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Abstract. Strictly-convex straight-line drawings of 3-connected planar
graphs in small area form a classical research topic in Graph Drawing.
Currently, the best-known area bound for such drawings is O(n2)×O(n2),
as shown by Bárány and Rote by means of a sophisticated technique
based on perturbing (non-strictly) convex drawings. Unfortunately, the
hidden constants in such area bound are in the 104 order.

We present a new and easy-to-implement technique that yields
strictly-convex straight-line planar drawings of 3-connected planar
graphs on an integer grid of size 2(n − 1)× (5n3 − 4n2).
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1 Introduction

Drawing planar graphs is a fundamental topic in Graph Drawing with several
important contributions over the last few decades [8,14,17,21,24]. One of the
most influential is due to de Fraysseix, Pach and Pollack [8], who back in 1988
showed that every n-vertex planar graph admits a straight-line planar drawing
on a (2n−4)× (n−2) grid, which can be computed in O(n) time [7]. Since then,
several improvements on the size of the underlying grid have been proposed in the
literature [12,15,17,18,21,25]. The best-known upper bound is (n − 2) × (n − 2)
by Chrobak and Kant [6] and by Schnyder [21], who propose two conceptually
different approaches to derive this bound. The former is an incremental drawing
algorithm inspired by [8], while the latter is based on a face counting technique.

Straight-line drawings of planar graphs have also been extensively studied
by requiring convexity [22], that is, the boundary of every face must be a con-
vex polygon. Such drawings are called convex and always exist for 3-connected
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Fig. 1. A strictly-convex drawing of a 3-connected planar graph on 7 vertices.

planar graphs [23,24]. Again the aim is to keep the size of the underlying grid
as small as possible; see [10] for a survey. Early results date back to Schnyder
and Trotter [22], Chrobak and Kant [6], Di Battista et al. [11] and Felsner [12].
The latter guarantees the existence of a convex drawing of a 3-connected planar
graph on a (f −1)× (f −1) integer grid, where f = O(n) is the number of faces.

Note that in a convex drawing three vertices on the boundary of a face can
be collinear. If this is not allowed, then the corresponding drawings are called
strictly-convex. Since an n-vertex cycle cannot be drawn strictly-convex on a
grid of size o(n3) [5], it follows that strictly-convex drawings are more demand-
ing in terms of required area. As an adaptation of the standard incremental
drawing algorithms or the face-counting methods is rather difficult, the only
approach that has been exploited so far to obtain strictly-convex drawings is to
perturb convex drawings. This idea was pioneered by Chrobak, Goodrich and
Tamassia [5], who claimed (without giving details) that every 3-connected pla-
nar graph admits a strictly-convex drawing on an O(n3) × O(n3) grid. The area
bound was improved to O(n7/3)×O(n7/3) by Rote [19] and to O(n2)×O(n2) by
Bárány and Rote [1], which is currently the best-known asymptotic upper bound.
However, as the authors mention “the constants hidden in the O-notation are
on the order of 100 for the width and on the order of 10,000 for the height. This
is far too much for applications where one wants to draw graphs on a computer
screen” [1].

Our Contribution. We continue the research on strictly-convex drawings of
3-connected planar graphs. Our contribution is a new technique that computes
strictly-convex drawings of 3-connected n-vertex planar graphs on an integer grid
of size 2(n−1)× (5n3 −4n2), as outlined in the following theorem. Although the
asymptotic area bound is the same as the one in [1], the multiplicative constants
are significantly smaller. Also, the proposed technique is elegant and can be
readily implemented to run in linear time. On the other hand, the aspect-ratio
of the produced drawings is quadratic rather than constant.

Theorem 1. Every 3-connected planar graph with n vertices admits a strictly-
convex planar straight-line drawing on an integer grid of size 2(n − 1) × (5n3 −
4n2). Also, the drawing can be computed in O(n) time.

Our technique starts with a convex drawing computed by Kant’s algorithm [17].
We rely on properties of such a drawing to show that shifting vertices upwards
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Fig. 2. In both drawings, (x, y) is above s, while (x′, y′) is below s.

by using a strictly-increasing and strictly-convex function preserves planarity; a
property of independent interest. Also, the obtained planar drawing is convex
and collinear vertices in a face, if any, are horizontally aligned. For such ver-
tices, a second shifting yields an internally strictly-convex drawing. A suitable
augmentation guarantees that the outer face is also strictly-convex.

Paper Structure. Section 2 contains basic definitions and tools. In Sect. 3,
we introduce properties of Kant’s algorithm that we leverage in our technique.
Section 4 describes our algorithm. Section 5 concludes the paper with a brief
discussion and open problems. For space reasons, some proofs are omitted (the
corresponding statements are marked with �) and can be found in [4].

2 Preliminaries

Basic Definitions. Let f : R → R be a function. If f(a) < f(b) for every pair
a, b ∈ R with a < b, then f is strictly-increasing. Function f is strictly-convex if
for all t, 0 < t < 1, and all a, b ∈ R, it holds f(ta+(1− t)b) < tf(a)+(1− t)f(b).
Consider three points (x1, y1), (x, y), (x2, y2), with x1 < x < x2 and let s be the
line-segment connecting (x1, y1) and (x2, y2). We say that (x, y) is above (resp.,
below) s if the slope of s is smaller (resp., larger) than the slope of the line-
segment connecting (x1, y1) and (x, y); see Fig. 2. The next lemma easily follows
from the chordal slope lemma [20].

Lemma 1 (�). Let (x1, y1), (x, y) and (x2, y2) be three collinear points with
x1 < x < x2 that are not horizontally aligned. If f : R → R is a strictly-convex
function, then point (x, f(y)) is below the line-segment with endpoints (x1, f(y1))
and (x2, f(y2)).

Drawings and Embeddings. We assume familiarity with basic graph draw-
ing concepts [9]. In particular, a plane graph is a graph with a prescribed planar
embedding. Unless otherwise specified, we consider drawings that are straight-
line, planar and whose vertices are on an integer grid. A drawing is convex
(strictly-convex) if the boundary of each face is a convex (strictly-convex) poly-
gon. Similarly, a drawing is internally convex (internally strictly-convex) if the
boundary of each inner face is a convex (strictly-convex) polygon. Given a draw-
ing Γ of a graph G, denote by (xu, yu) the coordinates of vertex u in Γ . For two
vertices u and v in Γ , we denote by Δuv the interior of the right triangle whose
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corners are u, v and the intersection of the vertical line though the vertex having
the lowest y-coordinate with the horizontal line through the vertex having the
highest y-coordinate (among u, v). For example, in Fig. 3a, the Δuv triangle of
the endpoints of each edge (u, v) is striped.

Canonical Order. Let G be a 3-connected plane graph with n vertices. Let
δ = (P0, . . . , Pm) be a partition of the vertices of G into paths, such that P0 =
{v1, v2}, Pm = {vn}, and edges (v1, v2) and (v1, vn) exist and belong to the outer
face. For k = 0, . . . ,m, let Gk be the subgraph induced by ∪k

i=0Pi. Let Ck be the
contour of Gk defined as follows: If k = 0, then C0 is the edge (v1, v2), while if
k > 0, then Ck is the path from v1 to v2 obtained by removing (v1, v2) from the
cycle delimiting the outer face of Gk. Partition δ is a canonical order [17] of G if
for each k = 1, . . . ,m−1 the following conditions hold: (i) Gk is biconnected and
internally 3-connected, (ii) all neighbors of Pk in Gk−1 are on Ck−1, (iii) either
Pk is a singleton (i.e., |Pk| = 1), or Pk is a chain (i.e., |Pk| > 1) and the degree
of each vertex of Pk is 2 in Gk, (iv) all vertices of Pk with 0 ≤ k < m have at
least one neighbor in Pj for some j > k. For example, a canonical order for the
graph of Fig. 1 is P0 = {v1, v2}, P1 = {v3, v4}, P2 = {v5, v6} and P3 = {v7}. A
canonical order of G can be computed in O(n) time [17].

Kant’s Algorithm. Kant [17] describes an incremental drawing algorithm that,
in linear time, computes a convex straight-line planar drawing Γ of an n-vertex
plane graph G on an integer grid of size (2n − 4) × (n − 2). The drawing Γ has
the same planar embedding as the input graph G. The algorithm is based on
a canonical order δ of G and works as follows: Initially, vertices v1 and v2 of
P0 are placed at points (0, 0) and (1, 0), respectively. For k = 1, . . . ,m, assume
that a convex drawing Γk−1 of Gk−1 has been constructed in which the edges of
contour Ck−1 are drawn with slopes 0 and ±1 (contour condition; see Fig. 3a).
Let (w1, . . . , wp) be the vertices of Ck−1 from left to right in Γk−1, where w1 = v1
and wp = v2. Each vertex v in Gk−1 has been associated with a shift-set S(v),
such that Γk−1 is stretchable, that is, for each i = 1, . . . , p the result of shifting
S(wi), . . . , S(wp) by one (or more) units to the right is a convex drawing of Gk−1.
Let Pk = {z1, . . . , zp} be the next path in δ. Let w� and wr be the leftmost and
rightmost neighbors of Pk on Ck−1 in Γk−1, where 1 ≤ � < r ≤ p. To introduce
Pk and to avoid edge-overlaps, the algorithm first identifies two so-called critical
vertices w�′ and wr′ with � ≤ �′, r′ ≤ r and then shifts (i) by one unit to the right
each vertex in

⋃p
i=�′ S(wi) and then (ii) by one unit to the right each vertex in⋃p

i=r′ S(wi). Then, z1 is placed at intersection of the line of slope +1 through
w� with the line through of slope −1 point wr; see Fig. 3b. If Pk is a chain, then
for i = 2, . . . , p, vertex zi is placed one unit to the right of zi−1 by shifting each
vertex in

⋃p
i=r′ S(wi) one unit to the right. Finally, the shift-sets of the vertices

of Pk are defined accordingly to ensure that Γk is stretchable.

3 Properties of Kant’s Algorithm

We provide properties of drawings computed by Kant’s algorithm that we lever-
age in the next section; some of these properties are indirectly mentioned also
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Fig. 3. Introducing a singleton Pk = {z1} in Γk−1 in the algorithm by Kant [17].

in [16]. To ease the presentation, we first introduce a 4-coloring for the edges of
G similar to the one by Schnyder [13,21]. We color edge (v1, v2) of G0 black.
Given a 4-coloring for Gk−1 with k = 1, . . . ,m, we extend it for Gk as follows
(see Figs. 1 and 3a). We first color the edges of Gk that do not belong to Gk−1

and are on contour Ck. Namely, the first such edge encountered in a clockwise
walk of Ck from v1 to v2 is blue, the last one is green and all remaining ones
(that is, those having both endpoints in Pk when Pk is a chain) are black. The
remaining edges of Gk not in Gk−1 are red (i.e., those that are incident to Pk

and are not part of Ck; this case only arises if Pk is a singleton by Condition (iii)
of the canonical order), which implies that Ck has no red edges.

Since a shift to introduce a path of δ in the incremental construction of Γ
can only decrease the slope of a blue edge, increase the slope of a green edge,
while the black and the red edges maintain their slope [17], we have that:

– the slope of each blue edge ranges in (0, 1],
– the slope of each black edge is 0,
– the slope of each green edge ranges in [−1, 0), and
– the slope of each red edge ranges in the complement of [−1, 1].

Since each inner face in Γ is formed when a path of δ is introduced during the
incremental construction, part of it belongs to the contour, while its remaining
part is formed by the introduced path, which gives rise to the following property.

Property 1. Let x be the leftmost vertex of an inner face g in Γ (in case of
more than one such vertices select the bottommost one). A counterclockwise walk
of g starting from x consists of the following boundary parts (see Fig. 4):

i. a (possibly empty) strictly descendant path of green edges,
ii. at most one black edge,
iii. a (possibly empty) strictly ascendant path of blue edges,
iv. a green or red edge,
v. a (possibly empty) horizontal path of black edges, and
vi. a blue or red edge.



Strictly-Convex Drawings of 3-Connected Planar Graphs 149
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x

Fig. 4. Illustration for the shape of a face.

Boundary parts (iv)–(vi) (dotted in Fig. 4) are introduced when a path is added
during the incremental construction of Γ (which implies that at least one of
boundary parts (i)–(iii) is part of the contour and thus is non empty in g). So,
boundary parts (iv)–(vi) cannot simultaneously contain black and red edges (by
the edge-coloring and Condition (iii) of canonical order).

Property 2 (�). Each vertex w of a path Pi, with 0 < i ≤ m, has at least two
incident edges (a,w) and (b, w), such that ya ≤ yw, yb ≤ yw, and xa < xw < xb.

Property 3 (�). Every face in Γ has at most one edge drawn vertical.

Property 4 (�). Let u, v and w be three consecutive vertices encountered in
this order in a counterclockwise walk along the boundary of an inner face of Γ .
If they are collinear and the line through them has zero slope, then they are part
of a chain. If they are collinear and the line through them has positive (negative)
slope, then yu < yv < yw (yu > yv > yw). If they are not collinear, then v /∈ Δuw.

4 Algorithm Description

We now describe our approach to compute a strictly-convex drawing of a 3-
connected plane graph, assuming that its outer face has at most 5 vertices (such
a face always exists). We start with Sect. 4.1, in which we describe the properties
of what we call lifting functions and liftable drawings. A key property is that
applying a non-affine transformation to a liftable drawing by means of a lifting
function preserves planarity. As this tool might be of independent interest, we
state it as general as possible. In Sect. 4.2, we prove that drawings computed
by Kant’s algorithm are indeed liftable and that a transformation via a liftable
function makes them internally strictly-convex except for possible horizontally-
aligned paths. Up to this point, it was not needed to choose a particular lifting
function; in Sect. 4.3 we unveil our choice. We also design a second transformation
targeted to faces containing paths of horizontally-aligned vertices. The output of
this step is an internally strictly-convex drawing. The last step of the algorithm
is described in Sect. 4.4, namely a simple preprocessing in which the outer face
of the input graph, which by our assumption has at most 5 vertices, is suitably
augmented with dummy vertices, whose removal from the computed drawing
guarantees that all faces (including the outer one) are strictly-convex.
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4.1 Lifting Functions

Given a drawing Γ of a graph G and a function f : R �→ R, we refer to the draw-
ing Γf obtained by applying the transformation (xu, yu) �→ (xu, f(yu)) to Γ as
the transformed drawing of Γ with respect to f . In view of Theorem 2 below, we
focus on lifting functions and liftable drawings (see Definitions 1 and 2).

Definition 1. A function f : R �→ R is lifting if and only if (i) f is strictly-
convex and strictly-increasing; (ii) f(r) ≥ r,∀r ∈ R; (iii) r ∈ N ⇒ f(r) ∈ N.

The next property follows directly from Definition 1.

Observation 1. Let Γ be a drawing of a graph G. Given a lifting function f ,
three vertices are horizontally (vertically) aligned in Γ if and only if they are
horizontally (vertically) aligned in the transformed drawing Γf .

Definition 2. A planar straight-line grid drawing of a graph is called liftable if
for every edge (u, v) there is no vertex of G in Δuv.

Theorem 2. Let Γ be a planar straight-line grid drawing of a plane graph G. If
Γ is liftable, then its transformed drawing Γf with respect to a lifting function f
is a planar straight-line grid drawing of G with the same planar embedding as Γ .

Proof. Condition (iii) of Definition 1 trivially implies that Γf is a grid drawing.
We next prove that Γ and Γf have the same planar embedding. (Note that, if Γ is
not liftable, Γf is not necessarily planar.) Since, by Condition (ii) of Definition 1,
Γf is obtained from Γ by shifting vertices upwards, the existence in Γf of an
edge crossing or of a vertex having a circular order of its incident edges different
than the one in Γ , implies that there exist a vertex w and an edge (u, v) in G,
such that w is below (above) (u, v) in Γ and above (below) (u, v) in Γf .

We next argue that the situation described above is not possible. Consider a
vertex w and an edge (u, v) of G and let s and s′ be the line-segments representing
(u, v) in Γ and Γf . Clearly, it suffices to consider the case in which xu ≤ xw ≤ xv.
Let p and p′ be the vertical projection of w on s and s′, respectively. Also, let
yp and yp′ be the y-coordinates of p in Γ and of p′ in Γf , respectively. Suppose
yu ≤ yv; the case in which yu > yv is symmetric.

Firstly, consider the case in which w is above s, i.e., yw > yp. Since Γ is liftable,
vertex w does not belong to Δuv. Hence, yu ≤ yp ≤ yv ≤ yw. Since f is strictly-
increasing, it follows f(yu) ≤ f(yp) ≤ f(yv) ≤ f(yw). However, f(yw) > yp′

implies thatw is above s′, as desired. Secondly, consider the case inwhichw is below
s in Γ . Here, we distinguish three cases: xw = xu, xw = xv and xu < xw < xv. In
the first case, we have yw < yp = yu and yp′ = f(yu). Since f is strictly-increasing,
it holds f(yw) < f(yu) = yp′ , i.e., w is below s′, as desired. The second case is
analogous. For the third case, we know that yw < yp. Since p lies on s, by Lemma 1,
f(yp) < yp′ holds. Also, since f is strictly-increasing, it follows f(yw) < f(yp).
Thus, f(yw) < yp′ holds, i.e., w is below s′, as desired. 
�
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4.2 Application to Kant’s Drawings

We now show that applying a lifting function to a drawing computed by Kant’s
algorithm (see Sect. 3) yields a drawing with several important properties.

Lemma 2. Let Γ be a drawing of a 3-connected plane graph G computed by
Kant’s algorithm. Drawing Γ is liftable.

Proof. Consider an edge (u, v) of G and w.l.o.g. assume yu < yv in Γ . We prove
that there is no vertex w in Δuv. This is obvious when xu = xv, since Δuv = ∅.
Hence, either xu < xv or xu > xv. Consider the former case; the latter can be
treated symmetrically. Suppose for a contradiction that there exists at least one
vertex (other than u and v) in Δuv. Let w be the rightmost vertex out of those
in Δuv. Since w is in Δuv we know yu < yw < yv. Since yu 
= yv, it follows that
(u, v) is not the edge (v1, v2) of P0, which, in turn, implies that vertex w belongs
to a path Pi with i > 0, since yu < yw. Hence, by Property 2, w has at least two
incident edges (a,w) and (b, w), such that ya ≤ yw, yb ≤ yw, and xa < xw < xb.
Since b is to the right of w, the way we selected w implies that b does not belong
to Δuv; consequently, (w, b) crosses (u, v), contradicting the planarity of Γ . 
�
By combining Theorem 2 and Lemma 2, we conclude the following.

Theorem 3 (�). Given a 3-connected plane graph G and a lifting function f , let
Γf be the transformed drawing of a drawing Γ of G computed by Kant’s algo-
rithm. Then, Γf is internally-convex and planar with the same embedding as Γ .
Also, if two consecutive edges of an inner face of Γf form an angle π inside this
face, then these edges are horizontal.

Proof sketch. Since, by Lemma 2, Γ is liftable, by Theorem 2 Γf has the same
planar embedding as Γ . Consider a counterclockwise walk along the boundary
of an inner face g in Γ and let u, v and w be three consecutive vertices along
this walk. Let α and α′ be the angle at v formed by the edges (u, v) and (v, w)
inside g in Γ and in Γf , respectively. Since Γ is convex, α ≤ π. We claim that
α′ ≤ π and that if α′ = π, then (u, v) and (v, w) are horizontally aligned in Γf .
We prove the claim when u, v and w are collinear in Γ . By Property 3, vertices
u, v and w are not vertically aligned in Γ . If they are horizontally aligned in
Γ , then by Observation 1 they are horizontally aligned also in Γf , as desired.
Suppose now the line � through u, v and w in Γ is either of positive or of negative
slope, which by Property 4 implies that either yu < yv < yw or yu > yv > yw

holds, respectively. Then, by Lemma 1, it follows that v is below the line-segment
connecting u and w in Γf , hence α′ < π. 
�

4.3 Putting Everything Together

We are now ready to put all pieces together. Let G be a 3-connected plane graph
with n vertices. Without loss of generality, we can assume that the outer face of
G contains at most 5 vertices (which will be useful in the next subsection), since
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Fig. 5. (a) Illustration of the procedure of shifting the vertices of a chain upwards, and
(b-c) cases that arise in the proof of Theorem 4.

such a face always exists. Let Γ be a convex drawing of G computed by Kant’s
algorithm and let f : R → R be the function f(y) = 5(n − 2)2y + y2. Clearly, f
is a lifting function. Hence, by Theorem 3, in the transformed drawing Γf , each
inner face g that is not strictly-convex contains at least three horizontally-aligned
vertices. By property 4, these vertices are part of a chain in the canonical order
δ. Hence, by Condition (iv) of canonical order, each of the vertices of this chain
has at least one neighbor placed above it. By definition of f it follows that each
of these neighbors is positioned at least 5(n − 2)2 units above the chain in Γf .
We exploit this property to turn Γf into an internally strictly-convex drawing
by shifting all vertices of each chain upwards while keeping Γf planar.

To this end, let Pk = {z1, . . . , zp} with p ≥ 2 be a chain in the canonical
order δ used to construct Γ . For i = 1, . . . , p, we shift vertex zi of Pk by (xzi

−
xz1)(xzp

−xzi
) units upwards; see Fig. 5a. It follows that if λ is the total width of

Pk in Γ (and thus also in Γf ), then each vertex in Pk is shifted by at most λ2/4
units of length upwards, which is in turn at most (n − 2)2, since the total width
of Γ is at most 2n−4, and therefore λ ≤ 2n−4. Also, note that only the internal
vertices of Pk are shifted (if any), i.e., only the vertices zi with 2 ≤ i ≤ p−1. Let
Γ̂f be the drawing obtained from Γf by applying the aforementioned procedure
to each chain, which we call the curved drawing of Γf . Clearly, Γ̂f is a grid
drawing, we can prove that it is planar and internally strictly-convex.

Theorem 4 (�). Given a 3-connected n-vertex plane graph G and the lifting
function f : R �→ R with f(y) = 5(n − 2)2y + y2, let Γf be the transformed
drawing of a drawing Γ of G computed by Kant’s algorithm. Then, the curved
drawing Γ̂f of Γf is an internally strictly-convex grid drawing of G with the same
planar embedding as Γ .

Proof sketch. Concerning the planarity of Γ̂f , consider any internal vertex of a
chain and its neighbors. At high-level, we have that the envelope through such
neighbors is a polygon whose boundary is formed by a left and a right path that
are y-monotone (see Fig. 5b). Since the vertex remains below its lowest successor
in the canonical order (see Fig. 5c), no edge crossing can be introduced. Thus,
Γ̂f is planar with the same embedding as Γf (and thus as Γ , by Theorem 3).
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Fig. 6. Illustration for the proof of Theorem 4; W denotes the width of Γf .

We next prove that Γ̂f is internally strictly-convex. Let g be an inner face
in Γ̂f . Recall that only internal chain-vertices are shifted in the transition from
Γf to Γ̂f . Hence, if g does not contain internal chain-vertices, then it is strictly-
convex by Theorem 3. Thus, we may assume that g contains at least one such
vertex z. By Property 1, z is either in the topmost chain of black edges of g, or it
is one of the (at most two) bottommost vertices of g. Consider the former, as the
latter is similar. Let Pk = {z1, . . . , zp} be the chain containing z. We argue that
any angle inside g incident to these vertices is smaller than π. By construction,
this is the case for vertices z2, . . . , zp−1. Hence, it remains to consider the angles
at z1 and zp. Since the two cases are symmetric, consider the angle at z1. Let
w� be the neighbor of z1 along Ck−1, i.e., w� is the vertex preceding z1 in a
clockwise walk of g starting from z1. We will prove that the slope of (w�, z1) is
strictly greater than the one of (z1, z2), hence the angle at z1 is less than π.

Refer to Fig. 6. By the way the vertices of Pk are shifted in the transition
from Γf to Γ̂f , it follows that the maximum of the slope of (z1, z2) is 2(n−2)−1
(i.e., achieved when Pk is of maximum x-length in Γ̂f and the x-distance of z1
and z2 in Γ̂f is 1). We next argue for the slope of the edge (w�, z1). Recall that
vertex z1 is not an interior vertex of Pk, which implies that it has not been
shifted in the transition from Γf to Γ̂f . The same, however, does not necessarily
hold for w�. As a matter of fact, this vertex may be part of a chain, i.e., when g
does not contain boundary part (i) but boundary part (ii) of Property 1. This
implies that it may have been shifted upwards by at most (n − 2)2 units in the
transition from Γf to Γ̂f . The minimum of the slope of (w�, z1) in Γf is achieved,
when (w�, z1) is of maximum x-length in Γf and of minimum y-length. Since the
former is at most 2(n − 2) − 1, while the latter is at least 5(n − 2)2, it follows
that the minimum of the slope of (w�, z1) is potentially 5(n−2)2

2(n−2)−1 in Γf . Since in

the transition from Γf to Γ̂f vertex w� may be shifted by at most (n−2)2 units,
it follows that the slope of (w�, z1) may reduce further to 5(n−2)2−(n−2)2

2(n−2)−1 , which
is its minimum value. Therefore, the slope of the edge (w�, z1) is strictly greater
than the one of (z1, z2), since the following trivially holds:

5(n − 2)2 − (n − 2)2

2(n − 2) − 1
> 2(n − 2) − 1 ⇐⇒ 2(n − 2) > 2(n − 2) − 1. 
�
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Fig. 7. Treating the outer face when its degree is five (a–b) and four (c–d).

4.4 Outer Face and Final Analysis

To complete the description of our algorithm, it remains to guarantee that
the outer face of the computed drawings is strictly-convex. To this aim, we
slightly augment the input graph G and suitably choose the canonical order to
give as input to Kant’s algorithm. Consider a planar embedding of G and let
v1, v2, . . . , vh be the vertices on the outer face (see Fig. 7a); recall that we have
assumed h ≤ 5. If h = 3, then the boundary of the outer face is a triangle and
hence strictly-convex. So, assume 4 ≤ h ≤ 5. To ease the presentation, we let
h = 5 (see Figs. 7a and 7b), as the case h = 4 is simpler (see Figs. 7c and 7d).
We proceed by adding two vertices v�

1 and v�
2 in the outer face of G and edges

(v�
1 , v

�
2), (v�

1 , v5), (v�
1 , v1), (v�

1 , v2), (v�
2 , v3), (v�

2 , v4), and (v�
2 , v5). The resulting

graph G� is still planar and 3-connected. In particular, its outer face is a 3-cycle
formed by v�

1 , v
�
2 , v5. We compute a canonical order δ� of G� with P0 = (v�

1 , v
�
2)

and Pm = {v5}. The key observation is that the second set of δ� is the chain
P1 = {v2, v3}, since it forms the inner face f� of G� with (v�

1 , v
�
2) on its boundary.

Next, we apply the algorithm supporting Theorem 4 to G� using the afore-
mentioned canonical order δ� and obtain a drawing of it that is internally strictly-
convex. We next prove that the removal of v�

1 and v�
2 from this drawing yields

a drawing of G that is strictly-convex. By Theorem 4 and by our augmentation,
it suffices to guarantee that the outer face of the obtained drawing is strictly-
convex. Consider first the inner angle at v5 of the polygon bounding the outer
face; this angle is strictly less than π, because v5 is the topmost vertex of the
drawing (and no other vertex is horizontally aligned with it). A similar argu-
ment applies for the angles at v1 and v4; in particular, after the removal of v�

1

and v�
2 , vertices v1 and v4 are the leftmost and the rightmost neighbors of v5,

respectively, and therefore they are the leftmost and the rightmost vertices in the
drawing, respectively. Concerning v2 and v3, they are horizontally aligned and,
after the removal of v�

1 and v�
2 , they are the bottommost vertices of the drawing.

Thus, their angles are also strictly less that π completing the proof of our claim.
To conclude the proof of Theorem 1, it remains to discuss the area required by
the drawing obtained as above and the time complexity to compute it.

Area Bound. The drawing Γ computed by Kant’s algorithm for G� fits on
an integer grid of size (2n� − 4) × (n� − 2), where n� = n + 2 (G� has two
more vertices than G). The transformed drawing Γf of Γ by means of the lifting
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function f : R �→ R with f(y) = 5(n� −2)2y +y2 has the same width as Γ , while
the vertices v�

1 and v�
2 have y-coordinate 0 in Γf . On the other hand, vertex v5 has

y-coordinate 5(n�−2)2(n�−2)+(n�−2)2, which is also the height of Γf . Since no
vertex of the outer face of Γf is further shifted upwards, the curved drawing Γ̂f of
Γf has the same width and height as Γf . After removing v�

1 and v�
2 , the width of

the final drawing of G is at least two units less than the one of Γ̂f , while its height
is at least 5(n�−2)2 units less. Since n� = n+2, the final drawing lies on a grid of
size ((2(n+2)−4)−2)×(5((n+2)−2)3−4((n+2)−2)2) = 2(n−1)×(5n3−4n2).

Time Complexity. Each step of our algorithm can be implemented in
O(n) time: (i) finding a planar embedding of G with a face of degree at most
5, (ii) computing G�, a canonical order of it, and applying Kant’s algorithm to
G�, (iii) computing the transformed drawing with respect to our lifting function
f and updating the position of the internal chain-vertices. This completes the
proof of Theorem 1.

5 Conclusions and Open Problems

We have provided a linear-time algorithm that computes a strictly-convex draw-
ing of a 3-connected planar graph on an integer grid of size 2(n−1)×(5n3−4n2).
Compared to the previously best-known upper bound for such drawings [1], we
largely improve the multiplicative constants by means of an arguably simpler
algorithm, which therefore has the potential to be of practical use. Along the
way, we proved tools that can be of independent interest (see in particular The-
orem 2). Some problems that stem from our research are the following:

– Can we achieve a similar area bound together with a constant aspect ratio?
– Is Ω(n4) a lower bound for the area requirement of strictly-convex drawings?
– Can we compute strictly-convex drawings in small area with good edge-vertex

resolution [2,3]?
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