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Abstract. Bipartite graphs model the relationship between two disjoint
sets of objects. They have a wide range of applications and are often visu-
alized as 2-layered drawings, where each set of objects is visualized as ver-
tices (points) on one of two parallel horizontal lines and the relationships
are represented by (usually straight-line) edges between the corresponding
vertices. One of the common objectives in such drawings is to minimize the
number of crossings. This, in general, is an NP-hard problem and may still
result in drawings with so many crossings that they affect the readability
of the drawing. We consider a recent approach to remove crossings in such
visualizations by splitting vertices, where the goal is to find the minimum
number of vertices to be split to obtain a planar drawing. We show that
determining whether a planar 2-layered drawing exists after splitting at
most k vertices is fixed parameter tractable in k.

Keywords: Fixed parameter tractability · Graph drawing · Vertex
splitting

1 Introduction

Bipartite graphs are used in many applications to study complex systems and
their dynamics [20]. We can visualize a bipartite graph G = (T ∪ B,E) as a
2-layered drawing where vertices in T are placed (at integer coordinates) along
the horizontal line defined by y = 1 and vertices in B along the line below (at
integer coordinates) defined by y = 0.

A common optimization goal in graph drawing is to minimize the number of
crossings. Deciding whether a planar 2-layered drawing exists for a given graph
can be done in linear time, although most graphs, including sparse ones such
as cycles and binary trees, do not admit planar 2-layered drawings [6]. The
problem of minimizing the number of crossings in 2-layered layouts is NP-hard,
even if the maximum degree of the graph is at most four [16], or if the per-
mutation of vertices is fixed on one of the layers [6]. The latter variant of the
problem is known as One-Sided Crossing Minimization (OSCM). The minimum
number of crossings in a 2-layered drawing can be approximated within a fac-
tor of 1.47 and 1.3 + 12/(δ − 4), where δ is the minimum degree, given that
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δ > 4 [17]. Dujmović et al. [5] gave a fixed-parameter tractable (FPT) algorithm
with runtime O(1.62k · n2), which was later improved to O(1.4656k + kn2) [4].
Fernau et al. [10] reduced this problem to weighted FAST (feedback arc sets
in tournaments) obtaining a subexponential time algorithm that runs in time
2O(

√
k log k) + nO(1). Finally Kobayashi and Tamaki [14] gave a straightforward

dynamic programming algorithm on an interval graph associated with each
OSCM instance with runtime 2O(

√
k log k) + nO(1). They also showed that the

exponent O(
√

k) in their bound is asymptotically optimal under the Exponen-
tial Time Hypothesis (ETH) [11], a well-known complexity assumption which
states that, for each k ≥ 3, there is a positive constant ck such that k-SAT
cannot be solved in O(2ckn) time where n is the number of variables.

Minimizing the number of crossings in 2-layer drawings may still result in
visually complex drawings from a practical point of view [12]. Hence, we study
vertex splitting [7,8,13,15] which aims to construct planar drawings, and thus,
avoid crossings altogether. In the split operation for a vertex u we delete u from
G, add two new copies u1 and u2, and distribute the edges originally incident to
u between the two new vertices u1 and u2. There are two main variations of the
objective in vertex splitting: minimizing the number of split operations (or splits)
and minimizing the number of split vertices (each vertex can be split arbitrary
many times) to obtain a planar drawing of G. Minimizing the number of splits
is NP-hard even for cubic graphs [9]. Nickel et al. [18] extend the investigation
of the problem and its complexity from abstract graphs to drawings of graphs
where splits are performed on an underlying drawing.

Vertex splitting in bipartite graphs with 2-layered drawings has not received
much attention [2]. In several applications, such as visualizing graphs defined
on anatomical structures and cell types in the human body [19], the two vertex
sets of G play different roles and vertex splitting is allowed only on one side of
the layout. This has motivated the interest in splitting the vertices in only one
vertex partition of the bipartite graph. It has been shown that minimizing splits
in this setting is NP-hard for an arbitrary bipartite graph [3].

The other variant – minimizing the number of split vertices – has been
recently considered and was shown to be NP-hard [1]. On the positive side,
we show that the problem is FPT parameterized by the natural parameter, that
is, the number of split vertices.

Problem (Crossing Removal with k Split Vertices – CRSV(k)). Let G = (T ∪
B,E) be a bipartite graph. Decide whether there is a planar 2-layer drawing of
G after splitting at most k vertices of B.

In the next section we prove the following theorem.

Theorem 1. Given a bipartite graph G = (T ∪ B,E), the CRSV(k) problem
can be decided in time 2O(k6) · m, where m is the number of edges of G.

We prove Theorem 1 using kernelization, one of the standard techniques for
designing FPT algorithms. The goal of kernelization is to reduce the input
instance to its computationally hard part on which a slower exact algorithm
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can be applied. If the size of the reduced instance is bounded by a function of
the parameter, the problem can be solved by brute force on the reduced instance
yielding FPT runtime. Our reduction consists of two parts.

In the first part we identify and remove vertices that necessarily belong to
the solution (Step 1. below) and remove redundant vertices of the input graph G;
Step 2. below. Then we show that there is a solution for the reduced graph G′′

1 if
and only if there is a solution for the original graph G; see Claim 1. Then we prove
two structural properties about the degrees of the vertices of G′′

1 ; see Lemmas 1
and 2. These two properties allow us to bound the size of the “essential” part
(called the core) of the reduced graph G′′

1 ; see Lemma 3.
In the second part of the reduction we remove more redundant vertices of G′′

1

and identify and remove the vertices that necessarily belong to the solution. Then
we show that the resulting reduced graph G′

2 has size bounded by a polynomial
function of the parameter; see Lemma 4. Finally, we show that there is a solution
for G′

2 if and only if there is a solution for G′′
1 ; see Claim 2. The proof is concluded

by applying an exact algorithm to the graph G′
2.

2 Proof of Theorem 1

Let G = (T ∪ B,E) be a bipartite graph and k be the number of vertices that
we are allowed to split.

First Reduction Rule: Before we describe our first reduction rule, we make a
useful observation.

Observation 1. If a vertex v ∈ B has at least three neighbours of degree at least
two, it must be split in any planar 2-layered drawing of G; see Fig. 1a.

Let Btr be the set of such vertices of degree 3 or more in B (as described in
Observation 1). The first reduction rule consists of two steps described below.

1. We initialize our solution set S with the vertices in Btr, that is, S := Btr and
remove them from the graph G. Let the resulting graph be G′

1 = (T ′
1∪B′

1, E
′
1)

and k′
1 = k − |Btr|; note that T ′

1 = T1.
2. Let Ts ⊂ T ′

1 be the set of vertices v such that deg(v) = 1 and deg(u) ≥ 3,
where u is the unique neighbor of v in G′

1. Similarly, let Bs ⊂ B′
1 be the set

of vertices v such that deg(v) = 1 and deg(u) ≥ 3, where u is the unique
neighbor of v in G′

1. We remove the vertices Ts and Bs from the graph G′
1.

Let the resulting graph be G′′
1 = (T ′′

1 ∪ B′′
1 , E′′

1 ).

Let us now show the following.

Claim 1. The graph G is a Yes instance for CRSV(k) if and only if G′′
1 is a

Yes instance for CRSV(k′
1).

Proof. We first argue the “only if”direction: consider a planar 2-layered drawing
of G with at most k vertices split. According to Observation 1, each vertex in
Btr is split, moreover, none of the vertices in Bs are split because each of them
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Fig. 1. Reinserting split copies v1, v2, . . . , vdeg(v) of v ∈ Btr into a planar 2-layered
drawing of G′′

1 to get a planar 2-layered drawing of G.

Fig. 2. Reinserting w ∈ Bs and u ∈ Ts into a 2-layered drawing of G′′
1 to obtain a

2-layered drawing of G. A safe wedge v1vv2 is filled green. (Color figure online)

has degree one. Therefore, there are at most k − |Btr| vertices in B \ (Btr

⋃
Bs)

that are split. Because B′′
1 = B \ (Btr

⋃
Bs) and k′

1 = k − |Btr| there exists a
planar 2-layered drawing of G′′

1 with at most k′
1 vertices split.

For the “if” direction, consider a planar 2-layered drawing of G′′
1 with at

most k′
1 vertices split. Note that after applying Step 1. and Step 2. the vertices

in B′′
1 have degree at most two. Thus for each vertex v ∈ Btr we can reinsert

its split copies v1, v2, . . . , vdeg(v) (each reinserted vertex has degree one) without
crossings; see Fig. 1. For the same reason we can reinsert the vertices in Bs of
degree one removed at Step 2.; see Fig. 2. To see that we can reinsert each vertex
u ∈ Ts of degree one removed at Step 2. observe that we always connect it to a
vertex v ∈ B′′

1 of degree at least two, therefore, in any planar 2-layered drawing
of G′′

1 there is always a safe wedge formed by two edges vv1 and vv2 where we
can fit in the edge vu without causing any crossings; see Fig. 2. ��

Now we state two observations about the degrees of the vertices of the
graph G′′

1 .

Lemma 1. For each vertex v ∈ T ′′
1 it holds that deg(v) ≤ k′

1 + 2 if there exists
a planar 2-layered drawing of G′′

1 with at most k′
1 split vertices.

Proof. Consider for contradiction that there is a vertex v ∈ T ′′
1 that has

deg(v) = k′
1 + 3; see Fig. 3. According to Step 2. v does not have any neigh-

bors of degree one in B′′
1 , therefore, to obtain a planar 2-layered drawing of G′′

1

all but two neighbors of v must be split, that is, k′
1 + 1 vertices must be split;

contradiction. ��
To make our second observation let T ′′

1, deg(v)≥3 be the set of all the vertices
of degree at least three in T ′′

1 .
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Fig. 3. All but two neighbors of v must be split to obtain a planar 2-layered drawing
of G′′

1 because each neighbour of v has degree at least two.

Fig. 4. For each vertex in v ∈ T ′′
1, deg(v)≥3 at least one of its neighbors u ∈ B′′

1 must
be split to obtain a planar 2-layered drawing of G′′

1 because each of the neighbours of
v has degree at least two. Splitting u can resolve crossings for at most two vertices
v1, v2 ∈ T ′′

1, deg(v)≥3 because it has degree at most two.

Lemma 2. It holds that
∣
∣T ′′

1, deg(v)≥3

∣
∣ ≤ 2k′

1 if there exists a planar 2-layered
drawing of G′′

1 with at most k′
1 split vertices.

Proof. Observe that according to Step 2. no vertex in T ′′
1, deg(v)≥3 has any neigh-

bors of degree one in B′′
1 . This implies that for each vertex v in T ′′

1, deg(v)≥3 at
least one of its neighbors u ∈ B′′

1 must be split to obtain a planar 2-layered
drawing of G′′

1 ; see Fig. 4. But the degree of u is at most two, therefore, splitting
u can resolve crossings for at most two vertices v1, v2 ∈ T ′′

1, deg(v)≥3. Thus, if
|T ′′

1, deg(v)≥3| > 2k′
1, more than k′

1 vertices in B′′
1 must be split to obtain a planar

2-layered drawing of G′′
1 ; contradiction. ��

For a subset of vertices W let N(W ) denote the set of neighbors of W . From
Lemma 1 and 2 we obtain the following.

Lemma 3. The graph induced by the vertices T ′′
1, deg(v)≥3

⋃
N(T ′′

1, deg(v)≥3) has
at most 2k′

1(k
′
1 +2) vertices if there exists a planar 2-layered drawing of G′′

1 with
at most k′

1 split vertices.

Let C = T ′′
1, deg(v)≥3

⋃
N(T ′′

1, deg(v)≥3) and call the graph induced by the
vertices in C the core of G′′

1 . Now we can proceed to the second reduction rule.

Second Reduction Rule: Observe that all the vertices in (B′′
1

⋃
T ′′
1 ) \ C have

degree at most two, and therefore, induce paths or cycles in G′′
1 . Since the cycles

are not connected to the core in G′′
1 (because their vertices have degree at most

two in G′′
1) we can remove them and handle separately. We need to account for

one split vertex per each such cycle. Let E be the set of these cycles and let
k′
2 = k′

1 − |E|. In addition, let Z be the set of vertices that we split in these
cycles, S := S ⋃

Z.
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Fig. 5. Reinserting the missing part of the path p ∈ P into a planar 2-layered drawing
of G′

2 to get a planar 2-layered drawing of G′′
1 . (Color figure online)

Let P be the set of paths induced in G′′
1 by the vertices in (B′′

1

⋃
T ′′
1 ) \ C

of length at least 2k′
2 + 5. We reduce G′′

1 to G′
2 = (T ′

2 ∪ B′
2, E

′
2) by shortening

each path p ∈ P (that is, iteratively removing one of the middle vertices of p
from T ′′

1 and identifying its two neighbours in B′′
1 ) until p has at most 2k′

2 + 5
vertices. Because during shortening step the length of p decreases by two, after
the shortening process p will still have at least 2k′

2 + 3 vertices.

Claim 2. The graph G′′
1 is a Yes instance for CRSV(k′

1) if and only if G′
2 is

a Yes instance for CRSV(k′
2).

Proof. In one direction the claim is obvious, because shortening paths in a planar
2-layered drawing of the graph G′′

1 does not cause any crossings.
For the other direction, consider a planar 2-layered drawing of the graph G′

2.
To obtain from it a planar 2-layered drawing of the graph G′′

1 we need to: (1)
reinsert each of the cycles in E that we have removed from G′′

1 to obtain G′
2, and

(2) reinsert back the missing parts of the paths of P, which are made up of the
vertices from (B′′

1

⋃
T ′′
1 ) \ C. Because the cycles in E are disconnected from G′′

1

we can reinsert them anywhere in the drawing wherever there is space with one
split vertex in Z.

Let us now argue why we can reinsert the missing vertices from (B′′
1

⋃
T ′′
1 )\C

into the paths in P; we will refer to Fig. 5 for illustration. Because for any such
path p ∈ P the length of p is at least 2k′

2 + 3 there must be at least one vertex
v in B′

2 that was not split in a planar 2-layered drawing of G′
2 (see Fig. 5a), as

otherwise a planar 2-layered drawing of G′
2 cannot be constructed with at most

k′
2 splits. Therefore, there must be a safe wedge formed by the unsplit vertex

v and the two edges of the path p incident to v providing space to reinsert the
missing vertices without causing any crossings; see Fig. 5b. ��

Lemma 4. The graph G′
2 has at most O(k6) vertices.

Proof. According to Lemma 3 the core C has at most 2k′
1(k

′
1 + 2) vertices and

according to Lemma 1 the highest degree of each vertex in C is at most k′
1 + 2.

Therefore, there can be at most
(
2k′

1(k
′
1+2)
2

)
(k′

1 + 2) many paths induced by the
vertices in (B′

2

⋃
T ′
2)\C. Moreover, after applying the second reduction rule each

such path has at most 2k′
2 + 5 vertices. Thus the total number of vertices in G′

2

is at most
(
2k′

1(k
′
1+2)
2

)
(k′

1 + 2)(2k′
2 + 5) ∈ O(k6). ��
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Finally we decide CRSV(k′
2) for G′

2 by brute force. More precisely, we check
all subsets X of B′

2 such that |X| ≤ k′
2 ≤ k. For each vertex v in X we check

all ways to partition its incident edges (at most k + 2) into non-empty subsets,
this represents splitting of v. The number of such partitions is bounded by the
Bell number of order k + 2, which in turn is bounded by (k + 2)!. Then we
run a linear time algorithm to check whether a planar 2-layered drawing of the
resulting graph exists. This can be done in time 2O(k6)(k!)O(k) · m ⊂ 2O(k6) · m,
where m is the number of edges of G. If G′

2 is a yes instance for CRSV(k′
2) with

the subset of split vertices X, we update our solution set S := S ⋃
X and return

it. It is worth noting that the kernelization itself can be done in time O(m) since
we process each vertex in constant time given that we know its degree. Thus,
the kernelization does not affect the total asymptotic runtime of the algorithm.

3 Conclusion and Open Problems

We presented an FPT algorithm for the CRSV(k) problem parameterized by k.
Improving the runtime is needed for this algorithm to be useful in practice, as
the constants are very large. Another natural direction is to look for an FPT
algorithm for the other variant of the problem, that is, minimizing the number
of splits, which was recently shown to be NP-hard [1].

Problem. Crossing Removal with k Splits – CRS(k)). Let G = (T ∪ B,E) be
a bipartite graph. Decide whether there is a planar 2-layer drawing of G after
applying at most k splits to the vertices in B.

Is there an FPT algorithm for the CRS(k) problem parameterized by k? It
is not clear how to adjust the algorithm in Theorem1 as it splits every vertex
in Btr as many times as its degree, and thus, the number of splits is not bounded
by a function of the parameter k.
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