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Abstract. A rectangular drawing of a planar graph G is a planar draw-
ing of G in which vertices are mapped to grid points, edges are mapped
to horizontal and vertical straight-line segments, and faces are drawn as
rectangles. Sometimes this latter constraint is relaxed for the outer face.
In this paper, we study rectangular drawings in which the edges have unit
length. We show a complexity dichotomy for the problem of deciding the
existence of a unit-length rectangular drawing, depending on whether
the outer face must also be drawn as a rectangle or not. Specifically, we
prove that the problem is NP-complete for biconnected graphs when the
drawing of the outer face is not required to be a rectangle, even if the
sought drawing must respect a given planar embedding, whereas it is
polynomial-time solvable, both in the fixed and the variable embedding
settings, if the outer face is required to be drawn as a rectangle.

Keywords: Rectangular drawings · Rectilinear drawings · Matchstick
graphs · Grid graphs · SPQR-trees · Planarity

1 Introduction

Among the most celebrated aesthetic criteria in Graph Drawing we have: (i)
planarity, (ii) orthogonality of the edges, (iii) unit length of the edges, and (iv)
convexity of the faces. We focus on drawings in which all the above aesthetics
are pursued at once. Namely, we study orthogonal drawings where the edges
have length one and the faces are rectangular.

Throughout the paper, any considered graph drawing has the vertices
mapped at distinct points of the plane. Orthogonal representations are a classic
research topic in graph drawing. A rich body of literature is devoted to orthog-
onal drawings of planar [16,21,25,50] and plane [14,40,41,45,46] graphs with
the minimum number of bends in total or per edge [10,32,33]. An orthogonal
drawing with no bend is a rectilinear drawing. Several papers address rectilinear
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Fig. 1. Unit-length embedding-preserving rectangular drawings of a plane graph.

drawings of planar [13,24,26,29,37,38] and plane [20,24,43,49] graphs. When all
the faces of a rectilinear drawing have a rectangular shape the drawing is rectan-
gular. Maximum degree-3 plane graphs admitting rectangular drawings were first
characterized in [47,48]. A linear-time algorithm to find a rectangular drawing
of a maximum degree-3 plane graph, provided it exists, is described in [39] and
extended to maximum degree-3 planar graphs in [42]. Surveys on rectangular
drawings can be found in [23,35,36]. If only the internal faces are constrained to
be rectangular, then the drawing is called inner-rectangular. In [34] it is shown
that a plane graph G has an inner-rectangular drawing Γ if and only if a spe-
cial bipartite graph constructed from G has a perfect matching. Also, Γ can be
found in O(n1.5/ log n) time if G has n vertices and a “sketch” of the outer face
is prescribed, i.e., all the convex and concave outer vertices are prescribed.

Computing straight-line drawings whose edges have constrained length is
another core topic in graph drawing [1,2,4,7,12,22,44]. The graphs admit-
ting planar straight-line drawings with all edges of the same length are also
called matchstick graphs. Recognizing matchstick graphs is NP-hard for bicon-
nected [22] and triconnected [12] graphs, and in fact, even strongly ∃R-
complete [1]; see also [44].

A unit-length grid drawing maps vertices to grid points and edges to hor-
izontal or vertical segments of unit Euclidean length. A grid graph is a graph
that admits a unit-length grid drawing1. Recognizing grid graphs is NP-complete
for ternary trees of pathwidth 3 [9], for binary trees [27], and for trees of path-
width 2 [28], but solvable in polynomial time on graphs of pathwidth 1 [28]. An
exponential-time algorithm to compute, for a given weighted planar graph, a
rectilinear drawing in which the Euclidean length of each edge is equal to the
edge weight has been presented in [7].

Let G be a planar graph. The Unit-length Inner-Rectangular Draw-

ing Recognition (for short, UIR) problem asks whether a unit-length inner-
rectangular drawing of G exists. Similarly, the Unit-length Rectangular

Drawing Recognition (for short, UR) problem asks whether a unit-length

1 Note that in some literature the term “grid graph” denotes an “induced” graph, i.e.,
there is an edge between any two vertices at distance one. See, for example, [31].
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(a) (b)

Fig. 2. (a) A planar rectilinear grid drawing of a graph. (b) A unit-length rectangular
grid drawing of the same graph.

rectangular drawing of G exists. Let now H be a plane or planar embedded
(i.e., no outer face specified) graph. The Unit-length Inner-Rectangular

Drawing Recognition with Fixed Embedding (for short, UIRFE) prob-
lem asks whether a unit-length inner-rectangular embedding-preserving drawing
of H exists. Similarly, the Unit-length Rectangular Drawing Recog-

nition with Fixed Embedding (for short, URFE) problem asks whether a
unit-length rectangular embedding-preserving drawing of H exists; see Fig. 1.

Our Contribution. In Sect. 3 we show NP-completeness for the UIRFE and
UIR problems when the input graph is biconnected, which is surprising since a
biconnected graph has degrees of freedom that are more restricted than those of
a tree. In Sect. 4 we provide a linear-time algorithm for the UIRFE and URFE

problems if the drawing of the outer face is given. In Sect. 5 we first show that
the URFE problem is cubic-time solvable; the time bound becomes linear if all
internal faces of the input graph have maximum degree 6. These results hold
both when the outer face is prescribed and when it is not. Second, we show a
necessary condition for an instance of the UR problem to be positive in terms of
its SPQR-tree. Exploiting the above condition, we show that the UR problem is
cubic-time solvable; the running time becomes linear when the SPQR-tree of the
input graph satisfies special conditions. Finally, as a by-product of our research,
we provide the first polynomial-time algorithm to test whether a planar graph G
admits a rectangular drawing, for general instances of maximum degree 4.

Missing details for the proofs of the statements marked with a (�) are given
in [3].

2 Preliminaries

For basic graph drawing terminology and definitions refer, e.g., to [15,35].

Drawings and Embeddings. Two planar drawings of a connected graph are
planar equivalent if they induce the same counter-clockwise ordering of the edges
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incident to each vertex. Also, they are plane equivalent if they are planar equiv-
alent and the clockwise order of the edges along the boundaries of their outer
faces is the same. The equivalence classes of planar equivalent drawings are called
planar embeddings, whereas the equivalence classes of plane equivalent draw-
ings are called plane embeddings. A planar embedded graph is a planar graph
equipped with one of its planar embeddings. Similarly, a plane graph is a planar
graph equipped with one of its plane embeddings. Given a planar embedded
(resp. plane) graph G and a planar (resp. plane) embedding E of G, a planar
drawing Γ of G is embedding-preserving if Γ ∈ E .

In a grid drawing, vertices are mapped to points with integer coordinates
(i.e., grid points). A drawing of a graph in which all edges have unit Euclidean
length is a unit-length drawing (see Fig. 2 for an example).

Observation 1. A unit-length grid drawing is rectilinear and planar.

Observation 2. A unit-length rectangular (or inner-rectangular) drawing is
planar and it is a grid drawing, up to a rigid transformation.

The following simple property has been proved in [6, Lemma 1].

Property 1. Every cycle that admits a unit-length grid drawing has even length.

Since (inner) rectangular drawings exist only for maximum-degree-4 graphs,
in the remainder, we assume that all considered graphs satisfy this requirement.

Connectivity. A biconnected component (or block) of a graph G is a maximal
(in terms of vertices and edges) biconnected subgraph of G. A block is trivial if
it consists of a single edge and non-trivial otherwise. A split pair of G is either a
pair of adjacent vertices or a separation pair, i.e., a pair of vertices whose removal
disconnects G. The components of G with respect to a split pair {u, v} are defined
as follows. If (u, v) is an edge of G, then it is a component of G with respect
to {u, v}. Also, let G1, . . . , Gk be the connected components of G\{u, v}. The
subgraphs of G induced by V (Gi)∪{u, v}, minus the edge (u, v), are components
of G with respect to {u, v}, for i = 1, . . . , k. Due to space limitations, we refer
the reader to [3] and to [17,18] for the definition of SPQR-tree.

3 NP-Completeness of the UIRFE and UIR Problems

In this section we show NP-completeness for both the UIRFE and UIR problems
when the input graph is biconnected. We start with the following theorem.

Theorem 1. The UIRFE problem is NP-complete, even for biconnected plane
graphs whose internal faces have maximum size 6.

Let φ be a Boolean formula in conjunctive normal form with at most three
literals in each clause. We denote by Gφ the incidence graph of φ, i.e., the graph
that has a vertex for each clause of φ, a vertex for each variable of φ, and an edge
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(a) Γφ (b) Γ ∗
φ

Fig. 3. (a) The monotone rectilinear representations Γφ of Gφ. The rectangles repre-
senting variables and clauses are red, whereas the line segments and rectangles rep-
resenting the edges of φ are blue. (b) The auxiliary representation Γ ∗

φ . (Color figure
online)

(c, v) for each clause c that contains the positive literal v or the negated literal v.
The formula φ is an instance of Planar Monotone 3-SAT if Gφ is planar and
each clause of φ is either positive or negative. A positive clause contains only
positive literals, while a negative clause contains only negated literals. Hereafter,
w.l.o.g., we assume that all the clauses of φ contain exactly three literals.

A monotone rectilinear representation of Gφ is a drawing that satisfies the
following properties (refer to Fig. 3a). P1: Variables and clauses are represented
by axis-aligned rectangles with the same height. P2: The bottom sides of all
rectangles representing variables lie on the same horizontal line. P3: The rect-
angles representing positive (resp. negative) clauses lie above (resp. below) the
rectangles representing variables. P4: Edges connecting variables and clauses
are represented by vertical segments. P5: The drawing is crossing-free.

The Planar Monotone 3-SAT problem is known to be NP-complete, even
when the incidence graph Gφ of φ is provided along with a monotone rectilinear
representation Γφ of Gφ [8]. We prove Theorem 1 by showing how to construct
a plane graph Hφ that is biconnected, has internal faces of maximum size 6, and
admits a unit-length inner-rectangular drawing if and only if φ is satisfiable.
Our strategy is to modify Γφ to create a suitable auxiliary representation Γ ∗

φ

(see Fig. 3) and then to use the geometric information of Γ ∗
φ as a blueprint to

construct Hφ. Because of the lack of space, we describe in detail how to obtain
Γ ∗

φ from Γφ and how to construct Hφ in the full version [3]. We provide below a
high-level description of the logic behind the reduction.

Overview of the Reduction. The reduction is based on three main types of
gadgets. A variable v ∈ φ is modeled by means of a variable gadget, a clause c ∈ φ
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Fig. 4. The graph Hφ. Variable and clause gadgets are enclosed in light red boxes,
while transmission gadgets are enclosed in light blue boxes. (Color figure online)

by means of an (α, β)-clause gadget, and an edge (v, c) ∈ Gφ by means of a λ-
transmission gadget. We use the geometric properties of Γ ∗

φ to determine the size
and structure of each gadget, as well as how to combine the gadgets together to
form Hφ. The width and height of the rectangles representing variables, clauses,
and edges are used to construct variable gadgets and to compute the auxiliary
parameters α, β and λ, which in turn are used to construct (α, β)-clause gadgets
and λ-transmission gadgets. Finally, the incidences between the rectangles are
used to decide how to join the gadgets to construct a single connected graph.

An example of a unit-length inner-rectangular drawing of Hφ is shown in
Fig. 4; some faces of Hφ are omitted. All these missing faces are part of domino
components, which admit a constant number of unit-length inner-rectangular
drawings, see Fig. 5; some of these faces are shown filled in white or blue in Fig. 4.

The logic behind the construction is as follows. A variable gadget admits two
unit-length inner-rectangular drawings (see Fig. 6), which differ from each other
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(a) L-shape (b) C-shape (c) Stick

Fig. 5. The unit-length grid drawings of the domino components. Domino component
faces are filled blue (size 6) and white (size 4). (Color figure online)

Fig. 6. The variable gadget.

Fig. 7. In every unit-length inner-rectangular drawing of an (α, β)-clause gadget, at
least one L-shape domino component crosses the red rectangle. (Color figure online)
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on whether the domino components of the gadget stick out of the bottom or top
side of the red enclosing rectangle, and correspond to a true/false assignment
for the associated variable, respectively. The truth assignments are propagated
from variable to clause gadgets via λ-transmission gadgets. A domino component
sticking out of a variable gadget invades a transmission gadget, which causes a
domino component at the other end of the transmission gadget to be directed
towards the incident (α, β)-clause gadget. The clause gadget is designed so that
it admits a unit-length inner-rectangular drawing if and only if at least one of
the extremal domino components of its three incident transmission gadgets is
not directed towards it; this allows a domino component of the clause gadget to
invade the transmission gadget and save space inside the clause gadget; see Fig. 7.

By showing that all the unit-length inner-rectangular drawings of Hφ respect
the same plane embedding, we prove the following theorem.

Theorem 2 (�). The UIR problem is NP-complete, even for biconnected plane
graphs whose internal faces have maximum size 6.

4 An Algorithm for the UIRFE and URFE Problems
with a Prescribed Drawing of the Outer Face

Consider a connected instance of the UIRFE problem, i.e., an n-vertex con-
nected plane graph G; let E be the plane embedding prescribed for G. Let Γo be
a unit-length grid drawing of the walk bounding the outer face fo of E . W.l.o.g,
assume that the smallest x- and y- coordinates of the vertices of Γo are equal
to 0. Next, we describe an O(n)-time algorithm, called Rectangular-holes

Algorithm, to decide whether G admits a unit-length inner-rectangular draw-
ing that respects E and in which the walk bounding fo is represented by Γo.

We first check whether each internal face of E is bounded by a simple cycle
of even length, as otherwise the instance is negative by Property 1. This can
be trivially done in O(n) time. Consider the plane graph obtained from G by
removing the bridges incident to the outer face and the resulting isolated vertices.
A necessary condition for G to admit an inner-rectangular drawing is that the
resulting graph contains no trivial block. This can be tested in O(n) time [30].

The algorithm processes the internal faces of G one at a time. When a face f
is considered, the algorithm either detects that G is a negative instance or assigns
x- and y- coordinates to all the vertices of f . In the latter case, we say that f
is processed and its vertices are placed. Since the drawing of fo is prescribed, at
the beginning each vertex incident to fo is placed, while the remaining vertices
are not. Also, every internal face of E is not processed. The algorithm concludes
that the instance is negative if one of the following conditions holds: (C1) there
is a placed vertex to which the algorithm tries to assign coordinates different
from those already assigned to it, or (C2) there are two placed vertices with
the same x-coordinate and the same y-coordinate. If neither Condition C1 nor
C2 occurs, after processing all the internal faces the vertex placement provides
a unit-length inner-rectangular drawing of the input instance.

To process faces, the algorithm maintains some auxiliary data structures:



Unit-length Rectangular Drawings of Graphs 135

fo

f∗L
u

(a) Graph H and face f∗

f∗ = fo

(b) Merging f∗ with fo

Fig. 8. A step of the Rectangular-holes Algorithm.

– A graph H, called the current graph, which is the subgraph of G com-
posed of the vertices and of the edges incident to non-processed (internal)
faces. Initially, we have H = G. In particular, we will maintain the invariant
that each biconnected component of H is non-trivial. We will also maintain
the outer face of the restriction EH of E to H, which we will still denote by fo.

– An array A, called the current outer-sorter, that contains Mx + 1
buckets, each implemented as a double-linked list, where Mx is the largest
x-coordinate of a vertex in Γo. The bucket A[i] contains the placed vertices of
H (i.e., those incident to the outer face of H) whose x-coordinate is equal to i.
Moreover, A is equipped with the index xmin of the first non-empty bucket.
To allow removals of vertices in O(1) time, we enrich each placed vertex with
x-coordinate i with a pointer to the corresponding list-item in the list A[i].

– A set of pointers for the edges of H: Each edge (u, v) is equipped with two
pointers �uv and �vu, that reference the faces of E lying to the left of (u, v),
when traversing such an edge from u to v and from v to u, respectively.

At each iteration the algorithm performs the following steps; see Fig. 8.
Retrieve: It retrieves an internal face f∗ with at least one vertex u with mini-
mum x-coordinate (i.e., xmin) among the placed vertices of H; such a vertex is
incident to the outer face of H. Draw: It assigns coordinates to all the vertices
incident to f∗ in such a way that f∗ is drawn as a rectangle R∗. Note that such a
drawing is unique as the left side of R∗ in any unit-length grid drawing of H with
the given drawing of fo coincides with the maximal path L containing u that is
induced by all the placed vertices of f∗ with x-coordinate equal to xmin. Merge:
It merges f∗ with fo by suitably changing the pointers of every edge incident to
f∗, and by removing each edge (u, v) with pointers �uv = �vu = fo, as well as any
resulting isolated vertex. Further, it updates A consequently. Note that, after the
merge step, the outer face fo of the new current graph H is completely drawn.
This invariant is maintained through each iteration of the algorithm. In [3], we
describe each step in detail.
The proof of the next theorem exploits the Rectangular-holes Algorithm.
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(a) Double (b) Slim double (c) Fat double (d) Degree-4 (e) Degree-6

Fig. 9. Corner faces for the proof of Theorem 4.

Theorem 3 (�). The UIRFE and URFE problems are O(n)-time solvable for
an n-vertex connected plane graph, if the drawing of the outer face is prescribed.

Since any unit-length grid drawing of a cycle with 4 or 6 vertices is a rectangle,
the previous theorem implies the following result, which contrasts with the NP-
hardness of Theorem 1, where the drawing of the outer face is not prescribed.

Corollary 1. The UIRFE problem is linear-time solvable if the drawing of the
outer face is prescribed and all internal faces have maximum degree 6.

5 Algorithms for the URFE and UR Problems

In this section we study the UR problem. Since rectangular drawings are convex,
the input graphs for the UR problem must be biconnected [19].

Fixed Embedding. We start by considering instances with either a prescribed
plane embedding (Theorem 4) or a prescribed planar embedding (Theorem 5).

Theorem 4 (�).The URFE problem is cubic-time solvable for a plane graph G
and it is linear-time solvable if all internal faces of G have maximum degree 6.

Proof (sketch). To solve the problem in cubic time, we examine the quadratically-
many drawings of the outer face fo, and invoke Theorem 3 for each of them.

Assume now that all internal faces have maximum degree 6. We efficiently
determine O(1) possible rectangular drawings of fo and then invoke Theorem 3
for each of them. If G is a 4-cycle or a 6-cycle, then the instance is trivially
positive. Refer to Fig. 9. A double corner face is a degree-4 face with three edges
incident to fo. A slim double corner face is a degree-6 face with five edges incident
to fo. A fat double corner face is a degree-6 face with four edges incident to fo.
Note that each of such faces must provide two consecutive 270◦ angles incident
to f0. Hence, if G has at least one of the above faces, the drawing of fo is
prescribed, and hence Rectangular-holes Algorithm can be invoked.

Suppose now that none of the above cases holds. A corner face is a degree-4
(degree-6) face that has two (resp. three) edges incident to fo. Each corner face
provides a 270◦ angle incident to any realization of f0 as a rectangle. Hence, there
must be exactly four corner faces in order for G to be a positive instance. These
faces can be computed in linear time, and determine O(1) possible drawings of
the outer face on which we invoke Rectangular-holes Algorithm. ��
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Fig. 10. A rectangular unit-length grid drawing of a planar graph and its pruned
SPQR-tree T ∗. S-, P -, and R-nodes are circles, rhombuses and squares, respectively.
The subgraphs corresponding to S-nodes that are leaves of T ∗ are thick.

By showing that any planar embedding has a unique candidate outer face
supporting a unit-length rectangular drawing, we get the following.

Theorem 5 (�). The URFE problem is cubic-time solvable for a planar embed-
ded graph G, and it is linear-time solvable if all but at most one face of G have
maximum degree 6.

Variable Embedding. Now, we turn our attention to instances with a variable
embedding. We start by providing some relevant properties of the graphs that
admit a rectangular (not necessarily unit-length or grid) drawing. Let G be one
such graph. To avoid degenerate cases, in what follows, we assume that G is not
a cycle (cfr. Property 1). Let Γ be a rectangular drawing of G and let Γo be
the rectangle delimiting the outer face of Γ . Refer to Fig. 10. Consider the plane
graph GΓ corresponding to Γ . Since Γ is convex, then GΓ is a subdivision of
an internally triconnected plane graph [5, Theorem 1]. That is, every separation
pair {u, v} of GΓ is such that u and v are incident to the outer face and each
connected component of GΓ \{u, v} contains a vertex incident to the outer face.

A caterpillar is a tree such that removing its leaves results in a path, called
spine. The pruned SPQR-tree of a biconnected planar graph G, denoted by T ∗, is
the tree obtained from the SPQR-tree T of G, after removing the Q-nodes of T .

Lemma 1 (�). Let G be a graph that admits a rectangular drawing. Then the
pruned SPQR-tree T ∗ of G is a caterpillar with the following properties: (i) All
its leaves are S-nodes; (ii) its spine contains no two adjacent R-nodes; (iii) its
spine contains no two adjacent nodes μ and ν, such that μ is a P -node and ν is
an R-node; (iv) each P -node μ has exactly 3 neighbors; and (v) the skeleton of
each S-node of the spine of T ∗ contains two chains of virtual edges corresponding
to Q-nodes, separated by two virtual edges each corresponding to either a P - or
an R-node.
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Proof (sketch). Let Γ be a rectangular drawing of G and let Γo be the rectangle
bounding the outer face of Γ . By inspecting Γ “from left to right”, we argue
about the structure of T ∗, which ultimately leads to prove the statement of the
lemma; refer to Fig. 10. At each point of the inspection, T ∗ will be a caterpillar
whose spine does not have a P -node as an end-point. Also, a leaf will be denoted
as active and will be used as an attachment endpoint to extend T ∗.

Let S = [{u1, v1}, {u2, v2}, . . . , {uk, vk}] be the separation pairs of G such
that both ui and vi lie on opposite sides of Γo, have degree 3, and share the same
x-coordinate, for i = 1, . . . , k, sorted in increasing order of their x-coordinate.
In [3], we provide properties of rectangular drawings that show that these pairs
are the only ones that correspond to poles of P - and R-nodes of T ∗. We set
L = {u0, v0} ◦ S ◦ {uk+1, vk+1}, where u0, uk+1, vk+1, and v0 are the vertices on
the top-left, top-right, bottom-right, and bottom-left corner of Γo.

Consider any two consecutive pairs {ui, vi} and {ui+1, vi+1}, for i = 0, . . . , k.
We can define a cycle Ci in G that contains ui, ui+1, vi+1, and vi, and that is
drawn as a rectangle in Γ . Moreover, any two cycles Ci and Ci+1 share a path
Pi+1 that is drawn as a straight-line segment in Γ . We denote by Gi the subgraph
of G induced by the vertices in the interior and along the boundary of Ci.

We skip the discussion for the consecutive pairs {u0, v0} and {u1, v1}. For
i = 1, . . . , k, consider the separation pair {ui, vi}. Let ξ be the active endpoint
of the spine. In the following, we denote by sk(μ) the skeleton of a node μ of T ∗.
Two cases are possible: ξ is either an S- or an R-node.

Suppose that Gi = Ci. If ξ is an S-node, then we introduce a P -node μi,1 in
T ∗ adjacent to ξ and to two new S-nodes μi,2 and μi,3. We have that sk(μi,1) is
a bundle of three parallel edges (ui, vi), sk(μi,2) is a cycle containing one virtual
edge for each edge of the path Pi plus a virtual edge (ui, vi), and sk(μi,3) is a
cycle consisting of a virtual edge (ui, vi), followed by one virtual edge for each
horizontal edge in the top side of Ci, followed by one virtual edge (ui+1, vi+1),
followed by one virtual edge for each horizontal edge in the bottom side of Ci.
We set S-node μ1,3 as the active node of T ∗. If ξ is an R-node, then we introduce
an S-node μi in T ∗ adjacent to ξ whose skeleton is a cycle consisting of a virtual
edge (ui, vi), followed by one virtual edge for each horizontal edge in the top
side of Ci, followed by a path P ∗ of virtual edges defined below, followed by one
virtual edge for each horizontal edge in the bottom side of Ci. If i < k, then
P ∗ consists of the single virtual edge (ui+1, vi+1); otherwise, if i = k, then P ∗

contains a virtual edge for each real edge incident to the right side of Γo. We set
the S-node μi as the active endpoint of T ∗, unless i = k.

Suppose now that Gi �= Ci. In this case, Gi is the subdivision of a triconnected
planar graph. We introduce an R-node μi in T ∗ adjacent to ξ and to the S-nodes
corresponding to the components of Gi, with respect to its split pairs, that are
simple paths. We add to sk(μi) a virtual edge for each of such paths, as well
as (ui, vi) and (ui+1, vi+1), unless i = k. We set the R-node μi as the active
endpoint of T ∗, unless i = k. ��

Consider a graph G that satisfies the conditions of Lemma 1. If the spine of
the pruned SPQR-tree of G contains at least two nodes or at least one P -node,
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Fig. 11. Four plane embeddings of a graph G that support a rectangular drawing of
G, obtained by selecting one of the plane embeddings E1 and E4 of the subgraph G0 of
G and one of the the plane embeddings E2 and E3 of the subgraph G4 of G. Only the
embeddings E1 and E2 support a unit-length rectangular drawing.

we say that G is flat ; otherwise, G is the subdivision of a triconnected planar
graph. Exploiting Lemma 1, we can prove the following; refer to Fig. 11.

Lemma 2 (�). Let G be an n-vertex graph. The following hold:

– All the unit-length rectangular drawings of G, if any, have the same plane
embedding E (up to a reflection), which can be computed in O(n) time.

– If G is flat, all the rectangular drawings of G, if any, have at most four possible
plane embeddings (up to a reflection), which can be computed in O(n) time.

The next theorem shows that the UR problem is polynomial-time solvable.
Surprisingly, the problem seems to be harder for non-flat instances.

Theorem 6 (�). Let G be a planar graph. The UR problem is cubic-time solv-
able for G. Also, if G is flat, then the UR problem is linear-time solvable.

Proof (sketch). First, we test whether G satisfies the conditions of Lemma 1,
which can clearly be done in O(n) time by computing and visiting T ∗, and
reject the instance if this test fails. Then, by Lemma 2, we compute in O(n) time
the unique candidate plane embedding E of G that may support a unit-length
rectangular drawing of G, if any, and reject the instance if such an embedding
does not exist. Let fo be the outer face of E . If the spine of T ∗ consists of a
single R-node, then E coincides with the unique planar embedding of G, and we
test for the existence of such a drawing using Lemma 5 in O(n3) time. If G is
flat, then we can show that there exists a unique candidate drawing Γo of fo.
Then, we use Theorem 3 to test in O(n) time whether a unit-length rectangular
drawing of G exists that respects E and such that fo is drawn as Γo. ��
Theorem 7 (�). Let G be an n-vertex planar graph. The problem of testing for
the existence of a rectangular drawing of G is solvable in O(n2 log3 n) time. Also,
if G is flat, then this problem is solvable in O(n log3 n) time.

Proof (sketch). Assume that G satisfies the conditions of Lemma 1. If G is flat,
then Lemma 2 guarantees the existence of only up to four plane embeddings
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of G that are candidates for a rectangular drawing of G that respects them.
Otherwise, G is the subdivision of a triconnected planar graph, and there exists
O(n) candidate plane embeddings. For each of them, we test for the existence of
a rectangular drawing respecting it by solving a max-flow problem on a linear-
size planar network with multiple sources and sinks in O(n log3 n) time [11].
Such a network can be defined following Tamassia’s [15] classic approach to test
for the existence of rectilinear drawings of plane graphs. ��

6 Conclusions and Open Problems

We studied the recognition of graphs admitting the beautiful drawings that
require unit-length and orthogonality of the edges, planarity, and convexity of
the faces. We show that, if the outer face is drawn as a rectangle, the problem
is polynomial-time solvable, while it is NP-hard if the outer face is an arbitrary
polygon (even if the input is biconnected), unless such a polygon is specified
in advance. These results hold both in the fixed-embedding and in the variable-
embedding settings. A byproduct of our results is a polynomial-time algorithm to
recognize graphs admitting a rectangular (non-necessarily unit-length) drawing.

It is worth remarking that if the input is a subdivision of a triconnected
planar graph, then our algorithms pay an extra time to handle the outer face.
Specifically, for the rectangular unit-length setting, an extra quadratic time is
used to guess a rectangular drawing of the unique candidate outer face, while,
for the general rectangular setting, an extra linear time is used to determine the
actual candidate outer face. Hence, it is appealing to study efficient algorithms
for this specific case. Further, it is interesting to determine the complexity of the
grid graph recognition problem for trees with a given embedding, even for the
case of trees that are as simple as caterpillars. Observe that the NP-hardness
results on trees in [9,27] heavily rely on the variable embedding setting.
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