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Abstract. Motivated by dynamic graph visualization, we study the
problem of representing a graph G in the form of a storyplan, that is, a
sequence of frames with the following properties. Each frame is a planar
drawing of the subgraph of G induced by a suitably defined subset of
its vertices. Between two consecutive frames, a new vertex appears while
some other vertices may disappear, namely those whose incident edges
have already been drawn in at least one frame. In a storyplan, each ver-
tex appears and disappears exactly once. For a vertex (edge) visible in
a sequence of consecutive frames, the point (curve) representing it does
not change throughout the sequence.

Note that the order in which the vertices of G appear in the sequence of
frames is a total order. In the StoryPlan problem, we are given a graph
and we want to decide whether there exists a total order of its vertices
for which a storyplan exists. We prove that the problem is NP-complete,
and complement this hardness with two parameterized algorithms, one
in the vertex cover number and one in the feedback edge set number of G.
Also, we prove that partial 3-trees always admit a storyplan, which can
be computed in linear time. Finally, we show that the problem remains
NP-complete in the case in which the total order of the vertices is given
as part of the input and we have to choose how to draw the frames.
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1 Introduction

Let G = (V,E) be a graph with n vertices. We write [n] as shorthand for the
set {1, 2, . . . , n}. A storyplan S = 〈τ, {Di}i∈[n]〉 of G is a pair defined as follows.
The first element is a bijection τ : V → [n] that represents a total order of the
vertices of G. For a vertex v ∈ V , let iv = τ(v) and let jv = maxu∈N [v] τ(u),
where N [v] is the set containing v and its neighbors. The lifespan of v is the
interval [iv, jv]. We say that v appears at step iv, is visible at step i for each
i ∈ [iv, jv], and disappears at step jv + 1. Note that a vertex does not disappear
until all its neighbors have appeared. The second element of S is a sequence of
drawings {Di}i∈[n], such that: (i) each drawing Di contains all vertices visible
at step i, (ii) each drawing Di is planar, (iii) the point representing a vertex
v is the same over all drawings that contain v (i.e., it does not change during
the lifespan of v), and (iv) the curve representing an edge e is the same over all
drawings that contain e. We introduce the StoryPlan problem.

StoryPlan
Input: Graph G = (V,E)
Question: Does G admit a storyplan?

In what follows, each drawing Di of a storyplan S is called a frame of S.
Also, we denote by |Di| the number of vertices of Di, while the width of S
is w(S) = maxi∈[n] |Di| − 1 (we subtract one to align the definition with other
width parameters). If G admits a storyplan, then the framewidth of G, denoted
by fw(G), is the minimum width over all its storyplans; otherwise the framewidth
of G is conventionally set to +∞. We will observe that the framewidth of G upper
bounds its pathwidth [12], since each frame can be interpreted as a bag of a path
decomposition with the addition of conditions (ii)–(iv).

Motivation and Related Work. Testing for the existence of a storyplan
of a graph generalizes planarity and it is of theoretical interest as it combines
classical width parameters of graphs with topological properties. From a more
practical perspective, computing a storyplan (if any) of a graph G is a natural
way to gradually visualize G in a story-like or small-multiples fashion, such
that each single drawing is planar and the reader’s mental map is preserved
throughout the sequence of drawings (see, e.g., [8] for a similar approach). More
in general, the problem of visualizing graphs that change over time has motivated
a notable amount of literature in graph drawing and network visualization (see,
e.g., [2,3,6,7,15,16]). While numerous dynamic graph visualization models have
been proposed, two works are of particular interest for our research. The first one
is the work by Borrazzo et al. [6], in which the following problem is introduced.
A graph story is formed by a graph G, a total order of its vertices τ , and a
positive integer W . The problem is to find a sequence of drawings {Di}i∈[n] in
which each Di contains all vertices v such that i − W < τ(v) ≤ i, and the
position of a vertex is the same over all drawings it belongs to. Borrazzo et al.
prove that any story of a path or a tree can be drawn on a 2W × 2W and on an
(8W + 1) × (8W + 1) grid, respectively, so that all the drawings of the story are
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straight-line and planar. Note that having a fixed window of size W implies that
at most O(W · n) edges of G can be represented, in particular, any edge whose
endpoints are at distance larger than W in τ does not appear in any drawing.
Having both a fixed order and a fixed lifespan are the key differences with our
setting. In particular, unconstrained lifespans allow us to find stories in which
all edges are drawn in at least one step, while planarity still guarantees that
even large frames are readable. Besides such differences in the models, our focus
is on the complexity of the decision problem, rather than on area bounds for
specific graph families. The second work is by Da Lozzo and Rutter [7], who
introduce stream planarity. Given a graph G, a total order τ of the edges of
G, and a positive integer W , stream planarity asks for a sequence of drawings
{Di}i∈[n] in which each Di contains all edges e such that i − W < τ(e) ≤ i, and
the subdrawing of the vertices and edges shared by Di and Di−1 is the same in
both drawings. Da Lozzo and Rutter prove that there exists a constant value for
W for which the stream planarity problem is NP-complete. They also study a
variant where a backbone graph is given whose edges must stay in the drawing
at each time step; for this variant they prove that the problem is NP-complete
for all W ≥ 2 and can be solved in polynomial time when W = 1 or when
the backbone graph is biconnected. The difference of stream planarity with our
problem, besides the fact that edges are streamed rather than vertices, is again
having a fixed order and a fixed lifespan.

Contribution. The main results in this paper can be summarized as follows.

– We show that StoryPlan is NP-complete (Sect. 3.1). As we reduce from
One-In-Three 3SAT and we blow up the instance by a linear factor, it
follows that there is no algorithm that solves StoryPlan in 2o(n) time unless
ETH fails. On the other hand, such a lower bound can be complemented with
a simple algorithm running in 2O(n log n) time.

– Motivated by the above hardness, we study the parameterized complexity of
StoryPlan and describe two fixed-parameter tractable algorithms. We first
show that StoryPlan belongs to FPT when parameterized by the vertex
cover number via the existence of a kernel, whose size is however super-
polynomial (Sect. 3.2). We then prove that StoryPlan parameterized by
the feedback edge set number (i.e., the minimum number of edges whose
removal makes the graph acyclic) admits a kernel of linear size (Sect. 3.3).

– In parameterized analysis, a central parameter to consider is treewidth. In
this direction, finding a parameterized algorithm for StoryPlan appears to
be an elusive task. However, we show that for partial 3-trees, a storyplan
always exists and can be computed in linear time (Sect. 3.4).

– Finally, we initiate the study of the complexity of a variant of StoryPlan
in which the total order of the vertices is fixed in advance (but the vertex
lifespan remains unconstrained). We prove NP-completeness for this problem
via a reduction from Sunflower SEFE [14] (Sect. 4).

Some proofs are omitted and can be found in [4]; the corresponding statements
are marked (�).
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2 Preliminaries and Basic Results

A drawing Γ of a graph G = (V,E) is a mapping of the vertices of V to points in
the plane R2, and of the edges of E to Jordan arcs connecting their corresponding
endpoints but not passing through any other vertex. Drawing Γ is planar if no
edge is crossed. A graph is planar if it admits a planar drawing. A planar drawing
of a planar graph G subdivides the plane into topologically connected regions,
called faces. The infinite region is the outer face. A planar embedding E of G is
an equivalence class of planar drawings that define the same set of faces and the
same outer face. For any V ′ ⊆ V , we denote by G[V ′] the subgraph of G induced
by the vertices of V ′ and by Γ [V ′] the subdrawing of Γ representing G[V ′].

Connection with Pathwidth. The next properties show some simple connec-
tions between storyplans and path decompositions [12].

Theorem 1 (�). Let G = (V,E) be a graph, then pw(G) ≤ fw(G). Also, if G is
planar then it always admits a storyplan, and in particular pw(G) = fw(G).

Since computing the pathwidth is NP-hard already for planar graphs of bounded
degree [11], the next corollary immediately follows from Theorem 1.

Corollary 1. Computing the framewidth of a graph is NP-hard for planar
graphs of bounded degree.

Analogously, computing the pathwidth of a graph is FPT in the pathwidth [5],
hence computing the framewidth of a planar graph is also FPT in the framewidth.

Complete Bipartite Graphs. It is not difficult to verify that if a graph admits
a storyplan, then it does not contain K5 as a subgraph. However, complete
bipartite graphs always admit a storyplan and such storyplans have important
properties. The next statement plays a central role in most of our proofs.

Lemma 1 (�). Let Ka,b = (A∪B,E) be a complete bipartite graph with a = |A|,
b = |B|, and 3 ≤ b ≤ a. Let S = 〈τ, {Di}i∈[a+b]〉 be a storyplan of Ka,b. Exactly
one of A and B is such that all its vertices are visible at some i ∈ [a + b].

In view of Lemma 1, we have the following definition.

Definition 1. For a complete bipartite graph Ka,b with 3 ≤ b ≤ a and a story-
plan S of Ka,b, we call fixed the partite set of Ka,b whose vertices are all visible
at some step of S, and flexible the other partite set.

3 Complexity of STORYPLAN

In this section we prove that: StoryPlan is NP-complete and cannot be solved
in 2o(n) time unless ETH fails, but there is an algorithm running in 2O(n log n)

time (Sect. 3.1); StoryPlan is in FPT parameterized by vertex cover number
or feedback edge set number (Sects. 3.2 and 3.3); graphs of treewidth at most 3
always admit a storyplan, which can be computed in linear time (Sect. 3.4).
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Fig. 1. Illustration for the reduction of Theorem 2.

3.1 Hardness

We reduce from One-In-Three 3SAT, a variant of 3SAT which asks whether
there is a satisfying assignment in which exactly one literal in each clause is true.
Let ϕ be a 3SAT formula over N variables {xi}i∈[N ] and M clauses {Ci}i∈[M ].
We construct an instance of StoryPlan, i.e., a graph G = (V,E), as follows;
refer to Fig. 1 for an illustration.

Variable Gadget. Each variable xi is represented in G by a copy K(xi) of
K3,3 (see Fig. 1(a)). Let Ai and Bi be the two partite sets of K(xi), which we
call the v-sides of K(xi). A true (false) assignment of xi will correspond to set
Ai being flexible (fixed) in a putative storyplan of G (see Definition 1).

Clause Gadget. Consider a copy of K2,2,2 = (U1 ∪ U2 ∪ U3, F ). An extended
K2,2,2 is the graph obtained from any such a copy by adding three vertices
s1, s2, s3, such that these three vertices are pairwise adjacent, and each sj is
adjacent to both vertices in Uj , for j ∈ {1, 2, 3}. In the following, s1, s2, s3 are
the special vertices of the extended K2,2,2, while the other vertices are the simple
vertices. A clause Ci is represented in G by an extended K2,2,2, denoted by K(Ci)
(see Fig. 1(b)). In particular, we call each of the three sets of vertices Uj ∪{sj} a
c-side of K(Ci). The idea is that K(Ci) admits a storyplan if and only if exactly
one c-side is flexible (each c-side will be part of a K3,3, see the wire gadget
below).

Wire Gadget. Refer to Fig. 1(c). Let xi be a variable having a literal lij in a
clause Cj . Any such variable-clause incidence is represented in G by a set of three
vertices, which we call the w-side W (lij). All vertices of W (lij) are connected to
all vertices of one of the three c-sides of K(Cj), which we call U , such that the
graph induced by W (lij) ∪ U in G contains a copy of K3,3. Also, each vertex of
W (lij) is connected to all vertices of the v-side Ai (Bi) if the literal is positive
(negative), such that the graph induced by W (lij) ∪ A (W (lij) ∪ B) in G is a
copy of K3,3. Also, note that each c-side of K(Cj) is adjacent to exactly one
w-side.
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Lemma 2 (�). If graph G admits a storyplan then ϕ admits a satisfying assign-
ment with exactly one true literal in each clause.

Proof (Sketch). Let S be a storyplan of G. For each variable gadget K(xi) we
assign the value true to xi if the v-side Ai is flexible in S. Consider any literal
lij and the wire gadget Wij . If lij is positive (negative), then Ai (Bi) and Wij

form a K3,3, hence by Lemma 1 the w-side Wij is fixed (flexible). Analogously,
if we consider the clause gadget K(Cj), the c-side connected with Wij is flexible
(fixed). Symmetrically, we assign the value false to xi if the v-side Bi is instead
flexible in S, and for any positive (negative) literal lij , the w-side Wij is flexible
(fixed), while the corresponding c-side of K(Cj) is fixed (flexible). In other words,
the value of xi propagates consistently throughout all its literals. It remains to
prove that, for any clause Cj of ϕ, precisely one literal is true. Namely, we claim
that exactly one c-side of K(Cj) is flexible, while the other two are fixed. At
high level, we rely on the fact that an extended K2,2,2 wants at least two c-sides
to be fixed, while the special vertices force at least one c-side to be flexible.

Lemma 3 (�). If the formula ϕ admits a satisfying assignment with exactly one
true literal in each clause, then graph G admits a storyplan.

Proof (Sketch). Given a satisfying assignment of ϕ with one true literal per
clause, we can compute a storyplan S = 〈τ, {Di}i∈[n]〉 of G. In what follows,
when the order of a group of vertices is not specified, any relative order is valid.

Fig. 2. Proof of Lemma 3: drawing the vertices of the fixed v-sides.

Consider a single variable gadget K(xi). If xi is true in the satisfying assign-
ment, then we let appear the three vertices of the v-side Bi of K(xi), that is, Bi

is the fixed side of K(xi). If xi is false, we do the opposite, namely we let appear
the three vertices of the v-side Ai of K(xi). This procedure is repeated for all
variables in any order. For ease of presentation, we can imagine that all the
drawn v-sides are horizontally aligned, as shown in Fig. 2. Thus, for the variable
gadgets, it remains to draw their flexible v-sides.

Consider now a wire gadget W (lij). If xi is true and lij is positive, then
W (lij) must be fixed because it forms a K3,3 with the v-side Ai of K(xi), which
is flexible. Therefore we let appear the three vertices of W (lij). Similarly, if xi is
false and lij is negative, then W (lij) must be fixed, and we let appear the three
vertices of W (lij). Again, this procedure is repeated for all wires in any order.
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Fig. 3. Proof of Lemma 3: drawing the vertices of the fixed w-sides.

For ease of presentation, we can imagine that all the drawn w-sides are arranged
along a horizontal line slightly above the variable gadgets, as shown in Fig. 3.
Thus, also for the wire gadgets, it remains to draw the flexible w-sides.

Fig. 4. Proof of Lemma 3: drawing the vertices of the flexible v-sides.

We sketch the remaining part of the proof (see [4] for a full proof). Flexible
v-sides can be drawn as in Fig. 4. Figure 5 shows how to draw a clause gadget,
ignoring the connections with the linked wire gadgets. Finally, in order to draw
the flexible w-sides and their edges, and the edges between the fixed w-sides and
the corresponding c-sides, we enclose all the wire and variable gadgets in a face
of the current clause gadget where all vertices of the linked c-side are visible.

Theorem 2 (�). The StoryPlan problem is NP-hard and it has no 2o(n) time
algorithm unless ETH fails.

The above lower bound for the running time of an algorithm solving Story-
Plan can be easily complemented with a nearly tight upper bound. The proof
of the next theorem also shows that StoryPlan belongs to NP. Namely, it gives
a nondeterministic scheme to generate a set of candidate solutions, and then it
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Fig. 5. Proof of Lemma 3: drawing a clause gadget.

shows how to check, in polynomial time, if a candidate solution is valid. However,
it intertwines such process in order to obtain a lower time complexity.

Theorem 3 (�). The StoryPlan problem is in NP. Also, given an n-vertex
graph G, there is an algorithm that solves StoryPlan on G in 2O(n log n) time.

Proof (Sketch). We first guess a total order of the vertices of G. This fixes for
each i ∈ [n] the visible vertices. Next, for each i ∈ [n], we generate the possible
planar embeddings (rather than planar drawings) of the graph induced by the
vertices visible at step i, and discard any embedding E for which there is no
planar embedding E ′ generated at step i−1 (if i > 1) such that the restrictions of
E and E ′ to the common subgraph coincide. If the algorithm returns at least one
planar embedding at step n, there is a sequence of planar embeddings in which
common subgraphs share the same embedding, hence G admits a storyplan.

3.2 Parameterization by Vertex Cover Number

A vertex cover of a graph G = (V,E) is a set C ⊆ V such that every edge of E
is incident to a vertex in C, and the vertex cover number of G is the minimum
size of a vertex cover of G. We prove the following by means of kernelization.

Theorem 4 (�). Let G = (V,E) be a graph with n vertices and vertex cover
number κ = κ(G). Deciding whether G admits a storyplan, and computing one
if any, can be done in O(22

O(κ)
+ n2) time.

Algorithm Description. Without loss of generality, we assume that the input
graph G does not contain isolated vertices, as they do not affect the existence of
a storyplan. Let C be a vertex cover of size κ = κ(G) of graph G. For U ⊆ C,
a vertex v ∈ V \ C is of type U if N(v) = U , where N(v) denotes the set
of neighbors of v in G. This defines an equivalence relation on V \ C and in
particular partitions V \ C into at most

∑κ
i=1

(
κ
i

)
= 2κ − 1 < 2κ distinct types.

Denote by VU the set of vertices of type U . We define three reduction rules.

R.1: If there exists a type U such that |U | = 1, then pick an arbitrary vertex
x ∈ VU and remove it from G.
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R.2: If there exists a type U such that |U | = 2 and |VU | > 1 , then pick an
arbitrary vertex x ∈ VU and remove it from G.

R.3: If there exists a type U such that |U | ≥ 3 and |VU | > 3 , then pick an
arbitrary vertex x ∈ VU and remove it from G .

Lemma 4 (�). Let G′ be the graph obtained from G by applying one of the
reduction rules R.1–R.3. Then G admits a storyplan if and only if G′ does.

Proof (Sketch). For the nontrivial direction, suppose that G′ admits a storyplan
S ′ = 〈τ ′, {D′}i∈[n′]〉, where n′ = n − 1. We can distinguish three cases based on
the reduction rule applied to G. Here we only prove the simplest of the three
cases, namely the case in which R.1 is applied. See Fig. 6 for an illustration. Let
x be the vertex removed from G to obtain G′ and let v be its neighbor, whose
lifespan according to τ ′ is [iv, jv]. We compute τ from τ ′ by inserting x right after
v, thus the lifespan of x in τ is [iv + 1, iv + 1]. Similarly, we compute {Di}i∈[n]

from {D′}i∈[n′] as follows. For each i ≤ iv, we set Di = D′
i. For i = iv + 1,

we draw x in D′
iv

sufficiently close to v such that edge xv can be drawn as a
straight-line segment that does not intersect any other edge. We then set Di to
be equal to the resulting drawing. For each i > iv + 1, we set Di = D′

i−1.

Fig. 6. Illustration for Case A of the proof of Lemma 4.

Based on Lemma 4, we can construct an equivalent instance of G of size
O(2κ) and use it to conclude the proof of Theorem 4 (see [4]).
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3.3 Parameterization by Feedback Edge Set

A feedback edge set of a graph G = (V,E) is a set F ⊆ E whose removal results
in an acyclic graph, and the feedback edge set number of G is the minimum size
of a feedback edge set of G. We prove the following.

Theorem 5. Let G be a graph with n vertices and feedback edge set of size
ψ = ψ(G). Deciding whether G admits a storyplan, and computing one if any,
can be done in O(2O(ψ log ψ) + n2) time.

Algorithm Description. A k-chain of G is a path with k+2 vertices and such
that its k inner vertices all have degree two. We define two reduction rules.

R.A: If there exists a vertex of degree one, then remove it from G .

R.B: If there exists a k -chain with k ≥ 3 , then remove its inner vertices
from G.

Based on the above reduction rules we can prove the following.

Lemma 5 (�). StoryPlan parameterized by feedback edge set number admits
a kernel of linear size.

To conclude the proof of Theorem 5, observe that computing a linear kernel G∗

of G, i.e., applying exhaustively the reduction rules R.A and R.B, can be done
in O(n + ψ) time. Afterwards, following the lines of the proof of Theorem 4, we
can brute-force a solution for G∗ (if any) in 2O(ψ log ψ) time, and reinsert the
missing O(n) vertices each in O(n) time (as detailed in [4, Lemma 9]).

3.4 Partial 3-trees

A k-tree has a recursive definition: A complete graph with k vertices is a k-tree;
for any k-tree H, the graph obtained from H by adding a new vertex v connected
to a clique C of H of size k is a k-tree; C is the parent clique of v. A partial k-tree
is a subgraph of a k-tree and partial k-trees are exactly the graphs of treewidth
at most k. Since 2-trees are planar, they admit a storyplan by Theroem 1. We
prove that the same holds for partial 3-trees (which may be not planar).

Theorem 6 (�). Every partial 3-tree G with n vertices admits a storyplan,
which can be computed in O(n) time.

Proof (Sketch). We shall assume that G is a (non-partial) 3-tree. Indeed, if G is
a partial 3-tree, a supergraph of G that is a 3-tree always exists by definition. We
now construct a specific tree decomposition T of G that will be used to compute
its storyplan; refer to Fig. 7. For a definition of tree decomposition see [13]. The
subgraph Cμ induced by the vertices of each bag μ of T is the subgraph associated
with μ and it is a 4-clique for each bag μ of T , except for the root ρ of T for which
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Fig. 7. (a) A 3-tree G. (b) The decomposition tree T of G. (c) The subgraph Gµ of G
associated with bag µ, highlighted in (b).

Cρ is the initial 3-cycle. The subgraph Cμ contains four 3-cliques, three of them
are active (this means that they can appear in some subgraph Cν associated
with a child ν of μ) and one is non-active. The unique 3-clique in Cρ is active.
Each bag μ of T has one child ν for each vertex v whose parent clique is an
active 3-clique of μ. The 4-clique Cν consists of the parent clique C of v, vertex
v, and the edges connecting v to C; C is non-active in ν, while the other three
3-cliques are active. For each bag μ distinct from ρ, we denote by vμ the vertex
shared by the three active 3-cliques of Cμ. We say that vμ is associated with μ.
One easily verifies that T is a tree decomposition. Also, T has n − 2 bags: the
root and a bag for each vertex of G that is not in the initial 3-cycle.
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We now associate to each bag μ a subgraph Gμ of G. For the root ρ, the
subgraph Gρ is the initial 3-cycle. For a bag μ with parent λ, the subgraph Gμ

is obtained from Gλ by connecting vμ to the vertices of its parent clique.

Property 1. Every graph Gμ is an embedded planar 3-tree such that the active
3-cliques of Cμ are internal faces of Gμ.

The proof of Property 1 is by induction on the length of the path from the
root ρ to μ in T . The graph Gρ consists of a 3-cycle, which is the unique active
3-clique and which is both an internal and an external face. The graph Gμ is
obtained by adding the vertex vμ to Gλ and connecting it to its parent clique C,
which is active in Cλ. By induction, C is an internal face of Gλ and therefore,
by placing vμ inside this face, we obtain an embedded planar 3-tree such that
the active faces of Cμ are the three faces created by the addition of vμ inside C.

Let μ �= ρ be a bag of T ; the next property follows from the definition of T .

Property 2. The neighbors of vμ distinct from those of its parent clique are all
vertices associated with bags of the subtree of T rooted at μ.

Let ρ = μ1, μ2, . . . , μn−2 be an order of the bags of T according to a preorder
visit of T . To create a storyplan of G, we define an ordering τ : v1, v2, . . . , vn of
the vertices of G such that v1, v2, and v3 are the vertices of the initial 3-cycle,
and each vi with i > 3 is the vertex associated with μi−2.

Let Gi be the graph induced by the vertices that are visible at step i, for
i ≥ 3; by Property 2 the graph Gi is a subgraph of Gμi

which, by Property
1 is an embedded planar 3-tree such that the three active 3-cliques of Cμi

are
faces of Gμi

. To simplify the description we prove that there exists a storyplan
S = 〈τ, {Di}i∈[n]〉, where each Di is a drawing of Gμi

. This implies that there
exists a storyplan where each Di is a drawing of Gi. Let μj be the parent of
μi in T ; since the order τ corresponds to a preorder of the bags of T , we have
j < i. Moreover, all bags μk with j < k < i, if any, belong to the subtrees
of μj visited before μi and for each such subtree T ′ no other bag of T ′ exists
before μj or after μi. By Property 2 all the vertices associated with the bags μk

that belong to Gμi−1 do not have any neighbor after vμi
and therefore they can

be removed. The removal of these vertices transforms Gμi−1 into Gμj
(all the

vertices associated with the bags μk for j < k < i had been added to Gμj
that

had never been changed). By Property 1 the active 3-cliques of Gμj
are faces

of Gμj
. It follows that there exists a storyplan S = 〈τ, {Di}i∈[n]〉 whose frames

Di are as follows. D1 is a planar drawing of a 3-cycle; given Di−1 of Gμi−1 , a
drawing Di of Gμi

can be computed by removing all vertices associated with the
bags μk for j < k < i, and adding vμi

inside a face of Dj .
The above storyplan can be computed in O(n) time, see [4].
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Fig. 8. Illustration for Theorem 7. (a) An instance G1, G2, G3 of Sunflower SEFE;
(b) The instance G constructed from G1, G2, G3; the subdivision vertices are circles
with a white fill while the spectators are squares.

4 Complexity with Fixed Order

In this section we study the StoryPlanFixedOrder variant of StoryPlan,
defined below. This variant is closer to the setting studied in [6] and it models
the case in which the way the graph changes over time is prescribed.

StoryPlanFixedOrder
Input: Graph G = (V,E) with n vertices, total order τ : V → [n]
Question: Does G admit a storyplan S = 〈τ, {Di}i∈[n]〉?

We prove that StoryPlanFixedOrder is NP-complete by reducing from Sun-
flower SEFE. Let G1, . . . , Gk be k graphs on the same set V of vertices. A
simultaneous embedding with fixed edges (SEFE) of G1, . . . , Gk consists of k
planar drawings Γ1, . . . , Γk of G1, . . . , Gk, respectively, such that each vertex is
mapped to the same point in every drawing and each shared edge is represented
by the same simple curve in all drawings sharing it. The SEFE problem asks
whether k input graphs on the same set of vertices admit a SEFE, and it is
NP-complete even when the pairwise intersection between any two input graphs
is the same over all pairs of graphs [1,14]. This variant is called Sunflower
SEFE, and the result in [1,14] proves NP-completeness already when k = 3.

Construction. Refer to Fig. 8 for an example. Let G1, G2, G3 be an instance of
Sunflower SEFE. Let V be the common vertex set of the three graphs, let E
be the common edge set, and let Ei be the exclusive edge set of Gi for i = 1, 2, 3.
We construct an instance 〈G, τ〉 of StoryPlanFixedOrder as follows. Graph
G contains all vertices in V and all edges in E. Also, for each edge e = uv in Ei,
it contains a vertex wi

e, called a subdivision vertex of Ei, and the edges uwi
e and

vwi
e (i.e., it contains the edge e subdivided once). Moreover, for each vertex z,

either a vertex in V or a subdivision vertex of an edge, G contains an additional
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vertex sz, called the spectator of z, and the edge zsz. To obtain the total order
τ we group the vertices of G in a set of blocks B1, . . . , B8, and we order the
blocks by increasing index, while vertices within the same block can be ordered
arbitrarily. We denote by τ−

i and τ+
i the position in τ of the first and of the last

vertex of Bi, respectively, for each i = 1, . . . , 8. Block B1 contains all vertices
in V ; for i ∈ {2, 4, 6}, block Bi contains all subdivision vertices of E i

2
, while

block Bi+1 contains all spectators of the vertices in Bi; finally B8 contains all
spectators of the vertices in B1.

Theorem 7 (�). The StoryPlanFixedOrder problem is NP-complete.

Proof (Sketch). At a high level, the total order τ is designed to show the three
graphs one by one while keeping the common edge set visible. In particular,
a spectator vertex sv forces vertex v to stay visible until sv appears, while a
subdivision vertex wi

e makes edge e visible only when Gi must be drawn.

5 Discussion and Open Problems

Our work can stimulate further research based on several possible directions.

– It would be interesting to study further parameterizations of StoryPlan. Is
StoryPlan parameterized by treewidth (pathwidth) in XP? In addition, we
note that if the total order is fixed, then an FPT algorithm in the size of the
largest frame (or the length of the longest lifespan) readily follows from the
proof of Theorem 3.

– Conditions (iii) and (iv) of the definition of a storyplan can be replaced by
the existence of a sequence of planar embeddings in which common subgraphs
keep the same embedding. This is not true if we study more geometric versions
of the problem, in which for instance edges are straight-line segments and/or
vertices are restricted on an integer grid of fixed size (as in [6]).

– Condition (ii) of storyplan can be relaxed so to only allow specific crossing
patterns [9,10], e.g., right-angle crossings or few crossings per edge.

Acknowledgement. Research in this work started at the Bertinoro Workshop on
Graph Drawing 2022.
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