave cannot propagate across a material in the direction nk where k is normal to
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the deformation band. This condition appears when the acoustic tensor B has a zero
or negative determinant |B| = |Bik |, where i = 1, 2, 3. The acoustic tensor becomes
non-positive definite, and produces negative eigenvalues. This condition may be stated
as:

|Bik | = ∣∣njDijklnl
∣∣ ≤ 0 (14)

The acoustic tensorBik is a function of the constitutivematrixD andof the direction of
wave propagation n. The shear band orientation is normal to n. For the two-dimensional,
plane strain condition (i, j, k, l = 1, 2), the unit vector n may be expressed in terms of
the angle θ between the shear band and the coordinate axes (i.e., between the normal to
n and the x-axis):

ni =
{
n1
n2

}
=
{
sin θ

cos θ

}
(15)

The determinant |B| may then be expressed in terms of Dijkl and θ . If the coordinate
axes are aligned with the directions of the major and minor principal stresses, the cross-
terms (i.e., the terms between normal stresses and shearing strains, and between shearing
stresses and normal strains) in the elastoplastic constitutive matrix disappear; that is,
D1112 = D1211 = D2122 = D2212 = 0. This change greatly simplifies the acoustic tensor
to the following (Pietruszczak and Bardet 1987):

|B| =
(
sin4 θ

)
(D1111D1212) +

(
cos4 θ

)
(D1212D2222)

+
(
sin2 θ cos2 θ

)
(D1111D2222 − D1122D2211 − D1122D1212 − D1212D2211)

(16)

As seen in Eqs. (10)–(13), the elastoplastic stiffness matrix is a function of H. The
determinant |B| may become zero for certain values of H and orientations θ. The hard-
ening modulus corresponding to |B| = 0 is obtained by setting Eq. (16) equal to zero
and solving for H (Bardet 1991). For D ep, H is obtained as:

H
(
Dep) = 2G

1 − ν

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

− sin4 θ

(
∂g

∂σ11
− ∂g

∂σ22

)(
∂f

∂σ11
− ∂f

∂σ22

)

+ sin2 θ

(
∂g

∂σ11

(
∂f

∂σ11
− ∂f

∂σ22

)
+ ∂f

∂σ11

(
∂g

∂σ11
− ∂g

∂σ22

))

− ∂g

∂σ11

∂f

∂σ11
+ (1 − ν)

2

∂g

∂σ12

∂f

∂σ12

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
(17)

where G is the shear modulus and ν is Poisson’s ratio. If the coordinate axes are aligned
with the major and minor principal stress directions, the major principal stress σ1 = σ11,
theminor principal stress σ3 = σ22, and the shear stress σ12 = ∂f /∂σ12 = ∂g/∂σ12 = 0.
The critical angle θc at which H is minimized may be found by differentiating Eq. (17)
with respect to θ, setting the derivative equal to zero, and solving for θ = θc. The
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resulting expression for θc is:

θc
(
Dep) = sin−1

√√√√√
∂g
∂σ1

(
∂f
∂σ1

− ∂f
∂σ3

)
+ ∂f

∂σ1

(
∂g
∂σ1

− ∂g
∂σ3

)

2
(

∂g
∂σ1

− ∂g
∂σ3

)(
∂f
∂σ1

− ∂f
∂σ3

) (18)

Substituting Eq. (18) into Eq. (17) yields the expression for Hcas:

Hc
(
Dep) = G

2(1 − ν)

⎡
⎢⎣

(
∂g
∂σ1

∂f
∂σ3

− ∂f
∂σ1

∂g
∂σ3

)2
(

∂g
∂σ1

− ∂g
∂σ3

)(
∂f
∂σ1

− ∂f
∂σ3

)
⎤
⎥⎦ (19)

Equation (19) corresponds to the solution of Runesson et al. (1987), for the simplified
plane strain case in which the intermediate principal stress is directed out of the plane
of strain. Under these conditions, the critical hardening modulus Hc(Dep) is always
non-negative and greater than 0 if f �= g in the case of non-associated flow rule.

The expression for Dcon is much more algebraically complicated than the expression
for Dep. As such, deriving a general expression for Hc at which strain localization
emerges is difficult or impossible in the general case. However, expressions for Hc may
be derived for specific constitutivemodels. An example is shown in the following section.

4 Application to the Mohr-Coulomb Model

The effect of the form of the elastoplastic constitutive matrix on shear band formation
is investigated analytically in this section using the strain hardening Mohr-Coulomb
model. Shear band formation is predicted using both Dep and Dcon. The Mohr-Coulomb
model has the following yield and plastic potential functions in p-q space:

f = q − p sinϕ − c cosϕ; g = q − p sin ψ + b (20)

where φ is the friction angle, c is the cohesion, ψ is the dilatancy angle, and b is a
constant which makes the plastic potential equal to zero at the point of interest. The
stress invariants p and q represent the mean stress and deviatoric stress, respectively, and
are defined as follows in two dimensions:

p = 1

2
(σ1 + σ3); q = 1

2
(σ1 − σ3) (21)

These two-dimensional invariants are analogous to the mean and deviatoric stress
invariants for general three-dimensional conditions.

In terms of the invariants p and q, the critical orientation θc(Dep) in Eq. (18) and the
critical hardening modulus Hc(Dep) in Eq. (19) can be re-written in terms of invariants
p and q as:

θc
(
Dep) = 1

4

(
∂f /∂p

∂f /∂q
+ ∂g/∂p

∂g/∂q

)
(22)
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Hc
(
Dep) = E

16
(
1 − ν2

)
(

∂f /∂p

∂f /∂q
− ∂g/∂p

∂g/∂q

)2

= G

8(1 − ν)

(
∂f /∂p

∂f /∂q
− ∂g/∂p

∂g/∂q

)2

(23)

The derivatives of f and g with respect to the invariants p and q can be obtained
from Eqs. (20) as ∂f /∂p = − sin ϕ, ∂f /∂q = 1, g/∂p = − sinψ , and ∂g/∂q = 1.
Substituting these derivatives in Eq. (23), or using the appropriate derivatives in Eq. (19),
yields an expression for Hc corresponding to Dep for the Mohr-Coulomb model:

Hc
(
Dep) = G(sin ϕ − sinψ)2

8(1 − ν)
(24)

Classical failure corresponds to a condition inwhich no further hardening is possible,
and is represented by the maximum value of the hardening parameter qα or by a zero
value of H. For the case of associated flow (φ = ψ), the critical hardening modulus is
equal to zero; shear band formation is suppressed until classical failure occurs.

Under the plane strain conditions specified, the corresponding shear band orientation
θc for Dep for the Mohr-Coulomb model becomes:

θc
(
Dep) = 1

2
cos−1

(
sin ϕ + sinψ

2

)
(25)

If the difference between φ and ψ is small, it is possible to simplify the above to:

θc
(
Dep) ≈ 45◦ − ϕ + ψ

4
(26)

Equation (26) is known as Arthur-Vardoulakis solution (Arthur et al. 1977;
Vardoulakis 1980). For perfect plasticity (i.e., H = 0), two orientations are possible:

θc ≈ 45◦ − ϕ

2
or θc ≈ 45◦ − ψ

2
(27)

These orientations correspond, respectively, to the Mohr-Coulomb (lower bound)
and Roscoe (1970) (upper bound) solutions.

A critical hardeningmodulus can also be derived for theMohr-Coulombmodel using
Dcon. For the Mohr-Coulomb model, the dilatancy angle is constant and independent of
the hardening parameters qα. In this case, ∂2g/

(
∂σij∂qα

) = 0 and ∂m/∂σij = ∂g/∂σij.
When the principal stresses are alignedwith the coordinate axes,Dcon takes the following
form:

Dcon
ijkl =

⎡
⎢⎣
Dep
1111 D

ep
1122 0

Dep
2211 D

ep
2222 0

0 0 Dep
1212

[
1 + λG

q

]−1

⎤
⎥⎦ =

⎡
⎢⎣
Dep
1111 D

ep
1122 0

Dep
2211 D

ep
2222 0

0 0 G
[
1 + λG

q

]−1

⎤
⎥⎦ (28)

Dcon
1212 = Dep

1212

[
1 + λG

q

]−1

= G

[
1 + λG

q

]−1

= Gct (29)

As can be seen,Dep andDcon differ only in terms ofD1212. SinceDep is symmetric in
the case of associated flow for any orientation of the reference axes, it can be verified that
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Dcon is symmetric in the case of associated flow if the principal stresses are aligned with
the reference axes. Therefore, it is not expected that use of Dcon will lead to prediction
of shear band formation in the hardening regime for associated models; this behavior is
like that for Dep.

Because the coordinate axes are aligned with the principal stress directions, the
elastoplastic moduli Dcon

1111,D
con
1122,D

con
2211, and Dcon

2222 relate principal stress increments to
principal strain increments. These elastoplastic moduli, which will be called full moduli,
are the same for Dcon as for Dep. In contrast, any applied stress increment dσ12 causes
principal stress rotation. The stress increment dσ12 is related only to the elastoplastic
modulus Dep

1212 or Dcon
1212 in the elastoplastic matrix. As shown in Eqs. (28) and (29),

the elastoplastic modulus Dcon
1212 represents a reduced value from Dep

1212. The entry D
con
1212

can be thought of as a “reduced” elastoplastic modulus, respectively, in contrast to the
full elastoplastic modulus Dep

1212, and differs only due to a reduced value of the shear
modulus G.

Since Dep represents the incremental tangent stiffness at the initial stress point and
Dcon represents the incremental consistent tangent stiffness between the initial stress
point and the projected final stress point, G and Gct are the tangent and consistent
tangent shear moduli, respectively. Gct is less than G, and therefore promotes a softer
response.

An expression for Hc may be derived for Dcon in the same way as was done for Dep.
Using Eq. (26) to form Dcon, substituting the resulting expression into Eq. (16), and then
solving for H yields the following expression:

H
(
Dcon) = 2GGct

Gct(1 − ν) + 2(G − Gct) sin2 θ cos2 θ⎛
⎜⎜⎜⎜⎜⎜⎜⎝

− sin4 θ

(
∂g

∂σ11
− ∂g

∂σ22

)(
∂f

∂σ11
− ∂f

∂σ22

)

+ sin2 θ

(
∂g

∂σ11

(
∂f

∂σ11
− ∂f

∂σ22

)
+ ∂f

∂σ11

(
∂g

∂σ11
− ∂g

∂σ22

))

− ∂g

∂σ11

∂f

∂σ11
+ (1 − ν)

2

∂g

∂σ12

∂f

∂σ12

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(30)

Comparing Eqs. (17)–(30), it may be seen that that:

H (Dcon)

H (Dep)
= Gct(1 − ν)

Gct(1 − ν) + (G − Gct) sin2 θ cos2 θ
(31)

Equation (31) was derived using the same assumption, that the intermediate principal
stress is directed out of the plane of strain, described previously. Since the relationship
between G and Gct is known, Eq. (31) can be simplified to:

H (Dcon)

H (Dep)
= 1 − ν

1 − ν + 2λG
q sin2 θ cos2 θ

(32)

As can be seen, the ratio between the critical hardening moduli for Dep and Dcon is a
function of the shear band orientation θ. Although it is possible to differentiate Eq. (24)
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with respect to θ to find the critical hardening modulus for Dcon, the resulting expression
is very complicated and does not provide clear physical insight into the influence of
Dcon on Hc and θc. A simpler approach is obtained if Eq. (26) is used as the expression
for the critical angle θc for Dcon. Based on this approximation, the ratio between critical
hardening moduli determined using Dcon and Dep is shown in the following equation:

Hc(Dcon)

Hc(Dep)
= 8(1 − ν)

8(1 − ν) + λG
q

[
4 − (sin ϕ + sinψ)2

] (33)

The use of the shear band orientation from Dep given in Eq. (25) in the foregoing
equation assumes that the expression for the critical angle determined by minimizing
the derivative of Eq. (30) is only slightly different from Eq. (19), which was obtained by
minimizing the derivative of Eq. (18). The validity of this assumptionwill be numerically
investigated in the next section.

It is seen that the expression in Eq. (33) is always less than or equal to 1. The critical
hardening modulus at which strain localization emerges is therefore reduced when Dcon

is used. Hc (Dcon) is then:

Hc
(
Dcon) = G(sin ϕ − sin ψ)2

8(1 − ν) + λG
q

[
4 − (sin ϕ + sinψ)2

] (34)

Since the critical hardening modulus at shear band formation using Dcon is less
than the critical hardening modulus using Dep, the effect of implicit integration is to
decrease the hardening modulus at which shear bands form. Because the hardening
modulus for a shearing yieldmechanismgenerally decreases as plastic shear deformation
accumulates, the overall effect of using Dcon is to delay shear band formation until the
critical hardeningmodulus is reduced. Note that ifλ = 0,Dcon becomes equal toDep, and
the same critical hardening modulus is obtained using either matrix. For associated flow,
the critical hardening modulus for both Dcon and Dep is equal to zero, and only classical
failure occurs. Note that both Dcon and Dep are discretized incremental approximations
of elastoplastic stress-strain relations.

To illustrate the differences in the predicted critical hardening moduli at bifurcation
from the explicit Dcon and implicit Dep, Eq. (33) is plotted in Fig. 2 for values of G =
30 MPa, ν = 0.3, ψ = 0°, and different values of φ and λ. As can be seen, the ratio of
the critical moduli always less than 1.0, indicating that bifurcation is always predicted
to occur earlier in the loading for the implicit integration than for explicit integration.
Since the critical hardening moduli are different, the shear band orientations are also
expected to differ between explicit and implicit integrations.

5 Conclusions

In general, the use of Dcon results in lower values of the critical plastic hardening modu-
lus in comparison to the use of continuum tangent matrixDep. Consequently, shear band
formation occurs at a larger deformation and at higher values of mobilized friction angle
for strain hardening materials. Due to the differences in critical hardening moduli, the
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Fig. 2. Predicated ratios of the critical hardening moduli using Dep and Dcon.

shear band orientations are also expected to be different between explicit and implicit
integrations. These results should be considered when using implicit integration tech-
niques in finite element simulation of shear band formation. The actual implementation
of the above analysis using the finite element method is to be discussed in another paper.
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Abstract. Under compression, rate-dependent solids subject to hydro-
mechanical processes have been shown to accommodate singular cnoidal wave
solutions [1], as amaterial instability at the stationarywave limit. Given the numer-
ical complexity to solve the corresponding equation, we use a physical regulariza-
tion approach [2] to cap the infinite stress growth with chemical pressurization of
the material around the singularities. In this contribution, we show the results of a
stability analysis of the underlying equation using a pseudo-arclength continuation
algorithmwith Finite Elements [3]. This allows to identify various solutions of the
system with different numbers of peaks as a function of the problem parameters.
We show the influence of the main material parameter, the existence of its critical
values for different types of solutions, as well the evolution of peak spacing for
the different admissible solutions. Finally, we investigate which initial conditions
lead to solutions with stress peaks.

Keywords: Compaction banding · Cnoidal waves · Numerical continuation

1 Cnoidal Waves in Solids

Geomaterials under compression can exhibit localisation features, known as compaction
bands, that are perpendicular to the principal stress direction. These zones are charac-
terized by pore collapse and lower porosity resulting from a stress instability and they
can be explained from a purely mechanical perspective [4]. Such bands form subparallel
patterns that sometimes display some regularity in their spacing [5] and some models
have been derived to try and explain this pseudo-periodicity [6]. Interestingly, a radically
different physical process, stemming from a hydro-mechanical instability identified as
cnoidal waves in solids [1], can also lead to localisation bands under compaction with
regular spacing, but with the important difference that those bands are zones of much
higher permeability. This featuremakes the theory particularly appealing formany appli-
cations involving fluid transport or even melt segregation [7]. Our understanding of the
phenomenon, however, remains in its infancy. Only an asymptotic behavior has been
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described so far, leading to a deceivingly simple 1D differential equation, which proves
challenging enough to solve numerically [1]. For this reason, some physical stabilization
processes can be considered as well, for instance in the form of fluid-release chemical
reactions, like diagenesis [2], which bound the stress while keeping the presence and
location of stress peaks unchanged.We are therefore focusing our study on this stabilized
version of the problem, which can be expressed in dimensionless form as the solution u
of the system [2]:

∂2u

∂z2
− λ(1 + u)m + μeβu = 0, 0 ≤ z ≤ 1, (1)

with u(0) = u(1) = 0, (2)

where λ, m, β and μ are material parameters and u characterizes the effective stress
σ ′ through the relation u = σ ′ − 1. Stresses are taken as positive in compression.
Note that the last term on the left-hand side of Eq. (1) is the stabilization term, related
to diagenetic (fluid-release) reactions, introduced to keep the solution u bounded. The
corresponding parameters, β (Arrhenius number for micromechanical processes) and μ

(chemo-mechanical coefficient) are therefore of minor interest and taken arbitrarily in
this contribution as β = 10 and μ = 10−4 (see [2]). Our attention lies on the influence
of the other parameters, and specifically on λ, the hydro-mechanical coefficient which
has the greatest flexibility to vary as it encompasses some boundary conditions of the
physical problem as the ratio of mechanical generalised diffusivity over the hydraulic
diffusivity [1]. This λ parameter should be strictly positive for physical reasons but
could take very large values as it is proportional to the loading rate imposed on the
volume considered, which is mathematically not necessarily bounded. The value of m,
the power law rheology exponent, is fixed to a representative valuem = 3. The Dirichlet
boundary conditions imposed in Eq. (2) are equivalent to a fluid pressure controlled,
drained experiment under constant loading rate. Here we present a stability analysis of
this system with respect to λ using a numerical continuation method.

2 Pseudo-arclength Continuation

While the high non-linearity of Eq. (1) is not naturally adapted to the Finite Element
Method, we note that it is nonetheless possible to solve this equation with a robust solver
when starting from a sufficiently accurate initial solution. (We refer the reader to our
companion study [8] for a method specifically developed to improve the resolution of
this system.) We select therefore the Finite Element Redback simulator [9] and we study
the sensitivity of the λ parameter with a pseudo-arclength continuation approach [10]
implemented in Redback [3]. In essence, the continuation parameter (λ in this instance)
is considered as a variable of the system, which is extended from Eq. (1) by imposing
that the solution (u, λ) remains at an imposed distance of the previous solution during
the computation of an iteration.

We initiate this iterative algorithm by solving twice Eq. (1) for close given values
of λ > 0 starting from a zero initial condition u = 0 on [0, 1]. Each solution obtained
for this hydro-mechanical problem is the traditional Terzaghi consolidation profile [11]
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shown in Fig. 1c, stemming from pore pressure dissipation. Following the continuation
algorithm for decreasing values of λ we obtain a curve shaped as a “C”, as shown in
Fig. 1a. This interesting result points to the existence of an upper branch corresponding
to stress profiles with a peak, as shown in Fig. 1b.

a) b)

c)

point B

point C

Fig. 1. (a) Stability analysis for Eq. (1) showing the central value uc (for z = 0.5) of the solution
profile as a function ofλ, displaying aC-curve. This indicates two distinct solutions for every single
value of λ. The corresponding full profiles at point B and C are shown in (b) and (c) respectively.

As previous studies [1] showed the existence of different solutions with various
numbers of equidistant peaks, we now apply the same continuationmethod to investigate
other areas of the parameter space within an arbitrary range λ ≤ 500. We initiate
successively the continuation algorithm from solution profiles manually identified with
an imposed number p of peaks as initial condition for λ = 500 and the results are shown
in Fig. 2. We observe for each p-peak profile a C-curve, with a minimum value λ

(p)
min

increasing with p.
For each of those continuation curves, we then compute the distance between the

peaks as it represents the major difference between the upper and lower branches of
each curve. The results are plotted in Fig. 3 and show a regular pattern. For each C-curve
with p-peaks, there exists a point corresponding to a solution profile where the spacing
between the peaks is exactly equal to 1/p, noting that this point is close but not exactly
at the minimum value of λ reachable. From this point, the upper branch sees the spacing
increase with λ, reaching asymptotically the value 1/(p − 1), whereas the lower branch
sees the spacing decrease with λ, reaching asymptotically the value 1/(p + 1).

Finally, we investigate the influence of initial conditions, with λ fixed, on the type
of solution reached by the system. As a first step, we evaluate when a given initial
condition profile stops converging to the Terzaghi profile of Fig. 1c when multiplied by
an increasing factor. Figure 4a displays the results obtained for four different profiles,
shown in Fig. 4b–e, tracking in non-solid lines the maximum value umax of the initial
condition profile over [0, 1]. These separatrices are obtained, for λ fixed, by dichotomy
over the multiplying factor for a numerical precision on umax of 10−4. The process is
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Fig. 2. Continuation results obtained for λ ≤ 500, showing the ranges of values where different
solutions exist, with various numbers of peaks (up to seven) and two branches each. The vertical
axis represents the range of the solution profiles max(u) − min(u) over [0, 1].

repeated for each integer value of 0 ≤ λ ≤ 500 to plot a given separatrix and we ran this
process for four different profiles. Figure 4a also plots on the same graph the maximum
values of the solution profiles for all the curves of Fig. 2, which superpose perfectly for
all solutions with one or more peaks. These results confirm that the Terzaghi solution
remains valid for any λ, but also that a high enough perturbation in effective stress can
lead to a peak-profile solution. The profiles fromFig. 4b–e represent increasingly sharper
peaks between the two end-members of a flat profile, Fig. 4b, and a peak over a single
mesh point, Fig. 4e. Figure 4a shows that the amplitude required for the perturbation
depends on the shape of the initial condition profile, and we observe naturally that the
narrower the peak profile, the higher the amplitude required to escape the Terzaghi
solution.

3 Conclusion

This study shows that the cnoidal waves in solids remain a complex problem that has not
yet revealed all of its secrets and yet three new major conclusions can be draw. Firstly,
a critical deduction is that the asymptotic description of the 1D problem, Eq. (1), can
lead to solution profiles with one or more stress peaks for any value of λ, see Fig. 2,
contrary to earlier suggestions regarding a threshold [1]. Secondly Fig. 4 also highlights
that strong stress perturbations are needed to escape the traditional no-peak solution
for that problem, with higher amplitudes required for narrower perturbations. Thirdly,
the results of the continuation analysis shown in Figs. 2 and 3 indicate that various
solutions can be reached for different ranges of λ, so the spacing between peaks can
no longer be interpreted as a direct indicator for the value of λ. The picture painted
in this study remains incomplete as the continuation methodology employed does not
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a)

b) c) d)

Fig. 3. (a) Spacing between the peaks for the continuation curves of Fig. 2 representing the p-peak
solutions, with 1 ≤ p ≤ 7. The points B, C and D illustrate, for the case p = 2, that each curve has
a point where the spacing is exactly 1/p, with the upper (resp. lower) branch seeing an increase
(resp. decrease) of spacing. The corresponding solution profiles at those points are represented in
(b), (c) and (d).

ensure the identification of all possible branches and more solutions could potentially
exist. The problem appears to be much more subtle than originally anticipated and more
theoretical, numerical (see [12]) and – above all – experimental work remains to be
done on this topic to assess the parameters controlling the spacing between compaction
features.
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a)

b)

c)

d)

e)

Fig. 4. (a) Separatrices for four profiles of initial conditions, shown in (b)–(e), marking the maxi-
mum value of a scaled version of the initial profile still converging to the solution profile of Fig. 1c
for any given λ.
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Abstract. TheHADES rig at the European SynchrotronRadiation Facility allows
in situ 3D imaging of the whole rock sample as it is triaxially compressed. The
µCT data provide an integrated perspective of the spatiotemporal evolution of
damage and strain localization on scales ranging from grain to continuum. An
experiment was conducted on Leitha limestone at a confining pressure of 20MPa.
With increasing differential stress, the sample strain hardened in two distinct stages
of yielding. The second stage was associated with development of five discrete
compaction bands. The µCT data on the voxel-scale delineate in refined details
the nucleation and propagation of discrete compaction bands under quasi-static
loading, as well as the micromechanical processes. To characterize quantitatively
the spatiotemporal evolution of strain, we systematically applied digital volume
correlation to this unique set of in situ synchrotron CT data. We have obtained
some of the first 3D results on grain-scale heterogeneity of strain in a porous
aggregate, which elucidate the mechanics of the bifurcation phenomenon, as well
as the fine structures and geometric complexity of compaction bands.

Keywords: Strain localization · Compaction band · Synchrotron tomography

1 Introduction

Observations in the laboratory have shown that formation of compaction and shear
bands can often be conceptualized as a bifurcation, which emerges from a pattern of
deformation that is initially homogeneous or smoothly varying, culminating in the nearly
simultaneous development of strain concentration at all points of the putative band
(Rice 1976; Vardoulakis and Sulem 1995; Issen and Rudnicki 2000). A comprehensive
understanding of the mechanics hinges on the direct observation of the spatiotemporal
evolution of damage on multiple scales.

The measurement of acoustic emissions (AE) has proved to be one of the most
effective techniques for such observation in a brittle rock such as granite and sandstone
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(Lockner et al. 1992; Lockner 1993), the damage in which is generally accompanied by
significant AE activity. Another approach that has proved to be as effective is the use of
X-ray computed tomography (CT) in conjunctionwith digital volume correlation (DVC).
In two recent studies of the brittle-ductile transition in limestones, triaxially compressed
samples at different stages of deformation were retrieved from the pressure vessel and
imaged ex situ, and DVC was used to characterize the displacement and strain fields by
correlating pairs of CT images. Abdallah et al. (2021) investigated the development of
compaction bands (CB) and compactive shear bands in Saint-Maximin limestone. Baud
et al. (2021) characterized the strain heterogeneity and geometric complexity associated
with the development of shear bands in Indiana limestone, as well as the connection
with bifurcation analysis. Whereas these studies have contributed useful insights into
compaction localization, they also underscore the limitations of ex situ imaging.

A technical advance was achieved by Renard et al. (2017), who developed a triaxial
deformation apparatus at the European Synchrotron Radiation Facility (ESRF) that is
transparent to the high flux of X-rays of a synchrotron. Located at Grenoble, France,
the HADES rig (Renard et al. 2016) allows the in situ imaging of a cm-sized sample
with spatial resolution of several µm, while it is stressed under elevated pressure and
temperature. Huang et al. (2019) has leveraged this advance in time-lapse 3D imaging
to probe the development of compaction localization in a confined sample of Leitha
limestone. A total of 70 X-ray CT images were acquired at different stages of loading at
stress steps of 1–2 MPa. The data have provided an integrated perspective of the quasi-
static development of discrete CBs and spatiotemporal evolution of damage on scales
ranging from grain to continuum. The objective of this study is to systematically apply
DVC to this unique set of in situ synchrotron CT data, so as to characterize quantitatively
the spatiotemporal evolution of strain,

2 Materials and Methods

2.1 Leitha Limestone, Triaxial Compression and in Situ X-ray CT Imaging

Quarried at Hummel St. Margarethen/ Burgenland near Vienna, Austria, the Leitha
limestone is a carbonate grainstone composed of >99% calcite (Baud et al. 2017).
Petrophysical properties of our limestone blockwere summarized byHuang et al. (2019).
Average value of the porosity is 26%, which is dominated by macroporosity. A triaxial
compression experiment was conducted on a nominally dry sample at room temperature
in the HADES apparatus. The sample (5 mm in diameter and 10 mm in length) was
jacketed with Viton, and confining medium was silicon oil. Experimental details have
been presented by Huang et al. (2019).

We adopt the sign convention that a compressive stress is positive. The principal
stress in the axial direction is denoted by σ1 ≥ σ2 = σ3, the confining pressure. The
mean stress is P = (σ1 + σ2 + σ3)/3, and the difference between the maximum and
minimum principal stresses is the differential stressQ = σ1−σ3. A hydrostatic stress of
20 MPa was first applied, and before the application of differential stress, the first X-ray
tomography scan was acquired.While maintaining the confining pressure at 20MPa, the
axial piston was progressively advanced by increments of 1–2 MPa. After each stress
increment, the differential stress was held constant as the apparatus was rotated over
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180°, while 1800 X-ray radiographs were acquired with a voxel size of 6.5 µm. Each
radiograph extended over 13 × 13 mm2 (2000 × 2000 voxels), covering full length and
width of sample and parts of the pistons and confining medium. Durations of the stress
step and tomography scans were 1–2 min and 3 min, respectively.

2.2 Digital Volume Correlation

For a pair ofCT images acquired at two stages of deformation (1 and2), volumetric digital
image correlation is performed to maximize an appropriate coherency measure of the
spatial distributions of grey level in the two images,which establishes the correspondence
between the coordinates of the same material points in stages 1 and 2. Accordingly,
the coordinates in stage 1 can be mapped to the corresponding coordinates in stage 2,
which allows the displacement and strain fields to be evaluated. We will refer to the
images in stages 1 and 2 as “reference image” and “displaced image”, respectively. We
used TomoWarp2 (Tudisco et al. 2017), which has proved to be effective as a DVC
tool for delineating the geometric complexity of strain localization in porous rocks
(Charalampidou et al. 2011; Baud et al. 2021). Grid spacing of the DVC nodes was 5
voxels in each direction, and the correlation window was a cuboid made up of 16 ×
16 × 16 voxels centered on the analysis node. The code seeks the subvoxel-resolved
translation, and a finite element approach is adopted to evaluate the strain tensor from
the displacement field (Hall 2006).

To visualize the deformation, we will follow the code to focus on two quantities:
volumetric strain εv = ε11 + ε22 + ε33, and the shear strain

γs =
√
2[(ε11 − ε22)

2 + (ε11 − ε33)
2 + (ε22 − ε33)

2] + 12ε212 + 12ε223 + 12ε213/3,

which correspond to the first invariant of the strain tensor and
√
2 times the octahedral

shear strain, respectively. For the strain tensor, we adopt here the sign convention for
extension to be positive, and therefore a volumetric strain εv > 0 and εv < 0 correspond
to dilation and compaction, respectively.

3 Results

3.1 Two Stages of Yielding and Failure Modes

Figure 1 presents the mechanical data for the differential stress as a function of relative
shortening in the axial direction, which indicate that yielding has occurred over two
distinct stages. In the initial stage, onset of yielding at a differential stress of ~50 MPa is
manifested by a deviation from linearity in the stress-strain curve. Huang et al. (2019)
concluded that this initial yielding corresponds to the onset of shear-enhanced com-
paction, related to the collapse of isolated pores of anomalous large dimension that were
located in the upper portion of the sample. After the pore space has apparently been
homogenized by such pore collapse, a second stage of yielding occurred with the differ-
ential stress at a plateau of 71–74 MPa and the strain hardening rate approaching zero.
Huang et al. (2019) observed that this second stage corresponds to the initiation and
development of five discrete CBs.
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Fig. 1. Differential stress as a function of relative shortening for the Leitha limestone deformed
at HADES at confining pressure of 20 MPa. The inset table lists the differential stress and scan
number corresponding to the stages of deformation marked in red capital letters.

A total of nine CT images were selected for DVC analysis: the differential stresses
and scan numbers are tabulated in the inset of Fig. 1.Given our focus onCBdevelopment,
here we will present only the results for images C′, C, D, E and F. Image C was acquired
just before the hardening rate plateaued, and itwill be adopted as the reference image. The
displacement and strain fields derived from DVC will be denoted by two capital letters,
which correspond to the displaced and reference images, respectively., For example,
displacement E-C denotes the displacement vector derived by maximizing the cross-
correlation of the grey-level data of the reference image C and displaced image E,
and strain E-C denotes the strain tensor derived from the corresponding displacement
gradients. The spatial distribution of the displacement and strain field is presented in a
Cartesian coordinate system with the Z-axis aligned with the long axis of the sample
and the applied stress σ1.

3.2 Spatiotemporal Evolution of Strain and Compaction Localization

Fig. 2. Nodal volumetric strain associatedwith theD-C phase of deformation. (a) Spatial distribu-
tion of strain (with magnitude εv ≤ −0.2 for compaction or≥0.2 for dilation), which concentrates
in the lower half of the sample. (b) Relative frequency of the nodal volumetric strain.
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Fig. 3. Nodal shear strain associated with the D-C field. (a) Spatial distribution of shear strain
concentration (with magnitude γs ≥ 0.2). (b) Relative frequency of the nodal shear strain.

Figures 2 and 3 illustrate the spatial distribution of volumetric and shear strains at the
second stage of yielding (D-C). Anomalously high strains developed predominately in
the lower half of the sample. Figure 2a highlights the spatial concentration of volumetric
strain (with magnitude ≤−0.2 for compaction or ≥0.2 for dilation). The nodal strain εv
ranges from compactive to extensile over a broad range of values (Fig. 2b). 3D rendition
of εv (not presented here) indicates the clustering of compaction to be more pronounced
than dilation, with the latter mostly located at the boundary of a compactive cluster.
Concentration of shear strain γs has also developed in parallel with the compaction and
dilation (Fig. 3a), with values that span over a broad range as well (Fig. 3b).

Huang et al. (2019) divided the sample into 155 layers with thickness of 10 voxels,
and determined the porosities of each layer from the segmented images at each stage of
deformation. The porosity profile they derived for stage C and locations of five CBs they
inferred are shown in Fig. 4. For comparison, we evaluated the mesoscopic volumetric
strain by averaging the nodal εv in each 5-voxel layer. Whereas the C′-C strains were
relatively small, the mesoscopic strains associated with D-C, E-C and F-C showed five
peaks with compactive strain concentration ranging up to 7%. These local maximums of
compaction determined by DVC basically coincide with the CB locations inferred from
the segmented images. They also correlate with local maximums in the initial porosity
profile (Fig. 4). Further analysis of porosity distribution in 3D (not presented here)
suggest that a large local porosity would indeed promote the initiation of compaction
localization.

Integration of in situ µCT imaging with DVC has revealed in fine details the spa-
tiotemporal evolution of the strains of a CB as it initiates and propagates. Geometric
complexities of the volumetric and shear strains associated with CB1 are highlighted in
Fig. 5a, b, respectively, with selected serial sections on the X-Y plane for D-C, E-C and
F-C. Spatial distributions of the two strain invariants are qualitatively similar, and the
spatial extents of strain localization increase with increasing deformation. Analogous
attributes were also observed in connection with CB2 (Fig. 6) and CB3 (Fig. 7).

To compare the spatial distribution and relative location of localized strain in the five
bands, we plot in Fig. 8 the thickness-averaged volumetric strain εv(X ,Y ) of each CB
associated with the deformation phase F-C field. By stage F the compaction accumulated
in the five CBs covered distinct domains on the circular cross-section without significant
spatial overlap. Nevertheless, if one were to project all five CBs on the same X-Y plane,
they would basically cover the full circular section. We have also checked the sum of the
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Fig. 4. Axial distribution of mesoscopic volumetric strain for C′-C, D-C, E-C and F-C. For com-
parison, the porosity profile for stage C and locations of five CBs inferred by Huang et al. (2019)
are also shown.

Fig. 5. Serial sections of CB1 showing the spatial distribution of nodal (a) volumetric strain εv ,
and (b) shear strain γs for three different phases of deformation: D-C, E-C and F-C.

volumetric strains distributed over all five CBs, which can indeed be approximated as
a uniform compression of the sub-volume in the axial direction. The creep deformation
(from C to F) led to further strain hardening, and our DVC analysis (not included here
due to space limitation) has shown that enhanced compaction spread to beyond the CBs
and the top layer, thus filling up the strain deficits in the gap domains.
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Fig. 6. Serial sections of CB2 showing the spatial distribution of nodal (a) volumetric strain εv ,
and (b) shear strain γs for three different phases of deformation: D-C, E-C and F-C.

4 Discussion

We have systematically applied digital volume correlation to time-lapse synchrotron
µCT data on compressive failure of a porous rock, and obtained some of the first in situ
observations on the grain-scale heterogeneity of strain in a porous aggregative, as well as
the fine structures and geometric complexity of compaction bands. The analysis has also
provided useful insights into the mechanics of compressive failure at multiple scales,
and important constraints on themultiscalemodeling of constitutive response and failure
mode.

Our DVC analysis corroborates the indirect inference of Huang et al. (2019) based
on segmented CT images that five discrete CBs had developed in the synchrotron sample
(Fig. 4). Most importantly, we have quantitatively delineated the spatial distributions of
volumetric and shear strains, as well as the geometric attributes of the CBs (Figs. 5,
6 and 7). During the second stage of yielding, emergence of strain concentration at
points of the putative compaction bands occurred almost simultaneously (Fig. 8), in
basic agreement with the concept of strain localization as a bifurcation. Comparison
of the CB location with the preexisting pore space indicates that a high local porosity
would promote the nucleation of a CB. Abdallah et al. (2021) has recently suggested that
porosity heterogeneity may play an important role in triggering compaction localization.

However, there are at least two questions that remain unresolved. First, Huang et al.
(2019) pointed out that the high-frequency record of displacement for the synchrotron
experiment indicates five stress drops that were separated by time steps much shorter
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Fig. 7. Serial sections of CB3 showing the spatial distribution of nodal (a) volumetric strain εv ,
and (b) shear strain γs for three different phases of deformation: D-C, E-C and F-C.

Fig. 8. Spatial distribution of the thickness-averaged volumetric strain of the five CBs that had
cumulated during the F-C phase of deformation.

than the several minutes required to acquire a single set of tomographic data, which
implies that sequential initiation of the five CBswas not resolved temporally by our DVC
analysis of the tomographic data for the D-C phase. Second, although the orientation and
alignment of strain localization suggest that the planar structures, we identified are CBs,
a definitive categorization of them as CBs requires a confirmation that they are indeed



Spatiotemporal Evolution of Strain and Compaction Localization 39

associated with normal displacement discontinuities. To tackle these two questions, one
needs to probe more deeply into the spatiotemporal correlation of the strain and spatial
distribution of the displacement vector and its alignment. Though beyond the scope of
the present study, these are important questions which we intend to address in future
research.
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Abstract. The onset and orientation of localisation bands in partially saturated
soils are intrinsically dependent upon different mechanical loading and saturation
conditions, besides material properties. It is analysed in this paper using a new
constitutive model for partially saturated soils accounting for the strong coupling
between hydraulic and mechanical responses. This strong coupling is realised in
themodel through a unique yield surface dependent on both stress and suction, and
two evolutions rules for irrecoverable saturation and plastic strain, both of which
share the same “plastic” multiplier. This automatically leads to simultaneous acti-
vation of both hydraulic and mechanical dissipative mechanisms upon yielding,
and hence different hydro-mechanical responses in wetting-drying and loading-
unloading paths. The tangent stiffness with cross-coupling terms always guaran-
tees hydro-mechanical coupling upon yielding, facilitating the bifurcation analysis
for the onset of localisation and corresponding orientation of shear bands under
different hydro-mechanical conditions. Numerical examples based on drained and
undrained triaxial tests are used to demonstrate the promising features of the new
model.

Keywords: Partially saturated soils · Coupled hydro-mechanical model ·
Bifurcation · Shear bands

1 Introduction

The onset and orientation of localisation bands at partially saturated conditions intrin-
sically depend on various loading paths and saturation degrees, in addition to mate-
rial properties. This is governed by the coupled hydro-mechanical inelastic responses
reflected in the interactions between the grain rearrangement and liquid-bridge redistri-
bution inside shear bands [4, 5]. The effect of mechanical and hydraulic conditions on
bifurcation in partially saturated soils has been observed in several triaxial [6, 10] and
biaxial [1, 3] tests where inclination angles increase with suction, and decrease with the
increase of confining pressure.
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The underlying features associatedwith suction-dependent activation and inclination
of the shear band have been investigated by [13] using the classical bifurcation theory
[12] without considering the effects of the Soil Water Characteristic Curve (SWCC).
SWCCwas taken into account in bifurcation condition in the work of [2], despite the fact
that water retention behaviour is non-unique [8]. Although volume-dependent SWCC
was used in [9] and [14], the effect of hydraulic irreversibility and its interaction with
the mechanical behaviour described by a plasticity model on bifurcation were not fully
investigated. Therefore, these existing work on bifurcation in partially saturated soils
do not reflect well the coupled hydro-mechanical effects in the dependence of SWCC
on mechanical behaviour and vice versa, as consequences of interactions between grain
contact sliding and capillary irreversibility [4, 5].

The onset and orientation of localised failures of partially saturated soils involving
the wetting-drying difference and its interdependence with the mechanical irrecover-
ability under various loading and saturation conditions are examined in this paper, using
the bifurcation criterion based on the coupled hydro-mechanical model of [11]. This
model allows the incorporation of the irreversible degree of saturation and its strong
coupling with plastic strain for producing a single critical state yield function and a
unique “plastic” multiplier with different evolution rules for irreversible changes of
strain and saturation degree to reflect mechanisms at the grain scale for the interdepen-
dence of stress, suction, internal variables and their rates. Consequently, SWCC in this
framework is path-dependent in nature, inducing different responses under hydraulic and
mechanical loading conditions, while the cross-coupling terms in the tangent stiffness
always guarantee hydro-mechanical coupling upon yielding to facilitate the bifurcation
analysis for the onset of localisation and orientation of shear bands in various hydrome-
chanical states. These promising features of our approach are demonstrated in several
validation results and parametric studies.

2 Formulation

A summary of the basic formulations of the present approach is provided in this section
by passing intermediate details on the mathematical derivations which can be found in
[11].

2.1 Constitutive Model

The coupled hydro-mechanical model of [11] is employed as a basis to investigate
bifurcation conditions for partially saturated soils. The following stress-strain and
suction-saturation relationships are used:

σ
′
ij = De

ijkl

(
εij − ε

p
ij

)
(1)

s∗ = (
pu + s∗0

)
exp

{
Sr0 + [

(−Sr) − (−Spr
)]

κh

}
− pu (2)
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where σ
′
ij is the effective stress tensor; s∗ is the modified suction; εij is the total

strain tensor; ε
p
ij is the plastic strain tensor; Sr is the total saturation degree; Spr

is the irreversible saturation; κh is a parameter to control the amount of reversible
energy stored in the water menisci; pu = 1 kPa is to allow the consistency of unit;

De
ijkl = E

2(1+�)

(
2�

1−2� δijδkl + δikδjl + δilδjk

)
is the pressure-independent elastic stiffness

tensor (e.g. E denoting the Young modulus, � denoting the Poisson’s ratio and δij being
the Kronecker delta); s∗0 and Sr0 denote initial values of s∗ and Sr , respectively. It is noted
that the minus sign of Sr and S

p
r appears in Eq. (2) since −Sr and −Spr are used as ther-

modynamic conjugates of modified suction (s∗) and hydraulic dissipative (χh = s∗ −pb)
stresses (see [11] for further details).

The model employs a single yield surface (y) dependent on suction and triaxial
stresses (e.g. p′ denoting effective mean stress, and q denoting deviator stress under
geotechnical sign convention (compression positive)) as follows:

y =
(
p′ − 1

r p
′
c(us)

)2
[(
1 − 2

r

)
p′ + 1

r p
′
c(us)

]2 + q2[
(1 − α)p′ + α

r p
′
c(us)

]2
M 2

− 1 ≤ 0 (3)

The coupled hydro-mechanical flow rules, based on the yield function y∗ in the
space of volumetric (χν = p′), shear (χs = q) and hydraulic (χh = s∗ − pb) dissipative
generalised stresses and a single multiplier λ̇p, are written as follows:

ε̇
p
ν = λ̇p

∂y∗

∂χν

= λ̇p

2
(
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r p
′
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]2 exp[−β(1 − Sr)] (4)
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r

)
p′ + 1

r p
′
c(us)

]2
[
1 − exp[−β(1 − Sr)]

]
(6)

It is noted that y∗ plays the role of a plastic potential in classical plasticity theory,
the detailed thermodynamic formulation of which can be found in [11]. In the above
expressions, β (0 < β ≤ 1) is used to govern the coupling between saturation and
volumetric deformation upon yielding; r is a spacing ratio to control the shape of yield
loci; α is a parameter governing the strength of the material and non-associativity of the
flow rules;M is the slope of the critical state line in the p′ : q plane and pb is a parameter
controlling the stored irreversible hydraulic energy. The function p

′
c(us) is the hardening

law dependent on s∗ and ε
p
ν :

p
′
c(us) = p

′
R

⎡
⎣p

′
c0 exp

(
ε
p
ν

λ

)

p
′
R

⎤
⎦

1
[(1−ξ)exp(−μs∗)+ξ]

(7)
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with λ representing the slope of the virgin compression line for saturated conditions; p
′
c0

being the initial yield pressure under isotropic compression at fully saturated conditions;
p

′
R denoting the stress parameter controlling the yield curve; ξ being a dimensionless
parameter controlling the maximum soil stiffness, and μ being a constant related to the
change of soil stiffness with modified suction.

2.2 Bifurcation Criterion

The classical discontinuous bifurcation condition [12] is used for detecting the emer-
gence of a single tabular shear band observed in constant suction and water content
tests of partially saturated soils. The discontinuous bifurcation condition based on the
localisation tensor Aik (or acoustic tensor) is:

det(Aik) = det
(
Dijklnjnl

) ≤ 0 (8)

where nj =
[
na 0 nr
0 nr na

]
=

[
cosϕ 0 sinϕ
0 sinϕ cosϕ

]
is the matrix form of a normal vector

with the inclination of shear bands ϕ illustrated in Fig. 1; Dijkl is the coupled hydro-
mechanical tangent stiffness tensor in the constitutive relationship in terms of total stress
σij and suction s where its form for drained tests can be written as:

Dijkl = �ijkl −
Srδij

[
(�kl+sδkl)

φ
+ sδkl

]

φ
−

(
1

ϒ

)[
�ij +

(
s − Srϒ

φ

)
δij

]
(�kl + sδkl)

(9)

In the case of undrained tests, from the condition of constant gravimetric water
content, Dijkl can be expressed in the following form [11]:

Dijkl = �ijkl −
Srδij

[
(�kl+sδkl)

φ
+ sδkl

]

φ
− Gswv

(ν − 1)2

[
�ij +

(
s − Srϒ

φ

)
δij

]
δkl (10)

where φ, w, v and Gs are porosity, gravimetric water content, specific volume and bulk
specific gravity, while �ijkl , �ij, �kl and ϒ are written as follows:

�ijkl = De
ijkl

(
1 − Mkl
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∂χkl

)
(11)

�ij = −De
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In the above expressions, χkl is the dissipative generalised stress tensor with
∂y∗
∂χkl

=
∂y∗
∂χν

∂χν

∂χkl
+ ∂y∗

∂χs

∂χs
∂χkl

, whileMkl and H are of the following forms [11]:
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The developed bifurcation condition includes cross-coupling terms of Dijkl to bring
benefits in reflecting the inter-dependence between mechanical and hydraulic irre-
versibility. This automatically leads to the appearance of a path-dependent water reten-
tion curve, enabling our bifurcation criterion to capture the effect of the coupling
between wetting-drying and unloading-loading differences on the onset and orienta-
tion of localisation bands, making the present approach distinct from existing ones [2,
9, 13, 14].

Fig. 1. Illustration of the direction vector of the localisation band in the shear tests where a
represents the axial axis and r represents the radial axis

3 Results and Discussions

Both behaviour and bifurcation are considered in this study, given they are correlated
and cannot be separated. Therefore, the model must be able to capture the trends of
experimentally measured behaviour first, before attempts to investigate the onset and
orientation of localisation band. It is noted that only the trends can be captured, as the
problem becomes a boundary value problem once localisation occurs. Enhancements
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to the structure of constitutive models are needed in the future to describe correctly
post-localisation behaviour at the constitutive level [7]. Therefore the calibration used
to determine model parameters is aimed at capturing the trends of behaviour only.

To assess the performance of our approach, we first validate the model predictions
against the drainedbiaxial shear test onHostun sand [1] at two levels of suction s = 0 kPa
and 20 kPa under the confining pressure of σ r = 50 kPa. In this example, the stress-
strain curves (e.g. εa : q, εa : εν) at s = 0kPa and s = 20kPa are illustrated in Figs. 2 and
3a, respectively, while Fig. 3b shows the result on the variation of ϕ and det

(
Ajl

)
at the

bifurcation point for s = 20kPa. The minimisation of det
(
Ajl

)
is determined by scanning

orientation ϕ from 0° to 90° at each step of the numerical implementation. The following
model parameters: E = 18000 kPa; � = 0.25; λ = 0.04;M = 1.035; p′

c0 = 600 kPa;
r = 1.5; α = 0.65 are identified using the experimental results at s = 0 kPa as presented
in Fig. 2, while κh = 0.9; p′

R = 10.41 kPa; ξ = 0.352;μ = 0.0529 kPa−1;β = 0.08
and pb = 100 kPa can be selected to obtain a close agreement between the computed
and measured results on shear stress at s = 20 kPa (see Fig. 3a). Given these calibrated
material constants, themeasured band orientation in the case of s = 20 kPa is reasonably
captured by the model (see Fig. 3b). Furthermore, it can be seen in Figs. 2 and 3a that
the loading case of s = 0 kPa exhibits an earlier bifurcation mode (at εa = 0.0203, q =
250.676 kPa) in comparison with that of s = 20 kPa (at εa = 0.0241, q = 307.691 kPa),
demonstrating the capacity of the proposed approach in predicting the hydraulic effects
on the onset of shear bands in partially saturated soils. Nevertheless, we acknowledge a
disparity between numerical and experimental data encountered in the volumetric strain
at s = 20 kPa (see Fig. 3a) due to missing representations of the effects of orientation
and thickness of the localisation band on the softening response despite their importance
in the post-localisation regime.
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Fig. 2. Calibration of parametersE,�,λ,M , p
′
c0, r andα based on the drained biaxial compression

test on Hostun sand at the fully saturated state (s = 0 kPa) with σ r = 50kPa (after [1])

The model performance is further investigated using the water content-controlled
triaxial shear test on compacted Kaolin soil [15] at three levels of confining pressures
σ r = 150 kPa, 200 kPa and 300 kPa with the initial suction of s0 = 300 kPa [16]. In
this example, we take parameters as E = 25000 kPa; � = 0.25; λ = 0.06;M = 1.19;
κh = 0.16; p′

R = 22 kPa; ξ = 0.6;μ = 0.0601 kPa−1; p′
c0 = 300 kPa; r = 1.97;
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Fig. 3. Validation with the drained biaxial compression test on Hostun sand at s = 20 kPa with
σ r = 50kPa (after [1]) a εa : q and εa : εν b ϕ : det(Aik ) at the bifurcation point

α = 0.85; β = 0.05; pb = 70 kPa and Gs = 2.644 in which their calibrations are based
on the best fit between the measured data and its predicted counterpart at σ r = 200 kPa
in terms of stress-strain (see Fig. 4) and orientation of shear band (see Fig. 5). It can be
seen in Fig. 4 that the current model can provide a good prediction of the experimental
results on stress-strain (εa : εν , εa : q) where the orientation of the shear band decreases
(see Fig. 5) in conjunction with the less profound dilative behaviour at higher confining
pressures. It is noted that the smooth transition from elastic to plastic regimes is not
focused on in this study and this shortcoming will be addressed in future work. The
behaviour is linear up to peak, resulting in an abrupt change in the slope of the stress-
strain curve. This change of slope is however less profound for the loading path in drained
biaxial compression test as illustrated in Figs. 2 and 3, thanks to the confinement in the
out of plane direction (plane strain condition).
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Fig. 4. Validation with an undrained triaxial compression test on Kaolin soil at the initial suction
of s0 = 300 kPa (after [15]) a εa : q b εa : εν

A parametric study is performed to investigate the effects of coupling between satu-
ration and volumetric deformation upon yielding on bifurcation, through different values
of parameter β (β = 0; 0.5; 0.9). In this example, we use the same constants as adopted
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Inclination angle, 

Fig. 5. Validation with the measured orientation of shear band in the undrained triaxial compres-
sion test on Kaolin soil at s0 = 300 kPa based on ϕ : det(Aik ) at the bifurcation point (after
[15])

earlier for the example of the undrained triaxial shear test on compacted Kaolin soil
[15]. It can be found that β �= 0 allows the proposed bifurcation criterion to capture
the wetting-drying difference (e.g. reflected in −Ṡpr ) induced by the loading-unloading
process (e.g. reflected in ε̇

p
ν ) and vice versa due to its presence in the flow rules (see Eqs.

(4) and (6)). Furthermore, Fig. 6 shows that the decrease in β leads to the increase in
the orientation of shear band ϕ because the irreversible change of saturation degree is
observed to be stronger at a higher β. The sensitivity of the bifurcation response to β

can also be clarified through its contribution to generating the effect of saturation degree
on the plastic dilatancy ratio ε̇

p
ν/ε̇

p
s which significantly affects the dilation as seen in the

εa : εν and εa : q results in Fig. 6a. These features reflect hydromechanical mechanisms
of the interactions between grain contact sliding and capillary irreversibility at the grain
scale, confirming an advance of our bifurcation theory in comparison with existing ones
for partially saturated soils. Nevertheless, it is acknowledged that the effect of β on the
onset of shear band is not strong in this example due to the loading condition despite its
appearance in the formulation.
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Fig. 6. Effects of different values of β on the model responses a εa : q and εa : εν b ϕ : det(Aik )
at bifurcation point
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4 Conclusion

This study focuses on the development of a criterion for detecting the onset and ori-
entation of the localisation band under the effects of the coupling between mechanical
and hydraulic yielding responses in different loading and saturation regimes, based on
the classical bifurcation theory [12] and the constitutive model for unsaturated soils by
[11]. The use of a single yield surface dependent on both stress and suction and two flow
rules for the irreversible rates of strain and saturation degree allows better descriptions of
hydro-mechanical coupling in partially saturated soils. In particular tangent stiffnesswith
cross-coupling terms is used in the bifurcation criterion to provide the path-dependent
nature of SWCC, without the need of a separate water retention curve. The potentials
of the model in predicting both onset and orientation of localisation band under differ-
ent levels of stress and suction can be seen in numerical examples. Nevertheless, the
effects of the thickness of the localisation band in the post-localisation regime are not
considered in the proposed formulation yet, hindering it from correctly reproducing the
size-dependent responses [7]. This will be addressed in our future works.
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Abstract. Degradation processes in porous media concern numerous industries.
In geomaterials, these processes are capable of triggering localised instabilities
which may result in the collapse events, as has been observed with the formation
of sinkholes and the collapse of rock salt mines. Previous studies have identified
periodic creep-quake collapse patterns in porous materials under simultaneous
compression and degradation. However, the possibility of the development of
this particular collapse pattern in geomaterials is yet to be explored. Here, we
reproduce the creep-quake cycle patterns in two different calcareous sands and
present the physical mechanism that underpins it. Our experiments show that this
mechanism results in sudden localized collapse events, loud acoustic emissions,
and drops in the servo-controlled load used to compress the sand samples.We then
explore the behavioural change of the sandwhen subjected to different degradation
rates and different applied stresses. Finally, we explore the parametric limits of
applied stresses and degradation rates within which calcareous sand undergoes
creep-quake cycles. Our results show that this collapse mechanism can emerge
in geomaterials that are simultaneously subjected to sufficient compression and a
non-uniform degradation field.

Keywords: Calcareous sand · Acetic acid · Creep-quake cycles

1 Introduction

The chemical dissolution of geomaterials is a common diagenetic process found in
nature. The effects of these processes may result in the damage of man-made or natural
structures, such as leakage and structural instability in tailing dams [1, 2], sinkhole forma-
tion [3], damage to underground CO2 storage systems [4], and submarine landslides [5].
The consequences of such events may include environmental pollution, human injuries,
and loss of lives. This highlights the importance of developing an accurate understanding
of the behaviour of geomaterials under acid degradation. In recent years, a novel collapse
mechanism was identified experimentally in uniaxially loaded, partially soaked puffed
rice [6]. Themechanism consists of localised cyclic collapse events, named ‘ricequakes’,
that initiated within the partially saturated material and were interluded by periods of
accelerated creep deformation. The discovery of these ‘creep-quake’ cycles motivated
our investigation of this distinct collapse pattern in other porous media. Specifically, we
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consider the effect of chemical dissolution processes in calcareous sands under load,
which can be closely related to the conditions under which the puffed rice exhibited
creep-quake cycles. In this paper, we describe how the creep-quake collapse pattern
emerges in these geomaterials using an array of experiments performed on two different
calcareous sand samples. The sand samples were both loaded uniaxially and chemically
degraded from the bottom, simultaneously. Additionally, we show the effects of stress
and degradation rates on the behaviour of the calcareous sands, with which we discuss
the creep-quake cycle mechanism and how it emerges in this material.

Fig. 1. a Experimental set-up. b Sieve analysis of two different calcareous sands. The red vertical
lines show the limits at which the grain size distribution was capped to make the experimental
samples

2 Methodology

The experimental set-up used across all the experiments is depicted in Fig. 1a. It consisted
of a cylindrical sand sample with a diameter (D) of 34.2 mm and an initial height (H0)
of 100 mm in an acrylic tube. The samples sat between two porous plates that allowed
fluid flow through them, with the bottom plate being static and the top plate acting as
a loading piston connected to a Tinus Olsen H5KS loading frame. The tube wall was
sealed at the bottom with an aluminium base, with an inlet tube that allowed for liquid
injection.

The preparation of the samples involved initially filling the test apparatus with water,
then pluviating the sand into the tube until reaching the desired initial height. This was
done in order to reach a loose initial sample density. The samples were then compressed
uniaxially by the loading frame at a constant strain rate of 5 mm/min until the target
load was reached. At this point, the loading mode was switched to stress control, and the
servo-controller maintained that target load throughout the experiment. It is noted that
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due to the nature of using a servo-controller, there was a constant target stress applied
on the sand samples. As will be discussed later in the paper, this resulted in drops to
the stress applied whenever a quake occurred. However, the stiffness of the machine
used allowed for the recovery time of those stress drops to be significantly faster than
the frequency of the quake events. Therefore, its effects on our experimental results are
considered to be minimal.

Fig. 2. Macroscopic photograph of the two sands a Classica marine aragonite b Barry’s beach
sand. The photographs were taken on sieved samples. Hence, the grain sizes are between 0.6 and
1.18 mm

Once the loadwas stable, the acidic solutionwas injected fromunder the bottomplate
at a constant flow rate with a peristaltic pump connected to an acid reservoir. Although
the injection rate of the acetic acid varied across experiments, it was kept constant for
the duration of each experiment. Once the solution had travel through the height of the
sample, it overflowed from the top of the tube onto a collection bucket for disposal. As
the acid flowed through the samples, its hydrogen ions concentration decreased as it
chemically reacted with the calcium carbonate of the sand. Consequently, the solution
exiting the samples was significantly less acidic than the injected one. The macroscopic
photographs in Fig. 2 were taken with a Hirox microscope, while the photographs of the
experiments were acquired with a Nikon D3300 camera placed in front of the set-up.
The experiment photographs were taken at a rate of one frame every five seconds and
they were used to produce the sand spatiotemporal graphs shown in Fig. 3.

Two different types of calcareous sand samples were used: ‘Classica marine arag-
onite’ and ‘Barry’s beach’ Sand. The Classica marine aragonite was purchased as an
aquarium supply. This sand was an ideal material to react with acid and explore creep-
quake cycles in geomaterials, since it is commonly used as a pH buffer in aquarium
tanks. The sand is characterised by round coarse grains of approximately 1 mm in diam-
eter (Fig. 1b). In contrast, the Barry’s beach sand samples were obtained from south
Victoria, Australia. This sand has been previously studied and its engineering properties
are detailed in literature [7]. In comparison to the Classica marine aragonite, the Barry’s
beach sand has a larger content of fines, which is clearly visible in its sieve analysis.
It is further noted that the Barry’s beach sand coarse grains were significantly more
angular than the typically more spherical grains of the Classica marine aragonite, as can
be seen in the macroscopic photographs in Fig. 2. The two sands were stored in a cool
dry place and were sieved prior to each experiment in order to remove grains coarser
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than 1.18 mm or finer than 0.6 mm. The red vertical lines in Fig. 1 show the fraction of
the sand samples taken to make the experimental samples.

The acid solution used to dissolve the calcareous sand samples was purchased as
‘Coles white vinegar’ and as ‘Coles double strength vinegar’ from a local supermarket.
The vinegar purchased is an aqueous acetic acid solutions with a concentration of 4
and 8% acetic acid by weight, corresponding to an initial pH 2.6 and 2.4, respectively.
Double strength vinegar was the used across all the experiments on the Classica marine
aragonite, while single strength vinegarwas used for theBarry’s beach sand experiments,
as the Barry’s beach sand was found to react to the vinegar at significantly faster rates.

Fig. 3. Spatiotemporal plots for experiments on three different materials. Left column: full spa-
tiotemporal plot, right column: zoom in of one quake event (red delimited area in spatiotemporal
plots. From top to bottom: puffed rice [6], Classica marine aragonite, and Barry’s beach sand. The
two sand experiments had an initial height of 100 mm, an injection flow rate of 10 mL/min, and
a compressive stress of 4.35 MPa. On each spatiotemporal plot, five quake events are signaled
by a red arrow to ease their observation. In these plots, quakes appear as discontinuities in the
downward pixel pattern

3 Results

Similar to the effect of water saturation in puffed rice, we found that the chemical
degradation process in the sand grains together with the axial compression may gener-
ate creep-quake cycles due to the localized degradation of the material. The similarity
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between the puffed rice and the calcareous sands collapse pattern is evident in the spa-
tiotemporal plots shown in Fig. 3. The plots were generated by taking a column of pixels
in the centre of the samples from the experiment photographs and plotting it (vertical
axis) over time (horizontal axis). This imaging technique allows for a static observation
of the one-dimensional behaviour of the samples over time and facilitates the identifica-
tion of creep-quake cycles. In these graphs, creep is seen as the gradual downward trend
in the pixels, which is interrupted by a sudden larger downward displacement with every
quake. The two cyclical deformation stages are further shown in Fig. 4 as deformation
versus time curves. The two sand experiments in Fig. 3 had identical testing parameters,
as detailed in the caption, with the exception of the concentration of acetic acid injected,
as mentioned in the methodology Sect. 2. In addition to the visible similitude of the
creep-quake cycles across these three materials, the quake events in the sand samples
were also accompanied by drops in the servo-controlled load used to compress them, as
seen in Fig. 5, and distinct acoustic emissions, two features that were highlighted in the
original discovery of ricequakes [6].

Fig. 4. Deformation versus time curves for two sets of experiments under different acid injection
rates: Classica marine aragonite (left) and Barry’s beach sand (right)

3.1 Injection Rate Effect

Once creep-quakes cycleswere identified in the two sands, the effect of acid injection rate
was explored, see Fig. 4. This was achieved with two set of identical experiments where
the only parameter varied was the injection rate. The experiments in Fig. 4 consisted of a
100mm tall sand columnunder an applied stress of approximately 4.35MPa (4 kN force).
As expected, a lower acid injection rate resulted in a slower rate of deformation of the
sand samples. This trend also led to prolonged creep periods, separating the quake events
by larger spans of time. In the case of the Classica marine aragonite, this does not prevent
quakes fromoccurring, as they are prevalent throughout the four different experiments all
the way until the experiment was stopped. However, the Barry’s beach sand samples do



56 L. Crespo-Parraga et al.

not exhibit creep-quake cycles at lower reaction rates, and the quakes seem to disappear
early instead of being regularly present for the whole duration of the experiment. This
feature is also visible in the spatiotemporal graphs in Fig. 3, as there are no more sudden
displacements of pixels after approximately 80 min. Furthermore, it is observed that
higher injection rates result in creep-quake cycles that are far less discernible from creep
alone. This is clearly seen in the 20 mL/min injection rate experiments in both sand
samples.

3.2 Loading Magnitude Effect

The effect of load magnitude on the development of creep-quake cycles was further
studied with a set of experiments on Barry’s beach sand samples. The findings of these
experiments are summarised graphically in Fig. 5. These experiments were performed
on 100 mm tall sand columns with a 10 mL/min acid injection rate and with different
applied loads. This shows that quakes can only occur when sufficient confining load is
applied. At low load magnitudes, creep-quake cycles come to a halt and degradation
accelerated creep is the sole mechanism through which the sand deforms. However,
there is no clear effect between load magnitude and quake frequency. A similar trend
was observed in the Classica marine aragonite samples, although not presented in this
figure for conciseness.

Fig. 5. Measured load versus time curves for a set of experiments on Barry’s beach sand with
varying applied target load

4 Discussion

In line with the effects of partial saturation in puffed rice, the acetic acid degrades the
calcareous sands mostly at the bottom of the samples. As the acid travels through the
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material, its concentration of hydrogen ions available to react with the calcium carbonate
in the sand decays. This results in reaction rates within the material which reduce with
distance from the bottom base plate. The field of degradation that the sand experiences
is estimated to have significantly faster reaction rates at the bottom of the samples.

The creep periods in the samples are a result of the mass reduction caused by the
acetic acid reacting with the sand grains. This reaction makes the sand grains smaller
and may lead to their rearrangement, resulting in the accelerated creep deformation we
observe in our experiments. Quakes, however, are the result of an instability within
the granular structure. This instability arises from a localised increase in porosity and
decrease in strength of the granular medium and ultimately, a quake occurs when the
region can no longer withstand the compressive stress applied.When a sand grain within
a highly degraded region of the sample (close to the bottom plate) breaks or dislodges
into available space (pores), it may overload the granular structure, thus triggering a
local collapse event (a quake). The non-homogeneity of dissolution along the loading
direction is key to the development of recurring creep-quake cycles. This interpretation
is supported by Fig. 4, where we see how faster injection rates result in less distinct
creep-quake cycles. This is likely caused by a homogenisation of the degradation field.
Faster injection rates result in a larger concentration of hydrogen ions further away from
the bottom of the sample, causing a more uniform degradation of the samples in compar-
ison to the slower injection rates. This can be seen in the similarity between the 15 and
20 mL/min injection rates experiments. At these faster rates, the sample deformation is
no longer limited by the distribution of hydrogen ions within the material, but instead
by the chemical kinetics of the reaction. Hence, the results of our experiments point
towards two required ingredients for creep-quake cycles to emerge in sands exposed
to acidic degradation. Firstly, a non-homogeneous degradation field which results in a
localised zone of weakness and higher porosity due to the grains loss of mass, conse-
quently generating quakes. Second, sufficient load is required for these cycles to occur,
as demonstrated in Fig. 5. Without sufficient pressure, the breakage or rearrangement
of grains withing a highly degraded zone does not appear to result in sudden collapse.
The lower stress allows the granular structure to rearrange and slowly re-stabilise while
constantly degrading.

The difference in creep-quake cycles duration between the two sands is explained
by the morphology of their grains. While the angular nature of the Barry’s beach sand
grains causes a faster consumption rate of the sand due to their larger surface area, it also
reduces the porosity of the sand column, generating less space for grains to dislodge or
break into. Therefore creep-quake cycles in Barry’s beach sand come to a halt earlier
than they do in ClassicaMarineAragonite.When exposed to the experimental conditions
for long enough, Classica Marine Aragonite also stop undergoing creep-quake cycles.

An additional distinction appears when comparing the collapse patterns of the puffed
rice and the two sand samples. Ricequakes are characterised by a growth in creep duration
over time [6]. Visibly (Figs. 4 and 5), this is not a characteristic of the collapse patterns of
the two sand samples. We explain this difference with the accumulation of inert material
at the bottom of the cereal samples and the lack of renewal of degrading agent in that
case. In the puffed rice experiments, a known volume of water was injected at the start of
the experiments and it was not renewed. As time progressed, the collapsed cereal mass
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at the bottom of the tube increased and this widened the distance between the base of the
tube and the undegraded (and therefore susceptible to collapse) grains. This results in the
undegraded grains saturating at a slower rate as time progresses and causes the growing
creep periods observed in [6]. In contrast, the acid solution was constantly renewed in
the sand experiments and the sand grains continued to degrade even after a quake has
occurred, as they continually weakened and reduced in size. This difference in how the
degrading agent and the samples interact explains why growing creep periods are not
observed in the sand experiments.

5 Conclusion

In conclusion, we have shown that the mechanism of creep-collapse cycles originally
found in puffed rice [6], ‘ricequakes’, can emerge in geomaterials under acidic degrada-
tion, using two distinct calcareous sands. One-dimensional experiments were performed
in which we applied compressive load and a non-uniform chemical degradation field to
the sand specimens, simultaneously. We observed that changing the degrading field has
a direct effect in the creep-quake behaviour of the sands, making the collapse patterns
less pronounced as the high degradation front broadens. These observations ultimately
point to the fact that in order for creep-quake cycles to emerge in geomaterials under
chemical degradation, the materials has to experience sufficient compressive stress, as
well as a non-uniform degradation field.
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Abstract. Patterns in nature form through bifurcations triggered byMultiphysics
feedbacks that involve chemical, hydraulic, mechanical, and thermal processes. A
generic approach has been developed based on a nonlocal reaction-diffusion equa-
tionwhere patterns growas a result of travelling dissipativewaves.Herewe present
a simplified analysis on the formation of vastly different patterns (e.g., Liesegang
stripes and dendritic precipitation) in Solnhofen limestone that are traditionally
interpreted to result from the same group of chemical precipitation reactions.
The transition from stripes to dendritic growth in the same formation suggests
a commonality that is not yet captured or understood by the classical chemical
feedback models. We propose that mechanical processes drive the patterns. The
objective of this study is therefore to identify a set of characteristic diffusion coef-
ficients and reaction processes that generate pressure waves which can encompass
chemical and hydromechanical feedback process driving the selection between
the two-types of instabilities.

Keywords: Solnhofen limestone · Liesegang rings · Phase field

1 Introduction

Patterns are formed in reaction-diffusion systems that are far from the thermodynam-
ics equilibrium, which are frequently encountered in many disciplines, such as animal
patterns in biology, electrochemical deposition in chemistry, rock textures in geology.
In this study, we focus on a particular pattern emerging in Solnhofen limestone where
the surface is often stained by black or red-brown as shown in Fig. 1a (investigations on
the transition to Fig. 1b are ongoing). Here we approach the pattern forming process by
a more general Thermo-Hydro-Mechanical-Chemical (THMC) process defining cross-
diffusion as the phenomenon where a gradient of one generalised thermodynamic force
of species Cj drives another generalised thermodynamic flux of species Ci, described by

∂Ci

∂t
= D̃ii∇2Ci +

∑

j �=i

D̃ij∇2Cj + ri (1)
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The species j is identified as the cross-diffusion species other than the species i.
Introducing a fully populated (N × N ) diffusion matrix D̃ij, Eq. (1) can (using explicit
summation instead of Einstein convention) also be written as

∂Ci

∂t
=

N∑

k=1

D̃ik∇2Ck + ri (2)

whereby the classical (self-)diffusive length scale of each THMC process is defined by√
4D̃iit. The cross-diffusion approach introduces also a new meso-scale coupling length

scale that can provide a link between the large-scale self-diffusion length scales of the
THMC processes.

Fig. 1. Patterns in Solnhofen limestone: a Liesegang stripes versus b Dendrities

The traditional explanation of the formation of Liesegang patterns and dendritic
growth suggests a chemical reaction [1, 2] where metallic ions (iron or manganese) pen-
etrate into the rock surface and then oxidize into their respective oxide. The correspond-
ing reaction-diffusion system can be generalised as a chemical reaction: A+B → C. In
this system, an external aqueous electrolyte A diffuses into the gel-like host and reacts
to the inner electrolyte B, thereby generating the product concentration of the solid C in
the wake of a moving diffusion front. The production C enables to form the rhythmic
precipitated patterns of iron-oxides in Fig. 1a but the transition from the quasistationary
rhythmic pattern to the dynamic dendritic growth pattern is not captured by the approach.

In this contribution we first visit the common arguments for the rhythmic striped
pattern and identify a possible transition to a rhythmic spotted pattern. The formation of
the stripe pattern can be understood by the concept introduced by Wilhelm Ostwald in
the late nineteenth century, for chemical systems thus valid for chemical length scales at
submicroscopic scale. The common explanation refers to a pre-nucleation supersatura-
tion model that forms the origin of the pattern. In this model, the pre-nucleation process
forms the seed; However, the length scale of the diffusive mass transfer eventually form-
ing the periodic precipitation bands after its concentration C exceeds a certain value
cannot be a chemical diffusion length and must involve a THMC process at a larger
scale such as a hydrous or mechanical transport process.

The traditional model also cannot interpret several experimental findings, such as
gravity-dominated Liesegang stripes. To alleviate this limitation, Hedges and Henley
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suggested a sol coagulation theory [3]. The sol coagulation models divide the formation
of the distinct precipitation into two steps. First, the colloidal sol is created, but invisible
to the naked eye.With the colloidal sol increasing at certain areas, the visible precipitation
bands then emerge when ion concentration strength approaches the critical coagulation
limit. Although both the supersaturation and sol coagulation theory are able to reproduce
empirical laws observed in experiments, a shared drawback is the determination of the
threshold of the concentration of the generated product.

To address this problem, a more recent theory, called phase separation model, has
been proposed to simulate the formation of Liesegang patterns. In thismodel, the patterns
form as a result of spinodal decomposition of the product extending a spin-1/2 kinetic
Ising model with coarse-grained dynamics [4, 5]. More specifically, when the product
concentration is initially in a stable or metastable state, the diffusion front transforms
in between the spinodal points, leading to instability and pattern formation. The phase
separation method is capable of modeling irregular patterns, such as helices, and the
transition between bands and spots after introducing noise effects [6]. Due to its robust-
ness and efficiency, this model has been widely used to simulate the Liesegang family
patterns in many fields. Herein, we adopt the phase separation concept and extend to
investigate the diverse pattern formation in Solnhofen limestone.

2 Phase Separation in a Chemo-Hydromechanical Sense

We start with considering a simple scenario of phase separation, that is, two reagents A
and B diffuse and react generating a productC in the wake of the moving diffusion front:
A(aq) + B(aq) → C(s). The corresponding reaction-diffusion equations for the reagents
can be expressed as

∂a

∂t
= Da�a − κab

∂b

∂t
= Db�b − κab (3)

where a and b are concentrations of two reagents A and B, κ is the reaction rate, and Da

and Db are the self-diffusion coefficients. We assume Da = Db = D for simplicity.
It is phenomenologically observed that the reaction production C can automatically

segregate into two distinct phases, i.e., low- and high-concentration phases [5]. The
contrast in concentration leads to the rhythmic precipitation patterns in the system. The
dynamics of the production C can be captured by the Cahn-Hilliard equation:

∂c

∂t
= −∇ � (λ0∇µ) + κab + ηc0 (4)

where λ0 is the diffusive mobility, κab represents the production rate of C particles by
the reaction front, and ηc0 denotes noise effects, such as the inhomogeneous reagents
and thermal fluctuations. μ is the total free energy density (here defined as a general-
ized thermodynamic potential) that drives the phase separation, which consists of two
components: the bulk free energy density f,c and interfacial energy density σ0�c as

μ = −f,c + σ0�c (5)
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in which σ0 is the gradient parameter related to the sharpness of the interfaces. For
the sake of simplicity, we use a Landau-Ginzburg type free energy f with two minima
corresponding to cl and ch and the maximum to c = (cl + ch)/2.

f = −ε

2
(c − c)2 + γ

4
(c − c)4 (6)

where ε and γ are system-dependent parameters and
√

ε/γ determines the minima of
the bulk free energy f . Note that both ε and γ need to be greater than zero for inducing
phase separation in the system.

Hence, the generalized chemical potential defining the material reservoir can be
written as

μ = ε(c − c) − γ (c − c)3 + σ0�c (7)

The dimensionless treatment for the system regarding the concentration, time, and
length scales is

c
∧ = ch − cl

2
, τ = 1

κc
∧ , l =

√
D

κc
∧and m = c − c

c
∧ ≈ c

c
∧ − 1 (8)

The final set of nondimensional governing equations similar to [7] reads

∂a

∂t
= Da�a − κab

∂b

∂t
= Db�b − κab

∂m

∂t
= −∇ � (λ∇μ) + κab + ηc

μ = εm − γm3 + σ�m (9)

where λ = λ0ε/D, σ = σ0κ ĉ/Dε, and ηc = ηc0/κ ĉ2 are rescaled parameters.
The corresponding boundary conditions (BCs) can be decomposed into essential and

natural boundaries. The essential boundary conditions contain a = a, b = b,m = m,

and μ = μ on the related boundaries, and the natural boundary conditions include
∇a �n = ja,∇b �n = jb,∇m �n = jm, and ∇μ �n = jμ where n is the unit outer normal
vector.

In addition, the initial conditions (ICs) are

a|t=0 = a0, b|t=0 = b0,m|t=0 = m0, andμ|t=0 = μ0 (10)

An open-source high-performance phase-field code, PRISMS-PF [8] based on one
finite element library of deal.II, is used to solve Eq. (9) with the corresponding BCs and
ICs. This PRISMS-PF library supports adaptivemesh refinement,massively parallel, and
matrix-free finite element simulation,which allows for future extensions of this study to a
3D scenario. The PRISMS-PF uses an explicit scheme for time discretization. Although
the explicit method only has first-order accuracy and limits to satisfyCourant-Friedrichs-
Lewy (CFL) condition, it is simple to implement and computes fast during each time
step. The formulation of associated weak forms for the PRISMS-PF implementation is
presented in a different manuscript (in prep).
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3 Simulation Results

Wefirst apply the phase separationmodel presented in Sec. 2 for the numerical simulation
of Liesegang ring pattern forming and compare our numerical results with empirical
laws derived from a variety of experimental observations [4], such as the timing law, the
spacing law, the width law, etc.

The model setup considers a 2D circular domain with a round cavity in the center
as shown in Fig. 2a. The radius of the exterior and inner boundary is Router = 100 and
Rinter = 12.5, respectively. The size ratio of the inner and outer radius refers to [6].
Dirichlet boundary condition a = 100 is applied at the internal boundary for the reagent
A, while no-flux boundary conditions are imposed for other variables. On the exterior, no-
flux boundary conditions are imposed for all variables. The initial conditions are a0 = 0,
b0 = 1.0, andm0 = −1.0 for the entire domain. ηc is vanished to ignore the noise effects.
The total simulation time is T = 300 with the increment time step �t = 0.001. Other
material parameters include the self-diffusion coefficients Da = Db = 1.0, the reaction
rate κ = 1.0, the diffusion mobility λ = 1.0, and the parameters ε = 1.0, γ = 0.4, and
σ = 0.2. Time evolution of typical Liesegang ring forming is illustrated in Fig. 2b.

Fig. 2. Verification for the Liesegang rings a Schematic of numerical setup and b forming of
Liesegang rings at four time steps

Our simulation matches the spacing law relating the position of two consecutive
rings by rn+1

rn
= 1 + p, where 1 + p = 1.31, representing the spacing coefficient as

depicted in Fig. 3a. The phenomenologicalMatalon-Packter law p = F(b0)+G(b0)
b0
a0
,

indicating the role of the initial concentrations of the reagents is obtained by fitting the
spacing coefficient with an inverse function as shown in Fig. 3b. Furthermore, the linear
width law between the radius of the ring and its thickness is numerically benchmarked in
Fig. 3c. Further, additional patterns have been identified for Liesegang stripes in different
rocks where the stripe patterns can transition into isolated spots. Here we show that the
presented phase separationmechanism in its simplest formcanbeused to investigate such
transitions, as illustrated in Figs. 4, 5, 6 and 7. Themodel considers heterogeneous nature
of the rocks and contains noise effects in the generalized reaction-diffusion equations.
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We find that noise effects and heterogeneity play a vital effect on the formation of the
irregular patterns or precipitation rings.

Fig. 3. Numerical verification of three empirical laws a The spacing law, b the Matalon-Packter
law and c the width law

Fig. 4. Ring patterns. The scaled parameters: a = 100, a0 = 0, b0 = 0.5,Da = Db = 1.0, κ =
1.0, σ = 0.2,m0 = −1.5, λ = 1.0, ε = 1.0, γ = 0.4, and ηc ∈ [−0.01, 0.01]

Fig. 5. Patterns combined spots and rings. The scaled parameters: a = 100, a0 = 0, b0 =
0.5,Da = Db = 1.0, κ = 1.0, σ = 0.2,m0 = −1.5, λ = 0.3, ε = 1.0, γ = 0.15, and
ηc ∈ [−0.01, 0.01]

Fig. 6. Patterns transiting from rings to spots. The scaled parameters used for the simulation:
a = 100, a0 = 0, b0 = 0.5,Da = Db = 1.0, κ = 1.0, σ = 0.2,m0 = −1.5, λ = 0.5, ε =
1.0, γ = 0.15, and ηc ∈ [−0.01, 0.01]

4 Discussion

In order to identify the possible THMC feedback mechanism we use the diffusive length
scale fromEq. (2) as a diagnostic tool as the gradient in concentrations in the equation can
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Fig. 7. Spot patterns. The scaled parameter used for the simulation: a = 100, a0 = 0, b0 =
0.5,Da = Db = 1.0, κ = 1.0, σ = 0.2,m0 ∈ [−1 − 0.01, −1 + 0.01], λ = 0.15, ε = 1.0, γ =
0.15, and ηc = 0

be understood as chemical, hydraulic, mechanic or thermal pressure waves. Instead of
solving the fully populated 4 × 4 diffusion matrix we emphasise that there exists a scale
separation betweenTHMCdiffusion length scales and a chemical pre-nucleation process
may simplify to a hydro-mechanically coupled process where the chemical reaction
process is subsumed in the fluid pressure term allowing pattern formation at larger than
submicroscopic chemical length scale. Such hydro-mechanical pressurewaves have been
identified in compacting saturated porous media [9].

4.1 Hydro-Mechanical Pressure Waves

Rhythmic patterns with a similar length scale (cm-dm scale) to the above described
Liesegang patterns have been identified in compacting clay rich semi-consolidated rocks
in the Whakatika Formation (New Zealand) [9]. In the case of the subduction setting
for the Whakatika Formation at the Hikurangi margin a mechanical compaction process
is clearly the driving mechanism of the pattern forming process. This pattern has been
interpreted as a rhythmic quasi-stationary pressure wave which can be characterised by
a simplified Eq. (2) without cross-diffusion terms. The cnoidal wave formulation reads
as

�u − λ(1 + u)m + μeβu = 0 (11)

A detailed review on the cnoidal wave patterning can be found in [10]. An automat-
ically adaptive stabilized finite element scheme [11] can be employed to simulate the
cnoidal waves described by Eq. (11).

The hydromechanical pattern can explain the morphological origin of compaction
bands as evident from thin-section images of grain crushing field spanning from the
centre of the compaction bands (see Fig. 4 in [9]). This simplified cnoidal wave equation
as a pioneering attempt is certainly not rich enough to reproduce the patterns observed
in nature. The spacing and width relationships were found only in special cases to be
perfectly periodic and like theLiesegang patterns request additional terms in the reaction-
diffusion equation to match the observations. We suggest here that the above described
spinodal decomposition model provides the necessary extension of the THMC Eq. (2)
can deliver the correct length scales for the observed Liesegang patterns and the observed
compaction bands in the New Zealand case. Equation (2) is agnostic of the mechanism
of rock densification and it remains to be debated whether the solid precipitation of iron-
oxide in the Liesegang case is comparable to the densification through grain-crushing
in the poorly consolidated claystone case.
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5 Conclusion

We have presented in this work an ongoing study for investigating the transition from
a quasistatic pattern forming process (Liesegang pattern) to a dynamic growth pattern
(dendrites) and conclude that mechanical pressure most likely controls the longest wave-
length diffusion length scale. Ongoing work incorporates solutions for dendritic pattern
forming processes which will be used to enrich Eq. (2) by specific reaction terms capa-
ble of changing the pattern style to dendritic growth. The overall aim of the study is to
provide a complete set of reaction-cross-diffusion equations that can be used to invert
for the coefficients from observations in nature thus providing extra information about
the hidden nature of the pattern forming processes.
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Abstract. We present an approach to model material bifurcations derived from
the dynamic interplay of at least two coupled reaction-diffusion processes during
compaction of porous media. Our new approach introduces nonlocal terms that
describe the coupling between scales through mutual cross-diffusivities and regu-
larize the ill-posedness of the reaction-self-diffusion system. Applying bifurcation
theory, we suggest that geological patterns can be interpreted as physical repre-
sentations of two classes of well-known instabilities, i.e., Turing instability, Hopf
bifurcation, and a new class of complex soliton-like waves. The new class appears
for small fluid release reactions rates which may, with negligible self-diffusion,
lead to an extreme focusing of wave intensity into a short sharp earthquake-like
event. Here we investigate the phenomenon of episodic tremor and slip instability
of time-periodic slip events recorded in subduction zones. It is shown that the insta-
bility is a Hopf bifurcation and our inversion of the recorded events conclusively
shows that episodic fluid release from serpentinite dehydration is the cause for
the sudden slip events as postulated earlier. Our analysis further allows derivation
of chemical reaction rates under geodynamic loading conditions opening the path
for physics/chemistry-based forecasting of catastrophic instabilities in nature.

Keywords: Geological pattern · Reaction-cross-diffusion · Bifurcation

1 Introduction

Pattern formations are ubiquitous in natural systems, ranging from animal markings
to rhythmic metamorphic banding among others, in both the living and the inorganic
world [1, 2]. Potentialmechanisms underpinning these patterns are the reaction-diffusion
instabilities in the coarse-grained single-continuum system [3], which is characterized
by the large-scale thermodynamics averaged behavior whereas the small-scale dynamics
are neglected [4, 5].

In this study, we propose a new microphysics-based approach which couples the
microscale cross-constituent interplays to the large-scale dynamic behavior, in the con-
text of the hydro-mechanically coupled porous media. The approach is able to recover
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different types of instabilities in geological scenarios, via tight coupling of the solid
matrix pressure with the dissipation of the pore fluid pressure.

2 Reaction-Cross-Diffusion Model in Compacting Geomaterials

For the compacting saturated porous geomaterials, they could be regarded as a dual-
continuum system which features a global scale REV and a local scale REV. The mass
and energy transfer at the macroscale level can be characterized by the familiar self-
diffusion processes while the counterpart at the microscale level is controlled by surface
interactions between the solid and fluid phase, resulting in an interfacial domain defined
by cross-diffusion length scales [6]. Here, to model the equivalent poro-mechanical
coupled feedbacks, we encapsulate both the macro- and micro-physics processes into a
thermodynamic consistent framework, deriving a minimum set of two reaction-cross-
diffusion equations in terms of the normalized solid viscous-plastic overstress p̃s =
ps/pref and pore fluid pressure p̃f = pf/pref together with the normalization x̃ = x/l0,
t̃ = ε̇0t

∂ p̃s
∂ t̃

= D̃M
∂2p̃s
∂ x̃2

+ d̃H
∂2p̃f
∂ x̃2

+ ã11p̃s + ã12p̃
2
s + ã13p̃

3
s + ã14p̃f (1)

∂ p̃f
∂ t̃

= d̃M
∂2p̃s
∂ x̃2

+ D̃H
∂2p̃f
∂ x̃2

+ ã21p̃s + ã22p̃f (2)

where D̃M = DM
l20 ε̇0

, d̃H = dH
l20 ε̇0

, ã11 = a11
ε̇0
, ã12 = a12pref

ε̇0
, ã13 = a13p2ref

ε̇0
, ã14 = a14

ε̇0
,

d̃M = dM
l20 ε̇0

, D̃H = DH
l20 ε̇0

, ã21 = a21
ε̇0
, ã22 = a22

ε̇0
. Here, pref is the reference pressure while

l0 and ε̇0 are the reference length scale and strain rate respectively. Note that the nonlinear
terms in the right-hand side of Eq. (1) are associated with the rheological behaviors of
the solid matrix (3rd order power law adopted here to characterize the nonlinear creep [6,
7]) while the remaining linear reaction terms represent the first-order fluid/solid pressure
generation source arising from mineral dehydration and rehydration [8].

3 Results

3.1 Linear Stability Analysis

Given that the analytical solutions to Eqs. (1) and (2) are not tractable, we herein conduct
linear stability analysis to characterize the system response under small perturbations
near its steady state. The linearized perturbation evolution equations spell out as

∂ p̃�
s

∂
∼
t

= D̃M
∂2p̃�

s

∂ x̃2
+ d̃H

∂2p̃�
f

∂ x̃2
+ ã11p̃

�
s + ã14p̃

�
f (3)

∂ p̃�
f

∂ t̃
= d̃M

∂2p̃�
s

∂ x̃2
+ D̃H

∂2p̃�
f

∂ x̃2
+ ã21p̃

�
s + ã22p̃

�
f (4)
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Based on the space Fourier transform, the above perturbations p̃�
s and p̃�

f can be
further expressed in the following form

p̃�
s = p̃∗

s exp
(
ikx̃ + sk t̃

)
(5)

p̃�
f = p̃∗

f exp
(
ikx̃ + sk t̃

)
(6)

where k denotes thewavenumberwhile sk is the perturbation growth rate. By substituting
Eqs. (5) and (6) into Eqs. (3) and (4), the following determinant needs to vanish so as to
ensure non-trivial solutions to the perturbation equations.

det

∣∣∣
∣
sk + k2D̃M − ã11

k2d̃M − ã21

k2d̃H − ã14
sk + k2D̃H − ã22

∣∣∣
∣ = 0 (7)

Expanding the above criterion, we arrive at a characteristic equation for sk ,

sk
2 − trksk + �k = 0 (8)

trk = (ã11 + ã22) − k2(D̃M + D̃H)

�k = ã11ã22 − ã14ã21 + k4(D̃MD̃H − d̃Md̃H) − k2(ã11D̃H + ã22D̃M − ã21d̃H − ã14d̃M)

Hence, the solution of Eq. (8) gives

sk = trk ±
√
trk2 − 4�k

2
(9)

Based on the bifurcation theory, the system may encounter three types of instability,
depending on the value of sk i.e. the dispersion relationship as described in Eq. (9).

3.1.1 Turing Instability

The Turing scenario corresponds to the change of a stable node to an unstable saddle in
the phase space and its dispersion relationship is shown in Fig. 1a. It is found that there
exists a critical wave number kcr with the maximum perturbation growth rate. Hence, the
wavelength of Turing pattern is an intrinsic characteristic determined by λ = 2π/kcr. .
The 1-D Turing pattern (for the solid matrix) in the temporal-spatial domain is plotted
in Fig. 1b, which shows that the Turing pattern is periodic in space and does not change
over time (i.e., a standing wave) after being triggered by initial perturbations applied on
the left boundary.

3.1.2 Hopf Bifurcation

A Hopf bifurcation takes place when the phase diagram of the system turns from a
stable focus to an unstable one, featuring an imaginary perturbation growth rate with
a nonnegative real part (Fig. 2a). The spatial-temporal plot of a Hopf bifurcation is
shown in Fig. 2b. One finds that the entire system quickly enters a periodic oscillation
mode after initial perturbations, giving rise to a characteristic frequency for the system
behavior f = 1/T .
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Fig. 1. Results of Turing instability: a dispersion relationship b temporal-spatial evolution
(obtained from finite difference simulation)

Fig. 2. Results of Hopf instability a dispersion relationship, b temporal-spatial evolution

3.1.3 Cross-Diffusion Soliton-Like Waves

In addition to Turing and Hopf instabilities, a new class of soliton-like waves is iden-
tified in the reaction-cross-diffusion system. This scenario is different from the above-
mentioned ones in that the instability only occurs when the cross-diffusional coupling
effect is significant (and reaction coefficients are small) in Eq. (2). Note that the initial
perturbation on the boundary also needs to exceed a certain threshold in order to pro-
voke this type of wave instability, as the system remains stable (negative real part of sk
in Fig. 3) under small perturbations in this case. The spatial-temporal plot in Fig. 3b
indicates that the wave propagates with a constant velocity (similar to classical solitons)
which does not reflect on the boundaries.

The above theoretical and numerical investigations reveal three different types of
instabilities, while the remainder of this paper focuses on the type (II) Hopf bifurcation
and its application for interpreting episodic tremor and slip (ETS) events.

3.2 ETS Events as a Hopf Bifurcation of the Reaction-Cross-Diffusion Model

During the subduction of oceanic slabs below continental ones, an interfacial localization
zone is formed, where various thermo-hydro-mechanical-chemo processes take place.
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Fig. 3. Results of cross-diffusion soliton-like wave a dispersion relationship, b temporal-spatial
evolution

Of critical importance is the dehydration of serpentinite minerals at deeper regions of
the localization zone, which results in complex fluid-solid interactions and promotes
ETS events energetically. Here, to model ETS sequences (blue dots in Fig. 4, with data
obtained from [9]) at the Cascadia subduction zone, we assume the overburden behaves
like a rigid block and the displacement at the effective boundary of the localization
zone is determined by integrating the viscous-plastic strain rate u = ∫ t1

t0

∫ x1
x0

ε̇vpdxdt.

A power law rheology ε̇vp = ε̇0 ×
(
α1

(
ps/pref

)2 + α2
(
ps/pref

)3) is utilized here to

characterize the solid strain rate, where ε̇0 and pref are the reference strain rate and
pressure while α1 and α2 are coefficients. Note that the rheological law has been
encapsulated in Eq. (1) via the relationship α1 = −[(1 − φ)βs + φβf ]a12p2ref/ε̇0, and
α2 = −[(1 − φ)βs + φβf ]a13p3ref/ε̇0, derived from the mixture theory [8], where φ is
the porosity, βs and βf the compressibility of solid skeleton and pore fluid respectively.
By substituting the above relations into the rheological law, the displacement can be
expressed in terms of normalized quantities

u = prefd [(1 − φ)βs + φβf ]

2

∫ t̃1

t̃0

∫ 1

−1

(
−ã12p̃

2
s − ã13p̃

3
s

)
dx̃dt̃ (10)

where half of the localization zone thickness d/2 is chosen as the reference length scale.
BasedonEqs. (1), (2) and (10) the displacements obtained from themodel canbeused

to understand the ETS signals recorded by the GPS network, and the quantitative fitting
in the physical as well as the spectral domains are presented in the left and right column
of Fig. 4, respectively. It can be found from the top panel of Fig. 4 that by matching the
dominant frequency component, the model results within the Hopf bifurcation regime
can capture the overall ETS sequences, while there exist certain discrepancies at the
occurrence of small tremor activities (like at the year of 2008 and 2010). Given this, we
further adjust the nonlinear coefficients (e.g. ã12), to investigate their influence on the
displacement and spectrum characteristics, and to explore the possibility of correlation
improvement by varying the nonlinear rheological parameters. Notable results are shown
in the bottom panel of Fig. 4, where we have found that the amplitude of the minor
frequency increases as ã12 grows from 0.35 to 0.78 and this frequency variation has led to
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a higher correlation coefficient (0.74) with two characteristic humps in one displacement
cycle.

Fig. 4. ETS sequence recorded by the GPS network [9] at the Cascadia subduction zonemodelled
by poromechanical reaction-cross-diffusion equation for serpentinite dehydration. Two sets of
fitting are shown in the real (left) and spectral (right) domain

It is worth noting that the recurrence interval of ETS events at the Cascadia sub-
duction zone is usually around 13–15 months depending on the GPS station, and very
insignificant changes are observed over time for a specific GPS observation station.
Hence, it is plausible that we use constant parameters (autonomous system) during the
fitting procedure and do not consider the nonautonomous case. The model parameters
with the best obtained fitting performance against GPS recordings are summarized in
Table 1, which shows that our new approach can not only invert the basic material and
rheological parameters from the ETS sequences, but also allow to derivate the mineral
reaction rates at geodynamic loading conditions.

Table 1. Parameters with the best fitting performance in Fig. 4

Parameter Value Units Parameter Value Units

κ 5 × 10−23 m2 α1 −0.07 –

φ 0.04 – α2 0.1 –

μf 10−5 Pa.s a11 1.6 × 10−8 s−1

βs + βf 10−7 Pa−1 a14 −3.2 × 10−7 s−1

ε̇0 2 × 10−7 s−1 a21 1.1 × 10−7 s−1

d 10−1 m a22 2.4 × 10−8 s−1

pref 2 MPa
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4 Conclusion

In this work, we present a micro-physics enriched approach to model material bifur-
cations in compacting porous media. The theoretical and numerical analysis indicates
that there exist three types of instabilities in the reaction-cross-diffusion system, namely
Turing instability (featuring an intrinsic wavelength), Hopf bifurcation (embracing a
characteristic frequency), and a new class of soliton-like waves (propagating with con-
stant velocities). The Hopf bifurcation solution has been employed to interpret the GPS
data of episodic tremor and slip events at subduction zones, and the parameters inverted
from fitting can be used to determine the chemical reaction rates and the rheological
parameters of the creep regime under geodynamic loading conditions, which may shed
light on physics/chemistry-based forecasting of catastrophic instabilities in nature.
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Abstract. The concept of bifurcation domain has emerged in the context of the
study of the mechanical stability of soils, and more generally of geomaterials.
This domain constitutes a zone in which the failure of a material is possible but
conditioned by the application of a particular mechanical stress and the use of
a well-chosen control mode. The definition of failure modes in the bifurcation
domain is more general than that used in a classic elastoplastic formalism with
hardening (reaching the plastic limit surface). This study aims to highlight the
existence of the bifurcation domain characterized by the instability line defined
in undrained triaxial test. The conditional failure of a granular sample was inves-
tigated with the use of triaxial tests either in strain or stress control modes in one
hand, and by applying different incremental loads after a first phase of drained
triaxial loading in the other hand. An emphasis was put in particular on con-
stant deviatoric loading path with successive steps of creep phase before and after
crossing the instability line defined by the conventional undrained compression
tests.

Keywords: Conventional undrained triaxial tests · Constant stress path ·
Bifurcation · Instability line

1 Introduction

Because of their non-associated plastic behavior, the failure modes of granular materials
are more diverse than those related to associated plasticity (Darve et al. 2004; Wan et al.
2017). Indeed, the non-respect of the normality rule for the plastic strain, necessary to
account for the volumetric behavior of granular materials, results in the existence of
failure modes strictly before reaching the plastic limit surface. Such failure modes are
well illustrated by the static liquefaction of loose sandobserved in undrained triaxial tests.
In such tests, the deviatoric stress shows a non-monotonic evolution, with a peak stress
reached strictly below the maximum yield surface as defined from drained triaxial tests.
In

(
q, p′) diagrams, the peak stresses obtained for different initial confining pressures

align on a straight line known as the “instability line” (Lade 1993; Benahmed 2001;
Dong et al. 2016).
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From a theoretical point of view, this instability line connects with the concept
of bifurcation domain. This domain constitutes a set of mechanical states for which
conditional failure exists (Wan et al. 2017). A material in its bifurcation domain will
effectively fail if it is loaded (i) in some particular directions and (ii) for some particular
modes of control. Formally, the bifurcation domain is defined from the vanishing of the
second-order work W2 (Hill 1958) for some incremental loading directions:

∃(dσ ,dε)linked by the constitutive behavior, such thatW2 = dσ : dε < 0

For an undrained evolution, the second-order work simplifies as W2 = dqdεd , where
dεd is the incremental deviatoric strain, which is always positive and proportional to
the axial strain in an undrained triaxial test. As a result, the instability line, defined as
dq = 0 in the experiments, corresponds also to W2 = 0. Therefore, the instability line
belongs to the bifurcation domain (Darve et al. 2004). It is usually assumed that this line
corresponds indeed to the frontier of the bifurcation domain (or at least lies very close
to it).

Conditional failure in the bifurcation domain is well established from a theoretical
point of view (Nova, 1994; Nicot et al., 2009; Wan et al. 2017), and has been tested
numerically several times (Sibille et al., 2008, Wautier et al. 2018). However much less
results exist on the experimental side (Gajo et al. 2000; Daouadji et al. 2011; Dong et al.
2016). In this study, we intend to explore the bifurcation domain from an experimental
point of view with use of constant deviatoric stress loading paths. The vanishing of
the second-order work along such paths is detected and the controllability of the tested
material is challenged by keeping constant the stress state strictly inside the bifurcation
domain under stress control.

The experimental campaign (conducted on loose specimen of Hostun sand) consists
in three series of tests. A first series of drained triaxial tests enabled to obtain the max-
imum plastic yield surface of the material. A second series of undrained triaxial tests
provided the instability line. Finally, the bifurcation domain is explored along constant
deviatoric stress paths preceded by an initial drained triaxial loading.

2 Experimental Procedure

2.1 Material Characteristics and Specimen Preparation

The material used is Hostun silica sand HN31, which is a fine and uniform sand with
angular to sub angular grain shape. It has a medium diameter D50 = 0.35 mm, and a
coefficient of uniformity Cu = 1.57. Its minimum and maximum void ratio are equal to
0.656 and 1, respectively. The grain size distribution of the soil is shown in Fig. 1.

To obtain loose specimens with good control of density, moist tamping method was
used to prepare all the specimens in this study (Benahmed 2004). First, predetermined
amount of sand to achieve the target density was divided into seven equal parts; each part
was mixed thoroughly with 3% of de-aired water to get loose structure due to capillary
cohesion. Subsequently, the moist sand was placed carefully by spoon in a split mold
layer by layer; each of them compacted at 20 mm thick with a graduated hand tamper.
The height and the diameter of the specimens were 140 mm and 70 mm respectively.
The initial relative density was equal to Dr = 10%
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Fig. 1. Grain size distribution curve of Hostun sand.

2.2 Triaxial Procedure

The triaxial experiments were carried out using a fully computer controlled Triaxial Sys-
tem fromWykeham Farrance. The axial load was monitored by an internal submersible
load transducer, while the axial displacement was measured by an LVDT mounted on
the top platen. The volume variation was collected by an automatic volume change
device. After filling the triaxial cell and consolidating the specimens under 100 kPa,
the saturation stage was performed by flushing first CO2 under a pressure of 20 kPa
for 30 min, followed by de-aired water for a volume of about three times the specimen
volume. Back pressure ranging from 200 to 400 kPa was then applied to ensure the full
saturation of the specimens with a Skempton coefficient B higher than 0.96. Finally, for
the specimens to be sheared under higher confining pressure, the later was increased to
the desired confining stress.

3 Results and Discussion

Nine drained and undrained triaxial tests and five constant deviatoric stress path tests
at different consolidation pressures were performed. The shearing process was strain
controlled with an axial stain rate of 1% per minute for the conventional triaxial tests
and stress controlled for the constant deviatoric stress path. Details of the tests are given
in Table 1.

3.1 Conventional Drained and Undrained Triaxial Tests

Figures 2 and 3 show the obtained results of the drained and undrained triaxial tests
in terms of deviatoric stress and volumetric strain versus axial strain for drained tests
and in terms of deviatoric stress versus axial strain and effective mean stress path for
undrained tests. These two series of tests enable to determine the instability line (IL)
and the plastic limit surface (FL) in Cambridge plane

(
p′, q

)
, as shown in Fig. 4.
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Table 1. Details of isotropically consolidated triaxial tests performed in this study

Test name P′
c (kPa) ec IDc Shearing method

DMC-Dr10-P100 100 0.982 0.05 Drained

DMC-Dr10-P200 200 0.964 0.10 Drained

DMC-Dr10-P300 300 0.959 0.12 Drained

DMC-Dr10-P400 410 0.961 0.11 Drained

UMC-Dr10-P65 65 0.990 0.03 Undrained

UMC-Dr10-P100 100 0.997 0.01 Undrained

UMC-Dr10-P215 215 0.968 0.09 Undrained

UMC-Dr10-P350 350 0.973 0.08 Undrained

UMC-Dr10-P400 400 0.965 0.10 Undrained

CSD-Dr10-P100–0.54 100 0.967 0.07 Constant q

CSD-Dr10-P200–0.54 200 0.949 0.15 Constant q

CSD-Dr10-P300–0.54 300 0.958 0.12 Constant q

CSD-Dr10-P400–0.54A 400 0.953 0.14 Constant q

CSD-Dr10-P300-M4 300 0.963 0.11 Constant q

ec void ratio after consolidation; IDc density index after consolidation; Pc’ confining pressure..

Fig. 2. Drained compression tests. Deviatoric stress and volumetric strain versus axial strain.

The plastic limit surface determined in drained and undrained tests are very similar
and corresponds to a Mohr-Coulomb yield surface with slope around 1.2. Such slope
corresponds to a friction angle ϕ′ = 30.2◦. As for the instability line, the slope is
equal to 0.79 that corresponds to a mobilized friction angle of 20.4°. These values are
in agreement with those obtained by Benahmed (2001) on the same material (Hostun
sand).
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Fig. 3. Undrained compression tests. Deviatoric stress versus axial stain and effective stress path.
The red crosses corresponds to the vanishing of the second-order work.

Fig. 4. The instability line (IL-UMC) and the plastic limit surface (FL-UMC-DMC) for drained
and undrained conventional triaxial tests.

3.2 Constant Deviatoric Stress Test and Controllability Analysis

From previous experimental studies (Gajo et al. 2000; Chu et al. 1993; Dong et al. 2016)
and numerical studies (Darve et al. 2004; Sibille et al. 2008) it is known that the constant
deviatoric stress path is an adverse loading path for materials in the bifurcation domain.
This loading direction often belongs to the instability cone (the set of loading directions
for whichW2 < 0). In practical applications, this loading path is consecutive to a sudden
surge in pore water pressure, which can be the consequence of water infiltration during
heavy rainfall, a flooding event for a dike or a dam for instance.

In order to assess thematerial stability against such loading paths from an experimen-
tal point of view, mixed loading paths were performed on Hostun sand. First, the speci-
menswere consolidated at pressure of 100, 200, 300 and400kPa (seeTable 1). Then, they
were sheared under a drained compression until reaching a stress ratio η = q

p′ = 0.54
corresponding to two thirds of the stress ratio on the instability line. Afterwards, the
deviatoric stress was kept constant and the mean effective stress was reduced by increas-
ing pore water pressure at the rate of 20 kPa/min. Figure 5 shows the constant deviatoric
stress paths observed until failure for the four specimens consolidated under 100, 200,
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300 and 400 kPa. Along a constant q loading path, the second-order work criterion reads
W2 = dp′dεv, where dp′ is the incremental variation of the mean effective stress and
dεv is the incremental volumetric strain. As a result, for a decreasing mean effective
pressure, the second-order work vanished when a change from dilatancy (dεv < 0) to
contractancy (dεv > 0) is observed. This point is marked with a red cross in Fig. 5a, b. It
corresponds to the moment where the constant q loading path enter the instability cone
of the material. It is interesting to underline the fact that this occurs for a stress ratio
ηIL−CSD � 0.93, which is strictly between the instability line stress ratio determined
in UMC tests ηIL−UMC = 0.79 and the plastic limit stress ratio ηFL = 1.21 shown in
Fig. 4. ηIL−UMC < ηIL−CSD is consistent with results obtained by Dong et al. (2004) and
Sibille (2006).

The difference between the two instability lines can be explained:

– By the fact that for the same stress ratio, the microstructures are different in UMC and
CSD tests due to hysteresis. As a consequence, the microstructure obtained for CSD
loading paths helps keep the material stable for higher stress ratios than for UMC
loading paths;

– By the fact that the CSD loading direction does not belong to the cone of instability
(the set of loading directions able to trigger underlying mechanical instability) for
ηIL−UMC < η < ηIL−CSD. In that case, the material is unstable for ηIL−UMC < η <

ηIL−CSD but one has to impose a loading path different from the CSD to observe the
effective failure.

Fig. 5. (a) Constant deviatoric stress paths after an initial drained triaxial loading. (b) Zoom of
volumetric strain for test CSD-Dr10-P300–0.54. The red cross corresponds to the vanishing of the
second-order work on the loading path considered.

Shortly after the vanishing of the second orderwork, instability occurs. This is visible
in Fig. 5 through a simultaneous decrease in p′ and q. Such a decrease in q corresponds
to a loss of controllability (Nova 1994), since it is supposed to be constant on the loading
path considered. Contrary to undrained triaxial loadings, the test is fully stress controlled
here, which enable instability to occur through an inertial transition from a quasi-static
to a dynamic regime when W2 vanished (Wautier et al. 2018).
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3.3 Constant Deviatoric Stress Test with Creep Stages

In order to investigate further the loss of controllability that can occur inside the bifurca-
tion domain, an additional constant deviatoric path was conducted, and paused several
times during the test (“CSD-Dr10-P300-M4” in Table 1). During the pause, the stress
state was kept constant by controlling the pore water pressure in the sample and the axial
stress applied through the vertical piston (full stress control). The whole test procedure
is illustrated in Fig. 6.

Fig. 6. Drained triaxial loading followed by a constant deviatoric stress test with three stress
controlled pauses. Sample “CSD-Dr10-P300-M4” in Table 1.

The first pause of 5 min at point B was performed to verify that the controllability of
the sample is ensured when the stress state is out of the bifurcation domain (not shown
here). Then, the second pause of 10 min at point C, and the third pause of 60 min at point
Dwere performed after the vanishing of the second-orderwork along q constant direction
(i.e. inside the bifurcation domain when the q constant loading direction belongs to the
instability cone). The time responses of the sample during these two pauses are shown
in Figs. 7 and 8. As it can be seen, some delayed deformation is observed when p′ is
stopped from decreasing with a slight increase in axial strain εa and in volumetric strain
εv (i.e. a slight contractancy). However, the rate of this delayed deformation, which can
be interpreted as creep, decreases with time and stabilize after 10 to 15 min for εv. If the
stress state is kept constant long enough, it can be observed in Fig. 8 that the volumetric
strain decreases for t > 40min (the sample dilates again preventing any acceleration in
the creep rate).

Surprisingly, no complete loss of controllability was observed during the pauses at
points C andD, despite the fact that (i) a full stress control mode is used in the bifurcation
domain (ii) for a loading direction in the instability cone. According to the definition
of the bifurcation domain, conditions (i) and (ii) should have been sufficient to trigger
material failure from a theoretical point of view for rate independent materials. In the
present case, the delayed deformation observed in Fig. 8 shows that the underlying
microstructure reorganizations enable to restabilize the sample as the volumetric strain



Instability of Granular Soil Under Conventional Triaxial … 81

Fig. 7. Time evolution of themean effective pressure and the volumetric strain along the q constant
loading path from point B to C, and the consecutive pause of 10 min at constant stress (after the
red cross). Sample “CSD-Dr10-P300-M4” in Table 1.

Fig. 8. Time evolution of the mean effective pressure, the volumetric strain and the axial strain
along the q constant loading path from point C to D, and the consecutive pause of 60 min at
constant stress (after t = 5min). Sample “CSD-Dr10-P300-M4” in Table 1.

changes fromcontractancy to dilatancy. It should be underlined that these reorganizations
need time to develop. The larger η, , the longer it takes to themicrostructure to restabilize
(approximately 2 min at point C and 15 min at point D), which is probably be the reason
why no restabilization is observed along CSD loading paths with a constant rate of
decrease in p′ (the sample continues to contract). The competition between macro and
micro characteristic times can be further highlighted by varying the rate of decrease
in p′ which affects the moment where the second-order work vanishes. For a slower
decreasing rate in p′, ηIL−CSD was found to increase (not shown here). Consequently,
the existence of creep effects when approaching the maximum plastic surface makes
the definition of a bifurcation domain not unique. Incremental constitutive relationships
are no longer sufficient to describe the material response. A finite and sufficiently rapid
perturbation is needed to lead to effective failure, which is consistent with reported
results in the literature (Echersley 1990; Sasitharan et al. 1993; Gajo et al. 2000; Wautier
et al. 2018).
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4 Conclusion

An experimental study was conducted on loose samples of Hostun sand in order
to explore its mechanical behavior in its bifurcation domain. Based on drained and
undrained triaxial tests, the bifurcation domain was estimated as lying in between
the instability line obtained in undrained compression and the plastic limit surface
obtained in drained compression. Then the mechanical stability and controllability of
loose specimen was investigated along constant deviatoric stress loading paths.

It was shown that the second-order work vanishes along such loading paths strictly
inside the bifurcation domain. This vanishing of the second-order work is followed by
specimen failure, but only after a finite size additional perturbation of the stress state.
Just after reaching the instability point (i.e. when the constant q loading direction enters
the instability cone), if the loading was stopped and the stress state kept constant, creep
will occur, but no effective failure of the specimen occurs as the volumetric deformations
change from contraction to dilation. This behavior can be interpreted as a sign of re-
stabilization in the sense of the second-order work criterion. The creep can also lead to a
little decrease in deviatoric stress, depending whether it develop into the third stage and
lead to failure of the specimen. Additional tests with longer pauses are needed to verify
this point.
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Abstract. There is limited literature focused on experimentally investigating the
influence of the crystalline structure of particles on the constitutive anisotropy of
silica sand. This paper assesses the influence of quartz crystal structure on the con-
stitutive response of synthetic silica cubes and natural silica sand particles using
3D x-ray diffraction (3DXRD), synchrotronmicro-computed tomography (SMT),
and 3D finite element (FE) analysis. The results of unconfined uniaxial compres-
sion experiments on synthetic silica cubes exposed constitutive anisotropy that
was caused by the crystal structure of quartz. The 3D finite element (FE) analysis
was validated to accurately model the crystal-based constitutive anisotropy in sil-
ica particles using the results of the silica cube experiments. Then 3D FE analysis
was conducted to study how the change in crystal local orientation of individual
sand particles can fundamentally produce anisotropy in the constitutive response
of natural sand particles. Both the experiments and 3D FE analysis showed that
the crystal structure of quartz essentially causes a directional anisotropy in the
constitutive behavior of silica sand particles.

1 Introduction

Particle-scale properties have long been recognized to have a major influence on the
constitutive behavior of sand at micro-, meso- and macro-scales. At the micro-scale,
sand particle mineralogy and morphology (represented by surface texture, roundness,
and sphericity) are the most important properties to be considered when studying the
strength and fracture behavior of sand. Contact network/ fabric is the main parameter at
themeso- andmacro-scales. Sand anisotropy is commonly attributed to fabric anisotropy
and only in recent years advances in 3D x-ray diffraction (3DXRD) enabled researchers
to experimentally measure the lattice strain and lattice structure of synthetic and natural
silica sand in a non-destructive manner (Amirrahmat et al. 2020; Cil et al. 2017; Hall
and Wright 2015; Hurley et al. 2018).

The discrete element method (DEM) has been widely used to model the behavior of
granular materials. Yet, the assumption of rigid particles in DEM fails to properly model
the influence of the crystal structure of sand particles since it does not allow the user
to implement the proper constitutive model, especially when modeling the facture of
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sand. 3D finite element (FE) method has emerged in recent years as a powerful approach
to model sand fracture by meshing 3D images of sand particles that were acquired
using SMT and implementing proper continuum constitutive models assuming isotropic
material behavior (Druckrey and Alshibli 2015; Imseeh and Alshibli 2017; Thakur and
Penumadu 2020; Turner et al. 2019; Wei et al. 2019).

In this paper, Lattice strains for synthetic silica cubes subjected to unconfineduniaxial
compression were experimentally measured and compared the evolution of lattice strain
versus compressionwhen the cubes are loaded in different directionswith respect to their
crystal planes. The simple geometry of the cube eliminates the effect of particle-scale
morphology and isolates the influence of crystalline-scale properties on the constitutive
behavior of silica particles. The stress-strain response of the silica cube permits assessing
the agreement among the experimental constitutive behavior, calculated closed-form
solution, and simulated 3D FE analysis. This paper answers a fundamental question
about the effect of crystal orientationwithin individual sand particles on their constitutive
behavior; a scale that has not been investigated by other researchers. Although the paper
may not has an immediate practical application in the civil engineering field, it offers
an original contribution that can be incorporated into constitutive models to predict
the contact force network and fracture of granular materials with potential impacts on
engineered granular materials and in applications that can take advantage of controlling
the orientation of crystals to achieve specific performance outcomes.

2 Experiments on Synthetic Silica Cubes

The mineralogy of sand particles is mainly inherited from the parent rock sources and
weathering conditions (Pettijohn et al. 1972) and quartz is the most common mineral in
sands. The unit cell of crystal quartz is silicon oxide tetrahedra (SiO4)with each oxygen
atom shared between two tetrahedra. This composition gives quartz an overall chemical
formula of silicon dioxide (SiO2), commonly known as silica. In crystallography, crystal
quartz is known to possess a hexagonal lattice system, trigonal crystal system, and
rhombohedral unit cell (Dušek et al. 2001; Nikitin et al. 2007). The trigonal crystal
system of quartz, whether right- or left-handed, is spanned by a local coordinate system
of four axes: a1, a2, a3, c. The three a axes correspond to the a lattice parameter, span
the hexagonal lattice plane, intersect at 60

◦
angles, and are commonly referred to as

the a—axis for simplification. The c—axis runs perpendicular to the lattice hexagonal
plane and corresponds to the c lattice parameter, which is 1.1 times the length of a or b.
This paper will refer to the crystal local orientations using the Miller-Bravais four-index
system (a1 a2 a3 c ), in which parentheses and brackets respectively describe the crystal
local planes and axes.

Synthetic silica cubes with a side length of 1 mm were selected to perform the
unconfineduniaxial compression experiments to study the influence of crystal orientation
and compare the evolution of lattice strain versus compressive load when the cubes are
loaded in different directions with respect to its crystal planes. The simple geometry of
the cube eliminates the effect of particle-scale morphology and isolates the influence of
crystalline-scale properties on the constitutive behavior of silica particles. The crystal
parameters of the synthetic silica cubes and silica sand were identified using powder



Influence of Crystalline Structure on Strength Anisotropy 89

x-ray diffraction. Laue x-ray diffraction technique was used to identify the orientation
of crystal planes with respect to the scanned face of the cube and revealed that the cube
faces are perfectly aligned with (2 −1 −1 0), (0 1 −1 0), and (0 0 0 1) crystal local
planes. Cube faces aligned with the (2 −1 −1 0) and (0 0 0 1) crystal local planes (a
-axis and c -axis; respectively) were colored differently with sharpie markers. The cubes
were later subjected to unconfined uniaxial compression against the differently colored
faces while collecting in-situ SMT and 3DXRD scans at the advanced photon source
(APS).

A special compression apparatus transparent to x-ray was mounted on the stage of
the x-ray beamline 1-ID, APS, Argonne National Laboratory (ANL), Illinois, USA. Two
experiments were conducted on two cubes that were loaded against differently marked
faces corresponding to the (2 −1 −1 0) and (0 0 0 1) crystal planes while acquiring
in-situ SMT and 3DXRD scans. Uniaxial compression was paused at pre-determined
uniaxial load steps of 0, 300, 600, 900, and 1200 N to acquire SMT scans followed by
3DXRD. SMT scans were acquired using a 1.6 mm (width) x 1.2 mm (height) beam
while rotating the apparatus over at angular increments and 0.5 s exposure time. This
procedure produced 1800 radiographs per scan that were reconstructed into 3D slice-
structured images with an excellent spatial resolution of 0.98 μm/pixel. 3DXRD scans
were collected using a 1.6 mm (width) x 0.2 mm (height) beam during another 360

◦

rotation of the apparatus at 0.2
◦
angular increments and 0.3 s exposure time. The height

of the 3DXRD beam was intentionally reduced to 0.2 mm to improve the accuracy of
the measurements and to scan the entire cube by five vertically stacked layers.

3 3D FE Analysis of the Silica Cube Experiments

SMT scans offered visualization of the cube’s microstructure to check for potential ini-
tial defects and the absence of crack evolution during compression since the scope of
the cube experiments is to experimentally evaluate the elastic constitutive behavior of
silica particles. 3DXRD scans were analyzed using Microstructural Imaging Diffrac-
tion Analysis Software (MIDAS) that was developed by APS staff (Park et al. 2015;
Sharma et al. 2012). Lattice strains in the form of a symmetric second-order tenor
(∈) expressed in the global coordinate system and a positive sign convention repre-
sents compression. Figure 1a. Displays the evolution of uniaxial compression using
central vertical slices across the SMT scans for the two cubes where the superimposed
color represents the major principal strain in the cube’s crystal lattice as quantified
by 3DXRD measurements. At the same global uniaxial compressive load, the cube
loaded against (2 −1 −1 0) crystal plane (Fig. 1b.) exhibited a significantly higher
major principal lattice strain than the cube loaded against (0 0 0 1) crystal plane
Fig. 1b. Hereinafter, the terms “weak cube” (less stiff) and “strong cube” (stiffer) refer
to the cube loaded against (2 −1 −1 0) and (0 0 0 1) crystal plane, respectively.
Later, the term “isotropic cube” will also be introduced to describe 3D FE analysis
for an isotropic approximation of the silica cube constitutive behavior. Crystal quartz
possesses trigonal symmetry (point group 32) and six independent elastic constants
(C11,C12,C13,C14,C33,C44)(C11,C12,C13,C14,C33,C44):

[σ] = [C][ε] (1)
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where [σ ], [ε], and [C] enote the stress, strain, and elastic-stiffness tensors; respec-
tively, expressed in conventional Voigt notation. The quartz elastic constants reported
in Heyliger et al. (2003) based on experimental measurements (Table 1) were used in
this paper to calculate stresses from lattice strains using Eq. 2. The constitutive rela-
tionship defined by Eq. 2 was scripted into a FORTRAN user subroutine to numerically
model silica material in ABAQUS FE code. In another user-subroutine, [C] in Eq. 2 was
replaced by the isotropic approximation [C]iso (Eq. 3) to compare the isotropic with the
anisotropic behavior:

[C]iso = E

(1 + v)(1 − 2v)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 − v v v 0 0 0
v 1 − v v 0 0 0
v v 1 − v 0 0 0
0 0 0 1−2v

2 0 0
0 0 0 0 1−2v

2 0
0 0 0 0 0 1−2v

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3)

where E = 99.45GPa and v = 0.06 are the modulus of elasticity and Poisson’s ratio
calculated by Voigt-Reuss-Hill averaging based on the values listed in Table 1. Since
the latter material model is isotropic, [C]iso is invariant for all orthogonal coordinate
systems. Therefore, the rotational stress/strain transformations are redundant and were
eliminated from the user-subroutine algorithm.

Table 1. Elastic constants of crystal quartz (Heyliger et al. 2003)

Elastic constant C11 C12 C13 C14 C33 C44

Value:GPa 87.26 6.57 11.95 −17.18 105.8 57.15

The material user-subroutines were executed in ABAQUS to model the constitutive
response of the silica cube under unconfined uniaxial compression. The silica cube
was modeled by a 20-noded hexahedral element that performed the stress-strain FE
calculations (call the material user-subroutine) at 27 integration points using quadratic
shape functions. The hexahedral element measured 0.5 mm in side length and plane
symmetry boundary conditions were appropriately assigned for the nodes across the X-
Z, Y-Z, and X-Y faces. The FE calculations were conducted via the static implicit solver
in ABAQUS, which simulated the uniaxial compression using 1 x 10–4 mm compressive
displacement increments assigned to the nodes across the top face of the hexahedral
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Fig. 1. In-situ SMT scans illustrating the lattice strain measured using 3DXRD for (a) Strong,
and (b) Weak cubes that were loaded in unconfined uniaxial compression against opposite crystal
planes; 3D FE simulations of the (c) Strong and (d) Weak cube experiments assuming anisotropic
linear elastic behavior, and (e) assuming isotropic linear elastic behavior.

element. The incremental uniaxial displacement was halved and doubled in preliminary
trials and its effect on the FE analysis was found to be negligible. Three trial simulations
were conducted on the hexahedral element with the same boundary conditions. Two
of the trials modeled the strong (Fig. 1c) and weak (Fig. 1d) silica cubes using the
anisotropic material user-subroutine. The third trial (Fig. 1e) modeled the constitutive
behavior of the silica cube elements using the isotropic user-subroutine Eq. (3).

The regular geometry of the cube made it easy to calculate the closed-form solution
using the theory of linear elasticity. Figure 2. Displays the relationship between the
uniaxial compressive load and the major principal strain of the cube using solid lines
for experimental data, dotted lines for simulated data, and dashed lines for calculated
data. The FE simulated responses overlay their corresponding dotted lines (closed-form
solution) in Fig. 2. With a difference in slope <1%. The experimental responses include
filled-circle markers that represent the cube’s global uniaxial compressive load versus
major principal strains of the crystal lattice per 3DXRD measurements. At each load
step, multiple filled-circle markers appear because of the vertical stacking procedure
in 3DXRD scanning that provided five lattice strain measurements per load step. Solid
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Fig. 2. Summary of experimental and FE results of the experiments on silica cubes.

lines represent the uniaxial load (N) versus displacement (mm) relationships as recorded
by the data acquisition system of the compression apparatus. Recall that the solid lines
in Fig. 2. Also represent the cube’s global uniaxial stress (MPa) versus strain since the
cube side length is 1 mm. The red color denotes the data (e.g., points, lines, and curves)
related to the isotopic cube, while the black and grey colors represent the strong and
weak cube’s data, respectively. The constitutive response of the strong cube in Fig. 2.
is stiffer (slope = 103.1 × 103) than the weak cube (slope = 79.9 × 103), which is in
agreement with the experimental observations in Fig. 1a. The red line (slope = 79.9 ×
103) represents the simulation that executed the isotopic user-subroutine and has a closer
response to the strong cube line than the weak.

A close agreement can be seen between the solid lines and filled-circle markers in
Fig. 2. (<4%difference in slope), which confirms the capability of MIDAS to analyze
and measure lattice strains of the scanned cubes under 3DXRD. This agreement funda-
mentally demonstrates that the crystal lattice strain of the cube has accuratelymanifested
the global uniaxial strain measured at its top face. Overall, Fig. 2. Shows an excellent
agreement among the experimental (solid line, and circular points), 3D FE (dashed line),
and closed form (dotted line) constitutive behavior for the strong (black) as well as the
weak cube (grey). Since the solid black and grey curves in Fig. 2. Divert more from one
another than the dashed/dotted lines, it can be concluded that the experimental response
manifests a bit higher degree of constitutive anisotropy than what is captured by the
3D FE simulations and strong-form solutions. Finally, the red lines in Fig. 2. Represent
the isotropic approximation of crystal quartz constitutive behavior, which appears to
overestimate the stiffness since the red lines are closer to the black lines (strong cube)
than the grey (weak cube).
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4 FE Simulations of Sand Single Particle Fracture

Unlike the simple cube geometry, natural sand particles have complex morphologies
that make it very difficult to establish a closed-form solution or experimentally control
the loading direction of a sand particle with respect to its crystal planes. To assess the
constitutive anisotropy of natural silica sand particles, the authors have upgraded their
3D FE simulation capabilities via coding development in ABAQUS in order to model
natural sand. The new FE simulations seek to model sand particles using 3D FE parti-
cles that closely match the morphology of natural sand. Subsequently, element strains of
the 3D FE particles were converted to stresses via the isotropic or anisotropic material
user-subroutine that were presented earlier (Eqs. 2 and 3). A numerical contact model
was adopted to simulate the transmission of stresses at contact interactions between the
3D FE meshes (sand particles). ABAQUS general contact module was used to model
the particle-to-particle, particle-to-platen, and particle-to-mold interactions. Surface ele-
ments of ABAQUS assembly parts (e.g., sand particles, loading platens, and confining
mold) were extracted into individual element sets and were included in the domain of
the general contact module. Contacts were detected using a node-into-face penetration
mechanism for the element sets included in the domain of the general contact module.
When elements came into contact, shear and normal forces were transmitted across the
contact interface to resist node-into-face, node-into-rigid surface, and edge-into-edge
penetration. The default hard contact model in ABAQUS was used to relate normal con-
tact forces to penetration distance. Briefly, the element bulk stiffness was automatically
scaled by ABAQUS at the normal to contact interface in which the effect of contact
deformation on the time increment is minimal: allowed penetration is neglected in most
of the simulations. A frictional contact model was also adopted from ABAQUS to sim-
ulate the tangential force transmission at contact interfaces using a friction coefficient
of tan 23° = 0.42; a typical value for the true angle of friction of silica sand (Rowe
1962). Accordingly, ABAQUS performed a slip-stick check at the beginning of every
time increment for the penetrating nodes at the contact interfaces between meshed parts
to simulate their relative sliding (Imseeh and Alshibli 2021).

A frictional failure surface similar to Drucker–Prager yield criterion that activates
the onset of fracture at the element material point was adopted. A tension cutoff limit was
introduced to the failure criterion in which von Mises stress yield stress (σ vf ) remained
constant when the hydrostatic mean stress in tension extended beyond the cutoff limit.
The cutoff limit eliminated numerical instabilities associated with the failure near the
stress state of hydrostatic tension (σ vf → 0) (for more details, see Imseeh and Alshi-
bli 2021). Continuum damage mechanics is the principal framework that governs the
numerical modeling of fracture in brittle materials such as sand particles. The framework
postulates the sudden collapse in the stress-strain behavior at fracture throughprogressive
degradation in the stiffness associated with the material point, assuming the damaged
and undamaged states have equivalent strains (Lemaitre and Chaboche 1978). One way
to model the amount of degradation in stiffness is by using a scalar damage parameter
(d) that ranges between 0 and 1. A value of d = 0 represents an undamaged section
whereas a value of d = 1 indicates a fully damaged section. We used the damage model
adopted by (Imseeh and Alshibli 2021) that permitted degradation of the bulk modulus
only when volume change was tensile and degradation of the shear modulus regardless
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of whether the volume change was tensile or compressive. The damage approach was
anisotropic in the sense of different degradation in the stiffness of the material point
under tensile versus compressive loading, and appropriately modeled the constitutive
damage in brittle materials such as silica sand particles.

The material user-subroutines were developed and implemented in ABAQUS FE
software using FORTRAN scripts to simulate the constitutive and fracture behaviors
of natural silica sand particles. The FE simulations operate on 3D meshes of linear
tetrahedral elements that closely resemble the morphology of natural sand particles.
The explicit dynamic solver in ABAQUS was used to conduct the FE simulations. The
assumption of nodal lumped masses in this specific solver produced a diagonal mass
matrix (M), which was used to balance the equation of motion. The explicit central-
difference time integration rule was then used to advance the nodal kinematic state
(nodal displacement, velocity, and acceleration) over time. The key advantage of this
solver is the use of explicit balance equations and the fast inversion of M (diagonal)
versus the Newton–Raphson procedure, which is executed at every time increment of
the static implicit solver to iterated equilibrium. Although the explicit dynamic solver
was originally designated for problems with impact loading (i.e., high strain rate), the
use of uniform mass-scaling limited the speed of stress wave propagation, allowing for
the utilization of the explicit dynamic solver in quasi-static analyses. Moreover, the
mass-scaling offered the advantage of drastically reducing the simulation runtime by
increasing the size of the minimum stable time increment.

3D FE simulations were carried out to simulate the fracture of two ASTM 20–30
Ottawa sand particles (99.9% silica sand) loaded using unconfined compression. Both
particles had almost the same equivalent diameter of ~0.850mmwith a difference of less
than 0.005 mm. The particle in the processed SMT image at the initial state (unloaded)
was projected on 2D planes at a specific angle, and the distance between the outermost
tangents of projections was calculated to represent the 3D Feret diameter of that angle.
Multiple 3D Feret diameters were computed with a sampling of 31 angles regularly
spaced in 3D space around the upper part of a unit sphere. The equivalent diameter was
computed as the diameter of a sphere with equal volume to the sand particle. For baseline
analyses to compare results, simulations of the single particle compression experiment
were also executed on a sphere with a diameter of 0.850 mm (~equivalent diameter of
the sand particles). Figure 3. Presents the 3D volume rendering of the SMT images for
the two single particle compression experiments and their corresponding FE simulation,
as well as the analogous simulations conducted on the sphere. “Particle-1” and “Particle-
2” refer to the two single particle compression experiments, whereas the simulations of
the sphere are denoted as “Sphere-Eq”. For each particle (both sand and the spherical
particle), three simulations were conducted and given the labels “Isotropic”, “Strong”,
and “Weak”. In the Isotropic case, the simulations executed the material user subroutine
that assumed isotropic linear approximation of silica constitutive behavior (Eq. 3). On
the other hand, the Strong (when the particle was loaded against its crystal c-axis) and
Weak (when the particle was loaded against its crystal a-axis) simulations executed the
material user-subroutine that was developed using the anisotropic linear model for silica
mineral (Eq. 2).
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Figure 3d presents the evolution curves of vertical compressive load (FZ ) versus
displacement (UZ ) of the top loading platen. UZ presents the movement of the top
platen and FZ is the summation of reaction forces acting against the platen. It can
be seen from Fig. 3d that the numerical prediction of the experimental curves (solid
lines) improved when the material user-subroutine implemented the anisotropic linear
elastic model of silica mineral (Strong and Weak curves), in comparison to the isotropic
approximation (isotropic curves). When comparing the FZ versus UZ responses for
individual particles (set of curves with the same color), the Strong curves (dashed line)
display a stiffer response compared to theWeak (double dashed line) and Isotropic curves
(dotted line), respectively. The latter remark aroused from aligning the loading direction
in the Strong simulations with the stiff crystal c-axis. Figure 3d also demonstrates a
significant variation in theUZ −FZ responses between Particle-1 and Particle-2. Relative
to the response of Sphere-Eq, Particle-2 fractured at about half FZ whereas Particle-1 at
almost 0.25UZ . Both Particles were selected fromOttawaASTM20–30 sand, which is a
standard natural sand that has been widely used in geotechnical testing and is known for
having silica constituent (more than 99.9% as well as a uniform grain size distribution.
Similar variation in UZ − FZ response was also reported by Cil et al. (2013) for 87
particles of the same sand that were tested using the same testing apparatus. Then, 3D
FE simulationswere conducted to investigate the variation in the fracture and constitutive
behaviors between Particles 1 and 2. Referring to Fig. 3, it can be seen that Particle-2
exhibited soft contact with the loading platens that caused the particle to rotate slightly
between FZ = 0 and FZ = 20 N. Conversely, Particle-1 lacked this rotation due to its
firm contact with the two loading platens. The difference in the nature of particle-to-
platen contacts explains the long stretch in the blue curves in Fig. 3d relative to the red
curves.

Fig. 3. In-situ SMT scans and 3D FE simulation of single-particle crushing experiments on
(a) Particle-1; (b) Particle-2 of ASTM 20–30 Ottawa sand; (c) 3D FE simulations of Sphere-Eq
(a sphere with equivalent diameter to the ASTM 20–30 Ottawa sand); and (d) load-displacement
curves for the experiments and simulations at the top loading platen.
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Figure 4 displays the distribution of σv within both particles and Sphere-Eq at
fracture. For Particle-1 (Fig. 4a), it can be seen that fracture patterns in the three FE
simulations (Strong, Weak, and Isotropic) mainly occurred near a surface depression
obvious from the SMT image that penetrated through the micro-structure of Particle-1.
Such material imperfections are well-known to exist in natural sand particles and create
weak points in the particle micro-structure that give rise to fracture onset. Particle-2 and
Sphere-Eqwere free of micro-structural imperfections (based on SMT image of particle-
2) and exhibited different fracture modes in the strong simulations when compared to
weak simulations. The latter finding clearly challenged the isotropic FE simulations,
which falsely presume the same fracture and constitutive behaviors for two particles
with identical morphology and particle-to-plate interaction. Differences in the constitu-
tive and fracture behaviors of identical particles can fundamentally arise from properties
beyond the micro-scale and exist at the crystal scale-level of silica sand. The X-Y views
of fractured particles in Fig. 4 clearly illustrate a broader spread of red area in Sphere-Eq
and Particle-1 than Particle-2. This red area represents the highly stressed region within
the particle that interacted with the top loading platen. The difference in the particle-to-
plate interaction area can explain the fracture of Particle-2 at a much lower FZ in Fig. 3d
relative to Particle-1 and Sphere-Eq. Namely, FZ in Particle-2 acted on a smaller region
that caused high-stress concentrations within the particle, and thus Particle-2 fractured
at a low FZ . Another observation from Fig. 4c is the shattering fracture manifested by
the Isotropic simulations of Sphere-Eq. Such behavior was attributed to the regularity in
the sphere geometry accompanied by the presumed isotropy in the constitutive response.

Fig. 4. Fracture patterns for (a) Particle-1; (b) Particle-2; and (c) Sphere-Eq assuming anisotropic
and isotropic linear elastic behaviors.
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5 Conclusions

The influence of quartz crystal structure on the constitutive response of natural and syn-
thetic silica particles was examined using rich 3D experimental measurements quantified
by combined in-situ SMT and 3DXRD scanning as well as numerical 3D FE analysis.
The crystal structure of quartz essentially produces directional anisotropy in the consti-
tutive behavior of silica particles. On the scale of a single silica (1mm)3 cube subjected
to unconfined uniaxial compression, major principal lattice strain experimentally man-
ifested ∼ 1.3 stiffer response when the cube was loaded against the face aligned with
(0 0 0 1) versus (2 −1 −1 0) crystal plane. 3D FE analysis can numerically model the
constitutive anisotropy in silica particles by implementing crystal-based material sub-
routines and accurately simulated the significant difference in the evolution of the major
principal lattice strain for the silica cube when loaded against opposite crystal planes.
At the particle-scale, natural silica sand particles exhibit significant stiffer constitutive
behavior when their major principal stress direction is aligned with the [0 0 0 1] crystal
local axis compared to [2 −1 −1 0].
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Abstract. aut]Stathas, Alexandrosaut]Stefanou, IoannisIn this paper
we investigate the role of seismic slip velocity in the thickness evolu-
tion of a fault’s principal slip zone (PSZ) during coseismic slip. The
PSZ of a fault can be modelled as a shear band of evolving thickness
(see [33]). The PSZ thickness is associated with energy dissipation and
apparent frictional softening during earthquakes. We use numerical non-
linear analyses that take into account the granular size and the main
Thermo-Hydro-Mechanical (THM) couplings that take place during co-
seismic slip. The material inside the PSZ where the shear band occurs, is
modelled using Cosserat theory under small deformations, which intro-
duces an internal length scale to the problem [17]. Temperature and
pressure diffusion introduce further internal length scales to the system
and enhance softening depending on applied seismic slip velocity. Going
beyond existing numerical analyses [16,18], we introduce a three step
procedure which includes consolidation, slow shear of 1 mm/s and then
fast shear of 1 m/s for a shear displacement of 5 mm at each step. The
effect of boundary fluxes is considered and a shear traction envelope for
the different cases is produced. Next we subject the system to large shear
displacements up to 1 m under different slip rates. We find that velocity
increase leads to softening increase and localization thickness decrease.
For large displacements we observe a steady state response that seems
to include a limit cycle and travelling waves of strain localization.

Keywords: Strain localization · THM-couplings · Travelling
instability · Cosserat · Finite elements

1 Introduction

In this paper we investigate the role of seismic slip velocity in the evolution
of shear strain localization width inside the fault gouge of a mature fault. The
fault gouge is a region of ultracataclastic granular material inside the fault with
thickness of some millimetres that accommodates the majority of the seismic slip
(see [8,22,29]). Inside the fault gouge, the seismic slip is commonly accompanied
by a localization of shear strain- rate into a narrow thin zone, the Principal
Slip Zone (PSZ). The PSZ is a zone of finite thickness of some hundreds of
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micro meters (see [21]). Strain localization and the formation of shear bands
in fault zones is very important as it affects shear heating and pore pressure
increase during seismic slip. As a result they determine the post peak, softening
behaviour of faults, which is responsible for earthquake nucleation, the dissipated
energy and the energy radiated to the surface [1,8].

The shear strength of the fault is dependent on various mechanical and
physico-chemical mechanisms [19,28,29]. Here we investigate the mechanism of
thermal pressurization of pore fluid in fluid saturated faults in particular, in
order to capture its effect on the evolution of shear strength during coseismic
slip. Thermal pressurization happens as a consequence of the different expan-
sivities of fluid and the surrounding rock inside the fault gouge and has been
shown to play an important role in the weakening of fault zones [9,20,34]. As
slip progresses, temperature increases due to frictional dissipation. Then the con-
fined pore fluid inside the fault, which tends to expand more than the rock for
the same temperature increase, increases its pressure, leading to a decrease in
the effective Terzaghi mean stress, and therefore, to a reduction of the fault’s
available shear strength. The thickness of the PSZ is essential for the quantifica-
tion of plastic work, giving rise to the temperature increase inside the fault and
consequently to the apparent softening behaviour.

Experimental evidence in faults (see [14,22]) has shown, that the PSZ has a
finite width and it does not collapse into a mathematical plane. This behaviour
cannot be captured by the use of a Classical Cauchy continuum in numerical
analyses, because it has been shown that such a continuum localizes on a math-
ematical plane when strain softening is present [13]. This makes the numerical
analyses mesh dependent, leading to wrong estimates for the dissipated energy
during coseismic slip. Different approaches have been tested to avoid mesh depen-
dency of the numerical solution. These include the use of a strain softening
strain-rate hardening material law (see [35]) and the use of higher order con-
tinua [2,4,12,16]. We have shown mathematically and numerically in [24] that
the first approach involving the use of elasto viscoplasticity does not regularize
the mesh dependency of the numerical results.

In this paper we make use of Cosserat continua for the description of the
fault gouge material for the calculation of PSZ thickness. Cosserat continua are a
special class of micromorphic continua whose material particles can be considered
to have six degrees of freedom in 3D space comprised of three translations ui

and three rotations ωi, i = 1, ..., 3. Due to the existence of a material length, R,
present in the material equations, localization width does not collapse to zero as
in a classical Cauchy continuum.

Using Cosserat continuum for describing strain localization during coseismic
slip, we solve the nonlinear problem for large displacements with the help of
the FE software Numerical Geolab [25]. Going beyond existing results [16,17],
we obtain the stress-strain post peak response of the fault for a wide range
of seismic slips and seismic slip velocities, the evolution of localization width
during shearing of the layer and the apparent rate dependency of the system
due to THM couplings even for a rate independent mechanical behaviour.
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2 Kinematics of the Cosserat Continuum and Balance
Equations

We consider a set of rigid particles in the Cosserat continuum each one described
by the position of its center of mass. In a first order theory, the displacement
of each point inside the rigid particle can be described by making use of every
point’s distance from the particle’s center of mass χ′

i and its micro-rotation ωi,
which is common to to all points inside the particle [6,26]. Due to the rigid
particle assumption and making use of the external product and tensor theorem
of algebra, ωi represents the vectorial form of the external product tensor ωij .
Where the relationship between the micro-rotation vector ωi and the tensor of
rotation ωij is given as ωi = −εijkωij with εijk to be the Levi-Civita symbol.
Following the Einstein summation, the displacement field at each point of the
particle can be given as:

u′
i = ui + ωijχ

′
j (1)

2.1 Cosserat Kinematics

We continue by introducing the kinematic fields of the deformation tensor γij .
We define its symmetric part γ(ij) as the macroscopic strain εij while its anti-
symmetric part γ[ij] is the difference between macroscopic rotation Ωij and the
microscopic rotation tensor ωij . We also take into account the gradient of the
microscopic rotation tensor, the curvature tensor κij .

γij = γ(ij) + γ[ij] = ui,j − ωij = ui,j + εijkωk (2)

γ(ij) = εij =
1
2

(
u′

i,j + u′
j,i

)
(3)

γ[ij] =
1
2

(
u′

i,j − u′
j,i

)
=

1
2

(ui,j − uj,i) − ωij = Ωij − ωij (4)

κij = ωi,j (5)

2.2 Linear and Angular Momentum Balance Equations

As is the case with Cosserat strains γij the Cosserat stress tensor τij is also not
symmetric. The gradient of micro rotations introduces also Cosserat moments or
Couple stresses μij to the balance equations. In contrast to Cauchy continua, τij

can be decomposed into a symmetric ,τ(ij) = σij , and a non-zero antisymmetric
τ[ij] part. The balance equations can then be written as:

τij,j − ρ
∂2ui

∂t2
= 0 (6)

μij,j − εijkτjk − ρI
∂2ωi

∂t2
= 0 (7)

where ρ and I are ,respectively, the density and microinertia considered isotropic
here, while εijk is the Levi-Civita permutation tensor.
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2.3 Energy Balance Equation

Conservation of energy in a quasi-static transformation (we neglect the convec-
tive derivative) where the material yields producing heat in the form of plastic
dissipation, assuming Fourier’s law is expressed as:

ρC
∂T

∂t
= Ẇ p + kT T,ii (8)

ρC

(
∂T

∂t
− cthT,ii

)
= σij ε̇

p
ij + τ[ij]γ̇

p
[ij] + μij κ̇

p
ij (9)

where cth = kT

ρC , kT are defined as the thermal diffusivity and thermal conductiv-

ity of the medium respectively. The quantities under (̇)
p

indicate the plastic part
of the rate of symmetric, antisymmetric strain and curvature tensors respectively.

2.4 Mass Balance Equation

In the case of porous media as the one discussed here, the medium consists of
both a fluid phase and a solid phase (insoluble to the fluid) which we consider
to communicate perfectly in whole. Meaning no effects of tortuosity and no
distinction between principal and secondary pore fluid network will be taken
into account. The two phases communicate with each other by acting forces to
one another due to different deformation properties [3,15,27]. Finally the local
form of the mixture mass balance equation is given according to Rattez et al.
[16]:

∂p

∂t
=chypi,i +

λ∗

β∗
∂T

∂t
− 1

β∗
∂εv

∂t
(10)

where chy = χ
ηfβ∗ is the hydraulic diffusivity expressed with the help of the

porosity of the solid skeleton χ and the pore fluid viscosity ηf , while β∗ =
nβf + (1 − n)βs , λ∗ = nλf + (1 − n)λs are the mixture’s compressibility and
expansivity respectively [32].

3 Cosserat Elastoplastic Constitutive Relations

In what follows the Terzaghi theory of effective stress is assumed to hold true.
That is, the effective stress τ ′

ij found at the Gauss points by use of the relation
τij = τ ′

ij − pδij for τij , τ
′
ij > 0 in tension and p > 0 in compression. No reference

to the grain compressibility as well as the existence of a double porosity network
is being taken into account.
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3.1 Cosserat Elasticity

The general constitutive equations for a centrosymmetric Cosserat material
relating stresses and Cosserat moments to Cosserat strains and curvatures are
given by Vardoulakis [33]:

τij =Kγe
kkδij + 2G

(
εe
ij − 1

3
γe

kkδij

)
+ 2Gcγ

e
[ij] (11)

μij =Lκe
kkδij + 2M

(
κe
(ij) − 1

3
κe

kkδij

)
+ 2Mcκ

e
[ij] (12)

We notice that additionally to the elastic moduli used by the Cauchy media
(K,G) denoting isotropic compression and shear moduli respectively, four addi-
tional constants are added Gc, L,M,Mc referring to the anti-symmetric part of
Cosserat deviatoric stresses, the spherical part of Cosserat moments, the sym-
metric and anti-symmetric deviatoric parts of the Cosserat moments respectively.

3.2 Thermo-elasto-Plastic Constitutive Relationship

The development of the thermo-elasto-plastic constitutive relations that follow
is based on [30]. Since we follow a small strain approach, the strain rate and
the curvature rate tensor can be decomposed into its elastic plastic and ther-
mal parts. Large displacements are then taken into account through an updated
Lagrangian approach. In what follows we make the assumption that the curva-
ture tensor stays unaffected by a change of temperature. Therefore strain rate
and curvature rate tensors are decomposed as [10]:

γ̇ij =γ̇e
ij + γ̇p

ij + γ̇th
ij

κ̇ij =κ̇e
ij + κ̇p

ij (13)

Thermal strain rates can be expressed as γ̇th
ij = αṪ δij , where α is the thermal

expansion coefficient. For the calculation of the plastic strain rate we first define
a Drucker-Prager yield function F = F (τij , σij , γ

p, εp
v) which we assume to be

dependent on the first and second stress tensor invariants, and the deviatoric
and spherical parts of the accumulated plastic strain tensor (γp, εp

v). Analytical
derivation of the derived relationships for the specific material is given in [17].
A more complete approach in a thermodynamical framework that takes into
account grain breakage and the consequent evolution of the internal lengths can
be found in [2].
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Fig. 1. 1D shearing of a Cosserat layer under constant vertical normal stress, under
isothermal (T = 0) and drained conditions (p = pc) corresponding to a mature satu-
rated gouge layer.

4 Shearing of a Mature Fault Under Variable Slip
Velocities

In this paper, we consider the shearing of a Cosserat layer with different slip
velocities. The analysis is done in two steps with a slow slip velocity at the start
and a fast slip at the second step. A 1D model of a Cosserat layer was used
where shear displacement was applied to the surface of the layer while rotations
were blocked at both ends, (see Fig. 1). The layer was discretized using 80 mixed
type finite elements, with quadratic shape functions for the displacement filed
ui and linear shape functions for the rotations ωi. Furthermore, reduced inte-
gration scheme was used for displacement field. These element parameters were
taken as a result of an investigation of different shape functions and number of
Gauss points that was performed in previous work [23]. The mesh characteristics
are summarized in Table 2. The Cosserat material properties used to describe a
mature fault in the seismogenic zone are summarized in Table 3 where a high
value for the Drucker-Prager friction coefficient μ has been used and path aver-
aged values for λ∗, β∗ were considered as proposed in [19] (Table 1).

The value of the Drucker-Prager friction coefficient is taken equal to μ = 0.5.
For the mature fault gouge geomaterial the friction coefficient corresponds to a
friction angle φ = 21◦ when we match the Drucker-Prager to the Mohr-Coulomb
yield criterion in a compression triaxial test. Thus, the predicted yield limit for
the fault friction during simple shear of the fault gouge is realistic. The dilatancy
coefficient in the plastic potential of our analyses is set to β = 0. This corresponds
to a mature fault gouge, which has reached the critical state, and thus only shear
deformation along the fault plane can occur.

To illustrate the role of seismic slip velocity in the post peak behaviour of
the fault we apply two different shear programs to the model at hand. First we
implement a three step procedure described in 4.2 which includes qualitatively,
consolidation of the layer to the stresses and pressure at a depth representative
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Table 1. Loading program for the analyses performed using the three step procedure.

STEP Slip δ mm Slip velocity δ̇ m/s

0 Consolidation – –

1 Shear 5 0.01

2 Shear 5 0.01 0.1 1.0

Table 2. Mesh properties of the problem.

ui ωi

Element type Quadratic Linear

Integration scheme Reduced Full

Number of elements 80

of the seismogenic zone (∼ 7 km), followed by slow shear of the layer and then
by fast shear for a shear slip of 10 mm at each stage. The second program in
Sect. 4.3 involves initial consolidation and then shear with constant slip velocity
ranging from as slow as 0.01–1.0 m/s for a total of 100 mm of seismic slip.

Table 3. Material parameters of a mature fault at the seismogenic depth [see 17,19].

Parameters Values Properties Parameters Values Properties

K 20 × 103 MPa μ 0.5 –

G 10 × 103 MPa β 0 –

Gc 5 × 103 MPa λ∗ 13.45 × 10−5 /◦oC

L 103 MPa mm2 β∗ 8.2 × 10−5 MPa−1

M 1.5 MPa mm2 ρC 2.8 MPa/◦C

Mc 1.5 MPa mm2 chy 12.0 mm2/s2

R 0.01 mm cth 1.0 mm2/s2

σn 200 MPa αs 10−5 /◦C

p0 66.67 MPa χ 12 × 10−15 m2

4.1 The Question of Large Displacements

Before we begin describing the loading programs used in the analyses, we need
to address the question of large deformations since our analyses reach displace-
ments far greater that the 1D model’s geometrical dimensions. Our application
involves pure shearing of the layer and therefore the displacement derivatives
with respect to x2 axes are neglected. We notice that the displacement parallel
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to the vertical direction is close to zero (u1 = 0). This is because no additional
loading occurs in the vertical direction during shearing and from the plastic
potential we have that for a mature fault the dilatancy angle is zero (β = 0).
Thus only the thermal expansion remains. We consider the thermal expansion
and compressibility coefficients to be very small so that in the observed temper-
ature and pressure range their effects are minimal. Therefore the deformation
gradient tensor F can be written as:

F =

[
∂x1
∂X1

∂x1
∂X2

∂x2
∂X1

∂x2
∂X2

]

=

[
1 + ∂u1

∂X1

∂u1
∂X2

∂u2
∂X1

1 + ∂u2
∂X2

]

≈
[

1 0
∂u1
∂X1

1

]
(14)

From the above one can deduce that detF = 1. Therefore no volume change takes
place during shearing. This conclusion is supported also by the numerical findings
in which the volumetric strain is adequately small εv < 0.005. To account for any
effects that large displacements may introduce to our model we have also run
a series of analyses based on an Arbitrary Lagrangian Eulerian (ALE) method
where at every iteration we update the new mesh position. The change in the
mesh is kept at every converged increment otherwise the cumulative change is
discarded and the procedure starts a new.

4.2 Three Step Shearing Procedure

During this procedure the layer is first consolidated by applying a hydrostatic
total stress of σn and water pressure pc. Following this the layer is sheared with
varying slip velocity δ̇ in two steps. At each step a target displacement δ of 5 mm
at each end is reached for a total of 10 mm at the end of the analysis. The shear
velocity δ̇ at the first step is 0.01 m/s while for the final step different analyses
were run in which shear velocity varies ranging from 0.01 to 1 m/s. The details
of the loading program are presented in Table 1. In the left part of Fig. 2 we
compare the different τ, δ responses for the different velocities applied at the final
step of the analyses. In the right part of Fig. 2 the profiles of strain localization
rate λ̇ over the layer’s height are plotted. We observe that the increase of slip
velocity δ̇ has a weakening effect on the τ − δ diagram as observed also by
Rattez et al. [16,17]. This happens due to the fact that a faster increase in the
heat production term of Eq. 9 leads to an increase in the thermal pressurization
term of Eq. 10 which increases pressure and due to the application of Terzaghi
principle σeff = σn +p, (p > 0 water pressure, σeff , σn > 0 in tension), pressure
drops faster intensifying the weakening.

The increase of slip velocity leads also to narrower localization zones, which
are in agreement with the steeper post-peak response observed in τ, δ diagrams.
We observe though that the model does not present an increase in apparent
shear stress τ due to the velocity stepping, as it would be expected from a rate
and state friction model [5]. Adopting rate and state friction as a reference, this
means that our model misses some necessary physics at the microscale.
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Finally, we investigate the influence of the boundary conditions of pressure
and temperature to the behaviour of the problem. In the left part of Fig. 3
we present the τ − δ curves, for slip velocity at the final step of the analysis of
δ̇ = 1 m/s, for Adiabatic-Undrained, Isothermal-Drained, Isothermal-Undrained,
Adiabatic-Drained conditions. We observe that undrained boundary conditions
influence the response the most as they tend to follow on the solution of uniform
adiabatic undrained shear [9] for small slip velocities δ̇ = 0.01 m/s. The difference
at the peak strength between drained and undrained conditions has to do with
the frequency our algorithm saves the output as well as the time increment
used by the analysis. In the right part of Fig. 3 we present the plastic strain-rate
profiles λ̇ for different boundary conditions applied at the end of the analysis. We
observe that for the given seismic slip of 10 mm, localization width is dependent
on the seismic slip velocity applied and not on the boundary conditions.

Fig. 2. Left: τ − δ response of the layer for different slip velocities δ̇ applied (velocity
stepping). We observe that as the shearing rate increases, the softening behaviour
becomes more pronounced as a result of smaller localization widths due to the smaller
characteristic diffusion time. Right: Profiles of strain localization rate inside the layer
for different slip velocities δ̇ applied at the end of the analysis. Higher shearing velocities
correspond to more localized plastic strain rate γ̇p profiles.

4.3 Two Step Shearing Procedure

To better illustrate the dependence of the fault behaviour to the velocity of seis-
mic slip δ̇, we run a second part of analyses for the case of isothermal drained
conditions in which the intermediate part of slow shear velocity has been omit-
ted and the fault model is immediately subjected to fast slip velocity rates after
initial consolidation. Furthermore, the target seismic displacement δ has been
increased to 100.0 mm. We aim that way to examine in more detail the fault’s
response under displacement scales commonly observed in nature. Table 4 sum-
marizes the two step shearing procedure followed.

In the left part of Fig. 4 we present the shear stress with seismic slip on top
of the layer τ − δ response for different values of seismic slip velocity δ̇. It can



108 A. Stathas and I. Stefanou

Fig. 3. Left: τ − δ response of the layer for different boundary conditions applied.
An envelope is created between Isothermal drained (ΔT = ΔP = 0) and Adiabatic-
Undrained (qT = qp = 0) conditions. At the slow slip part of the analysis in the case of
adiabatic undrained boundary conditions, thermal pressurization is present from the
beginning. In this case, the initial stress at the start of the fast shear is lower and thus
the stress drop is smaller. Right: Profiles of strain localization rate inside the layer for
different boundary conditions. Since Cosserat material parameters and coseismic slip
velocity δ̇ remain the same in all cases, the localization width does not change.

Table 4. Loading program for the analyses performed using the two step procedure.

Step Height H mm Slip δ mm Slip velocity δ̇ m/s

0 Consolidation 1 – –

1 Shear 100.0 {0.01, 0.05, 0.1, 0.25, 0.50, 0.75, 0.90, 1.0}
0 Consolidation 1 – –

1 Shear 1000.0 1.0

0 Consolidation 1 – –

1 Shear 1000.0 0.5

0 Consolidation 2 – –

1 Shear 1000.0 0.5

be clearly seen from the results that two behaviours are present depending on
the shear velocity. If the slip velocity is small then the layer accommodates the
heat produced from the plastic work during yielding of the material and both
heat and pressure diffuse efficiently away from the yielding zone which has a
comparatively large localization width lloc as shown in the right part of Fig. 4.
As slip velocity increases the post peak softening response is seen in larger parts
of the analysis before eventually diffusion dominates and peak shear strength is
restored. However, shear strength is only partially restored for the analyses of
large shear velocities. The right part of Fig. 4 shows the evolution of the shear
band width for the different seismic slip velocities. In order to estimate the
localization width in each case a curve according to Eq. (15) described in [19]
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was selected for fitting.

λ̇ = A +
B√
1πD

exp

[

−1
2

(
y − C

D

)2
]

lloc = 2
√

2 ln(2)D (15)

It is clear that large velocities lead to narrower localization widths lloc. We
observe that for large velocities localization width is not monotonously decreas-
ing, but rather it exhibits some noise as shearing progresses. This has to do with
the fact that the instability exhibited here by the material is a travelling insta-
bility. This can be seen in the τ, δ response were a periodic increase and loss of
strength is observed in the post peak response for all velocities above 0.01 m/s.
This jerky behaviour can be responsible for higher frequency instabilities during
seismic slip and enhance the frequency content of an earthquake event (see [31]).

Fig. 4. Left: τ − δ response of the layer for different velocities. Isothermal, drained
boundary conditions ΔT = ΔP = 0 are applied. Frictional strength regain is observed
due to the diffusion at the boundaries. The frictional response presents oscillations
due to the travelling plastic strain rate instability. A smaller residual friction value is
achieved. Right: lloc − δ response of the localization width inside the layer for different
boundary shear velocities applied at the boundaries. We notice that the localization
width is oscillating for the small to intermediate range of shear velocities δ̇ = 0.01 −
0.25 m/s. This is due to the interaction between the diffusion lengths of pressure and
temperature.

4.4 Application with Seismic Slip δ = 1 m and Seismic Slip Velocity
δ̇ = 1 m/s

In order for the observed oscillations to fully develop in amplitude for the anal-
yses with high slip rate δ̇ we apply a very large shear displacement. Figure 5
presents the τ, δ response for a slip velocity δ̇ of 1 m/s and an applied slip δ = 1
m. As can be seen from the above analysis the shear strength of the layer is even-
tually oscillating around a new residual strength value which is smaller than the
original peak strength. The right part of Fig. 6 shows the profiles of plastic strain
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rate λ̇, and accumulated plastic strain γp at the end of the analysis. It is clear
that the shear band travels across the material since the accumulated plastic
strain profile is bigger in width that the localization width of the instability.
This is one major difference compared to small slip rates, which our analyses
under large displacements allowed to highlight, where the layer regains all of
its peak strength in the steady state as shown in Fig. 4. Finally the left part of
Fig. 6 presents the profiles of Temperature T and pressure p at the end of the
analysis. We observe that the temperature reached is much higher than the one
required for the onset of melting for the minerals present in the seismogenic zone
[19]. This has to do with the relatively high Drucker-Prager friction coefficient
μ used in our analyses. A moderate value of μ=0.25 would roughly halve the
temperature observed. This does not preclude though other mechanisms, such
as chemical effects [28,30], that might become dominant after thermal pressur-
ization becomes impossible.

Fig. 5. Evolution of τ21 with slip distance δ. We observe that after sufficient time has
passed the oscillations have stabilized in amplitude and frequency partially recovering
the layer’s initial shear strength.

5 Conclusions

In this paper the effect of slip velocity during shearing of a fault was inves-
tigated taking large displacements into account. Shear strength τ was plotted
against coseismic slip displacement on top of the fault gouge layer δ for a large
range of slip velocities δ̇ and target displacements. Although the slips applied
are enormous compared to the size of the model, because shear is applied with-
out significant changes in the normal strains of the model εv < 5 ∗ 10−3, the
Jacobian of the deformation is close to unity. Therefore, the influence of large
displacements leading to geometry changes is expected to be negligible. From
the results of Sects. 4.2 and 4.3 it is clear that THM couplings induce softening
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Fig. 6. Left: Profiles of shear strain rate and accumulated plastic shear strain γ̇p, γp at
the end of the analysis for applied slip δ = 1 m and slip rate δ̇ =1 m/s. Since the two
profiles differ, we conclude that the localization oscillates inside the layer. Localization
does not travel the whole of the layer due to the boundary conditions applied. Right:
Profiles of pressure and temperature p, T at the end of the analysis for applied slip
δ = 1 m and slip rate δ̇ =1 m/s. Diffusion at the boundaries leads to extremely high
values of temperature T =2000 ◦C.

to the model. This softening is not of a mechanical source, rather it is produced
by the pressure increase in the fault gouge due to thermal pressurization of the
material. The softening branch in the material is steeper for higher slip veloci-
ties [16,17]. This effect can also be seen in the localization width, where higher
velocities lead to narrower localization as expected by the τ, δ response.

Using an adaptive Lagrangian Eulerian (ALE) method that updates the mesh
position at each converged increment, we have increased the induced seismic slip
δ to values observed in nature. Thus, we show that the softening branch is only
present at the start of the slip, while the localization instability region travels
across the fault layer. This increases the effects of diffusion, therefore, increasing
the strength of the fault. The fault friction ,τ , oscillates around a residual value,
which is dependent on the slip velocity. This indicates the existence of a limit
cycle due to thermal pressurization effects. This jerky behaviour is similar to the
Portevin Le Chatelier (PLC) phenomenon (see [7,11]). This type of instability
and can enhance the frequency content of earthquakes due to instabilities of
small length scales (see [31]).
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Abstract. Shale rock is a strongly heterogeneous, discontinuous, and porous
material. Under non-isothermal conditions, the movement of fluid in the pore
and capillary system is strongly coupled with heat transfer. The process of the
hydraulic fracture strongly depends on the rock saturation degree. An innovative
DEM-based thermo-hydro-mechanical model was developed to track in detail the
liquid/gas fractions in pores and cracks with respect to their different geome-
try, size, location, and temperature. A coarse 2D mesh was generated to create
a fluid flow network and to solve the energy conservation equation. Finally, the
importance of a fully coupled thermo-hydromechanical model is illustrated by the
simulation of cold fluid injection during hydraulic fracturing in a rock matrix with
different degrees of water saturation.

Keywords: Hydraulic fracturing · DEM-CFD · Heat transfer

1 Introduction

Most of physical phenomena in engineering problems occur under non-isothermal con-
ditions. More-over, even if the physical system is initially in a state of thermodynamic
equilibrium, the physical phenomena or chemical reactions that occur may lead to local
temperature changes and, consequently, to heat transfer. Therefore, understanding heat
transfer in particulate systems is of great interest to many scientific disciplines and
engineering applications such as environmental science, chemical and food processing,
geomechanics, and geological engineering. The need to take into account the effect of
heat transfer becomes critical in the analysis of many multi-field problems in porous
and fractured materials. Complex thermo-hydro-mechanical (THM) processes, includ-
ing heat transfer, fluid flow, and material deformation occur simultaneously and are
affected by many non-linear processes.

The most common approach in THMmodels is the continuous medium phenomena
approach, which is based on a mathematical framework linking sets of equations to
describe the laws of thermodynamics, solid mechanics, and hydraulics, e.g. the finite
element implementations of such concepts [1–6]. Nonetheless, even though attractive
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for macro-scale applications, continuum modeling approaches based on the finite ele-
ment method (FEM) or the finite volume method (FVM) suffer critical computational
and continuity limitations when applied to discontinuous and highly deformable media
such as packed or fluidized beds and granular or fractured porous materials. In porous
media with low porosity (less than about 15%), such as rocks, classical methods lead to
huge problems with generating sufficiently fine mesh [7]. The problem increases when
simulating the crack initiation and propagation process in porous materials with low
porosity (e.g. shale rocks).

On the other hand, discrete approaches like, for instance, the discrete elementmethod
(DEM) [8] or the finite-discrete element method (FDEM) prove successful at modeling
the behavior of these discrete systems. FDEM method was used by [9] to formulate a
thermo-mechanical model for simulating thermal cracking of rock and by Yan et al. [10]
to develop a 2D coupled thermal-hydro-mechanical model for describing rock hydraulic
fracturing. The strength of DEM in modeling particulate systems opened up recent
efforts to extend its predictive capabilities to meso- and micro-scale THM processes.
Different approaches have been used to couple DEM with fluid flow and heat transfer
models. Direct numerical simulations (DNS) can be used to couple TH processes with
DEM. To solve governing equations, DNS models can use different numerical methods
(e.g. FEM, FVM). Deen et al. [11] proposed immersed boundary implementation that
does not require using any effective diameter of spherical discrete element. The method
was dedicated to THM processes in dense fluid-particle systems. However, the proposed
method was limited to invariant geometries, their topologies and relatively high porosity
(porosity greater than that of rocks). In practice, DNS-DEM models are restricted to
systems comprised of a smaller number of particles than CFD. Another approach is
based on the lattice Boltzmann method (LBM) [12, 13]. LBM relies strongly on the
accurate representation of solid-fluid boundaries which is difficult both numerically and
computationally and leads to the same limitations as with DNS-DEM models.

To study THM processes with DEM in very dense fluid-particle systems with very
low porosity (even below 5%) such as rocks, fluid flow and heat transfer models should
be simplified to reduce computational costs and avoid numerical limitations. Most of
the recently available DEM-based THM models separate the fluid flow in the reser-
voirs (pores, macropores, pre-existing cracks, etc.) and flow between the reservoirs. The
assumption is that the fluid in the reservoirs is compressible while the fluid flowing
between the reservoirs is incompressible. This concept of simplification was first intro-
duced and developed in [14–16]. In most cases, a Poiseuille flow model in pipes or
between two parallel plates is adopted to estimate mass flow rates. The pressure in the
pores is calculated directly from the assumed equation of state [15, 16] or the solution
of the Stokes equation [17, 18]. All models assume a single-phase fluid flow of a pure
liquid or mixture. Tomac and Gutierrez [19] solved the energy conservation equation for
each cell (reservoir) volume. The adopted energy conservation equation corresponded
to the energy transport in the laminar flow of an incompressible fluid. Caulk et al. [20]
proposed a more advanced DEM-based THM model. They proposed a 3D model based
on the framework of the pore-scale finite volume (PFV) scheme initially proposed by
Chareyre et al. [21] and extended by Scholtès et al. [22] for up-scaling compressible
viscous flow and oriented toward dense grain packing applications.
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The goal of the current paper is to demonstrate the DEM-based pore-scale thermal-
hydro-mechanical model of two-phase fluid flow coupled with heat transfer in porous
materials of very low porosity (e.g. rocks). Calculations were carried out with a 3D
DEM model coupled with a 2D CFD and 2D heat transfer model that combined solid
mechanics with fluid mechanics and heat transfer at the meso-scale. Previously, our
coupled DEM/CFD model was successfully used to describe a hydraulic fracturing
process in rocks with one- or two-phase laminar viscous two-phase fluid flow composed
of a liquid and gas [23, 24].

The innovative elements of our DEM-based THM mesoscopic approach for mod-
elling fluid flow and heat transfer as compared to other existing models in the literature
are: the detailed tracking of water/gas fractions in pores regarding their varying geom-
etry, size and location; an algorithm for automatic meshing and remeshing domains of
solids and fluids to capture changes in geometry and their topology; the use of a coarse
mesh of solid and liquid domains to generate a virtual fluid flow network (VPN) and
solve energy conservation equation; adoption of the corrected Peng-Robinson equation
of state for both fluid phases to study supercritical fluid flow (necessary for the study
of THM processes in the hydrofracturing process); FVM was used to solve the energy
conservation equation on a very coarse mesh of cells in both domains.

The current paper is structured as follows. After the introductory Sect. 1, amathemat-
ical model of the DEM-based coupled thermal-hydro-mechanical approach is presented.
Section 3 investigates gas-phase content influence on hydraulic fracture initiation and
propagation. Finally, some concluding remarks are offered in Sect. 4.

2 Thermo-hydro-mechanical Model

The novel concept of the model is based on the assumption that two different domains
coexist in a physical system: the 3D discrete (solid) domain and the 2D continuous (fluid)
domain. Originally, the solid domain consists of one layer of 3D spherical elementswhile
the fluid domain is two-dimensional (Fig. 1a).

Spheres are arranged in such a way that their gravity centres are located on a mid-
plane (2D surface). The spheres are projected onto the plane to form circles (Fig. 1b).
After projection, both the domains are discretized into a very coarse grid of cells (trian-
gles) (Fig. 1b). Consequently, the equations of motion of discrete elements are solved
in the 3D discrete do-main and the equations of fluid flow are solved in the 2D fluid
continuous domain (red colour in Fig. 1b) and heat transfer equations are solved in the
2D fluid and solid continuous domains (red and black colours in Fig. 1b).

2.1 DEM for Cohesive-Frictional Materials

DEM calculations were performed with the 3D spherical explicit discrete element open
code YADE [25]. The method allows for a small overlap be-tween two contacted bodies
(the so-called soft-particle model). Thus, an arbitrary micro-porosity can be obtained
in DEM wherein particles interact with each other during translational and rotational
motions through a contact law and Newton’s 2nd law of motion using an explicit time-
stepping scheme [8]. In the model, a cohesive bond is assumed at the grain contact
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Fig. 1. Two domains coexisting in one physical system: (a) co-existing domains before projection
and discretization, (b) solid and fluid domains after discrete elements projection and discretization
(fluid domain in red colour and solid domain in black colour)

exhibiting brittle failure under the critical normal tensile load. The shear cohesion failure
initiates contact slip and sliding obeying the Coulomb friction law under normal com-
pression. Damage occurs if a cohesive joint between spheres disappears after reaching a
critical threshold. If any contact between spheres after failure re-appears, the cohesion
does not appear more. A simple local non-viscous damping is used [8] to accelerate
convergence in quasi-static analyses. The material softening is not considered in the
DEM model. The DEM model and its calibration were described in detail in [26, 27].

2.2 Fluid Flow Model

The general concept of a fluid flow algorithm using DEM was adopted from [14–16].
However, the model in the current paper [23, 24] significantly differs from this general
concept. The pores, cracks and pre-existing cracks store now not only pressures but
also phase fractions, fluids densities, energy, and temperature. An immiscible fluid was
assumed in the multiphase fluid flow regime. The numerical algorithm can be divided
into 5 main stages:

(a) estimating the mass flow rate for each phase of fluid flowing through the cell faces
(in channels surrounding VP) by employing continuity and momentum equations,

(b) computing the phase fractions and their densities in VP by employing equations of
state and continuity,

(c) computing pressure in VP by employing the equation of state,
(d) solving energy conservation equation in fluid and solids,
(e) updating material properties.

This algorithm is repeated for each VP in VPN and each solid cell (stage ‘d’) using
an explicit formulation.

2.3 Heat Transfer in Fluid

A homogeneous heat transfer model in multiphase fluid flow is assumed. For sim-
plicity, incompressible and homogeneous fluid is assumed. The viscous dissipation of
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energy is neglected. The energy conservation equation is shared among the phases in a
homogeneous model, and is expressed in integral form:

∫

V

∂

∂t

(
ρeff E

) · dV +
∮

∇ ·
(
ρeff

⇀
v E

)
· d �A =

∮ (
λeff ∇T

) · d �A +
∫

V

Sh, (1)

where ρeff is the effective fluid density [kg/m3], E is the total energy [J], t is time [s], v
is the velocity [m/s], T is the temperature [K], λeff is the effective thermal conductivity
of fluid [W/(mK)] and Sh denotes the energy sources. Assuming an incompressible and
laminar flow of a homogeneous fluid, the enthalpy h equation of state is:

h = T∫
Tref

cpdT , (2)

where Tref is the reference temperature [K] and cp is specific heat in constant pressure
[J/(kg·K)]. The effective fluid properties and velocity are computed by volume averaging
over the phases. If the time derivative is discretized using backward differences and
assuming that the total energy E is equal to the enthalpy h and applying the enthalpy h
equation of state to Eq. 1, the energy conservation equation can be expressed in terms
of temperature T:

Tn+1 = Tref + cnp,eff
(
Tn − Tref

)
cn+1
p,eff

+ �t

Vρncn+1
p,eff

Nfaces∑
f

λeff ∇Tn
f · �Af

− �t

Vρncn+1
p,eff

Nfaces∑
f

ρn
f
⇀
v
n

f c
n
p,eff

(
Tn
f − Tref

)
· �Af + �t

ρn+1cn+1
p,eff

Sh, (3)

where Nfaces is the number of faces enclosing the cell, Tf is the value of T on the face f ,
ρf vf •Af is the mass flux through the face f , Af is the area vector of the face f ,∇Tf is the
gradient of T at the face f , V is the cell volume and Sh is related to the internal enthalpy
source of diffusive energy [W/m3] of heat transferred by diffusion along the channel
S2S. The FVM method is used to solve the energy conservation equation (Eq. 3).

2.4 Heat Transfer in Solids

Assuming no convective energy transfer, no internal heat sources and constant density
ρs, in solid regions, the energy conservation equation has the following integral form:

ρs

∫

V

∂E

∂t
· dV =

∮
(λs∇T ) · d �A, (4)

where E is the total energy and is equal to enthalpy h, ρs is the density of solid [kg/m3],
λs is the solid thermal conductivity [W/(mK)], Tref is the reference temperature and cp
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is the specific heat in constant pressure. Equation 4 is applied to each cell (triangle) in
the solid domain. The discretization of Eq. 4 yields for a given cell

Tn+1 = Tn + �t

Vρscp

Nfaces∑
f

λs∇Tn
f · �Af . (5)

The FVM method is used to solve Eq. 5.

3 Model Validation

The DEM-based THM model was validated by comparing the numerical findings with
the analytical solution for the classic 1D heat transfer problem (diffusion) in the cohesive
granular bar specimen

∂T

∂t
= αeqv

∂2T

∂x2
, (6)

where αeqv is the effective thermal diffusivity [m2/s] and t is the time [s]. The initial and
boundary conditions for the analytical solution of the 1D heat equation are as follows

T (x, 0) = 323.16[K] x ∈ 〈0,L〉. (7)

T (0, t) = T (L, t) = 293.16[K] t ≥ 0, (8)

whereL is the length of the bar. The calculationswere performed using a bonded granular
bar specimen with a random distribution of spheres (Fig. 2a). The effective thermal
diffusivity αeqv was calculated for the volume-averaged phase properties. The initial
and boundary conditions are shown in Fig. 2b (the bar specimen was cooled down by
30 K). The effective thermal diffusivity and boundary conditions imitated heat transfer
by diffusion only in the equivalent solid bar, made of a fictitious homogeneous material
with effective thermal properties. The single-phase flow of water was assumed. The
numerical results agree with the analytical solution. After 400 s of cooling, the largest
difference between numerical and analytical values was 0.52 K (Fig. 3).

4 Gas-Phase Content Influence on Hydraulic Fracture Initiation
and Propagation

Our DEM-based THM mesoscopic approach to fluid flow and heat transfer modeling
can recreate shale rock with faults, pre-existing fractures, bedding layers, etc. The model
enables the reconstruction of real samples of shale rocks on the basis of microcomputer
tomography (micro-CT). However, for simplicity and clarity, a small 30 × 30 mm
specimen imitating shale rock matrix was chosen to investigate the effect of the initial
gas-phase content on the initiation and propagation of the hydraulic fracture under non-
isothermal conditions.
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Fig. 2. Bonded granular specimen imitating shale rock: (a) specimen, (b) boundary and initial
conditions

Fig. 3. Temperature along the vertical center line of the sample of the cohesive granular bar in
Fig. 2a after 400 s of cooling

The specimen porosity was 5%. The fluid injection point was located in themiddle of
the lower boundary. Four cases with different contents of the gas phase were considered:
(a) 0% of gas, (b) 20% of gas, (c) 40% of gas and (d) 60% of gas. It was assumed that
the fluid was heated in the wellbore from 293.16 K to 323.16 K before being injected
into the rock. The initial rock temperature was assumed to be 343.16 K, and the initial
pressure was 20 MPa (Fig. 4). The pressure of the fluid being injected was 90 MPa.
The rock matrix (discrete elements) heat transfer coefficient was assumed at the level of
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Fig. 4. Bonded granular specimen imitating shale rock with boundary and initial conditions

3.5 W/(m • K), while the gas phase heat transfer coefficient was 0.0262 W/(m • K) and
the liquid phase heat transfer coefficient was 0.6W/(m •K). The spheres were not fixed,
except for the spheres along the lower boundary. They were fixed (zero displacement and
rotation) in the vertical direction. The DEM-THMmodel was calibrated according to the
procedure presented in [24]. The permeability of the rock specimenwas 2.04 • 10–17 m2.

Initial Gas Content 0%
In the case ‘a’, the initial gas content was 0%. The rock specimen was fully saturated
and there was only single-phase fluid flow. The cold fluid was injected into the injection
point. The hydraulic fracture initiated and propagated for 1.8 ms to reach the upper
boundary of the specimen (Fig. 5a). It can be observed that the injection fluid heats up to
the initial temperature of the specimen very quickly and very close to the injection point.
Such rapid heating of the fluid is due to the fact that the rock specimen is completely
filled in with water, which is an almost incompressible fluid. Therefore, a very small
amount of injected water was necessary to penetrate the specimen and increase the fluid
pressure above the rock strength limit. As a consequence, the injected water heated up
very quickly to the initial temperature (343.16 K) of the rock specimen (Fig. 5b).

Initial Gas Content 20%
In the case ‘b’, the initial gas content was 20%. The rock specimen was partially filled
with water and partially with gas (humid air). There was a two-phase fluid flow in the
specimen. The hydraulic fracture initiated and propagated for 9.6 ms to reach the upper
boundary of the specimen (Fig. 6). In contrast to the case ‘a’, an increase in fluid pressure
was due to compression of the gas phase by increasing the water content. More water had
to be injected to increase the fluid pressure above the rock’s strength limit. This resulted
in an increase in advection as compared to the case ‘a’. The fluid temperature increased
to 338.9 K at the top of the hydraulic fracture. The shape of the hydraulic fracture was
different than in the case ‘a’. A small branching of a hydraulic fracture was formed.
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Fig. 5. Temperature distribution in bonded granular rock specimen after 1.8 ms: (a) entire
specimen and (b) vicinity of injection point

Fig. 6. Temperature distribution in bonded granular rock specimen after 9.6 ms: (a) entire
specimen and (b) vicinity of injection point

Initial Gas Content 40%
The rock specimen was partially filled with water and partially with gas (humid air).
There was a two-phase fluid flow in the specimen. The hydraulic fracture initiated and
propagated for 18.1 ms to reach the upper boundary of the specimen (Fig. 7). As in the
case ‘b’, an increase in fluid pressure was caused by compression of the gas phase by
increasing the water content. The fluid temperature increased to 332.4 K at the top of
the hydraulic fracture and was 6.5 K lower than in the case ‘b’.

In contrast to the case ‘b’, the shape of the hydraulic fracture was different and there
was no branching. The fluid temperature in the vicinity of the injection point was lower
than in the case ‘b’. The longer hydraulic fracture propagation time and the lower fluid
temperature resulted in significant cooling of the rock specimen in contact with the fluid
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Fig. 7. Temperature distribution in bonded granular rock specimen after 18.1 ms: (a) entire
specimen and (b) vicinity of injection point

in the hydraulic fracture in the vicinity of the injection point. The temperature of the
rock specimen in the vicinity of the injection point dropped by 6.1 K.

Initial Gas Content 60%
The rock specimen was partially filled in with water and partially with gas (humid air).
There was a two-phase fluid flow in the specimen. The hydraulic fracture initiated and
propagated for 24.8ms to reach the upper boundary of the specimen (Fig. 8). An increase
in fluid pressure was again caused by compression of the gas phase by increasing the
water content. The fluid temperature increased to 338.1 K at the top of the hydraulic
fracture and was 5.7 K higher than in the case ’c’. In contrast to the cases ‘b’ and ‘c’,
the length of the hydraulic fracture filled with a fluid of relatively low temperature (not
exceeding 327.8 K) reached about 45% of its total length. Then, the temperature of the
fluid quickly increased up to 337.2 K to reach 338.1 K at the top of the hydraulic fracture.
The longer hydraulic fracture propagation time and the lower fluid temperature resulted
in significant cooling of the rock specimen in contact with the fluid in the hydraulic
fracture at the vicinity of the injection point. The temperature of the rock specimen near
the injection point dropped by 8.3 K which was 2.2 K more than in the case ‘c’.

5 Conclusions

The paper presents a novel DEM-based pore-scale thermal-hydro-mechanical model
of two-phase fluid flow coupled with heat transfer in porous materials of very low
porosity (shale rocks). The hydraulic fracturing process was tested in a cohesive granular
specimen with an initial porosity of 5% for various saturation degrees. The results of the
limited numerical research allowed the following preliminary conclusions to be drawn:

• the more gas phase in the rock specimen, the slower the hydraulic fracture propagates,
• the more gas phase in the rock matrix, the more intense the heat exchange between
the fluid and the rock matrix,
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Fig. 8. Temperature distribution in bonded granular rock specimen after 24.8 ms: (a) entire
specimen and (b) vicinity of injection point

• in the initially saturated rock specimens, the heat transfer effect is insignificant and
may be neglected, while in the matrix of unsaturated rock, the heat transfer effect is
very important and cannot be ignored.
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Abstract. Development of hydraulic fracture in lab tests is accompanied by a
significant pressure drop in fracturing fluid. This is not normally observed in the
field. The pressure drop suggests the presence of a stage of unstable fracture
growth in the laboratory samples. The paper shows that unstable fracture growth
is produced by interaction between the fracture and free sample surfaces that are
parallel to the fracture. This is another difference from the field situation on top of
the scale difference, since in the field the presence of a nearby free surfaces parallel
and close to the hydraulic fractures is a rare occurrence. This finding is important
in analysing the results of laboratory experiments and developing methods of their
upscaling.

Keywords: Pressure drop · Free surface effect · Critical crack size · Microscopic
length · Bridges

1 Introduction

Pressuremonitoring of fracturing fluid in the process of hydraulic fracture propagation in
the field shows at most a slight pressure drop (not exceeding the recorded pressure fluc-
tuations) corresponding to the time of hydraulic fracture initiation (e.g. [1, 2]). Opposite
to this, the laboratory experiments on hydraulic fracturing show considerable pressure
drop at the fracture initiation [3, 4] (in some cases almost to zero pressure, [5–9] as also
shown in the experiments described below).

While small pressure drops at the time of onset of the field hydraulic fracture can
be attributed to the difference between the pressure required to initiate the fracture and
the pressure needed to maintain the fracture growth, the considerable pressure drops
observed in the laboratory experiments require the presence of an unstable stage of
fracture propagation. Unstable fracture propagation, that is propagation under reduced
pressure, requires considerable increase of the stress intensity factor with fracture size,
R. If one assumes that the hydraulic fracture propagates under the pressure p of fracturing
fluid applied to the whole fracture surface, then the growth will be unstable as the stress
intensity factor KI ∝ p

√
R increases as a square root of the crack size. However, the
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almost instantaneous pressure drop measured at the pump suggests that the fractures
have grown faster than the fracturing fluid could fill the fracture. (This would not be
the case in the field as the hydraulic fractures there are large enough to ensure their
filling with the fracturing fluid.) Therefore, the unstable fracture growth is produced
by the pressure concentrated at the fracture area of the order of the borehole diameter.
In the simplest case when the fracture is modelled as a 2D crack this corresponds to
the situation of the crack growing under the action of a pair of concentrated forces of
magnitude F = 2al/L, where a is the borehole radius, l is the length of the pressurised
part of the borehole (between packers), L is the sample length. Such a loading leads to
the stress intensity factor KI ∝ p/

√
R decreasing as a square root of the crack size.

This paper investigates the above mechanism of fracture growth instability assuming
that the unstable fracture growth is induced by interaction of the fracture with the sample
free surfaces that are parallel to the fracture. (The other pairs of the sample faces are
assumed to produce little effect on the fracture propagation.)

2 Unstable Fracture Growth in Laboratory Experiments

Two tests [10] were conducted on 100 mm cubic samples of mortar (cement:sand:water
= 1:1:0.4). The sand particle sizes were under 0.15 mm. The properties of mortar sam-
ples are: density ρ = 2.3 g/cm3, Young’s modulus (dynamic) E = 27.9 GPa, dynamic
Poisson’s ratio ν = 0.19.

The experiments and equipment are shown in Fig. 1 [10]. Silicon oil of 97.77 cp
viscosity was used as fracturing fluid; it was pumped using a GDS high pressure pump
with volume control. Figure 2a shows schematics of the fracture-produced loading, a
model of borehole of radius a = 2 mm and working (fracture-produced) length of l
= 30 mm. Sample size is L = 100 mm. The produced hydraulic fracture is indicated
by a circle (broken line). The pressure changes with time are shown in Fig. 2b, c. The
sample was also pre-loaded vertically (z-axis, Figs. 1b, 2a) with steel loading platens to
ensure that the fracture propagates vertically. During the tests the acoustic emission was
recorded by the AE sensors hosted by the upper loading platen, Fig. 1b. The accumulated
number of pulses is plotted in Fig. 2b, c. The displacement was measured on the face
parallel to the crack using the DIC with Phantom stereo-vision high speed cameras,
Fig. 1a.

Hydraulic fracture growth proceeds with local interruptions and overlapping result-
ing in formation of bridges distributed across the whole fracture and constricting the
fracture opening [8, 9]. The effective stiffness k of the system of bridges relating stress
that opens the fracture and fracture surface displacement, σ = k�u/2, where �u is
the average fracture opening can be estimated from the displacement measurements as
follows. Since the stage is considered when the fracture almost traverses the sample, the
average displacement related to the average fracture opening, �u/2 is approximately
equal to the average displacement of the sample surface. The average opening stress σ

is taken as approximately equal to the peak borehole pressure since the fracturing fluid
moves inside the fracture. The effective bridge stiffness produces a characteristic length
[8–10], so-called constriction length λ = E/k, where E is the Young’s modulus of the
sample material (mortar).
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The peak pressure, the (average) fracture opening at the peak as well as the estimated
effective bridge stiffnesses and the constriction lengths are summarised in Table 1. It is
seen that the constriction length is almost 2 orders of magnitude greater than the sample
size, which suggests that the effect of bridges can be neglected, and the fracture can be
modelled as a conventional crack with non-interacting faces.

Fig. 1. Laboratory experiments on hydraulic fracture [10]: (a) Experimental set-up; (b) tested
sample with a hydraulic fracture between two vertical loading platens; the upper loading platen
also hosts the AE sensors; (c) schematics of the model of borehole.

3 Mechanism of Unstable Fracture Growth in Laboratory
Experiments

In the above experiments the size, 2R, of the produced fractures is of the order of the
sample size, L = 100 mm, Figs. 1b, 2a. This is much greater than the borehole radius a
= 2mm. This suggests a simplified way of modelling the fracture growth by considering
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Table 1. Parameters of the test samples and the inferred bridge characteristics.

Test Peak fluid
pressure, p,
MPa

Fracture
opening, �u,
mm

Stiffness of the
bridges, k,
GPa/m

Young’s modulus
of the sample, E,
GPa

Constriction
length, λ, m

1 12.1 0.44 8.8 27.9 3.2

2 15.2 0.26 13.6 27.9 2.55

it as a 2D crack opened at the centre by a pair of 2D concentrated forces F (such a crack
is shown in Fig. 3a) representing the opening action of the pressurised borehole.

F = 2 pa
l

L
(1)

Here p is the peak pressure in the borehole, a is the borehole radius, l is the pressurised
part of the borehole, L is the sample size. In this 2D modelling the total force 2pal is
referred to the whole sample thickness, L.

The unstable growth of such a crack can be produced by interaction with a free
surface parallel to the crack [11, 12]; as soon as the crack length reaches a critical value
(corresponds to the minimum of the stress intensity factor) the stress intensity starts
increasing with the crack size and the crack growth becomes unstable.

In the case under consideration the fracture is located at the centre of the sample,
therefore the closest configuration would be the crack located at the centre of a free strip
with free surfaces, Fig. 3a. For this configuration the stress intensity factor reads:

KI = F√
πR

f (s)

(1 − s)3/2
, s = 2R

2R + L
(2)

Function f (s) is tabulated in [13]. It is also shown to have two simple asymptotics:
f (s) ∼ (1 − s)3/2 as s → 0 and f (s) ∼ √

3πs3/2/2 as s → 1. This allows putting
forward the following approximation that incorporates these two asymptotics:

f (s) ≈ (1 − s)
3
2 +

√
3π

2
s3/2 (3)

Comparison of Eq. (3) with the numerical values given by [13] shows that the average
relative error over 7 points is 4%.

Dependence (2), (3) is shown in Fig. 3b. It is seen that as R increases the stress inten-
sity factor reaches minimum and then increases. The critical crack size, Rcr , obviously
corresponds to the minimum, dKI/dR = 0. This gives:

Rcr = 0.237L, Kmin
I = 8.72

apl√
2πL3/2

(4)

The unstable fracture propagation commences when the pressure p is such that

Kmin
I = KIc (5)

where KIc is the fracture toughness of the material.
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Fig. 2. Results of laboratory experiments on hydraulic fracture (of radius R) in a cubic sample of
size L = 100 mm [10]: (a) schematics of the fracture-produced loading in the experiment; only
pressurised part of the borehole is shown (length l = 30 mm, diameter 2a = 4 mm); the acoustic
emission sensors are located between the upper loading platen and the sample; (b) results of test
1; (c) results of test 2, pump pressure (kPa) and total number of AE events versus time (s).
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Fig. 3. Unstable fracture growth due to interaction of with free surfaces: (a) crack at the centre of
a strip with free surfaces; (b) normalised stress intensity factor versus the normalised crack size.

4 Discussion

1. The obtained criterion of unstable fracture propagation (4), (5) can be interpreted by
introducing a characteristic microscopic fracture length lm which is the minimum
size of the fracturing element. In the case of crack propagation it is an equivalent of
the process zone length, but instead of considering the non-linear processes within
this zone (which might well be material specific) we will use a simplified approach
[14–16] by considering the magnitude of the singular stress at distance lm from the
crack tip, Fig. 4, and equating it to the minimum tensile strength σt to express the
criterion of fracture propagation. (In [14] the non-singular terms were also taken into
account which lead to the expression of the scale effect in fracture toughness; in the
simplified model considered in this paper only singular terms are used.)

Subsequently, the criterion of unstable fracture propagation (4), (5) expressed in
terms of the minimum tensile strength σt reads:

Kmin
I√
2π lm

= σt (6)

The fracture starts from the borehole pressurised to pressure p, at the point with
the minimum strength, which is σt . Given that the stress concentration at the borehole
surface is p, one finds that σt = p. From here, using criterion (6) one can estimate the
characteristic microscopic length lm ∼ 7 · 10−3mm. This is close to the lower limit of
Portland cement grain sizes, 10−3 − 10−1 mm (e.g., [17]). This suggests that fracturing
of mortar involves the scale of cement grains (that is the smallest scale) while the
presence of heterogeneities of larges sizes leads to complex fracture surface geometry
at the microscale. In particular, the fracture becomes patchy with local overlapping and
formation of bridges distributed all over the fracture, Fig. 5 [10].
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2. The above approach ignores the effect of the other pairs of sample surfaces. The pair
of surfaces subjected to vertical load is in contact with the loading platens and hence
cannot be free due to the contact friction. The other pair of surfaces that is normal
to the fracture is not included because the model is two dimensional. A planned 3D
modelling will be directed towards investigating the effect of fracture geometry and
interaction with all sample surfaces.

Fig. 4. The concept of crack growth criterion based on the introduction of characteristic
microscopic length lm. The coordinate frame corresponds to that of Fig. 3a.

Bridges

Fig. 5. Bridges (local interruptions and overlapping) observed on the fracture trace [10].

5 Conclusions

Laboratory experiments on hydraulic fracture are often used to investigate fracking in
the field. It is conventionally accepted that the major distinction between the laboratory
experiments and the field situation is the scale difference, which is to be addressed by
upscaling. This paper demonstrates that there exists another important difference—the
presence of the sample free surfaces in the laboratory tests, which are not normally
present in the field. (The faults or joints do not represent free surfaces as their faces are
in contact due to in situ compressive stresses.)
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Interaction between the growing fracture and the free surfaces oriented parallel to
the fracture turns initially stable fracture growth into unstable well before the fracturing
fluid is able to fill the fracture and thus ensures the continuation of fracture growth. This
leads to the sharp drop of the pressure not observed in the field.

The analysis also shows that fractures in mortar samples grow by breaking micro-
scopic elements at the cement grain scale. This produces patchy fracturing leading to
local overlapping and formation of distributed bridges [8–10].
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through projects DP190103260 and LE17170100079.
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Abstract. Fractures in geomaterials do not grow as a continuous surface as they
are affected by local interruptions and overlapping. These form bridges which
being distributed all over the fracture constrict its opening. The effect of the dis-
tributed bridges is modelled by an equivalent Winkler layer whose stiffness rep-
resents the total bridge stiffness per unit area of the fracture. The paper develops
approximate expressions for the stress intensity factors and volume (area in 2D)
of fracture opening under uniform tensile load based on interpolating between the
asymptotics of small and large fractures. A case of growth of a fracture with con-
stricted opening under displacement-control loading is analysed. The presented
results can be important in modelling of fracture propagation in heterogenous
materials.

Keywords: Cracks · Bridges · Winkler layer · Interpolation between
asymptotics · Displacement-control loading

1 Introduction

Tensile fractures growing in geomaterials (e.g., hydraulic fractures) are usually depic-
tured as forming a continuous surface, however in reality they are affected by local
interruptions and overlapping [1–4] distributed all over the fracture surface, Fig. 1a.
These work as bridges connecting the opposite faces of the fracture, Fig. 1b and hence
restrict their opening, which is reflected in the term Fractures with constricted opening
[5, 6].

The interruptions and overlappings, Fig. 1c, are observed in 2D images (surface
or cross-sections) of extensively propagating fractures [5–7]. These features are short
compared to the fracture length (or length of the fracture trace) and distributed all over
the fracture, rather than just in the process zone. In real 3D situations the interruptions
and overlappings should also be local, i.e., have all dimensions small compared to the
fracture dimensions, Fig. 2. (Local fracture surface interruptions can also be seen in
observations [8].) Therefore, these features do not interrupt the fracture path (as one
could conclude from 2D pictures) but form bridges locally connecting the opposite
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surfaces of the fracture, Fig. 2. Each bridge works as a small pillar or beam (in the case
of overlapping) exserting a force F resisting the fracture opening at the bridge location.
The bridge can be characterised by stiffness S0 (in N/m) relating force F and fracture
opening �u at the bridge location: F = S0�u. . Apparently, the action of bridges that
leads to a very complex fracture width (rather than the surface roughness as assumed in
[9]).

In order to simplify the modelling, we concentrate on the average effect of bridges.
The combined effect of the multitude of distributed (and randomly located) bridges can
be modelled on average by relating the total bridge force per unit area of the fracture
surface and the average fracture opening. This leads to representing the bridges as a
Winkler layer with effective stiffness k (in Pa/m) connecting the average stress and
opening:

σ = k�u, k = N 〈S0〉 (1)

where N is the number of bridges per unit area of fracture surface, 〈S0〉 is the average
bridge stiffness.

Therefore a fracture with (randomly) distributed bridges can be modelled as a crack
with Winkler layer between the opposite surfaces (or crack with linear links) [5, 8–13].

Fig. 1. Bridges observed on the surface or cross-sections: (a) observations in one of our tests
[5–7]; (b) the effect of bridges on the fracture opening; 2R is the crack length; (c) mechanism of
overlapping.

Section A

Section B

Bridge

3D 
configuration

Fig. 2. Formation of bridges in 3D.

Numerical solutions for elastic isotropic problem of a crack withWinkler layer were
proposed in [8, 9] (in 3D) and [10, 11] (in 2D). Analytical solutions exist for very large
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cracks whose dimensions exceed a characteristic length (constriction length) introduced
in [5–8]:

λ = E

1 − ν2
k−1 ≈ E/k (2)

Here E, ν are the Young’s modulus and Poisson’s ratio of the surrounding (isotropic)
material. Two asymptotics are known for the case of uniform load: large cracks, when
the crack size R � λ and small cracks, R � λ. The later are just conventional cracks
without surface interaction.

In this paper we develop approximate expressions for the Mode I stress intensity
factor and the volume (area in 2D) of crack opening under uniform tensile load based
on interpolation between the asymptotics of small and large cracks. Using these approx-
imations, the growth of fractures with constricted opening (cracks with Winkler layer)
under displacement-controlled loading is analysed.

2 Crack withWinkler Layer Under Uniform Tension. Approximate
Expressions for KI and Volume (Area) of Opening

Here we present the known asymptotics of large and small cracks, then develop inter-
polating formulas and compare them with numerical solutions found in the literature.
We assume that the crack is loaded by uniform tensile stress p. We consider a disc-like
crack and a 2D straight crack.

2.1 3D Case: A Disc-Like Crack

In the asymptotics of cracks of large radius R � λ the main asymptotic terms (in the
limiting transition R/λ → ∞) for Mode I stress intensity factor KI and the volume of
crack opening V have the following form [10]

KI = p
√

λ, V = 2π
1 − ν2

E
λR2p (3)

Here p is the uniform tensile stress applied to the crack. On the other hand, in the
asymptotics of cracks of small radius R � λ the main asymptotic terms (in the limiting
transition R/λ → 0) for Mode I stress intensity factor KI and the volume of crack
opening V have the corresponding expressions for the conventional disc-like crack, e.g.
[14]:

KI = 2p
√
R/π, V = 16

3

1 − ν2

E
R3p (4)

We propose the following interpolating formulae for finite radii: 0 < R/λ < ∞

KI = 2p
√
R/π

1 + 2
√
R/πλ

, V = π
1 − ν2

E

λR2

1 + 3π
16

λ
R

p (5)
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It can readily be seen that when R � λ Eqs. (5) have Eqs. (3) as the main asymptotic
terms and when R � λ Eqs. (5) have Eqs. (4) as the main asymptotic terms.

Figure 3 shows comparison of interpolating formulae (5) with numerical solutions
[10] obtained by solving the corresponding integral equations by approximating the
unknown function with a finite linear combination of an orthonormal basis. It is seen
that the accuracy of the interpolations is quite high, which justifies the use of Eq. (5)
as the main tool for investigating propagation of disc-like fractures with constricted
opening. It is also seen that the asymptotic formula KI = p

√
λ starts working only at

very large crack radii.

Fig. 3. Comparison of interpolating formulae (5) with numerical solution [10]: (a) stress intensity
factor; the horizontal line refers to asymptotics KI = p

√
λ; (b) volume of fracture opening.

2.2 2D Cracks

Now we consider the 2D crack model, a straight crack of length 2R, Fig. 1b. In the
asymptotics of cracks of large length, R � λ the main asymptotic terms (in the limiting
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transition R/λ → ∞) for Mode I stress intensity factor KI and the area of crack opening
A have the following form [12]

KI = p
√

λ,A = 2R�u∞ = 4

E′ λRp (6)

where �u∞ = 2pλ/E′ is the limiting crack opening displacement at R/λ → ∞ [8] and
E′ = E for plane stress and E′ = E/

(
1 − ν2

)
for plane strain.

In the asymptotics of cracks of small length R � λ the main asymptotic terms (in
the limiting transition R/λ → 0) for Mode I stress intensity factor KI and the area of
crack opening A have the corresponding expressions for the 2D crack, e.g. [14]:

KI = p
√

πR, A = 2π

E′ R
2p (7)

We developed the following interpolating formulae for finite lengths: 0 < R/λ < ∞

KI = p
√

πR

1 + √
πR/λ

, A = 4πp

E′
R2

2 + πR
λ

(8)

Figure 4 shows comparison of interpolating formula for the stress intensity factor
(8) with numerical solution [12]. It is seen that the accuracy of the interpolations is not
as high as in 3D, especially in the interval 0.1 < R/λ < 5. More work is required to
understand the underlying reasons for the reduction in accuracy.

Fig. 4. Comparison of interpolating formulae (8) for the stress intensity factor with numerical
solution [12].

3 Disc-Like Crack Under Displacement-Controlled Loading

So far the crack characteristics were considered under stress-controlled loading. In this
case we can see that as the crack increases its size the stress intensity factor increases. It
means that if some stress magnitude p satisfies the condition of crack growth, KI = KIc,
where KIc = const is the material fracture toughness (e.g. [14]), the crack growth will
never stop. This is the case of unstable crack growth.A different situation can occur under
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the displacement-controlled loading since the crack growth increases the compliance of
the body with the crack such that the crack growth can lead to stress decrease thus
affecting the crack growth. In order to analyse this situation, we consider a sample of
height H and square base LxL with a disc-like crack parallel to the base, Fig. 5a. We fix
the lower end of the sample and apply displacement u0 to its upper end.

The average stress reduction under displacement-controlled loading due to the pres-
ence of the crack can be estimated taking into account the fact that under stress p the
average displacement will consist of displacement of the upper end of the sample with-
out the crack plus the crack opening volume per unit volume of the sample. Therefore,
taking into account the second equation of (5) and neglecting, for the sake of simplicity,
the crack interaction with the sample boundaries one obtains:

u0 = H

E

[

1 + π
1 − ν2

HL2
λR2

1 + 3π
16

λ
R

]

p (9)

From here stress p can be expressed through u0

p = u0
E

H

[

1 + π
1 − ν2

HL2
λR2

1 + 3π
16

λ
R

]−1

(10)

And finally, using the first Eq. (5)

KI = 2u0
E

H

√
R/π

1 + 2
√
R/πλ

[

1 + π
1 − ν2

HL2
λR2

1 + 3π
16

λ
R

]−1

(11)

Figure 5b-d show dependence of the normalised stress intensity factor of the nor-
malized crack radius for different normalised sample heights and different constriction
lengths. It is seen that for very short sample, H = 0.1L, Fig. 5b, the displacement-
controlled loading has the highest manifestation: the stress intensity factor increases
only up to certain crack radii and then it starts decreasing. This means that the unstable
crack growth is limited, turning into the situation when the load (displacement) needs
to be increased in order to continue crack growth (stable crack growth). A similar type
of behavior corresponds to the case of cubic sample, H = L, Fig. 5c, albeit the stress
intensity factor decrease is not that strong as in the first case. Opposite to this, for very
tall sample, H = 10L, Fig. 5d the stress intensity factor only increases, indicating that
this case is close to the stress-controlled loading. It should be emphasised that the crack
interaction with the sample surfaces could alter the pictures presented in Fig. 5b-d.

4 Conclusions

Rock heterogeneity, non-uniform breakage of microscopic elements of the geomaterial
as well as microscopic non-uniformity in the stress field lead to local deviations from
planar fracture growth. This produces patchy fracturing leading to local overlapping
and formation of bridges distributed all over the fracture (rather than just in the process
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Fig. 5. Displacement-controlled loading: (a) sample with a disc-like crack tensioned by dis-
placement u0; (b) sample height H = 0.1L; (b) sample height H = L; (b) sample height H =
10L.

zone). Distributed bridges constrict the fracture opening and reduce the Mode I stress
intensity factor.

The effect of bridges can be modelled on average by introducing effective bridge
layer stiffness which relates applied stress and average crack opening. Since the effec-
tive stiffness has units of Pa/m, the Young’s modulus divided by the stiffness gives a
characteristic length which we call the constriction length. The effect of bridges is only
important when the fracture size is comparable with or greater than the constriction
length; in smaller fractures the effect of distributed bridges can be neglected.

Fracture with bridges can be modelled as a crack with Winkler layer whose stiffness
is equal to the effective bridge stiffness. Analytical solutions for Mode I stress intensity
factor and volume of fracture opening can only be found in asymptotics of either very
large crack or very small (and hence conventional) crack. Interpolating formulae for the
stress intensity factor and crack opening volume have been developed that give good
accuracy when compared with numerical solutions.

In stress-controlled loading the fracture propagation is always unstable. In
displacement-controlled loading the fracture initially grows unstably and then turns
to stable growth. The constriction (bridges) shifts the transition towards larger cracks
and increases the displacement needed for the transition.
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The presented results are important in analysing the results of observation of
hydraulic fracture growth. Furthermore, after extending these results to Mode II and
III stress intensity factor it will make it possible to treat asperities as bridges in shear
fractures.

Acknowledgements. AVD and EP acknowledge the support of the Australian Research Council
through project DP190103260.
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Abstract. This paper presents the desiccation failure process of geomaterials
under controlled environmental conditions. The experimentmaterial, granite pow-
der silt, was tested in a controlled atmospheric chamber that ensures tempera-
ture consistency and provides humidity control. A polytetrafluoroethylene (PTFE)
mold was used in the setup stages to make sure the samples have the same dimen-
sions. The shrinkage of the silt slabs was subject to different sets of frictional
constraints, including a flat PTFE plate, a plate with a 45-degree constraint, and a
plate with a 90-degree constraint, to analyze the influence of boundary conditions
on the air-entry desiccation cracks. The humidity was kept constant during each
experiment and different humidities were applied in the series of experiments to
find the role of the evaporation rates (ER) on desiccation cracking. Data including
the cracks onsets, crack morphology, mass changes, and the atmospheric condi-
tions during the drying process were recorded and collected while the patterns
of cracks, crack onsets with different bottom boundary conditions, and different
evaporation rates were calculated and discussed.

Keywords: Desiccation · Evaporation · Boundary conditions

1 Introduction

Desiccation is one of the premier problems in geomechanics engineering. The initiation
and propagation of cracks may cause catastrophic damage including failure in structural
foundations or leakages of pollutants, such as those in nuclear waste disposal [1–3].

Previous researchers have shown that natural environmental conditions (humidity,
temperature, and the wet-dry cycles) have impacts on the desiccation of geomaterials,
with shrinkage due to dehydration believed to be the main factor leading to crack for-
mation. Tang indicated that cracks initiate faster when temperatures increase, which
is believed to be tied to an increase in the evaporation rate [4, 5]. A time decrease in
the initiation cracks with respect to increasing relative humidity is found by previous
researchers [6–9].

On the other hand, the boundary conditions that physically constrain the geomaterial
can contribute to failure as well [10, 11]. Corte proposed the constraints on shrinkage
that causes the tensile stress to exceed the soil strength is an important parameter of the
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proliferation of desiccation cracks [12]. Several types of bottom boundary conditions
have been used and analyzed. Peron has compared desiccation processes of PTFE plates
with 90-degree constraints and pointed out that the time of onset of cracking is quite sim-
ilar to the time of the sample reaching its shrinkage limit [10]. Zeng and Lakshmikantha
showed that cracks can initiate from both the top and bottom surfaces of soil as well as
within the soil, and concluded that the cause of top surface cracks is desiccation while
the bottom cracks are generated by sample curling or syneresis [2, 13].

The shape and dimension also contribute to the geometry and initialization of des-
iccation cracks [14, 15]. The experimental results from Prat prove a larger surface area
leads to a lower crack stress threshold while Lakshmikantha discusses a negative rela-
tion between samples thickness and stress threshold [13, 16]. For the controlled shape
and dimension samples, though the stress threshold for desiccation failure is fixed, the
onsets of cracks with different basal constraints under constant atmosphere conditions
are various motivated by these pioneering works and acknowledging the discussion of
the separate influence of atmospheric conditions and soil basal conditions, further explo-
ration needs to be done to examine the combined influence on cracks from these factors.
Based on the morphology, mass changes, and onset data, the relation between evapora-
tion rate and relative humidity is determined and the crack initiation process on various
constraints is discussed.

2 Experiment Methodology

The geomaterial used in these experiments is granite silt powder, with physical properties
listed in Table 1. The granite silt powder was mixed with distilled water and fully
stirred with a spatula into a paste. The container was struck on the table several times to
remove the trapped air in the paste and left undistributed for 30 min to get a relatively
homogeneous water content inside the mixture paste.

Table 1. Physical properties of soil material used in these experiments.

Characteristic Specific
gravity

Liquid
limit (%)

Plastic
limit (%)

Young’s
modulus
(Mpa)

Shear
modulus
(Mpa)

Poisson’s
ratio

Values 2.89 25.02 17.15 8.60 3.30 0.286

A mold (with inner dimensions of length 150 mm, width 50 mm, and height 14 mm)
was used to shape the samples in the setup. The inside of the mold was covered by PTFE
strips and coated with lubricating oil, which helped to reduce the deformation due to
friction when removing the mold. The desired constraints were fixed with mold then
the mold was fulfilled with prepared material to form the fixed shape samples. After the
rectangular sample was prepared in the mold, black paint was sprayed on the sample
surface to increase the contrast for more accurate figures analysis results. Three different
basal constraint platforms, the flat PTFE covering with a thin film of lubricating oil, the
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Fig. 1. The PTFE mold and three different constraint platforms. The upper left orange-green
platform is the 45-degree constraint; the bottom left white platform is the 90-degree constraint
with cables connecting to a force sensor; the middle white platform is the flat PTFE constraint;
the right workpiece is the PTFE mold.

90-degree angular constraint platform, and the 45-degree angular constraint platform
was used in these test (Fig. 1).

The temperature conditions in the experiment were set to 25 ± 2 °C. The initial
moisture content of the sample was measured via the RAD WAG MA 50/1.R moisture
analyzer while the temperature was set to 120 °C during the measurement. The initial
moisture content of the silt samples tested in the experiments was 25 ± 1% except for
two groups. A precision mass balance, Adventurer Pro AV812C, with a readability of
0.01 g, was installed beneath the platform during the experiment after Exp.18a to record
samplemass changes, which correlates with water loss, every 10s during the dehydration
periods. Two Canon EOS 4000D cameras were fixed on the aluminum framework in the
atmospheric chamber to capture the surface photos to analyze the cracks’ appearance
and shrinkage at 30 or 60 s intervals.

As shown in Fig. 2, four temperature and humidity sensors were installed in the
chamber to record the environmental atmospheric conditions and help the humidifier to
maintain a constant relative humidity (RH). The values of three sensors, except sensor
A located next to the sample, were shown on the panel and the average relative humidity
values are compared with the expected values. When a low expected humidity was set
on the panel, the fans located at the silica gel and the entrance of the tube activate
if the atmospheric humidity in the chamber was higher than the desired value, thus
lowering the relative humidity. When a higher humidity was required, the humidifier
in the water tank activated in conjunction with the fans at the water tank and entrance
of the tube. The left sensor A, which was next to the sample, monitors and records
the atmospheric temperature and relative humidity through an Arduino board. One force
sensor was installed beneath the platform tomeasure the total stress variations during the
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desiccation process. Though the numerical results from the stress sensor were subject to
bias due to the friction between the platform and framework, the stress peaks that appear
at failure are reliable as a qualitative measure to determine the onset start time.

Fig. 2. The atmospheric chamber with humidity controllers; the left sample lies on the PTFE
plate and the right sample lies on the platform with constraints; the panel is used to control and
monitor the humidity based on three sensors minus the one next to the sample.

3 Results

3.1 Morphology

The details of the experiment, including experiment ID, initial moisture content, and
temperature, are shown in the appendix. The top surface of the samples was captured
and the patterns of the first (second or third) cracks were recorded. Figure 3(a) and (b)
are the initial and final stages in test 25b, which ran for 1180 min. The vertical strain
(along the shorter edge on the top surface) was 6% while the horizontal strain (along the
longer edge on the top surface) was 3%. Though the samples were free to shrink on the
platform, strain deviations along samples thickness are easily observed, which results in
the sample shape changing from rectangle to trapezoid.

Figure 3(c) shows the curl at the corners which was another typical observation of
stress difference. As shown in Fig. 4, the stress, σxx, from the evaporation decreases along
the thickness while the σxz comes from the evaporation on the side edge is balanced to
each other. Based on the left corner, the torque can be easily calculated and forces the
left part of the sample to rotate clockwise and causes the curl at the corner. For the
right part of the sample, an inverse direction of torque can be found. The consequence
of the curling is that the gravity will provide additional shear stress that will cause a
shear failure, which is beyond the research interest in this experimental study. Previous
researchers choose to increase the ratio of length over width or choose a circular mold
to reduce the influence of side edges in the experiment or simulation [10].
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Fig. 3. Typical shape changes under various constraints. (a) The initial stage of test 25b; (b) The
final stage of test 25b, 1180min after starting; (c) The curl at the bottom corner; (d) The initial stage
of test 31a; (e) The final stage of test 31a which, 1132 min after starting; (f) The discontinuous
cracks in test 34a caused by an air bubble on the sample side; (g) The initial stage of test 23a;
(h) The final stage of test 23a, 748 min after starting; (i) The dimension of curves on the basal
constraints.

The number of cracks observed from photos at the end of the desiccation experiment
varied from 0 to 3. The PTFE support tests had zero instances of cracks over all experi-
ments, which accounted for all instances of no cracks. Meanwhile, cracks consistently
appeared for tests with 90 and 45-degree constraints. Figure 3(d), and (e) are the initial
and final stages of test 31a with the 90-degree constraint. Two cracks are easily recog-
nized on the top surface parallel with the shorter edge of the sample (vertical to the main
axis). Figure 3(g), (h) come from test 23a with the 45-degree constraint, with the sample
cracking evenly into two parts. The cracks in all tests have the same directionality of
being parallel to the short edge and symmetrically distributed on the silt sample surface.

3.2 Moisture Content Changes

There are three (some researchers combine the second and third stages) typical evapo-
ration rate stages in the desiccation process: a constant rate of evaporation in the first
stage, the evaporation rate decreases in the second stage, and the rate approximately
equal to zero, and remaining water content is the residual water content in the sample
in the third stage [6, 17, 18]. As the interest in this paper is in the onset of the initiation
of the first cracks, the experiments stopped in the second stage and remained far away
from the residual water stage.

The initial moisture contents were measured by the moisture analyzer and the fol-
lowing moisture content values were calculated based on the recorded mass following
Eq. 1

MC = Mt −Ms

Mt
(1)
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Fig. 4. A sketch of curling at the corner in Exp 25b.

whereMt is the total mass of samples recorded by the balance andMs is the mass of soil
calculated from the initial total mass and initial moisture content.

Figure 5 presents the moisture content changes under different RH settings with both
kinds of constraints. Most of the moisture content rate of change decreased when the
relative humidity increased as the evaporation process is driven by the water content gra-
dient. However, the result from test 20a showed a higher evaporation velocity compared
with test 28a which has lower relative humidity (50%). This abnormal case was caused
by a 4 °C temperature difference between these two test groups.

The mass change in test 33a shown in Fig. 5(a) clearly shows two stages and the
evolution from a constant velocity stage to a slower velocity stage. The evaporation
rate with different constraints is the same once they are under the same environmental
conditions.

3.3 Crack Onsets

The crack initiation is restored with the help of the stress sensor at the bottom of the
platform. The propagation dynamics is beyond the research interest in this paper, but the
stress plots showa sharp reboundduring the fracture process caused by the invasion of gas
as the sample reaches its crack onset threshold [19]. The stress in Fig. 6 is normalized by
dividing the max absolute stress values in the process while the negative values represent
the compression in the shrinkage stage. The normalized stress sharply increases at 655
min, which indicates a failure in the sample.

Figure 6 shows the relation between the relative humidity and the first crack appear-
ance time while the upper subfigure represents the stress in the mid of the sample. The
negative value means the compression and the total stress exist an increment till the air
entry appears. At the air entry point, the suction experienced a sharp decrement, which
is known as the Haines jump, which is treated as the onset of cracks. The first crack time
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Fig. 5. Moisture contents changes, calculated as the difference between initial moisture content
and the moisture content during the test. (a) Evaporation with the 90-degree constraint; (b) Evap-
oration with the 45-degree constraints; The noise present in test 21a is caused by an apparatus
malfunction, but the moisture content rate of change has the same slope before and after the
malfunction.

in test 23a (45-degree constraint, humidity of 33%) and test 33a (90-degree constraint,
humidity of 35%) was 39300s and 40700s. The first crack time in test 28a (45-degree
constraint, humidity of 50%) and test 34a (90-degree constraint, humidity of 50%) was
44910s and 42200s. The onsets of different constraints show up at nearly the same time
in the low humidity conditions. Test 21a (45-degree constraint, humidity of 75%) had its
first crack at 69780s while test 26a (90-degree constraint, humidity of 76%) had its first
crack at 76920s. The time difference increases when the humidity becomes higher and
the 90-degree constraint tests tended to have earlier times of failure than the 45-degree
constraint tests.

4 Conclusions

This paper discusses laboratory experiments in an atmosphere chamber with variable
RH on geomaterials subject to various basal constraints. These results were proceeded
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Fig. 6. Crack onsets; The upper figure is the normalized stress change with time in test 23a, a
stress rebound appearing at 655 min was the sign of crack onset; The lower figure is the crack
onset data and tendency lines with different humidity and constraints.

to analyze the influence of environmental conditions on material desiccation, with the
main findings summarized as follows:

1. The pattern of cracks was different between the PTFE flat plate and constraint plat-
forms. No crackswere found in the PTFE experimentswhile cracks that were parallel
to the short edge appeared when there were basal constraints.

2. The curling at the corner is a result of the torque caused by the stress from different
moisture content distributions inside the sample. This curling can cause shear stress
that will also influence sample failure.

3. The cracks initiate in the constant evaporation rate stages when most of the free
water evaporates and air entry happens. In this stage, the total compression increases
till the air entry which causes suction decrement.

4. The onsets increase when RH increases and were relatively the same with different
basal constraints at lowRH,where themoisture content gradientwas the predominant
contributor towards failure. At high RH, cracks in the 90-degree group appeared
earlier than that in the 45-degree group, which is the influence of the basal strain
constraints.
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Appendix

See Table 2.

Table 2. Desiccation test summary

Exp ID Initial
moisture
content (%)

Relative
humidity (%)

Temperature
(°C)

Initial
porosity (%)

Photos
interval (s)

Constraints

15* 25.9 94 24 — 60 90-degree
constraint

16*,* 26.5 70 24 — 60 90-degree
constraint

17* 25.8 55 24 — 60 90-degree
constraint

18* 26 40 25 — 60 90-degree
constraint

19a 25.4 93 25 57.4746 60 45-degree
constraint

19b 25.4 93 25 57.4746 60 PTFE with
lubricant

20a 25.1 65 27 57.0125 60 45-degree
constraint

20b 25.1 65 27 57.0125 60 PTFE with
lubricant

21a 26.2 75 27 59.5201 60 45-degree
constraint

21b 26.2 75 27 59.5201 60 PTFE with
lubricant

23a 25.1 33 26 55.1577 60 45-degree
constraint

23b 25.1 33 26 55.1577 60 PTFE with
lubricant

24a 25.5 35 24 53.6896 60 90-degree
constraint

24b 25.5 35 24 53.6896 60 PTFE with
lubricant

25a 24.8 60 25 53.7324 60 90-degree
constraint

25b 24.8 60 25 53.7324 60 PTFE with
lubricant

26a 25 76 24 53.9641 60 90-degree
constraint

(continued)
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Table 2. (continued)

Exp ID Initial
moisture
content (%)

Relative
humidity (%)

Temperature
(°C)

Initial
porosity (%)

Photos
interval (s)

Constraints

26b 25 76 24 53.9641 60 PTFE with
lubricant

28a 25.9 50 23 56.5372 30 45-degree
constraint

28b 25.9 50 23 56.5372 30 PTFE with
lubricant

29a 25.7 55 24 55.9573 30 45-degree
constraint

29b 25.7 55 24 55.9573 30 PTFE with
lubricant

31a 24.7 45 24 52.865 60 90-degree
constraint

31b 24.7 45 24 52.865 60 PTFE with
lubricant

32a** 23.5 90 24 51.6679 60 90-degree
constraint

32b** 23.5 90 24 51.6679 60 PTFE with
lubricant

33a 25.7 35 26 53.8115 60 90-degree
constraint

33b 25.7 35 26 53.8115 60 PTFE with
lubricant

34a 24.6 50 24 50.9749 60 90-degree
constraint

34b 24.6 50 24 50.9749 60 PTFE with
lubricant

*The sensitive balance was not installed in these tests.
**The initial moisture contents are beyond the expected range but results are used and discussed.
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Abstract. Shallow-lying faults that propagate and rupture at the surface during
earthquakes cause significant deformation and damage, putting nearby structures
and utilities at risk. Modeling fault propagation and the associated large deforma-
tions is tractable for continuum meshfree numerical methods, such as Smoothed
Particle Hydrodynamics (SPH), as they avoid mesh entanglement or distortion
seen for example in the Finite Element Method. SPH is particularly advantageous
since strain localization and kinematic discontinuities, which are two fundamental
attributes of faulting, arise naturally without the need for additional enhancements
or formulations. Some of our previous work used SPH to show that both normal
and reverse faults rotate with increasing slip, passing from Roscoe to Arthur to
Coulomb orientations as they propagate. Our results suggest that these three ori-
entations may be stages in the fault development process, helping to explain the
varying fault orientations observed in field outcrops. Here, we summarize and
expand upon these results, considering how soil inhomogeneity influences fault
orientation and propagation path, as well as the width of the fault damage zone.

Keywords: Fault rupture · Layered geomaterials · Smoothed particle
hydrodynamics

1 Introduction

The rupture of shallow normal or reverse faults below the surface (blind faults), results
in the propagation of a band of localized strain upwards towards the surface, forming
a scarp. Often these blind faults lie within strong and rigid bedrock, with soil, loose
sands, or alluvium above. A mechanically similar albeit larger scale problem is that of
faulting in rigid basement rock overlain by sedimentary cover, where slip in the basement
rock fault causes propagation of localized strain into the sedimentary cover, as well as
associated fault-propagation folding. These localized bands of strain, or shear bands,
can be considered faults whenever they are accompanied by a kinematic discontinuity
or when lateral slip accumulates between two previously continuous layers across the
band.
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An essential question regarding strain localization is that of the orientation or angle
taken by shear bands or faults as they nucleate and propagate in geomaterials. The work
of Coulomb defined the fault orientation with respect to the maximum principal stress
σ1 as,

�C = 45◦ ± (ϕ/2) (1)

where ϕ is the internal angle of friction, such that the Coulomb failure criterion is
satisfied on a fault of that orientation. Widely applied to the interpretation of faulting
and regional tectonics through Andersonian faulting theory, much controversy persists
by the fact that faults found in nature are often not oriented at the Coulomb angle, and
insteadmay lie closer to either the Roscoe angle�R = 45◦±(ψ/2), definedwith respect
to themaximumprincipal incremental strain, or theArthur angle�A = 45◦±(ϕ + ψ)/4,
where ψ is the dilatancy angle.

While considerable computational and experimental studies have been performed
regarding shear band orientations under relatively simple boundary conditions (for exam-
ple, under plane-strain compression), only recently has the orientation of shear bands
in geomaterials under more complex boundary conditions, such as in reverse or normal
fault propagation through geomaterials, been considered [1–3]. Despite its importance
in helping predict the fault scarp location and the full extension of the surface damage
zone, the temporal evolution of the fault or shear band rupture orientation at the surface,
including after the initial surface rupture, has been mostly overlooked. Furthermore,
empirical failure surfaces, such as those using logarithmic spirals, have been proposed
for a fixed amount of fault slip or offset, usually that required for the initial surface
rupture, and use the orientation angle observed at the initial surface rupture. Conse-
quently, the accuracy of these empirical failure surfaces rapidly deteriorates with greater
accumulated slip or offset on the blind fault.

In our previous work [1] using numerical simulations of perfectly plastic soil, we
showed that shear bands undergo a rotation from Roscoe to Arthur to Coulomb angles
in both normal and reverse fault systems, as slip is accumulated on the fault in the
bedrock. These results suggest that the shear band rotation is not merely a product of
strain softening behavior, but at least in part a result of the boundary conditions and
problem geometry. In addition, most previous studies have focused on discerning and
modeling fault propagation and rupture in homogenous single layered soil or rock, which
is not representative of field conditions, where faults cut across heterogenous and layered
geomaterials. We seek to remedy this shortcoming by considering models of stratified
soils consisting of layers of loose sand (S) or “soft rock” (RC,meaning rock) a laboratory
analogue corresponding to a weak sandstone rock, as proposed by Hung et al. [2]. In
particular, we analyze the temporal evolution of shear band orientations in these single
and multi-layered geomaterial assemblages that may be perfectly plastic or that undergo
strain-softening behavior.

2 Smoothed Particle Hydrodynamics and Computational Methods

This study and our previousworkmake use of Smoothed ParticleHydrodynamics (SPH),
a meshfree continuum method, to conduct numerical simulations of fault propagation
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and rupture simulations. SPH solves the strong form of the mechanical boundary value
problem, and the continuum domain is discretized into a collection of so-called domain
particles possessing continuum properties, which are found for a specific particle using
a convolution integral over a given integration domain with a smoothing or weighting
function. The size of this integration domain is specified by the smoothing length, which
is a numerical characteristic length scale leading SPH to have non-local properties if it
is maintained fixed as the discretization changes [1, 4]. Dirichlet boundary conditions
are imposed using the formulation of Adami et al. [5], where solid boundaries are
discretized into so-called boundary particles which are either fixed or moved with a
prescribed velocity and possess constant properties except for stress which is evolved.
These boundary particles help avoid penetration of the boundaries by domain particles.
SPH is well suited for simulating slope failure [6, 7] and the propagation of faults in soil
[1, 8], due to its meshfree nature and because strain localization arises naturally without
the need for additional theory or enhancements to the method. Our previous work [1,
8] has shown that SPH can replicate the geometry and kinematics of analogue sandbox
or centrifuge experiments while easily providing strain, strain rate, and stress field data,
which may be otherwise difficult to obtain in analogue experiments.

In our SPH simulations, the loose sand and soft rock are modeled as elastoplastic
materials with a non-associative flow rule on the Drucker-Prager yield criterion. To pre-
serve objectivity under large deformations, an objective stress rate, namely, the Jaumann
rate is used [9]. An isotropic strain softening response where the internal friction angle
and the dilatancy angle are degraded from a peak to a residual value as a function of
the octahedral plastic strain, is employed following the method of Anastasopoulos et al.
[10], for some of our simulations.

3 Numerical Simulations and Discussion

In total, four different simulations of reverse fault propagation are carried out. All four
simulations are conducted in a 50-m-wide (L) and 8-m-high (H) computational domain
discretized into 24,000 domain particles surrounded by walls discretized into boundary
particles. In all four simulations, a velocity is imparted on one side of the boundary
(along the hanging wall side) and is pushed at a rate V, along an angle θ = 60°, which
corresponds to the inclination of the reverse fault in the bedrock, to simulate slippage
along this fault. All other boundaries are held fixed. The pushing rate V was 0.2 m/min,
rendering equivalent strain rates far below the 0.1 s−1 threshold above which SPH
is known to exhibit rate-dependent behavior. The pushing is applied until the vertical
displacement of the hanging side U (or fault throw) reached 68% of the total height H of
the model (U/H = 68%). A schematic of the simulation setup and boundary conditions
is presented in Fig. 1.

In the first simulation, the entire computational domain consisted of perfectly plastic
sand (RC0S10), the second simulation consisted of sand showing isotropic strain soften-
ing (RC0S10s), the third simulation consisted of a bottom half of soft rock and a top half
of sand, with both materials experiencing isotropic strain softening (RC5S5s), and the
fourth divided the domain into a bottom 70% soft rock and upper 30% sand (RC7S3s)
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Fig. 1. Boundary value problem setup for the fault propagation simulations, showing the relevant
boundary conditions and dimensions. The boundaries are discretized into boundary particles, and
the pushing velocity V is applied to the boundary particles along the hanging wall. An example
resultant fault is traced in red. The direction of the maximum principal stress σ1 shown in green
is roughly horizontal throughout the top of the foot wall and near the fault scarp. The orientation
of the fault tip at the point of surface rupture � is measured with respect to the horizontal in this
case. The fault slip d equals U/ sin θ .

again with both materials exhibiting strain softening. The values for the material param-
eters used in the simulations, which are given in Table 1, are taken from the sands and
soft rock mixture used in the centrifuge experiments of Hung et al. [2].

Table 1. Simulation parameter values.Key:ρ =material density, c= cohesion,ϕp, ψp =ultimate

mobilized (peak) friction and dilatancy angles, ϕres, ψres = residual friction and dilatancy angles,

E = Young’s modulus, ν = Poisson ratio, γ
p
f = plastic octahedral shear strain at the end of

softening. For the sand, γ p
f = 0.022, whereas for the soft rock, γ p

f = 0.013. See Anastasopoulos

et al. [10], for details regarding these parameters. In the RC0S10 simulation with perfectly plastic
behavior, ϕp and ψp were used as the friction and dilatancy angles, respectively.

Material ρ [g/cm3] c [kPa] ϕp [°] ϕres [°] ψp [°] ψres [°] E [MPa] ν

Loose sand (S) 1.59 0 37 34.7 12.8 0 20 0.3

Soft rock (RC) 1.57 143 43.6 39.8 37.6 11.4 218.9 0.3

In Fig. 2, colored material marker layers are plotted in the left column and contours
of the accumulated plastic strain are plotted in the right column for the four different sim-
ulations, RC0S10 (top row), RC0S10s (second row), RC5S5s (third row), and RC7S3s
(bottom row). The material marker layers have no mechanical significance and have the
purpose of highlighting folding and deformation. In all four simulations, a gently rolling
monocline is the main structural feature. The fault folding zone is delimited by a main
series of synthetic faults (red) and an antithetic shear band or fault (cyan). In general, all
shear bands propagate upwards, and most form from the tip of the fault in the bedrock,
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Fig. 2. Snapshots of colored marker layers (left) and accumulated plastic strain (right) at U/H
= 50% for the four different simulations (one in each row). In terms of the nomenclature used,
faults observed in the simulation are labeled as -F whereas shear bands as -SB both followed by a
corresponding number. For comparison, the theoretical Roscoe, Arthur, and Coulomb orientations
are plotted in the top row of the right column using the residual values of the friction and dilatancy
angles of the sand.

coalescingwith a small area of localization near the surface. Exceptions to this rule occur
whenever faults bifurcate, forming from a preexisting fault or band at some intermediate
height. In the RC5S5 simulation, the faults refract, locally steepening their orientation
as they cross from the stiff soft rock to the compliant sand. The inclination at the fault tip
in the sand layer then decreases with respect to the horizontal as propagation continues.
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Looking at the temporal evolution of the orientations of the different shear bands or
faultsmeasured at their upmost tip,wefind that they fully propagate to the top surface and
rupture at the Roscoe angle, only to rotate towards Arthur and then Coulomb inclinations
with increased fault throw. A rapid decrease in steepness is visible in most faults or shear
bands at their tip prior to surface rupture, which happens when the faults/bands are close
to the Roscoe orientation. Furthermore, the faults and bands proceed to rapidly leave
the Roscoe orientation and stabilize at the Arthur angle from around U/H = 10 to 45%
depending on the particular shear band or fault, spending a significant proportion of
the evolution process at or near the Arthur angle. This behavior is generally visible
regardless of the presence of layering or strain softening in the simulation.

The effect of strain softening on fault orientation as seen in simulation RC0S10s is
to slightly reduce the longevity of the stable region at the Arthur orientation. In addition,
the final orientation of 17° for fault RC0S10-F1s at U/H = 50% is reasonably close to
that measured from the centrifuge experiment of Hung et al. at 14° and is closer than
that measured from the RC0S10 simulation without strain softening, which is 22°, likely
due to the absence of the strain softening behavior in the latter.

In the RC5S5s and RC7S3s simulations, where layering is added, a rotation of the
shear bands and faults is again observed as they propagate in the sand layer but now
the greatest period of stability lies mostly around the Coulomb angle, with the Roscoe
and Arthur stages being transitory. Furthermore, the faults and shear bands within the
soft rock do not follow the typical Roscoe, Arthur, Coulomb rotation, achieving roughly
constant orientations at angles at or above the Roscoe prediction. At U/H = 50%, the
orientations of fault F2aS and F2bS are both 24° in the centrifuge experiments of Hung
et al., whereas in our SPH simulations they are 24 and 25.1° respectively, showing strong
agreement. More details, results, and analysis regarding the changing orientations of
faults and shear bands in our simulations will be reported in future work.

4 Conclusions

Simulations of reverse fault rupture are performed using SPH models of soft rock and
loose sand. Sand layering superimposed over soft rock, as opposed to a homogenous
sand medium, changes the number of faults generated as well as their orientation within
the simulation model significantly. Nevertheless, a rotation of fault and shear band ori-
entation measured at the upwards fault/band tip, from Roscoe to Arthur to Coulomb
inclinations, is omnipresent in all models, including sands modeled as perfectly-plastic,
suggesting this rotation is a feature of the boundary conditions, not of strain softening
behavior. Future work should consider the factors controlling shear band/fault refrac-
tion across different materials, as well as an in-depth exploration of principal stress and
strain increment directions within the SPH models, particularly in the vicinity of the
propagating faults.
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Abstract. In the assessment of rainfall induced landslide hazard, both the com-
prehension and the theoretical interpretation of the inception phase of unexpected
collapses are crucial. In this paper, the case of an infinite long slope is theoreti-
cally discussed by assuming the mechanical behaviour of the materials involved to
be strain softening elastic-viscoplastic. Rainfall is assumed to induce variations,
taking place with time, in the water table level and, consequently, in the effective
state of stress. Consequently, accelerations in both strains and displacements, due
to the temporal evolution of the perturbation, are not necessarily associated with
a system instability or vice versa decelerations are not the signature of a stable
system response. In this paper, from a theoretical point of view, the authors apply
the controllability theory conceived for a representative elementary volume to a
boundary value problem and demonstrate that (i) irreversible strains accumulate,
due to the structural hardening, even outside of the shear band, whose thickness is
a function of the imposed perturbation, (ii) local instability anticipates the global
one, (iii) once assigned the temporal evolution of the perturbation, its frequency
does not affect the system response.

Keywords: Progressive failure · Viscoplasticity · Slope stability

1 Introduction

In the scientific literature, the term “creeping landslides” is commonly used to define
slow-moving masses along slopes. In many cases, when slopes are not perturbed (i.e.
the slope is subject to constant external forces), an almost constant velocity is observed.
This is the typical case of masses sliding on predefined (and not spatially evolving)
failure surfaces in which the material reached the critical state (“post-failure events”).
In other cases (“pre-failure events”), displacements are associated with both progressive
accumulation of damage in the material (material softening) along the failure surface
and spatial propagation of this latter (structural hardening). In case the system is not per-
turbed, when structural hardening prevails, the slope progressively decelerates (primary
creep), whereas when material softening prevails, a progressive increase in velocity (ter-
tiary creep) is expected. When these two phenomena are balanced, the system evolves at
constant rate (secondary creep), but, the microstructure evolves and after a sufficiently
long time, a transition toward an unstable response is expected.
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In practice slopes are never unperturbed systems and always subject to time-varying
perturbations (e.g. rainfall induced cyclic oscillations in water table level), inducing
slopes accelerations/decelerations, that do not have to be interpreted as signs of an
unstable/stable system response.

In this paper the authors intend to discuss the role of perturbations in affecting the
temporal evolution of displacements in an infinite long slope. To this aim, the theory of
controllability applied to elastic viscoplastic strain-softening constitutive relationships is
employed and discuss the spatial propagation and the temporal evolution of irreversible
strains. For the sake of simplicity, here in the following inertia effects, hydro-mechanical
coupling and the role of partial saturation are dis-regarded. The condition for the onset
of instability in unperturbed cases is firstly discussed, both at the representative element
(local) and at the slope (global) scale. Subsequently, a definition of instability, suitable
for cyclic perturbations characterized by constant amplitude and period, is introduced.

2 Onset of Instability in Elastic-Viscoplastic Materials

Elastic-viscoplastic constitutive laws cannot be written in an incremental form, implying
that standard approaches [1, 2] commonly adopted to study the stability of the material
mechanical response subject to a given type of control cannot be employed. For elastic-
viscoplastic materials, the onset of instability can be defined by employing the approach
proposed in [3], combining Lyapunov theory of stability [4] and controllability theory
[2]. According to this approach, under quasi-staticmixed stress-strain control conditions,
the constitutive relationship can be written as it follows:

Ẋ = AX + F, (1)

where X and Ẋ are the vectors containing the rate and acceleration of the response
variables (changing according to the test control), respectively,F is a forcing term related
with the controlled variables and their first- and second-time derivative, whereas matrix
A depends on both constitutive relationship functions and controlled variable rates (Y).

In case of “generalized creep tests” (i.e. when Y = Ẏ = 0), F = 0 and matrix A
depends only on constitutive relationship functions. For this reason, the eigenvalues of
A (λi(A)) can be employed to study the stability of the material response: instability,
defined in terms of the acceleration in the response variables, is obtained when at least
one eigenvalue of A becomes positive. For elastic-viscoplastic materials this condition
coincides [3] with:

HIN = H − Hχ < 0 (2)

where H and Hχ are the hardening and the controllability [5] modulus, respectively,
depending on the constitutive relationship and on the type of control imposed.

By assuming a linear isotropic elastic law, under simple shear conditions, represen-
tative for a single layer at depth z of a θ-inclined and h-thick infinite long slope (Fig. 1),
Y, X and Hχ are [6]:

Y =
[
σ̇ ′

n τ̇tn ε̇t = 0 ε̇y = 0
]T

(3)
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X =
[
ε̇n γ̇tn σ̇

′
t σ̇

′
y

]T
(4)

Hχ = − ∂f

∂σ
′
t

E

1 − ν2

∂g

∂σ
′
t

, (5)

where n and t are the axes normal and parallel to the bedrock (Fig. 1), y the out-of-plane
axis, f and g the yield function and the plastic potential, whereas E and ν the Young’s
modulus and the Poisson ratio, respectively.

Fig. 1. Layer of an infinite slope under simple shear conditions

3 Controllability Theory Applied to the Detection of Instability
in an Elastic-Viscoplastic Infinite Long Slope

In case hydro-mechanical coupling and dynamic effects are disregarded, the approach
for the single layer can easily be extended for the entire stratum. For the sake of brevity,
only the case of instability induced by the excursion of the water table level (hw, Fig. 1)
will be hereafter discussed.

To generalize the previously mentioned approach to the global system response, the
following integrated variables can be introduced:

Ẋg =
[
u̇n u̇t 
̇t 
̇y

]T =
[

h∫
0

ε̇ndz
h∫
0

γ̇tndz
h∫
0

σ̇ ′
tdz

h∫
0

σ̇ ′
ydz

]T

(6)

Even in this case, the stability can be studied when the system is unperturbed, i.e.
when ḣw = 0. Under this assumption, the local response variables can be put in relation
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with the global ones as it follows [7]:

Ẋg =

⎡
⎢⎢⎣

ün
üt

̈t


̈y

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h∫
0

(
A11ε̇n + A13σ̇

′
t )dz

h∫
0

(
A22γ̇tn + A23σ̇

′
t )dz

h∫
0
A33σ̇

′
t dz

h∫
0
A44σ̇

′
ydz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

being Aij the terms (depending on depth) of the local constitutive matrix of Eq. 1.
According to [7], Eq. 7 can conveniently be rewritten as:

Ẋg = (
Amax − �

)
Xg = AgX, (8)

where Amax
ij = max

{
Aij

}
in the whole spatial domain, whereas

� =

⎡
⎢⎢⎣

�11 0 �13 0
0 �22 �23 0
0 0 �33 0
0 0 0 �44

⎤
⎥⎥⎦. (9)

The definition of each term in Eq. 9, reported in [7], is hereafter omitted for the sake
of brevity. For the sake of clarity, the definition of the term related to shear strain rates
is given here below:

�22 =
∫ h
0

(
Amax
22 − A22)γ̇tndz∫ h

0 γ̇tndz
. (10)

Analogously to what is observed at the representative elementary volume scale,
global instability is expected when at least one eigenvalue of Ag becomes positive.
Since �ij are positive by definition (Eq. 10), condition λi(Ag) ≥ 0 (global instability)
is necessarily anticipated by condition λi(Amax) ≥ 0 (first local instability). In other
words, the first local instability is a precursory sign of the global one.

4 Numerical Results

The case of an infinite slope (θ = 30°, h= 5m) constituted of an isotropic strain softening
elastic visco-plastic material is hereafter considered. The material is assumed to be
characterized by dry and saturated unit weights equal to 16 and 20 kN/m3, respectively.
The elastic properties are assumed to be constant along depth. A Mohr-Coulomb yield
criterion is considered:

f =
√
4τ 2tn + (

σ
′
n − σ

′
t

)2 −
(
σ

′
n + σ

′
t

)
sin φ′ − 2c′ (11)
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where c′ and φ′ are cohesion and friction angle, respectively. Cohesion is assumed to be
progressively decreasing from an initial value (c′

0) according to the following non-linear
softening law:

ċ
′ = −mc′(∣∣ε̇vpn

∣∣ + ∣∣ε̇vpt
∣∣ + ∣∣γ̇ vp

tn

∣∣), (12)

where ε̇
vp
n , ε̇

vp
t and γ̇

vp
tn are the viscoplastic strain rates, whereas m a non-dimensional

parameter defining the material brittleness.
A non-associated flow rule is adopted. In the plastic potential definition, the dilatancy

angleψ substitutes φ′ and is assumed to decrease with irreversible strains from an initial
value ψ0:

ψ̇ = −mψ
(∣∣ε̇vpn

∣∣ + ∣∣ε̇vpt
∣∣ + ∣∣γ̇ vp

tn

∣∣), (13)

The viscoplastic strain rates are calculated as it follows:

ε̇
vp
ij = η〈f 〉 ∂g

∂σ
′
ij

(14)

where η is the fluidity parameter (inverse of viscosity).
The initially dry slope is assumed to be perturbed by an instantaneous increase in

the water table level, which is subsequently kept constant (hw = h = 5 m). The slope
response is obtained by subdividing the stratum into layers of thickness of 5 cm and by
explicitly integrating the constitutive equations under simple shear conditions.

The values of constitutive parameters employed are reported in Table 1.

Table 1. Constitutive parameter values

E (MPa) ν (–) φ’ (°) m (–) c0 (kPa) ψ0 (°) η (kPa−1 s−1)

50 0.25 30 10 20 30 2 · 10–7

The numerical results are plotted in Fig. 2 in terms of (i) evolution with time (T ) of
viscoplastic shear strains (Fig. 2a), (ii) evolution with time of viscoplastic shear strain
rates (Fig. 2b), (iii) isochrones of shear strain distributions along depth (Fig. 2c), and
(iv) evolution with time of displacements along direction t (Fig. 2d). In Fig. 2a–b the
results relative to some depth values are omitted for the sake of clarity.

The numerical results clearly put in evidence that initially all the layers are charac-
terized by a progressively decelerating trend (associated with a “structural hardening”),
whereas, after a sufficiently long time, deep layers and the whole slope start acceler-
ating (Fig. 2a–b). The first local instability takes place at the bottom of the slope and,
subsequently, instability progressively propagates upward, involving more superficial
layers.

Irreversibilities develop for z > 2.75 m, but only in the subdomain 4.25 m < z <

5 m, identified as the shear band, irreversibilities accumulate with time without stopping
(where γ̇

νp
tn >0 for any t value), going progressively to infinite (Fig. 2c).Aswas discussed
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in [7] and in §5, the shear band thickness depends on both material parameter values and
perturbation amplitude. In this case, because of the time dependency of the constitutive
relationship, the role of microstructure (material characteristic length) is negligible: the
materialmicrostructuremay in principle influence the distribution in space of irreversible
strains, but the material characteristic length is expected to be at least one order of
magnitude than shear band thickness.

Initially the slope is decelerating (Fig. 2d), but, after the onset of instability of a
sufficiently large number of layers, also the whole slope starts accelerating. The time
lag between the first local and the global onset of instability, in this particular case, is
approximately equal to 3 days.

Fig. 2. Numerical generalized creep test results: a) evolution of viscoplastic strain with depth, b)
evolution of viscoplastic strain rate with depth, c) isochrones of the profiles of viscoplastic strains
with depth and d) evolution of displacements
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5 Slope Response Under Cyclic Perturbations

In the previous paragraph, controlled variables were kept constant (F = 0 of Eq. 1).
Hereafter, a cyclic variation in the water table level is numerically discussed (F �= 0
and A = A(Y)). The single cycle imposed, mimicking the usually observed variations
in water table due to rainfall [8], is represented in Fig. 3. Amplitude and frequency of
cycles are kept constant with time.

Fig. 3. Evolution with time of the water table level: one cycle

The numerical results (geometry and mechanical properties coincide with those
employed in the case discussed in the previous section) are plotted in Fig. 4 in terms
of (i) evolution with time of viscoplastic shear strains (Fig. 4a), (ii) isochrones of shear
strain distributions along depth (Fig. 4b) and (iii) evolution with time of displacements
along direction t (Fig. 4c).

By comparing the results of Fig. 4 with the corresponding ones of Fig. 2 (where the
water table level was kept constant but equal to the maximum value cyclically reached),
we can state that (i) the local and global mechanical processes take place in significantly
longer time periods and (ii) the shear band thickness is smaller. This latter observation
confirms what stated in §4 and in [7], that is the shear band thickness is governed even
by the imposed perturbation.

In case of cyclic perturbations characterized by constant amplitude and period (ΔT ),
the stability of the local response can be interpreted by using the single cycle average
(irreversible) strain rate:

γ̇∮ =
∫ T+�T
T γ̇tndT

�T
. (15)

being T the starting time of each cycle.
Accordingly, for an assigned cyclic perturbation constant with time: γ̈∮ < 0 corre-

sponds to stable response, whereas γ̈∮ > 0 to an unstable one. The change in sign of γ̈∮
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takes place when:

HIN
∮ = 1

�T

T+�T∫

T

HIN
〈f 〉
|f | dT = 0. (16)

Analogously, for the global response the average cycle velocity:

u̇∮ =
∫ T+�T
T u̇tdT

�T
. (17)

can conveniently be introduced and the stability be defined on the basis of the sign of
ü∮ (ü∮ < 0 stable response, whereas ü∮ > 0 unstable response).

In Fig. 5 the numerical results of Fig. 4a and c are plotted in γ̇∮ − N (N stands for
number of cycle) and u̇∮ − N planes (Fig. 5a and b, respectively).

Fig. 4. Numerical results: a) evolution with time of viscoplastic strains, b) isochrones of
viscoplastic strain distributions and c) evolution of displacements

Initially, at any depth γ̈∮ < 0 and ü∮ < 0. Subsequently (for N = 8), at the base
of the stratum γ̈∮ becomes positive whereas the local response in the rest of the spatial
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domain aswell as the global response are stable. By further increasingN, local instability
progressively propagates upward and after the onset of instability for a sufficiently large
number of layers is got, also the global response becomes unstable. Analogously to what
was theoretically derived and numerically observed for generalized creeps, a time lag
between the development of the first local and the global instability exists. In otherwords,
first local instability is a precursory sign of the global one. This implies that, not only in
case of generalized creeps [7], but also when cyclic perturbations are accounted for, local
strain rate measurements (e.g. obtained by employing inclinometers) are more effective
for early warning systems with respect to ground surface displacement measurements.

Fig. 5. Numerical results: evolution with N of a) γ̈∮ and b) ü∮

The influence of perturbation period is discussed in Fig. 6. The response in terms
of displacements (Fig. 6a) is not significantly affected by the perturbation period. On
the contrary, by plotting the results in the u̇∮ − N (Fig. 6b) plane, a dependence on
the number of cycles associated with global instability on the perturbation period is
observed: as is shown in Fig. 6, due to the viscoplastic single potential constitutive
relationship implemented, the driving variable is time and not the number of cycles.
In case a generalized (for instance multi-potential) elastic-plastic constitutive law was
adopted, the opposite result would be true.

6 Conclusions

In this paper the authors discussed the onset of instability in case of elastic viscoplastic
materials subject to cyclic perturbations. By starting from the definition of local insta-
bility for elastic single potential visco-plastic materials extended to infinite long slopes
subject to generalized creeps, the authors introduced a instability definition suitable for
cyclic perturbations.

This definition is based on the analysis of the response integrated in the cycle period:
in case integrated strains/displacement rates increase with time, the response is defined
to be unstable. From a practical point of view, this integral measure of instability could be
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Fig. 6. Numerical results: influence of ΔT on a) γtn for z = 5 m, b) ut , , c) γ̇∮ for z = 5 m and u̇∮

very convenient for interpreting monitoring data. The instability definition, introduced
for single cycles mimicking single rainfall events, can also very simply be adapted for
larger time periods such as to seasonal oscillations in water table.

Numerical simulation results, obtained by explicitly integrating a strain softening
elastic-viscoplastic constitutive relationship under simple shear conditions highlight that
even when cyclic perturbations are accounted for, local and global instabilities are not
simultaneous: the first local instability always anticipates the global one. Moreover, the
results also put in evidence that, even if the constitutive relationship does not account
for an internal length, instability takes place in a shear band of finite thickness, not
coinciding with the mesh size.

Moreover, the results also put in evidence that, due to the viscoplastic constitu-
tive relationship adopted, instability takes place in a shear band of finite thickness, not
coinciding with the mesh size.

The thickness of this shear band, in contrast with what commonly inferred, is a
function of both constitutive parameters and imposed perturbation.
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Abstract. The rock samples were tested in uniaxial compression under lateral
strain control. The results present Class II stress-strain curves in the axial direction.
However, in the lateral direction, two types of post-peak curves were identified.
The dilating behaviour (here called Type I) is characterized by the significant
irreversible increase of the lateral strain before and after the peak stress. After
the peak stress, the lateral strain keeps increasing without obvious axial stress
drop over a relatively large lateral strain. For collapsing behaviour (here called
Type II), the stress-strain curve presents brittle response in the lateral direction
up to the peak stress. After the peak the stress drops immediately, representing
an infinitesimal increase in lateral strain. To investigate the implication of both
types of behaviour on the ejection of the rock fragments after peak, the uniaxial
compression tests using the axial displacement-control method were carried out
while capturing the rock failure behaviour with the aid of high-speed cameras.
It was found that rocks with Type I dilating behaviour are more likely to have
splitting or spallation (the fractures are parallel to the loading direction) failure;
while for Type II collapsing behaviour, the inclined fractures are more likely to
be induced. These results highlight the importance of investigating the lateral
stress-strain curves of rocks.

Keywords: Post-peak · Class II rocks · Lateral strain

1 Introduction

The post-peak tests attempt to obtain the complete stress-strain curves of rocks subjected
to compression to investigate the possible macroscopic spontaneous failure [1]. Accord-
ing to a pioneering study byWawersik and Fairhurst [2], rockswere classified intoClass I
and Class II based on their failure behaviour in uniaxial compression. The typical stress-
strain curve of Class I rock in uniaxial compression is shown in Fig. 1. It is seen that after
the peak, the stress gradually decreases, while the (axial) strain steadily increases, until
the ultimate failure. As Class I rocks require continued compression of the load frame to
progress toward the failure, the post-peak stress-strain curves can be captured relatively

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
E. Pasternak and A. Dyskin (Eds.): IWBDG 2022, 2023.
https://doi.org/10.1007/978-3-031-22213-9_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22213-9_18&domain=pdf
https://doi.org/10.1007/978-3-031-22213-9_18


174 H. Wang et al.

easily. Also, the loading frame must be sufficiently stiff as the energy accumulated in a
soft testing machine in the process of loading may induce the unstable and rapid rock
failure [3]. For Class II rocks, the stress-strain curve shows snap-back behaviour: as the
stress drops after the peak stress, the axial strain also decreases. This indicates that in
axial strain control, the failure of Class II rock is unstable or self-sustaining just after
the peak stress even if the loading frame is perfectly stiff [2]. Many studies have been
conducted attempting to achieve the controlled failure of Class II rocks. The most pop-
ular method is the lateral strain control that uses the lateral (circumferential) strain on
the rock sample as a feed-back signal to control the movement of the loading platen [4].

In previous studies, most of the researchers focused on the post-peak behaviour in
the axial direction, i.e. attempting to identify the Class I or Class II stress-strain curves
[5], as shown in Fig. 1. Under compression, however, the lateral strain behaviour of
rocks is also important as dangerous rock ejection occurs in directions perpendicular to
the applied load. In this paper, we report post-peak tests using the lateral strain control
method.We identified two types of post-peak behaviour in the lateral direction of Class II
rocks.Also,we investigated the failure process of brittle samples in uniaxial compression
tests under axial displacement control, using high-speed video, to capture the fracturing
behaviour of both types of Class II rocks under compression.

Fig. 1. Classification of stress-strain curves of rocks in uniaxial compression (after [6]).

2 Experimental Set-Up

2.1 Post-peak Test Under Lateral Strain Control

Rock samples are prepared by sub-sampling the rock cores. Samples for post-peak tests
and ejection tests were sub-sampled parallel to each other and are from the same cores.
The samples have shape of cylinders, with diameter 19 to 21 mm, and length between



Implication of Different Types of Post-peak Behaviour 175

38 and 45 mm (Tables 1 and 2). The minimum standard of sample preparation followed
the ISRM standard [7].

All post-peak testswere performed using the lateral strain controlmethod. The lateral
strain rate adopted for all types of samples were: 1 ∗ 10−6 1/s. Two axial extensometers
and one lateral extensometer are installed on the sample to monitor the axial and lateral
strain during the test, respectively.

Table 1. Basic information of the samples tested in post-peak tests.

Test No Site Lithology Diameter (mm) Height (mm) Weight (g)

1 X_E1 Metamorphosed felsic
igneous rock

19.20 38.64 34.0

2 C108_B1 Fine-grained
monzonite

20.60 42.48 39.4

2.2 Rock Ejection Tests Under Uniaxial Compression Using Axial Displacement
Control Method

To investigate the implications of these two types of rock behaviour on the fragmenta-
tion and fracture development of rocks under uniaxial compression, we conducted rock
ejection tests, that is uniaxial compression tests under axial displacement control. Under
this loading, Class II rocks are expected to show sudden failure and possibly ejection at
the peak stress, therefore no post-peak data will be captured on the axial load cell.

In the rock ejection test, the sample was first axially loaded at a rate of 0.2 mm/min
until the axial stress reached approximately 70% of the expected peak stress. The loading
rate was then reduced to 0.05 mm/min in order to minimize actuator-driven platen dis-
placement during the actual period of brittle fracturing which was found to be�100µs.
The fragmentation process of the rock ejections was recorded by two Phantom V1212
high speed cameras (Fig. 2).

As the samples were expected to fail violently, a plastic safety shield was used for
all tests (as shown in the insert in Fig. 2). In addition, a multi-test jig was used to hold
half-bearing platens at the top and bottom of the sample. During the pre-peak stage,
the half-bearings limit the possible uneven loading or bending caused by non-parallel
sample ends and/or inhomogeneous materials.

3 Experimental Results

In this section, the results frompost-peak test under lateral strain control and rock ejection
tests under axial displacement control are presented.
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Fig. 2. The set-up of the rock ejection tests under uniaxial compression.

Table 2. Basic information of the samples tested in rock ejection tests.

Test No Site Lithology Diameter (mm) Height (mm) Weight (g)

1 X_E3 Metamorphosed felsic
igneous rock

19.18 38.66 33.4

2 C108_B2 Fine-grained
monzonite

20.62 45.18 42.3

3.1 The Post-peak Test Using Lateral Strain Control Method

Rock sample with dilating post-peak behaviour in lateral direction. The stress-strain
curves in test No. 1 (sample X_E1, Fig. 3) are characterized by significant irreversible
decrease of the lateral strain before the peak stress; however, the axial irreversible strain
is close to zero.

The peak stress of No. 1 (X_E1) is 214 MPa. Near the peak stress, significant lateral
deformation occurs, with very little attendant axial deformation. The sample dilates
laterally to about −0.55% strain, without much axially shortening. Then it is followed
by an axial stress drop, and Class II behaviour in the axial direction. After the first stress
drop, the axial stress slightly increases and then decreases again, as the sample again
undergoes a large amount of lateral deformation without significant axial deformation.
This behaviour is called the dilating or Type I post-peak behaviour.

Rock sample with collapsing post-peak behaviour in lateral direction. For test
No. 2 (C108_B1, Fig. 4), the stress-strain curve presents elastic behaviour up to the peak
stress in both axial and lateral directions. There is almost no apparent plastic yielding
pre-peak stage.

The peak stress is 236 MPa. After the peak stress, the stress drops immediately,
presenting a very small lateral strain increase (seen as a straight vertical line in lateral
direction), and Class II stress-strain curve in the axial direction. The increase of lateral
strain is close to zero in this first axial stress drop after peak. This behaviour is called
the collapsing or Type II post-peak behaviour. After the first drop, the axial stress cycles
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from 158MPa to 183MPa, as the lateral strain increases from 0.19% to 0.31% in several
pulses.

Fig. 3. Axial and lateral stress-strain curves for X_E1.

Fig. 4. Stress-strain curves for C108_B2.

3.2 The Rock Ejection Tests

Rock sample with Dilating (Type I) post-peak behaviour in lateral direction. About
1.3 s after the peak stress in rock X_E3, spallation begins at the contact with the upper
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platen, in a white alteration infill zone, Fig. 5(a), see the possible mechanism explained
in [8]. An axial crack starts growing 2.5 s later, Fig. 5(b), and stabilizes temporarily,
without reaching the ends of the sample. About 23 ms later, the crack grows to the top
and bottom platens, and opens, and several cracks open to the right of it near the top end
of the sample, Fig. 5(c).

Significant ejections from the upper right part of the sample begin 3.4 ms later,
Fig. 5(d), as the axial crack opens further. A second axial crack, parallel to the first,
opens up 9 ms later, accompanied by more ejection from the top right, Fig. 5(e). After
a further 1 ms, a third axial crack opens. The three cracks combine to form a tall wedge
with the right half of the sample, while the left half begins to buckle, Fig. 5(f). Failure
now proceeds rapidly via buckling and rotation of fragments, Fig. 5(g).

Rock sample C108_B2 with collapsing (Type II) post-peak behaviour in lateral
direction. For this sample, the entire failure process appears to occur very rapidly. There
is about 0.45 s of plastic “yielding” occurring while the load remains at/near the peak,
and nothing visible happens to the sample during this time. This is immediately followed
by rapid and precipitous failure. From the first signs of spallation near the top end of the
sample, until final buckling of the intact portions of the sample, takes only 448 µs.

About 421 ms after the peak, spallation initiates in the upper part of the sample,
Fig. 6(a). An inclined fracture forms 392 µs later, along a 60° inclination from the
horizontal. A branch grows from it, vertically downward, Fig. 6(b), see the possible
mechanism explained in [9]. The two cracks grow quickly ejecting material, and after
56µs they form a wedge on the rear-left of the sample. This leaves the front part of the
sample to carry most of the load, at which point it begins to buckle, Fig. 6(c). After
another 196µs, the buckling is obvious, and the platens rotate significantly, Fig. 6(d).

4 Conclusions

Two different types of post-peak behaviour in lateral direction of Class II rocks were
identified. The dilating or Type I behaviour is characterized by the significant irreversible
lateral strain before and after peak stress. Especially, after the peak stress, the lateral strain
keeps increasing without obvious stress drop (sample weakening) within a relatively
large lateral strain, and without significant axial deformation. For collapsing or Type
II behaviour, the stress-strain curve presents brittle behaviour up to the peak stress in
the lateral direction. After the peak stress, the stress drops immediately, presenting an
infinitesimal increase in strain in the lateral direction. The rock ejection tests show with
the aid of a high-speed camera that rocks with dilating or Type I behaviour is more
likely to have splitting or spallation (the fractures are parallel to the loading direction);
while inclined fractures are more likely to be induced in rocks with collapsing or Type
II behaviour.
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(a) Spallation starts near the top
platen, 1.3s after peak load

(b) Axial crack visible as a thin 
white line in left image, 2.5s 

after spallation start (a)

(c) Axial crack runs through sample 
and is open; top right has many vertical 

cracks, 23ms after (b)

(d) Ejection begins near the top platen, 
3.4ms after (c)

(e) A second axial crack opens, as 
more materials eject, 9ms after (d).

(f) A third axial crack has opened 
(centre of left picture).  These three 

axial cracks combine to form a wedge. 
A horizontal buckling crack has also 

opened on the left side of the left 
image, 1ms after (e)

Fig. 5. Stages of the failure process of X_E3.
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(g) Continued buckling, with marked platen rotation. A lot of fines are ejected 
near the top of the sample, at right.  Where the buckling is occurring at left, there 

is very little ejection, about 1ms after (f)

Fig. 5. (continued)

(a) First visible spallation (red arrow), 
421ms after peak load.

(b) Inclined crack (red arrows) with a 
vertical branch (yellow arrows), 392μs 
after (a)

(c) Cracks growing at top rear left, 
ejecting material. Sub-horizontal 
buckling crack is visible near centre of 
both images, 448μs after (a)

(d) Progression of buckling, 196μs after 
(c)

Fig. 6. Photos during failure of C108-B2.
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Abstract. Friction resisting sliding over contacted surfaces of faults or shear
fractures is usually considered independent of the sliding direction. However,
when the rock near sliding surface is anisotropic with a symmetry axis inclined
to the sliding direction, normal constraint induces asymmetry, whereby friction
forces resisting sliding in opposite directions are different. In this case the applied
oscillatory force produces sliding towards the direction with the smallest friction
such that macroscopic movement can occur even when the driving force oscillates
around zero. Furthermore, friction asymmetry leads to emerging of a critical value
of friction in the hard direction: for friction forces lower than the critical value
the exponent of the fall-off of the velocity power spectra is near the conventional
−1, while when the friction force reaches the critical value the exponent drops
to −2. This phenomenon can be used for reconstructing the structure of rocks
surrounding sliding fractures/faults.

Keywords: Asymmetric friction · Anisotropic friction · Shear fracture sliding

1 Introduction

Anisotropic friction refers to the case where friction magnitude is dependent on sliding
directions and can be achieved through surface conditions ormaterial anisotropy.Various
materials have been shown to have anisotropic friction: polymers [1], fibre reinforced
polymers [2–4], alloys [5] and ceramics [6]. In this study we consider a specific case of
anisotropic friction: asymmetric friction when different friction forces resist sliding in
opposing directions.

Asymmetric friction has been shown to arise from anisotropy of sliding materials [7]
or rocks when an axis of symmetry is inclined to the sliding surface. When constrained
in the direction normal to the sliding surface, the material creates a coupling between
the normal and shear force. This leads to low friction resisting sliding along the incline,
while having high levels of friction when sliding against the incline. This mechanism is
entirely dependent on the internal rock structure rather than the surface conditions.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Beeler et al. [8] compared the velocity spectrum recorded in a laboratory to that of
natural earthquakes. Triaxial compression tests on Westerly granite and Devil’s postpile
basalt were conducted. Velocity spectrum was recorded as the sample fractured, as well
as the subsequent slip event that occurred over the fractured surface. The velocity spectra
during sample fracture yielded ahigh frequency falloff that approximates the gradient 1/f
where f is the frequency of the spectra. This result resembles that of natural earthquakes.
However during the subsequent slip event over the produced shear fracture surface, the
velocity spectra display a falloff that approximates 1/f 2. This is in contrast to the cases
when sliding occurs over a pre-cut slip plane [9, 10]: the slip event had velocity spectra
that resemble that of earthquakes. This implies that the fractured surface may introduce
a different mechanic that results in the steeper frequency falloff, 1/f 2.

The triaxial compression leads to fault nucleation and growth (e.g., Reches and
Lockner [11]). Under compression, microcracks grow parallel to the major principal
compressive stress before the fault (shear fracture) is formed. As the load increases,
the density of microcracks increase until an inclined localisation zone is formed. This
process zone lengthens and ultimately produces a shear fracture. The random microc-
racks produce transverse-isotropy with the axis of isotropy inclined to the resulting shear
fracture; such a configuration is shown to induce asymmetric friction [7].

This study investigates whether the frequency falloff that approximates 1/f 2 found
during sliding over compressive fractured surface is related to asymmetric friction.

2 Model

To investigate the potential role of asymmetric friction on sliding over fracture due to
compression, we consider a simple spring-block model shown in Fig. 1. The model
consists of a mass m connected to a harmonically oscillating base through a spring with
stiffness k. The sliding between mass m and the base is resisted by friction force ffric.
Displacement ug of the base is taken with respect to a stationary coordinate frame and
displacement um of the mass m is counted relative to the base. The base harmonically
oscillates with amplitude G and driving frequency ωd .

Fig. 1. Spring-block model consisting of mass m that undergoes frictional sliding on a harmoni-
cally oscillating base.

The equation of motion of mass m is

müm = −müg − kum − ffric(u̇m, fm) (1)
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where

fm = −müg − kum
üg = −G sin(ωd t)

Asweare interested in the effect of asymmetric friction, the frictionmodel considered
here will be rate independent but directionally dependent: f + is the friction force that
resists sliding in the positive direction and f − is the friction force that resists sliding in
the negative direction. The friction model reads

ffric(u̇m, fm) =

⎧
⎪⎪⎨

⎪⎪⎩

min
(
fm, f +)

, u̇m = 0 and fm ≥ 0
f +, u̇m > 0
max

(
fm,−f −)

, u̇m = 0 and fm < 0
−f −, u̇m < 0

(2)

The symmetric friction has the same friction force resisting sliding in opposing
direction, f + = f −. The asymmetric friction has lower friction resisting sliding in the
positive direction while higher friction resists sliding in the negative direction, f + < f −.

We define normalised time τ = ωct and normalised displacement U = ω2
cu/G,

where ωc = √
k/m is the characteristic frequency. Equations (1) and (2) become

U
′′
m = −U

′′
g − Um − Ffric

(
U

′
m,Fm

)
(3)

Ffric

(
U

′
m,Fm

)
=

⎧
⎪⎪⎨

⎪⎪⎩

min
(|Fm|,F+)

, U
′
m = 0 and Fm ≥ 0

F+, U
′
m > 0

−min
(|Fm|,F−)

, U
′
m = 0 and Fm < 0

−F−, U
′
m < 0

(4)

where U
′′
g = − sin(βτ), β = ωd

ωc
, Ffric

(
U

′
m,Fm

)
= 1

mG ffric(u̇m, fm), Fm =
1
mG fm,F+ = 1

mG f
+,F− = 1

mG f
−.

These equations are solved using MATLAB function ODE23.

3 Results

First consider the motion of a symmetric friction block when subjected to a base that
oscillates with driving frequency β = 1.5. This is similar to the Coulomb friction
oscillator considered by H.-K. Hong and C.-S. Liu [12]; however, the displacement of
the block in this study is taken with respect to the displacement of the base rather than
the stationary coordinate frame. Due to the normalisation, the symmetric friction block
will be stationary when the maximum normalised friction force is F+ = F− = 1.
Figure 2 presents the displacement of a block for different symmetric friction cases. The
symmetric friction block displaces in both positive and negative directions. As friction
force increases, the amplitude of the block’s oscillation decreases.
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Fig. 2. Displacement of a symmetric frictionblockwhen subjected to a driving frequencyβ = 1.5.
Friction forces are: F+ = F− = 0, 0.25, 0.5, 0.75.

Fig. 3. Velocity amplitude spectra for a symmetric friction block when subjected to a driving
frequency β = 1.5. Friction forces are: F+ = F− = 0, 0.25, 0.5, 0.75.

Figure 3 presents the amplitude spectra for velocity of the symmetric friction blocks
considered in Fig. 2. The lines of best fit for the high frequency falloff as well as the
reference lines for (ω/ωd )

−1 and (ω/ωd )
−2 are shown in the spectra.

Figure 3 shows that the amplitude spectra for the symmetric friction block have
a high frequency falloff of about (ω/ωd )

−1 for all four cases. Now the falloffs for
various driving frequencies β and finer resolution of maximum friction force F+ = F−
are considered. Figure 4 graphs the exponent of falloff as a function of the symmetric
friction force, F+ = F−.
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Fig. 4. Exponent of (ω/ωd ) for high frequency falloff in symmetric friction block velocity spectra
subjected to β = 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4 plotted against maximum friction force.

In Fig. 4, the symmetric friction cases have exponents of falloff that fluctuate about
−1 and at certain driving frequencies, the exponent is seen to decrease to around −1.5
at high friction force. The exception is β = 3 showing a dip in exponent at low friction.

Consider the case of extreme asymmetric friction when the block is frictionless when
sliding in the easy direction. This block is subjected to a base that oscillates with driving
frequency β = 1.5. Figure 5 presents the displacement of an asymmetric friction block
with different friction in the hard direction.

The asymmetric friction block is seen to have the same movement during initial
sliding in the easy direction. During subsequent sliding in the hard direction, the block
does not slide as far into the negative displacement. Figure 6 shows the velocity amplitude
spectra of the asymmetric friction blocks considered in Fig. 5.

When friction in the hard direction is low (F− = 1, 1.5) the frequency falloff is
about (ω/ωd )

−1, while at high friction in the hard direction the falloff approximates
(ω/ωd )

−2. Figure 7 shows the falloff exponent for various driving frequencies β and
magnitudes of friction force in the hard direction F−.

Figure 7 shows that for all driving frequencies β, there is a threshold value of F−
after which the exponent changes from approximately −1 to −2. A dip in exponent at
low F− for β = 3 is also seen here in the asymmetric friction case whose nature is not
known and needs further investigation.

4 Conclusion

It is shown that the asymmetric friction works as a switch: there is a critical magnitude of
friction in the hard direction, f −

cr = 2mG, where m is the block mass, G is the amplitude
of the acceleration of the driving oscillation force. When the friction is below f −

cr the
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Fig. 5. Displacement of an asymmetric friction block when subjected to a driving frequency
β = 1.5. Friction forces in the easy direction are F+ = 0 and in the hard direction are F− =
1, 1.5, 2, 2.5.

Fig. 6. Velocity amplitude spectra for an asymmetric friction block when subjected to a driving
frequency β = 1.5. Friction forces in the easy direction are F+ = 0 and in the hard direction are
F− = 1, 1.5, 2, 2.5.

falloff exponent is −1. After the friction force increases and crosses the threshold, the
exponent drops to −2. This phenomenon can be used for reconstructing the structure of
rocks surrounding sliding fractures/faults.
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Fig. 7. Exponent of (ω/ωd ) for high frequency falloff in asymmetric friction block velocity
spectra subjected to β = 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4 plotted against friction in the hard direction.
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Abstract. In this study a novel model based on the theory of compressible fluids
is used to model the effective stress-specific volume response of granular mate-
rials during 1D compression, isotropic compression and critical state. Specifi-
cally, a modified Van der Waals equation for real gases is successfully validated
against the experimental data obtained from few series of triaxial tests that were
conducted over several decades. The proposed equation captures the experimen-
tally observed response throughout the wide range of effective stress including
elevated and high pressures. The excellent performance of the model is achieved
without introducing any special provisions for grain crushing at elevated and high-
pressures. Furthermore, features of the proposed isothermal equation of state are
further illustrated by presenting it in different coordinate systems along with the
experimental data. An additional characteristic of the proposed model is in that
it contains thermodynamics-based stability criterion that describes the state of a
granular material near the limit of its existence, i.e., in the extreme configura-
tion. The nature of the stability concept is further investigated by presenting the
experimental response of sand in triaxial tests observed during the initial stage
of the shearing phase. It is found that the observed amount of lateral deforma-
tion increases with a decrease in effective confining pressure whereby no lateral
deformation is observed initially at high pressures. This indicates that the amount
of radial deformation is likely to further increase on approach to zero confining
pressure, thus signifying the approach to instability induced collapse.

Keywords: Isothermal equation of state · High pressures · Granular materials

1 Introduction

A granular material, such as sand or gravel, is an assembly of distinct macroscopic
particles. These materials exhibit complexities such as instabilities that are associated
with transitions from solid like to fluid like state, thus leading physicists toward char-
acterizing the granular material as a new state of matter. The traditional widely used
approach to modeling behavior of these materials relies on the use of continuum models
that describe their macroscopic behavior while discrete approach, whereby individual
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particles and their interactions are modeled, has been gaining popularity primarily in the
research community.

Continuum models have traditionally presented pressure-volume in a semi loga-
rithmic diagram that is attributed to Terzaghi and Peck [1], and Scofield and Wroth
[2]. Moreover, the classical linear representation in void ratio-log σ ’ coordinate system
remains the most commonly used model in soil mechanics, both for cohesive and cohe-
sion less soils. Recent reviews of compression models [3–5] addresses different classes
of models that cover wide stress range. Chong and Santamarina [5] identified some cri-
terions while stating: “Models must be able to fit compressibility data for diverse soils,
have physically correct asymptotic values at low stress σ ij → 0 and high stress σ ij → ∞,
and involve a small number of physically meaningful parameters (Ockham’s criterion)”.
Their brief review includes the classic semilogarithmic and generalizedTerzaghi’smodel
modified to satisfy the asymptotes at low and high stresses, the power function models
arising from the log-log presentation, and models using other mathematical functions
to provide S-shaped trends like exponential, hyperbolic or arctangent models. Some
models include additional features such as grain crushing. For example, Vallejos [4]
discussed particle breakage. Russell and Khalili [6] insist on influence of grain crushing
on the shape of critical state line (CSL) in a semi-log diagram that is also reflected on
a similar shape of the limiting isotropic compression line (LICL). Furthermore, Bauer
[7] proposed the exponential model that includes the concept of solid hardness, a pres-
sure at the point of inflection of S-shaped compression curve, thus accounting for grain
fragmentation and grain rearrangement in this extended version.

To this end, this study is focused on providing a novel and unified model for macro-
scopic compression behavior of granular materials that is capable of capturing the mate-
rial response over extremely wide range of stress without introducing any special pro-
visions for grain crushing. The model is subsequently validated against the relevant
experimental data, and the instability criterion that is inherent to the model is also
discussed.

2 Proposed Model

2.1 Volume—Pressure Response

Ivšić et al. [8] introduced an alternative model to describe the pressure-volume relation-
ship of granular materials. The model is based on the Van der Waals equation of state or
real gases that extends the ideal gas law by accounting for the finite size of molecules of
a gas and includes the interaction between the molecules. Ivšić et al. [8] modified Van
der Waals equation based on the analogy between the compressible Van der Waals fluid
and a sand body that is depicted in Fig. 1.

The corresponding modified or adapted van der Waals equation is given by:
(
p + A/v2

)
(v − 1) = C (1)

where p is pressure, v is specific volume, and A and C are constants that are obtained by
fitting the above equation to the relevant experimental data as shown by Ivšić et al. [8],
and Ivšić and Gojmerac Ivšić [9]. Equation (1) is suitable for describing any system that
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consists of voids and matter as depicted in Fig. 1 whereby the measurable quantities,
pressure and volume, are experiencing isothermal conditions. Thus, it also applies to
granular assemblies such as sand.

Fig. 1. The continuum idealization of volume relations in sand and van der Waals fluid

The main features of the model presented in [8–10] are:

• the adapted van der Waals equation adequately describes the pressure-volume rela-
tionship at critical state of mineral sands over a large range of applied pressures, as
well as the pressure-volume relationship in common tests, in which deviator stress
is proportional to mean pressure. Moreover, it was demonstrated that the ratio of
constants A and C is close to 4 for all tests, which is also expected from theory

• the adapted van der Waals equation adequately describes volume pressure behavior
at elevated and high pressures without introducing any special provisions for grain
crushing

• Ivšić and Gojmerac Ivšić [9] demonstrated that constants A and C for critical state
line are correlated to the chemical composition of mineral sands.

Figure 2 depicts the experimental results [11] for isotropic compression and at crit-
ical state in a common semi-log diagram. In addition, Eq. (1) is fitted to the both sets
of data, thus demonstrating that it fits the experimental data over the wide range of
pressure. Furthermore, according to Eq. (1) the values of specific volume and void ratio
asymptotically approach two (v = 2) and one (e = 1) respectively, as pressure tends to
zero. In addition, the specific volume appears to asymptotically approach value of one
as pressure tends to infinity. Finally, for limiting value of A/C = 4 isotropic compression
line (ICL) and CSL are proportional and they merge at zero and infinite pressures. Thus,
the model satisfies the criteria stated in [5]. The trends of experimental data observed at
the pressures smaller than approximately 1000 kPa are further discussed in Sect. 3.

2.2 Stability Criteria

The domain of applicability of the van der Waals equation in reduced pressure-volume
coordinates and “corresponding states” was discussed in detail in [8, 9]. The values of
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Fig. 2. The interpretation of limestone sand test results by using Eq. (1)

specific volume less than one (1) are excluded by definition (as in Fig. 1). The area where
the basic condition for the thermodynamic state equation is not fulfilled (i.e. dp/dv < 0)
is also excluded, and in the remaining part there are possible stable states for liquids and
gases. These criteria for adapted isothermal equation (Eq. 1) give the range of specific
volumes between one (1) and two (2), in which the stable states of material in the sense
of classical thermodynamics, can be achieved. At the limit value of v = 2, the pressure
p = 0, and the limiting ratio of constants is A

/
C = 4. Also, at this point in accordance

with theory, dp/dv = 0, thus implying that the corresponding “bulk modulus” is zero,
which can be interpreted as a lack of resistance of a body to any force. This range of
specific volumes is common for sands. Values of specific volume that are larger than
two can be found in presence of additional internal forces such as capillary forces in
moist sand that give rise to apparent cohesion. In this case a loose grain structure forms
in sand and sand can exist at porosity larger than 50%, thus having more voids than
solid particles. The grain structure becomes unstable and it collapses upon removal of
attractive forces, i.e. disappearance of capillary forces.

From thepoint of viewof physics this implies that granularmaterials becomeunstable
as they approach zero pressure and collapse into a state, in which the contacts between
particles are lost. Physical manifestations of this event in monophasic granular materials
are seen in the instability induced collapse on approach to zero effective stress, such as
for example a removal of the lateral support.

3 Interpretation of Sand Pre-compaction

Figure 3 depicts results of series of triaxial tests that were conducted on Cambria sand at
high pressures [12, 13]. The best fits for CSL and LICL, which were obtained by using
Eq. (1) and A/C = 4, are also shown. The presented tests have been performed on highly
compacted sands having initial relative densities of about 90%, which corresponds to the
initial void ratio of about 0.52–0.53. The void ratios that correspond to various confining
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isotropic pressures define the isotropic compression line over a wide range of pressures.
The effects of large initial density are pronounced in lower pressure range while they
seem to disappear in the high pressure range. This effect of pre-compaction in sands is
similar to the effect of preconsolidation in clays.

Fig. 3. The interpretation of Cambria sand test results by using Eq. (1)

The results are also interpreted in accordance with the proposed compressible
fluid model by using the presentation in auxiliary coordinates [8], fp = pv2 and
fv = v2

/
(v − 1) as shown in Fig. 4. The auxiliary coordinates emerge after Eq. (1)

is rearranged to the following form

fp = Cfv − A (2)

The linear function from Eq. (2) is suitable for easy determination of constants A
and C (Fig. 4). The interpretation in Fig. 4 shows a clear distinction between the results
at lower pressures, where material has memory of previous compaction, and the results
for higher pressures where the effects of initial density are erased, similarly to the virgin
compression line for clays. The experimental data obtained at lower pressures are fitted
to the line denoted by ISO 1 whereby the corresponding linear regression results in the
initial void ratio, e = 0.532, that corresponds to zero pressure (Fig. 4). As discussed
before, the limiting isotropic compression line is expected to have A/C = 4. In this case
linear regression gives line denoted by ISO2, and corresponding C value is depicted in
Fig. 4. The intersection of the two lines (ISO 1 and ISO 2) is determined from the two
corresponding equations and its coordinates are provided in Fig. 4.

Next, the results are reverted back to a semi-logarithmic diagram (Fig. 5). It is
seen that the influence of initial density spreads much further than would be expected
from a common interpretation of preconsolidation and yielding that correspond to the
point of maximum curvature in the semi-log plot [4] or similar geometric constructions.
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Fig. 4. Isotropic compression of Cambria sand in auxiliary coordinates

Furthermore, the results presented in linear scale often follow a smooth curve whereby
deviation and smooth transitions are not directly visible. Nevertheless, by employing
semi-log or log-log presentation the transitions become clearly visible. Consequently,
the proposed adapted Van derWaals equation is also a smooth curve over a wide range of
pressures, thus enabling a description of the appropriate data set with similar accuracy as
lines in semi-log plot.When this cubic equation is presented in semi-log diagram (Figs. 2
and 3) the curvature or inflection is found. Nevertheless, it is artificial, originating only
from a semi-log presentation rather than from an inherent change of sand properties in
certain range of pressures. This also applies to grain crushing attributes or explanations
connected to certain appearance in a semi-log presentation. The grain crushing occurs in
both, isotropic compression and shear phase of a test and over wide range of pressures.
Although the regularities in grain crushing have been found, the reliable indicators or
sharp deviations of behavior in common tests, which can be undoubtedly attributed to
grain crushing, still remain one of the research topics.

It is also noted that what appears to be the deviation of experimental data (Figs. 2
and 3) from the adapted Van der Waals equation for pressures lower than approximately
1000 kPa can be attributed to: (1) pre-compaction effects in isotropic compression, (2)
dilatancy and likely singularity events such as strain localization for data extracted at the
critical state. As explained above,Van derWaals equation is still appropriate for the lower
pressure range in isotropic compression whereby constants A and C differ from their
values at higher pressures. Finally, based on these trends it can be said that the modified
Van derWaals equation can capture recoverable and irrecoverable deformations over the
large range of pressures.

4 Observations from Shear Phase of Triaxial Test

4.1 Standard Presentation

The concept of instability that occurs at zero pressure, i.e. zero effective stress is further
illustrated by analyzing magnitude of radial strains during the shear phase that was
observed in conventional triaxial tests conducted over the wide range of pressures on
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Fig. 5. Interpretation of isotropic compression lines from Fig. 4 in semi-log plot

Cambria sand. The experimental results are presented in Figs. 6a and b. Although a
slight deviation between the depicted strains and locally measured strains might exist
the presented strains are understood as average uniform strains of the entire sample.
Thus, the conventional interpretation implies that the radial strain (er) can be obtained
from axial (ea) and volumetric (ev) strains as

er = ev − ea
2

(3)

whereby positive normal strains and stresses are compressive. Figure 6b and c show
that in the beginning of the shear phase of the tests the volumetric and axial strains are
about equal for the tests at higher confining pressures, thus implying that radial strain
at this stage is equal to zero. With a decrease in confining pressure the initial response
starts to exhibit non-zero initial radial strain. Special conditions occur in test LYCD 4,
in which volumetric strain remains approximately equal to zero throughout the entire
shear phase of the test. The volume after isotropic compression for this test is close to the
CSL volume for this initial cell pressure (and also for failure conditions), so, practically
without volume change, the shear phase of the test presents “pure shear” in drained
triaxial conditions.

The relation between radial and axial strains is presented in Fig. 6c. For comparison
the case of zero volume change (er = −ea

/
2) is also shown. In addition, as expected,

in most of the tests volumetric strain rate approaches zero towards the end of the test, as
shown in Fig. 6c, thus indicating that the samples have reached the critical state.

Similar results obtained on limestone sand in tests with significantly lower confining
pressures are presented in Fig. 7. The results depicted in Figs. 6 and 7 clearly demonstrate
that the conditions of zero or very small radial strain, akin to 1D compression, prevail
until relatively large axial strains of about 5% are reached. The corresponding value of
q/p′ ratio is equal to almost 50% of its value at failure. These 1D compression features
dominate the test results at higher pressureswhile they disappear earlier during the course
of shearing corresponding to larger q/p′ ratios in tests conducted at lower pressures due
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Fig. 6. Results of conventional triaxial tests on Cambria sand at high pressures

to initial density effects. Furthermore, it is hypothesized herein that the magnitude of
radial strain during the initial portion of the shear phase is likely to further increase as
the confining pressure decreases and eventually approaches zero pressure. This would
indicate not only increasing dilatancy but also onset of instability induced collapse on
approach to zero effective stress.

It is noted that the conditions of nearly zero lateral strain during the initial part
of shearing phase of triaxial test have been noticed by other authors, e.g. Hettler and
Vardoulakis [15], although for smaller range of axial strains. These authors reported
triaxial tests on dry sands whereby radial strains were measured, unlike herein, and
nearly zero values were reported for loose sand samples. On the other side, Kolymbas
and Wu [16] also made measurements of radial strain at three levels of a sand sample
and did not quite confirm the previous results, at least for dense sand. In addition, the
common simple interpretation of er on the basis of ea and ev, as an average for the whole
sample can be easily seen in many other presentations of triaxial test sets on loose sands
or sands at elevated or high pressures.

4.2 Alternative Presentation

An alternative presentation of the test results with radial strain as abscissa (Figs. 8 and 9)
enhances the observations fromprevious figures. The q/p′ ratio is related to themobilized
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Fig. 7. Results of limestone sand conventional triaxial tests at high pressures

friction, and its maximum value M is a measure of the material strength. Although the
failure conditions and strength are obtained for relatively large radial strains, Figs. 8a
and 9a again demonstrate that more than a half of the maximum q/p′ value is obtained
in almost 1D compression conditions in the depicted tests.

The diagrams in Figs. 8b and 9b are inspired by the hypothesis in [8, 9] that the critical
state line is a fundamental property of mineral sands, similar to the isothermal state
equation for compressible fluid where pressure at CSL is analogous to thermodynamic
pressure in fluids. The ordinate ratio, σ 3 (cell pressure)/p′

CSL, positions the shearing
phase of triaxial test in relation to the corresponding pressure at critical state, obtained
for actual volume during test. To avoid scatter, the values of p′

CSL are calculated for
each test using the individual constant C at the end of test from Eq. 1 for A/C = 4.
The diagrams show that during the above mentioned 1D like phase of conventional
triaxial compression relatively sudden equalizing of considered pressures takes place.
When the cell pressure approaches critical state pressure (σ 3/p′

CSL ≈ 1) the change of
behavior occurs leading to activation of radial strain. These effects are more pronounced
at higher pressures, thus possibly reflecting true material behavior. And again, since
there is no significant volume change in the test LYCD4, there is also no significant
change in corresponding p′

CSL , and the ratio of pressures is almost equal throughout
the whole shear phase of the test. This observation also encourages the research based
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on compressible fluid concept as an alternative or in addition to the concept of solids
commonly used in constitutive soil models [10].

Fig. 8. Conventional triaxial tests on limestone sand at high pressures with er on x-axis

5 Conclusions

The pressure-volume behavior of granular materials during isotropic and 1D compres-
sions has been described by variousmodels using several classes ofmathematic functions
in order to cover wide range of pressures. The novel model proposed herein is based
on the analogy with compressible fluids and it captures the response of sands over the
wide range of pressures, including low to very high pressures, with a single smooth
curve without any additional provisions for grain rearrangement and grain crushing.
The proposed relationship presents the adapted isothermal van der Waals state equa-
tion, and follows the fundamental principle that the product of pressure and volume is
constant. This relation also defines the permissible stable states for sands for specific
volumes between v = 1 and v = 2, which is true for most dry sands. The model can also
consistently separate the influences of previous sand compaction, possibly including
pre-compaction, from the true material behavior at high pressures where initial density
effects are erased. Furthermore, triaxial tests still remain fundamental tests for measur-
ing the soil behavior that is suitable for macroscopic scale constitutive models based on
the concept of continuum.
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Fig. 9. Conventional triaxial tests on Cambria sand at high pressures with er on x-axis
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Abstract. The seminal work of Gurson (J Eng Mater Technol 99:2–5, 1977) on
a simplified pore structure, a single spherical pore, first provided a theoretical
relationship between the yield stress and the porosity. This contribution extends
the approach to determine the macroscopic yield of a porous material by taking
explicitly into account its internal structure. As the yielding of a porous mate-
rial is controlled by the geometry of its internal structure, we postulate that it is
nearly independent of the constitutive plastic behaviour of the material. Here, we
show that the influence of that internal structure on the yield could be retrieved
from a finite element computation with just an elastoplastic ideal (J2) material
equivalent of the skeleton’s. With some basic knowledge about the skeleton’s
mechanical properties, this process allows the determination of the yield stress
without requiring the experimental compression of the material. We showcase the
predictive power of the method against experimental testing, initially for a unit
cell following Gurson, i.e., unique cylindrical void in a 3D printed cylinder sam-
ple. Eventually, the applicability of the method is demonstrated on a complex 3D
printed rock microstructure, reconstructed from a sandpack’s CT-scan.

Keywords: Yield stress · 3D printing ·Microstructure

1 Introduction

Many studies are aiming at accounting for themicro-structural influence on rockmechan-
ical properties, whether on elastic properties [9, 15], rock strength [3, 6, 7, 10], or plastic
flow law [6, 7], to cite only a few. This contribution focuses on the yield value, as
necessary step to model a rock’s behaviour past its limit of elasticity. Some models
already account for the impact of microstructure on yield through the simplest param-
eter describing that microstructure: porosity [5–8]. In this contribution, we look at the
microstructure from a more general perspective.

The only unambiguous determination ofmechanical yield point is possibly restricted
to the simplest case of ideal non-porous linear elastic and ideally plastic materials, such
as metals for instance. Indeed, experimental compression tests of such materials lead to
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characteristic stress-strain curves displaying a sharp transition between the linear elastic-
ity and ideal plasticity. Formore complexmaterials, however, including real geomaterials
like porous rocks, a homogenisation procedure is necessary.

A convenient starting point to study the links between microstructure and yield is
to consider the theoretical scenario of the simplest configuration, which consists of a
single spherical pore, following the seminal work from [7]. To avoid any non-essential
complexity and restrict the study to the influence of microstructure, he selected a rigid
and ideally plastic material. The outer geometry of the unit cell was taken as spherical,
like the void shape, in order to retain the geometrical isotropy and benefit from the
symmetry in the analysis. Using the upper-bound limit analysismethod,Gurson obtained
an approximate upper solution to the yield surface of the hollow sphere geometry, which
proved to be precise enough to fit experimental data [18, 20]. Numerous studies followed,
extending his work and improving on the model. These include derivations accounting
for other shapes of voids (e.g. elliptical [5]), the interaction between voids [4, 19], or
the consideration of more complex matrix materials (e.g. viscoplasticity [1]).

By taking an ideally plastic material, the constitutive relationships extracted can
indeed be solely attributed to the microstructure, i.e. without any interfering influence
of other material properties. Gurson’s analysis was an important first step towards our
understanding of the influence of the microstructure. We aim now at verifying how
the information gathered above holds for physical materials, by complementing our
theoretical analysis with an equivalent experimental study on a real material. We verify
that the yield of a porous material is equal to that of a virtual porous material with an
equivalent ideal elasto-plastic skeleton, instead of considering its more realistic plastic
behaviour (including rheology). Additionally, we propose to extend Gurson’s type of
analysis from limit load to macroscopic yield, measured on stress-strain curves with an
energetic method, following Lesueur et al. [14].

The material selected in this contribution is 3D printed polylactic acid (PLA), whose
mechanical response from laboratory experiments is plotted and modelled in Fig. 1. 3D
printing presents great advantages for the experimental validation of our approach. The
3D printing technique allows a perfect control of the samples’ internal structure, whose
influence we are characterising. In addition, the printed material has a very reproducible
behaviour, as observed by the superposition of curves in Fig. 1. 3D printed PLA is
particularly well-suited to test our hypothesis because its plastic response is far from
ideal plastic (see Fig. 1). This material displays a strong viscoplasticity and we selected a
sample size such that deformation pattern is shearbanding, which results in a weakening
before reaching the limit load (see Fig. 1). Moreover, the printing process influences the
plastic properties of the resulting material [16]. It is therefore of great interest to select
this material to test our approach, which eliminates the need for characterisation of the
viscoplasticity and weakening law of the printed PLA. The method is first validated for a
cylinder sample with the simplest microstructure, consisting of a single pore as Gurson
studied. Then, we present an application of the method for a rock’s microstructure,
reconstructed from segmented µCT scan images.
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Fig. 1. Three stress strain curves of uniaxial compression of 3D printed full cylinders of PLA to
observe the plastic response of the material and assess the reproducibility of mechanical tests on
3D printed samples. The proposed elasto-plastic model in this study is superposed to the curves
and determined by three parameters: the slope of the linear elastic part, the macroscopic yield
value, and the limit load (displayed on a wide range of strain for visualisation purposes).

2 Validation Against Analytical Yield Criterion

In this section, we verify that our hypothesis stating that the yield stress is mostly
influenced by internal structure and not rheology stands for the simplest microstruc-
ture, a unique spherical pore. For this ideal structure, a yield criterion has already been
derived semi-analytically by Gurson, as detailed in the introduction. Therefore, further
simulations are only required in the following section for more complex structures.

The rheology considered is the one of the 3DprintedPLAmaterial displayed inFig. 1.
The polymer is known to be pressure insensitive which allows the uniaxial compression
tests to characterise the limit load qref y of the material, found around 54 MPa. In order
to 3D print the structure corresponding to Gurson’s model, we simplify the geometry
to 2D and the hollow sphere becomes a hollow cylinder with cylindrical hole which is
easy to 3D print and the yield surface follows Gurson’s criterion, expressed as

qy

qrefy

2 = 1+ φ2 − 2φ cos h

(
3

2

py

qrefy

)
, (1)

with py, qy respectively the mean stress and VonMises stress at yield and φ the porosity,
equal to 0.25 in this study. The yield surface predicted by Gurson of the hollow cylinder
of 3D printed PLA of height 48 mm and diameter 32 mm with a cylindrical hole of
diameter 16 mm is plotted in Fig. 2.

FDM-based 3D printers are selected for this work, as they are one of themost popular
consumer-level printers [2]. We used the Ultimaker 2+ printers available at the Shaping
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Matter Lab of Delft University of Technology, which prints polymers composites based
on the extrusion additive manufacturing (AM) system. Slicing parameters are selected
such as to produce 3D printed samples of high quality and homogeneity which allows
for the reproducibility of results as illustrated by the superposition of the stress-strain
curves of Fig. 1. It is worth specifying that the infill density is set at 100% to keep the
solid parts non-porous as the present study only considers porosity at a sample-scale
level. The mechanical loading is done in uniaxial compression which gives one point
of verification on the yield surface. A loading rate of 0.0016 mm/s is applied on the 3D
printed hollow cylinder. In this section, we focus on the limit load since it corresponds
to the state predicted by Gurson’s yield criterion and the supplementary study on the
macroscopic yield stress can be found in the study of Lesueur et al. [13]. The limit
load is determined on the stress-strain curve similarly to Fig. 1. It is found at 39.1 Mpa,
corresponding for a uniaxial compression stress path to a mean stress of 13.3 Mpa. This
yield point falls exactly on the analytical yield surface as shown in Fig. 2, which proves
that the yield stress for a simple structure can be approximated by an ideal elasto-plastic
model.

3 Prediction of the Microstructure Influence on the Yield

Themethod is now tested against the complexmicrostructure of a real rock. The selected
specimen is a cubic subsample of size 0.5 mm of the Berea sandstone [11].

Using the stack of segmented 2D µCT scan images, the geometry is meshed in 3D
following the methodology described by Lesueur et al. [12]. In order to be processed by
the Ultimaker machine for printing, the mesh is converted to an STL file format. The
sample is printed as a cube of size 22 mm. The quality of the printed sample is quite
remarkable as it captures very well the overall complexity of the original rock. Still,
some details of the print remain imperfect, as can be seen in Fig. 3, due to the limit of
the Fused Deposition Modelling printing technique for overhanging parts at an angle
greater than 45º.

Five identically printed samples are then tested in uniaxial compression following
the experimental procedure described in the previous section, with a loading speed of
0.08 mm/min. The resulting stress strain curves, plotted in Fig. 4a, resemble each other,
that is, they share the same elastic properties and similar hardening tendencies but have
noticeably different values of macroscopic yields. We can only infer that the lack of
reproducibility is due to the insufficient printing resolution and quality because the curves
of Fig. 1, whose samples’ printing quality was high, superposed completely. Compared
to Fig. 1, the curve of the sample shows no softening nor limit load, but instead hardens
continuously. The complex pore network in the µCT scan results in a very disperse pore
collapse over the whole sample (see plastic deformations in Fig. 2b) that could prevent
therefore a homogeneous shearband from forming, which would explain the absence of
softening.

In order to numerically determine the yield of this example, we simulate in Finite
Element with REDBACK [17] the same uniaxial compression on a digital version of that
samemicrostructure, reconstructed fromµCTscans andmeshed following themethod of
Lesueur et al. [12], with 796,636 structured elements. The boundary conditions applied
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Fig. 2. Theoretical yield surface predicted by Gurson of the 3D printed hollow cylinder with a
cylindrical hole. The red dot is the macroscopic yield point obtained from the unixial compression
experiment on this specimen.

Fig. 3. Side face of the printed microstructure (a) compared to the digital rock (b).

are meant to reproduce a uniaxial compression and loaded with a prescribed strain rate.
To retrieve exclusively the influence of the internal structure on the yield, we take an ideal
J2 model for the plasticity of the matrix material and calibrate this model to resemble
the behaviour of the printed PLA. The resulting stress strain curve is plotted in Fig. 2a.

We note that for both numerical and experimental approach, we do not reach indeed
a limit load as in Fig. 1. This confirms our interest in extending Gurson’s exclusive study
of the limit load to the macroscopic yield because the limit load does not exist for every
material.

Despite that the match of Fig. 2a is not as impressive as that of Fig. 1 due to the
precision loss on the 3D printing, the numerical and experimental curves still match
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qualitatively and display a similar shape. In this more complex example, the porous
material appears to be stiffer and stronger (higher macroscopic yield) with the experi-
mental approach. This could be explained by the reinforcement of the structure due to the
existence of artificial bridges between pores that were created during the imperfect print-
ing process. The suboptimal printing quality adds to the uncertainty of the experimental
results, which brings us more confidence in the value of elasticity and macroscopic yield
determined with the numerical approach.

Fig. 4. (a) Experimental and numerical stress-strain curves of the uniaxial compression of 3D
printed samples of the Berea sandstone [11]. (b) Visualisation of plastic deformations on the
numerical uniaxial compression at 12% strain.

4 Conclusion

In this contribution, we presented an approach to determine the macroscopic yield of
a porous material from finite element compression of its microstructure, replacing the
traditional destructive testing approach. By focusing the study on the macroscopic yield
instead of the complete mechanical behaviour, we have shown that the complex skeleton
material can be satisfactorily approximated by an equivalent ideal elasto-plastic material
before reaching the macroscopic yield. By reducing the complexity of the material
implemented, simulations of mechanical compressions become more achievable.
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Abstract. The current study reveals subtleties in the propermodelingof strain per-
turbations during the instability analysis of granular materials and their incremen-
tal behavior using the Discrete Element Method (DEM). Multi-directional strain
probings are conducted at different states along an initial stress-strain curve. The
influence of the particles’ inertia at the beginning of each strain probe is highlighted
and remedies to minimize inertia effects toward reaching a static equilibrium are
discussed. An instability analysis of the strain probes as a function of fluctua-
tions in the stress-strain curve demonstrates a difference in material response in
the presence of kinetic micro-avalanches. Finally, the nature of the incremental
behavior in stress responses is explored with respect to size of the strain probes
and energy characteristics.

Keywords: Granular materials · DEM strain probing · Second-order work

1 Introduction

The complex incremental behavior of granular materials is commonly explored via
multi-directional loading probes. For instance, experimental and numerical approaches
have been carried out incorporating strain or stress probing to investigate the incremen-
tal behavior of these materials [1–4]. Given the critical role of the micromechanical
features, e.g., contact gain and loss between particles, and structural (fabric) evolution
in characterizing the behavior of granular media, a DEM modeling approach is herein
used effectively to improve current understanding of their multi-directional incremental
behavior.

The current study addresses challenges encountered in the DEMmodeling of multi-
directional loading/unloading probes in granular materials. In particular, subtleties of
DEM probing are discussed by performing a series of strain perturbations at different
material stress-strain states. In this regard, the influence of inertia at the beginning of
strain probes, instability behaviors within the fluctuations of the stress-strain curve, and
nature of the material response with respect to the size of probes in DEM simulations are
elaborated. The results demonstrate how these issues can change thematerial response so
that caution must be exercised to ensure a reliable micromechanical instability analysis.
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The micromechanical characteristics of granular materials are connected to the evo-
lution of fabric during loading history, where perturbations at different states of a stress-
strain loading path are desired for an incremental analysis. At each current state, the
particles have inertia in accordance with the ongoing quasi-static loading. The influence
of particles’ inertia on the material response during the strain probes is demonstrated and
two remedies are proposed to reach the static equilibrium: loading with a lower strain
rate and resting of the sample, along with limitations that ensue in the latter approach.

The stress-strain curve of a triaxial test on granular materials often exhibits fluc-
tuations with quasi-static kinetic micro-avalanches [5]. A material instability analysis
through the second-order work criterion [6] shows a dependency of incremental behavior
of material on the stress-strain state with respect to the associated fluctuations.

Finally, a series of DEM simulations are carried out in which the nature of stress
responses and non-linearity of the incremental material behavior are investigated with
respect to the size of probing. To this end, the elastic energy stored at contacts during
the probes are compared to the total energy stored at the beginning of the probes to
quantitatively propose a criterion that defines a limit for linearity in material response.

2 DEM Simulations

DEM numerical simulations are herein carried out to perform strain probing at different
states during the deviatoric loading in a plane strain test. The open-source YADE code
[7] has been used for the simulation of loading paths on a REV consisting of spherical
particles.

The mechanical interactions between solid particles are characterized by a classical
linear elastic-plastic contact law that is described by a local Coulombian friction coef-
ficient μ = tan φ = 0.5 and two ratios kn

/
D = 10 MPa and kt

/
kn = 1 representing

the local elastic stiffness with respect to the average particle diameter D = 0.02 mm
(Dmax

/
Dmin = 2).

DEM simulations begin with isotropic compression of a non-contacting cloud of
65, 536 spherical particles within a parallelepiped (with a height/width= 2) until reach-
ing the desired confining pressure of p0 = 10 kPa. A very low interparticle friction is
adopted to obtain a relatively dense packing state with porosity equal to 0.366. . Sub-
sequent to the isotropic compression, the deviatoric loading is applied in vertical (Y)
direction (ε̇yy = const) while the stress is fixed in lateral X direction (σ̇xx = 0), and
the plane strain condition is satisfied in lateral Z direction (ε̇zz = 0). During all loading
steps in the simulations, the quasi-static condition is constantly checked against a very
low level of inertial number or unbalanced force ratio (< 10−4).

The stress-strain response of the sample is illustrated in Fig. 1, where the stress
ratio q/p is plotted versus deviatoric strain εd , indicating the softening phase after the
peak and a clear tendency of dilatancy as a typical volumetric response of dense granular
materials. Three states, namedA, B, and C, chosen during deviatoric loading are selected
to perform the strain probing at q

/
p = 0, 0.5, 1.09, respectively.Multi-directional strain

probes with a magnitude of ||dε|| = 0.00002 are subsequently performed within a three-
dimensional spherical space with range spanned by 15◦ in both altitude (θ) and azimuth
(φ) angles into 266 probes. Ideally, the strain probe magnitude is selected to preserve
the linear stress response, the influence of which will be further discussed later on.
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Fig. 1. Stress-strain and volumetric responses of the sample during DEM simulation of the plane
strain test

2.1 Inertia Effect

Particles in each state on the master, so-called backbone, stress-strain curve of the plane
strain test possess inertia due to the existence of unbalanced forces during the quasi-
static DEM simulation. As such, the material response to the probing is very sensitive to
the particles’ inertia at the beginning of probing. The strain rate ε̇yy = 0.1 was selected
for the backbone plane strain test to ensure that the average unbalanced forces always
remain several orders smaller than the average contact force (< 10−4). It is worth noting
that the simulation costs several weeks in run time incorporating such a small strain rate.

Fig. 2. The influence of particles’ inertia on stress responses to the strain probes with θ = 15◦
and 30◦, and φ = 0 − 2π using strain rates (ε̇yy) of (a) 0.1 , (b) 0.05 , and (c) 0.01.

However, as illustrated in Fig. 2a, the influence of particles’ inertia prevails at the
beginning of strain probes at state C, where the stress responses are non-linear with a
kink effect; it takes time for the assembly to adjust with the strain perturbations. Figure
shows the stress responses for only two probing altitude angles of 15◦ and 30◦ for the
sake of a better visualization.

As a remedy tominimize the influence of inertia at the beginning of the strain probes,
the saved states on the backbone test are loaded with lower strain rates ε̇yy equal to 0.05
and 0.01. This approach is suggested to bypass the tedious run times for repeating the
whole simulation of backbone test with lower strain rates. Figure 3 shows the good
agreement for the strain-stress loading curves with different strain rates. Two states on
the loading curves with strain rates of 0.05 and 0.01 are selected as C1 and C2 in a same
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manner to demonstrate the effect of inertia on the stress response as a result of decreasing
the strain rate.

Fig. 3. Reloading the state C with lower strain rates of 0.05 and 0.01.

As illustrated in Fig. 2b and Fig. 2c, the influence of inertia is minimized by decreas-
ing the strain rate in the backbone test. Incorporating ε̇yy = 0.01, the strain probes
performed at states A, B, and C, and the corresponding stress response envelopes are
visualized in Fig. 4. As anticipated, the DEM simulation results show a directional
dependence of the plastic response on the strain increment direction. Such a directional
dependency is exacerbated when getting closer to the peak, i.e., state C.

Fig. 4. (a) Applied strain probes visualized as a sphere in vectorial strain space, and (b) the stress
responses for states A, B, and C.

As an instability analysis, the second-order work criterion [6] is herein employed to
capture the instability of material states during the directional probes when W2 = dσ :
dε < 0. The polar diagrams of normalized second-order work defined asWn

2 = dσ :dε
‖dσ‖‖dε‖

are given in Fig. 5 for states A, B, and C. In these diagrams, an arbitrary constant value
c is added to the polar value ofWn

2 to obtainWn
2 + c > 0. The points inside the dashed

circle correspond to a negative second-order work. Figure 5c shows negative Wn
2 at a

high deviatoric stress level, i.e., state C, with the strain probing directions of (θ, φ) =
(90◦,150◦) and (105◦,150◦). The results are in agreement with those reported in classical
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triaxial tests [2], noting that a transformation of the direction from strain space to stress
space is necessary (boundaries of instability cones with negative second order work are
normal in the two spaces, i.e., dσ : dε = 0).

Fig. 5. Polar diagrams of normalized second-order work for A, B, and C states. The points inside
the dashed circle show negative Wn

2 .

2.2 Resting

As an alternative to the proposed loading of the sample at saved states with a lower
strain rate, a resting of the sample might also be considered [8]. In such a numerical
technique, after the expected value of stress (q

/
p) is attained during the backbone test,

the specimen is left rested under constant boundary stresses to reach static equilibrium
where the particles experience a quiescent state. Subsequently, the strain probing is
applied on the rested sample and the corresponding stress responses are given in Fig. 6a.
As illustrated, the effect of inertia at the beginning of probes is also limited using this
approach.

However, it must be noted that the resting of the sample transforms the material into
a different state which is no longer necessarily on the stress-strain path of the backbone
test. In order to demonstrate such a transformation, the instability analysis on the rested
sample of state C is carried out where the normalized second-order work for multi-
directional strain probing as illustrated in Fig. 6b. Results show the transformation of
material state at which the instability, i.e., the negative second-order work does not occur
for the directions of instability cone that existed at the state C, as shown in Fig. 5c.

2.3 Fluctuations

Intrinsic to the nature of granular materials, the stress-strain curve of a loading test
often exhibits fluctuations with quasi-static kinetic micro-avalanches [5] that can be
captured via DEM modeling. The fluctuation in boundary stress, driven by the strain
loading, is triggered by a release in elastic energy due to the rearrangement of particles,
and the resulting change in the force chain. Such a micro-avalanche is accompanied by
an increase in kinetic energy that will be dissipated over time with frictional sliding.
For dense assemblies, the fluctuations are concentrated closer to the peak of deviatoric
stress. In this regard, the state at which strain probing is performed might be selected
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Fig. 6. Effect of resting on state C: (a) stress response to the strain probing, and (b) the polar
diagram of the normalized second-order work Wn

2 .

before, on or after an avalanche. Herein, three states are selected on the loading curve
with ε̇yy = 0.01. In accordance with the previous sections, the state C2 is located
on an avalanche, while two other states, i.e., C3 and C4 are selected in between two
micro-avalanches and after an avalanche, respectively, as shown in Fig. 7.

Fig. 7. Fluctuations close to the peak of shear stress and the kinetic micro-avalanches.

The instability analysis presented in Fig. 8 shows the dependency of the incremental
behavior of material on the stress-strain state with respect to the fluctuations. In fact, this
observation suggests unstable directions for whichWn

2 < 0, so-called cone of instability,
is maximsized for the state on a micro-avalanche.

Fig. 8. Normalized second-order work for probing at: (a) C3, (b) C2, and (c) C4.
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2.4 Probing Size

The size of stress probing increment is commonly compared with the confining pressure
of the assembly (p0), while also reported to depend on contact stiffness between particles
[8]. Previous studies have incorporated values ranging ||dσ ||/p0 = 0.1−0.001 [3]. The
probe increment must be sufficiently small to ensure the strain/stress response to remain
linear, while also being sufficiently large to perturb the sample for a meaningful analysis
of the material’s incremental behavior, and for obtaining reasonable micromechanical
measures. In order to investigate the proper size of the perturbation, three more strain
probing with increment sizes of ||dε|| = 0.0002, 0.0005 and 0.001 are performed to
demonstrate the nature of the responseswith respect to the size of probing. Figure 9 shows
the stress responses for the altitude angle of θ = 105◦ where the instability occurs as
shown earlier. The non-linearity of stress responses is observed when increasing the
magnitude of probing after ||dε|| = 0.0002, as illustrated in Fig. 9b and Fig. 9c.

Fig. 9. Stress responses to strain probing with magnitudes of: (a) ||dε|| = 0.0002, (b) 0.0005,
and (c) 0.001. Curved stress response vectors signal non-linearity.

The magnitude of perturbation can be investigated by comparing the elastic energy

stored (dEel) at all contacts c between particles during probing, Eel = ∑
c

(
f 2n
2kn

+ f 2t
2kt

)
,

to the total elastic energy stored at the beginning of probing (Eel
i ). The summarized

results in Table 1 along with the observations in Fig. 9 indicate that the non-linearity of
material response occurs for perturbations when the ratio dEel

/
Eel
i goes beyond a few

percent.

Table 1. Characteristics of strain probings with different magnitudes.

||dε|| ||dσ ||/p0 dEel
/
Eel
i

min max min max

0.00002 0.0006 0.01 0.000002 0.004

0.0002 0.003 0.1 0.00004 0.04

0.0005 0.007 0.25 0.0004 0.1

0.001 0.01 0.5 0.001 0.2
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3 Conclusions

The subtleties in the DEM modeling of perturbations in granular materials have been
addressed in this study. The effect of inertia at the beginning of the strain probes is
demonstrated and two remedies including either a loading with lower strain rate or a
resting are described to reach the static equilibrium. The latter technique is shown to
change the instability characteristics of the assembly during the probes. The instability
analysis considering the strain-stress curve fluctuations shows expansion of the cone of
instability at the kinetic micro-avalanches. Finally, the magnitude of strain probing is
linked to the change in energy characteristics of the assembly during the perturbation.
The numerical results show a non-linear behavior in response to perturbations when-
ever the ratio of elastic energy stored at the contacts during probing to the total elastic
energy is higher than a few percent. This provides an energy-based criterion that elim-
inates guesswork when choosing the appropriate probing size for an objective material
instability analysis.
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Abstract. A novel coupled approach to modelling capillary-driven two-phase
water flow in unsaturated concrete was formulated. By merging the discrete ele-
ment method (DEM) with computational fluid dynamics (CFD) under isother-
mal settings, the process was numerically studied at the me-so-scale in two-
dimensional conditions. Small concrete specimens of a simplified particle meso-
structure were subjected to fully coupled hydro-mechanical simulation tests in
isothermal conditions. A simple uniaxial compression test was used to calibrate
the pure DEM represented by bonded spheres, while permeability and sorptivity
tests for an assembly of bonded spheres were used to calibrate the pure CFD. For
simplified specimens of the pure mortar, mortar with aggregate, and mortar with
aggregate and interfacial transition zone (ITZ) of a given thickness, DEM/CFD
simulations were performed sequentially. The numerical results of permeability
and sorptivity were compared to the data found in the literature. The primary
purpose of the re-search was to demonstrate the impact of ITZ on fluid flow in
unsaturated concrete caused by capillary pressure.

Keywords: DEM-CFD · Capillary flow · Concrete

1 Introduction

At the meso-scale, aggregates, cement matrix, interfacial transition zones (ITZs) be-
tween aggregates and mortar, and macro-pores make up concrete, which is a highly
heterogeneous, discontinuous, and porous composite material. ITZs are seen near ag-
gregates and suggest significant compositional changes when compared to the mortar
matrix [1]. They have more and larger pores, smaller particles, and less anhydrous
cement and C-S-H (calcium silicate hydrate) gel than the cement matrix, resulting in
higher transport characteristics (permeability, diffusivity, and conductivity) [2]. They
make it easier for external aggressive substances to penetrate concretes, causing both the
concrete and the reinforcing to deteriorate. They also help to transmit humidity through
concrete. Concrete pores range in size from a few tenths of nanometers to several tens
of micrometers. Water may be absorbed into concrete by capillary forces emerging from
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the contact of very small pores with a liquid phase if the moisture con-tent inside the
concrete is less than its saturation threshold. This is a common water flow mechanism
in concrete that is observed in field applications that are subjected to wetting and drying
cycles.

The current work shows how to model viscous and capillary-driven two-phase flu-id
flow in unsaturated uncracked concrete at the meso-scale under isothermal condi-tions
using a novel mathematical mesoscopic approach. Aggregates and ITZs were explicitly
considered in the model. Numerical models are especially effective for isolating and
quantifying the effect of various parameters on transport qualities that are difficult to
get from experimentation. They are also significantly more efficient and cost-effective.
At the meso-scale of concrete, numerical simulations were carried out using a fully
coupled 2D DEM/CFD technique that included solid mechanics and flu-id mechan-
ics (DEM—discrete element method, CFD—computational fluid dynamics). Because a
thorough understanding of pore-scale behaviour is required for accurate interpretation
and prediction of macroscopic behaviour, DEMwas used to capture concrete’s mechan-
ical behaviour, and CFD was used to describe the laminar viscous two-phase liquid/gas
flow in pores between the discrete elements by employing a channel network, because
an understanding of pore-scale behaviour is essential for successful interpretation and
prediction of macroscopic behaviour. The pure DEM was represented in simplification
by spheres of various diameters and calibrated using a stand-ard uniaxial compression
test, whereas the pure CFD was calibrated using a standard permeability (a measure of
a material’s ability to transmit fluid) and sorptivity (a measure of a material’s capacity
to absorb/desorb liquid by capillarity) test.

The main purpose of our simulations was to demonstrate the effect of ITZs on
fluid flow in unsaturated concretes, which is influenced by both hydraulic and capil-
lary pressure and is difficult to assess empirically. Unsaturated specimens of a simpli-
fied meso-structure emulating the pure mortar, mortar including aggregate, and mortar
including aggregate with ITZ of a given thickness were subjected to fully coupled hydro-
mechanicalmodeling tests. The interfacial tension, contact angle, and throat radi-uswere
used to compute the capillary pressure. The impact of external load direction, water sat-
uration volume, and gas-phase content on fluid flow patterns was also investigated. The
numerical results of permeability and sorptivity were compared to published data. Previ-
ously, the authors’ fully coupled DEM/CFDmodel was effectively applied to simulate a
hydraulic fracturing process in rocks with one- or two-phase fracturing laminar viscous
fluid flow made up of a liquid/gas mixture [3, 4].

2 DEM for Cohesive-Frictional Materials

For DEM calculations, the 3D spherical explicit discrete element open code YADE [5]
was utilized. The method allows for a small overlap between two touched bodies (the
so-called soft-particle model). As a result, an arbitrary micro-porosity can be created
using DEM. The model assumes a cohesive bond at the grain contact that fails brittle
under the critical normal tensile load [6]. Under normal compression, shear cohesion
failure causes contact slip and sliding, which follows the Coulomb friction law. If a cohe-
sive joint between spheres vanishes after reaching a critical threshold, damage occurs. If
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any contact between spheres emerges after a failure, the cohesion does not reappear. In
quasi-static analyses, a simple local non-viscous dampening is utilized to accelerate con-
vergence. The DEMmodel does not take into account material softening. Bond damage
in tension is the most important micro-scale process for damage in the pre-failure regime
(although bonds can also break by shear). For DEM simulations, five key local material
parameters are required: Ec (elastic modulus of the grain contact), υc (Poisson’s ratio
of the grain contact), μ (the Coulomb inter-particle friction angle), Cc (cohesive contact
force) and Tc (tensile contact force). Furthermore, particle radii R, particle mass density
ρ, and damping parameter αd must be known. The particle breakage was ignored. The
material constants are generally identified in DEM using simple laboratory experiments
on the material (uniaxial compression, uniaxial tension, shear, biaxial compression).
The detailed calibration procedure for frictional-cohesive materials was described in
[6–8], and it was based on real simple standard laboratory tests (uniaxial compression
and uniaxial tension) of concrete specimens by running several DEM simulations of
experiments on discrete element specimens. DEM was shown to be useful for local
and global simulations of macro- and micro-cracks in concrete under bending (2D and
3D studies), uniaxial compression (2D and 3D simulations), and splitting tension (2D
analyses) [6–8].

3 CFD Model

The authors’ paper [4] provided detailed descriptions of the 2D laminar two-phase fluid
flow model and a coupling scheme. Two domains coexisted in the original system: a
3D discrete domain (spheres) and a 2D fluid domain (continuum represented by a grid
of channels). A grid was used to separate the fluid and solid domains. As a result,
each pore was divided into a number of triangles (VP). The gravity centers of the mesh
triangles (VP) in the continuous domain between the discrete elements were connected
by channels composed of two parallel plates that created a virtual network of pores
(VPN) to properly reproduce their changing geometry (shape, surface and position).
Two types of channels are introduced [3, 4]: (1) channels between spheres in contact
(referred to as virtual channels to mimic real flow in 3D,) and (2) channels connecting
grid triangles in pores (referred to as actual channels). The hydraulic aperture (height) of
virtual channels was assumed a function of the hydraulic aperture for the infinite normal
stress, the hydraulic aperture for the zero normal stress, the effective normal stress at the
particle contact and the aperture coefficient [3]. The hydraulic aperture of actual channels
was related to the geometry of the neighbouring triangles, and included also a reduction
factor to keep the maximum Reynolds number along the primary flow channel below
the critical value for laminar flow at all times [3]. Triangles, by definition, had no fluid
flow.VPs stored fluid phase fractions and densities as well as accumulating pressure. The
density change in a fluid phase caused pressure variations, which was related to the mass
change in VPs. In triangles, the momentum conservation equation was thus ignored, but
the mass was still conserved throughout the full volume of triangles. The density of fluid
phases contained in VPs was calculated using state and continuity equations. The fluid
phase fractions in VPs were computed using the continuity equation for each phase, with
the assumption that all fluid phases had the same pressure. The fluid flow in channels
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was calculated by solving continuity and momentum equations for incompressible fluid
laminar flow. Initially, the liquid and gas may exist in virtual pores. The key fluid flow
mechanisms in capillary-driven water flow calculations were piston displacement, snap-
off physics, and viscous flow. The cooperative pore filling effect was indirectly taken into
account due to the discretization of a single pore. The liquid phase was thought to be a
wetting (invading) fluid, while the gas phase was thought to be non-wetting (defending).
There were three flow regimes: (a) single-phase gas flow, (b) single-phase liquid flow,
and (c) two-phase (liquid and gas) flow. When VP was totally pre-filled with a liquid
(wetting) phase and was close to VP, capillary pressure was only evaluated in the flow
regime (b). The Washburn equation [9] was used with the Poiseuille equation to link
viscous and capillary forces. As a result, for the flow regime (single-phase flow) through
channels (capillaries), the mass flow rate of the capillary-driven flow along channels was
calculated.

Mx = ρ
h3

12μ

Pi − Pj − Pc

L
(1)

where Mx—the mass fluid flow rate (per unit length) across the film thickness in the
x-direction [kg/(m s)], h—the hydraulic channel aperture (its perpendicular width) [m],
ρ—the fluid density [kg/m3], t—the time [s], μ—the dynamic fluid (liquid or gas)
viscosity [Pa s] and P—the fluid pressure [Pa], Pi and Pj are the pressure in adjacent
VPs [Pa], Pc is the capillary pressure [Pa] and L is the length of the channel connecting
VPs [m]. Young-Laplace law gives the capillary pressurePc due to the interface between
the two phases (a meniscus).

Pc = 2σ cos�

rt
(2)

where σ is the interfacial tension [N/m], � is the contact angle [deg] and rt is the
throat radius equal to half the channel aperture [m]. The coupled DEM-CFD model was
implemented into the open-source code YADE [5]. The model has 6 constants for the
liquid, 5 for the gas and 6 for the liquid flow network.

4 Model Calibration

A simple uniaxial compression test was used to calibrate the pure DEM represented by
spheres, while permeability and sorptivity tests for an assembly of bonded spheres were
used to calibrate the pure CFD. In contrast to our prior thorough 3D simulations [6], a
simplistic 2D DEM mesoscopic structure was chosen to replicate the mortar/concrete
in the first calculation step. Only spheres were chosen as discrete elements. 400 spheres
were integrated in a tiny bonded granular specimen of 10 × 10 mm2. Along with the
specimen depth, one layer of spheres was applied. The sphere diameter was in the range
of 0.25–0.75 mm (with d50 = 0.5 mm as the mean value). For the sake of simplicity,
the macro-pores were ignored. In all simulations, the same simplified concrete meso-
structure was assumed. Three different bonded granular specimens were used in the
DEM/CFD calculations (Fig. 1): (1) a pure mortar specimen (also known as one-phase
concrete), (2) amortar specimenwith one aggregate (also known as two-phase concrete),
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and (3) a mortar specimen with one aggregate with ITZ surrounding it (also known as
three-phase concrete). The free region between the spheres was represented by micro-
pores. A rigid non-breakable cluster made up of 12 spheres was used to mimic a non-
spherical aggregate. ITZ was considered to have three layers of d = 0.25 mm spheres
around the aggregate with a porosity of p= 20% (the mortar had a porosity of p= 5%).
Experiments [11] were used to calculate the starting porosities of the cement matrix
(5%) and ITZ (20%). The width of ITZ was in simulations around 0.75 mm, which was
10 times higher than in real concrete.

In all DEM specimens, the following material constants were used: Ec = 16.8 GPa,
υc = 0.20,Cc = 180MPa andTc = 28MPa (Cc/Tc = 5.5),μ= 18° and ρ = 2600 kg/m3.
Previous computations [6–8] calibrated on uniaxial compression, tension, and bending
tests were used to choose those values. The results were unaffected by the estimated
damping parameter αd = 0.20. The specimen’s bottom and top were both smooth.
Based on early calculations, a time step of 5× 10–8 s was assumed. All numerical curves
behaved too linearly in a pre-peak region and were too brittle after the peak stress due to
large simplifications considered in 2D calculations. The pure mortar with one aggregate
had the highest strength, whereas the mortar with one aggregate concrete including ITZ
had the lowest. The computed maximum compressive normal stress varied between
52 MPa and 62 MPa. The failure mode was defined by one nearly vertical macro-crack
and a few minor vertical and skew cracks.

Fig. 1. Numerical specimens in DEM/CFD calculations: (a) pure mortar (grey colour) with initial
porosity p = 5%, (b) mortar including aggregate (dark grey colour) with initial porosity p = 5%
and (c) mortar including aggregate with initial porosity p= 5% and ITZ layer around it (light grey
colour) with initial porosity p = 20%

The calibration process of the fluid flow model was split into two parts: (1) per-
meability tests (Darcy test) and (2) sorptivity tests. A simple permeability Darcy test
with two mortar specimens of Fig. 1a was performed for calibration purposes of the
CFD model. Single-phase flow was assumed. Two 2D DEM specimens with different
initial porosity were prepared. Their size was again 10 × 10 mm2. The first specimen



Modelling of Capillary Pressure-driven Water Flow 225

‘1’ simulated the mortar and had the initial porosity of p = 5% and the second speci-
men ‘2’ simulated ITZ around aggregates and had the initial porosity of p = 20%. The
bottom edge was subjected to a constant water pressure of 4.0 MPa, while the top edge
was subjected to a constant water pressure of 1.0 MPa. The zero-flux conditions were
applied at the left and right edges. For the reference pressure Po= 0.1MPa, the dynamic
viscosity of water was μ = 10.02 · 10−4 Pa s, its compressibility 10−10 Pa-1, and its
density ρ0 = 998.321 kg

m3 . The virtual channel apertures were hinf = 4.5 · 10−8 m and

h0 = 3.25 · 10−6 m, respectively. In actual channels, the reduction factor was equal to γ

= 0.012, and the aperture coefficient was equal to �� 1.0. Both factors γ and � were
multiplied by the same channel aperture factor hc to mimic the differing permeability.
The macroscopic permeability coefficient κ was determined using Darcy’s law, assum-
ing that the volumetric flow rate at horizontal walls was the same at equilibrium. The
findings of the permeability tests differed depending on the channel aperture factor ch
(ch = 1–6 and 20). The more porous specimen ’2’ has a higher estimated permeability
coefficient of concrete. It ranged from 2e−17 m2 to 3.8e−14 m2 for the specimen ‘1’
(p = 5%) and from 2e−16 m2 to 2e−13 m2 for the specimen ‘2’ (p = 20%). For the
subsequent numerical tests, a permeability coefficient of κ = 4e−16 m2 was assumed
for the mortar and of κ = 4e−15 m2 for ITZ (10-times lower). Both predicted values
were similar to the permeability of cement pastes without and with ITZ (water/cement
ratio of 0.5, hydration duration of 28 days, water saturation degree of 0.95), which was
determined using aDEM-based technique [2] that was calibrated using experiments (e.g.
[12, 13]). In the sorptivity test, the dry porosity 5% specimen was employed. The initial
pressure of the fluid (gas phase) was 0.1 MPa. At the bottom specimen edge, constant
pressure of 0.14 MPa was used as a boundary condition to fill up the pores in contact
with water. The boundary pressure maintains a small pressure gradient on the boundary
simulating a slight fluid flow, replenishing thewater in the specimen. A constant pressure
of 0.10 MPa was defined at the specimen’s upper edge. Along the specimen’s vertical
edges, no mass flow rate was defined. The simulations were run at a temperature of
293.16 K in isothermal circumstances. The calculated sorptivity of the mortar specimen
was 0.405 mm/min1/2, being in agreement with laboratory test results [14].

5 Results of Capillary-Driven Fluid Flow in Mortar

Three of the bonded granular specimens from Fig. 1 were chosen for capillary-driven
fluid flow testing once more. For all specimens, the initial and boundary conditions were
the same. The fluid’s initial pressure (gas and liquid phase) was set to 0.1 MPa (close
to the atmospheric pressure). The liquid fraction was 97% and the gas fraction 3%. A
constant pressure of 0.14 MPa was chosen to replicate the pore filling with water. The
boundary pressure maintained a small pressure gradient on the boundary simulating a
minor fluid flow, replenishing thewater in the specimen (it was defined in pores in contact
with the specimen bottom). Before the capillary pressure became effective, this pressure
was slightly greater than the initial pressure in the fluid domain (0.1 MPa) to fill in the
pores with water. A mass flux rate of zero was defined along the remaining specimen
boundaries. As a result, the capillary pressure was the primary driver of fluid flow.
The transient process occurred in an isothermal environment. In the solid-fluid realm,
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a constant and uniform temperature of 293.16 K was established. The distribution of
the capillary pressure, water phase fraction, water saturation state and high hydraulic
pressure zone in 3 specimens of Fig. 1 are presented in Figs. 2, 3 and 4.

Fig. 2. Computation results of capillary-driven fluid flow in mortar specimen: (a) capillary
pressure, (b) water phase fraction, (c) water saturation state and (d) high hydraulic pressure zone

The coupled DEM-CFD calculation results show that the maximum capillary pres-
sure was Pcmax= 3.6 MPa. The sorptivity by Hall [14] was 0.405 mm/min1/2 (mortar),
0.401mm/min1/2 (mortar+ aggregate) and 0.276mm/min1/2 (concrete). It was reduced
by the presence of both the barrier in the form of the aggregate and porous ITZ. The
height of the full saturation area was reduced by ITZ due to its high porosity. The high
liquid phase fraction and the high hydraulic pressure dominated in ITZ.

It can be concluded that ITZs in concrete decelerate the capillary fluid flow and con-
sequently reduce sorptivity. In unsaturated concretes, however, the hydraulic pressure,
not the capillary pressure, becomes the major component driving fluid flow when the
hydrostatic pressure of water on the outer surface of a structural element constructed of
concrete is sufficiently high. Because ITZs have a higher permeability than the cement
matrix, they speed up the fluid movement and the process of filling the pores with water.

6 Summary and Conclusions

A new hydro-mechanical DEM/CFD model of multi-phase fluid flow in unsaturated
concretes under isothermal conditions is proposed in this paper. The model allows for
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Fig. 3. Computation results of capillary-driven fluid flow in mortar specimen with aggregate:
(a) capillary pressure, (b) water phase fraction, (c) water saturation state and (d) high hydraulic
pressure zone

the precise tracking of liquid/gas fractions in pores and cracks, including their geometry,
topology, size, and location. The results of the model help to clarify the impacts of
ITZ on water transport through cementitious materials. Our numerical investigations on
permeability and sorptivity of cementmatrices and concretes have led us to the following
main conclusions:

Porous ITZs in concretes reduce sorptivity by slowing the capillary fluid flow. In
unsaturated concretes, sufficiently high hydraulic water pressures become the major
factor driving fluid movement. Porous ITZs speed the full saturation of pores in this
situation. Capillary pressure becomes the major force driving fluid flow in unsaturated
concretes at low hydraulic pressures. Porous ITZs slow the full saturation of pores in this
scenario. Under capillary pressure, aggregates without ITZs increase the fluid flow time
compared to the pure mortar but have no effect on fluid flow under hydraulic pressure.

The fluid flow is fastest when the external pressure is horizontal, and it is slowest
when the external pressure is vertical. As the gas volume content increases, the full
saturation process takes longer.
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Fig. 4. Computation results of capillary-driven fluid flow in mortar specimen with aggregate
and ITZ: (a) capillary pressure, (b) water phase fraction, (c) water saturation state and (d) high
hydraulic pressure zone
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Abstract. The paper deals with three-dimensional numerical simulations of
quasi-static shear between cohesionless sand and rigid walls in a direct wall shear
apparatus. The roughness of the bottom rigid walls varied from smooth to very
rough. The constant normal pressure acted on the top wall. Numerical simula-
tions were carried out with the discrete element method (DEM). Sand grains were
described as spheres with contact moments or as non-symmetric irregular clumps.
The influence of the surface roughness on the macroscopic force-displacement
curves as well as on microscopic results at the grain level was studied. The height
of the shear localized zone, grain rotations, and the ratio between grain slips and
rotations were calculated for the different wall roughness. Two different boundary
conditions along the interface were proposed for micro-polar continua, consid-
ering grain rotations and slips, and normalized interface roughness. The DEM
results offer a better understanding of the interface behaviour between granular
bodies and rigid structures. The results can be used as constitutive law of the slip
contact in non-geometry models. In future work, the different roughness of the
silo walls will be investigated and its influence on pressures and safety.

Keywords: DEM · Interface · Sand

1 Introduction

The granular material interaction with interfaces is a complex issue in many engineering
problems e.g. in silos, foundations, tunnels, and retaining walls. The interface behaviour
is characterized by the formation of a shear zone with a certain thickness in the soil
adjacent to structures, i.e. thin zones of intense shearing with both pronounced grain
rotations and volume changes [1, 2]. In order to describe the interface behaviour, the
Coulomb’s friction law is usually taken into account with a constant ratio between shear
and normal stresses on the wall. However, the wall friction is not a state variable, as
it depends on several factors, such as boundary conditions, pressure level, initial stress
state, and specimen size [1, 2].

Besides the experimental studies, several numerical DEM and FEM analyses were
carried out to investigate the interface behaviour in granular materials. Modelling the
interface thickness within continuummechanics using FEM can be only performed with
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constitutive models possessing a characteristic length of microstructure [3–6]. To better
understand microscopic phenomena during wall friction, DEM calculations were also
carried out. There exist many numerical studies of wall friction using DEM under 2D
conditions [7–9] and only a few under 3D conditions [10–13]. However, no effort is
known to us that was performed in experiments and numerical DEM simulations on
wall friction to determine the ratios between grain rotations and slips, shear stresses and
couple stress and forces and moments at the wall of different roughness. These ratios
are of importance for defining wall boundary conditions within models of micro-polar
continua.

This paper focuses on comprehensive numerical analyses of the quasi-static interface
behaviour using the real mean grain diameter of sand by taking into account the effect of
differentwall roughness (height, distance, and inclinationof grooves). Thewallwas rigid.
All calculations were performed in 3D conditions with DEM. Finally, wall boundary
conditions were proposed for micro-polar continua.

The findings presented in this paper help to better understand both: (1) the wall
friction mechanism when using particles of a different shape in DEM analyses and (2)
wall boundary conditions of different roughness for micropolar continua to simulate
large soil-structure systems.

2 DEM for Cohesionless Sand

The discrete element method (DEM) was used for the numerical simulations. This
method ismore andmore popular for granular materials calculation, due to the capability
of reproducing the discrete nature of sand grains. The results can be studied both at the
micro- and macro-level. In this paper, the open-source 3D DEM platform YADE was
used [14, 15]. The method uses a description of element interactions in terms of contact
forces and moments. First, interaction forces between discrete particles are calculated,
based on constitutive laws. Next, Newton’s 2nd law is applied to find the resulting accel-
eration for each particle, which is then time-integrated to find the velocity and finally
a new position of particles. This algorithm is repeated every time step. To mimic the
real shape of sand particles two methods were used. First, spherical elements with con-
tact moments were assumed in simulations. Second, non-symmetric irregularly-shaped
grain clusters composed of 4 spheres of different diameters. The aspect index (the ratio
between the maximum and minimum clump diameter) was 1.50, the convexity index ‘1’
(the ratio between the smallest sphere volume encompassing the cluster and the cluster
volume) was 2.07 and the convexity index ‘2’ (the ratio between the smallest convex
volume encompassing the cluster and the cluster volume) was 1.16. The DEM approach
with clumps is more time-consuming but more accurate. In this paper, both grain models
were used for comparison purposes.

During a calibration process, 5 main parameters for spheres and 3 for clumps have
to be determined: Ec (modulus of elasticity of the grain contact), νc (Poisson’s ratio of
the grain contact), μ (inter-particle friction angle) and β (rolling stiffness coefficient)
and η (limit rolling coefficient). In addition, a particle radius R, particle mass density
ρ, and numerical damping parameter αd are required. The numerical calibration of the
sand material was based on homogeneous axisymmetric triaxial laboratory test results
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on Karlsruhe sand with different initial void ratios and lateral pressures as compared
to the experiments [16, 17]. The procedure for determining the material parameters in
DEM was described in detail by Kozicki et al. [18, 19]. Note that the representative
elastic contact parameters Ec and νc differ from the elastic moduli of grains. The full
description of the used model can be found in [20]. The grain diameter of sand linearly
varied between 0.25mm and 0.75mmwith the mean grain diameter of d50 = 0.5 mm (as
in the experiment [1, 2]). The used numerical parameters (based on the triaxial calibration
tests) are presented in Table 1.

Table 1. Material parameters assumed in DEM simulations

Material parameters Value
Spheres or clusters

Modulus of elasticity of grain contact Ec (MPa) 300

Poisson’s ratio of grain contact vc [−] 0.3

Inter-particle friction angle μ [º] 18 or 26

Rolling stiffness coefficient β [−] 0.7 or no

Moment limit coefficient η [−] 0.4 or no

Damping coefficient αd [−] 0.08

3 3D DEM Simulations of Direct Wall Shearing Test

The granular specimens for monotonic wall shearing included 80,000 spheres with con-
tact moments or grain clumps (Fig. 1). The specimen length was equal to 100 mm and
its height to 20 mm as in experiments [1, 2]. The width of the specimen was equal to
100 mm (as in the experiment) for spheres and 5 mm (10 × d50) for clusters to reduce
the calculation time. The reduction of the specimen width had an insignificant influ-
ence on the results [20]. The small gap between the top and bottom part of the box was
introduced to prevent grain locking (Fig. 1A). All walls confining the sand specimen
were assumed as rigid boundaries. The top and side walls were movable whereas the
bottom wall was fixed. To induce wall shearing along the bottom (Fig. 1C), the sand
was horizontally sheared under a constant velocity (from the left to the right) until the
horizontal displacement reached the limit of 7 mm.

The bottom wall had a variable roughness (Fig. 1C). It had a regular saw-tooth
surface with different heights but the same distance, thus different inclinations of groves
were obtained. The interface roughness was characterized by the normalized interface
roughness parameter Rn = hg/d50, where hg is the groove height and d50 is the mean
grain diameter [2, 21–23]. The parameter Rn was chosen as 2.0, 1.0, 0.75, 0.50, 0.25,
0.10 and 0.01 (Fig. 1C). The distance sg was always the same (sg = 2× d50). The groove
inclination to the bottom αg diminished with decreasing Rn (e.g. αg = 45° for Rn = 1.0).
The constant pressure equal to 100 kPa was applied to the top wall. The calculations
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were limited to initially dense sand with an initial void ratio eo = 0.55. The numerical
friction between walls and sand was assumed as ϕw = μ = 18°.

Effect of interface roughness on mobilized friction angle
The evolution shape of the curves ϕw = f(ux) and εv = f(ux) are presented in Fig. 2.
The peak ϕw,max and the residual interface friction angle ϕw,res continuously grew with
increasing roughness parameter. The peak values of ϕw,max were very similar for both
clumps and pure spheres (Fig. 2), however, the residual angles ϕw,res, and residual vol-
umetric strains were slightly lower for clumps with the normalized interface roughness
parameter Rn ≥ 0.25 (e.g. they were lower by 3° for Rn ≥ 0.5 and by 6° for Rn = 0.25).

Fig. 1. Direct wall-shear test in DEM: A) geometry of three-dimensional DEM model, and B)
non-symmetric irregularly-shaped convex clumps composed of 4 spheres and C) rigid bottom
wall sections with different normalized interface roughness parameter Rn = hg/d50: a) Rn =
2.0, b) Rn = 1.0, c) Rn = 0.75, d) Rn = 0.50, e) Rn = 0.25, f) Rn = 0.10 and g) Rn = 0.01
(hg—groove height, sg—groove distance, αg—groove inclination and d50—mean grain diameter,
ux—horizontal displacement, T—horizontal force)
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The relationship between the values of ϕw,max and Rn was more parabolic for clumps
in opposite to a bi-linear one for pure spheres although the changes of the peak interface
friction angle were small for clumps above the value of Rn ≥ 0.75. The relationship
between the values of ϕw,res and Rn was, however, bilinear for both clumps and pure
spheres.

Fig. 2. Mobilized wall friction angle ϕw along interface (A) and volumetric strain εv versus
horizontal displacement ux (B) for spheres with contact moments (left) and clumps (right) for
different normalized interface roughness parameter Rn: a) Rn = 2.0, b) Rn = 1.0, c) Rn = 0.75,
d) Rn = 0.50, e) Rn = 0.25, f) Rn = 0.10 and g) Rn = 0.01

Distribution of particle rotation, particle displacements and void ratio
The distribution of spheres rotation in the residual state is shown in Fig. 3. The values of
rotations were calculated from the cubic REV with a side length equal to 5d50. In this
paper, the effect of 3 different wall roughnesses was presented for spheres with contact
moments and clusters.

Figure 4 presents the zoom on single sphere rotations in the residual state for three
different wall roughnesses. The particle rotations are the best indicators of shear local-
ization [1, 2, 20, 24–26]. Based on particle rotations (Figs. 3 and 4), it can be seen that
during interface shearing with the different normalized interface roughness parameter
Rn, an almost horizontal dilatant shear zone was created at the interface (Rn ≥ 0.01). The
grain rotations had nearly always the same positive sign (clock-wise rotation) (Fig. 4).
More grains rotated in the opposite direction for clusters as compared to pure spheres
with contact moments.

The thickness of the wall shear zone was estimated, based on an inflection point
in the distribution of sphere rotations ω. The thickness was lower than for spheres by
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Fig. 3. Distributionof sphere rotationsωwith attached scale in [rad] at residual state forux =7mm
with: A) spheres with moments and B) clusters for different normalized wall roughness parameter
Rn: a) Rn = 2.0, b) Rn = 0.75 (positive sign—clockwise rotation, negative sign—anti-clockwise
rotation)

15–40% for Rn ≥ 0.50 due to higher grain rotations at the wall. The largest grain rotation
was located slightly above the interface (h/d50 = 3–5) for Rn > 0.5, and for Rn ≤ 0.5
it was directly located at the interface, where it diminished with the reduction of Rn.
For Rn > 0.5, the sphere rotations approached zero at the bottom wall (equal to the
situation with particles trapped in asperities). Above the shear zone, all spheres were
almost motionless. The maximum residual grain rotation for Rn ≥ 0.75 was equal to
about 60° for clusters and 45° for pure spheres with contact moments.

Micropolar boundary conditions
The horizontal grain displacement u and the ratioA=ωd50/u (ratio between the interface
grain rotation multiplied by the mean grain particle and interface grain slip) along the
wall obviously decreased with increasing Rn (Figs. 5 and 6). This ratio ωd50/u was
approximately equal to 0.5Rn [(A = ωd50)/u ∼= 0.5Rn] for clusters in contrast to pure
spheres with contact moments, where [A = (ωd50)/u ∼= Rn] for Rn ≤ 0.75. It was caused
by greater grain rotations of clumps than of pure spheres with contact moments. Thus,
the ratio A also depends on the grain shape.
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Fig. 4. Zoom on distribution of single grain rotations with attached scale in [rad] at residual state
for ux = 7 mm with: A) spheres with moments and B) clusters for different normalized wall
roughness parameter Rn: a) Rn = 2.0, b) Rn = 0.75 and c) Rn = 0.10 (positive sign—clockwise
rotation, negative sign—anti-clockwise rotation)

Fig. 5. Distribution of horizontal sphere displacement u at wall across normalized specimen
height h/d50 at specimen mid-point in residual state for ux = 7.0 mm from DEM with different
normalized wall roughness parameter Rn: a) Rn = 2.0, b) Rn = 1.0, c) Rn = 0.75, d) Rn 0.50, e)
Rn = 0.25, f) Rn = 0.10 and g) Rn = 0.01 for A) spheres with moments and B) clumps

Based on DEM results, the following three boundary conditions at the interface,
based on the ratios A = (ωd50)/u, B = u/ux and C = (t × d50)/m and may be used [20] (t
- tangential wall force, and m—tangential moment along the wall). Those ratios slightly
depend on the particle shape. For the case of Rn ≥ 0.75, where all grain rotations ω tend
to zero at the interface, the boundary condition can be simplified as ω = 0, u = 0, and v
= 0 (no rotations and displacements) as in the experiment [1, 2].

The calculated ratios A, B and C may be approximated in the range 0 ≤ Rn < 0.75
[9] as: A = (ωd50)/u ∼= 0.5Rn, B = u/ux = 1-Rn, C = (t’ × d50)/m’ = 1/Rn.

All ratios depend in a simple way on Rn only. The proposed boundary conditions
may be prescribed in nodes of FE meshes along the interface in micropolar simulations
(the particle rotation ω may be replaced by the micropolar (Cosserat) rotation ωc) [2,
27]. To fully validate the suggested boundary conditions, the DEM interface simulation
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Fig. 6. Distribution of ratio A = ωd50/u across normalized specimen height h/d50 at specimen
mid-point in residual state for ux = 7.0 mm from DEM with different normalized wall roughness
parameter Rn: a) Rn = 2.0, b) Rn = 1.0, c) Rn = 0.75, d) Rn 0.50, e) Rn = 0.25, f) Rn = 0.10 and
g) Rn = 0.01 for A) spheres with moments and B) clumps

results should be extended by the effect of different grain shapes, grain size distributions,
and mean grain sizes.

4 Conclusion

The normalized interface roughness had a huge influence on the mobilized wall friction
angle and thickness of the wall shear zone. The wall friction resistance increased with
increasing wall roughness. The peak and the residual wall friction angle grew with the
raising roughness parameter. The relationship between the peak/residual wall friction
angle and normalized wall roughness was parabolic/bilinear. The residual wall friction
angle was by 3°–7° lower than for pure spheres with contact moments (Rn ≥ 0.25).

Thewall friction resistancewas strictly combinedwith the thickness of thewall shear
zone wherein pronounced grain rotations occurred. The thickness of the wall shear zone
increased with the growing normalized wall roughness parameter in a bilinear way as the
residual wall friction angle. The thickness of the wall shear zone expanded in a parabolic
way from 1 × d50 up to 12 × d50 for Rn = 0.01–2.0. It was smaller by 15–40% than for
pure spheres with contact moments (Rn ≥ 0.25).

For very rough walls (Rn ≥ 0.75), the largest sphere rotation was located slightly
above the bottom wall (h/d50 = 3–5) and for Rn ≤ 0.5 it was directly located at the
bottom wall where it diminished with the reduction of Rn. For Rn ≥ 0.75, the sphere
rotations were approaching zero at the wall (the spheres were trapped in asperities). The
largest wall rotation was higher by 30% than for pure spheres with contact moments (Rn

≥ 0.25).
The ratio between the wall grain rotation multiplied by the mean grain diameter and

wall grain slip was almost the same during shearing along the wall. It systematically
reduced with decreasing normalized wall roughness parameter. It was twice smaller as
for pure spheres with contact moments.

Three different relationships were proposed to describe the wall boundary condi-
tions in micropolar continua. They included the ratio between the micro-polar rotation
multiplied by the mean grain diameter and slip along the wall, the ratio of the slip at
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the wall and total imposed horizontal displacement and the ratio between the horizontal
tangential forcemultiplied by themean grain diameter and horizontal tangential moment
along the wall. All ratios were related to the normalized wall roughness only.
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Abstract. aut]Riley, Davidaut]Einav, Itaiaut]Guillard, FrançoisBrittle
porous media subjected to confined compression experience rate-
dependent compaction behaviour ranging from smooth stress-strain to
one with recurrent abrupt drops in stress. Micromechanical investigations
suggest that stress drops correlate with the collapse of the meso-scale
structure. As such, we develop a novel model that qualitatively gener-
ates such behaviour. A vital feature of the model is the meso-related
temperature, which characterises the fluctuating velocities at the meso-
scale and, importantly, in general to all heterogeneous porous media. We
assume that such temperature induces a loss of strength at the macro-
scale and leads to a stress drop. Additionally, the meso-related tem-
perature decays into micro-related (thermal) temperature, thus allowing
stress to recover following a stress drop. Our model exhibits the different
stress drop regimes and provides insight into the physical mechanisms
required to generate these compaction patterns in brittle porous media.

Keywords: Porous media · Stress drops · Rate-dependent · Meso-scale

1 Introduction

Understanding compaction phenomena in brittle porous media are of significance
for petroleum engineering, geotechnical engineering, and material science. These
materials can exhibit intriguing behaviours such as rate dependence and the
occurrence of recurrent stress drops. These stress drops have been observed in a
variety of porous materials (e.g., sand [1], snow [2,3], cereals [4,5], and foam [6])
and typically correspond to localised compaction. However, little research has
been performed to model stress drops directly, despite using continuum models
to study localisation phenomena [7].

We present a continuum model that generates these recurrent stress drops
while only using state variables relevant to general porous media. The key to the
model’s success is the meso-related temperature, which is related to the velocity
fluctuations at the meso-scale and is used as a softening mechanism for the mate-
rial. The meso-related temperature is first generated by macroscale dissipative
processes and then feeds into thermal energy through a two-stage irreversible

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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process [8]. This temperature is assumed to be the physical mechanism responsi-
ble that could potentially lead to a drop in stress. The stress can recover after the
softening since the meso-related temperature is dissipated into thermal tempera-
ture. Furthermore, we show that this model generates rate-dependent behaviour
similar to that observed in puffed rice cereal [5] and dust [9], where increasing
strain rates result in the evolution from stress drops to stress undulation with
no sharp event of stress instability.

2 Model

The model developed herein depends on state variables general to all porous
media. Since porous media are composed of a solid matrix, the elastic strain
tensor εe

ij is a necessary state variable. We can define a bulk density ρ and solid
density ρs since the solid material is interspersed with pores. The evolution of the
bulk density ρ is determined by the mass balance equation, while a constitutive
assumption gives the evolution of the solid density ρs. In our model, we assume
that ρs does not change and therefore use the unstressed solid density ρ∗

s, which
is constant for a given material. The introduction of these two densities naturally
allows us to define a third state variable, the solid fraction φ = ρ

ρs
≈ ρ

ρ∗
s
, which

is critical for capturing plastic pore collapse.
The above state variables are typically applied for modelling porous media.

In addition, we also include the meso-related entropy sm to represent the meso-
scopic degrees of freedom of the meso-structure [8]. The conjugate of the meso-
related entropy is the meso-related temperature, which characterises the velocity
fluctuations of the material at the meso-scale and is related to the thermody-
namic pressure pT in a manner that will be shown in Sect. 2.2. Our model
assumes that the meso-related temperature is the phenomenological cause of
macroscale softening. For example, in sand, the meso-related temperature could
be generated from mechanical dissipation such as plastic pore collapse or grain
breakage; alternatively, in a cellular solid, the meso-related temperature is gen-
erated from the local collapse of the solid skeleton structure. These dissipative
events create new degrees of freedom that allow the local material to develop
fluctuating velocities. The fluctuating velocities then decay into thermal temper-
ature. We assume that the culmination of a potentially large number of these
meso-scale regions with fluctuating velocities could induce meso-scale weakening
and collapse, thus leading to macroscale softening.

Consequently, we consider the internal energy density u to be given by

u(ρ, εe
ij , sm) = ue(ρ, εe

ij) + um(sm), (1)

where ue and um are the elastic energy and meso-related energy densities, respec-
tively.

2.1 Elastic Internal Energy

We assume that the porous media can be modelled as a linear elastic material,
but also include a linear dependence on density ρ. Thus, we consider the following
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form for the elastic internal energy density:

ue(ρ, εe
ij) =

(
ρ

ρ∗
s

)(
K

2
εe2

v +
3
2
Gεe2

s

)
. (2)

Here εe
v = εe

ii is the volumetric elastic strain and εe
s =

√
2
3εe

ij

′
εe
ij

′ is the triaxial

elastic strain, where εe
ij

′
is the deviatoric component of the elastic stress tensor.

Finally, K and G are the bulk stiffness and the shear stiffness, respectively.
The elastic pressure and triaxial shear stress can then be given by

pe =
∂ue

∂εe
v

=
ρ

ρ∗
s

Kεe
v, (3)

qe =
∂ue

∂εe
s

= 3
ρ

ρ∗
s

Gεe
s. (4)

where the triaxial stress invariants can also be determined from the elastic stress
tensor σe

ij by pe = 1
3σe

ii and qe =
√

3
2σe

ij

′
σe

ij

′ .

2.2 Meso-related Internal Energy, Temperature,
and Thermodynamic Pressure

The meso-related internal energy was first introduced to capture the meso-
related degrees of freedom for a porous media [8] and later modified [10] to
the present form:

um(sm) =
s2m
4

. (5)

Through differentiation of the meso-related temperature is found to be

Tm =
∂um

∂sm
=

sm

2
. (6)

The evolution of the meso-related temperature was derived from the corre-
sponding entropy balance [10]. Meso-related temperature is first generated by
macroscale dissipative processes and then feeds into thermal energy through
a two-stage irreversible process [8], which is captured through a source term
from macro-scale dissipation and sink term that depends on the current state
of meso-related temperature. Furthermore, the entropy balance accounts for the
advection of the meso-related temperature, which results in a Laplacian term in
the evolution equation. The concepts of two-stage irreversibility and non-local
interactions guide us to the form of the evolution law of the meso-related tem-
perature, given by:

∂tT
2
m = km∇2Tm + D − ηT 2

m. (7)

Here km is a meso-related diffusivity constant, η is a coefficient controlling the
rate of energy sink from the meso-scale to the micro-scale, and

D = peε̇p
v + qeε̇p

s , (8)
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is the mechanical dissipation, where ε̇p
v and ε̇p

s are the plastic volumetric and
triaxial shear strain rate invariants, respectively. For simplicity, we assume η is
a constant. Note that the current paper seeks to explore only local phenomena,
and thus the second gradient term in Eq. (7) will be neglected from here on.

The two-stage irreversibility concept results in a cascading of energy from
meso-related temperature to the micro-related (thermal) temperature T , which
results in the following form of the micro-related temperature evolution:

∂tT = kT ∇2T +
η

cT ρ
T 2

m, (9)

where kT is the micro-related diffusivity coefficient and cT is the specific thermal
heat capacity of the porous media.

The thermodynamic pressure can be given through the following expression

pT = − ∂(u/ρ)
∂(1/ρ)

∣∣∣∣
sm
ρ ,εe

ij

= T 2
m. (10)

We then recognise that the total pressure p consists of two terms in this model,
p = pe + pT .

2.3 Plastic Strain Rates and Solid Fraction Evolution

Generally, many porous materials exhibit irreversible deformations with no
apparent purely elastic regime, e.g., puffed rice cereals and sand. As such, we
use a combination of bounding surface plasticity [11] and h2plasticity [12] in a
similar manner to [10], such that the material undergoes plastic deformations at
any load. Moreover, mechanical dissipation grows instantaneously upon loading,
which results in a continuous rise in the thermodynamic pressure.

From hydrodynamic derivations, it was determined that the elastic stresses
are equivalent to the effective stresses [13]. Thus, we apply similar assumptions
of effective stress theory that the bounding surface y and loading surface ya

depend on the elastic (effective) stresses. The bounding surface in this model is

y =
(

2pe

py
− 1

)2

+
(

2qe

Mpy

)2

− 1 = 0, (11)

where M is the slope of the critical state line (CSL) and py is the isotropic yield
pressure, which depends on the solid fraction and thermodynamic pressure, as
will be discussed later.

Importantly, an elliptical surface bounds both pe and qe, and as such it
guides the plastic strains under both shear and pressure loading conditions.
Furthermore, elliptical surfaces such as the one chosen for y have been used in
modelling of sands [14], snow [15,16], and carbonate rock [17]. While specific
shapes of a yield surface may better capture the phenomenology of particular
materials, changing the shape will not negate the generation of a stress drop as
long as the stress is capped in both pe and qe.
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Now a loading surface that passes through the current stress state can be
determined. We choose the loading surface to take the following form

ya =
(

2pe

ξpy
− 1

)2

+
(

2qe

ξMpy

)2

− 1 = 0, (12)

where ξ is determined from the above equation using the current state variables.
The mapping variable ξ is bounded between 0 and 1, and when ξ = 1 the loading
surface coincides with the bounding surface. This ensures that at any non-zero
stress state that ya = 0 and guarantees the generation of plastic processes.

The rates of the plastic strain invariant are

ε̇p
v = ξ|λa|∂ya

∂pe
, (13)

ε̇p
s = ξ|λa|∂ya

∂qe
, (14)

where λa is the auxiliary non-negative plasticity multiplier. The auxiliary non-
negative plasticity multiplier is solved for by the consistency condition and tem-
porarily assuming ξ = 1. However, the rates of plastic strains are reduced by
taking the actual value of ξ from Eq. (12). Thus, the stress state progresses away
from the current loading surface for ξ < 1. However, if ξ = 1, then λa would keep
the stress state on the loading surface which coincides with the bounding surface
in this instance. Additionally, the mechanical dissipation is always non-negative
since an associative flow rule was chosen and the loading surface is elliptical.

By using the conservation of mass, the evolution of solid fraction can be
expressed as

∂tφ = φ(ε̇p
v + (1 − τ)ε̇e

v), (15)

where τ can either be related to the solid material’s Poison ratio [18] or equiv-
alently a relative solid fraction [10]. In this paper, we assume that only plastic
volumetric processes produce changes in the solid fraction (τ = 1). Thus, Eq. 15
reduces to φ̇ = φε̇p

v.
Following typical conventions of modelling porous media, we take the size of

the bounding surface to enlarge with increasing density but also assume that it
contracts with a rise in thermodynamic pressure (kinetic softening). To account
for density hardening, py is taken to depend nonlinearly on φ like that used for
snow [19]. The introduction of kinetic softening is motivated by the concepts
introduced in Sect. 2.2 and experimental findings in aqueous foams [20] and
granular solids [21], where it was observed that stress fluctuations could induce
yielding. To this end, we assume py declines as a function of the kinetic number
Ik = pT

pe+pT , which is bounded between 0 and 1 [10]. The specific form of the
isotropic yield pressure is

py = β∗K
(
(1 − φ)−3 − 1

)
e−cIk , (16)
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where β∗ is a dimensionless positive constant, and c is a positive constant, which
characterises the material sensitivity to kinetic softening. The choice of an expo-
nential function ensures that when pT = 0, the material undergoes no softening.
Moreover, as φ → 0, the yield stress approaches zero, which could be further
accentuated if pT � pe (Ik → 1). Notably, the dependence of the isotropic yield
pressure on the thermodynamic pressure results in a rate-dependent plasticity
model, which will be shown in Sect. 3.1.

3 Results

All simulations are oedometric tests with a constant boundary velocity V , similar
to typical experimental conditions. The material parameters were assumed and
chosen to be reasonable for brittle highly porous media and are used unless
otherwise specified. As such, we assume that the initial solid fraction φ0 = 0.25
to represent materials such as puffed rice cereal [22], dust particles [9], and
calcareous sand [23]. The shear stiffness is determined based on a chosen bulk
stiffness K and Poisson’s ratio ν by G = 3K(1−2ν)

2(1+ν) . For Poisson’s ratio, we
assume ν = 0.25, which is within the range of typical values for sand [24] and
rock [25]. We assume that M = 1.5 is relevant for puffed rice cereals as the grains
are angular and internally porous, similar to calcareous sand [26]. However, we
explore the effect of different values in Sect. 3.2. Finally, we choose c = 10 as
the value was found to generate repetitive stress drops. Table 1 summarises the
chosen constants for the simulations.

Table 1. Model constants used for the simulations, unless otherwise indicated in the
text.

K (kPa) ν β∗ M ρ∗
s ( kg

m3 ) φ0 c ε̇v (s−1) η (s−1)

103 0.25 1
10

1.5 600 0.25 10 0.01 103

3.1 Rate Dependence and Density Dependence

To relate to the dependencies observed in experiments, we explore the rate sen-
sitivity of the model, showing that it can conceptually capture diverse rate-
dependent phenomena. The simulations use a constant boundary velocity V ,
which is varied by several orders of magnitudes in the same manner that was
done experimentally for puffed rice cereals [27]. Note that this results in an
increasing instantaneous volumetric strain rate ε̇v throughout the simulation.

For all scenarios in Fig. 1, the normalised axial stress initially increases with
a simultaneous rise in pT and φ. This steady rise continues until there is a sharp
runaway of pT (or meso-related temperature), which can be interpreted as the
destruction of the meso-structure (kinetic softening). Simultaneously, there is a
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Fig. 1. The effect of strain rate and initial density on the constitutive behaviour. Panels
(a–c) shows the response for three different velocities V . Here, the effects are shown for
the evolution of normalised axial stress σ/K (top), normalised thermodynamic pressure
pT /K (middle), and solid fraction φ (bottom), for three different values of initial solid
fractions, φ0, all against εv.

sharp increase in φ and a rapid decline in the normalised axial stress. However,
for the chosen constants, the sink term in Eq. (7) mitigates the runaway events
when it becomes larger than the mechanical dissipation, which causes a decline
in pT (middle row). The decline in pT allows for the normalised axial stress
to recover. We imagine this phenomenological cycle representing competition
between the destruction of the meso-structure and density hardening, which
supports the development of recurrent drops in stress (top plots).

From Fig. 1, it is evident that the model exhibits rate-dependent behaviour,
particularly at low initial density (φ0 = 0.2). For higher V , the thermodynamic
pressure attains higher magnitudes and takes more time to dissipate into ther-
mal temperature, as shown by the middle row of subplots. This results in a
build-up of the meso-related temperature over time for the highest velocity.
However, it should be noted that the model shows little change in behaviour at
velocities below V = 0.01 m s−1. Furthermore, the thermodynamic pressure’s
time-dependent relaxation results in a smoother increase in φ during a stress
drop and generates a smoother transition from the decline in axial stress to
stress recovery. Importantly, as φ0 increases, the model predicts a transition from
abrupt stress drops to smoother undulating drops in stress as observed exper-
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imentally in dust particles and modelled for snow. Furthermore, Fig. 1 shows
that under increased strain rates, the σ-εv curve becomes smoother, which is in
line with experimental observations [5]. While the model qualitatively predicts
the transition from abrupt drops in stress to a smooth σ-εv curve, it does not
quantitatively agree with these behaviours at the appropriate initial densities or
velocities. The agreement with a specific material could be improved to better
capture phenomenology by using a density-dependent η or c value or a term for
viscous hardening.

3.2 Critical State Slope

Fig. 2. The effect of the slope of the CSL on the constitutive behaviour. Panels (a-
c) shows the response for three different M (in Eq. 11). Here, the effects are shown
for the evolution of the normalised axial stress σ/K (top), normalised thermodynamic
pressure pT /K (middle), and solid fraction φ (bottom), all against εv.

Initially, M = 1.5 was assumed to be potentially reasonable for puffed rice cereals
and calcareous sand, but now we explore the effect on the constitutive response.
It is important to explore this as some porous materials could be relatively
spherical and smooth, which leads to a lower M , such as glass beads, and still
generate stress drops [7]. In granular materials, M is correlated with the internal
friction angle, and thus one might expect that it could impact the material’s
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susceptibility to the destruction of the meso-scale. Thus, M was varied from 1
to 2 to identify its impact on the model response. In this section we prescribe
V = 0.01 m s−1.

From Fig. 2, the decrease of axial stress during an axial stress drop is signifi-
cantly larger and occurs less frequently for a low M , which matches experimen-
tal observations in glass beads [9]. These substantial drops in stress correspond
to a significant increase in solid fraction φ and thermodynamic pressure. We
interpret this as a result of low internal friction, resulting in more pronounced
destruction of the meso-scale structure from velocity fluctuations at the meso-
scale (meso-related temperature). As M increases, the stress drop magnitudes
decrease, where in granular media, this phenomenology could be a result of
higher internal friction that prohibits the destruction of the meso-scale. More-
over, these drops increase in frequency and result in a higher amount of plastic
pore collapse (bottom plots).

4 Conclusions

Brittle porous media have been shown to exhibit fascinating rate-dependent
compaction patterns. We develop a constitutive model, which generates recurrent
abrupt stress drops and reproduces the rate-dependent transitions in compaction
as observed experimentally. The critical component to the generation of these
features is the introduction of the meso-related temperature, which captures
in a phenomenological manner the entropy production associated with meso-
scale velocity fluctuations. This temperature is assumed to destroy the meso-
scale structure in heterogeneous porous media. Thus, we use the meso-related
temperature to induce macroscale kinetic softening.

The occurrence and frequency of the abrupt recurrent stress drops are depen-
dent on the competition between the destruction of the meso-structure (kinetic
softening) and density hardening. Moreover, internal friction within the material
is accounted for, which can moderate the magnitude of stress drops. Thus, the
model can reproduce the behaviours of materials ranging from glass beads to
cereals. Additionally, the time-dependent nature of sinking meso-related tem-
perature to micro-related temperature results in rate dependence similar to that
observed in puffed rice cereal [27] and dust particles [9], where the stress drops
transition from abrupt to undulating with a reduced magnitude. However, these
results occurred at different initial densities than those expected from exper-
imental results. A better quantitative agreement could be achieved by using
state-dependent functions for c or η or including a viscous hardening term, but
these are left for future research.

While this model was developed to be general for all porous media that
undergo pore collapse and density hardening, it could be enhanced to capture
specific material’s behaviour. The extension of the model to specific materials
should be possible as the model’s behaviour emerges from state variables that are
useful in describing all porous media. For example, in the case of sand, the combi-
nation of breakage and pore collapse contributes to plastic dissipative processes
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and could be accounted for by combining this model with breakage mechan-
ics [18]. Alternatively, the model could be tuned to reproduce the behaviours of
metallic foam by applying a yield surface shape known to produce behaviours
associated with such materials.
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Abstract. In this paper, we investigate some micromechanical aspects of elasto-
plasticity in heterogeneous geomaterials. The aim is to upscale the elasto-plastic
behavior for a representative volume of the material which is a very challeng-
ing task due to the irreversible deformations involved. Considering the plastic
strains as eigen-strains allows us to employ the powerful tools offered by Contin-
uumMicromechanics which are mainly developed for upscaling of eigen-stressed
elastic media. The validity of such eigen-strain based formulation of multiscale
elasto-plasticity is examined in the current work by comparing its predictions
against Finite Element (FE) simulations. The great agreement between the mul-
tiscale analytical model predictions and numerical values confirms that plastic
strains can be considered as eigen-strains.

Keywords: Multiscale · Plasticity · Eigen-strain · Finite elements

1 Introduction

Elastic properties, plastic deformations and failure strength of geomaterials are strongly
influenced by their underlying heterogeneous microstructure, including shape and topol-
ogy of individual material phases. Advances made in multiscale modeling techniques
have allowed the development of macroscopic models for geomaterials that are predi-
cated on the inherent microstructural features. Most notably, as an extension to classical
linear homogenization techniques, Pichler and Hellmich [1] generalized the primitive
Transformation Field Analysis (TFA) of Dvorak and Benveniste [2] developed for eigen-
stressed elastic compositemedia, to arbitrary ellipsoidal shape anddirectional orientation
of the material phases. For an elasto-plastic composite, on the other hand, complexi-
ties pertaining to the dissipative behavior of the material naturally arise; in particular,
regarding the upscaling of plastic strains. The idea of considering the plastic strains as
eigen-strains in homogenization was first proposed in the early 1990s (see Dvorak [3]).
Such an assumption appears to be reasonable given that the plastic strains are kine-
matically incompatible, thus qualify as free strains [4]. As such, the homogenization of
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elasto-plasticity would be greatly simplified in that, the elasto-plastic material can be
replaced with an equivalent eigen-stressed elastic media. Such an approach was adopted
by Morin et al. [4] within the generalized TFA framework of Pichler and Hellmich [1];
and later on by the authors [5] who extended the framework to model the poro-elasto-
plastic behavior of clays. The current work examines the validity of the eigen-strain
formulation of plastic strains by comparing the multiscale model predictions against FE
results.

2 Eigen-Strain Based Multiscale Elasto-Plasticity Framework

Let us consider a heterogeneous Representative Elementary Volume (REV) of the mate-
rial comprising elasto-plastic phases (denoted by the set N ). The phases generally
have differing properties, shapes and directional orientations. The objective is to for-
mulate the overall elasto-plastic constitutive relation of the REV by upscaling the local
heterogeneous strain and stress fields within the REV.

Notations: Mathematical double-struck capital letters denote fourth-order tensors,
while second-order tensors and scalars are shown in normal type. Moreover, variables
referring to the macroscopic scale are accented with an overline.

2.1 Homogenization of Microscopic Elasto-Plasticity

We assume all phases to show an elastic-perfectly plastic behavior and undergo small
strains. A fundamental assumption is considering the plastic strains as eigen-strains.
Under these conditions, the stress state inside the REV can be written as:

σ α = Cαεα + ςα ∀α ∈ N (1)

where σ and ε are stress and strain tensors, C is the elasticity tensor, and ς = −C : εp

is the eigen-stress tensor. The evolution of plastic strains (εp) is assumed to follow the
flow rule:

ε̇p = λ̇
∂G

∂σ
(2)

where the plastic potential G is generally different from the yield function. The yield
function F and the plastic multiplier λ satisfy the Melan-Kuhn-Tucker conditions.

In the constitutive relation (Eq. 1), the microscopic stress σ satisfies the momentum
balance condition, while the strain ε is kinematically compatible. Moreover, the REV is
subjected to uniform macroscopic strain ε at its boundary (Hashin boundary condition).
Such boundary condition guarantees that the volume average of strains inside the REV
is equal to the prescribed macroscopic strain. Upon using the Levin’s theorem for pre-
stressed heterogeneous composite media, the macroscopic stress is obtained as:

σ = C : ε + ς (3)

where the macroscopic elasticity C and eigen-stress ς are defined in terms of average
properties of phases and a strain concentration tensor A (see Sect. 2.2) as:

C =
∑

α∈N
fαCα : Aα (4)
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ς =
∑

α∈N
fαA

�
α : ςα = −

∑

α∈N
fαA

�
α : Cα : ε

p
α (5)

In the above relations, f denotes the volume fraction. Equation 3 can be re-stated in
form of the classical constitutive relation for an elastic-perfectly plastic material:

σ = C : (
ε − εp

)
(6)

with the following definition for the macroscopic “plastic” strain εp:

εp = C
−1 :

(
∑

α∈N
fαA

�
α : Cα : ε

p
α

)
(7)

2.2 Multiscale Return-Mapping Algorithm

In this section, we present the procedure for numerical integration of the multiscale
elasto-plasticity equations over discrete time steps. Under applied loading, the state
variables of the REV evolve, including the induced plastic strains at the microscopic
scale. Tracking the evolution of microscopic plastic strains requires access to a localiza-
tion relation for the strain inside the REV. Based on the generalized TFA formulation
[1], the phase averaged strains of the pre-stressed media can be related to the boundary
strain and all the eigen-stresses occurring in all the other phases through employing the
so-called concentration and influence tensors A and B as:

εα = Aα : ε −
∑

β∈N
Bαβ : C−1

β : ςβ = Aα : ε +
∑

β∈N
Bαβ : ε

p
β ∀α ∈ N (8)

Closed-form expressions for the concentration and influence tensors are presented
in the works of Pichler and Hellmich [1], Morin et al. [4] and Eghbalian [5] for different
homogenization schemes. A fully strain-controlled loading scheme is considered here,
while the extension to hybrid stress-strain loading can be found in Eghbalian [5]. Know-
ing the REV state at time step n (εn, εp,n, σ n, εp,n and σ n) and given the increment in
the macroscopic strain (εn+1), the aim is to obtain the state variables at step n + 1, i.e.
εn+1, εp,n+1, σ n+1, εn+1, εp,n+1 and σ n+1. For the macroscopic strain, we can write:

εn+1 = εn + εn+1 (9)

Next, in a trial attempt, we assume no additional microscopic plastic strains are
induced in the REV during the current step. The trial microscopic strains and stresses
at step n + 1 are thus calculated for each phase α using the localization relation (Eq. 8)
and constitutive relation (Eq. 1) as:

εn+1,tr
α = Aα : εn+1 +

∑

β∈N
Bαβ : ε

p,n
β ∀α ∈ N (10)

σ n+1,tr
α = Cα :

(
εn+1,tr

α − ε
p,n
α

)
∀α ∈ N (11)
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Next, the assumption of purely elastic behavior (trial attempt) is checked for all
phases via inserting the trial stresses into the yield criterion F :

F tr
α = F

(
σ n+1,tr

α

)
∀α ∈ N (12)

If F tr
α < 0α ∈ N , the REV is elastic and the calculated trial strains and stresses

are accepted. If for at least one phase F tr
α > 0, the REV is plastic and return mapping

should be performed. Referring to Eqs. 1, 8, 10 and 11, the phase strains and stresses at
step n + 1 can generally be stated based on their trial values as:

εn+1
α = εn+1,tr

α +
∑

β∈N
λ̇n+1

β Bαβ : ∂G

∂σβ

∀α ∈ N (13)

σ n+1
α = σ n+1,tr

α + Cα :
⎛

⎝
∑

β∈N
λ̇n+1

β Bαβ : ∂G

∂σ β

− λ̇n+1
α

∂G

∂σ α

⎞

⎠ ∀α ∈ N (14)

We denote the set of elastic and plastic phases by Ne and Np, respectively. For
the elastic phases we have λ̇n+1

α = 0 ∀α ∈ Ne, while for the plastic phases λ̇n+1 is
determined by satisfying the yield criterion:

F
(
σ n+1

α

)
= 0 ∀α ∈ Np (15)

resulting in a system of nonlinear equations that can be solved using the Newton iterative
scheme. The calculated plastic multipliers are then used in Eqs. 13 and 14 to update the
microscopic stresses and strains, fromwhich the macroscopic stresses and strains can be
updated using Eqs. 6 and 7. It should be pointed out that upon updating the microscopic
stresses, it is possible that some of the phases that were initially deemed elastic also
become plastic. It is also possible that the converged plastic multipliers become negative
for some phases, which means those phases are no longer plastic. In both cases, the set
of plasticized phases should be updated in an iterative process until convergence.

3 Validation Against FE Results

In this section, we validate the predictions of the multiscale formulation (Sect. 2) against
FE simulations where multiple phases are explicitly modeled. A 3D spherical REV of
unit radius is considered which includes 26 oblate spheroidal inclusions with aspect
ratio of 0.35 and total volume fraction of 0.143 distributed isotropically inside a matrix.
The matrix is elastic, while the inclusions obey an associated Drucker-Prager elasto-
plasticity:

F = G = σ eq + σm tan φ − σ 0 (16)

where σm is the mean stress, σ eq is the equivalent deviatoric stress, φ is the friction angle
and σ 0 is the failure stress under pure shear. Thematerial properties of the REV are listed
in Table 1. The REV is subjected to uniaxial compression loading by prescribing a total
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vertical strain of −0.001 and zero lateral stresses, followed by unloading to half the
total vertical strain. For the eigen-stress based multiscale analysis, the Mori-Tanaka
scheme is used for calculation of concentration and influence tensors. FE simulations
are performed using the Abaqus software [6]. Due to symmetry of the problem, only 1/8
of the REV is modeled. Different views of the REV are shown in Fig. 1 together with the
boundary conditions. The flat sides of the REV are constrained in the normal direction
while the loading is applied on the outer surface of the sphere. The REV is discretized
using approximately 120,000 quadratic tetrahedron elements.

In order to apply the loading on the curved surface of the REV, we define a ghost
point (see Fig. 2) and constrain its degrees of freedom to those of the nodes on the outer
surface of the REV using the built-in Multi Point Constraint option in ABAQUS. The
loading on the REV is then simply controlled by prescribing the displacement or force
of the ghost point.

Figure 3 shows the evolution of macroscopic axial stress (|σ 33|) versus the macro-
scopic axial (ε33) and lateral (ε11) strains. For comparison purposes, the problem is also
solved for the case where the inclusions are elastic. It is seen that the multiscale model
predicts well the REV response in both the loading and unloading regimes. Next, the
components of local average strains for three inclusions (labeled in Fig. 1) are plotted
in Fig. 4 against the prescribed macroscopic axial strain in the loading regime. Slight
differences are observed between the model predictions and FE results for inclusions
#1 and #3 which are due to the severe interactions between inclusions in the FE model
leading to heterogeneous strain/stress fields within inclusions. This is in contrast with
the assumption in the multiscale model where the strain (and stress) fields inside inclu-
sions are assumed homogeneous. Nevertheless, it appears that when these discrepancies
are volume averaged over the whole REV, they cancel out each other, leading to a good
match between the overall responses in the multiscale model and FE (Fig. 3).

Fig. 1. Different views of the REV considered for the numerical homogenization in this work.
1/8 of the sample REV used for FE simulations.
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Fig. 2. The ghost point used for applying the homogeneous boundary conditions on the REV.

Table 1 Material properties of the sample REV.

Parameter Value

Matrix Young’s modulus (MPa) 100

Poisson’s ratio 0.25

Inclusions Young’s modulus (MPa) 1000

Poisson’s ratio 0.25

Friction angle φ (radian) 0.0

Failure stress σ 0 (MPa) 0.12

Fig. 3. Variation of macroscopic axial stress versus macroscopic (a) axial and (b) lateral strains.
Comparison between the multiscale model predictions and FE results.

Finally, returning to Eq. 7, εp is the macroscopic residual strain that is not recovered
upon the removal of the external load on theREVand is classically referred to as “plastic”
strain. It consists of a plastic part which is the volume of average of microscopic plastic
strains, and a “frozen” elastic strain which does not recover in the unloading regime.
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Fig. 4. Variation of average plastic strain versus prescribed macroscopic axial stress for the three
inclusions shown in Fig. 1. The local direction r coincides with the axis of symmetry of the
inclusion, while t and p refer to in-plane directions.

The macroscopic “plastic” strain together with its plastic part are plotted in Fig. 5 for
both the multiscale and FEmodels. Themodel correctly predicts the macroscopic plastic
strain demonstrating its capability in modeling the macroscopic unloading regime (as
also seen in Fig. 3).

4 Concluding Remarks

The study investigates the robustness of an eigen-strain based multiscale model formu-
lated within the extended TFA framework for upscaling the elasto-plastic behavior of a
heterogeneous REV. Comparing the model predictions with FE simulations of a sam-
ple REV shows that such formulation is indeed capable of capturing the macroscopic
response of the elasto-plastic REV as well as evolution of microscopic stress and strain
fields inside the REV, in both the loading and unloading regimes, with acceptable accu-
racy. The current formulation thus emerges as a simple, yet powerful, tool for strength
predictions of heterogeneous geomaterials.



258 M. Eghbalian et al.

Fig. 5. Volume average of microscopic plastic strain versus the macroscopic “plastic” strain.

Acknowledgement. This work was funded by the Natural Sciences and Engineering Research
Council of Canada (Grant No. RGPIN-2016-04086 held by R.W. and Grants No. RGPIN-2020-
06480 and DGECR-2020-00411 held by M.P.).

References

1. Pichler, B., Hellmich, C.: Estimation of influence tensors for eigenstressed multiphase elastic
media with nonaligned inclusion phases of arbitrary ellipsoidal shape. J. Eng. Mech. 136(8),
1043–1053 (2010)

2. Dvorak, G.J., Benveniste, Y.: On transformation strains and uniform fields inmultiphase elastic
media. Proc. R. Soc. Lond. A 437(1900), 291–310 (1992)

3. Dvorak, G.J.: Transformation field analysis of inelastic composite materials. Proc. R. Soc.
Lond. A 437(1900), 311–327 (1992)

4. Morin, C., Vass, V., Hellmich, C.:Micromechanics of elastoplastic porous polycrystals: theory,
algorithm, and application to osteonal bone. Int. J. Plast 91, 238–267 (2017)

5. Eghbalian, M.: Hydro-mechanical coupling and failure behavior of argillaceous sedimentary
rocks: a multi-scale approach. Ph.D. thesis, University of Calgary (2019)

6. Abaqus.: Dassault Systemes Simulia Corporation. Johnston, Rhode Island (2019)



Author Index

A
Alshibli, Khalid A., 87

B
Baud, Patrick, 31
Benahmed, N., 74
Bennett, Terry, 41
Borja, Ronaldo I., 155
Bui, Ha H., 41

C
Calo, Victor M., 24
Chen, Ruoyu, 144
Cier, Roberto J., 24
Crespo-Parraga, Leonardo, 51

D
Darve, Félix, 3
del Castillo, Enrique M., 155
di Prisco, Claudio, 162
Dight, P., 173
Dyskin, A. V., 173
Dyskin, Arcady V., 127, 136, 182

E
Eghbalian, Mahdad, 251
Einav, Itai, 51, 240

F
Farahnak, Mojtaba, 212
Fávero Neto, Alomir H., 155
Flessati, Luca, 162

G
Grabowski, Aleksander, 230

Guillard, François, 51, 240
Gutierrez, Marte, 13

H
He, Junxian, 127
Hickman, Randall, 13
Hu, Manman, 59, 67
Huang, Lingcao, 31
Hueckel, Tomasz, 144

I
Imseeh, Wadi H., 87
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